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Clinical microbiology laboratories are the first line to combat and handle infectious
diseases and antibiotic resistance, including newly emerging ones. Although most
clinical laboratories still rely on conventional methods, a cascade of technological
changes, driven by digital imaging and high-throughput sequencing, will revolutionize
the management of clinical diagnostics for direct detection of bacteria and swift
antimicrobial susceptibility testing. Importantly, such technological advancements occur
in the golden age of machine learning where computers are no longer acting passively in
data mining, but once trained, can also help physicians in making decisions for
diagnostics and optimal treatment administration. The further potential of physically
integrating new technologies in an automation chain, combined to machine-learning-
based software for data analyses, is seducing and would indeed lead to a faster
management in infectious diseases. However, if, from one side, technological
advancement would achieve a better performance than conventional methods, on the
other side, this evolution challenges clinicians in terms of data interpretation and impacts the
entire hospital personnel organization and management. In this mini review, we discuss
such technological achievements offering practical examples of their operability but also
their limitations and potential issues that their implementation could rise in clinical
microbiology laboratories.

Keywords: clinical microbiology, machine learning, laboratory automation, diagnostics, next-generation sequencing
INTRODUCTION

Fully automated diagnostics pipeline is a seducing idea and first automated microbiology
laboratories have started to be implemented world-wide (Vandenberg et al., 2018; Vandenberg
et al., 2020). In parallel, machine learning (ML), a branch of artificial intelligence, has gained a
foothold in many fields of clinical medicine (Topol, 2019). We actually have ML-driven tools that
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can make diagnosis, help clinicians in decision-making
challenges (Peiffer-Smadja et al., 2020), such as the choice for a
given treatment, and even empower the patients themselves to
manage their healthcare (Topol, 2019). The innovative aspect of
ML is that it is not a ruled-based system; ML algorithms can
learn from input data and automatically make predictions
or decisions.

With next-generation sequencing (NGS) techniques, we can gain
information about pathogens analyzing millions of small fragments
coming from their genomes and even gain insights on microbiota
composition, including not-yet cultured or uncultivable organisms.

Can automation, together with new technologies, make a
difference from conventional clinical microbiology tests that
often require a significant amount of manual work?

What impact will such advancements have in clinical routine
in terms of sample-to-result timing, taking into account that it
usually takes between 24 and 48 h to obtain results in current
routine laboratories (Ruppé et al., 2016)? What will such new
technologies imply in terms of resources and management?
Lastly, can we understand and interpret multimodal large-
volume data resulting from these new technologies?

In this mini review, we will discuss these questions leveraging
the benefits of technological advancements over routine
diagnostics but also considering the limitations and problems
by implementing them in healthcare facilities.
FULL AUTOMATION IN CLINICAL
MICROBIOLOGY LABORATORIES

In a clinical microbiology routine laboratory, sample processing
varies mostly because of the nature of the specimens (blood, urine,
etc.) but also because of the diversity of pathogens that can require
specific media and growth conditions. Besides pathogen
identification, clinical microbiology laboratories are also in charge
of providing information about the antibiotic susceptibility of
pathogens to help selecting the most appropriate pharmacological
regimen. Antibiotic susceptibly tests (ASTs) can be performed with
different approaches (agar disk diffusion, agar gradient diffusion or
broth microdilution) and can measure the minimum inhibitory
concentration (MIC) of an antibiotic, that is the lowest
concentration of the drug at which there is no visible growth.

To date there are only two commercially available instruments,
the Copan’s WASPLab™ (WASPLab™) and the Becton
Dickinson’s Kiestra TLA (Kiestra TLA), which propose
automated culture-based tests including specimen streaking,
slide preparation, transfer of inoculated media between
instruments and automated incubators (Dauwalder et al., 2016;
Bailey et al., 2019).

The WASPLab™ and Kiestra TLA are versatile technologies
which can incorporate or can be combined with other diagnostic
systems such as MALDI-TOF (Cherkaoui et al., 2011; Mutters
et al., 2014), a key technique in modern medical microbiology to
identify bacteria and fungi (Cherkaoui et al., 2010; Kaleta et al.,
2011; Clark et al., 2013; Patel, 2019; Cherkaoui et al., 2020a). For
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 25
example, the Kiestra TLA combined with MALDI-TOF has been
shown to shorten the incubation time required to identify
microbial pathogens (Mutters et al., 2014). Unlike Kiestra TLA,
WASPLab™ offers an automated solution for antimicrobial disc
diffusion susceptibility testing with equal or better accuracy than
other available phenotypic methods (Cherkaoui et al., 2020b).

Overall, the two systems reduce the number of manual pre-
analytic, analytic and post-analytic steps that are typically
performed in a non-automated laboratory (Dauwalder et al.,
2016). The implementation of the WASPLab™ or of the Kiestra
TLA systems in clinical settings improved sample processing
steps and reduced sample-to-result timing (Barake et al., 2017;
Cherkaoui et al., 2019a; Cherkaoui et al., 2020c).

Since 2018, the Copan’s WASPLab™ technology has been
implemented at the Geneva University Hospitals (Hôpitaux
Universitaires de Genève—HUG) (Cherkaoui et al., 2020c),
where it has proven offering rapid detection of vancomycin-
resistant enterococci with automated incubation and digital-
image based analysis system (Cherkaoui et al., 2019b) and
more generally, a substantial shortening of turn-around times
(Cherkaoui et al., 2019a; Cherkaoui et al., 2020a).

Full automation of diagnostic procedures can generate further
advantages (Dauwalder et al., 2016; Cherkaoui et al., 2020c).

Firstly, automation increases the capability of sample processing
with a better documentation and traceability. Secondly, there is a
better control of the costs (e.g. reagents, medium, etc.) with reduced
turn-around times thus resulting in a faster diagnosis. Thirdly, full
automation permits extending the opening hours of the laboratory
with a huge benefit for patient care.

Hopefully full automation will also incorporate molecular
diagnostic capabilities, starting with DNA extraction,
another procedure that is multi-step and requires experienced
technical personnel.

Nowadays, there are plenty of DNA processing machines
ranging from low to medium- and high-throughput, but not yet
included in Kiestra TLA nor inWASPLab™ systems. In particular,
we can distinguish two main types of instruments among
commercially available ones: one that combines DNA extraction
with the amplification, and the other one where extraction and
amplification are performed separately (Ali et al., 2017; Shin, 2018).
A technology based on automated nucleic acids (NA) analyses
would be advantageous in those situations where NA-based testing
is demanded on a large scale, like SARS-CoV-2 pandemic, and
offering additional consolidation.
NEXT-GENERATION SEQUENCING
TECHNOLOGIES

NGS has represented a further milestone in clinical microbiology.
Today we have four main sequencing technologies, Illumina, Ion
Torrent, Pacific Biosciences (PacBio) and Oxford Nanopore
(Figure 1), which are based on a different chemistry for the
sequencing and that provide different outputs in terms of
number and length of the sequencing reads. Currently, Illumina
November 2020 | Volume 10 | Article 582028
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short-read sequencing is the most used technology for both
genomics and metagenomics, due to its sequencing depth and
therefore accuracy (Figure 1). However, the speed of sequencing
of Oxford Nanopore, combined with its ability to sequence long
reads, makes it also very compelling for some diagnostic
procedures (Grädel et al., 2020).

Parallel to the sequencing technological advancements,
there has been an explosion of bioinformatics tools that are
capable to analyze and structure the information from
sequencing data.

While some of these tools, such as Galaxy platform (Giardine
et al., 2005), Ridom SeqSphere+ (Ridom GmbH), CLC Genomics
Workbench 20.0 (QIAGEN) and BioNumerics (Applied Maths
NV - bioMérieux) display graphical user interfaces, there are
many others which require coding skills for their proper and
powerful usage. Most codes are publicly shared in open
repositories such as GitHub and Bitbucket.

We can today apply NGS to study the core and/or whole
genome (Genomics; Figure 1) to infer any kind of molecular
typing fromMLST to vaccine antigens (Pérez-Losada et al., 2018;
Muzzi et al., 2019; Leo et al., 2020) and even study clonal
relationships by investigating single nucleotide polymorphisms
(SNPs) or genomic recombination events (Didelot and Wilson,
2015; Donner et al., 2020; Olearo et al., 2020; Pham et al., 2020;
Scherrer et al., 2020).

A further important application of NGS, called metagenomics,
is to profile microbiota. Metagenomics has linked microbiota
species composition to a broad range of infectious diseases
(Forbes et al., 2018; Egli et al., 2020), including complex
nosocomial infections as ventilator-associated pneumonia
(Emonet et al., 2019), suspected infectious endocarditis
(Choutko et al., 2019; Kolb et al., 2019), or challenging deep-
seated infections (Lazarevic et al., 2018; Foulex et al., 2019).

Metagenomics consists of two largely used experimental
methods: amplicon-based (targeted metagenomics, also called
metataxonomics) and whole metagenome shotgun sequencing
(WMGS) (Figure 1). Targeted metagenomics is based on the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 36
amplification, followed by sequencing, of hypervariable regions
in a target gene present in all species of the same kingdom. The
gene encoding for 16S ribosomal RNA is the most used to
generate taxonomic profiles. Bacterial detection by 16S-
sequencing can be limited to taxonomic levels higher than the
species level in some cases; besides it excludes viruses and fungi
from the analyses.

Sequencing reads generated by WMGS are queried against
large databases and eventually assigned to a given species not
only from bacteria but also from other organisms, including
Archaea, DNA viruses and eukaryotic microbes. The relative
abundance of species is used to quantify a species with respect to
the amount of sequencing reads.

Two main approaches are used for species identification in
metagenomic sequencing datasets: k-mers- and clade-specific-
marker-based. Beyond purely technical aspects, the main
difference between the two methods is that k-mers-based tools,
like CLARK (Ounit et al., 2015) and Kraken2 (Wood and Salzberg,
2014), can be used for large customized genome databases, while
marker-based approaches, like MetaPhlAn2 (Truong et al., 2015),
rely on the querying of reads against a more limited gene sequence
dataset. The result is that we can detect a wider range of species with
k-mers-based tools than with a marker-based approach (Leo et al.,
2017). A further application of WMGS is to search for genetic
antibiotic resistance by querying antibiotic resistance gene
databases, like ResFinder (Zankari et al., 2012) and the
Comprehensive Antibiotic Resistance Database (CARD)
(McArthur et al., 2013).

Metagenomics is an appealing tool for the diagnosis of infectious
diseases as it has shown to be functionally equivalent to culture
techniques (Leo et al., 2017), but it can detect pathogens when they
are missed by current laboratory methods (Xu et al., 2011; Mokili
et al., 2013; Wan et al., 2013); it could also constitute a promising
tool to be integrated in infection control and clinical epidemiology
(Greninger et al., 2015).

NGS and metagenomics have not yet been automatized and
the utilization of ML has been applied to different aspects, as
FIGURE 1 | Next-generation sequencing technologies and their applications in microbiology. A non-exhaustive list of bioinformatics tools used for genomics and
metagenomics analyses is reported. SNPs, single nucleotide polymorphisms; 16S-Seq, 16S-sequencing; WMGS, whole metagenome shotgun sequencing.
November 2020 | Volume 10 | Article 582028
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inferring antibiotic resistance, predicting diagnosis and recurrent
infection (Peiffer-Smadja et al., 2020).
ARTIFICIAL INTELLIGENCE IN
AUTOMATED CLINICAL MICROBIOLOGY
DIAGNOSTICS

Together with automation and NGS, artificial intelligence could
also contribute to a better management of infectious diseases in
helping clinicians to collect and elaborate information from
clinical tests.

Computer vision that is the ability of a computer to process a
digital image and identify objects represents one of the most
popular examples of how artificial intelligence works. In clinical
microbiology field, computer vision can be useful to improve the
identification of pathogens with all those tasks that are manual
and require a certain expertise like the interpretation of Gram
stains (Dauwalder et al., 2016).

In fact Gram stain is an essential test which provides initial
information on the presence and type of bacteria and helps in
opting for a first prompt antibiotic regimen (Barenfanger et al.,
2008). Smith and Kang et al. (Smith et al., 2018) realized a system
where both slide imaging and Gram stain analyses interpretation
were automated. They used a ML algorithm that can analyze
digital images and recognize most common pathogens of
bloodstream infections based on their morphologies. Their
automated ML system reached an accuracy of 92.5% compared
to manual classification. Similar results were obtained by
adopting ML approaches to automate antimicrobial
susceptibility testing and the definition of antimicrobial
minimal inhibitory concentrations on the five most common
Gram-negative pathogens Escherichia coli, Enterobacter cloacae,
Klebsiella pneumoniae , Pseudomonas aeruginosa , and
Acinetobacter baumannii (Smith et al., 2017).

Computer vision can ideally be applied to any type of
morphologic/phenotypic test, including parasitological ones.
For example, ML was applied to identify parasitic protozoa
from fecal matter (Mathison et al., 2020) and malaria parasites
(Florin et al., 2018).

Beyond facilitating the automation of certain tasks, ML can be
of help in saving time and expenses in clinical laboratories.
Burton et al. (2019) applied ML algorithms to predict whether
urine samples required further testing by considering not only
biological matter present in the sample (counts of white, red
blood and epithelial cells) but also other factors like the
pregnancy status or the age of the patient.

A recent work (Mueller et al., 2020) describes how a
computer tool could analyze and validate the amplification
curves generated from reverse transcription polymerase chain
reaction (RT-PCR) developed for SARS-CoV-2 testing. In
fact, the validation of these laboratory tests can become a
laborious task for clinical personnel especially when they are
performed on large scale. The consequence is to slow down
the delivery of the test outcome to the patient. The algorithm
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 47
developed by Mueller et al. (2020) can automatically validate
SARS-CoV-2 RT-PCR tests and retain those that need
particular attention.

In this perspective, such computer-based tools would help
focusing on the cases that need further microbiological investigation.
IMPLEMENTING NEW TECHNOLOGIES IN
REAL-WORLD SETTINGS:
CONSIDERATIONS AND LIMITATIONS

The implementation of new technologies, like automation, ML
and NGS, brings several issues. Automation of a clinical
microbiology laboratory is challenging until it can reach all
the steps, like opening all routinely used sample containers,
relying on validated incubation times and standardized
antibiotic susceptibility testing (Dauwalder et al., 2016;
Cherkaoui et al., 2019a; Cherkaoui et al., 2020a; Vandenberg
et al., 2020).

Standardization and validation of the pre-analytical,
analytical and post-analytical procedures are needed before the
automated system is fully applicable to routine analyses. In this
respect, tasks of the automated pipeline could be segmented and
sequentially validated allowing also a better management of
personnel training and implementation of instruments in the
hospital routine daily life (Cherkaoui et al., 2020c). Importantly
an appropriate IT system should be put in place to ensure a
correct information exchange with the automated system, e.g. for
the protocol of the microbiological tests/tasks to perform
(Cherkaoui et al., 2020c).

Biosafety is also an important aspect that should be carefully
considered when implementing a new system to appropriately
handle clinical samples with biological hazard, in order to
prevent accidental infections among laboratory personnel or
laboratory contaminations.

ML-driven technologies are “black boxes”, meaning that the
processes leading from the input to the output are unknown to the
user. Therefore, althoughML represents a promising tool especially
in coping with large-volume complex data, the understanding of its
functioning might be hard for microbiologists and clinicians who
must inspect and validate the results. Furthermore, ML-driven
technologies should be examined in clinical trials in order to be
safely and officially incorporated in laboratory-certified operations.
Thus, whether ML approaches bring an added value to diagnostics
remains to be clarified, once routine implementation can be
achieved and potential benefits measured.

NGS and metagenomics are neither fully standardized, nor
streamlined in a way that they can smoothly integrate a routine
microbiology laboratory. Some efforts to converge towards
national/international validated procedures have been undertaken
(Ruppé et al., 2017; Ruppé and Schrenzel, 2018; Ruppé and
Schrenzel, 2019; Charretier et al., 2020). Moreover, given the
large volume of sequencing data, metagenomics can demand a
lot of computing resources and can be time-consuming. NGS can
detect species in terms of “relative abundance” to which we should
November 2020 | Volume 10 | Article 582028

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Leo et al. Digitalization of Clinical Routine Microbiology
find a meaningful corresponding parameter to allow comparison
with culture data.

Automated systems and NGS require the availability of suitable
host facilities, trained personnel and adequate informatics
infrastructure for data computation, analysis, interpretation and
storage. In the absence of such factors, small hospitals are excluded
from these technological advancements. Therefore, a reorganization
of diagnostics laboratory networking is warranted. Although
different models of automated clinical microbiology laboratories
are currently implemented (Vandenberg et al., 2020), they are all
characterized by a central facility with one or more satellite
laboratories. While the central facility should incorporate all the
current key technologies, including automatized system and NGS,
satellite laboratories serve as platforms for rapid response tests
(Vandenberg et al., 2020).

Particular attention should be put at data communication and
sharing. We can imagine that these exchanges develop at three
different levels (Figure 2): 1) between personnel (clinicians,
laboratory operators) belonging to the same hospital facility; 2)
between personnel from satellite and central facilities of the same
hospital corporation; and 3) between different hospitals.

For level 1), video platforms, like Zoom or Skype, provided
that they respect the required medical confidentiality, might be
considered for rapid clinical consultations and thus valuable
instruments to keep communication during unusual situation
such as the COVID-19 pandemic.

Irrespective of the type of relationships between facilities,
digitalization should be accompanied with appropriate data
reporting and rigorous regulation of patient data sharing.

Electronic health record (EHR) is the systematic collection of
patient information in digital machine-readable format and
represents a solution to data communication and interoperability
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 58
between the disparate hospitals, on condition that consistent
ontology definitions are used. The FAIR (Findability, Accessibility,
Interoperability and Reusability) initiative principles (Wilkinson
et al., 2016) should be considered to generate formal diagnostic
concepts and todefine standarddiagnostic definitionsused inEHRs.
A constant curation and revision of ontologies should then be
ensured especially when new technologies are introduced in
routine analyses. This is the case of genomics, where information
are very often not structured in a machine-readable format where
new technical terms (Mascia et al., 2018) and new types of data
representation are introduced. Therefore, the constitution of a data
report for genomic datawhich is largely understood andaccepted by
the clinicians should be evaluated (Crisan et al., 2018).

Exchange of clinical data between infrastructures implies that
patient privacy should be guaranteed at any operation level and an
ad hoc security system should be used. Privacy-protecting
technologies like homomorphic encryption and secure
multiparty computations could ensure a protected environment
where to store or locally analyze data, that is without the need to
electronically transfer them to another informatics environment
(Grishin et al., 2019). Implementation of secure computation,
based on cryptographic protocol that covers the features of
patients, has also been proposed for the analyses of microbiome
(Wagner et al., 2016).

Initiatives like the Global Alliance for Genomics and Health
(https://www.ga4gh.org/) and the European Union General Data
Protection Regulation (https://eugdpr.org/), aim to harmonize
legislation concerning the treatment and the protection of
clinical genomic data. In Switzerland, the BioMedIT project
(https://sphn.ch/network/projects/biomedit/) was established
for a secure national coordination and transmission of clinical
information among biomedical infrastructures.
FIGURE 2 | Schematic representation of a possible future scenario in the dynamics of automated clinical microbiology laboratory networking. Clinical samples are
analysed by automated phenotypic tests or by NGS at the central bacteriology laboratory. Data acquisition, mining and elaboration of a first clinical report are
performed by a machine learning approach. The final report is evaluated by technical and clinician experts and resulting information added to an electronic health
record (EHR). EHR is then shared either internally (local server) or sent outside. Satellite laboratories and external facilities can also send the outcomes of rapid tests
or other analyses to the central facility via a secured cloud and newly acquired information can be integrated in EHRs. NGS, next-generation sequencing.
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CONCLUSIONS

New technological advancements are going to change the
appearance of clinical microbiology routine laboratories with
data increasing in volume and complexity. Yet, their
implementation in real clinical settings should still prove an
improvement in making processes faster and cleaner than
conventional workflows. Explainability and interpretability of
ML-based tools are rarely addressed and independent
validations should be carried out. A re-arrangement of local and
regional diagnostics facilities is demanded to better cover the
needs of management of automated laboratories.
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Machine Learning Algorithms
Evaluate Immune Response to
Novel Mycobacterium tuberculosis
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of Basel, Basel, Switzerland, 3 Department of Computer Science, Medical Data Science, Eidgenössische Technische Hochschule
(ETH) Zurich, Zurich, Switzerland, 4 Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's
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Leiden, Netherlands, 6 Pediatric Infectious Diseases and Vaccinology Unit, University of Basel Children’s Hospital, Basel,
Switzerland, 7 Department of Pediatrics, Royal Children’s Hospital Melbourne, University of Melbourne, Parkville, VIC, Australia

Rationale: Tuberculosis diagnosis in children remains challenging. Microbiological
confirmation of tuberculosis disease is often lacking, and standard immunodiagnostic
including the tuberculin skin test and interferon-g release assay for tuberculosis infection
has limited sensitivity. Recent research suggests that inclusion of novel Mycobacterium
tuberculosis antigens has the potential to improve standard immunodiagnostic tests for
tuberculosis.

Objective: To identify optimal antigen–cytokine combinations using novel
Mycobacterium tuberculosis antigens and cytokine read-outs by machine learning
algorithms to improve immunodiagnostic assays for tuberculosis.

Methods: A total of 80 children undergoing investigation of tuberculosis were included
(15 confirmed tuberculosis disease, five unconfirmed tuberculosis disease, 28
tuberculosis infection and 32 unlikely tuberculosis). Whole blood was stimulated with 10
novel Mycobacterium tuberculosis antigens and a fusion protein of early secretory
antigenic target (ESAT)-6 and culture filtrate protein (CFP) 10. Cytokines were
measured using xMAP multiplex assays. Machine learning algorithms defined a
discriminative classifier with performance measured using area under the receiver
operating characteristics.

Measurements and main results: We found the following four antigen–cytokine pairs
had a higher weight in the discriminative classifier compared to the standard ESAT-6/
CFP-10-induced interferon-g: Rv2346/47c- and Rv3614/15c-induced interferon-gamma
inducible protein-10; Rv2031c-induced granulocyte-macrophage colony-stimulating
factor and ESAT-6/CFP-10-induced tumor necrosis factor-a. A combination of the 10
best antigen–cytokine pairs resulted in area under the curve of 0.92 ± 0.04.
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Conclusion: We exploited the use of machine learning algorithms as a key tool to
evaluate large immunological datasets. This identified several antigen–cytokine pairs with
the potential to improve immunodiagnostic tests for tuberculosis in children.
Keywords: cytokines, novel antigens, immune response, pediatric tuberculosis, interferon-gamma release assay
INTRODUCTION

Tuberculosis (TB) remains one of the leading causes of death
globally. Current estimates show that one in ten TB cases occur
in children below 15 years of age with an annual estimated
number of one million cases of childhood TB disease in 2017
(World Health Organization, 2018a). Despite being a
preventable and curable disease, 233,000 children died of TB in
2017, of which 80% occurred in children below 5 years of age.
The recent World Health Organization roadmap towards ending
TB in children and adolescents mentions up to 69%
underdiagnosis and highlights the development of accurate,
non-sputum-based diagnostics tests for TB disease and
infection as a key action towards ending TB in children and
adolescents (World Health Organization, 2018b).

TB infection is characterized by the absence of clinical signs
and symptoms and evidence of containment of disease through
the host immunological response. TB disease is usually defined
as the active state of disease with loss of immunological
containment, presence of symptoms and risk of transmission
of disease. In young children TB disease is often of paucibacillary
nature (i.e. low mycobacterial bacterial load) and therefore may
remain undiagnosed using microbiological assays (Perez-Velez
and Marais, 2012). In addition collection of samples for
microbiological proof in this patient group is challenging and
therefore TB confirmation reaches 50% at best (Oesch Nemeth
et al., 2014). As a consequence, non-sputum-based diagnostic
tests based on immunological evidence of TB have been
developed. These tests rely on the measurement of a recall cell
mediated immune response triggered by in vivo or in vitro
mycobacterial antigens. Until two decades ago the tuberculin
skin test has been the standard test, measuring a local skin
induration after injection of purified protein derivative, a
Mycobacterium tuberculosis protein mixture. However, because
of its low specificity especially in Bacille Calmette–Guérin (TB
vaccine prepared from an attenuated strain of Mycobacterium
bovis) vaccinated individuals, interferon-gamma release assays
have been developed, and have become the standard
immunodiagnostic test of TB infection in adults (Diel et al.,
2010). Interferon-gamma release assays are in-vitro blood-based
assays measuring the Mycobacterium tuberculosis-specific
immune response. Unfortunately these assays have two major
eiver operating characteristic; CFP-10,
hildhood Tuberculosis in Switzerland
ic target 6; GM-CSF, granulocyte-
N, interferon; IL, interleukin; IP-10,
in–max, minimum–maximum; mean–
, soluble cluster of differentiation 40
sis factor.
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limitations: lower performance in children with a sensitivity
ranging from 62 to 83% and inability to discriminate between
TB disease and TB infection (Mandalakas et al., 2011; Sollai et al.,
2014). Recent research suggests that incorporation of novel
Mycobacterium tuberculosis antigens expressed during different
stages of TB [reviewed in (Meier et al., 2018)] and the
measurement of additional cytokines (Walzl et al., 2011) can
improve performance of currently used interferon-gamma
release assay. Evaluation of novel diagnostic tests incorporating
different Mycobacterium tuberculosis antigens and cytokines is
therefore a feasible test suitable for pediatrics and urgently
needed (World Health Organization, 2013).

The aim of our study was to include novel Mycobacterium
tuberculosis antigens and measure additional cytokines for the
immune diagnosis of childhood TB. We used supervised and
unsupervised machine learning algorithms to compare groups
and identify the best antigen–cytokine pairs.
METHODS

Study Design, Setting, and Population
The Childhood Tuberculosis in Switzerland Study (CITRUS) is a
prospective multicenter observational study (registered at
ClinicalTrials.gov NCT03044509 and approved by the ethics
committee EKNZ 2016-01094). In brief, eligible are children
undergoing evaluation for TB exposure, infection or disease
below the age of 18 years. Children that have been treated
previously or that have started treatment more than 5 days
before study inclusion are excluded. Upon enrolment baseline
characteristics, clinical scores and TB test results done by the
treating physician are recorded. The study participants were
classified into the following groups confirmed TB, unconfirmed
TB, TB infection, unlikely TB according to previously published
case definitions (Graham et al., 2015) (for further details on
study design and population see Supplementary Methods Text).

Sample Preparation and Stimulation
Blood was collected in lithium-heparin tubes (Sarstedt
Monovette 01.1608.100) and stimulated within 8 h of
collection with 5 µg/ml phytohaemagglutinin (Merck chemicals
LTD., Beeston, Nottingham, UK), 10 µg/ml staphylococcus
enterotoxin B (Sigma Aldrich GmbH, Schnelldorf, Germany),
5 µg/ml of the following Mycobacterium tuberculosis
recombinant proteins expressed and purified in Escherichia coli
BL21: Rv0081, Rv1733c, Rv2031c, Rv0867c, Rv2389c, Rv3407,
Rv2346/47c, Rv2431c, Rv3614/15c, Rv3865 and a fusion protein
of early secretory antigenic target 6 (ESAT-6) and 10 kDa culture
filtrate protein (CFP-10) [provided by the Department of
January 2021 | Volume 10 | Article 594030

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Meier et al. Novel Antigens for Tuberculosis Immuno-Diagnosis
Infectious Diseases at the University Leiden, the Netherlands
(Franken et al., 2000),] and an unstimulated control (no protein
added). The selection of the Mycobacterium tuberculosis
recombinant proteins was based on published data
summarized in a systematic literature review (Meier et al.,
2018) and from unpublished data (personal communication
THM Ottenhoff) CD28 and CD49d antibodies (Biolegend Inc.,
San Diego, Ca 92121, USA) were added at a concentration of 1
µg/ml to all conditions. Samples were stimulated overnight (16–
18 h) at 37°C (Figure 1A).

Cytokine Measurement
Granulocyte-macrophage colony-stimulating factor (GM-CSF),
interferon (IFN)-g, IFN-g-inducible protein (IP)-10, interleukin
(IL)-1 receptor-antagonist (RA), IL-2, IL-6, IL-10, IL-13, IL-17,
soluble cluster of differentiation 40 ligand (sCD40L) and tumor
necrosis factor (TNF)-a were measured using a Luminex
technology according to the manufacturer’s instructions
(Figure 1A, Supplementary Methods Text).
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Normalization of Data
Cytokine concentrations were normalized (Dodge, 2006) within
antigen–cytokine pairs (using a minimum–maximum (min–
max) or a mean-standard deviation (mean–std) normalization)
and within a patient’s distribution of values (using a mean–std
normalization) as indicated (Figure 1B).

Discriminative Classifier
Discrimination of a pre-defined binary outcome (confirmed/
unconfirmed TB and TB infection versus TB exposed), based on
data containing information on all antigen–cytokine pairs
(features), was achieved using a logistic regression classifier
with L2-regularizat ion (Hoerl and Kennard, 1970)
(Supplementary Methods Text). To get a reliable estimate of
the discriminative classifier performance, a five-fold cross-
validation was applied to a set of training data to select the
model’s hyperparameters (see Supplementary Methods). The
performance of the discriminative classifier was evaluated using
area under the receiver operating characteristics (AUROC)
A

B

C

FIGURE 1 | Whole blood was stimulated with novel antigens and data was analyzed with different machine learning algorithms. (A) Whole blood was stimulated with
11 mycobacterial antigens, left unstimulated and with a positive control, overnight and supernatant was analyzed using Luminex technology to measure 11 different
cytokines (B) data was normalized within antigen–cytokine pairs using min-max or mean–std normalization or within patient distribution using the latter only. Data
(n = 59) was divided into five equal parts and a classifier discriminating healthy vs. sick children was trained using four subsets and tested on one subset (cross-
validation). The algorithm’s parameters were adjusted until performance was optimal. ROC curves were used to measure performance. (C) K-means clustering
approach was used to allocate individual data points to three cluster centers randomly. This approach was repeated until optimal data point allocation was reached
meaning the sum of the distances from data point to cluster centers is minimized.
January 2021 | Volume 10 | Article 594030
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(Hanley and Mcneil, 1982). The contribution of each antigen–
cytokine pair to our predictive model was evaluated by analyzing
the weight in the decision function (Figure 1B).

Unsupervised K-Means Clustering
K-means clustering algorithm (MacQueen, 1967) was performed
with a predefined number of clusters (n = 3) reflecting the
anticipated number of patient groups (confirmed/unconfirmed
TB disease, TB infection, unlikely TB). Patients with incomplete
measurements in any of the conditions (e.g.missing values) were
excluded from this analysis. Cluster centers were allocated
randomly at first, and every patient was then assigned to the
nearest cluster center. Cluster center allocation and data point
assignment were repeated until an equilibrium was reached (sum
of distances is minimized, cluster centers not changed)
(Figure 1C).

Supervised K-Means Clustering Based on
Median Cytokine Differences
Differences in median cytokine concentrations between
confirmed/unconfirmed TB, TB infection and unlikely TB were
compared. Antigen–cytokine pairs with the greatest differences
were selected and K-means clustering approach was performed
as above on these selected antigen–cytokine pairs.
RESULTS

A total of 80 patients were included: confirmed TB disease (n =
15), unconfirmed TB disease (n = 5), TB infection (n = 28), and
unlikely TB (n = 32). Median age in the three TB groups was as
follows: 9.7, 12.0, 11.3, and 5.8 years for confirmed TB,
unconfirmed TB, TB infection, and unlikely TB (Table 1). A
total of 49 of 80 (61.3%) children were tested for HIV, and all were
negative. A total of 39 study participants out of 80 were born in
Switzerland (48.8%), and 31 of 80 (38.8%) arrived in Switzerland
less than 3 years prior to inclusion to the study. Routine
immunodiagnostic testing was performed in 77 children with
QuantiFERON-TB in 57/77 (74.0%) children, T-SPOT.TB in 10/
77 (13.0%) and a tuberculin skin test in 40/77 (51.9%) children.
Both interferon-gamma release assay and tuberculin skin test were
done in 30 children and showed 23 (76.7%) concordant and
7 (23.3%) discordant results (one QuantiFERON-TB +/tuberculin
skin test-; six QuantiFERON-TB −/tuberculin skin test+). Two
T-SPOT.TB results were indeterminate (a confirmed TB disease
case and an unconfirmed TB disease case).

A Discriminative Classifier Distinguishes
Healthy From Sick Children and
Normalization of Data Results in
Improvement of the Classifier’s
Performance
A total of 59 patients had complete measurements for all
antigen–cytokine pairs and were included in this analysis:
confirmed TB (n = 8), unconfirmed TB (n = 2), TB infection
(n = 17) and unlikely TB (n = 32). Different methods of
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 415
normalization (e.g. non-normalized data, antigen–cytokine
pairs either normalized using min–max or mean–std
normalization and normalization of antigen–cytokine pairs
with min–max and between patient normalization with mean–
std were applied to our dataset and resulted in differences on
visual inspection of the graphs between antigen–cytokine pairs
and cytokine concentrations (Supplementary Figures S1A–D).
These differences influenced the outcome of the discriminative
classifier (confirmed/unconfirmed TB and TB infection versus
TB exposed). The AUROC was lower without normalization
(AUROC = 0.81 ± 015), compared to a normalization of
antigen–cytokine pairs (AUROC min–max = 0.89 ± 0.12 and
AUROC mean–std = 0.87 ± 0.13) or combining an antigen–
cytokine pair normalization with individual patient
normalization (AUROC min–max/mean–std = 0.95 ± 0.03) (Figure
2B). The most important antigen–cytokine pairs that
contributed to the performance of the discriminative classifier
were consistent for the normalization methods used. Rv2346/
47c- and Rv3614/15c-induced concentrations of IP-10 were the
two antigen–cytokine pairs with the highest weight in the
predictive model for all discriminative classifiers with
normalized data (Figure 3B, Supplementary Figures S2A–C).
The weight of ESAT-6 and CFP-10-induced concentrations of
TNF-a for the predictive model was consistently high for all
normalized and non-normalized data. ESAT-6/CFP-10-induced
concentrations of IFN-g were among the 10 antigen–cytokine
pairs that contributed the most to the classifier for all non-
normalized and normalized data except when mean–std
normalization alone was applied. Rv2031c-induced concentrations
of GM-CSF contributed to the performance of the classifier when
any normalization method was applied with increasing weight for
combined min–max and mean–std normalization. Combining data
from the 10 antigen–cytokine pairs with the highest weight in the
predictive model using both min–max andmean–std normalization
resulted in AUROC min–max/mean–std = 0.92 ± 0.04 (Figure 3A).

Unsupervised K-Means Clustering Reveals
Three Groups of Children That Cannot Be
Explained by Disease Status
K-means is a machine learning tool using vector quantization
that groups observations into clusters based on distances to
allocated cluster centers. Thereby we found three clusters
which did not overlap with our patient groups (i.e. confirmed
and unconfirmed TB, TB infection, unlikely TB) in the
unsupervised analysis approach. All three clusters included
patients from all study groups. Figure 2A displays normalized
cytokine concentrations of antigen–cytokine pairs of all
individual patients sorted by cluster (2, 1 or 0). Cluster 0
consisted of four confirmed TB, one unconfirmed TB, six TB
infection and five unlikely TB patients (median age = 8.4, 68.7%
male). Cluster 1 consisted of two confirmed TB, zero
unconfirmed TB, two TB infection, and one unlikely TB
patients (median age = 13.6, 20.0% male). Cluster 2 consisted
of two confirmed TB, one unconfirmed TB, nine TB infection
and 26 unlikely TB patients (median age = 7.8, 55.3% male).
Clusters could neither be explained by disease classification, nor
age, nor gender, nor ethnicity (data not shown).
January 2021 | Volume 10 | Article 594030
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TABLE 1 | Baseline characteristics of the study population according to study group.

Variable Confirmed TB Unconfirmed TB TB infection Unlikely TB Total

N = 15 N = 5 N = 28 N = 32 N = 80
Median age, range (years) 9.7 (0.9–15.9) 12 (3–15.8) 11.3 (0.2–17.1) 5.8 (0.2–16.7) 9.6 (0.2–17.1)
IQR age 3.1–15.2 (12.1) 9.6–15.4 (5.8) 8.1–13.5 (5.4) 3.0–10.2 (7.2) 3.5–12.8 (9.3)
Males 6 (40%) 2 (40%) 15 (53.6%) 19 (59.4%) 42 (52.5%)
Median weight, range (m) 38.7 (11–75) 49 (13–60) 44 (10–71) 20 (8–65) 33.5 (8–75)
Ethnicity
Caucasian 2 2 11 10 25
African 9 2 9 11 31
Asian – – 2 6 8
other 4 1 6 5 16

Country of birth
Born in Switzerland 6 3 10 20 39
Recently migrated to Switzerland 9 2 11 9 31
Unknown 1 0 5 4 10
Symptoms
Asymptomatic 5 1 25 29 60
Symptoms 10 4 3 2 19
cough 8 3 1 2 14
fever 6 2 0 2 10
unexplained fatigue 4 0 0 0 4
weight loss 4 2 0 0 6
lack of weight gain 1 0 0 0 1
other symptoms 3 4 1 1 9

Bacille Calmette-Guérin vaccination status
vaccinated 4 0 9 8 21
not vaccinated 5 3 9 21 38
unknown 6 2 10 3 21

HIV status
negative 12 5 14 18 49
positive 0 0 0 0 0
unknown 3 0 14 14 31

Tuberculin skin test
not done 10 5 15 10 40
<5 mm 0 0 1 19 20
>5 mm 2 0 7 3 12
>15 mm 3 0 5 0 8

Imaging
X ray 15 5 27 24 71
CT 8 4 3 1 16
compression 2 1 0 0 3
lymphadenopathy 9 2 0 0 11
consolidation parenchyma 11 4 0 2 17
miliary pattern 0 0 0 0 0
pleural effusion 3 0 0 0 3
cavitation 4 3 0 0 7

TSPOT
not done 13 4 24 29 70
negative 0 0 0 3 3
positive 2 1 4 0 7

QuantiFERON-TB
not done 5 2 5 11 23
negative 1 1 4 21 27
positive 9 2 19 0 30

Microbiological confirmation
not done 0 0 22 30 52
culture positive 13 0 0 0 13
culture negative 0 4 6 2 12
PCR positive 13 0 0 0 13
PCR negative 0 5 4 0 9
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Supervised K-Means Clustering Based on
Median Cytokine Differences Between
Three Study Groups Reveals One Group
That Clustered Mainly Healthy Children
but No Confirmed TB Cases
Greatest differences in median cytokine concentrations between
confirmed/unconfirmed TB, TB infection and unlikely TB were
observed for: ESAT-6/CFP-10-induced concentrations of GM-
CSF, IFN-g and IL-2; Rv0081-induced concentrations of TNF-a;
Rv2389c-induced concentrations of GM-CSF and IP-10; and
Rv3614/15c-induced concentrations of IFN-g, IL-2, IP-10 and
TNF-a (data not shown). A total of 71 patients had complete
measurements for these 10 conditions with the greatest differences
and were thus further included in the comparative analysis:
confirmed TB (n = 10), unconfirmed TB (n = 4), TB infection
(n = 25) and unlikely TB (n = 32). K-means clustering with these
antigen–cytokine pairs resulted in three cluster grouping the
majority of unlikely TB patients and none of the confirmed TB
patients in cluster 0 (25 out of 32). Only one unlikely TB patient
and none of the unconfirmed TB patients were grouped to cluster
2 (six confirmed TB, five TB infection). Cluster 1 consisted of all
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 617
four study groups with the majority being TB infected (11 out of
24) (Supplementary Figures S3A–B).
DISCUSSION

Diagnosis of childhood TB is one of the key challenges for the
global epidemic. As current diagnostic tests are insufficient for
detection of TB in children, there is an urgent need for novel tests.
Our study is unique as it combines the use of the largest number of
novel Mycobacterium tuberculosis antigens and cytokine
combinations in a childhood TB diagnostic study, exploring the
results by applying different machine learning algorithms.

