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Editorial on the Research Topic

Facing the Upcoming of Multidrug-Resistant and Extensively Drug-Resistant Bacteria: Novel

Antimicrobial Therapies (NATs)

Antimicrobial resistance is one of the largest looming threats to global health (Friedman et al.,
2016), increasing the morbidity and mortality associated with bacterial infections (Ventola,
2015). ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae,
Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) are responsible for the
majority of nosocomial infections (Ma et al., 2020) and commonly “escape” the biocidal action
of antimicrobial agents (Mulani et al., 2019). The frequent and increasing use of antibiotics in
medical practice drives the emergence of multidrug-resistant (MDR) and extensively drug-resistant
(XDR) pathogens (Magiorakos et al., 2012; Prestinaci et al., 2015). There is an urgent and critical
need to design and engineer novel therapeutic alternatives for eradicating MDR and XDR bacteria
through burgeoning technologies such as metal nanoparticles, genetic engineering, synthetic
biology, peptide therapeutics, and combinatorial treatments. In this Research Topic, we assemble
ten original articles highlighting recent discoveries around Novel Antimicrobial Therapies (NATs)
against MDR and XDR bacteria.

Seven original research articles spanning diverse disciplines describe the development of NATs
for clinically-relevant MDR pathogens. One study describes the one-pot synthesis of Ag-ZnO
nanoparticles at low temperatures and demonstrated remarkable antimicrobial activity of these
nanoparticles against methicillin-resistant Staphylococcus aureus (MRSA) (Naskar et al.). Another
study achieved successful phytomedited synthesis of green TiO2NPs that proved to be effective for
treating biofilm-based bacterial and fungal infections (Al-Shabib et al.).

Another research article assessed the therapeutic efficacy of antimicrobial combinations
on carbapenemase-producing Enterobacterales (CPE). The authors showed how antimicrobial
combinations synergized against most CPE expressing resistance genes. These antimicrobial
combinations may facilitate the successful treatment of patients infected with CPE (Zhou et al.).
Another original research article identified two potent combinations of antibiotics for clinical
MRSA infection, both in vitro and in vivo (Yu et al.). A separate study found that the compound
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2,4-Di-Tert-Butylphenol isolated from an endophytic fungus
substantially reduced the secretion of virulence factors and
biofilm and its associated factors controlled by quorum sensing
in a dose-dependent manner in Pseudomonas aeruginosa (Mishra
et al.).

Furthermore, a study tested the anti-virulence activity
of potential uridine diphosphate glucose pyrophosphorylase
(UDPG:PP) inhibitors and showed that these inhibitors are
a potential drug candidates against Streptococcus pneumoniae
infections (Cools et al.). New putative antimicrobial candidates
were reported by Okella et al. They designed an antimicrobial
peptide and performed target identification based on a
putative antimicrobial peptide motif derived from fish. From
all the peptide motifs generated in this work, the authors
identified Pleurocidin (secreted by flatfish) as having strong
antimicrobial potential.

Three review articles included in this special issue address
the use of NATs to face MDR bacteria. A mini-review discusses
combination treatments (particularly antimicrobial peptides and
metal nanoparticles) as a pathway to develop antimicrobial
therapeutics with broad-spectrum antibacterial action,
bactericidal instead of bacteriostatic activity, and better efficacy
against MDR bacteria (León-Buitimea et al.). Another review
explored the possibility of designing antimicrobial nanoparticle-
based devices to exploit the potential of antimicrobial
nanoparticles to combat MDR pathogens (Gómez-Núñez et al.).
Finally, a third review describes the mechanisms associated
with drug resistance in pyogenic streptococci and discusses the
advantages and limitations of innovative therapeutic strategies

such as bacteriocins, bacteriophage, phage lysins, and metal
nanoparticles (Alves-Barroco et al.).

In summary, this group of articles contributes to the search
for new therapeutic strategies to combat antibacterial resistance.
MDR and XDR infections are growing in incidence; the main
challenges facing society are now to design, develop, and evaluate
new therapeutic strategies that can spearhead the development of
alternative therapies against clinically-relevant MDR pathogens.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct and intellectual
contribution to the work, and approved it for publication.

FUNDING

This work was supported by funding from the National Institutes
of Health, grant R00GM118907 to JY, the Universidad Autónoma
de Nuevo León (Paicyt 2016-2017, Paicyt 2019-2020, and Paicyt
2020-2021), and CONACyT Science Grants (Basic Science grant
221332, Fronteras de la Ciencia grant 1502, and Infraestructura
Grant 279957) to JM-R. AL-B was supported by Beca de
Posdoctorado Nacional 2018-2020.

ACKNOWLEDGMENTS

We thank the contributing authors for submissions and the
reviewers for their time. We also thank Dr. Rustam Aminov for
handling this Research Topic.

REFERENCES

Friedman, N. D., Temkin, E., and Carmeli, Y. (2016). The negative

impact of antibiotic resistance. Clin. Microbiol. Infect. 22,

416–422. doi: 10.1016/j.cmi.2015.12.002

Ma, Y. X., Wang, C. Y., Li, Y. Y., Li, J., Wan, Q. Q., Chen, J. H., et al.

(2020). Considerations and caveats in combating ESKAPE pathogens against

nosocomial infections. Adv. Sci. 7:1901872. doi: 10.1002/advs.201901872

Magiorakos, A. P., Srinivasan, A., Carey, R. B., Carmeli, Y., Falagas, M. E.,

Giske, C. G., et al. (2012). Multidrug-resistant, extensively drug-resistant

and pandrug-resistant bacteria: An international expert proposal for interim

standard definitions for acquired resistance. Clin. Microbiol. Infect. 18,

268–281. doi: 10.1111/j.1469-0691.2011.03570.x

Mulani, M. S., Kamble, E. E., Kumkar, S. N., Tawre, M. S., and Pardesi, K. R. (2019).

Emerging strategies to combat ESKAPE pathogens in the era of antimicrobial

resistance: a review. Front. Microbiol. 10:539. doi: 10.3389/fmicb.2019.

00539

Prestinaci, F., Pezzotti, P., and Pantosti, A. (2015). Antimicrobial

resistance: a global multifaceted phenomenon. Pathog. Glob. Health 109,

309–318. doi: 10.1179/2047773215Y.0000000030

Ventola, C. L. (2015). The antibiotic resistance crisis: part 1: causes and threats. P

T 40, 277–283.

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2021 León-Buitimea, Morones-Ramírez, Yang and Peña-Miller. This

is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) and the copyright owner(s) are credited

and that the original publication in this journal is cited, in accordance with accepted

academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 2 February 2021 | Volume 9 | Article 6362786

https://doi.org/10.3389/fmicb.2020.01668
https://doi.org/10.3389/fmicb.2020.01596
https://doi.org/10.3389/fbioe.2020.604041
https://doi.org/10.3389/fmicb.2020.01669
https://doi.org/10.3389/fmicb.2020.563821
https://doi.org/10.3389/fmicb.2020.579916
https://doi.org/10.1016/j.cmi.2015.12.002
https://doi.org/10.1002/advs.201901872
https://doi.org/10.1111/j.1469-0691.2011.03570.x
https://doi.org/10.3389/fmicb.2019.00539
https://doi.org/10.1179/2047773215Y.0000000030
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-00216 March 17, 2020 Time: 16:34 # 1

ORIGINAL RESEARCH
published: 19 March 2020

doi: 10.3389/fbioe.2020.00216

Edited by:
Rafael Peña-Miller,

National Autonomous University
of Mexico, Mexico

Reviewed by:
Javier Alberto Garza Cervantes,

Autonomous University of Nuevo
León, Mexico

Chin-Yuan Chang,
National Chiao Tung University,

Taiwan

*Correspondence:
Kwang-sun Kim

kwangsun.kim@pusan.ac.kr

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Synthetic Biology,
a section of the journal

Frontiers in Bioengineering and
Biotechnology

Received: 23 January 2020
Accepted: 03 March 2020
Published: 19 March 2020

Citation:
Naskar A, Lee S and Kim K (2020)

Easy One-Pot Low-Temperature
Synthesized Ag-ZnO Nanoparticles

and Their Activity Against Clinical
Isolates of Methicillin-Resistant

Staphylococcus aureus.
Front. Bioeng. Biotechnol. 8:216.

doi: 10.3389/fbioe.2020.00216

Easy One-Pot Low-Temperature
Synthesized Ag-ZnO Nanoparticles
and Their Activity Against Clinical
Isolates of Methicillin-Resistant
Staphylococcus aureus
Atanu Naskar†, Sohee Lee† and Kwang-sun Kim*

Laboratory of RNA Biochemistry & Superbacteria Research, Department of Chemistry and Chemistry Institute for Functional
Materials, Pusan National University, Busan, South Korea

Antimicrobial resistance (AMR) is widely acknowledged as a global health problem,
yet the available solutions to this problem are limited. Nanomaterials can be used
as potential nanoweapons to fight against this problem. In this study, we report an
easy one-pot low-temperature synthesis of Ag-ZnO nanoparticles (AZO NPs) and
their targeted antibacterial activity against methicillin-resistant Staphylococcus aureus
(MRSA) strains. The physical properties of the samples were characterized by X-ray
diffractometry (XRD), transmission electron microscopy (TEM), and X-ray photoelectron
spectroscopy (XPS). Furthermore, minimum inhibitory concentration (MIC), zone of
inhibition (ZOI), and scanning electron microscopy (SEM) images for morphological
characterization of bacteria were assessed to evaluate the antibacterial activity of AZO
NPs against both Gram-negative [Escherichia coli (E. coli) and Acinetobacter baumannii
(A. baumannii) standard and AMR strains] and Gram-positive (S. aureus, MRSA3, and
MRSA6) bacteria. The AZO NPs showed comparatively better antibacterial activity
against S. aureus and MRSA strains than Gram-negative bacterial strains. This cost-
effective and simple synthesis strategy can be used for the development of other metal
oxide nanoparticles, and the synthesized nanomaterials can be potentially used to fight
against MRSA.

Keywords: low-temperature solution synthesis, Ag-ZnO nanoparticles, antibacterial activity, Gram-positive
bacteria, MRSA

INTRODUCTION

Antimicrobial resistance (AMR) is the ability of a given microbe to resist the effects of multiple
antibiotics (Huijbers et al., 2015; Prestinaci et al., 2015). AMR is easily recognized in hard-to-treat
pathogens and has become an alarming issue complicating health care and many other sectors
(Eliopoulos et al., 2003; Jasovsky et al., 2016). For instance, methicillin-resistant Staphylococcus
aureus (MRSA) is one of the most well-known AMR bacterial species for which immediate
intervention is necessary, but even the long considered last-resort antibiotic vancomycin cannot
be used in the treatment of MRSA infections since vancomycin-resistant S. aureus (VRSA) strains
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have emerged (Naskar and Kim, 2019; Naskar et al., 2020). In
addition, AMR S. aureus species are one of 12 families of priority
pathogenic bacteria listed by the World Health Organization
(WHO) for which antibiotics are urgently needed (World Health
Organization [WHO], 2017). Several new currently approved
oxazolidinone class antibiotics, including Sivextro (Hall et al.,
2018), tigecycline (Hall et al., 2018), and LCB01-0371 (Jeong
et al., 2010) to eradicate S. aureus species resistant to last-resort
antibiotics have been developed. However, it is possible that
bacteria might continue to evolve to evade this new class of last-
resort antibiotics, and it takes much time to find other alternatives
and their mechanism of action in response to a newly generated
resistant strain. Therefore, new alternatives to antibiotics are
desperately needed for the fight against AMR pathogens.

In this present scenario, nanomaterials have emerged as
both viable and versatile alternatives to current antibiotics
to fight against AMR bacteria as it showed effectiveness in
low dosages also where chances of bacteria getting resistance
is also less (Regí et al., 2019). The main advantage of
nanoparticles as antibacterial agents (i.e., nanoweapons) is
that they function via a multiple target approach compared
to the single target approach of antibiotics to inhibit the
growth of bacteria (Naskar et al., 2016; Baptista et al., 2018).
Therefore, it is harder for bacteria to attain resistance toward
nanoparticles. A large surface area to volume ratio is also
one of the major advantages of nanoparticles for their use in
various biomedical applications including antibacterial activity
(Navya and Daima, 2016; Naskar et al., 2018). Among such
nanomaterials, metal- and metal oxide-based nanoparticles
have been preferred by researchers to combat AMR bacterial
cells (Wang et al., 2017). However, silver (Ag) nanoparticles
(NPs) have been the most effective and promising antibacterial
candidates since ancient times due to their inhibitory and
antibacterial properties against microorganisms, including 16
major species of bacteria (Lee and Jun, 2019). Moreover,
zinc oxide (ZnO) NPs are another well-known antibacterial
nanomaterial (Sirelkhatim et al., 2015; Hassan et al., 2017;
Kumar et al., 2017; Naskar et al., 2017). ZnO nanoparticles
have been recognized as a safe material by the US Food
and Drug Administration [(21CFR182.8991) (Food and Drug
Administration (FDA), 2015)]. Therefore, Ag-ZnO (AZO) NPs
can be a potential alternative to conventional antibiotics in the
fight against AMR bacteria.

Several methods like sol–gel (Lu et al., 2011) hydrothermal
(Zhang and Mu, 2007) co-precipitation (Md Subhan et al., 2014),
and plasma-assisted chemical vapor deposition (Simon et al.,
2011) have been successfully reported for the synthesis of AZO
NPs. However, all of these processes use high temperature and
high pressure with long reaction times and multiple steps, which
limit the use of AZO NPs in various applications (Matai et al.,
2014). Very few reports, in fact, are available regarding the single
step and low temperature synthesis of AZO NPs for the killing
of AMR pathogens (especially MRSA pathogens) despite the
immense potential for AZO NPs as antibacterial agents.

In the present work, a simple one-pot low-temperature
synthesis method was developed to successfully synthesize AZO
NPs from simple metal precursors and hydrazine hydrate.

The antibacterial activity of the synthesized nanoparticles was
evaluated for AMR strains of Gram-positive bacteria, including
MRSA strains, and Gram-negative bacteria.

MATERIALS AND METHODS

Synthesis of ZnO (ZO) and Ag-ZnO (AZO)
NPs
Initially, a fixed quantity (1 g) of zinc nitrate hexahydrate
(Zn[NO3]2·6H2O, Merck) and requisite amount of silver nitrate
(AgNO3, ACS, ≥99.9%) [0 and 5 atomic percent (at%) with
respect to Zn] was uniformly dispersed in 50 mL of deionized
water (DW) with continuous stirring for 60 min at room
temperature. In the next step, 1 mL of hydrazine hydrate
(N2H4·H2O, Merck, 99–100%) was added dropwise to the
reaction mixture with continuous stirring. Subsequently, the
mixture was ultrasonicated for 10 min in a water bath
ultrasonicator. Now, gray colored precipitation was clearly visible
in the reaction beaker. The same steps, i.e., dropwise addition
of hydrazine hydrate and ultrasonication, were repeated until
the pH of the medium reached eight. Afterward, the precipitate
of solid materials was separated by centrifugation and DW and
ethanol were used for washing. Finally, the samples were dried
in an oven at ∼60◦C for 24 h. The products were designated as
ZO and AZO where the at% used in the precursors was 0 and
5, respectively.

Characterization
Material Properties
X-ray diffraction (XRD) using an X-ray diffractometer (D8
Advance with DAVINCI design XRD unit, Bruker) with nickel
filtered Cu Kα radiation source (λ = 1.5406 Å) was used
to evaluate the structures of ZO and AZO. The diffraction
patterns were collected in the 2θ range of 20–80◦. Moreover, the
microstructure of the representative sample of AZO was assessed
by transmission electron microscopy (TEM; Bruker Nano
GmbH). Carbon coated 300 mesh Cu grids were used for placing
the samples. An Axis Supra Scanning X-ray photoelectron
spectroscopy (XPS) microprobe surface analysis system was used
to assess a representative sample of AZO by scanning the binding
energy ranging from 200 to 1,200 eV to determine the chemical
state of elements. The C 1s peak position at 284.5 eV was used as
the binding energy reference.

Growth of Bacteria for Evaluation of the Antibacterial
Activity
Generally, antibacterial activity was evaluated according to a
previous report (Naskar et al., 2020) using BBLTM Mueller-
Hinton Broth (MHB, Becton Dickinson) grown bacterial strains
including E. coli (ATCC 25922), A. baumannii (ATCC 19606),
S. aureus (ATCC 25923); AMR strains of E. coli (1368),
A. baumannii (12001); and different MRSA clinical isolates
(Shin et al., 2019). Briefly, the MHB medium was used for
the inoculation of single colonies of bacteria, which were
incubated at 37◦C overnight, followed by dilution of the cells
to an optical density of 0.5 McFarland turbidity standard
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using SensititreTM Nephelometer (Thermo Scientific). The cell
cultures were used within 30 min after dilution to prepare
samples for minimum inhibitory concentration (MIC) assay
(section “MIC for Evaluation of the Antibacterial Activity”)
or scanning electron microscopy (SEM) analysis (section
“Morphological Characterization of Bacteria”) to assess the
antibacterial activity of NPs (ZO and AZO) and characterize cell
morphology, respectively.

MIC for Evaluation of the Antibacterial Activity
All bacteria were incubated overnight in the MHB medium.
The number of cells was determined with a SensititreTM

Nephelometer to a 0.5 McFarland standard and diluted at a
ratio of 1/1,000 in MHB. The ZO and AZO samples (5 mg/mL
each) were prepared by serial dilution with DW to obtain
concentrations from 250 to 10 µg/mL. Then, 90 µL of the
targeted bacterial medium was inoculated with 10 µL of
each diluted sample. The bacterial cells were incubated by
shaking at 500 rpm for 16 h at 37◦C. The MIC was evaluated
after this process.

Agar Well Diffusion Method for Evaluation of the
Antibacterial Activity
The antibacterial activity of ZO and AZO against the bacterial
strains of E. coli, A. baumannii, S. aureus, MRSA3, and MRSA6
was further evaluated with the agar well diffusion method. First,
500 µL of cultured bacterial cells were mixed with 25 mL
of MHB-agar, poured into sterile petri dishes (φ = 90 mm),
and solidified. Then, five holes, 6 mm in diameter each, were
aseptically punched through the surface with a sterile plastic rod.
Afterward, 20 µL of ZO or AZO (5 mg/mL), polymyxin B or
kanamycin (5 mg/mL, Sigma-Aldrich), or DW was added for
the experimental group, the positive control for Gram-negative
or -positive strains, and the negative control group respectively.
The plates were then incubated for 24 h at 37◦C. Finally, the
antibacterial activities were evaluated by measuring the diameter
of the zone of inhibition (ZOI) around the wells using a ruler.

Morphological Characterization of Bacteria
At first, prepared bacterial cells through the same process as
described in section “Growth of Bacteria for Evaluation of the
Antibacterial Activity” were diluted at a ratio of 1/1,000 in the
MHB medium according to MIC assay. 900 µL of prepared cells
were incubated with 100 µL of the three final concentration 0, 10,
and 20 µg/mL of AZO for 16 h at 37◦C with vigorous shaking.
After that, the incubated cells were harvested by centrifugation
at 12,000 rpm for 1 min to get a pellet. Then this pellet was
resuspended in 500 µL of phosphate buffered solution (pH
7) containing 2% formaldehyde and 1% glutaraldehyde, and
centrifuged again. Subsequently, the obtained cell pellet was
washed twice with DW and resuspended in 1 mL of DW for
further experimentation. A 5 µL aliquot was taken from the
suspension and deposited on a silicon wafer (5 mm × 5 mm in
size, Namkang Hi-Tech Co., Ltd.) to dry at room temperature.
Finally, the air-dried wafer was subjected to SEM analysis using
VEGA3 (TESCAN), a versatile tungsten thermionic emission
SEM system, according to the manufacturer’s protocol.

RESULTS AND DISCUSSION

Material Properties
Phase Structure
XRD was used to analyze the crystalline phase of samples.
Figure 1 shows the XRD patterns of as-synthesized ZO and
AZO samples. The obtained XRD patterns of the samples
were consistent with hexagonal ZnO (h-ZnO) (JCPDS 36-1451)
(Saloga and Thünemann, 2019). Moreover, some additional
peaks can be seen at ∼38.1◦, ∼44.3◦, ∼64.5◦, and ∼77.4◦ for
AZO samples, which corresponded to the crystal planes of
cubic Ag (JCPDS 04–0783) along (111), (200), (220), and (311),
respectively (Nogueira et al., 2014). Therefore, the formation of
AZO NPs was successfully confirmed.

Morphology and Microstructure
Transmission electron microscopy (TEM) was conducted
systematically to further investigate the formation of ZO/AZO
nanoparticles. The TEM image of the AZO sample and the
corresponding HRTEM and HAADF images are shown in
Figures 2a–d, respectively. The HRTEM image (Figure 2c) of
the AZO sample shows distinct lattice fringes with an interplanar
distance of 0.28 nm, corresponding to the (100) plane of
hexagonal ZnO (Ren et al., 2016). This observation confirmed
the presence of hexagonal ZnO in the AZO sample. Moreover,
HRTEM showed lattice fringes having an interplanar distance of
0.23 nm (Figure 2c), which can be matched with (111) of Ag
NP (Sareen et al., 2015). Therefore, the TEM characterization of
the microstructure of the AZO sample confirmed the presence
of both nanoparticles of ZnO and Ag, which corroborated with
the XRD result (Figure 1). Additionally, the TEM with energy-
dispersive X-ray (TEM-EDX) spectral analysis of the AZO sample
confirms the presence of Zn and O and corroborates that ZnO
NPs were formed (Figure 2b). The presence of Ag suggests the

FIGURE 1 | XRD patterns of ZO and AZO samples.
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FIGURE 2 | TEM image (a,b) and HRTEM image (c) of AZO sample where (c1) and (c2) show the HRTEM images of the particles of Ag and ZnO, respectively with
(b inset) TEM-EDS spectrum, (d) HAADF image, and elemental mappings of (e) Ag, (f) Zn, and (g) O.

FIGURE 3 | XPS binding energy spectra of AZO (A) Zn 2p and (B) Ag 3d core levels.

formation of Ag NP in the Azo sample. The presence of C and Cu
in the TEM-EDX spectrum can be attributed to the carbon coated
Cu grid used for the TEM measurements. The elemental mapping
result of Ag (Figure 2e), Zn (Figure 2f) and O (Figure 2g) for the
representative AZO sample reveals the distribution Ag, Zn, and
Au elements in the sample.

XPS Spectra
The oxidation state of the chemical elements present in the
AZO sample was evaluated by XPS analysis, and the binding

energy signals of the Zn 2p and Ag 3d core levels are shown
in Figure 3. Two strong signals were observed in the binding
energy signals of Zn 2p at 1021.4 and 1044.4 eV (Figure 3A),
which can be assigned to the binding energies of Zn 2p3/2
and Zn 2p1/2, respectively (Jiamprasertboon et al., 2019).
The presence of zinc as Zn2+ in the nanomaterial was also
confirmed by the energy difference calculated between Zn 2p3/2
and Zn 2p1/2 binding energy levels, which was ∼23.0 eV
(Jiamprasertboon et al., 2019). Furthermore, the formation of Ag
nanoparticles was also evaluated by the binding energy signals
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TABLE 1 | Antibacterial activity of ZnO samples.

Bacteria cells Minimum inhibitory
concentration (µg/mL)

(i) ZO (ii) AZO

Standard strains

(a) E. coli ATCC 25922 250 100

(b) A. baumannii ATCC 19606 >250 250

(c) S. aureus ATCC 25923 50 25

AMR strains

(d) E. coli 1368 >250 250

(e) A. baumannii 12001 >250 250

(f) MRSA3 100 50

(g) MRSA6 100 50

Minimum inhibitory concentration (MIC) of ZO and AZO samples against both
Gram-negative and -positive bacteria cells including their AMR strains. Data shown
here is one of the representative from n = 3.

of Ag 3d (Figure 3B). The binding energy signals (Figure 3B)
appearing at 367.6 and 373.8 eV in the XPS curve of the
AZO sample can be assigned to Ag 3d5/2 and Ag 3d3/2,
respectively (Nguyen et al., 2018). This observation confirmed
the formation of Ag NPs in the AZO sample. Moreover, two
low intensity signals can also be seen at ∼371 and ∼378 eV.
These low intensity peaks can be attributed to a trace amount
of Ag+ ions present in the sample (Naskar et al., 2016).
Therefore, the presence of metallic silver and vey less Ag+

could be effectively used against bacterial cells for antibacterial
activity. This material property is successfully correlated with
the antibacterial activity of this sample in later section of
antibacterial activity.

Antibacterial Activity
MIC and ZOI
The MIC values (Table 1) of the ZO and AZO samples
were measured to evaluate the antibacterial effectiveness of
the samples against standard strains of bacteria (E. coli
[ATCC25922], A. baumannii [ATCC19606], and S. aureus
[ATCC25923]) and AMR strains (E. coli 1368, A. baumannii
12001, MRSA3, and MRSA6). MIC determination clearly
showed that the AZO sample was comparatively more effective
against Gram-positive bacteria than Gram-negative bacteria.
Although the AZO sample was effective against Gram-
negative bacteria, its MIC was considerably very high against
generic and AMR strains (100–250 µg/mL). However, the
AZO sample was much more effective against Gram-positive
bacterial cells; the MIC value for S. aureus and its AMR
strains MRSA3 and MRSA6 were in the range of 25–
50 µg/mL.

In additional to the MIC determination, the agar well diffusion
method was also used to further evaluate the antibacterial activity
of AZO NPs. Initially, agar plates with bacterial cells were loaded
with the synthesized NPs (20 µL at 5 mg/mL) and incubated
for 24 h at 37◦C. After that, the ZOI was measured. The
bacterial growth inhibition capacity of the ZO and AZO samples

FIGURE 4 | Zone of inhibition (ZOI) of ZnO samples against (a) E. coli, (b) A. baumannii, (c) S. aureus, (d) MRSA3, and (e) MRSA6. (i), (ii), (iii), and (iv) represents
ZO, AZO, Antibiotics, and deionized water, respectively in all the figures. Diameter of ZOI is also displayed in the Table 2 (average from n = 3).
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TABLE 2 | Zone of inhibition (ZOI) diameter of ZnO samples against (a) E. coli, (b)
A. baumannii, (c) S. aureus, (d) MRSA3, and (e) MRSA6 was measured from n = 3
and one of the representative data was shown.

Bacteria cells Zone of inhibition (mm)

(i) ZO (ii) AZO (iii) Antibiotics (iv) DW

(a) E. coli ATCC 25922 N.D. N.D. 17a N.D.

(b) A. baumannii ATCC 19606 N.D. N.D. 19a N.D.

(c) S. aureus ATCC 25923 11 14 37b N.D.

(d) MRSA3 11 14 12b N.D.

(e) MRSA6 11 13 N.D. N.D.

N.D. indicates that the zone of inhibition was not detected. Antibiotics, aPolymyxin
B or bKanamycin was used as a control for Gram-negative or -positive bacteria,
respectively. DW, deionized water. Data shown here is one of the representative
from n = 3.

against E. coli (Figure 4a), A. baumannii (Figure 4b), S. aureus
(Figure 4c), MRSA3 (Figure 4d), and MRSA6 (Figure 4e) is
provided in Table 2. The ZO and AZO NPs were unable to
form an inhibition zone against Gram-negative bacterial cells
of E. coli (Figure 4a) and A. baumannii (Figure 4b). These
results support the MIC data (Table 1) for Gram-negative
bacterial cells, from which it can be concluded that a more
concentrated dispersion of AZO NPs would be necessary to
obtain an inhibition zone i.e., to be effective against Gram-
negative bacterial cells in the agar well diffusion antimicrobial
determination. The ZOI against AMR strains (E. coli 1368,
A. baumannii 12001) of Gram-negative bacterial cells was not
determined, as it was assumed to be higher than the AZO sample,
which was above the limit of detection for the concentration
of AZO NPs used.

However, the AZO sample was effective in inhibiting the
growth of Gram-positive bacterial cells including S. aureus
(Figure 4c), MRSA3 (Figure 4d) and MRSA6 (Figure 4e). This
observation corroborated the MIC determinations (Table 1).
The effectiveness of the synthesized sample of AZO against
the MRSA strains substantiates its potential to be used as
a nanoweapon against AMR Gram-positive bacterial cells.
Additionally, the MIC and ZOI data indicate that Gram-
positive bacteria are better targets for AZO NPs than Gram-
negative bacteria.

Morphological Characterization of Bacteria
Given the antimicrobial efficacy of AZO NPs against Gram-
positive bacteria, the morphological features of standard and
AMR strains of S. aureus (standard, MRSA3, and MRSA6) before
and after exposure to AZO nanoparticles were evaluated by
SEM. The SEM images of bacterial cells treated or untreated
with AZO NPS is shown in Figure 5. In the untreated
S. aureus cells, a smooth and intact surface was clearly visible
(Figure 5a). On the other hand, some morphological changes
such as membrane damage were seen in S. aureus treated
with different concentrations of AZO (Figures 5b,c). Similar
activity was seen in MRSA strains (MRSA3 and MRSA6) when
comparing the untreated groups (Figures 5d,g), which both
exhibited smooth surfaces, with the groups treated with different

FIGURE 5 | Scanning electron microscopy (SEM) images of bacterial cells.
Samples of S. aureus (a) untreated and treated with (b) 10 µg/mL and (c)
20 µg/mL of AZO. Samples of MRSA3 either (d) untreated or treated with (e)
10 µg/mL and (f) 20 µg/mL of AZO. Samples of MRSA6 either (g) untreated
or treated with (h) 10 µg/mL and (i) 20 µg/mL of AZO. Red circles indicate
areas of cell membrane disruption.

concentration of AZO NPs for MRSA3 (Figures 5e,f), and
MRSA 6 (Figures 5h,i) which showed wrinkling and damage
of the cell walls. Considerable damage was observed upon
binding of the nanoparticle to the bacterial cell membrane
(Figures 5e,f,h,i) to confirm the antibacterial effectiveness
of AZO NPs. Therefore, the efficacy of AZO NPs against
S. aureus and MRSA strains was successfully approved by the
SEM micrographs.

It is well known that Ag and ZnO NPs are established
antibacterial agents; however, very little is known about their
mechanism of antibacterial activity. In this study, we explored
one possible mechanism of Ag and ZnO NP antibacterial activity.
It has been shown that some of the antibacterial activity of Ag and
ZnO NPs may be attributed to a direct interaction between AZO
NPs and the bacterial cell wall (Matai et al., 2014). The bacterial
cell wall is generally negatively charged (Ghosh et al., 2012),
which enables electrostatic interaction with the Zn2+ and Ag+
present in AZO NPs (which were identified in our ZO and AZO
NPs by TEM analysis and XPS). Disruption of the bacterial cell
membrane by Ag-ZnO NPs can be another potential mechanism
for antibacterial activity (Naskar et al., 2020), which we have
corroborated here using SEM. Membrane damage generally
results in increased inhibition of DNA/plasmid replication by
Zn2+/Ag+ ions and the production of proteins/enzymes that
affect bacterial cell functioning and contribute to cell death.
Moreover, membrane disruption can also cause leakage of the
intracellular material, which may shrink the cell and ultimately
result in cell lysis (Yasir et al., 2019).
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CONCLUSION

In summary, we have developed a new strategy for the
one-pot synthesis of Ag-ZnO (AZO) nanoparticles using
a low-temperature solution technique. The synthesized
AZO sample showed admirable antibacterial activity against
S. aureus bacteria including their AMR (MRSA) strains.
Moreover, the antibacterial activity of the AZO sample
was more specific toward Gram-positive bacteria than
Gram-negative bacteria. This cost-effective simple synthesis
strategy can be used as a platform to develop different
metal oxide nanomaterials, which can be further used for
targeted biomedical applications and may be useful as
antibacterial agents to address the ever-increasing problem
of AMR bacteria.
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Pneumonia, of which Streptococcus pneumoniae is the most common causative agent,
is considered one of the three top leading causes of death worldwide. As seen in other
bacterial species, antimicrobial resistance is on the rise for this pathogen. Therefore,
there is a pressing need for novel antimicrobial strategies to combat these infections.
Recently, uridine diphosphate glucose pyrophosphorylase (UDPG:PP) has been put
forward as a potential drug target worth investigating. Moreover, earlier research
demonstrated that streptococci lacking a functional galU gene (encoding for UDPG:PP)
were characterized by significantly reduced in vitro and in vivo virulence. Therefore, in
this study we evaluated the anti-virulence activity of potential UDPG:PP inhibitors. They
were selected in silico using a tailor-made streptococcal homology model, based on
earlier listerial research. While the compounds didn’t affect bacterial growth, nor affected
in vitro adhesion to and phagocytosis in macrophages, the amount of polysaccharide
capsule was significantly reduced after co-incubation with these inhibitors. Moreover,
co-incubation proved to have a positive effect on survival in an in vivo Galleria mellonella
larval infection model. Therefore, rather than targeting bacterial survival directly, these
compounds proved to have an effect on streptococcal virulence by lowering the amount
of polysaccharide and thereby probably boosting recognition of this pathogen by the
innate immune system. While the compounds need adaptation to broaden their activity
to more streptococcal strains rather than being strain-specific, this study consolidates
UDPG:PP as a potential novel drug target.

Keywords: Streptococcus pneumoniae, GalU, in silico modeling, virulence, Galleria mellonella, novel drug target

INTRODUCTION

Streptococcus pneumoniae is one of the major causative agents of community acquired pneumonia
and meningitis worldwide. Pneumonia is one the major causes of mortality in children under
the age of five and is considered to be the third leading cause of death worldwide (Marangu and
Zar, 2019; Peyrani et al., 2019). In 2015, it has been reported that 64% of child deaths due to
pneumonia were caused by bacterial agents S. pneumoniae or Haemophilus influenzae (Marangu
and Zar, 2019). Antibacterial treatment often consists of macrolides, amoxicillin, fluoroquinolones
or cephalosporins (Peyrani et al., 2019). However, an increase in resistance toward macrolides has
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been reported (Yayan, 2014). For bacterial meningitis,
S. pneumoniae is the causative pathogen in no less than
70% of all cases. While vaccination proved successful, there
is now a re-emergence of pneumococcal infections due to
serotype replacement, leading to incidences equal to the pre-
vaccination era in some parts of Europe and North America
(Koelman et al., 2019).

Amongst the variety of virulence factors the pneumococcus
possesses, the polysaccharide capsule is considered as the
most important one (Paton and Trappetti, 2019). Due to its
presence, the first line of defense to pneumococcal invasion,
i.e., macrophage phagocytosis, is limited and there is no
adequate T-cell response (Geno et al., 2015). Deletion of this
capsule drastically reduces pneumococcal virulence by increasing
phagocytosis rates (MacLeod and Kraus, 1950; Preston and
Dockrell, 2008). In vitro, non-encapsulated pneumococci show
better adherence properties and also in in vivo nasopharyngeal
colonization a decrease in capsule production is observed
(Kadioglu et al., 2008; Gilley and Orihuela, 2014). However,
when the transition from a commensal to an invasive lifestyle
occurs, there is a clear upregulation of capsule production, likely
due to the importance of it in evading the immune system
(Kadioglu et al., 2008).

The most important gene locus for capsule production is the
gene locus, which gives rise to over 90 different pneumococcal
serotypes. Interestingly, these serotypes differ in the composition
of the polysaccharide capsule, with a variety of sugars that can be
included. A common feature in all serotypes is the presence of
glucose (Glc) and/or galactose (Gal) (Geno et al., 2015; Paton and
Trappetti, 2019). Apart from the cps gene locus, other genes are
also known to be involved in the regulation of capsule production
(Llull et al., 1999). One of these genes is the highly conserved
galU gene, which encodes for uridine diphosphate glucose
pyrophosphorylase (UDPG:PP, EC2.7.7.9). Briefly, UDPG:PP
reversibly converts uridine diphosphate glucose (UDP-Glc)
to glucose-1-phoshate (Glc-1-P) as part of the Glc and Gal
metabolism. Furthermore, UDP-Glc is a key component in the
formation of pneumococcal capsule (Mollerach et al., 1998). It
has been shown that mutants lacking a functional galU gene do
not form any detectable amount or at least show a significant
downregulation of capsular polysaccharide (Mollerach et al.,
1998; Cools et al., 2018). Moreover, galU mutants are more
prone to in vitro macrophage phagocytosis and considerably less
virulent in vivo (Cools et al., 2018). In addition, while UDPG:PP
is present in almost all life on earth, prokaryotic UDPG:PPs are
structurally unrelated to their eukaryotic counterparts (Flores-
Díaz et al., 1997; Berbís et al., 2015). Also in other organisms,
UDPG:PP alteration has been suggested as a way of battling
infection, e.g., against Escherichia coli, Klebsiella Pneumoniae, and
Pseudomonas (Berbís et al., 2015). We therefore postulate the
UDPG:PP enzyme could present a potential effective drug target
against S. pneumoniae as well.

As the crystal structure of pneumococcal UDPG:PP is
currently unknown, it’s exact conformation and location of
the binding site is unsure. Therefore, a recently published
computational model based on listerial UDPG:PP was optimized
for S. pneumoniae (Kuenemann et al., 2018). Adaptation of

this model led to the identification of several hit compounds,
which were characterized, predicted and selected in silico using
3D molecular docking in order to have a binding affinity that
could result in some enzyme inhibitory activity. Three of these
compounds were then evaluated in several in vitro and in vivo
assays. Our main findings are that the tested potential inhibitors
were indeed capable of modulating virulence. Moreover, this
effect was dependent on the bacterial strain used, potentially
enabling strain- and pathogen-specific virulence modulation.
Therefore, more research should be done concerning these
modulators in order to fully establish their bioprofiles and allow
for a broader spectrum of inhibition in pneumococci. Overall, our
data further establish UDPG:PP as a potential drug target against
S. pneumoniae infections and confirm the significance of anti-
virulence therapies as a promising avenue for fighting bacteria.

MATERIALS AND METHODS

Homology Modeling and Protein
Preparation
Homology models were built using Prime’s energy-based method
included in the Schrödinger software suite based on D39/R6
and TIGR4 strains sequences (Jacobson et al., 2002, 2004). As
template our in-house Listeria monocytogenes UDPG:PP 3D
structure was used (Kuenemann et al., 2018). D39/R6 and TIGR4
share 98% of sequence identity based on ClustalW alignment
(Supplementary Figure S1; Goujon et al., 2010). Meanwhile,
these two S. pneumoniae strains share 63% of sequence identity
and 78% of sequence similarity with L. monocytogenes. Once
built, the models were standardized using the Protein Preparation
Wizard from the Schrödinger Suite to ensure that there
was no missing/clashing atom (including hydrogens). H-bonds
assignment were performed at pH = 7 with PROPKA, and
an additional energy minimization was performed with the
OPLS3 force field (Harder et al., 2016). Obtained homology
models were aligned on the listerial in-house structure, and Cα

RMSD (Root Mean Square Deviation) were calculated. RMSD
between the streptococcal strain D39/R6 homology model and
L. monocytogenes is equal to 0.17 Å, whereas RMSD between
streptococcal strain TIGR4 and L. monocytogenes is equal to
0.18 Å. The two S. pneumoniae homology models are available
in the Supplementary Material and Supplementary Figure S2.

Molecular Docking
Molecular docking of the 37 UDPG:PP ligands extracted from
our previous study was done using both strains D39/R6 and
TIGR4 homology models using Glide 2019-1 (Kuenemann et al.,
2018). Extra precision (XP) mode with flexible ligand sampling
was done following the same protocol as in our previous work
(Friesner et al., 2004, 2006; Halgren et al., 2004; Kuenemann et al.,
2018). Moreover, the same parameters were kept to generate the
grid box using Receptor Grid Generation from Schrödinger. The
outer box of 30 × 30 × 30 Å defines the volume in which the
grid potentials are computed. The grid center has as coordinates
x = 2.10, y = 46.44, and z = 14.85. The inner box of 10× 10× 10 Å
represents the volume where the ligand center must be placed.
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The docking calculations allowed us to obtain, visualize and
study the potential binding modes of the 37 listerial UDPG:PP
inhibitors in the binding pockets for S. pneumoniae strains.

Bacterial Strains, Cell Cultures and
Compounds
All S. pneumoniae strains used in this study are listed in
Table 1. Strains 85, 85 galU mutant, M23 and M23 galU
mutant were a kind gift from Prof. Mollerach, Universidad de
Buenos Aires, Argentina. Briefly, galU mutants were obtained
through an interruption in the last 102 nucleotides of the gene
leading to deletion of the last 33 C-terminal amino acids of
the enzyme, which in turn leads to a disorganization of the
enzyme tetramer (Mollerach et al., 1998; Martin et al., 2000; Cools
et al., 2018). Reference strain TIGR4 (serotype 4) was obtained
from ATCC R© (ATCC R© BAA-334TM). Reference strains D39
(serotype 2) and R6 (serotype 2−, unencapsulated) were obtained
from NCTC R© (NCTC07466 and NCTC13276, respectively).
Bacteria were cultured in brain-heart infusion (BHI) broth
(LabM) or on 5% sheep blood agar plates (Tryptic Soy Agar,
LabM, Oxoid) at 37◦C and 5% CO2. Murine macrophage cells
were obtained from ATCC R© (RAW 264.7, ATCC R© TIB-71TM)
and grown in Dulbecco’s modified Eagle’s medium (DMEM)
supplemented with 10% inactivated fetal calf serum (IFCS) and
1% pyruvate (all from Sigma-Aldrich) under the same conditions.
Three compounds were purchased from Asinex Corporation
(BDH 33910157, BDG 33920985, BDH 33910188). Compound
structures, properties and codes provided by the vendor are listed
in Table 2. Compounds were suspended upon arrival in dimethyl
sulfoxide (DMSO) (Novolab) to 10 mM and stored in the dark at
room temperature.

Planktonic Growth
Planktonic growth curves were obtained over an 8-h period.
All strains were grown in BHI broth at 37◦C and 5% CO2, as
advised by ATCC R©, with or without 50 µM of compound. At

TABLE 1 | S. pneumoniae strains used in this study.

S. pneumoniae strain Serotype Source

85 Serotype 14 Prof. Mollerach,
Universidad de Buenos
Aires, Argentina

85 galU mutant Serotype 14, galU
mutated

Prof. Mollerach,
Universidad de Buenos
Aires, Argentina

M23 Serotype 3 Prof. Mollerach,
Universidad de Buenos
Aires, Argentina

M23 galU mutant Serotype 3, galU
mutated

Prof. Mollerach,
Universidad de Buenos
Aires, Argentina

TIGR4 Serotype 4 ATCC R©, BAA-334

D39 Serotype 2 NCTC R©, NCTC07466

R6 Derived from
serotype 2, capsule
deficient

NCTC R©, NCTC13276

TABLE 2 | Compounds used in the in vitro and in vivo assays.

Asinex name Structure Molecular weight (g/mol)

BDH 33910157
N

N

N

O

O

O
OH

NH2

O

388.43

BDH 33910188

N

N

N N
N

O

NH2
OH

NH2

O

425.49

BDG 33920985
N

N
N

O

O

O F

OHOH
NH2

O

436.44

All compounds were purchased from Asinex Corporation and were resuspended
in DMSO to a stock concentration of 10 mM.

2-h intervals, the concentration was determined by viable plate
count. For each strain and compound, 3 independent repeats
were carried out.

Antibiotic Activity
Minimal inhibitory concentrations (MIC) of all compounds were
determined using a resazurin assay as described previously (Torfs
et al., 2018). Briefly, 100 µL of a 1/2 serial dilution series of
compounds in BHI broth was added to 96-well plates, after which
bacteria were added to a final concentration of 2.5× 105 CU/mL
in 200 µL. The highest concentration of compounds was 64 µM
after addition of bacteria. After 20 h of incubation at 37◦C
and 5% CO2, 20 µL of 0.005% resazurin was added. After an
additional incubation of 90 min, fluorescence was measured at
λemission = 590 nm, λexcitation = 550 nm using a spectrophotometer
(Promega Discover). For each strain, 2 independent repeats
were carried out.

Cytotoxicity Assay
MRC-5 cells were grown into polystyrene 96-well plates at an
initial concentration of 1.5 × 105 cells/mL cells per well and
incubated at 37◦C and 5% CO2. In each well, 190 µL of cell
suspension was added together with 10 µL of watery compound
dilutions. Cell growth was compared to untreated control wells
(100% cell growth) and medium-control wells (0% cell growth).
After 3 days of incubation, cell viability was assessed using
resazurin as described earlier. A compound is classified non-toxic
when the IC50 is greater than 20 µM. Tamoxifen was used as a
positive control.

Macrophage Assay
RAW 264.7 cells were seeded into polystyrene 24-well plates at
2 × 105 cells per well and incubated at 37◦C and 5% CO2, 24 h
prior to infection. Bacteria were grown as described earlier for 4 h
prior to infection, with or without 50 µM of compound. Then,
bacteria were added to cells at a multiplicity of infection (MOI) of
10 in DMEM + 10% iFCS + 1% pyruvate as described previously
(Domon et al., 2016). Plates were incubated for 90 min at 37◦C
and 5% CO2. Cells were washed twice with PBS/Ca2+Mg2+, to
wash away all loose bacteria. For determination of intracellular
bacteria, 50 mg/mL gentamicin (Life Technologies) was added
at 200 µL/mL in DMEM + 10% iFCS + 1% pyruvate. Cells were
incubated for 60 min at 37◦C and 5% CO2 to kill all extracellular
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bacteria. Afterward, cells were lysed using 200 µL 0.1% Triton
X-100 (Sigma-Aldrich) for 10 min at room temperature and
the concentration of internal bacteria was determined using the
viable plate count method. To determine the total amount of
intracellular and adhered bacteria, 200 µL 0.1% Triton X-100
was added directly after washing the cells and the concentration
was determined by viable plate count. For each strain, three
independent repeats were carried out.

FITC-Dextran Exclusion Assay
The degree of encapsulation was determined by measuring the
zone of exclusion of FITC-dextran (200 kDa, Sigma-Aldrich),
as described previously (Gates et al., 2004; Weinberger et al.,
2009; Cools et al., 2018). Briefly, bacteria were grown as described
earlier until logarithmic phase with or without 50 µM of
compound, centrifuged for 5 min at 5000 g and resuspended
in PBS. To 100 µL of bacterial suspension 20 µL FITC-dextran
(10 µg/mL in water) was added and 10 µL of this suspension
was subsequently used to create wet mounts with cover slips.
The slides were viewed on a Zeiss Observer.Z1 microscope with
a 100x objective, and fluorescent images were captured with
a Zeiss AxioCam MRm camera. The images were converted
into grayscale and analyzed using ImageJ software. The area of
FITC exclusion was determined. For each fluorescent image, a
brightfield image was also recorded in order to count the number
of bacteria per chain. For each strain, the mean of 150–300 cells
was determined, and at least two images were collected from each
of at least two independently prepared slides.

Galleria mellonella Killing Assay
Larvae were purchased from a local vendor (Anaconda Reptiles,
Kontich, Belgium) and stored in wood chips at 15◦C before
use. Four hours before use, larvae were put at 4◦C. A sterile
20 µL Hamilton syringe was used to inject 10 µL aliquots of
bacterial suspensions into the hindmost left proleg of Galleria
mellonella. Bacteria were grown mid logarithmic phase for 6 h
with or without 1, 10, 50 or 200 µM compounds, washed
and resuspended in PBS before infection. The control group
was injected with 10 µL PBS. A minimum of 10 larvae per
group was used. Following the injections, larvae were incubated
at 37◦C in the dark for several days to allow progression of
the pneumococcal infection. Every 24 h, larvae were scored
as dead or alive. Larvae were determined dead when no
signs of movement could be observed in response to external

stimuli. For each strain, at least four independent repeats
were carried out.

Statistical Analysis
Data were analyzed for statistical significance using Graphpad
Prism Version 8. Continuous variables were compared by one-
way Anova, two-way Anova, t-test or survival analyses. Statistical
significance was defined as P < 0.05. Statistical significance
between groups is mentioned as asterisks in figures (∗ p ≤ 0.05;
∗∗ p ≤ 0.01; ∗∗∗ p ≤ 0.001; ∗∗∗∗ p ≤ 0.0001).

RESULTS

Molecular docking of the 37 listerial UDPG:PP hit compounds
from our previous study (Kuenemann et al., 2018) was performed
toward the newly built strains D39/R6 and TIGR4 UDPG:PP
homology models, as described in the “Materials and Methods”
section. First, the reproducibility of our docking results regarding
listerial UDPG:PP using the newest version of 2019 Glide was
tested. While some minor differences in the docking scores (DS)
obtained by the best poses were observed, overall the most potent
compounds (BDG 33920985, BDF 34002917, BDH 33911533,
and BDH 34012219) were still ranked in the top 5 (Table 3). This
rarely reported reproducibility test was critical for ensuring the
validity of the following docking calculations.

Regarding the docking for streptococcal UDPG:PP, most of the
resulting DS were found to be in the same binding affinity range.
There were a few exceptions: for instance, we noted that BDH
33910157 obtained a very good DS for listerial UDPG:PP but
not at all for S. pneumoniae models (Supplementary Table S1).
The compounds achieving the best DS (thus lowest values) were
BDH 33911485, BDH 33910188, BDF 34002917, BDH 34000291,
and BDG 33920985.

Three compounds were selected to perform the experimental
study according to their DS and to their availability in Asinex
stock, i.e., BDG 33920985 (active on L. monocytogenes and
predicted to be active toward D39/R6), BDH 33910157 (only
active on L. monocytogenes, as negative control) and BDH
33910188 (predicted to be active on D39/R6 and TIGR4).
Their protein-ligand interactions were studied and the associated
residues are reported in Supplementary Figure S3. Several
residues including Pro11, Glu29, Arg108, Asp132, Ile208, and
Gln234 are predicted to be critical for the binding mode of
the compounds (Figure 1). For instance, Asp132 is predicted
to establish a strong H-bond with the terminal amine moiety

TABLE 3 | Docking scores (DS) in kcal/mol for top five ranked compounds.

Model Rank 1 Rank 2 Rank 3 Rank 4 Rank 5

S. pneumoniae D39/R6 BDH 33911485 (−8.92) BDH 34000291 (−8.37) BDH 33910188 (−8.35) BDH 33911472 (−8.30) BDG 33920985 (−8.27)

TIGR4 BDF 34002917 (−9.31) BDH 33911485 (−9.17) BDH 34000291 (−9.06) BDH 33910188 (−8.46) BDH 33920962 (−7.58)

L. monocytogenes In-House
redocking 2019

BDG 33920985 (−9.93) BDF 34002917 (−9.29) BDH 33911533 (−8.86) BDH 34012219 (−9.03) BDH 34012595 (−8.39)

Kuenemann
et al., 2018

BDG 33920985 (−10.02) BDH 33910157 (−9.59) BDF 34002917 (−9.20) DH 33911533 (−9.16) BDH 34012219 (−9.03)

In bold are compounds ranked as top five for both Streptococcus pneumoniae strains.
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FIGURE 1 | Illustration of protein-ligand interaction. Compounds BDH 33910188 and BDG 33920985 with UDPG:PP of streptococcal strains D39/R6 and TIGR4.
Arrows point toward the residues which could be responsible for the improvement in the docking score (DS) in the model. For compound BDH 33920985, DS of
S. pneumoniae models were lower than those of the L. monocytogenes models.

of BDH 33910188 and the amide group of BDG 33920985.
Similarly, Arg108 could be of importance for the anchoring
of BDG 33920985.

