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Digital image processing is commonly used in plant health and growth analysis, aiming to
improve research efficiency and repeatability. One focus is analysing the morphology of
stomata, with the aim to better understand the regulation of gas exchange, its link to
photosynthesis and water use and how they are influenced by climatic conditions. Despite
the key role played by these cells, their microscopic analysis is largely manual, requiring
intricate sample collection, laborious microscope application and the manual operation of
a graphical user interface to identify and measure stomata. This research proposes a
simple, end-to-end solution which enables automatic analysis of stomata by introducing
key changes to imaging techniques, stomata detection as well as stomatal pore area
calculation. An optimal procedure was developed for sample collection and imaging by
investigating the suitability of using an automatic microscope slide scanner to image nail
polish imprints. The use of the slide scanner allows the rapid collection of high-quality
images from entire samples with minimal manual effort. A convolutional neural network
was used to automatically detect stomata in the input image, achieving average precision,
recall and F-score values of 0.79, 0.85, and 0.82 across four plant species. A novel binary
segmentation and stomatal cross section analysis method is developed to estimate the
pore boundary and calculate the associated area. The pore estimation algorithm correctly
identifies stomata pores 73.72% of the time. Ultimately, this research presents a fast and
simplified method of stomatal assay generation requiring minimal human intervention,
enhancing the speed of acquiring plant health information.

Keywords: stomata analysis pipeline, stomata sample collection, stomata pore measurement, high-throughput
analysis, microscope imagery
INTRODUCTION

The size and density of stomata have been studied as important plants traits since the early 19th

century (Banks, 1805). Stomata pores, located on the plant leaf epidermis, play a major role in
regulating the diffusion for both carbon dioxide and water (Dow et al., 2014) and their distribution
provides important information about plant developmental biology (Lau and Bergmann, 2012).
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Recent works suggest that stomatal closure under water stress
could result in vein embolism, which can cause the plant water
transport system to collapse (Brodribb et al., 2016). Hence,
stomata shape and behaviour are identified as direct indicators
of plant health and the surrounding environmental conditions
(Beerling and Chaloner 1993a; Beerling and Chaloner 1993b;
Sadras et al., 2012).

Analysis of stomata is also an important aspect of paleoecology;
for example, stomatal index (i.e. the ratio between the number of
stomata and epidermal cells) of fossil plant cuticles can provide
valuable insights into the atmospheric carbon dioxide levels in a
given era (Beerling and Chaloner 1993b; Beerling and Royer,
2002). In addition, the undulation index (waviness of stomata
cell wall), which is physiologically affected by light, correlates well
with growing degree-days (GDD), which provides information on
seasonal change (Smith et al., 2010; Wagner-Cremer et al., 2010;
Wagner-Cremer and Lotter, 2011) in a given period of time. Thus,
microscope analysis of stomata plays a major role in present day
agriculture as well as modelling climate change over long periods
of time.

Stomatal aperture is often measured using the microscope
imaging of leaf samples, epidermal peels, or imprints (Dow et al.,
2014; Eisele et al., 2016; Jayakody et al., 2017). These images are
analyzed using image processing software such as ImageJ
(Rasband, 1997), which enables manual measurements to be
made on a computer interface. The manual measurement of
stomata is sufficient when it is only necessary to measure a small
number; however, this would prove unsuitable when processing
an entire leaf surface. For the analysis of larger leaf areas,
automated image processing techniques are required.

One of the first papers to implement digital image
processing for automating stomatal measurements was
Omasa and Onoe’s (Omasa and Onoe, 1984) work with
stomatal aperture. Here, the authors applied a Hanning Filter,
discrete inverse Fourier transform and thresholding to measure
individual stomata. In the decades following this paper,
numerous advancements have been made in computer vision
and microscopy. These advancements have supported
improvements in the automation of stomatal analysis.
Whether it be through detecting the unique fluorescence
emission of stomatal guard cells under UV excitation
(Karabourniotis et al., 2001), through rhodamine 6G staining
(Eisele et al., 2016), or through template matching (Laga et al.,
2014), it has ultimately been the automatic measurement, not
detection, of stomatal pores in large samples that has proven
most difficult. More recent research (Jayakody et al., 2017; Toda
et al., 2018; Fetter et al., 2019; Sakoda et al., 2019) utilizes
machine learning and image processing to detect stomata (and
sometimes classify the state of the stomata) in microscope
images. The accuracy levels achieved in these studies shows
promise and enables plant scientists to conduct high-
throughput analysis for stomata detection. However, once
stomata are detected, correctly measuring the stomatal pores
requires additional image processing steps (and sometimes
human intervention), which can increase the overall
processing time. Thus, it is important to build algorithms
Frontiers in Plant Science | www.frontiersin.org 26
which go beyond stomata detection, and reliably measure
pore opening under varying image quality.

Although machine learning can enable high-throughput
microscope image analysis, the efficiency of the overall
pipeline still depends on sample collection and imaging
techniques. Hence, for current image processing techniques to
have any practical value in the field, microscope samples must
be collected and imaged quickly, accurately and in sufficient
detail to measure stomatal pore areas. Most current sample
collection processes produce images with suitable quality for
digital image processing. However, many of these techniques
require complex chemicals or intricate leaf manipulations,
which are often time consuming and impractical for use in
the field by untrained operators (Weyers and Travis, 1981;
Celine et al., 2012; Eisele et al., 2016; Monda et al., 2016; Yuan
et al., 2020).

There are two common methods that are used to collect
samples quickly and simply. The first is the silicon impression
method, described by Weyers and Johansen (1985), which uses
dental resin to create a negative impression of the leaf surface,
and nail varnish to transfer this imprint onto a microscope slide.
The second method replaces the dental resin with nail polish, so
that a direct impression is made. Upon drying, adhesive tape is
used to transfer the imprint to a microscope slide (Rogiers et al.,
2011). These methods result in samples of reasonable quality
which are suitable for automated stomata detection.

One of the major bottlenecks in this process is the time taken
to image the collected samples. As such, techniques used to
obtain microscope images from samples must be re-examined to
develop a streamlined yet accurate process. Currently, many
researchers use simple light-field or other manual stage
microscopes to obtain their results (Jayakody et al., 2017;
Fetter et al., 2019), which is sufficient to examine small
numbers of stomata. However, if a larger portion of the leaf is
to be covered, the manual stage movements can take several
hours, even with a motorized stage. Additionally, the large
proportion of veins create protrusions in the epidermal surface,
which requires refocusing the microscope upon every movement
of the stage. Consequently, most current research on stomate
detection and analysis relies on input images containing up to 40
stomata at most (Li et al., 2019), making it difficult to measure
density or observe patterns across a leaf. With these limitations
apparent, it is important to investigate fast imaging methods
which require minimal manual effort.

We present an accelerated end-to-end process to identify and
measure stomata, whilst significantly reducing the manual labour
requirements. Two simple approaches for sample collection were
assessed, with the aim of producing high quality samples for
imaging. Then a microscope slide scanner was utilized to rapidly
image the samples, eliminating the need for manual staging and
focusing of the sample. A Convolutional Neural Network was
implemented to detect stomata from the feature rich images
generated by the slide scanner and a novel stomatal pore
measurement algorithm is proposed to identify the pore
area regardless of the colour intensity of the pore. This is a
streamlined solution for efficiently analysing stomatal
September 2020 | Volume 11 | Article 580389
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morphology, distribution, and patterning across large
leaf surfaces.
MATERIALS AND METHODS

Simplified Sample Collection
One of the primary aims of this paper is to determine the most
effective sampling technique which is both simple and reliable.
The common nail polish imprint method (Miller and Ashby,
1968) meets both these requirements due to its simplicity. The
steps involved in the common nail polish imprint method are
as follows:

1. A thin layer of nail polish (Revlon Ultra, Revlon Consumer
Products Corporation, New York, NY, USA was used in this
research) is applied to the abaxial surface of the leaf. The
surface covered by the nail polish is set to approximately 30
mm in length and 9 mm in width and is selected such that
major veins are avoided.

2. The nail polish is then left to dry for approximately fiveminutes.
3. One piece of clear adhesive tape is pressed onto the dry nail

polish.
4. The tape is removed from the leaf surface and the adhesive

side secured to a plastic sleeve for transport to a laboratory
environment.

A common issue with the traditional leaf imprint method is
the introduction of air bubbles when securing the imprint to the
microscope slide using tape. The tape also tends to deform to the
shape of the uneven leaf surface, which may create focusing
issues during the imaging process. A modified approach is
proposed for mounting the imprint on the microscope slide to
combat this as follows:
Frontiers in Plant Science | www.frontiersin.org 37
1. In the laboratory, the tape is removed from the plastic sleeve,
transferred to a thin glass coverslip and the adhesive side is
pressed down to ensure a flat surface.

2. The top (non-adhesive) surface of the tape, including the
attached coverslip, is mounted on a microscope slide using
transparent sticky tape on the corners of the coverslip as
shown in Figure 1B. Optionally, a product similar to
Vectashield mounting medium (Vector Laboratories, Inc.
Burlingame, CA, USA) can be used to mount the coverslip
onto the microscope slide. If a mounting medium is used,
several glass weights should be placed on the coverslip to
distribute the mounting medium evenly.

A diagram of the modified method in comparison to the
original technique is shown in Figure 1. The coverslip aims to
reduce any unevenness of the leaf imprint, allowing shallow
depth-of-field sensors to keep larger areas of the sample in focus.
With this approach, any artefacts generated on the adhesive side
of the tape are no longer obstructing the view of the microscope.

Samples from four plant species, Vitis vinifera L. x V. rupestris
Scheele ‘Ganzin Glory’, Prunus armeniaca ‘Moorpark’, Citrus
sinensis L. Osbeck ‘Valencia’, and Vinca major L. ‘Periwinkle’,
were collected from Belair, Adelaide. The samples were prepared
using both traditional and modified mounting approaches for
comparison purposes. A detailed comparison between the
proposed sampling method and the common nail polish imprint
method is presented in Simplified Sample Collection.

Microscope Slide Scanner for Imaging
Samples
A manual-stage optical microscope is not capable of capturing a
complete 30 mm × 9 mm leaf sample with a single image.
Instead, the sample must be moved, and the microscope
refocused prior to capturing each image. Once multiple images
A

B

FIGURE 1 | (A) The original imprint method. The sticky tape is between the camera and the sample. (B) The modified imprint method. The sticky tape and bubbles
are no longer between the microscope and the sample. Instead, an appropriate coverslip is covering the sample.
September 2020 | Volume 11 | Article 580389
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are captured covering the sample, they need to be stitched
together to create a single image of the leaf.

These issues are solved by using a microscope slide scanner.
Used in the field of cell pathology, slide scanners can rapidly
produce high-quality images of the complete sample slide at once.
This is achieved by an automated process where the slide is
carefully moved under a line-scan camera. The lines are then
automatically stitched together to produce a single high-resolution
image of the complete sample. Imaging the complete slide at once
allows researchers to gain a better understanding on macro level
characteristics such as stomata patchiness. In addition to speeding
up the image capture process, another major advantage of the slide
scanner is its ability to store multiple microscope slides in the
device. This feature allows users to load many samples and image
them in a single run without adjusting settings for each new
sample. In this work, an Aperio® XT (40x) brightfield slide
scanner (Wetzlar, Germany) is used. The device uses linescan
technology to generate images at a resolution of 0.25 um/pixel and
holds up to 120 slides at one time. The performance of the slide
scanner is compared with a manual stage optical microscope in
Imaging With Microscope Slide Scanner.

Stomata Detection With a Convolutional
Neural Network
Stomatal pore area measurements require the identification of
stomata in a microscope image (Dow et al., 2014); with a small
number of stomata, this can be achieved using manual image
analysis tools. More recently, higher order image processing and
machine learning has been used to automate this process (Laga
et al., 2014; Liu et al., 2016; Jayakody et al., 2017; Toda et al.,
2018; Fetter et al., 2019; Sakoda et al., 2019). In this work, a CNN
(Lecun et al., 1998) based on the MATLAB® implementation of
the AlexNet (Krizhevsky et al., 2012) network was used to
identify stomata (MathWorks, 2018). AlexNet is pre-trained on
more than one million images and can facilitate transfer learning,
which takes the pretrained network and utilizes its feature
extraction capabilities as a starting point to learn new detection
tasks. This requires fewer training images, which reduces the
time required to automate the overall process for a new image
target. The process of stomate detection using AlexNet is
described below. The training data for transfer learning
comprised of images collected through both traditional and
modified sample collection methods.

1. Using the images extracted for training, a training set was
prepared with images assigned to three categories: stomata,
vein, and background (as shown in Figure 2).

2. Feature vectors are extracted from the training data to train a
classifier using AlexNet. Particularly, AlexNet is eight layers
deep (MathWorks, 2018) and, when used for feature
extraction, the neural network is terminated at one of the
fully connected middle layers. This layer outputs the feature
vector representing the activations for the input images.

3. Using MATLAB’s Classification Learner application
(Machine Learning toolbox), a quadratic Support Vector
Machine classifier is trained with the feature vector.
Frontiers in Plant Science | www.frontiersin.org 48
4. The classifier is then applied to the image through a
classification window of predefined size, translated across
the image by sliding the window. This produces a mask of the
image indicating the location of each stomate.

5. To calculate precision, recall, and accuracy, the stomata are
manually labelled using a custom GUI. By discretising the
manually and automatically labelled images and comparing
each grid value (1 if stomate, 0 if background), the number of
false positives (FP), true positives (TP), false negatives (FN)
and true negatives (TN) were determined.

In order to reduce the processing time involved with applying a
sliding window across the entire image, the program first splits the
slide scanner image into smaller tiles which are processed
individually, and then reassembles the labelled results into a
complete image.
A

B

C

FIGURE 2 | Example (A) stomata (positive), and (B) veins and (C)
background (negative) used to train the AlexNet neural network. These were
extracted from images (in regions separate to that being classified) collected
using the modified imprint method and imaged with the slide slidescanner.
September 2020 | Volume 11 | Article 580389
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Stomata Pore Area Calculation
With the methods proposed in Microscope Slide Scanner for
Imaging Samples, the slide scanner is able to produce feature-
rich images where stomata can be clearly identified. However,
the sharpness of the image can slightly vary along the image
due to the uneven nature of the leaf surface, causing variation
in focus. This variation directly affects the quality of each
individual stomate image based on their location on the leaf.
This results in stomata images with different image qualities
(Figure 3).

In some of the stomata images captured by the slide scanner,
the pore area appears darker than the surrounding guard cells
whereas in other stomata images the pore area appears lighter
than the guard cells (Figure 4). These variations depend largely
on focus; due to significant variation in height across the sample,
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and the lens’ single plane of focus, regions can appear either in or
out of focus. The lighter stomata, for example, are in focus, with
the focal plane located in the middle of the pore. When the focal
plane is situated slightly above the middle, the reflection of light
bouncing off the guard cells results in darker stomata pores. This
requires the pore estimation algorithm to be robust against
variations in colour space. Existing algorithms require stomata
colour space to be consistent and are often tuned to a specific
plant species (Karabourniotis et al., 2001; Laga et al., 2014;
Jayakody et al., 2017), thus making them unsuitable to analyze
images from the slide scanner.

To achieve this goal, a novel approach based on stomata cross
section analysis and binary segmentation is proposed. Prior to
developing the pore estimation algorithm, the following
assumptions were made regarding the stomatal pores.
A B C

FIGURE 3 | Quality variation of the stomata captured at different parts of the microscope image. (A) sharp image. (B) blurry image (C) partially captured image.
A

B

FIGURE 4 | Pore area captured under different lighting conditions. (A) Pore area is dark compared to the surroundings. (B) Pore area has a lighter colour compared
to the surroundings.
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1. The centre of the stomatal pore is located reasonably close to
the centre of the bounding box containing the stomate. This
bounding box is generated by the CNN proposed in Stomata
Detection With a Convolutional Neural Network. This
assumption allows the algorithm to reject stomata-like
shapes located at the edges of a bounding box.

2. A stomata area is always larger than a predefined value. In
this case, a stomate is assumed to be larger than 50 pixels2 in
area. This allows the algorithm to reject detections resulting
from dust particles and air-bubbles.

The pore estimation algorithm consists of the following steps.

1. Contrast Limited Adaptive Histogram Equalisation
(CLAHE) is applied to the original input image.

2. The contrast and sharpness of the CLAHE image is
improved.

3. The CLAHE image is converted to a grayscale image.
4. The Grayscale image is converted to a binary image via Otsu’s

thresholding.
5. The binary image contains multiple regions. Regions with areas

no larger than a predefined size are removed from the image.
6. The largest region closest to the centre of the image is

selected, and all other regions are removed from the image.
This region is selected as the mask which represents the
stomate.

7. The mask is then applied to the grayscale image in Step 3.
Rotate the image using the major axis orientation of the
Frontiers in Plant Science | www.frontiersin.org 610
mask. Now the area containing the stomata is aligned
horizontally in the image.

8. Now consider the vertical cross-section which goes through the
centroid coordinate of the mask as shown in Figure 5A. The
intensity values of the pixels which lie along this cross-section
line can be plotted as shown in Figure 5B. The following steps
are adopted to find the pore area of the stomate.
a. Identify all the valleys and peaks on the cross-section
plot.

b. Identify the valley or peak closest to the centroid pixel.
This valley or peak is the centre of the stomatal pore
(See Figure 5B).

c. If the coordinate corresponding to the stomatal pore
centre is a peak, the pore area is lighter than the
surrounding region, and if the index corresponding
to the stomatal pore centre is a valley, the pore area is
darker than the surrounding region.

d. Once this pore centre is identified, select all pixels of
which the intensity values are similar to that of the pore
centre, and also connected to the pore centre pixel
(dotted box on Figure 5B).

e. This connected set of pixels represent the pore region
of the stomate (See Figure 5C).
The step-by-step approach of the algorithm is shown in
Figure 6. The performance of the proposed pore estimation
algorithm is discussed in detail in Pore Area Estimation.
A B

C

FIGURE 5 | Stomate cross section analysis. (A) Horizontal alignment of the stomate. (B) Identification of true center of the pore using peak/valley detection. (C) Final
result.
September 2020 | Volume 11 | Article 580389

https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Millstead et al. Simplified Automated Stomata Analysis
RESULTS

Simplified Sample Collection
This section focuses on evaluating the performance of
the modified nail polish imprint method compared to the
traditional method, including their suitability for use with the
proposed slide scanner technique. In these comparisons, special
attention is given to the time taken in preparing the samples as
well as the quality of the resulting images.

Securing the imprint on a plastic sleeve and transporting it to
a laboratory environment before mounting onto a slide did not
have any discernible negative impact on the sample quality. This
approach also reduced contamination and the sample collection
time in the field. Additionally, when waiting for the nail polish on
one sample to dry, it was efficient to apply the polish to
additional leaves in a parallel fashion. Using these methods, it
was possible to collect a sample every 2 min.

In the laboratory, the traditional approach of securing the
sample directly to a microscope slide took 2.5 min on average.
Using the modified nail polish imprint method, the average slide
preparation time was measured at 3.5 min. Figures 7 and 8
indicate that both the traditional and modified sample collection
methods produce high quality samples when imaged using the
Frontiers in Plant Science | www.frontiersin.org 711
slide scanner technique. For each of the four species, stomatal
pores are clearly discernible from background epidermal cells.

Interestingly, no significant difference in quality between the
modified and traditional techniques could be observed from our
results. This suggests that the quality of the result is dominatedmore
by the sample collection process on-site rather than the mounting
technique in the laboratory. Based on the initial assumptions behind
the modified mounting method the effect of the modified approach
may only become significant if the samples are collected under
difficult conditions and contain bubbles or other debris.

Imaging With Microscope Slide Scanner
To measure the performance improvement introduced through the
proposed imaging technique, 40 samples were imaged using the
Aperio® XT (40×) brightfield slide scanner (Wetzlar, Germany).
The imaging time and quality was then compared with the
Olympus Olympus® BX53 manual stage microscope. A summary
of the processing times of the slide scanner in comparison to the
manual stage microscope is presented in Table 1.

The slide scanner required 15 min of set-up and 10 min to
capture a selected region of the sample. The setup process
consists of loading the slides in the device and selecting the
focus points. Multiple focus points were selected to ensure the
FIGURE 6 | Flowchart describing the step-by-step approach of the pore area calculation algorithm.
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stomata remained in focus despite the variation in sample height.
The slide scanner allows the coverage of the sample to be scaled
up with a minimal increase in processing time. An entire sample
of size 30 mm × 9 mm, for example, can be imaged in 30–40 min.
Since multiple slides can be loaded on the device (120 glass slides
for this model), the device was able to image all 40 samples with a
single set-up.

Comparatively, it took two hours to image a 4 mm × 1 mm
leaf imprint image using the Olympus® BX53 manual optical
microscope. To cover an area the size of 30mm × 9mm, over 70
images are required. If the images need to be stitched together to
analyze macro level patterns, images should be captured with
some overlap, driving up the number of total images required as
a result. Due to the uneven surface of the imprint, each image
needed to be focused separately. As the manual-stage microscope
is only able to capture a small portion of the leaf surface at a time,
special attention was given to ensure overlapping between
adjacent images so that the images can be stitched together to
form the final leaf surface. The slide scanner approach is clearly
Frontiers in Plant Science | www.frontiersin.org 812
the faster approach, with over 100× time improvement over
manual processes.

The slide scanner produced feature rich images, suitable for
stomata detection and pore measurement. The edges of stomatal
guard cells and the presence of background epidermal cells are well
defined in the slide scanner images (Figures 9, 10). Whilst blurred
sections at various locations across the sample were observed due to
the varying distance to the lens from the sample, the image
contained plenty of regions with little to no blur containing more
than 1,000 stomata, allowing users to observe patterns spanning
across large areas of the sample. The optical microscope and the
slide scanner produce images of similar quality; but the slide scanner
dramatically improves the speed and area that can be imaged.

Stomata Detection Using Convolutional
Neural Networks
The neural network created using AlexNet transfer learning was run
on slide scanner images of samples collected using the traditional
and modified method, for each of the four species; this amounted to
A B

DC

FIGURE 7 | Slide scanner images generated by capturing a section of the samples collected using the modified nail polish imprint method. (A) Vitis vinifera L. x V.
rupestris Scheele ‘Ganzin Glory’. (B) Prunus armeniaca ‘Moorpark’. (C) Citrus sinensis L. Osbeck ‘Valencia’. (D) Vinca major L. ‘Periwinkle’.
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eight separate images, including 4,986 stomata in total. Each image
included stomata that were both in and out of focus.

The results of running the classifier on each image can be seen
in Table 2. The overall F-score was 0.817, with the highest of
Frontiers in Plant Science | www.frontiersin.org 913
0.897 recorded for the Citrus sinensis L. Osbeck sample collected
using the modified technique; this maximum value was achieved
for an image containing 1,168 stomata. The average precision
and recall were 0.778 and 0.865, respectively. These results look
promising, and provide evidence of the classifier’s ability to
adequately identify stomata in a background dense with similar
features (Table 2).

A number of false positives were incorrectly identified as
stomata in the images. Some of these features appeared similar to
a stomatal pore that is lighter than its surroundings. These may
indicate a stomate that has not been reproduced correctly by the
imprint or is completely closed, or possibly an elliptical
epidermal cell. Similarly, some false positives closely resemble
a stomatal pore that is darker than its surroundings. Again, this
appears to be a feature of the background reproduced by the
sampling technique and slide scanner. Finally, random elliptical
features in the background were captured by the high-detail slide
scanner. Such false positives can potentially be eliminated with
further training samples. In general, it is the precision that
constrains the F-score achieved by the classifier, primarily due
to the presence of false positives arising from the high level of
A B

DC

FIGURE 8 | Slide scanner images generated by capturing a section of the samples collected using the traditional nail polish imprint method. (A) Vitis vinifera L. x V.
rupestris Scheele ‘Ganzin Glory’. (B) Prunus armeniaca ‘Moorpark’. (C) Citrus sinensis L. Osbeck ‘Valencia’. (D) Vinca major L. ‘Periwinkle’.
TABLE 1 | Comparison of sample collection, preparation and imaging
techniques trialled.

Original nail
polish imprint
method with
slide scanner

Modified nail
polish imprint
method with
slide scanner

Original nail
polish imprint
method with

manual
microscope

Sample collection time 2 min 2 min 2 min
Sample preparation time 2.5 min 3.5 min 2.5 min
Time taken to image section
of sample

10 min 10 min 120 min

Time taken to image entire
sample

0.5–0.66 h 0.5–0.66 h 120–140 h
(estimate)
For sample collection and preparation, the original and modified nail polish methods
display similar results for sampling effort, time required and resultant image quality. For
imaging, the slide scanner technique offers significant savings in manual effort and imaging
time when compared to traditional manual stage microscopes.
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detail in the slide scanner images. However, these false positives
proved to be generally harmless as they were eliminated in the
pore identification software, as having no discernible pore
to measure.

The false negatives in the results can be attributed to the wide
variety of stomata captured by the high level of detail in the slide
scanner images. False negatives can be reduced, and the recall
can be increased by collecting more training samples and
ensuring a standardized method of sample collection. The
CNN approach to stomate detection is suitable for the slide
scanner images and future investigations are recommended to
further optimize this method.

Pore Area Estimation
The pore estimation algorithm was developed using OpenCV 3.4
in Python 3.6. The algorithm was applied to 1,706 individual
stomata generated by the CNN classifier over the traditional and
modified samples collected from the four plant species. The
results generated were analyzed manually for erroneous pore
estimations (Table 3).

The pore estimation algorithm rejected 182 images where it
was unable to make a confident prediction about the pore area
(examples in Figure 11). The majority of the rejected images
contained either false positives from the classifier or stomata
Frontiers in Plant Science | www.frontiersin.org 1014
where a pore was not visible. Out of the 1,557 images for which
stomata pore areas were present, 409 were found to be estimating
the pore incorrectly. A result is considered incorrect when the
estimation has no overlap with the true pore region, or the pore
boundaries of the estimation and the ground truth has a
considerable mismatch. This results in an average pore
estimation accuracy of 73.72% with a maximum pore
estimation accuracy of 90.1%, achieved for Prunus armeniaca
samples collected using the modified imprint method. The
algorithm works well against stomata from different species,
collected using both traditional and modified nail polish
methods (Figure 12). In a research scenario, the erroneous
results generated by the pore estimation algorithm can be
easily identified and discarded via manual observation.
DISCUSSION

This research presents a practical pipeline to automatically assess
stomatal number and aperture sizewithminimal human intervention.
Key contributions were made in sample imaging and stomatal pore
area calculation techniques, whilst existing sample collection and
stomata detection methods were adopted and modified to optimize
A

B

D

C

FIGURE 9 | Individual stomata captured from modified samples using the slide scanner. Guard cell boundaries and background epidermal cells are clearly visible.
(A) Vitis vinifera L. x V. rupestris Scheele ‘Ganzin Glory’. (B) Prunus armeniaca ‘Moorpark’. (C) Citrus sinensis L. Osbeck ‘Valencia’. (D) Vinca major L. ‘Periwinkle’.
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A

B

D

C

FIGURE 10 | Individual stomata captured from traditional samples using the slide scanner. Guard cell boundaries and background epidermal cells are clearly visible.
(A) Vitis vinifera L. x V. rupestris Scheele ‘Ganzin Glory’. (B) Prunus armeniaca ‘Moorpark’. (C) Citrus sinensis L. Osbeck ‘Valencia’. (D) Vinca major L. ‘Periwinkle’.
TABLE 2 | Results of AlexNet Neural Network classifier applied to 6 images.

Species Collection technique Number of stomata Precision Recall F-score

Vitis vinifera L. x V. rupestris Scheele Traditional 248 0.6692 0.9254 0.77672
Modified 207 0.7825 0.9055 0.83952

Prunus armeniaca Traditional 791 0.7291 0.7388 0.73392
Modified 917 0.7265 0.7517 0.73889

Citrus sinensis L. Osbeck Traditional 932 0.7290 0.9076 0.80855
Modified 1168 0.9089 0.8850 0.89679

Vinca major L. Traditional 406 0.8673 0.9095 0.88790
Modified 317 0.8138 0.8943 0.85215
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TABLE 3 | Results of pore area estimation.

Species Collection technique Total Images No detections Available Incorrect Correct Percentage correct

Vitis vinifera L. x V. rupestris Scheele Traditional 200 21 179 66 113 63.13%
Modified 200 4 196 43 153 78.06%

Prunus armeniaca Traditional 177 28 149 32 117 78.52%
Modified 200 29 171 17 154 90.06%

Citrus sinensis L. Osbeck Traditional 200 20 180 40 140 77.77%
Modified 200 38 162 62 100 61.72%

Vinca major L. Traditional 200 4 196 52 144 73.47%
Modified 329 5 324 97 227 70.06%
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results. The final, end-to-end solution that begins with a plant leaf
input, creates a high-quality digital representation, and automatically
detects and measures stomata pores.

Currently, with traditional manual stage microscopes,
imaging an average sized leaf sample (30 mm by 9 mm) would
take multiple days. To alleviate this problem, we took inspiration
from the field of cell pathology, where slide scanners are used to
produce high-quality images of cell samples rapidly and
Frontiers in Plant Science | www.frontiersin.org 1216
automatically. This method dramatically reduced the imaging
time, covering an entire 30 mm × 9 mm sample in 30–40 min. In
addition, using the slide scanner offers great potential to image a
large portion of a leaf with minimal human interaction. Unlike
most current research, which analyses input images containing
up to 40 stomata sampled at random locations on a leaf sample,
this technique has shown accuracy on large, continuous sections
of a leaf containing over 1,000 stomata. This can offer insights
A

B

FIGURE 12 | Examples of pores estimated by the algorithm (A) Correct estimations. (B) Incorrect estimations.
FIGURE 11 | Examples of pores rejected by the pore estimation algorithm.
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into the structure of leaves and the morphological properties
they entail.

Upon digitization of the leaf samples, a CNN was used to
detect stomata in the image, which effectively distinguished
stomata from a highly detailed background containing visually
similar guard cells. The average precision, recall, and F-score of
0.79, 0.85, and 0.82, respectively, indicate an approach that can
be relied upon to accurately assess stomata.

Upon stomata detection, an approach which uses binary image
segmentation and stomata cross section analysis was developed to
accurately measure stomata pore areas. For the first time, an
algorithm is developed, where the pore area can be detected
despite the colour of the pore with respect to the surrounding
guard cells. The proposed algorithm performed well, with an
average pore estimation accuracy of 73.72% across 8 different
collections. Althoughmachine learning techniques are widely used
for stomata detection, not many research projects tackle the
problem of automatic pore measurement. In that context, the
pore measurement methodology adds value to the process of fully
automating stomata analysis.

The ability to rapidly and consistently assess the number and
aperture of stomata over a relatively large portion of a leaf has a
number of potential applications in plant science. Plants
respond to the changing atmospheric carbon dioxide
concentration by altering the ratio between the number of
epidermal and stomatal cells (Beerling and Royer, 2002) and
can offer a range of responses to increasing temperature; either
increasing or decreasing stomatal size and density depending
on conditions and species (Wu et al., 2018). Stomatal patchiness
(Beyschlag and Eckstein, 2001), or the irregular distribution of
Frontiers in Plant Science | www.frontiersin.org 1317
stomata across a leaf, has received much attention in recent
decades, but is yet to be completely understood. Once again, the
slide scanner’s ability to rapidly image complete samples offers
a valuable method for investigating this phenomenon on a large
scale and would offer great benefits for investigators in this field.
By investigating the area of open stomata relative to the leaf
area, it may be possible to estimate stomatal conductance
(Lawson et al., 1998). The pipeline is currently optimized to
assess nail polish imprints, but as imaging systems improve; a
system based on a field microscope may be developed to assess
plant water stress and inform irrigation schedules.
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Unmanned aerial vehicle (UAV) technology is an emerging powerful approach for
high-throughput plant phenotyping field-grown crops. Switchgrass (Panicum virgatum
L.) is a lignocellulosic bioenergy crop for which studies on yield, sustainability, and
biofuel traits are performed. In this study, we exploited UAV-based imagery (LiDAR
and multispectral approaches) to measure plant height, perimeter, and biomass yield
in field-grown switchgrass in order to make predictions on bioenergy traits. Manual
ground truth measurements validated the automated UAV results. We found UAV-based
plant height and perimeter measurements were highly correlated and consistent with the
manual measurements (r = 0.93, p < 0.001). Furthermore, we found that phenotyping
parameters can significantly improve the natural saturation of the spectral index of the
optical image for detecting high-density plantings. Combining plant canopy height (CH)
and canopy perimeter (CP) parameters with spectral index (SI), we developed a robust
and standardized biomass yield model [biomass = (m × SI) × CP × CH] where the
m is an SI-sensitive coefficient linearly varying with the plant phenological changing
stage. The biomass yield estimates obtained from this model were strongly correlated
with manual measurements (r = 0.90, p < 0.001). Taking together, our results provide
insights into the capacity of UAV-based remote sensing for switchgrass high-throughput
phenotyping in the field, which will be useful for breeding and cultivar development.

Keywords: phenotype, LiDAR, spectral index, biomass, Nitrogen

INTRODUCTION

Switchgrass (Panicum virgatum L.) is a native North America prairie grass that has been studied
as a potential bioenergy crop in the United States and Europe since the mid-1980s (Lewandowski
et al., 2003). It is a perennial grass, with C4 metabolism, which is adapted to cultivation in much of
the eastern United States and similar regions requiring low agronomic inputs (Vogel, 2004; Bouton,
2007; Schmer et al., 2008). It grows as a “clonal modular plant” from tillers (Boe and Casler, 2005).
Each plant produces a population of tillers that can grow up to 4 m tall (Bouton, 2007). Switchgrass
is highly self-incompatible, and its reproductive structures consist of a diffuse panicle arranged at
the end of long branches (Barnes et al., 1995; Vogel, 2004). It produces high aboveground biomass
each growing season as well as high lignin and cellulose content in cell walls (Vogel, 2004). The
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biomass produced by switchgrass serves as a feedstock for
bioenergy production as an effort to create green energy to reduce
the consumption of fossil fuels (McLaren, 2005; Naik et al., 2010).

Since the beginning of switchgrass bioenergy feedstock
development, breeding programs have utilized germplasm with
desirable phenotypes such as high biomass production, nutrient
use efficiency and stress tolerance (Barney et al., 2009; Jakob et al.,
2009). Despite progress-to-date, there is still a significant frontier
to be explored in switchgrass given its high genetic diversity
(Lemus et al., 2008; Casler, 2012). Conventional phenotyping
studies have been implemented to identify, principally, high
biomass phenotypes. However, these trials are performed
manually, which is resource-intensive and requires destructive
harvests. Also, the results obtained from manual evaluations are
prone to assessment errors and are limited in time and space
(Vogel et al., 2011).

Reliable and efficient automated high-throughput
phenotyping of switchgrass, especially to predict end-of-
season biomass, would be a significant advance in the field. Thus,
the overriding goal is to rapidly collect high-quality data from
a standoff for which current methods are not suited (Walter
et al., 2019). One important automated phenotyping tool is
light detection and ranging (LiDAR) technology. LiDAR is a
laser-based sensor that produces high-throughput and high-
density three-dimensional (3D) point clouds by photon-counting
(Lim et al., 2003). Another tool that complements LiDAR is
multispectral imaging, which collects vegetation spectral indices
to be analyzed together with LiDAR data. LiDAR has been widely
used for plant architecture measurements such as plant height
(Bendig et al., 2015; Jimenez-Berni et al., 2018). While optical
imagery models have been made to non-destructively estimate
plant biomass (Hansen and Schjoerring, 2003; Bendig et al.,
2014), these models have been criticized for the low accuracy
and high uncertainties in estimating biomass (Shabanov et al.,
2003; Garrigues et al., 2006). One problem inherent to optical
imagery techniques is the potential for natural light saturation
for detecting the high-density biomass plants (Mutanga and
Skidmore, 2004; Li et al., 2014). Integration of LiDAR and
spectral index technologies have been used to address these
underlying factors determining plant biomass varying with
plant type and phenotyping parameters (e.g., plant height and
fractional canopy cover) (Tucker et al., 1985; Popescu et al., 2003;
Li et al., 2018).

In order to apply current automated phenotyping technologies
to estimate switchgrass biomass, our goal was to incorporate
plant phenotyping parameters into the spectral index-based
biomass models. Our testbed was a common garden in Knoxville,
TN, United States growing a diverse collection of switchgrass
clones (330 genotypes) under low and moderate nitrogen fertility
conditions. The objectives of the present study were to (1)
use standoff automation to measure plant height and perimeter
for each plant from an over-the-field vertical perspective using
unmanned aerial vehicle (UAV)-based LiDAR technology, (2) to
improve the capacity of remote sensing to model plant biomass
by integrating LiDAR and imagery technologies, and (3) to
assess the stability of our biomass model over the growing
season. To our knowledge, this is the first study to fully extend

UAV technologies into the assessments for high-throughput
switchgrass phenotyping and biomass yield estimating under
field conditions.