We found that IP-10-responses induced by Rv2346/47c and
Rv3614/15c were the two most important features to
discriminate diseased from healthy individuals. We showed
that further cytokines including GM-CSF, IL-2, IL-6, INF-g
and TNF-a play an important role during immune responses
in TB in children. We also demonstrate the importance of data
normalization to reduce bias towards highly expressed cytokines
and inter-individual heterogeneity in Mycobacterium
tuberculosis-specific immune responses.
A

B

FIGURE 2 | Normalization of data contributes to performance of discriminative classifier (A) Cytokine concentrations for individual patients. Results are sorted by
patient group and clusters (2, 1 or 0), and antigen–cytokine pairs. Clustering was performed using K-means algorithm. Min–max normalization was applied to
cytokine–antigen concentrations, mean–std normalization was applied to between-individual measurements (color change from dark blue to light green represents an
increase in relative cytokine concentration). (B) AUROC curve showing the performance of the binary classifier (confirmed/unconfirmed TB and TB infection versus
TB exposed) in 59 patients using different normalization methods: min–max and mean–std; normalization of antigen–cytokine pairs; min–max/mean-std combining an
antigen–cytokine pair normalization with individual patient normalization.
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Our selection of novel Mycobacterium tuberculosis antigens
was based on previously published studies, and the antigens that
are expressed during different stages of TB are briefly summarized
below. The dormancy of survival regulon encoded antigens
(Rv0081, Rv1733c, and Rv2031c) belong to a region of the
Mycobacterium tuberculosis genome that includes approximately
50 genes associated with the non-replicative stage of TB (Voskuil
et al., 2003). These antigens together with reactivation associated
antigens (Rv0867c, Rv2389c, Rv3407) are highly immunogenic
and have been tested mainly in adult cohorts [reviewed in (Meier
et al., 2018)]. We also included the recently discovered in vivo-
expressed antigens (Rv2346/47c, Rv2431c, Rv3614/15c, Rv3865)
that have not been studied extensively in humans, but are believed
to be important virulence factors (Commandeur et al., 2013).
Rv2346 and Rv2347c are ESAT-6 like proteins and associated with
downregulation of IL-6 and TNF-a enabling survival of bacteria
inside macrophages (Malen et al., 2007; Yao et al., 2018). Rv2431c
is a prolin-glutamic acid family protein, and its function is yet to
be understood (Malen et al., 2007). Previous studies showed its
involvement in necrosis in macrophages (Tundup et al., 2014) but
also maturation and proliferation of dendritic cells (Chen et al.,
2016). The antigens Rv3614c, Rv3615c and Rv3865 are all
associated with the ESAT-6 secretion system 1 absent in the
Bacille Calmette–Guérin vaccine strains.

The diagnostic potential of the recently discovered in vivo-
expressed antigens found in our study has been shown in
previous studies confirming our results (Millington et al.,
2011). IFN-g responses induced by Rv3615c were as specific as
ESAT-6 and CFP-10 induced IFN-g responses in patients with
TB disease and infection (Millington et al., 2011). The antigen
Rv3615c was included in a modified T-SPOT.TB assay and was
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 718
shown to improve the diagnosis of TB disease and infection
compared to healthy controls and patients with non-TB lung
disease (Li et al., 2017). The use of Rv3865 seems to be of limited
value also shown by the low immunogenic potential in other
studies in adults (Bahk et al., 2004) and adolescents including
different stages of TB infection (Michelsen et al., 2017).

In our study we found dormancy of survival regulon encoded
antigens to be of key importance eliciting a differential immune
response in TB patients and exposed healthy controls. We found
that the dormancy of survival regulon antigens Rv0081 and
Rv2031c-induced IP-10 and GM-CSF responses contributed
strongly to performance of the discriminative classifier. Several
studies in adults reported elevated concentrations of cytokines
induced by Rv0081 during TB infection and disease, which is in
line with our findings [reviewed in (Meier et al., 2018)]. In
contrast to our findings, studies in adults suggest Rv1733c-
induced immune responses to be of added diagnostic value
(Leyten et al., 2006; Kassa et al., 2012; Mensah et al., 2014;
Serra-Vidal et al., 2014). Furthermore, previous studies including
Rv2031c-induced cytokine response, showed conflicting results
with one study reporting higher concentrations of IFN-g, IL-10,
and TNF-a in TB exposed individuals compared to healthy
controls (Belay et al., 2015) and other studies failing to show
IFN-g responses induced by this antigen (Goletti et al., 2010;
Hozumi et al., 2013). Our study supports the notion that
Rv2031c-induced responses are important as diagnostic
markers for TB particularly when cytokines other than IFN-g
are included into the analysis. This is in line with Coppola et al.
showing high concentrations of TNF-a expression in response to
Rv2031c in addition to other cytokines such as IP-10 or IL-17 but
notably not IFN-g (Coppola et al., 2016).
A B

FIGURE 3 | Effect of normalization of antigen–cytokine pairs and normalization for individual patients (A) Performance of binary classifier using the 10 most
important features and applying an antigen–cytokine pair normalization (min–max) and a normalization for individual patients (mean–std) (B) Combination of 10
antigen–cytokine pairs contributing the most to performance of trained discriminative classifier with min–max normalization of antigen–cytokine pairs and mean–
std individual patient normalization.
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In addition to the above, two reactivation-associated antigens
were found to be important in our study: Rv3407 and Rv2389c.
We found that Rv2389c-induced GM-CSF and IP-10 responses
were among the 10 antigen–cytokine pairs that contributed the
most to discriminating between sick and healthy. Other studies
also show the diagnostic potential of Rv2389c. IFN-g responses
induced by Rv0867c and Rv2389c were found to be higher in
individuals with TB infection compared to healthy controls and
TB disease in several studies (Commandeur et al., 2011; Chegou
et al., 2012; Serra-Vidal et al., 2014). High concentrations of IL-6,
IL-10, and TNF-a were found to be induced by Rv0867c and
Rv2389c in individuals with TB disease (Kassa et al., 2012). In
our study, however, Rv0867c did not induce cytokine responses
that contributed to classification of patients.

The standard antigens used in the current available test
including ESAT-6 and CFP-10 remain important. Our results,
however, clearly show that in addition to IFN-g also IL-6 and
TNF-a responses to ESAT-6 and CFP-10 contributed towards
distinction of study groups and were among the 10 most
important features for the discriminative classifier. Two studies
in children also confirm the addition of TNF-a to improve
distinction between TB patients and healthy individuals
(Tebruegge et al., 2015; Tebruegge et al., 2019).

For the read-out of antigen stimulated-blood it has been shown
in numerous studies that cytokines other than IFN-g play an
important role during the course of infection and may therefore
have added diagnostic value (Kassa et al., 2012; Chegou et al.,
2012; Belay et al., 2015; Coppola et al., 2016; Tebruegge et al.,
2019). A selection of pro- and anti-inflammatory cytokines was
therefore included in our study on the basis of previously
published research (Walzl et al., 2011; Meier et al., 2018). Our
findings suggest that measuring IFN-g only has limited diagnostic
potential and that measurement of other cytokines has clear added
diagnostic value. In particular, IP-10—a chemokine produced by
antigen-presenting cells and induced by a large number of
cytokines including IFN-a, IFN-b, IFN-g, IL-1b, IL-2, IL-17, IL-
23, TNF-a (Hassanshahi et al., 2007; Mohty et al., 2010)—has
been shown to be important in previous studies and our current
study. In our study IP-10 concentrations were generally high for
all antigens, which were also noted in earlier studies in children
(Latorre et al., 2014; Jenum et al., 2016; Petrone et al., 2018). The
high measurable concentrations of this cytokine may improve
robustness of immunodiagnostic tests especially in children and
immunocompromised individuals (Ruhwald et al., 2012). Several
studies in adults have shown elevated IP-10 responses in TB
disease patients compared to controls (Chegou et al., 2009; Kabeer
et al., 2010; Ruhwald et al., 2011). Furthermore antigen-induced
IP-10 concentrations were higher in TB disease patients and
children from high endemic countries and high-risk groups
(Ruhwald et al., 2008; Lighter et al., 2009). One further
important aspect particularly interesting for studies in children
is the fact that several previous studies suggest IP-10 may be less
affected by age as compared to IFN-g (Lighter et al., 2009; Lighter-
Fisher et al., 2010). By contrast there are some studies that did find
an age-association for IP-10 concentrations (Ruhwald et al., 2008;
Decker et al., 2017). Earlier work from our group in healthy
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 819
children only found an age-association for Candida albicans-
induced IP-10 concentrations but not for other stimuli (Decker
et al., 2017). GM-CSF is thought to have a protective role in the
control of TB infection. In our study latency associated antigen
Rv2031c induced differential GM-CSF response in healthy and
sick individuals. Studies in mice show that deficiency in GM-CSF
results in the inability to contain infection (Gonzalez-Juarrero
et al., 2005). Other research suggests that survival of bacteria in
macrophages is regulated by GM-CSF response in macrophages
(Bryson et al., 2019).

In our study we demonstrate the impact of normalization on
data with improved performance of a discriminative classifier.
Performance was best and most robust when both cytokine-
antigen concentrations and between-patient values were
normalized. IP-10 concentrations induced by Rv2346/47c and
Rv3614/15c were found as major contributors to the
performance of the discriminative classifier throughout all
normalizat ion methods, l ikely result ing from high
concentrations of this cytokine. However, for cytokines that
are not expressed at high concentrations, we show that
normalization is highly important. For example, IL-2 and
IFN-g concentrations induced by ESAT-6/CFP-10 and Rv3614/
15c were only shown to be among the most important features
after normalization.

One potential limitation of our study is the sample size which
was limited for the two subgroups of TB infection and disease.
For optimal training of the classifier and differentiation between
TB infection and disease a larger sample size is required. Further
studies including a larger number of children are therefore
needed to confirm and expand our results. In addition, this
study is conducted in a low incidence setting and major factors
influencing immune responses such as malnutrition, HIV-
infection and other immunocompromising conditions are rare
and can therefore not be evaluated.

In conclusion, this is the first study using machine learning
algorithms to analyze results from novel Mycobacterium
tuberculosis antigens and cytokines for the immunodiagnosis of
TB in children. The use of machine learning algorithms is a key
tool to evaluate large immunological datasets. We identified
antigen–cytokine pairs that perform better than the current
standard antigen–cytokine pair used in interferon-gamma
release assays. These results show that novel antigen–cytokine
pairs have to potential to improve immunodiagnostic tests for
tuberculosis in children.
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SUPPLEMENTARY FIGURE 1 | relative median cytokine concentrations, (color
change fromdarkblue to lightgreen indicatesan increase in relativecytokineconcentration).
Non-normalized data (A), min–max normalized data (B), mean–std normalized data (C),
min–max normalized andmean–std normalized (between individuals) data (D).

SUPPLEMENTARY FIGURE 2 | Normalization of data contributes to the
performance of a discriminative classifier. Combination of 10 antigen–cytokine pairs
contributing the most to the performance of a trained discriminative classifier
according to different normalization methods applied: (A) non-normalized data
(B) min–max normalized data and (C) mean–std normalized data.

SUPPLEMENTARY FIGURE 3 | Normalized cytokine concentrations for
individual patients (n = 71) and selected antigen–cytokine pairs sorted by clusters
(A) and study group (B) (color change from dark blue to light green indicates an
increase in relative cytokine concentration.
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With the rapid spread of the SARS-CoV-2 virus since the end of 2019, public

health confinement measures to contain the propagation of the pandemic have been

implemented. Our method to estimate the reproduction number using Bayesian inference

with time-dependent priors enhances previous approaches by considering a dynamic

prior continuously updated as restrictive measures and comportments within the

society evolve. In addition, to allow direct comparison between reproduction number

and introduction of public health measures in a specific country, the infection dates

are inferred from daily confirmed cases and confirmed death. The evolution of this

reproduction number in combination with the stringency index is analyzed on 31

European countries. We show that most countries required tough state interventions with

a stringency index equal to 79.6 out of 100 to reduce their reproduction number below

one and control the progression of the pandemic. In addition, we show a direct correlation

between the time taken to introduce restrictive measures and the time required to contain

the spread of the pandemic with a median time of 8 days. This analysis is validated by

comparing the excess deaths and the time taken to implement restrictive measures.

Our analysis reinforces the importance of having a fast response with a coherent and

comprehensive set of confinement measures to control the pandemic. Only restrictions

or combinations of those have shown to effectively control the pandemic.

Keywords: infectious diseases, reproductive number estimation, non-pharmaceutical interventions, Bayesian

inference (BI), health sciences, epidemiology, SARS -CoV-2, public health

INTRODUCTION

Since being first observed in Wuhan in late 2019, the outbreak of the 2019 SARS-CoV-2 virus
is strongly affecting societies and economies. The transmission rate, pressure on the healthcare
system and lack of effective treatment lead countries to take public health measures to limit
the spread of the virus. The confinement measures range from banning gatherings to complete
lockdowns and closing borders (1, 2). Additional measures include individual protection with
various levels of mask wearing injunctions, and contact tracing with quarantine. This work has
focused on developing reliable modeling approaches to evaluate the impact of public health
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measures. Our method is based on analyzing the reporting
of European countries to evaluate the temporal influence
of non-pharmaceutical interventions (NPIs) on the effective
reproduction number Rt . The aim of Rt is to quantify the number
of secondary infections caused by an individual over the period
during which this person is infectious. It is important to make the
distinction between the effective and basic reproduction number.
The basic reproduction number R0 refers to the evolution of the
disease when the population is fully susceptible to the disease
while Rt factors numerous parameters, such as the susceptible
population, the transmission, the public awareness, the immunity
acquired within the population, amongst others (3). Rt is a key
parameter to evaluate the evolution of an epidemic. Any value
below one indicates that the spread is decreasing, any value above
one indicates that the spread is increasing in a given population.
Rt allows a direct comparison of the epidemiologic profiles
observed in different cohorts of population, such as specific risk
factors driven cohorts or countries with distinct characteristics
(such as population or testingmethods). It allows thus to consider
temporality and populational or cohorts characteristics. The
spatial and populational (age, social activity) heterogeneity have
been shown to play a role in the evolution of the pandemic as the
Rt evolve differently across these different groups (4–6).

Numerous methods have been developed to compute Rt
and its evolution over time (7) with the aim of identifying
the most influential parameters and predicting the development
of an epidemic in a given environment. Initial methods
derived Rt from transmission model similar to the SIR model
(8–12). In general, fitting deterministic model to incidence
data has been shown to often results in large error which
can however be solved by using stochastic model (13).
The choice of the mechanistic transmission model requires
assumptions about the epidemiology of the disease. For
example, the presence/absence of a latency period will guide
the choice between a SIR (Susceptible—Infected—Recovered)
or SEIR (Susceptible—Exposed—Infected—Recovered) model.
Recent studies tend to acknowledge the risk of asymptomatic
transmission of COVID-19 although with a lower relative risk
than transmission by symptomatic individuals (14) favoring the
use of a SIR model. The latter model is parametrized through
the transmission rate β and the rate of removal γ . One pitfall
is that this model assumes a constant transmission rate, that is
the infection probability distribution is constant over the period
during which an individual is infectious. In addition, the SIR
model requires to be fitted to the number of infections as well as
the number of people either susceptible or who have recovered.
However, the latter two variables, susceptible and recovered,
are difficult to evaluate and will strongly be influenced by
underreporting. Later models, including theWallinga and Teunis
approach (15), use a likelihood-based estimation procedure
to reconstruct infection patterns. These methods have shown
large variations when using daily data (16). Most approaches
aiming at correcting these fluctuations appeared to be sensitive
to smoothing parameters (16, 17). An additional method to
mitigate these drawbacks that is very robust to underreporting
was later developed (18). This method used Bayesian inference
based on a transmission model which includes the infectivity

profile to update the posterior distribution of Rt as more data
become available.

Since the start of the COVID-19 pandemic, various studies
have looked at the impact of public health interventions on the
evolution of the pandemic at regional or national level. The first
studies, on data from China, proving the impact of NPI strategies
to reduce Rt used mechanistic transmission models to obtain
Rt (19, 20), with the drawbacks described above associated with
these models. Further studies focused on how state interventions
prevented ICU capacity to be overwhelmed as well as their impact
on fatalities in the UK (21), Germany (22, 23), and France (24).
While these researches focused on individual country, a recent
study aimed to demonstrate the impact of non-pharmaceutical
interventions in 11 European countries (25). This study assumed
that the impact of the measures was independent of their relative
introduction. In addition, this study assumed Rt to be fixed
between the different measures. However, a recent research
shows that community changes also play a role in slowing the
evolution of the virus (26).

When evaluating the impact of public health interventions,
it is crucial to consider that there is a delay between the time
of infection and the time at which a confirmed case or the
death of an individual is reported. Even if we consider that NPIs
have a direct impact on the rate of infections, there will be a
delay between this change of infections and the time at which
this change is observed through positives tests or the death of
the individuals. The simplest method would consist in shifting
the data backward in time by the mean of the distribution of
interest that is the period from infections to the case being
reported or the death of the individual. However, this method
does not account for the uncertainty in the period of interest. A
possible method to circumvent this issue consists in subtracting
samples from the delay distribution to each observation. This
method has been recently used to adjust reporting delays in
the aim of evaluating the reproduction number of SARS-CoV-
2 (25, 27) and was applied in our research. One drawback
of the method is that as the mean and variance of the delay
distribution increase, the resulting infections are smoothed over
time potentially blurring discontinuities in the variation of Rt
(28). Alternatively, the confirmed cases can be considered as the
convolution of the infections with a delay period distribution.
The process to obtain the time of infection can therefore be
performed using a maximum-likelihood deconvolution method
(29, 30). These methods build on techniques which were initially
develop to correct AIDS data based on an iterative EM algorithm
(31). A different approach aimed to jointly infer the infections
and Rt (32). The drawback of this method is that it requires an
hypothesis on the shape and change points of Rt .

The aim of this work is to extend previous research estimating
Rt and focusses on the effects of state interventions in 31
European countries. As the evolution of Rt is a function of at least
three important parameters: the type of the restrictive measures;
the effect of these measures and changes in behaviors with
specific societal properties, and the size of various compartmental
cohorts involved, we do not aim to quantify the effect of each
measure. The restrictive measures and their effects are first
considered to be independent across the different countries. We
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then compare their effects across the countries and aim to show
how the combined interventions within a country and their
temporality have influenced the spread of the virus, characterized
by the evolution of confirmed cases, confirmed deaths, and
excess deaths.

MATERIALS AND METHODS

The following section aims to describe the different steps of
the analysis. The various data sources used in the analysis as
well as required period distributions for SARS-CoV-2 are first
introduced. Secondly, statistical methods to estimate Rt are
formulated and lastly the method to evaluate the impact of NPIs
is described.

Data Sources and Availability
Rt is estimated using incidence data for confirmed cases and
deaths published in the COVID-19 Data Repository (33).

The excess mortality was retrieved from Our World in Data,
(34). The data are aggregated on a weekly basis along the average
deaths observed for the same period between 2015 and 2019.

Data related to the period between a positive test and the
death of an individual were retrieved from: Swiss Federal Office of
Public Health (FOPH) (35). Data from FOPH on confirmed cases
is used to evaluate the impact of different information sources.

Data regarding the various state interventions were retrieved
from the Coronavirus government response tracker (OxCGRT)
developed by the Blavatnik School of Government (36). The
stringency index provided in this dataset tracks government’s
policies and interventions across different categories and
provides a score between 0 and 100 evaluating the overall
stringency of the measures taken in a given country (37). A
stringency index of zero means no measure has been noted in
this country, and a maximum score of 100, indicates a complete
lock down. The stringency index is calculated as averages of the
individual component indicators categorized in the following six
groups: school closing, non-essential economic activities, public
events, gatherings, stay at home policies, and restrictions on
movements. For the “Stringency index” the sub-index score Ij,t
is calculated for the 9 indicators as follows:

Ij,t = 100
vj,t−0.5(Fj−fj,t)

Nj
(1)

With Nj being the maximum value of the indicator, Fj the
indicator flag (whether the measure has or not a sectoral scope),
vj,t the recorded policy on the ordinal scale, and finally fj,t , being
the recorded binary flag for that indicator. The full methodology,
the variable values for computing the different scores are available
on their github repository, along with the interpretation of each
indicator (see Data Availability Statement for the exact reference).
The evolution of the stringency index for the countries of interest
can be found in Supplementary Figure 1.

A dataset which included the intersection of the data regarding
the evolution of the confirmed cases and deaths as well as the data
measuring the stringency index was available for 33 European
countries. For our analysis, Russia and Ukraine were removed

from our dataset as the reported daily deaths were still increasing
for these two countries when we are interested in countries which
have successfully contained the evolution of the pandemic before
the 23rd of May 2020. We were therefore left with a set of 31
European countries. The full list of the countries included in the
analysis is presented in the results sections. For the second part of
the analysis which focused on the excess deaths observed in each
country, the data were available for 19 countries.

Determining Incubation Time, Onset to
Confirmed, and Onset to Death
Distributions
The proposedmethod allows to compute Rt without developing a
transmission model and hence only requires a hypothesis on the
infectivity profile or serial interval distribution. The infectivity
profile is a probability distribution measuring the probability to
infect an individual at a given time s after the infection of the
primary case. This distribution is crucial to model the dynamic of
the infections and the delay between the primary and secondary
cases. The incidence on a given day can be estimated as follows:

E [It] = Rt
∑t

s=1
wsIt−s (2)

where E [•] is the expected value of a random variable, It is
the incidence at time t, and ws is the infectivity profile. The
distribution of ws for the SARS-CoV-2 virus was found to have
a mean of 4.8 days and a standard deviation of 2.3 days (38).

Given the time at which the infection occurred is not available,
the number of confirmed cases and deaths on a given day are
used as proxies. A gamma distribution with a median incubation
period at 4.4 days from confirmed infection and diagnosis outside
of the epicenter of Hubei Province, China, based on official
reports from governmental institutes was derived (39). The mean
and deviation were then obtained by fitting a gamma distribution
to the quantile derived in this study. The period between the
onset of the symptoms and a case being confirmed in Switzerland,
was estimated to 5.6 days (40).

The period between a case being reported as positive and the
death of the individual was extracted from 1,430 cases provided
by the Swiss Federal Office of Public Health (FOPH). Our result
provides a distribution on a much larger dataset than the one
built which used between 24 and 33 cases (39, 41). Three different
distributions were tested: lognormal, Weibull and gamma with
the Akaike Information Criterion (AIC) being used to identify
the best distribution. This distribution was then combined with
the incubation period (39) to obtain the period between onset
and death shown in Table 1 along the other distribution periods
where the onset refers to the symptom onset.

From the latter period functions it is possible to calculate a
posterior distribution of Rt based on the inferred infection dates
extracted from the confirmed cases and deaths reported. For
the daily cases declared (incidence), a shift following a gamma
distribution between the defined cases (confirmed or dead) and
the time of infection is randomly generated. For each case, the
new date of infection is generated by subtracting the shift to
the reported date. This procedure is performed iteratively with
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TABLE 1 | Incubation, onset to confirmed and onset to death distributions where

onset refers to symptoms onset.

Period Mean [days] Standard deviation [days]

Incubation (39) 4.6 1.9

Onset to confirmed (40) 5.6 4.2

Onset to death (our study) 15.3 8.0

the mean of daily simulated number of infections stored. Using
the latter period functions to estimate the infection occurrences
allows to take into account the large variance in the cases reported
by the health or political systems in the analyzed countries.

Correcting the Number of Infections
In addition, the incidence for the most recent days are corrected
(40) to factor delayed reporting:

It =
It

F̂l
(3)

where It and It are, respectively, the corrected and initial
incidence which took place on a given day. F̂ is the cumulative
distributive function of the period between an infection and a
case being reported as positive or dead, l is the time between
t and the last reported case so that F̂l = P(X ≤ l) where
X is a random variable that is gamma distributed with mean
and standard deviation described in Table 1 depending on the
variable of interest and P(X ≤ l) is the probability that X is
smaller or equal to l.

Estimation of the Reproduction Number
Using Bayesian Inference With
Time-Dependent Priors
The method presented in this report is a variation of the one
proposed by Cori et al. (18). Assuming the incidence at time t,
It , is Poisson distributed so that the likelihood of the incidence It
given Rt and conditional on previous incidences I0, · · · , It− 1:

P (It|I0, · · · , It−1, w, Rt) =
(Rt3t)

It e−Rt3t

It!
(4)

with 3t =
∑t

s=1 wsIt−s where ws is the estimated
infectivity profile.

The posterior of Rt conditional on previous incidences is:

P
(

Rt|I0, · · · , It−1, It , w
)

∝ P (It|I0, · · · , It−1, w, Rt)P (Rt) (5)

While the method developed by Cori et al. (18) assumes a
constant gamma distribution for the prior distribution, the
presented model takes advantage of the information gained in
time by updating the prior distribution for each window with the
previous posterior:

P (Rt)= P (Rt−1|I0, · · · , It−2, It−1, w) (6)

The 95% CI is then derived by computing the 2.5% and
97.5% quantiles.

Rt based on the confirmed cases is reported up to 9 days before
the last date at which results are available. This corresponds to the
median time for confirmed cases to be reported. Using the same
method, Rt based on the cases reported as dead is reported up to
19 days before the last day on which deaths were reported for a
given country.

Comparison of the Methods to Estimate Rt

on Synthetic Data
In order to compare the proposed methods with the one
developed by Cori et al. (18), a study on synthetic data was
performed. Two scenarios which were initially used in the
aforementioned research were used:

1. Constant reproduction number, Rt = 2.5
2. Sharp change in the reproduction number:

◦ Rt =

{

2.5 , t ≤ 15 days
0.8, t > 15 days

For each scenario, 100 simulations were performed. Ten cases
were introduced at t = 0 days, with the incident cases It for the
following 49 days being drawn from a Poisson distribution with
mean equal to Rt

∑t
s=1 It−s ws. An infectivity profile ws with a

mean of 4.8 and standard deviation of 2.3 days as introduced
by Nishiura et al. (38) for the SARS-CoV-2 virus was used. Rt
was then evaluated from the synthetic data using the method
developed by Cori et al. (18) as well as the proposed method.

The impact of underreporting was simulated using a binomial
distribution as performed in (18). For each day, the new incident
cases I∗t were assumed to follow a binomial distribution:

I∗t ∼ Binomial(It , π) (7)

where π is the reporting rate and was varied between 20 and
80% in steps of 20%. Rt was then evaluated on the simulated
underreported data and compared to the simulated Rt .

Assessing NPIs’ Impact on the Evolution of
the Pandemic
The stringency index developed as part of the OxCGRT project
(37) was used to assess the role of state interventions in
controlling the pandemic. This index was compared with the
evolution of Rt , rather than the incidence of confirmed or
dead cases. Using Rt helps comparing countries that have
heterogeneous testing or reporting policies. While Rt is also
subject to variations in these policies, it depends on the change
within the country in confirmed and death cases, therefore
allowing comparison between countries with different policies.
For each country, the public health measures and the stringency
index are analyzed when Rt estimates, based on the confirmed
cases, dropped below one. The hypothesis is that it can help
identifying the most efficient set of public health measures.

In order to assess the impact of taking restrictive measures
early in the crisis, the time taken to introduce initial restrictive
measures was compared to the period taken to control the
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epidemic. The time until the introduction of restrictive measure
was defined as the period between the 5th death in a given
country and the stringency index reaching a score of 35. The
stringency index threshold at 35 corresponds to the lowest score
observed when a country reached a Rt smaller than one which
was observed for Andorra. The time required to control the
epidemic was then defined as the period between the 5th death
and Rt , based on the confirmed cases, dropping below one.

Given that the confirmed cases and reported deaths are
influenced by reporting policies, the analysis described above was
supported by using the number of excess deaths. Following the
same logic as for the previous analysis, the period between the
5th death and the stringency index reaching 35 was compared to
the excess deaths experienced in each country. The excess deaths
were calculated as:

Excess deaths =
∑

w

Deaths
∣

∣

Week#w 2020
− Average Deaths

∣

∣

Week#w 2015−2019

Average Deaths
∣

∣

Week#w 2015−2019

(8)

where w represents for each country the weeks between the 5th
death and the 23rd of May 2020. This alternative method to
measure the impact of the different NPIs independently of the
proposed method to compute Rt serves as a mean to support
our conclusions.

RESULTS

Evaluation of the Proposed Methods
The simulated incident cases described in section Comparison
of the methods to estimate Rt on synthetic data are presented
in Figure 1 for the two scenarios used to validate the proposed
methods. The Rt computed using the proposed method as
well as the one from (18) for the first scenario are shown
in Supplementary Figure 2, while the results for the second
scenario which includes a discontinuity in the simulated
Rt are shown in Figure 2. In order to compare the two
methods, the average relative error was computed using the
following equation:

Error =
1

l

∑l

t=0

∣

∣Rt−Rt
∣

∣

Rt
(9)

where l is the number of days for which the computed Rt can be
derived from the simulated incident cases and Rt is the simulated
reproduction number over the same period l.

The computed average relative errors for the two scenarios
and methods are presented in Table 2.

The Rt evaluated on the simulated underreported data
following the method described in section Comparison of the
methods to estimate Rt on synthetic data are presented for a
reporting rate of 20, 40, 60, and 80% for the two scenarios in
Supplementary Figures 3–8. The average relative errors for these
simulations are shown in Table 3.

The proposed method takes as input confirmed cases which
can be provided by different sources (health or political

systems). In Supplementary Figure 9, the reproduction number
is estimated for Switzerland, with two different sources.

Evaluating the Reproduction Number From
Incidence Data of 31 Countries
The list of countries analyzed along dates characterizing the
evolution of the epidemic and stringency index values are listed in
Table 4 which is composed of four panels. This table summarizes
our analysis performed by computing Rt , based on the confirmed
cases. The first panel includes the dates which were used to
characterize the evolution of the pandemic in each country. The
first column of this panel is the date at which the 5th death was
observed, the 2nd one when the stringency index reached a value
of 35 and the third one includes the date at which the country
managed to control the epidemic by reducing Rt , below one. The
second panel shows the value of the stringency index when Rt ,
was reduced below one. The third shows the period between the
5th death and the stringency index reaching 35 or Rt becoming
smaller than one. The last panel includes the computed excess
deaths. The same table with the data when Rt is evaluated on the
reported deaths can be found in Supplementary Table 1.

As a case study, the evolution of Rt in Austria is shown in
Figure 3. Figure 3 aims to illustrate the different steps of the
analysis and will be used for the discussion. In the top part,
the daily confirmed cases are shown as a histogram. From these
daily confirmed cases and the derived period distributions, the
inferred daily infection are displayed as a dashed line. In the
middle part, the mean estimated Rt is displayed as a full line,
along with its 95% CI as a shaded area, with Rt being estimated
from the inferred infections. In the bottom part, the evolution
of the stringency index is displayed with a colorbar changing
toward dark red as the stringency score goes toward its maximum
value of 100, through the period of interest (from the date of the
5th death up to the 23rd of May). Different interesting phases
of the pandemic are shown in the Austrian example depicted
in Figure 3. Firstly, Rt started to decline before the introduction
of restrictive measures between March 13th and 17th, and this
reduction was intensified by a combination of NPIs which sums
into a high stringency index score. Rt then plateaued at around
0.65 during the lockdown and has been oscillating around one
up to the end date of our analysis (23rd of May). This last phase
shows the emergence of localized clusters.

When countries managed to reduce their Rt estimated on
the confirmed cases below one, they had a mean stringency
index of 79.6 out of 100 with a standard deviation of
14.3. The individual stringency indices for each country are
presented in Figure 4. When Rt dropped below one, the median
severity of the measures along their individual severity out
of 100 for each category defined in the OxCGRT dataset
was the following: (a) School closed (100/100); (b) Non-
essential economic activities closed (100/100); (c) Public events
were canceled (100/100); (d) Gathering of more than 10
people banned (100/100); (e) Mandatory at home policy with
minimal exceptions (67/100); (f) Movements in the country
were restricted (100/100). Figure 5 shows the time from the
5th death to Rt reducing below one against the time from
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FIGURE 1 | Simulated Incident cases for scenario 1 (A) and 2 (B). The incident cases for each of the 100 simulations are reported with a cross while the median is

indicated by the red line.

the 5th death to the date where the stringency reached 35. A
Pearson correlation coefficient of 0.722 was found between the
two variables.

This analysis was repeated for the Rt estimated on the
reported deaths. A gamma distribution with a mean and a
standard deviation equal, respectively, to 9.7 and 6.73 days
was found, using the AIC criterion, to best fit the data from

a case being confirmed to its death. The distribution along
the extracted data are shown in Supplementary Figure 10.
The AIC for the different distribution are summarized in
Supplementary Table 2. This distribution was used to estimate
the Rt on the confirmed deaths. A Pearson correlation coefficient
of 0.338 was obtained between the two variables, that is the
time between the 5th death and the stringency index reaching
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FIGURE 2 | Estimation of Rt for scenario 2, using the baseline method developed by Cori et al. (18) (A) and the developed method (B).

35 and the time between the 5th death and the Rt reducing
below one. The results for this analysis are presented in
Supplementary Figures 11, 12.

The comparison between the level of excess deaths observed
in a given country and the time between the 5th death and
the stringency index reaching 35 are presented in Figure 6.
A Pearson correlation of 0.684 was observed between these
two variables.

DISCUSSION

Evaluation of the Proposed Method to
Estimate Rt

The method developed to estimate the effective reproduction
number Rt is based on the method developed by Cori et al.
(18). This method only requires the infectivity profile and
an initial assumptions of the basic reproduction number R0
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TABLE 2 | Average relative error comparison between the proposed method and

the one developed by Cori et al. (18) measured on synthetic data.

Average relative error [%]

Baseline method Proposed method 1 [%]

Scenario 1 1.81 0.87 −51.9

Scenario 2 17.7 9.01 −49.2

TABLE 3 | Average relative error comparison between the proposed method and

the one developed by Cori et al. (18) measured on the underreported synthetic

data.

Average relative error [%]

Underreporting

rate π

Scenario Baseline method Proposed method 1 [%]

0.2 1 5.34 5.3 −0.75

2 28.91 31.81 10.03

0.4 1 2.27 1.72 −24.23

2 20.02 17.14 −14.39

0.6 1 2.06 1.23 −40.29

2 19.3 12.1 −37.31

0.8 1 1.8 1.04 −42.22

2 18.4 9.78 −46.85

used to initialize the prior. The difference and main advantage
of the proposed method is that we are less reliant on the
initial assumptions of R0. While (18) assumes the prior is fixed
in time, we constantly adapt it with new data. As seen in
Supplementary Figure 2, for a constant reproduction number
both methods, the baseline and the proposed method converge
toward the simulated value of 2.5. The similarity between the two
methods on this scenario is also reflected in the average relative
error presented in Table 2. Both methods have a low error, but
the proposed method reduces the average error by around 1%.
This reduction is mainly due to its faster rate of convergence
toward the start of the simulated data. The difference between the
two methods are more visible in the 2nd scenario which simulate
a discontinuity in Rt . This discontinuity aimed to simulate the
extreme case where the introduction of a given NPI would
have a direct effect on Rt . As seen in Figure 2, the developed
method tracks the sharp change in Rt arising on day 15 much
more closely than the baseline method. As a result the average
relative error over the simulations reduces from 17.7% with the
baseline method to 9.0% with the developed method. This result
is expected given that the distribution’s prior is updated with the
most recent data, while in the method proposed by Cori et al.
(18), only the posterior evolves.

The baseline method was shown by its authors to be
robust to underreporting (18). Given it is a known issue in
the current pandemic and it was even more so toward the
start of the pandemic, it was important to verify than the
proposed methods retained this beneficial characteristic. As
described in section Comparison of the methods to estimate

Rt on synthetic data, underreporting was simulated on the
synthetic data. As shown in Table 3, the developed method
overperformed the baseline one in all simulated cases, except
the 2nd scenario with a reporting factor of 20%. This error
mainly arises from the incident cases which lies at the end
of the simulated periods with only one or two incident cases
being simulated over the last 15 days. Over all simulations
which replicates underreporting (Supplementary Figures 3–8),
the proposed method has a larger confidence interval when Rt
is estimated on very small incident cases.

Challenges in Estimating Rt on Real Data
As it is very difficult at the beginning of an epidemic to correctly
evaluate R0 (42), it is important to update the prior as more data
become available. In the future, our method will therefore be
generalizable to new epidemic and provide reliable data at the
start of the epidemic by being less reliant on the initial estimation
of R0. However, as previous methods developed to estimate Rt ,
our method is sensible to change in testing policy within a given
country. It is also important to note that as there is a delay
between the infection of an individual and the individual testing
positive or dying, the Rt measured today reflects the evolution
of the pandemic shifted in the past by the distribution of the
period between the infection and the case being confirmed or the
death of the individual. Models aiming to correct this delay have
been initially developed to correct the data following the delay
between a positive test and the test being reported (43) in order to
allow real-time tracking of epidemics. More recently, Nowcasting
methods using hierarchical Bayesian model have been used to
provide reliable and up-to-date estimate of the Rt (44).

Confirmed cases and deaths are widely available in the public
domain, but to estimate the infection dates, the incubation period
and the period between the onset of the symptoms and the person
having a positive test or the death of the individual is required.
The incubation period was initially derived on Chinese cases (39)
and it was assumed that this property is intrinsic to the virus and
is therefore relevant for European countries. The period between
the symptoms onset and a case being confirmed has been derived
on Swiss patient (40). The period between the symptoms onset
and the death of the patient was derived on Chinese data (39),
but this period was not available for European patients. Based
on 1,430 Swiss cases, we found this period to have a mean of
15.3 days compared to 16.3 days in Linton et al. (39). It was then
assumed that this period was relevant for the European countries
included in our study. All the periods distribution used for the
rest of the analysis are summarized in Table 1.

Impact of data sources have been qualitatively evaluated for
Switzerland. Rt has been separately estimated on data from
the international repository of JHU (33) and the national
repository of FOPH (35) for the same period of time
(Supplementary Figure 9). The average relative error equation
(9) between the two estimated Rt is 6%. This value is relatively
low compared to the changes in the reported cases. As an
example, Rt dropped below one for the first time for both
estimates on the 18th of March, even though on the exact same
day, the confirmed new cases were reported to be, respectively,
328 and 1,211, for JHU and FOPH sources. As visible in
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TABLE 4 | List of countries along dates characterizing the evolution of the epidemic (with Rt measured on the confirmed cases) and measured excess deaths in percent

of the number of average death observed between 2015 and 2019.