In vitro Bacterial Growth Is Unaffected
Since UDPG:PP is part of the glucose and galactose metabolism,
inhibition of this enzyme could potentially lead to changes
in growth characteristics. To assess whether addition of the
compounds to growing bacterial cultures had an effect on
pneumococcal viability, planktonic growth in the presence of
these compounds was evaluated. As seen in Figure 2, addition
of the compounds didn’t alter planktonic pneumococcal growth
for any pneumococcal strain (p > 0.05, Two-way Anova). Also,
antimicrobial properties of the compounds were evaluated using
a standard antimicrobial susceptibility test. Again, even the
highest tested concentration of compounds, 64 µM, didn’t result
in a decrease in viability. Taken together, these results indicate the
potential inhibitors have no effect on pneumococcal viability or
survival, which in light of the ongoing battle against antimicrobial
resistance, is an important feature. Lastly, cytotoxicity of the
compounds to MRC-5 cells was determined. Compounds BDH
33910157 and BDH 33010188 showed an CC50 over the maximal
tested concentration of 64 µM, for compound BDG 33920985
the CC50 was 43.7 µM. As compounds are considered cytotoxic
when the CC50 is below 20 µM, none of the compounds showed
cytotoxic activity.

Capsule Production Is Lowered but
in vitro Phagocytosis Remains Unaltered
To evaluate the effect of the compounds on the amount of capsule
produced by S. pneumoniae, the bacteria were measured using
the FITC-dextran exclusion assay. This assay measures the size
of the bacteria, including their capsule. While a polysaccharide
capsule is not visible using a regular brightfield light microscope,
fluorescence microscopy can be used. As fluorescently labeled
dextrans are unable to pass the polysaccharide barrier, the size
of fluorescent exclusion can be directly linked to the size of
the bacteria and thus to the amount of polysaccharide capsule.
The compounds slightly, but significantly, lower the size of
streptococcal strains TIGR4, R6, 85 and the galU mutant of strain
M23 (Figures 3A,C,D,G) (p < 0.0001 for all combinations, except
strain 85 – BDH 33910157: p = 0.0297, One-way Anova). Only
compounds BDH 33910157 and BDH 33910188 had no effect on
the size of strains R6 and M23 galU mutant, respectively (strain
R6 – BDH 33910157, p = 0.0709, strain M23 galU mutant – BDH
33910188: p = 0.8351, One-way Anova). At least for strains R6
and M23 galU mutant, which were both already capsule deficient
prior to co-incubation with compounds, this implies another
mechanism of action of these compounds where e.g., also the
cell wall of the bacteria or the glucose metabolism is involved
(Berbís et al., 2015). However, not all capsule deficient strains
show an additional decrease in size. The compounds had no effect
on the size of strain 85 galU mutant (Figure 3E) (strain 85 galU
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FIGURE 2 | Planktonic growth curves for S. pneumoniae strains in presence or absence of 50 µM of compound. (A) Strain TIGR4, (B) Strain D39, (C) Strain R6,
(D) Strain 85, (E) Strain 85 galU mutant, (F) Strain M23, (G) Strain M23 galU mutant. Error bars represent SD. No statistical differences between control groups and
treatment groups were observed (two-way Anova) (n = 3).

mutant – BDH 33910157: p = 0.3378, strain 85 galU mutant –
BDG 33920985: p = 0.9701, strain 85 galU mutant – BDH
33910188: p = 0.9760, One-way Anova). Lastly, in strains D39
and M23 the compounds had an opposite effect, as co-incubation
with compounds increased the area of exclusion, thus increased
bacterial size (Figures 3B,F) (p < 0.0001 for all combinations,
One-way Anova). In strain D39 these effects are rather limited,
but in strain M23 – which is the largest of all pneumococcal
strains used in this study – the compounds have a profound effect
on bacterial size. Off topic, capsule production was significantly
lower in galU mutant strains 85 and M23 compared to their
respective parent strains (p < 0.0001 in both cases, Unpaired
t-test). As the polysaccharide capsule is the most predominant
factor in macrophage adhesion and phagocytosis, differences in
bacterial size are postulated to lead to differences in cellular
interactions. As reported before, galU mutated strains clearly
show an increase in macrophage phagocytosis compared to their
non-mutated parent strains (strain M23 – strain M23 galU
mutant: p < 0.0001, strain 85 – strain 85 galU mutant: p = 0.0004,
Unpaired t-test) (Figure 4; Cools et al., 2018). However, addition
of the compounds rendered no changes in phagocytosis rates.

Even for strain M23, where the largest variation in size was
recorded, no change in adherence or phagocytosis was seen. This
implies that either the changes in polysaccharide production are
not diverse enough to provoke changes or that the assay is not
sensitive enough to pick up on them.

In vivo Virulence of Pneumococci Is
Attenuated
As the macrophage assay proved no changes in macrophage
functionality, a difference in in vivo virulence was not expected.
In order to assess virulence of all virulent pneumococcal strains
(TIGR4, D39, M23, and 85) and the effect of addition of
compounds, a G. mellonella infection model was used. This
model is easy to use, cheap and it is possible to set up large
experiments including several variables (Cools et al., 2019).
Contrary to prior expectations, there was an effect of the
compounds in several virulent pneumococcal strains (Figure 5).
Co-incubation with compounds lead to a decrease in virulence
for strains TIGR4 and 85 (Figures 5A,C) (strain TIGR4 – BDH
33910157: p = 0.0005, strain TIGR4 – BDG 33920985: p = 0.0193,
strain TIGR4 – BDH 33910188: p = 0.0016, strain 85 – BDH
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FIGURE 3 | FITC-dextran exclusion assay. Area of exclusion (µm2) in presence or absence of 50 µM of compound. (A) Strain TIGR4, (B) Strain D39, (C) Strain R6,
(D) Strain 85, (E) Strain 85 galU mutant, (F) Strain M23, (G) Strain M23 galU mutant. Error bars represent SD. Asterisks represent statistical differences between
control group and treatment groups (Unpaired t-test; * p ≤ 0.05; **** p ≤ 0.0001) (n = 150–300).

FIGURE 4 | Number of adhered and phagocytosed bacteria with RAW 364.7 macrophage cells. (A) Total number of adhered and phagocytosed bacteria, obtained
with Triton X-100 treatment, (B) Number of phagocytosed bacteria, obtained after removal of extracellular bacteria by gentamicin treatment. No statistical differences
between control groups and treatment groups were observed (Two-way Anova) (n = 3 × 2).
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FIGURE 5 | Kaplan-Meier survival curves of G. mellonella after infection with S. pneumoniae grown in presence or absence of compounds. (A) Strain TIGR4,
(B) Strain D39, (C) Strain 85, (D) Strain M23. Error bards represent SE. Asterisks represent statistical differences between control group and treatment groups
(Survival analysis; * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001) (n = 4 × 10).

FIGURE 6 | Kaplan-Meier survival curves of G. mellonella after infection with S. pneumoniae strain TIGR4 grown in presence of 1, 10, 50 or 200 µM of compound
BDH 33910157. Error bards represent SE. Asterisks represent statistical differences between control group and treatment groups (Survival analysis; * p ≤ 0.05, **
p ≤ 0.01) (n = 5 × 10).

33910157: p = 0.00330, strain 85 – BDG 33920985: p = 0.0640,
strain 85 – BDH 33910188: p = 0.0211, Log-rank Mantel-Cox
test). This effect coincides with the data of the FITC-dextran
exclusion assay, where the compounds were able to reduce
bacterial size also in these strains. For strains D39 and M23,
where the compounds were not able to reduce bacterial size,
the virulence was also not altered (Figures 5B,D) (strain D39:
p = 0.3428, strain M23: p = 0.3917, Log-rank mantel-Cox test).
Importantly, the increase in bacterial size seen in these strains
didn’t render them more pathogenic in vivo. Lastly, a dose-
response curve was obtained for the most active compound, BDH

33910157 (Figure 6). Lowering the dose to 1 or 10 µM rendered
the compound inactive, while increasing it to 50 or 200 µM
significantly improved larval survival compared to an uninfected
control group (50 µM: p = 0.0173, 200 µM: p = 0.0033, Log-rand
Mantel-Cox test).

DISCUSSION

While pneumococcal vaccination has proven to be beneficial
and has led to a decrease in morbidity and mortality, there
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are several downsides. Most importantly, in the years after
the introduction of the vaccine a serotype switch to non-
vaccine serotypes has been observed (Van Der Linden et al.,
2015). Furthermore, herd immunity is only present in young
children and not observed in non-vaccine serotypes (Berical
et al., 2016; Isturiz et al., 2017). On the other hand, treatment
against pneumococcal infections mostly consists of amoxicillin,
vancomycin, moxifloxacin or cefuroxime, depending on the
antimicrobial susceptibility profile of the infecting agent (Peyrani
et al., 2019). While commonly at least one of these antibiotics
is capable of battling the pneumococcal infection, antimicrobial
resistance is on the rise worldwide and the use of antibiotics
should be limited at all cost (McEwen and Collignon, 2018).
Therefore, there is a need for novel innovative ways of battling
pneumococcal infections, diverging from standard antimicrobial
molecules or vaccination strategies. In this study, inhibition of
UDPG:PP is proposed and researched as such a novel approach.
UDPG:PP is a commonly found enzyme in most life forms, being
present in both eukaryotes and prokaryotes (Flores-Díaz et al.,
1997; Berbís et al., 2015). Within these domains, UDPG:PP serves
a multitude of functions, based on the conversion of UDPG-Glc
to Glc-1-P (Mollerach et al., 1998). As glucose plays a pivotal
role in a variety of cell processes, UDPG:PP is found to play a
role in the integrity of cell membranes, functionality of flagellae,
production of LPS and the pneumococcal polysaccharide capsule
(Komeda et al., 1977; Deng et al., 2010). While UDPG:PP has
previously been proposed as a valid novel drug target, up until
recently no inhibitors were known (Kuenemann et al., 2018).
In 2018, UDPG:PP inhibitors against listerial UDPG:PP were
screened using an in silico modeling approach, leading to the
identification of several compounds with anti-listerial activity. In
L. monocytogenes, UDPG:PP is important in the first step of wall
teichoic acid galactosylation, which renders the use of antibiotic
cefotaxime useless. Addition of UDPG:PP inhibitors elevated
the MIC values of this antibiotic drastically, thereby proving
UDPG:PP was effectively inhibited (Kuenemann et al., 2018).

In this study, a similar approach to identify pneumococcal
UDPG:PP inhibitors was conducted. As the crystal structure of
pneumococcal UDPG:PP is currently unknown, the genome of
two S. pneumoniae strains, TIGR4 and D39, served as a template
for the computational part. According to the in silico modeling
compound BDH 33910157 showed the lowest binding affinity
toward S. pneumoniae strains TIGR4 and D39. Compound BDG
33920985 only showed a good binding affinity toward strain D39,
while BDH 33910188 showed a good binding affinity toward
both strains. However, in most biological assays there were no
differences between the compounds. Also, while the genome of
strains TIGR4 and D39 were both used for the in silico modeling,
none of the compounds had an effect on strain D39 in a biological
setting. To the contrary, a significant increase in bacterial size
of strain D39 was seen after incubation with these compounds.
This implies in silico modeling was effective but not 100%
accurate. However, modeling was performed solely based on the
primary sequences of these strains without crystal structures of
the target. This could explain the contradicting results when
using other pneumococcal strains, as small genomic differences
could lead to e.g., a significant change in the three-dimensional

conformation of the enzyme, increase or decrease in binding
affinity, shielding of the binding place. In silico modeling
without an actual crystal structure being available is challenging
(Kuenemann et al., 2018). While the pneumococcal enzyme has
been purified before, the crystal structure remains unidentified
(Zavala et al., 2017). However, elucidation of this structure
could greatly improve in silico modeling and development of
novel inhibitors. Currently, the crystal structure of UDPG:PP
is only known for several eukaryotes and following bacteria:
Helicobacter pylori (PDB codes 3JUJ and 3JUK) (Kim et al.,
2010), E. coli (PDB code 2E3D) (Thoden and Holden, 2007a),
Corynebacterium glutamicum (PDB code 2PA4) (Thoden and
Holden, 2007b), Acinetobacter baumannii (PDB codes 6IKX and
6IKZ) (Lee and Kang, 2019), Sphingomonas elodea (PDB 2UX8)
(Aragao et al., 2007), Erwinia amylovora (PDB code 4D48)
(Benini et al., 2017), Yersinia pestis (PDB code 6MNU) (Gibbs
et al., 2019), and Burkholderia spp. (PDB codes 5VCT, 5VE7,
5J49, 5I1F) (Abendroth et al., 2016a,b, 2017a,b). Apart from the
aforementioned issues with in silico modeling based on genetic
sequences, biological effects could be lower than expected due to
marginal uptake in the cells, rather than poor enzymatic binding.
However, in previous research these compounds have proven to
be effective against closely related L. monocytogenes, implying
uptake is possible (Kuenemann et al., 2018).

Several lead compounds were identified in silico and a
selection of three compounds was tested in subsequent in vitro
and in vivo biological assays. The G. mellonella larval in vivo
model possesses only an innate immune system. This model
allowed a better study of the first line of defense and primary
recognition, without the interference of an adaptive immunity
compared to more complex vertebrate models (Tsai et al.,
2016). Overall, the effect of the compounds on bacterial size
thus amount of polysaccharide capsule, as seen in the FITC-
dextran exclusion assay, was rather limited. While a mutation of
UDPG:PP, leading to a dysfunctional enzyme, showed a decrease
of approximately 50% in overall size, addition of the compounds
decreased the bacterial size by only 10–20%. However, virulent
bacterial strains TIGR4 and 85, that showed a statistical decrease
in bacterial size – even though small – also showed a clear
decrease in in vivo virulence. This implies the compounds were
capable of inhibiting the UDPG:PP enzyme, which led to at
least a partial decrease in pneumococcal polysaccharide capsule
and consecutively to a better recognition of the pathogen by
the innate immune system. Strains D39 and M23, for which
no or an adverse effect of the compounds on bacterial size was
observed, showed no differences in in vivo virulence. While
for strain M23 the polysaccharide capsule size greatly increased
(approximately 200%), the innate immune system was able to
withstand the infection equally as it did not lead to an increase
in in vivo virulence. To explain the different effects on bacterial
size, the biochemical structure of each serotype provides more
insight. Both strains D39 and M23 (respectively, serotypes 2
and 3) incorporate glucuronic acid (GlcA) in their capsules
(Geno et al., 2015). UDP-GlcA is readily formed out of UDP-
Glc, regulated by UDPG:PP (Mollerach et al., 1998). A decrease
in available UDP-Glc and subsequent UDP-GlcA might lead
to a less well-organized capsule, looser conformation and thus
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increase in overall size. On the other hand, the capsule of strains
TIGR4 and 85 (respectively, serotype 4 and 14) doesn’t contain
GlcA (Geno et al., 2015). Therefore, a shortage in UDP-Glc
won’t directly influence their capsule but will lead to a general
shortage in sugars. On its turn, this could lead to a decrease in
overall capsule production. As the compounds don’t completely
inhibit UDPG:PP, there is no complete abolishment of capsule.
If UDPG:PP would be fully inhibited, the shortage in UDP-Glc
would be more severe, which would render the bacteria unable
to synthetize capsule regardless of serotype, as was seen earlier
when using galU mutant strains (Cools et al., 2018). It should be
noted that bacterial size was also affected in some strains already
deficient either of capsule (R6) or of functional UDPG:PP (M23
galU mutant). As UDPG:PP serves a multitude of purposes in
the prokaryotic cell, it is feasible that another pathway was also
affected, especially when there is no capsule present (Berbís et al.,
2015). On the other hand, the compounds were not screened
for their selectivity against UDPG:PP, thus they might potentially
interfere with other enzymes as well, which could also have an
effect on capsule formation.

Furthermore, there was no effect of the compounds on
planktonic pneumococcal growth nor could a MIC be
determined, thus the decrease in virulence could not be
attributed to a classic antimicrobial working mechanism.
This implies the bacteria encountered no immediate negative
consequences of these compounds. More likely, the larval
innate immune system got triggered by the decreased amount
of capsule, which led to an increase in phagocytosis rate and
decrease in virulence, as observed before (Preston and Dockrell,
2008). This sort of therapy is considered a good adjuvant to
the conventional antimicrobial therapy in the light of the battle
against antimicrobial resistance (Sadgrove and Jones, 2019).
Lastly, while the in vivo model rendered multiple statistical
differences between treated groups and untreated controls, this
effect was not seen in in vitro adherence to and phagocytosis in
a macrophage cell line. However, pneumococcal strains without
a functional UDPG:PP enzyme clearly showed an increase in
adherence and phagocytosis compared to their non-mutated
parent strains (Cools et al., 2018). This again implies that, while
the compounds might partially inhibit the enzyme, they are not
capable of fully inhibiting it, thus abolishing all polysaccharide
capsule. The in vitro macrophage assay is probably not sensitive
enough to detect these more subtle differences in virulence. Off
note, this finding stretches the importance of fast and cheap
in vivo models, to consolidate or contest in vitro data before
either discarding compounds or research ideas or moving toward
more complex in vivo models (Cools et al., 2019).

Several other anti-virulence drug targets against pneumococci
have been proposed. Concerning inhibition of polysaccharide
capsule, CpsB, a tyrosine phosphatase encoded by cpsB, has
been suggested as novel drug target, as cpsB mutants have
been shown to be avirulent in several animal models of
infection (Morona et al., 2004; Standish et al., 2012; Monteiro
Pedroso et al., 2017). Fascioquinol E – an extract derived
from the marine sponge Fasciospongia spp., has been shown to
inhibit CpsB phosphatase activity and to increase macrophage
adherence in vitro (Standish et al., 2012). Other strategies include
modification of the bacterial cell wall, inhibition of pneumolysin

and inhibition of quorum sensing. Lysozyme, a component
of the human immune system, is known to be important
in degradation of bacterial peptidoglycan layers, thereby
destabilizing the bacterial cell wall. However, pneumococci can
withstand this lysing enzyme by a deacetylation process, catalyzed
by peptidoglycan N-acetylglucosamine deacetylase A (PgdA).
Mutant pneumococci lacking this enzyme are more susceptible
to lysozyme in vitro and show a reduction in virulence in vivo
(Vollmer and Tomasz, 2002). Also, in silico inhibitors of PgdA
have been described (Bui et al., 2011). Multiple studies have
shown that inhibition of pneumolysin, a virulence factors known
to be essential for bacterial survival in the respiratory tract,
reduces mortality in in vivo models (Kadioglu et al., 2008;
Arzanlou et al., 2011; Li et al., 2015; Zhao et al., 2016, 2017; Song
et al., 2017a,b). Apart from direct inhibition, also sequestration of
pneumolysin in liposomes has been shown beneficial on infection
outcome in animal models (Henry et al., 2015; Baumgartner et al.,
2016). Several antimicrobial peptides, analogs of indolicidin and
ranalexin, are also proposed as pneumolysin inhibitors. However,
their mechanism of action might also include inhibition of
autolysin (Jindal et al., 2015, 2017). Finally, quorum sensing
inhibitors have proven to effectively prevent in vitro and/or
in vivo biofilm formation on middle ear implants and migration
of pneumococci to the blood (Yadav et al., 2012, 2014, 2015;
Cevizci et al., 2015; Motib et al., 2017).

In conclusion, we have shown that UDPG:PP inhibitors
possess a great potential in the search for novel anti-virulence
modulators. However, elucidating the crystal structure of
pneumococcal UDPG:PP would benefit the development of
adequate and selective inhibitors. Furthermore, development of
future inhibitors should focus on inhibiting pneumococcal
UDPG:PP regardless of S. pneumoniae serotype, while
disregarding other prokaryotic or eukaryotic UDPG:PP.
This research is the first report on using UDPG:PP inhibitors
against pneumococcal infections and supports the idea of using
UDPG:PP as a novel drug target.
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The inappropriate use of antibiotics and an inadequate control of infections have led
to the emergence of resistant strains which represent a major threat to public health
and the global economy. Therefore, research and development of a new generation of
antimicrobials to mitigate the spread of antibiotic resistance has become imperative.
Current research and technology developments have promoted the improvement of
antimicrobial agents that can selectively interact with a target site (e.g., a gene or a
cellular process) or a specific pathogen. Antimicrobial peptides and metal nanoparticles
exemplify a novel approach to treat infectious diseases. Nonetheless, combinatorial
treatments have been recently considered as an excellent platform to design and
develop the next generation of antibacterial agents. The combination of different drugs
offers many advantages over their use as individual chemical moieties; these include
a reduction in dosage of the individual drugs, fewer side effects compared to the
monotherapy, reduced risk for the development of drug resistance, a better combined
response compared to the effect of the individual drugs (synergistic effects), wide-
spectrum antibacterial action, and the ability to attack simultaneously multiple target
sites, in many occasions leading to an increased antibacterial effect. The selection
of the appropriate combinatorial treatment is critical for the successful treatment of
infections. Therefore, the design of combinatorial treatments provides a pathway to
develop antimicrobial therapeutics with broad-spectrum antibacterial action, bactericidal
instead of bacteriostatic mechanisms of action, and better efficacy against multidrug-
resistant bacteria.
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INTRODUCTION

Development of antibacterial resistance is considered one of the leading public
health problems, since it has a significant impact on the economy worldwide. Since
therapeutic options to treat infections are increasingly being limited due to antibacterial
resistance, this escalates the morbidity and mortality associated with infectious
diseases caused by bacteria [World Health Organization (WHO), 2020]. ESKAPE
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pathogens are responsible for the majority of life-threatening
nosocomial infections and are capable of “escaping” the biocidal
action of antimicrobial agents (Pendleton et al., 2013). The
term “ESKAPE” is an acronym for six bacterial pathogens
associated with multidrug resistance: Enterococcus faecium
(E. faecium), Staphylococcus aureus (S. aureus), Klebsiella
pneumoniae (K. pneumoniae), Acinetobacter baumannii (A.
baumannii), Pseudomonas aeruginosa (P. aeruginosa), and
Enterobacter spp. (Mulani et al., 2019). Multidrug-resistant
(MDR) bacteria are resistant to more than one antimicrobial
drug, and extensively drug-resistant (XDR) bacteria are types
of drug-resistant organisms that are resistant to all, or almost
all, approved antimicrobial agents (Magiorakos et al., 2012). For
these reasons, it is essential to design and engineer new promising
classes of antibiotics (Gajdács, 2019).

THE NEW THERAPEUTIC
ALTERNATIVES: INPUT FROM RECENT
STUDIES

As we described above, the development of antimicrobial
resistance represents a major threat to public health, and this
has been echoed by different health organizations around the
globe. Antimicrobial peptides (AMPs) and nanoparticles (NPs)
and the design of novel combinatorial therapies are among the
new promising alternatives to fight infections caused by MDR-
and XDR-resistant bacteria.

Antimicrobial Peptides
Antimicrobial peptides are a highly diverse family of small
proteins with a varying number of amino acids; they have
also been referred to as cationic host defense peptides (Boparai
and Sharma, 2019). A variety of synthetic AMPs have been
synthesized in the laboratories, but there are also a wide
diversity of AMPs produced by bacteria and yeast, in addition
to those found naturally in animals and plants (Wang,
2013). AMPs have demonstrated to participate in a variety
of biological activities, including as antimicrobial antiviral,
antifungal, and anti-mitogenic agents, in addition to their
antitumor and anti-inflammatory properties and their ability
to act as immune modulators. Therefore, AMPs represent a
potential alternative to replace a wide variety of commonly used
drugs. Moreover, most of the available studies demonstrate that
AMPs exhibit therapeutic activity in in vitro and in vivo models
(Divyashree et al., 2019).

The use of AMPs alone or in combination with conventional
drugs has proven effective in combating different infectious
agents, mainly MDR bacteria (Zharkova et al., 2019). AMPs
are promising potential candidates to counteract multiresistant
pathogens since they possess many advantages: they display
potent microbicidal activity in the micromolar range (Aoki and
Ueda, 2013), they have demonstrated a rapid bacterial death
action (Lei et al., 2019), and they have low resistance selection
(Mahlapuu et al., 2016). Their mechanism of antibacterial action
is multifunctional because it alters the cell membrane (Li
et al., 2017) and also attacks specific targets that take part in

the development of different intracellular processes (Le et al.,
2017), such as inhibition of transcription, translation, protein
synthesis, and bacterial cell wall formation (Mwangi et al., 2019).
These general mechanisms of action of AMPs are displayed
in Figure 1A.

One AMP of particular interest is human cathelicidin peptide
(LL-37), which has been reported to have wound-healing effects
on the host in addition to exhibiting antimicrobial and anti-
biofilm activity against a variety of Gram-positive and Gram-
negative human pathogens (Duplantier and van Hoek, 2013).
LL-37 and its derivatives are considered excellent candidates as
antimicrobial therapeutic agents and have been the subject of
many studies (Dürr et al., 2006; Kościuczuk et al., 2012; De
Breij et al., 2018). Especially, in 2018, De Breij et al. synthesized
an LL-37 derivative (SAAP-148), with potent antimicrobial
activities, by replacing an amino acid from the terminal carbon
of the LL-37 chain. This LL-37 derivative exhibited a minimum
inhibitory concentration [MIC] between 0.4 and 12.8 µM against
various ESKAPE pathogenic bacteria (e.g., E. faecium, S. aureus,
K. pneumoniae, A. baumannii, P. aeruginosa, and Enterobacter
species) without selection of resistance. Furthermore, this
AMP derivative showed anti-biofilm activity against S. aureus,
A. baumannii, and P. aeruginosa (De Breij et al., 2018).

Colistin is another important peptide antibiotic (produced
Bacillus polymyxa var. colistinus) used as a last-resort drug
to treat MDR infections (Oka and Ito, 2000). It has emerged
as an important agent in the treatment of Gram-negative
bacterial infections, especially those caused by MDR pathogens
in hospitalized patients (Das et al., 2017). Notably, two new
colistin-derived AMPs (AA139 and SET-M33), with a mechanism
similar to colistin, are in development and have shown excellent
therapeutic potential both in vitro against MDR bacteria and in
in vivo infection models (van der Weide et al., 2019).

The main limiting factor for the systemic use of AMPs
is their sensitivity to proteolytic digestion in different body
fluids (e.g., intestinal mucosa, gastrointestinal tract, and blood
plasma), which directly affect both their in vivo stability and
their pharmacokinetic profile (Moncla et al., 2011; Starr and
Wimley, 2017). Therefore, the search for new AMPs continues,
particularly in a new class of peptides with high specificity and
potency, known as “selectively targeted AMPs” (STAMPs), which
show increased sensitivity to specific pathogens, demonstrating
a significant increase in their bactericidal capacity without
direct effects on the microbiota (Chung and Khanum, 2017).
The STAMP technology requires two functionally independent
peptide domains integrated through a small linker. One peptide
domain serves as the killing AMP moiety and the other peptide
domain consisting of a high-affinity binding peptide which
functions as a targeting moiety (Aoki and Ueda, 2013). These
properties increase the binding to the surface of a targeted
pathogen by enhancing the local concentration of the AMP
and thus lead to improve bactericidal efficiency (Sarma et al.,
2018). In recent years, several new and promising STEMs have
been developed against Streptococcus mutans (Huo et al., 2017),
Pseudomonas aeruginosa, and Streptococcus mutants together
(He et al., 2009), methicillin-resistant Staphylococcus aureus
(Mao et al., 2013), Enterococcus faecalis (Xu et al., 2020), and
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FIGURE 1 | Mechanism of antimicrobial action in bacteria: (A) General mechanisms of action of antimicrobial peptides (AMPs). AMPs act through different
mechanisms (Le et al., 2017) such as 1. Alteration in membrane integrity via electrostatic interaction with negatively charged cell membranes which kill cells, 2.
Inhibition of DNA synthesis by (i) cross-linking with single- or double-stranded DNA, (ii) prevention of the DNA relaxation by inactivation of DNA topoisomerase I, and
(iii) blocking of DNA replication by trapping the gyrase-DNA complex; and protein synthesis by (i) inhibition of protein translation by targeting the ribosomes, (ii)
interrupting the protein-folding pathway, and (iii) rapid proteolytic activity causing the degradation of some DNA replication-associated proteins, leading to secondary
inhibition of DNA synthesis, 3. Inhibition of bacterial cell wall formation by alteration of the alternating amino sugars in linear form that cross-link via peptide bridges to
form the peptidoglycan layer, and 4. Inhibition of metabolic pathways by alteration of nucleic acid metabolism, including nucleotide transport and metabolism,
nucleobase, nucleoside, and nucleotide interconversion. (B) Mechanisms for antimicrobial action of metal nanoparticles (MNPs). MNPs act via the following (Shaikh
et al., 2019). 1. MNPs disturb cell membrane permeability by interfering with metabolic pathways and inducing changes in membrane shape and function. 2. When
MNPs are in solution, metal ions are released in the environment surrounding. Metal ions generate reactive oxygen species (e.g., oxygen ions and hydroxyl radicals)
and induce oxidative stress in bacteria. Oxidative stress is a key contributor in altering the bacterial membrane permeability and thus can damage cell membranes.
Also, metal ions may cause cell structural changes and aberrant enzyme activities, which perturb normal physiological processes. 3. Interaction with sulfur- and
phosphorous-containing compounds such as DNA, which prevent DNA from unwinding and transcription.

clinical isolates (Pseudomonas aeruginosa; Eckert et al., 2006).
Nonetheless, more preclinical and clinical research is needed in
the development of targeted antimicrobial therapy.

Metal Nanoparticles
An additional alternative to fighting infections caused by
antibiotic-resistant bacteria is the development of NPs since
it has been amply reported that metal nanoparticles (MNPs)
have antibacterial activity against ESKAPE pathogens (Wang
et al., 2017; Lee et al., 2019). Some of the mechanisms of
the antimicrobial mode of action of MNPs are summarized
in Figure 1B. In the search for new antimicrobials to treat
the ESKAPE pathogens, silver has been highlighted as a
potential candidate to treat infectious diseases (Borthagaray
et al., 2018). Silver nanoparticles (AgNPs) possess antimicrobial
activity, and they act by disturbing cell membrane permeability,

interacting with sulfur- and phosphorous-containing compounds
including DNA, in addition to their ability to release silver
ions, contributing to the antibacterial effect (Morones et al.,
2005; Morones-Ramirez et al., 2013). Gold (Au) nanoparticles
have also been reported as effective antibacterial agents for
antibiotic-resistant bacterial strains such as S. aureus, E. faecium,
Enterococcus faecalis (E. faecium), Escherichia coli (E. coli), Vibrio
cholerae (V. cholerae), Salmonella typhimurium (S. typhimurium),
and Salmonella dysenteriae (S. dysenteriae; Kumar et al., 2016).

Among metal oxide nanoparticles, zinc oxide (ZnO)
nanoparticles have shown antimicrobial activity against both
Gram-negative and Gram-positive bacteria, including Bacillus
subtilis (B. subtilis), S. aureus, E. coli, P. aeruginosa, and A.
baumannii (Guo et al., 2015; Tiwari et al., 2018). On the
other hand, among photocatalytic nanoparticles, titanium
dioxide (TiO2) NPs have been extensively studied due to their
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antimicrobial activity (Gelover et al., 2006). Several studies
have reported the antimicrobial activity of TiO2 NPs against
methicillin-resistant S. aureus and MDR E. coli (Jesline et al.,
2015; Mantravadi, 2017; de Dicastillo et al., 2019).

Despite the advantages that nanoparticles offer, such as a broad
therapeutic index, controlled drug release, less prone to bacterial
resistance, and fewer side effects than chemical antimicrobials
(Lee et al., 2019), to treat infections caused by the ESKAPE
pathogens, there are still challenges remaining to be tackled
such as improvement of physicochemical properties, better
pharmacokinetic profiles, and comprehensive studies on long-
term exposure to humans. In terms of design and application,
there is a particular interest in the generation of nanohybrids
combining different metals with different antimicrobial and
sensitizer agents (Zhang et al., 2014; Wolfram et al., 2015). Metal
nanoparticle-based compounds (alone or in combination with
other antimicrobial agents) provide promising alternatives to
combat the development of antibacterial resistance (Shaikh et al.,
2019). Therefore, it is imperative to develop a comprehensive
understanding of the mechanisms of action responsible for the
bactericidal properties as well as the identification of the most
promising antimicrobial agents for future clinical translation.

Combinatorial Treatments
The strategies to reduce antibiotic resistance include the
limited use of antibiotics and the application of more effective
antibacterial therapies. Because the time of exposure to
antibiotics correlates with the development of resistance
(Andersson et al., 2020), it is necessary to use drugs with a
broad spectrum of action and pharmacokinetic properties that
facilitate their rapid access to the target site (Krause et al.,
2016). However, most of the available treatments do not have
all these characteristics, so an alternative option is the use of
combination therapies, which can lead to a synergistic and more
effective response (Lehár et al., 2009). It has been shown that the
combination of drugs leads to a considerably more potent effect,
compared to the individual drug (Tamma et al., 2012; Marks
et al., 2013). Figure 2 displays the disadvantages of using single
drugs (Figure 2A) and the advantages of using combinatorial
treatments (Figure 2B).

Antimicrobial Peptide-Based Combinatorial
Treatments
Combinations of AMPs with antibiotics have been reported to
show synergistic effects in the treatment of bacterial infections.
The mechanism of antibacterial action in these combinations
involves the disruption of the outer membrane (Cassone and
Otvos, 2010). Moreover, the use of AMPs in combinatorial
treatments has certain advantages over their use as a single
treatment since it has been observed that in combinatorial
treatments, AMPs work as enhancers of the antimicrobial effects.
This characteristic allows the reduction of their dose, and it
also unlocks the bactericidal application of molecules with low
molecular weight, which typically do not exhibit antimicrobial
properties (Si et al., 2020).

Recent studies have demonstrated the synergistic activity of
antibiotics combined with AMPs. Akbari et al. (2019) reported

the synergism and other drug interactions between melittin, a
cationic amphipathic peptide, and antibiotics such as doripenem,
doxycycline, colistin, and ceftazidime, against MDR isolates of A.
baumannii and P. aeruginosa. Likewise, combinatorial treatments
of conventional antibiotics with new synthetic peptides inspired
by human cationic peptides LL-37 and thrombocidin-1 (TC-1)
have shown synergistic activity against S. aureus (antibacterial
and anti-biofilm activity; Koppen et al., 2019). In addition,
the synergistic activity of 30 short AMPs combined with
several conventional antibiotics such as beta-lactam antibiotics,
cephalosporins, aminoglycosides, and quinolones was tested
against an MDR P. aeruginosa isolate (PA910; Ruden et al.,
2019). Several combinations between peptides, polymyxin B,
erythromycin, and tetracycline, as well as novel variants of
indolicidin were found to be synergistic. Furthermore, the results
showed that a single amino acid substitution within the peptides
can have a powerful effect on the ability to synergize, which
represents an opportunity to design treatment strategies based on
synergistic interactions (Ruden et al., 2019).

Metal Nanoparticle-Based Combinatorial Treatments
Metal nanoparticles should be considered as an attractive
alternative to potentiate the antimicrobial effect of old and
current antibiotics, since they have a high tendency to act
synergistically when combined with a wide variety of antibiotics
(Bankier et al., 2019). This, in addition to the increased
biocompatibility achieved by synthesizing them through green
chemistry, allows considering the use of MNPs as adjuvant agents
for the treatment of infectious diseases (Rout et al., 2018).

In the past years, there has been a marked increase
in the use of biopolymers (e.g., proteins, nucleic acids,
and polysaccharide) as capping agents to functionalize and
stabilize MNPs (Sharma et al., 2019). Exopolysaccharides
are biocompatible and eco-friendly biomolecules; therefore,
they can be used in the synthesis of MNPs (Escárcega-
González et al., 2018). Recently, a silver-based nanobiocomposite
was synthesized using an exopolysaccharide produced by
Rhodotorula mucilaginosa UANL-001L (EPS). The results
showed an increased antibacterial and anti-biofilm activity of
this nanobiocomposite against pathogens of clinical relevance
(Vazquez-Rodriguez et al., 2020). Moreover, nanocomposites
have been synthesized through green chemistry, such as zinc
(Zn) and nickel (Ni) MNPs capped with EPS as capping agents,
and they have displayed interesting antimicrobial properties as
well. Ni-EPS nanoparticles exhibited both antimicrobial and
anti-biofilm activity against resistant MDR strains of S. aureus
and P. aeruginosa. Furthermore, Zn-EPS nanoparticles showed
antimicrobial activity for treatments against MDR S. aureus and
P. aeruginosa (Garza-Cervantes et al., 2019).

Among the most studied nanomaterials are silver
nanoparticles due to their antimicrobial activity against
Gram-positive and Gram-negative bacteria. They can be used
in combinatorial treatments with currently used antibiotics for
enhanced antimicrobial activity (Shahverdi et al., 2007; Kora
and Rastogi, 2013; Naqvi et al., 2013; Singh et al., 2013; Panácek
et al., 2016; Lopez-Carrizales et al., 2018; Perveen et al., 2018;
Vazquez-Muñoz et al., 2019). Nonetheless, some other MNPs
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FIGURE 2 | Antimicrobial treatment strategies: (A) disadvantages of using single drugs and (B) advantages of using combinatorial treatments. The advantage of
using combinatorial treatments of synergistic drug pairs provides the opportunity to lower the dosage of the individual agents, thereby reducing toxicity while
maintaining the wanted effect on bacteria. Moreover, a synergistic response can occur because of complementary drug action (multiple targets sites on the same
protein or pathway are hit; Pemovska et al., 2018). By combining two drugs that achieve the same effect through different mechanisms of action, the development of
resistance to a single drug in the combination may be less likely to occur, and when it does occur, it may have a lower impact on the therapeutic outcome (Pirrone
et al., 2011). Finally, the use of more than one agent broadens the antibacterial spectrum of the empirical therapy and thus ensures that at least one agent will cover
the infecting organism (Gurjar et al., 2014).

such as gold (El-Sheekh and El Kassas, 2014; Kalita et al., 2016;
Al-Mawlawi and Obaid, 2019; Arya et al., 2019; Lee and Lee,
2019; Nishanthi et al., 2019; Yang et al., 2019), copper (Khurana
et al., 2016; Woźniak-Budych et al., 2017; Murugan, 2018;
Selvaraj et al., 2019), and zinc (Banoee et al., 2010; Bhande et al.,
2013) have been used in combination with a variety of antibiotic
families to enhance bactericidal efficacy.

Some other interesting studies of silver-based nanomaterials
have been reported. A novel silver-microfibrillated cellulose
biocomposite has been synthesized, and its antimicrobial activity
was determined against relevant clinical strains. The results
showed that this biocomposite has antimicrobial activity against
Gram-negative and Gram-positive bacteria so that it could be
applied in the development of biocompatible biomedical devices
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TABLE 1 | Antimicrobial peptides, metal nanoparticles, and combinatorial treatments: mechanism of action, tested bacterial strains, advantages, and disadvantages.

Mechanism of action Tested bacterial strains Advantages Disadvantages

Antimicrobial
peptides (AMPs)

1. Alteration in membrane integrity.
2. Inhibition of DNA and protein
synthesis.
3. Inhibition of bacterial cell wall
formation.
4. Inhibition of metabolic pathways.

Enterococcus faecium, Staphylococcus
aureus, Klebsiella pneumoniae,
Acinetobacter baumanii, Pseudomonas
aeruginosa, Enterobacter spp.,
multidrug-resistant strains.

1. Show potent microbicidal activity in the micromolar
range.
2. Rapid bacterial death action.
3. Low resistance selection.

1. High sensitivity to proteolytic
digestion in different body fluids.
2. Low in vivo stability.
3. Reduced pharmacokinetic profile.

Metal nanoparticles
(MNPs)

1. Disruption of cell membrane and
increased permeability.
2. Releasing metal ions.
3. Interaction with DNA

Enterococcus faecium,
Enterococcus faecalis, Staphylococcus
aureus, Klebsiella pneumoniae,
Acinetobacter baumanii, Pseudomonas
aeruginosa, Escherichia coli,
Salmonella typhimurium,
Salmonella dysenteriae,
Vibrio cholerae,
Bacillus subtilis,
multidrug-resistant strains.

1. Broad therapeutic index.
2. Controlled drug release.
3. Less prone to bacterial resistance.
4. Fewer side effects than chemical antimicrobials.

1. Need to improve metal ions release
from MNPs.
2. Moderate stability in biological fluids.
3. Reduced long-term toxicity studies.

Combinatorial
treatments

1. Synergistic response.
2. Multiple cellular targets for
antimicrobial action.
3. Combination of bactericidal and
bacteriostatic mechanism of action.

Enterococcus faecium, Staphylococcus
aureus, Klebsiella pneumoniae,
Acinetobacter baumanii, Pseudomonas
aeruginosa, Escherichia coli
Mycobacterium tuberculosis
multidrug-resistant strains.

1. Require lower dose than a single drug.
2. Reduced toxicity.
3. Synergisms and more effective response.
4. Decrease the probability of resistance evolution.
5. Better efficacy against multidrug-resistant bacteria.

1. Physical-chemical compatibility
among antimicrobial agents.
2. Possible pharmacokinetic and
pharmacodynamic interactions.
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(Garza-Cervantes et al., 2020a). Another promising approach
toward the development of new antimicrobial combinatorial
treatments is the use of transition metals, since they exhibit
rapid and significant toxicity, at low concentrations, in different
bacterial strains. Garza-Cervantes et al. evaluated the synergistic
antimicrobial effects of silver/transition-metal combinatorial
treatments. Their results showed combinatorial treatments that
exhibited synergism (Ag–Zn, Ag–Co, Ag–Cd, Ag–Ni, and Ag–
Cu) since their antimicrobial effects are increased up to 8-fold,
compared to the effects observed for the treatments with the
individual metals (Garza-Cervantes et al., 2017). Furthermore,
Montelongo-Peralta et al. reported synergism between transition
metals and antibiotics used to treat first-line drug-resistant
strains of Mycobacterium tuberculosis (M. tuberculosis).
Combinatorial treatments composed of isoniazid/silver exhibited
a synergistic bactericidal effect in an isoniazid-resistant clinical
strain of M. tuberculosis (Montelongo-Peralta et al., 2019).

Moreover, a previous study showed the ability of silver
to potentiate the activity of a broad range of antibiotics
against Gram-negative bacteria, as well as to restore antibiotic
susceptibility (re-sensitizing) to a resistant bacterial strain
(Morones-Ramirez et al., 2013). Recently, a group of researchers
achieved to re-sensitize antibiotic-resistant E. coli using
transition-metal micronutrients (Cu2+, Zn2+, Co2+, Cd2+, and
Ni2+) combined with antibiotics (ampicillin and kanamycin).
These combinatorial treatments showed a therapeutic activity
and no toxicological effects in a murine topical infection
model caused by antibiotic-resistant strains (Garza-Cervantes
et al., 2020b). The above data therefore strongly suggest that
combination therapies are a potential strategy in the development
of new treatments against infectious diseases.

The search for a new generation of antimicrobials to mitigate
the spread of antibiotic resistance is urgent (de la Fuente-Nunez
et al., 2017). Current research and technology developments
have promoted the improvement of antimicrobial agents that
selectively target a target site (e.g., a gene, a cellular process, or a
specific pathogen; de la Fuente-Nunez et al., 2017; Jackson et al.,
2018). AMPs and MNPs exemplify a novel approach for treating
infectious diseases. Nonetheless, the combinatorial treatments
are considered as an excellent option for designing and
developing next-generation antibacterial agents. As summary,
Table 1 describes the mechanism of action, tested bacterial
strains, advantages and disadvantages of AMPs, MNPs, and
combinatorial treatments.

The selection of appropriate combinatorial treatment is
critical for the successful prevention of infections (Bayramov
and Neff, 2017). The most important challenges include (i)
selection of agents with ideal physical–chemical properties
(hydrosolubility and chemical stability in biological fluids;
Ebejer et al., 2016), (ii) selection of antimicrobials that
display appropriate pharmacokinetics and pharmacodynamics
properties (Preston, 2004), (iii) selection of biocompatible
capping agents or biopolymer-based materials that enable drug
release (Campoccia et al., 2013), and (iv) development of a
process that ensures the stability and does not compromise
the performance of the combination therapy formulation as
a whole (Wu and Grainger, 2006). Therefore, the design
of combinatorial treatment provides a pathway to develop
antimicrobial therapeutics with broad-spectrum antimicrobial
activity, bactericidal instead of bacteriostatic mechanism of
action, and better efficacy against MDR bacteria.
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Pseudomonas aeruginosa is among the top three gram-negative bacteria according
to the WHO’s critical priority list of pathogens against which newer antibiotics are
urgently needed and considered a global threat due to multiple drug resistance. This
situation demands unconventional antimicrobial strategies such as the inhibition of
quorum sensing to alleviate the manifestation of classical resistance mechanisms. Here,
we report that 2,4-di-tert-butylphenol (2,4-DBP), isolated from an endophytic fungus,
Daldinia eschscholtzii, inhibits the quorum-sensing properties of P. aeruginosa. We have
found that treating P. aeruginosa with 2,4-DBP substantially reduced the secretion
of virulence factors as well as biofilm, and its associated factors that are controlled
by quorum sensing, in a dose-dependent manner. Concomitantly, 2,4-DBP also
significantly reduced the expression of quorum sensing-related genes, i.e., lasI, lasR,
rhlI, and rhlR significantly. Importantly, 2,4-DBP restricted the adhesion and invasion of
P. aeruginosa to the A549 lung alveolar carcinoma cells. In addition, bactericidal assay
with 2,4-DBP exhibited synergism with ampicillin to kill P. aeruginosa. Furthermore, our
computational studies predicted that 2,4-DBP could bind to the P. aeruginosa quorum-
sensing receptors LasR and RhlR. Collectively, these data suggest that 2,4-DBP can be
exploited as a standalone drug or in combination with antibiotic(s) as an anti-virulence
and anti-biofilm agent to combat the multidrug resistant P. aeruginosa infection.

Keywords: anti-quorum sensing, 2,4-Di-tert-butylphenol, endophytic fungi, multidrug resistance, P. aeruginosa

INTRODUCTION

Quorum sensing is a bacterial signaling mechanism through which bacteria sense their cell density
and activate a range of coordinated behaviors once their population reaches a threshold (Rutherford
and Bassler, 2012). Bacteria release signaling molecules, called autoinducers, which accumulate
as the cell density of the bacteria increases. QS regulates an array of bacterium physiological

Abbreviations: 2,4-DBP, 2,4-Di-tert-butylphenol; BAC, baicalein; MIC, minimum inhibitory concentration; QS, quorum
sensing.
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activities, such as virulence, pathogenesis, biofilm formation,
swimming, and swarming motility. Since several of these
functions are central to bacterial persistence and pathogenesis,
QS has been regarded as an attractive target for anti-biofilm
and anti-QS-based alternative anti-microbial therapy. However,
little progress has been made concerning QS-based alternative
anti-microbial therapies. Pseudomonas aeruginosa, well known to
be an opportunistic, notorious nosocomial pathogen responsible
for causing a range of acute and chronic infections, such as
respiratory tract infections, urinary tract infections, infections in
the central nervous system, and skin and soft tissue infections
in immuno-compromised patients (Bjarnsholt et al., 2010).
P. aeruginosa engages in QS by three independent, but by
cross-talking, LasR-LasI, RhlR-RhlI, and PQS-PqsR QS signaling
systems, where the autoinducer for the LasR-LasI system is
N-(3-oxo-dodecanoyl) homoserine lactone (3OC12 HSL), and
the RhlR-RhlI system utilizes C4 (butanoyl) HSL (Pearson
et al., 1995). The LasRI system of this bacterium regulates
the expression of several genes encoding various virulence
factors (Schuster et al., 2003). The autoinducer of the third QS
system PQS-PqsR, 2-heptyl-3-hydroxy-4(1H) quinolone (PQS),
binds to the transcriptional regulator PqsR and further controls
downstream targets, including biofilm formation, which leads
to antibiotic tolerance and resistance without the need for
specific antibiotic inactivating enzymes. Therefore, QS inhibitors
could have this dual advance of rendering the bacterium non-
virulent and sensitizes it toward antibiotics. QS inhibitors are
anticipated to curtail the pathogenicity, since the expression
of several virulence factors and the facilitation of a successful
infection are under QS regulation (Pearson et al., 2000). Hence,
molecules interfering QS could be an aid to the existing
armamentarium against P. aeruginosa infections. These strategies
include degrading AHL molecules enzymatically by acylases,
lactonases, and oxidoreductases, outcompeting/inhibiting QS
signal molecules by structurally similar inhibitory molecules
to bind to their cognate regulatory proteins, or by quorum
quenching antibodies and macromolecules such as cyclodextrins
that scavenge autoinducers (Rémy et al., 2018; Ahmed et al.,
2019). In addition, several natural substances with known
biological properties act as QS inhibitors as they intervene
in QS-associated pathways, attenuate QS gene expression,
and impair the infection. Recently, several reports claim to
quench QS or ameliorate the QS signals through various
synthetic molecules, natural products, and enzymes (Fong et al.,
2018). For instance, acyl homoserine lactone analogs such
as N-acyl cyclopentyl amines (Cn-CPAs), lactonase SsoPox,
N-acylhomoserine lactonase, and AiiM (Guendouze et al., 2017;
López-Jácome et al., 2019) were effective as QSIs against
P. aeruginosa. Curcumin and coumarin were reported to inhibit
the virulence and biofilm-forming ability of P. aeruginosa, while
naringenin and taxifolin were reported to reduce the expression
of QS-related genes. Furthermore, enzymes such as AHL-
lactonases are reported to degrade 3OC8HSL of P. aeruginosa
and affect the virulence capability and biofilm-forming ability
(Kalia et al., 2018).

Recently, we reported that metabolites from endophytic fungi
associated with Carica papaya also attenuate in P. aeruginosa

(Mishra et al., 2018; Meena et al., 2019). Besides being
ecologically and physiologically diverse, endophytic fungi are
diverse in synthesizing chemically potent and varying secondary
metabolites when in association with a medicinally important
host (Rashmi et al., 2019). In the present study, we report 2,4-
DBP as a QS inhibitor that was isolated from the endophytic
fungi Daldinia eschscholtzii associated with host plant Tridax
procumbens, which is known for its traditional medicinal values
(Mir et al., 2017). 2,4-DBP not only impeded QS-mediated
virulent factors and biofilm formation but also showed synergistic
effects with therapeutically relevant antibiotics. Finally, in silico
analyses showed it to be an effective QS inhibitor and comparable
to the known anti-QS inhibitor BAC.