MATERIALS AND METHODS

Switchgrass Field Site and Experimental
Design
The 75.2 × 122.5 m common garden was located at the
University of Tennessee Plant Sciences Unit of the East Tennessee
Research and Education Center (ETREC). The 330-switchgrass
natural variant accessions were transplanted from a greenhouse
to the field with four tillers per plant on May 28 and 29,
2019 (Figures 1A,B). The switchgrass clones used are mostly
lowland (tetraploid) accessions provided by Dr. Thomas Juenger,
University of Texas – Austin (Lowry et al., 2019). The field
experiment is part of a switchgrass domestication project
consisting of 330 accessions planted under two nitrogen (N)
fertility treatments, one with moderate (135 kg of N ha−1) and
another with low (0 kg of N ha−1) supplementation in July
2019. Each accession has four replicates in the field (2 replicates
per N treatment), totaling 1,320 switchgrass plants, which were
arranged in honeycomb design with ∼2.5 m interplant spacing
(Figure 1C). The N treatment is part of another long-term
study focusing on nitrogen use efficiency (NUE) in switchgrass.
This provided the opportunity to determine the impacts of
differential growth conditions on automated measurements. The
experimental field was surrounded by switchgrass cv “Blackwell”
border plants. The N treatment plots were separated by a
centralized row of border plants. Water-permeable weed cloth
coverage on the soil surface was used to reduce weed interference.
Switchgrass was planted in 1× 1 m holes in the cloth. Any weeds
growing adjacent to switchgrass plants were manually removed.

Manual Measurements of Plants
Each plant canopy perimeter and height was manually measured
twice during the field season: once in August 2019 (mid-season)
and once in December 2019 (end-of-season). The plant canopy
height measurement consisted of the distance from ground level
to the tip of the tallest central tiller using a tape. The plant
canopy perimeter was determined with distance measurement
for the outside border of plant canopy from a vertical viewpoint.
Measurements were made without touching the plants, and
required two people to work 2 days each time. The aboveground
plant biomass was determined at the end-of-season after plant
senescence (Table 1). Dry above ground biomass was determined
at the end of the season by harvesting and weighing each plant.
Subsequently, the ten tallest tillers were collected from each plant
and oven-dried at 45◦C for 72 h to determine the ratio of dry-to-
fresh weight. Total dry biomass was determined by calculating
the percentage of water loss recorded for each subsample and
subsequently applying the water loss percentage to the respective
total “wet” biomass weight for each plant. Plants with ten or fewer
tillers were not subsampled, and whole plants were subjected
to the same drying conditions and dry biomass was recorded
for each plant. End-of-season biomass measurements required
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FIGURE 1 | Switchgrass field establishment. (A) The 330 switchgrass accessions in pots awaiting transplanting to the field; (B,C) status of switchgrass growth
nearly 4 months after transplantation into the field site.

two people 2 weeks of work for harvesting, biomass drying, and
recording of biomass by plant.

UAV Observations
Over the mid-to-late growing season we made 10 UAV flights
to take single observations to estimate each trait by plant

TABLE 1 | UAV data routing observations and manual measurements in
the growing season.

Date collection sate Multispectral
image

LiDAR Manual
measurements

08/14/2019 × Plant perimeter and
height

09/09/2019 ×

09/19/2019 ×

09/25/2019 ×

10/03/2019 ×

10/17/2019 ×

11/01/2019 ×

11/18/2019 ×

12/04/2019 × × Plant perimeter and
height

01/21/2020 × × Plant biomass

(Table 1) using a Matrice 600 UAV Pro model (DJI Inc.,
Shenzhen, China) equipped with multiple sensors including
M200 Series Snoopy M8 LiDAR scanner (LiDARUSA Inc.,
Hartselle, AL, United States), and Red Edge-MX camera
(MicaSense, Inc., Seattle, WA, United States) and strict ground
control (Figure 2A). Flights were performed on cloud-free days
between 10:00 am and 12:00 pm with an automatic mode using
the drone flight planning mobile app – Pix4Dcapture (Pix4D
Inc., Prilly, Switzerland) at 20 m above the ground and speed of
approximately 4 km per hour (Figure 2B). The settings of image
coverage overlapping between UAV-footprint snapshots was 85%
in front and 70% on sides. The UAV-footprint shooting images
over the field (Figure 2B) at a sampling resolution of 1 × 1 cm
were mosaicked and transformed into the absolute reflectance
images along with the image of the calibrated reflectance panel
(CRP) captured prior to implementing flight mission, including
blue (475 nm), green (560 nm), red (668 nm), red-edge (717 nm),
and near-infrared (842 nm) bands, using Pix4Dmapper (Pix4D
Inc., Prilly, Switzerland). Afterward, geometric rectification for
the multispectral image was manually performed using the
georeferencing tool in ArcGIS software (Esri Inc., Redlands, CA,
United States) according to seven ground control points (GCP),
which were evenly preassigned over the field and accurately
measured using the global positioning system (GPS) base-station
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FIGURE 2 | UAV ground control and flight operations. (A) Bare ground elevation data (i.e., digital terrestrial models, DTM) obtained after the switchgrass harvest
(January 21, 2020) using UAV-based LiDAR scanning technology. The UAV ground control system included a GPS base station used for post-processing differential
correction of LiDAR point clouds, horizontal GCP used for geometric rectification of multispectral image. Shown is the planting site for the 1,320 switchgrass plants.
(B) UAV route over the field, as well as the calibrated reflectance panel (CRP) used to convert raw pixel values from multispectral images to absolute reflectance,
where the CRP image was obtained before or after the flight.

with a <4 cm horizontal accuracy. The LiDAR data obtaining
was operated by tracking distances and angles through eight
individual lasers at a shooting frequency of 440,000 points/s,
along with the sensor position (i.e., latitude, longitude, and
altitude) through the Global Navigation Satellite Systems (GNSS)
and the sensor orientation (i.e., pitch, roll, and yaw) through
the inertial measurement unit (IMU), as well as the real-
time GPS base-station recording. To achieve a highly precise
positioning for both horizontal and vertical (±3 cm), the raw
LiDAR data recorded by those devices were repositioned by
post-processing differential corrections based on the GPS base-
station as well as the IMU data using Inertial Explorer Xpress
8.7 (NovAtel Inc., Calgary, AB, Canada) and were then further
converted into the point clouds in the LAS (.las) format using
ScanLook Point Cloud Creation (LiDARUSA Inc., Hartselle,
AL, United States).

Automated Phenotyping Measurements
The 3D plant canopy was delineated by the point clouds that
were composed of a high-density mass of point vectors, with
each one having its own set of horizontal positioning (latitude
and longitude), elevation coordinates, and additional attributes.
Individual plant canopy polygons were identified using the
MATLAB programming package (Math Works Inc., Natick,
MA, United States) through three steps, including plant height
calculation, spatial filtering, and boundary identifying (Figure 3).

(1) Plant height calculation: Individual.las files were combined
into LAS datasets (.lasd) that were further interpolated
into 1 × 1 cm gridded digital surface models (DSM,
generated during the growing season and representing
the incorporation of the bare ground elevation and plant

canopy) in the Tagged Image Format File (.tiff ) format
using ArcGIS software to match the sampling results for
the multispectral image. To precisely calculate plant canopy
height, the bare ground elevation data, namely the digital
terrestrial models (DTM), were generated by UAV-based
LiDAR scanning technology after the switchgrass harvest
(Figure 2A). The plant canopy height models (CHM) were
calculated by DSM in the growing season, subtracting the
DTM (e.g., Figure 3A).

(2) Spatial filtering: Generally, the plant canopy contains gaps
between leaves that impact the complete identification of
plant canopy. To simplify the process, we applied a spatial
filter to the CHM to fill the gaps to unite all the pieces
of canopy together. Specifically, the order-statistic filtering
function (i.e., ordfilt2) with the domain of 5 × 5 pixels and
the value of the 25th percentile was used to smooth the CHM
(e.g., Figure 3B).

(3) Boundary identifying: The CHM was binarized with the
threshold of 10 cm, below which was considered as the
invalid value resulting from point cloud positioning error
as well as ground relative elevation changes. Based on the
central coordinates of the plant, the gridded plant canopy
was divided from CHM, and the function of bwboundaries
was used to trace the exterior boundary of the plant canopy.
To simplify the boundary, a 2 m line that originated from the
center of the plant was used to detect the intersected points
between initial plant canopy boundary and scanning line
following an interval of 30-degree. Generally, 3–12 points
were identified, depending on the overlapping case with the
surrounding plants (e.g., Figure 3C). The identified points
were further converted into the polygon in the Esri shapefile
(.shp) format using shapewrite function.
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FIGURE 3 | Process of plant phenotyping parameter extraction. (A) The gridded plant height. (B) The spatially filtered plant height. (C) The binarization of plant
height for identifying the location of plant canopy based on the central coordinates of plants (red + symbol) and the 2 m scanning line following the 30-degree
interval, where the blue points (i.e., P1, P2, . . ., to P12) are the location of intersection between plant canopy boundary and scanning line.

After obtaining the plant canopy polygon for each plant,
plant canopy perimeter was measure in a similar way to manual
measurements by calculating the distance around the outside
plant canopy border as viewed from a vertical perspective. Plant
canopy perimeter and area were calculated using the functions
of perimeter and polyarea, respectively. By overlaying each plant
canopy polygon to the gridded CHM, the maximum CHM value
was identified and used for comparison with manual ground-
truth measurements that were implemented referring to the top
of the central panicles in the plant, and the mean CHM value
over the plant canopy was used for the subsequent driving of
the UAV-biomass model. The mean reflectance for each plant
and band in the multispectral image was calculated to derive
the spectral vegetation index as another driving variable for
UAV-biomass modeling.

Plant Biomass Model and Evaluation
The plant canopy perimeter and height, as vital measurements
for plant phenotyping structure characteristics, are theoretically
related to the magnitude of plant stems (Fernandez et al., 2009).
Also, the spectral index was developed based on the fact that
leaf chlorophyll electromagnetic spectra measurements are highly
correlated with plant leaf density (i.e., leaf area index – LAI)
(Broge and Leblanc, 2001). Here, we modeled the plant biomass
as a linear combination of phenotyping measurements and
spectral index response in the form of (Eq. 1):

fBiomass = (m× SI)× CP× CH (1)

where CP and CH refer to the plant canopy perimeter
and height, respectively. These phenotyping variables change
significantly during the growing stage, but are supposed to
approach to a constant status after peak growing season; SI is
the spectral index calculated from UAV-based reflectance bands;
m is a SI-sensitive coefficient relying on a specific spectral
index as well as plant phenological stage. To evaluate biomass
yield for the mature plants, all driving variables were obtained
during the peak growing season to assure a robust prediction
with the UAV-biomass model. This is imperative given plants
may “de-green” with plant senescing after peak growing season,
and “de-greening” may lower the performance of spectral index

(Tillack et al., 2014). Several widely used indices were explored
for SI including the spectral index developed in the early period,
such as the ratio vegetation index (RVI; Eq. 2) (Pearson and
Miller, 1972) and the normalized difference vegetation index
(NDVI; Eq. 3) (Rouse et al., 1974), as well as spectral index
suggested later for improving sensitivity to vegetation, such as the
enhanced vegetation index (EVI; Eq. 4) (Huete et al., 1997) and
the normalized difference red edge index (NDRE; Eq. 5) (Hansen
and Schjoerring, 2003). These indices were calculated using the
following equations:

RVI =
RNIR

RRed
(2)

NDVI =
RNIR − RRed

RNIR + RRed
(3)

EVI = 2.5×
RNIR − RRed

RNIR + 6RRed − 7.5RBlue + 1
(4)

NDRE =
RNIR − RRE

RNIR + RRE
(5)

where RNIR is the reflectance at the near-infrared wavelength,
RRed is the reflectance at the red wavelength, RBlue is the
reflectance at the blue wavelength, and RRE is the reflectance at
the red-edge wavelength.

Standard criteria, namely the Pearson coefficient (r), root
mean square error (rmse), and relative error (re), were
used to evaluate how well the assembly of phenotyping
measurements and SI-response predicted the biomass compared
to manual measurements.

RESULTS

UAV-Based Plant Phenotyping
Parameters and Validations
There was a wide range of values from manual measurements
of switchgrass perimeter, height, and biomass yield among the
330 genotypes (Figure 4). Plant perimeter ranged from 0.36 to
12.37 m with an average (and standard deviation) of 4.15 m
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FIGURE 4 | Manual phenotyping measurements for 330 genotypes of switchgrass during mid-season (August 14, 2019) and end-of-season (December 04, 2019),
as well as biomass harvest (January 21, 2020). (A) Plant perimeter, (B) plant height, and (C) plant biomass, where the numbers on the figure represent the mean and
standard deviation (std) for 1,320 plants with 330 genotypes and four repetitions for each genotype.

(±1.58) and 4.49 m (±1.55) for measurements taken at the
mid- and the end-of-season, respectively (Figure 4A). In the
same way, switchgrass height (i.e., central panicle) ranged from
0.13 to 2.29 m, with an average of 1.28 m (±0.34) and 1.29
(±0.34) (Figure 4B). Dry biomass ranged from 2 to 1,855 g per
plant, with an average of 386.14 g (±314.2) (Figure 4C). Trait
variation may be related to genetic diversity among the accessions
(Martinez-Reyna and Vogel, 2002; Casler, 2012).

We applied the programming process (involving three steps,
i.e., plant height calculation, spatial filtering, and boundary
identifying) to the LiDAR point clouds collected from early
peak season (Figure 5A) to the end-of-season (Figures 5B,C)
for determining switchgrass phenotyping parameters including
plant canopy height and perimeter. Compared to the manual
measurements (i.e., from December 4, 2019), we achieved

promising results for plant canopy perimeter (r = 0.95, rmse = 0.6,
and re = 0.11; Figure 5D) as well as canopy height (r = 0.93,
rmse = 0.1, and re = 0.07; Figure 5E) using LiDAR. The
box statistics showed that plant phenotyping parameters for
both perimeter and height slightly increased from September
9 to November 1, 2019 (Figures 5F,G). Afterward, a notable
decrease in height was observed on December 4, 2019. This
result might be attributed to plant lodging responses associated
with genetic characteristics of each genotype, as well as
interactions with environmental effects such as rainfall and snow
(Tripathi et al., 2003).

Performance of UAV-Biomass Model
Using the maximum plant phenotyping parameters (i.e., plant
perimeter and height on November 1, 2019; Figure 5) as a
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FIGURE 5 | Changes in UAV-based plant phenotyping parameters and validation. (A–C) Spatiotemporal changes in plant canopy perimeter and height based on
UAV measurements during the growing season; (D,E) validation of the UAV-based plant perimeter and height with manual measurements for a total of 1,320 plants,
where plant canopy height was compared based on the top of the central panicles. The UAV and manual measurements were collected on December 4, 2019;
(F) and (G) boxplots of the changes in plant perimeter and height, respectively, from peak season to the end of the season, where the red line on the box indicates
the median, and the bottom and top edges of the box indicate the 25th and 75th percentiles, respectively.

static forcing variable, we explored the UAV-based biomass
models accompanied with changes of varying spectral index
and phenological process from early peak season (i.e., August
14, 2019) to the end-of-season (i.e., November 18, 2019)
(Figure 6). We found that the assembly of phenotyping
measurements (plant height and perimeter) and spectral index
demonstrated promising performance in predicting the plant
biomass (r ≥ 0.74), but also varied among the spectral indices
as well as phenological stages (r = 0.74–0.9). Noticeably, the
spectral indices derived from peak season to just prior to
the end-of-season (e.g., September 19 to October 17, 2019)
demonstrated consistent and robust performance in predicting

plant biomass (r ≥ 0.86). Compared to NDRE, the commonly
used spectral indices of RVI, NDVI, and EVI demonstrated a
stronger relationship with plant biomass (r ≥ 0.89). Out of these
three spectral indices, EVI demonstrated the lowest estimated
bias (rmse ≤ 137.16). In contrast, using the spectral indices
derived from the early peak season (i.e., August 14, 2019) and the
end-of-season (i.e., November 18, 2019) were weaker predictions
of plant biomass (r ≤ 0.87).

Plant Responses to N Treatments
Manual and automated measurements of the variables (e.g.,
plant height, perimeter, area, biomass density, and biomass
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FIGURE 6 | Performance of the assembly of phenotyping measurements (CP, canopy perimeter; CH, canopy height) and spectral index in predicting the plant
biomass with changes of the growing season, as well as a different spectral index. (A) RVI, (B) NDVI, (C) EVI, and (D) NDRE.

production) demonstrated there were no significant differences
in switchgrass growth between the low and moderate N
treatments (Figure 7). These results were strongly correlated
between the automated and manual methods (Figure 5), and
we found the differential N growth conditions had no effect
on automated phenotypic characterization. Based on UAV
measurements, we found similar patterns in the distribution of
switchgrass plant biomass (Figure 7A), as well as biomass density
over the field (Figure 7B) between the low and moderate N
fertilization plots. In contrast, we observed a general positive
plant growth response to the N fertilization over the 330
switchgrass genotypes (Figure 8). These observations suggested
that the high genetic variability of the 330 genotypes is
responsible for the large-ranging differences in plant growth
factors rather than the N fertilization itself (Cassida et al.,
2005). However, there were patterns among genotypic responses
to N treatments. We characterized genotype responses as: a)
N-positive responsive genotypes, in which growth was positively
associated with N (Figure 8, representative genotypes above
1:1 line); b) N-neutral genotypes that had congruent growth
in both N treatments (Figure 8, representative genotypes
at 1:1 line); and c) N-negative genotypes that had lower

growth with more N (Figure 8, representative genotypes
below the 1:1 line).

DISCUSSION

LiDAR-Based Plant Phenotyping
Measurements
Unmanned aerial vehicle-based LiDAR scanning technology was
very useful in measuring switchgrass plant morphological traits
over the field. The automated method we are reporting in
the present study was validated by the manual measurements
with a wide range of phenotypic variabilities. Our assessment
demonstrates the reliability of the system for use in different
switchgrass growing conditions with high accuracy. It should be
noted that the LiDAR sensor used in this study (i.e., M200 Series
Snoopy M8 LiDAR scanner) can only record the single echo,
implying there may be some uncertainty in accurately calculating
plant canopy height (i.e., CHM) relying on single-pass-obtained
point cloud data (James and Robson, 2014). To simplify the
processing procedure and ensure the measuring accuracy, plant
canopy height in the growing season was determined by DSM

Frontiers in Plant Science | www.frontiersin.org 8 October 2020 | Volume 11 | Article 57407326

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-11-574073 October 14, 2020 Time: 19:36 # 9

Li et al. UAV Phenotyping of Bioenergy Switchgrass

FIGURE 7 | Comparisons of different N treatments for switchgrass. (A) Spatial distribution of switchgrass biomass over the experimental field mapped to individual
plants. (B) Spatial distribution of switchgrass biomass density that is normalized by plant canopy coverage area. (C) Boxplots for plant phenotyping parameters (i.e.,
plant perimeter, height, and plant area), as well as plant yield (single plant biomass and biomass-density) between two levels of N treatments, where the red line on
the box indicates the median, and the bottom and top edges of the box indicate the 25th and 75th percentiles, respectively.

generated in the plant growing season by subtracting DTM
(Figure 2A) generated after all the plants are harvested (i.e.,
CHM = DSM − DTM). This strategy could be applicable to
this study by assuming that the changes in the background
surface elevation are negligible. However, most situations require
capacities of large-scale detection and timely variable calculation.
In these cases, the full waveform or multi-echo LiDAR-scanning
technologies can be helpful for producing DTM, DSM, and
CHM variables at once through the algorithm of decomposing
LiDAR waveforms (Reitberger et al., 2008; Mallet and Bretar,
2009). The value of LiDAR scanning technology is not only
characterized by its highly efficient reproducibility and accuracy
(Madec et al., 2017) but also due to its irreplaceability. For
example, we conducted manual measurements for plant canopy
height by sampling representative tillers on each plant. However,
because there was a considerable height variation among tillers,
the single or multiple tiller height measurements using manual
methods, e.g., tape measure will inevitably produce uncertainty

in delineation of plant height. Instead, the highly dense LiDAR
point clouds have higher repeatability to delineate the height
variations for plant tillers, and that consequently can ensure
the robust phenotyping measurements, as well as the precise
yield prediction with UAV-biomass model. For example, when
manual height measurements were made, it took two people
2 days to measure the tallest tiller for each of the 1,320 plants.
The single point measurement for each plant may not be an
absolute representation of “true plant height,” whereas the UAV
platform is scalable and able to collect a data cloud for each
plant.

We explored the applicability of structure-from-motion
(SFM) algorithms using the Pix4Dmapper programming package
for the generation of the DSM and DTM based on a large
set of overlapping images (Oliensis, 2000). When compared
with the LiDAR method, we found that SFM method was
suboptimal to capture plant canopy structural details. Lussem
et al. (2019) showed that SFM-derived CHM provided a varying
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FIGURE 8 | Comparisons of two contrasting N treatments for each genotype with four replicates (2 replicates per N treatment). The comparisons are performed
among the plant canopy perimeter, height, and area, as well as single plant biomass and biomass-density, where the data for the plant canopy perimeter, height, and
area are derived from peak season of plant growth (i.e., September 25, 2019). Each data point represents an average of two replicates per each N treatment (low
and moderate) for a total of 330 switchgrass genotypes.

performance in predicting grassland biomass, indicating this
method may not be widely adaptable. The success of SFM
depends on several factors, including the complexity of research
object, UAV flight control accuracy, image quality, as well
as the selection of SFM algorithms (Dandois and Ellis, 2013;
Remondino et al., 2014). Based on our study, we suggest that
SFM may not be optimal for quantifying small objects with
a high degree of accuracy. Rather, SFM may be useful to
3D visualization or structure parameter measurements specific
to large objects such as trees and buildings (Bolles et al.,
1987). In addition, we experimented with extracting plant
canopy perimeters through the spectral index (e.g., NDVI)
calculated by the multispectral image. Once a threshold used
for segmenting spectral index image is determined, we found
this method is applicable for the calculation of plant canopy
coverage perimeter and area. However, one substantial problem
is determining the appropriate threshold value, which varies
with dynamic leaf chlorophyll content during plant development.
For example, after switchgrass growth peaks in late summer
and senescence ensues, the leaves will be less green. An
undistinguished phenotype may be observed along with diverse
stresses (e.g., drought, plant pests, and diseases) over the
growth season (Anjum et al., 2011; Mahlein et al., 2013). In
contrast to the optical image processing method, the LiDAR
scanning method appeared to be more robust and applicable

for estimating switchgrass phenotypic parameters, such as plant
canopy height and perimeter.

Flexibility of UAV-Biomass Model
In recent years, UAV-based biomass models have been developed
using UAV platforms equipped with a LiDAR scanner and/or
multispectral sensor. When the LiDAR scanning is used,
plant biomass is modeled as the function of CHM, such as
[α∗e(β∗CHM)] (Bendig et al., 2014). CHM models have high
predictive value because the technique precisely delineates plant
stem density and height, but suboptimally estimates biomass
density in the unit of volume (Asner et al., 2012). Some biomass
estimation models largely ignore image spectral index with forms
such as [α∗SI + β] or [α∗SIβ] (Bendig et al., 2015). However,
because of the attenuation of electromagnetic wave propagation
when passing through a very dense vegetation canopy, namely
the saturation of optical remote sensing, these kinds of models
may not be appropriate to predict biomass (Shabanov et al., 2003;
Mutanga and Skidmore, 2004; Li et al., 2014). Meanwhile, the
model coefficients (i.e., α and β vary with choice of spectral
index, and its associated phenological stage, as well as taxa. These
variations in model forms and coefficients prevent us from cross-
analysis among traits, including phenotyping heterogeneity,
biomass composition and density, as well as evaluating NUE
(Hardin et al., 2013; Li et al., 2018). Taking this a step further, it
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will impede our understanding of whether biomass production is
largely explained by genotype and canalized phenotypes (Casler,
2012). In the present study, a standardized model is proposed to
estimate switchgrass biomass and its coefficients. The model was
relatively straightforwardly and applicable to efforts to improve
switchgrass cultivation as a bioenergy feedstock across diverse
environmental conditions.

UAV-based remote sensing technologies are of value not only
for increasing precision of trait measurement (e.g., biomass
and LAI) but also for superior performance of mapping large-
scale vegetation coverage areas (CAs) (Baret and Guyot, 1991;
Jimenez-Berni et al., 2018). Accordingly, when the UAV-based
biomass model proposed here is applied to plants grown under
agronomic conditions with broad spatial and temporal scales,
it is important to validate methods. First, plants grown under
agronomic conditions vary in a continuous or undistinguished
pattern, along with a certain fractional soil exposure. In this case,
instead of using the purely individual plant canopy parameters
(i.e., plant phenotyping parameters and spectral index) for
modeling biomass, UAV-based remote sensing images for each
pixel cell at a certain spatial resolution (e.g., 0.5 × 0.5 m, mostly
relying on UAV flying altitude) may be used to build models.
To reduce the impacts of bare soil on the spectral index, we
suggest using the pure vegetation index (PVI) proposed by Li
et al. (2016) for substitution of the spectral index in the UAV-
biomass model. Since the soil component is completely excluded
from PVI, based on the spectral mixture analysis (SMA) method
(Adams et al., 1995), this substitution can be congruent with the
role of pure vegetation canopy spectral index used in this study.
It will hold a proportional response to changing biomass values.
As for plant perimeter, initially, we thought that the assembly
of plant canopy area and height could be mathematically used
to determine the plant canopy volume magnitude, while adding
spectral index can play a role in qualifying the biomass density of
the canopy volume. However, we found that this type of assembly
suffers a non-proportional response to biomass changes, resulting
in a higher bias in predicting biomass yield. The choice of
using the different model forms (e.g., exponential or polynomial
forms) is possible, but may complicate model applications, given
the variations of model form and its coefficients. In addition,
we found that plant perimeter plays an important role in the
optimization of modeling plant biomass yield. However, plant
perimeter used here is only derived from each individual plant.
As for biomass modeling based on a pixel cell, we suggest
using a highly related function for converting from plant canopy
CA in the pixel cell to plant perimeter, which is developed
based on UAV phenotyping measurements in the switchgrass
field (i.e., CP = 3.6789 × CA0.4892, r2 = 0.998; Figure 9).
Indeed, in agronomic fields of switchgrass, taking individual plant
measurements, e.g., perimeter, will be challenging.

Spectral Index Sensitivity
In some cases, after peak growth season, plants may “de-
green,” which will alter the performance of spectral index used
for plant monitoring (Tillack et al., 2014). However, based on
varying spectral indices from peak season to before end-of-season

(e.g., September 19 to October 17, 2019) used for the UAV-
biomass modeling, we found an insignificant impact of plant
phenological changes on its performance in modeling biomass
(Figure 6). The only changes appear in the coefficient of m
in the UAV-biomass model (i.e., Eq. 1), which varies with the
choice of the spectral index (i.e., RVI, NDVI, EVI, and NDRE)
and its association with the plant-phenological stage changing
(Figure 10). This finding suggests that we have a broader time
window (e.g., during September and October in this study) to
reliably estimate the end-of-season plant biomass using UAV-
based remote sensing technologies, rather than rushing into
the peak growing season for UAV data collection; this stage
would have maximum content of chlorophyll in the leaf. The m
coefficient, calculated as the ratio between biomass yield and the
assembly of plant phenotyping parameters and spectral index, i.e.,
[m = biomass/(SI×CP×CH)], represents the change in biomass
yield per unit change in the integration of plant multi-traits.
These traits vary between genotypes and among plant species, as
well as phenological stages. Generally, m is determined through
in situ destructive measurements along with UAV data collecting
(Walter et al., 2019). By exploring the time series spectral
index, we found that the m magnitude is significantly positively
correlated with the spectral index changes that are associated with
plant phenological stages (r = 0.994–0.998, p≤ 0.006; Figure 10).
Among the selected spectral indices, the highly sensitive spectral
index of EVI demonstrated a more robust performance to
determine the m-value for calibration of the UAV-biomass model
(i.e., m = −2289.67 × EVI + 1092.27; r = −0.998, p = 0.002;
Figure 10C). This finding implies that the coefficient of m in the
UAV-biomass model can be determined according to the spectral
index of its property, rather than through in situ destructive
sampling measurement of plant biomass (Li et al., 2018), which
is not desirable.

Unmanned aerial vehicle-biomass models varying with
diverse forms are primarily attributed to a non-linear response
to biomass increasing changes, which is so-called the natural
saturation of optical remote sensing detections (Baret and Guyot,
1991; Gitelson, 2004). Based on the experiments from this
study, we found that the plant phenotyping variables (e.g., plant
canopy height and perimeter) measured by LiDAR technology,
and spectral index measured by multispectral image all are
subjected to the influence of saturation with varying degrees in
response to increasing biomass in the plant canopy of leaves and
stems (Figure 11). Overall, out of these input variables, plant
canopy height is the single best trait to estimate end-of-season
aboveground biomass (r = 0.78, p < 0.001), followed by plant
perimeter (r = 0.76, p < 0.001), and then diverse spectral indices
(r = 0.54–0.68, p < 0.001). Among the spectral indices, a slight
difference exists when the individual spectral index is used for
biomass modeling, but the insignificant difference is found when
assembled with plant canopy perimeter and height.

Effects of N Fertilization on Switchgrass
Growth
Nitrogen is an essential nutrient that is important to manage
in bioenergy and forage crop production (Monti et al., 2019).
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FIGURE 9 | The functional relationship between plant canopy area (CA) and canopy perimeter (CP) according to the UAV-based phenotyping measurements.

FIGURE 10 | Relationship between the coefficient of m in UAV-biomass models and plant phenotype changes qualified by the various spectral indices from the early
peak season to the end of the growing season. (A) RVI; (B) NDVI; (C) EVI; and (D) NDRE. Time-specific variations of the spectral index for the 1,320 switchgrass
plants in the field are reflected by boxplot statistics, where the red line on the box indicates the median, and the bottom and top edges of the box indicate the 25th

and 75th percentiles, respectively.
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FIGURE 11 | Relationship between the plant phenotyping parameters (CH, canopy height; CP, canopy perimeter), spectral index (i.e., RVI, NDVI, EVI, and NDRE),
and plant biomass, where the corresponding data are derived from peak season of plant growth (i.e., September 25, 2019).

We observed that N-supplementation had no significant effects
on the global biomass production of the 330 switchgrass
genotypes included in this study. This is in contrast to other
studies that have shown switchgrass is more productive under
N-fertilizer treatments when water is not limited (Schmer et al.,
2012; Emery et al., 2020), and when N-supplementation is
applied to established fields and during more than one year
(Jung and Lal, 2011). However, N-supplementation does not
always result in higher biomass production and may have
unintended effects on switchgrass growth (Emery et al., 2020).
The present study was performed during the establishment
year (year one), where switchgrass establishment has been
reported to be slow and yield reduction has been observed
in the first year (Baxter et al., 2014). This factor may have
had a negative influence on biomass production obviating any
potential positive effects of N supplementation. However, we
emphasize the contribution of N uptake in switchgrass still needs
further investigation, especially with the support of UAV-based
multi-trait measurements proposed in this study. Meanwhile, to
elucidate underlying mechanisms in switchgrass NUE from the
perspective of genetic characteristics will be a concern-deserved
topic in the follow-on study.

CONCLUSION

Unmanned aerial vehicle (UAV)-based LiDAR and multispectral
technologies were assessed for their application of high-
throughput phenotyping of switchgrass and biomass estimation

in the field. We found that UAV-based LiDAR is a useful tool
for the precise qualification of plant phenotypic indicators
(i.e., plant canopy perimeter, and height). Furthermore, a
relatively simple and standardized model was developed for
the estimation of switchgrass biomass yield through combing
plant phenotyping characteristics (e.g., plant canopy height
and perimeter) measured by LiDAR technology, and plant
biomass density, which is detected by a widely used spectral
vegetation index. We found that combining these phenotypic
indicators significantly improves the performance of the
spectral index in modeling and estimating biomass yield in
a non-destructive manner. Finally, we found that, globally,
N fertilization had non-significant effect on switchgrass
phenotyping traits including biomass. In summary, the
UAV-based approaches proposed in this study, including
plant phenotyping automatic extracting method and biomass
predicting model, facilitated high-throughput and precise
phenotype mapping, which should have impact on accelerating
bioenergy crop breeding as well as practical use in the field to
estimate switchgrass biomass prior to destructive harvests at the
end of the season.
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The development of high-throughput genotyping and phenotyping has provided access
to many tools to accelerate plant breeding programs. Unmanned Aerial Systems
(UAS)-based remote sensing is being broadly implemented for field-based high-
throughput phenotyping due to its low cost and the capacity to rapidly cover large
breeding populations. The Structure-from-Motion photogrammetry processes aerial
images taken from multiple perspectives over a field to an orthomosaic photo of a
complete field experiment, allowing spectral or morphological trait extraction from the
canopy surface for each individual field plot. However, some phenotypic information
observable in each raw aerial image seems to be lost to the orthomosaic photo,
probably due to photogrammetry processes such as pixel merging and blending. To
formally assess this, we introduced a set of image processing methods to extract
phenotypes from orthorectified raw aerial images and compared them to the negative
control of extracting the same traits from processed orthomosaic images. We predict
that standard measures of accuracy in terms of the broad-sense heritability of the
remote sensing spectral traits will be higher using the orthorectified photos than with
the orthomosaic image. Using three case studies, we therefore compared the broad-
sense heritability of phenotypes in wheat breeding nurseries including, (1) canopy
temperature from thermal imaging, (2) canopy normalized difference vegetation index
(NDVI), and (3) early-stage ground cover from multispectral imaging. We evaluated
heritability estimates of these phenotypes extracted from multiple orthorectified aerial
images via four statistical models and compared the results with heritability estimates
of these phenotypes extracted from a single orthomosaic image. Our results indicate
that extracting traits directly from multiple orthorectified aerial images yielded increased
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estimates of heritability for all three phenotypes through proper modeling, compared
to estimation using traits extracted from the orthomosaic image. In summary, the image
processing methods demonstrated in this study have the potential to improve the quality
of the plant trait extracted from high-throughput imaging. This, in turn, can enable
breeders to utilize phenomics technologies more effectively for improved selection.

Keywords: High-throughput phenotyping, unmanned aerial systems, canopy temperature, normalized difference
vegetation index, ground cover, wheat

INTRODUCTION

In the past 20 years, spectacular advances in “next-generation”
DNA sequencing have rapidly reduced the costs of genotyping
and provided almost unlimited access to high-density genetic
markers, thus allowing genetic improvement of several
economically important crops worldwide (Crossa et al.,
2017). Accurate plant trait (i.e., phenotypes) observations
have long been the key to enhancing genetic gains through
classical plant breeding (Eathington et al., 2007) and also to
training prediction models and predict the performance of
non-phenotyped individuals from their marker scores (Hayes
and Goddard, 2001). Thus, phenotyping plays an essential
role in the success of standard phenotypic selection as well
as genomic selection models. Reflecting this, the lack of
methods for rapid and accurate phenotyping on large sets of
germplasm under field conditions remains a bottleneck to
genomic selection and plant improvement (Cabrera-Bosquet
et al., 2012; Araus and Cairns, 2014). High-throughput
phenotyping (HTP) platforms are needed to measure plant
traits non-invasively (Reynolds and Langridge, 2016), reduce
the labor of manual phenotyping (Cabrera-Bosquet et al.,
2012; Cobb et al., 2013), and measure multiple traits, plots,
or both efficiently and simultaneously (Barker et al., 2016;
Wang et al., 2018).

Unmanned Aerial Systems (UAS)-based remote sensing is
being broadly implemented for field-based high-throughput
phenotyping due to its low cost and the capacity to cover large
field trials with thousands or tens-of-thousands of plots (Shi
et al., 2016). Recently, multi-rotor UAS in various sizes have
been widely deployed at a low altitude (<50 m) in HTP of
plant canopy spectrum features (Haghighattalab et al., 2016; Li
et al., 2018), plant growth status (Chu et al., 2017; Singh et al.,
2019), and crop water use (Thorp et al., 2018). With the rapid
development of low-cost consumer-grade sensors and platforms,
UAS phenotyping holds great potential to be an integral part of
plant genomics and breeding for precise, quantitative assessment
of complex traits on large populations.

Structure-from-Motion (SfM) based photogrammetry is a
process widely used to quantify plant phenotypes from aerial
images (Shi et al., 2016). In SfM, a large number of aerial
images taken from multiple perspectives over a field are used
to create an orthomosaic image of a complete field experiment.
Then plant traits can be extracted from a defined area (i.e., a
shapefile of boundary coordinates for individual plots) within
the orthomosaic image. However, during the generation of the
orthomosaic image through SfM photogrammetry, pixels within

the overlapped area from multiple raw images are blended.
For instance, there are multiple optional blending modes such
as mosaic and average for orthomosaic image generation in
Agisoft Photoscan (Agisoft, 2018). The blending of pixel values
has the potential to introduce changes in values intrinsic
to the raw images.

Here, we use a complex plant trait – canopy temperature
(CT) – as an example of a trait difficult to accurately quantify in
the field environment. CT is an indicator of plant water stress
and is often correlated with grain yield (Balota et al., 2007).
Compared to measuring CT by sensors on the ground (Crain
et al., 2016), using the aerial vehicles integrated with thermal
imaging sensors can rapidly cover the observation area and
potentially reduce diurnal temperature variations. Sagan et al.
(2019) compared the performance of measuring CT in soybean
and energy sorghum using three commercial thermal cameras
on a UAS platform. They demonstrated a high correlation
(R2 > 0.9) between temperature extracted from orthomosaic
images and ground measurements at noon time assuming minor
temperature changes in a short period of UAV-based imaging.
By contrast, on much larger field trials with many thousands
of entries, longer measurement windows (i.e., hours) often give
raise to temperature fluctuations. In such cases, a single CT value
extracted from an orthomosaic image may not accurately reflect
the actual temperature at each imaging time point. Yet, variation
in CT during the measurement window could be thoroughly
characterized and accounted for by extracting thermal values
directly from the series of raw images, rather than the single
orthomosaic image.