Date Value Days from 5th death to:

5th death Stridx > 35 Rt <1 Stridx when Rt <1 Stridx >35 Rt <1 Excess death [%]

Albania 26.03.2020 09.03.2020 31.03.2020 84 −17 5

Andorra 29.03.2020 25.03.2020 24.03.2020 35 −4 −5

Austria 19.03.2020 13.03.2020 22.03.2020 85 −6 3 7.5

Belgium 17.03.2020 14.03.2020 04.04.2020 81 −3 18 45

Bosnia and Herzegovina 29.03.2020 11.03.2020 01.04.2020 90 −18 3

Bulgaria 28.03.2020 13.03.2020 29.03.2020 73 −15 1

Croatia 29.03.2020 14.03.2020 26.03.2020 96 −15 −3

Czechia 25.03.2020 11.03.2020 26.03.2020 82 −14 1

Denmark 19.03.2020 11.03.2020 31.03.2020 72 −8 12 3.9

Estonia 02.04.2020 16.03.2020 27.03.2020 72 −17 −6 4.6

Finland 27.03.2020 16.03.2020 04.04.2020 60 −11 8 7.7

France 05.03.2020 13.03.2020 08.04.2020 91 8 34 23

Germany 13.03.2020 16.03.2020 26.03.2020 73 3 13 5.5

Greece 19.03.2020 12.03.2020 26.03.2020 84 −7 7 2.9

Hungary 22.03.2020 11.03.2020 08.04.2020 77 −11 17 0.2

Iceland 06.04.2020 16.03.2020 23.03.2020 54 −21 −14

Ireland 23.03.2020 13.03.2020 09.04.2020 91 −10 17

Italy 24.02.2020 22.02.2020 20.03.2020 92 −2 25 43

Luxembourg 21.03.2020 13.03.2020 22.03.2020 80 −8 1 17

Netherlands 13.03.2020 12.03.2020 05.04.2020 80 −1 23 34

Norway 18.03.2020 12.03.2020 23.03.2020 70 −6 5 2.6

Poland 22.03.2020 12.03.2020 05.04.2020 81 −10 14 2.8

Portugal 20.03.2020 16.03.2020 29.03.2020 82 −4 9 14

Romania 23.03.2020 09.03.2020 09.04.2020 87 −14 17

Serbia 28.03.2020 15.03.2020 11.04.2020 100 −13 14

Slovakia 15.04.2020 10.03.2020 13.04.2020 87 −36 −2

Slovenia 26.03.2020 16.03.2020 24.03.2020 79 −10 −2 2.9

Spain 07.03.2020 10.03.2020 25.03.2020 72 3 18 55

Sweden 16.03.2020 29.03.2020 19.04.2020 46 13 34 29

Switzerland 13.03.2020 13.03.2020 21.03.2020 77 0 8 16

United Kingdom 10.03.2020 22.03.2020 08.04.2020 76 12 29

Stridx denotes the Stringency index.

Supplementary Figure 9 in the appendix, the method seems to
mitigate reporting inaccuracies, by providing an Rt with very
similar trend.

Impact of NPIs
Our analysis shows that when Rt , based on the confirmed cases,
reduced below one, the median severity of the measures for each
category was important with a median stringency index of 79.6
out of 100. In addition, the standard deviation of the index, which
is equal to 14.3, shows that most countries required measures
with similar intensity achieved through different combinations of
NPIs. It is not possible to determine the impact of each individual
measure as most countries took them in different order and often
a given country tookmultiples ones at the same time, but the high
stringency index reinforces the central idea that only important
combinations of NPIs allow to control the pandemic. This finding

is consistent with the findings presented in (23) where it is shown
that initial NPIs managed to reduce the Rt , but that only a full
contact ban reduced it below one. It is interesting to analyze the
measure individually, not to determine their individual impact,
but to determine which set of measures country had put in
place when they successfully controlled the epidemic. If we look
at the median restrictions when countries managed to control
the epidemic, they were all at their maximum level apart from
some exceptions on the closing of public transport as well as
people being allowed to go out of with minimal daily exceptions.
The two categories which had the strongest restrictions were
the restrictions on public events and the school closing. All
countries required canceling public events apart from Sweden
and Andorra which only recommended to cancel them. One
limitation of the dataset used in this analysis is that it does
not measure whether people have to wear mask either in public
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FIGURE 3 | Illustration of key steps of the methodology on Austria case study. Top part: histogram of the daily confirmed cases, and inferred daily infections from daily

confirmed cases and the derived period distributions displayed as a dashed line. Middle part: the mean estimated Rt is displayed as a full line, along with its 95% CI

displayed as a shaded area, with Rt being estimated from the inferred infections. Bottom part: the evolution of the stringency index is displayed with a colorbar

changing toward dark red as the stringency score goes toward its maximum value of 100, through the period of interest (from the date of the 5th death up to the 23rd

of May).

FIGURE 4 | Stringency Index per country when Rt evaluated on the confirmed cases reduced below 1. The median value for the set of countries presented in the

figure is indicated with the vertical black dotted line.

transport or in all closed environments. It would be important to
include those data as more countries are introducing this type of
measures to prevent the resurgence of the virus. Also some NPIs
could have a higher impact on the mortality, without having a

significant impact on Rt evaluated on the confirmed cases. Lastly,
the adherence of the population to NPIs is not taken into account
here, and is definitely an important parameter to assess their
impact on the spread of the pandemic within a country.
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FIGURE 5 | Period required to contain the epidemic (Rt smaller than one) evaluated on the confirmed cases as a function of the period between the 5th death and the

introduction of initial restrictive measures (stringency index above 35). The linear trend is added for reference.

FIGURE 6 | Excess death measured in percent of the number of average death observed between 2015 and 2019 as a function of the period between the 5th death

and the introduction of initial restrictive measures (stringency index above 35). The linear trend is added for reference.
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Our analysis also looked at the timing of NPIs introduction
with the results presented in Figure 5. A strong correlation
(Pearson coefficient of 0.722) between the time at which NPIs
were introduced and the time at which a country managed to
reduce Rt below one was found. This correlation indicates that
countries which introduced NPIs early on manage to control
the evolution of the pandemic within a shorter time frame.
The use of the 5th death as a starting date allows to take into
account that the pandemic did not start at the same time in all
the countries analyzed in this study. The United Kingdom can
serve as an interesting example. The UK had initially planned
to build “targeted herd immunity” delaying the introduction of
restrictive measure. As a result of this delay, the UK was only able
to contain the epidemic 29 days after the 5th death occurred in
the country when the median time for the countries included
in our analysis was of 8 days. There are three outliers in our
analysis being Andorra, Sweden and Iceland. Sweden has decided
not to introduce a complete lockdown and stands with one of the
highest daily death incidence in Europe [May 23rd: Sweden−5.34
deaths per million people per day; other European countries
analyzed 0.82 on the same day (34)]. In the preceding analysis,
no delay between the application of a measure and its effects on
the reproduction number was taken into account. By doing so,
the aim is to measure the timing between the introduction of
the given measures and its effect on the Rt irrespectively of the
behavioral impact it has on the inhabitants who might anticipate
the introduction of the measures or inversely take some time to
adapt to the introduced measures.

The analysis was replicated using Rt computed on the deaths
linked to a SARS-COV2 infections and the data can be found in
Supplementary Figures 11, 12. Similarly to the results presented
above, countries had a median stringency index of 81.48 when
they managed to reduce the Rt computed on deaths below one.
It is interesting however to note that the analysis between the
introduction of the NPIs and the time at which the Rt reduced
below one showedmuch poorer correlation, Pearsons correlation
factor of 0.338, compared to the same analysis on the confirmed
cases. A critical limitation when analyzing the evolution of Rt
evaluated on reported deaths is that the large variance in the
distribution between the onset of the symptoms and the deaths
of an individual spreads the retrieved infections. As a results,
it becomes very difficult to detect sharp changes in Rt induced
by the introduction of NPIs. This effect is similar to the effect
of increasing the variance of the incubation period which was
shown to decrease the ability to detect changes in Rt (18). The
chosen method retrieves the infections dates by subtracting a
shift drawn from the distribution of interest. The latter can
effectively be seen as a convolution of the confirmed and death
cases with the inverse distribution of the corresponding shift,
hence spreading the retrieved in time compared to the true level
of infections. Using a deconvolution method to retrieve the date
of infections instead of the chosen method could improve the
detection of changepoints in the trend.

The excess death observed in each country was compared
to the timing of the introduction of the NPIs. This analysis
has two main benefits. First, it allows to measure the impact
of NPIs independently of the estimated Rt and its associated

drawbacks described previously. Second, it allows to compare the
size of the pandemic in each country without any bias introduced
by changes in reporting policy withing a given country which
impacts the Rt . Such bias would include a rapid increase in the
number of tests being performed as tests become more widely
available. A Pearson correlation factor of 0.684 between these two
variables indicates that countries which took restrictive measures
earlier observed lower excess deaths. This high correlation
between the timing at which NPIs were introduced and the level
of excess death confirms the idea that the Rt evaluated on the
confirmed deaths is not appropriate to evaluate the impact of
these measures. One bias introduced by using the level of excess
deaths to assess the impact of NPIs is that excess deaths will be
larger in countries with older populations for a given penetration
of the virus in the population as the elderly are much more
vulnerable to the virus (45, 46).

A drawback of considering the evolution in the different
countries at a national level and not at a regional one is that
the heterogeneity of the spread of the virus is disregarded. To
evaluate not only the effects of NPIs but also the resurgence of
localized clusters, whose identification will be critical to avoid
new waves, it is important to look where the cases are located
at a more local level. There is therefore a trade-off where Rt
is more reliable when evaluated on a larger amount of cases,
but less representative as it does not take into account local
disparities. Given the greater risk for older population to die or
be hospitalized, it would also be interesting to assess the impact
of different NPIs across different age groups.

CONCLUSION

The proposed method to estimate the effective reproduction
number Rt has been shown to be less reliant on the initial
assumptions of R0 and to effectively improve the modelization
of discontinuities in Rt which could be for example observed
near the introduction of NPIs. The developed method was
subsequently used to analyze the impact of NPIs on 31 European
countries. It was first demonstrated that during the first semester
of 2020, most European countries had to implement important
restrictions to control the pandemic. Our analysis was further
extended to show that early introduction of NPIs shortened the
time required to control the evolution of the pandemic. The latter
correlation was validated by highlighting a direct correlation
between early adoption of restrictive measures and a reduction
in the excess deaths.

Our study on the impact of health measures focused on
European countries but can be extended to other countries for
which data on the daily incidence as well as the NPIs taken
on a given day are available. To extend this study to a larger
set of countries, it would however be necessary to adapt the
period between the onset of the symptoms and a case being
confirmed or the death of a patient. However, while a sensitivity
analysis would be required to assert the influence of variations in
the different period distributions, the relatively small difference
between the periods derived in Switzerland and in China (6.3%)
in regards to the incertitude on the other parameters (daily
incidence, infectivity profile) lets us believe that this factor is
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likely to play a marginal role if our analysis was to be extended
to more countries.

Additional data could help refining our conclusions. First, we
could add hospitalizations data as those would not be influenced
by change in testing policies within a given country. In addition,
looking at Rt within the different age groups could improve
our understanding of the impacts of the different NPIs on
these various groups. This information would be crucial to
develop effective health policies protecting the most vulnerable
while provoking minimal disruptions to the society and
the economy.
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Antimicrobial resistance prediction from whole genome sequencing data (WGS) is an
emerging application of machine learning, promising to improve antimicrobial resistance
surveillance and outbreak monitoring. Despite significant reductions in sequencing cost,
the availability and sampling diversity of WGS data with matched antimicrobial
susceptibility testing (AST) profiles required for training of WGS-AST prediction models
remains limited. Best practice machine learning techniques are required to ensure trained
models generalize to independent data for optimal predictive performance. Limited data
restricts the choice of machine learning training and evaluation methods and can result in
overestimation of model performance. We demonstrate that the widely used random k-
fold cross-validation method is ill-suited for application to small bacterial genomics
datasets and offer an alternative cross-validation method based on genomic distance.
We benchmarked three machine learning architectures previously applied to the WGS-
AST problem on a set of 8,704 genome assemblies from five clinically relevant pathogens
across 77 species-compound combinations collated from public databases. We show
that individual models can be effectively ensembled to improve model performance. By
combining models via stacked generalization with cross-validation, a model ensembling
technique suitable for small datasets, we improved average sensitivity and specificity of
individual models by 1.77% and 3.20%, respectively. Furthermore, stacked models
exhibited improved robustness and were thus less prone to outlier performance drops
than individual component models. In this study, we highlight best practice techniques for
antimicrobial resistance prediction from WGS data and introduce the combination of
genome distance aware cross-validation and stacked generalization for robust and
accurate WGS-AST.
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INTRODUCTION

Antimicrobial resistance (AMR) is a rising global threat to human
health. To ensure the continued efficacy of antimicrobial
compounds, prudent use of this resource is crucial (O’Neill,
2016). Accurate determination of antimicrobial resistance via
antimicrobial susceptibility testing (AST) is crucial to ensure
optimal patient treatment as well as to inform antibiotic
stewardship and outbreak monitoring.

In this context, resistance predictions from WGS data may
effectively complement phenotypic AST: The time-to-result
(TTR) of WGS-based workflows is effectively governed by the
continuously decreasing cost and runtime of genome
sequencing, while phenotypic testing is ultimately limited by
the pathogen’s growth rate (Bradley et al., 2015; Brǐnda et al.,
2018). Machine learning (ML) algorithms are increasingly
applied for prediction of AMR from WGS data (WGS-AST).
Recently described WGS-AST techniques use nucleotide k-mer
representations of genome assemblies or raw sequencing data,
attempting to learn differences in k-mer counts or presence/
absence patterns that correlate with shifts in susceptibility to a
target antibiotic (Drouin et al., 2016; Aun et al., 2018; Nguyen
et al., 2018a; Drouin et al., 2019). This data-driven approach does
not require expert knowledge of AMR mechanisms or prior
information on AMR genes, and can thus also be applied towards
learning of models for novel antibiotics and unknown resistance
mechanisms. Other representations of genomic data, such as
amino acid k-mers or protein variants have been used for WGS-
AST model training as well (Kim et al., 2020; Valizadehaslani
et al., 2020).

Challenges arise, however, when learning is not based on
features derived from validated, curated AMR markers for the
resistance phenotype in question. For example, the significant
impact of population structure when applying ML algorithms to
WGS-AST data has been noted before (Hicks et al., 2019).
Performance of ML models evaluated on isolates from the
same experiment as the training data tends to be significantly
higher than performance on isolates sampled from independent
data sources. Due to limited availability of WGS data coupled
with AST information, the performance of WGS-AST models is
usually evaluated by cross-validation (CV). Most commonly this
is performed using a random splitting criterion, i.e., by dividing
samples randomly (Davis et al., 2016; Nguyen et al., 2018a;
Drouin et al., 2019). Performance measures obtained by random
CV can however only be assumed valid for the larger population
if the sample-generating process yields approximately
independent and identically distributed (i.i.d.) samples
(Ruppert, 2004). This assumption is violated in data points
generated by evolutionary processes, which are correlated as a
function of the recency of their last common ancestor. This
includes, for example, data pertaining to gene function (Tabe-
Bordbar et al., 2018) or protein structure (AlQuraishi, 2019), but
also whole genomes. By random splitting, similar samples in an
existing dependence structure, e.g., evolutionary distance, may
be split into the training and test set of CV. This causes the
model to overfit by learning features that are spuriously
correlated with the phenotype, features which are also present
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 237
in the test set due to the violated assumption of independence.
(Roberts et al., 2017) For example, k-mers mapping to the
replication machinery of a resistance cassette-carrying plasmid
vector may be highly correlated with resistance due to the
prevalence of the plasmid in resistant isolates, despite not
contributing to resistance itself. A model overfit to this
population by inclusion of such spurious correlations may fail
unexpectedly on a population of isolates where the resistance
cassette has integrated into the genome. Biological datasets with
low sample count but a high number of features further increase
the potential of dependence structures and the risk of overfitting
(Clarke et al., 2008), and are known to be susceptible to
overestimation of model performance by random CV (Roberts
et al., 2017).

Ultimately, applying a trained model to multiple large and
independently sampled datasets is the gold standard for gauging
model generalizability, though this is currently impractical for
WGS-AST. To estimate generalization performance in the
absence of additional data, blocking CV techniques can be
used. Blocking CV seeks to split data into pre-defined similar
groups of samples, thus reducing the splitting of dependence
structures into the training and test sets of CV (Valavi
et al., 2019).

Another significant challenge in achieving robust WGS-AST
models with high predictive accuracy is selection of an
appropriate learning algorithm. High dimensionality and a low
number of training samples constrain the selection of suitable
choices. In this study we selected three established learning
algorithms which have previously been applied to the WGS-
AST problem, and exhaustively benchmarked them across a set
of five clinically relevant pathogens (A. baumannii, E. coli, K.
pneumoniae, P. aeruginosa and S. aureus) and a total of 77
species-compound combinations. We also investigated the
possibility of improving model accuracy and robustness by
ensembling different learning algorithms such as majority vote
and stacked generalization (Wolpert, 1992). This commonly
used set of techniques has, to the best of our knowledge, not
been explored in the context of antimicrobial resistance
prediction from WGS data.
RESULTS

Random CV May Overestimate WGS-AST
Model Generalizability
To assess the impact of data splitting techniques on performance
estimates of WGS-AST models, we trained extreme gradient
boosting (Chen and Guestrin, 2016) models under random and
genome distance-aware CV. Genome distance-aware CV
attempts to improve independence of test sets by segregating
samples based on a known dependence structure in the data,
namely genome similarity (see Methods). This mirrors the
application of the trained model towards independently
sampled datasets, in the absence of actual new data.

Genome assemblies coupled with AST information were
obtained from public databases (see Methods) for five human
February 2021 | Volume 11 | Article 610348
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pathogens (A. baumannii, E. coli, P. aeruginosa, K. pneumoniae
and S. aureus) and a total set of 77 organism/compound
combinations. Data was split into 5 CV folds by either a
random or genome distance-aware splitting criterion. Random
CV splitting was repeated 10 times while varying the random
seed to enable significance estimation (see Supplementary
Methods Section 3). Extreme gradient boosting (XGB)
machine learning models were trained on nucleotide k-mer
representations of each of the resulting training sets (see
Methods) and evaluated on the corresponding test sets.

Of the 77 investigated organism/compound pairs, 60
exhibited significantly higher balanced accuracy (bACC)
estimates for random CV than for genome distance-aware CV
(Figure 1). The average bACC estimated by random CV was
4.45% greater than that of distance-aware CV, indicating that
performance estimates by random CV are likely to overestimate
the true performance of WGS-AST models on unseen,
independent data sampled from a population that is not
comprehensively represented in the training data. The
observed effect is congruent with published findings of the
generalization properties of WGS-AST models applied to
independently sampled data (Hicks et al., 2019). To empirically
demonstrate that performance estimates by random CV are
prone to be overoptimistic we trained XGB models on the full
set of P. aeruginosa samples and evaluated them on an
independent dataset of 140 samples (Ferreira et al., 2020) (see
Supplementary Figure S1). On average, bACC of the trained
XGB models on this test set was 10.12% lower than estimated by
random CV. Distance-aware CV provided more conservative
estimates while not completely rescuing the overestimation bias,
likely due to novel AMR mechanisms associated with the
independent dataset (see Discussion).
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Benchmarking of Machine Learning
Algorithms for WGS-AST
We selected three machine learning algorithms for prediction of
antimicrobial resistance from WGS data represented as
nucleotide k-mer profiles: extreme gradient boosting (XGB)
(Chen and Guestrin, 2016), elastic net regularized logistic
regression (ENLR) (Friedman et al., 2010), and set covering
machine (SCM) (Marchand and Shawe-taylor, 2000). All
selected algorithms were recently reported to perform well on
the WGS-AST task (Aun et al., 2018; Nguyen et al., 2018a;
Drouin et al., 2019; Ferreira et al., 2020; Lees et al., 2020).

Selected algorithms were benchmarked across a set of five
clinically relevant bacterial pathogens and a total of 77 organism/
compound combinations (Figure 2A). Predictive performance
across evaluated algorithms was similar, with a median difference
between the strongest and weakest model for an organism/
compound combination of 4.22% bACC (Figure 2B). ENLR,
XGB, and SCM algorithms yielded the model with the highest
bACC for 34, 28, and 15 datasets, respectively. Despite their
characteristically low complexity and high interpretability, SCM
models outperformed the more complex ENLR and XGB models
on several datasets, particularly when few resistant isolates were
available (Figure 2C).
Model Stacking Improves Predictive
Performance and Robustness of
Individual ML Models
To improve predictive performance, we then employed stacking,
a model ensembling technique. The ENLR algorithm was used to
train a metamodel which learned to optimally combine
predictions of individual component XGB, ENLR and SCM
FIGURE 1 | Difference in balanced accuracy (bACC) of XGB models trained and evaluated under random CV and genome distance-aware CV for all considered
organism/compound pairs. Significance thresholds are the probability of obtaining bACC estimates as low or lower than the ones from genome distance-aware CV
when sampling from a normal distribution fitted to 10 random CV replicates obtained with different random seeds.
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models (Figure 3 and Methods). We compared the stacked
model with a simpler ensembling approach based on the
majority vote of all component models. On average, stacked
models improved over the sensitivity and specificity of their
component models by 1.77% and 3.20%, respectively. The
stacking model was found to be the best model by bACC of
outer CV in 30 out of 77 organism/compound combinations,
outperforming individual component models and the majority
vote ensemble. To gauge robustness, we considered a model to
have encountered a failure mode if it exhibited a drop in bACC of
more than 5.00% compared to the best model for that organism
and compound. The stacked models encountered failure modes
in 3 out of 77 cases, thus exhibiting superior robustness
compared to component models and the simple majority vote
ensemble (Table 1).

Failure Modes of Component Models
and Biological Interpretation
We selected two organism/compound pairs with large
differential performance among component models and
investigated the biological underpinnings of observed failure
modes by annotating k-mers mapping to known AMR
biomarkers (Ferreira et al., 2020). For practical reasons, we
investigated the models trained in the CV fold exhibiting the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 439
largest differential performance and considered only the top 10
most impactful features of each model (see Supplementary
Tables 8 and 9).

For the combination agent piperacillin and tazobactam (PTZ)
in Klebsiella pneumoniae, the SCM model exhibited a drop of on
average 10% bACC in comparison to XGB and ENLR models.
This drop was due to decreased specificity of the SCM model,
caused by the model making a comparably larger number of false
resistance calls (see Supplementary Table 6). Of the four
features learned by the model, two mapped to known AMR
markers gyrA and catB3, involved in fluoroquinolone and
phenicol resistance, respectively, with no known function in
PTZ resistance (Bunny et al., 1995; Drlica and Zhao, 1997).
This indicates a strong reliance of the model on features which
are spuriously correlated with the phenotype. Conversely, the
corresponding XGB model learned multiple k-mers mapping to
blaKPC beta-lactamase genes, known to confer resistance to
piperacillin (Bush and Jacoby, 2010). The stacking model
incorporating this SCM model learned to fully disregard the
predictions of the SCM model in favor of ENLR and XGB
predictions (see Supplementary Table 7).

Conversely, for tobramycin (TOB) in Acinetobacter
baumannii, XGB and ENLR exhibited reduced bACC, mostly
due to failure to identify resistant samples in one CV fold. The
A

B C

FIGURE 2 | Benchmark of three ML algorithms on the prediction of antimicrobial resistance from WGS data. (A) Predictive performance of models for each
organism/compound pair as a function of training set size. For each pair, performance of a model with the highest bACC is shown, and underlined if the stacking
model outperformed it. The mapping of compound names to compound abbreviations is given in Supplementary Table S4. (B) Distribution of bACC differences
between the models with highest and lowest bACC for all organism/compound pairs. (C) Number of top performing models from each algorithm as a function of the
fraction of resistant isolates in the training set.
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SCM model performed consistently well. Feature analysis
showed that two of the only three features considered by the
SCMmodel could be mapped to N-Acetyltransferase genes aadB
and aacC5, known to confer resistance to aminoglycosides (Shaw
et al., 1993; Cox et al., 2015). The XGB and ENLRmodels learned
a high number of features (512 and 6351, respectively), indicating
potential overfitting. In the top 10 features of each, only XGB
exhibited interpretable features, namely aacA16, an aminoglycoside
acetyltransferase, and msrE, conferring resistance to erythromycin
(Sharkey and O’Neill, 2018). The stacking model learned to assign
the highest weight to the SCM component, thereby achieving
second place performance after the individual SCM itself (see
Supplementary Table 7).
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DISCUSSION

Random CV May Overestimate WGS-AST
Model Generalizability
We demonstrate on a large collection of public datasets that
special care must be taken when applying machine learning
techniques to the WGS-AST problem. Two common properties
of genomics datasets, namely high dimensionality (Clarke et al.,
2008) and sparse and biased sampling of the underlying data
distribution, invalidate default design choices such as random
dataset partitioning for evaluation of generalizability.

Awareness of the issue of splitting data for WGS-AST ML is
developing; a recent study (Aytan-Aktug et al., 2020) used
FIGURE 3 | Workflow for model stacking with nested CV. For each training data set in the outer CV loop (dark blue bars on top) complete with true resistance
status of samples (red bars), an inner CV loop is run (light blue bars). The full set of predictions (yellow bars) obtained from the test sets of the inner CV are used to
train a stacking model to ideally combine predictions from each of the components. At the same time, full component models are trained on the training data set
(blue bars within component models). Subsequently, predictions are made by all full component models on the test dataset (green bars on top). Predictions are
made by the stacking model using the component model predictions as input features. Finally, performance metrics are obtained by scoring predictions of each
model type against the true resistance status of test set samples.
TABLE 1 | Summary statistics of model performance (averaged over organisms and compounds) and number of top-1 placements and failure modes (a more than 5%
drop in bACC compared to the best performing model) per organism and compound combination.

Algorithm bACC Sensitivity Specificity # Top-1 Rankings (bACC) # Failure Modes Encountered

ENLR 0.849 0.807 0.890 15 9
XGB 0.840 0.813 0.866 13 13
SCM 0.811 0.805 0.818 8 31
Majority vote 0.846 0.818 0.873 17 10
Stacking 0.858 0.826 0.890 30 3
February 202
Best metrics in boldface.
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genome clustering based on a similarity threshold, splitting only
full clusters into different CV folds together. This approach to
data partitioning is also widely used in gene- and protein-based
deep learning, where generally only a single training, validation,
and test dataset are used (AlQuraishi, 2019; Strodthoff et al.,
2019). While grouping by a similarity threshold increases
biological meaningfulness and independence of data splits
(potentially further reducing performance overestimation), it
may cause strongly disbalanced CV fold sizes, especially in a
small data regime. The genomic distance-aware method
proposed in this work by design generates equally sized folds
and aims at maximizing the sample independence across the
folds. Supplementary Figure S3 shows how the proposed
method partitions public P. aeruginosa samples used in
this work.

Similarly, hierarchical clustering has been used for removal of
highly clonal genomes from the dataset (Nguyen et al., 2018b),
though mainly due to computational considerations. While
deduplication is likely to reduce the impact of dependence
structures in the training data, the large dimensionality and
sparsity of AMR information in a genome represented as k-mer
counts makes finding a useful deduplication criterion tricky,
especially if the goal is for the model to learn unknown
AMR mechanisms.

Of note, data splitting methods controlling for population
structure are expected to provide performance estimates differing
from random splitting under two conditions: significant
population structure must exist in the training dataset, and
causal AMR mechanisms must be correlated with population
structure. Datasets of closely related samples (not reflecting the
true diversity of the underlying population), and datasets
containing homogeneously distributed AMR mechanisms,
allow only limited insight into possible performance drops due
to novel AMR mechanisms associated with distinct populations.
Thus, such techniques may still overestimate performance on
independently sampled datasets to varying degrees.

Ultimately, a comprehensive assessment of the impact of
different clustering and deduplication strategies on model
generalizability estimates may be valuable. However, to not
only overcome overestimation of performance but to raise
predictive accuracy beyond FDA requirements for AST devices
(FDA, 2009) and hasten application of WGS-AST models in a
diagnostic setting, a greater depth and width of training and test
data will be required.

Benchmarking of Machine Learning
Algorithms for WGS-AST
Comparing three different ML algorithms, we find that no single
algorithm is clearly superior using the respectively chosen feature
space, model parametrization and evaluation criteria. While
training set size was positively correlated with performance of
all investigated algorithms (see Supplementary Figure S2), both
species identity and antibiotic compound class clearly influenced
classifier performance. Previously established findings regarding
the significant challenge in providing accurate AMR predictions
for P. aeruginosa have been affirmed by this work (Aun et al.,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 641
2018). Likewise, we obtain high accuracy predictions for S.
aureus and most antibiotic compounds in E. coli, reflecting
earlier results obtained with approaches operating on curated
sets of AMRmarkers instead of nucleotide k-mers (Bradley et al.,
2015; Moradigaravand et al., 2018). A notable example of the
influence of the compound class on prediction accuracy is
the consistently high performance of models for resistance to
the fluoroquinolones ciprofloxacin (CIP) and levofloxacin
(LEV), which is strongly determined by single nucleotide
polymorphisms to the DNA gyrase gene gyrA and topoisomerase
IV gene parC (Jacoby, 2005).

Model Stacking Improves Predictive
Performance and Robustness of Individual
ML Algorithms
Several WGS-AST machine learning techniques have been
described in the scientific literature. We demonstrate that
individual ML algorithms, while performing similarly on
average, are susceptible to different failure modes when applied
to the WGS-AST problem, such that no single algorithm is
clearly preferable for all organism and compound combinations.
We illustrate that a stacking ensemble improves predictive
performance and robustness, largely beyond that of any of its
component models.

It has been suggested that the use of a diverse set of learning
algorithms improves predictive accuracy of ensembling models
(Kuncheva and Whitaker, 2003). While we systematically
benchmarked three algorithms previously reported to perform
well on the problem at hand, adding additional ML architectures
to the stack is straightforward and may be a promising next step
to further improve predictive accuracy and robustness, even in
the absence of additional data. Conversely, we note that in
settings where model interpretability is of overriding
importance, for example in biomarker discovery, individual
highly interpretable models such as the SCM may be preferred
over complex model ensembles.

Conclusion
We describe the choice of ML model evaluation strategy and
architecture as key aspects affecting model performance and
generalizability based on publicly available WGS-AST data sets.
To facilitate WGS-AST across organism-compound combinations
and translation into clinical practice, applying best practice
machine learning techniques and further complementing of
publicly available WGS-AST data is important.
MATERIALS AND METHODS

Data Retrieval
Genome assemblies and associated resistance/susceptibility
profiles for five clinically relevant pathogens (A. baumannii, E.
coli, K. pneumoniae, P. aeruginosa, and S. aureus) were obtained
from public data sources (See Supplementary Tables 1 and 2)
(Karp et al., ; NCBI NCBI, ; Kos et al., 2015; Wattam et al., 2016;
Nguyen et al., 2018a; Mahfouz et al., 2020). Minimum inhibitory
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concentration (MIC) values, if present, were interpreted (S/I/R)
via clinical breakpoints according to CLSI 29 standards (Wayne,
2019). Intermediate phenotypes were treated as resistant for
model training and evaluation. Isolates with MIC values less
than or equal to a dilution step in the intermediate range
(meaning that the MIC interpretive category was ambiguous
according to CLSI 29 standards) were treated as susceptible. Data
was filtered to pass assembly QC metrics (Ferreira et al., 2020).
Finally, only organism-compound pairs were included for which
at least 50 susceptible and resistant isolates as well as 200 isolates
in total could be retrieved (see Supplementary Tables 1–3).
Using these cut-offs, a total number of 8704 genome assemblies
were retrieved.

Genome assemblies used for evaluation of CV estimates on an
independent dataset (Ferreira et al., 2020) were obtained from
NCBI (PRJNA553678). AST data were obtained from
the authors.

Data Partitioning for Training
and Evaluation
Models were trained and evaluated in a nested 10x/5x cross-
validation scheme, whereby the inner 10x cross-validation was
used to obtain the training features for the stacking model
(Figure 2).

Genome-distance-based cross-validation folds were created
for each species individually such that genome distance was
maximized between the test sets of folds (see Supplementary
Methods Section 1). In short, for all assemblies of each
organism, a distance matrix was computed with Mash v2.2
(Ondov et al., 2016). From the distance matrix, two seed
samples with the largest genomic distance among them were
identified. Subsequently, for each remaining sample, the minimal
distance to either of the seeds was computed. Additional seed
samples up to the number of desired CV folds were added by
selecting samples with the highest minimal distance to existing
seeds. Finally, all remaining samples were assigned to seed
samples iteratively by assigning to each seed the sample with
the lowest genomic distance. The generated five sample groups of
even size were used as input to CV. Randomly split CV folds for
comparison were created using scikit-learn (Pedregosa
et al., 2011).

Feature Creation and Feature Selection
For XGB and ENLR models, feature extraction and selection
were performed according to the following procedure. For all
training assemblies of each organism, a count matrix of
overlapping k-mers of length 15 was built using KMC 3.1.0
(Kokot et al., 2017). Zero-variance k-mers were removed. Out of
all k-mers having identical count profiles across training isolates,
only a single representative k-mer was retained. Subsequently,
for each organism and relevant antimicrobial compound, a
subset of the organism’s full count matrix for which S/R class
information of the given compound was available was extracted.
The k-mer feature space was then condensed by univariate
feature selection before application of machine learning. K-
mers were tested for independence from the S/R category
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 742
using the c2 test as implemented in scikit-learn and filtered by
a p-value of p < 0.05. Of the k-mers passing this filtering step, at
most 1.5 million k-mers with the highest log-odds ratio were
retained. For SCM models, k-mer features of length 31 were
created from assemblies with Kover2 according to the supplied
manual. To exclude the possibility of biases introduced by
common feature selection on the full dataset, features for
prediction on the test sets of the outer cross-validation were
created only at prediction time.

Model Training
We trained extreme gradient boosting (XGB), elastic net
regularized logistic regression (ENLR) and set covering
machine (SCM) models for prediction of antimicrobial
susceptibility from WGS data for a set of five clinically relevant
pathogens. A fixed set of hyperparameters was used across all
organisms and compound pairs, except for the number of trees
in the model which was tuned via internal CV. We explored the
choice of CV method for hyperparameter optimization and
found that the performance estimated by the outer CV method
is relatively insensitive to the choice of the inner CV method (see
Supplementary Figure S4) and thus used a distance-based
splitting criterion for internal CV of both XGB and ENLR
methods. ENLR models were trained using the glmnet_python
package, version 0.2.0 (Friedman et al., 2010), and the
hyperparameters lambda and alpha were tuned via an internal
CV. Set covering machine models were trained with the Kover2
package, version 2.0.3 (Drouin et al., 2019) according to the
supplied manual and using risk-bound hyperparameter selection
(see Supplementary Methods Sections 4 and 5).

Individual models were combined into a stacked model
(Wolpert, 1992), with ENLR serving as the learning algorithm.
Classically, stacking is achieved using a disjunct mixing set,
whereby the predictions of component models on the mixing
set serve as the input features on which the stacking classifier is
trained. Due to the limited amount of available data, this was
achieved here by training partial component models in an inner
10x (distance-based) CV loop (Figure 3). Predictions of
component models on all test sets were then concatenated into
the training features of the stacking model. Predictions with the
stacked model were made on the prediction output of the
individual, full component models (XGB, ENLR, and SCM)
(see Supplementary Methods Section 2).

Model Evaluation
Component ML models as well as the stacking model were
evaluated in the outer CV loop by predicting the MIC
interpretive category (susceptible or resistant) on samples in
the test set. Confusion matrices were summed up from outer CV
folds. Performance of trained models was evaluated on the
balanced accuracy (bACC) metric (Brodersen et al., 2010), as
this metric allows evaluation of a model on imbalanced datasets.
The bACC is furthermore related to the arithmetic mean of very
major error (VME) and major error (ME), two performance
criteria commonly applied to AST testing methods. Models
created by the individual algorithms (XGB, ENLR, SCM), the
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majority vote ensemble model and the stacking model were
ranked by counting the number of other models achieving higher
bACC on each organism/compound pair.
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Background: Computerized decision support systems (CDSS) provide new

opportunities for automating antimicrobial stewardship (AMS) interventions and

integrating them in routine healthcare. CDSS are recommended as part of AMS

programs by international guidelines but few have been implemented so far. In the

context of the publicly funded COMPuterized Antibiotic Stewardship Study (COMPASS),

we developed and implemented two CDSSs for antimicrobial prescriptions integrated

into the in-house electronic health records of two public hospitals in Switzerland.

Developing and implementing such systems was a unique opportunity for learning

during which we faced several challenges. In this narrative review we describe key

lessons learned.

Recommendations: (1) During the initial planning and development stage, start by

drafting the CDSS as an algorithm and use a standardized format to communicate clearly

the desired functionalities of the tool to all stakeholders. (2) Set up a multidisciplinary

team bringing together Information Technologies (IT) specialists with development

expertise, clinicians familiar with “real-life” processes in the wards and if possible, involve

collaborators having knowledge in both areas. (3) When designing the CDSS, make

the underlying decision-making process transparent for physicians and start simple and

make sure to find the right balance between force and persuasion to ensure adoption by

end-users. (4) Correctly assess the clinical and economic impact of your tool, therefore try

to use standardized terminologies and limit the use of free text for analysis purpose. (5) At
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the implementation stage, plan usability testing early, develop an appropriate training

plan suitable to end users’ skills and time-constraints and think ahead of additional

challenges related to the study design that may occur (such as a cluster randomized

trial). Stay also tuned to react quickly during the intervention phase. (6) Finally, during the

assessment stage plan ahead maintenance, adaptation and related financial challenges

and stay connected with institutional partners to leverage potential synergies with other

informatics projects.

Keywords: antimicrobial stewardship, implementation, digital health, usability testing, cluster randomized

controlled trial, multidisciplinary, user training, computerized decision support system

INTRODUCTION

Antimicrobial resistance (AMR) remains one of the major
global public health threats of the early twenty-first century
and although detailed data are currently lacking, one that is
potentially exacerbated by the current COVID-19 pandemic.
Similar to SARS-CoV-2, albeit at a much slower pace, AMR is
a pandemic with new multidrug resistant clones of pathogens
continuing to emerge and spread globally, threatening our ability
to treat common infectious diseases, ultimately resulting in
prolonged illness, disability, and even increased risk of death
(1). Antibiotic use is a key driver for the spread of AMR. While
antibiotics have dramatically changed the prognosis of many
common severe bacterial infections, they are among the most
misused and overused medicines worldwide.

Antimicrobial stewardship (AMS) programs use different
interventions to influence the behavior of prescribers toward a
more rational and appropriate use of antimicrobials to improve
patient care and preserve this resource for future patients and
generations (2, 3).

Over the last decades, information technologies (IT)
have become essential components of modern medicine and
significantly impacted the delivery of health care. Electronic
health records (EHR) now usually incorporate computerized
physician order entry (CPOE) systems that not only assure
trackability and documentation of prescriptions but may also
enable computerized decision support systems (CDSS) that
support physicians and other healthcare workers (HCWs) to
optimize their decision-making.