MATERIALS AND METHODS

Organisms and Reagents
Chromobacterium violaceum ATCC 12472 and Pseudomonas
aeruginosa PAO1 are the test strains used in the study. Cultures
were maintained in Luria–Bertani (LB) broth and routinely
subcultured. BAC standard (Sigma-Aldrich, United States) was
dissolved in dimethyl sulfoxide (Merck) and was sterilized using
a 0.22-µm PVDF membrane filter. Chitin azure, azocasein, and
elastin congo red were procured from Sigma-Aldrich (Sigma-
Aldrich, United States), Maxima H Minus Reverse Transcriptase
from Thermo Scientific, and FastStart Universal SYBR Green
Master Mix from Roche (USA). The A549 lung epithelial cell
carcinoma cell line was procured from the National Center for
Cell Sciences, India, for in vitro infection studies.

Isolation and Screening of Potential
Endophytic Fungi
Green and healthy leaves of the host Tridax procumbens
were collected from the Pondicherry University campus, India,
12.0219◦ N, 79.8575◦ E. After surface sterilization according to
Cui et al. (2015), endophytic fungi were isolated, subcultured,
and maintained as axenic cultures. All the endophytic fungi
isolated were screened for their anti-QS potential against
Chromobacterium violaceum (ATCC 12472) and Pseudomonas
aeruginosa PAO1. Agar well diffusion method was performed to
treat the fungal crude samples to a lawn of bacteria and examine
the zone of inhibition. The isolate with the largest zones of
inhibition was considered as most effective and selected for the
rest of the work. The most potent isolate was further subjected to
purification of the QS inhibitor compound as described below.

Identification and Phylogenetic Analysis
of Selected Endophytic Fungi
After screening the isolates, isolate TP2-6 (an in-house code) was
selected for further study. The morphological details of the fungi
were observed under stereo-zoom microscope and compound
microscope for various characteristics of colony and spore
formation (Mishra et al., 2018). For molecular identification, the
nuclear ribosomal internal transcribed spacer (ITS) region was
amplified by the primers ITS1 (5′-TCC GTA GGT GAA CCT
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GCG G-3′) and ITS 4 (5′-TCC TCC GCT TAT TGA TAT GC-3′)
and sequenced by capillary sequencing, followed by phylogenetic
analysis as described in Devadatha et al. (2018).

Large-Scale Fermentation of Daldinia
eschscholtzii and Extraction of Crude
Extract
The endophytic fungal isolate Daldinia eschscholtzii (TP2-6),
which showed the most potent anti-QS activity, was selected
for the purification of the active compound responsible for the
anti-QS activity against P. aeruginosa. About 20 liters of potato
dextrose broth (PDB) was used to cultivate D. eschscholtzii. From
the axenic culture of D. eschscholtzii, a loop full inoculum was
inoculated into PDB and it was kept for growth for 20 days at
28◦C at constant agitation. The fungal broth, after separating the
mycelium, was extracted twice with double the volume of ethyl
acetate. The organic phase was separated and vacuum dried to
obtain the fungal crude extract.

Column Chromatography
The concentrated crude sample of D. eschscholtzii was further
subjected to column chromatography for purification in a glass
column (700 × 30 mm). The glass column was packed with
silica gel (60–120 mesh size, Merck) as the stationary phase.
A dried powdered crude extract mixed with silica gel/powder
(200 mesh size) at a ratio of 1:3 was loaded onto a column as the
sample bed. The column was first eluted with hexane, followed
by a hexane: ethyl acetate mixture with a gradual increase in
polarity in different ratios (9:1, 8:2, 7:3, 6:4, 5:5, etc.), and finally
eluted by using 100% of ethyl acetate, methanol, and water.
Different fractions were collected and assessed for their anti-
QS activity.

High-Performance Liquid
Chromatography (HPLC)
High-performance liquid chromatography of the active fraction
was done on an RP-C18 column using photodiode array
detectors (PDA-SPD-M20A). The injection volume and flow rate
used were 10 µL and 0.50 mL/min, respectively. Acetonitrile
along with HPLC-grade water was used as the mobile phase
solvent. The elution program of compounds started with 15%
acetonitrile reaching up to 100% in 40 min with a hold
on this condition for 5 min, and again gradient coming
down to 15% acetonitrile in 8 min which was finally held
for 5 min (Sharma et al., 2017). The samples and mobile
phase were filtered through a 0.2-µm nylon membrane filter
before applying into the column. Samples were analyzed at
280 nm wavelength.

Characterization and Structure Analysis
Fourier transform infrared spectroscopy (FTIR) of the isolated
compound was performed with a Thermo Nicolet model 6700 IR
source range from 500 to 4000 cm−1 to obtain an IR spectrum
to analyze the functional group present in the compound. High-
resolution mass spectroscopy (HRMS) was used to determine
the molecular mass of the compound using Agilent 6530B,

Agilent mass Q-TOF LC/MS. The structure of the isolated pure
compound was determined with the help of nuclear magnetic
resonance (NMR) spectroscopy using a Bruker Avance II 400
spectrometer (US).

Anti-QS Potential of the Isolated Pure
Compound
The compound isolated from the fungal extract (2,4-DBP, a
known compound) was further investigated for its anti-QS and
anti-biofilm activity against P. aeruginosa as described below.
To compare, BAC, a well-known phyto-compound known for
its ability to attenuate the virulence factors of P. aeruginosa
by downregulating the transcription of QS-regulated genes, was
used as positive control. Dimethyl sulfoxide (DMSO) was used
as a negative control. P. aeruginosa was grown in LB broth to
attain an OD600 of 0.4. It was further incubated in the presence
of 2,4-DBP or BAC for 18 hrs. To obtain a cell-free culture
supernatant for different assays, bacterial cells were pelleted down
by centrifugation at 10,000 rpm for 10 min.

Determination of Sub-MIC and Growth Curve
Analysis
Microbroth dilution, using the Clinical and Laboratory Standards
Institute (CLSI) standard method as described in Luo et al.
(2016), was used to determine the MIC of 2,4-DBP and BAC
against P. aeruginosa. Consequently, sub-MICs were selected to
perform further experiments.

Effect of 2,4-DBP on the Production of Virulence
Factors
Violacein production assay
A visual investigation of the ability of 2,4-DBP to attenuate
the QS-regulated violacein pigment production in C. violaceum
was performed using agar well diffusion assay as described
in Rajkumari et al. (2018a). A quantitative estimation of the
inhibition of violacein production by C. violaceum was performed
when treated with 2,4-DBP and BAC at respective sub-MICs by
spectrophotometric measurement at 585 nm of the supernatant
(Rajkumari et al., 2018a).

Pyocyanin production assay
A quantitative chemical assay was used to measure the inhibition
of pyocyanin pigment production. Briefly, 1 mL of cell-free
culture supernatant of P. aeruginosa grown with 2,4-DBP and
BAC at appropriate concentrations was extracted with an equal
volume of chloroform. After extraction, the organic phase
was extracted by 1 mL of 0.2 N HCl, and the amount of
pyocyanin was estimated spectrophotometrically at 520 nm
(Ganesh and Rai, 2016).

Proteolytic Activity Assay
Pseudomonas aeruginosa secretes several proteases that serve as
key mediators to establish an acute infection.

Chitinase activity assay
Modified chitin azure assay was used to determine the
inhibition in chitinase activity (Husain et al., 2013). Chitin azure
(0.5 mg/mL) dissolved in sodium citrate buffer (0.1 M, pH 4.8)
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was used a substrate. Concisely, 1 mL of the cell-free supernatant
of P. aeruginosa was mixed with 0.5 mL of substrate solution,
and the mixture was incubated for 7 days at 37◦C in constant
agitation (150 rpm). After removal of the insoluble substrate
by centrifugation at 10,000 rpm, absorbance of the collected
supernatant was recorded at 570 nm.

LasA staphylolytic assay
LasA staphylolytic activity, an ability to lyse heat killed cells of
Staphylococcus aureus, was estimated as described by Kessler et al.
(1993). Harvested pellet of S. aureus cells grown overnight was
resuspended in 0.02 M Tris (pH 8.5) to obtain an OD600 of
0.8. 100 µL of cell-free supernatant of P. aeruginosa (obtained
as described above) was mixed with 900 µL of S. aureus
suspension. After an incubation of 1 h, the cell density was
measured at 600 nm.

LasA protease assay
Proteolytic activity of P. aeruginosa was estimated as reported by
Hentzer et al. (2002) with some modifications. Briefly, 500 µL of
substrate solution and 0.3% azocasein [prepared in 50 mM Tris
(pH 7.8)] were mixed with 100 µL of cell-free supernatant of
P. aeruginosa for 30 min at 37◦C. Finally, 0.5 mL of prechilled
10% trichloroacetic acid was added and incubated for 15 min at
4◦C to precipitate the undigested substrate. The protease activity
was recorded as absorbance at 400 nm of the clear supernatant
obtained after centrifugation at 10,000 rpm.

LasB elastase assay
The elastolytic activity of the cell-free supernatant of
P. aeruginosa was measured according to Ohman et al.
(1980). In brief, 100 µL of culture supernatant of P. aeruginosa
was added to 900 µL of elastin congo red buffer (100 mM
Tris, 1 mM CaCl2, pH 7.5) containing 20 mg of elastin congo
red. The reaction mixture was incubated at 37◦C for 3 h.
Finally, the elastolytic activity was recorded as absorbance at
495 nm of the clear supernatant obtained after centrifugation at
10,000 rpm for 10 min.

Motility Assay
The effect of sub-MIC concentrations of 2,4-DBP and BAC on the
motility, i.e., swimming and swarming ability of P. aeruginosa,
has been investigated as described in Mishra et al. (2018).
Treatment with BAC acted as a positive control whereas
the untreated sample acted as internal control and 2,4-DBP
acted as treatment.

Hydrogen Cyanide (HCN) Production Assay
The production of HCN by P. aeruginosa as one of its virulent
factors was assayed according to Reetha et al. (2014). King’s B
medium agar plates supplemented with glycine were prepared
with and without test compounds. After streaking P. aeruginosa
onto the plates, a filter paper saturated with 0.5% picric acid,
fortified with 2% of Na2CO3, was placed on the roof of the lid
of the petri dish. The plates were tightly sealed and incubated for
24 h at 37◦C. Production of HCN caused a change of color from
yellow to orange.

Effect of 2,4-DBP on Biofilm Formation and
Associated Factors of P. aeruginosa
Microtiter plate biofilm assay
The inhibitory effect of 2,4-DBP on the biofilm formation by
P. aeruginosa was investigated according to Luo et al. (2016).
P. aeruginosa was grown in 96-well flat-bottomed microtiter
plates in the presence and absence of 2,4-DBP and BAC for
24 h at 37◦C. After incubation, the wells are washed with sterile
phosphate-buffered saline (PBS) to remove unadhered cells. The
biofilm was stained with 1% crystal violet for 5 min and again
washed with sterile PBS to remove excess stain. The crystal
violet stained biofilm was dissolved with 33% acetic acid and was
quantified by absorbance at 595 nm.

Extraction and quantification of exopolysaccharides (EPS)
The secreted exopolysaccharide (EPS) was quantified as reported
by Packiavathy et al. (2014). The cell-free culture supernatant of
P. aeruginosa was precipitated by three volumes of chilled ethanol
(100%). It was incubated for 24 h at 4◦C. The precipitated EPS
was pelleted by centrifugation (10000 rpm, 15 min) and dissolved
in Milli-Q water. EPS was quantified using the phenol-sulfuric
acid method, wherein 1 mL of 5% cold phenol and 5 mL of conc.
H2SO4 were mixed with 1 mL of EPS suspension, which was
quantified spectrophotometrically 490 nm.

Extraction and quantification of rhamnolipids
Rhamnolipid extraction and quantification were performed as
reported by Luo et al. (2017). P. aeruginosa was grown with and
without 2,4-DBP and BAC (as described above), and 1 mL of
cell-free culture supernatant (obtained as described above) was
extracted with twice the volume of ethyl acetate and dried. The
dried extract was resuspended in 900 µL of orcinol solution
(0.19% orcinol dissolved in 53% v/v sulfuric acid). The mixture
was incubated for 30 min at 80◦C and quantified at 421 nm
spectrophotometrically (Luo et al., 2017).

Extraction and quantification of alginate
The alginate extraction and quantification from the cell-free
culture supernatant of P. aeruginosa were performed as described
by Rashmi et al. (2018). Concisely, 0.6 mL of boric acid–
sulfuric acid (4:1) solution was mixed with 70 µL of cell-free
supernatant and vigorously mixed on an ice bath for 10 s. About
20 µL of carbazole solution (0.2% carbazole dissolved in ethanol)
was added to the previous mixture, followed by centrifugation
(10,000 rpm, 10 min). This was followed by incubation at 55◦C
for 30 min. Alginate was measured by absorbance at 530 nm.

Cell-surface hydrophobicity (CSH) assay
The methodology for estimating cell-surface hydrophobicity was
employed as earlier reported by Viszwapriya et al. (2016) with
minor modifications. Briefly, 1 mL of P. aeruginosa culture
was cultivated with and without 2,4-DBP and BAC and mixed
with 1 mL of toluene with vigorous vortexing for 2 min.
The aqueous phase was collected for bacterial cell density
measurement at 600 nm. The CSH indicated by the ability of
cells to adhere to the hydrophobic substrate (here, toluene) was
calculated as CSH% = [1 - (OD600 after vortexing/OD600 before
vortexing)]× 100.
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Congo red agar biofilm formation assay
The Congo red agar method was performed as reported by Kuzu
et al. (2012). Congo red dye (0.08%) was added to the agar
medium containing comprised brain heart infusion broth (BHI-
37 gm/L), agar (1%), and sucrose (0.5%). Media plated were
prepared with and without 2,4-DBP and BAC. P. aeruginosa was
streaked on the congo red plates and incubated for 24–48 h at
37◦C. The presence of dry crystalline black colonies confirmed
the exopolysaccharide (EPS) production.

Extracellular DNA (eDNA) quantification
The supernatant of P. aeruginosa was filter sterilized through
a 0.22-µm membrane and treated with an equal amount of
phenol/chloroform/isoamyl alcohol (25:24:1), and the mixture
was vortexed for a few seconds. The eDNA in the supernatant
(500 µL) was then precipitated by sodium acetate (200 µL)
and ice-cold isopropanol (1.3 ml). The precipitated eDNA
was pelleted by centrifuging it at 12,000 × g for 15 min at
4◦C. The pellet obtained was resuspended in 40 µL of TE
buffer (1 mM EDTA and 10 mM Tris, pH 8.0). The eDNA
suspension was treated with 10 µL proteinase K (10 µg/µL)
followed by incubation at 37◦C for 1 hr. With the help of
NanoDrop Fluorospectrometer, the eDNA was quantified and
electrophoresed in agarose gel (0.8% [w/v] agarose in TBE buffer)
and visualized in the gel documentation system.

Microscopic analysis of biofilm
The biofilm formation on the abiotic surface was assayed as
described by Rajkumari et al. (2018a). In a 24-well microtiter well
plate containing Tryptic Soy Broth and coverslips (1 × 1 cm),
1/100th diluted overnight P. aeruginosa broth culture was grown
for 24 h at 37◦C. For light microscopic analysis, the coverslips
were washed with sterile PBS to remove unadhered cells and
stained with 0.4% crystal violet for 10 min. For fluorescence
microscope analysis, the coverslips were stained with acridine
orange (4 µg/mL) in the dark and then washed with PBS to
remove excess stain. The coverslips were allowed to dry and
visualized under respective microscopes.

RNA Isolation and Quantitative
Real-Time PCR (qRT-PCR)
The total RNA was extracted from Pseudomonas aeruginosa
cultures grown for 18 h in the presence of the test compounds.
The cultures were grown for 18 hrs to allow maximum exposure
of the test compounds to the bacterium. The RNA isolation
and cDNA synthesis were performed as described in Mahesh
et al. (2020). The primers that were used in qRT-PCR are listed
in Supplementary Table S2. Data were analyzed by the 11Ct
method. Each qRT-PCR reaction was performed in triplicates,
and the assays were repeated thrice. Data were normalized to the
housekeeping gene rpoD expression.

In silico Studies
Three-dimensional structures of ligands were docked to three-
dimensional structures of proteins to check their binding affinity.
This was followed by molecular dynamic simulations to get an

insight into the effect of this binding on the three-dimensional
structure of the proteins and the stability of the complex.

Docking
Molecular docking of LasR and RhlR with 2,4-DBP (which
is isolated from D. eschscholtzii crude extract) was performed
to evaluate their interaction strengths in comparison to their
cognate ligands and BAC, using the “induced fit docking”
module of Schrodinger (Schrodinger Inc., United States). These
molecules were retrieved from PubChem, with the IDs as given in
Supplementary Table S3. Protein was prepared through “protein
preparation wizard” of the Schrodinger docking suite 2018.
Ligands were prepared using the “ligprep” module.

Molecular Dynamic Simulation
Protein and protein–ligand complexes were simulated by
Gromacs 5.1.4 simulation package using the “gromos” force field
(Abraham et al., 2015). All the complexes were placed into a cubic
box of size 2 Å along with the SPCE water model as the solvent.
The system was equilibrated well before final simulation of 20 ns
with the time step of 10 ps.

In vitro Infection Studies
The A549 lung epithelial carcinoma cells were infected with
P. aeruginosa PAO1 in the presence of the identified compounds
to evaluate if they interfere with host-cell infection by the
bacterium. Host cells were grown in DMEM containing 10% FBS
(fetal bovine serum) and L-glutamine–penicillin–streptomycin
(0.5%) solution at 37◦C in 5% CO2 condition.

Adhesion Assay
The extent of (host) cell adhesion was evaluated by the procedure
described in Hawdon et al. (2010). Confluent A549 cells were
incubated with P. aeruginosa with a multiplicity of infection
(MOI) of 100 (resuspended with DMEM) in the presence or
absence of BAC (120 µg/mL) or 2,4-DBP (80 µg/mL) and
incubated at 37◦C for 1 h to allow bacterial adhesion. Wells with
bacteria but no test compound served as positive control while
the uninfected wells served as negative control. Uninfected host
cells with BAC or 2,4-DBP were also kept. The wells were washed
thrice with sterile PBS to remove non-adhered bacteria, followed
by trypsinization with least possible trypsin lysed with 70 µL of
0.1% Triton X-100 (Sigma) at room temperature. The lysed cells
were collected, serially diluted, and plated onto the LB agar plate
for counting colony-forming units (CFU).

Invasion Assay
To enumerate the extent of host-cell invasion by P. aeruginosa,
A549 cell invasion assay was performed according to Hawdon
et al. (2010). Confluent A549 cells were infected with
P. aeruginosa (resuspended with DMEM) at MOI of 100, in
the presence or absence of BAC (120 µg/mL) or 2,4-DBP
(80 µg/mL). The plates were incubated at 37◦C for 2 h to allow
internalization of the bacterial cells. Wells were washed with
sterile PBS and then incubated with fresh DMEM supplemented
with gentamicin (200 µg/mL) for 1 h to kill extracellular bacteria.
Following incubation, the cells were washed thrice with sterile
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PBS, trypsinized, and lysed with 70 µL of Triton X-100 (0.1%).
The suspension was serially diluted and plated onto LB agar for
CFU count. Host cells with bacteria but no test compound served
as a positive control, while uninfected cells served as negative
control. Uninfected host cells with BAC or 2,4-DBP were also
kept. All cocultures were performed in triplicates.

Live/Dead Cell Imaging by Acridine Orange
(AO)/Ethidium Bromide (EB) Staining
A549 cells were grown to about 90% confluence in a 35-mm
cell-culture dish and infected with P. aeruginosa at MOI of
100 in the presence or absence of 2,4-DBP (80 µg/mL) and
BAC (120 µg/mL). After 24 hrs of incubation, the medium was
discarded, followed by washing of the cells thrice with sterile PBS.
Finally, 20 µL of the AO/EB mix (4 µg/mL) was used to stain the
cells and viewed under a fluorescent microscope with a B-2A filter
(Nikon Eclipse TS100, Japan). EB stains only dead cells, whose
membranes are permeable, whereas AO stains all cells. Hence,
dead cells fluoresce red-orange while live cells fluoresce green.

Synergistic Antimicrobial Studies of
2,4-DBP With Antibiotics
Pseudomonas aeruginosa PAO1 was screened against
therapeutically relevant antibiotics, which showed that the
strain is resistant to ampicillin. Its MIC against the strain
was determined by micro-broth dilution method as per CLSI
guidelines. Following this, various combinations of ampicillin
and 2,4-DBP (combinations) were used against P. aeruginosa
to investigate any potential synergistic efficacy in inhibiting
that bacterium. An overnight grown culture of P. aeruginosa
was diluted to 1/100th, 200 µL of which was dispensed into
the wells of 96-well microtiter plates and treated with the
2,4-DBP-ampicillin combinations. Untreated wells served as
controls. Each treatment was performed as triplicates. After
24 h of incubation, the growth of the cells were monitored and
expressed the cell viability in terms of percent CFU.

Mathematical Calculations and
Statistical Analysis
Each experiment was performed in triplicates, and values were
expressed as standard means with standard deviations. Values
for 2,4-DBP-treated experiments are normalized with those BAC-
treated whenever appropriate. All the cultures were adjusted to a
set OD of 0.4 at 600 nm before the experiments.

The percentage of inhibition in different assays was calculated
as follows:

Percentage inhibition =
(

1−
Ab. (sample)
Ab. (control)

)
∗100

where Ab. (control) = Absorbance of control,
Ab. (sample) = Absorbance of treated sample, at
respective wavelengths.

Statistical analyses of all the experiments were performed
in Microsoft Excel MegaStat software. Data readings of all
experiments were documented as mean ± standard deviation.
The p-values < 0.05 represent the significance of the conclusion.

RESULTS AND DISCUSSION

Endophytic Fungus Daldinia
eschscholtzii Shows Anti-QS Activity
A total of 32 endophytic fungi were isolated from the leaves
of Tridax procumbens. Their extracts were screened against
P. aeruginosa and C. violaceum for anti-QS activity. Out of them,
the isolate with code TP2-6 showed the best activity and hence
was selected for further studies (Supplementary Table S1).

A mature colony of TP2-6 was olivaceous green with smoky
gray appearance at the surface texture. The margin was as follows:
entire; colony fluffy in texture; surface color changes from white
to dark gray and covers entire plate (90 cm) after 6 days
of inoculation. The culture produced spores, which imparts a
grainy appearance to the surface. Light microscopy revealed
the hyphae to be septate, hyaline, to melanized thick walled as
the colony ages. The conidia produced were small, numerous,
hyaline, and ellipsoid with an attenuated base (Figure 1A).
Apart from the morphological observations, the sequencing data
confirmed it as Daldinia eschscholtzii. The sequence obtained in
molecular analyses was submitted to GenBank with accession
number KX987249.

Phylogenetic analysis of the sequence data consisted of
Bayesian and maximum likelihood analysis as combined
aligned dataset. The ITS dataset comprised 22 taxa and 647
characters from Daldinia species with Hypoxylon fragiforme
as an outgroup. RAxML analysis of the ITS dataset yielded
a best-scoring tree with a final maximum likelihood of
2060.50. In the maximum parsimonious dataset, of 647 total
characters, 58 variable characters are parsimony-uninformative,
and the number of parsimony-informative characters is 112.
The parsimony analysis resulted in 10 equally parsimonious
trees with a length of 253 steps (CI = 0.798, RI = 0.891,
RC = 0.712, HI = 0.202). Bootstrap values of ML and MP
equal to or above 75% based on 1000 replicates were shown
(Figure 1B). Trees generated under maximum likelihood (ML),
maximum parsimony (MP), and Bayesian analyses were similar
in topology. The phylogenetic analyses show that our taxon
groups together with D. eschscholtzii share a sister relation with
D. placentiformis, Daldinia caldariorum, and Daldinia albofibrosa
(99% ML/100 MP/1BYPP).

2,4-Di-Tert-Butylphenol Was Identified as
the Bioactive Anti-QS Compound
Further, we were interested in isolating the bioactive compound
from a crude extract of D. eschscholtzii. The crude extract
from the D. eschscholtzii culture was prepared and subjected
to column chromatography with increasing polarity from
hexane to water with different ratios of solvents. Nine
fractions were collected separately, which were subjected
to bioactivity-guided fractionation. Active fractions were
subjected to column chromatography with hexane: ethyl
acetate (7:3) ratio, and fractions were collected in 20-mL
volume aliquots. A single band was observed on the TLC plate
from a purified fraction, and the purity was confirmed from
analytical HPLC using the C18 column, using photodiode array
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FIGURE 1 | Identification and molecular phylogenetic analysis of Daldinia eschscholtzii. (A) Microscopic observations for the identification of D. eschscholtzii. The
colony morphology, mycelia, and spores stained in lactophenol cotton blue are shown. (B) Phylogram based on the RAxML analysis of the ITS-1 DNA sequence
dataset. Bootstrap support values for ML, MP higher than 75%, and BYPP values greater than 0.90 are given above each branch respectively for D. eschscholtzii
(TP2-6, an in-house code given to the isolate). (C) Molecular structure of 2,4-di-tert-butylphenol (2,4-DBP) identified as the bioactive compound that was isolated
from D. eschscholtzii.

detectors (PDA) with model number SPD-M20A (Shimadzu,
Japan) (Supplementary Figure S1). HPLC analysis of the
purified sample revealed a major component of ≥95% and
a few minor impurities. The purified fraction was subjected
to high-resolution mass spectrometry (HRMS) to estimate
the molecular weight of the compound (Supplementary
Figure S2A). The molecular weight was established by Q-TOF
(quadruple-time-of-flight) HRMS mass spectrometry, with
mass of [M + H] + at m/z 207.17, corresponding to the
major peak, which gives the accurate mass of ≈206.17, in
the positive ion mode (Supplementary Figure S2A). FTIR
spectra of a purified sample displayed a peak at 3511 cm−1,
which indicates stretching of the O–H phenolic group.
Further, C–C stretch of the alkyl group was represented by
the peaks at 2863–2951 cm−1. Moreover, the peak observed at
1247 cm−1 reveals a C–O stretching of phenols. An aromatic
C–C stretch was recognized by peaks at 1504–1604 cm−1

(Supplementary Figure S2B). Thus, evidences provided by

the above functional groups confirmed the phenolic nature
of the compound.

1H NMR data of the purified sample shows the occurrence
of two singlets at 1.325 ppm and 1.447 ppm which resembles a
di-substituted tertiary butyl group (Supplementary Figure S3).
Another singlet around 4.662 indicates the presence of a phenolic
hydrogen. The rest of the 3 protons were detected in the aromatic
downfield region in between 6.602 and 7.332 ppm, which suggests
it to be a tri-substituted aromatic compound. This data was
further supported by 13C NMR. The 13C NMR spectra of the
isolated pure compound exhibited the occurrence of 10 carbon
signals, of which 6 were downfield carbon signals present in
between 116.07 and 151.89 ppm which were in the aromatic
region. The remaining four carbon signals were detected in
the upfield region in between 29.81 and 34.87 ppm. Out of
six carbons, the aromatic substitution was confirmed by the
presence of three quaternary carbons at 135.32 ppm, 143.12 ppm,
and 151.89 ppm. Moreover, the presence of a phenolic OH
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group at quaternary carbon present at the most downfield
region, i.e., 151.89 ppm, was confirmed in the molecule. Among
the four carbon signals present in upfield regions, two were
tertiary carbons at 34.87 ppm and 34.42 ppm while the rest
of the two were methyl signals at 331.77 ppm and 29.81 ppm.
Thus, the spectrum shows that in the compound, two tert-butyl
substitutions are present on the remaining quaternary carbons
at 135.32 ppm and 143.12 ppm in the aromatic ring. Therefore,
after the interpretation of the hydrogen and carbon spectra, the
structure of the compound was structurally elucidated as 2,4-
di-tertbutylphenol (C14H22O) (Figure 1C). The final yield of
2,4-DBP (≥95% purity) was 1.9 mg/L.

2,4-DBP Shows Anti-QS Activity Against
C. violaceum and P. aeruginosa
The expression for the production of the violacein pigment by
C. violaceum is regulated by QS. Therefore, any inhibitor of
C. violaceum can be visually determined by the inhibition of
production of the pigment. Hence, it has been used as a marker
trait in QS studies as a reporter model (Stauff and Bassler, 2011).
In our study, 2,4-DBP and BAC (positive control) were able to
inhibit violacein production in the reporter strain on the agar
plate (Figure 2A). The zone of inhibition of violacein production
was 16 mm diameter for 2,4-DBP (80 µg/mL) and 18 mm for
BAC (120 µg/mL). When expressed quantitatively, inhibition
of violacein production when treated with 2,4-DBP (76% at
80 µg/mL) was comparable to that when treated with BAC (88%
at 120 µg/mL) Figure 2B.

In earlier studies, inhibition zones of 10 mm and 13 mm
of violacein production were reported for two phenethylamide
metabolites isolated from marine Halobacillus salinus bacteria
(Teasdale et al., 2009). In a more recent study, Noumi et al. (2018)
reported 69.3% of violacein inhibition by tea tree oil. Our study
achieved a stronger inhibition of violacein production by 2,4-
DBP that we isolated from D. eschscholtzii. Since the molecule
showed anti-QS activities, we hypothesized that this compound
can inhibit growth of the notorious human nosocomial pathogen
P. aeruginosa, or its virulence factors that are controlled by QS.

2,4-DBP Does Not Inhibit Growth of
P. aeruginosa
The MIC based on the microbroth dilution method was
calculated for both 2,4-DBP and BAC to examine if 2,4-DBP
shows any inhibitory effect on the growth of P. aeruginosa. The
MIC for 2,4-DBP was found to be >1024 µg/mL (not shown
here). The growth pattern and change in the cell density of
P. aeruginosa also remained largely unaffected when treated with
three different concentrations: 40, 60, and 80 µg/mL of 2,4-
DBP. This suggests that 2,4-DBP has no effect toward the growth
kinetics of the bacterium, when compared to the growth in the
presence of the sub-MIC level of BAC (120 µg/mL) (Figure 2B).
This result was well in agreement with a similar observation that
was reported by Viszwapriya et al. (2016) where 2,4-DBP showed
a non-bactericidal effect on the growth of Streptococcus pyogenes.

Though the compound showed no effect toward the growth
of the pathogen, inhibition of virulence factors of P. aeruginosa

that are controlled by QS could be an invaluable potential of
2,4-DBP, especially when it showed strong anti-QS activities.
Therefore, we intended to study the effect of 2,4-DBP on the
expression of QS-regulated genes and QS-regulated production
of extracellular virulence factors, production of biofilm and its
associated factors, and in vitro host-cell adhesion and invasion.
The same concentrations of 2,4-DBP (40, 60, and 80 µg/mL) and
BAC (120 µg/mL) were used throughout the rest of the study.

2,4-DBP Treatment Greatly Reduced
Pyocyanin Production in P. aeruginosa
Pyocyanin, a predominant green-colored phenazine pigment and
a redox-active toxin secreted by P. aeruginosa, critically plays
a detrimental role for the establishment of an infection. The
Rhl component of the QS system in P. aeruginosa activates the
expression of pyocyanin production in conjunction with RhlR
and the autoinducer signal molecule C4-HSL (Bratu et al., 2006).
Pyocyanin also induces pathogen-driven neutrophil apoptosis
by reducing local inflammation and creates a biofilm formation
environment (Allen et al., 2005). In our study, 2,4-DBP treatment
reduced the level of pyocyanin production by 60% whereas BAC
reduced it by 69% without significantly affecting the bacterial
growth (Figure 2B). This can also be visualized by the abrupt
decrease in green color pigment in the supernatant of treated
cultures as compared to those untreated (Figure 2A). This
reduction was superior to those achieved by one previous study,
wherein ethanolic extract, ethyl acetate extract, and N-butanol
extract of Camellia nitidissima Chi flower at a concentration of
0.75 mg/mL reduced pyocyanin production by 51.2%, 56.9%, and
51.5%, respectively (Yang et al., 2018).

2,4-DBP Treatment Considerably
Reduced Chitinase Activity P. aeruginosa
Chitinolytic activity by bacteria plays a significant role in chitin
degradation, which results in recycling of a carbon as well as
nitrogen source into a simply accessible form in the ecosystem
(Gooday, 1990). The expression of chitinase enzyme enhances
in clinical isolates, thus playing a role in virulent infection
(Salunkhe et al., 2005). In our study, we recorded 2,4-DBP and
BAC at concentrations of 80 and 120 µg/mL, respectively, to
reduce chitinase activity in the culture extracts of P. aeruginosa
(Figure 2C). The reduction in chitinase activity was found to be
27.1% and 30.8% in the case of 2,4-DBP and BAC, respectively,
as compared to the untreated control. Interestingly, however,
Husain et al. (2013) reported 80% inhibition in chitin production
when P. aeruginosa was treated with 1.6% of clove oil.

2,4-DBP Causes Dose-Dependent
Decrease in P. aeruginosa Protease
Activity
Initial establishment of infection in host tissues is instigated by
elastases and proteases. P. aeruginosa secretes several protease
and elastase virulence factors regulated by LasIR, which implies
their roles in its pathogenicity (Kessler et al., 1993). Elastase,
a powerful T2SS-secreted proteolytic enzyme, is encoded by
gene lasB. It has a wide range of substrates, including elements

Frontiers in Microbiology | www.frontiersin.org 8 July 2020 | Volume 11 | Article 166844

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-01668 July 27, 2020 Time: 9:5 # 9

Mishra et al. 2,4-Di-tert-butyl Phenol Inhibits Quorum Sensing

FIGURE 2 | Inhibition of virulence factors under control of quorum sensing by 2,4-di-tertbutylphenol (2,4-DBP). (A) Visual qualitative assay for inhibition of
Chromobacterium violaceum violacein production and Pseudomonas aeruginosa pyocyanin production by 2,4-DBP at indicated concentrations. (B) Quantitative
estimation of violacein and pyocyanin production. The growth curve in the presence of 2,4-DBP, baicalein, and untreated control is shown in the inlet. (C) Inhibition of
chitinase, LasA protease, LasA staphylolytic activity, and LasB elastase activities by 2,4-DBP at indicated concentrations. (D) Visual qualitative assay of inhibition of
P. aeruginosa HCN production by 2,4-DBP at indicated concentrations. Bar diagrams represent mean percentage values of triplicates normalized with those
obtained with untreated controls.

of connective tissue such as elastin, collagen, fibronectin, and
laminen. These bacterial proteases act as hydrolytic enzymes that
target the host’s proteins to facilitate the invasion and growth of
the pathogen (Musthafa et al., 2011). In P. aeruginosa, expression
of exoproteins such as alkaline protease and elastase is under
the regulation of QS (Swift et al., 1996). In light of the ability
of 2,4-DBP as a QS inhibitor, we investigated the role of 2,4-
DBP on azocasein-degrading protease activity, LasA stapylolytic
activity, and LasB elastase activity and observed a dose-dependent
decrease in the protease activity of P. aeruginosa (Figure 2C). 2,4-
DBP reduced LasA staphylolytic activity by 27.6% at 80 µg/mL
and BAC by 32.8%. Equivalently, LasB elastase activity was
attenuated by 30% as compared to BAC by 36.3%. Furthermore,
LasA protease activity was found to get attenuated by 70.7%
due to 2,4-DBP at 80 µg/mL whereas BAC reduced this to
77.1%. Although Rajkumari et al. (2018b) reported the decrease
in staphylolytic activity by 21.8% and LasA protease by 71% when

treated with cinnamic acid, in the present study, 2,4-DBP exerted
moderate effects on LasA staphylolytic activity and LasB elastase
attenuation but significant reduction in LasA protease activity.

2,4-DBP Inhibits P. aeruginosa HCN
Production
Production of HCN provides an advantage to P. aeruginosa to
inhabit a range of ecological niches and hence contribute to its
pathogenicity (Williams et al., 2006). Cyanide promptly diffuses
in tissue and inhibits aerobic chain reaction by irreversibly
binding to the terminal oxidases of respiratory chains and hence
its profound toxicity (Zlosnik et al., 2006). In our study, treatment
with 2,4-DBP resulted in attenuation of HCN production in
contrast to untreated control. The HCN thus produced reacts
with picric acid (yellow in color) in the presence of sodium
carbonate, resulting in a color change from yellow to orange to
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brick red. A sharp decrease in color change of filter paper from
yellow to orange depicted less HCN production in case of 2,4-
DBP and BAC at 80 and 120 µg/mL, respectively, whereas a
deep-orange color was observed in drug-free control depicting
high HCN production (Figure 2D).

2,4-DBP Strongly Inhibits Motility of
P. aeruginosa
Pseudomonas aeruginosa possesses an exquisite mechanism
to ingeniously use different types of motilities to facilitate
colonization in several ecological niches. Motility of P. aeruginosa
also plays a significant role in the surface attachment and
maturation of biofilms (O’toole and Kolter, 1998). P. aeruginosa
possesses a polar flagellum that aids in swimming and swarming
on liquid and semisolid surfaces, respectively (Murphy, 2009;
Murray et al., 2010). Herein, we investigated the swimming
and swarming ability of P. aeruginosa when treated with 2,4-
DBP and BAC. As evident from Figures 3B,C, the inhibition
of swarming was 78% when treated with 2,4-DBP at 80 µg/mL,
while the positive control BAC inhibited swarming by 73.9% at
120 µg/mL. Similarly, when treated with 2,4-DBP at 80 µg/mL,
swimming was inhibited by 60.2%, while BAC reduced this
to 51.5% (Figures 3A,C), suggesting that 2,4-DBP shows
higher inhibitory effects on motility of P. aeruginosa than
BAC does. According to earlier studies, the inhibitory effect
of aspirin on the swimming motility of P. aeruginosa was
34% (El-Mowafy et al., 2014). Similarly, Li et al. in 2018
reported that cinnamaldehyde could restrict swarming up to
58.4% and swimming up to 40.7% at the concentration of 1
µL/mL. Compared to these earlier results, we could achieve
greater inhibition of swimming as well as swarming motility of
P. aeruginosa by 2,4-DBP.

2,4-DBP Attenuates P. aeruginosa eDNA
Production
Extracellular DNA (eDNA) is a major constituent of the biofilm
matrix of P. aeruginosa. eDNA is supposed to be produced from
random chromosomal DNA from dead bacteria gibe strength to
the biofilm matrix (Allesen-Holm et al., 2006). During starvation,
eDNA acts as a nutrient source of P. aeruginosa (Finkel and
Kolter, 2001). Extracellular DNA, furthermore, is known to
ease the biofilm expansion mediated by twitching motility as
it maintains organized cell arrangements to synchronize the
movement of cells (Gloag et al., 2013). In this study, we observed
a significant decrease in P. aeruginosa eDNA production when
treated with 2,4-DBP (Figure 4C). The reduction of eDNA was
recorded to be∼82%, which is on par with the BAC, as quantified
with ImageJ software.

2,4-DBP Significantly Impairs
P. aeruginosa Biofilm Formation
Biofilms are contemplated as a 3D network of microbial
communities adhering to biotic or abiotic surfaces, enveloped
by an extracellular matrix comprised of bacterium-derived
DNA, exopolysaccharides, and proteins released by the bacteria
embedded therein (Chen et al., 2018). Biofilms are clinically one

of the most relevant features expressed by bacteria, since they act
as an impermeable barrier to antibiotics and the host immune
system, thus promoting antibiotic tolerance and persistence.
The best known activator signal for biofilm formation is the
QS signaling system. Hence, we investigated and quantified
the deleterious effect of 2,4-DBP on biofilm formation by this
bacterium. Notably, when compared to drug-free control, 2,4-
DBP 80 µg/mL attenuated biofilm formation by 49%, marginally
less (53%) than when treated with the positive control BAC
at 120 µg/mL (Figure 4A). In the treatment, in contrast to
53% attenuation by BAC, biofilm attenuation by 2,4-DBP at a
sub-MIC of 80 µg/mL was 49%, little less than the positive
control. Disruption of the biofilm could also be directly observed
under light microscopy when treated with 2,4-DBP. This can
also be visualized on Congo red agar (CRA), which serves
as a qualitative detection method for biofilm-positive bacteria.
Bacteria that produce biofilms grow into dry crystalline black
colonies when inoculated on a Congo red agar medium; they
remain pink otherwise (Freeman et al., 1989). We observed
the absence of black colonies of P. aeruginosa on Congo
red agar when treated with 2,4-DBP, which is suggestive of
the inability of the bacterium to produce a robust biofilm
in the presence of test compounds (Figure 4B). A similar
observation of biofilm with the help of light as well as
fluorescent microscopy in Figure 4D corroborates with the fact
that treatment with 2,4-DBP impairs the growth of biofilm
development in the initial phase itself and inhibits biofilm
development as compared to control.

In earlier reports, reduction in biofilm by phenolic compounds
such as cinnamic acid, ferulic acid, and vanillic acid was 44,
45, and 46%, respectively (Ugurlu et al., 2016), suggesting 2,4-
DBP as a potential anti-biofilm candidate. Similarly, Padmavathi
et al. (2015) evaluated anti-fungal and anti-biofilm efficacy of
2,4-DBP and observed a strong anti-fungal action by inhibiting
and disrupting biofilm formation in Candida albicans. Our
results are also supported by reports of 2,4-DBP displaying
a concentration-dependent biofilm inhibition that can reach a
maximum of 79% 48 µg/mL concentration (Viszwapriya et al.,
2016) in Streptococcus pyogenes. In addition, in a more recent
study, Rajkumari et al. (2018b) described that the treatment with
betulin and betulinic acid possessing an anti-QS ability resulted
in the formation of pink colonies of P. aeruginosa on Congo red
agar and hence reduced biofilm formation.

2,4-DBP Significantly Inhibits Production of
Exo-Polysaccharides
Extracellular polymeric substances (EPS) are the main
constituent of P. aeruginosa biofilms and crucial for its
biofilm architecture (Kreft and Wimpenny, 2001). EPS helps
P. aeruginosa to evade antibiotic treatment and immune
responses (Ghafoor et al., 2011). Besides providing mechanical
stability to biofilm through various interactions, EPS defend
bacterial cells by impeding penetration and/or sequestering
of antimicrobial agents (Donlan, 2002; Ryder et al., 2007). In
our study, we found that, when bacterial cells were exposed to
2,4-DBP, the production of EPS was reduced by 34.4%, while
the reduction was 36% for BAC (Figure 4A). This marked
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FIGURE 3 | Inhibition of Pseudomonas aeruginosa swimming motility (A) and swarming motility (B) by 2,4-di-tert-butylphenol (2,4-DBP) at the indicated
concentrations. (C) Quantitative estimations of the inhibition of P. aeruginosa swimming and swarming motility by 2,4-DBP. Bar values indicate mean percentages of
triplicates normalized with those obtained with untreated controls.

FIGURE 4 | Inhibition of P. aeruginosa biofilm formation and biofilm-associated factors by 2,4-di-tertbutylphenol (2,4-DBP) at the indicated concentrations.
(A) Inhibition of P. aeruginosa biofilm formation, production of alginate, exo-polysaccharide (EPS), and rhamnolipid, and hydrophobicity. Bar values indicate mean
percentages of triplicates normalized with those obtained with untreated controls. (B) Congo red agar visual qualitative assay for inhibition of biofilm formation.
(C) Inhibition of eDNA production by baicalein and 2,4-DBP. The bar values show intensity of the bands as estimated by ImageJ software, from the agarose gel
electrophoresis image shown below. (D) Fluorescence and light microscopic images of biofilms when treated with various concentrations of baicalein and 2,4-DBP.
Two random representative images are shown for each treatment. The scale bars are equivalent to 25 µm.

decrease on par with the positive control reflects the ability
of 2,4-DBP as a potential anti-biofilm candidate. Similar
reports were also present wherein the decrease in EPS was
31.2% by botulin, 18% by betulinic acid, and 31% by clove

oil (Husain et al., 2013; Rajkumari et al., 2018b). In addition,
2,4-DBP inhibited EPS production by Candida albicans by 33%,
(Padmavathi et al., 2015) and up to 33–46% in Streptococcus sp.
(Viszwapriya et al., 2016), which are similar to that of our results.
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2,4-DBP Causes Significant Reduction of
P. aeruginosa Rhamnolipid Production
Rhamnolipid is an extracellular virulent factor and a prerequisite
for biofilm establishment. It actively maintains P. aeruginosa
biofilm architecture and reduces adhesion between bacterial cells
(do Valle Gomes and Nitschke, 2012). In their involvement in
early cell-to-surface interactions, further maintenance following
dispersion/disruption of the biofilm is indispensable (Davey et al.,
2003). Rhamnolipid is a biosurfactant composed of a rhamnose-
containing glycolipid detergent-like structure and is well known
to solubilize the phospholipids of lung surfactant, hence more
prone to cleavage by phospholipase C (Köhler et al., 2010).
We witnessed a reduction in rhamnolipid production when
exposed to 2,4-DBP by 29.2%, compared to 38.8% for BAC
(Figure 4A). Our study achieved better reduction in rhamnolipid
production when compared to previous reports, wherein 19.03%
and 21.61% reductions in rhamnolipid production were achieved
when treated with betulin and betulinic acid at 125 µg/mL
concentration (Rajkumari et al., 2018b).

2,4-DBP Impedes P. aeruginosa Alginate Secretion
Pseudomonas aeruginosa secretes alginate, a major
polysaccharide component of the P. aeruginosa EPS
component, which determines its surface characteristics
such as hydrophobicity, charge, and electrostatic interactions of
the cell surface with the surface (Herzberg et al., 2009). Alginates
shield bacteria from adverse conditions and enhance surface
adhesion (Boyd and Chakrabarty, 1995). Its production by
P. aeruginosa aids in antibiotic resistance, phagocytic evasion,
resistance toward macrophages and neutrophils, and scavenging
of reactive oxygen intermediates (Cody et al., 2009). In our
study, 2,4-DBP at 80 µg/mL impeded P. aeruginosa alginate
secretion by 50%, while BAC treatment at 120 µg/mL resulted in
a reduction by 55% (Figure 4A). This finding is significant as it
corroborates with the previous reports of cinnamon oil, reducing
alginate production by 54% at 0.2 µl/mL (Kalia et al., 2015).

2,4-DBP Significantly Decreases P. aeruginosa
Cell-Surface Hydrophobicity
Hydrophobicity on bacterial surfaces plays a determinant role
in the adhesion and biofilm formation of bacterial pathogens
on animate as well as inanimate surfaces (Rosenberg and Doyle,
1990). The ability of P. aeruginosa to adhere to hydrocarbons
is a measure of cell-surface hydrophobicity. A greater CSH
is suggestive of a greater ability of the bacterium to adhere.
This is achieved by shielding the repelling forces amid the
surface charges, which is critically needed for early micro-colony
formation during biofilm development (Pamp and Tolker-
Nielsen, 2007). Hence, CSH is regarded as a major determinant
of biofilm formation (Silva-Dias et al., 2015). In this study, CSH
was reduced by 51.2% and 49.2% when treated with 2,4-DBP and
BAC, respectively, which suggest its role in inhibiting adhesion of
P. aeruginosa (Figure 4A), which is suggestive of a reduction in
biofilm formation of the pathogen, as noted in the above results.
In a similar study, 2,4-DBP resulted in significant reduction up to
70% in cell-surface hydrophobicity of Streptococcus sp.

FIGURE 5 | Relative expression of P. aeruginosa PAO1 lasA, lasI, rhlR, and rhlI
genes under control conditions (DMSO) and following addition of
2,4-di-tert-butylphenol (2,4-DBP) (80 µg/mL). *indicates that p < 0.05 and
hence statistically significant which was assessed by two tailed t-test.

Since 2,4-DBP inhibited cell-surface hydrophobicity of
P. aeruginosa considerably, we hypothesized that the test
compound could also inhibit adhesion of the pathogen
to its host cells.

2,4-DBP Downregulates QS Genes of
P. aeruginosa
Since 2,4-DBP strongly inhibits the QS and secretion of virulence
factors of P. aeruginosa, we hypothesized that 2,4-DBP might
inhibit the expression of QS-related genes. To investigate this,
we quantified the expression levels of QS-associated genes such
as lasI, lasR, rhlR, and rhlI in P. aeruginosa which are treated
with 2,4-DBP by using quantitative RT-PCR. We found that
the treatment of P. aeruginosa with 2,4-DBP at 80 µg/ml
concentration decreased the mRNA level of all the four QS-
associated genes lasI, lasR, rhlR, and rhlI RhlR significantly on
par with the positive control BAC, a well-studied inhibitor of
QS (Figure 5). These results suggest that 2,4-DBP inhibits QS by
downregulating the expression of QS-related genes.

2,4-DBP Causes Strong Inhibition of P. aeruginosa
Host-Cell Adhesion
Host-cell adhesion of P. aeruginosa is the initial and decisive
stage of colonization in the host and is crucial for an infection
by the bacterium to be established. To evaluate whether 2,4-
DBP impairs host-cell adhesion of P. aeruginosa, we infected
A549 human alveolar carcinoma cells with P. aeruginosa in the
presence of 2,4-DBP and BAC. The adhered cells were harvested
and enumerated by CFU counts. We recorded an abrupt
reduction in P. aeruginosa host-cell adhesion by 72% in the
presence of 2,4-DBP at 80 µg/mL, as compared to 62% reduction
in the presence of the positive control BAC at 120 µg/mL
(Figure 6). The reduction in host-cell adhesion achieved in our
study was remarkably higher than those achieved in previous
studies, wherein it was 26.3% by the antibiotic ciprofloxacin at
a concentration of 0.063 µg/mL, 16.4% by dextran at 5 mg/mL,
45.2% by an extract of soybean at 4.3 mg/mL, and 54.5%
by a cranberry extract at 2.6 mg/mL (Ahmed et al., 2014).
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This makes 2,4-DBP an attractive candidate for anti-virulence
therapeutic strategies, whereby the pathogen can be sensitized to
antimicrobials and/or the host’s immune system, especially when
biofilm-related infection is widespread and multidrug resistance
in P. aeruginosa is rampant.

2,4-DBP Causes Severe Impairment of P. aeruginosa
Host-Cell Invasion
Pseudomonas aeruginosa is known to escape the host’s immune
system by promoting its own internalization into host non-
phagocytic host cells (Chi et al., 1991; Engel and Eran, 2011).
To evaluate if 2,4-DBP is able to impair P. aeruginosa host-cell
invasion, we infected A549 cells with P. aeruginosa in vitro at a
multiplicity of infection of 100 in the presence of 2,4-DBP and
BAC. The non-internalized bacteria were killed by gentamicin
treatment; the internalized bacterial cells were harvested and
enumerated by CFU counts. In the presence of 2,4-DBP at
80 µg/mL, host-cell invasion was severely reduced by 75%,
whereas this reduction was 50% when infected in the presence
of the positive control BAC at 120 µg/mL (Figure 6). Such a
remarkable reduction in the host-cell invasion of bacterial cells
depicts the potential of 2,4-DBP when compared to other studies,
wherein invasion was decreased by about 45% when treated with
ciprofloxacin at the concentration of 0.063 µg/mL, and 25%
in the case of dextran at 5.0 mg/mL. However, a significant
reduction was achieved when treated with an extract of soybean
at 4.3 mg/mL, in combination with ciprofloxacin and dextran
(Ahmed et al., 2014).