An additional confounding factor for thermal imaging is
more technical, specifically the flat field correction (FFC) from
the thermal camera that may negatively impact the thermal
image quality. The FFC consists of a re-calibration of the
thermal camera core while the camera is working1. FFC is
helpful to regulate the thermal data within a defined range
of temperature readings but leads to continual recalibration
and hence, yields varying values during image acquisition,
including temperature differences from the same target in two
consecutive images. The error may be compensated using the
temperature references on the ground, but the referencing
target may not be present in every image. This adds additional
complexity to the field operations and image processing. If
images with inaccurate thermal measurements are used for
mosaicking, the CT values extracted from the orthomosaic
image will likely reflect artifacts from both the FFC and the

1www.flir-vue-pro.com/news
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variability of thermal values from changing ambient conditions
during the measurement window. To reduce this effect, Deery
et al. (2016) proposed an approach to extract CT from images
on a frame-by-frame basis. However, this method requires
automation if it is to be used for processing data from large
nurseries and for genetic studies with thousands or tens-of-
thousands of plots.

Based on the issues described above, measurements of CT
using thermal cameras are hypothesized to be substantially
influenced by the SfM processing required for mosaicking.
Meanwhile, other types of remote sensing datasets are expected
to have similar issues from the SfM processing pipeline. For
example, the canopy normalized difference vegetation index
(NDVI) and the leaf ground cover are widely used remote-
sensing traits associated with grain yield and agronomic traits
(Rutkoski et al., 2016; Duan et al., 2017). During aerial image
acquisition, the reflectance measurements from the canopy
changes according to the camera position and the solar angle.
This reflectance change can be accurately quantified using a
goniometer system and the bidirectional reflectance distribution
function (BRDF) under natural illumination conditions on
the ground (Sandmeier and Itten, 1999). Also, the leaf area
may appear in different densities depending on camera view
angles at nadir or off-nadir. Therefore, a single orthomosaic
image composed of blended pixels can be expected to
have similar problems to reflect variability throughout the
measurement window.

According to the theory of SfM processing and the issues
previously described, the overall objective of this study is
to enhance quality of trait extraction from field-based data
collection and measurement using high-throughput phenotyping
by UAS remote sensing. For this purpose, we developed a
set of image processing methods to extract phenotypes from
orthorectified aerial images. We then compared these extracted
remote-sensed phenotypes with the same phenotypes extracted
from orthomosaic images. In addition to evaluation of CT, we
investigated applying this trait extraction method to NDVI and
the early-stage ground cover (GC). We fitted four competing
linear mixed models to each trait and compared the models
using estimates of broad-sense heritability and the Bayesian
Information Criterion. Broad-sense heritability is a measure
of the proportion of phenotypic variance that is due to all
genetic effects relative to unaccounted error variance (Holland
et al., 2003). The main purpose of estimating heritability
is to understand the level of genetic control of a given
phenotype which directly relates to the expected gain from
different selection strategies, which is the fundamental concept
of plant breeding. A high heritability value is indicative of
higher precision and less error and is also connected to higher
predictive ability for a given trait (Crain et al., 2017). In
comparing methods for analysis of a fixed dataset, a higher
heritability reflects that a given method accounts for more
variance through decreasing the experimental error. We illustrate
the proposed approach using data from three wheat breeding
nurseries planted at different locations and in different years
as case studies, whereby each nursery provided data on one
type of phenotype.

MATERIALS AND METHODS

Plant Material and Field Layout
Spring wheat (Triticum aestivum L.) breeding lines used for CT
measurements were from the International Maize and Wheat
Improvement Center (CIMMYT) wheat breeding program. The
trials were planted on November 21, 2017, at Norman E
Borlaug Experiment Station (27◦22′57.6′′N, 109◦55′34.7′′W) in
Ciudad Obregon, Sonora, Mexico during the 2017–18 season.
The experiment consisted of 1800 unique spring wheat entries
distributed in 60 trials. Each trial was arranged as an alpha lattice
design in two blocks. Plots served as experimental units and were
1.7 m × 3.4 m in size, consisting of raised bed planting on two
beds spaced 0.8 m apart with paired rows on each bed at 0.15 m
spacing for each plot. Details are in the Supplementary Table 1.

Winter wheat (Triticum aestivum) breeding lines from Kansas
State University wheat breeding program were used for canopy
NDVI and early-stage ground cover measurements. One trial
for canopy NDVI measurements was sown on September 19,
2017 at the KSU Ashland Bottom Agronomy Farm (39◦7′54.2′′N,
96◦37′12.6′′W), Manhattan, Kansas, and the other trial for early-
stage ground cover measurements was sown on September 17,
2018 at the KSU farm (39◦7′56.4′′N, 96◦37′10.1′′W). A total of
146 and 150 winter wheat entries were planted during the 2017–
18 and 2018–19 season, respectively. During each season, the
entire field experiment was arranged in two blocks. The entries
included breeding lines and check varieties. In each block, a
breeding line was planted in a single plot, while the checks were
planted multiple times. The experimental plot was an individual
six-row plot with 20 cm (8′′) row spacing with plot dimensions of
1.5 m × 2.4 m. Details of each field experiment are listed in the
Supplementary Table 1.

To improve the geospatial accuracy of orthomosaic and
orthorectified images, ground control points (G) consisting
of bright white/reflective square markers were uniformly
distributed in the field experiment before image acquisition and
surveyed to cm-level resolution. The GCPs in Obregon, Mexico
were surveyed using a Trimble R4 RTK (Trimble Inc., Sunnyvale,
California, United States) Global Positioning System (GPS). The
GCPs in Kansas were surveyed using the Precis BX305 Real-Time
Kinematic (RTK) Global Navigation Satellite System (GNSS) unit
(Tersus GNSS Inc., Shanghai, China).

UAS, Sensors, and Image Acquisition
The UAS used for image acquisition was a DJI Matrice 100
(DJI, Shenzhen, China). The flight plans were created using
Litchi Android App (VC Technology Ltd., United Kingdom)
and CSIRO mission planner application2 for DJI Matrice100.
Accordingly, the flight speed, the flight elevation above the
ground, and the width between two parallel flight paths
were adjusted based on the overlap rate and the camera
field of view. Both cameras were automatically triggered with
the onboard GNSS unit following a constant interval of
distance traveled. A summary of flight settings is listed in the
Supplementary Table 2.

2https://uavmissionplanner.netlify.app/
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To collect the thermal image from the spring wheat nurseries,
a FLIR VUE Pro R thermal camera (FLIR Systems, United States)
was carried by the DJI Matrice 100. Ten 0.25 m × 0.25 m square
white metal sheets mounted on 0.50 m posts were used as GCPs.
Two data collections were conducted between 11AM and 1PM
on March 2 and March 19, 2018, during the grain filling stage.
The aerial image overlap rate between two geospatially adjacent
images was set to 80% both sequentially and laterally to ensure
optimal orthomosaic photo stitching quality. Both flights were
set at 60 m above ground level (AGL) at 5 m/s and could cover
the 3600 breeding plots in around 16 min. To preserve the
image pixel information, the FLIR camera was set to capture
Radiometric JPEG (R-JPEG) images.

A MicaSense RedEdge-M multispectral camera (MicaSense
Inc., United States) was used to collect winter wheat canopy
images in both the 2017–18 and the 2018–19 seasons. White
square tiles with a dimension of 0.30 m × 0.30 m were used
as GCPs. Nine and four GCPs were placed and surveyed in the
field during the 2017–18 and 2018–19 season, respectively. All
UAS flights were conducted between 11AM to 2PM. A total of
five UAS flights were made during the grain-filling stage in the
2017–18 season, and four UAS flights were made in the early Fall
establishment period for 2018–19 season. Detailed flight dates are
listed in the Supplementary Table 2. The aerial image overlap
rate between two geospatially adjacent images was set to 80% both
sequentially and laterally to ensure optimal orthomosaic photo
stitching quality. All UAS flights were set at 20 m AGL at 2 m/s
and could cover 360 (2017–18 season) and 336 (2018–19 season)
plots in 14 and 11 min, respectively. To preserve the image pixel
intensity, the MicaSense RedEdge-M camera was set to capture
uncompressed TIFF images.

Orthomosaic and Orthorectified Images
Generation
In this study, models fitted to a trait extracted from the
orthomosaic image were used as a benchmark control, against
which to compare estimates from models fitted to the same
traits extracted from multiple individual orthorectified images.
Unlike the approach proposed by Deery et al. (2016), in this
study we still needed to generate the orthomosaic image of a
complete field as a starting point to calculate the position of
each individual image. Through the photogrammetry process,
pixels in a raw image were projected to their real geographical
location. Following this orthorectification, each individual raw
image was converted to an orthorectified image. Therefore, there
was no need to manually identify field plots in each orthorectified
image because the same shapefile with plot boundaries could
be used to identify a plot existing in different orthorectified
images. Generating orthomosaic and orthorectified images from
raw images consisted of (step 1) image preprocessing (including
radiometric calibration), (step 2) GCPs detection, (step 3)
photogrammetry process, (step 4) and export of orthomosaic
image and orthorectified images (as shown in Figure 1), as
explained below in detail. The procedure was implemented using
Python, and the source code is available online3.

3github.com/xwangksu/bip

The image preprocessing procedure for the multispectral
images converted the pixel value in each raw spectral image to
reflectance before the photogrammetry process. Pixel values in
raw thermal images, however, were not converted to temperature
values in this step. As each trigger of the MicaSense RedEdge-M
camera generated five images of every single spectral band (Blue,
Red, Green, Near-infrared, and RedEdge), the completeness
check removed images having less than five bands. According
to the altitude (i.e., the camera height above the mean sea
level) embedded in the image properties, images were divided
into two groups – images captured on the ground and images
captured in the air. The MicaSense radiometric calibration
panels were then automatically detected from images captured
on the ground if existing. Following the MicaSense radiometric
calibration procedure4, calibration factors of all five bands were
calculated and then applied to images captured in the air,
converting raw images to reflectance images for subsequent
photogrammetry process.

The GCPs detection procedure automatically identified the
GCP in each image captured in the air if existing and matched
the GCP with the surveyed position of the closest GCP from
the image position. As white square tiles with the pre-known
size were used as GCPs in the wheat field, clear patterns of
GCPs could be detected through image processing. According to
the image position (i.e., the longitude and latitude) embedded
in the image properties, the surveyed GCP, whose coordinates
were geographically close to the image position, was matched
with the detected GCP in the image. Sufficient space (i.e.,
> 20 m) was left between every two GCPs during placement
in the field to avoid having multiple GCPs in a single image
and to enable sufficiently accurate geolocation of the UAS to
determine which GCP was being imaged. All image file names
and detected GCP coordinates were saved in a list for geospatial
optimization in the photogrammetry process. Due to the low
resolution of the thermal camera and the unclear pattern of GCPs
in thermal images, GCPs were manually detected during the
photogrammetry process of thermal images.

The photogrammetric processing of aerial images included
sparse point cloud generation, geospatial optimization, dense
point cloud generation, and 3-dimensional (3D) model
generation. The process was implemented using the Agisoft
PhotoScan Python API (Version 1.4.0, Agisoft LLC, Russia).
An orthomosaic image of a complete field experiment was
exported after the process. All images used to generate the
orthomosaic image were exported as orthorectified images with
the image boundary (i.e., the northwest and southeast corners)
coordinates and the original camera position (i.e., longitude,
latitude, and altitude) where the image was captured embedded
in the image properties.

Plot-Level Traits Extraction
Extraction of plot-level phenotypic values from orthomosaic and
orthorectified images consisted of (1) cropping single-plot images
from an orthomosaic of the complete field or from multiple
orthorectified images, each of which covered a small portion of

4github.com/micasense/imageprocessing
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FIGURE 1 | Workflow to generate orthomosaic and orthorectified images from raw images.

FIGURE 2 | Workflow for plot-level trait extraction from orthomosaic and orthorectified images.

the entire field, (2) converting pixel values to trait values through
raster calculation, and (3) summarizing the plot-level trait in each
image (as shown in Figure 2). The procedure was implemented
using Python, and the source code is available online5.

Following the generation of the orthomosaic image of an
entire field, a field map – a shapefile of polygons delineating the

5github.com/xwangksu/traitExtraction

four corners of each plot was generated semi-automatically in
Quantum Geographic Information System (QGIS, www.qgis.org)
with the HTP Geoprocessor plugin (Wang et al., 2016).
Specifically, the four corner points of the entire experiment field
were first manually defined in QGIS. Then the coordinates of
the four corners of the polygon for each plot were automatically
calculated with the pre-known plot geometric size (length and
width) using a QGIS Python script. Finally, each plot polygon
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was assigned a plot ID using the HTP Geoprocessor plugin
(Wang et al., 2016). According to the field map, an image of
each plot could be cropped from the orthomosaic image of the
entire field experiment and saved as a GeoTiff image. Unlike
the orthomosaic image of the complete field experiment, each
orthorectified image only covered a small portion of the entire
field. Therefore, only the plots that were completely included
in the orthorectified image were cropped and saved as GeoTiff
images. As a result, each plot was represented by a single
cropped orthomosaic GeoTiff image and multiple orthorectified
GeoTiff images.

To extract the CT trait, the pixel values within each GeoTiff
image containing the thermal infrared band were directly used
as indicators of absolute temperature measurements, as (1) the
R-JPEG images have temperature data embedded in each pixel6

and (2) Sagan et al. (2019) has demonstrated the absolute
temperature can be converted from the pixel value following a
linear equation:

T(◦C) = K × ThermalIR − T0 (1)

where ThermalIR is the pixel value within the thermal infrared
band of the GeoTiff image, T is the absolute temperature
measurement in Celsius degrees, and K and T0 are constant
parameters. In this study, K and T0 were set as 0.04 and
−273.15 (Flir Systems Inc., 2017; Williamson et al., 2019;
Song and Park, 2020).

To generate the NDVI trait from the GeoTiff image from the
five-band multispectral GeoTiff image, the following equation
was used during raster calculation:

NDVI =
NIR− Red
NIR+ Red

(2)

where NIR and Red are the near-infrared and red band of
the multispectral GeoTiff images, respectively, and NDVI is the
output raster layer.

For the canopy GC calculation, the five-band multispectral
GeoTiff image was first converted to an RGB GeoTiff image by
rendering the Red, Green, and Blue bands. Then the RGB image
was converted to a Hue-Saturation-Value (HSV) GeoTiff image.
Finally, a binary image was generated from the Hue band of
the HSV image by manually selected threshold values leaving
white pixels representing the canopy area in the RGB image. In
this study, the threshold value was selected from the first image
data set (October 3, 2018) and was applied to the subsequent
image data sets.

For extraction of CT and NDVI traits, we used the mode of
all non-zero values (Figure 2) in a plot area as the plot-level
CT and NDVI, respectively. This was intended to compensate
for noise from the non-vegetative pixels within the plot area,
although most of the plots were fully covered by canopies during
image acquisition. The plot-level early-stage ground cover (GC in
Figure 2) was calculated as the overall percentage of white pixels
within the binary image. As a result, each type of plot-level trait
extracted from the orthomosaic image had only one observation

6www.flir.com/products/vue-pro-r

per plot, whereas the same traits extracted from orthorectified
images had multiple observations, one per orthorectified image
in which that given plot appeared complete.

Orthomosaic and orthorectified images collected on two
dates (Supplementary Table 2), were used to extract two
independent datasets for the CT trait. Similarly, images collected
on five and four dates were used to extract five and four
independent datasets for the NDVI and the GC traits, respectively
(Supplementary Table 2).

Statistical Analysis
Four general linear mixed models (models I to IV) were specified
and fitted to each of the traits extracted, namely CT, NDVI
and GC. For each trait, a null model (Model I) was fitted
to observations extracted from the orthomosaic image (one
observation per plot; Model Ia) and to the average of the multiple
observations per plot, as extracted from the orthorectified images
(Model Ib). The remaining three models (II, III, and IV) were
fitted to the traits extracted from orthorectified images (i.e.,
multiple observations per plot) and were intended to recognize
different aspects of the data collection process. Model fitting
was implemented using the ASReml-R (Ver. 4) package in
R (Butler et al., 2009; Gilmour et al., 2015), with variance
components estimated by residual maximum likelihood (REML)
(Butler et al., 2009; Gilmour et al., 2015). Additional details for
each model follow.

Model I
Model I was developed to fit a single observation per plot,
with this single observation being either extracted from a
single orthomosaic image per plot (ym, Model Ia) or by
averaging multiple plot-level observations (yr̄) extracted from
orthorectified images (Model Ib). Specifically,

Model Ia : ym,ijkl = µ(Ia) + G(Ia)
i + B(Ia)

j + R(Ia)
k(j) + C(Ia)

l(j)
+ e(Ia)

ijkl

(3)

Model Ib : yr̄,ijkl = µ(Ib)
+ G(Ib)

i + B(Ib)
j + R(Ib)

k(j) + C(Ib)

l(j)
+ e(Ib)

ijkl

(4)

where superscripts (Ia) and (Ib) indicate the model that each
parameter corresponds to. Within each model, µ represents
the intercept, Gi is the random effect of the ith entry assumed
distributed as iid Gi ∼ N(0, σ2

G), Bj is the random effect of
the jth block assumed distributed as iid Bj ∼ N(0, σ2

B), Rk(j) is
the random effect of the kth row nested within a block and
assumed distributed as iid R(j)k ∼ N(0, σ2

R), Cl(j) is the random
effect of the lth column nested within block and distributed
as iid C(j)l ∼ N(0, σ2

C) Finally, e(Ia)
ijkl ∼ N(0, σ2

e(Ia)) and e(Ib)
ijkl ∼

N(0, σ2
e(Ib)) are model-specific left-over residuals unique to the

ijklth plot.

Model II
Given the multiple observations on each plot that were extracted
from orthorectified images (yr), it is possible to assess the
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variability between observations within a plot (i.e., within-plot
variance) by expanding Model I as follows.

Model II : yr,ijklm = µ(II)
+ G(II)

i + B(II)
j + R(II)

k(j) + C(II)
l(j)

+ (R× C)(B)
(II)
kl(j) + ε

(II)
ijklm (5)

where µ, Gi , Bj , Rk(j), and Cl(j) are defined as for Model I.
Meanwhile, (R× C)(B)

(II)
kl(j) is the random effect of an individual

plot identified by the combination of the kth row and the
lth column within the jth block, assumed iid distributed (R×
C)(B)

(II)
kl(j) ∼ N(0, σ2

R×C(B)(II)), and ε
(II)
ijklm is the leftover residual

noise of the observation collected on the mth orthorectified
image of the ijklth plot, and assumed as iid distributed ε

(II)
ijklm ∼

N(0, σ2
ε(II)) Notably, in Model II, left-over residual terms ε

(II)
ijklm are

unique to each ijklmth observation within a given plot and thus
represent technical replication (i.e., subsampling) of plots in the
data collection process.

Model III
Recall that each orthorectified image includes multiple plots
in the camera field of view (Figures 3–5) and that images
were captured by the UAS following a serpentine trajectory
(moving along the column direction and turning around at
the boundary rows) to cover the entire field. Therefore, for
Model III, we consider replacing the specification of spatial
effects of row and column with a clustering effect of image, as
follows:

yr,ijn = µ(III)
+ G(III)

i + B(III)
j + I(III)

n + G× B(III)
ij + ε

(III)
ijn (6)

where µ, Gi, and Bj are defined as for Model II. In turn, I(III)
n is

the random effect of the nth image and is assumed distributed as
iid I(III)

n ∼ N(0, σ2
I(III)) Meanwhile, each plot is identified by the

combination of the ith entry in the jth block, namely (G× B)
(III)
ij

and assumed iid (G× B)
(III)
ij ∼ N(0, σ2

G×B(III)) Finally, ε(III)
ijn is the

left-over residual noise of the observation collected on the nth

orthorectified image of the ijth plot, assumed distributed as iid
ε
(III)
ijn ∼ N(0, σ2

ε(III)) Much like in Model II, residual terms ε
(III)
ijn

in model III are unique to an observation within a plot and
thus represent technical replication (i.e., subsampling) in the data
collection process.

Model IV
Model IV extends Model III to recognize that orthorectified
images on a given plot are captured from different angles. Thus,
Model IV incorporated camera view angle as an explanatory
covariate in the linear predictor. This angle is defined from the
center of the field plot to the camera’s position where the image
is captured. As the UAS’s altitude could not be held constant
during image acquisition, the absolute camera height above the
ground level could not be accurately measured. Therefore, only
the latitude and longitude (i.e., y and x coordinates) values of

both the plot center and the camera were used to calculate
the camera azimuth angle (Figure 3). Model IV was specified
as follows:

yr,ijn = µ(IV)
+ Xijnβ

(IV)
+ G(IV)

i + B(IV)
j + I(IV)

n

+ G× B(IV)
ij + ε

(IV)
ijn (7)

where Xijn is the camera azimuth angle corresponding to the nth

orthorectified image for the ijth plot, β is the associated partial
regression coefficient, and all remaining terms are defined as
in Equation (6).

Model Comparison
Specific model comparisons were targeted to address questions
of interest. Specifically, Model Ib was compared to Model Ia to
evaluate the effect of an averaged plot-level observation extracted
from multiple orthorectified images compared to a single
observation extracted from blended pixels in an orthomosaic
image. Next, Model II was compared to Model I to investigate
the effect of subsampling on estimation of the additive genetic
variance (and functions thereof) based on multiple plot-level
observations extracted from orthorectified images (II) compared
to a single plot-level observation extracted from an orthomosaic
image (Ia) or from the average of multiple orthorectified images
(Ib). Furthermore, a comparison between Models II and III were
intended to consider alternative ways of accounting for spatial
variation, namely through rows and columns (II) vs. image
clusters (III). Finally, Model IV expanded Model III to adjust
for potential technical effects of the UAS with respect to the
camera view angle.

Two metrics were selected for model comparisons,
specifically the broad-sense heritability (H2) or
repeatability, and the Bayesian Information Criterion (BIC)
(Neath and Cavanaugh, 2012).

For all models, variance component estimates were used
to compute H2 as follows. Specifically, to Models Ia and Ib
(Equations 3 to 4), H2 was calculated as,

H2
=

σ2
G

σ2
G +

σ2
e
r

(8)

Using estimates of the entry-level variance σ2
ε and the plot-

level variance σ2
e from Models Ia and Ib, and r defined as the

number of plots per entry (i.e., number of blocks). For Models
II, III, and IV (Equation 5 to 7), the calculation of H2 included
plot-level variance estimates (i.e., σ2

R×C(B)(II) , σ2
G×B(III) , σ2

G×B(IV)),
and estimates of σ2

ε characterizing subsampling, weighted by the
number of subsamples (n) per plot, calculated as the harmonic
mean number of observations across plots. Specifically, for
model II

H2
=

σ2
G

σ2
G +

σ2
R×C(B)

r +
σ2
ε

rn

(9)
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FIGURE 3 | Illustration of the camera azimuth angle. The RGB image was captured by the UAS showing a small part of the field. The blue dot represented the
camera projected position on the ground. Red dots represented the center of each plot. The camera azimuth angle (θ) was the angle between the true east (as 0◦)
and the vector from the plot center to the camera position.

And for each of Models III and IV:

H2
=

σ2
G

σ2
G +

σ2
G×B
r +

σ2
ε

rn

(10)

As Models Ia, Ib, and II have different response variables, and
BIC is used for model comparison assuming the same set of
observations on the response variable, BIC is only used for
Models II, III and IV in this study. Values of BIC were obtained
from the ASReml-R (Ver. 4) package output. Smaller values of
BIC are considered to indicate better fitting models.

Data Availability
Data associated with these experiments, including the cropped,
plot-level orthomosaic images and corresponding orthorectified
images, can be accessed at the public repository7.

RESULTS AND DISCUSSION

Orthomosaic and Orthorectified Image
Generation and Gross Description
Using a case-study approach, we illustrate differences in image
generation, gross description and corresponding trait extraction
from orthomosaic images and orthorectified images. Specifically,
for CT we used the March 2, 2018 dataset from spring wheat field
(Figure 4), for NDVI we used the April 4, 2018 data from the
winter wheat field (Figure 5), and for GC we used the November
3, 2018 data from the winter wheat field (Figure 6).

For the CT trait, gross differences in trait extraction
are directly observable in a side-by-side comparison of the

7http://people.beocat.ksu.edu/~xuwang/Data_2019_FPS/

orthomosaic image with two of the orthorectified images
(Figures 4A vs. 4B,C). Notably, all three images in Figure 3 show
ranges in CT from 25◦C (blue pixels) to 45◦C (red pixels), as
shown in the corresponding scales. Consider the individual plot
marked with a star; the orthomosaic image seems to indicate a
relatively low plot-level CT, based on more yellow pixels for that
plot (Figure 4A). In contrast, the two orthorectified images show
relatively high CT for the said star-marked plot, based on more
orange and red pixels (Figures 4B,C). As observed, plot-level CT
observations extracted from orthorectified images can disagree
with the information available from the orthomosaic image,
although not all orthorectified images reveal huge difference from
the orthomosaic image on a given plot.

Similarly, directly observable differences were apparent
between an orthomosaic and two orthorectified images for NDVI
in wheat plots (Figure 5). Values of NDVI range from 0 (red
pixels) to 0.8 (blue pixels) in all three images (Figure 5). For
instance, consider the subset of six plots inside the yellow dashed
rectangle in each of the three images. Although the difference
is subtle, it is still visually detectable that more blue pixels in
one orthorectified image (Figure 5C) than the other (Figure 5B).
This perceived difference could be due to variation in reflectance
over time due to the change of solar angle and different camera
view angles. Another possible explanation may be digital artifacts
of the camera, as it seemed that plots located at the east and
south sides of both orthorectified images (Figures 5B,C) showed
higher NDVI (i.e., more blue pixels) than plots in the remaining
area of each image.

As for visual inspection of images of GC, we could not
detect obvious GC differences between the orthomosaic image
(Figure 6A) and the orthorectified images (Figures 6B,C). As GC
is sensitive to the view angle from the camera to the plot, this
observation supports that both ortho images (either orthomosaic
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FIGURE 4 | Orthomosaic and orthorectified images of CT. Raw thermal images for CT were captured on March 2, 2018, at 60 m AGL and were processed to
generate (A) an orthomosaic image of the partial field and multiple orthorectified images of sections of the field, two of which are depicted here (B,C). Black
polygons delimited by thin dotted lines within each image delineate plot boundaries. Black polygons in thick dashed lines highlight a field section of interest common
to the three images. In each image, a black star marks the same plot. The range of temperature (in Celsius degree) is marked in each image. The continuous blue
areas (B,C) are non-effective pixels due to orthorectification to the raw images.

or orthorectified) have been processed to apply corrections in the
position of ground pixels caused by the perspective of the camera
view angle. However, it is still unclear if pixel intensity may vary
between orthomosaic and orthorectified images.

Taken together, the case studies presented here support
potential variation in traits extracted from orthomosaic and
orthorectified images. The main interest of a breeder is to
quantify the genetic component of such variation; yet other
sources of variation need to be considered and accounted for
as well, namely environment factors (e.g., spatial effects) and
imaging patterns due to the technology used for data collection
(i.e., camera view angles and digital processing artifacts).
Specifically, the illustrations presented above raised questions
about the information contained in plot-level orthomosaic
images generated by the photogrammetry process, as it was
perceived to fail to accurately reflect trait variation that was
directly apparent on plot-level observations originated from
orthorectified images. Our concern is that the blending of pixel

information that underlies the photogrammetry generation of
orthomosaic images could lead to loss of information, thus
undermining the quality of phenotypic data.

Plot-Level Traits Extraction
Plot-level observations on CT, NDVI, and GC traits from two,
five, and four datasets, each corresponding to a different data
collection date (Supplementary Table 2), were extracted from
orthomosaic and orthorectified images. For each trait, the total
number of observations extracted from orthorectified images and
the minimum, maximum, and median number of observations
per plot extracted from orthorectified images were summarized
(Supplementary Tables 3–5). The number of observations per
plot extracted from orthorectified images ranged from 3 to 49
across traits. From an experimental design standpoint, each
individual plot was assigned to a given genetic line. Thus, the
multiple observations per plot extracted from the orthorectified
images may be considered subsamples (i.e., technical replication)

Frontiers in Plant Science | www.frontiersin.org 9 October 2020 | Volume 11 | Article 58709342

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-11-587093 October 15, 2020 Time: 17:12 # 10

Wang et al. Improved Accuracy of HTP UAS

FIGURE 5 | Orthomosaic and orthorectified images of NDVI. Raw images for NDVI were captured on April 4, 2018, at 20 m AGL from the 2017–18 wheat field
experiment and were processed to generate (A) an orthomosaic image of a block in the field and multiple orthorectified images of sections of such block, two of
which are depicted here (B,C). Black polygons delimited by thin dotted lines within each image delineate plot boundaries. Yellow rectangles in dashed lines delimit
the same subset of six plots in all three images. The range of NDVI (unitless) is marked in each image. The continuous white areas (B,C) are non-effective pixels due
to orthorectification to the raw images.

for the entry that plot was assigned to. By contrast, only one
observation per plot was obtained for each trait from the
orthomosaic image for a given field.

Model Comparison
Table 1 shows estimated H2 for models Ia, Ib, II, III, and IV
fitted to each of the traits extracted, namely CT, NDVI and
GC. Table 2 shows BIC for model comparison between models

II, III, and IV fitted to each of the traits extracted, namely
CT, NDVI, and GC.

Models Ia, Ib, and II
For both CT and NDVI, the magnitude of H2 estimates for
Model Ib and Model Ia showed an inconsistent pattern across
datasets (Table 1), though estimates seemed to be numerically
greater in magnitude more often under Model Ib. In contrast,
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FIGURE 6 | RGB orthomosaic and orthorectified images used for ground cover. Raw images were captured on November 3, 2018, at 20 m AGL from the 2018–19
wheat field experiment and were processed to generate (A) an RGB orthomosaic image of two blocks of the entire field, (B,C) two orthorectified sample RGB images
illustrating different parts of the field. Black polygons in dashed lines within each image delineated plot boundaries. Red rectangles in dashed lines represented
overlapped areas between two orthorectified RGB images. The continuous black areas (B,C) are non-effective pixels due to orthorectification to the raw images.

for the GC trait, estimates of H2 were consistently greater in
numerical magnitude under Model Ia than Ib based on the four
datasets considered.

Comparing H2 estimates of all three traits between using
Model Ia and Model II, we observed that H2 estimates of the
CT trait on both two dates were improved by the latter model,

as well as all H2 estimates of the NDVI trait except the one
on the last date (Table 1). Taken together, for CT and NDVI
traits, fitting multiple observations per plot into a hierarchical
model that recognizes subsampling can help recover additive
genetic variability in the data, as indicated by greater estimates
of broad-sense heritability.
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Compared to Model Ib, Model II explicitly accommodated
technical replication in phenotypic information, causing
beneficial H2 estimates in all cases; however, the magnitude of
gains ranged from moderate to marginal.

In summary, fitting phenotypic values of some crop traits
(e.g., CT and NDVI) extracted from orthorectified images could
increase estimates of H2 in some cases, relative to the same
phenotypic traits obtained from orthomosaic images (Model Ia).
However, the estimation of H2 through fitting the GC trait could
not be improved by simply replacing the single observation
from the orthomosaic image with the average observations
extracted from multiple orthorectified images. This inconsistent
pattern was possibly due to the “mosaic” blending mode selected
during photogrammetry processing of the orthomosaic photos.
According to the Agisoft User Manual (2018), pixels were
not simply blended by averaging pixel values from different
photos in this blending mode, but through a pixel frequency
related selection – a two-step approach. It was likely to be the
reason why Model Ib and II could not always improve the trait
estimation compared to Model Ia. Further research is required to
characterize the extent of the expected benefit in terms of specific
crops traits and circumstances of the growth season and data
collection technology.

Model II vs. III
For CT and NDVI traits, H2 estimates were consistently
decreased based on variance component estimates from Model
III relative to Model II (Table 1), though the magnitude of
the difference ranges from 12 to 62%. As for BIC-based model
fit comparisons, results proved trait-specific. For CT, Model III
showed smaller BIC values, and thus, better fit than Model II.
However, for NDVI, most datasets showed better BIC-based fit
by Model II compared to Model III (Table 2).

As for GC, the H2 estimates were increased for all datasets
using Model III compared to Model II (Table 1). However, in
all cases, BIC indicated a most prevalent better fit of Model
II compared to III (Table 2). According to the result, for CT
and NDVI traits estimation, considering the image cluster effect

TABLE 1 | Estimated broad-sense heritability (H2) for models Ia, Ib, II, III, and IV
fitted to plot-level CT, NDVI, and GC observations on the case studies considered.

Date Model Ia Model Ib Model II Model III Model IV

CT

3/2/2018 0.838 0.815 0.839 0.736 0.717

3/19/2018 0.606 0.825 0.834 0.615 0.619

NDVI

4/4/2018 0.432 0.572 0.598 0.348 0.389

4/12/2018 0.529 0.579 0.590 0.492 0.492

4/19/2018 0.262 0.633 0.696 0.311 0.370

4/23/2018 0.489 0.605 0.650 0.250 0.307

5/16/2018 0.489 0.399 0.422 0.370 0.467

GC

10/3/2018 0.811 0.794 0.799 0.843 0.877

10/11/2018 0.824 0.808 0.809 0.942 0.942

10/21/2018 0.706 0.700 0.700 0.878 0.882

11/3/2018 0.502 0.417 0.419 0.727 0.731

TABLE 2 | Bayesian Information Criterion (BIC) for models II, III, and IV fitted to
plot-level CT, NDVI, and GC observations on the case studies considered.

Date Model II Model III Model IV

CT

3/2/2018 739726 620273 597315

3/19/2018 522193 512660 509143

NDVI

4/4/2018 −25028 −24832 −25417

4/12/2018 −31071 −30699 −30735

4/19/2018 −20666 −20804 −21751

4/23/2018 −23435 −23156 −24090

5/16/2018 −20888 −19871 −20777

GC

10/3/2018 −22314 −23872 −24529

10/11/2018 −19322 −15933 −15939

10/21/2018 −23489 −18529 −18552

11/3/2018 −22831 −20139 −20166

introduced in Model III as a factor could improve the phenotypic
data quality; however, the row and column effect was still
dominate for all the trait estimation in this study.

Model III vs. IV
In most cases, H2 estimates obtained using variance component
estimates from Model IV were either increased or tied with those
computed based on Model III. The one exception was for the
CT trait based on the datasets from March 2, 2018 (Table 1).
In addition, BIC estimates were smaller for model IV relative to
III for all traits and in all cases, thereby indicated consistently
improved model fit of Model IV relative to III (Table 2). Recall
that Model IV included an additional explanatory variable,
namely the camera azimuth angle from the plot center to the
camera, could be proved to improve model fit. We observed
that recent studies have confirmed that the reflectance observed
by UAS are affected by multiple solar angles (Assmann et al.,
2018) and camera view angles (Cheng et al., 2019). Compared to
previous research, the multispectral images were not collected by
the UAS at multiple discrete camera view angles intentionally in
this study. Instead, the camera azimuth angles in this study were
continuously distributed according to the flight route. Therefore,
we considered the camera’s azimuth angle as an explanatory
covariate in a more general way and aimed to improve the
trait estimation.

In general, based on broad-sense heritability, the highest H2

estimates for CT and NDVI traits were most often obtained
when Model II was used for estimation, whereas for the GC
trait, the highest H2 estimates were obtained from Model IV
(Table 1), indicating that the best fitting model may be trait-
specific. Specifically, the highest estimates of H2 for CT and
NDVI traits were obtained when row and column effects were
recognized in the modeling exercise (i.e., Model II), while for
the GC trait, accounting for multiple images and the camera
view angle yielded higher H2 estimates, as shown by Model IV.
Other technical aspects or components of experimental design
may also be considered for modeling to further explain leftover
noise and enhance genetic signal. Moreover, even within a trait,
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estimation results were not consistent. For example, for the NDVI
trait, the dataset of May 16, 2018 yielded the highest H2 estimates
when fitted with Model Ia. This indicates the need for further
research to fine-tune processing of UAS imaging technology
for efficient and accurate extraction of phenotypes relevant to
crop improvement.

Cost Comparison Between the Two
Image Processing Methods
During the Agisoft photogrammetry processing in this study,
there is no computing cost difference between generation a
single orthomosaic photo or generation of multiple orthorectified
images. The export of multiple orthorectified images takes a
longer time, though marginal relative to the entire analysis.
As the number of orthorectified images per plot has increased
compared to only one orthomosaic photo per plot, the trait
extraction will take longer time than extracting trait values from
the orthomosaic photo. Fortunately, the plot-boundary shapefile
only needs to be generated once during trait extraction from the
orthomosaic photo and the same shapefile can be used for trait
extraction from multiple orthorectified images. Therefore, the
analysis pipeline for orthophotos presented here does increase
computational time, though a relatively marginal increase
compared to overall pipeline computational requirements and
the data collection time.

CONCLUSION

In this study, we demonstrated open-source and highly
reproducible image processing methods and applied it for
processing three crop phenotypes obtained by UAS, namely
canopy temperature, canopy NDVI, and early-stage ground
coverage, to seek the potential to improve quality of trait
extraction from UAS-based remote sensing. We compared
plot-level phenotypic traits extracted from the orthomosaic
image with those obtained from orthorectified images, and we
provided evidence that phenotyping by UAS remote sensing
could be improved by extracting observations directly from
multiple orthorectified images and through proper statistical
models that are used to capture and account for technological
sources of variability.