Taking numerous, often complex and sometimes high-impact
(for the patient and society) decisions under time pressure is
part of the daily routine of HCWs around the world. Those
decisions are often made ad hoc during patient contact, ward
rounds or multidisciplinary meetings based on the medical
knowledge and patient information available and accessible to the
HCWs at the time of the decision. CDSSs offer the possibility to
complement the information available for the HCWs by patient-
specific and updated evidence-based recommendations at the
point of care. CDSS have been shown to reduce medical errors,
increase adherence to guidelines and ultimately increase patient
safety (4, 5).

About 30–50% of patients will receive antimicrobials
during their hospital stay (6) and those prescriptions are
usually performed by physicians without specific training in

infectious diseases and often only rudimentary knowledge
about the appropriate use of antimicrobials. Furthermore,
the epidemiology of disease-causing microbes is quickly
evolving and varies among settings, making it challenging
for non-infectious diseases (ID) specialists to stay updated
when changing locations or when new versions of guidelines
are released.

The time and economic constraints of modern healthcare
delivery make it impossible to have every antimicrobial
prescription assessed by ID experts. As part of AMS programs,
post-prescription review of antimicrobial prescriptions by
experts has been shown to improve antibiotic prescribing but
is resource intensive and cannot be generalized (7). CDSS
directly integrated into EHRs have the potential to promote the
appropriate use of antimicrobials by providing prescribers with
relevant real-time patient, alerts and recommendations when the
prescribing decision is taken, without need for intervention by a
specialist.

The COMPASS tool is a CDSS developed in the context
of the COMPASS trial, a cluster-randomized, parallel-arm,
open-labeled, superiority trial that aim to assess the effectiveness
of a multi-modal computerized antimicrobial stewardship
intervention (8). The COMPASS CDSS was developed
between 2017 and 2018 implemented in 2018 in two hospital
organizations in Switzerland: Geneva University Hospitals
(HUG) and Ticino Regional Hospitals (EOC). The EHRs in
both hospitals are in-house systems, which offer the flexibility
to develop new components such as CDSSs integrated directly
into CPOE.

OBJECTIVE

In this article we aim to describe the process of developing a
CDSS for the purpose of AMS from the point of view of clinician-
investigators. We report some of the challenges we encountered
and share the lessons we learned (Table 1). In the first part we
describe issues related to the planning and development stages,
in the second part we present issues related to implementation
and evaluation.

MAIN SECTION

The COMPASS CDSS provides guidance to physicians for in-
patient clinical management. When prescribing antimicrobials
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TABLE 1 | Key messages when designing and implementing your CDSS for

antimicrobial prescriptions.

Planning and development

Draft the CDSS as an algorithm and use a standardized format

Set-up a multidisciplinary team bringing together IT specialists with

development expertise, clinicians familiar with “real-life” processes in the

wards and communicate clearly with members of the project and related

stakeholders

Make the underlying decision-making process transparent for physicians

and start simple

Find the right balance between force and persuasion

Beware of the planning fallacy

Implementation

Plan usability testing early and regularly in the developing process

Think ahead of additional challenges related to study design and stay tuned

to react quickly during the intervention phase

Plan training appropriately

Assessment and adaptation

Plan ahead maintenance, adaptation and related financial challenges

Potentialize synergies with other IT projects

on inpatient wards, physicians must choose the indication for
each antimicrobial; thereafter they are provided indication-
specific treatment recommendations based on local guidelines.
After 3 days of therapy physicians receive a prompt for a
self-guided evaluation of the prescription. As part of the
intervention of the COMPASS study, physicians working
in wards where the CDSS was implemented also received
quarterly feed-back on qualitative antibiotic use data from
the CDSS.

Planning and Development Stage
Message 1: Draft the CDSS as an Algorithm and Use

a Standardized Format
The COMPASS project was an investigator-initiated project
funded by the Swiss National Science Foundation in the context
of a national research program on antimicrobial resistance (9).

The clinical investigators (BH, GC, EB) had some basic
knowledge of informatics but no IT background. One key
challenge when designing a CDSS is that clinicians and
informaticians may not necessarily share the same language and
concepts. A crucial first step when designing a CDSS is to develop
a concept of the tools desired functionalities and algorithms and
share it early on with software developers to assess feasibility
and necessary modifications. We used simple algorithms and
described them in a schema (created in OmniGraffle, The
Omnigroup, Seattle, United States) providing a clear and
concise outline of the functionality we expected. A standardized
format such as Business Process Model and Notation (BPMN)
(http://www.bpmn.org/) can be used for this purpose. These
formats are particularly useful to represent workflow and
rules of the clinical decision support tools (Figure 1A). They
describe procedures using a graphical notation and give the
ability to communicate these procedures in a standardized

manner. They are also useful to document the processes for
future reference.

A further helpful tool are Digital Accelerator Kits (DAK)
developed by the World Health Organization (WHO) to
translate narrative guidelines into a standardized format
that can be more easily digitalized and integrated into
decision support systems. DAK’s consist of the standardized
documentation of the foundational components of digital
client records, including common workflows, core data
elements, decision-support algorithms and scheduling logic,
metrics and reporting indicators. DAK have been designed
to ensure WHO’s evidence-based guideline content is
accurately reflected in the digital systems that countries are
adopting. Using standardized graphical presentation such
as components proposed by the DAK or BPMN format
help to make the process transparent and understandable
by clinicians and software developers. It also makes the
CDSS readable by stakeholders not involved in the initial
development stage in case of further evolution or adaptation of
the CDSS (10).

Figure 1B presents the initial algorithm of the COMPASS
tool as it was conceived by the PI of the project and
Figure 1A the final algorithm drawn in collaboration
with business modelers and software developers at
the end of the development stage. Retrospectively,
we think that we could have saved time and avoided
misunderstandings by using a standardized format
and by involving someone with skills in graphical
presentation of informatics processes early in the
development stage.

Message 2: Set-Up a Multidisciplinary Team Bringing

Together Information Technology (IT) Specialists With

Development Expertise, Clinicians Familiar With

“Real-Life” Processes in the Wards and

Communicate Clearly With Members of the Project

and Related Stakeholders
Many CDSS are developed by software developers without
early involvement of clinicians. Clinicians have an intimate
understanding of healthcare delivery, having spent thousands
of hours in clinical settings in training and practice. Having
a good understanding of how the EHR works from the
end-user perspective and of the exact prescribing workflow
is key when designing a CDSS that targets prescribing
behaviors. It allows an effective validation feedback loop
during each development step and makes CDSS fit with
clinician workflow. This point is strongly associated with
a decision support system’s ability to improve clinical
practice (11). Each step can be tested and validated by
users that perceive real-life problems that might emerge.
On the other hand, clinicians lack the IT background to
understand the feasibility and time necessary for implementing
certain functionalities.

Our COMPASS project was developed at two different sites
(Ticino and Geneva) with two independent teams composed
by IT with development expertise and clinical researchers (ID
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physicians). Both tools were based on the same algorithms and
communication between the two teams during the development
occurred frequently. In one study site, three members of
the IT team had also a background as medical doctor and
pharmacist. They were playing a key role by being at the
interface between clinicians and back-end developers. We
realized that sometimes there were misunderstandings and
communication problems due to the different backgrounds
of the involved experts. We therefore strongly recommend
involving someone in the project early on who has expertise
both in clinical medicine and IT and who can understand
both languages and “translate” between different experts. The
recently published findings of a Delphi panel highlighted the
added value of hybrid positions that blend responsibilities,
knowledge, and experience in clinical quality, patient safety, and
informatics (12).

During the development of our CDSS, one of the study
sites was in the process of establishing a workflow for
validation of informatics projects. It therefore happened that
decisions taken by the investigators together with the IT-
team were later put into question by a different entity. A key
lesson we learned is that assuring frequent communication,
identifying and implicating all relevant partners and clearly
establishing tasks and responsibilities for each partner from
the beginning is key for the successful development of such a
complex project.

Message 3: Make the Underlying Decision-Making

Process Transparent for Physicians and Start Simple
During the qualitative study that we conducted before
implementation of the COMPASS trial (13), we found that
transparency about how the CDSS makes output decisions is
a key factor for CDSS acceptance by physicians. Physicians
are reluctant to trust a “black-box” system if they cannot
assess the pathway that led them from the diagnosis to the
proposition made. Physicians who understand what the
computer recommendations are based on more willing to accept
it (14). Our system was based on a relatively simple algorithm
(recommendations based on the indication selected by the
prescriber) that could fit on a single screen. All our pre-existing
antimicrobials guidelines were translated into the CDSS. When
several options exist for a specific indication (based on various
susceptibility profiles for the same pathogen), all the propositions
are displayed to clinicians with the rules that condition the choice
mentioned as free text in specific boxes. The physician decides
which options to choose based on the characteristics of his/her
patient (such as previous microbiologic results). Studies have
shown that simple interventions often work best (15).

We also found that providing the sources of the
recommendations matters for adoption. Our CDSS was based
on local recommendations established by the infectious diseases
department and already available through a booklet or PDF.
Most users were therefore already familiar with propositions of

FIGURE 1 | Continued
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FIGURE 1 | (A) Workflow and rules of the COMPASS algorithm drawn in collaboration with business modelers. (B) Workflow and rules of the COMPASS algorithm

initially drawn by the PI.
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the CDSS and we made clear in the CDSS and in the training
session we provided that recommendations in the booklet and
the CDSS were similar, with the only exception that the CDSS
can be updated more frequently. A link to the PDF was also
created in the CDSS.

When designing your CDSS we recommend to keep the
underlying processes simple and visible for end-users and make
clear for them where the content is coming from.

Message 4: Find the Right Balance Between Force

and Persuasion
To have a CDSS actively used by prescribers, and therefore
being able to assess its impact, it is crucial to choose an
appropriate trigger or entry point. In our case we chose as
trigger the entry of an order for an antimicrobial in the CPOE.
This trigger integrates well into the clinician workflow since
the physicians were receiving recommendations immediately
after having taken the decision to prescribe an antimicrobial.
A recent study reviewing the rule-based clinical decision
support content of a large integrated delivery network found
that “order entry” trigger accounted for 94% of all triggers
for the studied clinical rules and 38% of all clinical rule
types (16).

In COMPASS each time a physician ordered an antimicrobial
(from a list of selected antimicrobials based on ATC codes; HIV
medicines were e.g., excluded), he or she was forced to use
the CDSS.

The cluster-randomized designmakes this rule more complex:
the initial CDSS development in Geneva hospital system did not
allow automatic triggering of the CDSS for patients transferred
to an intervention unit from a non-intervention unit who
had already been prescribed antimicrobials in that unit. In
order for the CDSS to be used in these instances, physicians
had to “manually” stop antimicrobials and prescribe them
again through the CDSS on a voluntary basis. In this context
a significant proportion of antimicrobial prescriptions were
not made through the CDSS since many patients arrived in
the intervention units with antimicrobials prescribed in the
emergency room and physicians perceived the stopping/re-
prescribing as a loss of time. It is noteworthy to mention
that this problem was “artificial” in the context of the
trial. Indeed, if the CDSS were to be implemented in every
unit of the hospital, including the emergency room, all
antimicrobials would be prescribed through the CDSS from the
beginning and stopping/re-prescribing antimicrobials would not
be necessary.

This initial low uptake of the CDSS threatened the validity
of the study since significant underuse of the tool would have
not allowed to assess the effectiveness of the tool itself (a
tool that is not used cannot be expected to have an effect).
An additional development was performed to address this
problem few months after the initial launch and the use of
the CDSS for the patients in an intervention unit and already
receiving antimicrobials became mandatory. In comparison, in
Ticino this feature was implemented from the beginning of
the implementation.

On the other hand, for safety reasons, we decided to
not make the self-guided re-evaluation of the prescription
mandatory. Instead of automatically stopping a prescription
not evaluated after 3 days, prescriptions were presented in a
gray banner and marked as “to be re-evaluated” (Figure 2).
This display persisted until the reevaluation task was completed
but had no direct impact on the prescription, meaning
that without any action the prescription would continue as
originally planned. We observed here the limits of a persuasive
system as the action of reevaluation was poorly performed
by end-users.

The right balance between persuasive and restrictive strategies
is difficult to achieve. By being too restrictive and forcing or
blocking the prescribers, one risks limiting their autonomy
too much and thus decreasing the acceptability of the
system (17). By being too permissive and providing only
suggestions, the resistance to change may result in prescribers
not using the system, precluding any chance for an impact.
We recommend to carefully select which part of your
intervention needs to be mandatory to be able to correctly assess
its impact.

Published data on strategies to encourage prescribers to
perform self-guided review of antibiotics regimens report that
these strategies should include persuasive or enforced prompting.
Without such mechanisms, these interventions are likely to have
minimal impact (3). A recent review identified factors associated
with the successful implementation of persuasive interventions
(18). The authors report that provider education should be
part of any multimodal intervention that includes a persuasive
strategy. Interestingly, patient integration and empowerment
was also associated with successful implementation. We
could imagine that this prompt for reevaluation might
trigger a discussion with the patient or his family on
the antibiotic strategy.

The override of reevaluation alerts by physicians might have
several other explanations besides the facultative aspect, such as
poor design of the response mechanism. The perception that
the system is merely giving an assessment (“your prescription
has to be reevaluated”) without recommending an action and
providing a convenient way to either carry out or disregard
has been described as an inneffective way to change behavior
(19). More complex decision rules such as “your patient is
already receiving oral drug, to switch to an oral antibiotic click
here” or “your patient has been treated more than 5 days
for a pneumonia, to stop it click here” might have received
higher acceptance.

When designing a multimodal intervention,
we recommend combining restrictive and
persuasive strategies associated with prescriber
education and involvement of patients
and families.

Message 5: Beware of the Planning Fallacy
We have been confronted during the whole of the project
to what is commonly called the “planning fallacy,” i.e., the
tendency for humans to “underestimate the time it will take
to complete a future task, despite knowledge that previous
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FIGURE 2 | Screenshots of the CDSS. (A) Dropdown list of indications, (B) selection of free-text indication by selecting “Autre” (“Other”) in the dropdown list and (C)

entering free-text. (D) List of justification provided for guideline rejection, (E) by selecting “Autre” (Other), the specific box for free-text appears.

tasks have generally taken longer than planned” (20). The
planning fallacy can have deleterious implications for any
project, and it was one of the major obstacles we encountered.
For our COMPASS project, at initial timeline, the CDSS
would have been launched in April 2018, it was finally
implemented in September 2018 in Ticino and December 2018
in Geneva.

With hindsight the initial timeline was clearly overly
optimistic. In addition to some “naïve” assumptions by the
investigators, the pressure from funding agencies to rapidly
implement research projects and obtain results in time, and
limited budget certainly also played a role in this initial timeline.
On the other hand, the informatics departments of our hospitals
(both in Ticino and Geneva) were confronted with many

Frontiers in Digital Health | www.frontiersin.org 7 February 2021 | Volume 2 | Article 58339051

https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/digital-health#articles


Catho et al. Development and Implementation of CDSS for Antimicrobials Prescription

competing projects and maintenance tasks that could not be
post-poned, a reality of which the clinical investigators were not
necessarily aware.

Identifying the potential cause of delays early on and,
discussing with experts from all implicated domains can help to
mitigate the planning fallacy. A qualitative study identified 15
potential socio-technical challenges leading to delays in CPOE
and CDSS implementation (21). They differentiate unintended
delays from tactical internal delays. Tactical delays are due to
tactical decisions taken to enhance longer-term adoption and
optimized use of the system.

If some strategies can mitigate part of the project delays
(such as detailed planning, acquiring better knowledge of
systems, and stepwise implementation strategies), many other
delays are unavoidable, and this should be kept in mind when
starting medical informatics projects. Simplistic and unrealistic
assumptions at the early stages of a project are unhelpful in
making decisions for planning of medical technology projects
and lead to frustration on all sides. Adequate time and effort
must be spent at early stages of a project to capture the
needs of short- and long-term users, system benefits and
implementation strategies.

Our recommendation would be to make a clear schedule to
outline every step of the project with regular assessment of tasks
and deliverables, to ensure that everyone is on the same page
about the requirements and to make realistic assumptions about
resource availability and deadlines.

Message 6: Use Standardized Terminologies and

Limit the Use of Free-Text
There is a trade-off between the use of structured information
and free text that users can enter into the CDSS. From an
analysis perspective, free texts will induce considerable additional
workload to reclassify information into structured terminology.
The different experience in the two hospital systems participating
in COMPASS nicely illustrates the behaviors of end-users with
regard to this aspect. In the COMPASS CDSS the initial step
for the prescriber is to select an indication for the antimicrobial
he/she prescribes (Figure 2). In one center, to enter free-text,
the prescriber has to type “Other,” then a new box will appear
where he/she can type a free-text indication. Due to this “trick”
that makes entering free-text difficult to find, we ended up with
very few free-text indications entered in one center. In the other
center it was much easier to enter free text, resulting in a much
higher proportion of unstructured indications (when reviewing
the indications, a high percentage would have been available as
structured information, but the end-user was unable to find it or
did not make the effort to find it).

On the opposite, in the center where the free text indication
was hidden, the list of justifications for deviation from
recommendations contains “other” directly visible in the list
below the 6 other propositions (Figure 2). The amount of
free text justifications was considerably larger than free-text
indications. This illustrated that users will generally favor free-
text when available because it costs them less effort than to search
for the indication from a predefined list.

We recommend limiting the possibility to enter free text
when designing your own CDSS, but finding the right concept
from predefined lists should be made as easy as possible. One
hospital (Geneva) maintains a list of ∼50,000 medical terms
coded and linked to international terminology such as ICD-
10 (22). Due to communication issues between the different
databases, implementing this list in our own system was not
possible. We selected infectious diseases terms from the list and
indexed all the possible alias for each term (example Figure 2).
The final list contains more than 500 indications (includingmany
aliases) in Geneva and about 200 in Ticino. Results from a survey
conducted among users shows that among 10 users who entered
comments on indications, 6 of them complained that there was
not enough indications or the indication they were looking for
was not present in the list; on the other hand 4 users expressed
that there were too many indications with too many aliases and
that they struggled to find the proper one. The fact that nearly
as many end-users complained about too many as about too few
indications suggests that we probably found a good balance.

We recommend limiting use of free-text but also adapting
your tool over time (e.g., here include in the list of indications
that were not found and provided as free-text).

Message 7: Plan Usability Testing Early and Regularly

in the Developing Process
Usability refers to the ease of use of an interface, defined in
part by learnability, efficiency, memorability, satisfaction, and
potential for errors. Usability of an informatic product is crucial
for adoption by end-users (23, 24). Usability testing is part of
what is now commonly called User experience (UX) and refers to
themethods for improving ease-of-use during the design process,
generally testing it with representative users. Typically, during a
test, participants will try to complete typical tasks while observers
watch, listen and take notes (“think aloud” method) (25). The
goal is to identify any usability problems, collect qualitative and
quantitative data and determine the participant’s satisfaction with
the product.

Effective CDSS are often the product of an interactive design
process based on usability evaluation and redesign. While this
process might be perceived as time-consuming and laborious,
it may detect significant problems and considerably increase
user’s satisfaction with your system. Usability technique does not
necessarily need complex methods or formal lab equipment, but
it needs to be planned ahead and budgeted. Ideally, usability
testing should be performed early in the design process and
throughout the development cycle (15).

At the start of our project, usability testing of in-house
informatic products was not routinely implemented in our
institutions yet and we had the feeling that usability testing of
our tool could only be performed once the tool was almost
ready. However, testing your product too late in the development
process might lead you to a point when corrections will be much
more costly. Furthermore, as clinicians involved in developing
the tool, we became used to its imperfections and the “tricks”
to circumvent them, therefore testing it by ourselves became
somewhat misleading and did not necessarily reflect “real-life.”
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When our tool was finally ready to be launched, delay in
development and the time pressure in the context of the research
study made us bypass an extensive usability testing. Before
implementation we performed tests with users to validate that
they were able to use the tool in classic scenarios, but no
formal testing with “think aloud” methods or deep analyses of
problems testers encountered were assessed. At this stage any
changes in the design or algorithm would have cost us some
additional months of delays. In hindsight, we feel that important,
although not necessarily time-consuming changes could have
had significant impact in adoption by end-users and that it would
have been worth to invest more time and resources for usability
testing. For example, the box to allow the prescriber to add a
medication to the proposed regimen was not visible enough in
the first version of the tool. Only few months after the launch, the
lay-out of this box was slightly modified to be find more easily
by prescribers. This type of “mistakes” could have been detected
through basic usability testing and corrected from the beginning.

We strongly recommend to carefully plan and budget usability
testing when designing your own CDSS.

Implementation Stage
Message 8: Think Ahead of Additional Challenges

Related to Study Design and Stay Tuned to React

Quickly During the Intervention Phase
Cluster randomized trials are considered the best study design to
assess AMS interventions for several reasons (26): they reduce
the risk of contamination of the intervention, may enhance
compliance to the intervention within the cluster and allow to
assess specific outcomes such as antimicrobial resistance at the
cluster level.

Implementing a computerized decision support system in the
context of a cluster randomized trial adds additional challenges
to the well-described logistical and financial challenges inherent
to this type of design.

The CDSS access has to be restricted to physicians and patients
in specific units. It means that, when a patient is transferred from
an intervention to a control unit, information related to the CDSS
(indication for antimicrobial prescriptions) has to be hidden.
To avoid prescriber-fatigue, ideally this information should be
kept and reappear in case of patient re-transfer in the other
direction. It appears for example that in case of a short stay
in operatory room of a patient from an intervention ward, all
the indication data were lost, and prescribers had to re-enter
data again (and then re-prescribe the drugs) when the patient
was back. This type of event potentially creates considerable
frustration for the prescribers. They need to be think ahead,
continuously monitored and quickly corrected.

When implementing the CDSS in the context of a study,
small mistakes at the implementation phase can compromise
the entire study. During the study period, you need to be
particularly alert of small disruptions not planned beforehand
and maintain a constant communication with developers and
end-users to detect problems early on and react fast with
appropriate corrective actions.

Message 9: Plan Training Appropriately
Regardless of its self-learnability, all new systems have a learning
period, and so baseline evaluations of users’ technological
competence may be appropriate. Further training can be
provided to facilitate full use of CDSS capabilities or more
explicit guidance incorporated into the CDSS’ recommendations
themselves. This information could be implemented as info
buttons to be non-disruptive. There is again a trade-off between
toomuch info buttons that will disturb end-users and not enough
which will not allow those who did not receive specific training
to fully exploit potentialities of the CDSS. As mentioned in
a recent systematic review, research is needed to investigate
user experience improvements to increase info button use and
effectiveness (27).

We observed that our system was not fully intuitive to
allow a comprehensive use without additional training. In-person
training session and on-ward in-person support was performed
during the first weeks in both study sites. In Ticino only, in-
person training sessions were mandatory. In Geneva, we created
extensive add-on training materials such as an intranet website,
frequently ask questions documents, and small demo-videos.
Nevertheless, we had the feeling that very few people made
the effort to look at this information. People are used to very
performant electronic tools e.g., smartphones, tablets in their
daily life and their level of expectations toward informatic
products is high. They want a tool intuitive enough not to require
additional efforts to become familiar with. In this sense, usability
testing mentioned above can make big differences through small
changes.

Assessment Stage and Adaptation
Message 10: Plan Ahead Maintenance, Adaptation,

and Related Financial Challenges
Maintenance and continuous adaptation of CDSS are others
challenges that can be frequently neglected at the initial stage
(16). Maintenance is crucial for two main reasons: (1) the
content of the clinical rules needs to be regularly adapted to the
underlying evidence-based knowledge, which is itself evolving
fast, (2) technical adjustments might be necessary due to updates
or new functionalities in the EHR or CPOE.

To regularly update content, we recommend building a system
that allows a certain degree of autonomy for clinicians. In our
case, a web-based platform was designed that allows modifying
order sets by clinicians in charge of the project. Any modification
of the content of the local guidelines is under the responsibility
of the infectious diseases division and validated by the team in
charge of local guidelines before dissemination. This platform
was integrated into the production version of the EHR and
therefore any changes could be quickly released in production
without a long and frustrating validation process. Nevertheless,
to keep up with the pace of changes in medical knowledge and
local guidelines requires time.

Regarding new functionalities, alerts for drug-drug
interactions and renal dosing adaptations are planned to be
implemented in the electronic prescribing systems of both
institutions after the launch of the COMPASS study. These
new features required a very careful evaluation that new
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functionalities will also be effective when prescribing through
the COMPASS system. Users are becoming quickly familiar
with these additional features and not having them available can
be frustrating.

Nevertheless, even if solutions for maintenance and
adaptation can be found, their costs are another challenge.
In our case, the development of CDSS was part of a research
project financed by the Swiss National Science Foundation. It
means that the budget ends once the research project is over.
Proving cost-effectiveness or improvement of quality of cares
is crucial for convincing institutional leaders to keep financing
maintenance and further developments.

Message 11: Potentialize Synergies With Other

Informatic Projects
The informatics development in the hospital context should
be seen in a broad perspective. Subcomponents of our
COMPASS CDSS have already been re-used for other informatic
development for example during the COVID-19 crisis to
create local multi-component guidelines and for a similar tool
targeting prescriptions of antimicrobials to hospitalized children
in the pediatric hospital in Geneva. Synergies can also be
created between other informatic projects targeting medical
prescriptions. By being proactive and aware of concomitant
informatics projects developed in your own institution, you can
create bridges and leverage the development performed for other
projects.

CONCLUSION

Developing our own CDSS for antimicrobial stewardship was a
very exciting but also challenging experience. Having our own
in-house Electronic Health Record offered us this (increasingly

rare) opportunity to build a CDSS integraded into the electronic
prescribing of our hospitals. Nowadays, big commercial EHRs
are replacing local in-house systems which limit the possibilities
do add new functionalities adapted to local needs and practices.
Developing a CDSS in collaboration with IT teams was a
multifaceted experience with some unforeseen challenges.

Assessing the real impact of those tools is key and the literature
is clearly lacking so far. We are looking forward sharing the
results of the cluster-randomized trial.

COMPASS STUDY GROUP

Carlo Balmelli, Stefano Bruni, Magali Despond, Emmanuel
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There is an urgent need for precise diagnosis to distinguish nontuberculous mycobacterial
(NTM) diseases from pulmonary tuberculosis (PTB) and other respiratory diseases. The
aim of this study is to evaluate the diagnostic performance of Interferon-gamma (IFN-g)
release assays (IGRAs), including antigen-specific peripheral blood-based quantitative T
cell assay (T-SPOT.TB) and QuantiFERON-TB-Gold-Test (QFT-G), in differentiating NTM
infections (N = 1,407) from culture-confirmed PTB (N = 1,828) and other respiratory
diseases (N = 2,652). At specie level, 2.56%, 10.73%, and 16.49% of NTM-infected
patients were infected by Mycobacterium kansasii, M. abscessus, and with M. avmm-
intracellulare complex (MAC), respectively. Valid analyses of T-SPOT.TB (ESAT-6, CFP-
10) and QFT-G were available for 37.03% and 85.79% in NTM-infected patients, including
zero and 100% (36/36) of M. kansasii infection, 21.85% (33/151) and 92.05% (139/151)
ofM. abscessus infection, and 17.67% (41/232) and 91.24% (211/232) of MAC infection.
Based on means comparisons and further ROC analysis, T-SPOT.TB and QFT-G
performed moderate accuracy when discriminating NTM from PTB at modified cut-off
values (ESAT-6 < 4 SFCs, CFP-10 < 3 SFCs, and QFT-G < 0.667 IU/ml), with
corresponding AUC values of 0.7560, 0.7699, and 0.856. At species level of NTM,
QFT-G effectively distinguished between MAC (AUC=0.8778), M. kansasii (AUC=0.8834)
or M. abscessus (AUC=0.8783) than T-SPOT.TB. No significant differences in
discriminatory power of these three IGRA tools were observed when differentiating
NTM and Controls. Our results demonstrated that T-SPOT.TB and QFT-G were both
efficient methods for differentiating NTM disease from PTB, and QFT-G possessed
sufficient discriminatory power to distinguish infections by different NTM species.

Keywords: NTM disease, diagnose performance, IGRAs, QFT-G, T-SPOT.TB.
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INTRODUCTION

Mycobacteria are a group of extremely diverse and ubiquitous
microorganisms and inhabit nearly every environmental
niches (von Reyn et al., 1993; Falkinham, 2002; Johansen
et al., 2020), consisting of two major categories: tuberculosis
(TB) - causing mycobacteria (MTB) and non-tuberculous
mycobacteria (NTM) (Runyon, 1959; Wolinsky, 1992).
Partial NTM (M. avium Complex (MAC), M. kansasii,
M. abscessus, M. chelonae, M. fortuitum, M. genavense, M.
gordonae, M. haemophilum, M. immunogenum, M. malmoense,
M. marinum, M. mucogenicum, M. nonchromogenicum,
M. scrofulaceum, M. simiae, M. smegmatis, M. szulgai, M. terrae
complex, M. ulcerans, M. xenopi) are opportunistic pathogens to
humans and are the cause of most common lung diseases in
clinical with rapidly increasing prevalence worldwide, especially in
immuno-compromised patients (Marras et al., 2007; Billinger
et al., 2009; Prevots et al., 2010; Thomson et al., 2010; Winthrop
et al., 2010; Tsai et al., 2011). The microscopic examination of
sputum for acid-fast bacilli (AFB) is a diagnostic standard of
pulmonary tuberculosis (PTB). However, the AFB smear-positive
are also present in NTM infection. The recovery rate of NTM in
AFB positive patients was already considerably high with
geographical variation, for instance, 48.5% in the United States
(Wright et al., 1998), 43.2% in Australia (Anargyros et al., 1990),
21.1% in Spain (Coll et al., 2003) and 9.1% in Korea (Jeon et al.,
2005; Glassroth, 2008; Ryoo et al., 2008). Thus, early clinical
identification of NTM infection and PTB would be helpful in
patients with AFB smear-positive sputum, as well as for NTM
infection and other respiratory diseases with AFB smear-negative
sputum (Griffith et al., 2007). However, due to similar clinical
symptoms of these lung disease, traditional diagnostic methods,
including tuberculin skin test (TST or Mantoux) and chest-X-ray
(CXR) are considered unreliable in the diagnosis of MTB. Several
molecular techniques (PCR restriction analysis, Anyplex MTB/
NTM detection assay, GenoType Mycobacteria Direct test) had
been developed for early NTM detection and already been
commercially available. However, these tools were regarded to
be costly, less sensitive than conventional acid-fast bacilli (AFB)
and therefore not recommended in routine clinical practice by
British Thoracic Society guidelines at the present time (Haworth
et al., 2017). Therefore, there is an urgent need of an early, fast
diagnostic technology to distinguish NTM infection from PTB,
and from other respiratory diseases (Huebner et al., 1993; Kim
et al., 2014).

Interferon-gamma (IFN-g) release assays (IGRAs), including
T-SPOT.TB and QFT-G, display a higher sensitivity compared to
the TST for specific detection of latent TB, pulmonary TB or
extrapulmonary TB, based on the T-cell mediated IFN-g release
induced by specific M. tuberculosis antigens, including ESAT-6,
CFP-10 and TB7.7. These specific peptide antigens are usually
located in the region of difference (RD1) of MTB genome,
and RD1 usually exists in various species of mycobacteria
belonging to the M. tuberculosis complex (M. tuberculosis,
M. bovis, M. africanum, M. canettii, M. caprae, M. orygis,
M. microti, M. pinnipedii, and M. mungi) (van Ingen et al.,
2012), while only a few species of NTM (M. kansasii, M. gastri,
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M. marinum, M. szulgai, and M. riyadhense) share the similar
RD1 areas (Harboe et al., 1996; Mahairas et al., 1996; van Ingen
et al., 2009). Therefore, IGRAs present high sensitivity for
discriminating NTM and MTB.

The aim of this study is to evaluate the efficiency of three
different IGRAs (ESAT-6, CFP-10 and QFT-G) for diagnosing
NTM infection from PTB and other respiratory diseases.
MATERIAL AND METHODS

Patient Population and Ethics Statement
This retrospective study collected clinical data from the Shanghai
Pulmonary Hospital, Tongji University School of Medicine
(Shanghai, P.R. China) between October 2011 to July 2019. In
total, 1,407 consecutive patients diagnosed with NTM infection
by culture for mycobacteria were enrolled. 1,828 patients with
culture-confirmed pulmonary tuberculosis (PTB) and 2,652
patients with respiratory diseases (pneumonia, pulmonary
malignancy, bronchiectasis etc.) excluding those infected with
NTM or PTB, were enrolled as controls. These respiratory
diseases cases without positive results from NTM and
mycobacterial culture were mainly diagnosed by etiology,
clinical symptoms, imaging findings or pathological
examination. The Institutional Review Board of Shanghai
Pulmonary Hospital affiliated with Tongji University approved
the study and waived the need for informed consent since no
patients were at risk. All clinical records were anonymized and
de-identified prior to analysis.
Classification and Diagnosis
NTM diseases were diagnosed with modified guidelines of the
American Thoracic Society (ATS) and the Infectious Disease
Society of America (IDSA) 2007 criteria (Griffith et al., 2007;
Andrejak et al., 2010). Patients with positive culture for NTM
from extra pulmonary sites (skin, lymph nodes etc.) were also
included in line with Freeman et al. (2007). The NTM-infected
patients with a previous history of TB disease or MTB isolations
from clinical specimens were excluded. Patients were excluded
due to discordant IGRAs results, or results not within a 6 month
period before or after the positive NTM culture. PTB was
diagnosed by sputum culture according to the World Health
Organization guidelines (WHO, 2010).

1,407 NTM-infected patients were included including 36
identified as M. kansasii infection, 151 as M. abscessus infection
and 232 as MAC infection. There were 2,652 control patients
without NTM and PTB, including 941 (35%) with pneumonia,
599 (23%) with a pulmonary malignancy and 358 (13%) with
bronchiectasis. All the participants (n = 198) had negative results
on serological tests for human immunodeficiency virus (HIV).
The demographic and clinical characteristics of all participants are
shown in Table 1.

Laboratory Tests and Examination
All bacterial cultures were assessed using the BD BACTEC™

MGIT™ automated mycobacterial detection system (Becton,
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USA) and all mycobacterial cultures were evaluated using the BD
BACTEC™ MGIT™ automated mycobacterial detection system
(Becton, Dickinson and Company, Franklin Lakes, NJ, USA).
Subsequently, partial species (MAC, M. kansasii M. abscessus M.
gastri,M. marinum, M. szulgai etc.) of NTM were identified by 16S
rRNA gene sequencing as described previously (Hall et al., 2003).
The T-SPOT®.TB assays were conducted following manufacturer’s
instructions (Oxford, UK). Briefly, all blood samples were collected
immediately prior to the tests in order to reduce potential
interferences. Peripheral blood mononuclear cells (PBMCs) were
isolated from a whole blood sample using Ficoll-Hypaque gradient
centrifugation at 400 × g for 30 min at 20°C. Then, the PBMCs were
incubated with antigens to stimulate INF-g secretion by the T cells,
and seeded on precoated IFN-g ELISpot plates followed by
incubation with a medium without an antigen (negative control),
or a medium containing peptide antigens from ESAT-6 (panel A) or
peptide antigens from CFP-10 (panel B), or a medium containing
phytohemagglutinin (positive control) in a 5% CO2 atmosphere at
37°C for 20 h (Wang et al., 2010; Wang et al., 2012). The spot-
forming cells were counted by an ELISPOT plate reader (AID-
GmbH, Straßberg, Germany). Quantitative results for the T-
SPOT.TB test are interpreted by subtracting the spot count in the
negative controls well from the spot count in each of the Panels,
and this number must be at least two-times greater than the spot-
forming cells (SFCs) number from the negative wells (Bouwman
et al., 2012). All tests were performed before anti-TB medication.
The QuantiFERON-TB-Gold-Test (Cellestis Ltd., Carnegie,
Victoria, Australia) was also performed following the
manufacturer’s recommendations. Briefly, aliquots of heparinized
whole blood are incubated with the test antigens (ESAT-6, CFP-10,
and TB 7.7 proteins) for 16–24 h; phytohemaglutinin is performed
as the positive assay control, and saline as the negative control (nil
tube). After incubation, the concentration of IFN-g in the plasma
would be read by ELISA and the quantitative result of the test was
reported as the IFN-g level in the sample tube minus the baseline
level (nil tube) (Mazurek et al., 2005).

Statistical Analyses
All data were analyzed by using MedCalc® version 9.0.1.1
(MedCalc, Belgium). The results by different tests were compared
using c2-test to assess the potential to discriminate each other.
Then, the ROC curves were calculated between the groups with
statistically significant difference. Areas under the ROC curve
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(AUC) are evaluated to assess the discriminatory powers of IGRA
test. Generally, the AUC values are positive correlation to reliability
and discrimination, in which higher than 0.9 indicates high
accuracy, 0.7–0.9 indicates moderate accuracy, 0.5–0.7 indicates
low accuracy, and less than 0.5 indicates no discrimination (Oh
et al., 1993; Fischer et al., 2003). An AUC value greater than 0.7 on
the validation can be considered as acceptable models for
differentiation. The corresponding index, including optimal cut-off
values, sensitivity, specificity, positive predictive value (PPV),
negative predictive value (NPV) are calculated.
RESULTS

In total, valid results of T-SPOT.TB were available for 37.03%
(521/1,407) in NTM-infected patients, 30.03% (549/1,828) in
PTB patients and 48.57% (1,288/2,652) in controls. For QFT-G,
valid results were available for 73.13% (1,029/1,407) in NTM-
infected patients, 69.97% (1,279/1,828) in PTB patients and
51.43% (1,364/2,652) in controls. At the species level of NTM,
the valid results of T-SPOT.TB were available for 21.85% (33/
151) in patients infected with M. abscessus and 17.67% (41/232)
with MAC. For QFT-G, valid results were available for 100% (36/
36) of patients infected with M. kansasii, 92.05% (139/151) with
M. abscessus and 90.95% (211/232) with MAC (Table S1).
Quantitative results of different IGRAs were compared (Table
S2). The P values indicated both T-SPOT.TB and QFT-G were
effective when discriminating NTM form PTB (P < 0.001), while
QFT-G showed lower performance (P = 0.1853) than T-
SPOT.TB (P = 0.0000 for ESAT-6 and P = 0.0017 for CFP-10)
when discriminating NTM from controls.