2,4-DBP Interferes With Host-Cell Death by
P. aeruginosa
The ability of P. aeruginosa getting internalized eventually leads
to induction of apoptosis, which is the tangible virulence of the
bacterium resulting in host tissue damage. To investigate if our
test compound can protect the host cells from the induction
of apoptosis induced by the internalized bacteria, we infected
the host cells with the pathogen at a multiplicity of infection
of 100, followed by elimination of the extracellular bacteria.
Host-cell death was observed by live dead cell imaging after
24 h of incubation. The cells were stained briefly with Acridine
Orange/Ethidium Bromide solution and directly observed by
fluorescence microscopy. Our results depict that bacterial cells
treated with BAC resulted in more A549 cell deaths after 24 h of
incubation while the degree of death induced in 2,4-DBP at the
80-µg/mL treatment was less (Figure 6).

Synergistic Studies of 2,4-DBP With
Antibiotics
The MIC of ampicillin and 2,4-DBP was found to be more than
1024 µg. It means P. aeruginosa was resistant to the antibiotic
and grows without any constraints even in the presence of 2,4-
DBP at 80 µg/mL, as mentioned earlier. We were interested
to investigate the combined effect of ampicillin and 2,4-DBP
on P. aeruginosa and hence several combinations of ampicillin
and 2,4-DBP were used in different concentration. As shown
in Figure 7, the combination of ampicillin at 100 µg/mL and
2,4-DBP at 100 µg/mL was effective in eradicating the bacterial

growth as the bacterial cell viability at this combination was less
than 2%. Furthermore, as evident from Figure 7, even the effect
of concentration of ampicillin at 50, 75, and 100 µg/mL alone
is similar and ineffective in killing P. aeruginosa. However, the
introduction of 2,4-DBP even at the 40-µg/mL concentration in
combination with ampicillin results in sharp deleterious effects
on the bacterium. Hence, it could be presumed that 2,4-DBP was
capable of weakening the bacterial cells, and further, ampicillin
was able to kill the weakened pathogen, which earlier was
ineffective at even higher concentrations. A similar sort of study
was performed by Viszwapriya et al. (2016), where 2,4-DBP
reduced the MIC of the standard antibiotic. A marked decrease
in MIC value of erythromycin and tetracycline was observed in
combination with 2,4-DBP against Streptococcus sp.

Docking Analysis of 2,4-DBP
The three-dimensional structure of LasR was retrieved from
the PDB database. Bottomley et al. (2007) reported the crystal
structure of the LasR receptor protein at 1.80 Å resolution.
The NCBI CD database search of this protein revealed that
it contains an autoinducer domain from residues 20 to 160,
which is crucial for the transcription process (Marchler-Bauer
et al., 2010). The complete structure details of this protein
is discussed by Gopu et al. (2015). As the three-dimensional
structure of RhlR is not solved, the predicted model, which was
reported earlier (Rajkumari et al., 2018b), was used in this study.
Molecular docking studies were performed to find out the hotspot
residues of the protein.

Ligand molecule, 2,4-DBP, was docked in order to study the
inhibition mechanisms. The signaling molecule showed less dock
scores as compared to the ligand molecules (2,4-DBP and BAC).
Information on all the interacting atoms of protein and ligands
along with H-bond distances is provided in Supplementary
Table S4. The pose of ligands in the complex with LasR and RhlR
receptor proteins is shown in Figures 8A,B, respectively. This
docking study revealed the hotspot residues of protein, which
interacted with ligands. Few other residues were also noticed to
interact with ligands and were highlighted in bold.

Molecular Dynamics Simulation
Molecular dynamics simulation studies were performed to study
the conformational changes in proteins’ three-dimensional
structure for activation and deactivation of the LasR receptor
protein in the presence of respective ligands. The simulations
were performed with six complexes, LasR + signaling,
LasR + BAC (LasR + BAC), LasR + 2,4-DBP, RhlR + 2,4-
DBP, RhlR + BAC, and RhlR + 2,4-DBP. RMSD profiles of
all simulated complexes were generated to study the protein
deviation throughout the simulation period. The simulations
were run for 20 ns with the time step of 10 ps and are shown in
Figure 9A. The RMSD profile of this protein revealed that the
protein-signaling molecule complex showed more deviation as
compared to other two complexes. The same pattern of deviation
was also revealed by three complexes of the RhlR protein.
This instability in the three-dimensional conformation was
caused because the crystal structure of the signaling molecule
was crystallized with the signal molecule, which handles the
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FIGURE 6 | Inhibition of P. aeruginosa host-cell adhesion and host-cell invasion by 2,4-di-tert-butylphenol (2,4-DBP) in untreated control, baicalein, and 2,4-DBP in
the A549 lung epithelial cell infection model (left). Live/dead imaging of A549 lung epithelial cell by AO/EB, when infected with P. aeruginosa PAO1 in untreated
control, when treated with baicalein (120 µg/mL) and 2,4-DBP (80 µg/mL) (right). The scale bar is equivalent to 20 µm.

FIGURE 7 | Synergistic studies of 2,4-di-tert-butylphenol (2,4-DBP) with ampicillin: Graph showing cell viability of P. aeruginosa when treated with ampicillin and
combination of ampicillin and 2,4-DBP.

activation of the LasR protein. The protein + BAC and ligand
complexes showed the least deviation in comparison to the
protein-signaling molecule.

Deviation in RMSD profile in a protein can occur for several
possible reasons; it can be due to either expansion or contraction
of the protein, or it may be because of folding of protein in the
other direction. RMSD data was followed by analysis of radius
of gyration (Figure 9B) to understand the deviation pattern
of proteins. The expansion showed by the protein-signaling
molecule was higher among all simulated complexes, whereas it
was less in protein–ligand complexes. Both the proteins consist
of the same cavity as an active site. The activation of the
LasR protein depends on the availability of this cavity for the

signaling molecule. SASA (solvent-accessible surface area) graphs
(Figure 9C) were generated to study how accessibility of this
protein is affected due to opening or closing of the binding site.
Keen observation of the SASA graph revealed that the protein had
lost its surface accessibility when it interacts with 2,4-DBP.

In silico analysis provides insights into protein three-
dimensional structures at the atomic level. The structural details
of protein and ligands provide more details to improve the
efficiency of drugs. A molecular docking study of the LasR
receptor protein with both 2,4-DBP and signaling molecules
revealed that they bind rigidly to the receptor. The structural
comparison of both signaling molecules revealed that they shared
a similar backbone. The functional groups of both molecules
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FIGURE 8 | Docking of LasR (A) and RhlR (B) with their cognate ligands (3-oxo-C12-HSL and C4-HSL, respectively), baicalein and 2,4-di-tertbutylphenol (2,4-DBP).
Three-dimensional structures of the LasR–cognate ligand complex and RhlR–cognate ligand complex are shown at the top of both the panels. For each complex,
stick representations of the ligand molecule, along with its interacting protein residues, are shown on the right of each panel.

are different, and hence, their interaction pattern is different.
The interaction of this functional group with protein residues
may lead to these conformational changes. The RMSD profile
of all the complexes showed that the protein-signaling complex
of both proteins was the most dynamic complex whereas the
protein + 2,4-DBP complex is the most rigid complex found in
both the cases. The least deviation shown by the protein + 2,4-
DBP complex indicates a stable complex and hence suggests this
as a potential inhibitor of both the proteins. A similar pattern
shown by the 2,4-DBP molecule as well as known inhibitor
molecules proves that this ligand may be a potential inhibitor.
The radius of gyration and SASA study revealed that this 2,4-
DBP interacts with proteins strongly. The interactions of ligand
had induced confirmation changes in the LasR receptor in such
a way that the active site is no longer available to interact with
other molecules. It was proved through molecular docking and
molecular dynamics simulation studies that 2,4-DBP can act as
an anti-quorum agent against P. aeruginosa.

SUMMARY AND CONCLUSION

To face the recurring breakdown of antibiotics success against
P. aeruginosa infections, recent efforts have switched toward
exploiting QS inhibitors as anti-pathogenic strategy. The
prospective of this strategy is encouraging since the majority of
such compounds are of natural origin produced by organisms.

More efforts are now being put in this concept, and it
is acquiring momentum, being apparent from the extensive
studies correlated with anti-QS subjects. In the present study
also, 2,4-DBP, a proposed anti-QS compound, was isolated
from D. eschscholtzii, a foliar endophytic fungus associated
with T. procumbens. D. eschscholtzii in general is a wood-
inhabiting/decaying endophytic fungi prevailing in warm tropical
climate. On account of their endophytic habit, Daldinia sp.
possess the trait of early colonization (Stadler et al., 2014).
This fungus manifests a multitude of secondary metabolites as
evident from fascinating data in the last decade (Ng et al.,
2016). To this end, the isolated 2,4-DBP was assessed for its
anti-QS activity and anti-biofilm activity against P. aeruginosa,
a well-known opportunistic pathogen. We found that 2,4-DBP
showed significant activity in inhibiting the production of various
virulent factors such as pyocyanin, chitinase, several proteases,
and biofilm-associated factors along with deleterious effects
on biofilm formation. The Las and Rhl systems are closely
related and are known to control the development of various
virulence factors including alkaline protease, elastase, exotoxin
A, lectins, pyocyanin, rhamnolipids, superoxide dismutase, and
biofilm formation (Venturi, 2006). There is no direct evidence for
swimming motility and alginate synthesis under the control of QS
(Ledgham et al., 2003). However, along with the other virulence
factors, these two phenotypes are often affected when QS is
inactivated or inhibited (Bala et al., 2011; Gupta et al., 2016),
hence suggesting that the regulatory modules responsible for
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FIGURE 9 | (A) Root mean square deviation (RMSD) profiles (A), radius of gyration graphs (B), and SASA (solvent-accessible area) graphs (C) of P. aeruginosa LasR
and RhlR receptor proteins complexed with their cognate ligands 3-oxo-C12-HSL and C4-HSL, respectively, baicalein and 2,4-di-tertbutylphenol (2,4-DBP). In all the
graphs, the receptor protein is less stable than with baicalein and 2,4-DBP.

these two phenotypes may at least partially overlap with the QS
signaling network (Luo et al., 2016).

In silico studies also showed its ability to bind to QS-
regulated receptor proteins, Las and Rhl, and inhibit the binding
of cognate signal molecules to inhibit QS. In earlier reports,
2,4-DBP is reported to curtail the killing of Caenorhabditis
elegans up to 73%, when infected with Streptococcus pyogenes,

while S. pyogenes was capable of killing 100% C. elegans after
96 hrs of infection in control. Hence, this compound could
play a role as a therapeutic agent (Viszwapriya et al., 2016).
Moreover, in S. pyogenes, 2,4-DBP effectively reduced biofilm
formation, EPS production, and cell-surface hydrophobicity
and restricted the initial adhesion of bacterial cells during
biofilm formation. For bio-monitoring eco-toxicological studies,
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C. elegans is popularly used. As in Viszwapriya et al. (2016)
who used C. elegans for assessing the toxicity of 2,4-DBP, they
concluded the non-toxic nature of 2,4-DBP and considered it
as apt for clinical applications. Apart from the present study,
2,4-DBP was found to be potent in constraining the biofilm
formation besides considerably disrupting (p < 0.05) preformed
biofilms in C. albicans (Padmavathi et al., 2015). In addition,
2,4-DBP, a known antioxidant, was investigated for its role
in modulating the EPS in Serratia marcescens (Padmavathi
et al., 2015). They reported a significant reduction in protein,
polysaccharides, and eDNA components of EPS by S. marcescens
when treated with 2,4-DBP, which would perhaps assist in biofilm
disruption by facilitating the dissemination of antimicrobials
into the biofilm. Recently in 2019, 2,4-DBP was reported to be
isolated from Bacillus licheniformis, a thermophilic bacterium
that thrives at 55◦C the antibacterial activity against S. aureus
and P. aeruginosa (Aissaoui et al., 2019). Hence, aforementioned
studies support our results and provide evidence of 2,4-DBP as
a potential candidate as a therapeutic agent. Besides the role of
2,4-DBP against bacteria and fungi, it is also reported to possess
anticancer activity against human gastric adenocarcinoma AGS
cells (Song et al., 2018).

Though LasR sits at the top of the P. aeruginosa QS hierarchy,
rhl and pqs signaling regulons only partially overlap with las
(Lee and Zhang, 2015). Therefore, inactivation or inhibition
of the LasIR QS system may partially impair the Rhl and
PQS signaling systems. There is considerable evidence that the
Rhl signaling system negatively regulates the type-III secretion
system (Hogardt et al., 2004; Bleves et al., 2005). Furthermore,
previous reports also suggest that virulence of P. aeruginosa
remains active in the 1lasR-1rhlR double mutant, possibly
due to the secretion of the effectors ExoT and ExoS by the
type-III secretion system (Soto-Aceves et al., 2019). In our
study, we observed that, though the treatment of 2,4-DBP
reduces the QS gene expressions by 30–40%, the organism
was still non-virulent when cocultured with the host cells
(Figure 5). This suggests that, though this reduction in QS genes
is not huge, it is sufficient to reduce the production of the
virulence factors by 50–70%, which is definitely profound, and
to possibly keep the rhl system fairly active to inhibit the type-
III secretion system, further inhibiting virulence. Additionally,
2,4-DBP offers a possibility of its use as combination therapy
with antibiotics as obsolete as ampicillin against multidrug-
resistant P. aeruginosa. While further studies are needed to
validate this interesting dual property of 2,4-DBP, molecules
with such properties can serve as valuable therapeutic options.
In this respect, our study with 2,4-DBP could serve as a
starting point for the identification of such molecules, which
can cause all-round inhibition of virulence as well as help in
killing the pathogen.

By only reducing QS using a quorum-sensing inhibitor, it may
not be possible to treat P. aeruginosa infections. However, the best
approach might be to attenuate quorum-sensing-mediated traits,
such as virulence and biofilm formation, as well as to combine
this with clinically relevant drugs that together with the host’s
immune system can act simultaneously to clear the pathogen.
The main idea of our study was to achieve this by the use of

2,4-DBP. The considerable effect of the combination of 2,4-DBP
with an obsolete antibiotic such as ampicillin achieves this to a
large extent. It should be noted that it is not the inhibition of QS
that makes 2,4-DBP valuable. Its ability of all-round inhibition of
P. aeruginosa biofilm formation, production of virulence factors,
and killing of the pathogen in combination with ampicillin,
in addition to inhibiting QS, makes it a potential combination
therapeutic agent.

Further, approaches to QS intervention claim to attenuate
bacterial virulence without specifically inhibiting bacterial
growth, suggesting that the immune system can regulate the
infections in vivo. Nevertheless, strong experimental evidence
against the validity of most of these hypotheses has emerged in
recent years for the QS inhibitor in García-Contreras (2016).
Moreover, many researchers believe that there are several
challenges and limitations in anti-QS therapies that highlight
three major properties attributed to QS inhibitors (Krzyżek,
2019). In order to develop truly solid QS inhibitor therapeutic
alternatives to combat this remarkable pathogen, a much better
understanding of its virulence and actions during infections is
necessary. Even though the laboratory results are promising, it
is undeniable that there is the need of thorough understanding of
the knowledge of the impact of QS inhibition on the pathogen
fitness in more convincing circumstances, such as interactions
with a host, the external environment, and complex microbial
communities (Liu et al., 2018).

To summarize, studies on anti-QS compounds/extracts from
fungal sources are very few and are of recent origins. In fact,
this has become a handicap for us to compare our results
with other studies involving fungal extracts. Hence, we were
forced to compare anti-QS activities of extracts/compounds of
bacterial/plant origin. Nevertheless, it shows that the natural
products are still the largest reservoir of compounds/metabolites
for a range of ailments and for therapeutic use with fungi falling
in line in the anti-QS realm also. To that extent, the present
study revealed a promising role for selected fungi, isolated as
endophytes from T. procumbens, after an initial screening. Also,
we could isolate a pure compound 2,4-DBP from one of these
fungi and demonstrate its potential as an anti-QS compound
through various assays and experiments.
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There is grave necessity to counter the menace of drug-resistant biofilms of
pathogens using nanomaterials. Moreover, we need to produce nanoparticles (NPs)
using inexpensive clean biological approaches that demonstrate broad-spectrum
inhibition of microbial biofilms and cytotoxicity against HepG2 cell lines. In the
current research work, titanium dioxide (TiO2) NPs were fabricated through an
environmentally friendly green process using the root extract of Withania somnifera
as the stabilizing and reducing agent to examine its antibiofilm and anticancer
potential. Further, X-ray diffraction (XRD), Fourier transform infrared (FTIR), scanning
electron microscopy (SEM), transmission electron micrograph (TEM), energy-dispersive
X-ray spectroscopy (EDS), dynamic light scattering (DLS), thermogravimetric analysis
(TGA), and Brunauer-Emmett-Teller (BET) techniques were used for determining the
crystallinity, functional groups involved, shape, size, thermal behavior, surface area,
and porosity measurement, respectively, of the synthesized TiO2 NPs. Antimicrobial
potential of the TiO2 NPs was determined by evaluating the minimum inhibitory
concentration (MIC) against Escherichia coli, Pseudomonas aeruginosa, methicillin-
resistant Staphylococcus aureus, Listeria monocytogenes, Serratia marcescens, and
Candida albicans. Furthermore, at levels below the MIC (0.5 × MIC), TiO2 NPs
demonstrated significant inhibition of biofilm formation (43–71%) and mature biofilms
(24–64%) in all test pathogens. Cell death due to enhanced reactive oxygen species
(ROS) production could be responsible for the impaired biofilm production in TiO2

Frontiers in Microbiology | www.frontiersin.org 1 July 2020 | Volume 11 | Article 168057

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2020.01680
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fmicb.2020.01680
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2020.01680&domain=pdf&date_stamp=2020-07-28
https://www.frontiersin.org/articles/10.3389/fmicb.2020.01680/full
http://loop.frontiersin.org/people/352600/overview
http://loop.frontiersin.org/people/232973/overview
http://loop.frontiersin.org/people/482417/overview
http://loop.frontiersin.org/people/562633/overview
http://loop.frontiersin.org/people/389640/overview
http://loop.frontiersin.org/people/148282/overview
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-01680 July 24, 2020 Time: 17:28 # 2

Al-Shabib et al. Antibiofilm and Anticancer Potential of TiO2 NPs

NP–treated pathogens. The synthesized NPs induced considerable reduction in the
viability of HepG2 in vitro and could prove effective in controlling liver cancer. In summary,
the green synthesized TiO2 NPs demonstrate multifarious biological properties and
could be used as an anti-infective agent to treat biofilm-based infections and cancer.

Keywords: TiO2 NPs, green synthesis, Withania somnifera, antibiofilm, HepG2, cytotoxicity

INTRODUCTION

In the last decade, the world has witnessed tremendous
advancements in the field of nanoscience and its applicability
in diverse domains, including academics, industry, and
medicine. The distinct physicochemical characteristics and
high surface area-to-volume ratio of nanoparticles (NPs)
make them attractive candidates for the development of
biocompatible materials that can be used in industries and
clinical settings (Eisa et al., 2019). Metallic NPs with desired
properties have been synthesized using several physical and
chemical methods; however, these methods are expensive,
utilize hazardous chemicals, require high levels of energy,
and expel toxic byproducts that are deleterious to the
environment (Patra and Baek, 2015). Therefore, we need
methods that exert minimum risk on the environment and also
are economically cost effective.

In recent years, bioinspired fabrication of NPs using
various biological systems, such as microorganisms (Oves
et al., 2019) and plants (Al-Shabib et al., 2016, 2018b),
has gained momentum. The plant-mediated NP synthesis
has generated lot of interest due to the wide availability
of the plants; safe, clean, and eco-friendly synthesis;
and low energy consumption (Rajkumari et al., 2019).
Aqueous extracts of various plant parts, including seeds,
roots, leaves, stems, and fruits have been used for metallic
NP synthesis. The phytoconstituents in the extract act as
reducing and stabilizing agents for non-toxic NP production
(Siddiqi et al., 2018).

The phytomediated synthesis of titanium oxide (TiO2)
NPs has great potential in producing anti-infective agents.
Titanium oxide NPs are documented to be safe, stable, non-
toxic, and having surface activity; hence, they are among the
most widely used nanomaterials. The biomediated production
of TiO2 NPs has found application in disease treatment,
surgical product manufacture, photocatalysis, tissue engineering,
agriculture, and cosmetics (Nadeem et al., 2018). Various
plants and their parts have been reported for the production
of TiO2 NPs, including Acanthophyllum laxiusculum (roots),
Aloe barbadensis (leaves), Annona squamosa (peel), Calotropis
gigantea (flower), Cicer arietinum (seeds), and Dandelion
(pollen) (Marimuthu et al., 2013; Bao et al., 2012; Roopan
et al., 2012; Kashale et al., 2016; Madadi and Lotfabad, 2016;
Rajkumari et al., 2019).

Withania somnifera, a member of the solanaceae family,
is a well-known medicinal plant in Ayurvedic and Unani
system of medicine, commonly called as Ashwagandha. The
plant has been documented to exhibit medicinal benefits
against several ailments, including neurodegenerative diseases,
cancer, and chronic diseases The antibacterial activity of

W. somnifera has been explored for many decades. Studies
have shown that its extracts demonstrated bactericidal potential
against methicillin-resistant Staphylococcus aureus, Streptococcus
pyogenes, Enterococcus faecalis, Klebsiella pneumoniae, and
Escherichia coli (Rizwana, 2012). To date, numerous researchers
have synthesized NPs using W. somnifera. For instance, silver
NPs synthesized from the aqueous extract of W. somnifera
exhibited broad-spectrum antibacterial and antibiofilm activity.
A study reported its multiple modes of action, including
microbial growth inhibition, cell membrane damage, and reactive
oxygen species (ROS) production (Qais et al., 2018). Studies
on TiO2 NP synthesis from W. somnifera are still scarce,
and this probably is the first report on TiO2 NP synthesis
from this plant.

In most natural environments, bacteria and fungi prefer
to grow in biofilm mode. Microbial biofilms are a complex
ecosystem comprising of one or more species embedded
in an exopolysaccharide (EPS) matrix (Galié et al., 2018).
Formation of biofilm starts with the adherence of the cells
to an inert surface and culminates by the formation of cell
clusters embedded in EPS matrix secreted by the microbe
(Johnson, 2008). Biofilm control and eradication are a major
area of concern for environmentalists, food technologists, and
clinicians, as it manifests the microbial community resistant
to antimicrobials and disinfectants (Baptista et al., 2018).
Further, drug-resistant biofilms on medical implants, such as
catheters, sutures, and dental implants, lead to severe persistent
infection. Further, it makes the treatment more expensive
and harassing for the patient (Costerton et al., 2005). Biofilm
structures are formed on different artificial surfaces in the food
industry, such as stainless steel, glass, and rubber. This leads
to pathogenicity, corrosion of metal surfaces, and organoleptic
property alteration, which is critical to various agro-based
industries (Galié et al., 2018). In addition to conferring resistance
to microbes, reports indicated that biofilm formation has a
potential etiologic role in cancer development (Rizzato et al.,
2019). Experimental evidence has suggested that cancer initiation
and development may be a consequence of the pro-oncogenic
properties of biofilms formed by invasive pathogenic bacteria
(Johnson et al., 2015).

Considering the deleterious effects of biofilms in infections
and cancer, we synthesized TiO2 NPs from the root extract
of W. somnifera and characterized them using various
spectroscopic and microscopic techniques. Further, we
studied its broad-spectrum antibiofilm potential against
E. coli, Pseudomonas aeruginosa, methicillin-resistant
S. aureus, Listeria monocytogenes, Serratia marcescens, and
Candida albicans. In addition, we also explored the effects
of newly synthesized TiO2 NPs on human liver cancer
cell line HepG2.
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MATERIALS AND METHODS

Collection of Plant Sample and
Preparation of Aqueous Extract
The root of W. somnifera was obtained from The Himalaya
Drug Company, Dehradun, India. The authentication and
identification of the plant material were done at Himalaya
Drug Company, as well as at the Department of Botany, AMU,
Aligarh, and a voucher specimen (WS/R-AGM/HDCO/01-2017)
is submitted at the Department of Agricultural Microbiology,
AMU, Aligarh, India. A 5% aqueous extract was prepared in
of double-distilled water by heating at 100◦C for 1 h. The
suspension was centrifuged (15,000 × g for 10 min) and filtered
to obtain the extract.

Synthesis of Porous TiO2 Nanoparticles
(TiO2 NPs)
The fine root powder of W. somnifera was washed and dried and
then used to make aqueous extract by boiling. The synthesis of
TiO2 NPs was carried out using aqueous extract of W. somnifera
by previously method with slight modifications (Velayutham
et al., 2012). The obtained root extract was mixed with titanium
(IV) oxide (5 mM) in a round-bottom flask under constant
stirring. In the reaction mixture, 1 mM NaOH was added drop-
wise and stirred at 70◦C for 3 h. The as-prepared white TiO2
NPs NPs were separated by centrifugation (15,000 × g, 20 min),
washed thrice with distilled water and then with ethanol, and
dried overnight at 120◦C to obtain porous fine powder that was
further characterized by various structural and morphological
techniques. The synthesis of nanomaterial via green route is
simple, efficient, facile, inexpensive, and ecofriendly that does
not require any special condition, such as vacuum, urbane
instrument, catalyst, or template, and so on.

Characterization
X-ray diffraction (XRD) measurements were conducted using a
Rigaku Ultima IV diffractometer (Japan) with CuKα radiation
(α = 1.54056 Å). Fourier transform infrared (FTIR) spectra were
measured with a JASCO spectrometer 4100 (United States) using
the KBr pellet technique. The thermal stability of the porous
sample was studied using Mettler Toledo thermogravimetric
analysis (TGA)/DSC 1 STARe thermogravimetric analyzer
(Switzerland) between 50◦C and 900◦C. The porosity and
Brunauer-Emmett-Teller (BET) surface area measurement of
the sample were measured at liquid nitrogen temperature
with a Micromeritics TriStar 3000 analyzer (Germany) at
77 K. Pretreatment of the samples was done at 200◦C
for 3 h under high vacuum. Pore-size distributions were
calculated using the BJH model on the adsorption branch.
Transmission electron micrographs (TEMs) were obtained using
a JEOL 2010 microscope (United States) operating at an
accelerating voltage of 80 kV. The sample was prepared by
placing and evaporating a drop of the sample in ethanol
on a carbon-coated gold grid. Scanning electron microscopy
(SEM)–energy-dispersive X-ray spectroscopy (EDS) of TiO2
NPs was examined by scanning electron microscopy (SEM,

JSM-7001F; JEOL, United States) equipped with EDS. The
NP size distribution and zeta potential results were carried
out by dynamic light scattering (DLS) on Malvern zeta
potential/particle size analyzer (United Kingdom). The zeta
potential values were obtained by applying the Helmholtz–
Smoluchowski equation built into the Malvern. Prior to the
measurement, 10 mg of the sample was sonicated in distilled
water for 10 min. The measurements were repeated three times
for each sample.

Microbial Strains and Growth Conditions
Six pathogens, namely, E. coli ATCC 35218, P. aeruginosa
ATCC 27853, methicillin-resistant S. aureus (MRSA) ATCC
43300, L. monocytogenes ATCC 19114, S. marcescens ATCC
13880, and C. albicans ATCC 10231 were used. All bacteria
were preserved on nutrient agar at 4◦C, and the lone fungus
used in the study was maintained in Sabouraud dextrose
agar. Bacterial strains were cultured on nutrient broth at
37◦C, whereas Sabouraud dextrose broth was used to grow
C. albicans.

Determination of Minimum Inhibitory
Concentration and Minimum Bactericidal
Concentration
The broth microdilution method using TTC (2,3,5-triphenyl
tetrazolium chloride) was adopted to determine the minimum
inhibitory concentration (MIC) of TiO2 NPs against all
test pathogens. Further, minimum bactericidal concentration
(MBC) was determined by macrobroth dilution assay. Test
pathogens were grown overnight in media containing TiO2 NPs
concentrations (0.5–256 µg/mL) (Qais et al., 2019).

Biofilm Inhibition Assay
Overnight-grown pathogens were diluted in wells containing
fresh tryptic soy broth and respective 0.5 × MIC (E. coli:
16, P. aeruginosa: 32, L. monocytogenes: 64, S. marcescens: 8,
methicillin-resistant S. aureus: 32, and C. albicans: 64 µg/mL)
of TiO2 NPs and incubated at 37◦C for a day. After 24 h, the
broth was decanted, and the wells were rinsed three times. The
cells attached in each well were stained with 1% crystal violet.
After 15 min, stain was decanted, and the wells were washed to
remove excess stain. Stain was dissolved in ethanol (200 µL),
and absorbance was read at 585 nm to determine inhibition
(Hasan et al., 2019).

Microscopic Analysis of Biofilm
Inhibition
Biofilm inhibition upon treatment with 0.5 × MIC of TiO2 NPs
was observed under confocal laser scanning microscope (CLSM)
as previously described (Rajkumari et al., 2019).

Quantification of EPSs
Test bacteria cultured in the presence and absence of 0.5 × MIC
of TiO2 NPs were centrifuged, and the filtered supernatant was
mixed with chilled ethanol and incubated at 4◦C for 18 h to
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precipitate the EPSs. Phenol–sulfuric acid method to estimate
sugars was employed to quantify EPS (Al-Shabib et al., 2018a).

Protein Leakage Assay
In 10 mL growth media, test bacteria, and NPs were added in
such a way that the final concentration attained was 0.5 × MIC.
The cells were incubated at 37◦C with 150 revolutions/min
shaking and examined at 0 and 4 h to determine protein leakage.
Incubated cells were centrifuged at 18,000 × g, and the resulting
supernatants were stored at −20◦C. Bradford reagent was used
to determine the protein concentration in the supernatants
(Qayyum et al., 2017).

Disruption of Mature Biofilms

Biofilms of the test pathogens were allowed to grow for 24 h in
the wells of a microtiter plate. After incubation, media containing
unattached cells was discarded, and adhering cells were incubated
again for 24 h in media amended with 0.5 × MIC of TiO2
NPs. Non-adhering cells were washed with sterile water, and cells
bound to walls of the well were stained with crystal violet for
15 min. Absorbance was read at 585 nm after removing the excess
stain (Al-Shabib et al., 2018a).

Effect on ROS Production
Intracellularly produced ROS in the test pathogens that were
untreated or treated with TiO2 NPs was determined using
an oxidation-sensitive fluorescent probe, 2,7-dichlorofluoroscein
diacetate (Qais et al., 2018). The experiment was performed
at the respective 0.5 × MICs (E. coli: 16, P. aeruginosa: 32,
L. monocytogenes: 64, S. marcescens: 8, methicillin-resistant
S. aureus: 32, and C. albicans: 64 µg/mL).

Cytotoxicity Assessment of TiO2 NPs
HepG2 (ATCC HB-8065) human hepatocellular carcinoma cells
and HEK-293 (ATCC CRL-1573) human embryonic kidney
cells were obtained from the American Type Culture Collection
(Manassas, VA, United States), cultured in Dulbecco modified
eagle medium supplemented with 10% fetal bovine serum,
0.2% sodium bicarbonate, and antibiotics at 37◦C under humid
condition with 5% carbon dioxide, and were used to assess
the anticancer potential of TiO2 NPs. HepG2 cells with 98%
viability and passage numbers 20 and 22 were selected for
dimethylthiazol diphenyltetrazolium bromide (MTT) and the
neutral red uptake (NRU) assays.

MTT Assay
The cell viability of TiO2 NP–treated HepG2 and non-
tumorigenic HEK-293 cells was assessed using yellow dye MTT.
Furthermore, cells (104) were seeded in 96-well microtiter plate
and kept in a CO2 incubator for 24 h for adherence. Different
concentrations of TiO2 NPs were added, and plate was incubated
for another 24 h. MTT (10 µL) was added to each well, and the
reaction mixture was kept for 4 h. Dimethyl sulfoxide (200 µL)
was added after discarding the supernatant, and absorbance was
read at 550 nm (Farshori et al., 2014).

NRU Assay
Neutral red uptake assay was also executed to assess the
cytotoxicity employing an earlier reported protocol (Al-Ajmi
et al., 2018). Concisely, the medium was aspirated with TiO2 NPs
posttreatment; the HepG2 cells were washed twice and left for
3-h incubation in a medium containing neutral red (50 µg/mL).
Solution comprising 0.5% formaldehyde and 1% calcium chloride
was used to wash the reaction mixture. The dye was extracted by
incubating the cells in a mixture of ethanol (50%) and acetic acid
(1%) for 20 min at 37◦C. Absorbance was measured at 540 nm.

Statistical Analysis
All experiments were done in triplicate, and data are presented as
mean values. The level of significance was analyzed using Student
t test in Sigma Plot 12.

RESULTS AND DISCUSSION

Synthesis and Characterization of TiO2
NPs
The aqueous extract of W. somnifera root contains several major
active phytochemicals such as withanolides, sitoindosides, amino
acids, alkaloids, phenolic compounds, flavonoids, and several
other bioactive metabolites (Dar et al., 2015). These compounds
act as the stabilizing/capping agent for TiO2 NPs biosynthesis.
Synthesized NPs were characterized using XRD, FTIR, DLS,
TGA, BET surface area, SEM, and TEM techniques. In this study,
a green approach was deployed for the TiO2 NPs synthesis using
W. somnifera extract at room temperature. The TiO2 suspension
was whitish, which changed to light green by the addition of
extract, indicating the formation of TiO2 NPs. The primary
characterization of TiO2 NPs synthesis was done recording the
UV-Vis spectra. The bulk TiO2 showed an absorbance maximum
at 440 nm, which blue-shifted to 395 nm after 6 h of reaction,
advising the formation of NPs as shown in Figure 1A (Kirthi
et al., 2011). This agrees with a previous finding where TiO2 NPs
synthesis was confirmed by an absorption peak at 380 nm of
UV-Vis spectrum (Murugan et al., 2016).

The phase structure of the synthesized TiO2 NPs was
characterized by XRD. Figure 1B presents the XRD pattern of
the synthesized sample. The diffraction peaks in the prepared
sample can be indexed to the anatase structure phase (JCPDS card
no. 21-1272). The synthesized TiO2 NPs exhibited diffraction
peaks at 25.64◦, 37.07◦, 37.90◦, 38.73◦, 48.21◦, 53.89◦, 55.19◦,
62.72◦, 68.93◦, 70.47◦, 75.22◦, and 76.28◦. No feature peaks of
rutile (27.45◦) were observed, and the Brookite form of TiO2
NPs and extract/other compounds appeared in the sample. The
average crystallite size of the NPs sample was calculated from the
anatase FWHM (25.64◦) reflection plane using Scherrer formula
and found to be 45.28 nm. The anatase diffraction planes were
sharp, indicating good TiO2 NP crystallization.

Fourier transform infrared analysis was performed to assess
the role of various phytoconstituents, mainly functional groups,
of presence in the extract that were responsible for the capping
and stabilization of TiO2 NPs. The FTIR spectrum of synthesized
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FIGURE 1 | (A) UV-Vis spectra of bulk TiO2 and TiO2 NPs. (B) X-ray powder diffraction patterns of the TiO2 NPs. Peak information is provided as (2θ: intensity).
(C) FTIR spectrum of TiO2 NPs. (D) TG-DTG decomposition curve of TiO2 NPs.

TiO2 NPs is shown in Figure 1C. A broad and consistent band
in IR spectrum of TiO2 NPs from 430 to 850 cm−1 corresponds
to the vibration of metal–oxygen (Yan et al., 2004; Amlouk et al.,
2006). Moreover, prominent peaks in the 450- to 800-cm−1 range
are due to Ti–O and Ti–O–O stretching vibrations, confirming
the formation of TiO2 NPs (Sankar et al., 2014; Rajakumar
et al., 2015). The formation of TiO2 NPs was also confirmed
by the absorption band near 547 cm−1 that corresponds to Ti–
O bond (Zhang et al., 2003; Kang et al., 2009). A broadband
nearly at 3,429 cm−1 is because of the O–H stretching vibration
of the interlayer physically absorbing water molecules and of
the H–bound OH group (Das et al., 2002). The transmittance
band at 2,919 cm−1 is due to the vibrational mode of C–H
stretching. The peak clearly observed at 1,634 cm−1 was assigned
to the bending vibration of water molecules (Li et al., 2005).
The band observed at 2,352 cm−1 was assigned to the existence
of CO2 molecule in air. The presence of reducing sugars and
terpenoids in plant extract plays a role in reduction of metal
ions and formation of metal NPs (Marchiol et al., 2014). It has
been documented that the proteins present in the plant extract

act as a capping agent (Niraimathi et al., 2013). The possible
mechanism of capping of the metal NPs in green synthesis is
because of the interactions of various phytocompounds present
in sufficiently high concentration such as flavanones, terpenoids,
alkaloids, and so on, with the particles (Ali et al., 2015). Therefore,
the FTIR results indicate that the phytocompounds of root extract
of W. somnifera were responsible for the synthesis, as well as
stabilization and/or stabilization of TiO2 NPs.

Thermal decomposition performance was carried out in
nitrogen gas from 25◦C to 900◦C and displayed in Figure 1D.
The TGA curve readily showed three steps of weight loss, as
confirmed by the DTG curve. The weight loss up to 900◦C
of the as-prepared sample is approximately 5.6%. The first
weight loss up to 300◦C was ascribed to desorption of physically
adsorbed/retained water and volatility of the alcohol and acetone
solvent. The second weight loss between 300◦C and 650◦C
reflected the elimination of chemically bounded water and
the thermal decomposition of plant organic residues. Above
650◦C, the weight loss became fairly insignificant, indicating the
formation of anatase TiO2 NPs (Yodyingyong et al., 2011).
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The adsorption–desorption isotherm and pore width
distribution are presented in Figure 2A. It shows that NPs
have type IV isotherm with hysteresis loops of H3 (Yu et al.,
2010). Type IV adsorption–desorption isotherms indicated
the existence of mesoporous entities (4–20 nm, average
pore diameter of approximately 24.53 nm), which provide
broad surface for biological activity. The plot of differential
volumes versus pore diameters indicated a narrower pore-
size distribution. It exhibited a specific surface area of about
10.70 m2/g with specific pore volume of 0.065 cm3/g.

The DLS graph of TiO2 NPs are shown in Figure 2B. The
dynamic light-scattering technique is an efficient method to
measure particle diameter and zeta potential in the original grain
size distribution. The DLS study indicated the TiO2 NPs to have
an average size of 247 nm, with an intercept of 0.918 and a high–
low polydispersity index of 0.631 (Figure 2Bi). The zeta potential
of the TiO2 NPs was found to be −24 mV (Figure 2Bii) that also
evidenced for the stability of TiO2 NPs. This negative potential
was due to a good capping layer of the extract surrounding
the NPs (Ravichandran et al., 2016). The size obtained from

DLS analysis was greater than those observed in TEM and
SEM because the hydrodynamic diameter was considered in the
DLS measurement.

The size and morphology of TiO2 NPs were characterized
by TEM and SEM-EDS. Typical TEM images are shown in
Figures 2Ci,ii. The TEM results confirmed that the TiO2
NPs were aggregates of spherical and square NPs, and
the size of TiO2 NPs ranged from 50 to 90 nm. The
tendency for agglomeration was caused by van der Waals
interactions between individual particles. The TEM image at
lower magnification depicted a spherical structure while at
high magnification shows the spherical and square shape. The
SEM images and EDS spectrum of the sample were taken at
2,000 × magnification, which is shown in Figures 2Ciii–vi.
It revealed that the overall surface morphology was spherical
in shape, porous in nature, and variable in size. The size of
NPs varied from 40 to 100 nm, which agreed with the TEM
result. The elemental compositions of TiO2 NPs have been
analyzed by EDS, as shown in Figure 2Cvi. The elemental
compositions revealed that Ti and O were present nearly as

FIGURE 2 | (A) N2 adsorption–desorption isotherms and pore-size distribution curves (inset) of the TiO2 NPs. (B) Hydrodynamic size (i) and zeta potential (ii) of the
TiO2 NPs. (C) TEM (i,ii), SEM (iii–v), and EDS (vi) micrographs of TiO2 NPs.
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per the expected stoichiometry (inset Figure 2C vi). The EDS
spectrum showed the presence of Ti and O peaks around 4.5
and 0.5 KeV, respectively. The EDS spectrum analysis also
revealed that the fabricated TiO2 NPs were free from any
other impurities.

Antibiofilm Activity of TiO2 NPs
Minimum inhibitory concentration of synthesized TiO2 NPs
was determined against all test pathogens. Among bacteria,
the highest MIC value of 64 µg/mL was exhibited by
L. monocytogenes, whereas S. marcescens with MIC of 8 µg/mL
was found to be the most sensitive, as shown in Figure 3A.
Titanium oxide NPs failed to show any bactericidal activity
at concentrations lower than 32 µg/mL toward E. coli,
P. aeruginosa, and MRSA. Hence, the 32 µg/mL concentration
was considered as the MIC for these three bacteria. Titanium
oxide NPs were inhibitory to C. albicans at a 64 µg/mL
concentration. The MBC values of TiO2 NPs against test
pathogens ranged from 16 to 128 µg/mL as depicted in
Figure 3A. Similar antimicrobial potential of green synthesized
TiO2 NPs was reported previously (Jayaseelan et al., 2013;
Rajkumari et al., 2019).

Drug resistance poses an enormous threat to public health and
environment. Biofilms immensely contribute to acquiring and
disseminating resistance. These are well-organized multicellular
aggregated communities enclosed in a self-secreted envelope
of EPSs that prevents antimicrobial diffusion. Further, close
proximity and high density of the cells facilitate the transfer of
genetic material among the biofilm-making microbes, which is a
hotspot for drug resistance (Balcázar et al., 2015). Biofilm-related
infections account for spreading various diseases, especially in
cases related to medical implants. As far as the food-based
industry is concerned, biofilm formation on food matrixes, food
contact surfaces, or machines can lead to persistent infections,
leading to food-borne diseases (Galié et al., 2018). Hence,
microbial biofilm control using eco-friendly NPs is a promising
approach in preventing the spread of infection and diseases.

In the current investigation, 0.5 × MIC of TiO2 NPs was
considered to explore its biofilm inhibitory potential against a
range of bacteria and C. albicans. The results of the biofilm
inhibition assay are summarized in Figure 3B. Among bacteria,
the highest inhibition of 71% was recorded in MRSA, and the
lowest was recorded in L. monocytogenes (43%). Inhibition of
biofilm formation in E. coli, P. aeruginosa, and S. marcescens
was observed to be 60%, 51%, and 57%, respectively, compared
with the untreated control. Biofilm formation in C. albicans
was significantly reduced with 32 µg/mL concentration of TiO2
NP treatment. The percent reduction in biofilm formation was
recorded to be 59% over the untreated Candida biofilm, as shown
in Figure 3B. This is probably the first report demonstrating
TiO2 NPs’ broad-spectrum biofilm inhibitory activity. Previously,
TiO2 NP have been reported to demonstrate significant biofilm
reduction in oral bacteria Streptococcus mitis (Khan et al., 2016).

The in vitro microtiter plate biofilm inhibition assay results
were further confirmed by microscopic analysis. CLSM images
showed obliterated biofilm structures in all the pathogens treated
with their respective sub-MICs of TiO2 NPs (Figure 4). The
untreated control strains showed dense clusters of microbial
aggregation, and cells exhibited normal morphology. In contrast,
altered biofilm structures were observed in NP-treated cells.
Microbial cells were scattered and less dense compared with the
untreated control.

Exopolysaccharides are a very important component of
the biofilm architecture, as they not only provide structure
stability but also protect cells from environmental stresses,
entry of antimicrobials, and disinfection (Flemming et al.,
2007). Therefore, intrusion in EPS production will certainly
have adverse effects on the biofilm-forming capability of the
pathogens. We found statistically significant reduction in EPS
production of the test pathogens in the presence of 0.5 × MICs
of synthesized NPs, as shown in Figure 5A. Among the
Gram-positive bacteria, MRSA and L. monocytogenes showed
81% and 70% decrease in EPS production, respectively,
whereas the group of Gram-negative bacteria, namely,

FIGURE 3 | (A) Antibacterial activity of TiO2 NPs. Bar represents MIC and MBC values in µg/mL of TiO2 NPs against test pathogens. (B) Effect of 0.5 × MIC of TiO2

NPs on biofilm formation. **significance at p ≤ 0.01, and ***significance at p ≤ 0.005.
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FIGURE 4 | Confocal laser scanning microscopy images. Untreated biofilms of (A) E. coli, (B) P. aeruginosa, (C) S. marcescens, (D) L. monocytogenes, and
(E) C. albicans; inhibition of biofilm by 0.5 × MIC (F) E. coli, (G) P. aeruginosa, (H) S. marcescens, (I) L. monocytogenes, and (J) C. albicans.

FIGURE 5 | (A) Inhibitory effect of TiO2 NPs on EPS production by test pathogens. ***significance at p ≤ 0.005. (B) Biofilm disruption effect of TiO2 NPs.
*Significance at p ≤ 0.05, **significance at p ≤ 0.01, and ***significance at p ≤ 0.005.

E. coli, P. aeruginosa, and S. marcescens, exhibited 79%,
84%, and 64% reduction, respectively. Our findings agree
with the researchers who reported reduced EPS production by
P. aeruginosa upon treatment with 31.25 µg/mL concentration
of TiO2 NPs synthesized from the leaves of A. barbadensis
(Rajkumari et al., 2019).

Inhibition of Mature Preformed Biofilms
Mature biofilms are hard to eradicate using chemical agents,
owing to the drug resistance that biofilm imparts to the
microbial cells residing in this mode. The efficacy of TiO2 NPs
in eradicating mature preformed biofilms of the bacterial and
fungal pathogens was examined. Figure 5B shows histograms
depicting the TiO2 NP–induced reduction in the preformed
biofilms of the test pathogens. Our data reveal statistically
significant disruption of 45%, 65%, 49%, 64%, 24%, and 46% in

E. coli, P. aeruginosa, L. monocytogenes, MRSA, S. marcescens,
and C. albicans preformed biofilms, respectively. Biofilm matrix
comprising different kinds of biomolecules, such as peptides,
polysaccharides, and nucleic acids, is responsible for forming
the barrier against antimicrobial agents (Costerton et al., 1999).
The assay findings clearly demonstrate that the synthesized NPs
could breach the barrier and disrupt the biofilm. For the first
time, we reported the broad-spectrum obliteration of bacterial
and Candida mature biofilms by TiO2 NPs.

Mechanism of Biofilm Inhibition
Protein Leakage Assay
We performed the leakage assay to study TiO2 NPs’ possible
mode of action on inhibiting biofilm formation. Significant
upsurge in the released protein content in NP-treated samples
was observed after 4 h of incubation (Figure 6A). These increased
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protein content suggested that NPs lysed and destructed the cell
wall of the test pathogens, leading to cell death and eventually
inhibiting biofilm formation. In a recent report, similar protein
leakage due to changes in the membrane permeability of E. coli
and S. aureus cells treated with TiO2 NPs has been demonstrated
(Khater et al., 2020).

ROS Generation Studies
The relative amount of ROS generated in the presence and
absence of TiO2 NPs is summarized in Figure 6B. The
considerable effect on intercellular ROS production was recorded
upon exposure to 0.5 × MIC of TiO2 NPs. The highest ROS
increase of 42% was recorded for P. aeruginosa, followed by
C. albicans (33%), E. coli (31%), S. marcescens (25%), and
MRSA (22%), and the least was recorded for L. monocytogenes
(19%). ROS generation is one of the chief mechanisms by which
NPs interfere with normal microbial cell functions. The ROS-
scavenging enzymes present in the bacterial cell neutralize ROS
generated in untreated cells, whereas in the NP-treated bacterial
cells, enhanced ROS levels overpower the ROS-scavenging
enzymes, leading to oxidative stress, which results in lipid
peroxidation and, eventually, cell death (Kulshrestha et al., 2017).
Hence, we expected that the intracellular ROS produced by TiO2
NP–treated cells of the test pathogens overpowered the cellular
antioxidant defense system and caused cell mortality by inducing
oxidative stress. Our results also showed that ROS generation was
lower in Gram-positive bacteria, possibly due to their thick cell
wall (Al-Shabib et al., 2018a).

Cytotoxicity Studies
MTT and NRU Assay
Anticancer properties of synthesized TiO2 NPs against HepG2
were assayed by MTT and NRU. Effect on HepG2 cells exposed
to different TiO2 NP concentrations (25–200 µg/mL) is depicted
in terms of cell viability (%) in Figures 7A,B. Titanium
oxide NPs induced concentration-dependent decrease in cell

viability of HepG2. Cell viability was recorded as 92%, 88%,
40%, and 26% at 25, 50, 100, and 200 µg/mL concentrations,
respectively, using MTT assay (Figure 7A). Further, TiO2
NPs demonstrated insignificant toxicity against non-tumorigenic
HEK293 (human embryonic kidney) cells; more than 93% cells
were viable at the highest tested concentration of 200 µg/mL
(Supplementary Figure S1). Similar concentration-dependent
cell viability reduction was recorded with NRU assay. The
viability of HepG2 cells was found to be 79%, 33%, 25%, and
22% at 25, 50, 100, and 200 µg/mL TiO2 NP concentrations, in
comparison with untreated cells (100%) (Figure 7B). The IC50
values obtained were 83.3 and 37.3 µg/mL, respectively, through
the MTT and NRU assays.

Microscopic analysis also showed concentration-dependent
changes in the morphology of HepG2 cells. Most of the cells at
50–200 µg/mL concentration lost normal morphology, appeared
round in shape, decreased cell density, and highly reduced cell
adhesion capacity (Figure 7C).

Both these assays are sensitive and integrated to measure
the anticancer activity of synthesized NPs. The MTT assay
evaluates mitochondrial function, whereas NRU assesses
lysosomal functions (Ahamed et al., 2017). Possible mechanism
of cytotoxicity exhibited by TiO2 NPs could be the enhanced
production of ROS as reported by several workers. Increased
ROS levels get the better of the antioxidant defense system,
leading to oxidative stress, which triggers apoptosis causing cell
shrinkage (Jin et al., 2008; Sha et al., 2011). Similar concentration-
dependent HepG2 cell cytotoxicity by TiO2 NPs synthesized
from Bacillus cereus has also been demonstrated (Sunkar et al.,
2014). Bacterial biofilms formed in human intestines have been
reported to sustain and trigger colorectal cancer progression.
Molecular processes involved in the interaction of carcinogenic
factors formed by pathogens, their biofilms, and the host’s
response in colorectal cancer initiation and progression have
also emerged (Mirzaei et al., 2020). Furthermore, the aggregation
of bacteria in biofilms was reported to cause injuries and

FIGURE 6 | (A) Protein leakage from test pathogens treated with 0.5 × MIC of TiO2 NPs. (B) Induction of ROS generation in test pathogens treated with 0.5 × MIC
of TiO2 NPs. *Significance at p < 0.05.
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FIGURE 7 | (A) Cytotoxicity determination by MTT assay against HepG2 cell lines. (B) Cytotoxicity determination by NRU assay against HepG2 cell lines.
*Significance at p ≤ 0.05, **significance at p ≤ 0.01, and ***significance at p ≤ 0.005. (C) HepG2 cells exposed to TiO2 NPs for 24 h. (a) Control, (b) 50 µg/mL, (c)
100 µg/mL, and (d) 200 µg/mL.

inflammation of intestinal epithelial tissues, thus aggravating the
cancer (Gao et al., 2015). Experimental evidence has suggested
that initiation and development of cancer are a consequence
of pro-oncogenic properties of biofilms formed by invasive
pathogenic bacteria (Johnson et al., 2015). Because microbial
biofilm is reported to play a critical etiologic role in cancer
development, biofilm inhibition, along with TiO2 NP–induced
cytotoxicity, is an important finding.