While further research will be needed, this study shows
preliminary evidence with important practical implications for
plant breeding and genetics. First, we developed image processing
pipelines that have the potential to automatically generate
the orthomosaic and orthorectified images from aerial images,
without any need for manual manipulation. Second, we proposed
batch processing pipelines to quantify different types of plot-
level phenotypic traits, namely CT, NDVI, and GC. In addition,
we illustrate how cropping plot-level images from orthorectified
images can highly improve the efficiency to link genotypes
to phenotypes. This approach can significantly increase the
number of image samples per plot, indicating views of a plot
from different angles, and provide huge training datasets for
image-based deep learning. Finally, we proposed four statistical
linear mixed models to efficiently partition sources of variation

in each trait, specifically variation introduced by the UAS
technology and accompanying image processing, in addition
to experimental design. The models provide breeders multiple
options to investigate traits extracted from high-throughput
UAS-based imaging. Overall, through this study, it is expected
that the future of modern breeding could be further highlighted,
where in conjunction with powerful genomics and phenomics
tools, UAS remote sensing can accelerate the genetic gains in
plant breeding to meet the global demand for food, fiber, and fuel.
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The wheat gliadins are a complex group of flour proteins that can trigger celiac disease
and serious food allergies. As a result, mutation breeding and biotechnology approaches
are being used to develop new wheat lines with reduced immunogenic potential. Key
to these efforts is the development of rapid, high-throughput methods that can be
used as a first step in selecting lines with altered gliadin contents. In this paper, we
optimized matrix-assisted laser desorption/ionization time-of-flight mass spectrometry
(MALDI-TOF-MS) and reversed-phase high-performance liquid chromatography (RP-
HPLC) methods for the separation of gliadins from Triticum aestivum cv. Chinese Spring
(CS). We evaluated the quality of the resulting profiles using the complete set of gliadin
gene sequences recently obtained from this cultivar as well as a set of aneuploid lines in
CS. The gliadins were resolved into 13 peaks by MALDI-TOF-MS. α- or γ-gliadins that
contain abundant celiac disease epitopes and are likely targets for efforts to reduce the
immunogenicity of flour were found in several peaks. However, other peaks contained
multiple α- and γ-gliadins, including one peak with as many as 12 different gliadins. In
comparison, separation of proteins by RP-HPLC yielded 28 gliadin peaks, including 13
peaks containing α-gliadins and eight peaks containing γ-gliadins. While the separation
of α- and γ-gliadins gliadins achieved by RP-HPLC was better than that achieved by
MALDI-TOF-MS, it was not possible to link peaks with individual protein sequences.
Both MALDI-TOF-MS and RP-HPLC provided adequate separation of ω-gliadins. While
MALDI-TOF-MS is faster and could prove useful in studies that target specific gliadins,
RP-HPLC is an effective method that can be applied more broadly to detect changes in
gliadin composition.

Keywords: gliadin profiling, chromosomal assignment, aneuploid lines, MALDI-TOF-MS, RP-HPLC, immunogenic
potential
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INTRODUCTION

Wheat (Triticum aestivum L.) is a major staple cereal grain
consumed by humans worldwide and a major source of protein
in the diet. The gluten proteins comprise about 70% of the total
grain protein (Shewry and Halford, 2002). Gluten proteins consist
of 70–100 different proteins that play a major role in the dough
mixing properties of flours and determine their suitability for
bread-making (Shewry et al., 2003). Some gluten proteins also
trigger severe diseases in humans, including celiac disease (CD),
and food allergies (Biagi et al., 1999; Matsuo et al., 2004, 2005;
Battais et al., 2005a; Bittner et al., 2008; Sollid et al., 2012).
Gluten proteins are traditionally classified into glutenins and
gliadins (Shewry and Tatham, 1990). The polymeric glutenins
consist of high-molecular-weight glutenin subunits (HMW-GS)
and low-molecular-weight glutenin subunits (LMW-GS) that
are linked by disulfide bonds. Gliadins are monomeric proteins
that account for approximately 40% of the gluten proteins and
are particularly immunogenic (Battais et al., 2005a). Gliadins
are generally separated into four complex classes, α-, γ-, δ-,
and ω-gliadin, based on their electrophoretic mobility in acid
polyacrylamide gel electrophoresis (A-PAGE) (Anderson et al.,
2012). The ω-gliadins are further divided into ω-5 gliadins and
ω-1,2 gliadins on the basis of both size and repetitive motifs.
A number of epitopes that trigger the food allergy wheat-
dependent exercise-induced anaphylaxis (WDEIA) have been
identified in ω-5 gliadins (Battais et al., 2005b), while α-, γ-, and
ω-1,2 gliadins contain clusters of epitopes that are active in celiac
disease (Tye-Din et al., 2010; Sollid et al., 2012).

γ-, δ-, and ω-gliadins are encoded at the Gli-1 loci on the short
arms of the group 1 homeologous chromosomes in hexaploid
wheat and linked to the LMW-GS, while the α-gliadins are
encoded at the Gli-2 loci on the short arms of the group six
chromosomes. Recent genome sequencing efforts in the reference
wheat Chinese Spring (CS) revealed the complexity of the gluten
protein families and a complete set of gliadin and LMW-GS
genes including 47 α-gliadin, 14 γ-gliadin, five δ-gliadin, 19
ω-gliadin, and 17 LMW-GS genes was assembled and annotated
[Huo et al., 2018a,b; International Wheat Genome Sequencing
Consortium (IWGSC) et al., 2018]. Of these, genes for 26
α-gliadins, 11 γ-gliadins, two δ-gliadins, seven ω-gliadins, and
10 LMW-GS encode full-length proteins. Transcriptomic studies
further revealed wide ranges of expression levels for individual
genes within the families. Additionally, Altenbach et al. (2020)
used two-dimensional gel electrophoresis (2-DE) combined with
tandem mass spectrometry (MS/MS) to link individual protein
spots in a total protein extract from CS flour to 16 of 26 α-gliadin,
10 of 11 γ-gliadin, one of two δ-gliadin, and six of seven ω-gliadin
genes. Most of the genes that were not associated with protein
spots encoded proteins that were very similar to other proteins or
were expressed at low levels in transcriptomic experiments.

In efforts to reduce the immunogenic potential of wheat flour,
many research groups are now using classical breeding methods
or biotechnology techniques to eliminate gliadins that contain
immunogenic sequences from wheat flour. Mutation breeding
using ethyl methanesulfonate (EMS) or γ ray-irradiation, gene
silencing by RNA interference (RNAi), and genome editing

techniques such as CRISPR/Cas9 can be used to inactivate
or delete single genes (EMS, CRISPR, and RNAi), multiple
homologous genes (CRISPR, RNAi) or blocks of genes at
particular chromosomal locations (γ ray-irradiation). Critical
for these efforts is the availability of high-throughput screening
methods that can be used as a first step in selecting lines with
altered gliadin contents.

In this study, we optimized matrix-assisted laser
desorption/ionization time-of-flight mass spectrometry
(MALDI-TOF-MS) and reversed-phase high-performance
liquid chromatography (RP-HPLC) methods for the analysis of
gliadins. By using the reference wheat CS for this study, we were
able to take into account the recently published set of gliadin
sequences to determine whether the methods have sufficient
resolution to reveal the complexity of this group of proteins. In
addition, the analysis of aneuploid lines from CS made it possible
not only to confirm the chromosomal locations of gliadins found
in different peaks of the chromatograms, but also to determine
whether lines that are missing regions of chromosomes with
multiple gliadin genes could be distinguished. In this paper, we
discuss the advantages and limitations of MALDI-TOF-MS and
RP-HPLC for use in early screening experiments.

MATERIALS AND METHODS

Plant Materials
Chinese Spring (Triticum aestivum L.) and its group 1 and 6
aneuploid lines were kindly provided by National Bioresource
Project, Japan. The plants were grown and harvested at National
Institute of Agricultural Sciences, Jeonju, South Korea in 2017.

Extraction of Gliadin and Glutenin
For MALDI-TOF-MS analysis, gliadin was prepared as described
by Dziuba et al. (2014). Thirty mg of flour was mixed with
150 µl 0.15 M NaCl solution and shaken for 2 h. After
centrifugation at 12,000 rpm for 10 min, the supernatant
containing albumin/globulin was discarded. The gliadin in the
pellet was dissolved and extracted with 150 µl of 60% EtOH for
2 h. After centrifugation at 12,000 rpm for 5 min, 100 µl of the
supernatant was moved to a new tube and stored at 4◦C.

For RP-HPLC analysis, gliadins were prepared as described
by DuPont et al. (2000). One-hundred mg of flour was dissolved
in 1 ml of 70% EtOH and shaken for 2 h at room temperature.
Gliadin proteins were extracted with 70% EtOH or 70% EtOH
containing 0.15% NaCl. After centrifugation at 12,000 rpm for
10 min, 1 ml of the supernatant fraction was transferred to a
new 1.5-ml tube and freeze-dried for 3 h. The dried gliadins were
stored at−80◦C until use.

For detection of contaminated LMW-GS peaks in RP-HPLC
analysis of the gliadin fraction, glutenins were prepared as
described by Singh et al. (1991). One-hundred mg of flour was
extracted with 5 ml of 50% propanol with incubation for 30 min
at 65◦C, followed by centrifugation for 5 min at 10,000 g. The
supernatant containing gliadin was removed and the residue
containing glutenin was resuspended in 500 µl of extraction
buffer (50% propanol, 0.08 M Tris–HCl, pH 8.0) containing 2%
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dithiothreitol (DTT). The samples were incubated for 30 min
at 65◦C. After a 5 min centrifugation, 500 µl of extraction
buffer containing 1.4% 4-vinylpyridine for alkylation was added
to the supernatant. After incubation for 15 min at 65◦C and
centrifugation for 5 min, the supernatant was transferred to a new
tube and stored at−80◦C until use.

All extractions were performed at least two times.

Analysis of Gliadin Using MALDI-TOF-MS
Two matrices were prepared according to the double layer
method of instrument maker’s manual using sinapic acid (SA).
Matrix I consisted of SA saturated in EtOH at a concentration
of 10 mg/500 µl and matrix II consisted of SA saturated in
0.3% trifluoroacetic acid (TFA) in 50% acetonitrile (ACN) at a
concentration of 200 mg/10 ml. Matrix I (1 µl) was spotted
onto a MSP 96 target polished steel (Bruker Daltonics, Bremen,
Germany) and allowed to air dry for approximately 5 min at room
temperature. Each sample (1 µl) was diluted into 50 µl of matrix
II and 1–1.5 µl of the sample/matrix II mixture was deposited
onto the top of the matrix thin layer and then dried at room
temperature. Gliadins were measured on a MALDI Microflex
LT instrument equipped with a 60 Hz nitrogen laser (Bruker
Daltonics, Bremen, Germany). Mass spectra were recorded in the
linear positive mode and externally calibrated using a mixture of
peptide/protein standards. To increase detection sensitivity, the
following conditions were used: mass range 22,491–61,376 Da,
sample rate 1.00 GS/s, laser shots 100, laser power 85%, laser
frequency 60, and detector gain 33X. Each extracted sample was
analyzed at least five times.

Analysis of Gliadins Using RP-HPLC
Gliadin fractions were analyzed by RP-HPLC using a Waters
Alliance e2695 equipped with an Agilent ZORBAX 300SB-C18
column (5 µm, 4.6 × 250 mm i.d., Agilent Technologies,
United States). Water and ACN, both containing 0.1% TFA, were
used as the mobile phase A and B. Dried gliadin pellets were
mixed completely in 500 µl of 0.1% TFA in 20% ACN and filtered
using a PVDF syringe filter (0.45 µm, Whatman, Maidstone,
United Kingdom). Ten µl of each sample was injected and a
linear gradient of 25–50% of solvent B was applied. The RP-
HPLC analysis of gliadin was carried out with a flow rate of
1 ml/min at a column oven temperature of 65◦C and monitored
at a wavelength of 210 nm. Each extracted sample was analyzed
at least five times.

RESULTS

Sample Optimization for MALDI-TOF-MS
To optimize the resolution of the gliadin proteins in MALDI-
TOF-MS analysis, we extensively tested three major factors. These
included extraction solvents, dilution volumes, and composition
of matrix II for protein ionization (Table 1 and Figure 1).

Extraction Solvents
To verify the effects of extraction solvents in mass spectra,
we optimized the gliadin protein extraction from whole wheat

grains according to the two previously reported methods (Dziuba
et al., 2014; Han et al., 2015). The difference between the two
methods is the use of 0.15 M NaCl to remove salt-soluble
albumins and globulins before extracting gliadins with aqueous
alcohol. Four extraction conditions were tested and compared:
60% EtOH, 70% EtOH, 0.15 M NaCl + 60% EtOH, and 0.15 M
NaCl + 70% EtOH. Unexpectedly, two ω-5 gliadin peaks in
the mass range of about 50–57 kDa were not detected in the
gliadin fractions extracted with either 60 or 70% EtOH, but
were present in those extracted with 0.15 M NaCl plus EtOH
(Figure 1A). The best resolution was obtained from the gliadin
fraction extracted with 60% EtOH after treatment with 0.15 M
NaCl (Figure 1A).

Dilution Volume
The effects of different dilution volumes (25, 50, 75, and 100 µl)
were investigated to find the optimal volume of sample to dissolve
in matrix II. As shown in Figure 1B, the mass spectra of the
four dilution volumes were almost the same, and the 50 µl
dilution volume was selected for MALDI-TOF-MS analysis and
for reducing the amount of matrix II (Figure 1B).

Matrix II and Optimization of Ratios of
the Solvent
For matrix II, we added the ionization solvent SA, which is
mainly used to ionize relatively high molecular weight proteins.
TFA was added for sharpness of peaks and good resolution at
concentrations of 0.1, 0.3, and 0.5%. We also optimized the
amount of acetonitrile (ACN) (30% or 50%) in the MALDI-TOF-
MS analysis of gliadin proteins. The mass spectra of gliadins with
the solvent containing 50% ACN and 0.3% TFA with SA was
found to be optimal (Figure 1C).

Based on the results described above, we concluded that
the optimal method for sample preparation was first to extract
gliadins with 60% EtOH containing 0.15 M NaCl. After mixing
1 µl of the gliadin mixture with 50 µl of a solvent of 50% ACN

TABLE 1 | Major factors used in this study to optimize mass spectra of
MALDI-TOF-MS in gliadin fraction of Chinese Spring (CS).

Factor Parameter

Extraction solvents 60% EtOH

70% EtOH

0.15 M NaCl + 60% EtOH

0.15 M NaCl + 70% EtOH

Dilution volume 10 µl

50 µl

75 µl

100 µl

Matrix II components SA dissolved in 0.1% TFA in 30% ACN

SA dissolved in 0.1% TFA in 50% ACN

SA dissolved in 0.3% TFA in 30% ACN

SA dissolved in 0.3% TFA in 50% ACN

SA dissolved in 0.5% TFA in 30% ACN

SA dissolved in 0.5% TFA in 50% ACN
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FIGURE 1 | Effects of three major factors on MALDI-TOF-MS resolution of Chinese Spring gliadins. (A) gliadin extraction solvents, (B) dilution volume, and (C) matrix
II components. The optimal conditions showing good resolution are underlined.

FIGURE 2 | MALDI-TOF mass spectrum of gliadin fraction from Chinese Spring. The numbers for each gliadin peak and their observed molecular weights are
indicated. Regions of α-, γ-, and ω-gliadin subgroups are shown with arrows.

and 0.3% TFA with SA, 1 µl of the total mixture was loaded onto
the target plate for MALDI-TOF-MS analysis.

Analysis of Gliadin Proteins by
MALDI-TOF-MS
The optimized method was used to analyze the gliadin profiles of
CS wheat. The mass spectrum of gliadin extracts from CS showed
13 distinct peaks (Figure 2). The molecular ion signals of nine
peaks at approximately 29–40 kDa, two peaks at approximately

40–44 kDa, and two peaks at approximately 50–57 kDa, likely
correspond to α/γ-, ω-1, 2-, and ω-5 gliadins, respectively
(Ferranti et al., 2007; Gil-Humanes et al., 2008; Sánchez-León
et al., 2018).

Gliadins prepared from 10 nullisomic-tetrasomic (NT) lines
for the group 1 or 6 chromosomes and three ditelosomic (DT)
lines lacking the short arm of the group 6 chromosomes in
the CS background were also analyzed in an attempt to assign
proteins in peaks to specific chromosomes (Figure 3 and Table 2).
Eight peaks (2, 7, 8, 9, 10, 11, 12, 13) were associated with the
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FIGURE 3 | MALDI-TOF-MS profile analysis of gliadin fractions from Chinese Spring and its group 1 and 6 aneuploid lines to assign gliadin peaks to 1A, 1B, 1D, 6A,
6B, and 6D chromosomes. The numbers of distinctly reduced or missing peaks are marked on each mass spectrum of corresponding aneuploid lines of Chinese
Spring.

Gli-A1, Gli-B1, and Gli-D1 loci. In the mass spectra of aneuploid
lines N1AT1B and N1AT1D (which lack chromosome 1A), Peak
2 was drastically decreased while Peak 8 disappeared. Thus,
these two peaks likely correspond to γ-gliadins on chromosome

1A. This assignment was supported by our findings that Peaks
2 and 8 increased in lines N1BT1A and N1DT1A (which
lack chromosomes 1B and 1D, respectively, but have an extra
copy of chromosome 1A). Peak 9 was significantly reduced
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TABLE 2 | Characteristics of 13 gliadin peaks resolved by MALDI-TOF-MS in Chinese Spring and its aneuploid lines, comparison with proteins deduced from full-length
gliadin genes by Huo et al. (2018a; 2018b), and with results of quantitative 2-DE analysis reported by Altenbach et al. (2020).

MALDI-TOF-MS Huo et al., 2018a,b Altenbach et al., 2020

Peak Rangea Chromosomeb Gliadinc Gened Predicted MWe 2-DE Spot# Spot volumef

1 29800–30300 Unknown α-A10 29,996 117,118 0.8

α-D12 30,175

2 30300–31200 1A γ α-A4 30,506 119,120 1.8

6A α α-A6 30,621 121,122,123 0.5

γ-A3g 30,655 123, 124,125,126 2.9

γ-A4g 30,655 123,124,125,126 2.9

α-D1 30,699

α-D9 30,810

γ-B6 30,982 121,122,123,139 0.8

α-A8 31,050

3 31200–32500 Unknown α-B15 31,284

α-B14 31,413 109,112 0.7

α-D8h 31,435 84,85,107,111,113,114 2.1

α-A1 31,440 111,113,114 1.4

α-B11 31,535

α-D4 31,542 108,109 1.4

γ-D3 31,619 109 0.3

α-D6h 31,706 102 0.4

α-B18 31,829

γ-B2 31,834 102 0.4

γ-D4 31,865

α-B17 32,039 82 0.2

α-B16 32,054 113 0.1

α-A9 32,181

γ-B1h 32,431 99 0.4

4 32500–33050 6B α γ-D1h 32,606 99,100,102,107 1.1

5 33050–33600 6D α α-D5 33,412 103,106,110,112 1.7

α-A5 33,479

6 33600–34300 6B α α-B25 33,818

α-B7 33,968 85,104 0.5

α-B9 33,977 105 0.9

NP 34300–34900 α-A2 34,471 81,82,83,84 0.8

δ-B1 34,558

α-B8 34,781 86,91 0.9

7 34900–35900 1D γ γ-D2 35,188 86,101 1.7

δ-D1 35,450 80.81.82 0.9

NP 35900–36600 α-B3 36,206 62 0.3

8 36600–37300 1A γ γ-A1 36,892 61.77.78 1.9

9 38600–39900 1B γ ω-A4i 39,651 37,75,79 1.1

γ-B4 39,892 74,75,76,78 1.9

10 41550–42400 1D ω-1,2 ch,i 41,831 34,35 0.5

11 42400–43200 1D ω-1,2 ω-D2g,i 42,744 31,32 3.5

ω-D3g,i 42,744 31,32 3.5

NP 43200–50500 ω-D4j 44,416 43 0.3

ω-B3 47,650

12 50500–52000 1B ω-5 ω-B6 51,532 25,27,28,29 6.3

13 55600–56800 1B ω-5

aMass range from the beginning to the end of each peak as shown in Figure 2. Mass ranges not associated with specific peaks are designated as NP in column 1.
bAssigned chromosome determined by comparing MALDI-TOF-MS profiles of Chinese Spring and its aneuploid lines. cAssigned gliadin protein determined by comparing
MALDI-TOF-MS profiles of Chinese Spring and its aneuploid lines, and by mass range. dGliadin genes that encode full-length proteins within the mass range of each
peak. eMature protein following removal of signal peptide. f % total normalized volume determined by quantitative 2DE analysis. gGenes encode identical proteins; the
same spot numbers and % total normalized volume are reported for both genes. hGenes encode proteins containing an odd number of cysteine residues that are likely to
partition in the glutenin fraction. iThe second predicted MW as a result of processing with an asparingyl protease is not indicated. jConsidered pseudogenes in Huo et al.,
2018a but they contained stop codon near 3′ end resulting in truncated proteins reported by Altenbach et al., 2018, 2020.
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in the α/γ-gliadin region and Peaks 12 and 13 disappeared
completely in the ω-5 gliadin region in lines N1BT1A and N1BT1
(missing chromosome 1B). Because these peaks also increased in
lines N1AT1B and N1DT1B (containing an extra chromosome
1B), they were assigned to chromosome 1B. Peak 7 in the
α/γ-gliadin region and Peaks 10 and 11 in the ω-1,2 gliadin
region were assigned to chromosome 1D by comparing the mass
spectra of lines N1DT1A and N1DT1B (missing chromosome
1D) and N1AT1D and N1BT1D (containing an extra copy
of chromosome 1D).

The comparison of MALDI-TOF mass spectra of the group
6 aneuploid lines missing genes encoding α-gliadins with that
of CS allowed the assignment of four peaks (2, 4, 5, 6) to the
Gli-2 loci (Figure 3 and Table 2). In the mass spectra of lines
N6AT6B, N6AT6D, and 6AL (which lack chromosome 6A or
the short arm of chromosome 6A (6AS), Peak 2 was very small,
whereas it was increased in line N6BT6A (containing an extra
copy of chromosome 6A), indicating that Peak 2 corresponds
to α-gliadins on chromosome 6A. Considering the results in
the previous paragraph, gliadins in Peak 2 were assigned to two
chromosomes, 1A and 6A. The profiles of lines N6BT6A and
6BL (which are missing chromosome 6B or 6BS), enabled us to
assign Peaks 4 and 6 to chromosome 6B. This assignment was
also supported by an increase of the two peaks in line N6DT6B
(containing an extra chromosome 6B). Peak 5 was assigned to
chromosome 6D by analyzing the mass spectra of lines N6DT6B
and 6DL (missing chromosomes 6D or 6DS, respectively), and
N6AT6D (containing an extra copy of chromosome 6D). Of the
13 peaks in MALDI-TOF mass spectra for CS, 10 peaks were
assigned to either chromosomes 1 or 6, one peak (2) was assigned
to both chromosomes 1 and 6, and two peaks (1, 3) could not
be assigned.

The availability of the sequences for the complete set of full-
length gliadin genes from CS (Huo et al., 2018a,b) made it
possible to compare the observed molecular weights (MWs) of
peaks in the CS gliadin fraction determined by MALDI-TOF-
MS to the predicted MWs of the mature proteins. Table 2
shows the mass ranges corresponding to the beginning and
end of peaks observed in MALDI-TOF-MS (Figure 2). Gliadin
proteins with predicted MWs in the mass range of each peak are
also shown along with their accumulation levels in wheat flour
measured by quantitative 2-DE analysis combined with MS/MS
(Altenbach et al., 2020).

Peak 1 was a minor peak in the MALDI-TOF spectrum that
could not be assigned to any chromosome. Two CS gliadins fell
in the mass range of this peak, α-A10 and α-D12. However,
only α-A10 was also observed by 2-DE. Peak 2 was assigned to
chromosomes 1A and 6A. Five α-gliadins (α-A4, α-A6, α-A8,
α-D1, and α-D9) and three γ-gliadins (γ-A3, γ-A4, and γ-B6)
fell in the mass range of this peak. However, α-gliadins encoded
by chromosome 6D were not observed in 2-DE and the gliadins
encoded on chromosome 1A and 6A encompassed the bulk
of the 2-DE spot volume, consistent with the chromosomal
assignment. Fifteen CS gliadins fell within the mass range of
peak 3, although three (α-D6, α-D8, and γ-B1) contained an
odd number of cysteine residues and likely partition into the
glutenin fraction rather than the gliadin fraction. Two, 6 and

2 of the remaining α-gliadins were from the 6A, 6B, and 6D
chromosomes, respectively, while 1 and 2 of the remaining
γ-gliadins were from the 1B and 1D chromosomes, respectively.
Not surprisingly, it was not possible to assign this peak to a
particular chromosome using the aneuploid lines. Peak 4 was a
very minor peak that was assigned to chromosome 6B. However,
the only protein that fell into its mass range was γ-D1 containing
an odd number of cysteine residues. Peak 5 was assigned to
chromosome 6D and has two gliadin proteins in its mass range,
α-A5 and α-D5. However, α-A5 was not observed in the 2-
DE analysis. Interestingly, α-D5 is the only α-gliadin in CS that
contains the 33-mer toxic peptide, a major trigger for celiac
disease (Shan et al., 2002). Gliadins that fell within the mass
ranges of peaks 6, 7, 8 were consistent with their chromosomal
assignments. Peak 9 was assigned to chromosome 1B, however,
both γ-B4 and ω-A4 fell into its mass range. γ-B4 accounted
for a greater proportion of the spot volume in quantitative 2-
DE. ω-gliadins that fell within the mass ranges of peaks 10,
11 and 12 were consistent with their chromosomal assignments
although it should be noted that ω-D1 contains a single cysteine
residue. Peak 13 was assigned to chromosome 1B, but there was
no gliadin protein corresponding to its mass range. However, it is
interesting that one of the four protein spots identified by MS/MS
as ω-B6 had a notably slower mobility in 2-DE than the other
spots (Altenbach et al., 2020).

Analysis of Gliadin Proteins by RP-HPLC
Gliadin fractions from CS also were extracted and analyzed by
RP-HPLC with resolution optimized by adjusting elution time,
temperature, flow rate, and solvent conditions as described in the
Materials and Methods. As shown in Figure 4, 34 peaks from
CS were eluted according to their hydrophobicity. To ensure
that the gliadins were not contaminated with other proteins,
the glutenin fraction of CS was extracted using 50% propanol,
and RP-HPLC was conducted under the same analytical
conditions. The chromatograms of the gliadin and glutenin
fractions were compared. Peaks 15, 16, and 17 were identified
as likely LMW-GS (Supplementary Figure 1). Similarly, to
identify possible contamination of the extract with salt-soluble
albumins/globulins, gliadin proteins were extracted with 70%
EtOH and 70% EtOH containing 0.15 M NaCl. Comparison of
the chromatograms from the two extraction methods showed that
Peaks 4, 5, and 6 were likely albumins/globulins (Supplementary
Figure 1). Thus, ω-5 gliadins eluted in three peaks (1–3) between
5 and 13 min, and ω-1,2 gliadins eluted in four peaks (7–10)
between 19 and 25 min. α-gliadins were between 25 and 38.5 min
and separated into 13 peaks (11–14, 18–27). γ-gliadins eluted in
seven peaks (28–34) between 39 and 60 min (Figure 4).

By comparing the chromatogram patterns of RP-HPLC of
CS and its aneuploid lines for group 1 and 6 chromosomes,
the positions of gliadin peaks encoded by each chromosome
were determined (Figure 5). To identify gliadin peaks encoded
by chromosome 1A, we compared the chromatograms of CS
with those of lines N1AT1B and N1AT1D. Peaks 8–10 of ω-
1,2 gliadin were reduced, leaving only traces, and peaks 32
and 33 of γ-gliadin disappeared. The conclusion that peaks 8,
9, and 10 of ω-1,2 gliadin are encoded by chromosome 1A
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FIGURE 4 | RP-HPLC analysis of gliadin fraction from Chinese Spring. The eluted peak number and the result of chromosomal assignment of individual peaks by
comparing the RP-HPLC pattern with group 1 and 6 aneuploid lines are indicated. The position of albumin/globulin proteins (Peaks 4, 5, 6), contaminated LMW-GS
(Peaks 15, 16, 17) and unassigned peaks (UA, Peaks 13, 19) are shown as explained in section “Analysis of Gliadin Proteins Using RP-HPLC” of the Results.

FIGURE 5 | RP-HPLC pattern analysis of gliadin fractions from Chinese Spring and its group 1 and 6 aneuploid lines to assign gliadin peaks to 1A, 1B, 1D, 6A, 6B,
and 6D chromosomes. The numbers of distinctly reduced or missing peaks are marked on the chromatogram for the corresponding aneuploid lines of CS.
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was also supported by an increase of these three peaks in the
1A tetrasomic lines, N1BT1A and N1DT1A. For detection of
gliadin proteins encoded by chromosome 1B, we analyzed the
RP-HPLC profiles of CS and the chromosome 1B aneuploid
lines, N1BT1A and N1BT1D, and observed that peaks 1, 2,
and 3 of ω-5 gliadin were reduced, leaving only traces, and
peaks 27, 28, 31, and 34 of γ-gliadin were absent. The traces
of peaks 1, 2, and 3 in lines N1BT1A and N1BT1D were
assumed to be ω-5 gliadins encoded by ω-D4 on chromosome
1D rather than chromosome 1B, as its expression level is
very low (Altenbach et al., 2018, 2020; Huo et al., 2018a).
Lines N1DT1A and N1DT1B were used to assign gliadin
peaks encoded by chromosome 1D. In these lines, peak 7
of ω-1,2 gliadin and peaks 29 and 30 of γ-gliadin were
almost absent. Therefore, among chromosome 1A- and 1D-
encoded ω-1,2 gliadins in CS, chromosome 1D encodes the
most abundant form.

The NT and DT lines deficient in chromosomes 6A/6AS,
6B/6BS, and 6D/6DS were used to assign gliadin peaks to
chromosome 6 (Figure 5). Comparison of RP-HPLC profiles
of N6AT6B, N6AT6D, and 6AL (null 6A/6AS) lines with that
of CS revealed that peaks 23, 24, 25, and 26 of α-gliadin were
associated with chromosome 6A. In lines N6BT6A and 6BL
(which lack chromosome 6B/6BS), peaks 11, 14, and 18 were
absent in the α-gliadin region. In the profiles of lines N6DT6B
and 6DL (which lack chromosomes 6D/6DS), peaks 12, 20, 21,
and 22 were absent. When combining the comparative analysis
of all RP-HPLC profiles, only two peaks (13 and 19) out of 35
peaks could not be assigned to group 1 or 6 chromosomes.

As shown in Figure 4, the area of ω- 5-, ω-1, 2-, and γ-gliadin
peaks were well separated, but peaks 13–22, mainly assigned to
chromosomes 6B and 6D α-gliadin, were difficult to separate.
This difficulty can be explained by the grand average of the
hydropathicity index (GRAVY) of the 28 full-length gliadin genes
of CS with a 2-DE spot volume of 0.4 or higher (Supplementary
Table 1). The GRAVY is used to represent the hydrophobicity
value of a peptide and calculates the sum of the hydropathy values
for all the amino acids divided by the sequence length. From these
data, it can be seen that the GRAVY was very similar in each of the
α-gliadins derived from chromosomes 6A, 6B, and 6D compared
to other gliadin subgroups.

DISCUSSION

MALDI-TOF-MS and RP-HPLC procedures were optimized
and assessed for use as automatable, high-throughput methods
for screening wheat lines with altered gliadin compositions.
MALDI-TOF-MS separates proteins on the basis of molecular
mass and is attractive because the complete analysis of gliadin
proteins in a sample can be completed in about 1 min. RP-
HPLC, on the other hand, separates proteins on the basis of
hydrophobicity and has been used to analyze gliadin fractions
in wheat flours for many years (Brown and Flavell, 1981; Bietz,
1983; Bietz and Burnouf, 1985; Liu et al., 2005; Han et al.,
2015; Sánchez-León et al., 2018). However, analysis time per

sample is considerably greater than MALDI-TOF-MS, about
70 min per sample.

Both ω-5 and ω-1,2 gliadins were easily resolved by MALDI-
TOF-MS. Since ω-5 gliadins contain numerous epitopes that
trigger WDEIA and ω-1,2 gliadins contain immunodominant
epitopes for CD, both are likely targets for efforts to reduce
immunogenic potential of the flour. In comparison, it was
difficult to separate individual α- and γ-gliadins because many of
the proteins had very similar molecular masses. This represents
a fundamental limitation of the MALDI-TOF-MS method. In
fact, in one case a single peak in the spectrum likely contained
as many as 12 α- and γ-gliadins. Because these gliadins were
encoded on chromosomes 6A, 6B, 6D, 1B and 1D, it was also
impossible to assign this peak to a single chromosome. This
suggests that it would be difficult to detect deletions of multiple
α- and γ-gliadin genes on a single chromosome by MALDI-
TOF-MS. Nonetheless, three of the nine gamma gliadins that
were identified by 2-DE combined with MS/MS in Altenbach
et al. (2020) were distinguished by MALDI-TOF-MS. All were
relatively abundant proteins encompassing from 1.7 to 1.9%
of the total flour protein. Each protein also contained 10
CD epitopes, the most among the CS γ-gliadins. As a result,
these γ-gliadins may be the focus of targeted efforts to reduce
the immunogenicity of the flour. Only three of 16 α-gliadins
identified in 2-DE could be distinguished by MALDI-TOF-MS. It
is notable that these included α-D5 in peak 5, and α-B7 and α-B9
in peak 6. Because α-D5 contains the 33-mer toxic peptide, this
protein is also a likely candidate for targeted efforts to reduce the
immunogenicity of the flour. In comparison, α-B7 and α-B9 do
not contain CD epitopes and the presence of this peak in a sample
could provide evidence that efforts to selectively eliminate only
those proteins containing abundant CD epitopes were effective.
Thus, MALDI-TOF-MS could be useful as a rapid screening
method, depending on the overall goals of the experiment. Thus
far, MALDI-TOF-MS has been used to screen wheat lines in
two studies, one that used RNAi (Gil-Humanes et al., 2008) and
one that used gene editing to reduce immunogenic potential
(Sánchez-León et al., 2018).

Like MALDI-TOF-MS, RP-HPLC effectively separated both
ω-5 and ω-1,2 gliadins. Additionally, proteins in the α- and
γ-gliadin families were separated by RP-HPLC and a greater
number of proteins within each family were resolved. Of the 13
peaks assigned to α-gliadins, four were assigned to chromosome
6A, three to 6B, four to 6D and two were unassigned. Of the
8 peaks assigned to γ-gliadins, two were from chromosome
1A, four from 1B, and two from 1D. In comparison, 16 and 9
protein spots were identified as α- and γ-gliadins, respectively,
in quantitative 2-DE experiments of CS (Altenbach et al., 2020).
Thus, the RP-HPLC profile of the gliadin fraction generated in
this study revealed most of the major gliadin proteins expressed
in CS wheat flour. Although most peaks could be assigned to
individual chromosomes using the CS aneuploid lines, it was not
possible to discern which proteins were found in each peak, a
potential drawback of RP-HPLC. Further analysis of peaks by
MALDI-TOF-MS or MS/MS is therefore required to identify
individual proteins. In the final analysis, it is probably easier
to detect overall changes in α- and γ-gliadins by RP-HPLC
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than MALDI-TOF-MS, despite the longer analysis time. If
chromosomal assignments can be made, it should also be
possible to detect deletions of multiple gliadin genes on a single
chromosome. However, it is important to keep in mind that
aneuploid lines are not available for many cultivars.

Undoubtedly, experiments aimed at reducing the
immunogenic potential of flour will be conducted in commercial
cultivars grown in various parts of the world rather than in the
reference cultivar CS. Because of tremendous allelic variation
among cultivars, the complement of gliadins in each cultivar will
need to be evaluated. Fortunately, the availability of a reference
sequence from CS makes it possible to use gene capture methods
to obtain the sequences of gliadins from many different cultivars.
Analyses of these sequences will reveal the number of epitopes
for CD and food allergies in each protein and highlight the best
approaches to reduce the immunogenic potential of the flour.
Only then will it be possible to determine whether MALDI-TOF-
MS or RP-HPLC is most appropriate for screening altered lines.
In any event, it is important to keep in mind that such analyses
are only the first screening step and that more robust, time-
consuming, and technically challenging methods such as 2-DE
combined with MS/MS must ultimately be used to thoroughly
characterize the selected lines.
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Genomic selection (GS) is transforming the field of plant breeding and implementing 
models that improve prediction accuracy for complex traits is needed. Analytical methods 
for complex datasets traditionally used in other disciplines represent an opportunity for 
improving prediction accuracy in GS. Deep learning (DL) is a branch of machine learning 
(ML) which focuses on densely connected networks using artificial neural networks for 
training the models. The objective of this research was to evaluate the potential of DL 
models in the Washington State University spring wheat breeding program. We compared 
the performance of two DL algorithms, namely multilayer perceptron (MLP) and convolutional 
neural network (CNN), with ridge regression best linear unbiased predictor (rrBLUP), a 
commonly used GS model. The dataset consisted of 650 recombinant inbred lines (RILs) 
from a spring wheat nested association mapping (NAM) population planted from 2014–
2016 growing seasons. We predicted five different quantitative traits with varying genetic 
architecture using cross-validations (CVs), independent validations, and different sets of 
SNP markers. Hyperparameters were optimized for DL models by lowering the root mean 
square in the training set, avoiding model overfitting using dropout and regularization. DL 
models gave 0 to 5% higher prediction accuracy than rrBLUP model under both cross 
and independent validations for all five traits used in this study. Furthermore, MLP produces 
5% higher prediction accuracy than CNN for grain yield and grain protein content. 
Altogether, DL approaches obtained better prediction accuracy for each trait, and should 
be incorporated into a plant breeder’s toolkit for use in large scale breeding programs.