To further evaluate the diagnostic performance of IGRAs
when discriminating NTM from PTB, the ROC analyses with
statistical significances were conducted. As shown in Table 2,
ESAT-6 (AUC: 0.7560), CFP-10 (AUC: 0.7699) and QFT-G
(AUC: 0.8560) had moderate accuracy with AUC > 0.7 (Figure
S1). Notably, based on sensitivity, specificity, PPV, NPV, and
AUC, QFT-G showed better diagnostic performance than ESAT-
6 and CFP-10. When discriminating NTM from Controls, ESAT-
6 and CFP-10 displayed low accuracy with AUC < 0.7 (Figure S2,
Table 3). At the species level of NTM, ESAT-6 and CFP-10 both
had moderate accuracy with AUC > 0.7 when discriminating
MAC orM abscessus from PTB. QFT-G also performedmoderate
TABLE 1 | Demographic and clinical characteristics of patients with participants.

index NTM Three major NTMs PTB Controls

N = 1,407 M.kansasii N =36 M. abscessus N =151 MAC N =232 N = 1,828 N = 2,652

Age, years 60 ± 15 50 ± 14 59 ± 13 60 ± 14 43 ± 18 56 ± 16
Sex, male 610(43) 25(69) 51(34) 91(39) 1,230(67) 1,593(60)
Concomitant diseases (%)
Diabetes mellitus 79(6) 0(0) 3(2) 11(5) 242(13) 258(10)
Malignancy 55(4) 0(0) 4(3) 6(3) 66(4) 655(25)
Rheumatic disease 39(3) 1(3) 4(3) 8(3) 19(1) 43(2)
Coronary heart disease 29(2) 0(0) 0(0) 4(2) 22(1) 82(3)
Hypertension 154(11) 2(6) 13(9) 28(1) 141(8) 496(19)
February 2021
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accuracy with AUC > 0.7 when discriminating MAC,M. kansasii
or M. abscessus from PTB, However, QFT-G established better
performance either ESAT-6 or CFP-10 when discriminating
MAC or M. abscessus from PTB (Figure S3, Table 4).
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DISCUSSION

Previous reports about the diagnostic performance of IGRAs in
distinguishing NTM infections remain limited and their
conclusions were very heterogeneous. Hermansen reported the
QFT-G positivity rate was 8% (4/53) in definite NTM disease and
31% (15/49) in possible disease with colonization, while the overall
rate of positive QFT-G in pulmonary NTM disease defined
patients was 18% (81/462) by their systematic review
(Hermansen et al., 2014). Augustynowicz-Kopeć reported that
the positive IGRAs result was 8% in NTM definite patients (3/39)
(Augustynowicz-Kopeć et al., 2019). Wang stated that the
positivity rate of T-SPOT.TB was 53.4% (31/58) among the
probable and definite NTM groups, 53.5% (15/28) for probable
cases and 53.3% (16/30) for definite cases (Wang et al., 2016).
Siegel reported the lowest positivity rate (2.0%, 1/51) for both
QFT-G assay and a new-generation QuantiFERON-TB Gold Plus
(QFT-Plus) assay in patients with MAC or M. abscessus (Siegel
et al., 2018). In our article, with the traditional cut-off, positivity
rate for QFT-G assay and T-SPOT.TB would be respectively 30.8%
(317/1029) and 34.7% (181/522). The heterogeneity of these
studies might be ascribed into several reasons as follow.

Firstly, the case number with valid IGRA results (all less than
100 from previous reports) limited the accuracy of analyses and
comparison. Secondly, the lack of completed control group (PTB
and other respiratory diseases) for comparisons may limit the
estimation the discriminating power. Thirdly, these researches
evaluated the discriminating power for NTM by calculating the
positivity rate of IGRAs with cut-off values designed to
differentiate TB, while distinguishing NTM, a modified cut-off
February 2021 | Volume 10 | Article 571230
TABLE 3 | Diagnostic performance of T-SPOT.TB to discriminate
nontuberculous mycobacterial (NTM) from controls.

Index ESAT-6 CFP-10

Cut-off value >1 SFCs >2 SFCs
Sensitivity (%) 0.4664 0.3244
Specificity (%) 0.6421 0.7539
PPV (%) 0.3452 0.3477
NPV (%) 0.7484 0.7339
AUC (95% CI)
95% CI
P-value

0.5537
0.5236–0.5838

P=0.0003

0.5458
0.5160–0.5756

P=0.002
TABLE 4 | Diagnostic performance of interferon-gamma release assay (IGRA) tools to discriminate species of nontuberculous mycobacterial (NTM) from pulmonary
tuberculosis (PTB).

Index QFT-G ESAT-6 CFP-10

MAC from PTB Cut-off value <0.6670 IU/ml <2 SFCs <2 SFCs
Sensitivity (%) 0.8671 0.8525 0.7996
Specificity (%) 0.8389 0.6829 0.7805
PPV (%) 0.4703 0.1672 0.2139
NPV (%) 0.9745 0.9841 0.9812
AUC (95%CI)
95% CI
P value

0.8778
0.8479–0.9077

0.0000

0.8226
0.7583–0.8868

0.0000

0.8183
0.7536–0.8830

0.0000
M. kansasii from PTB Cut-off value <0.8180 IU/ml − −

Sensitivity (%) 0.8444 − −

Specificity (%) 0.8611 − −

PPV (%) 0.1461 − −

NPV (%) 0.9949 − −

AUC (95%CI)
95% CI
P value

0.8834
0.8315–0.9354

0.0000

−

−

−

−

−

−

M. abscessus from PTB Cut-off value <0.3565 IU/ml <4 SFCs <1 SFCs
Sensitivity (%) 0.8999 0.7942 0.8452
Specificity (%) 0.8058 0.7576 0.7879
PPV (%) 0.3349 0.1645 0.1932
NPV (%) 0.9867 0.9839 0.9883
AUC (95%CI)
95% CI
P value

0.8783
0.8417–0.9149

0.0000

0.8199
0.7410–0.8987

0.0000

0.8383
0.7690–0.9076

0.0000
−, not available.
TABLE 2 | Diagnostic performance of interferon-gamma release assays (IGRA)
tools to discriminate nontuberculous mycobacterial (NTM) from pulmonary
tuberculosis (PTB).

Index QFT-G ESAT-6 CFP-10

Cut-off value to distinguish
NTM

<0.667 IU/ml <4 SFCs <3 SFCs

Sensitivity (%) 0.867 0.7942 0.7596
Specificity (%) 0.7483 0.6315 0.6756
PPV (%) 0.7349 0.6716 0.6897
NPV (%) 0.8750 0.7638 0.7475
AUC 0.8560 0.7560 0.7699
95%CI 0.840–

0.8719
0.7268–
0.7852

0.7415–
0.7983

P-value 0.0000 0.0000 0.0000
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should be optimized by ROC technique in the target population
(Greiner et al., 2000).

In our research, we finally obtained 1029 valid results of QFT-G
and 521 valid results of T-SPOT.TB among almost 80,000 patients
enrolled from 2011 to 2019 with potential NTM disease, which was
10 times larger than the research by Andrejak (Andrejak et al.,
2010) and 10 times larger than the research by Wang in China
(Wang et al., 2016). Based on a large consecutive data set, we
evaluated the discriminatory power of IGRAs between NTM and
PTB with the area under the ROC curve (AUC), which is regarded
as a global summary statistic of diagnostic accuracy (Greiner et al.,
2000). Our data suggested a moderate accuracy with AUC > 0.7 for
IGRAs to differentiate these diseases. Therefore, we recommended
the application of IGRA tools (T-SPOT. TB and QFT-G) to
distinguish NTM in AFB smear-positive patients who were
composed of only NTM and PTB patients, and QFT-G may be
preferred due to its higher AUC value.

Furthermore, our data showed that no significant difference of
discrimination power was identified between NTM and Control
patients by IGRAs. Since smear-negative patient group was
composed of NTM, PTB, latent tuberculosis infection (LTBI)
and other respiratory diseases, and the IGRA tools may only
differentiate PTB and LTBI from this group, the remaining NTM
and other respiratory diseases could not been further differentiated
by this method. This result indicated the limitation of IGRAs in
distinguishing NTM fromAFB smear-negative patients Therefore,
our study recommended the application of IGRAs to diagnose
NTM in AFB smear-positive patients.

A number of methods detecting NTM from respiratory
samples had been applicable, including culture and several
molecular techniques. Culture usually provides the most
reliable evidence for diagnosis, however, it is time-consuming
and may provide negative results even in AFB smear-positive
patients, making early diagnosis difficult (Haworth et al., 2017).
The molecular techniques (PCR restriction analysis, Anyplex
MTB/NTM detection assay, GenoType Mycobacteria Direct
test) could be faster and highly specific but still share the
limitation to be occasionally ineligible (Haworth et al., 2017).
The PCR restriction analysis was reported to successfully amplify
mycobacterial DNA in only 60% (72/121) of NTM patients with
AFB smear-positive sputum Kim et al., 2008). Franco-Alvarez
de Luna et al. reported that the GenoType Mycobacteria Direct
test, which is capable of detecting TB and four atypical
mycobacterium species, detected 92% (93/101) of tuberculosis
patients and 22% (6/27) of nontuberculosis patients in culture
positive samples (Franco-Alvarez De Luna et al., 2006). Perry
et al. showed that the rate of negative results from a molecular
tool (Anyplex MTB/NTM detection assay) was 11% (10/91) in
smear positive patients (Perry et al., 2014). Kim et al. also
reported two real time PCR assays (Anyplex plus MTB/NTM
Detection kit and Genedia MTB/NTM Detection kit) had
respectively 82%(14/17) and 76%(13/17) positive rate in NTM
culture positive patients (Kim et al., 2020). Shin et al. reported
the positive rate of Genedia MTB/NTM Detection kit was only
23%(16/69) in NTM culture positive patients (Shin et al., 2020).
In our research, IGRA tools (QFT-G, ESAT-6 and CFP-10) could
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 560
detect 87%, 79% and 76% NTM in smear-positive patients, and
still could play an alternative or complementary role in
discrimination of NTM, especially while negative test results
occur with other tools. A suggested algorithm for the
investigation of smear positive individuals is shown in Figure 1.

Previous studies usually adopted the recommended cut off
value of IGRAs which were designed for differentiating PTB
from Controls, and some researchers already revealed that a
revised cut-off value may increase the sensitivity to detect NTM
disease. Kobashi et al. reported when the cut-off value of positive
response for QFT-G changed from 0.35 to 0.20 IU/ml, the
sensitivity to detect NTM disease (M. kansasii disease)
increased from 52% to 82%, while specificity decreased from
93% to 91% (Kobashi et al., 2009). Similarly, our survey showed
that modified cut-off values for discriminating NTM (ESAT-6 <
4 SFCs; CFP-10 < 3 SFCs and QFT-G < 0.667 IU/mL) could also
improve their summary accuracies. For QFT-G, its sensitivity
would decrease from 90% to 87%, while specificity would
increase from 69% to 75%. For T-SPOT, its sensitivities for
ESAT-6 and CFP-10 would grow from 70% and 66% to 79% and
76%, respectively; correspondingly their specificities would
decrease from 71% and 77% to 63% and 68%.

Meanwhile, some NTM species (M. kansasii, M. marinum
andM. szulgai) sharing RD1 withM. tuberculosis showed similar
positive results with IGRAs asM. tuberculosis (Hermansen et al.,
2014; Chen et al., 2018; Augustynowicz-Kopeć et al., 2019), and
the feasibility of differentiating these species from PTB was
doubtful. Our analysis suggested there was no statistically
significant difference of IGRAs performances between any
species of NTM. Additionally, the ROC curve in this study
showed that QFT-G displayed a moderate accuracy (AUC =
0.8834) when distinguishing some RD1-posesssing NTM species
(at least M. kansasii), which was inconsistent with other
researchers and might be caused by a revised cut-off (< 0.8180
IU/mL) to amplify the difference between these RD1-posesssing
NTM species patients and PTB patients.

Last, we need to emphasize the limitations of our work. First,
the patients were collected from a single center in a high TB
incidence country, which may limit its generalizability in low TB
incidence country. More intercontinental surveys are needed to
expand its universality. Second, as a retrospective review, bacterial
species identification could not be performed in all the patients.
Therefore, the analysis of discriminatory power was unavailable
for species with scarce isolations, includingM. gastri,M.marinum,
M. szulgai and so on. Third, due to the retrospective nature of this
article, the BCG vaccination statuses of our patients are
unavailable. BCG vaccination was regarded to be associated with
durable IFN-g responses and its impact on the performances of
IGRA tools should not be neglected.

To our best knowledge, this study is one of the largest
assessing IGRAs with valid results in discriminating NTM
infections from both AFB smear positive (PTB) and AFB
smear negative patients. T-SPOT.TB and QFT-G were
performed in patients with NTM infection, PTB and other
respiratory diseases. Our results revealed that, with modified
cut-off values, these IGRAs possessed the potential in
February 2021 | Volume 10 | Article 571230
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differentiating NTM disease from PTB disease in AFB smear-
positive patients. Furthermore, for some species of NTM (MAC,
M. abscessus, even RD1 possessing mycobacteria), the T-
SPOT.TB or QFT-G had moderate discriminatory power.
However, since many respiratory diseases (pneumonia et al.) in
AFB smear-negative patients share similar IGRAs results with
NTM, the discrimination power of IGRA tools for NTM in AFB
smear-negative patients may be limited in diagnosis. In
conclusion, our study provided new insights into the
diagnostic performance of IGRAs in differentiation of NTM
infection and PTB, and provided more guidance to promote
the diagnostic accuracy of PTB and NTM infection in the clinic.
DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.
ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by The Institutional Review Board of Shanghai
Pulmonary Hospital affiliated with Tongji University. Written
informed consent from the participants was not required to
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 661
participate in this study in accordance with the national
legislation and the institutional requirements
AUTHOR CONTRIBUTIONS

HC, CY, HX, and WS contributed to study design. CY, XL,
LF, HX, and WX performed the experiments. CY and XL
performed data analysis. CY and HC wrote the manuscript.
All authors contributed to the article and approved the
submitted version.
FUNDING

This work is supported by Shanghai top priority of clinical
medical center and key discipline construction plan
(2017ZZ02003), Shanghai science and technology commission
project (20Y11901500) and Shanghai clinical research center for
infectious disease (tuberculosis, 19MC1910800).
SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fcimb.2020.
571230/full#supplementary-material
FIGURE 1 | A suggested algorithm for the nontuberculous mycobacterial (NTM) investigation of smear positive individuals.
February 2021 | Volume 10 | Article 571230

https://www.frontiersin.org/articles/10.3389/fcimb.2020.571230/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fcimb.2020.571230/full#supplementary-material
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Yang et al. IGRAs Diagnosis of NTM Diseases
REFERENCES

Anargyros, P., Astill, D. S., and Lim, I. S. (1990). Comparison of improved
BACTEC and Lowenstein-Jensen media for culture of mycobacteria from
clinical specimens. J. Clin. Microbiol. 28, 1288–1291. doi: 10.1128/
JCM.28.6.1288-1291.1990

Andrejak, C., Thomsen, V. O., Johansen, I. S., Riis, A., Benfield, T. L., Duhaut, P.,
et al. (2010). Nontuberculous pulmonary mycobacteriosis in Denmark:
incidence and prognostic factors. Am. J. Respir. Crit. Care Med. 181, 514–
521. doi: 10.1164/rccm.200905-0778OC
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Nucleotide metabolism plays a central role in bacterial physiology, producing the nucleic

acids necessary for DNA replication and RNA transcription. Recent studies demonstrate

that nucleotide metabolism also proactively contributes to antibiotic-induced lethality

in bacterial pathogens and that disruptions to nucleotide metabolism contributes

to antibiotic treatment failure in the clinic. As antimicrobial resistance continues to

grow unchecked, new approaches are needed to study the molecular mechanisms

responsible for antibiotic efficacy. Here we review emerging technologies poised to

transform understanding into why antibiotics may fail in the clinic. We discuss how these

technologies led to the discovery that nucleotide metabolism regulates antibiotic drug

responses and why these are relevant to human infections. We highlight opportunities

for how studies into nucleotide metabolism may enhance understanding of antibiotic

failure mechanisms.

Keywords: antibiotic resistance, antibiotic tolerance, antibiotic persistence, nucleotide metabolism, whole

genome sequencing, machine learning, metabolic modeling, predictive modeling

INTRODUCTION

In the nearly 100 years since the discovery of penicillin, antibiotics have revolutionized medical
practice and have become a cornerstone of modern medicine. However, growing rates of
antimicrobial resistance pose an urgent and looming threat to public health and economic stability
(1). These are compounded by a diminished antimicrobial discovery pipeline (2), creating a critical
need to understand mechanisms responsible for antibiotic treatment failures and to discover new
effective antimicrobials.

Clinical microbiology traditionally relies on general microbiology and molecular biology
laboratory techniques, such as polymerase chain reaction and gene deletion/over-expression,
to elucidate molecular mechanisms responsible for clinical phenotypes. However, experimental
throughput by these methods limits progress toward understanding mechanisms of antibiotic
treatment failure. In recent years several new experimental and digital technologies have emerged
with promise to increase clinical microbiology laboratory throughput and enhance clinical
management of bacterial infections (3–5). Moreover, advances in prokaryotic systems biology (6, 7)
and interpretable machine learning (8) are for the first time accelerating discovery of mechanisms
underlying antibiotic efficacy (9, 10).

Here, we review emerging digitalization technologies poised to transform research into
mechanisms of antibiotic treatment failure in the clinic. We describe several antibiotic resistance,
tolerance and persistence mechanisms discovered from clinical strains. We discuss in detail
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the recent discovery that nucleotide metabolism actively
participates in antibiotic lethality and the clinical relevance
of these findings (11). We propose new opportunities for
digitalization technologies to advance clinical practice and to
open frontiers for basic research into nucleotide metabolism and
antibiotic efficacy.

DIGITALIZATION IN CLINICAL AND
RESEARCH SETTINGS

The most important goal in clinical microbiology is to identify
an infectious pathogen and determine its drug susceptibility
profile (12). Traditionally, clinical microbiology laboratories
rely on culture-based methods for pathogen identification and
susceptibility testing. These approaches require the successful
isolation and culture of pathogen cells from a clinical sample,
followed by in vitro screening with standardized antibiotics.

In vitro studies in research settings have enabled the
discovery of antibiotic resistance mechanisms. For example,
following the initial detection of clinical tetracycline resistance,
several microbiology studies identified decreased drug transport
as the mechanism responsible for reduced efficacy (13, 14).
Subsequent studies identified multi-drug resistant efflux pumps
in multiple pathogenic species (e.g., AcrB in Escherichia coli and
MexB in Pseudomonas aeruginosa) (15). As with their clinical
counterparts, these fundamental studies rely on culture-based
growth and targeted sequencing; however, such experimental
technologies are resource- and labor-intensive and do not scale
well with the plethora of pathogen variants, drug mechanisms,
and resistance strategies found in the clinic.

In recent years, advances in laboratory evolution, high-
throughput sequencing, and computational biology have greatly
expanded the scope of addressable questions in microbiology
and the study of antibiotic resistance (16). For instance, adaptive
laboratory evolution can simulate natural selection pressures
(17), allowing researchers to study the emergence of novel
antibiotic treatment phenotypes (18), as well as their relationship
to environmental conditions (19). In many cases, these granular
experimental techniques invite complementary computational
modeling activities, from mechanistically simulating drug-target
binding to predicting complex ecological dynamics, yielding
deeper insights into clinical resistance phenomena.

Concurrently, whole-genome sequencing has transformed the
study of antibiotic resistance, enabling the identification of all
possible gene variants that can give rise to clinical phenotypes
(20). Whole-genome sequencing has proven instrumental in
revealing population- and epidemiological-level insights into
pathogen detection and emergence. For example, the 2011
outbreak of the Shiga-toxin producing enteroaggregative E. coli
O104:H4 resulted in over 3,000 infections and more than 50
deaths – rapid, open-access whole-genome sequencing analysis
revealed the phylogenetic relationships between this strain
and 40 previously published pathogen genomes (21). These
analyses conclusively demonstrated that O104:H4’s virulence was
attributable to the horizontal acquisition of stx2, along with other
unexpected traits heretofore unseen in this lineage (22). Indeed,

whole-genome sequencing enables insights into a pathogen’s
plasticity and facilitates real-time epidemiological tracing (23).

Whole-genome sequencing has spurred the development
of advanced computational techniques capable of inferring
meaningful biological relationships. Advances in mathematical
modeling and machine learning are now, for the first time,
enabling the direct identification of antibiotic resistance
determinants from the genomes of clinical isolates in as
Staphylococcus aureus, P. aeruginosa, and E. coli (24). Moreover,
mathematical modeling and high-throughput sequencing
approaches have revealed that sub-inhibitory selection and
step-wise adaptation play just as important a role in antibiotic
treatment failure as canonical antibiotic resistance mechanisms
(25). Indeed, clinical isolates from patients with relapsed
Mycobacterium tuberculosis infection exhibit sub-breakpoint
minimum inhibitory concentrations (MICs) in comparison to
strains from patients durably cured (26). Mutations responsible
for such subtle cellular phenotypes are readily overlooked
using previous methods. Additionally, machine learning can
complement traditional culture-based methods and enable
the direct prediction of pathogen MICs (27, 28) and provide
experimentally testable insights into antibiotic mechanisms of
action (9).

ANTIBIOTIC TREATMENT FAILURE
MECHANISMS IN CLINICAL PATHOGENS

Antibiotic treatment failure is conventionally understood to be
fully explained by antibiotic resistance, in which a pathogen
acquires a genetic mutation either to reduce the ability of
an antibiotic to inhibit its target or reduce the effective
intracellular concentration of an antibiotic (15, 29). Indeed,
antibiotic resistance mutations from sequenced clinical isolates
frequently appear in either the target of the antibiotic,
modifying the ability of an antibiotic to bind, or in the
promoter regions of drug efflux pumps, inducing antibiotic
export (30). Other antibiotic resistance alleles, such as genes
encoding β-lactamases, commonly appear in mobile genetic
elements and can become exchanged by horizontal gene
transfer (31).

However, in recent years there has been a growing recognition
that alternative bacterial phenotypes, such as antibiotic tolerance
(in which isogenic bacteria exhibit slower killing by an antibiotic)
and antibiotic persistence (in which isogenic bacteria exhibit
a shallower antibiotic killing plateau), also lead to treatment
failure and relapsed infection (32). Additionally, there is growing
appreciation that the local microenvironment of infection
can act on several aspects of bacterial physiology to alter
antibiotic treatment efficacy (33, 34). In fact, the local metabolic
microenvironment of an infection is highly dynamic and local
metabolites induced by either infection or antibiotic treatment
itself can inhibit a pathogen’s cellular response to antibiotic
exposure (35).

It is clear that antibiotic-target interactions alone are
insufficient for explaining antibiotic treatment failure in human
patients. To address these knowledge gaps, interpretable machine
learning approaches are being developed, which seek to
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rapidly generate experimentally testable hypotheses for biological
phenomena. In one of the earliest demonstrations of these,
a biochemical screen was performed to measure changes
in antibiotic efficacy following metabolic stimulation, and
genome-scale metabolic modeling simulations were performed
to estimate metabolic reaction activities in each screening
condition (Figure 1A). By applying machine learning to these
data, purine biosynthesis was identified as a prominent player
that governs antibiotic efficacy (9), highlighting a target-
independent aspect of bacterial physiology is commonly involved
in the lethal process of diverse bactericidal antibiotics. In
light of the central role that purine metabolites also play
in regulating the immune system (36), these results are also
suggestive ofmechanisms by which the patient-specificmetabolic
environment of an infection can promote drug tolerance or
antibiotic treatment failure.

In another study, a metabolic model-based machine learning
classifier was developed, which uses flux balance analysis
to estimate the biochemical effects of genetic mutations
characterized from clinical isolates (Figure 1B). Applying this
approach to a large collection of genomes from drug-tested
M. tuberculosis strains, novel metabolic resistance mechanisms
to first-line tuberculosis antibiotics were discovered (10).
These two examples illustrate how network models can serve
as quantitative knowledgebases (37) and be combined with
machine learning analyses to learn molecular mechanisms
responsible for antibiotic treatment failures directly from clinical
isolates (38).

NUCLEOTIDE METABOLISM IN
ANTIBIOTIC TREATMENT FAILURE

Bacterial metabolism is now understood to be an important
physiological regulator of antibiotic efficacy (39). Across living
systems, cellular metabolism is governed by the synthesis,

allocation, and utilization of energy; and a growing number
of studies demonstrate that metabolic dormancy protects cells
from antibiotic treatment by inducing a phenotypically tolerant
physiological state (29). Moreover, ATP synthesis correlates
with the lethality of bactericidal antibiotics better than bacterial
growth rates (40), suggesting that antibiotic-induced lethality is
an active process and not merely a passive consequence of the
loss-of-function of an essential gene product.

In particular, bactericidal antibiotics have been shown to
elevate central carbon metabolism activity (41, 42) and trigger
the formation of byproduct reactive oxygen species (43, 44),
which damage DNA and cause bacterial lethality (45–47). These
phenomena are not restricted to antibiotics, as reactive oxygen
species also actively contribute to the lethality of bacterial
secretase dysfunction (48) and thymine depletion (49).Moreover,
defects in central carbon metabolism activity are linked to
antibiotic tolerance and persistence across many bacterial species
(50–53) and can be stimulated to enhance antibiotic efficacy
(54, 55). However, antibiotic treatment perturbs several aspects
of bacterial metabolism beyond central carbon metabolism
(56), highlighting important knowledge gaps in understanding
how different metabolic pathways may contribute to antibiotic
treatment failure.

It may come to no surprise that nucleotide metabolism
is actively involved in antibiotic efficacy (9). Nucleotides are
essential metabolites and are ubiquitous to all living cells; in
addition to their roles as fundamental building blocks for
DNA and RNA molecules, constituting more than 20% of
cellular biomass (57), nucleobases also form the molecular
basis of primary energy currencies such as ATP and NADH,
and many coenzymes are derived from nucleobase monomers.
In fact, the thermodynamic properties of nucleobases are so
special, that these metabolites synchronize cell biochemistry and
regulate biochemical group transfers across diverse physiological
processes (58). Moreover, the concentration of intracellular ATP

FIGURE 1 | Recent innovations in interpretable machine learning for studying antibiotic treatment failure. (A) A biochemical screen was combined with metabolic

network modeling and machine learning regression analyses to elucidate pathway mechanisms of antibiotic lethality. This led to the discovery that purine biosynthesis

is a critical component of bactericidal antibiotic lethality (9). (B) Whole-genome sequencing data from antibiotic resistant (R) and susceptible (S) strains from clinical

strains were applied as modeling constraints to genome-scale metabolic models. Machine learning classification analyses were applied (10).
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is tightly regulated across the tree of life and heavily buffered
across environmental conditions (59).

De novo nucleotide biosynthesis from carbohydrates
begins with the pentose phosphate pathway, which supplies
phosphoribosyl pyrophosphate (prpp) as a shared substrate to
the purine and pyrimidine biosynthesis pathways (Figure 2).
These pathways produce nucleotide triphosphates which can
be incorporated into DNA and RNA or processed into energy
currencies that can power virtually all other biochemical
processes in the cell. Interestingly, nucleotide biosynthesis is
itself an energetically demanding process, costing a cell 8 ATP
molecules to synthesize one adenine molecule from one glucose
molecule. Indeed, cells employ a multitude of strategies to
manage these tradeoffs, including prioritized nutrient usage,
maintenance metabolism, and nucleotide salvage.

Antibiotic treatment imposes additional layers of complexity
on these processes; cells must expend energy to mount
defensive stress responses, and many antibiotics preferentially
kill metabolically active cells. Specific components of nucleotide
metabolism have been shown to contribute to antibiotic efficacy

and protection both in vitro and in vivo. In many cases,
defects in nucleotide biosynthesis have been shown to induce
antibiotic persistence, suggesting these may represent a key
metabolic strategy for evading antibiotic efficacy. For example,
several chemogenomic screens identify nucleotide biosynthesis
genes, as well as global regulators of nucleotide metabolism, as
important regulators of antibiotic tolerance (60, 61). Likewise,
antibiotic drug screening under nutrient limitation identified
several compounds that interfere in core or peripheral nucleotide
metabolism branching points (62).

Of note, purine biosynthesis frequently emerges as a key
pathway responsible for antibiotic efficacy. For example, in
an antibiotic persistence screen using a S. aureus transposon
mutant library, 29% of all depleted genes were related to
cellular metabolism, and of these, five were involved in purine
biosynthesis (63). These ex vivo observations are important for
understanding clinical antibiotic treatment failure, asmethicillin-
resistant S. aureus clones isolated from patients enduring multi-
drug antibiotic treatment were found to possess mutations in
purR, a transcriptional repressor of purine synthesis, within 1

FIGURE 2 | Nucleotide metabolism is energetically expensive. De novo biosynthesis of purines (red) and pyrimidines (blue) begins with the pentose phosphate

pathway (green), which generates phosphoribosyl pyrophosphate (prpp) from glycolysis (black). The energetic demand for ATP molecules to power purine and

pyrimidine biosynthesis drives activity through the tricarboxylic acid (TCA) cycle (black) and oxidative phosphorylation (purple).
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week of treatment. In vitro follow-up experiments confirmed
that this mutation reduced the rate of vancomycin-induced
killing, revealing the evolution of antibiotic tolerance in vivo
(64). Importantly, this mutation preceded the onset of canonical
resistance evolution; these and other studies suggest that
mutations in nucleotide metabolism may help create a reservoir
of pathogen cells primed to subsequently evolve target-specific
antibiotic resistance alleles.

Recent microbiological studies are beginning to clarify
how nucleotide metabolism contributes to antibiotic efficacy
(Figure 3). Interpretable machine learning analyses reveals that
several metabolic pathways proximal to purine biosynthesis
contribute to the lethality of bactericidal antibiotics in E. coli
(9). Purine biosynthesis becomes induced by bactericidal stress-
induced adenine limitation, which can be directly measured
by targeted metabolomics (56). Consequently, oxidative
phosphorylation becomes elevated to meet the increased
energetic demand of enhanced purine biosynthesis, increasing
cellular respiration and central carbonmetabolism and providing
substrates for toxic reactive oxygen species (42, 43). Indeed,
regulation of nucleotide metabolism appears to be a well-
conserved mechanism that bacteria have evolved to handle
diverse stresses (65).

Consistent with these, purine nucleotides such as (p)ppGpp
function as universal alarmones for transcriptionally activating
the stringent response and other bacterial stress responses
as evolutionally conserved strategies for surviving nutrient
limitation and other environmental stressors (66, 67).
Intracellular accumulation of (p)ppGpp and related purine
alarmones can induce antibiotic tolerance by promoting growth
arrest (68) and entry to antibiotic persister states (69). Recent
studies demonstrate that in additional to these transcriptionally
mediated programs, (p)ppGpp can also inhibit nucleotide
metabolism directly by binding several enzymes involved in
purine biosynthesis, including PurF and Gsk (70, 71). These data
collectively support a central role for nucleotide metabolism in
antibiotic treatment efficacy.

It is interesting to note that nucleotide metabolism is also
very important for the in vivo pathogenesis of diverse bacterial
infections, and may be required for a pathogen’s growth and
survival within the host environment (72). For instance, S.
aureus cells with transposon insertions in purB fail to establish
bone infections in mice (73) and deletion of purine biosynthesis
genes prevents uropathogenic E. coli from expanding into
intracellular bladder epithelial cells (74). Likewise, in vivo
studies of methicillin-resistant S. aureus showed that purine

FIGURE 3 | Nucleotide metabolism contributes to antibiotic lethality. In addition to their target-specific effects, bactericidal antibiotics induce purine biosynthesis,

which increases activity in central metabolism. Increases in central metabolism stimulate the production of toxic reactive oxygen species, which oxidize nucleotides

and damage DNA. These insults to DNA and the nucleotide pool induce bacterial death and may further potentiate purine biosynthesis.
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biosynthesis was causally linked to survival during endovascular
infection (11). Collectively, it is clear that nucleotide metabolism,
particularly purine biosynthesis, plays an important role in
bacterial pathogenesis and in the response to antibiotic stress.

DISCUSSION

The growing challenge of clinical antibiotic failure demands
renewed attention into the study of antibiotic mechanisms of
action and the discovery of new antimicrobial compounds.
Digital technologies such as whole-genome sequencing, machine
learning, mass spectrometry and predictive modeling are likely
to transform the clinical management of bacterial infections
in the coming decades. Exciting developments in machine
learning are, for the first time, enabling the rapid discovery of
novel classes of antimicrobial compounds (75) and the rapid
identification of bacterial pathogens in the clinic (5). Advances
in mass spectrometry-based metabolomics are enabling the rapid
discovery of antimicrobial mechanisms of action (76). Advances
in predictive modeling (7) are enabling new understanding into
the complex ecology of microbial communities (77).

The discovery that nucleotide metabolism is involved in
antibiotic efficacy has several translational implications. Unlike
the Mueller-Hinton or Luria-Bertani media commonly used by
clinical and academic microbiology laboratories, the metabolic
microenvironment of a bacterial infection is dynamically
enriched for nucleotide metabolites during infection (35). In fact,
purine metabolites are important regulators of innate immunity
(36), playing dual roles in regulating the host response to
infection and the pathogen response to antibiotics. Nucleotide
analogs are also commonly used to treat human cancers and viral
infections and have potential to address antimicrobial resistance
in the clinic (78, 79).

Nucleotide metabolism is one of the oldest areas of bacterial
physiology to be investigated, with early studies into bacterial

purine and pyrimidine metabolism predating the discovery of
the lac operon (80, 81). Interest in nucleotide metabolism is
mounting a resurgence, spurred by the growing recognition that
nucleotides play important roles in both immunometabolism
(82, 83) and cancer pathogenesis (84). Given that purine
and pyrimidines exert opposing effects on antibiotic efficacy
and carbon metabolism in bacteria (9), nucleotide metabolism
represents an exciting open frontier for future studies in bacterial
physiology and antibiotic treatment failure.

Concurrently, new digitalization techniques are becoming
increasingly democratized and are poised to transform our basic
and translational understanding of how nucleotide metabolism
may contribute to antibiotic efficacy. Advances in predictive
modeling (7) and non-targeted metabolomics (85) are revealing
the diverse systems-level consequences of antibiotic stress.
Quantitative microscopy advances (86) are enabling detection
of antibiotic tolerance and resistance at single-cell resolution.
Advances in transposon insertion sequencing (87) and adaptive
lab evolution (88) are revealing new mechanisms for antibiotic
resistance. Indeed, it would be exciting for future discoveries to
reveal how nucleotide metabolism may contribute to antibiotic
failure mechanisms beyond persistence (11) and potentially
rewrite our understanding of antimicrobial resistance (29).
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Background: Sepsis is among the leading causes of death in intensive care units (ICUs)

worldwide and its recognition, particularly in the early stages of the disease, remains a

medical challenge. The advent of an affluence of available digital health data has created

a setting in which machine learning can be used for digital biomarker discovery, with the

ultimate goal to advance the early recognition of sepsis.

Objective: To systematically review and evaluate studies employing machine learning

for the prediction of sepsis in the ICU.

Data Sources: Using Embase, Google Scholar, PubMed/Medline, Scopus, and Web

of Science, we systematically searched the existing literature for machine learning-driven

sepsis onset prediction for patients in the ICU.

Study Eligibility Criteria: All peer-reviewed articles using machine learning for the

prediction of sepsis onset in adult ICU patients were included. Studies focusing on patient

populations outside the ICU were excluded.

Study Appraisal and Synthesis Methods: A systematic review was performed

according to the PRISMA guidelines. Moreover, a quality assessment of all eligible studies

was performed.

Results: Out of 974 identified articles, 22 and 21 met the criteria to be included in the

systematic review and quality assessment, respectively. A multitude of machine learning

algorithms were applied to refine the early prediction of sepsis. The quality of the studies

ranged from “poor” (satisfying ≤ 40% of the quality criteria) to “very good” (satisfying

≥ 90% of the quality criteria). The majority of the studies (n = 19, 86.4%) employed

an offline training scenario combined with a horizon evaluation, while two studies

implemented an online scenario (n = 2, 9.1%). The massive inter-study heterogeneity in

terms of model development, sepsis definition, prediction time windows, and outcomes

precluded a meta-analysis. Last, only two studies provided publicly accessible source

code and data sources fostering reproducibility.

Limitations: Articles were only eligible for inclusion when employing machine learning

algorithms for the prediction of sepsis onset in the ICU. This restriction led to the exclusion

of studies focusing on the prediction of septic shock, sepsis-related mortality, and patient

populations outside the ICU.
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Conclusions and Key Findings: A growing number of studies employs machine

learning to optimize the early prediction of sepsis through digital biomarker discovery. This

review, however, highlights several shortcomings of the current approaches, including

low comparability and reproducibility. Finally, we gather recommendations how these

challenges can be addressed before deploying these models in prospective analyses.

Systematic Review Registration Number: CRD42020200133.

Keywords: sepsis, machine learning, onset prediction, early detection, systematic review

1. INTRODUCTION

Sepsis is a life-threatening organ dysfunction triggered by
dysregulated host response to infection (1) and constitutes a
major global health concern (2). Despite promising medical
advances over the last decades, sepsis remains among the most
common causes of in-hospital deaths. It is associated with
an alarmingly high mortality and morbidity, and massively
burdens the health care systems world-wide (2–5). In parts, this
can be attributed to challenges related to early recognition of
sepsis and initiation of timely and appropriate treatment (6). A
growing number of studies suggests that the mortality increases
with every hour the antimicrobial intervention is delayed,
further underscoring the importance of timely recognition
and initiation of treatment (6–8). A major challenge to
early recognition is to distinguish sepsis from disease states
(e.g., inflammation) that are hallmarked by similar clinical
signs (e.g., change in vitals), symptoms (e.g., fever), and
molecular manifestations (e.g., dysregulated host response)
(9, 10). Owing to the systemic nature of sepsis, biological
and molecular correlates—also known as biomarkers—have
been proposed to refine the diagnosis and detection of sepsis
(5). However, despite considerable efforts to identify suitable
biomarkers, there is yet no single biomarker or set thereof
that is universally accepted for sepsis diagnosis and treatment,
mainly due to the lack of sensitivity and specificity (11,
12).

In addition to the conventional approaches, data-driven
biomarker discovery has gained momentum over the last
decades and holds the promise to overcome existing hurdles.
The goal of this approach is to mine and exploit health
data with quantitative computational approaches, such as
machine learning. An ever-increasing amount of data, including
laboratory, vital, genetic, molecular, as well as clinical data
and health history, is available in digital form and at high
resolution for individuals at risk and for patients suffering
from sepsis (13). This versatility of the data allows to search
for digital biomarkers in a holistic fashion as opposed to a
reductionist approach (e.g., solely focusing on hematological
markers). Machine learning models can naturally handle the
wealth and complexity of digital patient data by learning
predictive patterns in the data, which in turn can be used to
make accurate predictions about which patient is developing
sepsis (14, 15). Searching predictive patterns is conventionally
done either in a supervised or unsupervised fashion. Supervised

learning refers to algorithms that learn from labeled training
data (e.g., patients have sepsis or not) to predict outcomes
for unforeseen data. In contrast, in unsupervised learning,
the data have no labels and the algorithm detects (known
and unknown) patterns based on the data provided. Over
the last decades, multiple studies have successfully employed
a variety of computational models to tackle the challenge
of predicting sepsis at the earliest time point possible (16–
18). For instance, Futoma et al. proposed to combine multi-
task Gaussian processes imputation together with a recurrent
neural network in one end-to-end trainable framework (multi-
task Gaussian process recurrent neural network [MGP-RNN]).
They were able to predict sepsis 17 h prior to the first
administration of antibiotics and 36 h before a definition for
sepsis was met (19). This strategy was motivated by Li and
Marlin (20), who first proposed the so-called Gaussian process
adapter that combines single-task Gaussian processes imputation
with neural networks in an end-to-end learning setting. A
more recent study further improved predictive performance
by combining the Gaussian process adapter framework with
temporal convolutional networks (MGP-TCN) as well as
leveraging a dynamic time warping approach for the early
prediction of sepsis (21).