CONCLUSION

In summary, we achieved successful phytomediated synthesis
of green TiO2 NPs from root extract of W. somnifera, assessed
the broad-spectrum biofilm inhibitory activity against bacterial
and fungal pathogens, and evaluated HepG2 cytotoxicity. Root
extracts of W. somnifera acted as a reducing, capping, and

stabilizing agent for the synthesis of TiO2 NPs. Synthesized
TiO2 NPs demonstrated significant biofilm inhibition and
destruction of preformed biofilms of P. aeruginosa, C. albicans,
E. coli, S. marcescens, MRSA, and L. monocytogenes. Impaired
biofilm formation could plausibly be due to the cell death
caused by intracellular ROS generation in TiO2 NP–treated
pathogens. Furthermore, different concentrations of TiO2 NPs
induced significant reduction in HepG2 cancer cell viability.
Thus, the synthesized green NPs could prove as effective
agents in the treatment of biofilm-based bacterial and fungal
infections. Further, these NPs could also have a positive impact
in the food industry by reducing environmental biofouling.
Moreover, because biofilm formation sustains and triggers cancer
development, the cytotoxicity of these NPs against human hepatic
cancer cell line HepG2, along with its broad-spectrum biofilm
inhibition, can be exploited to prevent and control cancers, with
respect to pharmacologic treatments. Finally, more molecular
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and animal model investigations are requisite to uncover the
exact mechanisms.
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The chemotherapeutic options for methicillin-resistant Staphylococcus aureus (MRSA)
infections are limited. Due to the multiple resistant MRSA, therapeutic failure has
occurred frequently, even using antibiotics belonging to different categories in clinical
scenarios, very recently. This study aimed to investigate the interactions between
11 antibiotics representing different mechanisms of action against MRSA strains and
provide therapeutic strategies for clinical infections. Susceptibilities for MRSA strains
were determined by broth microdilution or agar dilution according to CLSI guideline.
By grouping with each other, a total of 55 combinations were evaluated. The potential
synergism was detected through drug interaction assays and further investigated
for time-killing curves and an in vivo neutropenic mouse infection model. A total of
six combinations (vancomycin with rifampicin, vancomycin with oxacillin, levofloxacin
with oxacillin, gentamycin with oxacillin, clindamycin with oxacillin, and clindamycin
with levofloxacin) showed synergistic activity against the MRSA ATCC 43300 strain.
However, antibacterial activity against clinical isolate #161402 was only observed when
vancomycin combined with oxacillin or rifampicin in time-killing assays. Next, therapeutic
effectiveness of vancomycin/oxacillin and vancomycin/rifampicin was verified by an
in vivo mouse infection model inoculated with #161402. Further investigations on
antimicrobial synergism of vancomycin plus oxacillin and vancomycin plus rifampicin
against 113 wild-type MRSA strains were evidenced by combined antibiotic MICs
and bacterial growth inhibition and in vitro dynamic killing profiles. In summary,
vancomycin/rifampicin and vancomycin/oxacillin are the most potential combinations
for clinical MRSA infection upon both in vitro and in vivo tests. Other synergetic
combinations of levofloxacin/oxacillin, gentamycin/oxacillin, clindamycin/oxacillin, and
clindamycin/fosfomycin are also selected but may need more assessment for
further application.
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INTRODUCTION

The inappropriate use and overuse of antibiotics have facilitated
the emergence of drug-resistant or even multiple-drug-resistant
(MDR) Staphylococcus aureus worldwide (Rodríguez-Lázaro
et al., 2017). Methicillin-resistant S. aureus (MRSA) is a common
pathogen for nosocomial infections and exhibits essential
resistance to methicillin, oxacillin, nafcillin, carbapenems, and
other β-lactams. For now, the clinical therapies against MRSA
infection are limited to a few antimicrobial agents, such as
ceftaroline, new cephalosporins, retaining significant activity
against S. aureus and even MRSA strains; and linezolid belonging
to the oxazolidinone class and approved for S. aureus infections
in clinics (Saxena et al., 2019). However, due to the rapid
evaluation of antimicrobial resistance, MRSA strains have
possessed reduced susceptibilities to vancomycin, daptomycin,
levofloxacin, clindamycin, and sulfamethoxazole (Richter et al.,
2011). Even worse, the simultaneous resistance to vancomycin,
daptomycin, and ceftaroline has been identified in MRSA
recently (Wüthrich et al., 2019). Given that the monotherapy
is limited in clinical treatment and the new drug development
is a lengthy process, the combination therapy has currently
become one of the most effective approaches against bacterial
infections benefiting from the enlarged spectrum, enhanced
antibacterial activity, minimized doses, and reduced drug toxicity
of antibiotic combinations. For instance, combination treatments
of vancomycin or tigecycline with rifampicin are successful in
treatment of many cases (Vergidis et al., 2015). Fosfomycin is
a promising option to treat infections caused by multi-drug
resistant (MDR) pathogens when combining with daptomycin or
β-lactams (Coronado-Álvarez et al., 2019).

In the current study, a total of 11 antibiotics with different
mechanisms of antibacterial activity (inhibiting the synthesis
of cell wall, protein or DNA, respectively) were selected and
combined with each other to examine the pairwise interactions
and identify the synergistic combinations against MRSA strains.
After the preliminary screening, combinations of oxacillin
with levofloxacin, oxacillin with vancomycin, oxacillin with
gentamycin, oxacillin with clindamycin, and vancomycin with
rifampicin exhibited the collateral effect on the MRSA ATCC
43300 strain. The further experimental verification elucidated
that vancomycin combined with oxacillin or rifampicin has
synergistic antibacterial activity against the clinical wild-type
MRSA strain both in vitro and in vivo.

MATERIALS AND METHODS

Reagents and Bacterial Strains
Antibiotics of levofloxacin, tigecycline, vancomycin, fosfomycin,
linezolid, oxacillin, rifampicin, clindamycin, gentamycin,
daptomycin, and chloramphenicol were selected as the
representative agents from different categories of antimicrobial
agents (Supplementary Table S1). The antimicrobial
susceptibility testing (AST) of 11 antibiotics was performed
according to the CLSI guideline for the 113 clinical MRSA strains
isolated from hospitals in Guangzhou, China (CLSI, 2018). The

S. aureus ATCC 29213 was used for the quality control and the
MRSA ATCC 43300 was used as the standard strains. The MRSA
clinical strain #161402, with multiple resistance to tigecycline,
fosfomycin, levofloxacin, oxacillin, rifampicin, clindamycin, and
gentamycin, was used in the in vitro and in vivo experiments
to test the therapeutic effectiveness of drug combinations. The
Mueller Hinton (MH) broth and agar were used for AST and
the Lysogeny broth (LB) and agar were used for drug interaction
assays. The Mannitol salt agar (MSA) was used to identify
S. aureus strains by the gold and yellow color of bacterial colony.

Determination of Single-Drug
Concentration
Single-drug concentrations were determined as doses inhibiting
bacterial growth. The mid-log cultures of the MRSA ATCC
43300 strain were diluted to 5 × 105 cfu/mL and exposed to
LB broth with gradient-diluted antibiotics. The mixtures were
incubated overnight at 37◦C. After incubation, 200 µL of culture
samples were added to 96-well cell incubating plates, and the
OD600 values were determined using an EnsightTM Multimode
Plate Reader (PerkinElmer, Waltham, MA, United States). The
OD600 value of bacterial growth in drug-free medium was used as
the normalization standard. The drug concentrations that were
able to inhibit 10–50% of bacterial growth were considered as
the potential single-drug concentrations and were used in the
following experiments.

Drug Interaction Assays
The interactions of combined antibiotics were investigated as the
previous description with minor modification (Yeh et al., 2006).
In brief, tubes containing 8 mL of LB broth of mid-log bacterial
cultures were mixed with the following four administration
options for each combination: (i) 2 mL fresh LB broth as growth
control; (ii) 2 mL stock of drug X to measure the growth rate
of X singly; (iii) 2 mL stock of drug Y to measure the growth
rate of Y singly; and (iv) 1 mL stock of drug X and 1 mL
stock of drug Y to measure the combined growth rate. After
the overnight incubation, OD600 values of all the incubations
were determined as described above. The ODx, ODy, ODxy, and
ODcontrol are representing the groups of drug X and Y singly, the
combination of X and Y, and the growth control in the absence of
any drugs. The ODcontrol was used as the standard normalization
for measuring the growth rates of administration groups, where

Wx =
ODx

ODcontrol
, Wy =

ODy

ODcontrol
Wxy =

ODxy

ODcontrol
.

The index of drug interaction (ε̃ ) was classified using the
following equations as previously described (Yeh et al., 2006):

ε̃ =
(Wxy −WxWy)∣∣W̃xy −WxWy

∣∣ ,
where W̃xy = min

[
Wx, Wy

]
if Wxy > WxWy, or W̃xy = 0 if

Wxy ≤WxWy;

ε̃ =

(
Wxy −min

[
Wx,Wy

])(
1−min

[
Wx −Wy

]) + 1,
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where Wxy > min
[
Wx, Wy

]
.

For ε̃ < -0.5, the interaction is considered as synergistic;
ε̃ > 0.5 as antagonistic; otherwise the interaction is scored as
additive. A mid-log bacterial density of MRSA ATCC 43300 was
used in this experiment, and the concentrations of antibiotics
were recommended as above.

In vitro Time-Killing Curves
Illustrated by drug interaction assays, the synergistic
combinations (vancomycin/oxacillin, vancomycin/rifampicin,
levofloxacin/oxacillin, gentamycin/oxacillin, clindamycin/
oxacillin, and clindamycin/fosfomycin) were tested for in vitro
killing activity against ATCC 43300 and the MRSA clinical
isolate #161402. The mid-log cultures of S. aureus strains
were appropriately diluted to achieve an initial cell density
of 106 cfu/mL and then exposed to the drug-free, single drug
X/Y, and combination of X and Y medium, respectively. The
colony counts were then detected and calculated at 3, 6, 9,
24, 27, 48, and 72 h. The concentrations of vancomycin,
oxacillin, rifampicin, levofloxacin, gentamycin, clindamycin, and
fosfomycin were 2, 1 or 10, 0.03, 0.25, 512, 512, and 320 mg/L
respectively, according to the MICs distribution for MRSA
strains (Supplementary Figure S2).

In vivo Synergism
The neutropenic mouse thigh model was employed for
testing the in vivo synergistic efficacy of the following drug
combinations: vancomycin plus rifampicin and vancomycin
plus oxacillin, referring to the considerable synergism against
both wild-type and standard MRSA strains upon time-killing
curves. The 6-week-old SPF female ICR mice weighing
25 ± 2 g were administered with cyclophosphamide (Yuanye
Biotechnology, Shanghai, China) to induce neutropenia
(neutrophils ≤ 100/mm3) as previously described (Yu et al.,
2019). Briefly, an initial dose of 150 mg/kg of cyclophosphamide
was injected intraperitoneally daily for 4 days and followed
by a single dose of 100 mg/kg on the fifth day. The mid-log
bacterial cultures were appropriately diluted by normal saline,
and the neutropenic mice were then intramuscularly injected
100 µL of bacterial suspension (107 cfu/mL) into each posterior
thigh muscle. After a 1 h, a placebo (normal saline, Group
I) or antibiotics was administered in the following manner:
single-drug groups received only Drug A (vancomycin, Group
II) or Drug B (rifampicin or oxacillin, Group III), and combined
groups received both A and B (vancomycin in combination
with rifampicin or oxacillin, Group IV). Dosing regimens
were 2 mg/kg for vancomycin administrated intraperitoneally,
0.03 mg/kg rifampicin intragastrically, and 1 mg/kg oxacillin
subcutaneously, and the injection volume was 100 µL for all
drugs. After 24 h, groups of mice were sacrificed, and thigh
homogenates in sterile normal saline were sampled for bacterial
burden quantifications. In each group, three or four mice were
used, and a total of 6 or 8 thigh samples from each group were
collected. Both MRSA ATCC 43300 and #161402 strains were
tested in this experiment. The significant differences between
groups were analyzed using one-way ANOVA, followed by

Dunnett’s multiple comparisons test using GraphPad Prism 7.0
(La Jolla CA, United States).

Ethics Statement
The SPF female ICR mice were purchased from Hunan
Silaikejingda Lab Animal (Hunan, China). Breeding was
conducted under SPF conditions. The mice were housed at four
per cage with 12-h light:dark cycles and fed SPF food and water
ad libitum. The in vivo mouse study was approved by the Animal
Care and Use Committee of South China Agricultural University
and followed the Guangdong Laboratory Animal Welfare and
Ethics guidelines [GB 14925-2010, SYXK (Guangdong) 2014-
0316].

Verification of Combined Antibacterial
Effect
To further claim the therapeutic effectiveness of combined
antibiotics, sub-inhibitory concentrations of vancomycin
(0.5 mg/L) and oxacillin (1 mg/L) and rifampicin (0.03 mg/L)
were applied in a series of in vitro antibacterial tests against
the total 113 wild-type MRSA strains. Firstly, the MICs of
vancomycin (in the presence of 1 mg/L oxacillin or 0.03 mg/L
rifampicin) and oxacillin (in presence of 0.5 mg/L vancomycin)
and rifampicin (in presence of 0.5 vancomycin) were evaluated
by agar dilution and compared with single-drug MICs. Secondly,
bacterial growth rates in groups of drug-free and monotherapy
(oxacillin or rifampicin or vancomycin) and combined
therapy (vancomycin/oxacillin or vancomycin/rifampicin)
were estimated and calculated. Thirdly, dynamic characteristics
of antimicrobial activity were estimated by time-killing curves for
24 h. Details of the procedures were described above. Statistical
analysis was assessed using biological replicates (n = 113).

RESULTS

The MICs and Single Drug
Concentrations
In Table 1, The examined 113 clinical strains were highly resistant
to levofloxacin showing MIC50 and MIC90 of 4 and 128 mg/L,
oxacillin of 4 and 64 mg/L, clindamycin of≥256 and≥256 mg/L,
gentamycin of 64 and ≥256 mg/L, and chloramphenicol of 64
and 128 mg/L. MIC distribution of rifampicin showed two sub-
populations with MIC <0.125 mg/L and 0.25≤MIC≤ 256 mg/L,
respectively. Antibiotics of tigecycline, vancomycin, linezolid,
and daptomycin were susceptible against the most MRSA isolates.
MDR strains with resistance to levofloxacin, linezolid, oxacillin,
rifampicin, clindamycin, gentamycin, and chloramphenicol were
detected in this study as well.

Single drug concentrations that caused 10–50% inhibition
of bacterial growth of S. aureus ATCC 43300 were evaluated
and shown in Supplementary Table S1 and Supplementary
Figure S1. For rifampicin, clindamycin, and gentamycin, the
maximum of 20% inhibition was observed when given 0.5- to
1-fold MICs. Subinhibitory concentrations of most antibiotics
only achieved 30–40% growth reduction, like oxacillin, linezolid,
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levofloxacin, daptomycin, and chloramphenicol. Notably, the
bacteriostatic activity of drugs did not progressively increase with
dosing concentrations, which might be due to the characteristics
of antibiotics. Sub-MICs of antibiotics used in the drug
interaction assays were shown in Supplementary Table S2.

Evidence of Synergism
Figure 1 shows the panels of drug interactions which were
arrayed in a matrix and painted with colors representing
synergistic, antagonistic, or additive effect. Among the total
55 pairwise interactions, 6 combinations exhibited synergistic
efficacy against ATCC 43300 (ε̃ < -0.5) and 13 pairwise
interactions showed an antagonistic effect (ε̃ > 0.5). Oxacillin
exhibited a potential synergism in combination with levofloxacin,
vancomycin, gentamycin, and clindamycin. Interestingly,
antagonistic buffering and synergistic buffering were also
observed in combined interactions indicated as pink and
light yellow panels. The additive or indifferent effects were
shown by most of the antibiotic combinations as illustrated in
white background.

In vitro Effects of Antibiotic Challenge
To test the bacterial responses to drug combinations, killing
curves of six pairwise synergistic combinations were evaluated
against both the ATCC 43300 strain and clinical MRSA
isolate #161402. During the 48 h of exposure, single-drug
groups barely exerted the killing activity against either ATCC
43300 or #161402. When administrated with combined drugs,
bacterial count reduction of 2–3 log cfu/mL was observed
for six pairwise regimens against ATCC 43300. However,
combinations of levofloxacin plus oxacillin, gentamycin plus
oxacillin, clindamycin plus oxacillin, and clindamycin plus
fosfomycin showed insufficient killing activity against isolate
#162402. In contrast, the combinations of vancomycin plus
oxacillin or rifampin showed considerable inhibition against
#161402 at the first 24 h, but regrowth was observed in the
following 48 h (Supplementary Figure S2). In consideration
of the MIC distributions and the in vitro killing activity,
combinations of vancomycin with oxacillin or rifampicin were
selected for the further antibacterial evaluation.

In vivo Synergistic Efficacy
We developed a murine infection model and used ATCC
43300 and #161402 strains to further evaluate the in vivo
antibacterial efficacy of vancomycin in combination with
oxacillin or rifampicin. The bacterial growth in the control
groups increased to over 10-log cfu/g at 24 h after inoculation
(Figure 2) but was inhibited to 7–8 log cfu/g when applying
a combination therapy of vancomycin plus rifampicin against
both ATCC 43300 and #161402. In addition, the combination
of vancomycin plus oxacillin showed a significant decrease in
bacterial growth compared with the control groups (P < 0.001).
Monotherapy of vancomycin, rifampicin, and oxacillin barely
inhibited the growth of these two strains, although lower bacterial
counts were observed in groups of vancomycin injected alone.
Significantly enhanced activity given synergistic combinations
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FIGURE 1 | Panels of pairwise combinations for 11 antibiotics. Growth rates of no-drug, drug X only, drug Y only, and combinations of X and Y are shown in each
panel (Upper right corner: zoom in on each panel). Error bars represent variability in replicate measurements. Synergism (ε̃ < −0.5), antagonistic (ε̃ > 0.5), and
additive (−0.25 < ε̃ < 0.5 and −0.5 < ε̃ < 0.25) effects are labeled with yellow, red, and white backgrounds in the corresponding panels. Panels with pink and
light-yellow color represent antagonistic buffering (0.25 < ε̃ < 0.5) and mild synergistic interactions (−0.5 < ε̃ < −0.25), respectively.

was elucidated when compared with the other groups of
monotherapy (P < 0.05).

Evidence of Synergistic Effect
MICs of vancomycin and oxacillin and rifampicin against 113
wild-type MRSA strains were re-estimated by agar dilution in
the presence of the corresponding partnering antibiotics. The
magnitude of MIC reduction for each antibiotic when used alone
vs. in combination with partners was expressed as a fold change
(Figure 3A). Notably, when combined with 1 mg/L oxacillin or
0.03 mg/L rifampicin, the MIC of vancomycin dropped nearly
50-fold. On the other hand, the fold-reductions in MICs of
oxacillin and rifampicin were >160 and >100, respectively, with
an addition of 0.5 mg/L vancomycin. Antimicrobial activity
of combinations of vancomycin plus oxacillin and vancomycin
plus rifampicin was confirmed by inhibition of bacterial growth
(Figures 3B,C). When vancomycin combined with oxacillin or
rifampicin, the bacterial growth rates were <20% or <40%, which
are significantly lower than those of the groups that used single
drugs (P < 0.0001, one-way ANOVA). In addition, in vitro
killing curves (Figure 4) explained the dynamic antibacterial
activity of antibiotic combinations. During 24-h incubation,
MRSA strains were inhibited by vancomycin combined with

oxacillin or rifampicin, but a slight regrowth was detected using
vancomycin plus rifampicin.

DISCUSSION

Numerous experimental and clinical studies have demonstrated
that MRSA strains show basal resistance to methicillin, oxacillin,
nafcillin, carbapenems, and other β-lactams (Islam et al., 2019).
Currently, MRSA strains are mostly susceptible to vancomycin,
daptomycin, and linezolid, the preferred antimicrobial agents for
clinical therapies. Primarily by inhibiting the cell wall synthesis,
vancomycin shows therapeutic activity against MRSA (Howden
et al., 2010). Daptomycin is a cyclic lipopeptide and represents
a second generation of glycopeptide antibiotics that are effective
against MRSA (Sader et al., 2014). Linezolid has become an
important antimicrobial against gram-positive bacteria including
MRSA and inhibits the translation by binding to the 23S rRNA
peptidyl transferase region (Hashemian et al., 2018). In our study,
the MIC distribution indicated that most clinical isolates were
susceptible to vancomycin, daptomycin, and linezolid, which was
consistent with the previous study (Kates et al., 2018). Similar
to the investigation in other countries, we also found high-level
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FIGURE 2 | Bacterial densities from mouse thigh muscles (log cfu/g) after 24 h of monotherapy or combination therapy for the two pairwise drugs against ATCC
43300 and #161402, respectively. ****P < 0.001 by the one-way ANOVA.

resistance to oxacillin and gentamycin in our tested bacterial
population, but MICs of clindamycin and chloramphenicol
were different (Sohail and Latif, 2018; Syed et al., 2019). For
instance, MRSA isolates from Malaysia, resistant to β-lactams
mediated by the PBP2a encoding mecA gene, showed high
resistance to gentamycin but less to clindamycin (only 31.3%)
and moderate resistance to chloramphenicol (Hamzah et al.,
2019). On the contrary, the clinical MRSA isolates collected
from Guangzhou were highly resistant to clindamycin and
chloramphenicol, suggesting a more developed situation of
antimicrobial resistance.

By screening the conventional antibiotics used for
MRSA infection, we found that vancomycin/oxacillin and
vancomycin/rifampicin displayed synergistic effects on MDR-
MRSA isolates by both the in vitro killing trials and the
in vivo mouse model. The synergism of vancomycin and the
β-lactams has been reported previously as well and achieved
significantly lower rates of treatment failure than monotherapy

of vancomycin against MRSA (Truong et al., 2018). Another
study demonstrated that the combination of vancomycin and
oxacillin showed synergism against three methicillin-resistant
vancomycin-intermediate S. aureus (VISA) strains and one
heterogeneous VISA (hVISA) strain (Pharmaceuticals et al.,
2013). The potential synergism may be that vancomycin can
easily get into the bacterial cell with the assistance of β-lactams
by providing a pathway for entry (Lewis et al., 2018), and the
combination of vancomycin and β-lactams down-regulates the
expression levels of mecA gene in MRSA isolates (Abdolahi
and Khodavandi, 2019). In addition, recently, a new theory
of collateral susceptibility in antimicrobial agents may inspire
a novel insight for the synergism of vancomycin combined
with oxacillin. Previous studies reported the oxacillin MICs of
S. aureus strains decreased after vancomycin treatment (Wang
et al., 2017), so called “see-saw phenomenon” occurring in certain
stages of vancomycin resistance promotion, suggesting that upon
acquisition of vancomycin resistance or VISA evolution, some
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FIGURE 3 | The therapeutic effectiveness of vancomycin combining oxacillin and vancomycin combining rifampicin against the 113 wild-type MRSA strains. The
error bars were estimated by 113 biological replicates. (A) Fold reduction of MICs in presence of the partnering antibiotics. (B,C) Growth rates of drug-free,
vancomycin only, oxacillin only, rifampicin only, combination of vancomycin and oxacillin, and combination of vancomycin and rifampicin. ****Significant difference
between combination groups and other groups (control and single drug); P < 0.0001, one-way ANOVA.

strains show a concomitant decrease in oxacillin resistance
(Bhateja et al., 2006). It was reported that mutated graR may
impair oxacillin resistance (Neoh et al., 2008). The synergistic
effect of vancomycin/rifampicin was not only reported in this
study, but also in treatment of the non-nosocomial healthcare-
associated infective endocarditis (NNHCA-IE) caused by MRSA
strain USA 400/SCC mec IV (Damasco et al., 2013). Given that
rifampicin interferes with the DNA synthesis while vancomycin
disrupts the bacterial cell wall synthesis, the drug combination

may disturb cell reproduction in different stages. For example,
when vancomycin combined with rifampicin, significantly
higher cell damage and decrease in biofilms thicknesses were
detected (Boudjemaa et al., 2017).

As shown in Figure 1 and Supplementary Figure S2, the
synergistic activities of levofloxacin/oxacillin, gentamycin/
oxacillin, clindamycin/oxacillin, and chloramphenicol/fos
fomycin were limited. In the in vitro killing curves, these
combinations showed no antibacterial activity against clinical
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FIGURE 4 | In vitro dynamic killing tests of combinations of vancomycin plus oxacillin (A) and vancomycin and rifampicin (B) against the 113 wild-type MRSA
strains. Sub-inhibitory concentrations of 0.5 mg/L (vancomycin), 1 mg/L (oxacillin), and 0.03 mg/L (rifampicin) were used. The error bar was calculated based on the
biological repetitions (n = 113).

isolate #162402 which was highly resistant to levofloxacin,
gentamycin, clindamycin, and fosfomycin with MICs over
256 mg/L. The phenomenon indicated that high resistance to the
component of pairwise antibiotics would affect the combined
effect, and the ideal situation is that the target pathogens are not
highly resistant to either component of the combinations.

In this study, we also found 13 pairwise combinations
that showed antagonistic effects (ε̃min > 0.5) and 10 pairwise
interactions that exhibited lower antagonistic effects (Figure 1,
red and pink panels). However, some of these combinations

showed synergism against MRSA strains in other studies. For
example, the combination of daptomycin plus fosfomycin were
synergistic in the treatment of experimental endocarditis caused
by MRSA strains by both in vitro and in vivo studies (Garcia-
de-la-Maria et al., 2018), and combinations of fosfomycin and
rifampin (or tigecycline) have synergistic antibacterial activity
in a mouse wound infection model (Simonetti et al., 2018).
However, individual differences including serotype, virulence,
and antimicrobial resistance must be considered in the evaluation
of antibacterial activity, especially for in vivo treatment.
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CONCLUSION

In conclusion, vancomycin combined with oxacillin or
rifampicin was detected as synergistically effective against
MRSA infections among a matrix screening of antibiotic
combinations. The efficacy of these two combinations was
further confirmed by an in vivo neutropenic mouse thigh
model against a clinical MRSA isolate, suggesting that
vancomycin/oxacillin and vancomycin/rifampicin are potential
strategies for the treatment of MRSA infections. Studies
focusing on the synergism and the mechanism of the
combinations should be further investigated for understanding
the drug interactions.
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The pyogenic streptococci group includes pathogenic species for humans and other
animals and has been associated with enduring morbidity and high mortality. The
main reason for the treatment failure of streptococcal infections is the increased
resistance to antibiotics. In recent years, infectious diseases caused by pyogenic
streptococci resistant to multiple antibiotics have been raising with a significant impact
to public health and veterinary industry. The rise of antibiotic-resistant streptococci
has been associated to diverse mechanisms, such as efflux pumps and modifications
of the antimicrobial target. Among streptococci, antibiotic resistance emerges from
previously sensitive populations as result of horizontal gene transfer or chromosomal
point mutations due to excessive use of antimicrobials. Streptococci strains are also
recognized as biofilm producers. The increased resistance of biofilms to antibiotics
among streptococci promote persistent infection, which comprise circa 80% of
microbial infections in humans. Therefore, to overcome drug resistance, new strategies,
including new antibacterial and antibiofilm agents, have been studied. Interestingly,
the use of systems based on nanoparticles have been applied to tackle infection
and reduce the emergence of drug resistance. Herein, we present a synopsis of
mechanisms associated to drug resistance in (pyogenic) streptococci and discuss some
innovative strategies as alternative to conventional antibiotics, such as bacteriocins,
bacteriophage, and phage lysins, and metal nanoparticles. We shall provide focused
discussion on the advantages and limitations of agents considering application, efficacy
and safety in the context of impact to the host and evolution of bacterial resistance.

Keywords: antimicrobial resistance, biofilms, pyogenic streptococci, bacteriocins, bacteriophage, nanoparticles,
nanomedicine

INTRODUCTION

The pyogenic group belonging to the genus Streptococcus includes species are habitually part of
the flora of animals (including humans) and, as such, most species are regarded as commensal,
but under fitting circumstances may cause localized and systemic infections (Nobbs et al.,
2009; Peters, 2017). Species of the pyogenic streptococci group include Streptococcus pyogenes,
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Streptococcus agalactiae, Streptococcus dysgalactiae subsp.
dysgalactiae (SDSD), and Streptococcus dysgalactiae subsp.
equisimilis (SDSE) which, together with Streptococcus
pneumoniae, are the key pathogens belonging to the genus
Streptococcus (Parks et al., 2015). For example, S. pyogenes
is the cause of numerous severe human diseases, including
septicemia and streptococcal “toxic-shock” syndrome (Isaacs
and Dobson, 2016). S. agalactiae is the most frequent cause
of sepsis and meningitis in neonates and children (Rajagopal,
2009; Melin, 2011). Considering domestic animals, S. agalactiae
is one of the main causes of bovine mastitis (Rato et al.,
2013). SDSE was primarily considered a human commensal
organism but nowadays its relevance as human pathogen is
on the raising, causing a similar range of diseases in humans
as does S. pyogenes (Brandt and Spellerberg, 2009). SDSD
has been considered an animal pathogen and is frequently
associated with bovine mastitis (Abdelsalam et al., 2013).
Human infections associated with this subspecies have
been sporadically reported (Koh et al., 2009; Park et al.,
2012; Jordal et al., 2015), and its role in human disease
remains unclear.

In recent years, severe outbreaks of infectious diseases caused
by organisms resistant to multiple antibiotics have occurred.
Drug resistance is mounting globally, threatening our capability
to treat common infections, resulting in persistent illness and
death. It is estimated that by 2050, around 10 million human
deaths per year might be attributable to antimicrobial resistance
(Neill, 2014, 2016). The increase in antimicrobial resistance is
more frightening derived from the considerable narrow number
of new antimicrobial agents currently under development (World
Health Organization, 2020). The growing of resistance in bacteria
has been associated to increased consumption of antimicrobials,
and improper prescribing of antimicrobials, leading to selective
pressure that trigger drug resistance in exposed bacteria and,
consequently, in the persistence of antibiotic resistance genes
in populations of the same ecological niches, mainly as a result
of horizontal gene transfer (Fair and Tor, 2014). Indeed, high-
throughput sequencing and other molecular genetics tools led
to a better understanding of the underlying mechanisms of
horizontal gene transfer. For instance, in average, about 20% of
the fully sequenced genome of Streptococcus consists of mobile
and exogenous DNA, comprising conjugative and composite
transposons, phage regions, and plasmid (Lier et al., 2015;
Yamada et al., 2019). Thus, horizontal gene transfer constitutes
one of the leading modes of originating gene diversity which
confers new antibiotic resistance mechanisms in Streptococcus.
These gene transfer events frequently strike in the pyogenic
group, particularly in S. pyogenes, S. agalactiae, Streptococcus
canis, SDSD, SDSE, and Streptococcus uberis (Haenni et al., 2010;
Richards et al., 2012; Wong and Yuen, 2012; Rohde and Cleary,
2016). Too, there have been reports of an increasing incidence
of multiple drug resistance (MDR) among streptococci strains,
which hamper customary empirical antimicrobial therapy for
these infections. Still, even though pyogenic streptococci remain
susceptible to most prescribed antibiotics, treatment failure due
to MDR has also been reported both in human and veterinary
patients (Doumith et al., 2017; Lai et al., 2017).

The quest for effective approaches to tackle MDR bacteria has
put forward several alternatives, such as competitive exclusion of
pathogenic bacteria via bacteriocin, and bacteriophages (Rotello
et al., 2016; Furfaro et al., 2018; Lopetuso et al., 2019). The
effectiveness of some of these new approaches for therapeutics
is highly variable, but positive effects have been reported in some
species. Irrespective of the mechanism of action, the ways bacteria
seem to be able to develop resistance to these new approaches
has not received enough attention, making it more difficult
to find long-term solutions. Herein, we present an overview
of mechanisms of resistance to antimicrobials in pyogenic
streptococci, factors that contribute to antibiotic resistance and
news approach to treating infectious diseases as an alternative to
antibiotics, such as bacteriocins, bacteriophage and phage lysins,
and nanoparticles. We shall provide focused discussion on the
advantages and limitations of agents considering application,
effectiveness, resistance development, and interactions with
the immune system.

ANTIBIOTICS AND MECHANISMS OF
RESISTANCE

An ideal antimicrobial ought to show high selective toxicity for
bacteria with minimal adverse impact to the host (Kohanski
et al., 2010). Antibacterial may be organized into four main
clusters based on the mechanism of action and target in
the bacterial cell – see summary in Table 1. Still, the
mechanisms of resistance to antimicrobials are complex, and
different mechanisms may be present in the same strain
promoting a multidrug resistance phenotype, but whose main
genotypic and phenotypic characteristics may be schematically
grouped as shown in Figure 1. Some of these fundamental
biochemical mechanisms of antimicrobial resistance include: (i)
enzymatic inactivation of antibiotics, e.g., β-lactamases (Munita
et al., 2016); (ii) modifications of the antimicrobial target
preventing efficient binding of the antibiotic, which often
results from spontaneous mutations, including genome and
RNA variations (e.g., rRNA mutations associated to resistance
to several antibiotics) (Malbruny et al., 2002; Gomez et al.,
2017); (iii) preventing drug access to targets, for example
through the reduced uptake by the cell via a decrease of
outer membrane permeability in Gram-negative and/or active
efflux pumps that increase clearance from within the cell
(Petchiappan and Chatterji, 2017).

To fully realize the propagation of antibiotic resistance, one
needs to recognize the molecular mechanisms of resistance to
antibiotics and to map the resistome in different ecological
niches. Several studies have assessed the resistome in the
environment, namely in wastewater, soil, and gut microbiota of
animals (humans included) (Pehrsson, 2016; Von Wintersdorff
et al., 2016). Metagenomics directly analyze DNA in a biological
sample, allowing for analysis of the resistome within distinct
microbial ecosystems (Von Wintersdorff et al., 2016). These
studies highlight that determinants of antibiotic resistance,
including those clinically relevant, are prevalent in these
environments (Lehtinen et al., 2019). Sequence-based studies
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TABLE 1 | Mechanisms of the main antibacterial drugs.

Mode of action Target Drug examples

Antimetabolites Folic acid synthesis
enzyme

Inhibits enzymes involved in production of
dihydrofolic acid

Sulfonamides

Inhibits the enzymes involved in the production of
tetrahydrofolic acid

Trimethoprim

Cell wall synthesis
inhibitors

Penicillin-binding
proteins

Interact with PBPs and inhibit transpeptidase
activity

β-lactams: penicillins (ampicillin,
amoxicillin, methicillin penicillin G,
penicillin V), cephalosporins (first,
second, third, fourth, and fifth
generations), monobactams
(aztreonam), carbapenems (imipenem,
meropenem, doripenem)

Peptidoglycan subunit
transport

inhibits transport of subunits across membrane Bacitracin

Peptidoglycan subunit inhibits the transglycosylation and transpeptidation Glycopeptides (vancomycin and
teicoplanin)

Nucleic acid
synthesis inhibitors

RNA Inhibits RNA polymerase activity Rifamycin

DNA Inhibits the activity of DNA gyrase and,
consequently, the DNA replication

Fluoroquinolones: ciprofloxacin,
levofloxacin, gatifloxacin, gemifloxacin,
garenoxacin, sparfloxacin, and
pefloxacin

Protein synthesis
inhibitors

30S ribosomal subunit Promotes mismatches between codons and
anticodons, producing defective proteins that are
inserted causing disrupt the cytoplasmic membrane

Aminoglycosides: streptomycin,
gentamicin, neomycin, and kanamycin.

Inhibits the interaction of tRNAs with ribosome Tetracyclines

50S ribosomal subunit Blocks peptide bond formation among amino acids Macrolides: erythromycin and
azithromycin. Lincosamides: naturally
produced lincomycin and semisynthetic
clindamycin. Chloramphenicol.

Inhibits the formation of the initiation complex
between 50S and 30S subunits.

Oxazolidinones: including linezolid

provide large datasets, but one limitation is that they focus
on genes already known to be involved in the resistance,
or (less frequently) to predict new functions based on the
homology to known sequences. These genome annotation
schemes will provide more and more information to complement
the output of functional metagenomics, which shall result in
the identification of new determinants of antibiotic resistance
(Von Wintersdorff et al., 2016).

In general, bacterial drug resistance can be divided into
intrinsic and acquired resistance (Reygaert, 2018). Intrinsic
resistance is a naturally occurring phenomenon, which prevents
antimicrobial activity and it is common to the majority of strains
of a given species. The intrinsic resistance may be constitutive,
i.e., independent of previous antibiotic exposure (e.g., reduced
permeability of the outer membrane), or induced via the exposure
to antibiotic or environmental stress (e.g., multidrug efflux
pumps and biofilm formation) (Baldassarri et al., 2006; Cox
and Wright, 2013). Acquired resistance is due to chromosomal
point mutations or by acquisition of mobile resistance genes,
in which resistant strains emerge from previously sensitive
bacterial populations, customarily subsequently to exposure to
the antimicrobial (Haenni et al., 2010; Enault et al., 2017).

The acquisition of mobile genetic elements (MGEs), such as
bacteriophages, plasmids, integrative and conjugative elements, is
recognized as a key point in the emergence of multidrug-resistant

(MDR) strains (Lehtinen et al., 2019). The main mechanisms
of DNA uptake in bacteria are conjugation, transduction,
and transformation (Figure 2), which must be followed by
recombination to allow stable insertion into the chromosome.
These MGEs are self-transmissible elements common in
bacteria. Further to genes involved in mobility, regulation,
or maintenance, MGEs convey antibiotic resistance genes and
virulence factors, such as exotoxins (Haenni et al., 2010).
Horizontal transfer of genes (HGT) can modulate host-pathogen
interactions and extending the host range. Indeed, the use
of high-throughput sequencing tools allowed for a better
understanding of HGT. For example, in S. pyogenes the
lateral exchange of virulence genes, mediated by bacteriophage
infection, is a very important factor in the diversification of
the species. What is more, bacteriophages may convey genes
that provide for selective advantage to the host, thus fostering
their own dissemination (Colomer-Lluch et al., 2011; Von
Wintersdorff et al., 2016).

Many determinants of resistance are frequently present on a
single R plasmid (harboring several antibiotics-resistance genes),
thus, multiple resistance can be shared among bacteria in single-
event of conjugation (Nikaido, 2009). Many of these R plasmids
contain resistance genes against the main classes of antibiotics,
such as aminoglycosides, macrolides, phenicol, and tetracycline
(Nikaido, 2009).
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FIGURE 1 | General genotypic and biochemical aspects of antibiotic resistance mechanisms.

Streptococcus harbor various plasmids associated with the
transfer of antibiotic resistance and virulence (Grohmann et al.,
2003; Cook et al., 2013). In addition to plasmids, a wide variety of
transposons have been isolated in streptococci (Brenciani et al.,
2007; Fléchard and Gilot, 2014), namely Tn3-family transposons,
composite and conjugative transposons. For example, Tn916,
encoding tetM for the ribosomal protection protein TET(M),
associated to independent transfer of resistance between a
multitude of strains via a plasmid, including Enterococcus faecalis,
Staphylococcus aureus, S. pneumoniae, S. agalactiae, and SDSD
(Franke and Clewell, 1981; Haenni et al., 2010; Fléchard and
Gilot, 2014; Osei Sekyere and Mensah, 2019), that act as
reservoirs of functional antibiotic resistance genes.

Several mechanisms of antibiotic resistance among pyogenic
streptococci have been reported, whose main mechanism of
action and associated resistances shall be briefly described.
Table 2 summarizes the main antibiotics used for the treatment
of streptococcal infections and resistance mechanisms.

β-lactams, targeting the bacterial cell wall peptidoglycan,
particularly enzymes linked to peptidoglycan synthesis, are one
of the most prescribed antibiotics for streptococcal infections
due to the broad spectrum of action (Kohanski et al., 2010;

Kong et al., 2010). β-lactamases are secreted enzymes capable
of destroying these antibiotics and are the most frequent cause
of resistance, but not the only (Bush and Jacoby, 2010; Munita
et al., 2016). In fact, pyogenic streptococci have been recognized
as non-β-lactamase-producing bacteria, where resistance to
β-lactams is essentially mediated by alterations to the binding
site of penicillin-binding proteins (PBPs) (Vannice et al., 2019).
Nevertheless, a recent study based on whole-genome sequencing
revealed the presence of β-lactamases determinants of S. uberis
and SDSD isolates bovine mastitis (Vélez et al., 2017). Still, there
is a need for actional studies to assess the potential of these
β-lactamases, and the role of these species as a reservoir of
determinants of resistance.

Macrolides are the first choice against streptococcal
infections in patients allergic to β-lactam (Kanoh and
Rubin, 2010) and, clindamycin (lincosamides) has been used
for the treatment of infections associated with anaerobic
bacteria as an alternative to penicillin G (Greenwood
and Irving, 2012). Three main mechanisms have been
associated with resistance to these antibiotics: (i) target
modification by methylation of rRNA (erm genes) or target
mutations, (ii) active efflux, and (iii) enzymatic inactivation
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FIGURE 2 | Transformation is the process by which naked DNA from the external environment is incorporated into a bacterial cell. For this process is requires the
recipient cell to exhibit on its membrane special DNA binding proteins. Transduction is the process by which a phage transfers DNA from one bacterial strain to
another. Conjugation is the process mediated by cell-to-cell contact that provides direct DNA transfer. Conjugative transfer systems associated with plasmids usually
code the necessary proteins to DNA exchange. The plasmids are kept as extra-chromosomal genetic material by external selective pressure (e.g., presence of metal
or antibiotic). Overall, these mechanisms can be followed by recombination events that allow the genetic determinants to be inserted stably into the chromosome.

(Matsuzaki et al., 2005; Petinaki and Papagiannitsis, 2018).
Although most streptococci strains remain sensitive to
macrolides and lincosamides, resistance phenotypes have
emerged among pyogenic streptococci (Rato et al., 2013; Cattoir,
2016; De Greef et al., 2019).

Since active electron transport is required for aminoglycoside
uptake into bacteria, aminoglycosides have weak activity against
anaerobic bacteria (Ramirez and Tolmasky, 2010; Krause et al.,
2016). Still, low levels of resistance to aminoglycosides are
observed in most Streptococcus spp., and high-level resistance to
aminoglycosides appears to be rare. This resistance occurs due to
the production of AAC(6′)-APH(2′′), APH(3′)-IIIa, and ANT(6)-
Ia enzymes and has been demonstrated to be transferable by
conjugation (Cattoir, 2016).

Chloramphenicol-resistant streptococci are not common even
though some studies show high levels of resistance among
the pyogenic group species, namely, S. pyogenes, S. agalactiae,
and SDSE (Trieu-Cuot et al., 1993; Schwarz et al., 2004;
Woodford, 2005). Among streptococci and other Gram-positive
bacteria, the resistance to chloramphenicol is mainly mediated by
Chloramphenicol O-acetyltransferase (CAT) enzymes encoded
by plasmids or chromosomally integrated. Several CATs are
shared by streptococci, staphylococci, and enterococci strains
(Woodford, 2005).

Currently, fluoroquinolones (FQ) have also been put forward
as a therapeutic option for the treatment of streptococcal
infections (Pinho et al., 2010). However, emergence of resistance
among several streptococcal species, including SDSE, S. pyogenes,

and S. agalactiae, S. pneumoniae, and viridans group streptococci
has been reported (Guerin et al., 2000; Martinez-Garriga et al.,
2007; Duesberg et al., 2008; Pinho et al., 2010; Pires et al., 2010;
Kimura et al., 2013; Dang et al., 2014; Arias et al., 2019). The
most frequent mechanism of high-level FQ resistance is the target
modification due to mutations in parC and gyrA genes that occur
mainly in quinolone resistance-determining regions (QRDRs)
(Hooper and Jacoby, 2016; Pham et al., 2019). Resistance to FQ
can also be mediated by modifying enzymes, target-protection
proteins (Pham et al., 2019) and by increased production of
multidrug-resistance efflux pumps (Hooper, 2002).

Resistance to tetracyclines (TET) among streptococci strains
is often found in high rates (Nakamur et al., 2011; Emaneini
et al., 2014; Gherardi et al., 2014; Vélez et al., 2017; Gizachew
et al., 2019). In streptococci, genes encoding resistance to
TET are frequently acquired by MGEs, which also harbor
erythromycin resistance determinants (Brenciani et al., 2004,
2007, 2011; Emaneini et al., 2014; Cattoir, 2016). The presence of
determinants of tetracycline resistance (tet genes) in conjugative
transposons, which can efficiently translocate among related
bacteria, may explain the high prevalence of resistance (Santoro
et al., 2014). There is a significant association between tetM and
ermB (genetic determinant for erythromycin resistance) that has
been identified among the strains of pyogenic streptococci, and
it can be co-transferred among S. agalactiae and S. pyogenes
strains (Brenciani et al., 2007; Emaneini et al., 2014). There is
also evidence of the linkage between tetO and ermTR/mef A genes
(Giovanetti et al., 2003) and lysogenic transfer of these genes
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TABLE 2 | Main mechanisms of antibiotic resistance in pyogenic streptococci.

Mechanism Target
antibiotics

Examples Location References

Enzyme
inactivation

β-lactam β-lactamases via hydrolisis, e.g., BL2b;
TEM-1; TEM-47; TEM-71; TEM-89;
TEM-95

Chromosome Vélez et al., 2017

Aminoglycosides Aminoglycoside-modifying enzymes
(AMEs) – APH(3′)-IIIa; ANT(6)-Ia;
AAC(6′)-APH(2′ ′)

Chromosome and MGE, e.g., Tn4001,
Tn5405 and Tn3706 (Tn4001
derivative)

Galimand et al., 1999; Prudhomme
et al., 2002; Kristich et al., 2014;
Cattoir, 2016; Doumith et al., 2017

Chloramphenicol Chloramphenicol O-acetyltransferase
(CAT) enzyme encoded by genetic
determinants cat(pC194); cat(pC221);
cat(pSCS7); catS, and catQ

Plasmid and conjugative transposon
Tn1545 and Tn5253-like

Schwarz et al., 2004; Woodford, 2005;
Del Grosso et al., 2011; Mingoia et al.,
2015

Lincosamide LinB/A catalyze adenylylation of
antibiotics

MGE Haenni et al., 2010; Rato et al., 2013;
Osei Sekyere and Mensah, 2019

Preventing drug
access to
target

Tetracycline Efflux pumps Tet(K) Chromosomal insertion element Rato et al., 2013; Emaneini et al., 2014;
Nguyen et al., 2014

Quinolones Efflux pumps PmrA Chromosome Martinez-Garriga et al., 2007

Macrolides Efflux pumps Mef and Msr MGE such as Tn917 and
bacteriophage 8 m46.1.

Brenciani et al., 2004, 2007; Di Luca
et al., 2010; Del Grosso et al., 2011;
Rato et al., 2013; Hadjirin et al., 2014

Tetracycline Tet(M), Tet(O), Tet(Q), Tet(S), Tet(T),
Tet(W) ribosomal protection proteins
dissociate tetracycline from ribosome

MGE (Tn916 and Tn3701) and
bacteriophages 8 m46.1

Brenciani et al., 2004, 2007; Liu et al.,
2008; Nikaido, 2009; Di Luca et al.,
2010; Nguyen et al., 2014; Da Cunha
et al., 2014; Silva et al., 2015; Kim
et al., 2018

Target
modification

Quinolones and
Fluoroquinolones

Point mutations primarily in quinolone
resistance-determining regions
(QRDRs), of parC and gyrA genes

Chromosome. Evidence for horizontal
transfer of QRDR between streptococci
has been reported.

Ferrándiz et al., 2000; Balsalobre et al.,
2003; Orscheln et al., 2005; Pletz et al.,
2006; Duesberg et al., 2008; Hooper
and Jacoby, 2016; Pham et al., 2019

Tetracycline;
Aminoglycosides

Modification in rRNA Chromosomal mutation Nguyen et al., 2014; Lupien et al., 2015

Macrolides Modification of 23S rRNA and/or
ribosomal proteins L4 and L22
determinants

Chromosomal mutation Malbruny et al., 2002; Jalava et al.,
2004

β-lactam Modification of penicillin-binding
proteins 1A [PBP1A], PBP2B, and
PBP2X

Chromosomal mutation Kimura et al., 2008, 2013; Pillai et al.,
2009; Fuursted et al., 2016; Moroi
et al., 2019; Vannice et al., 2019;
Musser et al., 2020

Macrolides-
Lincosamide-
Streptogramin B

Modification by methylation of rRNA
(erm-class genes)

The erm(B) and erm(TR) genes are
found in the chromosome of
streptococci and conjugative
transposons, such as Tn916 family and
Tn5397 elements

Brenciani et al., 2007, 2011; Cattoir,
2016

carried by 8 m46.1 among S. pyogenes (Di Luca et al., 2010), that
contribute to a multi-resistant phenotype.

Due to the rise of pathogens resistant to multiple antibiotics,
new strategies have been proposed as an alternative to
conventional antimicrobials. One such example is the
use of as phage-derived lysins that degrade peptidoglycan
(Maciejewska et al., 2018), which may be considered as an
alternative to β-lactams, or of bacteriocins that provide a more
targeted approach, i.e., strain- or species-specific (Nigam et al.,
2014; Matsumoto-Nakano, 2018; Hols et al., 2019). Another
emerging field of research has been the use of nanoparticles,
particularly metallic nanoparticles (e.g., gold and silver), as direct
antimicrobial agents, as drug delivery systems that improve
the pharmacokinetics parameters (Masri et al., 2019a), or
taking advantage of these nanostructures’ optical properties,

e.g., photothermal ablation of cells. The potential of these new
approaches against streptococci shall be further discussed in the
following sections.

BIOFILMS AND ANTIMICROBIAL
RESISTANCE

Generally, bacteria populations may strive as planktonic, i.e.,
freely existing in solution, and/or sessile forming a biofilm.
Biofilms are defined as tri-dimensional agglomerations of cells,
attached to biotic or abiotic surfaces, and encased in a self-
produced matrix composed by extracellular polymeric substances
(Jamal et al., 2018). Their formation might be induced by
environmental changes that cause stress cells, such as nutrient
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limitation and antimicrobial agents (Garrett et al., 2008;
Kumar et al., 2017).