Keywords: artificial intelligence, convolutional neural network, deep learning, genomic selection, multilayer 
perceptron, neural networks, wheat breeding

INTRODUCTION

Genomic selection (GS) was first proposed in animal breeding for predicting breeding values of 
untested individuals (Meuwissen et  al., 2001). Recently, this technology has been adopted by plant 
breeders for predicting genomic estimated breeding values (GEBV) using genome-wide markers 
in GS models (Lorenzana and Bernardo, 2009; Heffner et  al., 2010). GS aids in the selection of 
parents for use in crossing and in the selection of progenies at an earlier stage, ultimately reducing 
the time required for completing the breeding cycle (Jonas and De Koning, 2013; Poland, 2015). 
It offers the potential of increasing the genetic gain per unit time and cost by increasing selection 
accuracy and shortening the generation of the breeding cycle. GS has been applied in several crop 
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species, such as barley (Hordeum vulgare L.), cassava (Manihot 
esculenta), maize (Zea mays L.), wheat (Triticum aestivum L.), 
and rice (Oryza sativa L.) (Maenhout et  al., 2007; Isidro et  al., 
2015; Sallam et  al., 2015; Okeke et  al., 2017; Lozada and Carter, 
2019). The fast-growing popularity of GS since the last decade 
can be attributed to the reduction in genotyping costs, producing 
thousands of polymorphic markers for most cultivated species 
(Poland et  al., 2012; Wang et  al., 2014). This nonetheless has 
resulted in a problem of so-called “large p, small n” when predicting 
phenotypes using markers.

Several statistical models are used to address this “large p, 
small n” issue by using penalized regression approaches. The 
most common GS model, ridge regression best linear unbiased 
predictor (rrBLUP), assumes markers to be  random and have 
common variance and reduces the effect of all markers equally 
towards zero (Endelman, 2011). Least absolute shrinkage selection 
operator (LASSO) performs variable selection and continuous 
shrinkage simultaneously, where some markers are assumed 
to have an effect while others are set equal to zero (Tishbirani, 
1996). Elastic net (EN) is the combination of both rrBLUP 
and LASSO, which uses average weight penalties from these 
two models (Zou and Hastie, 2005). Various Bayesian models 
(Bayes A, Bayes B, Bayes C, Bayes Cpi, and Bayes D) are 
equally important as they assume a heavy-tailed prior distribution 
or uses a combination of distributions for marker effects (Pérez 
et  al., 2010; Perez-Rodriguez et al., 2012; Perez and de Los 
Campos, 2014). These models rely on the use of Markov Chain 
Monte Carlo (MCMC) for estimating the marker effects and 
are computationally intensive. Recently, compressed BLUP 
(cBLUP) and super BLUP (sBLUP) models have been developed 
which combines the variable selection operator of Bayes models 
with the computational advantage of mixed models (Wang 
et  al., 2018). All these models are parametric as they assume 
a relationship between predictors and traits of interest, thus 
only obtaining the additive variance components, completely 
ignoring gene-by-gene and higher-order interactions.

Machine learning (ML) is an alternative approach for prediction 
and classification. ML is a branch of computer science that 
combines statistic and mathematic techniques for progressively 
training the models without explicitly programming them. ML 
builds different algorithms which gradually learn from the sample 
data and training the model, which ultimately provides predictions 
(Samuel, 2000). Several studies using non-parametric techniques 
of ML have been conducted in plants and livestock using support 
vector machines (SVM), boosting, random forests, and 
Reproducing Kernel Hilbert Space (RKHS; González-Camacho 
et  al., 2012; González-Recio et  al., 2014; Howard et  al., 2014). 
The main advantage of using ML models for GS is that they 
learn the pattern from the data without being told any prior 
assumption, in this way they include all the variances, their 
interactions, and environmental components (Gianola et al., 2006; 
Campos et al., 2018; Gonzalez-Camacho et al., 2018). Although 
various studies are using ML for GS, to date, the field of deep 
learning (DL) has not been widely explored.

Deep learning is a branch of ML focusing on densely 
connected networks using artificial neural networks for training 
models (Min et  al., 2017). The concept of DL is based on the 

biological networks of the brain neurons. DL uses a different 
combination of layers where data is transformed across each 
layer for obtaining a better fit. Furthermore, DL uses nonlinear 
activation functions, allowing them to predict the genetic 
architecture of the trait accurately (Angermueller et  al., 2016; 
Wang et  al., 2020). The most prominent advantage of DL is 
the number of high capacity and flexible trainable parameters. 
Traditional Bayesian neural networks are not as deep as they 
do not perform multiple layers of nonlinear transformation 
to the data (Lecun et  al., 2015). DL models are continually 
being applied for classification and prediction problems (Pérez-
Enciso and Zingaretti, 2019; Ramcharan et  al., 2019). The 
performances of the DL algorithm have proved to be  higher 
or similar to that of traditional ML approaches in many fields 
like image processing, military target recognition, genomics, 
speed recognition, health care, reconstructing brain circuits, 
traffic signal classification, and sentiment analysis (Angermueller 
et  al., 2016; Campos et  al., 2018; Bresilla et  al., 2019; Zou 
et  al., 2019). Also, there are various successful applications  
of DL for biological sciences, the majority of which are  
involved in disease classification (Rangarajan et  al., 2018; 
Abdulridha et  al., 2020).

Deep learning employs multiple neurons with proposed 
models such as a convolutional neural network (CNN), recurrent 
neural networks (RNN), and multilayer perceptron (MLP), and 
has the potential for application in GS (Alkhudaydi et al., 2019; 
Crossa et  al., 2019; Cuevas et  al., 2019). The input layer for 
these models includes a marker information, whereas the output 
layer consists of responses, with different number of hidden 
layers. Implementation of DL algorithms is straightforward, 
but the optimum model performance depends upon the choice 
of hyperparameter selection, which is not trivial and 
computationally intensive (Lecun et  al., 2015; Young et  al., 
2015). Selection of hyperparameters is the most critical step 
for MLP, as it depends upon its ability to learn from the 
training data and can be  generalized to a new dataset when 
applied for predictions. The choice of making a right decision 
of the number of layers, number of epochs, number of neurons, 
type of activation function, type of regularization penalty, 
activation rate, stopping criteria, among others, is cumbersome 
(Pérez-Enciso and Zingaretti, 2019). Optimal selection of these 
parameters depends upon the expertise in modeling and defining 
the problem. Often, the selection of parameters from a large 
number of tuning parameters is difficult because of time 
constraints and nonlinear interaction between the various 
parameters (Lecun et  al., 2015; Young et  al., 2015). There are 
four commonly used approaches for tuning parameters 
optimization, namely, random search, grid search, optimization, 
and Latin hypercube sampling (Koch et al., 2017). The detailed 
explanations of these approaches are out of the scope of this 
paper and are referred to in other readings (McKay, 1992; 
Koch et  al., 2017; Montesinos-López et  al., 2018a).

Several studies have focused on the use of DL models in 
wheat. Ma et  al. (2018) have reported that CNN performs better 
for predicting grain length in wheat compared to traditional 
genomic best linear unbiased predictor (GBLUP). Similarly, 
Montesinos-López et  al. (2018b) observed that DL models were 
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better than GBLUP when genotype-by-environment interactions 
were ignored in predicting grain yield in maize and wheat. 
Mcdowell (2016) reported that DL models perform similarly to 
several linear regression and Bayesian techniques employed for 
GS. Although previous studies have not demonstrated a consistent 
advantage of DL over conventional penalized regression approaches, 
more efforts are required to explore the potential and constraints 
of DL for GS scenarios (Bellot et  al., 2018; Li et  al., 2018; 
Montesinos-López et al., 2019a; Abdollahi-Arpanahi et al., 2020). 
It would, therefore, be  necessary to assess different DL models 
in the context of GS in plant breeding programs. In this study, 
we  evaluated the performance of two different DL algorithms, 
namely MLP and CNN, for predicting yield, yield components, 
and agronomic traits having a different genetic architecture. The 
objectives of this study are to (1) optimize DL models for predicting 
complex traits in spring wheat; (2) compare the accuracy of GS 
for DL models with rrBLUP, one of the most commonly used 
GS models in plant breeding; and (3) evaluate the effect of marker 
number on the accuracy of the models. This study will allow 
us to explore the potential of DL for predicting quantitative traits 
in breeding programs.

MATERIALS AND METHODS

Plant Material and Field Data
The spring wheat dataset used in this study consists of a nested 
association mapping (NAM) population containing 32 founder 
parents each crossed to common cultivar “Berkut” (Jordan 
et  al., 2018; Blake et  al., 2019). Due to space constraint, 650 
Recombinant inbred lines (RILs) from 26 NAM families which 
have genotyping data provided by Kansas State University were 
planted between the 2014 and 2016 growing seasons at the 
Spillman Agronomy Farm near Pullman, WA, United  States. 
A modified augmented field design was used in each trial 
with three replicated check cultivars [“Berkut,” “McNeal” (Lanning 
et  al., 1994), and “Thatcher”] in each block. Five agronomic 
traits with varying heritability and genetic architecture, including 
grain yield, grain protein content, heading date, plant height, 
and test weight were evaluated. Grain yield (t/ha) was calculated 
using a Wintersteiger Nursery Master combine (Ried im Innkreis, 
Austria) from grain weight per plot by harvesting whole plots. 
A Perten DA 7000 NIR analyzer (Perkin Elmer, Sweden) was 
used to determine the percentage of protein content in the 
grain. Days to heading was recorded as the number of days 
from planting to full exposure of spikes in 50% of the plot. 
Plant height (cm) was measured as length between the base 
of the plant to the tip of the fully emerged spike, excluding 
the awn when present. Test weight (kg  hL−1) was measured 
postharvest (Perkin Elmer, Sweden).

Statistical Analysis
Adjusted means were calculated for the unreplicated genotypes 
using the residuals derived separately for the individual 
environment using “lme4” function implemented in the R 
program using the model:

 Y Block Check residualsij i j ij= + +

where Yij is the trait of interest, Blocki is the fixed effect 
of the ith block, and Checkj corresponds to the effect of 
replicated check cultivar (Bates et al., 2015; R Core Team, 2017).

Broad-sense heritability for all phenotypic data points were 
calculated for each environment separately using the formula:

H g g e
2 2 2 2= +( )s s s/

where H2 is the broad-sense heritability, σ2
g and σ2

e are the 
genotypic and error variance components, respectively, obtained 
from the augmented randomized complete block design model 
treating genotype effects as random using the model equation:

Y Block Check Gen eij i j j i ij= + + + +( )µ

where Yij is the trait of interest, Blocki is the fixed effect 
of the ith block, Genj is the random effect of unreplicated 
genotypes j nested within ith block and distributed as independent 
and identically distributed, Genj ~ N(0, σ2

g), Checkj corresponds 
to effect of replicated check cultivar, and eij is the standard 
normal errors distributed as eij  ~  N(0, σ2

e) (Federer, 1961; 
Aravind et  al., 2020).

Genotyping
The NAM population was genotyped using the Illumina 90  K 
SNP array (Wang et  al., 2014) and genotyping-by-sequencing 
(GBS; Poland et  al., 2012). Information on genotyping, map 
construction, and marker calling has been previously reported 
(Jordan et al., 2018). The initial genotypic information consisted 
of 73,345 polymorphic markers anchored to the Chinese Spring 
RefSeqv1 map (International Wheat Genome Sequencing 
Consortium, 2014; Jordan et  al., 2018). RILs with missing 
phenotypic information in one environment were removed 
before filtering the genotypic data. SNP markers with more 
than 20% missing data, minor allele frequency of <0.10, and 
RIL missing >10% genotypic data were also discarded, resulting 
in a total of 635 RILs with 40,000 SNP markers used for 
analyses. Principal component analysis (PCA) was performed 
for assessing the population structure among the 26 NAM 
families using 40,000 SNP markers and 635 RILs. The whole 
data set and filtering pipeline used is provided on GitHub.1

Genomic Selection Models
Penalized Regression Models
Ridge regression best linear unbiased predictor is one of the 
most used GS models in plant breeding and was included 
here for comparison with the DL algorithms. Genome-wide 
marker effects were estimated using rrBLUP model for all 
traits (Endelman, 2011). GEBVs were calculated with mixed 
solve function implemented in R package “rrBLUP,” according 
to the model:

y Zu e= + +m

where y is an N  ×  1 vector of adjusted means for all 
unreplicated genotypes, μ is the overall mean, Z is an N  ×  M 

1 https://github.com/Sandhu-WSU/DL_Wheat.git
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matrix assigning markers to genotypes, u is a vector with 
normally distributed random marker effects as u  ~  N(0, I𝝈2

u), 
and e is the residual error with e  ~  N(0, I𝝈2

e). The solution 
for mixed equation can be  written as

u Z ZZ I yT T= +( )−l
1

where λ is the ridge regression parameter represented as 
λ  =  𝝈2

e/𝝈2
u is the ratio of residual and marker variances. 

rrBLUP has the potential for dealing with “large p and small 
n” with penalized regression and has high numerical stability 
with highly correlated markers (Hoerl and Kennard, 2000). 
Codes and data set used for implementing the rrBLUP GS 
model is uploaded at GitHub.1

Multilayer Perceptron
Multilayer perceptron is a densely connected network, which 
is a typical feedforward neural network and does not assume 
a particular structure in the input features (Gulli and Pal, 
2017). The basic structure of MLP consists of a densely connected 
network of the input layer, output layer, and multiple hidden 
layers (Figure  1). All these layers are connected by a dense 
network of neurons, where each neuron has its characteristic 
weight (Angermueller et  al., 2016). In the case of GS, the 
input layer consists of a certain fixed number of neurons where 
each neuron represents an SNP marker in the training set. 

There are multiple hidden layers with a different number of 
neurons. Different layers are connected by neurons with a 
strength called “weight.” The weight coefficient of neurons 
between the input and output layers is obtained from the 
training dataset using non-linear transformations. The number 
of output layer neurons is equal to the number of response 
variables in the GS model.

During the GS model training, the output of hidden layer 
one is a weighted average nonlinear transformation function 
of each input plus a bias (b; Figure  1). The output of the 
first layer (hidden layer 1) is represented as

Z b W f x1 0 0 0= + ( )

where Z1 is the output of the first layer, b0 is the bias 
for the first layer estimated from the rest of the weights 
(W0), x represents the genotypes of each individual, and f 
is a nonlinear activation function. This model is trained 
successively, where the output of neurons from the previous 
layer act as input for the next layer. The general expression 
for the model is

Z b W f xk k k k= + ( )− − −1 1 1

where Zk is the output vector for the GEBVs, and other 
terms of this equation are defined previously.

A

B

FIGURE 1 | Representation of multilayer perceptron (MLP) with three hidden layers and five SNP markers in the input layer. This shows the network structure for 
working of MLP, where the connection between different neurons is depicted (A); bottom half represents weight assigned to each neuron and prediction of output 
using nonlinear activation function (B).
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Convolutional Neural Network
Convolutional neural network is proposed to accommodate 
inputs that are associated with each other such as linkage 
disequilibrium between nearby SNP markers. A CNN is a 
special case of artificial neural networks where hidden layers 
typically consist of convolutional layers, pooling layers, flatten 
layers, and fully connected dense layers. In each convolutional 
layer, CNN automatically performs the convolution operation 
along with an input of predefined width and strides through 
the application of kernels and filters where the weights are 
the same for all SNP marker windows. The filter moves for 
the same window size across the input SNP markers, and 
CNN obtains the local weighted sum. The learned filters move 
across the input SNP marker data until the entire genotypic 
data are transverse. Each of these convolutional operations 
learns the coefficient of the so-called “kernel” or filter, which 
is equivalent to neurons of MLP. The output of the convolutional 
function can be  defined as an integral transformation and is 
represented as

 s t f k t k t x f xx( )= ∗( )( )= −( ) ( )∑
where k represents the kernel, convolution is the 

transformation of f into s(t), and this operation is performed 
over an infinite number of copies f shifting over the kernel 
along each chromosome and filters take into account the linkage 
disequilibrium along the chromosome. A max-pooling layer 
is added after each convolutional layer to account for 
dimensionality reduction and making filters invariant to the 
small changes in the input. The pooling layer smoothed out 
the results by merging the output of the previous convolutional 
layer by taking the minimum, mean, and maximum. Activation 
function and dropout is employed after the convolutional and 
dense layer (Figure  2).

The greatest advantage of CNN over MLP is their capability 
to reduce the estimation of the number of hyperparameters 
required for training the model. Successive output layers are 

produced by the action of the activation function over the 
previous convolution layer. Finally, the pooling operation is 
performed resulting in dimension reduction, smoother 
representation, and merging of kernel output by computing 
their mean, maximum, or minimum.

Hyperparameter Optimization
A grid search cross-validation (CV), which selects the parameters 
that provide minimum mean square error (MSE; Pedregosa 
et al., 2011; Cho and Hegde, 2019) was implemented to optimize 
the hyperparameters on the whole population and for all traits 
evaluated in this study. Based upon available literature, 
we  selected hyperparameters for training, and based on those 
parameters, a grid search CV with the full factorial design 
was implemented. The different hyperparameters which were 
tried for optimizing includes learning rate (constant and 
adaptive), activation function (relu, linear, tanh, identity, and 
logistic), solver (lbfgs, sgd, and adam), number of hidden layers 
(1, 4, 6, 8, and 10), number of neurons in completely dense 
network (10, 19, 38, 50, 62, 98, 112, and 150), drop out (0, 
0.01, 0.1, and 0.2), number of filters (16, 32, 64, and 128), 
and regularizations (L1 and L2). Grid search CV used the 
inner CV where the outer training data set was split to 80% 
for inner training and the remaining 20% for inner testing. 
The inner training data set was used for hyperparameter 
optimization using the Keras validation split function and 
internal capabilities. The best hyperparameters were selected 
that give the least MSE on the inner testing population, and 
hence those parameters were used for the individual traits 
(Gulli and Pal, 2017).

Overfitting, which is related to poor model performance 
on the validated set, is one of the biggest constraints in 
implementing DL strategies in plant breeding. With this, 
approaches such as regularization, dropout, and early stopping 
were applied to minimize overfitting in the models. Dropout 
includes randomly assigning a subset of training neuron’s weight 

FIGURE 2 | Representation of the convolutional neural network (CNN) employed in this study. The input layer consists of 40,000 markers with a kernel size of three 
in the convolutional layer. Dropout is employed after the second convolutional and first dense layer. Relu activation function was used for training the model and 
hyperparameters were selected by lowering the mean squared error.

63

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Sandhu et al. Deep Learning in Wheat Breeding

Frontiers in Plant Science | www.frontiersin.org 6 January 2021 | Volume 11 | Article 613325

TABLE 1 | Broad-sense heritability of five different traits for each environment (2014–2016) evaluated in this study.

Environment Grain yield Grain protein content Test weight Plant height Heading date

2014 0.38 0.57 0.68 0.81 0.84
2015 0.24 0.35 0.59 0.59 0.80
2016 0.40 0.63 0.57 0.89 0.91

to zero to reduce complexity and overfitting. Herein, we  used 
a 0.2 fixed dropout rate during hyperparameter optimization 
based on Srivastava et  al. (2014) and Early stopping involves 
terminating the training process depending on the validation 
performance. As soon as the validation error reaches a minimum, 
training is halted. Keras provides an API (Callbacks) to 
incorporate the feature of early stopping. We  used the 
EarlyStopping callback to create our MLP and CNN model. 
The other regularization techniques, L1 and L2, penalize weight 
values of the neural network. This technique involves making 
values close to zero and negative equal to 0 as they do not 
affect the model’s performance. L1 penalizes the sum of the 
absolute values of weights, whereas L2 penalizes the weight’s 
sum of the square. Our analysis made use of the parameter 
alpha of MLP and added L1_L2 regularizer in the first 
convolutional layer of CNN model. The DL algorithms were 
implemented in Scikit learn and Keras in Spyder (Python 3.7; 
Pilgrim and Willison, 2009; Pedregosa et  al., 2011; Gulli and 
Pal, 2017). Codes and data set used for implementing the DL 
models is uploaded at GitHub.1

Cross-Validation and Independent Prediction
Prediction accuracy for the GS models (rrBLUP, MLP, and 
CNN) was evaluated by implementing a five-fold CV where 
80% of the data was included in the training population, and 
20% of the remaining data was used as a testing set within 
each environment. Two hundred replications were performed 
for each model to assess model performance. Each replication 
consisted of five iterations, where the dataset was split into 
five groups, and a different testing set was used for each 
iteration. Instant accuracy was calculated where correlation for 
each testing set was obtained and an average of five iterations 
was reported. Accuracy of the GS model was defined as the 
Pearson correlation coefficient between GEBVs and true 
(observed) phenotypes. A total of nine random sets of markers 
were used for training models and comparing the effect of 
marker number on the model’s performance, including 1,000 
(M1,000), 5,000 (M5,000), 10,000 (M10,000), 15,000 (M15,000), 20,000 
(M20,000), 25,000 (M25,000), 30,000 (M30,000), 35,000 (M35,000), and 
40,000 (M40,000) SNP markers, and these models were also 
implemented using 200 replications with five-fold CV.

Independent validation was performed by training the GS 
model on the previous growing season, and predictions were 
made for future years. Briefly, the GS model was trained on 
the 2014 environment, and the prediction was made for the 
2015 and 2016 environments. Similarly, the GS model trained 
on 2015 environment was used for predicting the 2016 
environment. This type of validation represents the scenario of 
predicting the performance of a line before planting them in 

the field for the next growing season. Due to the computational 
burden of DL models, the whole analysis was completed on 
the WSU’s high computing cluster.2 When implemented on a 
single system, MLP and CNN were 40- and 55-fold more 
time-consuming. We solved this issue by executing the iterations 
in parallel on the cluster computers.

RESULTS

Heritability and Population Structure
Broad-sense heritability for all the five traits was obtained for 
each environment (Table 1). Each trait had different heritability 
values, depicting different genetic makeup, and varying 
environmental effects. Plant height and heading date were highly 
heritable, grain protein content, and test weight were moderately 
heritable, and grain yield was the least heritable among the 
traits. The heritability of each trait was lowest for the 2015 
environment suggesting a more non-genetic variance effect for 
that environment. PCA showed the presence of two subgroups 
in population where PC1 and PC2 explained 5 and 4% of 
total genetic variation, respectively (Supplementary Figure  1). 
Furthermore, PC1 and PC2 for five different phenotypic traits 
evaluated in this study explained 31.8 and 21.4% of the variation 
(Supplementary Figure  2). In PC1, grain protein content and 
days to heading were clustered together and were opposite 
from test weight and grain yield.

Optimization of Hyperparameters for Each 
Trait
Different hyperparameters for each trait were selected using 
a grid search CV for 200 iterations by lowering the MSE. 
The combinations of hyperparameters were selected for each 
trait that had the lowest MSE during 200 iterations of grid 
search CV. These selected hyperparameters were used for 
predicting the traits for each environment separately. All the 
hyperparameters chosen in this study are provided for MLP 
(Table  2) and CNN (Table  3). The number of filters was the 
most important factor for lowering MSE in the case of CNN. 
In the case of MLP, activation function and number of neurons 
in layers were the main parameters controlling model 
performance. Different dropout and regularization values were 
selected to reduce overfitting in the model by looking at 
training accuracy, and these values were used for the testing 
set (Tables 2 and 3). We  provided the information about the 
hyperparameters required for tuning each trait separately because 
of the different genetic architecture of the five traits used in 

2 https://hpc.wsu.edu/
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this study. These results were consistent with other studies 
which also showed that different hyperparameters are required 
for various traits in plant breeding (Cuevas et  al., 2019; 
Montesinos-López et  al., 2019b).

Comparison of Model Performances for 
Cross-Validations
We compared the performances of two DL models with rrBLUP 
for each of the environments using the whole marker dataset 
(M40,000) for GS. Figure  3 shows the prediction accuracy for 
each of the five traits with three models, namely rrBLUP, MLP, 
and CNN under each environment. Furthermore, average 
prediction accuracy over the environment for each model is 
provided for all five traits (Table 4). Average prediction accuracy 
was highest with MLP for all the five traits. MLP improves 
the prediction accuracy from 3 to 5% for all the traits compared 
to rrBLUP, which is the most often used model in wheat 
breeding for predicting quantitative traits (Rutkoski et al., 2011; 
Sun et  al., 2019). Even CNN gave 0 to 3% higher prediction 
accuracy than rrBLUP (Table  4). These results suggest that 
DL models should be included to obtain slightly higher prediction 
accuracies, as even minor increases in prediction accuracy could 
improve the selection efficiency in a breeding program. The 
improvement in prediction accuracy with DL models compared 
to the linear rrBLUP model is attributed to the use of nonlinear 
activation functions relu and tanh, which model the nonlinear 
relationship and ignore the restrictive assumptions of rrBLUP.

Multilayer perceptron gave 5% higher prediction accuracy 
than CNN for grain protein content and grain yield (Table  4). 
Among the five tested traits, grain yield and grain protein 
content are controlled by a large number of QTL, and high 
prediction accuracy with MLP is due to use of more hidden 

layers and less number of neurons which more efficiently 
capture the complex relationship between the SNP markers 
and response (Table  2; Sukumaran et  al., 2015; Arora et  al., 
2017). Furthermore, both MLP and CNN performed similarly 
for predicting test weight, plant height, and days to heading. 
This suggests that either of these models could be  used for 
predicting those traits in spring wheat. Furthermore, some 
hyperparameters are specific for particular traits (Tables 2 and 3). 
Grain yield and grain protein content requires a greater number 
of hidden layers compared to the other three traits, demonstrating 
that complex DL networks are required for highly quantitative 
traits (Bellot et  al., 2018).

Complete details about prediction accuracy for each model 
on each environment is provided in full detail in Figure  3. 
There was a difference in prediction accuracy for each trait 
with all the models under different environmental conditions. 
This is because of the different heritability of each trait across 
the environments and the varying amounts of genetic variances 
captured by each model. Furthermore, DL models were able 
to capture the different amount of environmental variance as 
shown in Figure  3A, where the rrBLUP and DL models 
performed similarly for the 2016 environment, whereas for 
2014, MLP had an 8% higher prediction accuracy than rrBLUP, 
suggesting that more environmental effect was captured. Similar 
trends can be  explained for all the other traits predicted in 
this study (Figure  3).

Marker Set Optimization
The number of predictors (markers) has been reported to have 
a significant effect on the GS model performance (Heffner et al., 
2011; Ma et  al., 2018; Lozada and Carter, 2019). Therefore, 
we  assessed the effect of the number of SNP markers on the 

TABLE 2 | Hyperparameters selected for each trait using a random grid search CV for MLP. 

Hyperparameter Grain yield Grain protein content Test weight Plant height Heading date

Activation function relu relu relu tanh tanh
Solver adam adam sgd sgd sgd
Learning rate Adaptive Adaptive Constant Constant Constant
No. of hidden layers 4 4 4 3 3
No. of neurons (38, 38, 38, 19) (19, 19, 19) (50, 38, 38) (120, 90, 90) (90, 90, 90)
Dropout 0.2 0.2 0.2 0.2 0.2
Epochs 200 200 200 150 150
Regularization 0.1 0.1 0.05 0.05 0.05

These hyperparameters were later used for training the models.

TABLE 3 | Hyperparameters selected for each trait using a random grid search CV for CNN.

Hyperparameter Grain yield Grain protein content Test weight Plant height Heading date

Activation function relu relu relu relu relu
Solver adam adam adam adam adam
Learning rate adaptive adaptive constant constant constant
Number of filters 64 64 64 64 64
Dropout 0.2 0.2 0.2 0.2 0.2
Epochs 200 200 200 200 200
Regularization 0.05 0.05 0.05 0.05 0.05

These hyperparameters were later used for training the models.
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performance of GS models evaluated in this study. Across all 
models, an increased marker number was related to improved 
prediction accuracy. The lowest prediction accuracy was obtained 
using M1,000 for all the evaluated traits (Figure 4). Non-significant 
differences in model performances were observed when the 
marker number was increased from M5,000 to M40,000 for rrBLUP 
(Figure  4). MLP and CNN models rendered consistent 
improvement in prediction accuracy as the number of markers 
were increased in the model (Figure  4); nevertheless, trends 
vary across traits. Accuracy for plant height and days to heading 
reached a stable value when M5,000 or more markers were used 
for MLP and M10,000 or more markers were included in CNN 
model (Figures 4D,E). This can be attributed to a small number 
of QTLs which are controlling these traits; hence, this number 

of markers is able to capture all of them efficiently. In the 
case of test weight, there was a consistent increase in prediction 
accuracy for MLP and CNN until marker numbers reached 
above M15,000, where no further significant increase in accuracy 
was observed (Figure 4C). Prediction accuracy for grain protein 
content and grain yield continuously increased as markers were 
increased to M30,000 for MLP and M25,000 for CNN (Figures 4A,B). 
These results suggest that with the reduction in genotyping 
cost, which produces a plethora of genotyping information, DL 
models should be used to obtain an increased prediction accuracy 
by efficiently using a large number of predictors in the GS models.

Prediction Accuracy Across Environments
In addition to looking at prediction accuracy within environments, 
model performance in an across-environment prediction scenario 
was also assessed. GS models were trained on data from the 
previous year, and predictions were made for next year phenotypic 
data. Average prediction accuracy for the independent validations 
for all five traits is provided (Table  5). Figure  5 shows the 
prediction accuracy for each of the five traits with three tested 
models under each environmental condition when the model 
was trained on the previous year dataset. There was a significant 
decrease in prediction accuracy under independent validation 
compared to CV for each trait (Tables 4 and 5). This is because 
of using different populations for training and testing the model, 
which results in a different amount of non-genetic variances. 

A B

D E

C

FIGURE 3 | Comparison of model performance for five different traits used in this study. (A-E) represent the model’s performance for grain yield, grain protein 
content, test weight, plant height, and days to heading, for each trait under each environment using five-fold cross-validation (CV) and 40,000 SNP markers. The 
x-axis represents the environment, and the y-axis represents the prediction accuracy for the model.

TABLE 4 | Comparison of average prediction accuracy with three models 
(rrBLUP, MLP, and CNN) for five traits evaluated in this study and predicted 
separately for each environment for spring wheat. 

Model Grain 
yield

Grain 
protein 
content

Test 
weight

Plant 
height

Heading 
date

rrBLUP 0.39 0.48 0.45 0.52 0.46
MLP 0.44 0.53 0.48 0.57 0.51
CNN 0.39 0.48 0.47 0.55 0.49

The highest prediction accuracy is bolded for each trait under each model scenario.
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Independent validations could be potentially improved by inclusion 
of genotype by environmental interactions in the model or by 
inclusion of more phenotypic data in the training models (Heffner 
et  al., 2010; Lorenz et  al., 2011). Furthermore, DL models 
performed equal or slightly better than rrBLUP for all the traits 
and strengthens the findings from the CV analysis (Table  5).

DISCUSSION

Genomic selection is transforming the field of plant breeding, 
and therefore using models with increased predictive power is 
relevant. DL is a new ML-based technique which explores the 
complex relationships hidden in the data for making predictions. 

In this study, we  investigated the application of DL-based GS 
models for predicting complex traits in spring wheat. DL 
approaches were successfully applied for predictions and 
optimization of hyperparameters for each trait. Higher prediction 
accuracy (0–5%) with DL models compared to rrBLUP were 
observed for predicting five traits. Using a different number 
of markers in the model influenced the accuracy of GS for 
the evaluated traits, where an improved accuracy was related 
to increased marker number.

The optimization of hyperparameters for DL models is critical 
and challenging because of the high computational costs in 
this study, nevertheless, this optimization issue was solved using 
grid search CV (Young et  al., 2015). First, we  observed that 
each trait requires various combinations of hyperparameters, 
as prediction accuracy is dependent upon the interaction of 
these factors (Bellot et al., 2018; Montesinos-López et al., 2018b). 
The different tuning parameters for each trait depend on the 
genetic architecture of the trait. We  observed that the “relu” 
activation function was the most important for predicting all 
traits in CNN and most of the traits in MLP, suggesting that 
“relu” function is critical for training GS models in wheat. 
Several studies have validated this function as a universal function 
for regression-based prediction models (Lecun et  al., 2015; 
Pérez-Enciso and Zingaretti, 2019). Furthermore, different layers 
in CNN (convolutional, max-pooling, dense and fully connected) 
require a different set of hyperparameters, thus creating challenges 

TABLE 5 | Comparison of average prediction accuracy under the independent 
validation scenario with three models (rrBLUP, MLP, and CNN) for five traits 
evaluated in this study for spring wheat.

Model Grain 
yield

Grain 
protein 
content

Test 
weight

Plant 
height

Heading 
date

rrBLUP 0.20 0.34 0.25 0.33 0.25
MLP 0.24 0.37 0.29 0.39 0.27
CNN 0.23 0.35 0.28 0.39 0.27

The highest prediction accuracy is bolded for each trait under each model scenario.

A B

D E

C

FIGURE 4 | Comparison of markers numbers for each of the genomic selection (GS) models for predicting five different traits in wheat. (A-E) represent the model 
performances for grain yield, grain protein content, test weight, plant height, and days to heading, respectively. The x-axis represents the number of markers in the 
model, and the y-axis represents prediction accuracy.
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in understanding the complex biological connection (Min et al., 
2017). We  obtained a higher prediction accuracy with DL, but 
those results are only valid for the hyperparameters used in 
this study (Montesinos-López et  al., 2018b).

The high prediction accuracy of DL models compared to 
rrBLUP under both cross- and independent-validation scenarios 
can be  attributed to the presence of hidden layers which 
automatically captures the complex hidden interaction without 
prior specification (Lecun et  al., 2015). This means that unlike 
rrBLUP, which only models first-order interactions, DL models 
can capture interactions of large orders without specifying so in 
the model. DL could therefore explore data in such a way that 
humans cannot see and extract conclusions which otherwise are 
not possible to catch (Goodfellow et  al., 2016). Higher or equal 
prediction accuracy of DL with rrBLUP for all the traits suggest 
that these models should be further explored in wheat, to further 
improve the prediction accuracy with inclusion of secondary 
correlated traits and genotype-by-environment interaction effects 
(Cuevas et  al., 2019; Montesinos-López et  al., 2019b).

It should be  noted that rrBLUP was competitive with the 
DL models in terms of the accuracy of GS in the current 
study. The rrBLUP model’s interpretability, transparency, and 
absence of the time-consuming task of hyperparameter tuning 
still makes it an attractive approach for GS, though the potential 
of improving prediction accuracy using DL approaches could 
not be  discounted. Ma et  al. (2018) reported that DL-based 
methods performed better than rrBLUP for predicting grain 

length, grain hardness, plant height, grain protein, and thousand 
kernel weight in wheat. They further suggested that both DL 
and rrBLUP models should be  used for selecting the “best” 
individuals. Our results were consistent with their observations 
that DL approaches give slightly better prediction accuracy than 
rrBLUP, but with some computational costs associated with 
the DL models. Montesinos-López et  al. (2018b) on the other 
hand observed DL models to be  superior compared to GBLUP 
in six out of the nine traits evaluated in wheat and maize. 
Liu et  al. (2019) also demonstrated the superiority of single 
and dual CNN models over the rrBLUP for predicting yield, 
protein, oil, moisture, and height in soybean (Glycine max L.). 
Similarly, Zingaretti et al. (2020) showed that DL models perform 
better than conventional linear statistical models for predicting 
traits having epistatic variances in the allopolyploid species of 
strawberries (Fragaria x ananassa) and blueberries (Cyanococcus 
spp.). These and our results open the field of DL in plant 
breeding and suggest that there is a great potential to increase 
predictive power for complex traits using DL approaches.

The performance of DL models improves when a large 
dataset is used for training the model (Min et  al., 2017). Our 
current results and some related works, nonetheless, support 
that DL based models can reach an equivalent or superior 
accuracy than traditional linear models for GS even with the 
smaller dataset for training (Ma et al., 2018; Montesinos-López 
et  al., 2018a). Furthermore, a previous study using the largest 
dataset analyzed so far (100  k individuals) for training the DL 

A B

D E

C

FIGURE 5 | GS model performance for independent validation using all three models for predicting five different traits in wheat (A-E). The x-axis represents the 
environments where predictions were implemented. The first year indicates the testing, whereas the second year is the training environment.
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model does not provide the superiority over the linear models 
(Bellot et al., 2018). These results altogether suggest that training 
population size is less important compared to the trait used 
for the prediction; this does not however undermine the use 
of large population sizes in the GS model. The biggest issue 
with a small dataset for DL is overfitting, which results from 
the failure of the model to learn general patterns present in 
the data. We  tried to avoid overfitting in our models using 
dropout and regularization, which involves the removal of some 
fixed number of neurons during model training (Lecun et al., 2015; 
Bellot et  al., 2018).