Considering the rapid pace at which the research in this
field is moving forward, it is important to summarize and
critically assess the state of the art. Thus, the aim of this
review was to provide a comprehensive overview of the current
state of machine learning models that have been employed for
the search of digital biomarkers to aid the early prediction
of sepsis in the intensive care unit (ICU). To this end, we
systematically reviewed the literature and performed a quality
assessment of all eligible studies. Based on our findings, we also
provide some recommendations for forthcoming studies that
plan to use machine learning models for the early prediction
of sepsis.

2. METHODS

The study protocol was registered with and approved
by the international prospective register of systematic
reviews (PROSPERO) before the start of the study (registration
number: CRD42020200133). We followed the Preferred
Reporting Items for Systematic reviews and Meta-Analysis
(PRISMA) statement (22).
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2.1. Search Strategy and Selection Criteria
Five bibliographic databases were systematically searched, i.e.,
EMBASE, Google Scholar, PubMed/Medline, Scopus, and Web
of Science, using the time range from their respective inception
dates to July 20, 2020. Google Scholar was searched using the
tool “Publish or Perish” (version 7.23.2852.7498) (23). Our
search was not restricted by language. The search term string was
constructed as (“sepsis prediction” OR “sepsis
detection”) AND (“machine learning” OR
“artificial intelligence”) to include publications
focusing on (early) onset prediction of sepsis with different
machine learning methods. The full search strategy is provided
in Supplementary Table 1.

2.2. Selection of Studies
Two investigators (MM and CRJ) independently screened the
titles, abstracts, and full texts retrieved from Google Scholar in
order to determine the eligibility of the studies. Google Scholar
was selected by virtue of its promise of an inclusive query that
also captures conference proceedings, which are highly relevant
to the field of machine learning but not necessarily indexed by
other databases. In a second step, two investigators (MM and
MH) queried EMBASE, PubMed, Scopus, and Web of Science
for additional studies. Eligibility criteria were also applied to the
full-text articles during the final selection. In casemultiple articles
reported on a single study, the article that provided the most data
and details was selected for further synthesis. We quantified the
inter-rater agreement for study selection using Cohen’s kappa (κ)
coefficient (24). All disagreements were discussed and resolved at
a consensus meeting.

2.3. Inclusion and Exclusion Criteria
All full-text, peer-reviewed articles1 using machine learning for
the prediction of sepsis onset in the ICUwere included. Although
the 2016 consensus statement abandoned the term “severe
sepsis” (1), studies published prior to the revised consensus
statement targeting severe sepsis were also included in our
review. Furthermore, to be included, studies must have provided
sufficient information on the machine learning algorithms used
for the analysis, definition of sepsis (e.g., Sepsis-3), and sepsis
onset definition (e.g., time of suspicion of infection). We
excluded duplicates, non-peer reviewed articles (e.g., preprints),
reviews, meta-analyses, abstracts, editorials, commentaries,
perspectives, patents, letters with insufficient data, studies on
non-human species and children/neonates, or out-of-scope
studies (e.g., different target condition). Lastly, studies focusing
on the prediction of septic shock were also excluded as the septic
shock was beyond the scope of this review. The extraction was
performed by four investigators (MM, BR, MH, and CRJ).

2.4. Data Extraction and Synthesis
The following information was extracted from all studies:
(i) publication characteristics (first author’s last name,
publication time), (ii) study design (retrospective, prospective

1This includes peer-reviewed journal articles and peer-reviewed conference

proceedings.

data collection and analysis), (iii) cohort selection (sex, age,
prevalence of sepsis), (iv) model selection (machine learning
algorithm, platforms, software, packages, and parameters),
(v) specifics on the data analyzed (type of data, number of
variables), (vi) statistics for model performance (methods to
evaluate the model, mean, measure of variance, handling of
missing data), and (vii) methods to avoid overfitting as well as
any additional external validation strategies. If available, we also
reviewed supplementary materials of each study. A full list of
extracted variables is provided in Supplementary Table 2.

2.5. Settings of Prediction Task
Owing to its time sensitivity, setting up the early sepsis prediction
task in a clinically meaningful manner is a non-trivial issue.
We extracted details on the prediction task as well as the
alignment of cases and controls. Given the lack of standardized
reporting, the implementation strategies and their reporting vary
drastically between studies. Thus, subsequent to gathering all
the information, we attempted to create new categories for the
sepsis prediction task as well as the case–control alignment. The
goal of this new terminology and categories is to increase the
comparability between studies.

2.6. Assessment of Quality of Reviewed
Machine Learning Studies
Based on 14 criteria relevant to the objectives of the review,
which we adapted from Qiao (25), the quality of the eligible
machine learning studies was assessed. The quality assessment
comprised five categories: (1) unmet needs (limits in current
machine learning or non-machine learning applications),
(2) reproducibility (information on the sepsis prevalence,
data and code availability, explanation of sepsis label, feature
engineering methods, software/hardware specifications, and
hyperparameters), (3) robustness (sample size suited for machine
learning applications, valid methods to overcome overfitting,
stability of results), (4) generalizability (external data validation),
and (5) clinical significance (interpretation of predictors
and suggested clinical use; see Supplementary Table 3).
A quality assessment table was provided by listing
“yes” or “no” of corresponding items in each category.
MM, BR, MH, and CRJ independently performed the
quality assessment. In case of disagreements, ratings were
discussed and subsequently, final scores for each publication
were determined.

2.7. Role of Funding Source
The funding sources of the study had no role in study design,
data collection, data analysis, data interpretation, or writing of
the report. The corresponding author had full access to all the
data in the study and had final responsibility for the decision to
submit for publication.

3. RESULTS

3.1. Study Selection
The results of the literature search, including the numbers
of studies screened, assessments for eligibility, and articles
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974

Embase, Google Scholar,
PubMed, Scopus, and Web
of Science database query

703

703 articles screened and
assessed for eligibility

271 duplicate records excluded

681 articles excluded; reasons:
out of scope (no prediction
task; not dealing with sepsis),
review article, abstract only

22 records included
in literature review

1 records excluded; reason: article
presented a challenge dataset but

assessment criteria do not apply

21 records included
in quality assessment
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FIGURE 1 | PRISMA flowchart of the search strategy. A total of 22 studies were eligible for the literature review and 21 for the quality assessment.

reviewed (with reasons for exclusions at each stage), are
presented in Figure 1. Out of 974 studies, 22 studies met the
inclusion criteria (16–19, 21, 26–42). The majority of excluded
studies (n = 952) did not meet one or multiple inclusion
criteria, such as studying a non-human (e.g., bovine) or a
non-adult population (e.g., pediatric or neonatal), focusing
on a research topic beyond the current review (e.g., sepsis
phenotype identification or mortality prediction), or following
a different study design (e.g., case reports, reviews, not-
peer reviewed). Detailed information on all included studies
are provided in Table 1. The inter-rater agreement was
excellent (κ = 0.88).

3.2. Study Characteristics
Of the 22 included studies, 21 employed solely retrospective
analyses, while one study used both retrospective and prospective
analyses (16). Moreover, the most frequent data sources
used to develop computational models were MIMIC-II and

MIMIC-III (n = 12; 54.5%), followed by Emory University
Hospital (n = 5; 22.7%). In terms of sepsis definition, the
majority of the studies employed the Sepsis-2 (n = 12; 54.5%)
or Sepsis-3 definition (n = 9; 40.9%). It is important
to note that some studies modified the Sepsis-2 or Sepsis-3
definition since all existing definitions have not been intended
to specify an exact sepsis onset time (e.g., the employed
time window lengths have been varied) (26, 34). In one
study (36), sepsis labels were assigned by trained ICU experts.
Depending on the definition of sepsis used, and whether
subsampling of controls was used to achieve a more balanced
class ratio (facilitating the training of machine learning models),
the prevalence of patients developing sepsis ranged between
3.3% (See Table 1) and 63.6% (Figure 2). One study did not
report the prevalence (31). Concerning demographics, 9 studies
reported the median or mean age, 12 the prevalence of female
patients, and solely 1 the ethnicity of the investigated cohorts
(Supplementary Table 4).
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TABLE 1 | Overview of included studies.

References Dataset Sepsis definition Number of

sepsis

encounters

Prevalence

(%)

Used cohort

available

Code for

analysis

Code for

label

Model AUROC Hours

before

onset

External

validation

Data types Number of

variables

1 Abromavičius et al. (26)Emory University Hospital,

MIMIC-III

Sepsis-3 (with modified

time windows)

2,932 7.3 Yes No No AdaBoost and

Discriminant

Subspace

Learning

– – No Demographics,

labs, vitals

11

2 Barton et al. (17) MIMIC-III, UCSF Sepsis-3 3,673 3.3 No No No XGBoost 0.88 0 No Vitals 6

3 Bloch et al. (27) RMC Sepsis-2 related 300 50.0 No No No Neural

Networks, SVM,

logistic

regression

0.88 4 No Vitals 4

4 Calvert et al. (28) MIMIC-II Sepsis-2 related 159 11.4 No No No InSight

Algorithm

0.92 3 No Demographics,

labs, vitals

9

5 Desautels et al. (29) MIMIC-III Sepsis-3 1,840 9.7 No No No InSight

Algorithm

0.88 0 No Demographics,

vitals

8

6 Futoma et al. (19) Duke University Health

System

Sepsis-2 related 11,064 21.4 No No No MGP-RNN 0.91 0 No Comorbidities,

demographics,

labs,

medications,

vitals

77

7 Kaji et al. (18) MIMIC-III Sepsis-2 related 36,176 63.6 Yes Yes Yes LSTM 0.88 “Next day” No Demographics,

labs,

medications,

vitals

119

8 Kam and Kim (30) MIMIC-II Sepsis-2 related 360 6.2 No No No SepLSTM 0.99 0 No Demographics,

labs, vitals

9

9 Lauritsen et al. (31) Danish EHR Sepsis-2 related – – No No No CNN-LSTM 0.88 0.25 No Diagnoses, labs,

imaging,

medications,

vitals,

procedures

–

10 Lukaszewski et al. (32) Queen Alexandra Hospital Sepsis-2 related 25 53.2 No No No MLP – – No Clinical

parameters,

cytokine mRNA

expression

–

11 Mao et al. (33) MIMIC-III, UCSF Sepsis-2 related 1,965 9.1 Yes No No InSight

Algorithm

0.92 0 Yes Vitals 30

12 McCoy and Das (16) CRMC Sepsis-3, Severe Sepsis 407 24.4 No No No InSight

Algorithm

0.91 – – Labs, vitals –

13 Moor et al. (21) MIMIC-III Sepsis-3 570 9.2 Yes Yes Yes MGP-TCN 0.91 0 No Labs, vitals 44

(Continued)
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TABLE 1 | Continued

References Dataset Sepsis definition Number of

sepsis

encounters

Prevalence

(%)

Used cohort

available

Code for

analysis

Code for

label

Model AUROC Hours

before

onset

External

validation

Data types Number of

variables

14 Nemati et al. (34) Emory Healthcare system,

MIMIC-III

Sepsis-3 (modified time

windows)

2,375 8.6 No No No Weilbull-Cox

proportional

hazards model

0.85 4 Yes Demographics,

vitals

48

15 Reyna et al. (35) Emory University Hospital,

MIMIC-III

Sepsis-3 (modified time

windows)

2,932 7.3 Yes No No – – – Yes Demographics,

labs, vitals

40

16 Schamoni et al. (36) University Medical Centre

Mannheim

Sepsis tag by ICU

clinicians

200 32.3 No No No Non-linear

ordinal

regression

0.84 4 No Comorbidities,

demographics,

labs, vitals

55

17 Scherpf et al. (37) MIMIC-III Sepsis-2 related 2,724 7.7 No No No RNN-GRU 0.81 3 No Labs, vitals 10

18 Shashikumar et al. (38) Emory Healthcare system Sepsis-3 242 22.0 No No No ElasticNet 0.78 4 No Comorbidities,

clinical context,

demographics,

vitals

17

19 Shashikumar et al. (39) Emory Healthcare system Sepsis-3 100 40.0 No No No SVM 0.8 4 No Demographics,

comorbidity,

clinical context,

vitals

2

20 Sheetrit et al. (40) MIMIC-III Sepsis-2 related 1,034 41.4 No No No Temporal

Probabilistic

Profiles

– – No Demographics,

labs, vitals

–

21 van Wyk et al. (41) MLH System Sepsis-2 related – 50.0 No No No Random

Forests, RNN

– – No Labs, vitals 7

22 van Wyk et al. (42) MLH System Sepsis-2 related 377 50.0 No No No Random Forests0.79 0 No Vitals 7

Only if area under the Receiver Operating Characteristic Curve (AUROC) was reported in an early prediction setup, the performance and the corresponding prediction window is reported (in hours before onset). As these windows were

highly heterogeneous, to achieve more comparability, we report the minimal hour before onset that was reported. Notably, due to heterogeneous sepsis definition implementations and experimental setups, these metrics likely have low

comparability between studies, which is why we deemed a quantitative meta-analysis to be inappropriate.

AUROC, area under the ROC curve; CNN-LSTM, convolutional neural network long short-term memory; EHR, electronic health record; ICU, intensive care unit; LSTM, long short-term memory; MGP-RNN, multi-task Gaussian process

recurrent neural network; MGP-TCN, multi-task Gaussian process temporal convolutional network; MIMIC, medical information mart for intensive care; MLH, Methodist Le Bonheur Healthcare System; MLP, multilayer perceptron; RMC,

Rabin Medical Center; RNN-GRU, recurrent neural net gated recurrent unit; SepLSTM, proper name for LSTM for sepsis; SVM, support vector machine; USCF, University of California San Francisco Health System.
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FIGURE 2 | A boxplot of the sepsis prevalence distribution of all studies, with

the median prevalence being highlighted in red. Note that some studies have

subset controls for balancing the class ratios in order to facilitate the training of

the machine learning model. Thus, the prevalence in the study cohort (i.e., the

subset) can be different from the prevalence of the original data source (e.g.,

MIMIC-III).

3.3. Overview of Machine Learning
Algorithms and Data
As shown in Table 1, a wide range of predictive models was
employed for the early detection of sepsis, with some models
being specifically developed for the respective application. Most
prominently, various types of neural networks (n = 9;
40.9%) were used. This includes recurrent architectures, such
as long short-term memory (LSTM) (43) or gated recurrent
units (GRU) (44), convolutional networks (45), as well as
temporal convolutional networks, featuring causal, dilated
convolutions (46, 47). Furthermore, several studies employed
boosted tree models (n = 4; 18.2%), including XGBoost (48) or
random forest (49). As for the data analyzed, the most common
data type were vitals (n = 21; 95.5%), followed by laboratory
values (n = 13; 59.1%), demographics (n = 12; 54.5%), and
comorbidities (n = 4; 18.2%). The number of variables included
in the respective models ranged between 2 (38) and 119 (18).
While reporting the type of variables, four studies failed to report
the number of variables included in the models (16, 31, 32, 40).

3.4. Model Validation
Approximately 80% of the studies employed one type of cross-
validation (e.g., 5-fold, 10-fold, or leave-one-out cross-validation)
to avoid overfitting. Additional validation of the models on
out-of-distribution ICU data (i.e., external validation) was only
performed in three studies (33–35). Specifically, Mao et al. (33)
used a dataset provided by the UCSF Medical Center as well
as the MIMIC-III dataset to train, validate, and test the InSight
algorithm. Aiming at developing and validating the Artificial
Intelligence Sepsis Expert (AISE) algorithm, Nemati et al. (34)
created a development cohort using ICU data of over 30,000
patients admitted to two Emory University hospitals. In a
subsequent step, the AISE algorithm was externally validated on
the publicly available MIMIC-III dataset (at the time containing
data from over 52,000 ICU stays of more than 38,000 unique
patients) (34). Last, the study by Reyna et al. (35) describes the
protocol and results of the PhysioNet/Computing in Cardiology
Challenge 2019. Briefly, the aim of this challenge was to facilitate
the development of automated, open-source algorithms for
the early detection of sepsis. The PhysioNet/Computing in
Cardiology Challenge provided sequestered real-world datasets
to the participating researchers for the training, validation, and
testing of their models.

3.5. Experimental Design Choices for
Sepsis Onset Prediction
In this review, we identified two main approaches of
implementing sepsis prediction tasks on ICU data. The most-
frequent setting (n = 19; 86.4%) combines “offline” training
with a “horizon” evaluation. Briefly, offline training refers to the
fact that the models have access to the entire feature window
of patient data. For patients with sepsis, this feature window
ranges from hospital admission to sepsis onset, while for the
control subjects the endpoint is a matched onset. Alternatively,
a prediction window (i.e., a gap) between the feature window
and the (matched) onset has been employed (27). As for the
“horizon” evaluation, the purpose is to determine how early the
fitted model would recognize sepsis. To this end, all input data
gathered up to n h before onset is provided to the model for
the sepsis prediction at a horizon of n h. For studies employing
only a single horizon, i.e., predictions preceding sepsis onset
by a fixed number of hours, we denote their task as “offline”
evaluation in Table 2, since there are no sequentially repeated
predictions over time. This experimental setup, offline training
plus horizon evaluation, is visualized in Figure 3. In the second
most-frequently used sepsis prediction setting (n = 2; 9.1%),
both the training and evaluation occur in an “online” fashion.
This means that the model is presented with all the data that
have been collected until the time point of prediction. The
amount of data depends on the spacing of data collection. In
order to incentivize early predictions, these timepoint-wise
labels can be shifted into the past: in the case of the PhysioNet
Challenge dataset, already timepoint-wise labels 6 h before onset
are assigned to the positive (sepsis) class (35). For an illustration
of an online training and evaluation scenario, refer to Figure 4.

Selecting the “onset” for controls (i.e., case–control alignment)
is a crucial step in the development of models predicting the
onset of sepsis (19). Surprisingly, the majority of the studies (n =

16; 72.7%) did not report any details on how the onset matching
was performed. For the six studies (27.3%) providing details, we
propose the following classification: four employed random onset
matching, one absolute onset matching, and one relative onset
matching (Figure 3, top). As the name indicates, during random
onset matching, the onset time of a control is set at a random time
of the ICU stay. Often, this time has to satisfy certain additional
constraints, such as not being too close to the patient’s discharge.
The absolute onset matching refers to taking the absolute time
since admission until sepsis onset for the case and assigning it as
the matched onset time for a control (21). Finally, the relative
onset matching is when the matched onset time is defined as
the relative time since ICU admission until sepsis onset for the
case (50).

3.6. Quality of Included Studies
The results of the quality assessment are shown in Table 3. One
study (35), showcasing the results of the PhysioNet/Computing
in Cardiology Challenge 2019, was excluded from the quality
assessment, which was intended to assess the quality of the
implementation and reporting of specific prediction models. The
quality of the remaining 21 studies ranged from poor (satisfying
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TABLE 2 | An overview of experimental details: the used sepsis definition, the exact prediction task, and which type of temporal case–control alignment was used (if any).

References Prediction task Sepsis definition Case–control alignment Inclusion criteria

1 Abromavičius et al. (26) Online training, online

evaluation

Sepsis-3 (with modified time

windows)

– –

2 Barton et al. (17) Offline training, horizon

evaluation

Sepsis-3 Random onset matching Inpatients, age ≥18 years, at least

one observation per measurement,

prediction times between 7 and

2,000 h

3 Bloch et al. (27) Offline training, horizon

evaluation

Sepsis-2 related: SIRS criteria plus

diagnosis of infection

Random onset matching (at least 12

h after admission to the ICU)

age >18 years, admitted to ICU;

minimum stay of 12 h in the ICU;

patients did not meet SIRS criteria at

time of admission to the ICU;

Continuous documented

measurements were available for at

least 12 h for vital signs

4 Calvert et al. (28) Offline training, horizon

evaluation

Sepsis-2 related: ICD-9 code 995.9

and a 5-h persisting window of

fulfilled SIRS

– Medical ICU, age >18 years, SIRS

not fulfilled upon admission,

measurements for set of nine

variables available

5 Desautels et al. (29) Offline training, horizon

evaluation, but retrained for

each prediction horizon

Sepsis-3 – Age ≥15 years, any measurements

present, Metavision logging, for

cases: sepsis onset between 7 and

500 h after ICU admission, all

variables at least once measured,

excluded patients that received

antibiotics before ICU

6 Futoma et al. (19) Offline training, horizon

evaluation

Sepsis-2 related: SIRS fulfilled and

blood culture drawn and 1 abnormal

vital (time windows not stated)

Relative onset matching Entire EHR cohort included

7 Kaji et al. (18) Offline training, horizon

evaluation

Sepsis-2 related: SIRS criteria plus

ICD-9 code consistent with infection

Fixed length of 14 days in ICU

(truncation if longer, zero filling, and

masking if shorter)

Individual patient ICU admissions 2

days or longer were identified

8 Kam and Kim (30) Offline training, horizon

evaluation

Sepsis-2 related: ICD-9 code 995.9

and the first 5-h persisting window of

fulfilled SIRS

insufficient detail: during training, 5-h

windows are randomly extracted from

case before sepsis and entire control

stay, during testing it is not stated

which data are used for controls

Medical ICU, age >18 years, patient

can be checked for 5-h SIRS window

plus ICD-9 995.9 code (if only one of

the two was available, patients were

excluded)

9 Lauritsen et al. (31) Offline training, horizon

evaluation

Sepsis-2 related: SIRS criteria plus

clinically suspected infection

Random onset matching (excluding

the first and last 3 h)

Inpatients, admissions ≥3 h, hospital

departments with sepsis prevalence

≥2%, ≥1 observations for each vital

sign measurement

10Lukaszewski et al. (32) Offline training, offline

evaluation (fixed 24-h

horizon)

Sepsis-2 related: SIRS criteria plus

positive microbiological culture

Insufficient detail (but age-matching

between cases and controls; healthy

volunteers used as controls)

Blood samples taken daily; last

sample on day of diagnosis or last

stay in ICU

11Mao et al. (33) Offline training, offline

evaluation (single fixed 4-h

horizon)

Sepsis-2 related (suspected infection

and first hour of fulfilled SIRS criteria),

Severe Sepsis: ICD-9 plus SIRS plus

organ dysfunction criteria; Septic

Shock: ICD-9 plus manually defined

conditions

– Inpatients, age ≥18 years, ≥1

observations for each vital sign

measurement, prediction time

between 7 and 2,000 h

12McCoy and Das (16) Offline training, evaluation

on retrospective dataset,

prospective evaluation

implemented as risk score

Sepsis-3, Severe Sepsis (SIRS criteria

plus 2 organ dysfunction lab values)

– Age >18 years; two or more sirs

criteria during stay (hard to tell

“Patient encounters were included in

the sepsis-related outcome metrics if

they met two or more SIRS criteria at

some point during their stay.” Is this

an inclusion criterion or their label

definition?)

13Moor et al. (21) Offline training, horizon

evaluation

Sepsis-3 Absolute onset matching Age ≥15 years, chart data including

ICU admission/discharge time

available, Metavision logging, cases:

onset at least 7 h into ICU stay

(Continued)

Frontiers in Medicine | www.frontiersin.org 8 May 2021 | Volume 8 | Article 60795279

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Moor et al. Early Sepsis Recognition Review

TABLE 2 | Continued

References Prediction task Sepsis definition Case–control alignment Inclusion criteria

14Nemati et al. (34) Offline training, horizon

evaluation

Sepsis-3 (with modified time

windows)

– Age ≥18 years; sepsis onset not

earlier than 4 h within ICU admission

15Reyna et al. (35) Online training, online

evaluation

Sepsis-3 (with modified time

windows)

– ≥8 h of measurements

16Schamoni et al. (36) Offline training, horizon

evaluation as well as

prediction of severity (ordinal

regression)

Sepsis tag by ICU clinicians via

electronic questionnaire

– Sepsis onset not earlier than on the

second day after ICU admission

17Scherpf et al. (37) Offline training, horizon

evaluation

Sepsis-2 related: ICD-9 codes plus

SIRS criteria

Random onset matching via drawing

fixed size time windows

Age ≥18 years, at least one

measurement for SIRS parameters,

no sepsis on admission, at least 5 h

plus prediction time of measurements

18Shashikumar et al. (38) Offline training, Offline

prediction (single fixed 4-h

horizon)

Sepsis-3 – –

19Shashikumar et al. (39) Offline training, Offline

prediction (single fixed 4-h

horizon)

Sepsis-3 – –

20Sheetrit et al. (40) Offline training, horizon

evaluation on two prediction

windows (12 and 1 h)

Sepsis-2 related: ICD-9 Codes

995.91 or 995.92 plus antibiotics

administered. Onset time is defined

as the earliest of either antibiotics

prescription or fulfilled qSOFA criteria

Insufficient detail: the paper uses the

“equivalent time” as the feature

window of the control group

ICU admission, age ≥15 years, for

sepsis cases: onset not before third

day

21van Wyk et al. (41) Offline training, horizon

evaluation

Sepsis-2 related: SIRS criteria plus

suspicion of infection, indicated by

the presence of a blood culture and

the administration of antibiotics

during the encounter, along with

relevant ICD10

Insufficient detail: the paper uses “a

given 6-h observational period” for

the control group

At least 8 h of continuous data,

absence of cardiovascular disease

22van Wyk et al. (42) Offline training, horizon

evaluation

Sepsis-2 related: SIRS criteria plus

suspicion of infection, indicated by

the presence of a blood culture and

the administration of antibiotics

during the encounter, along with

relevant ICD10

Insufficient detail: the paper uses “a

given 3-h observational period” for

the control group

Age >18 years, physiological data

available for at least 3 or 6 h,

respectively; absence of

cardiovascular disease

Abbreviations: EHR, electronic health record; ICD-9, International Classification of Disease Version 9; ICU, intensive care unit; qSOFA, quick Sequential Organ Failure Assessment; SIRS,

Systemic Inflammatory Response Syndrome.

≤ 40% of the quality criteria) to very good (satisfying ≥ 90%
of the quality criteria). None of the studies fulfilled all 14
criteria. A single criterion was met by 100% of the studies: all
studies highlighted the limits in current non-machine-learning
approaches in the introduction. Few studies provided the code
used for the data cleaning and analysis (n = 2; 9.5%),
provided data or code for the reproduction of the exact sepsis
labels and onset times (n = 2; 9.5%), and validated the machine
learning models on an external dataset (n = 3; 14.3%). For the
interpretation, power, and validity of machine learning methods,
considerable sample sizes are required. With the exception of
one study (32), all studies had sample sizes larger than 50
sepsis patients.

4. DISCUSSION

In this study, we systematically reviewed the literature for
studies employing machine learning algorithms to facilitate early
prediction of sepsis. A total of 22 studies were deemed eligible

for the review and 21 were included in the quality assessment.
The majority of the studies used data from the MIMIC-III
database (13), containing deidentified health data associated
with ≈ 60,000 ICU admissions and/or data from Emory
University Hospital2). With the exception of one, all studies used
internationally acknowledged guidelines for sepsis definitions,
namely Sepsis-2 (51) and Sepsis-3 (1). In terms of the analysis,
a wide range of machine learning algorithms were chosen to
leverage the patients’ digital health data for the prediction of
sepsis. Driven by our findings from the reviewed studies, this
section first highlights four major challenges that the literature
on machine learning driven sepsis prediction is currently facing:
(i) asynchronicity, (ii) comparability, (iii) reproducibility, and
(iv) circularity. We then discuss the limitations of this study,

2The dataset was not publicly available. However, with the 2019 PhysioNet

Computing in Cardiology Challenge, a pre-processed dataset from Emory

University Hospital has been published (35).
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provide some recommendations for forthcoming studies, and
conclude with an outlook.

4.1. Asynchronicity
While initial studies employing machine learning for the
prediction of sepsis have demonstrated promising results (28–
30), the literature since has been diverging on which are the
most pressing open challenges that need to be addressed to
further the goal of early sepsis detection. On the one hand,
corporations have been propelling the deployment of the first
interventional studies (52, 53), while on the other hand, recent
findings have cast doubt on the validity and meaningfulness of
the experimental pipeline that is currently being implemented
in most retrospective analyses (36). This can be partially
attributed to circular prediction settings (for more details, please
refer to section 4.4). Ultimately, only the demonstration of
favorable outcomes in large prospective randomized controlled
trials (RCTs) will pave the way for machine learning models
entering the clinical routine. Nevertheless, not every possible
choice of model architecture can be tested prospectively due to
the restricted sample sizes (and therefore, number of study arms).
Rather, the development of these models is generally assumed
to occur retrospectively. However, precisely those retrospective
studies are facing multiple obstacles, which we are going to
discuss next.

A O�ine training

Case ICU stay
Feature window

Sepsis onset

Control ICU stay
Matched onset (relative)

Matched onset (absolute) Matched onset (random)

B Horizon evaluation

Case ICU stay

11111111Labels
Sepsis onset

Control ICU stay

00000000Labels

Matched onset

FIGURE 3 | (A) Offline training scenario and case–control matching. Every

case has a specific sepsis onset. Given a random control, there are multiple

ways of determining a matched onset time: (i) relative refers to the relative time

since intensive care unit (ICU) admission (here, 75% of the ICU stay); (ii)

absolute refers to the absolute time since ICU admission; (iii) random refers to

a pseudo-random time during the ICU stay, often with the requirement that the

onset is not too close to ICU discharge. (B) Horizon evaluation scenario. Given

a case and control, with a matched relative sepsis onset, the look-back

horizon indicates how early a specific model is capable of predicting sepsis.

As the (matched) sepsis onset is approached, this task typically becomes

progressively easier. Notice the difference in the prediction targets

(labels) (shown in red for predicting a case, and blue for predicting a control).

4.2. Comparability
Concerning the comparability of the reviewed studies, we note
that there are several challenges that have yet to be overcome,
namely the choice of (i) prediction task, (ii) case–control
onset matching, (iii) sepsis definition, (iv) implementation of
a given sepsis definition, and (v) performance measures. We
subsequently discuss each of these challenges.

4.2.1. Prediction Task
As described in section 3.5, we found that the vast majority of
the included papers follow one of two major approaches when
implementing the sepsis onset prediction task: Either an offline
training step was followed by a horizon evaluation, or both the
training and the evaluation were conducted in an online fashion.
As one of our core findings, we next highlight the strengths
but also the intricacies of these two setups. Considering the
most frequently used strategy, i.e., offline training plus horizon
evaluation, we found that the horizon evaluation provides
valuable information about how early (in hours before sepsis
onset) the machine learning model is able to recognize sepsis.
However, in order to train such a classifier, the choice of a
meaningful time window (and matched onset) for controls
is an essential aspect of the study design (for more details,
please refer to section 4.2.2). By contrast, the online strategy
does not require a matched onset for controls (see Figure 4),
but it removes the convenience of easily estimating predictive
performance for a given prediction horizon (i.e., in hours before
sepsis onset). Nevertheless, models trained and evaluated in an
online fashion may be more easily deployed in practice, as they
are by construction optimized for continuously predicting sepsis
while new data arrive. Meanwhile, in the offline setting, the
entire classification task is retrospective because all input data are
extracted right up until a previously known sepsis onset.Whether
a model trained this way would generalize to a prospective setup
in terms of predicting sepsis early remains to be analyzed in
forthcoming studies. In this review, the only study featuring
prospective analysis focused on (and improved) prospective
targets other than sepsis onset, namely mortality, length of stay,
and hospital readmission. Finally, we observed that the online
setting also contains a non-obvious design choice, which is absent
in the offline/horizon approach: How many hours before and
after a sepsis onset should a positive prediction be considered
a true positive or rather a false positive? In other words, how
long before or after the onset should a model be incentivized
to raise an alarm for sepsis? Reyna et al. (35) proposed a
clinical utility score that customizes a clinically motivated reward
system for a given positive or negative prediction with respect
to a potential sepsis onset. For example, it reflects that late
true positive predictions are of little to no clinical importance,
whereas late false negatives predictions can indeed be harmful.
While such a hand-crafted score may account for a clinician’s
diagnostic demands, the resulting score remains highly sensitive
to the exact specifications for which there is currently neither an
internationally accepted standard nor a consensus. Furthermore,
in its current form, the proposed clinical utility score is hard
to interpret.
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4.2.2. Case–Control Onset Matching
Futoma et al. (19) observed a drastic drop in performance
upon introducing their (relative) case–control onset matching
scheme as compared to an earlier version of their study,
where the classification scenario compares sepsis onsets with
the discharge time of controls (50). Such a matching can be
seen as an implicit onset matching, which studies that do not
account for this issue tend to default to. This suggests that
comparing the data distribution of patients at the time of sepsis
onset with the one of controls when being discharged could
systematically underestimate the difficulty of the relevant clinical
task at hand, i.e., identifying sepsis in an ICU stay. Futoma
et al. (19) also remarked that “for non-septic patients, it is not
very clinically relevant to include all data up until discharge,
and compare predictions about septic encounters shortly before
sepsis with predictions about non-septic encounters shortly
before discharge. This task would be too easy, as the controls
before discharge are likely to be clinically stable.” The choice of
a matched onset time is therefore crucial and highlights the need
for a more uniform reporting procedure of this aspect in the
literature. Furthermore, Moor et al. (21) proposed to match the
absolute sepsis onset time (i.e., perform absolute onset matching)
to prevent biases that could arise from systematic differences in
the length of stay distribution of sepsis cases and controls (in
the worst case, a model could merely re-iterate that one class
has shorter stays than the other one, rather than pick up an
actual signal in their time series). Finally,Table 2 lists four studies
that employed random onset matching. Given that sepsis onsets
are not uniformly distributed over the length the ICU stay (for
more details, please refer to section 4.4), this strategy could result

in overly distinct data distributions between sepsis cases and

non-septic controls.

4.2.3. Defining and Implementing Sepsis
A heterogeneous set of existing definitions (and modifications

thereof) was implemented in the reviewed studies. The choice of

sepsis definition will affect studies in terms of the prevalence of

patients with sepsis and the level of difficulty of the prediction

task (due to assigning earlier or later sepsis onset times). We

note that it remains challenging to fully disentangle all of
these factors: on the one side, a larger absolute count of septic
patients is expected to be beneficial for training machine learning
models (in particular deep neural networks). On the other side,
including more patients could make the resulting sepsis cohort
a less severe one and harder to distinguish from non-septic
ICU patients. Then again, a more inclusive sepsis labeling would
result in a higher prevalence (i.e., class balance), which would be
beneficial for the training stability of machine learning models.
To further illustrate the difficulty of defining sepsis, consider the
prediction target in-hospital mortality. Even though in-hospital
mortality rates (and therefore any subsequent prediction task)
vary between cohorts and hospitals, their definition typically does
not. Sepsis, by contrast, is inherently hard to define, which over
the years has led tomultiple refinements of clinical criteria (Sepsis
1–3) for trying to capture sepsis in one easy-to-follow, rule-based
definition (1, 51, 54). It has been previously shown that applying
different sepsis definitions to the same dataset results in largely
dissimilar cohorts (55). Furthermore, this specific study found
that using Sepsis-3 is too inclusive, resulting in a large cohort
showingmild symptoms. By contrast, practitioners have reported
that Sepsis-3 is indeed too restrictive in that sepsis cannot occur
without organ dysfunction anymore (55). This suggests that even
within a specific definition of sepsis, substantial heterogeneity
and disagreement in the literature prevails. On top of that,
we found that even applying the same definition on the same
dataset has resulted in dissimilar cohorts. Most prominently,
in Table 1, this can be confirmed for studies employing the
MIMIC-III dataset. However, the determining factors cannot
be easily recovered, as the code for assigning the labels is not
available in 19 out of 21 (90.4%) studies employing computer-
derived sepsis labels.

Another factor exacerbating comparability is the
heterogeneous sepsis prevalence. This is partially influenced
by the training setup of a given study, because certain studies
prefer balanced datasets for improving the training stability of
the machine learning model (27, 41, 42), while others preserve
the observed case counts to more realistically reflect how their
approach would fare when being deployed in ICU. Furthermore,

Case ICU stay

0 0 0 0 0 0 01 1 1Labels
Sepsis onset

Control ICU stay

Labels 0 0 0 0 0 0 0 0 0 0 0 0 0 0

FIGURE 4 | Online training and evaluation scenario. Here, the model predicts at regular intervals during an ICU stay (we show predictions in 1-h intervals). For sepsis

cases, there is no prima facie notion at which point in time positive predictions ought to be considered as true positive (TP) predictions or false positive (FP)

predictions (mutatis mutandis, this applies to negative predictions). For illustrative purposes, here we consider positive predictions up until 1 h before or after sepsis

onset (for a case) to be TP.
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1 Abromavičius et al. (26) ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✓ ✗ ✗ 50%

2 Barton et al. (17) ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✓ 57%

3 Bloch et al. (27) ✓ ✓ ✗ ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ 71%

4 Calvert et al. (28) ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✓ 43%

5 Desautels et al. (29) ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✓ 50%

6 Futoma et al. (19) ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✓ 50%

7 Kaji et al. (18) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ 93%

8 Kam and Kim (30) ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✓ 36%

9 Lauritsen et al. (31) ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✓ 57%

10 Lukaszewski et al. (32) ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✓ 43%

11 Mao et al. (33) ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✗ ✓ 64%

12 McCoy and Das (16) ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✓ 36%

13 Moor et al. (21) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ 93%

14 Nemati et al. (34) ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✓ ✗ ✓ 50%

15 Schamoni et al. (36) ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✓ ✓ 57%

16 Scherpf et al. (37) ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✗ 43%

17 Shashikumar et al. (38) ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✓ 50%

18 Shashikumar et al. (39) ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✓ 50%

19 Sheetrit et al. (40) ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ 43%

20 van Wyk et al. (41) ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✓ 36%

21 van Wyk et al. (42) ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✓ 43%

100% 95% 19% 81% 10% 10% 19% 29% 95% 81% 62% 14% 38% 86%

Study Unmet need Reproducibility Stability Generalizability Clinical significance Total

We excluded Reyna et al. (35) from the assessment because it does presents a dataset challenge rather than a single method, making most of the categories not applicable.
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Number of sepsis encounters

FIGURE 5 | A boxplot of the number of sepsis encounters reported by all studies, with the median number of encounters being highlighted in red. Since the numbers

feature different orders of magnitude, we employed logarithmic scaling. The marks indicate which definition or modification thereof was used. Sepsis-3: squares,

Sepsis-2: triangles, domain expert label: asterisk.

the exact sepsis definition used as well as the applied data
pre-processing and filtering steps influence the resulting sepsis
case count and therefore the prevalence (21, 55). Figure 2 depicts
a boxplot of the prevalence values of all studies. Of the 22 studies,
10 report prevalences ≤ 10%, with the maximum reported
prevalence being 63.6% (18). In addition, Figure 5 depicts the
distribution of all sepsis encounters, while also encoding the
sepsis definition (or modification thereof) that is being used.

4.2.4. Performance Measures
The last obstacle impeding comparability is the choice of
performance measures. This is entangled with the differences
in sepsis prevalence: simple metrics, such as accuracy are
directly impacted by class prevalence, rendering a comparison
of two studies with different prevalence values moot. Some
studies report the area under the receiver operating characteristic
curve (AUROC, sometimes also reported as AUC). However,
AUROC also depends on class prevalence and is known to be
less informative if the classes are highly imbalanced (56, 57).
The area under the precision–recall curve (AUPRC, sometimes
also referred to as average precision) should be reported in such
cases, and we observed that n = 6 studies already do so. AUPRC
is also affected by prevalence but permits a comparison with
a random baseline that merely “guesses” the label of a patient.
AUROC, by contrast, can be high even for classifiers that fail to
properly classify the minority class of sepsis patients. This effect
is exacerbated with increasing class imbalance. Recent research
suggests reporting the AUPRC of models, in particular in clinical
contexts (58), and we endorse this recommendation.