In humans, biofilms account for up to 80% of bacterial
infections, according to the United States National Institutes
of Health (Khatoon et al., 2018). One of the most important
characteristics of biofilms is their ability to increase bacterial
tolerance to antimicrobial agents. Biofilms protect the
microorganism not only from antimicrobial agents but
from nutrients scarcity, mechanical forces, and from the
host’s immune system. Several in vitro studies demonstrated
that bacterial biofilm could become 10 to 1,000 times more
resistant to the effects of antimicrobials as their planktonic
counterparts (Melchior et al., 2006). Therefore, biofilm
formation should be considered as a core mechanism of
resistance since it increases treatment failure and promotes
persistent infection.

Biofilm growth of streptococci has been extensively
investigated, but insights in the genetic origin and mechanisms
of biofilm formation in this genus are limited. Although
most pyogenic streptococci are able to form biofilms, there
is substantial heterogeneity among strains in the strength of
adherence to different surfaces. Like most bacterial genera,
in streptococci biofilms, a gradient of nutrients, waste, and
signaling molecules are formed, thus allowing groups of cells
to adapt to different environments within the same biofilm,
which may be growing at a different rate. Besides that, studies
show that a biofilm-specific phenotype is stimulated in a
particular subpopulation, resulting in the differential expression
of mechanisms against the antimicrobials (Konto-Ghiorghi
et al., 2009; Genteluci et al., 2015). Even though the resistance
associated to streptococci biofilms are not entirely understood,
several mechanisms have been proposed in support of increased
resistance to antimicrobials. These mechanisms result from of
the multicellular nature of biofilms, which leads to an additive (or
synergistic) effect between the biofilm community’s protection
and the conventional mechanisms of resistance referred above
(Rosini and Margarit, 2015; Young et al., 2016).

Formation of biofilms also favors horizontal gene transfer
between community members, thus provides conditions for the
uptake of resistance genes, e.g., high cell density or accumulation
of genetic elements. Some studies suggest that conjugation
is more efficient in biofilms than in planktonic cells (Van
Meervenne et al., 2014; Kragh et al., 2016). Marks et al. (2014)
demonstrated that the biofilm microenvironment of S. pyogenes
populations results in the induction of competence genes;
therefore, it is more conducive to HGT. This study shows for
the first time that S. pyogenes can be naturally transformed when
grown as biofilms.

Overall, upon biofilm formation, there is a delayed
internalization of the antimicrobial through the biofilm
matrix, as the primary physical and/or chemical diffusion
barrier prevents the entrance of polar and charged antibiotics.
Additionally, the heterogeneous growth of the biofilm cells
and activation of the stress response genes contribute to the
resistance phenotype.

The extracellular polymeric substances (EPS) matrix
composition is essential for the properties of the biofilm

since it offers cohesion and three-dimensional architecture of
biofilms (Flemming and Wingender, 2010). The EPS matrix
compose 80% of the biofilm containing alginates, poly-N-acetyl
glucosamine, extracellular teichoic acid, proteins, lipids, nucleic
acids, phospholipids, polysaccharides, and extracellular DNA.
EPS is 97% of water, which is found as a solvent, dictating
viscosity, and mobility (Flemming and Wingender, 2010; Kumar
et al., 2017; Jamal et al., 2018). For certain compounds, it is
known that the EPS matrix represents an initial barrier, but
recent studies showed that the biofilm matrix does not form an
impermeable barrier to the diffusion of antimicrobial, and other
mechanisms can contribute to promoting biofilm cell survival
(Trappetti et al., 2011).

Several reports indicate that the extracellular matrix of
pyogenic streptococcal biofilms is rich in proteins (Genteluci
et al., 2015; Young et al., 2016; Alves-Barroco et al., 2019). In
some cases, the biofilm contains a large amount of mucus-like
extracellular component, probably formed by DNA released from
dead cells (Alves-Barroco et al., 2019). A role for extracellular
DNA was also demonstrated by the reduction of biofilms formed
by SDSE isolates after treatment with DNase I (Genteluci et al.,
2015). The addition of a carbohydrate oxidant, such as sodium
metaperiodate, to the biofilm of SDSE indicated the presence
of an exopolysaccharide, like for Streptococcus mutans biofilms
(Liao et al., 2014) and Streptococcus intermedius (Nur et al.,
2013). Doern et al. (2009) examined S. pyogenes strains from
different clinical sources and demonstrated the requirement
for protein and DNA in the matrix of biofilm, and only
passive role for carbohydrates. This is in contrast to SDSE, for
which several polysaccharides have been shown to be required
(Genteluci et al., 2015).

Overall, the nature of the biofilm matrix depends on the
microbial cells, their physiological status, the nutrients available,
and the physical conditions. The composition of the EPS matrix
likely influences the resistance against different antimicrobial
classes. Responses to specific stress sources such as nutrient
limitation the bacterial cell slow its growth. During biofilm
development, a gradient is established, in which outer layers are
metabolically active and aerobic, while and the more inner layers
are anaerobic with the reduced growth rate. This slow growth
has been observed in streptococci biofilms that are frequently
accompanied to a significant increase in antibiotics resistance
(Bjarnsholt et al., 2013; Macià et al., 2014). Several antibiotics,
such as aminoglycosides, β-lactams, and fluoroquinolones, do
not seem to be active in anaerobic conditions, affecting only
the outermost layers of the biofilm (Borriello et al., 2004). Cell-
wall active antibiotics, namely, β-lactams and glycopeptide, have
minimal activity against bacteria that are not replicating and are
metabolically inactive (Del Pozo, 2018).

Clinical strains response to most antibiotics is assessed
according to standard MIC determination. However, several
studies have indicated that, as a biofilm, the same strain/isolate
may be resistant, suggesting that most of the antibiotics
evaluated would be ineffective in therapy. Still, information
regarding the minimum concentration for biofilm eradication
of pyogenic streptococcal is scarce (Conley et al., 2003;
Baldassarri et al., 2006).

Frontiers in Microbiology | www.frontiersin.org 7 October 2020 | Volume 11 | Article 57991686

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-579916 October 5, 2020 Time: 14:4 # 8

Alves-Barroco et al. Tackling Multidrug Resistance in Streptococci

Biofilm formation of S. pyogenes protects against some drug
but does not confer complete resistance to some antibiotics,
namely, penicillin and fluoroquinolone (Conley et al., 2003;
Baldassarri et al., 2006; Young et al., 2016). Therapeutic failures
against infections caused by S. pyogenes may be due to the
ability to internalize human cell and biofilm formation facilitating
the persistence of genetically susceptible organisms, additionally
supporting the HGT, and consequently, the emergence of
virulent clones (Baldassarri et al., 2006). The increased resistance
of biofilms to antibiotics was also observed in SDSD and
S. agalactiae (Mah and O’Toole, 2001; Olson et al., 2002).

As explained above, the successful treatment of infections
caused by biofilm-forming bacteria is troubled due to the
multidrug-resistant phenotype. Conventional antimicrobial
therapy is unable to eradicate the biofilm infection.
Consequently, to fight the resistance of bacterial biofilm, several
different strategies and antibiofilm agents have been proposed.
A promising strategy is the application of nanoparticles,
which have been considered as an alternative approach to
combat and biofilm-based infections (Baptista et al., 2018).
Applications of nanomedicine and other alternative therapies
will be discussed below.

ALTERNATIVE ANTIBACTERIAL
THERAPIES

In order to tackle the growing MDR concerns, a plethora
of alternative compounds, strategies and platforms has been
proposed as an alternative to conventional antimicrobials.
Some of these alternatives are mere concepts whose promising
in vitro efficacy has been the focus of attention. Many
of these novel solutions have been proposed to be used
alone against MDR bacteria, but many other have been
proposed to be used in combinatory strategies with traditional
antibacterial drugs to enhance efficacy, circumvent the onset of
mechanisms of resistance.

Bacteriocins
Bacteriocins are peptides, of prokaryotic origin, with inhibitory
activity against diverse groups of microorganisms (Nigam et al.,
2014; Hols et al., 2019). Several authors have documented
the ability of numerous bacteriocins to inhibit the growth of
pathogenic microorganisms. Here we shall refer to a general
representation of bacteriocins as an alternative to traditional
antibiotics. Overall, bacteriocins interact with the bacterial
cell membrane and alter its properties, causing cell death.
These molecules normally only target closely related species,
and given their bactericidal or bacteriostatic effects, they
can offer an advantage relative to conventional antibiotics
since treatment could be targeted against specific pathogenic
(Lopetuso et al., 2019). These peptides are typically used by
commensals microbiota to colonize in the human gastrointestinal
tract allowing the survival of specific communities, and thus
improving gut barrier function and host immune response
(Hols et al., 2019). Four major classes of bacteriocins have been
identified: (i) Class I, including small heat-resistant peptides,

modified post-translationally, known as “lanthionine-containing
bacteriocins” (e.g., lantibiotics, sactipeptides, and glycocins); (ii)
Class II, including small heat-resistant peptides (<10 kDa)
post-translational modifications. These are “non-lanthionine-
containing bacteriocins” which are divided into four subclasses
based on their size; (iii) Class III harboring heat-labile and
large proteins (>30 kDa); and (iv) Class IV including complex
bacteriocins, namely, large proteins with carbohydrate and/or
lipid (Pieterse and Todorov, 2010; Hols et al., 2019).

Widespread applications of bacteriocins have been
documented with variable efficacy reports. There has been
some experimental evidence supporting the antimicrobial
properties of bacteriocin nisin (produced by Lactococcus) against
relevant oral pathogenic bacteria. It has been shown that nisin
A could inhibit the growth of cariogenic streptococci, including
Streptococcus gordonii, Streptococcus sanguinis, Streptococcus
sobrinus, and S. mutans (Tong et al., 2010). Additionally, it was
demonstrated that the nisin associated with poly-lysine and
sodium fluoride can inhibit the formation of S. mutans biofilms
(Tong et al., 2011).

Among bacteriocins used against bovine mastitis, besides
the nisin, the lacticin3147 has largely been researched. This
bacteriocins has proved effective against the most mastitis-
causing pathogens, namely S. aureus, SDSD, S. agalactiae and
S. uberis (Ryan et al., 1996, 1998). Studies have shown that
bacteriocins produced by several streptococci to be able to
inhibit closely related strains (Nigam et al., 2014; Matsumoto-
Nakano, 2018; Hols et al., 2019). Some S. mutans and
Streptococcus salivarius strains that are part of the commensal
microbiota of the oral cavity are also producers bacteriocin
producers (Tagg, 2004; Tagg et al., 2006). Healthy microbiota
of the nasopharynx also harbors bacteriocin-producing strains,
including S. salivarius strains. The bacteriocins produced by
this species have been investigated for the treatment of
pharyngitis and otitis (Walls et al., 2003). In order to shield
against streptococcal infections, bacteriocin-producing strains
are inoculated in the nasopharynx (Walls et al., 2003). The
ability of normal microbiota strains to inhibit the growth of
other bacteria has a critical role in its colonization of the host
and suggest that these bacteriocins provide protection against
S. pyogenes infection (Wescombe et al., 2012).

To date, few streptococci bacteriocins against mastitis-
causing pathogens have been identified. However, the natural
environment of bacteriocin-producing bacteria consists of a
particular field for application. S. uberis strains isolated from
bovine mastitis bacteriocin-producing has been described, the
most studied is the nisin U. This bacteriocin showed activity
against important mastitis-causing pathogens, specifically
E. faecalis, SDSD and S. agalactiae (Wirawan et al., 2006).

Larger bacteriocins (above 10 kDa) also produced by some
streptococci strains and are identified as bacteriolytic enzymes
or non-lytic inhibitory. Examples comprise streptococcin A-M57
produced by S. pyogenes and dysgalacticin provided by SDSE. The
genes that encode for SA-M57 (scnM57) and dysgalacticin (dysA)
have been found on plasmids pDN571 and pW2580, respectively
(Heng et al., 2006). The DysA and ScnM57 are polypeptides with
220 and 179 amino acids, respectively, both are exported via the
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Sec-dependent transport pathways. Interestingly, a pW2580-like
plasmid is also harbored by some S. pyogenes strains, emphasizing
the HGT between SDSE and S. pyogenes (Heng et al., 2006).
Overall, lateral transfer of bacteriocin production underscores the
contribution of the microbial ecology within the specific niche.

Nonetheless, the broad use of bacteriocin can also confer
threatening for its usage on a large scale. Usually, bacteriocin
resistance is acquired by lateral transfer of the immunity
gene harbored in bacteriocin-producing strain. Resistance genes
located on MGE can facilitate the transfer to closely related
or even different species providing the means to resist specific
bacteriocins (Dicks et al., 2018).

Multidrug efflux pumps also provide resistance to bacteriocins
of several bacterial species (Van Hoang et al., 2011). Furthermore,
bacteriocins may be degraded by proteolytic enzymes;
consequently, they may not be as stable as conventional
antibiotics (Tolinački et al., 2010).

Bacteriophage and Phage Lysins
Bacteriophages (or only phages) are viruses that specifically infect
bacteria. The interaction between phage and bacteria usually
involves particular receptors located in the cell membranes.
Therefore, the phage is a natural killer of bacteria (Ghosh et al.,
2019; Lopetuso et al., 2019). For this reason, the bacteriophages
and phage proteins, namely enzymes, are extensively studied as a
future alternative against bacterial infections.

There are many types of phage viruses, but the vast majority of
phages can be distinguished into lytic and temperate. The most
common approach for therapy involves lytic phages, which are
phages that induce cell lysis, and therefore cause bacterial death
(Ghosh et al., 2019), whereas the temperate phages integrate
within the host genome (lysogenic conversion) (Di Luca et al.,
2010). Typically, in the lytic phage life cycle, after the interaction
between tail fibers and the host cell surface receptors, the
phage secretes specific enzymes that degrade lipopolysaccharide,
peptidoglycan and outer membrane (in Gram-negative) to inject
the phage DNA. Subsequently, late genes are expressed and take
control of the host cell’s to then initiate phage DNA replication.
The phage DNA replicated expresses genes that encode proteins
necessary for new phage particle assembly, endolysins, and holins
for host cell lysis. Finally, the new phage particles are released into
the environment.

The most significant factor ensuring the efficacy of phage
therapy is its self-replicating nature, which distinguishes them
from conventional antibiotics. Therefore, the main advantage
of using phages for antibacterial treatment is that it can be
administered in a low dose, that is, a small number of phages
allows producing more of the particles at the infection site
(Maciejewska et al., 2018).

Since their discovery in 1915 by Frederick William Twort,
the phages were recognized as potential antibacterial, and
due to the facility of administration and absence of side
effects, phages were used immediately for antibacterial therapy
(oral and topical preparations) (Maciejewska et al., 2018). The
discovery and introduction of penicillin in the 1940s led to
the practically total abandonment of antibacterial therapy with
phage in the western countries (de Almeida and Sundberg, 2020).

However, the benefits of antibiotics were lost considerably with
the emergence and dissemination of bacterial resistance. The
emergence of infectious diseases caused by multidrug-resistant
bacterial generated an essential need for alternatives approaches
to traditional antibiotics (Chang et al., 2015; Lehtinen et al., 2019).
Along these lines, bacteriophages and phage-derived protein
therapy get revitalized.

Since the 1980s, the phage therapy revival in western
countries has been considered a possible option for combat
antimicrobial resistance (de Almeida and Sundberg, 2020). Many
research groups have concentrated on this theme of increasing
importance, with Belgium pioneering in studies for the clinical
use of phages (Pirnay et al., 2018; Jault et al., 2019). Despite the
large potential of phages for antibacterial therapy, a small number
of clinical trials have been performed in human patients. Besides
that, few clinical trials are accepted by public health authorities,
for example, the European Medicines Agency (EMA) and the
Food and Drug Administration (FDA) (Rios et al., 2016). In
the United States and European Union, the phages and phage-
encoded enzymes classified as human therapeutic material are
subjected to the same implementation regulations as traditional
antibiotics (Maciejewska et al., 2018).

There has been a growing interest in phage-derived
enzymes with antibacterial activity, including lysins (degrade
peptidoglycan), and depolymerases (that degrade polysaccharide,
e.g., capsule, biofilm matrix, and lipopolysaccharide)
(Maciejewska et al., 2018). Regarding the application of
these enzymes, previous studies, including animal models and
clinical trials, showed antibacterial activity and reaffirmed the
safety of its use (Lopetuso et al., 2019). Nonetheless, the current
legislation limits the use of recombinant enzymes in human
therapy, mainly for systemic therapy (Schmelcher et al., 2012).

The potential of phage against biofilm-forming bacteria has
been demonstrated. The ability of the bacteria to produce
biofilms has been considered the most common reason for
failure therapeutic of antibiotics due to the impermeability of
the biofilm matrix and the diversity of bacterial cells at different
metabolic stages. Studies show that some phages have naturally
depolymerases able to degrade the biofilm matrix (Abedon,
2015b). Probably, the depolymerases have evolved in response to
polysaccharide of the biofilm matrix that covers the membrane
receptor required for the interaction between the phage particle
and the host cell and the subsequent attachment. The phages
can also infect metabolically inactive bacteria of the biofilm
since the receptor is present, but the lytic cycle stays pendent
until bacterial metabolism to be active (Pearl et al., 2008). The
complete eradication by one phage is rather difficult due to a
complex structure of the mature biofilm. A combined action
(combined therapy) has been suggested as a valid approach, in
which depolymerase that degrades polysaccharides of the matrix
allowing the phage or antibiotics to achieve the bacteria (Abedon,
2015a). Phage lysins have been also effectively used to remove
bacterial biofilms (Meng et al., 2011; Shen et al., 2013; Rico-
Lastres et al., 2015).

Bacteriophages infection occurs through specific protein
receptors on the bacterial surface, which is the cause of
extreme selectivity of these agents but also their main limitation.
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Due to this high specificity, phage therapy is of narrow-
spectrum compared to traditional antibiotics whose targets are
general pathways and processes common to most bacteria (e.g.,
protein synthesis). Unlike traditional antibiotics, one particular
phage has a restricted number of strains as target, in other
words, several and different phages are required to combat
one only bacterial species. Moreover, phage-based therapy
requires the previous identification of bacteria, causing infection
to the isolation of specific lytic phage. Methods to isolate
bacteriophages with broad-host-range and modifications to
expand the specificity have been the target of several approaches,
which could reduce the number of phages needed per species
(Fairhead et al., 2017; Hyman, 2019). Moreover, the use of a
“phage-cocktail” (composed of strictly lytic phages) can expand
the spectrum of action and be administered in combination
with other antibacterial agents, thus, increasing the potential
of phage therapy.

The success of antibacterial phage-based therapy broadly
depends on the patient’s immune system (PIS) that may recognize
and inactivate viral particles. A low-level of antibodies specific
to several viral proteins can naturally exist. Moreover, during
phage therapy, the activation mechanisms of the immune
response can be triggered; thus, phage may be recognized by
the PIS, severely compromising the therapeutic effectiveness
(Borysowski et al., 2012).

The activity of antibodies in phage lysines inactivation has
also been investigated. Studies have shown that antibodies were
effective in reducing the half-life of these enzymes (Rashel et al.,
2007; Jun et al., 2014). Nonetheless, modification of lysins by
dimerization to broaden their half-life has been investigated
(Resch et al., 2011). For example, the ClyS (chimeric endolysin)
that showed insensitive to antibodies (Pastagia et al., 2011).

Furthermore, phage particles may undergo denaturation by
conformational changes irreversible or reversible. A proposed
solution is encapsulation within nanocarriers to become the
particles insoluble and protecting them from the digestive and
immune system (Balcão et al., 2014; Rios et al., 2018). Another
critical question is to get the phage particles to the infection
site, given that phages do not have pharmacokinetic properties
(Ghosh et al., 2019). One of the biggest concerns of phage-
based therapy is the gap in understanding of phage-bacteria-
human interaction, namely their safety. Concerning phage
therapy in immunocompromised patients, although considered
safe, its use may be less effective with more associated risks
(Roach et al., 2017).

Another aspect associated with security difficulties is
horizontal gene transfer. Although low, there is the possibility
of HGT affect the pathogenic potential of co-existing bacterial
strains by sharing of antibiotic resistance and virulence genes
into the population (Lim et al., 2014). The proper phage selection
against a given infection still is a challenging question. Moreover,
clinical phage resistance in vivo also is a complicated issue.

Recent studies in animal models suggest that bacterial
mutations resulting in phage-resistance may enhance the
pathogen’s fitness in its regular niche within the host (Oechslin,
2018). Experimental data showed that phage-resistance occurs
in 80% of researches targeting the intestinal environment and

50% of investigations with a model of sepsis. In human studies,
phage-resistance has also been observed.

In the pyogenic streptococcus group, strains can escape
to phage attack through several mechanisms, comprising
spontaneous mutations of the genes encoding receptor,
restriction-modification systems, abortive infection mechanisms,
and adaptive immunity mediated by CRISPR-Cas systems
(Almeida et al., 2016; Euler et al., 2016). The spontaneous
mutation is the principal mechanism emergence of resistance
and phage–bacterial coevolution. The mutations may provide
resistance by changing the bacterial surface molecules
in particular phage receptors, and that also determine
phage specificity.

Concerning modification-restriction mechanisms, it is based
on its abilities to restrict incoming foreign genetic material
and to protect host DNA from restriction through modification
(methylation, for example) of specific bases in the DNA sequence.
Due to host DNA modification, unmodified sequences are
then assumed to be foreign and thus cleaved by restriction
endonuclease (Stern and Sorek, 2011). Usually, this mechanism
causes the death of phage particles but preserves the host. If the
system fails, intruding phages will be replicated and modified by
the cell, becoming resistant to restriction. In abortive infection
(Abi), the host mechanisms arrest phage development at its
different steps, e.g., phage transcription, genome replication,
or phage genome assembly. Abi mediated resistance ultimately
results in the death of both the bacteriophage and the host.
It is a selfless defense mechanism since the host dies, but the
surrounding population is benefitted (Stern and Sorek, 2011).
Although some of these systems work similarly to toxin-antitoxin
systems, Abi systems are vastly diverse, and their modes of action
are still not completely understood.

The CRISPR-Cas system consists of a multistep process by
which small fragments of foreign nucleic acids (or protospacers)
are first recognized and included in the host genome. Afterward,
these fragments (or spacers), along with Cas proteins, are
used as an adaptive immune system that recognizes, degrades
or silences foreign nucleic acids (Bondy-Denomy et al., 2013;
Rath et al., 2015). However, phages have acquired mutation-
based strategies to evade CRISPR/Cas systems, e.g., losing their
spacer sequences or encoding products that target Cas proteins
(Stern and Sorek, 2011).

Nanoparticles
Nanomaterials have recently gained great interest due to
the variety of applications in biomedicine (McNamara and
Tofail, 2017). Nanomaterials comprise a range of constructs,
materials and functional systems of particles whose size is
between 1 and 100 nm. Particularly, these nanotechnology-
based materials have found plenty of applications as alternative
tools to traditional antibiotics and, more interestingly, as means
to prevent the surge in antibiotic resistance (Baptista et al.,
2018). The use of nanoparticles as antibiotic therapy has relied
on these nanostructures acting as carrier of drugs, either
via integration or incorporation into the nanoformulation, or
adsorbed to the surface so as to improve biodistribution and
pharmacokinetics, e.g., solubility, controlled drug liberation
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and therapeutic effectivity (Gao et al., 2018), the main
mechanism of action of metallic nanoparticles in bacteria are
described in Figure 3. However, several nanomaterials have
been proposed as antimicrobials, with particular emphasis
metallic nanoparticles (the most recent application of these
metallic nanoparticles against Streptococcus spp. are shown in
Table 3).

Some of the value of nanotechnology for antimicrobial therapy
relate to modulation of the pharmacokinetic profile, where
nanoparticle mediated drug delivery might improve conveyance
of the drug to the desired tissue. Furthermore, nanoparticles
could be designed to enhance solubility, control the release of

drug and increase clearance from the organism, thus improving
the therapeutic window of the cargo drug. Also, some synergistic
strategies may be used, such as photothermal ablation of cells,
where combination to the “traditional” chemotherapeutic may
lead to an increase of efficacy. Nevertheless, there are some
limitations to the use of these nanomaterials before their
successful translation to clinics. One is the limited amount of
data on the use of such systems to tackle infection in in vivo
models, thus preventing adequate assessment of optimal dose,
appropriate administration routes and possible interaction of
nanoparticles with cells and tissues, whose toxicological profile is
not completely understood (Baptista et al., 2018; Lee et al., 2019).

FIGURE 3 | Different mechanism of action of metallic NPs in bacteria. Nanoparticles induce wide effects in bacterial metabolism by different approaches: (i) ROS
generation: Ag, Fe, Cu, and Zn NPs induce ROS (reactive oxygen species), the ROS generated are highly reactive toward biological molecules such as proteins and
DNA and interact and damage them. (ii) Damage membrane: Ag and Cu NPs interact with chemical groups of bacterial membrane (sulfate or phosphate) and disturb
the normal functions. (iii) Drug and gene delivery systems: Au and Fe NPs could be carrier of gene moieties (DNA/RNA) that interact with bacterial gene, or deliver
drug improving some pharmacodynamic parameters. (iv) Ribosome: Au NPs inhibit the union of transfer RNA (tRNA) to ribosome. (v) Photothermal therapy of Au
NPs mediated by laser irradiation that disturb the membrane structure. (vi) Bacterial respiration: Ag NPs alter the electronic transport and inhibit the respiratory chain.
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TABLE 3 | Application of metallic nanoparticles against Streptococcus spp.

Metal Synthesis method Bacteria Highlights References

Silver Green
synthesis

Terminalia mantaly extract S. pneumoniae The biogenic Terminalia mantaly-Ag NPs showed significant
antibacterial activity compared to the respective extracts

Majoumouo et al., 2019

Allium cepa and Allium sativa extract S. pneumoniae AgNPs exhibited antibacterial activity against selected vaginal bacteria Bouqellah et al., 2019

Fruit extract of Prosopis farcta S. pneumoniae AgNPs increased the antioxidant and antibacterial activity compared
with the extract alone, due to high content in phenolic compounds.

Salari et al., 2019

Tapinoma simrothi S. pyogenes AgNPs with effective antimicrobial activity in a wide range of bacteria Sholkamy et al., 2019

Chemical
synthesis

Silver nitrate reduced by sodium
borohydrate

S. pyogenes AgNPs as carrier of new quinazolinone compounds showed enhanced
antibacterial activity

Masri et al., 2019a

Gold Green
synthesis

Justicia glauca extract S. mutans AuNPs coated with antibiotic increased efficacy against a broad range
of bacteria

Emmanuel et al., 2017

Resveratrol as a green reducing agent S. pneumoniae
S. pyogenes

AuNPs-resveratrol increased efficacy against S. pneumoniae compared
to resveratrol

Park et al., 2016

Chemical
synthesis

Reduction of gold (III) chloride
trihydrate by sodium citrate

S. pneumoniae Uptake of AuNPs by S. pneumoniae associated the antibacterial activity
to the formation of inclusion body of AuNP (IB-AuNPs), composed by
proteins, carbohydrates and lipids.
Some proteins associated with IB-AuNPs could be used for new
strategies

Ortiz-Benítez et al.,
2019

Citrate reduction of gold (III) chloride
trihydrate

S. mutans Combination of AuNPs and diode irradiation decreased CFUs Sadony and Abozaid,
2020

Gold-silver Gold-silver nanocages via galvanic replacement reaction S. mutans Au-Ag nanocages promoted the inhibition of S. mutans Wang et al., 2016

Gold-titanium Commercial TiO2 nanotubes with Au via direct current plasma sputter S. mutans Ti nanotubes sputtered with Au nanorod irradiation increased the
inhibitory effect against S. mutans

Moon et al., 2018

Green synthesis: Terminalia chebula bark extract S. pneumonia Au-TiNPs loaded with carbon nanotubes and irradiated under visible
light showed higher antimicrobial activity than ampicillin

Karthika and
Arumugam, 2017

Zinc-silver Polymeric precursor and coprecipitation S. mutans Zn-AgNPs inhibit S. mutans biofilm formation (dentistry) Dias et al., 2019

Iron Green
synthesis

Agrewia optiva and Prunus persica
extracts

S. mutans
S. pyogenes

FeNPs provided antimicrobial activity and antioxidant capacity
associated to compounds from extracts

Mirza et al., 2018

Chemical
synthesis

Commercial NPs S. mutans Chitosan coated FeNPs as carrier for chlorhexidine; bacteria eradication
and antibiofilm effect

Vieira et al., 2019

Ferric chloride and ferrous chloride
tetrahydrate

S. mutans FeNPs on surface for eradication of S. mutans Javanbakht et al., 2016

Solvothermy employing iron (III) chloride S. mutans Vitamin B2 coated FeNPs promoted antibacterial activity Gu et al., 2020

Copper Chemical methods: copper acetate as precursor S. mutans Hybrid Cu-chitosan NPs reduced MIC and minimum bactericidal
concentration

Covarrubias et al., 2018

Commercial NPs S. mutans CuNPs added to orthodontic composite inhibited the growth of
S. mutans

Toodehzaeim et al.,
2018

Zinc Zinc acetate dihydrate as precursor S. pneumoniae ZnNPs reduced IMC and showed anti-biofilm formation activity Bhattacharyya et al.,
2018

Green synthesis: Costus igneus extract as capping and reducing agent S. mutans ZnNPs showed a dose dependent antibacterial and antibiofilm effect
against S. mutans

Vinotha et al., 2019
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Silver Nanoparticles
Traditionally, Silver (Ag) has been employed as antimicrobial,
namely silver sulfadiazine and silver nitrate (Lansdown, 2006),
which relied on the release of Ag+ that triggers a range
of processes resulting in hampered bacterial growth. Silver
nanoparticles has allowed improved release of silver ions and,
thus, enhance the bactericide action (Dakal et al., 2016). Silver
nanoparticles (AgNPs) may be synthesized by different protocols
relying on thermic vaporization, chemical or photochemical
reduction of silver ions to form nanoparticles that are then
capped either by the same reagent or by additional compounds,
which promote solubility and stability (Lee and Jun, 2019). The
most used method is based on using citrate as reducing and
capping agent of silver salts. Nowadays, other methodologies
using biological extracts (e.g., plant extracts) has been employed
for the “green synthesis” of this nanomaterial (Masooleh et al.,
2019). Regardless of the synthesis method, the antibacterial
activity of AgNPs depends on the size and shape of the particles;
for example, the antibiotic effect increases with smaller sizes
due to the dramatic increase in surface area available for ion
release and/or to interact with the bacteria. In fact, some authors
propose that AgNPs between 1 and 10 nm could interact more
efficiently with the bacteria cell membrane (Morones et al.,
2005), and spherical nanoparticles seem to be more effective
in bacterial eradication than triangles or cylinders (Raza et al.,
2016). Still, for AgNPs, size is the stronger determinant associated
with antibiotic activity, which is clear in conceptual studies
of efficiency for Pseudomonas aeruginosa and Escherichia coli
eradication (Raza et al., 2016). However, AgNPs have shown
biocidal effects against a range of bacterial species with clinical
interest, such as Staphylococcus epidermidis, Enterococcus faecalis,
Vibrio cholerae, and Salmonella spp. (Morones et al., 2005;
Sánchez-López et al., 2020).

Although the biocidal action of AgNPs has been attributed
mainly to the Ag+ release, the actual mechanism is not
yet completely elucidated. Crucial to their effect is the fact
that AgNPs tend to accumulate at the membrane where they
progressively aggregate, allowing silver ions to interact with
different functional groups, such as sulfate or phosphate, and
disturb the function of the bacterial membrane, promoting its
rupture and liberate the cytoplasmatic content (Le Ouay and
Stellacci, 2015). Other studies have suggested that Ag+ is able to
interact and inactivate some biological structures and affect the
bacteria’ respiratory process, namely inhibiting the respiratory
chain (Costa et al., 2010). However, perhaps the most widely
accepted hypothesis is the production of reactive oxygen species
(ROS), like superoxide or hydrogen peroxide, which interact with
the lipids, proteins or DNA, promoting alteration in the normal
functions, triggering lysis and cell death (Quinteros et al., 2016).

AgNPs have also found a range of industrial applications
that require some level of inhibition of bacterial growth. One
such examples is the development of new tools for odontology,
where AgNPs have been added to customary compounds for
dental implants (e.g., polydopamine and titanium) to improve
biocompatibility and provide for added antibacterial efficacy
against S. mutans, commonly implicated in the caries disease
(Choi et al., 2019). Green synthesized AgNPs by Epigallocatechin

gallate (green tea extract) as reducing and chitosan as capping
agent decreased the MIC and MBC against S. mutans (Yin et al.,
2019). What is more, these AgNPs induced lower amounts of
lactic acid and polysaccharides in the biofilm, thus enhancing
the protective action of the nanoparticle extracts. The synergistic
effect of the bio-extracts and AgNPs may be associated to
the bactericide activity of the green tea polyphenols and the
large surface area of AgNPs which increase the contact with
bacteria and facilitate disruption of cell metabolism. In addition,
E. gallate is able to inhibit the S. mutans glucosyltransferase
reducing bacterial adherence and biofilm formation. Another
interesting application for AgNPs has been its inclusion in
toothpaste formulations with promising antibacterial efficacy
against S. mutans (Ahmed et al., 2019).

Furthermore, the synergistic effect with other conventional
antibiotics makes possible the application of AgNPs as an
alternative tool to tackle MDR strains. In fact, AgNPs and
conventional antibiotics exert their biocidal action via different
mechanisms and, therefore, their combination would prevent
the development of added resistance. For example, clindamycin
has already been combined with AgNPs resulting in lower
MICs in a synergistic effect and rifampicin coupled to AgNP
increased the antibiotic effect against methicillin resistant
bacteria (Khan et al., 2019a).

Gold Nanoparticles
Gold nanoparticles (AuNPs) have also been employed in different
fields of biomedical research due to their ease of synthesis,
biocompatibility and low toxicity to higher eukaryotes. They
are easier to functionalize with different biological moieties
like DNA, mRNA, peptides, etc. than their silver counterparts.
Moreover, AuNPs present remarkable optical and photoelectric
properties that have demonstrated high potential toward the
development of new therapy tools (Amendoeira et al., 2020). The
chemical processes for the synthesis of AuNPs are similar to those
of AgNPs, where the citrate reduction method is clearly the most
used method. Still, in the last years, as for AgNPs, several green
synthesis methods with plant or other extract have been proposed
(Khan et al., 2019b).

AuNPs have been reported to exhibit antimicrobial activity
against a wide range of bacteria and fungus (Tao, 2018). Several
mechanisms of action have been highlighted as the basis of
their antimicrobial properties, namely: AuNPs may bind to
the membrane of bacteria, modify the membrane’s potential,
decrease intracellular ATP levels, disturb intracellular trafficking,
aggregate together with proteins and disturb the assembly of
tRNA to the ribosome (Cui et al., 2012). Perhaps, the main
aspect related to antimicrobial efficacy relates to nanoparticle
dispersion and the AuNPs’ surface roughness that could interact
with the bacteria membrane (Lima et al., 2013). AuNPs have also
been proposed as drug carriers, conveyors of gene therapy and
photothermal therapy (Li et al., 2019; Masri et al., 2019b).

The use of AuNPs as drug delivery systems for traditional
antibiotics has made possible to administrate drugs more
effectively and uniformly distributed toward the target tissue,
improving the efficacy and biocompatibility of antibiotic-
conjugated AuNPs. The surface of AuNPs may be easily
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functionalized with small ligands harboring carboxylic acid,
hydroxyl, or amine functional groups that can then be used
to conjugate antimicrobials (Lee et al., 2017). The so assemble
nanoformulation improves solubility of non-water-soluble drugs
and allows for controlled and localized release of the antibiotic,
for example with an external stimulus (Canaparo et al., 2019).
For example, a formulation of imipenem and meropenem on
AuNPs increased the antibacterial effect against carbapenems
resistant Gram-negative bacteria, like Klebsiella pneumoniae,
Proteus mirabilis and Acinetobacter baumannii isolated from
human patients, and decreased the MIC while potentiating the
effect in antibiotic kill test (Shaker and Shaaban, 2017). Moreover,
these studies showed a size-dependent efficacy of the drug
system, with optimal efficacy for 35 nm nanoparticles. Another
advantage antibiotic delivery system mediated by AuNPs is the
drug-controlled release, where AuNPs loaded with Amphotericin
B showed an increase of biocidal efficiency of 78%, with less
cytotoxicity and hemolytic toxicity to the host when compared
to the antibiotic alone (Kumar et al., 2019).

When AuNPs are irradiated by light with an appropriate
wavelength, they tend to convert the received energy into heat,
thus resulting in a hyperthermal effect capable to induce damage
to the membrane structure (Kirui et al., 2019; Amendoeira et al.,
2020). The antimicrobial effect through the use of photothermally
active nanomaterials may become an interesting tool against
antibiotic resistance. For example, near-infrared (NIR) radiation
is useful to promote hyperthermy based on AuNPs, effective
against S. aureus and E. coli after 10 min of irradiation at 808 nm
(Alhmoud et al., 2017). NIR photothermy using AuNPs has been
also used as an efficient technique to eliminate a broader range
of microorganism with improved antibiofilm activity. In fact this
approach was demonstrated effective at damaging the cell wall of
streptococci, such as S. mutans, S. sobrinus, Streptococcus oralis
and S. salivarius (Castillo-Martínez et al., 2015).

The combination of these two metals, Silver and Gold, in
alloy nanoparticles has also been proposed as suitable nanoagent
against microbes. In fact, such approach combines the improved
stability and ease of functionalization provided by gold, with
the higher antimicrobial activity of silver, while avoiding some
problems associated with the aggregation and toxicity to the
host (Dos Santos et al., 2012). The positive results of this
association have been proposed in a system where gold-silver
alloy “nanoflowers” decreased the MIC against E. coli three-
fold when compared to AgNP alone (Yan et al., 2018). Gold-
silver alloy nanoparticles have shown their potential to eradicate
biofilm and reduce the MICs against Gram-positive and Gram-
negative bacteria, which could then be used to circumvent
drug resistance (Ramasamy et al., 2016). Kyaw et al. (2017)
showed that submitting triangular AuNPs coated by silver to laser
irradiation, induced a change of shape to spherical and increased
the antibacterial activity.

Other Metallic Nanoparticles
Nanoparticles employing iron (Fe) have been applied due to
their antimicrobial properties, which has been associated with
the generation of ROS (Arakha et al., 2015). The most used is
iron oxide nanoparticles which provide good efficiency in a wide

range spectrum mediated by the damage in different structures
like proteins or DNA (Saqib et al., 2019). Most of these iron
nanoparticles present some magnetic properties that may be
used for a range of applications, from diagnostics to therapeutics
(Rodrigues et al., 2019). Magnetic nanoparticles have been shown
to interfere with the thiol groups at the respiratory base of
bacteria and, thus, assisting in disrupting effective metabolism,
resulting in biocidal activity against some drug resistant bacteria
(Madubuonu et al., 2019). Ion NPs have also been used as delivery
vehicles for antibiotics, such as chlorhexidine and erythromycin
against S. mutans (Vieira et al., 2019).

Copper nanoparticles have also been used as antimicrobial
against a wide range of microorganisms including bacteria,
fungi, and even algae (Hou et al., 2018; Sardella et al.,
2018). As for AgNPs, the size is related to CuNP activity
due to the dramatic increase of the surface/volume ratio,
which promote the generation of ROS that trigger cell damage
according, such as oxidation of proteins, cleavage of DNA/RNA
molecules or lipid peroxidation in membranes (Shaikh et al.,
2019). Usually, CuNPs are combined within polymers or
functionalized in core-shell structures to provide stability and
control possible ion leakage (Anyaogu et al., 2008). For example,
CuNPs coated with chitosan showed an antibacterial effect
comparable to that of traditional oral antimicrobial agents
(chlorhexidine and cetylpyridinium chloride) against S. mutans
(Covarrubias et al., 2018). In another example, the combination
of AgNPs and CuNPs was shown to have a preventive
and therapeutic effect in mastitis caused by S. agalactiae
(Kalińska et al., 2019).

Some authors have studied the antibacterial activity of zinc
NPs (ZnNPs) against Streptococcus mitis, where the biocidal
action was associated to ROS induction identified via the
increase of superoxide dismutase activity (SOD) (Khan et al.,
2016). Moreover, ZnNPs showed the capability to inhibit the
formation of biofilm by S. mitis in a dose dependent manner,
corroborated the evaluation of bapA1 gene expression, which is
associated to generation of the biofilm. In another study, ZnNPs
showed the capability to inhibit S. sobrinus biofilm formation
(Aydin Sevinç and Hanley, 2010).

CONCLUDING REMARKS

The progressive emergence of resistance to conventional
antibiotics is reducing the ability to control infectious diseases
and, particularly, those caused by pyogenic streptococci. To
combat this public health threat, several alternative strategies
have been proposed, and the promising efficacy in vitro of some
of these antibacterial approaches has been the focus of attention.

Despite the progress achieved to date, most alternative
approaches are of narrow spectrum unlike the broad-spectrum
of conventional antibiotics. However, the combined action of
one of these alternative approaches with traditional antibiotics
may increase the success rate of therapeutics once that most new
strategies attenuate bacterial pathogenesis allowing bacteria to
be eliminated by antibiotics and action of the immune system.
Moreover, combination therapies may decrease the selective
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pressure for resistance to antibiotics, and consequently to reduce
the rate of emergence of resistance.

Bacteriocins are considered as a hopeful therapeutic
alternative caused by its proven efficacy and chemical structural
and functional diversity. Nonetheless, the broad use of
bacteriocin can also confer threatening for its usage on a large
scale, namely, the possible resistance to bacteriocins could
limit their future way. Bacteriophages allow the development
of specific therapies, phage-derived enzymes can be used as
a substitute for conventional antibiotics, for example, phage-
derived lysins that degrade peptidoglycan can be considered as
an alternative to β-lactam antibiotics. However, the advancement
of new laws that regulate the use of Bacteriophages and phage-
derived enzymes is necessary. The application of nanomaterials
may provide for new therapy tools to assist in tackling the
traditional mechanisms of resistance. Still, there is plenty of
work ahead to facilitate the translation to the clinics, namely
toward better characterization of these materials, the capability
to effectively scale-up for widespread use, and clarification
of toxicity aspect, which altogether pave the way for robust
assessment in clinical trials. Nowadays, the cost associated
with the development of nanotechnology platforms is high
and, consequently, the use of more conventional therapies are
still preferred.

The most significant concern safety of alternative therapies
is the gap of understanding of interaction with the human
host. Thus, evaluate the impacts of alternative therapies on
the host is essential for future widespread application. Future
studies must investigate in vivo efficacy of combination therapy
to assess their potential, impact of the host, and evolution of
bacterial resistance.
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Carbapenemase-producing Enterobacterales have become a severe public health
concern because of their rapidly transmissible resistance elements and limited treatment
options. The most effective antimicrobial combinations against carbapenemase-
producing Enterobacterales are currently unclear. Here, we aimed to assess
the therapeutic effects of seven antimicrobial combinations (colistin-meropenem,
colistin-tigecycline, colistin-rifampicin, colistin-erythromycin, meropenem-tigecycline,
meropenem-rifampicin, and meropenem-tigecycline-colistin) against twenty-four
carbapenem-producing Enterobacterales (producing blaKPC, blaNDM, coexisting blaNDM

and blaIMP, and coexisting mcr-1/8/9 and blaNDM genes) and one carbapenem-
susceptible Enterobacterales using the checkerboard assay, time-kill curves, and
scanning electron microscopy. None of the combinations were antagonistic. The
combination of colistin-rifampicin showed the highest synergistic effect of 76%
(19/25), followed by colistin-erythromycin at 60% (15/25), meropenem-rifampicin at
24% (6/25), colistin-meropenem at 20% (5/25), colistin-tigecycline at 20% (5/25),
and meropenem-tigecycline at 4% (1/25). The triple antimicrobial combinations
of meropenem-tigecycline-colistin had a synergistic effect of 100%. Most double
antimicrobial combinations were ineffective on isolates with coexisting blaNDM and
blaIMP genes. Meropenem with tigecycline showed no synergistic effect on isolates
that produced different carbapenemase genes and were highly resistant to meropenem
(92% meropenem MIC ≥ 16 mg/mL). Colistin-tigecycline showed no synergistic effect
on Escherichia coli producing blaNDM−1 and Serratia marcescens. Time-kill curves
showed that antimicrobial combinations achieved an eradication effect (≥ 3 log10

decreases in colony counts) within 24 h without regrowth, based on 1 × MIC of each
drug. The synergistic mechanism of colistin-rifampicin may involve the colistin-mediated
disruption of bacterial membranes, leading to severe alterations in their permeability,
then causes more rifampicin to enter the cell and induces cell death. In conclusion,
the antimicrobial combinations evaluated in this study may facilitate the successful
treatment of patients infected with carbapenemase-producing pathogens.

Keywords: Carbapenemase-producing Enterobacterales, in vitro synergistic activity, triple antimicrobial
combinations, double antimicrobial combinations, highly resistant isolates
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INTRODUCTION

During the last decade, carbapenemase-producing
Enterobacterales (CPE) have gradually become the main
pathogen responsible for significant hospital-acquired infections.
Because of limited therapeutic options, infections caused by these
“super bacteria” are associated with high mortality rates (Logan
and Weinstein, 2017). In 2017, the World Health Organization’s
priority pathogens list indicated that development of novel
antibiotics to treat carbapenem-resistant Enterobacterales (CRE)
was urgently required (Shrivastava et al., 2018). However, in
the current post-antibiotic era, novel antibiotics for treating
CRE infections are unavailable owing to the lengthy process
of drug discovery and low success rate, which has become a
serious concern over the past decade (Luepke et al., 2017).
Drug-resistant pathogens are resistant to the most frequently
used antibiotics and second-line drugs, resulting in an increased
burden of infectious diseases (WHO Pathogens Priority List
Working Group, 2018). Thus, antimicrobial combinations may
offer an alternative for treating CRE pathogens that are resistant
to most available therapies.

Among the many mechanisms that mediate CRE resistance,
carbapenemase production is the most common (Nordmann
et al., 2011). A series of carbapenemases have been identified
in Enterobacterales. Three classes of β-lactamases often exist in
carbapenem-resistant Enterobacterales: Ambler classes A, B, and
D. Class A and D β-lactamases have serine-based hydrolytic
activities, and class B consists of metallo-β-lactamases with
zinc in their active site (Merie Queenan and Bush, 2007). The
β-lactamase inhibitors currently available for clinical use consist
only of serine inhibitors. For instance, ceftazidime-avibactam
works against CRE strains producing Klebsiella pneumoniae
carbapenemases (KPCs) and OXA-48 but shows no activity
against class B β-lactamases. So far, there are no alternative
drugs to combat the production of metallo-β-lactamase isolates
(Shields et al., 2018).

Combination therapy is a method wherein two or more
active antibiotics are used together. This method reduces the
frequency of drug resistance and minimizes the dosage of toxic
drugs, achieving more significant effects than monotherapy
in biochemical activity (Fitzgerald et al., 2006). The Chinese
XDR Consensus Working Group (Guan et al., 2016) and most
retrospective studies (Nabarro and Veeraraghavan, 2015; Bassetti
et al., 2016; Trecarichi and Tumbarello, 2017; Wang et al.,
2019) have reported that combination therapy is more effective
than monotherapy. However, the advantages of combination
therapy remain debatable because different infectious pathogens
produce different carbapenemase genes and have different levels
of resistance. Investigations focusing on antibiotic combinations
that are most effective for treating infections caused by these
isolates are limited.

In this study, we explored the synergistic effect of seven
antimicrobial combinations against 24 CPE (producing blaKPC,
blaNDM, both blaNDM and blaIMP, and both mcr-1/8/9 and
blaNDM genes) and one carbapenem-susceptible Enterobacterales
(CSE) in vitro. In addition, the antibacterial synergistic
mechanism of colistin with rifampicin was tested using scanning

electron microscopy (SEM). The aim of this study was to
study the most effective antimicrobial combinations against
carbapenemase-producing Enterobacterales in vitro activity.

MATERIALS AND METHODS

Microbiological Characteristics of CRE
and CSE Isolates
Twenty-five clinical isolates were retrospectively collected from
16 tertiary hospitals in China in 2013–2018 years. The isolates
were sent to Peking University People’s Hospital for reappraisal
of both resistance mechanisms and antimicrobial susceptibility
testing (AST). The isolates were identified by matrix-assisted laser
desorption ionization-time of flight mass spectrometry (Bruker
Daltonics Inc., Billerica, MA, United States) or a Vitek 2 compact
system (BioMérieux Vitek Inc., Hazelwood, MO, United States).
Minimum inhibitory concentrations (MICs) were determined by
broth microdilution methods according to the CLSI document
M100-S30.1 For all CPE isolates, polymerase chain reaction
(PCR) was used to detect carbapenemase genes (blaKPC, blaNDM,
and blaIMP) as previously described (Yigit et al., 2008; Xiaojuan
et al., 2014; Khodadadian et al., 2018). The colistin-resistant genes
mcr-1, mcr-8, and mcr-9 were also detected by PCR as previously
described (Quan et al., 2017; Wang et al., 2018; Yuan et al., 2019).
Multilocus sequence typing (MLST) was confirmed according to
the Pasteur Institute MLST website2 for K. pneumoniae and the
MLST websites for Escherichia coli3 and Enterobacter cloacae.4

Synergy Testing by Checkerboard Assay
The synergy of double or triple antimicrobial combinations
were determined using the standard broth microdilution
checkerboard assay as described previously (Berenbaum, 1978;
Yoon et al., 2004). In brief, the MICs of antimicrobials were
determined before the experiment. Ninety-six-well microtiter
plates were arranged with increasing concentrations of one
drug, ranging from 0.125 to 8 × MIC on the x-axis and
increasing concentrations of the other drug ranging from 0.125
to 8 × MIC on the y-axis. When using triple antimicrobial
combinations, fixed concentrations of the drugs were added
into 96-well microtiter plates. The final inoculum in each well
was approximately 5 × 105 CFU/mL. The 96-well microtiter
plates were incubated at 37◦C for 24 h, and turbidity was
observed by the naked eye to determine growth. The effects of
the antimicrobial combinations were defined according to the
fractional inhibitory concentration index (FICI). FICI = (MIC
drug A/MIC drug A plus drug B) + (MIC drug B/MIC drug
A plus drug B), FICI ≤ 0.5, synergism; 0.5 < FICI ≤ 4, no
interaction or FICI > 4, antagonistic (Odds, 2003). With the
triple antimicrobial combination, FICI < 1, synergistic, FICI = 1,
additive, or FICI > 1, antagonistic (Berenbaum, 1978).