One drawback of DL models is that different hyperparameters 
handle different parts of the data, resulting in a problem for 
interpreting biological significance and importance of each 
feature (marker) in the model (Bellot et  al., 2018; Cuevas 
et  al., 2019). DL models, consequently, might not be  useful 
for providing insights into the genetic architecture of the trait; 
instead, genome-wide association studies might be  more 
appropriate for this purpose. Furthermore, the computational 
cost is a significant hindrance for training DL models, as 
multiple hyperparameters are required to be  optimized for 
each trait separately (Gulli and Pal, 2017; Cho and Hegde, 
2019). Plant scientists are often interested in understanding 
the biological meaning of prediction models, which is difficult 
in DL-based models because of the “black-box” nature of neural 
networks, and a large number of layers and neurons involved 
in training the model. Finally, DL based models require a 
background in computer science and statistics, which might 
require additional expertise or collaborations. Nevertheless, 
despite these limitations, DL approaches could still be  used 
in the context of GS in plant breeding programs. Overall, this 
study opens a new avenue of DL for the prediction of complex 
traits in plant breeding.

CONCLUSION

In this study, we compared the performance of two DL models, 
namely MLP and CNN, with rrBLUP for predicting five different 
traits in spring wheat. Our results suggest that DL based models 
are superior for predicting all five traits used in this study. 
We optimized the hyperparameters required for training different 

traits and validated that each trait requires a specific set of 
hyperparameters for best performance. We  observed that 
prediction accuracy for DL models was trait dependent and 
improved as the number of predictors (markers) in the models 
increased. Although training the DL models is computationally 
intensive and challenging, we  found that the application of 
DL-based approaches is feasible and promising in terms of 
improving the prediction accuracy for complex traits in spring 
wheat. For these reasons, DL models should be  incorporated 
into a plant breeder’s toolkit for use in large scale breeding 
programs to improve genetic gain for quantitative traits.
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Phenotyping individual trees to quantify interactions among genotype, environment,
and management practices is critical to the development of precision forestry and to
maximize the opportunity of improved tree breeds. In this study we utilized airborne
laser scanning (ALS) data to detect and characterize individual trees in order to generate
tree-level phenotypes and tree-to-tree competition metrics. To examine our ability to
account for environmental variation and its relative importance on individual-tree traits,
we investigated the use of spatial models using ALS-derived competition metrics and
conventional autoregressive spatial techniques. Models utilizing competition covariate
terms were found to quantify previously unexplained phenotypic variation compared
with standard models, substantially reducing residual variance and improving estimates
of heritabilities for a set of operationally relevant traits. Models including terms for
spatial autocorrelation and competition performed the best and were labelled ACE
(autocorrelation-competition-error) models. The best ACE models provided statistically
significant reductions in residuals ranging from −65.48% for tree height (H) to −21.03%
for wood stiffness (A), and improvements in narrow sense heritabilities from 38.64%
for H to 14.01% for A. Individual tree phenotyping using an ACE approach is
therefore recommended for analyses of research trials where traits are susceptible to
spatial effects.

Keywords: spatial analysis, tree competition, environment, tree phenotyping, airborne laser scanning, heritability,
field trial

INTRODUCTION

The development of a precision approach to forestry can improve the efficiency and sustainability
of managed forests. The aspiration is to utilize improved tree breeds, planted on the most suitable
sites, and managed to optimize production, while minimizing costs and environmental impacts by
targeted applications of inputs such as fertilizers (Dungey et al., 2018). A critical requirement for
precision forestry is accurate and cost-effective methods to characterize individual trees (Tsaftaris
et al., 2016; D’odorico et al., 2020). This capability could not only be utilized in trials to support
research into improved breeds for tree growth and quality, but also in assessment of trees for
inventory of forest stands at different stages of the production cycle. Traditional forest inventory
and trial measurement rely on ground-based measurement of traits such as tree diameter, height,
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and volume. Such measurements are time consuming and error-
prone. Remote sensing offers the potential for high throughput,
accurate, and spatially explicit phenotyping, providing an
essential foundation for precision management (Fahlgren et al.,
2015). At this stage, airborne laser scanning has been most
successfully adopted for forest inventory internationally, typically
using area-based methods to characterize patches of the order
of 0.04 ha in size (White et al., 2013; Maltamo et al., 2014).
Alternative methods, identifying and delineating individual trees
using ALS, have been developed and evaluated on New Zealand
radiata pine stands (Pont, 2016).

Radiata pine (Pinus radiata D. Don) is the dominant tree
species in the New Zealand forest estate comprising 90%
of the planted area (Forest Owners Association, 2019). The
New Zealand radiata pine forest estate comprises a monospecific,
even aged, intensively managed forest crop. Considerable
levels of variation in tree attributes remain, due to genetics,
environment, and silviculture (Dungey et al., 2006). Forest tree
breeding requires the evaluation of large numbers of trees and
sufficient replication due to genetic variability, resulting in trials
containing thousands of trees, and occupying several hectares
(Dungey et al., 2009).

A standard approach to mitigate the effects of environmental
variation in genetics trials is the use of spatial terms in analytical
models (Dutkowski et al., 2006). A useful method is the separable
first-order autoregressive model (AR1) in two dimensions (Cullis
et al., 1998), utilizing inverse distance-weighted correlations
across rows and columns in the trial, allowing for differing
spatial correlations in the row and column directions. This
successfully accounts for various forms of environmental effects
in trial analyses (Cullis et al., 2014). Competition is a form of
negative autocorrelation, where neighbors of a larger tree are
more likely to be smaller, and vice versa (Griffith and Arbia,
2010). Autocorrelative methods such as AR1 models do not
distinguish positive and negative autocorrelation and as a result
the two effects are confounded (Griffith and Arbia, 2010). In
order to accurately account for environmental variation, methods
to quantify both positive (site) and negative (competition)
autocorrelation are needed (Cappa and Cantet, 2008; Costa et al.,
2013; Dong et al., 2020).

Tree traits of primary importance to breeders and forest
managers include size, wood quality and disease susceptibility.
Height, diameter at breast height (DBH) and total stem
volume are widely used fundamental measures of tree size and
productivity, able to be estimated from tree-based analyses of
ALS (Lindberg et al., 2013; Dalponte et al., 2018). Dothistroma
needle blight (Dothistroma septosporum (Dorog.) M. Morelet) is
a foliar disease causing considerable productivity losses (Watt
et al., 2011), and wood stiffness is an wood quality characteristic
important for structural uses of timber (Carson et al., 2014).
Individual tree crown metrics derived from the ALS were shown
to correlate with these aforementioned tree size, disease, and
wood quality traits, and to provide accurate estimates of genetic
parameters such as heritabilities (Pont, 2016).

Competition metrics express the growth potential of
a tree relative to nearby trees, generally considering
the size and proximity of those trees (Pretzsch, 2010;

Burkhart and Tomé, 2012). The inclusion of such competition
metrics in analytical models was of interest to partition
competition effects from general environmental effects. Spatially
registered crown metrics from tree-based analysis of ALS
quantifying tree size and locations are suitable for derivation of
individual tree competition metrics. In a review of competition
metrics for use with individual tree analysis of ALS (Suárez,
2010), distance weighted size ratios were utilized. Such ratios,
initially used by Hegyi (1974), were expressed in terms of tree
diameters:

CI =
n∑

j−1

(
dj/di

Lij

)
where, di = DBH of reference tree i, dj = DBH of competitor tree
j, Lij = distance between reference tree i and competitor j.

It is hypothesized that spatial models including autoregressive
and competition terms reduce unexplained variation compared
to conventional models lacking spatial terms. The ability to more
accurately quantify spatial effects reduces model residuals and
thereby improves heritability estimates. The study was carried
out in a genetics trial, providing the unique opportunity to
work within an experimental design of known spacing and
documented genetics. Environmental effects due to competition
and site related variation were evident in the selected trial,
providing the opportunity to examine models accounting for
these effects in a controlled setting.

MATERIALS AND METHODS

Genetics Trial Site
The genetics trial BC 35-3 was established in 2007 by the Radiata
Pine Breeding Company Ltd., in compartment 76 at Kaingaroa
forest (38.53◦ S, 176.66◦ E) in the central North Island of
New Zealand. The trial was designed to evaluate Dothistroma
needle blight resistance for families in a breeding program and
used an incomplete block design with single tree plots (Dungey
et al., 2009). The trial site covered a total area of 2.8 ha and
sloped gently (<5 degrees) to the southeast. The trial comprised
75 blocks, with 25 replicates and 3 incomplete blocks per replicate
(Figure 1). Each block measured 19.2× 19.2 m, with tree spacing
on a uniform grid of 3.2 × 3.2 m. Blocks were established with
36 trees from different families in a 6 × 6 grid. Six control
families were present in every block and the remaining 90
families were assigned across the three incomplete blocks for each
replicate, with randomized spatial locations within the blocks
and replicates. The surrounding stand was also established with
radiata pine in 2007 at a density of 1000 stems ha−1 and thinned
to 786 stems ha−1 in 2012.

Initial inspection of the trial data showed evidence of spatial
autocorrelation, with reduced height and diameter growth and
increased levels of Dothistroma infection associated with small
gullies within the trial (Figures 2, 3). Favorable conditions
for Dothistroma are known to occur in gullies, where moist
conditions persist, indicating the possibility of reduced tree
growth associated with Dothistroma infection (Bulman et al.,
2004). In addition to observable site effects, the trial had missing
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FIGURE 1 | Trial layout with blocks outlined in white on the canopy height
model image derived from the ALS data at 0.25 m resolution and used for tree
detection.

FIGURE 2 | Trial layout with blocks outlined in white on an image of a digital
terrain model (derived from the ALS data at 0.8 m resolution) shaded to
indicate relative elevation and reveal a number of gullies evident as dark areas.

trees. Missing trees typically occur due to mortality, and in
this trial dead, unhealthy, and highly malformed trees were
also removed during the 2012 operational thinning of the
surrounding stand. The resulting gaps in the trial grid created
potential for competition effects (Fins et al., 1992).

Field Measurement of Tree Traits
A ground-based assessment of a number of tree traits was
carried out in July 2014 when the trial was aged 7 years,
following standard tree breeding measurement methodologies
(Jayawickrama, 2001). Measurements of tree diameter at breast
height (DBH), height (H), and outerwood stress wave velocity
(A), and degree of needle loss caused by Dothistroma needle
blight (D38), were carried out. Tree DBH was measured using
a fiberglass girth tape with diameter gradations at millimeter
intervals (Friedrich Richter Messwerkzeuge GmbH & Co.,
Speichersdorf, Germany). Tree H was measured using a Vertex

FIGURE 3 | Heatmap presenting ground measured degree of Dothistroma
infection (D38) for each tree (white indicates no data). Areas with elevated
infection coincided with the gullies identified within the trial.

IV (Haglof, Sweden). Total stem volume (V) was estimated for
each tree using the standard volume equation V182 (Goulding,
1995):

V = DBHa
(

H2

H − 1.4

)b

ec

where a = 1.79068, b = 1.07473, c = −10.03201, and e
is Euler’s number.

Outerwood stress wave velocity (A) was measured using a
HITMAN ST300 (Fibre-gen Ltd., Christchurch, New Zealand)
with the probes placed 1 m apart, avoiding knots and defects
that could affect readings. The measure A is correlated with wood
stiffness, an important engineering property for structural uses
of timber (Carson et al., 2014). Degree of needle loss (D38) was
assessed at age 38 months as a percentage of needles infected
or lost, estimated visually in 5 percent increments (Van Der Pas
et al., 1984). Individual tree D38 measurements are presented in
Figure 3 where indication of increased infection in association
with gullies crossing the trial (see Figure 2) was evident.

Airborne Laser Scanning Data
The discrete return ALS data were acquired in early 2014 using an
Optech Pegasus scanner with a pulse rate of 100 kHz, a maximum
scan angle of ± 12◦, a 25% swath overlap, and a 0.25 m footprint
size. The data were georeferenced to the NZGD2000 NZTM
coordinate system and all returns were classified as ground and
above ground (using Terrascan TerraSolid software). The average
point density of the point cloud over the trial area was 17 total
returns per m2 and 7 last returns per m2.

Crown Metrics
A canopy height model (CHM) with 0.25 m resolution was
extracted from ALS data collected over the trial and image
defects referred to as pits were removed using the standard
image processing method closing (Ronse and Heijmans, 1991;
Andersen et al., 2006). Individual trees were detected and crown
boundaries determined on the CHM image using the calibrated
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TABLE 1 | Individual tree crown metrics used in candidate competition metrics
with most highly correlated tree size trait and Pearson’s r.

Abbreviation Description Units Trait r

CR =
√

CAp
π

Crown radius derived from crown
area (CAp).

m DBH 0.679

CL Crown length, difference between
crown highest point and average
height of crown boundary points.

m H 0.476

GAP Two-dimensional ground area of
crown growing space from watershed
segmentation polygon.

m2 DBH 0.518

CAP Two-dimensional ground area of
crown determined from crown
boundary polygon.

m2 V 0.574

ACG Ratio of crown and growing space
areas (CAP/GAP ).

− H 0.297

m2 V 0.598

CST Surface area of triangulated crown
CHM heights.

m2 V 0.574

CVF The volume between the crown
upper surface and the ground (Chen
et al., 2007).

m3 V 0.844

CVP The volume between the crown upper
surface and the base of the crown.

m3 DBH 0.541

ITC method (Pont et al., 2015). The method uses watershed
segmentation with operator calibration to determine the level of
image smoothing and has been shown to provide tree detection
accuracy of 95% for New Zealand radiata pine across a range of
stand densities and crown sizes. Detected trees were matched to
ground trees with an automated least squares approach (Hauglin
et al., 2014) and unmatched trees used to identify and manually
correct segmentation errors.

Watershed segmentation resulted in growing space polygons,
one per detected tree, which completely tiled the image, each
including a tree crown and a portion of any adjacent gap
between trees. Tree crown boundaries were then delineated
within each growing space polygon to exclude any gap area. For
tree crowns with no adjacent gaps, growing space and crown
polygons were identical. The CHM image gray values within
each crown represent heights above ground. Growing space
boundaries, crown boundaries, and crown elevation values were
used to derive a total of nine crown size metrics (Table 1)
correlated with the traits of interest (Pont, 2016). Crown volumes
(CVF and CVP) quantified three-dimensional crown size, while
surface areas from projected polygon outlines (GAP and CAP)
and from surface areas of three-dimensional crown surfaces
(CSC and CST) provided two-dimensional measures of crown
sizes. Crown length and radius (CL and CR) provided one-
dimensional measures and the ratio of crown and growing space
areas (AGC) provided a dimensionless measure of crown size.
These crown size metrics were then used in competition metrics
described subsequently.

Competition Metrics
Rouvinen and Kuuluvainen (1997) presented a set of competition
metrics, CI10, CI11, and CI12, derived from the original by

Hegyi (1974). Those competition metrics were evaluated by
Suárez (2010) using ground measured DBH and using DBH
estimated from LiDAR CHM crown metrics. Those competition
models were generalized in our study to utilize the crown metrics
(see Table 1) derived from the ALS CHM as:

CIA =
n∑

j−1

(
cj/ci

Lij

)

CIB =
n∑

j−1

(
cj/ci

Lij

2
)

CIC =
n∑

j−1

(
(cj/ci)

2

Lij

)

where ci = crown metric for reference tree i, cj = crown metric
for competitor tree j, Lij = distance between reference tree i
and competitor j.

Two methods were used for determining the neighboring trees
included in the calculation of the competition metrics described
above. In the area method (NA), all trees within a fixed radius
were included, an approach used in a number of previous studies
(Hegyi, 1974; Pukkala et al., 1994; Rouvinen and Kuuluvainen,
1997; Suárez, 2010). The grid spacing in the trial was used to
estimate a radius of 8.273 m to include an average of twenty trees
surrounding the central tree. In the boundary method (NB), only
trees sharing a segment boundary (as delineated on the CHM)
with the target tree were included (Suárez, 2010). Processing
of the CHM included a 50 m buffer around the trial and
competition metrics using both neighborhood methods included
trees surrounding the trial, a distinction with competition metrics
which often only account for trees measured within plots or
trials (Dutkowski et al., 2006). The use of 9 crown metrics
(Table 1) and 3 model formulations (CIA, CIB, CIC) gave 27
competition metrics. Use of the two neighborhood methods (NA
and NB) with the 27 metrics gave a total of 54 competition
metrics for evaluation.

Spatial Models
The following general individual tree linear mixed model was
used as the basis of all spatial models:

y = Xb+ Zu+ e

where y is a vector of individual tree observations of a specific
trait (H, DBH, V, D38 or A), b is a vector of fixed effects, u is a
vector of random effects, and e is a vector of random residuals.
The terms X and Z correspond to design matrices relating the
observations in y to the fixed and random effects in b and u,
respectively (Dungey et al., 2012).

We fitted a model without spatial terms, as routinely used
in estimating variance components and genetic parameters
including narrow sense heritabilities, referred to as Base model
(B) (Dutkowski et al., 2006). Fixed effects in vector b included
the overall mean and a factor with two levels to account for the
effects of control versus non-control material. Random terms
in vector u included the additive genetic effects of individual
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TABLE 2 | Models fitted for each trait to compare improvements from random terms to account for spatial autocorrelation (AR1) and addition of competition covariates
derived from analyses of the ALS tree crown metrics.

Model Abbreviation Fixed terms Random terms

Base B control replicate + iblock:rep + pedigree

Base + AR1 BA control pedigree + units + AR1

Base + Competition BC control replicate + iblock:rep + pedigree + competition

Base + AR1 + Competition BAC control pedigree + units + AR1 + competition

genotypes for pedigreed material, the effects of replicates and the
effects of incomplete blocks within replicates. We also fitted a
standard spatial model using an auto-regressive order 1 random
term, commonly referred to as AR1xAR1, and abbreviated
to AR1 hereafter (Dutkowski et al., 2006). We referred to
this standard spatial model as Base plus AR1 (BA). In this
model vector e was partitioned into spatially correlated (ξ ) and
uncorrelated (η) residuals and replicate was removed as a fixed
effect. The spatially correlated error ξ , was modeled by using
a first-order separable autoregressive process in the row and
column directions (Gilmour et al., 1997; Costa et al., 2001; and
Dutkowski et al., 2002).

Competition metrics were then introduced as covariates
to those models, referred to as Base plus Competition (BC)
and Base plus AR1 plus Competition (BAC). Covariate values
were standardized by subtracting the mean and dividing by
the standard deviation (Butler et al., 2009). Control and the
overall mean appeared as the only fixed terms, and the additive
genetic effects of individual trees appeared as a random term,
in all models. Trees were assigned to grid rows and columns,
and missing values added to ensure a complete grid for AR1
models. A nugget effect (referred to as units) was added to
models having an AR1 spatial term, as this has been shown
to be significant in several studies (Suontama et al., 2015).
Incomplete block by replicate was tried as a random term in
all models, but it became non-significant when an AR1 spatial
term was added, so it was dropped from those models (Dungey
et al., 2012). The set of models evaluated are summarized in
Table 2.

The B and BA models were fitted to each of the 5 traits
(H, DBH, V, D38, A), requiring 10 model runs. The BC and
BAC models were fitted for the 5 traits by 54 competition
metrics, requiring 270 model runs. The total number of
model runs being 280.

Model Evaluation
Models can be compared with log-likelihood (LL) ratio tests if
they have the same fixed effects, and if one model has a subset
of the random effects in the other model (nested models) (Isik
et al., 2017). Models with the same fixed effects that are not
nested can be compared with information criteria, Akaike’s (AIC)
or Schwarz’s Bayesian Information Criteria (BIC). In our study
we evaluated four nested models with the same fixed effects
(control only), presented in Table 2. We evaluated models under
the premise that all models including some spatial component
were alternative approaches to accounting for spatial variation
compared to the base model. If LLM and LLB are the REML

log-likelihoods for a test and base models, respectively, the test
statistic (D) is given by:

D = 2 (LLM − LLB)

where Akaike Information Criteria (AIC) and Bayesian
Information Criteria (BIC) used to rank models (Dutkowski
et al., 2006) are derived as follows:

AIC = −2LLRi + 2ti

BIC = −2LLRi + 2tilog v

where LL is the log-likelihood of the model, ti is the number of
variance parameters in model i, and ν = n − p is the residual
degrees of freedom.

Narrow sense heritabilities (h2) were estimated for each
model fit, using the additive genetic variance as a ratio of the
phenotypic variance, expressed as the sum of the additive and
residual variances:

h2
=

VarA

VarA + VarE

where VarA is the additive genetic variance and VarE is the
residual variance.

In the case of models with an AR1 term, the residual is
represented by the units component (Dutkowski et al., 2002).
Models where competition covariates terms were fitted for
each trait (BC, and BAC) were ranked by LL and the best
model selected. All models tested were ranked by LL (higher
being better), and then associated h2 and residual variance
components were examined. Two metrics were derived to express
the improvements of spatial models compared to the base model,
the change in h2, and in residual (ε), compared to the standard
(base) model, multiplied by 100 to be expressed as percentages:

1h2
=

h2
M − h2

B
h2

B

1ε =
εM − εB

εB

where the subscripts M and B represent the spatial and base
models, respectively.

RESULTS

Spatial models provided statistically significant improvements
in LL over a base model for all traits (H, D, V, D38, and A),
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TABLE 3 | ASReml model fit statistics Log-likelihood (LL) and test statistic (D) and
results heritability (h2) with its standard error (SE), by trait and model, ordered by
decreasing Log-likelihood (LL) within trait and traits are ordered by decreasing
improvement in residual (1ε%) from the best model, improvement in heritability
(1h2%) is also shown.

Trait Model LL D h2 SE 1 h2% 1ε%

H BAC −1291 <0.001 0.4117 0.0950 38.64 −65.48

BC −1381 <0.001 0.3011 0.0679 1.39 −32.90

BA −1758 <0.001 0.3425 0.0770 15.34 −24.87

B −1800 <0.001 0.2969 0.0660 − −

DBH BAC −8406 <0.001 0.3753 0.0899 33.55 −63.65

BC −8440 <0.001 0.2954 0.0657 5.13 −38.90

BA −8930 <0.001 0.2950 0.0671 4.99 −8.58

B −8948 <0.001 0.2810 0.0636 − −

V BAC 5757 <0.001 0.3642 0.0856 22.47 −56.26

BC 5742 <0.001 0.2980 0.0649 0.21 −31.89

BA 5347 <0.001 0.3140 0.0678 5.60 −8.87

B 5334 <0.001 0.2973 0.0640 − −

D38 BAC −6024 <0.001 0.4912 0.0931 34.88 −50.31

BC −6096 <0.001 0.3546 0.0705 −2.63 −14.43

BA −6210 <0.001 0.4926 0.0922 35.28 −40.18

B −6276 <0.001 0.3642 0.0713 − −

A BAC 1052 <0.001 0.4862 0.1101 14.10 −21.03

BC 1047 <0.001 0.4221 0.0764 −0.93 −0.30

BA 1038 0.002 0.4531 0.0819 6.34 −9.63

B 1033 <0.001 0.4261 0.0772 − −

the ranking order in Table 3 was BAC, BC, BA. Spatial BAC
models resulted in reductions in residual ranging from −65.48%
for H to −21.03% for A, and improvements in h2 from 38.64%
for H to 14.10% for A. Results confirmed prior research that
auto-regressive order 1 (AR1) models are able to account for
spatial effects from a wide variety of sources (Isik et al., 2017).
Results also showed the utilization of a competition covariate in
combination with an AR1 term explained additional variation,
substantially reducing the residual and improving h2 for all traits
except D38. The tree size traits DBH, H, and V benefited the most
from competition covariates, and the greatest improvements in
residual and h2 relative to a BA model were −55% and 29%,
respectively from a BAC model for DBH.

The use of competition covariates in spatial models without
an AR1 term (BC models) resulted in statistically significant
improvements in LL, and reductions in residuals. However,
the BC models did not generally result in increased h2, the
best improvements being 5.13% and −2.63% for D and D38,
respectively. The sign and strength of Pearson’s correlation
coefficients (r) were examined to elucidate the relationships
between crown metrics and traits (see Table 4).

The crown metric CVF (see Table 1) appeared in the
competition metric for the top performing BAC models for all
traits except A. Models with competition metrics based on the
CVF crown metric were consistently ranked highest, but only
marginally higher than models with the CR and CAP crown
metrics (results not shown). Those three metrics represented
crown size in terms of volume, radius, and projected area,
respectively. Moderate to strong correlations were observed for

TABLE 4 | Best performing (least Log-Likelihood) crown metrics in BAC models
compared to the BA model by trait.

Trait Model Crown metric N/CI r

H BAC CVF NB CIA −0.5436

BA

DBH BAC CVF NB CIA −0.5990

BA

V BAC CVF NB CIA −0.5423

BA

D38 BAC CVF NA CIA 0.3971

BA

A BAC ACG NA CIA 0.1328

BA

The competition crown metric, neighborhood definition (N) and competition index
(CI) used are shown along with Pearson’s correlation coefficient (r) for the trait
and crown metric.

competition metrics with tree size traits (H, DBH, and V, with r
from−0.54 to−0.60) and with disease expression (D38, r = 0.40).
Results associated higher competition metrics with reduced tree
size, and increased disease levels.

Competition metrics based on distance-weighted crown
size metrics (CIA, CIB, CIC) were derived using area (NA)
and boundary (NB) neighborhoods. The CIA formulation,
representing a linear distance weighting of crown sizes, appeared
in the best BAC models for all traits (Table 4) and the boundary
neighbourhood definition (NB) performed best for the tree size
traits (H, DBH, and V). The exponentially weighted derivations
of competition index (CIB and CIC) were inferior.

DISCUSSION

The Autocorrelation-Competition-Error
Approach
Results from our study have confirmed the recognized general
utility of AR1 spatial models with a spatially independent
units term to take account of spatial environmental variation
(Costa et al., 2001; Dutkowski et al., 2006). However, spatial
autocorrelation can be positive, representing various site effects
such as temperature and aspect, and negative, representing
competition effects. Competition effects can result in the mutual
masking of these forms of autocorrelation (Griffith and Arbia,
2010). Where negative autocorrelation is left unaccounted
for, it can even result in insignificant spatial autocorrelation
test statistics. The inclusion of competition effects to reduce
residual variation was described in a theoretical approach,
focused on competition of genetic origin, and showed failure
to account for competition resulted in biased model estimates
and increased residual variation (Costa et al., 2013). Our study
was a practical demonstration of the presence of both positive
(site) and negative (competition) autocorrelation, and the best
models combined AR1 and competition terms to explain these
respective environmental sources of variation. Models having
an explicit competition term and a generic term to account for
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positive autocorrelation are referred to as ACE (autocorrelation-
competition-error) models. Results confirmed our hypothesis
that models including autoregressive and competition terms
reduce residuals and improve estimates of heritabilities compared
to conventional models without spatial terms.

The success of ACE models was attributed to three
key features. Firstly, it was critical to separate negative
and positive autocorrelation, representing variation due to
competition and other environmental effects, respectively, which
were otherwise confounded. Secondly, the inverse-distance
weighted competition metrics employed successfully accounted
for competition. Thirdly, we observed there are potentially
numerous positively auto-correlated environmental effects on
tree growth besides competition, which were robustly accounted
for by an autoregressive model component. We suggest ACE
models as a useful approach to analyses of tree and plant growth
due to the ubiquity of both competition and site effects. Thus,
we propose that it will be beneficial for modelers to test for,
and quantify, those effects with ACE models, when possible, as
a useful evolution of the currently recommended practice of
applying AR1 models.

The competition and crown metrics utilized were
parsimonious, easy to derive, and to interpret, which will
aid application of ACE models. The competition metrics were
of a widely recognized and applied form, utilizing positions and
relative sizes of neighboring trees (Maleki et al., 2015). The crown
metrics represented fundamental crown morphological features,
and were derived from analysis of the CHM, a model of the
upper surface of the canopy derived from the three-dimensional
point cloud created by laser scanning (Pont et al., 2013). This
is referred to as a raster-based approach, and is contrasted
with point- and voxel-based methods which derive numerous
measures from the three-dimensional point cloud, a majority of
which are statistical measures of point dispersion (Zhen et al.,
2016). The latter methods can yield large numbers of metrics,
but we note that studies evaluating such metrics have typically
found that a more limited set of crown morphological metrics,
representing crown features such as diameter, length, area,
and volume, were typically among the most useful variables
in models estimating tree attributes (Vauhkonen et al., 2016).
Raster based metrics derived using the methods described in this
study permit the use of widely available point cloud data, either
from ALS or photogrammetric methods (Krause et al., 2019),
making the methods flexible and amenable to operational uses in
forestry. Future research could compare the efficacy of ALS and
photogrammetric data sources with ACE models.

Generality of ACE Models
An autoregressive model relates a characteristic of a target tree
to the same characteristic of its neighbors, reflecting Tobler’s
first law of geography (Tobler, 1970). Autoregressive models
make no attempt to explain effects or cause, and therein lies
their power. We postulate that an AR1 term can effectively
account for spatial effects from multiple sources and scales,
particularly once a separate term for competition is included. As
a hypothetical example of scale independence, consider a group
of neighboring trees where height growth is being positively
affected by soil fertility at a short scale, and negatively affected by

temperature at a much larger scale. There could also be additional
unknown influences on growth, all operating at different scales.
An autoregressive model is agnostic to the factors or scales at play
and utilizes the integrated result of all such effects on neighboring
trees as a robust proxy for the effects on the target tree. The ACE
approach could therefore robustly account for environmental
variation of unknown sources and scales with an AR1 term, and
is also amenable to the addition of terms representing explicit
environmental effects as they are elucidated in future research.

Traits Have Distinct Environmental
Responses
The ACE approach was shown to be beneficial for a range of
traits, but it was also apparent that the relative amounts of
variation due to genotype, competition, and site were distinct
by trait. Tree DBH and V apparently had strong overall spatial
variation, predominantly due to competition, while H also
exhibited strong spatial variation due to nearly equal amounts
of competition and site effects. The weaker competition effect
noted for Dothistroma infection agreed with a predominant site
effect due to the localized spread of the disease, reliant on a
water-borne transmission, and re-infection of trees from fallen
needles (Bulman et al., 2013) and the known tendency for the
disease to occur in gullies due to increased moisture and reduced
air movement (Bulman et al., 2004). The smaller, but evident,
competition effect for D38 could reflect reduced tree growth
resulting from the disease, or increased infection of smaller trees.

Applications
There are several important operational applications for tree
level phenotyping which could be supported by the ACE
modeling approach, ranging from trial, stand, and forest levels,
for breeding, research, and management objectives. The use of
ALS data provides accurate tree locations and sizes for use in
competition metrics. It should be noted the modeling approach
is even applicable to conventional ground measurement of trials,
where remote sensed crown metrics are not available. In that case
competition metrics could be derived from ground measured tree
size, or other traits. The use of ACE models including known
genetics in analysis of a genetics trial was shown to substantially
reduce model residuals and improve heritabilities, potentially
improving breeding values, tree selection, and future breeds.
The benefits of improved tree breed selection for forest sites are
accentuated in the context of climate change (Dungey et al., 2018;
D’odorico et al., 2020; De Los Campos et al., 2020). The ACE
method is also advocated for use in general research trial analyses
to improve accuracy and precision of results by accounting for
environmental variation. In this study ACE models were applied
to tree size (H, DBH, V), disease expression (D38) and wood
quality (A), representing a set of traits of primary importance to
tree breeders and forest managers.

CONCLUSION

Crown metrics utilized in competition metrics substantially
reduced residual variation and improved heritabilities for
a range of operationally relevant traits. Tree height, DBH,
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volume, Dothistroma infection and stiffness exhibited significant
variation attributable to spatial environmental effects. Analyses
showed that traits exhibited distinct combinations of genotypic,
competition, and site related variation, which needs be
considered when modeling. The crown metrics and competition
metrics identified in this study were parsimonious, effective, and
warrant further investigation.

Analyses of results lead to the proposal of ACE models as
a robust and effective approach to account for environmental
variation in tree traits. Those models comprise an explicit
competition term accounting for negative autocorrelation and
a generic spatial term to account for positively autocorrelated
site effects. Inclusion of a competition term, which we derived
from individual tree crown metrics, was observed to be
critical to improving the effectiveness of spatial modeling for
environmental effects, avoiding the confounding of negative and
positive autocorrelation.

The ACE approach is recommended for wider evaluation
in tree and plant growth analyses, particularly for size and
disease attributes. The analysis of remotely sensed data using
ACE models will be developed and evaluated in future studies
to determine utility in improving accuracy of trial analyses,
identification of superior trees, tree growth research, and
precision forest management.
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Traditional phenotyping techniques have long been a bottleneck in breeding programs
and genotype- phenotype association studies in potato, as these methods are labor-
intensive and time consuming. In addition, depending on the trait measured and metric
adopted, they suffer from varying degrees of user bias and inaccuracy, and hence
these challenges have effectively prevented the execution of large-scale population-
based field studies. This is true not only for commercial traits (e.g., yield, tuber size,
and shape), but also for traits strongly associated with plant performance (e.g., canopy
development, canopy architecture, and growth rates). This study demonstrates how the
use of point cloud data obtained from low-cost UAV imaging can be used to create
3D surface models of the plant canopy, from which detailed and accurate data on
plant height and its distribution, canopy ground cover and canopy volume can be
obtained over the growing season. Comparison of the canopy datasets at different
temporal points enabled the identification of distinct patterns of canopy development,
including different patterns of growth, plant lodging, maturity and senescence. Three
varieties are presented as exemplars. Variety Nadine presented the growth pattern
of an early maturing variety, showing rapid initial growth followed by rapid onset of
senescence and plant death. Varieties Bonnie and Bounty presented the pattern of
intermediate to late maturing varieties, with Bonnie also showing early canopy lodging.
The methodological approach used in this study may alleviate one of the current
bottlenecks in the study of plant development, paving the way for an expansion in the
scale of future genotype-phenotype association studies.

Keywords: high throughput phenotyping, plant breeding, unmanned aerial vehicles, canopy structure, potato,
crop growth and development, crop surface models

INTRODUCTION

Potato (Solanum tuberosum L.) is the fourth most important food crop in the world and is regarded
as one of the highest yielding crops amongst the staple foods (Birch et al., 2012). In order to
feed a growing population under changing climatic conditions, the demand for high yielding and
stress tolerant varieties is expected to increase (Birch et al., 2012). While on one hand breeders
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and biotechnologists have focussed on engineering and breeding
crop plants for achieving higher yields and quality, on the
other the aim is to maintain agricultural productivity under
changing environmental conditions by combating abiotic and
biotic stresses.

Breeding programs have traditionally focused on
commercially important traits, the major one being yield.
Plant performance, along with economic yield, has been shown
to be strongly associated with traits related to plant growth and
development. These include plant architecture, leaf structure and
vascular architecture as some of the major traits that determine
overall crop performance (Mathan et al., 2016). Thus, in order to
meet the increase in demand for high yielding and stress tolerant
crops, it is necessary to expand breeding programs to encompass
traits linked to plant growth and development (Prashar et al.,
2013; Yang et al., 2017). Engineering developmental and growth
traits with the aim of improving plant performance and yield
requires a thorough understanding of the underlying genetics,
which can be linked with quantitative phenotypic assessments.
In the last few decades there has been major developments
in genomic and genotyping technologies allowing faster and
cheaper creation of complete genetic profiles (Wang et al., 2018),
but despite these advances there are few genomics-assisted
breeding programs.

One of the major current limiting factors in modern breeding
programs is the acquisition of large-scale phenotypic assessment
under natural conditions in the field for performance traits.
Most of these evaluations have been conducted in controlled
environments until very recently (Anithakumari et al., 2011;
Khan et al., 2015). However, results from such environments may
poorly predict what happens under field conditions (Prashar and
Jones, 2014; Williams et al., 2017; Yang et al., 2017). Furthermore,
such studies frequently use only a small number of genotypes,
and thus may fail to detect Quantitative Trait Loci (QTL) with
small effect sizes. In addition, greater precision in phenotypic
data collection allows the increase in selection accuracy in
breeding, which is a function of heritability, which increases
with increased repeatability and thus rate of genetic gain also
increases (Araus et al., 2018). Phenotypic evaluation for the
genetic study of performance related traits therefore requires
large-scale field studies (Prashar et al., 2013; Prashar and Jones,
2014) involving large genetic populations (Furbank and Tester,
2011; Lopes and Reynolds, 2012). However, the requirement for
phenotypic assessment is currently one of the major bottlenecks
in both genotype-phenotype association studies and large-scale
breeding programs.

Current phenotyping methodologies are very laborious and
time consuming and therefore impractical for large-scale field
studies. In addition, depending on the trait being measured,
they can be inaccurate, inconsistent and susceptible to user
assessment bias (Friedli et al., 2016; Jimenez-Berni et al., 2018;
Wang et al., 2018). For example, leaf area index (LAI) and
ground cover (GC) are two traits frequently used in monitoring
plant growth (Khurana and McLaren, 1982; Boyd et al., 2002),
with most potato yield prediction models requiring at least
one of these (Haverkort et al., 2015; Raymundo et al., 2017).
Traditional methods such as the use of grids to estimate GC,

or light interception based techniques to estimate LAI, are
labor-intensive and time consuming (Khurana and McLaren,
1982; Boyd et al., 2002). These challenges limit monitoring to
small sample plots, which may not accurately represent the
heterogeneity in agricultural fields. This seriously limits the high
accuracy and precision that is required in modern agriculture, not
only to achieve lower resource inputs and hence environmental
impact, but also to accelerate genetic gain through increasing
heritability, and hence selection accuracy (Araus et al., 2018).
Remote sensing techniques for quantitative assessments and
stress detection have been suggested as a possible solution to these
limitations (Prashar et al., 2013; Friedli et al., 2016; Yang et al.,
2017; Jimenez-Berni et al., 2018; Wang et al., 2018).