4.2.5. Comparing Studies of Low Comparability
Our findings indicate that quantitatively comparing studies
concerned with machine learning for the prediction of sepsis in
the ICU is currently a nigh-impossible task. While one would
like to perform meta-analyses in these contexts to aggregate an
overall trend in performance among state-of-the-art models, at
the current stage of the literature this would carry little meaning.
Therefore, we currently cannot ascertain the best performing
approaches by merely assessing numeric results of performance
measures. Rather, we had to resort to qualitatively assess study
designs in order identify underlying biases, which could lead to
overly optimistic results.

4.3. Reproducibility
Reproducibility, i.e., the capability of obtaining similar or
identical results by independently repeating the experiments

described in a study, is the foundation of scientific accountability.
In recent years, this foundation has been shaken by the
discovery of failures to reproduce prominent studies in several
disciplines (59). Machine learning in general is no exception
here, and despite the existence of calls to action (60), the field
might face a reproducibility crisis (61). The interdisciplinary
nature of digital medicine comes with additional challenges for
reproducibility (62), foremost of which is the issue of dealing
with sensitive data (whereas for many theoretical machine
learning papers, benchmark datasets exist), but also the issue
of algorithmic details, such as pre-processing. Our quality
assessment highlights a lot of potential for improvement here:
only two studies (18, 21), both from 2019, share their analysis
code and the code for generating a “label” (to distinguish
between cases or controls within the scenario of a specific paper).
This amounts to < 10% of the eligible studies. In addition,
only four studies (18, 21, 26, 33) report results on publicly
available datasets (more precisely, the datasets are available
for research after accepting their terms and conditions). This
finding is surprising, given the existence of high-quality, freely
accessible databases, such as MIMIC-III (13) or eICU (63). An
encouraging finding of our analysis is that a considerable number
of studies (n = 6) report hyperparameter details of their models.
Hyperparameter refers to any kind of parameter that is model
specific, such as the regularization constant and the architecture
of a neural network (64). This information is crucial for everyone
who attempts to reproduce computational experiments.

4.4. Circularity
Considering that the exact sepsis onset is usually unknown,
most of the existing works have approximated a plausible sepsis
onset via clinical criteria, such as Sepsis-3 (1). However, these
criteria comprise a set of rules to apply to vital and laboratory
measurements. Schamoni et al. (36) pointed out that using
clinical measurements for predicting a sepsis label, which was
itself derived from clinical measurements, could potentially be
circular (a statistical term referring to the fact that one uses
the same data for the selection of a model and its subsequent
analysis). This runs the risk being unable to discover unknown
aspects of the data, since classifiers may just confirm existing
criteria instead of helping to generate new knowledge. In the
worst case, a classifier would merely reiterate the guidelines used
to define sepsis without being able to detect patterns that permit
an earlier discovery. To account for this, Schamoni et al. chose
a questionnaire-based definition of sepsis and clinical experts
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manually labeled the cases and controls. While this strategy may
reduce the problem of circularity, a coherent and comprehensive
definition of sepsis cannot be easily guaranteed. Notably,
Schamoni et al. (36) report very high inter-rater agreement.
They assign, however, only daily labels, which is in contrast
to automated Sepsis-3 labels that are typically extracted in an
hourly resolution. Furthermore, it is plausible that even with
clinical experts in the loop, some level of (indirect) circularity
could still take place, because a clinician would also consult the
patients’ vital and laboratory measurements in order to assign
the sepsis tag, it would merely be less explicit. Since Schamoni
et al. (36) proposed a way to circumvent the issue of circularity,
this also means that no existing work has empirically assessed the
existence (or the relevance) of circularity in machine learning-
based sepsis prediction. For Sepsis-3, if the standard 72-h window
is used for assessing an increase in SOFA (sequential organ
failure assessment score) score, i.e., starting 48 h before suspected
infection time until 24 h afterwards, and if the onset happens to
occur at the very end of this window, then measurements that go
72 h into the past have influenced this label. Since the SOFA score
aggregates the most abnormal measurements of the preceding 24
h (65), Sepsis-3 could even “reach” 96 h into the past. Meanwhile,
the distribution of onsets using Sepsis-3 tends to be highly right-
skewed, as can be seen in Moor et al. (21), where removing
cases with an onset during the first 7 h drastically reduced the
resulting cohort size. Therefore, we conjecture that with Sepsis-3,
it could be virtually impossible to strictly separate data that
are used for assigning the label from data that are used for
prediction, without overly reducing the resulting cohort. Finally,
the relevance of an ongoing circularity may be challenged given
first promising results (in terms of mortality reduction) of the
first interventional studies applying machine learning for sepsis
prediction prospectively (52), without explicitly accounting
for circularity.

4.5. Limitations of This Study
A limitation of this review is that our literature search
was restricted to articles listed in Embase, Google Scholar,
PubMed/Medline, Scopus, and Web of Science. Considering the
pace at which the research in this area—in particular, in the
context of machine learning—is moving forward, it is likely that
the findings of the publications described in this paper will be
quickly complemented by further research. The literature search
also excluded gray literature (e.g., preprints and reports), the
importance of which to this topic is unknown3, and thus might
have introduced another source of search bias. The lack of studies
reporting poor performance of machine learning algorithms
regarding sepsis onset prediction suggests high probability of
publication bias (66, 67). Publication bias is likely to result in
studies with more positive results being preferentially submitted
and accepted for publication (68). Finally, our review specifically
focused on machine learning applications for the prediction
of sepsis and severe sepsis. We therefore used a stringent
search term that potentially excluded studies pursuing a classical
statistical approach of early detection and sepsis prediction.

3In the machine learning community, for example, it is common practice to use

preprints to disseminate knowledge about novel methods early on.

5. RECOMMENDATIONS

This section provides recommendations how to harmonize
experimental designs and reporting of machine learning
approaches for the early prediction of sepsis in the ICU. This
harmonization is necessary to warrant meaningful comparability
and reproducibility of different machine learning models,
ensure continued model development as opposed to starting
from scratch, and establish benchmark models that constitute
the state-of-the-art.

As outlined above, only few studies score highly with respect
to reproducibility. This is concerning, as reproducibility remains
one of the cornerstones of scientific progress (62). The lack of
comparability of different studies impedes progress because a
priori, it may not be clear which method is suitable for a specific
scenario if different studies lack common ground (see also the
aforementioned issues preventing a meta-analysis). The way out
of this dilemma is to improve reproducibility of a subset of a
given study. We suggest the following approach: (i) picking an
openly available dataset (or a subset thereof) as an additional
validation site, (ii) reporting results on this dataset, and
(iii) making the code for this analysis available (including models
and labels). This suggestion is flexible and still enables authors
to showcase their work on their respective private datasets. We
suggest that code sharing—within reasonable bounds—should
become the default for publications as modern machine learning
research is increasingly driven by implementations of complex
algorithms. Therefore, a prerequisite of being able to replicate
the results of any study, or to use it in a comparative setting,
is having access to the raw code that was used to perform the
experiment. This is crucial, as any pseudocode description of
an algorithm permits many different implementations with
potentially different runtime behavior and side effects. With
only two studies sharing code, method development is stymied.
We thus encourage authors to consider sharing their code,
for example via platforms, such as GitHub (https://github.
com). Even sharing only parts of the code, such as the label
generation process, would be helpful in many scenarios and
improve comparability. The availability of numerous open
source licenses (70) makes it possible to satisfy the constraints
of most authors, including companies that want to protect their
intellectual property. A recent experiment at the International
Conference of Machine Learning (ICML) demonstrated that
reviewers and area chairs react favorably to the inclusion of
code (71). If code sharing is not possible, for example because
of commercial interests, there is the option to share binaries,
possibly using virtual machines or “containers” (72). Providing
containers would satisfy all involved parties: intellectual
property rights are retained but additional studies can compare
their results.

As for the datasets used in a study, different rules apply.
While some authors suggest that peer-reviewed publications
should be come with a waiver agreement for open access
data (73), we are aware of the complications of sharing
clinical data. We think that a reasonable middle ground can
be reached by following the suggestion above, i.e., using
existing benchmark datasets, such as MIMIC-III (13) to
report performance.
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BOX 1 | Recommendations for the practitioner.

Recommendation Remarks Details

Make code publicly available or usable A prerequisite of being able to replicate the results

of any study, or to use any model in a comparative

setting, is having access to the raw code or a binary

variant thereof that was used to perform the

experiments. Authors are encouraged to share their

code, for example via platforms, such as GitHub, or

their binaries using container technologies like

Docker.

GitHub, Docker

Use external validation for the machine learning

model

External validation of a classifier is crucial for

assessing the model’s generalizability. Several

publicly available data sources exist that can be

used for this purpose.

MIMIC-II, MIMIC-III, eICU, HiRID

Provide exact definition of sepsis label Implementations vary drastically in terms of

prevalence and number of sepsis encounters. Thus,

reporting the label generation process is essential,

particularly when labels deviate from the

international definitions of sepsis. For instance,

when using the eICU dataset, microbiology

measurements are under-reported for defining

suspected infection, yet the exact modifications of

sepsis implementations have not explicitly been

stated (69).

Provide code of how sepsis label was determined.

Provide an detailed description of a control and, if

applicable, its matched onset

While there is a defined point in time for an event in

the sepsis cohorts, it is much more challenging to

determine at what time to extract data for a control

case when was the non-event. For transparency

and replication reasons, it is crucial to provide

details on how controls were defined and how the

onset was determined.

Provide code of how a control was defined and, if

applicable, its matched onset was determined.

Make data available If possible and in compliance with international data

protection laws, data sources should be made

accessible to bona fide researchers. There are

multiple data repositories, which researchers can

use to make their data accessible, while complying

with data protection laws.

Harvard Dataverse, PhysioNet, Zenodo

Ensure comparability of models and their

performances

To advance the field, it is important that researchers

compare their models to existing models in order to

evaluate and compare the performance across

different studies. This necessitates improvements in

prevalence reporting as well as the choice of

different performance metrics.

Report prevalence and AUPRC in addition to other

metrics.

Use licenses for code Licenses protect the creators and the users of

code. Numerous open source licenses exist,

making it possible to satisfy the constraints of most

authors, including companies that want to protect

their intellectual property.

Apache license, BSD licenses, GPL

Moreover, we urge authors to report additional details of their
experimental setup, specifically the selection of cases and controls
and the label generation/calculation process. As outlined above,
the case–control matching is crucial as it affects the difficulty (and
thus the significance) of the prediction task. We suggest to either
follow the absolute onset matching procedure (21), which is
simple to implement and prevents biases caused by differences
in the length of stay distribution. In any case, forthcoming work
should always report their choice of case–control matching. As
for the actual prediction task, given the heterogeneous prediction
horizons that we observed, we suggest that authors always report
performance for a horizon of 3 h or 4 h (in addition to any other

performance metrics that are reported). This reporting should
always use the AUPRC metric as it is the preferred metric for
rare prevalences (74). Last, we want to stress that a description
of the inclusion process of patients is essential in order to
ensure comparability.

6. CONCLUSIONS AND FUTURE
DIRECTIONS

This study performed a systematic review of publications
discussing the early prediction of sepsis in the ICU by means of
machine learning algorithms. Briefly, we found that the majority
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of the included papers investigating sepsis onset prediction in
the ICU are based on data from the same center, MIMIC-II
or MIMIC-III (13), two versions of a high-quality, publicly
available critical care database. Despite the data agreement
guidelines of MIMIC-III stating that code using MIMIC-III
needs to be published (paragraph 9 of the current agreement
reads “If I openly disseminate my results, I will also contribute
the code used to produce those results to a repository that
is open to the research community.”), only two studies (18,
21) make their code available. This leaves a lot of room for
improvement, which is why we recommend code (or binary)
sharing (Box 1). Of 22 included studies, only one reflects a non-
Western (i.e., neither North-American nor European) cohort,
pinpointing toward a significant dataset bias in the literature (see
Supplementary Table 4 for an overview of demographical
information). In addition to demographic aspects, such as
ethnicity, differing diagnostic, and therapeutic policies as well
as the availability of input data for prediction are known to
impact the generation of the sepsis labels. This challenge hampers
additional benchmarking efforts unless more diverse cohorts
are included. Moreover, since the prediction task is highly
sensitive to minor changes in study specification (including,
but not limited to, the sepsis definition and the case–control
alignment), the majority of investigated papers do not permit
a straightforward reproduction/replication and comparison of
their employed cohorts and their presented prediction task.
Meta-analyses are therefore impossible, as the reported metrics
pertain to different, incomparable scenarios: both prevalence
and case counts are highly variable, even on the same dataset,
and previous work (19) indicated that minor changes in the
experimental setup can substantially affect the difficulty of the
prediction task. As a consequence, we are currently not able to
identify the most predictive method for recognizing sepsis early,
which then ought to be further investigated in prospective trials.
All in all, we found this state of the art to leave lots of room
for improvement; it would be beneficial to be able to compare
different models as to their generalizability, in particular when
deploying machine learning algorithms in a prospective study.
We see our paper as a “call to arms” for the community and hope
that our recommendations are taken in the spirit of improving
this task together.
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monitoring of patients in intensive care unit for sepsis prediction using

non-overfitted machine learning models. Electronics. (2020) 9:1133.

doi: 10.3390/electronics9071133

27. Bloch E, Rotem T, Cohen J, Singer P, Aperstein Y. Machine learning models

for analysis of vital signs dynamics: a case for sepsis onset prediction. J Healthc

Eng. (2019) 2019:5930379. doi: 10.1155/2019/5930379

28. Calvert JS, Price DA, Chettipally UK, Barton CW, Feldman MD, Hoffman JL,

et al. A computational approach to early sepsis detection. Comput Biol Med.

(2016) 74:69–73. doi: 10.1016/j.compbiomed.2016.05.003

29. Desautels T, Calvert J, Hoffman J, Jay M, Kerem Y, Shieh L, et al.

Prediction of sepsis in the intensive care unit with minimal electronic health

record data: a machine learning approach. JMIR Med Inform. (2016) 4:e28.

doi: 10.2196/medinform.5909

30. Kam HJ, Kim HY. Learning representations for the early detection of

sepsis with deep neural networks. Comput Biol Med. (2017) 89:248–55.

doi: 10.1016/j.compbiomed.2017.08.015

31. Lauritsen SM, Kalør ME, Kongsgaard EL, Lauritsen KM, Jørgensen MJ,

Lange J, et al. Early detection of sepsis utilizing deep learning on

electronic health record event sequences. Artif Intell Med. (2020) 104:101820.

doi: 10.1016/j.artmed.2020.101820

32. Lukaszewski RA, Yates AM, Jackson MC, Swingler K, Scherer JM, Simpson A,

et al. Presymptomatic prediction of sepsis in intensive care unit patients. Clin

Vacc Immunol. (2008) 15:1089–94. doi: 10.1128/CVI.00486-07

33. Mao Q, Jay M, Hoffman JL, Calvert J, Barton C, Shimabukuro D, et al.

Multicentre validation of a sepsis prediction algorithm using only vital sign

data in the emergency department, general ward and ICU. BMJ Open. (2018)

8:e017833. doi: 10.1136/bmjopen-2017-017833

34. Nemati S, Holder A, Razmi F, Stanley MD, Clifford GD, Buchman TG. An

interpretable machine learning model for accurate prediction of sepsis in the

ICU. Crit Care Med. (2018) 46:547. doi: 10.1097/CCM.0000000000002936

35. Reyna MA, Josef C, Seyedi S, Jeter R, Shashikumar SP, Westover MB,

et al. Early prediction of sepsis from clinical data: the PhysioNet/Computing

in Cardiology Challenge 2019. Crit Care Med. (2019). 48:210–217.

doi: 10.1097/CCM.0000000000004145

36. Schamoni S, Lindner HA, Schneider-Lindner V, Thiel M, Riezler

S. Leveraging implicit expert knowledge for non-circular machine

learning in sepsis prediction. Artif Intell Med. (2019) 100:101725.

doi: 10.1016/j.artmed.2019.101725

37. Scherpf M, Gräßer F, Malberg H, Zaunseder S. Predicting sepsis with a

recurrent neural network using the MIMIC III database. Comput Biol Med.

(2019) 113:103395. doi: 10.1016/j.compbiomed.2019.103395

38. Shashikumar SP, Li Q, Clifford GD, Nemati S. Multiscale network

representation of physiological time series for early prediction of sepsis.

Physiol Meas. (2017) 38:2235. doi: 10.1088/1361-6579/aa9772

39. Shashikumar SP, Stanley MD, Sadiq I, Li Q, Holder A, Clifford GD,

et al. Early sepsis detection in critical care patients using multiscale

blood pressure and heart rate dynamics. J Electrocardiol. (2017) 50:739–43.

doi: 10.1016/j.jelectrocard.2017.08.013

40. Sheetrit E, Nissim N, Klimov D, Shahar Y. Temporal probabilistic profiles

for sepsis prediction in the ICU. In: Proceedings of the 25th ACM SIGKDD

International Conference on Knowledge Discovery & Data Mining. New York,

NY (2019). p. 2961–9. doi: 10.1145/3292500.3330747

41. VanWyk F, Khojandi A, Kamaleswaran R. Improving prediction performance

using hierarchical analysis of real-time data: a sepsis case study. IEEE J Biomed

Health Inform. (2019) 23:978–86. doi: 10.1109/JBHI.2019.2894570

42. van Wyk F, Khojandi A, Mohammed A, Begoli E, Davis RL, Kamaleswaran

R. A minimal set of physiomarkers in continuous high frequency data

streams predict adult sepsis onset earlier. Int J Med Inform. (2019) 122:55–62.

doi: 10.1016/j.ijmedinf.2018.12.002

43. Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput.

(1997) 9:1735–80. doi: 10.1162/neco.1997.9.8.1735

44. Cho K, Van Merriënboer B, Gulcehre C, Bahdanau D, Bougares F,

Schwenk H, et al. Learning phrase representations using RNN encoder-

decoder for statistical machine translation. arXiv. (2014) 14061078.

doi: 10.3115/v1/D14-1179

45. Fukushima K, Miyake S, Ito T. Neocognitron: a neural network model for

a mechanism of visual pattern recognition. IEEE Trans Syst Man Cybernet.

(1983) 36:826–34. doi: 10.1109/TSMC.1983.6313076

Frontiers in Medicine | www.frontiersin.org 17 May 2021 | Volume 8 | Article 60795288

https://doi.org/10.1097/CCM.0000000000000509
https://doi.org/10.1097/CCM.0000000000002949
https://doi.org/10.1136/bmj.39346.495880.AE
https://doi.org/10.1373/jalm.2018.027425
https://doi.org/10.1007/s00134-018-5228-3
https://doi.org/10.3109/10408363.2013.764490
https://doi.org/10.1038/sdata.2016.35
https://doi.org/10.1007/s00134-019-05872-y
https://doi.org/10.1016/S2589-7500(20)30018-2
https://doi.org/10.1136/bmjoq-2017-000158
https://doi.org/10.1016/j.compbiomed.2019.04.027
https://doi.org/10.1371/journal.pone.0211057
https://doi.org/10.1186/2046-4053-4-1
https://harzingcom/resources/publish-or-perish
https://harzingcom/resources/publish-or-perish
https://doi.org/10.1530/EC-19-0156
https://doi.org/10.3390/electronics9071133
https://doi.org/10.1155/2019/5930379
https://doi.org/10.1016/j.compbiomed.2016.05.003
https://doi.org/10.2196/medinform.5909
https://doi.org/10.1016/j.compbiomed.2017.08.015
https://doi.org/10.1016/j.artmed.2020.101820
https://doi.org/10.1128/CVI.00486-07
https://doi.org/10.1136/bmjopen-2017-017833
https://doi.org/10.1097/CCM.0000000000002936
https://doi.org/10.1097/CCM.0000000000004145
https://doi.org/10.1016/j.artmed.2019.101725
https://doi.org/10.1016/j.compbiomed.2019.103395
https://doi.org/10.1088/1361-6579/aa9772
https://doi.org/10.1016/j.jelectrocard.2017.08.013
https://doi.org/10.1145/3292500.3330747
https://doi.org/10.1109/JBHI.2019.2894570
https://doi.org/10.1016/j.ijmedinf.2018.12.002
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.1109/TSMC.1983.6313076
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Moor et al. Early Sepsis Recognition Review

46. Lea C, Flynn MD, Vidal R, Reiter A, Hager GD. Temporal convolutional

networks for action segmentation and detection. In: Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition. (2017). p. 156–65.

doi: 10.1109/CVPR.2017.113

47. Oord Avd, Dieleman S, Zen H, Simonyan K, Vinyals O, Graves A, et al.

Wavenet: a generative model for raw audio. arXiv. (2016) 160903499.

48. Chen T, Guestrin C. XGBoost: a scalable tree boosting system. In:

Proceedings of the 22nd ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining. New York, NY (2016). p. 785–94.

doi: 10.1145/2939672.2939785

49. Kam HT. Random decision forest. In: Proceedings of the 3rd International

Conference on Document Analysis and Recognition. (1995). p. 278–82.

50. Futoma J, Hariharan S, Heller K. Learning to detect sepsis with a multitask

Gaussian process RNN classifier. arXiv. (2017) 170604152.

51. Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, et al. 2001

SCCM/ESICM/ACCP/ATS/SIS international sepsis definitions conference.

Intensive Care Med. (2003) 29:530–8. doi: 10.1007/s00134-003-1662-x

52. Shimabukuro DW, Barton CW, Feldman MD, Mataraso SJ, Das R. Effect of a

machine learning-based severe sepsis prediction algorithm on patient survival

and hospital length of stay: a randomised clinical trial. BMJ Open Respir Res.

(2017) 4:234. doi: 10.1136/bmjresp-2017-000234

53. Burdick H, Pino E, Gabel-Comeau D, McCoy A, Gu C, Roberts J, et al.

Effect of a sepsis prediction algorithm on patient mortality, length of stay

and readmission: a prospective multicentre clinical outcomes evaluation of

real-world patient data from US hospitals. BMJ Health Care Inform. (2020)

27:e100109. doi: 10.1136/bmjhci-2019-100109

54. Bone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM, Knaus WA, et al.

Definitions for sepsis and organ failure and guidelines for the use of innovative

therapies in sepsis. Chest. (1992) 101:1644–55. doi: 10.1378/chest.101.6.1644

55. Johnson AE, Aboab J, Raffa JD, Pollard TJ, Deliberato RO, Celi LA, et al.

A comparative analysis of sepsis identification methods in an electronic

database.Crit CareMed. (2018) 46:494. doi: 10.1097/CCM.0000000000002965

56. Lobo JM, Jiménez-Valverde A, Real R. AUC: a misleading measure of the

performance of predictive distribution models. Glob Ecol Biogeogr. (2008)

17:145–51. doi: 10.1111/j.1466-8238.2007.00358.x

57. Saito T, Rehmsmeier M. The precision-recall plot is more informative than

the ROC plot when evaluating binary classifiers on imbalanced datasets. PLoS

ONE. (2015) 10:e0118432. doi: 10.1371/journal.pone.0118432

58. Pinker E. Reporting accuracy of rare event classifiers. NPJ Digit Med. (2018)

1:56. doi: 10.1038/s41746-018-0062-0

59. Baker M. 1,500 Scientists lift the lid on reproducibility. Nature. (2016)

533:452–4. doi: 10.1038/533452a

60. Crick T, Hall BA, Ishtiaq S. “Can i implement your algorithm?” A model for

reproducible research software. arXiv. (2014) 1407.5981.

61. Hutson M. Artificial intelligence faces reproducibility crisis. Science. (2018)

359:725–6. doi: 10.1126/science.359.6377.725

62. Stupple A, SingermanD, Celi LA. The reproducibility crisis in the age of digital

medicine. NPJ Digit Med. (2019) 2:2. doi: 10.1038/s41746-019-0079-z

63. Pollard TJ, Johnson AEW, Raffa JD, Celi LA, Mark RG, Badawi O. The eICU

Collaborative Research Database, a freely available multi-center database for

critical care research. Sci Data. (2018) 5:180178. doi: 10.1038/sdata.2018.178

64. Wu J, Chen XY, Zhang H, Xiong LD, Lei H, Deng SH.

Hyperparameter optimization for machine learning models based

on Bayesian optimization. J Electron Sci Technol. (2019) 17:26–40.

doi: 10.11989/JEST.1674-862X.80904120

65. Vincent JL, Moreno R, Takala J, Willatts S, De Mendonça A, Bruining

H, et al. The SOFA (Sepsis-related Organ Failure Assessment) Score

to Describe Organ Dysfunction/Failure. Heidelberg: Springer (1996).

doi: 10.1007/s001340050156

66. Dickersin K, Chalmers I. Recognizing, investigating and dealing with

incomplete and biased reporting of clinical research: from Francis Bacon

to the WHO. J R Soc Med. (2011) 104:532–8. doi: 10.1258/jrsm.2011.

11k042

67. Kirkham JJ, Altman DG, Williamson PR. Bias due to changes in specified

outcomes during the systematic review process. PLoS ONE. (2010) 5:e9810.

doi: 10.1371/journal.pone.0009810

68. Joober R, Schmitz N, Annable L, Boksa P. Publication bias: what are the

challenges and can they be overcome? J Psychiatry Neurosci. (2012) 37:149.

doi: 10.1503/jpn.120065

69. Komorowski M, Celi LA, Badawi O, Gordon AC, Faisal AA. The artificial

intelligence clinician learns optimal treatment strategies for sepsis in intensive

care. Nat Med. (2018) 24:1716–20. doi: 10.1038/s41591-018-0213-5

70. Rosen L. Open Source Licensing: Software Freedom and Intellectual Property

Law. Upper Saddle River, NJ: Prentice Hall (2004).

71. Chaudhuri K, Salakhutdinov R. The ICML 2019 Code-at-Submit-Time

Experiment. (2019). Available online at: https://medium.com/@kamalika_

19878/the-icml-2019-code-at-submit-time-experiment-f73872c23c55

72. Elmenreich W, Moll P, Theuermann S, Lux M. Making computer science

results reproducible–a case study using Gradle and Docker. PeerJ. (2018)

6:e27082v1. doi: 10.7287/peerj.preprints.27082v1

73. Hrynaszkiewicz I, Cockerill MJ. Open by default: a proposed copyright license

and waiver agreement for open access research and data in peer-reviewed

journals. BMC Res Notes. (2012) 5:494. doi: 10.1186/1756-0500-5-494

74. Ozenne B, Subtil F, Maucort-Boulch D. The precision–recall curve overcame

the optimism of the receiver operating characteristic curve in rare

diseases. J Clin Epidemiol. (2015) 68:855–9. doi: 10.1016/j.jclinepi.2015.

02.010

75. Moor M, Rieck B, Horn M, Jutzeler C, Borgwardt K. Early prediction of sepsis

in the ICU using machine learning: a systematic review. medRxiv. (2020).

doi: 10.1101/2020.08.31.20185207

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2021 Moor, Rieck, Horn, Jutzeler and Borgwardt. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Medicine | www.frontiersin.org 18 May 2021 | Volume 8 | Article 60795289

https://doi.org/10.1109/CVPR.2017.113
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1007/s00134-003-1662-x
https://doi.org/10.1136/bmjresp-2017-000234
https://doi.org/10.1136/bmjhci-2019-100109
https://doi.org/10.1378/chest.101.6.1644
https://doi.org/10.1097/CCM.0000000000002965
https://doi.org/10.1111/j.1466-8238.2007.00358.x
https://doi.org/10.1371/journal.pone.0118432
https://doi.org/10.1038/s41746-018-0062-0
https://doi.org/10.1038/533452a
https://doi.org/10.1126/science.359.6377.725
https://doi.org/10.1038/s41746-019-0079-z
https://doi.org/10.1038/sdata.2018.178
https://doi.org/10.11989/JEST.1674-862X.80904120
https://doi.org/10.1007/s001340050156
https://doi.org/10.1258/jrsm.2011.11k042
https://doi.org/10.1371/journal.pone.0009810
https://doi.org/10.1503/jpn.120065
https://doi.org/10.1038/s41591-018-0213-5
https://medium.com/@kamalika_19878/the-icml-2019-code-at-submit-time-experiment-f73872c23c55
https://medium.com/@kamalika_19878/the-icml-2019-code-at-submit-time-experiment-f73872c23c55
https://doi.org/10.7287/peerj.preprints.27082v1
https://doi.org/10.1186/1756-0500-5-494
https://doi.org/10.1016/j.jclinepi.2015.02.010
https://doi.org/10.1101/2020.08.31.20185207
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


BRIEF RESEARCH REPORT
published: 16 June 2021

doi: 10.3389/fpubh.2021.662842

Frontiers in Public Health | www.frontiersin.org 1 June 2021 | Volume 9 | Article 662842

Edited by:

Adrian Egli,

University Hospital of

Basel, Switzerland

Reviewed by:

Mario Coccia,

National Research Council (CNR), Italy

Wesley Cota,

Universidade Federal de Viçosa, Brazil

*Correspondence:

Arianna Maever L. Amit

alamit@up.edu.ph

Thomas Rawson

t.rawson@imperial.ac.uk

†ORCID:

Arianna Maever L. Amit

orcid.org/0000-0003-4571-400X

Veincent Christian F. Pepito

orcid.org/0000-0001-5391-3784

Bernardo Gutierrez

orcid.org/0000-0002-9220-2739

Thomas Rawson

orcid.org/0000-0001-8182-4279

Specialty section:

This article was submitted to

Infectious Diseases - Surveillance,

Prevention and Treatment,

a section of the journal

Frontiers in Public Health

Received: 01 February 2021

Accepted: 11 May 2021

Published: 16 June 2021

Citation:

Amit AML, Pepito VCF, Gutierrez B

and Rawson T (2021) Data Sharing in

Southeast Asia During the First Wave

of the COVID-19 Pandemic.

Front. Public Health 9:662842.

doi: 10.3389/fpubh.2021.662842

Data Sharing in Southeast Asia
During the First Wave of the
COVID-19 Pandemic
Arianna Maever L. Amit 1,2,3*†, Veincent Christian F. Pepito 2†, Bernardo Gutierrez 4,5† and

Thomas Rawson 4*†

1 Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States, 2 School of Medicine and Public Health,

Ateneo de Manila University, Pasig, Philippines, 3College of Medicine, University of the Philippines Manila, Manila, Philippines,
4Department of Zoology, University of Oxford, Oxford, United Kingdom, 5 School of Biological and Environmental Sciences,

Universidad San Francisco de Quito USFQ, Quito, Ecuador

Background: When a new pathogen emerges, consistent case reporting is critical

for public health surveillance. Tracking cases geographically and over time is key for

understanding the spread of an infectious disease and effectively designing interventions

to contain and mitigate an epidemic. In this paper we describe the reporting systems on

COVID-19 in Southeast Asia during the first wave in 2020, and highlight the impact of

specific reporting methods.

Methods: We reviewed key epidemiological variables from various sources including

a regionally comprehensive dataset, national trackers, dashboards, and case bulletins

for 11 countries during the first wave of the epidemic in Southeast Asia. We recorded

timelines of shifts in epidemiological reporting systems and described the differences in

how epidemiological data are reported across countries and timepoints.

Results: Our findings suggest that countries in Southeast Asia generally reported

precise and detailed epidemiological data during the first wave of the pandemic. Changes

in reporting rarely occurred for demographic data, while reporting shifts for geographic

and temporal data were frequent. Most countries provided COVID-19 individual-level

data daily using HTML and PDF, necessitating scraping and extraction before data could

be used in analyses.

Conclusion: Our study highlights the importance of more nuanced analyses of

COVID-19 epidemiological data within and across countries because of the frequent

shifts in reporting. As governments continue to respond to impacts on health and

the economy, data sharing also needs to be prioritised given its foundational role in

policymaking, and in the implementation and evaluation of interventions.
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INTRODUCTION

In December 2019, an outbreak of severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) was reported in Wuhan,
China and was determined to cause the novel coronavirus disease
2019 (COVID-19). The World Health Organization (WHO)
declared the outbreak to be a Public Health Emergency of
International Concern on 30 January 2020, and subsequently a
pandemic on 11 March 2020.

The impact of the pandemic required robust research to
understand the novel virus and develop effective mitigation
and containment strategies (1–3). In February, the WHO
in collaboration with the Global Research Collaboration for
Infectious Disease Preparedness and Response (GLOPID-R)
developed the Global Research Roadmap in response to the
pandemic and identified priority research areas (4). These
included: (a) product development for improvement of clinical
processes; (b) shedding, natural history of disease; (c) monitoring
of phenotypic change and adaptation; (d) immunity; and (e)
disease models (4). Since then, a vast number of research has
been produced on the clinical aspects of the disease, non-
pharmaceutical interventions (NPIs), and public health (3).
There has also been interest in the role of the environment (5–
10), use of machine learning techniques and digital technologies
(11–16), and government and policy responses (17–23).

To effectively respond to public health emergencies, there
is a need for timely and accurate reporting of statistics and
data sharing as highlighted in the recent Ebola and Zika
epidemics (24–27). To this end, the Principles for Data Sharing
in Public Health Emergencies consisting of timeliness, ethics,
equitability, accessibility, transparency, fairness, and quality have
been developed and introduced (26, 28, 29). The Global Research
Roadmap also identified data sharing as a cross-cutting research
priority that spans all other key topics (4). As of writing,
however, the current evidence into the quality and availability of
data is severely limited, with studies focusing primarily around
descriptions of data sources or comments on the importance
of data and data sharing (24, 30–42). One research group
has examined the data availability for 507 COVID-19 patients
reported in January, finding that the majority of information was
provided by social media and news outlets (43). Other than this
example, there is no other original work that investigates the
issues surrounding data availability and data sharing practices
during the pandemic. In Southeast Asia, only one study on data
sharing during disease outbreaks has been carried out (44). The
study evaluated data quality and timeliness of outbreak reporting
in Cambodia, Lao PDR,Myanmar, and Vietnam for dengue, food
poisoning and diarrhea, severe diarrhea, diphtheria, measles,
H5N1 influenza, H1N1 influenza, rabies, and pertussis. Further, it
highlighted the broad differences observed in the data quality and
timeliness between participating countries, concluding that any
international data-curating attempts must be versatile enough to
accommodate these.

Ongoing research into the epidemiology of SARS-CoV-2
depends entirely on access to regularly updated and factor-rich
data. The benefits and importance of data sharing practices
have been well-documented during previous outbreaks. In the

ongoing COVID-19 crisis, government organisations, public
health agencies, and research groups are responding to the call
for rapid data sharing by providing data and curating detailed
real-time databases that are readily and publicly accessible (30–
32). Data from various groups have informed more than 100,000
papers on COVID-19 (45). Despite progress in reporting and
sharing data, the scale of the global pandemic presents its
own unique challenges. First, there are ethical and privacy
considerations that need to be balanced carefully against the
potential impact of open data sharing. Second, there is a
clear lack of capacity and often appropriate computational
infrastructure that may make data sharing in real time unfeasible
and burdensome (26, 27). Such challenges may result in changes
in the quality and detail of data reporting between and within
countries over time as their respective health systems become
increasingly overwhelmed (33). The majority of countries
are now routinely reporting the number of confirmed cases
and deaths attributed to COVID-19, with the country-wide
cumulative totals readily accessible from databases such as the
one curated by Johns Hopkins University (30). However, the
breadth of further information reported by each country is less
understood. Access to demographic and geographic information
of cases in particular is critically important in the context of
informing policy response, as these provide greater insights
into how subgroups of the population in different areas are
affected by the disease. Understanding how and when these data
are provided is critical to ensuring that modelling efforts and
government response are well-informed. Further, understanding
global responses to the COVID-19 pandemic will be of increasing
relevance as countries begin to develop updated post-pandemic
disease response frameworks. Being able to compare and contrast
how different countries responded and provided information in
the early stages of the pandemic will be crucial in designing better
response and reporting pipelines for future global health crises.

Our work thus aimed to explore the scale of data reporting
across the broader pandemic timeline by describing the ways
in which various countries in a geographic region report
COVID-19 data and how the detail of data reporting changed
over time. We reviewed detailed epidemiological data from
Southeast Asian countries and tracked how countries’ reporting
of COVID-19 data has shifted. We further evaluated differences
in reporting between countries and described the accessibility
of epidemiological data during the first wave in 2020. By
providing these types of information, researchers may be able to
conduct better and more nuanced analyses of epidemiological
data of COVID-19. Further, our research provides wider
insight into the data pipeline from government to researchers,
and how it has adapted over time. This timeline provides
greater context to the specific findings of subsequent data-
driven research, highlighting areas and time periods where
particular data feeds are likely to be particularly biased or
data-sparse. We are also able to recommend, based upon our
findings, prioritising the use of the early-case histories of specific
countries for the calculation of demographic-specific disease
parameters. By highlighting particular regions where specific
data are available, such as travel history, hospitalisation times
and symptom-tracking, we are also able to identify ideal further
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topics of research in the ongoing attempts to fight the spread
of COVID-19.

METHODS

Study Design
We conducted an observational study to describe and track
changes in reporting of epidemiological data during the COVID-
19 pandemic in 11 countries in Southeast Asia, namely
Brunei, Cambodia, Indonesia, Lao PDR, Malaysia, Myanmar,
Philippines, Singapore, Thailand, Timor-Leste, and Vietnam.
Such a design allows us to compare the data reporting practices
between different countries through time as the pandemic
progresses (46).

Data Sources and Compilation
We focused on reporting mechanisms of individual level
COVID-19 data from the aforementioned 11 countries in
Southeast Asia. The region is characterised by archipelagos and
comprises more than 8.0% of the world’s population. During the
first wave of the pandemic, these 11 countries contributed about
1.3% of the cases to the global count of more than 2.3 million
cases on April 20.

We initially reviewed the data of the Open COVID-19 Data
Curation Group’s centralised repository containing individual-
level information on patients with laboratory-confirmed
COVID-19 (47). These included data on the following variables
deemed essential in monitoring pandemics: (a) Key dates, which
include the date of travel, date of onset of symptoms, date of
confirmation of infection, date of admission to hospital, and
date of outcome; (b) Demographic information including the
age and sex of cases; (c) Geographic information on domicile
and travel history at the highest resolution available down
to the district level; (d) Any additional information such as
symptoms and ‘contact tracing data’ (i.e., a record of exposure
to infected individuals) (47). The collection of data on these
variables mirrors the minimum data to be collected for a line
list of pandemic influenza cases obtained from surveillance
systems, as suggested by the WHO (48). Other sources, such
as the interactive dashboard by Johns Hopkins University
(30), do not provide detailed individual-level information and
hence were not used in this study. At the time of the conduct
of this study, the said centralised repository was manually
maintained by a number of individuals, and therefore would
have potentially missed some information about the COVID-
19 positive individuals, particularly occupation that was not
recorded in the repository. To validate and augment the data
from the centralised repository, we reviewed other relevant
and official data sources of each country in different formats
including: government trackers and dashboards that report close
to real-time data, downloadable PDF reports, downloadable CSV
files, and official social media accounts of governmental or public
health institutions (Supplementary Table 1). In addition, we
reviewed data from news agencies, pre-prints, and peer-reviewed
research articles that contained information on COVID-19
cases in the country. We reviewed all possible publicly available
data sources from the date when the first confirmed case was

reported in the country, and up to April 20. We only collected
data at one timepoint, on April 20, and therefore could only use
information available then. No updates on the reporting of key
epidemiological variables were made for this study.