1http://www.clsi.org
2http://bigsdb.pasteur.fr/klebsiella/klebsiella.html
3http://mlst.warwick.ac.uk/mlst/dbs/Ecoli
4https://pubmlst.org/ecloacae/

Frontiers in Microbiology | www.frontiersin.org 2 October 2020 | Volume 11 | Article 533209102

http://www.clsi.org
http://bigsdb.pasteur.fr/klebsiella/klebsiella.html
http://mlst.warwick.ac.uk/mlst/dbs/Ecoli
https://pubmlst.org/ecloacae/
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-533209 October 19, 2020 Time: 14:49 # 3

Zhou et al. Antimicrobial Combinations Against Carbapenemase-Producing Enterobacterales

Static Time-Kill Assay
A static time-kill assay was conducted for four isolates according
to the previously described methodology (Lin et al., 2018).
Two Klebsiella pneumoniae (blaKPC−2, blaNDM−1), 1 E. coli
(blaNDM−1), and 1 Serratia marcescens were selected to examine
the bactericidal effects. The double and triple antimicrobial
combinations colistin-meropenem, colistin-rifampicin, colistin-
tigecycline, colistin-erythromycin, and colistin-meropenem-
tigecycline were tested. Bacteria (1 × 106 CFU/mL) were
inoculated in Mueller-Hinton broth containing antibiotics with
continuous shaking overnight at 35◦C and 200 rpm in an
atmospheric environment. One hundred microliter samples were
drawn and then serially diluted at 0, 4, 8, 16, and 24 h, and
50 µL aliquots were smeared on Mueller-Hinton agar plates.
After incubating the plates overnight at 35◦C, the colonies were
counted. Synergy was defined as a decrease of ≥2 log10 CFU/mL
between the combination and the most efficient agent alone
at 24 h. Bactericidal activity was defined as ≥3 log10 CFU/mL
reduction in cell numbers compared to the initial inoculum after
24 h (Doern, 2014).

Scanning Electron Microscopy (SEM)
The colistin-sensitive isolate SF-18-09 was selected to explore
the synergistic mechanism of colistin with rifampicin on cellular
morphology using SEM as per a previously described method
(Zhang et al., 2019). Bacteria at the mid-exponential growth
phase (1 × 106 CFU/mL) were added to the final drug
concentration according to the checkerboard results, and a no-
drug group was used as a control. The cells were incubated
for 4 h, as described in the static time-kill assay method. After
incubation, samples were transferred to 15 mL polypropylene
tubes (Corning, United States) and centrifuged at 10,000 × g for
3 min. The supernatants were discarded, and the bacterial pellets
were resuspended and washed in 1 mL of 2.5% glutaraldehyde in
phosphate-buffered saline (PBS). The tubes were fixed overnight
at 4◦C. Once fixed, the tubes were centrifuged again at 10,000× g
for 3 min, and the supernatants were removed. Bacterial pellets
were resuspended in 1 mL PBS and then observed using a
scanning electron microscope (Hitachi SU8020).

Statistical Analysis
Statistical analysis was performed with the software GraphPad
Prism version 8.

Ethical Approval
This study was approved by the research ethics board
at Peking University People’s Hospital. As this study was
retrospective and participants were anonymized, informed
consent was not required.

RESULTS

Microbiological Characteristics of CRE
Isolates
Genotypic and phenotypic characteristics of CRE and CSE
isolates used in this study are displayed in Table 1, including

11 K. pneumoniae (6 blaKPC, 3 blaNDM, 1 coexisting mcr-8
and blaNDM, and 1 coexisting blaNDM and blaIMP), 6 E. coli
(4 coexisting blaNDM and mcr-1, 2 blaNDM), 5 E. cloacae (2
blaNDM, 1 coexisting blaNDM and mcr-9, 1 coexisting blaNDM
and blaIMP, and 1 non-carbapenemase producer), 2 K. oxytoca
(both coexisting blaNDM and blaIMP), and 1 S. marcescens.
The antimicrobials had the following MICs (µg/mL) against
all isolates: rifampicin, 8–128; colistin, 0.125–256; meropenem,
0.125–256 (most isolates (23/25) ≥ 16); tigecycline, 0.064–8; and
erythromycin, 64–256.

In vitro Evaluation of Synergy Using the
Checkerboard Method
We used the broth microdilution checkerboard method to
test the following seven antimicrobial combinations: colistin-
meropenem, colistin-tigecycline, colistin-rifampicin, colistin-
erythromycin, meropenem-tigecycline, meropenem-rifampicin,
and colistin-meropenem-tigecycline.

The double antimicrobial combinations of colistin-rifampicin
had the highest synergistic effect at 76% (19/25), followed by
colistin-erythromycin at 60% (15/25), meropenem-rifampicin
at 24% (6/25), colistin-meropenem at 20% (5/25), colistin-
tigecycline at 20% (5/25), and meropenem-tigecycline at 4%
(1/25). The triple antimicrobial combinations of meropenem-
tigecycline-colistin showed a synergistic effect of 100% (16/16).
Colistin-tigecycline was ineffective on E. coli (Table 2).

For CPE isolates, most double antimicrobial combinations
were ineffective on the isolates with coexisting blaNDM and
blaIMP genes, including colistin-rifampicin, colistin-meropenem,
colistin-tigecycline, and meropenem-tigecycline (Table 3).
Meropenem-tigecycline had no synergistic effect on CPE with
highly resistant to meropenem. In contrast to colistin-rifampicin,
meropenem-rifampicin demonstrated the greatest potential
synergistic effect on isolates with coexisting blaNDM and blaIMP
genes, with a synergistic effect of 75% (3/4). Colistin-meropenem
also had a synergistic effect of 14.3% (1/7) against blaKPC-
producing isolates and 37.5% (3/8) against blaNDM-producing
isolates. Colistin with tigecycline had no synergistic effect on
blaNDM−1-producing E. coli and S. marcescens.

Time-Kill Assay of the Antimicrobial
Combinations
Time-kill curves of colistin, tigecycline, meropenem,
erythromycin, and rifampicin monotherapy or combination
therapy against the two K. pneumoniae (SF-18-09, blaKPC−2,
C2772, blaNDM−1), one E. coli (C297, blaNDM−1), and one
S. marcescens (C261) are shown in Figure 1. The data represent
the changes in bacterial density from an initial inoculum. The
antimicrobial combinations that demonstrated synergy via the
checkerboard assay were evaluated using the time-kill assay.
According to the checkerboard synergistic drug concentration,
antimicrobial monotherapy showed no bactericidal effect on all
isolates within 24 h. Conversely, the majority of antimicrobial
combinations therapies resulted in an early synergistic effect (≥ 2
log10 decrease in colony counts) within 4 h. However, the bacteria
showed regrowth over 4 h and had the same growth tendency
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TABLE 1 | The characteristics of clinical CRE strains in this study.

Number Bacteria β-lactamase COL-R MLST COL MEM TGC RIF ERY

Class-A Class-B

SF-18-03 kpn NDM-9 0.125 64 0.125 128 64

SF-18-04 kpn KPC-2 – – ST11 0.25 128 0.25 16 >256

SF-18-09 kpn KPC-2 – – ST11 0.25 128 0.25 16 >256

SF-18-33 kpn KPC-2 – – ST11 0.25 128 1 16 >256

SF-18-121 kpn KPC-2 – – ST11 0.25 16 0.25 16 >256

C3469 kpn KPC-2 – – ST11 8 256 4 16 >256

C3497 kpn KPC-2 – – ST11 16 256 4 16 >256

SF-18-153 kpn – NDM-9 – ST3387 0.25 256 8 32 >256

SF-18-03 kpn – NDM-9 – ST520 0.25 64 0.25 128 64

C1376 eco – NDM-1 – ST167 2 64 0.125 16 64

C2772 kpn – NDM-1 – ST656 8 128 0.5 16 64

C297 eco – NDM-1 – ST469 >256 0.125 0.5 128 256

C2550 ecl – NDM-5 – ST25 16 16 0.25 16 >256

C3593 ecl – NDM-5 – ST1059 2 256 0.25 16 128

C2413 ecl NDM-5 + IMP-4 – ST256 0.25 128 0.5 16 256

C2896 kpn NDM-5 + IMP-4 – ST711 0.25 64 8 128 >256

C3012 kox – NDM-5 + IMP-4 – – 0.064 64 0.125 128 >256

C2997 kox – NDM-5 + IMP-4 – – 0.25 32 0.25 128 >256

C599 eco – NDM-5 mcr-1 ST10 4 128 1 128 >256

C613 eco – NDM-5 mcr-1 ST10 4 64 1 128 >256

C1858 eco – NDM-5 mcr-1 ST10 4 64 0.25 8 >256

C1930 eco – NDM-5 mcr-1 ST617 4 128 0.125 8 >256

C185 kpn – NDM-1 mcr-8 ST37 16 32 8 128 >256

SF-18-202 ecl – NDM-1 mcr-9 ST55 >256 64 0.25 8 >256

SF-18-28 ecl – – – ST365 64 0.032 0.25 16 256

C261 sma – – – – >256 128 4 32 256

COL, colistin; COL-R, colistin resistance gene; MLST, Multilocus sequence typing; TGC, tigecycline; MEM, meropenem; RIF, rifampicin; ERY, Erythromycin; MIC,
minimum inhibitory concentration; CRE, Carbapenem-resistant Enterobacterales; kpn, Klebsiella pneumonia; ecl, Enterobacter cloacae; eco, Escherichia coli; sma,
Serratia marcescens; kox, Klebsiella oxytoca; KPC, K. pneumoniae carbapenemase; NDM, New Delhi metallo-β-lactamase; IMP, imipenemase; mcr, mobile colistin
resistance.

TABLE 2 | Checkerboard results of double and triple antimicrobial combinations for 25 clinical CRE strains.

No. of synergy isolates/no. of isolates tested (%)

By organism

Antimicrobial combination K. pneumoniae (n = 11) E. coli (n = 6) E. cloacae (n = 5) K. oxytoca (n = 2) S. marcescens (n = 1) Total (n = 25)

MEM + TGC 0/11 (0%) 0/6 (0%) 0/5 (0%) 0/2 (0%) 1/1 (100%) 1/25 (4.0%)

MEM + COL 2/11 (18.2%) 0/6 (0%) 2/5 (40.0%) 0/2 (0%) 1/1 (100%) 5/25 (20.0%)

COL + TGC 4/11 (36.4%) 0/6 (0%) 1/5 (20.0%) 0/2 (0%) 0/1 (0%) 5/25 (20.0%)

COL + ERY 7/11 (63.6%) 3/6 (50.0%) 3/5 (60.0%) 1/2 (50.0%) 1/1 (100%) 15/25 (60.0%)

COL + RIF 9/11 (81.8%) 5/6 (83.3%) 4/5 (80.0%) 0/2 (0%) 1/1 (100%) 19/25 (76.0%)

MEM + RIF 2/11 (18.2%) 1/6 (16.7%) 1/5 (20.0%) 2/2 (100%) 0/1 (0%) 6/25 (24.0%)

MEM + COL + TGC 6/6 (100%) 6/6 (100%) 2/2 (100%) 2/2 (100%) 0/0 (100%) 16/16 (100%)

COL, colistin; TGC, tigecycline; MEM, meropenem; RIF, rifampicin; ERY, erythromycin; CRE, carbapenem-resistant Enterobacterales.

as the control group within 24 h, including those treated with
the double (Figures 1A1,B1,C1,D1) and triple antimicrobial
combinations (Figure 1D1). Only the colistin-erythromycin
combination showed a bactericidal effect on SF-18-09 within
16 h (Figure 1B1).

When using an antimicrobial concentration of 1 × MIC,
antimicrobial monotherapy showed no bactericidal effect
on all strains within 24 h, whereas the antimicrobial
combination therapy achieved an eradication effect (≥ 3
log10 decreases in colony counts) over 24 h without regrowth
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TABLE 3 | Checkerboard results of double and triple antimicrobial combinations for 25 clinical CRE strains by CPE.

No. of synergy isolates/no. of isolates tested (%)

By CPE

Antimicrobial combinations KPC (n = 7) NDM (n = 7) NDM + mcr (n = 6) NDM + IMP (n = 4) Total (n = 24)

MEM + TGC 0/7 (0%) 0/7 (0%) 0/6 (0%) 0/4 (0%) 0/24 (0%)

MEM + COL 1/7 (14.3%) 2/7 (28.6%) 1/6 (16.7%) 0/4 (0%) 4/24 (16.7%)

COL + TG 2/7 (28.6%) 2/7 (28.6%) 1/6 (16.7%) 0/4 (0%) 5/24 (20.8%)

COL + ERY 5/7 (71.4%) 3/7 (42.9%) 4/6 (66.7%) 2/4 (50.0%) 14/24 (58.3%)

COL + RIF 6/7 (85.7%) 6/7 (85.7%) 6/6 (100%) 0/4 (0%) 18/24 (75.0%)

MEM + RIF 0/7 (0%) 1/7 (14.3%) 2/6 (33.3%) 3/4 (75.0%) 6/24 (25.0%)

MEM + COL + TGC 4/4 (100%) 4/4 (100%) 4/4 (100%) 4/4 (100%) 16/16 (100%)

COL, colistin; TGC, tigecycline; MEM, meropenem; RIF, rifampicin; ERY, Erythromycin; KPC, K. pneumoniae carbapenemase; NDM, New Delhi metallo-β-lactamase; IMP,
integron-encoded metallo-β-lactamase; mcr, mobile colistin resistance; CRE, carbapenem-resistant Enterobacterales; CPE, carbapenemase-producing Enterobacterales.

(Figures 1A2,B2,C2,D2). Colistin-tigecycline only had a
bactericidal effect on C2772 (K. pneumoniae, blaNDM−1)
isolates (Figure 1D2) and a synergistic effect on SF-18-09
(K. pneumoniae, blaKPC−2) isolates (Figure 1B2), and was
ineffective against C297 (E. coli, blaNDM) (Figure 1C2) and
C261 (S. marcescens) isolates (Figure 1A2). In addition,
58.8% (10/17) of the time-kill results were consistent with the
checkerboard results.

Impact of Combination Therapy on
Cellular Morphology
As the colistin-rifampicin combination showed the best
synergistic effect on CPE isolates, we examined their potential
synergistic mechanism. The colistin-sensitive isolate SF-
18-09 (K. pneumoniae, blaKPC) was selected for studying
the morphological changes in the bacterial cellular surface
using SEM. On treatment with a combination of colistin and
rifampicin, the cellular surface showed more micelles and deep
craters (Supplementary Figure 2D) than in the control group
(Supplementary Figure 2A). The cellular surface appeared
to burst, causing excessive leakage of the cellular contents. In
contrast, colistin monotherapy (Supplementary Figure 2B)
caused only slight asperities and craters on the cellular surface.
Rifampicin monotherapy (Supplementary Figure 2C) led to the
formation of a biofilm layer around the cells, protecting them
from being killed.

DISCUSSION

In this study, we assessed the therapeutic effect of seven
antimicrobial combinations (colistin-meropenem, colistin-
tigecycline, colistin-rifampicin, colistin-erythromycin,
meropenem-tigecycline, meropenem-rifampicin, and colistin-
meropenem-tigecycline) against 25 clinical isolates producing
different resistance genes (blaKPC, blaNDM, coexisting blaNDM
and blaIMP, coexisting mcr-1/8/9 and blaNDM) and preserving
highly resistant to meropenem (92% meropenem MIC ≥ 16
µg/mL) using a checkerboard assay, time-kill curves, and SEM.

Antimicrobial combination therapy aims to achieve
bactericidal effects at sub-MICs of the concerned isolates
and is important for extending life and reducing economic
burden. Colistin is a polypeptide antibiotic that causes rapid
bacterial killing in a concentration-dependent manner. It
acts on the Gram-negative bacterial cell wall, leading to
rapid changes in the permeability of the cell membrane and
ultimately cell death (Newton, 1956; Schindler and Osborn,
1979). There are major concerns regarding the safety of
colistin doses and the prevention of heteroresistant phenotypes
(Owen et al., 2007).

Our current study yielded several notable findings. First, the
double antimicrobial colistin-rifampicin combinations showed
the highest synergistic effect against all the isolates tested, but was
ineffective against isolates with coexisting blaNDM and blaIMP.
Although colistin combined with rifampicin is generally regarded
as safe for multidrug-resistant A. baumannii infections in clinical
settings (Bassetti et al., 2008), it is uncertain whether it can be
used to treat infections caused by CPE, the in vivo evidence
remains insufficient.

Colistin-erythromycin had a suboptimal synergistic effect.
The antibacterial spectrum of erythromycin mainly targets
Gram-positive cocci, with side effects involving liver toxicity
and temporary hearing impairment (Mylonas, 2011). Thus,
combining colistin with erythromycin may be a feasible method
to alleviate its side effects. Although we identified a significant
advantage of combining colistin with erythromycin in vitro,
there is incomplete information in the literature regarding its
possible therapeutic effect on CPE infections, and there is a lack
of prospective clinical trials to confirm this effect. The potential
mechanism of the combination of colistin and erythromycin may
be that colistin increases the entry of erythromycin into the cell,
playing an indirect role in its bactericidal activity (Vaara, 1992;
Ofek et al., 1994).

The combination of meropenem with tigecycline had no
synergistic effect on CPE with highly resistant to meropenem.
This result is consistent with a recently published study, which
reported that combination with meropenem is becoming less
effective against strains with meropenem MIC > 8 µg/mL
(Del Bono et al., 2017).
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FIGURE 1 | Time-kill curves of colistin alone or in combination with meropenem, tigecycline, rifampicin, and erythromycin against Serratia marcescens C261 (A),
Klebsiella pneumoniae SF-18-09 (B), Escherichia coli C297 (C), and K. pneumoniae C2772 (D). According to the checkerboard synergistic drug concentration,
monotherapy or combination therapy showed no bactericidal effect on clinical carbapenem-resistant Enterobacterales (CRE) isolates (A1, B1, C1, D1). When using
antibiotic concentration 1 × MIC, combination therapy achieved an eradication effect (≥ 3 log10 decrease in colony counts) within 24 h without regrowth (A2,
B2, C2, D2).
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Triple antimicrobial combinations are being considered as
a treatment option against serious CPE infections, and have
shown promising results in vitro (Diep et al., 2017). In our
study, the triple antimicrobial combinations of meropenem-
tigecycline-colistin showed a synergistic effect of 100%. This is the
first study demonstrating the effectiveness of triple antimicrobial
combinations against coexisting carbapenemase gene isolates,
and more clinical trials are required to validate their effectiveness.

We also confirmed the checkerboard results using time-kill
assays, which provided dynamic measurements of bactericidal
activities over time to explore the in vitro bactericidal effects.
Four strains were selected for this analysis. According to
the checkerboard synergistic drug concentration, unsatisfactory
bactericidal activity was observed against all strains within
24 h when isolates were treated using either monotherapy
or combination therapy, and the same growth tendency was
observed as in the control group. However, these results are
in contrast with those of another study conducted by Soudeiha
et al. (2017), showing that antimicrobial combinations at sub-
MIC levels can also prevent bacterial regrowth. The discrepancy
between these results may be explained by the use of isolates with
different carbapenemase-producing and resistant levels. When
using antimicrobial concentrations of 1×MIC, the combination
of antimicrobials achieved an eradication effect (≥ 3 log10
decreases in colony counts) by 24 h without regrowth compared
with monotherapy, which showed regrowth. The combination of
colistin with other antimicrobials also show bactericidal effects
on S. marcescens strains that are intrinsically non-susceptible to
colistin, as several classes of available antibiotics can penetrate the
envelope barrier effectively in the presence of colistin (Fajardo
et al., 2013). We firstly found that colistin-tigecycline had no
synergistic bactericidal effect on blaNDM−1-producing E. coli and
S. marcescens.

SEM was used to observe morphological changes in the
bacterial cellular surface. Rifampicin monotherapy resulted in
the production of a layer of biofilm formation around cells,
protecting them from death. Previous reports have demonstrated
that the ability of bacteria to form biofilms may contribute to
treatment failure as biofilm-forming bacteria are less susceptible
to antibiotics (Donlan and Costerton, 2002). Colistin combined
with rifampicin caused more micelles and deep craters than
monotherapy, which has been shown to be a precursor of
cell death according to the carpet model hypothesis (Ciumac
et al., 2019). We also observed structural damage via toroidal
pore formation, followed by damage to the bacterial membrane
and cell death. This phenomenon strongly supports the notion
that the synergistic mechanism of colistin with rifampicin may
involve changes in the outer cell membrane permeability encoded
by colistin, allowing more rifampicin to enter and kill cells.
Another possible mechanism is that the combination of colistin
with rifampicin reduces the viability of the cell biofilm at low
rifampicin concentrations (Geladari et al., 2019).

In conclusions, we found that the double antimicrobial
combinations of colistin with rifampicin had the highest
synergistic effect on isolates that produced different
carbapenemase genes and were highly resistant to meropenem.
However, this combination was ineffective on isolates with

coexisting blaNDM and blaIMP genes. The triple antimicrobial
combinations of meropenem, tigecycline, and colistin had
a synergistic effect of 100%. Colistin with tigecycline had
no synergistic effect on blaNDM−1-producing E. coli and
S. marcescens. The limitations of this study include the lack
of in vivo experiments conducted, in addition to its limited
sample sizes. Whether these in vitro findings can be applied
to a clinical setting needs to be confirmed in further studies,
including PK/PD (pharmacokinetics/pharmacodynamics),
in vivo experiments, and prospective randomized clinical trials.
In general, the antimicrobial combinations evaluated in this
study may facilitate the successful treatment of patients infected
with Carbapenemase-producing Enterobacterales.
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Antimicrobial resistance (AR) is one of the most important public health challenges
worldwide as it represents a serious complication that is able to increase the mortality,
morbidity, disability, hospital stay and economic burden related to infectious diseases.
As such, the spread of AR–pathogens must be considered as an emergency, and
interdisciplinary approaches must be undertaken in order to develop not only drugs,
but holistic strategies to undermine the epidemic and pathogenic potentials of multi-
drug resistant (MDR) pathogens. One of such approaches has focused on the use
of antimicrobial nanoparticles (ANPs), as they have demonstrated to possess strong
antimicrobial effects on MDR pathogens. On the other hand, the ability of bacteria to
develop resistance to such agents is minimal. In this way, ANPs may seem a good
choice for the development of new drugs, but there is no certainty about their safety,
which may delay its translation to the clinical setting. As MDR pathogens are quickly
becoming more prevalent and drug development is slow and expensive, there is an
increasing need for the rapid development of new strategies to control such agents.
We hereby explore the possibility of designing ANP-based devices such as surgical
masks and fabrics, wound dressings, catheters, prostheses, dentifrices, water filters,
and nanoparticle-coated metals to exploit the potential of such materials in the combat
of MDR pathogens, with a good potential for translation into the clinical setting.

Keywords: gold nanoparticles, silver nanoparticles, graphene nanoparticles, nanoparticle toxicity, nanoparticle
modified devices, antibiotic resistant bacteria

INTRODUCTION

Antibiotics have been considered among the most important discoveries in the medical field as they
are of great importance to combat infectious diseases, significantly reducing the total morbidity and
mortality of such conditions. However, the misuse, and even the use, of such compounds creates
antibiotic resistance (AR), which is a bacterium’s ability to keep living and/or reproducing in high
antibiotic concentrations where other bacteria of the same species become inactive or die. Bacteria
can be intrinsically resistant to certain antibiotics but can also develop resistance to antibiotics
via genetic mutations. Furthermore, they can also communicate resistance genes (r genes) by
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horizontal gene transfer (HGT) to other bacteria, which enhances
the spreading potential of this phenomenon (Munita and Arias,
2016). Moreover, bacteria can become resistant to multiple drugs
at the same time, being termed multi-drug resistant (MDR)
bacteria, or informally “super bugs.” Any bacteria can become
MDR, but there is a group that has an enhanced ability to
develop this condition, and is comprised by Enterococcus faecium,
Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter
baumannii, Pseudomonas aeruginosa, and Enterobacter spp.,
which are collectively known as the “ESKAPE” group of
pathogens (Rice, 2008).

Antibiotic resistance-pathogens are a serious problem because
they enhance mortality and morbidity rates, increase the risks
of medical procedures and medical costs per procedure, prolong
illness and convalescence periods, and attack preferentially
immunocompromised and hospitalized patients, complicating
their conditions (Tanwar et al., 2014), overall summing to a
great economic burden worldwide. On the other hand, AR also
represents a serious impairment on modern medicine’s ability to
treat and prevent bacterial infections. As a consequence, AR is
currently considered one of the principal threats to global public
health by the World Health Organization (WHO; World Health
Organization [WHO],, 2018) and the Centers of Disease Control
(CDC; Center of Disease Control,, 2020), and both Organizations
have strongly recommended the development of new strategies to
cope with the problem.

The community has responded by implementing regulations
on antimicrobial use and availability, active surveillance on
AR-strains and antibiotic use, educational programs for both
the medical practitioners and the general public, improved
sanitation, and even banning antibiotic use for growth promotion
in animals and improving farm biosecurity. Nonetheless, such
political and social measures are yet to produce a full control
on the phenomenon. As a consequence, new antimicrobial
agents and derivatives, anti-virulence drugs, ecologic and
evolutionary management approaches, and even new therapeutic
options like those derived from bacteriophages, enzybiotics,
and antimicrobial nanoparticles (ANPs) have been undertaken
(Roca et al., 2015). Some of these strategies are, apparently,
good candidates for the control of the whole phenomenon, but
nanoparticles (NPs) are of special interest as they have shown
little potential for the development of bacterial resistance against
them; despite this, they have not been shown to be entirely safe
for their use as drugs. Nonetheless, they may represent a valuable
tool to exert ecological control of AR-bacteria, because of their
enhanced residual activity. As such, in this review we will examine
the antimicrobial properties of NPs and we will discuss their
potential to design devices that may be useful in the control of
AR-pathogens when used, not as drugs, but as barriers in the
clinical, veterinary, farm and sewage settings.

WHERE IS THE ROOT OF THE
PROBLEM?

As early as three years after penicillin was introduced into
the market and its use was widespread, penicillin-resistant

bacteria became a reality and rendered a new challenge for drug
developers, whom responded by developing new antibacterial
agents. Such increased rate of antibiotic discovery led the
period of 1950–1970 to be considered as the “golden age”
of antibiotic discovery. Nonetheless, resistance to antibiotics
developed shortly after the introduction of every new class
of antimicrobial compound (Davies and Davies, 2010; Zaman
et al., 2017), regardless of the mode of action of each antibiotic.
Although new interesting approaches to antibiotic development
have been successfully applied in the experimental setting (Ling
et al., 2015; Stokes et al., 2020), worldwide experience with such
drugs foresees the development of resistance against these new
options, as resistance to any antibiotic class to date has been
detected, and even multiple mechanisms of resistance against
each type of compound have been described.

In the beginning of the aforementioned “antibiotic era” AR
was an uncommon finding, but such phenomenon has spread
slowly and steadily all over the world. In 2019 more than 2.8
million AR-infections were detected only in the United States
(US), and such infections produced more than 35,000 deaths
(Solomon and Oliver, 2014), while in Europe more than 33,000
people die yearly due to AR-infections, and it is thought that
the phenomenon will lead to ten million extra human deaths
worldwide by 2050 (Abat et al., 2017). Moreover, AR is not
an exclusive phenomenon of developed countries as 43% of
the deaths due to nosocomial infections in Thailand occur by
MDR-pathogens (Lim et al., 2016). The economic burden of this
type of infections is also important as only in the US over 20
billion dollars are lost per year, and worldwide economic losses
of more than $100 trillion on a yearly basis have also been
reported (Munita and Arias, 2016). In such panorama WHO’s
(World Health Organization [WHO],, 2018) and CDC’s (Center
of Disease Control,, 2020) words of caution on the matter are
more than justified.

Despite these evidences, the conception of AR as a pandemic
is debatable. For instance, a true epidemic represents a rapid
increase in the number of cases, and a pandemic is just a
global epidemic. As such, pandemics and epidemics represent
a sudden impact on the economy and public health, but they
do not impact on the long term any of the aforementioned
phenomena. On the opposite end, an endemic may occur in
high numbers, but its rate is constant or changes slowly and
steadily, and may represent a long term impact on both the public
health and the economy. As AR has been steadily increasing
since the 1940’s, causing a long term impact on the worldwide
health and economy systems, it can rather be categorized as
an endemic (MacIntyre and Bui, 2017). Whether an endemic
rate will maintain, increase or decrease is unpredictable, but
the sources of any endemic will always stay the same (Bloom
and Cadarette, 2019), and this renders a very positive starting
point for tackling the whole AR phenomenon, as the roots of an
endemic are mostly always known.

In the US alone over 2 million people acquire a nosocomial
infection each year, with around 70% of such infections being
caused by MDR-strains (Memoli et al., 2008). On the other
hand, up to 87% of farm animals have been described to be
resistant to amoxicillin and oxytetracyclin, 85% to trimethoprim,
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81% to neomycin and 66% to flumequine, among others (van
den Bogaard et al., 2001). Moreover, 90% of seawater-originated
bacteria are resistant to at least one antibiotic, and up to 20% are
resistant to at least five, while antibiotic traces can be detected in
52% of fish samples (Watts et al., 2017). Finally, different r genes
can be found on 27.1% of regular sewage bacteria (Parnanen
et al., 2019), while the richness and abundance of r genes and
MDR bacteria are vastly increased in airplane sewages (Hess
et al., 2019), presumably because of HGT among bacteria that are
native from different parts of the world.

Following this line of thought, farms, sewages as well as human
and veterinary hospitals are critical sources for the AR endemic,
so that action in these sectors must be undertaken in order to
control such problem. Although social control measures have
been applied as means to limit antibiotic usage and accessibility
by the general population, such measures are yet to produce the
desired effect of lowering the rate of AR dissemination (Uchil
et al., 2014). In this way, an interdisciplinary approach must be
conceived, and we think that the strategies proposed in such
plan must be aimed at the control of resistant microbes in the
aforementioned sectors through the use of newer technologies
that difficult AR-bacterial spread and development.

Furthermore, AR might be a problem for the end users of
antibiotics, nonetheless, the control of the whole phenomenon
may not happen at the patient’s treatment level because the
aforementioned hot points are reservoirs for MDR-bacteria,
where these pathogens may persist even after the treatment of
infected patients with new effective drugs. Rather, ecological
control in the aforementioned areas might be a complementary
strategy in order to prevent such infections in the first place, and
to reduce the likelihood for the emergence of new AR-bacteria.
However, to our notice there are no biotechnological measures
or devices in commercial use in order to cope with this awn of
the problem. As such, we think that devices with long-lasting
antimicrobial properties, such as those that can be fabricated
through NP-based coatings, may be of considerable utility for
such application.

FIGHTING FIRE WITH FIRE:
NANOTECHNOLOGY TO COMBAT
ANTIBIOTIC RESISTANCE

Professor Norio Taniguchi from Tokyo Science University
introduced the term “Nanotechnology” in the year 1974, and in
this word he described precision manufacturing of materials at
the nanometer level. Later, Professor Richard P. Feynman, who
was a physicist, gave the concept Nanotechnology in his lecture
“There’s plenty of room at the bottom” (Rai et al., 2009). In
general we used the word “nano” to indicate that something has
a size of one billionth of a meter or 10−9, with a word that is
synonymous to “dwarf”. Thus, the term “nanoparticle” refers to
clusters of atoms in the size range of 1–100 nm (Rai et al., 2009),
and interestingly, some of them possess reduced production costs
(Huh and Kwon, 2011).

Thus, it may seem that ANPs are a recent development,
but indeed they have been investigated (Lea, 1889), and even

commercially available, for the last 120 years. To our notice, their
first commercial application was an antiseptic named “Collargol”,
which was made of colloidal silver (Fortescue-Brickdale, 1903)
that contained silver particles with an average size of 10 nm.
Even when the “nano” nomenclature was not used at that time,
the increased efficiency of the nano-scaled silver was recognized
(Nowack et al., 2011).

Nowadays, many reports have given details about the
antimicrobial properties of some NPs, and even activity against
AR-bacteria (Andrade et al., 2013). These nanomaterials (NMs)
are divided in mainly two groups, according to their chemistry,
such being metallic and non-metallic. A vast variety of NPs
exist, but the most important in terms of antibacterial properties
are: iron oxide (Fe3O4NPs), zinc oxide (ZnONPs), copper oxide
(CuONPs), titanium dioxide (TiO2NPs), silver (AgNPs), gold
(AuNPs) graphene oxide (GrONPs), and reduced graphene
(rGrNPs) NPs (Yousefi et al., 2017).

Along with Alexander Fleming, Paul Ehrlich was one of the
pioneers of the so called “antibiotic era.” He was a great promoter
of the idea that chemical compounds “able to exert their full
action exclusively on the parasite harbored within the organism”
could be synthesized, leading to the concept of antibiotics as
“magic bullets” to kill pathogens exclusively, without damaging
the host. Despite antibiotic’s success in their specific task, such
bullets have attacked bacteria through only one mechanism at
a time, which may have favored AR resistance, as altering the
bullet’s target has been a common bacterial strategy to escape
antibiotic’s action. On the other hand, the aforementioned NPs
do not bind to a specific receptor on the bacterial cell, rather,
they have different mechanisms of action, and this characteristic
complicates the development of resistance by bacteria, and
broadens the spectrum of each kind of NP.

In general, several of the main toxicological effects of
NPs occur by direct contact with the bacterial cell surface
(Wang et al., 2017), which makes important to understand
their properties. Gram-positive bacteria have a thick layer of
peptidoglycan and negatively charged teichoic acids (phosphate
groups), while Gram-negative bacteria have a thin layer of
peptidoglycan associated to a phospholipid outer membrane
with lipopolysaccharides that are also negatively charged. Such
structural features are important because the primary interaction
of metal-based NPs with bacteria is mediated by electrostatic
attraction between opposite charges, which leads to a strong
bond that triggers their biologically relevant mechanisms of
action, which are different for each metal (Guzman et al.,
2012). Moreover, structural factors of the NPs influence their
antibacterial activity. For example, its size (a smaller size
enhances their surface area, which improves their association
with cell wall or cell membrane) (Seil and Webster, 2012;
Agnihotri et al., 2014), morphology (shapes that augment
their surface enhance their function) and dose (the higher the
concentration the greater the result) (Breunig et al., 2008).

For the purposes of this article, we chose three “prototypical”
kinds of NPs: silver, gold and graphene. The first one being a
metallic NP that has a strong standalone action over bacteria, the
second one being another metallic NP that lacks such standalone
activity, and the last one being a non-metallic type of NP that
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has a strong antibacterial activity on its own, as we will discuss
the potential applications of these three kinds of NPs in the
development of antimicrobial contraptions.

SILVER NANOPARTICLES

Silver has been known as a metal from as early as 4,000 BCE and it
was used for making coins, utensils, containers, jewelry, and other
objects (Gharpure et al., 2020). Moreover, such element has been
used for a long time for the treatment of ulcers (Alexander, 2009),
infections, burns and chronic wounds, as well as to make water
potable, nonetheless, its true potential in medicine was unknown
at that date as this metal was yet to be used in its nanometric
size, which enhances its antimicrobial potential. In recent years
the AgNPs have been used as disinfectants, but their use as drugs
has been limited as AgNPs can produce agyrosis, a condition
that causes a blue-gray or purple coloration on the skin, mucosal
membranes and conjunctiva (Rai et al., 2009).

The AgNPs have also been used in many applications on the
physical and chemical sciences, being synthesized in different
morphologies like spherical, conical, rod-like wires, etc., but these
applications are beyond the scope of this review (Syafiuddin et al.,
2017). On the other hand, AgNP uses in biological sciences to
combat AR bacteria in products like toothpaste, deodorants, food
packaging, cosmetics and water filters are, on the other hand, of
great interest for the present discussion (Gharpure et al., 2020).

Different methods for synthesizing AgNPs have been used,
and are based on physical, chemical or biological approaches
(Song and Kim, 2009). Physical (top-down) and chemical
techniques (bottom-up), in general, yield the highest efficiency
and production rates, but these methods involve use of toxic and
expensive chemicals (Gharpure et al., 2019). For this situation
the green synthesis has been proposed as an eco-friendly,
unexpensive, reliable, fast, biocompatible, and clean alternative
(Gharpure et al., 2020).

Disregarding their synthesis method, AgNPs have been shown
to inhibit a wide range of HIV-1 strains, both Gram positive
and Gram negative bacteria and parasites such as Leishmania
tropica, Entamoeba histolytica, Cryptosporidium parvum, Giardia
lamblia, Fasciola spp., Plasmodium spp., and Toxoplasma gondii,
whether resistant to antibiotics or not, therefore they are
considered to possess a broad spectrum of action (Table 1).

The biological effects of AgNPs is dependent on the following
mechanisms: (a) the silver NPs binding to the cell wall altering its
permeability, which was demonstrated in studies conducted on
gram negative bacteria such as Escherichia coli and Pseudomonas
aeruginosa, where the neutralization of the bacterial surface
charge altered the cell membrane’s permeability (Ramalingam
et al., 2016) and in E. coli, where scanning and transmission
electron microscopy studies demonstrated that these NPs are able
to produce pits in the cell walls, where the AgNPs accumulated
(Sondi and Salopek-Sondi, 2004); (b) AgNPs are able to bind
to membrane transport and respiratory chain proteins, thus
interfering with the cell division and ion transport processes,
ultimately leading to bacterial death (Ivask et al., 2014); (c)
their nanometric size (1–10 nm) allows them to penetrate into

bacteria affecting intracellular process leading to inhibition of
transcription, translation and protein synthesis (Rai et al., 2009;
Reidy et al., 2013). This mechanism is explained by the release of
silver ions which could be generated and introduced by oxidative
dissolution of AgNPs in the presence of oxygen (Reidy et al.,
2013). Such ions with positive charge have high affinity with the
negatively charged sulfhydryl, phosphate and carbonyl groups
of the bacterial cell membrane, proteins and DNA bases (Rai
et al., 2009; Xiu et al., 2012; Chung et al., 2016) and upon
contact lead to their alteration. Also, they are able to impair
the transport and release of potassium ions and to block the
synthesis of ATP in the bacterial cells (Hsueh et al., 2015). It
has been shown that smaller NPs not only have an enhanced
reactivity, but can also release more of these ions to an enhanced
antimicrobial activity (Jung et al., 2008). Additionally, (d) AgNPs
are able to dissipate the proton motive force of bacterial enzymes
and transporters, thus causing an accumulation of envelope
protein precursors and causing a destabilization of the outer
membrane, collapse of its potential and depletion of intracellular
ATP levels (Lok et al., 2006). Finally, (e) AgNP and silver ions
lead bacteria to generate reactive oxygen species (ROS) such
as superoxide anions, hydrogen peroxide, and hydroxyl radical
(Manikprabhu and Lingappa, 2013), as well as malondialdehyde,
protein carbonyl content, and nitric oxide (Gurunathan et al.,
2018), which on increased concentrations cause a direct damage
to bacterial DNA causing chain breakage, cytosine, adenine
and guanine deamination, lipid peroxidation and also block the
activation of the enzymatic DNA repair (Figure 1).

As a side note, AgNPs also possess anti-HIV activity, by
inhibiting the initial phase of fusion and entry of HIV-1 mediated
by the gp120-CD4 interaction in a dose-dependent manner.
Also AgNPs inhibit the first phase of the replication cycle
at the same place where the antiretroviral enfurtivide acts.
Moreover, AgNPs also have antiparasite activity, as they enter
directly in the protoctist cell membrane through ion channels,
transport proteins or by endocytosis, and then they inhibit
promastigote proliferation, damage DNA and generate ROS
(Khezerlou et al., 2018).

Gold Nanoparticles
Gold has been known to man since the pre-history, and has
been used as a coin since 3100 BCE. It is considered as a noble
metal due to its inertness towards other atoms and molecules,
which makes for its apparent lack of cytotoxicity to human cells
and a great overall biocompatibility (Gharpure et al., 2020). Its
innate properties have been exploited for a plethora of biomedical
applications like targeted drug delivery, biosensors, optical
imaging, as well as detection of microorganisms (Gharpure et al.,
2020). Many studies have also shown the antimicrobial properties
of this type of NPs, especially in many pathogenic species (Dizaj
et al., 2014). AuNPs can be fabricated using “top-down” as well
as “bottom-up” methods, however, green synthesis has also been
favored for its environmental friendliness (Shah et al., 2014).

Gold nanoparticles (AuNPs) are effective against many strains
of bacteria and fungi such as E. coli, P. aeruginosa, Salmonella
typhi, Bacillus subtilis, Candida albicans, Candida glabrata, and
some major pathogenic bacteria like S. aureus and K. pneumoniae
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TABLE 1 | Mechanisms of action and spectrum of activity of nanoparticles.

Nanoparticle Action Mechanism Spectrum References

AgNPs • Alteration of membrane permeability.
• Binding to membrane proteins (respiratory chain proteins,

transport proteins) and interfering with cell division and ion
transport processes.
• Inhibition of transcription, translation and protein synthesis.
• Generation of ROS causing a direct damage on DNA.

Leishmania tropica
Entamoeba histolytica
Cryptosporidium parvum
Giardia lamblia
Fasciola spp.
Plasmodium spp.
Toxoplasma gondii
Escherichia coli
Pseudomonas aeruginosa

Ivask et al., 2014; Habimana et al., 2018;
Ahmad et al., 2013; Eigler and Hirsch, 2014;
Soleymani et al., 2016; Amrollahi-Sharifabadi
et al., 2018

AuNPs • Interfering with protein and ATP synthesis.
• Modifiying membrane potential.
• Inhibition of H+ transport

Escherichia coli
Pseudomonas aeruginosa
Salmonella typhi
Bacillus subtilis
Staphylococcus aureus
Klebsiella pneumoniae
Candida albicans
Candida glabrata

Khezerlou et al., 2018; Kumar et al., 2019

Graphene • Disruption of cell membrane by nano-blades.
• Trapping of the bacterial membrane.
• Destructive extraction of membrane lipids.
• Oxidative stress which interfere with bacterial metabolism.

Escherichia coli
Staphylococcus aureus
Pseudmonoas aeruginosa
Bacillus subtilis
Enterococcus faecalis
Staphylococcus epidermidis

Mu et al., 2016; Barbero et al., 2017; Ahsan
et al., 2018; Kang et al., 2019

FIGURE 1 | Mechanisms of action of nanopaticles. AgNPs 1) bind to cell membrane neutralizing its charge, thus altering its permeability and affecting membrane
transport and respiratory chain proteins; 2) release silver ions affecting genetic expression and ATP synthesis; 3) and generate ROS affecting DNA and cell
membrane. AuNPs 4) inhibit ATP synthase; 5) inhibit tRNA binding to the ribosome; GrNPs 6) entrapment of the bacterial membrane; 7) form nano-blades that cut
the cell membrane and destroy DNA; GrONPs 8) destroy the bacterial cell membrane; and 9) ROS-dependent and ROS-independent oxidative stress.

(Table 1), including AR-strains. Unlike AgNPs that act alone,
AuNPs act better in association with antibiotics, vaccines and
antibodies, as they enhance their intracellular transportation, and
diffusion, but alone, their antimicrobial properties are mainly

dependent on its ability to interfere in protein synthesis by the
inhibition of the tRNA’s ability to bind the ribosome (Cui et al.,
2012), to inhibit ATP-synthesis by the inhibition of ATP-ase and
damaging the microbial cell membrane (Nisar et al., 2019), as well
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as their ability to modify the membrane potential (Gharpure et al.,
2020). Additionally, these NPs seem to disrupt biofilms, although
this activity is greatly enhanced when AuNPs are conjugated with
proteinase-K (Habimana et al., 2018). On the other hand, their
antifungal activity is due to the inhibition of H+-ATPase at the
plasma membrane, inhibiting the H+ transport chain (Ahmad
et al., 2013; Figure 1).

Graphene Nanoparticles
Graphene (Gr) is an allotrope of carbon that consists of a
single layer of atoms in a two dimensional lattice, it is the
basic structural element of other allotropes, including graphite,
charcoal, carbon nanotubes and fullerenes (Eigler and Hirsch,
2014). Since its discovery by Prof. Andre Geim and Prof.
Kostya Novoselovt in 2004 through micromechanical exfoliation
of graphite (Zhang et al., 2012), Gr has been regarded as
the strongest material in the world, and its extreme elasticity
and conductivity have also been recognized, placing it as a
wonder material with many applications in biomedicine for
the diagnostic and treatment of diseases (Amrollahi-Sharifabadi
et al., 2018). Moreover, Gr can also be synthesized in an oxidized
form to yield graphene oxide (GrO), which possesses chemically
reactive oxygen groups such as hydroxyl, carboxylic acid, and
epoxy which enhance its reactivity (Soleymani et al., 2016).

Because of their two-dimensional structure Gr and GrO have
a large specific surface area that enhances their reactivity and
gives them some of their interesting antibacterial properties
(Hasanzadeh et al., 2016), but also their size, oxidation level,
functionalization, or electronic structure are able to modulate
their activity (Perreault et al., 2015). Their proposed mechanisms
of action involve both physical and chemical activities, where
the physical modes of action are the most extensively found
in experimental settings, such as direct damage by contact of
the bacterial membranes with the sharp edges of graphene and
wrapping of the bacteria. On the other hand, the chemical modes
involve oxidative stress by ROS generation and charge transfer
(Kumar et al., 2019).

For instance, on the physical damaging strategies of both
pristine (Tu et al., 2013) and oxidized (Hui et al., 2014) graphene
Tu et al. (2013) observed the degradation on the inner and
outer cell membranes of E. coli, as well as the reduction of the
colony’s viability in relation to the ability of Gr to penetrate
such structures to extract its phospholipid contents. Such damage
resemble the formation of pores on the membrane, and it has
been further suggested that the density of Gr edges, rather than
the size or shape of such structures, is the main factor enhancing
its antibacterial ability (Pham et al., 2015). Moreover, GrNPs
are able to cause membrane stress by direct contact with the
sharp edges of their nanosheets, which disrupts and damages cell
membranes, thus leading to the release of intracellular contents
in a mechanism of action termed as “nano-blade.” Also, GrNPs
are able to aggregate in the surroundings of the bacterial cells to
trap bacteria in Gr-based cages, isolating them from the nutrients
from the environment and thus leading to bacterial cell death (Liu
et al., 2011; Zou X. et al., 2016). Both GrNPs and GrONPs are able
to produce ROS-dependent and ROS-independent (derived from
the oxidation of glutathione) oxidative stress, which interfere

with bacterial metabolism and disrupt cellular functions (Liu
et al., 2011; Zou X. et al., 2016), while this effect is stronger for
GrO (Liu et al., 2011; Figure 1). Both materials have exhibited
good antibacterial properties against many bacteria, to include
E. coli, S. aureus, P. aeruginosa, B. subtilis, Enterococcus faecalis,
and S. epidermidis (Pham et al., 2015; Table 1), many of which are
AR strains.

As such, both materials have been used to disperse, stabilize
and deliver drugs, like antibiotics, but such materials also exhibit
good antimicrobial properties on their own. Such antibacterial
activity, coupled with Gr and GrO’s flexibility and resistance,
has led to the design of antibacterial packaging for food,
water treatment devices, wound dressings and disinfectants
(Ji et al., 2016).

Summary of Antimicrobial NPs’
Mechanisms of Action
As mentioned above, NPs have more than one mode of action
over bacteria, which enhances their potential to damage different
prokaryotic structures at the same time, thus augmenting their
overall antibacterial activity. However, it is not clear if all the
reported effects for each NP occur with every bacterial species,
nor if all of the antimicrobial mechanisms reported for a
particular chemical NP type are the same when the size and shape
of the NPs is different. In such panorama, comparative studies
to determine what size, shape and chemical type of NPs possess
the strongest antibacterial activity, and over what bacterial species
do they exert these effects are needed in order to determine the
best ways to use these agents. Moreover, this kinds of studies
may serve to better assess if resistance to NPs at optimal doses is
possible, and may also serve to focus studies about their toxicity in
a more efficient way, as these topics have been an intense matter
of discussion over the years, finding conflicting results.

Moreover, much of these assays have been carried out
in vitro, while emerging properties in living systems have not
been taking into proper account for the assessment of NPs’
antimicrobial activity. For instance, it is known that upon contact
with NPs proteins tend to aggregate to the NPs’ surface to
constitute a structure known as “biomolecular corona,” which
alters various NP’s properties, like targets, toxicity, immune-
modulating properties and interaction with cellular structures
(Barbero et al., 2017; Ahsan et al., 2018). This phenomenon
could also alter the way that NPs interact with bacteria, changing
entirely their antimicrobial properties when they are used as
drugs. Moreover, antimicrobial NPs do combat intracellular
bacteria in co-cultures of bacteria and host cells, but with
decreased efficiency in comparison with extracellular bacterial
infections (Kang et al., 2019). In such cases the NPs’ antibacterial
ability was enhanced through conjugation with antibiotics, as
NPs worked as vehicles for the antibiotics and synergized with
them (Mu et al., 2016). Nonetheless, it is still unknown whether
NPs may be able to combat intracellular infections in an in vivo
setting, in which dose and with what efficiency. Thus, as happens
with many emerging nano- and bio-technologies, much research
is needed to complete our understanding of NPs’ properties, and
in vivo acquired data is of paramount importance in this case.
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FIGURE 2 | Types of nanoparticle-based devices. 1) The NP impregnated devices release NPs or ions over time, thus killing bacteria (e.g., AgNP-impregnated
catheters), 2) the coating actively kills bacteria by contact (e.g., AgNP-coated fabrics and surgical masks), and 3) biofilm adhesion is inhibited by the coating (e.g.,
maxillofacial prostheses and dentifrices).

BACTERIAL RESISTANCE TO
NANOPARTICLES: IS IT POSSIBLE?

As NPs act on bacteria by multiple mechanisms at the same time,
the development of resistance to them should come from several
accumulated mutations as a mean to modify some, or all, of
the NPs’ bacterial targets. In this way, some authors think that
such phenomenon is highly unlikely (Baptista et al., 2018), but
others have detected some degree of resistance mainly to metallic
NPs, as thoroughly reviewed in (Nino-Martinez et al., 2019). To
date, electrostatic repulsion, ion efflux pumps (Yang et al., 2012),
production of protective extracellular matrixes (Zhang et al.,
2018), mutations (Graves et al., 2015), and biofilm adaptations
have been detected among bacteria in order to resist the attack of
such NPs (Agnihotri et al., 2014).

Interestingly, the detection of NP-resistance (NPR) has been
made in experiments where bacteria have been cultured in
mediums with low metallic-NP concentration, but to our
knowledge, there is no data about NPR occurring in cultures
with the minimum inhibitory concentrations for each type
of NP. Moreover, NPR may be countered easily by many
strategies, to include the regulation of NP’s size as a reduction
of their dimensions leads to an increased surface/volume
ratio and thus to enhanced antimicrobial activity (Agnihotri
et al., 2014), which reduces the possibility of bacterial
survival and development of resistance through mutations

(Graves et al., 2015) and development of ion efflux pumps (Yang
et al., 2012). Also, agents like simvastatin and pomegranate
rind extract have been demonstrated to inhibit the extracellular
aggregation of metallic-NPs that occurs through the bacterial
production of an extracellular matrix and by flagellin expression
(Panacek et al., 2018; Cui et al., 2020). In this way, a correct
design of the NP-based therapies or devices may not induce the
development of NPR.

To our knowledge, there is no data regarding the development
of resistance against GrNPs or GrONPs, but excellent research
by Guo and Zhang (2017) and Zou W. et al. (2016) have
shown that GrONPs are able to damage r genes-carrying
plasmids and lower the abundance of the r genes sulI and
intI, which suggests that resistance to GrONP is unlikely to
happen. Furthermore, such investigations suggest the basis of
a strategy to halt the HGT of genetic resistance determinants,
which may be of use in the dampening of the whole
phenomenon of AR.