Sensing approaches used for crop trait phenotyping and
crop monitoring include satellite-based systems, manned aircraft
or unmanned aerial vehicle (UAV) linked systems and tractor
mounted sensing tools. Satellite remote sensing is capable of
monitoring large areas at the same time and has undergone
significant improvements in recent years, especially with regards
to spatial resolution and increased coverage due to the addition
of low orbit satellites. Nevertheless, it still frequently lacks the
spatial resolution necessary for precise and detailed canopy
phenotyping of relatively small plots. Satellites are also limited
to data collection or observations at fixed times, which may not
match the phenotyping needs, and by cloud coverage, which may
impede data collection during those times (Berni et al., 2009;
Matese et al., 2015). In recent decades, UAV technology has
become more accurate, and importantly, more affordable. It is
capable of monitoring agricultural fields with greater flexibility
and higher spatial resolution, in a short time period (Matese et al.,
2015; Yang et al., 2017). The nature and extent of the data to be
collected with UAVs depends on the type of sensor used (Yang
et al., 2017). RGB sensors allow not only visual assessment of
the sampled areas, but also the assessment of traits influencing
plant development from the point cloud data, such as leaf color,
plant height, canopy cover and 3D plant structure. Near-Infrared
(NIR) sensors allow estimation of various vegetation indices that
can be used to estimate biomass, nitrogen content and disease
detection, while thermal sensors are useful for understanding
stress and assessing water status (Yang et al., 2017; Zheng et al.,
2018; Roitsch et al., 2019). Through the combined use of different
types of sensor, numerous traits can be evaluated more efficiently
and objectively, with the potential for temporal studies with
more frequent data collection points, enabling accurate growth
and development models to be created (Prashar et al., 2013;
Friedli et al., 2016; Yang et al., 2017; Jimenez-Berni et al., 2018;
Wang et al., 2018).

With the images acquired by UAV equipment using various
sensors (RGB, multispectral and/or hyperspectral), Structure
from Motion (SfM) point cloud data has been used to
understand plant growth and development. Early applications
of this method include artificial monocultures (e.g., orchards)
and diverse biomes (e.g., forestry), which share many of the
same challenges, including resource intensive monitoring of
large areas and understanding tree crown heterogeneity. For
example, a combination of RGB and NIR sensors have been
used to develop an object-based image analysis technique for

Frontiers in Plant Science | www.frontiersin.org 2 February 2021 | Volume 12 | Article 61284382

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-612843 February 8, 2021 Time: 16:3 # 3

de Jesus Colwell et al. Potato Phenotyping Using UAV Datasets

automatically calculating tree height, canopy cover and volume
of individual olive trees (Torres-Sánchez et al., 2015), as well as
to assess the effect of different pruning methods on olive tree
growth (Jiménez-Brenes et al., 2017). UAV based systems have
also shown potential for estimating flower biodiversity (Getzin
et al., 2012) and for the creation of a rapid and accurate forest
census (Mohan et al., 2017). However, applications in agriculture
have mostly been limited to cereals (Bendig et al., 2013, 2014,
2015; Holman et al., 2016; Jin et al., 2017) and cotton (Xu et al.,
2019). In potato, UAV acquired images have been used to estimate
plant emergence (Sankaran et al., 2017; Li et al., 2019) and assess
disease severity (Sugiura et al., 2016; Franceschini et al., 2017).
However, there have been no published studies related to plant
structure, including canopy architecture and development, under
field conditions.

This article evaluates the use of a low-cost UAV system,
mainly in the form of RGB imaging resources and obtained
datasets, for understanding plant growth and development in
potato under natural field conditions. The image datasets from
this system are used to develop new methodology for quantifying
canopy growth parameters and assessing canopy variability
through developing crop growth and development models,
with validation using ground truth datasets. This methodology
enables quantitative trait assessment and modeling of growth
and development parameters in potato, which can allow high-
throughput phenotyping of canopy traits for integration with
large-scale genetic datasets and hence the improvement of future
potato breeding programs.

MATERIALS AND METHODS

Plant Material and Field Layout
The data used in this paper forms part of a large study that
was performed at Nafferton Farm, Newcastle University,
United Kingdom, with field trials at 54◦59′12.0′′N
1◦53′33.9′′W/54.986655, −1.892751 and 54◦58′51.3′′N
1◦53′56.5′′W/54.980924, −1.899018, in 2017 and 2018
respectively. A total of 297 varieties of potato (Solanum
tuberosum L.), which form a large part of a tetraploid variety
association panel available at The James Hutton Institute (Sharma
et al., 2018), were planted in April 2017 and May 2018. The
experimental design consisted of two replicate blocks for each of
two management systems (organic and conventional), making a
total of 4 blocks. Each block consisted of 6 rows spaced 90 cm
apart and comprising 50 plots per row. Each plot contained 3
plants of a given variety planted 35 cm apart. Spacing of 90 cm
was maintained between plots within each row. To minimize
edge effects, a row of guard plants was planted surrounding
each block. Both conventional and organic trials were conducted
using their respective standard management practices.

UAV Flight Parameters
UAV flights were performed in collaboration with Survey
Solutions Scotland using a fixed wing UX5 HP UAV (Trimble,
Sunnyvale, California, United States). The UX5 HP uses Global
Navigation Satellite System (GNSS) post-processed kinematic

techniques to determine the UAV trajectory. Images were taken
using a Sony α7R 36MP full frame 35 mm RGB camera with
a custom made Voigtlander 35 mm lens. The 35 mm lens was
selected to deliver a 1.0 cm Ground Sample Distance (GSD)
at 75 m Above Ground Level (AGL), while also offering pixel
sizes down to 4.9 µm, to maximize the signal to noise ratio
and dynamic range, while maintaining affordability. Given the
importance of the canopy volume in this research, a UAV sensor
with a global rather than a sliding shutter was selected for the
imagery as this greatly reduces noise in the images, which leads
to a much cleaner and more precise deliverable. The data was
collected at 75 m altitude with overlaps of 85% (both front
and side) between neighboring images. The speed of flight was
nominally 85 km/h, therefore flying height was restricted to 75 m
AGL to minimize image distortion due to motion blur. Details of
flight dates and their relation to canopy development in days after
planting are given in Table 1.

Image and Data Analysis
The images acquired using UAV were processed and analyzed
using the Trimble Business Center (TBC) software version
4.1 and 5.0, for the 2017 and 2018 datasets, respectively
(Trimble, Sunnyvale, California, United States). This includes
the subsequent use of GCP referencing, point cloud data
generation, creation of digital surface models, manual plot
demarcation, computation of difference models and canopy data
acquisition e.g., canopy cover and volume (further details in
the following sections). Plant height data clean up, subsequent
statistical analysis (regression and correlation) and other data
processing was carried out in R (R: Project for Statistical
Computing, The R foundation) using the following packages:
dplyr, ggplot2, gridExtra, Hmisc, plotrix, plyr, SDMtools, tidyr,
tidyverse (Lemon, 2006; Wickham, 2011, 2016; Vanderwal et al.,
2014; Wickham et al., 2015, 2019; Baptiste, 2017; Wickham and
Henry, 2019; Harrell, 2020).

UAV DATA PRE-PROCESSING

UAV Trajectory Processing
Raw GNSS data was recorded in the UX5 HP UAV by the on-
board 336-channel multi constellation GNSS receiver, which is
downloaded at the end of the flight and processed against a local
base station situated within our flight area. The local base position

TABLE 1 | Planting and UAV flight schedule for assessing potato canopy
characteristics.

Year Planting Flight date Days after planting

2017 28-04-2017 07-07-2017 70

24-07-2017 87

08-08-2017 102

2018 03-05-2018 05-06-2018 33

04-07-2018 62

06-08-2018 95

28-08-2018 117
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was established by processing the local base against Ordnance
Survey CORS (Continuously Operating Reference Stations),
sourcing 1 hourly RINEX data, which provide GNSS data
at reference stations coordinated in ETRS89 (ETRF2009.756).
Processing the local base station relative to known Ordnance
Survey CORS (OSNet) helps in establishing the position of
the local base for each UAV flight and its repeatability is
assured. Processing multi constellation GNSS data relative to
fixed OS CORS typically gave estimated precisions of ≈5 mm
in plan and ≈20 mm in height (at 95% confidence) over 30
km baselines. OSTN15 CORS stations, relative to each other,
are considered error free. The processed base stations used the
OSTN15 transformation model and OSGM15 geoid correction
surface to convert the ETRS89 global WGS84 coordinates into
Ordnance Survey (OS) grid coordinates. The local base was
processed (using the final local base station coordinate) against
the 20 Hz UAV data to produce a continuous flight trajectory
of the UAV. This estimated a posteriori trajectory accuracy of
97.20% @ 0–5 cm and 2.60% @ 5–15 cm, and the remaining
values were considered outliers.

PPK (Post-processed Kinematic) was used to create the
trajectory as it is more robust than alternative methods, which
may rely on radio or other communications. In addition, precise
ephemerides can be incorporated into the processing later, to
enhance the baseline processing algorithms if needed. Although
we used a processed UAV trajectory, we still used and placed
Ground Control Points (GCPs) as required, but the number of
these can be greatly reduced in comparison to non-PPK methods.

Photogrammetric Processing
The UAV trajectory was processed in TBC software, with
feedback events recorded at better than millisecond accuracy.
This helps to precisely establish the location of the photo center
of each image at the time of exposure. Having image positions
at the cm level negates the need for dense pixel matching, a
process which is required in non-PPK aerial photogrammetric
processing. It also greatly reduces the need for intensive, time
consuming and expensive GCP placement, which would be
impractical given the expected development of the canopy
in this research.

Around 6 GCPs were placed in the periphery of the trial
and were used in all flights to ensure repeatable and accurate
deliverables and to generate an accurate camera calibration. In
addition to being measured as vectors from the local base, the
GCPs were also georeferenced using Network RTK (Real-time
Kinematic), which provides an independent check on the GCP
coordinates. These GCP coordinates were fixed for the duration
of the project, thus providing a common datum for all flights
in a given year.

Image Processing
The images were imported into TBC software at the same time
as the Raw GNSS data, so that when the trajectory is processed
and the event markers created, each image will be positioned
in the correct 3D position. To resolve the orientation of each
image, i.e., the omega, phi and kappa rotations, a precise Interior
Orientation (IO) is computed using the GNSS positions, i.e., a tie

point adjustment, highlighting how well the images tie together.
In non-PPK processing, this is a computer intensive and time-
consuming process. However, a PPK trajectory resolves for the
image location, thus only the orientation needs to be resolved,
resulting in a more rapid and robust solution.

The IO was followed by an exterior orientation (EO) with
camera calibration. For the EO, visible GCPs in each image were
“picked” so that the real-world coordinates are allocated to the
GCP image coordinates (as produced by RTK observations and
verified by Network RTK). As mentioned above, GCPs allow
camera calibration and computation of distortion parameters
for the lens. The combination of GNSS and GCPs also allows
computation of the focal length. Both of these parameters are
a necessity for creating “noiseless” deliverables. After the EO is
performed, the flight report is analyzed for errors and accuracy.
The low errors and high confidence accuracy confirms the
validity of the flight and ensures observation repeatability over
the duration of the experiment (data not presented).

UAV DATA PROCESSING

Deliverable Creation
The next step after measuring accuracy and acceptance of the
EO results is to create deliverables (e.g., point cloud, orthophoto,
etc.). Both point cloud and true orthophotos require well-
orientated images. Different types of surfaces can be generated
from orthomosaic images. Surface generation is the creation
of a point cloud and it requires at least two, and preferably
more, overlapping images. Insufficient overlap produces noise,
or worse, gaps in the data. A surface was generated using
the maximum resolution available (appropriate to the flight
parameters) using a Cost-based Matching algorithm. Briefly, the
algorithm uses pixel-by-pixel matching, rather than an area based
or feature based technique, though a detailed discussion of the
algorithm is beyond the scope of this work.

The orthophoto (i.e., geometrically corrected or
orthorectified) was created after processing of the point
cloud surface, to give an image where the scale is uniform and
true. A “True” orthophoto rather than “Classic orthophoto” was
selected because it uses the surface model to calculate occlusions
and fill them in from other images, which is essential when the
canopy is not uniform. A “Classic” orthophoto, on the other
hand, would require bare Earth.

Preliminary Data Clean Up
Raw data and the generated point clouds typically include
errors due to several factors. These include vegetation movement
due to wind, UAV crabbing in flight, which lessens the
expected image overlap and bad reflection points (i.e., noise
due to inadequate overlap and image uncertainty). These
erroneous points need to be removed from the point cloud
(Figure 1A). This was accomplished by the manual removal
of points that would be considered impossible, as determined
by their height based on proximity to other points, position
in the field, and visual inspection of the point cloud. We
used a manual removal process because the outlier points
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FIGURE 1 | (A) 3D representation of the point cloud before (I) and after (II) the
manual removal of erroneous points. (B) Generation of a soil reference surface
(red surface) by increasing every point of the topographical surface (gray
surface) by the average height of all the ridges in the block.

in our data were sparse and inconsistent in local point
density. Automatic outlier removal methods are available if
needed, such as the discontinuous operators-based method
(Ning et al., 2018).

Surface Model Creation
Following clean up, the point cloud data was used to generate
two surfaces (where surface is referred here as 3D models
generated from point cloud data), including one for the soil
reference and another for the canopy. Surfaces created in the
TBC software are a 3D digital representation of topography (in
this case, canopy), formed by a mesh of contiguous triangles, and
sometimes referred to as a Triangulated Irregular Network (TIN).
The triangles are connected at their vertices, which are defined by
points with horizontal positions (X and Y–values) and elevations
(Z-values), i.e., points in a point cloud forming three sided planar
faces. The surface model from a point cloud is a simple set of
triangles, but can be enhanced by the inclusion (or omission) of
boundaries, break lines, and points, etc. that make up the surface
model and that are used to define its shape.

Canopy surfaces in our case used the totality of the point
cloud within each experimental block. Ideally, the creation of a
soil reference surface would use point cloud data from below the
canopy, but Structure from Motion imagery does not permit this,
especially when plants are growing. Therefore, to overcome this
limitation a surface was created to estimate the soil topography.
Since potatoes are grown on ridges, a topographical surface
was first created using the bare soil surrounding the plants,
hence excluding the ridges and any potential vegetation. Second,
the height of every point on this surface was increased by the
average height of all the ridges in the block to construct a raised
surface (Figure 1B).

Difference Model Creation and Plot
Demarcation
As a next step after generating surfaces, difference models were
created for the entirety of each experimental block. Difference
models are a 3D representation of a model, where each point in
the model has the elevation difference between two surfaces on
the same point. Once generated, this difference model was then
used in combination with the orthomosaic image to accurately
demarcate individual plots. The demarcation of individual plots
made it possible to create difference models for each and every
plot in each block, using the same surfaces that were created
previously, from which we are able to extract canopy volume,
ground cover and canopy height datasets for further analysis.
Details of the workflow are shown in Figure 2.

Difference Model Computation Methods
Two difference model computation methods were compared
(Figure 3). The “trace all triangles” method (Figure 3B) creates a
new vertex at each point of the point cloud where soil surface and
canopy surface triangles either overlap or intersect, while taking
into account any existing breaklines created during demarcation.
These vertices serve as new points for the creation of the
difference model; therefore, the resulting difference model has
a denser mesh of vertices than the original surfaces. The “do
not track breaklines” method (Figure 3C) uses only existing
points of the point cloud to create a difference model, ignoring
breaklines and not creating new vertices, with the generated
difference model having the same density of vertexes as the
original surfaces. For comparison, 300 field plots were selected
and both methods were applied to generate the triangular mesh.
Subsequent calculations of plot volume were compared using
Spearman’s rank correlation coefficient.

Plant Height Calculation
The difference model helps us build up the height data at any
point within the plot area, at a resolution of 1 cm. This allows us
not only to determine the highest point within the demarcated
area (representing the maximum height of the 3 plants within
the plot), but also allows the construction of a frequency
table of the height distribution that provides information on
the canopy structure and allows calculation of the average
height of the plants.

Plant Height Data Clean Up
Preliminary point cloud clean-up removes the more noticeable
errors, which tend to be the impossible or unrealistic values.
However, smaller errors tend to remain in the point cloud. These
smaller errors have a negligible effect on the average height,
but maximum height is more susceptible to influence. Weeds
are also a probable source of errors when it is not possible to
manually remove them from the potato plants. An integrated
approach using different imaging sensors (not illustrated here)
is more valid in this scenario but falls outside the scope of this
work. Small weeds will provide a small, potentially negligible,
effect on the histograms and the average height. However,
maximum height can easily be overestimated because of a single
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FIGURE 2 | Methodological flowchart showing the acquisition of quantitative data on potato plant canopy structure (e.g., canopy volume, canopy ground cover, and
plant height) using a Structure from Motion algorithm from UAV acquired images.

weed plant that outgrows the potato plants, thus necessitating
a more precise clean up. First, all points above 1.2 m were
removed, as potato plants do not reach this height. Second,
further clean-up was achieved by using the standard deviation
(SD) of the plot canopy height distribution as a cut-off for

the maximum height. Cut-offs of 2, 2.5, and 3 SDs above
the mean were evaluated by comparing post cut-off data with
field/proximal data using regression analysis and other graphical
visualizations including histograms to observe the effects on
individual plots.
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FIGURE 3 | Comparison of two difference model computation methods using the same reference surfaces. (A) Surfaces used for computation, where red
represents the soil reference, green is the canopy surface generated from the point cloud, and a blue line demarcates the plot border. (B) Difference model using the
“trace all triangles” method. (C) Difference model using the “do not track breaklines” method.

Canopy Ground Cover and Canopy
Volume
Canopy ground cover and canopy volume are defined as the
sum planimetric area and total canopy volume, respectively, that
is above the level of the soil reference surface in the difference
model for each plot.

PROXIMAL DATA ACQUISITION

Ground truth data was collected for comparison
with measurements obtained from the UAV point
cloud data approach.

Plant height was measured proximally using a ruler in
randomly selected plots on the same day as UAV data collection.
The highest contact point of the plant for each of the 3 plants
in each plot was recorded. The maximum height from the 3
plants per plot was compared to the maximum height determined
from the UAV data.

Leaf Area Index (LAI) data was obtained using a ceptometer
(ACCUPAR LP-80, METER ENVIRONMENT, part of METER
Group, Inc. United States). The ratio of the length of the
horizontal to the vertical axis of the spheroid described by the leaf
angle distribution of a canopy was assumed to be 2 for the leaf
distribution parameter in potato plants. The sensor was angled
so that the angle to the ridge was kept the same and would
cover all plants within a plot (Supplementary Figure S1). All
LAI measurements were taken in tandem with the field height
measurements in 2018.

RESULTS

Ground Truth Versus Image Based Plant
Height Measurements
Plant height measurements from field collected proximal data
were compared with measurements based on UAV imaging.
A two-step data cleaning procedure for the UAV image data
involved manual removal of obvious outliers to produce “pre

clean up” data, followed by a second round of cleaning
using various standard deviation cut-offs based on the plot
height dataset (see section “Materials and Methods”). Data
cleaning significantly increased the concordance between field
and UAV data (Figure 4). The pre clean up data showed
a relatively low R2 of 0.39 (p < 0.01), and this value
increased to moderate levels for cut-offs of 3 SD, 2.5 SD
and 2 SD (R2 of 0.48, 0.50, and 0.52, respectively, all
p < 0.01). Observations from Figure 4 highlight that the
different cut-off levels are not significantly different (data
not presented). To determine the most appropriate cut-off
level, we visually evaluated the risk of removing real canopy
data in three selected exemplar plots (representing relatively
common height distribution profiles) (Figure 5). The first
example plot in Figure 5Ai presents an ideal situation in
which all cut-offs remove only the elongated tail that is
caused by computational errors and weeds integrated within
the canopy structure of the plot, thus affecting the maximum
height measurements. In the other two exemplar plots shown
in Figures 5Aii,iii, the 2 SD cut-off point clearly removes
part of the canopy, while the 2.5 SD cut-off removes part
of the canopy in Figure 5Aii, but not in Figure 5Aiii. This
increase in percentage of points removed is also exhibited
in Figure 5B. The combined analysis from Figures 4, 5
suggested that the 3 SD cut-off was the most appropriate as it
deterred the removal of the canopy data while also removing
most of the noise.

To gain a clearer understanding of how the observations made
in Figure 5 were reflected in the rest of the field, Figure 6A
presents the overall effects of the same standard deviation cut-offs
on all experimental plots (individual histograms are not shown).
In accordance with Figure 5, the 2 SD cut-off removed the highest
percentage of data points. A large number of plots had relatively
high percentages of data removed, with an overall average of
more than 1%, indicating that canopy data is removed from most
plots. The 2.5 SD cut-off performed better, but still removed the
canopy data from a significant portion of the experimental plots.
As expected, the 3 SD cut-off removed the lowest percentage
of data points, but still preserved the canopy profile of all the
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FIGURE 4 | Comparison of maximum height computed from UAV flights with proximal ground truth measurements at plot level, for pre clean up UAV data (A), and
data cleaned using cut-offs of 3 (B), 2.5 (C), and 2 (D) standard deviations above the mean. p < 0.01 in all cases and n = 488.

FIGURE 5 | (A) Effect of 3 different standard deviation (SD) cut-offs on plot canopy datasets. Histograms represent the canopy area coverage at different height
levels using pre clean up canopy height data. (i–iii) Demonstrate 3 exemplar canopy plots. (B) Percentage of points removed from the point cloud at each SD cut-off
for the corresponding histograms in (A).

plots in the experiment (a similar scenario to the one shown
in Figure 5Ai, where over 1% of points are removed from a
particularly pronounced elongated tail).

Independent of the nature of the data points (i.e. canopy
data versus errors), their removal will always reduce the
measured average and maximum canopy heights (Figures 6Bi,ii,
respectively). As expected, the estimated maximum canopy
height based on the 2 SD cut-off showed the most divergence
from the estimate based on pre clean up data, while the 2.5
and 3 SD cut-offs led to a stronger correlation (Figure 6Bii).

In contrast, for the average canopy height, the three different
standard deviation cut-offs have no effect (Figure 6Bi). This
indicated that the average height was not significantly affected by
the existence of elongated tails caused by computational errors
and weeds integrated within the canopy structure. Similarly,
comparing average height with proximally measured field
maximum height, there was no discernible difference between
using pre clean up data or data cleaned using different SD cut-
offs, with all comparisons showing an adjusted R2 of 0.46 and
all p < 0.01. Thus, the point cloud generated average height
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FIGURE 6 | (A) Box-plot of the percentage of points removed from the point cloud of individual plots based on 3 different standard deviation (SD) cut-offs, shown by
flight and by year (n = 8,264). The locations of the exemplar plots shown in Figure 5 are indicated with gray arrows. (B) Relationship between the pre clean up
dataset and post clean up dataset using three SD cut-offs, for the: (i) average canopy height and (ii) maximum canopy height. All analyses have a p < 0.01,
n = 8,264.

provided a more consistent measure than the maximum height
for evaluating canopy height in potato.

Comparison of Difference Model
Computation Methods
There are various methods for constructing difference models
in the TBC software. These differ according to feature usage,
including breaklines and newly extrapolated points where
surfaces intersect, in addition to existing points in the surfaces.
We compared the “trace all triangles” method with the “do not
track breaklines” method and evaluated the pros and cons of each.

The “trace all triangles” method (Figure 3B) had a much
denser mesh generation compared with the “do not track
breaklines” method (Figure 3C), especially where the canopy and
soil references overlapped. To assess any potential impact on
our results, 300 plots were analyzed using both computational
methods. There was no significant difference between the two
methods for the canopy volume generated (Spearman’s rank
correlation r = 1.00, adjusted R2 = 1.00, p < 0.01, n = 300;
Supplementary Figure S2). However, the “trace all triangles”
method was computationally demanding and took significantly
longer (48 h) than the “do not track breaklines” method (25 min)
to compute all 300 plots. Though it was not based on a
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FIGURE 7 | Relationship between Leaf Area Index and computed (A) Canopy
ground cover and (B) Canopy volume for all observations (dashed black line,
n = 291) or when observations with LAI above 3.4 are discarded (solid black
line, n = 251). r is the Spearman’s rank correlation, R2 is the adjusted R2. All
statistical tests have a p < 0.01.

quantitative in-depth analysis when compared to the “trace
all triangles” method, the “do not track breaklines” method
therefore seemed the most appropriate based on the required
computational resources.

Relationship of Canopy Traits With LAI
Previous potato studies (Haverkort et al., 1991; Boyd et al.,
2002) indicated that when leaf area index (LAI) is higher
than 3, there is no longer a relationship between LAI and
ground cover, because the canopy has grown to the point
of achieving full ground cover. We found LAI correlated
significantly (p < 0.01) with both canopy volume and canopy

ground cover, with correlation coefficients of 0.50 and 0.39,
respectively (Figure 7). The strongest relationships with canopy
volume (r = 0.55, p< 0.01) and ground cover (r = 0.44,
p < 0.01) were identified when observations with LAI above
3.4 were discarded, as those discarded observations showed no
relationship with either canopy trait.

Temporal Variation of Canopy
Characteristics
The combination of canopy height, ground cover and volume
can provide comprehensive canopy size information. Though
average height is a more robust parameter than maximum height
for canopy height measurement, it does not provide quantitative
information on canopy shape or structure. Therefore, height
distribution data is important for characterizing the canopy
profile. The combined information on the canopy size and
shape from sequential flights helps to better understand the
pattern of canopy growth and development and the current stage
of plant growth.

Figure 8 presents a simplified version of the more complex
real-world plant growth pattern data. It provides a general guide
for the interpretation of growth patterns over time and illustrates
how UAV data can be used to infer canopy development
and size distribution. This guide can be a useful tool not
only for monitoring individual plant/canopy development, but
also to understand varietal variation. The canopy exemplars in
Figure 8 show several growth patterns, canopy shapes and their
corresponding height distribution histograms. In the simulated
growth pattern, we mimic the increase in area/ground cover (e.g.,
“sideways growth”), the increase in height (e.g., “vertical pyramid
growth,” “vertical even growth with higher starting point”), and
present examples of plant lodging and plant senescence.

We chose three varieties to provide an illustration of not
only how the interpretation of canopy data can be used to infer
canopy development, but also how data gathered over the entire
growing season allows the determination of maturity (Figure 9).
In variety Nadine (Figure 9A), we observed that from 33 days
after planting (DAP) to 62 DAP the change in height distribution
showed an almost perfect example of the “Vertical even growth”
pattern (Figure 8), with the canopy changing from a pyramid
like shape to a more bulky rectangular shape. This growth was
associated with an increase in canopy volume, ground cover and
height. By 95 DAP, senescence had begun, with the accompanying
decrease in canopy volume, ground cover and height, as expected.
The height distribution also resembled the “senescence” pattern
(Figure 8), and by 117 DAP the canopy had already senesced
completely. A quick early growth followed by rapid senescence
indicated that Nadine was an early maturing variety.

In variety Bonnie (Figure 9B), we observed that from 33 DAP
to 62 DAP there was an expected increase in canopy height,
ground cover and volume. However, unlike Nadine, the height
distribution pattern was not perfectly matched to the one shown
in the guide (Figure 8). At both 33 and 62 DAP, the canopy
growth seemed to be occurring more like “vertical even growth,”
but the height in the middle part of the canopy increased more
rapidly than the remaining area, i.e., the height of the main
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FIGURE 8 | Guide to interpretation of canopy development data at two time points. Column 1 shows a diagrammatic representation of the canopy side profile with
the corresponding height distribution histograms located in column 2 (simulated data). Time points 1 and 2 are shown in light green and dark green, respectively.
Column 3 defines the name given to each growth pattern, followed by a brief description of the most relevant changes between the two time points.

stem seemed to be increasing more quickly relative to the side
stems. At 95 DAP, we observed a good example of plant lodging,
with the bulk of the canopy shifting toward lower height, and
canopy ground cover continuing to increase despite the decrease
in canopy volume and height. This variety also serves as an
example of continued growth after lodging, as we observed an
increase in canopy volume, ground cover and height at 117 DAP,
which was also evident in the corresponding 3D model, with the
growth of new stems at the center of the canopy (Figure 9B).
The continuous growth until 117 DAP indicated that this variety
was an intermediate to late maturing variety, but that lodging
probably hinders its full growth potential.

Variety Bounty (Figure 9C) had a small canopy at 33 DAP
due to late emergence. By 62 DAP it presented a similar height
distribution pattern to Nadine but was clearly smaller. At 95
DAP the canopy size continued to increase. When looking at
the height distribution pattern, there was a noticeable increase
in area in the low to medium height range, with little increase
in the maximum height. Combined with the consistent increase
in the ground cover growth from 33 to 95 DAP, this suggested
that either there was a chance of small partial lodging, which

allowed the plant to increase its ground cover, or that this
variety invested more in lateral growth than vertical growth
(for more photosynthetic capacity). Only at 117 DAP was the
start of senescence observed. This pattern of continuous growth
until nearly the end of the season indicated that this variety
was either intermediate leaning toward late maturing, or a late
maturing variety.

DISCUSSION

Approaches for Determining Soil
Topography
One of the major difficulties in using Structure from Motion to
generate point clouds is the inability to determine the topography
of the soil below the plant canopy. To overcome this hurdle,
a soil surface was created using soil surrounding the plots and
then a compensation was made for the average ridge height.
This is the first study to implement and evaluate this new
method in ridged crops, which is an extrapolation of the method
commonly used in height assessment studies (Bendig et al., 2015;
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FIGURE 9 | Monitoring Canopy Volume (CV), Canopy Ground Cover (CGC) and Plant Height (H) over the growing season using difference models of three varieties:
Nadine (A), Bonnie (B) and Bounty (C) from 33 to 117 days after planting (DAP). Histograms represent the height distribution of the corresponding difference model.
Maximum height is indicated with a dark red arrow and mean height with a medium red arrow. The difference model is color coded based on height, with red
(<0 cm, soil), yellow (0–20 cm), green (20–40 cm), blue (40–60 cm), and purple (>60 cm).

Holman et al., 2016; Mohan et al., 2017; Hassan et al., 2019).
This method depends on the existence of easily identifiable
bare soil in close proximity to the crops, which is easy at
the beginning of the season (also evident from Holman et al.,
2016; Mohan et al., 2017), but may become impossible when
the plant canopy achieves total ground coverage, depending on
canopy structure.

An alternative method would be to perform a UAV flight
before plant emergence begins and use the soil topography
as a reference for all subsequent data collection points. This
method has the dual advantage of capturing the true ridge
height and allowing plant growth to be monitored below
the ridge height, which is particularly relevant later in the
season when lodging and plant senescence significantly alter
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the canopy structure. However, in some potato planting cases
(e.g., in organic systems), re-ridging is important, which further
motivated the evaluation of the new technique in this work.
Both methods share the assumption that soil topography remains
relatively constant throughout the growing season. However,
changes in soil topography during the season could be a
significant factor during data collection for crop phenotyping
and growth monitoring studies. Such effects are expected
to be more significant when plots are used for scientific
research, and hence subject to higher intervention rates, but
may be much less in large commercial agricultural fields.
Simultaneous use of both methods may be beneficial, as the
measurement of canopy proportion that is above or below
the ridge height may be of use in monitoring senescence
and plant lodging.

Consistency Between Proximal and UAV
Based Measurements
Previous studies in various crops including rice, wheat and
maize, have demonstrated high correlations (r > 0.90) between
remote and proximal measurements of plant height (Bendig
et al., 2015; Holman et al., 2016; Li et al., 2016). Here, we
observed correlations between 0.64 and 0.7 (p < 0.01) between
plant height measured proximally using a ruler in the field
and height measured using point cloud UAV data after clean
up. The comparatively low level of correlation we observed
may be attributed to several factors. One important difference
between potato and the crops in previous studies is the canopy
architecture. Potato plants are usually grown from tuber seeds,
which result in a potato plant canopy composed of several
main stems (Struik, 2007) in the form of a shrub, while the
previously studied crops (mostly cereals) either have only one
main stem or tend to have mostly vertical growth. This increases
user bias error in the field measurement of potato plant height,
as the user may erroneously measure a stem that is not the
same as the one selected with point cloud data. This error
may be removed by using a GPS based height measurement
tool to ensure that the same point of proximal measurement in
the field is compared with its UAV cloud dataset counterpart.
The potato canopy is also shorter than some previous crops
analyzed, and hence the relatively fixed error associated with
Structure from Motion point clouds can have a slightly greater
proportional impact on measurement. The spatial resolution or
flight conditions also play an important role in the calculation
of height, as lower flight altitudes generate more accurate height
estimates (Holman et al., 2016). This may well have played
a role in our datasets as we used fixed wing aircraft with
most flight data collected at around 75 m with over 85%
overlap in data collection. A multi-copter would allow more
freedom regarding control over the spatial resolution, with
similar image overlaps.

Height Measurements
Maximum height is commonly used to represent plant growth
characteristics in shrub plants including potato, cotton, and
fruit trees, and in cereals where data is collected from large

plots and maximum height based on a small number of
point clouds is used. We have shown that compared with the
maximum height, the average height provides a more consistent
measure of plant height, which is both more robust to the
data cleaning strategy, and better representative of the entire
canopy height distribution, as demonstrated using temporal
data on the canopy structure of three varieties (Figure 9).
In addition, the use of maximum height data has higher
potential for user bias during in-field measurements, and for
computational error effects while analyzing the UAV point
cloud data. Thus, though it is almost impossible to verify
using traditional in-field measurements, we recommend the
use of average height as it gives a much better representation
of plant growth, which is of utmost importance when
attempting to understand the genotype-phenotype relationship
in plant breeding. The improved precision in phenotype
datasets allow us to decrease the error values and hence
provides the opportunity to improve the heritability of traits
(Cobb et al., 2013). Thus, the accuracy and precision in
phenotyping provide the necessary tools to empower the
next generation of linkage mapping and association studies
and further improve the results of genomic selection (Cobb
et al., 2013; Prashar and Jones, 2014; Bhat et al., 2016;
Melandri et al., 2019).

Canopy Traits and LAI
Previous studies have reported correlations between leaf area
index and ground cover ranging from 0.52 to 0.92 based
on analyses of one or two potato varieties (Haverkort et al.,
1991; Boyd et al., 2002). These studies also highlight high
correlation with canopy cover for LAI values below 3, but
no relationship for LAI above 3, due to complete ground
cover. Here, we observed a lower correlation of r = 0.44
(p < 0.01) and a similar cut-off point of LAI 3.4 was established.
The reduced correlation within our dataset is likely due to
the high levels of varietal variation in canopy architecture
compared to previous studies where analysis was carried out
on one or two varieties. Canopy volume exhibits a higher
correlation with LAI (r = 0.55, p < 0.01) in our data,
because even though UAV measured canopy volume does
not consider canopy leaf density, larger canopies are more
likely to have a higher leaf density and hence higher LAI.
Further developments for UAV determined canopy volume,
ground cover and LAI would have to take into consideration
varietal data to enable integration into potato yield prediction
models in the future.

Plant Growth and Development
Monitoring
Crop monitoring for growth and performance during
development is an important aspect of agricultural management,
and not only allows creation of yield prediction models, but
also enables implementation of timely interventions to ensure
optimal yields. Therefore, while individual flights provide useful
point information on the size and the general canopy health of
the plants, it is the continuous data integration of the potato
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plants over the growing season that gives the greatest potential
for a predictive modeling approach. In our study, data collection
from just 4 flights over the growing season allowed us not only
to identify the maturity of the different varieties, but also to
better understand the canopy development of those varieties.
Canopy architecture impacts light interception, water uptake
and transpiration, important factors for carbon acquisition and
allocation (Haverkort et al., 1991; Burgess et al., 2017; Tang et al.,
2019). These represent some of the most valuable traits that
breeders need to focus on for breeding improved crop varieties
that are well adapted for meeting the challenges posed by climate
change. Hence, use of the crop canopy assessment techniques
described here will help to determine optimal plant architecture
or ideotypes for different breeding purposes (Da Silva et al., 2014;
Obidiegwu et al., 2015; Burgess et al., 2017).

Opportunities and Challenges
Many studies have explored the potential of structure from
motion techniques in life sciences. In the field of agriculture,
the focus has been on monocot crops, specifically wheat, whose
development is usually assessed via height measurements (Bendig
et al., 2013, 2014, 2015; Holman et al., 2016; Jin et al., 2017;
Hassan et al., 2019). Wheat, like most cereals, has a relatively
homogeneous height distribution of the canopy when compared
to potato. Potatoes are also grown on ridges or ridged rows where
soil background is distinguishable in most scenarios and are a
bush like crop in which ground cover is recognized as one of
the main methods to evaluate growth. The pipeline developed in
this work combines vertical growth with canopy cover data, as
potato grows in a great variety of canopy shapes and structures
that will be hard to capture with only a 2-dimensional parameter
such as height or ground cover. This pipeline and the difference
model creation allows us to capture the entire canopy distribution
at ∼1 cm resolution and determine canopy cover and volume at
different height levels during crop growth and development. That
said, we want to highlight that structure from motion is one of
the available techniques which can be used for obtaining surface
information of crop canopies non-destructively. There are other
approaches such as terrestrial laser scanning, laser triangulation,
time of flight etc., which allow higher point cloud resolution
(depending upon sensor and platform) and hence 3D sensing for
plant phenotyping (Paulus, 2019).