Data Interpretation and Analysis
We documented trends and changes in how key epidemiological
variables were reported by 11 Southeast Asian countries
throughout the study period from January 23 to April 20.
The reporting methodologies of each country could broadly be
separated into three distinct time periods, defined by specific
milestones in each country’s data reporting. The first time period
or “first reporting of cases” (T0) for all countries was the date at
which the country reported its first COVID-19 case. Following
this, the “first change in reporting” (T1) was the time when
the information format was changed from the first report based
on available data during the study period. This was primarily
characterised by countries establishing a formal channel by which
to declare subsequent confirmed cases of COVID-19, as opposed
to (T0), where cases were primarily reported via news reports
and/or government briefings. Any further changes in the level of
detail, also referred in this paper as granularity for geographic
data and precision for both demographic and temporal data,
in the reporting of any of the epidemiological variables were
considered as a “change in reporting” and were noted as
a subsequent time period (Supplementary Table 2). This was
characterised by countries further updating and altering their
previously established formal case declaration channel as their
respective data pipelines changed. The “last observed change in
reporting” (T2) was the last documented change up to April 20.
We also noted the number of cases in each timepoint. In this
paper, we only present results on the “first reporting of cases”
(T0), “first observed change in reporting” (T1), and “last observed
change in reporting” (T2).

We then explored the differences in reporting of demographic,
geographic, and temporal data across countries at three key
timepoints: at the time they first reported cases (T0), at
the time when the reporting first changed (T1), and at the
last observed change in reporting (T2). Any change in the
level of granularity or precision in reporting is noted. We
present these differences for each epidemiological variable
classified into: (a) demographic data; (b) geographic data; and
(c) temporal data. Data for other epidemiological variables
are presented in Supplementary Figures 1–5. We present in
Supplementary Figure 6 a summary of what information each
country had for each timepoint (T0, T1, T2).

RESULTS

Shifts in Reporting of Epidemiological Data
During the First Wave
The first Southeast Asian country to report a COVID-19 case
was Thailand on January 23. Singapore, Malaysia, Cambodia,
Vietnam and the Philippines subsequently reported cases on or
before theWHO declared COVID-19 a Public Health Emergency
of International Concern (PHEIC) on January 30. Indonesia,
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FIGURE 1 | Timeline of key events with corresponding number of cases during the first wave of the COVID-19 pandemic. The notification of a novel coronavirus

disease in late December and the announcement of the PHEIC are denoted by lines. Shifts in reporting are defined by a change in level of detail and precision in any of

the epidemiological variables (Supplementary Table 2). Each key reporting shift is denoted by a colored circle.

Brunei, Timor-Leste, Myanmar and Lao PDR reported their first
cases of COVID-19 in March (Figure 1).

Malaysia had the shortest time between reporting of the
first case and first change in reporting of epidemiological data.
Only a day after their first reported case, more detailed reports
on the occurrence of symptoms, and dates of symptom onset
and hospitalisation were provided. Similar improvements in
terms of the level of granularity and precision in reporting
data were also noted for the following countries: Philippines
eventually reported comorbidities for some patients, Singapore
and Vietnam eventually reported data on occupation, and Timor-
Leste eventually reported travel history data. As case numbers
increased, several countries provided less detailed information.
By March 15, when 96 cases had been identified, Indonesia
ceased reporting individual-level data and switched to aggregate
data (i.e., number of cases per day). Timor-Leste followed by
April 15, when it had 8 recorded cases. The first and the last
changes in reporting were the same for Indonesia and Brunei,
while Myanmar was the only country that consistently reported
individual-level COVID-19 epidemiologic data since reporting
its first two cases on March 23 until April 20.

Differences in the Granularity and
Precision of Reporting Across Countries
There were minimal changes in the reporting of demographic
data among countries. Themajority of countries reported age and
sex except for Timor-Leste, and only Indonesia shifted from a
more precise reporting of age and sex to less detailed reporting
(Figures 2A,B). We observed more changes in the reporting
of occupation (Figure 2C); Indonesia only provided occupation
data at the time of reporting of first cases, while Singapore and

Vietnam included data on occupation of COVID-19 patients at
later timepoints.

Location information on domicile and travel history differed
across countries and timepoints. While all 11 countries provided
domicile information (Figure 3A), only Singapore provided
precise-level addresses. Both Indonesia and Malaysia initially
provided city-level information and shifted to less granular
reporting. For Indonesia, province-level data was being reported
by March 15 when it reached 96 cases. Meanwhile, Malaysia
started reporting province-level data on March 21 when
it reached 1,183 confirmed cases. On the other hand, the
information coming from some countries initially presented less
granularity or lower geographic resolution: Lao PDR initially
reported country-level information, Thailand initially reported
province-level addresses and Vietnam initially reported city-level
addresses; eventually all three countries reported precise address
data. There were less differences observed for travel location data
reporting across countries, but also more shifts observed over
time (Figure 3B). Most (8 of 11) provided city-level information
of the travel history; only Myanmar provided country-level
information, while both Indonesia and Timor-Leste provided no
information at the time of reporting their first cases. Only Timor-
Leste shifted to a more granular level of reporting over time,
while Brunei, Cambodia, Malaysia, Philippines, Singapore and
Thailand reported less granular data. Lao PDR shifted reporting
travel histories from city-level information when it reported its
first two cases to no information being shared when it had six
confirmed cases, and then to country-level travel history data
when it had reported 11 cases.

For all temporal variables, countries reported either precise
dates or no dates at all. At the start of each country’s first case,
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FIGURE 2 | Differences in the level of precision in reporting demographic data: (A) age, (B) sex, and (C) occupation over three timepoints. Only those countries with

changes in the level of detail and precision of reporting are highlighted. Each country may shift reporting at any timepoint: at the first reporting of cases’ (T0), “first

observed change in reporting” (T1), and “last observed change in reporting” (T2). Each country may report less precise data indicated by a decreasing slope (red) or

more precise data indicated by an increasing slope (blue) consistently over time. Reporting may not be consistent across timepoints with shifts between different levels

of precision (yellow) or reporting may not have changed at all during the study period (gray). The levels of precision are indicated for each epidemiological variable. Age

has three levels while both sex and occupation are binary variables.

the majority of countries provided travel history dates except for
Brunei, Indonesia, and Timor-Leste (Figure 4A). Only Brunei
shifted to reporting dates for the succeeding timepoints while
Malaysia, Philippines, and Singapore stopped reporting dates as
cases increased. Lao PDR repeatedly shifted between reporting

travel dates and excluding this information. The precision of
reporting symptom onset dates also varied across countries and
timepoints (Figure 4B). Cambodia, Indonesia and Timor-Leste
never reported such information, while Brunei, Myanmar, and
Vietnam consistently reported specific dates when symptoms
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FIGURE 3 | Differences in the level of granularity in reporting geographic data: (A) domicile, and (B) travel history location over three timepoints. Only those countries

with changes in the level of granularity or geographic resolution of reporting are highlighted. Each country may shift reporting at any timepoint: at the first reporting of

cases’ (T0), “first observed change in reporting” (T1), and “last observed change in reporting” (T2). Each country may report less granular data indicated by a

decreasing slope (red) or more granular data indicated by an increasing slope (blue) consistently over time. Reporting may not be consistent across timepoints with

shifts between different levels of granularity (yellow) or reporting may not have changed at all during the study period (gray). The levels of granularity are indicated for

each epidemiological variable. All geographic data have five levels of granularity/geographic resolution: none, country, province, city, and precise.

presented. Malaysia provided day information in the succeeding
timepoints while Philippines, Singapore, and Thailand eventually
stopped reporting the date of symptom onset. Lao PDR
repeatedly shifted between reporting of dates to no reporting.
Date of confirmation showed consistent reporting in all countries
except Thailand, which stopped its reporting when it had 42
cases (Figure 4C). Several countries initially reported the date
of admission except for Brunei, Cambodia, Indonesia, Malaysia,
and Timor-Leste (Figure 4D). Only Thailand had a shift in
reporting dates of discharge, recovery, or death - reporting
this information only in late February when it had 42 cases
(Figure 4E).

DISCUSSION

Responding to calls for data sharing and transparency,
most governments in Southeast Asia established publicly
available sources of COVID-19 individual-level information.
This commitment to data sharing and reporting allowed the
comparison of the different data reporting practices of the
countries in the region. We found that countries in Southeast
Asia have different reporting practices since the start of the
pandemic and during the first months of its progression. Overall,
reporting of epidemiological data in Southeast Asia is precise
and detailed. Many variables were consistently maintained
throughout the initial outbreak period, but those with changes in

reporting started early with case counts as low as four to as high
as 136. There was little to no change in reporting of demographic
data while changes in reporting of geographic and temporal
variables were frequent and unpredictable as the pandemic
progressed. Further, we find that changes in the level of precision
in reporting does not only depend on case numbers, but also
on the policies and interventions implemented. Comparisons
across countries for different epidemiologic variables showed
that national governments may shift to a less or more precise
reporting of data as dictated by the burden of COVID-19 in
the communities and/or their national response. As an example,
Indonesia started reporting aggregate data less than two weeks
after their first case was reported. Their government did not
implement a nationwide lockdown, but rather focused on scaling
up capacity, treating patients and supporting economic recovery.
Conversely, Lao PDR, Thailand and Vietnam reported more
precise demographic and geographic data at the end of the study
period compared to how they reported their first cases. The
national governments of these countries established mechanisms
to quickly identify and isolate cases and their contacts requiring
detailed contact tracing data. Our findings also show that most
countries reported more precise information towards the end
of the study period, but some variables such as travel history
location were reported with less detail compared to the increased
granularity for domicile data. These trends in travel history
data highlight the shift in priorities of the governments in the
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FIGURE 4 | Differences in the level of precision in reporting temporal data: (A) date of travel, (B) date of symptom onset, (C) date of confirmation, (D) date of hospital

admission, and (E) date of outcome over three timepoints. Only those countries with changes in the level of detail and precision of reporting are highlighted.

(Continued)
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FIGURE 4 | Each country may shift reporting at any timepoint: at the first reporting of cases’ (T0), “first observed change in reporting” (T1), and “last observed change

in reporting” (T2). Each country may report less precise data indicated by a decreasing slope (red) or more precise data indicated by an increasing slope (blue)

consistently over time. Reporting may not be consistent across timepoints with shifts between different levels of precision (yellow) or reporting may not have changed

at all during the study period (gray). The levels of precision are indicated for each epidemiological variable. All date variables have three levels of precision: none,

month, and day.

region towards managing local transmission. Southeast Asian
countries implemented travel restrictions early, therefore having
fewer imported cases and less need for precise travel history
data (49).

Data on dates of symptom onset, confirmation, admission,
and outcome (discharge, recovery, or death) are important
in estimating disease burden and forecasting health service
needs. Dates of confirmation and outcome (discharge, recovery,
or death) were reported consistently by most countries. This
reflects the effective system of governments to register all
confirmed patients in their database upon entry and exit in the
healthcare system. However, we found that dates of symptom
onset and hospital admission were no longer reported at the
end of the observation period for some countries. The reporting
of less precise dates could be attributed to the increasing
incidence of COVID-19, which could have overwhelmed data
reporting mechanisms of the countries, particularly because
individual patient follow-up requires symptom onset dates to be
accurately logged. Governments thus need to establish systems
that allow accurate and fast reporting of detailed temporal
data. Lack of precision could adversely affect the quality of
mathematical models and other analyses, which are used to
forecast demand for health services and make decisions. This
consequently impacts the responses to COVID-19 at a national
and subnational level, which is of greater concern among low-
and middle-countries (LMICs) that already have fragile health
systems. Our findings provide insights on how different health
systems respond to the pandemic. Consequently, these could be
used to guide how publicly available data are analysed, used,
and interpreted.

Most countries reported COVID-19 data daily, with unclear
reporting frequencies only being observed for Brunei, Lao PDR,
and Timor-Leste. These countries do not report new cases every
day because of the low number of new daily cases leading to days
where no additional cases are confirmed. As they only provide
updates on days when new COVID-19 cases are confirmed,
their frequency of providing data updates on COVID-19 is thus
irregular. Countries primarily reported individual-level data in
either HTML and PDF formats, which necessitates scraping and
extraction before such data could be used in analyses. During
the study period, only Thailand provided a downloadable CSV
format of their data. Ready-to-use data formats are important as
these allow the public and scientific community to rapidly view
and analyse country-specific information.

Shifts in reporting, especially from a detailed level of
reporting to aggregated data, provide a challenge for accurately
comparing epidemiological situations between countries, more
so for understanding disease dynamics and guiding government
actions. In China, it has been shown that changes in reporting

have impacted modelling results of the transmission parameters
of COVID-19 (45). Further, as the pandemic progresses
and epidemiological information becomes increasingly less
available, analyses of detailed case counts that cover the
entire duration of the epidemic may not be feasible (32). In
Nigeria, a forecasting algorithm has been proposed for use in
policy responses given the limited data and constrained data
infrastructures in the country (50). In Spain where data have
been aggregated as early as May, there have been challenges
in conducting age-specific time series, understanding disease
transmission, and recommending interventions and policies
(42). These three examples are evidence that detailed COVID-
19 data are necessary, not only for research purposes, but
to ultimately guide policies that avert cases and deaths in
the country.

An important limitation of this study is the collection of
data at only one timepoint in April. This may not accurately
reflect the daily reporting situation of the 11 Southeast Asian
countries when the pandemic started. Another limitation is the
absence of any assessment on data quality. This evaluation was
not carried out because of the fast progression of the pandemic
with corresponding rapid changes in data reporting. The lack of
an up-to-date and complete line list also prevents a thorough
assessment of data quality. Lastly and most importantly, an
evaluation of data quality also requires the consideration of other
indicators such as flexibility, representativeness, data security
and system stability to provide a more accurate picture of
health systems and disease surveillance systems (44). These,
information are not readily available and require more resources
to be collected. Despite such caveats, however, this study is
the first to systematically describe and compare reporting of
important epidemiological data for COVID-19 across countries
during the first wave. Our findings will allow researchers to
conduct more nuanced analyses using epidemiological data
of COVID-19.

CONCLUSION

Reporting systems in the region have been quickly established
and countries provided detailed individual-level data during the
first wave. This pandemic highlights the critical role of timely,
accurate, and precise data sharing during outbreaks of global
scale. Some concerns regarding data sharing remain, such as
data privacy and public criticisms (26, 27). Given that sharing of
data is needed for evidence-informed policies and interventions,
maintaining and strengthening data reporting systems should
still be a priority of countries (51–53). For the purposes of
surveillance on emerging infectious diseases, we recommend that
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governments coordinate data collection and reporting so that
data are as comparable as possible between countries. Countries
may also benefit from reporting data in a fully open access format
that is readily available and in machine-readable formats to
accommodate new epidemics and context-specific information.
Hopefully, more governments will come to share precise data to
allow more nuanced analyses. This will provide an opportunity
to better understand the disease and how best to respond to
the pandemic.
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Since the beginning of the COVID-19 pandemic, important health and regulatory
decisions relied on SARS-CoV-2 reverse transcription polymerase chain reaction (RT-
PCR) results. Our diagnostic laboratory faced a rapid increase in the number of SARS-
CoV-2 RT-PCR. To maintain a rapid turnaround time, we moved from a case-by-case
validation of RT-PCR results to an automated validation and immediate results
transmission to clinicians. A quality-monitoring tool based on a homemade algorithm
coded in R was developed, to preserve high quality and to track aberrant results. We
present the results of this quality-monitoring tool applied to 35,137 RT-PCR results.
Patients tested several times led to 4,939 pairwise comparisons: 88% concordant and
12% discrepant. The algorithm automatically solved 428 out of 573 discrepancies. The
most likely explanation for these 573 discrepancies was related for 44.9% of the situations
to the clinical evolution of the disease, 27.9% to preanalytical factors, and 25.3% to
stochasticity of the assay. Finally, 11 discrepant results could not be explained, including 8
for which clinical data was not available. For patients repeatedly tested on the same day,
the second result confirmed a first negative or positive result in 99.2% or 88.9% of cases,
respectively. The implemented quality-monitoring strategy allowed to: i) assist the
investigation of discrepant results ii) focus the attention of medical microbiologists onto
results requiring a specific expertise and iii) maintain an acceptable turnaround time. This
work highlights the high RT-PCR consistency for the detection of SARS-CoV-2 and the
necessity for automated processes to handle a huge number of microbiological results
while preserving quality.

Keywords: COVID-19, SARS-CoV-2, RT-PCR, biomedical validation, R-script, algorithm, quality-monitoring,
delta checks
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INTRODUCTION

The rapid spread of the COVID-19 pandemic caused
unprecedented challenges for diagnostic microbiology
laboratories. Rapid and high throughput SARS-CoV-2 reverse
transcription polymerase chain reaction (RT-PCR) developed
early during the crisis became the cornerstone of patient
diagnosis as well as hospital and public health management
(Caruana et al., 2020; Corman et al., 2020; Tadini et al., 2020).
Consequently, microbiology laboratories were reorganized to
respond to the high demand for SARS-CoV-2 testing
(Posteraro et al., 2020). This situation required (i) the rapid
adaptation of infrastructures, (ii) quick validation and
implementation of new RT-PCR assays, (iii) working hour
extension and new workforce employment. Yet, the quality of
results provided by clinical microbiology laboratories, SARS-
CoV-2 testing and routine analyzes, had to be maintained
throughout the crisis.

Our molecular diagnostic laboratory located in a tertiary care
university hospital faced a rapid increase in the number of SARS-
CoV-2 PCR with up to 1,007 tests per days at the peak of the
epidemic. Our analysis platform set was progressively extended
from a high-throughput MDx platform, to the cobas 6800 system
(introduced on 24.03.2020) and the Xpert Xpress SARS-CoV-2
assay (introduced on 21.04.2020) in response to the high volume
of SARS-CoV-2 testing. Additionally, validation procedures had
to be simplified in our laboratory. To ensure the best quality, two
validation steps are usually applied prior to result transmission to
clinicians: the technical validation of the assay followed by the
biomedical validation of the results by medical microbiologists,
who consider the specific clinical setting (Greub et al., 2015).
Biomedical validation appeared as a bottleneck in the SARS-
CoV-2 analytical workflow which could extend the turnaround
time (TAT), with the risk of affecting clinical outcomes, infection
prevention strategies and public health decisions (Hawkins,
2007). To maintain a minimal TAT, results were released to
the clinicians after technical validation based on the FastFinder
software (UgenTec NV, Hasselt, Belgium) that automatically
analyzes RT-PCR amplification curves.

The limited experience in these newly implemented RT-PCR
assays, including their performance (Kokkinakis et al., 2020),
raised the need for an active surveillance of the quality of
provided results. Delta checks are commonly used in clinical
chemistry laboratories to monitor analytical throughputs that
outreach capacity for sample-by-sample validation. “Delta
checks” describes a process where discrepancies in sequential
results of the same patient are detected to prompt repetition of
the analysis (Schifman et al., 2017). We wondered whether a
similar approach could be used to monitor the quality of SARS-
CoV-2 results obtained in our laboratory. Thus, we developed a
quality-monitoring methodology based on a homemade
algorithm programmed in R to monitor SARS-CoV-2 RT-PCR
results. Such methodology leveraged repeated testing to identify
potential preanalytical or analytical culprits as well as cases
requiring further biomedical investigations. The algorithm
developed in-house aimed to restrict the list of discrepancies
truly requiring investigation.
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In this article, we present the results obtained through the
application of our quality surveillance on data from the first four
months of the COVID-19 crisis in our laboratory. Besides its role
as a quality management tool, application of this surveillance
allowed us to quickly gain knowledge about RT-PCR assays
applied to a novel virus and new disease. In particular, this
process allowed us to identify clinical specimen with significant
added value (i.e. patients with unexpected discrepant results) and
the presence of long-term carrying patients.
MATERIALS AND METHODS

RT-PCR and Samples
Samples collected from patients with suspected COVID-19 or for
screening were tested by RT-PCR, using either our high-
throughput MDx platform (Greub et al., 2015), the cobas
SARS-CoV-2 qualitative test (Roche, Basel, Switzerland) and
the Xpert SARS-CoV-2 test (Cepheid, California, USA). The E
gene was targeted by the RT-PCR performed on the MDx
platform (Greub et al., 2015), as described by Corman and
colleagues (Corman et al., 2020). The cobas SARS-CoV-2
targeted the E gene as well as the ORF1a/b and was performed
according to the manufacturer guidelines. Finally, the Xpert
SARS-CoV-2 test targeted both the N and the E gene. The
three methods displayed similar performances for the detection
of SARS-CoV-2 from various clinical specimens and similar
cycle threshold (Ct) value when positive (Lieberman et al.,
2020; Moran et al., 2020; Opota et al., 2020; Poljak et al.,
2020). Samples were mainly collected from the upper
respiratory tract. However, other types of samples were also
tested and are listed in Supplementary Table S1. Data collection
and analysis

Data was collected during the first four months of the
epidemic in Switzerland (12.02.2020-12.06.2020) and included
all SARS-CoV-2 RT-PCR analyzes conducted at the Institute of
Microbiology of the Lausanne University Hospital (CHUV).
Samples were collected from symptomatic as well as
asymptomatic patients. However, at the beginning of the
pandemic only symptomatic patients were tested for SARS-
CoV-2. From 25.04.2020, the screening strategy was extended
to all patients admitted at our hospital, including the
asymptomatics (Moraz et al., 2020). SARS-CoV-2 RT-PCR
results and basic contextual information were extracted from
our Laboratory Information System (LIS) (MOLIS, CGM) and
analyzed with R (Team, RC 2019) (version 3.6.1) language
helped by packages from the Tidyverse (Wickham et al.,
2019) environment.

Discrepant Cases Identification
and Classification
A R script was developed to automatically identify and classify
discrepant cases. In this script, all analyzes from patients with
multiple samples were compared to their previous results in a
pairwise approach. Sample comparisons were then categorized as
concordant or discrepant. Only discrepant results were further
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processed. These discrepancies (positive versus negative or
conversely) between consecutive samples were classified based
on i) Ct values, ii) samples types and iii) reception dates
(Supplementary Figure S1). Based on these records,
discrepancies were classified by the algorithm as described in
Supplementary Table S2. The script was designed to compare
each sample only to the last relevant result. As described in
Supplementary Table S2 (Patient A), a positive nasopharyngeal
swab followed by a negative PCR in blood, and then later by
another positive nasopharyngeal swab, will lead to only one
discrepancy: the negative blood classified as a “Low yield”
sample. The second nasopharyngeal swab will be classified as
concordant with the previous nasopharyngeal swab. Of note, two
nasopharyngeal samples taken more than 10 days apart once
negative and once positive with a Ct > 35, would be classified as
“Stochastic” (Patients B and D) and not as “Time delay” (as it is for
Patient C). Indeed, when none of these criteria are met (Sample
type is not a “Low Yield”, Ct are <35 and Delta Time between
samples is <10 days) the result is classified as “To be investigated”
(Patient E). Of note, discrepancies were classified according to the
first matching criteria in the following order: “Low yield”,
“Stochastic”, “Time delay” and “To be investigated”.
Furthermore, a result from a patient with three samples or more
can be involved in a concordant and a discrepant pairwise
comparisons. Indeed, the second of his analyzes could be in
agreement with the first result but discrepant with the third.
This decisional algorithm is graphically represented in
Supplementary Figure S1. Code of this algorithm is available
on https://github.com/valscherz/SARS-CoV-2_discrepant_screen.

Discrepant samples classified as “To be investigated” by the
algorithm were then manually investigated, classified and assigned
a putative explanation for the observed discrepancy
(Supplementary Table S3). In this manual analysis, a
discrepancy between two nasopharyngeal swabs taken within the
same period (< 24h) and collected in different units or different
hospitals (compatible with differences in sampling quality) were
imputed to “Sample quality”. When sampling sources were
different (i.e. comparing an upper respiratory tract sample with
a rectal swab), discrepancies were imputed to “Different sample
types”. Discrepancies between samples collected less than 10 days
apart but with indications in clinical records supporting a recent
infection or recent recovery were classified as “Clinical context”.
Finally, discrepancies compatible with none of these putative
explanations were classified as “Unsolved”. For visualization
purposes, classified discrepancies were grouped into
corresponding testing phases or context: clinical context,
preanalytical or stochastic (Supplementary Tables S3 and S4).

RT-PCR analyses were not repeated on the discrepant samples.
RESULTS

Post-Analytic Surveillance of SARS-CoV-2
RT-PCR Results
Since the implementation of SARS-CoV-2 RT-PCR assays and
for a period of four months, 30,198 patients were tested by
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RT-PCR at the Institute of Microbiology of the Lausanne
University Hospital (CHUV). This corresponded to 35,137
samples, among which 4,545 (12.9%) returned a positive result,
whereas 30,592 (87.1%) were negative. Upper respiratory tract
(URT) samples represented 98% of the tested specimens
(Supplementary Table S1). The peak of number of analyzes
took place on March 18th with up to 1,007 analyzes processed
during the same day (Figure 1). The developed algorithm
allowed the laboratory to process 3,214 patients having at least
two specimens, as detailed in the Figure 2.

Algorithm-Based and Manual Biomedical
Investigation of Discrepancies
Our pipeline significantly reduced the number of discrepancies
requiring human investigation and a probable explanation could
be identified for most of the discrepant results. Indeed, 75%
(n=428 of total 573) of the discrepant pairwise comparisons
could be automatically attributed by the pipeline to a putative
explanation, i.e., “stochastic”, “low yield” or “time delay”
(Figures 3A, B and Supplementary Table S3). Only the
remaining discrepancies (n=145) did not fit any of the solving
rules encoded in the algorithm and required investigations based
on the available analytical and clinical information
(Supplementary Table S4).

The profiles of putative explanations for discrepancies
evolved depending on the time interval between the compared
analyzes (Figure 3C). In samples received during the same day,
our assessment explained 77.3% (n=34/44) of the discrepancies
as related to the preanalytical phase (i.e. explained by the sample
type or collection in different health centers) and 22.7% (n=10/
44) to stochasticity of the RT-PCR reaction (Ct value >35). The
discrepancies in results for samples received 1-3 days apart were
explained by factors affecting the preanalytical phase (55.4%,
n=51/92), followed by stochasticity (32.6%, n=30/92).
FIGURE 1 | Daily number of SARS-CoV-2 RT-PCR assays. 35,137 analyzes
are represented here. Samples are distributed according to their reception
date. Blue bars represent samples for which RT-PCR results were negative
(88%) while red bars depict positive samples (12%).
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Interestingly, 7 of the discrepancies observed in the 1-3 days
interval were explainable by nosocomial (n=6) or community
(n=1) acquired infections based on health records, which
explained the quick negative to positive transition. These 7
discrepancies were thus classified in the clinical evolution
context. As for the 4 remaining discrepancies, clinical records
were not available for 3 and the last one remained unexplained.
Investigation of discrepancies between samples received 4-10
days apart again incriminated mainly the preanalytical phase
(41.6%, n=55/132), followed by stochasticity (30.3%, n=40/132).
As expected, the discrepancies imputable to the clinical evolution
of the disease based on clinical records (new infection or
infection resolution) was greater in the 4-10 days interval since
it represented 22.7% of the discrepancies (n=30/132). The 7
remaining discrepancies in this time interval could not be
explained, either in absence (n=5) or in presence (n=2) of
clinical information. Over 10 day, the clinical evolution of the
disease was the main explanation (72.1%, n=220/305) for
discrepancies, as it was the default explanation retained by our
automatic pipeline for discrepant results from samples collected
more than 10 days apart in absence of any other explanation.

In the overall assessment of the 573 discrepancies from
samples taken up to 90 days apart, 44.9% (n=257) of
discrepancies could be explained by the clinical evolution of
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the disease (e.g. indications in clinical records for new contagion,
time delay making new infection or infection resolution likely)
(Figure 3D). 27.2% (n=160) of cases had arguments for factors
incriminating the preanalytical phase (discrepant results among
samples collected by different health centers, inclusion of
samples rarely positive as blood); and 25.3% (n=145) of the
discrepant comparisons could be explained by analytical
stochasticity in presence of low RNA loads (Ct value > 35 for
the positive sample followed or preceded by a negative sample).
No clear explanation could be identified for 1.9% (n=11) of the
discrepancies (classified as “Unsolved”). Among the unsolved
situations, 8 samples were submitted to our laboratory by
external care centers or private laboratories and clinical records
were thus not accessible. No explanation for discrepancies could
be found for 3 cases, despite the availability of full clinical
documentation. Moreover, short-term negative to positive
transitions were compatible with 21 nosocomial and 8
community-acquired infections based on clinical records
(Supplementary Table S4).

Evolution of Discrepancy Patterns Across
the Epidemic Period
The pattern in transitions (negative result followed by a positive
result or the reverse) among discrepancies evolved over the
FIGURE 2 | SARS-CoV-2 analytical flowchart. An R-based script was used to identify 3,214 patients with multiple, potentially discrepant, results (upper part of the
chart) and therefore ensure their surveillance. Among these patients with multiple analyzes, 2,792 exhibited only concordant results, while 422 presented at least one
discrepant pair of results. Of note, 127 patients had concordant as well as discrepant results; these latter were further processed by the algorithm as patients with
discrepant results. When considering 4,939 pairwise comparisons of successive results for patients with multiple tests, 4,366 (88%) were concordant and 573 (12%)
were discrepant. The algorithm processed discrepant results further and a potential explanation for the observed discrepancy was attributed either automatically or
manually (lower part of the chart and Supplementary Figure S1).
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studied period of four months that correspond to the four first
months of epidemic in our region. In the first two months
(12.02-12.04.2020), 71.3% of observed transitions were negative
to positive (n=154/216). Conversely, in the last two months
(13.04-12.06.2020), 81.2% of the transitions went from a positive
to a negative result (n=290/357), which contributed to an overall
trend of 61.4% of positive to negative discrepancies (n = 352/573)
(Figures 3A, C). Such observation was expected and imputable
to follow-up of patients with resolving infections.

Sustained RT-PCR Positive Results
in Patients
Besides discrepancies, we also investigated sustained positivity in
patients. In our analysis, the longest time interval between two
positive results from the same patient was of 83 days
(Figures 4A, B and 5). Considering the time interval between
their first and the last positive result, we observed 32, 11, and 3
patients with sustained positivity in samples taken over 30, 50
and 70 days apart, respectively. This observation questions the
presence of active viral replication or only of viral traces
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5104
remaining from the resolving infection. In line, the last sample
of these long-time carriers displayed a low viral load with Ct
values around 35 (corresponding to 3,800 copies/ml) in all but
one notable exception (Figure 5).
Pairwise Analyzes Highlight
The Consistency of SARS-CoV-2
RT-PCR Results
Reports questioned the performance of RT-PCR for SARS-CoV-2
detection, which supported recommendations for repeated testing
(13). In our dataset, only 2.5% of the negative results obtained
from an URT sample (n=733/29,714) were followed by an
additional analysis 1 hour to 3 days after initial testing. In
comparison, 0.6% (n=28/4,451) of positive results from URT
samples were followed by a second analysis over the same time
interval. Thus, if repeated testing remained limited, a negative
result was still significantly more often challenged than a positive
result by clinicians (Pearson’s Chi-squared Test, p < 0.001,
OR = 4.0).
A B

DC

FIGURE 3 | Time interval between discrepant analyzes, putative phase assignment and cumulative curves. Pairwise comparisons (n = 573) are represented
according to the interval between their reception dates and colored depending on the analytical phase which best explained the observed discrepancy. Before
manual curation discrepancies were classified by the algorithm as “Preanalytical”, “Stochastic”, “Clinical evolution” and “To be investigated” (A, B). After manual
curation comparisons previously categorized as “To be investigated” were reassigned to the same categories or as “Unsolved” (C, D). Transitions from a negative to
a positive result are represented in the positive side of x axe, while positive to negative transitions are plotted on the negative side (A, C).
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An evaluation of the performance of the RT-PCR for SARS-
CoV-2 detection based on samples collected over a short time
interval showed a good level of concordance. Indeed, an initial
negative result in an URT sample was confirmed in 99.2% (n=243/
245) of cases for patients tested twice on the same day (Table 1);
both discrepancies could be explained by stochasticity since
associated to high Ct values. Conversely, a first positive result
was confirmed in 88.9% (n=24/27) of cases; two discrepancies
could be explained by stochasticity too, while the third involved a
positive nasopharyngeal swab and a negative throat swab, a sample
site shown to be less sensitive for SARS-CoV-2 detection (14). As
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expected, concordance rates diminished over time: negative result
concordance for URT samples went from 99.2% for samples
collected along the same day to 94.2% for samples collected 1-3
days apart. On the same time intervals, the concordance for
positive results evolved from 88.9% to 70.0%.
DISCUSSION

This work presents the importance of a homemade algorithm
developed in response to the need for quality surveillance of
SARS-CoV-2 RT-PCRs which throughput exceeded the ability to
conduct manual biomedical validation for each sample. Applied
to the 35,137 SARS-CoV-2 RT-PCRs performed in our
diagnostic laboratory from February 12 to June 12, 2020, the
algorithm identified 3,214 patients owing multiple tests. These
patients represented an opportunity for quality assessment of our
analyzes, but also required careful attention to investigate
potential discrepancies. Among the 3,124 patients tested
multiple times, we observed a majority (86.8%) of concordant
results, mostly negative (96.8%). Of these patients, 422 exhibited
at least one pair of discrepant results. Together, the clinical
evolution of the disease (44.9%), preanalytical factors (27.9%)
and stochasticity around the limit of detection (25.3%) were the
most likely explanations retained for the 573 observed
discrepancies. Only 1.4% of the cases remained unexplained
because clinical records were not available. Despite availability
of all records, 0.5% of the results remained unexplained.

Expectedly, the natural evolution of the disease explained
most of the observed discrepancies. The preanalytical factors
were the second most frequent source of discrepancies. This
observation is in line with previous reports that described this
testing phase as an important source of errors in general in
clinical laboratories (Plebani, 2006; West et al., 2017).
Stochasticity was the only identified source of discrepancy
directly related to the analytical phase. However, the clinical
impact of these discrepancies could be limited since low viral
loads are expected in the late course of the disease, at time when
the infectivity might be diminished (Jacot et al., 2020; Moraz
et al., 2020; Yu et al., 2020). Of note, samples were analyzed
according to the laboratory workflow. Indeed, samples belonging
to the same patient were not systematically analyzed with the
same method. Thus, the difference in LOD proper to each assay
FIGURE 5 | Distribution of Ct values for patients with sustained RT-PCR
positive results. This histogram represents the Ct value (maximal if more than 1)
for SARS-CoV-2 detection by RT-PCR in the last positive sample of patients
with sustained positivity in samples taken 30 days apart or more.
A

B

FIGURE 4 | Time interval between successive concordant analyzes from the
same patient. Distribution of 4,366 pairwise concordant comparisons
according to time interval between their reception dates. Negative concordant
comparisons for SARS-CoV-2 detection (n = 4,116) (A). Positive concordant
comparisons for SARS-CoV-2 detection (n = 250) (B).
TABLE 1 | Agreement between URT samples collected in a repeatedly in
patients over a short time-interval.

Same
day

(n = 272)

1-3 day
(n = 826)

4-6
days

(n = 489)

7-10
days

(n = 585)

Concordant Negative results 243 750 430 516
Concordant Positive results 24 21 7 20
Negative to Positive transition 2 46 38 28
Positive to Negative transition 3 9 14 21
Concordant negative
agreement

99.2% 94.2% 91.9% 94.9%

Concordant positive
agreement

88.9% 70% 33.3% 48.8%
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might also be a source of the discrepancies classified as stochastic
(Opota et al., 2020).

Sustained positivity with high Ct values was observed in 45
patients (Fig. 5). According to studies focusing on prolonged
presence of viral nucleid acid, viral traces might not be associated
with effective infectiousness and mostly correspond to
nonculturable samples (Hong et al., 2020; Huang et al., 2020;
Wolfel et al., 2020). Nevertheless, many factors can impact the
viral load in a clinical specimen (i.e. quality of the sampling);
therefore, several co-variables have to be taken into consideration
to address the contagiousness (Jacot et al., 2020; Moraz et al., 2020).

Our results support the good performance of RT-PCR in URT
samples for SARS-CoV-2 detection. Nevertheless, these
agreement rates should be considered with caution, particularly
due to the small number of positive samples for which additional
testing was requested. Another limitation of our work is that
while we intended to use an unbiased algorithm stable over time
to investigate discrepancies in results, some of the applied criteria
were partly arbitrary (e.g. the 10 days limit to consider
discrepancies as due to the clinical evolution of the disease).
Furthermore, our process retained a single explanation for each
observed discrepancy, while more could be applicable. While
arguable, these choices were made to fit a strategy of quality
monitoring. Indeed, the primary aim of the present methodology
was to attribute the observed discrepancies to the most likely
explanation to focus on truly unexplainable and clinically
problematic cases. Clinical laboratory vulnerabilities during the
COVID-19 pandemic were the subject of a recent publication by
Lippi et al. (Lippi and Plebani, 2020). Our assessment overlaps
with some of the preanalytical culprits identified by the authors
such as specimen collection (see “detailed explanations”
Supplementary Tables S3 and S4). However, some other
potential vulnerabilities were not considered as probable causes
for discrepancies in our assessment, since they are covered by
other pre-existing quality management procedures in our
laboratory. For instance, samples missing patient identification
were systematically rejected. Moreover, internal extraction
controls and amplification controls were systematically
included to detect samples that might contain interfering
substances compromising the amplification (Poljak et al., 2020).

This is the first implementation in the clinical microbiology
facility of the Lausanne University Hospital of a quality
monitoring tool resembling a “Delta check” applied in clinical
chemistry laboratories (Schifman et al., 2017). “Delta checks” are
usually restricted to analytes exhibiting limited short-term
variations and is as such unsuitable to microbiology results.
Yet, helped by an algorithm capable of considering expected
variations in results, we could adapt the concept of “Delta check”
to SARS-CoV-2 RT-PCR. Similar longitudinal observation of
results and algorithm-based selection of “cases to investigate”
could also be applied to other high-throughput microbiology
laboratory assays, either by the implementation of an ad-hoc
software as presented here or by rules embedded in the LIS.

The strategy applied for the management of large amount of
SARS-CoV-2 samples in our center, comprising the extension of
our analysis platform set and the introduction of an automatic
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7106
validation, allowed to reduce the median TAT from 6.9h to 4.8h
between February 24th and June 9th, 2020 (Marquis et al., 2021).

However, the duration of the biomedical validation step,
depending on the pathogen and the epidemiological situation,
remains to be assessed.

This work emphasized the benefit of an automated algorithm
capable of finding discrepant results and attributing them to
corresponding testing phases. This computer-aided methodology
outlines that besides the expected evolution of the disease, most
of discrepant results are compatible with preanalytical factors.
Moreover, most of URT samples collected repeatedly in a short
timeframe showed consistent results, displaying the good
reproducibility of the RT-PCR for SARS-CoV-2 detection.
Application of this method for quality monitoring enabled to
focus on problematic cases requiring biomedical expertise while
maintaining an acceptable TAT.
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