On the other hand, either bimetallic NP (Gopinath et al.,
2016) or GO-Ag nanocomposites (de Moraes et al., 2015)
have shown increased antibacterial activity when compared to
monometallic or non-composite NPs, but research regarding
their ability to halt r genes or about the bacterial ability to develop
resistance against such materials is lacking, but their increased
antimicrobial abilities appear as promising alternatives to avoid
resistance development.
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TRANSLATION TO THE CLINICAL
SETTING: ARE NANOPARTICLES SAFE
TO USE?

The prototypical path to introduce new drugs into the clinical
setting requires vast preclinical testing of the candidate products
to produce information about their efficacy and safety. Drugs
that appear to be safe in animal models and human cell studies,
may then be evaluated for their further study in phase 1 clinical
trials, where safety and dosage in human patients will be assayed
in no more than 100 volunteers, in a period that typically lasts
for ≈3 years. If they are found to be safe, further tests of
effectiveness, side effects and adverse reactions of the long term
will be performed in phase 2 and 3 clinical trials in a period
that may last up to ≈13 additional years. Notwithstanding, all
new products must prove to be safe in the preclinical setting in
order to be approved for phase 1 trials (Lipsky and Sharp, 2001).
Accordingly, we and other researchers (Min et al., 2015) think
that the translation of some applications of the antimicrobial
NPs into the clinical setting may be difficult and/or greatly
delayed as there is not much consistency on their safety profile,
as contrasting results have been shown on several in vitro and
in vivo models.

For instance, AgNPs have shown good in vitro compatibility
with human and murine erythrocytes (Hossain et al., 2019),
but they do exhibit toxicity to peripheral blood mononuclear
cells (PBMCs; Shin et al., 2007). Moreover, in vivo studies on
zebra fish made by Bao and colleagues show that AgNPs induce
pathological changes on growth indices, oxidative/antioxidative
status, neural signaling, Na/K-ATPase function, and antioxidant
system in the intestine, but not in the liver, with male zebrafish
being more sensitive than female (Bao et al., 2020). Despite the
absence of liver damage on zebra fish observed by Bao, further
studies on liver damage show that although murine healthy
livers do not appear to suffer much damage by AgNPs, these
NPs appear to enhance ethanol-induced inflammatory damage
in such organ (Kermanizadeh et al., 2017). Moreover, although
functionalization of AgNPs with either polyvinylpyrrolidone
(PVP) or citrate appears to enhance these NP’s antimicrobial
activity, it enhances their potential to induce cellular toxicity as
well as inflammatory and oxidative stress on murine lungs, thus
leading to mild pulmonary fibrosis (Wang et al., 2014). Together,
these results suggest that AgNPs may possess a certain degree of
toxicity that may be impossible to overcome, but on the other
hand Rezvani et al. (2019) suggest that AgNPs may be safe on
certain limited doses. Nonetheless, a reduction on these NP’s
doses may lead to NPR (Graves et al., 2015), in such a way that
more research is needed in order to best describe a safe and
effective way of using AgNPs as drugs.

Although AuNPs are generally thought to be safe, they
have been shown to accumulate in the intestine, kidney, liver,
spleen, and colon, while also being aggregated in the nucleus
of hepatocytes and colonic cells, where they produce DNA
damage, with smaller NPs exhibiting more toxicity (Lopez-
Chaves et al., 2018). Moreover, such NPs have also been

demonstrated to induce pulmonary inflammation, disregarding
their size (Gosens et al., 2010).

Moreover, non-metallic NPs have also shown a certain
degree of toxicity as chicken embryos that were injected with
diamond, graphite, Gr and GrO NPs into the egg albumin
showed decreased survival, but there were no differences on
body and organ weight, red blood-cell morphology, blood serum
biochemical parameters, and oxidative damage in the surviving
embryos in comparison with the placebo group (Kurantowicz
et al., 2017). Also, upon inhalation GO nanosheets induce pores
in the pulmonary surfactant film, thus altering its ultrastructure
and biophysical properties (Hu et al., 2015). Furthermore, in the
graphene family of NPs cytotoxicity dependent upon physical
destruction of cell components, oxidative stress, DNA damage,
inflammatory response, apoptosis, autophagy, and necrosis
have been detected in many different models, as thoroughly
reviewed in (Ou et al., 2016). Nonetheless, in other in vivo
studies pathological changes in weight gain, hematological and
biochemical parameters have only been detected in rats that
received high GrONP-doses (500 mg/kg), but not lower doses (50
or 150 mg/kg) (Amrollahi-Sharifabadi et al., 2018).

Despite the aforementioned evidence, which seems to render
antimicrobial NPs mostly as toxic substances, controversy has
arisen in regards to this topic, as some authors report a safe
profile for NPs while other researchers find cues of their toxicity.
This controversy may arise from the fact that NP are not created
equally and have different properties. Aside from the dose (the
larger the dose, the more toxic it is) (Graham et al., 2017),
the size (the smaller the NPs the more toxic that they are)
(Pan et al., 2007; Kim et al., 2012), shape (the most surface
they have, the more toxic they are) (Wang et al., 2008; Nam
and An, 2019), surface charge and chemistry of NPs (Zoroddu
et al., 2014) also relate to increased NP toxicity, and may change
the NP’s absorption properties, accumulation, distribution and
elimination, thus complicating the study of their toxicity. On the
other hand, surface functionalization of such materials has been
proposed as an alternative to improve biocompatibility (Subbiah
et al., 2010), but research has shown that in some cases (Wang
et al., 2014; Zhang et al., 2016) this strategy enhances toxicity.

Lastly, most of the assessments for NPs’ toxicity comes from
in vitro-performed experiments, where emerging properties of
living systems are neglected. In the setting of living beings,
at least three physiological phenomena could impact the final
toxicological performance of NPs, which are: (a) the fact that
cells possess different shapes when they are part of a three
dimensional tissue, in comparison to those that are cultivated
in two dimension culture plates. This phenomena has only
recently been recognized as a factor determining NP uptake and
toxicity (Farvadi et al., 2018). Secondly, (b) the formation of the
“biomolecular corona” that happens when NPs come in contact
with biomolecules, such as proteins (Ahsan et al., 2018) which
could alter their toxicological properties significantly. And lastly,
(c) the fact that many bacterial infections are intracellular, and
that although NPs are able to combat intracellular infections, they
do so with decreased efficiency over extracellular colonization
(Kang et al., 2019), which may impact the efficiency of the dose.
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In this way the study of nanotoxicology becomes increasingly
complicated with NP diversity and with the interaction with the
host, which may explain the emergence of the aforementioned
controversy regarding the safety of NPs for use in medicine.
Nonetheless, much research is needed in a standardized manner
to accurately assess the toxicity of NPs (Zoroddu et al., 2014;
Hofmann-Amtenbrink et al., 2015) in different doses and routes
of administration, and then get to know their potential in the
clinical setting, which may be of enhanced importance in order
to fully explode this promising technology.

Taken together, these data suggest that antimicrobial NPs
may not be safe for their use as drugs, or at least, that much
knowledge is needed in order to establish the right windows for
dosage, administration routes, functionalization strategies and
physical properties for their safe use. Thus, this knowledge, or
lack of knowledge may halt NPs’ approval for clinical use. In
such panorama, more research is needed in order to enhance
our knowledge about the modulation of NPs’ toxicity and activity
trough functionalization and regulation of NP’s dose, size, shape,
and chemistry in order to fully exploit their potential, but also
research about alternative uses for NPs that do not involve
administration into the human body are critical, as a strategy
to exploit their potential as soon as possible and dampen their
toxicity at the same time.

One could argue that the last decade has witnessed
a rise in nanomedicine, with many kinds of NPs being
investigated and applied into the clinics, but the nano-
drugs that have been approved for their clinical use, or
that are actually being investigated in clinical trials are
mainly anti-tumoral agents, supplements, imaging contrasts
and agents, drug-delivery vehicles, anesthetics (Anselmo and
Mitragotri, 2019), and even as biosensors for the detection
of infectious diseases (Colino and Millán, 2018), but little
to no advances have been made in regards to ANPs into
their clinical application, which reflects the importance of this
window of opportunity.

ANTIMICROBIAL
NANOPARTICLE-BASED MEDICAL
DEVICES: TOWARDS THE ECOLOGIC
CONTROL OF MDR BACTERIA

As stated above, many experiments have rendered antimicrobial
NPs as good alternatives to fight AR-bacteria, and some types
of NPs may even be able to avoid resistance development, but
the use of such technology as drug alternatives may be halted
due to the numerous evidences about its toxicity. Nonetheless,
as promising research shows, antimicrobial NPs may have an
alternative niche in the combat of AR pathogens trough NP-
based medical devices, where the NPs are not administrated
into the body, or have a minimal contact with it, but can
be used as barriers in endemic zones for AR to control the
spread of AR-bacteria. In this way, such contraptions may exert
ecological control of such pathogens while avoiding toxicity to
the human body.

As stated in the above sections, hospitals are considered
endemic zones for AR-bacteria and AR development, and within
a hospital, textile fabrics have been described as important
reservoirs and fomites (Neely, 2000; Neely and Maley, 2000;
Pilonetto et al., 2004). Moreover, other biomedical devices that
come in contact with the patients, like catheters and wound
dressings, are also important vectors for the transmission and
dissemination of nosocomial bacteria. As such, the prevention of
microorganism colonization and consequent biofilm formation
in these devices could limit AR-development (Palmieri et al.,
2016). Three major types of antimicrobial coatings have been
designed to accomplish this task: (i) the ones that work through
antibacterial NP release, others that work by (ii) contact-killing,
and finally (iii) by halting bacterial adhesion. In the first case,
the coating is loaded with a drug that is released over time by
diffusion or erosion, and because the release is local and gradual,
it limits systemic effects. In the second case, bacteria are directly
killed by contact with the coated portion of the device, and in
the third, biofilm adhesion becomes impaired (Figure 2). In every
case, the potential harmful effects of such coatings are limited to
the contact area and its near surroundings, so that they appear to
be safer than NP-based drug candidates (Palmieri et al., 2016).

Following this line of thought, Duran et al. (2007) developed
AgNP-coated cotton fabrics that demonstrated a significant
antibacterial activity against S. aureus, while Li et al. (2006)
developed titanium dioxide and silver-nanoparticle coated
surgical masks that killed 100% of both the E. coli and S. aureus
bacteria that were incubated in such masks, without producing
skin irritation on their volunteered wearers.

On the other hand, AgNP-coated wound dressings have an
enhanced ability to prevent bacterial colonization and biofilm
formation at wound sites while promoting tissue regeneration,
and thus have been rendered as useful in the treatment of
extended wounds and burns (Halstead et al., 2015). Moreover,
nanocomposites of silver and graphene with a ratio of 5:1
exhibit stronger antimicrobial and wound healing abilities than
other hydrogels, while exhibiting low toxicity as evidenced by
an MTT (3-(4,5-Dimethyldiazol-2-yl)-2,5-Diphenyl Tetrazolium
Bromide) assay (Fan et al., 2014), suggesting that nanocomposites
may have an enhanced function over simple NPs, perhaps
as a function of the addition of two different sets of action
mechanisms (Table 2).

This technologies could be extrapolated to their use in surgical
fields, intensive care unit (ICU) bedding and scrubs for its use
in both human and animal hospitals; but also could be used to
produce bedding material and protections for pens and cages, or
even to produce air filters to control AR-bacteria spreading in
farms (Table 2).

Furthermore, in the late 90’s nano-silver coated catheters
were clinically investigated for their potential to reduce hospital
acquired bacteremia with disappointing results (Darouiche et al.,
1999; Antonelli et al., 2012), nonetheless further preclinical
investigations showed that a supercritical carbon dioxide
impregnation method, as opposed to coating, showed an
increased release of silver ions that could lead to enhanced
antibacterial actions (Furno et al., 2004; Table 2). In regard
to this technology, a thorough investigation on whether the
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TABLE 2 | Nanoparticle-based antimicrobial devices: uses and possible future applications.

Devices Nanomaterial Advantage Shown Application Possible further uses

Cotton fabrics AgNPs Significant antibacterial activity against
S. aureus

Antimicrobial textile
fabrics

Surgical uniforms, surgical fields,
bedding and scrubs for hospital and
veterinary use
Bedding materials, pen and cage
protections in farms

Surgical masks Titanium dioxide and
silver-nanocomposite

Kills 100% of both, E. coli and
S. aureus without skin irritation

Surgical masks Air filters coupled to air conditioning
devices

Coated wound
dressings

AgNPs Prevent bacterial colonization and
biofilm formation at wound sites while
promoting tissue regeneration

Treatment of extended
wounds and burns

May be used for veterinary applications

Coated catheters AgNPs Dampening of catheter-produced
bacteremia

Reduction in bacterial
colonies

Building components for
hemodialyzers, blood oxygenators, and
arterial filters, among other biomedical
devices. Hoses to transport water into
farms. Sewages.

Coated maxillofacial
silicone prostheses

AgNPs Good biocompatibility and antimicrobial
actions

Antibacterial
maxillofacial prostheses

Sealing materials for building farms and
hospitals, sewage joints. Base materials
for water bottles and filters

NP-coated
polyurethane and
polycarbonate

GrO Good biocompatibility and antimicrobial
actions

None Pipes, toilets, hoses and panels

Dentifrice Nano-silver fluoride Effectively kills S. mutans, prevents
bacterial adhesion to teeth and control
teeth acidification

Paste for mouth
washing and caries
prevention

Abrasive cleaners for farms, hospitals
and sewages

Water disinfecting filters Ceramic membranes
coated with Ag/GrO
nanocomposites

Eliminates E.coli and S. aureus in water Water disinfecting Disinfection of water for human and
animal consumption and of sewage
water

Graphene coated
titanium

Electrodeposition of
graphene on titanium

Antibacterial activity against S. aureus
and E. coli. Compatibility with
peripheral blood mononuclear cells

Antimicrobial Gr-based
coating of a metal

Surgical materials. Posts and plates for
building hospital beds, pens and cages.

released silver ions could potentially produce toxic effects or not
should also be critically evaluated, but the hemocompatibility
that AgNPs have shown (Hossain et al., 2019) may suggest a
safe profile for such application. On the other hand, AgNP-
coated maxillofacial silicone prostheses have suggested good
antimicrobial abilities and good biocompatibility measured by
fibroblast viability after exposition (Meran et al., 2017; Table 2),
enhancing the notion that polymeric materials that are coated
with NPs may be safe for use.

Moreover, polymers like polyurethane and polycarbonate are
widely used in hospitals for residue disposal and to build masks,
physical barriers, hemodialyzers, drug delivery carriers, blood
oxygenators, and arterial filters, among other biomedical devices.
In this way, NP-based antimicrobial coatings for such materials
may also help to control AR bacteria, not only by building devices
that would be used in close contact with the medical staff and
patients, but also by serving as building blocks for critical points
of a hospital’s facilities. Consequently, both GrO reinforced
polyurethane (An et al., 2013) and polycarbonate (Mahendran
et al., 2016) have been tested for potential antibacterial effects,
finding good results on such ability and on their safety profiles
(Mejias Carpio et al., 2012). Also, AgCl-TiO2 nanocomposite
was demonstrated to be an excellent matrix that released silver
ions to the surroundings to inhibit biofilm formation (Naik
and Kowshik, 2014). These findings could be extrapolated to

AR-endemic zones, like hospitals, farms and sewages, as these
materials may be used in these facilities as building blocks for
pipes, hoses and panels (Table 2).

Most of the research regarding the coating of biomedical
devices with antimicrobial NPs has been aimed at polymers, but
metallic surfaces can also be coated with such substances. An
example being the electrodeposition of graphene on titanium,
which facilitates hydroxyapatite aggregation and possesses
interesting antibacterial abilities against S. aureus and E. coli,
while being compatible with PBMCs (Janković et al., 2015)
(Table 2). In this way, we think that this development may help
to fasten prostheses with an enhanced level of security, or even
to augment the sterility of scalpels, among other applications,
but research about NP-coatings on other materials that are
more common in hospitals, farms or sewages, like aluminum
or steel, may enhance the reach of such applications in the war
against AR bacteria.

On the other hand, a dentifrice containing nano-silver fluoride
was shown to effectively kill S. mutans, prevent bacterial adhesion
to teeth and to control teeth acidification significantly better
than sodium fluoride-based dentifrices, thus protecting the
tooth enamel in an enhanced way and suggesting a potential
effectiveness to prevent caries (Teixeira et al., 2018). While the
authors of the study did not evaluated the toxicity of such
dentifrice, we think that the complete process of mouth washing
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may be able to reduce the exposition of the users to the dentifrice’s
nano-compounds. Nonetheless, the absorption potential of the
mucosal tissues of the mouth may enhance the infusion of such
NPs into the patient’s system, so that studies about this kind of
application should be thoroughly conducted.

As sewage water is another endemic zone for AR-
development, water disinfecting devices may be another route
to cope with the ongoing problem of AR bacteria. Following such
line of thought, water treatment devices that are based on ceramic
membranes coated with Ag/GrO nanocomposites seem to be able
to reduce from 106 colony forming units (CFUs) of either E. coli
or S. aureus per mL to zero (Bao et al., 2011).

On the other hand, to our notice, AuNPs have never been
used for the development of NP-based contraptions, and we
think that such phenomenon may be explained by the reasoning
that these NPs do not possess strong antimicrobial activities on
their own, rather functioning as drug carriers and deliverers.
As such, designing devices based upon AuNPs may be more
complicated and prone to dysfunctions, but research is needed
to discard its potential uses in such field. An interesting potential
application for this kind of NPs is its conjugation with existing
disinfectants, as it may potentiate their absorption and ultimately
enhance their efficiency. Moreover, silver and/or graphene NP-
based disinfectants could act as standalone disinfectants, as they
have a proven antimicrobial activity, and as disinfectants are
used on inert surfaces the requirements for safety are lower than
those for drugs.

On the other hand, even when the green synthesis methods for
NP production using plants (Ovais et al., 2018b) and microbial
enzymes (Ovais et al., 2018a) have been considered highly cost-
effective and eco-friendly, NPs that are produced by top down,
and especially, bottom up techniques have an edge on size
consistency, sizing accuracy, and shaping (Slepička et al., 2019).
Thus, if a especial shape and/or size is needed in order for the
NP-modified device to work properly, cost may be a limitation
for the technology. In this sense, research on the improvement of
the so called green-synthesis methods may be a key to empower
NP-coated devices.

CONCLUSION

Taken together, the aforementioned data suggest that NPs may
be effective allies for fighting AR-bacteria, as they are not only
effective against several regular bacterial species, but they have
also shown good antimicrobial abilities against AR-strains. Their
properties to fight AR-bacteria even extend to the ability of
graphene NPs to degrade r-plasmids and to inhibit the expression

of r-genes, which may limit the spread and development of
AR. Nonetheless, such substances have been shown to possess a
certain degree of toxicity, which renders them as poor candidates
for drug development. For this reason, NPs may be best suited
for the development of extracorporeal devices with antimicrobial
properties, as this kind of contraptions may utilize their potential
for fighting AR-pathogens without compromising human health.

Much research is needed in order to fully evaluate the potential
use of the aforementioned devices in the clinical setting, but most
of the research in this area aim at the development of biomedical
contraptions, without extrapolations into other endemic zones
for AR-bacteria. Thus, we think that veterinary hospitals, farms
and sewages must not be neglected in these initiatives, as they
represent important sources of AR-bacteria, and a complete
environmental control of AR-pathogens in such endemic zones
may be of use in the fight against the phenomenon.

Much research is needed regarding this topic as the durability
of the antimicrobial coatings, the proper NP density for
their optimal function, whether or not they produce nano-
contamination, or even the effectiveness and safety of other
NP-based contraptions (like NP-based disinfectants) have not
been studied. Also, further studies warrant a correct extrapolation
of the resulting devices in all the AR-endemic zones in order to
provide further control of the AR-bacteria.
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Antimicrobial resistance remains a great threat to global health. In response to the
World Health Organizations’ global call for action, nature has been explored for novel
and safe antimicrobial candidates. To date, fish have gained recognition as potential
source of safe, broad spectrum and effective antimicrobial therapeutics. The use of
computational methods to design antimicrobial candidates of industrial application has
however, been lagging behind. To fill the gap and contribute to the current fish-derived
antimicrobial peptide repertoire, this study used Support Vector Machines algorithm to
fish out fish-antimicrobial peptide-motif candidates encrypted in 127 peptides submitted
at the Antimicrobial Peptide Database (APD3), steered by their physico-chemical
characteristics (i.e., positive net charge, hydrophobicity, stability, molecular weight and
sequence length). The best two novel antimicrobial peptide-motifs (A15_B, A15_E)
with the lowest instability index (−28.25, −22.49, respectively) and highest isoelectric
point (pI) index (10.48 for each) were selected for further analysis. Their 3D structures
were predicted using I-TASSER and PEP-FOLD servers while ProSA, PROCHECK, and
ANOLEA were used to validate them. The models predicted by I-TASSER were found
to be better than those predicted by PEP-FOLD upon validation. Two I-TASSER models
with the lowest c-score of −0.10 and −0.30 for A15_B and A15_E peptide-motifs,
respectively, were selected for docking against known bacterial-antimicrobial target-
proteins retrieved from protein databank (PDB). Carbapenam-3-carboxylate synthase
(PDB ID; 4oj8) yielded the lowest docking energy (−8.80 and −7.80 Kcal/mol) against
motif A15_B and A15_E, respectively, using AutoDock VINA. Further, in addition to
Carbapenam-3-carboxylate synthase, these peptides (A15_B and A15_E) were found
to as well bind to membrane protein (PDB ID: 1by3) and Carbapenem synthetase
(PDB: 1q15) when ClusPro and HPEPDOCK tools were used. The membrane protein
yielded docking energy scores (DES): −290.094, −270.751; coefficient weight (CW):
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−763.6, 763.3 for A15_B and A15_E) whereas, Carbapenem synthetase (PDB: 1q15)
had a DES of −236.802, −262.75 and a CW of −819.7, −829.7 for peptides A15_B
and A15_E, respectively. Motif A15_B of amino acid positions 2–19 in Pleurocidin
exhibited the strongest in silico antimicrobial potentials. This segment could be a good
biological candidate of great application in pharmaceutical industries as an antimicrobial
drug candidate.

Keywords: antimicrobial, fish, peptides, putative, motifs

INTRODUCTION

Infections caused by drug resistant bacteria remain one of the
leading causes of death worldwide (Martín-Rodríguez et al.,
2016), as the potential of conventional antibiotics to combat
such microbial infections fall (Tillotson and Zinner, 2017). Over
700,000 lives are lost to antimicrobial resistance annually and
the number is projected to increase (O’Neill, 2014). The rate
at which these microorganisms develop resistance has outpaced
the rate of production of the current class of antibiotics in
spite of the immense attempts by pharmaceutical industries
for new antibiotics, thereby complicating the overall efforts
(Huttner et al., 2013).

Several attempts like phage therapy (Moghadam et al., 2020),
anti-biofilms agents (Pletzer and Hancock, 2016; Hamayeli et al.,
2019), and the use of phytochemicals (Manuel et al., 2012) have
been pipelined to prevent antimicrobial resistance. Antimicrobial
peptides also known as host defensive proteins (HDPs) biologics
are gradually gaining ground as far as countering multiple
drug resistance is concerned (Fox, 2013). A case to note is
Tyrothricin; the first peptide antibiotic to be clinically used in
humans (Dubos, 1939). Since its discovery over six decades ago,
no record of resistance has been reported against Tyrothricin
(Atiye et al., 2014). Similarly, polymixin B and Colistin are
among the only standing antibiotics for the treatment of multiple
drug resistant bacteria including the notorious Acinetobacter
baumanni, Pseudomonas aeruginosa, and Klebsiella pneumoniae
as the last line antibiotics (Falagas and Kasiakou, 2005). Their
ability to withstand resistance has been attributed to their
non-specific mechanism of action, multiple target sites and
presence of rare D-amino acids (Ageitos and Villa, 2016). They
classically conform to the first mode of action by interfering with
bacterial peptidoglycan cell wall biogenesis to ease cell membrane
disruption (Sujeet et al., 2018; Hao et al., 2019) and as ligands
for bacterial intracellular targets (Mahlapuu et al., 2016). Most
antimicrobial peptides have generally recognized as safe (GRAS)
status (Hancock and Scott, 2000), with little or no toxicity (Wang
S. et al., 2016). These good attributes have led to an intensified
search for novel peptide antibiotics from diverse forms of life.

Fish are capable of producing antimicrobial peptides of
various classes including defensins, cathelicidins, hepcidins,
histone-derived peptides, and piscidins (Masso-silva and
Diamond, 2014; Kumar et al., 2018). These fish derived
antimicrobial peptides are active against both fish and human
pathogens (Hayek et al., 2013; Huan et al., 2020; Tiralongo
et al., 2020). However, their low stability coupled with

insufficient information about their structures has limited
their pharmaceutical applicability (Okella et al., 2018), since
information on protein structure and biological (motif)
interaction are key for determining the stability of any active
protein (Vaidya et al., 2018). Antimicrobial activity of peptides
greatly relies on amino acid composition, structure and their
physicochemical properties (Kêska and Stadnik, 2017). There are
numerous experimentally validated fish-derived antimicrobial
peptides. However, insights into the amino acid composition,
peptide structure and the target interactions with motifs in these
antimicrobial peptides are lacking and present a gap that needs
to be understood. This gap can however be filled through the use
of in silico approaches. In this study we report findings of motif
design, target identification and target interactions with putative
antimicrobial peptide motif derived from fish.

MATERIALS AND METHODS

Study Design
This was an in silico study setup involving fishing out
novel antimicrobial peptide motifs encrypted in 127 fish
antimicrobial peptides on Antimicrobial Peptide Databases.
Potential antimicrobial peptide motifs were then selected based
on their physicochemical characteristics like hydrophobicity,
stability, and molecular weight/size as well as sequence length.
The best two antimicrobial peptide candidate-motifs were
designed for their putative antimicrobial leads and docked
against the known antimicrobial protein-targets to predict their
potential mode of action.

Retrieval of Antimicrobial Peptide
Sequence
Out of the 127 existing antimicrobial peptide (AMP) sequences,
a total of 24 naturally occurring peptides (<100 amino acid
residues) of fish origin (Table 1), with well characterized
antimicrobial activity were retrieved from Antimicrobial Peptide
Database (APD3) using fish as the source organism at http:
//aps.unmc.edu/AP/tools.php (Retrieved on May 19th, 2019)
(Wang G. et al., 2016).

Antimicrobial Peptide-Motif Design
To generate and identify potential antimicrobial peptide motifs,
the retrieved sequences in FASTA file format were subjected to
web-based Support Vector Machines (SVMs) algorithm based
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TABLE 1 | Retrieved fish-derived antimicrobial peptide.

APD ID Name of peptide Source (spp.) Amino acid length AMP family

AP00492 Misgurin Misgurnus anguillicaudatus 21 Piscidin

AP00555 Parasin I Parasilurus asotus 19 Not reported

AP00691 HFIAP-1 Myxine glutinosa 37 Cathelicidin

AP00692 HFIAP-3 Myxine glutinosa 30 Cathelicidin

AP01619 HbbetaP-1 Ictalurus punctatus 33 Not reported

AP01648 Pelteobagrin Pelteobagrus fulvidraco R. 22 Not reported

AP01796 saBD Sparus aurata 42 Defensin

AP02159 Chionodracine Chionodraco hamatus 22 Piscidin-like

AP02521 PaLEAP-2 Plecoglossus altivelis 41 Not reported

AP02982 RP6 Oplegnathus fasciatus 15 Not reported

AP02983 RP7 Oplegnathus fasciatus 21 Not reported

AP00473 Piscidin 1 Morone saxatilis 22 Piscidin

AP00474 Piscidin 3 Morone saxatilis 22 Piscidin

AP02050 sb-Moronecidin Morone saxatilis 23 Piscidin

AP00166 Pleurocidin Pleuronectes americanus 25 Pleurocidin

AP02219 Cod-β defensin Gadus morhua 38 Defensin

AP01713 CodCath Gadus morhua 67 Cathelicidin

AP00537 SAMP H1 Salmo salar 30 Not reported

AP00411 Oncorhyncin II Oncorhynchus mykiss 69 Not reported

AP00489 Hipposin Hippoglossus hippoglusus L. 51 Not reported

AP00644 Pardaxin 4 Pardachirus marmoratus 33 Not reported

AP00302 Hepcidin Morone chrysops 21 Hepcidin

AP02049 wb-Moronecidin Morone saxatilis 23 Piscidin

AP02521 PaLEAP-2 Plecoglossus altivelis 41 Not reported

tool of Collection of Anti-Microbial Peptides (CAMPR3) server
(May, 2019)1 (Waghu et al., 2016). The generated motifs were
then screened based on several physiochemical parameters
(Torrent et al., 2012a). The choice of the physiochemical
parameters took into account that of the already existing
polycationic and amphipathic AMPs; Amino acid length (18
residues), positive net charge (+4 to +6), hydrophobicity (40
and 60%) and isoelectric point of up to 10 (Wang S. et al.,
2016; Hincapié et al., 2018). Helical wheels for the generated
motif sequences were determined using HeliQuest server2 at
18 amino acid window and one turn size (Gautier et al.,
2008), so as to come up with cationic and hydrophobic amino
acids, hydrophobicity and hydrophobic moment among other
characteristics of the potential motifs (Torrent et al., 2012b).
Furthermore, the instability of the putative peptides was checked
using an ExPASy tool; ProtParam3, where an instability index
above zero implies it’s an unstable peptide.

Antimicrobial Peptide-Motif 3D Structure
Prediction and Evaluation
Due to the shortness of the peptide sequences (<30 amino
acids) coupled with the absence of their experimentally attained
structure for templates, the three dimensional structure of
putative peptide-motifs were predicted using the Iterative

1http://www.camp.bicnirrh.res.in
2https://heliquest.ipmc.cnrs.fr/cgi-bin/ComputParams.py
3https://web.expasy.org/protparam/

Threading Assembly Refinement (I-TASSER) server4 (Yang
and Zhang, 2015). The peptides were modeled using protein
templates identified by Local Meta-Threading Server (LOMETS)
from the Protein Data Bank (PDB) library. LOMETS uses
multiple threading approaches to align the query protein amino
acid sequence against the PDB5. Template proteins with the
highest sequence identity and lowest Z-score were used in the
modeling exercise (Table 2). The best models were identified
based on their c-scores. This score is calculated based on
the significance of threading template alignments and the
convergence parameters of the structure assembly simulations.
It ranges from -5 to 2, where a lower score value indicates a
highly confident model while the higher indicates the reverse.
The peptide 3D structure prediction exercise was cross-validated
using a web-based de novo peptide structure prediction tool, PEP-
FOLD v3.56 (Thévenet et al., 2012). Briefly the query peptide
amino acid sequences in FASTA format were used as the input
file sequences. The algorithm was set to run 100 simulations
and the output models were ranked based on sOPEP energies
of individual model, where the lower the energy the better the
model. The best models for both peptides A15_A and A15_B
from the two peptide structure prediction tools (I-TASSER and
PEP-FOLD v3.5) were then analyzed for their quality. Validation
of these peptides structure was carried out in three phases;

4https://zhanglab.ccmb.med.umich.edu/I-TASSER/
5http://www.rcsb.org/
6https://bioserv.rpbs.univ-paris-diderot.fr/services/PEP-FOLD3/
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TABLE 2 | Template protein strictures used in the modeling exercise.

A15_B A15_E

SN PDB-Id Iden1 Iden2 Cov N Z-score PDB-Id Iden1 Iden2 Cov N Z-score

1 2la2A 0.59 0.5 0.94 1.75 1rimA 0.28 0.28 1 1.66

2 6g65A 0.28 0.28 1 1.1 6mzcE 0.17 0.22 1 1.09

3 6cfz 0.45 0.28 0.61 1.02 1rimA 0.28 0.28 1 1.51

4 1tf3A 0.35 0.33 0.94 2.09 2la2 0.35 0.5 0.94 1.04

5 2kfqA 0.22 0.28 1 1.62 3bzlA 0.07 0.06 0.83 1.64

6 1rimA 0.24 0.22 0.94 1.07 2la2A 0.33 0.5 1 1.59

7 3jqhA 0.11 0.11 1 1.77 3t8sA 0.22 0.33 1 1.01

8 2jpkA 0.33 0.33 1 1.6 2pq4B 0.33 0.33 1 1.31

9 1p7aA 0.18 0.28 0.94 1.01 1be3K 0.22 0.28 1 1.56

10 1jlzA 0.39 0.39 1 1.74 2juiA 0.33 0.33 1 1.58

Iden1 is the percentage sequence identity of the templates in the threading aligned region with the query sequence. Iden2 is the percentage sequence identity of the
whole template chains with query sequence. Cov represents the coverage of the threading alignment and is equal to the number of aligned residues divided by the length
of query protein. N Z-score is the normalized Z-score of the threading alignments. Alignment with a Normalized Z-score >1 mean a good alignment and vice versa.

First by using Protein Structure Analysis (ProSA) web-server7

(Wiederstein and Sippl, 2007) which predicts the query protein
z-score, local model quality, and residue energy. The Z-score
indicates the model quality by comparing the query protein
z-score against the z-score of experimentally validated proteins
available in the protein data bank (PDB). In the second phase,
PROCHECK was then used to measure the stereo-chemical
properties of the modeled peptide-motifs (Laskowski et al.,
1993), and finally, Atomic Non-Local Environment Assessment
(ANOLEA) web server8 was used to calculate the energy of
the query protein and evaluate their heavy atomic Non-Local
Environment (NLE) in each molecule (Melo et al., 1997).

Target Fishing
To identify the most probable target-proteins of the motifs,
all the approved antibiotic targets in the DrugBank database
(Law et al., 2014) at https://www.drugbank.ca/targets were fished
using key words; target and antibiotics. The receptor proteins
alongside their identities were later retrieved from Protein Data
Bank (PDB) library.

Molecular Docking Studies
The docking exercise was carried out on the top two potential
AMP motifs against known protein drug targets. Docking was
carried-out using the AutoDock VINA (Trott and Olson, 2019)
on the DINC 2.0 Web server9 (Antunes et al., 2017). The
docking was validated using two docking tools; Hierarchical
flexible Peptide Docking (HPEPDOCK) and ClusPro (Kozakov
et al., 2017; Zhou et al., 2018) for optimized protein-peptide
interaction. HPEPDOCK predicts the protein-peptide interaction
using the hierarchical algorithm between the protein and the
peptide 3D structure while ClusPro performs a global docking
procedure in four folds, motif-based prediction based on
peptide conformation, rigid-body docking, scoring based on

7https://prosa.services.came.sbg.ac.at/prosa.php
8http://melolab.org/anolea/
9http://dinc.kavrakilab.org/

structural clustering; and final structure minimization. Briefly,
the 3D structures of both the receptor protein (retrieved
from PDB) and the modeled 3D peptide structures were
the input files for both docking tools. Both ClusPro and
HPEPDOCK docking were performed onto their respective
web servers 10,11.

RESULTS

Sequence Retrieval
A total of 127 fish derived peptide sequences were retrieved
out of which, 24 peptide sequences were qualified (Table 1).
The average peptide-amino acid length was 32 residues (ranging
from 15–69 residues). 20% of the retrieved peptide-sequences
belonged to the cathelcidin family with 45.8% not reported. The
target organisms of the retrieved peptides ranged from bacteria
to yeast and fungi.

Antimicrobial Peptide Motif Design
A total of 361 peptide-motif sequences were designed from
the qualified sequences which had suitable physico-chemical
properties viz. mean hydrophobicity (Hm) greater than 0.3 (based
on Fauchere and Pliska scale) (Fauchere and Pliska, 1983), net
charge of + 4 and above, low instability index below zero, high
antimicrobial probability were qualified. Seven peptide-motifs
(Table 3), from which two peptide-motifs (A15_B and A15_E)
with the highest stability (least instability index −28.25, −22.49,
respectively) and highest antimicrobial probability (0.982) were
selected for docking studies. Both peptides were found to be
from the sequence of Pleurocidin; an AMP secreted by a winter
flounder fish, P. americanus located between amino acids 2–19
and 5–22, respectively.

10https://bioserv.rpbs.univ-paris-diderot.fr/services/pepATTRACT/#docking-
performance
11https://cluspro.bu.edu/
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Peptide Motifs 3D Structure Prediction
and Evaluation
The I-TASSER modeling returned five models for each
modeled peptide motif (A15_B and A15_E),while the PEP-
FOLD prediction returned 10 models. The best I-TASSER models
had a negative c-score. I-TASSER Model-1 for both peptides
(A15_B and A15_E) had the best c-score of -0.10 and -0.03,
respectively (Table 4). On the other hand PEP-FOLD model1
for both peptides (A15_B and A15_E) were recognized as
the best model with the lowest sOPEP energy of −25.1325
and −25.4534 and Apollo predicted melting temperature (tm)
score of 0.703 and 0.714, respectively. The Model1_A15_B
and Model1_A15_E for both I-TASSER and PEP-FOLD were
characterized as the best models from both tools, thus selected
for model structure analysis.

The Ramachandran plot analysis indicates that I-TASSER
Model1_A15_E had 13 residues in the most favorable region and
1 in the additional allowed region. None of the Model1_A15_E
peptide-motif residues were in the disallowed region. Similarly,
I-TASSER Model1_A15_B had 12 residues in the most favorable
region, 1 in the additional allowed region with none in disallowed
region (Figure 1; Laskowski et al., 1993). On the other hand,
PEP-FOLD model1_A15_B had 13 residues in the favorable
region while PEP-FOLD model1 A15_E had 14 residues in the
favorable region. In addition, a cross-validation with ProSA,
showed that I-TASSER models had a z-score of -1.5, -1.27 against
A15_B and A15_E, while a z-score of -1.44, -1.5 were observed
for PEP-FOLD A_15_B and A_15_E models, respectively. All
model z-scores were in the same range with the z-score of
experimentally validated proteins, thus considered to be accurate.
Likewise, ANOLEA showed that majority of I-TASSER models
(33.3 and 44.5% for model A15_B and A15_E, respectively) had
amino acid residues of the peptide chain in a favorable energy
environment (with low energy-scores) (Figure 2) while PEP-
FOLD model A15_B and A15_E had 22.2 and 55.7% of amino
acid residues with low energy. I-TASSER model1 for both A15_B
and A15_E show to be the best peptide structures and they were
selected for docking exercise.

Target Fishing
A total of 28 targets were fished from the DrugBank database,
out of which 18 had experimentally determined structures
deposited at PDB (Table 5). Majority of the structures
(83.3%) were determined using X-ray diffraction with only one

structure (C-1027) determined using solution Nuclear Magnetic
Resonance (NMR).

Molecular Docking
Docking exercise with AutoDock VINA revealed that both
peptide-motifs (A15_B and A15_E) were able to bind with
low docking energies (ranging from -8.80 to -5.80 Kcal/mol)
indicating their fairly high affinity with the selected antimicrobial
target protein (Table 6). The best docking energy, however,
was observed against vancosaminyl transferase protein (PDB
ID; 1rrv, docking energy (DE); −8.20, −7.60 Kcal/mol), Beta-
hexosaminidase protein (PDB ID; 4g46 DE; −7.90, −7.70
Kcal/mol), membrane protein (PDB: 1by3 DE; −7.3, −7.3),
and carbapenam protein (PDB ID; 4oj8 DE; −8.80, −7.80
Kcal/mol) against peptide-motif A15_B and A15_E, respectively
(Table 6). The affinity of peptide-motifs A15_B and A15_E was
highest within chains of the target proteins (PDB ID 1rrv, 4g6c,
and 4oj8). Docking validation with HPEPDOCK shows that
membrane protein (PDB: 1by3) and Carbapenem synthetase had
the highest docking potential to peptide A15_B and A15_E with
a docking energy score of −290.094, −270.751 against protein
1by3 and −236.802, −262.75 against 1q15, respectively. Likewise,
docking with ClusPro further indicated that membrane protein
and carbapenem synthetase had the highest chance to bind to
peptide A15_B and A15_E with a coefficient weight of −763.6,
−763.3 against protein 1by3 and −819.7, −829.7 against peptide
A15_B and A15_E, respectively. Carbapenam synthetase (PDB
ID; 4oj8) which had the lowest docking energy against the two
peptides was found to be among the targets with lowest docking
energies scores of (-221.657 and −196.952) against peptide
A15_B and A15_E using HPEPDOCK. However, this protein had
the lowest coefficient weight score of −681.2 and −66.8 against
peptide A15_B and A15_E using ClusPro, respectively. Peptide
motif A15_B which had the lowest instability index (highest
stability) also showed a relatively higher binding affinity than its
counterpart A15_E (Table 6) in all the 3 docking methods, except
with protein 1by3 where peptide A15_E had a lower docking
energy score than A15_B using HPEPDOCK.

DISCUSSION

The present study demonstrates that an online Support
Vector Machines (SVMs) algorithm effectively localizes
motifs of potentially best antimicrobial activity within a

TABLE 3 | Physicochemical properties of peptides sourced through in silico analysis.

Peptide Sequence Charge H (%) Hm µ Hr pI Ii MW (Da) Ap

A15_B WGSFFKKAAHVGKHVGKA +4 44.44 0.303 0.508 10.48 −28.25 1955.30 0.982

A15_E FFKKAAHVGKHVGKAALT +4 50.00 0.307 0.347 10.48 −22.49 1910.30 0.982

A20_Q RSSRAGLQFPVGRVHRLL +4 44.44 0.342 0.349 12.48 85.86 2049.41 0.741

A20_R SSRAGLQFPVGRVHRLLR +4 44.44 0.342 0.349 12.48 72.15 2049.41 0.729

A20_U AGLQFPVGRVHRLLRKGN + 4 44.44 0.314 0.380 12.30 41.32 2018.40 0.917

A20_V GLQFPVGRVHRLLRKGNY +4 44.44 0.350 0.344 11.72 41.32 2110.50 0.816

A20_W LQFPVGRVHRLLRKGNYA +4 50.00 0.367 0.346 11.72 54.47 2124.52 0.740

H, Hydrophobicity; Hm, mean hydrophobicity; µHr, relative hydrophobic moment; Ii, instability index; MW, molecular weight; Ap, Antimicrobial probability.
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TABLE 4 | Top 5 output peptide structure prediction models from i-TASSER, PEP-FOLD, and their model evaluation.

Models iTASSER output modelC-score PEP-FOLD output model scores

A15_B A15_E A15_E A15_B

sOPEP tm sOPEP tm

Model1 −0.10 −0.03 −25.4534 0.703 −25.1325 0.714

Model2 −5 −5 −25.3043 0.661 −25.0347 0.740

Model3 −5 −5 −25.2665 0.716 −25.0096 0.764

Model4 −5 −5 −25.0894 0.694 −24.8657 0.760

Model5 −5 −1.76 −24.895 0.670 −24.7082 0.739

FIGURE 1 | I-TASSER predicted peptide 3D structure homology models and their Ramachandran validation plots. (A) A15_B peptide-motif, (B) Ramachandran plot
for A15_B peptide-motif, (C) A15_E peptide-motif, (D) Ramachandran plot for A15_E peptide-motif. Peptide-motif A15_B had 12 amino acids sequences in the
allowed region while peptide-motif A15_E had 13 amino acid in the favorable region. Both peptide-motifs had no amino acid sequence in the disallowed region. The
cartons were rendered in Edu PyMOL.
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FIGURE 2 | I-TASSER predicted peptide 3D structure ANOLEA and ProSA validation plots. (A) Peptide A15_B ANOLEA energy score, (B) Peptide A15_B ProSA
z-score, (C) Peptide A15_E ANOLEA energy score, (D) Peptide A15_B ProSA z-score. ANOLEA validation showed that 33.3 and 44.5% of peptide A15_B and
A15_E had their amino acid residues in the favorable regions (low energy scores highlighted in red). Peptide motifs A15_B and A15_E had z-scores of −1.5 and
−1.27, respectively, and were within the normal z-score of experimentally validated proteins. The ANOLEA plots were generated in R using latticeExtra package.

TABLE 5 | Antimicrobial target proteins used in the docking exercise.

Protein name PDB Id Classification Organism Method

C-1027 1hzl Antibiotic Streptomyces globisporus Solution NMR

Tyrosine aminomutase 3kdy Lyase Streptomyces globisporus X-ray diffraction

50s ribosomal protein l32 6qul Antibiotic Escherichia coli Electron microscopy

Carbapenam synthetase 1q15 Biosynthetic protein Pectobacterium carotovorum X-ray diffraction

Iron(3 +)-hydroxamate-binding protein fhud 1esz Metal transport Escherichia coli X-ray diffraction

Fhua 1by3 Membrane protein Escherichia coli X-ray diffraction

Neocarzinostatin 1nco Antibacterial and antitumor protein Streptomyces carzinostaticus X-ray diffraction

Protein phzg 1ty9 Oxidoreductase Pseudomonas fluorescens X-ray diffraction

Lipocalins 1nyc Hydrolase inhibitor Escherichia coli X-ray diffraction

D-alanyl-d-alanine carboxypeptidase 6osu Hydrolase Francisella tularensis subsp. Tularensis schu s4 X-ray diffraction

Beta-hexosaminidase 4g6c Hydrolase Burkholderia cenocepacia j2315 X-ray diffraction

Mexa of the multidrug transporter 1vf7 Membrane protein Pseudomonas aeruginosa X-ray diffraction

S/t protein kinase pkng 4y0x Transferase Mycobacterium tuberculosis h37rv X-ray diffraction

Bacterial 45srbga ribosomal particle class a 6pvk Ribosome Bacillus subtilis Electron microscopy

Neocarzinostatin 1nco Antibacterial and antitumor protein Streptomyces carzinostaticus X-ray diffraction

Carbapenam 4oj8 Oxidoreductase Pectobacterium carotovorum subsp. Carotovorum X-ray diffraction

Vancosaminyl transferase 1rrv Transferase/antibiotic Amycolatopsis orientalis X-ray diffraction
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TABLE 6 | Docking energies and score of ligand A15_B, A15_E against the Antimicrobial target proteins using Autodock Vina, HPEPDOCK, ClusPro.

DB ID Center AA Energies with AutoDock VINA (Kcal/mol) Energy scores with HPEPDOCK Coefficient weight score
with ClusPro

A15_E A15_B A15_E A15_B A15_E A15_B

1by3 HIS-89 −7.30* −7.30* −290.094* −270.751* −763.6* −763.3*

1e5z PHE-274 −5.80 −6.40 −201.893 −202.313 −652.9 −766.9

1hzl GLN-35 −5.40 −5.40 −192.021 −181.348 −594.3 −617.6

1kny GLN-168 −7.10 −7.20 −186.724 −198.732 −767.7 −802.2

1nco ALA-2 −6.20 −6.70 −199.495 −183.348 −678.9 −753.1

1nyc TRP-31 −6.70 −6.60 −216.461 −206.614 −651.8 −791.5

1q15 ARG-50 −7.00 −6.80 −236.802* −262.750* −819.7* −829.7*

1rrv ALA-265 −7.60* −8.20* −208.564 −179.493 −761.8 −769.3

1ty9 VAL-108 −6.90 −6.60 −221.560 −196.827 −652.9 −677

3kdy ASP-366 −6.10 −6.10 −233.213 −208.320 −663.6 −721.9

4g6c HIS-158 −7.70* −7.90* −182.505 −213.155 −602.0 −700.4

4oj8 ALA-144 −7.80* −8.80* −221.657* −196.952* −681.2 −666.8

6osu VAL-32 −6.20 −6.10 −182.232 −198.953 −511.7 −610.1

AA, Amino acid. *Proteins with the lowest docking energies. Lowest energies against protein with the highest probability to dock to peptide A15_B and A15_E.

peptide. This technique is vital in enhancing the antimicrobial
activity of peptides especially on resistant strains including
Pseudomonas aeruginosa (Torrent et al., 2012c). The strength
of this study is hinged on its ability to generate very many
peptide fragments and being able to systematically sieve them
based on their physicochemical parameters to arrive at the
best candidates. However, the number of peptide templates
used was small 24 (0.77%) compared to a total of 3,105
antimicrobial peptides in the antimicrobial peptides database
(accessed on 01.08.2019). This is due to the fact that this
study focuses only on “experimentally validated” peptides
even so, only 127 fish antimicrobial peptides are present
at the database.

Out of the 361 peptide motifs generated, the most active
with the highest in silico antimicrobial probability of 0.982
(A15_B and A15_E) were both from Pleurocidin; an AMP
secreted by flatfish, Pleuronectes americanus that largely
inhabits soft muddy to moderately hard bottoms of marine
waters. Even so, motif A15_B proved to be much more stable
(instability index −28.25), rendering it the best fragment
designed. When docked with AutoDock VINA, A15_B
continued as the best designed peptide motif yielding the
highest binding energy (−8.80 Kcal/mol) and highest number of
hydrogen bond interactions (3) on Carbapenam-3-carboxylate
synthase target. This indicates the motif (A15_B) binds
spontaneously onto Carbapenam-3-carboxylate synthase target
without consuming energy (Meng et al., 2011). Moreover,
docking with HPEPDOCK and ClusPro further indicated
that Carbapenam synthetase protein (PDB: 1Q15) alongside
a Membrane proteins (PDB: 1by3) and Carbapenam-3-
caboxylate protein (PDB: 4oj8) are among the proteins
with highest binding potentials to peptide motif A15_B.
However, Carbapenam-3-caboxylate protein yielded the least
Docking energy when compared to the Membrane proteins and
carbapenam synthetase and Carbapenam synthetase protein.

Carbapenam-3-carboxylate synthase is responsible for the
biosynthesis of the naturally occurring β-lactam antibiotics in
bacteria (Stapon et al., 2003). The enzyme catalyzes the ATP-
dependent formation of (3S,5S)-carbapenam-3-carboxylate from
(2S,5S)-5-carboxymethylproline in Pectobacterium carotovorum
(Gerratana et al., 2003). Therefore, the binding of the designed
peptide motif A15_B is likely to activate Carbapenam-3-
carboxylate synthase to synthesis amass of natural antibiotic that
destroys the bacteria (Samantha et al., 2007), a phenomenon that
can be explored for novel therapeutics. However, being a novel
motif on amino acids of positions 2–19 of Pleurocidin, this study
could hardly access preceding studies to match the complex
binding affinity.

An important but unanswered question is how these
peptides can be optimized for a good platform particularly
in drug discovery where the nature and properties of
potential hits can be understood specifically on how best
they can be modified into useful leads as antimicrobials
in the fight against drug resistance. Ultimately, efforts are
underway for better ways to handle such small fragments on
benches to ascertain the in vitro and in vivo efficacy in low
resource facilities.

CONCLUSION

This study revealed that the motifs (A15_B) of amino acid
positions 2-19 in Pleurocidin secreted by a winter flounder fish,
Pleuronectes americanus as the best antimicrobial potentials.
This segment is among the promising biological candidates
that could be of great application in pharmaceutical and
nutraceutical industries as virtual tools show great potentials
in drug development even in the absence of large investment
laboratory equipment. However, further studies focused on
synthesized peptides would be helpful.
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