CONCLUSION

The paper highlights the application of existing tools for
processing point cloud data obtained from UAV imaging for
practical and accurate phenotyping of canopy architecture traits
(plant height, canopy cover and volume) in potato which can be
replicated in other bush type crops. In particular, the approach
allows the consistent monitoring of canopy traits, which will
facilitate the creation of accurate individual growth profiles
for new and existing varieties. These profiles will enhance
all future studies that assess not only varietal variability, but
also its interaction with environmental factors (e.g., drought,
temperature stress) and agriculture management practices (e.g.,

fertilization, tillage and crop rotation), thus supplying valuable
environmental interaction data to help alleviate one of the
current bottlenecks in genotype-phenotype association studies
(Elias et al., 2016).

Using the newly developed and low-cost techniques, farmers
could use the information from temporal monitoring of canopy
size characteristics to identify key indicators of canopy age, health
and development. For example, identification of early senescence
(a potential indicator of stress), drooping due to stress or disease,
or canopy lodging due to inadequate stem strength or maturity,
thus facilitating the prediction of disease occurrence and spread.
Identification of the current stage of the crop life cycle based
on the detailed crop and variety profiles, in combination with
other datasets, would allow farmers to determine the optimal
time for harvesting based on varietal variation. These examples
illustrate how a better understanding of the time course of crop
development can inform important decisions and hence improve
agricultural management practices.
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High Throughput Field Phenotyping
for Plant Height Using UAV-Based
RGB Imagery in Wheat Breeding
Lines: Feasibility and Validation
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Iyotirindranath Gilberto Thompson2, Aluízio Borém1, Matthew Reynolds2,
Bruno Gérard2, Gemma Molero2,3 and Francelino Augusto Rodrigues Jr.2*

1 Department of Agronomy, Federal University of Viçosa, Viçosa, Brazil, 2 International Maize and Wheat Improvement Center
(CIMMYT), Texcoco, Mexico, 3 KWS Momont Recherche, Mons-en-Pevele, France

Plant height (PH) is an essential trait in the screening of most crops. While in crops such
as wheat, medium stature helps reduce lodging, tall plants are preferred to increase
total above-ground biomass. PH is an easy trait to measure manually, although it can
be labor-intense depending on the number of plots. There is an increasing demand
for alternative approaches to estimate PH in a higher throughput mode. Crop surface
models (CSMs) derived from dense point clouds generated via aerial imagery could be
used to estimate PH. This study evaluates PH estimation at different phenological stages
using plot-level information from aerial imaging-derived 3D CSM in wheat inbred lines
during two consecutive years. Multi-temporal and high spatial resolution images were
collected by fixed-wing (PlatFW ) and multi-rotor (PlatMR) unmanned aerial vehicle (UAV)
platforms over two wheat populations (50 and 150 lines). The PH was measured and
compared at four growth stages (GS) using ground-truth measurements (PHground)
and UAV-based estimates (PHaerial). The CSMs generated from the aerial imagery were
validated using ground control points (GCPs) as fixed reference targets at different
heights. The results show that PH estimations using PlatFW were consistent with
those obtained from PlatMR, showing some slight differences due to image processing
settings. The GCPs heights derived from CSM showed a high correlation and low
error compared to their actual heights (R2

≥ 0.90, RMSE ≤ 4 cm). The coefficient
of determination (R2) between PHground and PHaerial at different GS ranged from
0.35 to 0.88, and the root mean square error (RMSE) from 0.39 to 4.02 cm for
both platforms. In general, similar and higher heritability was obtained using PHaerial
across different GS and years and ranged according to the variability, and environmental
error of the PHground observed (0.06–0.97). Finally, we also observed high Spearman
rank correlations (0.47–0.91) and R2 (0.63–0.95) of PHaerial adjusted and predicted
values against PHground values. This study provides an example of the use of UAV-
based high-resolution RGB imagery to obtain time-series estimates of PH, scalable to
tens-of-thousands of plots, and thus suitable to be applied in plant wheat breeding trials.

Keywords: multi-temporal crop surface model, structure from motion, RGB camera, dense point cloud, drones,
post-processed kinematic, wheat breeding, adjusted and predicted genotypic values

Frontiers in Plant Science | www.frontiersin.org 1 February 2021 | Volume 12 | Article 59158797

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2021.591587
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fpls.2021.591587
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2021.591587&domain=pdf&date_stamp=2021-02-16
https://www.frontiersin.org/articles/10.3389/fpls.2021.591587/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-591587 February 15, 2021 Time: 18:20 # 2

Volpato et al. Drone Imagery to Plant Height Estimation

INTRODUCTION

Wheat (Triticum sp.) is among the leading food crops, and it
is grown in a range of environments and geographical areas. It
is highly relevant to the human diet, given its protein quantity,
quality, and variety of derived products (Shewry et al., 2016).
Lately, wheat has become the most important source of dietary
protein and the second most important source of calories
(carbohydrates) for humans (Shewry et al., 2016). During the
2017/2018 season, wheat was sown in 11.7% of the world’s
arable land, corresponding to around 30% of world grain
production (USDA, 2018). Wheat is vital for food security,
supplying an affordable source of nutrition to a large portion of
the global population, particularly millions of people with low-
middle incomes, and is an essential crop for the composition of
sustainable agricultural production systems (Walters et al., 2016;
Hickey et al., 2019).

Wheat breeding for plant height (PH) has been historically
used to reduce lodging and improve grain yield and quality
(Reynolds et al., 2020). The identification and introduction
of major dwarfing or semi-dwarfing genes were significant
advancements in the wheat breeding work led by Norman
Borlaug that enabled grain yield increase in most environments
and contributed to the “Green Revolution” (Reynolds and
Borlaug, 2006; Würschum et al., 2015). To date, PH continues
to be one of the most critical and heritable traits in wheat
breeding, also used to select suitable parental lines for hybrid
breeding (Würschum et al., 2015; Barmeier et al., 2016).
In addition, PH contributes to biomass production, as it is
associated with increased photosynthesis due to a better light
interception and distribution through the canopy in taller plants
(Song et al., 2013).

PH is commonly calculated by measuring the distance
between the upper boundary of the main photosynthetic tissues
(excluding the awns) and the ground level using a simple
metric ruler or a graduated stick (Torres and Pietragalla, 2012).
Although simple, such assessment is costly, laborious, and prone
to subjectivity, especially in extensive field trials (Holman et al.,
2016; Hu et al., 2018). Manual ground measurements in the field
are only feasible on a few plants per plot and can be biased
by the lack of standardized criteria (Wilke et al., 2019). The
temporal characterization of PH, that is, PH estimations at the
various plant growth stages, could provide a better understanding
of the mechanism of plant growth and its underlying genetic
effects by providing insight into the environmental variables
of this trait (Torres-Sánchez et al., 2013; Hassan et al., 2019a).
Phenotyping under environmental field conditions is often
considered a bottleneck in plant breeding programs (Yang et al.,
2017; Rebetzke et al., 2019). Consequently, there is a need for
faster, more accurate, and continuous measurements of PH.

HTP (high-throughput phenotyping) could be applied to
accurately and efficiently conduct temporal PH characterization.
The introduction of HTP approaches into breeding schemes can
significantly improve the phenotyping standards for agronomic
traits, contributing to better understanding of their genetic
basis and diversity, as well as the environmental influences
throughout the crop’s development cycle (Reynolds et al., 2020).

Non-destructive data collected via ground-based and aerial
HTP techniques are highly desirable for application in plant
breeding since they can be used to assess different traits in
large-scale field trials (Rodrigues et al., 2018; Loladze et al.,
2019). In particular, aerial HTP platforms have become favored
overground platforms, as they are suitable for use in large
breeding trials and show a good trade-off between time, data
accuracy, and resolution (Yang et al., 2017; Gracia-Romero
et al., 2019; Zhao et al., 2019). The rapid development of
sensors and unmanned aerial vehicles (UAVs), as well as that
of image and data analyses algorithms and improved computer
capacities observed in recent years, have enabled a broad range of
possibilities for aerial HTP to measure plant traits such as PH,
stand count, and vegetation indices, among others (Maes and
Steppe, 2019; Matias et al., 2020; Morales et al., 2020). These aerial
images are used as a proxy for the characterization of quantitative
plant traits. Recent advances in remote sensing using UAV with
sensors measuring the visible (RGB—red, green, and blue bands)
and/or near-infrared (NIR) wavelengths have made it possible to
create high-throughput, cost-effective, and accurate quantitative
phenotyping datasets in wheat breeding programs (Singh et al.,
2019; Reynolds et al., 2020).

Digital color images (i.e., RGB) collected from UAVs have
been used for estimating PH in wheat through different settings
and capabilities (Table 1). Feature matching and structure from
motion (SfM) techniques applied to such imagery enable the
generation of three-dimensional (3D) point clouds that can be
used to reconstruct multi-temporal crop surface models (CSMs)
from which PH can be estimated plot-wise (Singh et al., 2016;
Hassan et al., 2019b). SfM photogrammetry is a method that
uses a set of overlapped images to generate high-resolution
topographic 3D-reconstructions. Through automatic extraction
of corresponding feature points, this method optimizes the 3D
location based on images taken from multiple perspectives,
enabling a simple workflow (James and Robson, 2014; Nex and
Remondino, 2014).

Despite the advances of this method for estimating PH
using UAV imagery (PHaerial), there are several factors that
should be taken into account, such as image ground sampling
distance (GSD) or weather conditions, that can potentially affect
its performance and accuracy (Han et al., 2018; Lu et al.,
2019). Willkomm et al. (2016) also found that plant movement
during image acquisition and the lack of protocol for field
hand measurements can lead to PH underestimations. In view
of these limitations, an effective and low-cost workflow using
RGB camera can be deployed considering an adequate GSD and
statistical aerial analysis under field conditions.

To the best of our knowledge, the image and data quality
of ground-truth measurements (PHground) have not been
adequately evaluated to assess their impact on PHaerial at
individual plot growth stages (GS) in wheat breeding programs.
Therefore, this study aims to validate PH derived from RGB
imagery data and to understand the effect of data quality from
different UAV platforms and PHground. The study’s specific
objectives are: (i) to develop a semi-automated low-cost workflow
for extraction, analysis, and evaluation of PHaerial at multiple GS;
(ii) to compare different UAV platforms used for PH estimations,
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TABLE 1 | Summary of published studies on the estimation of plant height (PH) for wheat from RGB imagery acquired using unmanned aerial vehicles (UAVs).

References GS Platform—
UAV

Camera/sensor GSD cm/p Total number
of plots

Plot size (m) Pixel
extraction

method

R2 for
PHground vs.

PHaerial‡

RMSE for
PHground vs.
PHaerial (cm)¶

Holman et al. (2016) GS30 to GS61 Cinestar
octocopter

Sony NEX 7
24.4 mgpx

1 300 9 × 3 99th percentile 0.52–0.99 1.5–9.9

Madec et al. (2017) GS20 to GS69 Hexacopter Sony
ILCE-6,000

digital$

1 1,173 10 × 1.9 99.5th
percentile

0.95–0.99 2.9–9.8

Hassan et al. (2019a) GS41 and
GS85

DJI inspires 1
model T600

Sequoia 4.0 16
mgpx

2.5 600 1.3 × 1.3 90th and 99th
percentile

0.8–0.96 5.75

Li et al. (2019) GS21 to GS87 DJI matrice 600
Pro

Zenmuse X5R
RGB camera

0.5 170 3 × 0.23 Mean, median,
95th percentile,
and standard

deviation

– –

Lu et al. (2019) GS30 to GS69 DJI phantom
series

High-resolution
digital RGB

camera

1.66 36 6 × 5 Mean, median,
standard
deviation,

coefficient of
variation, and
25th, 50th,

75th, and 95th
percentiles

0.89 6

Schirrmann et al. (2016) GS41 to GS83 P-Y6,
hexapilots,
dresden

(hexacopter)

Sony NEX 7 24
mgpx

1.2 20 1 x 1 90th percentile 0.76–0.92 6.0–15.0

Song and Wang (2019) GS31, GS65
and GS83

DJI phantom 3 High-resolution
digital RGB

camera

1.5 15 2 × 2 Cuboid filter 3D
classification

– 4.5–7.7

Yuan et al. (2018) GS30 to GS87 Matrice 600 pro
(M600) and DJI
phantom 3 Pro

High-resolution
digital RGB

camera

0.47–0.67 100 1.5 x 1.524 89th and 100th
percentiles

0.91 9

Yue et al. (2017) GS30 and
GS65

DJI S1000 UHD 185
firefly—

hyperspectral
sensor#

1 48 6 × 8 Average of pixel
values

0.69 19

GS, Growth stage; UAV, unmanned aerial vehicles; GSD, ground sampling distances (cm/pixel). #Adapted sensor capturing 450–950 nm wavelengths. $30 and 19 mm focal length was used to equip the camera.
‡Coefficient of determination (R2). ¶Root mean square error (RMSE) between PHground and PHaerial, where the single numbers are the joining values obtained across GS by the respective authors.
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and; (iii) to assess the potential environmental issues associated
between PHground and PHaerial. Finally, we investigate PHaerial
and PHground predictions using the genotypic values.

MATERIALS AND METHODS

Plant Material, Site Description, and
Data Collection
The experiments were conducted over two spring wheat
(Triticum aestivum L.) growing breeding cycles: 2016–
2017 and 2017–2018 at the CIMMYT experimental station
Campo Experimental Norman E. Borlaug in Ciudad Obregon,
northwestern Mexico (27◦20’N; 109◦54’W; and 38 masl).
Environmental and management details of this site are given
in Sayre et al. (1997). Two spring wheat panels were studied
under potential yield conditions: the high biomass association
panel (HiBAP)-I and the HiBAP-II. Fifty inbred lines were used
for the validation in HiBAP-I during the 2016–2017 (Y17) and
2017–2018 (Y18) crop cycle, while the whole population of 150
lines was measured in HiBAP-II during the 2017–2018 (Y18).
Both panels include representative lines derived from breeding
and pre-breeding programs with a restricted range of maturity
and height (Molero et al., 2019). The experimental design in
both HiBAP panels consisted of an alpha-lattice design with
two replicates and 30 incomplete blocks per replicate. The plots
consisted of two beds in HiBAP-I Y17 and one bed in HiBAP I
Y18 with two plant rows on the top of the beds for both trials. In
HiBAP-II Y18, three replicates were evaluated in two beds plots.
The beds in all three trials were 0.8 m wide, while the inter-row
spacing within the bed and the space between beds were 0.24 and
0.36 m, respectively. Plot length was 4 m for HiBAP I Y17 and
HiBAP II Y18 and 2 m for HiBAP I Y18.

Aerial (PHaerial, using UAV platforms) and ground-truth
(PHground) plant height (PH) phenotyping were performed
in the experiments during the following GSs: 40 days after
emergence (E+40), at booting (B), 7 days after anthesis (A+7)
and at physiological maturity (M). PHground was measured
using a ruler when 50% of the plot reached a particular GS, as
described by Torres and Pietragalla (2012). Similarly, the two
UAVs were flown on the same day or 1 day apart, depending
on the logistics in the field and the weather conditions. The
optimal time and weather conditions for UAV data collection
were defined as: around solar noon, under clear sky, and a
low wind speed. A summary of solar radiation and wind speed
conditions during the entire flight campaigns for each platform
used is given in Supplementary Table S1. The average height
was obtained from four random individual culms inside each plot
(two in each bed), measuring the distance from the soil surface to
the tip of the spike, excluding the awns, and avoiding any mounds
or cracks in the soil.

Flight Campaign and Imagery Quality
Parameters
The flight campaigns were performed with a high-resolution
digital RGB camera mounted in two different types of UAVs

across the growing cycles: the fixed-wing (PlatFW) eBee (SenseFly
Ltd., Cheseaux-Lausanne, Switzerland) employed in Y17 and
Y18, the multi-rotor (PlatMR) AscTec Falcon 8 (Ascending
Technologies, Krailling, Germany) in Y17 and the Matrice 100
(DJI, Nanshan, Shenzhen, China) in Y18.

The flights were planned at the time of PHground
phenotyping for assessing trials according to the predominant
GS of interest in this study (E+40, B, A+7, and M). Table 2
summarizes the number of flights and main specifications for
each GS assessment at the time of PHaerial estimation, including
the number of flights. The ground control points (GCPs) or
post-processed kinematic (PPK; see below for details) were used
for georeferencing corrections. A set of black and white squared
GCPs were uniformly distributed over the entire field area in
all trials. These GCPs, distributed for each panel according
to Table 2, were surveyed with a Global Navigation Satellite
System (GNSS) receiver using a real-time kinematic (RTK)
correction (Trimble R4 GNSS system, Trimble, Sunnyvale, CA,
United States). Additionally, 11 checkpoints (CP), surveyed using
RTK correction, were placed across the site during the crop cycle
Y18 for georeferenced accuracy assessment of the orthomosaics.

The flights of the PlatFW followed the technical
recommendations in Loladze et al. (2019) and are described
in Table 3. The flight plan was designed for north/south and
east/west flights to achieve both a lateral and longitudinal overlap
of 80%. The flights covered an area larger than the experiment
to cover the entire experimental field and obtain accurate
orthomosaics. High-accuracy corrections of the geolocation
data measured with the PlatFW global navigation satellite
system (GNSS) were calculated in the post-processing stage
using the position of a fixed base station as a reference and the
PPK correction while imagery geotagging (Benassi et al., 2017;
Forlani et al., 2018).

The flight plans for both multi-rotor platforms were designed
to achieve lateral and longitudinal overlaps of 80%, flying
north/south. The flight operations of these multi-rotor UAVs
are shown in Table 3, and further details can be checked in
Tattaris et al. (2016) for the AscTec Falcon 8, and in Horton
and Ranganathan (2018) for the Matrice 100. The flight plans
of both types of platforms, PlatFW and PlatMR, were designed to
acquire images with different ground sampling distances (GSD
in Table 3).

Three-Dimensional Crop Reconstruction
and Plant Height Accuracy Assessment
The aerial data collected by both types of platforms were
geotagged for orthomosaic processing using Pix4D Mapper
software (v4.4.10; Pix4D, Lausanne, Switzerland). Images were
imported into Pix4D software. GCPs were manually located
to improve the accuracy of the three-dimensional (3D) point
cloud georeferencing for PlatFW flights that did not use PPK
corrections, as well as for the flight campaign using PlatMR
(Figure 1A). The georeference accuracy was checked by rather
than in the bundle adjustment of the orthomosaic product. The
digital terrain model (DTM, i.e., the topography of the site
without any plant) was generated for each trial from images

Frontiers in Plant Science | www.frontiersin.org 4 February 2021 | Volume 12 | Article 591587100

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-591587 February 15, 2021 Time: 18:20 # 5

Volpato et al. Drone Imagery to Plant Height Estimation

TABLE 2 | Crop phenology information across the measurements presented as days after emergence (DAE), the predominant development crop stage expressed by
Zadoks growth scale, corresponding phenological stage and identification nomenclature in this investigation, as well as the number of flights for each platform using
ground control points (GCPs) or post-processed kinematic (PPK) corrections for fixed-wing (PlatFW ) and multi-rotor (PlatMR) platforms.

Trial Pred. phenological stage Ident. stagea Zadoks scaleb DAEc Number of flights
(PlatFW)

Number of flights
(PlatMR)

PPK GCP Only GCP

HiBAP-I Y17 (30/Nov/2016d) Stem elongation E+40 37–39 40 1 0 1

Flowering A+7 61–65 73–87 5 0 5

Maturity M 91–92 100 1 0 1

HiBAP-II Y18 (03/Dec/2017) Stem elongation E+40 37–39 40 1 0 0

Booting B 41–47 55–72 6 0 7

Flowering A+7 61–69 76–98 6 2 8

Maturity M 91–92 105–118 2 0 3

HiBAP-I Y18 (18/Dec/2017) Stem elongation E+40 37–39 40 1 0 1

Booting B 41–45 55–69 2 1 3

Flowering A+7 61–69 74–91 1 1 2

Maturity M 91–92 106–111 1 0 1

aSpecific identification of the GS estimated/predominant: at 40 days after emergence (E+40), booting (B), 7 days after anthesis (A+7) and at physiological maturity (M).
bThe decimal (or Zadoks Scale according to Zadoks et al., 1974) growth stage code estimated according to the genetic variability. cDays after emergence represented
by 50% of the plants with the first leaf through coleoptile (GS10). dEmergence date in each crop season.

TABLE 3 | Parameters of flight specifications details for fixed-wind (PlatFW ) and multi-rotor (PlatMR) platforms.

HiBAP-I Y17 HiBAP-II Y18 HiBAP-I Y18

PlatFW PlatMR PlatFW PlatMR PlatFW PlatMR

Sensor Canon PowerShot 110
camera of 16.2

MegaPixels

Sony NEX 5 SODA ZenMuse X5 SODA ZenMuse X5

Resolution (image pixels) 4,608 × 3,456 4,592 × 3,056 5,472 × 3,648 4,608 × 3,456 5,472 × 3,648 4,608 × 3,456

GSDa resolution (cm/Pixel) 1.7 0.7 1.7 0.7 1.7 0.7

GCPsb numbers for internal processing 7 7 9 9 7 7

Flight altitude 65 30 85 30 85 30

aGSD, ground sampling distance.
bGCPs: ground control points used for internal processing forPlatMR andPlatFW without PPK corrections.

collected by a single flight of each UAV platform prior to the
vegetation emergence. The digital surface model (DSM; i.e., the
topography of the site accounting for the plants) was obtained
along with vegetation development at each GS.

The DSM and DTM rasters were computed following the
workflow recommended by Pix4D for high-resolution RGB
imagery (Pix4D, 2019b). This workflow uses a structure from
motion (SfM) algorithm (Ullman, 1979; Snavely et al., 2008)
to obtain a 3D point cloud. The point cloud was later meshed
via an algorithm based on Delauney triangulation (Matthew
et al., 2009; Susanto et al., 2016) computed on multiple image
scales with noise filtering and a “sharp” surface smoothing filter.
Afterward, the DTM was subtracted from the DSM to estimate
the crop surface model (CSM, i.e., the height of individual
plot surfaces) using R software version 3.6.1 (R Core Team,
2018). The PHaerial scripts used to perform the image analyses
and trait extract are available at https://github.com/volpatoo/
HTP-via-drone-imagery/tree/master/UAV-HTP_PlantHeight.
Figure 1 represents the major steps of the data acquisition and

processing, as well as the software, packages, and tools used
in this workflow.

Before computing the CSM for all flight campaigns, we
conducted a preliminary test to define the best parametrization of
the Pix4D workflow. Different settings in Pix4D were combined
and tested to obtain the best high-density point clouds and
DSM (for details, see Supplementary Table S1). The test results
(not shown) were compared based on the accuracy of PHaerial
against the PHground for each platform. This exercise used
the data from the Y17 growing cycle at E+40, A+7, and M
GS and the best performing processing scheme parameters
to generate the 3D point clouds of all the flight campaigns
(Supplementary Table S1).

The PH from the CSM raster was assessed using ArcGIS
(version 10.6, Esri Inc., Redlands, United States). The buffer tool
was used to create regions of interest (ROIPH) to extract PH
values from each plot (Figure 1C). Plant breeding trials usually
consist of small plots within 0.5–1 m of each other in the interests
of trial uniformity. Under these conditions, the canopies of
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FIGURE 1 | Phenotyping workflow for estimation of plant height (PH) using PlatFW and PlatMR (UAVs) platforms (PHaerial) used in north-west Mexico during the
2017 and 2018 growing cycles. PHground, ground-truth measurements; DTM, digital terrain model; DSM, digital surface model; CSM, crop surface model. (A–C)
are GCPs design, locality of the profile selected, and cropped area with the mask of CSM as the top 25th percentile pixels value, respectively.

adjacent plots can interfere with one another by shading, lodging,
or wind load. The small plots can easily cause noise in the PH
estimation, especially after flowering. To ensure the extraction of

pure pixel values (i.e., pixels containing only information from
the plot of interest), we built the regions of interest with a buffer
zone of 0.1 m from the plot edges aligned at the center of the
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two-bed rows. ROIPH were exported as polygons into a shapefile
for the data extraction.

We extracted data from the regions of interest by overlapping
the CSM and the shapefile containing the ROIPH using the R
packages “raster” and “rgdal.” Average PHaerial was calculated
for each plot using pixel values greater than the 75th percentile for
that plot. We tested different criteria for selecting pixels within
the ROIPH but this proved to be the optimum indicator for
PHaerial based on comparison with the PHground values.

Accuracy Assessment of Orthomosaics
Georeferencing
The automation of data extraction per plot requires a high
accuracy in the orthomosaics and DTM georeferencing. To
ensure this, we performed a preliminary study using two
techniques: GCPs and PPK correction. PPK correction was used
to obtain accurately geotagged PlatFW imagery. The table in
Figure 2 shows the comparison between the absolute accuracy of
longitude and latitude coordinates estimated by the two methods.
The accuracy is expressed as the difference between the XY
geocoordinates from the CPs (which were not used in the bundle
adjustment process) by comparing the coordinates of the CPs
obtained at the CSM with the in-site geocoordinates obtained by
an RTK GNSS system (i.e., delta-X and delta-Y, being X latitude
and Y longitude). The delta-X and delta-Y were calculated for
both platforms using the set of 11 CPs placed in the field during
the crop cycle Y18. Additionally, the root mean square error
(RMSE) of the differences between X and Y coordinates, the mean
values and the standard deviations (SD) were computed. These
parameters showed that the PPK achieved similar results than
those obtained with GCPs for horizontal XY coordinates (RMSE
∼ 1 cm and SD < 3.62 cm; Figure 2). The average accuracy
measured as SD on the CPs coordinates was in agreement with
the accepted limits mentioned by Vautherin et al. (2016): one
to two times the GSD in X and Y directions either to GCP or
PPK corrections.

We also evaluated the accuracy for altitude estimations (i.e.,
Z-axis) by contrasting calculated and ground-truth GCP height
values using one flight in each breeding cycle for PlatFW and
PlatMR (Figure 3). The height accuracy measured on the GCPs
was acceptable in all flight dates, with the PlatMR showing slightly
better results (RMSE = 1.77–1.85; and SD = 1.63–1.76) than
PlatFW (RMSE = 2.81–3.84; and SD = 1.62–2.88). The R2 was
greater than 0.95 for all cases. The accuracy measured as SD also
followed the criterion adopted by Vautherin et al. (2016): two
to three times the GSD in the Z direction for both platforms.
Overall, the accuracy obtained in the CSMs using PPK and GCP
approaches reached similar results.

Statistical Models and Genetic Selection
Evaluation
Since we conducted few flights at each GS, we first built a linear
model to fit a single PH value per plot. In this model, the PHaerial
from each platform at each GS was used as a dependent variable
against plot and number of flights as explanatory variables. The
adjusted means per plot for PHaerial and PHground values were

then used to calculate best linear unbiased estimates (BLUEs)
within each crop cycle, using the following model:

yijk = µ + gi + rj + bk(j) + εijk

where yijk is the trait value for genotype i, replicate j, and block
k; µ is the overall mean; gi is the fixed effect for genotype
i; rj is the random effect for replicate j, which are assumed
to be independently and identically distributed according to a
normal distribution with mean zero and variance σ2

r ; that is, rj ∼

iid N(0, σ2
r ); bk(j) ∼ iid N(0, σ2

b) is the random effect for block k
within replicated j; and εijk ∼ iid N(0, σ2

ε ) is the residual effect.
For each growing cycle, Pearson’s correlations, R2, and RMSE

for PHs between PHground and PHaerial were calculated using
the BLUEs derived from the above model at each GS after
removing the outliers. Outliers were flagged using studentized
residual from PHground values, and the significance of their
correlation with PHaerial was determined by the Bonferroni test
at P < 0.01 (Fox and Weisberg, 2019). The identified outliers
were removed from both PHground and PHaerial to perform
the analysis. Finally, the RMSEdev was computed to measure
the deviation between the estimated values (PHaerial) and the
measured values (PHground) across GS in each trial, according
to Zhou et al. (2020).

The validation of the prediction model used best linear
unbiased predictions (BLUPs) and heritability for PHground
and PHaerial. The genotypic variance components (σ2

g and σ2
ε )

were derived by the fitted model described above for both
PHground and PHaerial to calculate the broad-sense heritability
(H2

g , sometimes termed "repeatability") with the genotype gi

treated as a random effect in which gi ∼ iid N(0, σ2
g). Thus, H2

g
quantifying the repeatability of the plant height trait estimation
was computed as the ratio between the genotypic to the total
variances (Holland et al., 2002). The significance (Ripley, 2019) of
the Spearman rank correlation coefficient (ρ) (Spearman, 1904)
was calculated using the BLUPs from both UAV-platforms against
PHground for assessing the accuracy of genotypic rank selection.

Additionally, we measured 50 coincident genotypes in Y17
and Y18 (HiBAP-I) crop cycles (considering gi ∼ iid N(0,Aσ2

g)
where A is the associated additive relationship matrix) to obtain
the narrow-sense heritability

(
h2

a
)

for both UAV-platforms and
to assess the accuracy under a G × E interaction model design,
including the genotype × year interaction effect (tge) also as
random with tge ∼ N(0, σ2

ge). The data collected during booting
in HiBAP-I Y18 was removed from the statistic-genetic model
for G × E interaction in order to match better the GSs and
calculate the BLUPs. For this analysis, R2 represents the accuracy
of predicted values from the correlations between the PHground
and PHaerial. The standard errors (SE) of the heritability
parameters in both validation models were obtained through
mixed model output (Wolak, 2018).

We used the R software to run the statistical analyses,
including linear models (Gilmour et al., 2015), multiple
comparison procedures (Lenth, 2016), mixed and prediction
models (Brien, 2018), and testing of model terms (Fox et al.,
2019). The coefficients of parentage for the pedigree relationship
matrices (A) were estimated as twice the coefficient of parentage
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FIGURE 2 | The mean delta-X and delta-Y from all geocoordinates obtained from 11 checkpoints (CP) vs. the geocoordinates obtained from the orthomosaic (CSM)
resulted from 14 GCP and PPK corrections. Standard deviation (SD) and Root Mean Square Error (RMSE) for X and Y coordinates. The base image corresponds to
the bare soil flight using PlatFW in the HiBAP-II trial during November 2018. 1Mean difference between measured coordinates to GCP and PPK.

using the "Browse" application within the International Crop
Information System software package (McLaren et al., 2000).

RESULTS

Descriptive Statistics Across Growth
Stages
PHground values were similar across crop cycles at the same
evaluated GS (Figure 4). The heterogeneity within each trial
remained relatively stable at B, A+7, and M (SD = 4.13–4.97 in

HiBAP-I Y17, SD = 6.02–7.04 in HiBAP-I Y18, and SD = 4.62–
5.65 in HiBAP-II Y18). The median value and SD for ground-
truth PH measured at E+40 showed some discrepancies across
cycles and trials, possibly attributable to the different genotypes
used in each HiBAP panel, the year effect and differences in
emergence dates.

UAV Plant Height Assessment and
Validation
The PHaerial estimates were, in general, similar to PHground
values. This matching can be visualized in Figure 5, where
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FIGURE 3 | Coefficient of determination (R2), root mean square deviation (RMSE), and standard deviation (SD) of the errors, between ground control points (GCPs)
height estimate from the digital surface model (DSM), and ground-truth measurements for three different dates of flights using PPK for fixed-wind platform (PlatFW )

and only GCP corrections for PlatFW and multi-rotor (PlatMR). The dark black dashed diagonals represent the 1:1 line, and the colored solid (GCP) and dashed (PPK)
lines represent the regression lines.

transects of PHground and PHaerial data from HiBAP-II are
compared (refer to Figure 1B for the location of this transect
within the HiBAP-II trial). Considerable mismatching between
PHground and PHaerial values was detected at booting (B),
whereas the best agreement was observed during maturity (M).

The agreement between PHground and PHaerial data was
further confirmed by the strong correlations observed during
most of the growing cycle for both platforms (Figure 6). The
coefficient of determination at the different GS ranged from non-
significant to R2 = 0.88, and from non-significant to R2 = 0.81, for
PlatFW and PlatMR, respectively. The measurements at maturity
showed the highest and most consistent correlations across the
different trials and platforms, with R2 values ranging between
0.7 and 0.88. The lowest correlations were obtained at booting,
observing even non-significance in HiBAP-II Y18 for both
PlatFW and PlatMR (p ≥ 0.78). The PlatFW platform performed
better than PlatMR in HiBAP-I, except at E+40 during Y17, where
PlatMR showed a coefficient of determination of 0.66 against 0.41
in PlatFW . Conversely, PlatMR performed slightly better than

PlatFW in HiBAP-II (Figure 6), particularly at A+7 (R2 = 0.47
in PlatMR vs. R2 = 0.37 in PlatFW) and M (R2 = 0.74 in PlatMR
vs. R2 = 0.7 in PlatFW). Overall, the RMSE of the predicted
model for individual GS did not exceeded 4.02 cm. However,
the RMSEdev obtained across GS for each platform in HiBAP-
I Y17 and HiBAP-I Y18 were around 15 cm (RMSEdev = 15.06
and 14.95 cm in HiBAP-I Y17; RMSEdev = 14.44 and 15.42
in HiBAP-I Y 18). The best performance for RMSEdev was
in HiBAP-II Y18 in both platforms. Nevertheless, the PlatFW
provided better results than PlatMR (RMSEdev = 8.19 for PlatFW
vs. 12.14 = PlatMR).

HTP for Genotypic Prediction of Plant
Height From Wheat Breeding Trials
The evaluation strategy using H2

g shows strong potential for
PHaerial implementation in a wheat breeding program, as
PHaerial reached similar or higher values H2

g than those from
PHground for each GS and across locations (Figure 7).
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FIGURE 4 | Boxplot of BLUEs for wheat plant height (PH, cm) in each of the observed crop cycles at the following growth stages (GS): 40 days after emergence
(E+40), booting (B), 7 days after flowering (A+7) and at physiological maturity (M).

The PlatMR provided better H2
g estimations than PlatFW and

PHground for all GS at HiBAP-I Y17, except for maturity
from PHground, ranging from 0.71 to 0.97 for PlatMR vs.
0.46–0.93 for PlatFW , and vs. 0.62–0.96 for PHground. On
the other hand, the PlatFW obtained greater H2

g values than
PlatMR and PHground at HiBAP-I Y18 in all GS analyzed,
except for A+7 from PHground (H2

g = 0.80, 0.96, 0.95,
and 0.90 for PlatFW vs. H2

g = 0.37, 0.56, 0.90, and 0.85
for PlatMR, and vs. H2

g = 0.71, 0.96, 0.97, and 0.92 for
PHground, for E+40, B, A+7 and M, respectively). On HiBAP-
II Y18, both platforms obtained similar results, but H2

g PHaerial
estimations were significantly better than PHground at booting
and PlatFW at A+7 was better estimations than PlatMR and
PHground. Furthermore, PlatFW and PHground in HiBAP-I Y18
provided more accurate estimations of H2

g in comparison with
PlatMR at booting.

Overall, the H2
g responses were in agreement with the results

from the correlations (R2) between PHground and PHaerial
data. For HiBAP-I trials the H2

g degraded at E+40, and increased
at later GS. Additionally, the UAV platforms showed better

H2
g estimations than PHground across GS for each crop cycle

(H2
g 0.78, 0.92 and 0.94 for PlatFW , and H2

g 0.88, 0.67 and 0.93
for PlatMR vs. H2

g 0.82, 0.89 and 0.78 for PHground, within
HiBAP-I Y17, HiBAP-I Y18, and HiBAP-II Y18
trials, respectively).

The Spearman rank correlations (ρ) between predicted values
for PHaerial and PHground were significant (P< 0.001) at all GS
in all trials except at booting in HiBAP-II Y18. The highest ρ for
HiBAP-I Y17 was observed at maturity for both platforms, and
at HiBAP-I Y18, except at booting using the PlatFW (ρ = 0.91).
Moreover, the greatest ρ in HiBAP-II Y18 was achieved at E+40
via PlatFW (ρ = 0.83). Lower, but still significant correlations
using both platforms were observed at A+7 in HiBAP-II Y18
(ρ = 0.45 for PlatFW , and ρ = 0.46 for PlatFW) (Figure 7).

When genotype-environment interaction (G× E) effects were
considered in the prediction of the genotypic PH values, the
narrow-sense heritability (h2

a) for PlatFW was greater than for
PlatMR for all GS analyzed (h2

a 0.29, 0.65, and 0.62 in PlatFW , vs.
h2

a 0.06, 0.42, and 0.41 in PlatMR, for E+40, A+7, and maturity
growth stages, respectively). However, the h2

a from PHground was

Frontiers in Plant Science | www.frontiersin.org 10 February 2021 | Volume 12 | Article 591587106

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-591587 February 15, 2021 Time: 18:20 # 11

Volpato et al. Drone Imagery to Plant Height Estimation

FIGURE 5 | Profile of 70 plots from HiBAP-II for PlatFW and PlatMR at the following growth stages (GS): 40 days after emergence (E+40), booting (B), 7 days after
flowering (A+7), and at physiological maturity (M). Plant height (PH, cm) via ground-truth (ground) and unmanned aerial vehicle (UAV) data (aerial) are represented in
the solid and dotted lines, respectively, matching with low (blueish) and high (reddish) color scale to PH. The 2D plots profiles image were generated using the
textured mesh feature via the densified point cloud of Pix4D processing.
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FIGURE 6 | Linear relationship between plant height (PH, cm) estimated from the unmanned aerial vehicle (UAV-based) data (PHaerial) and that ground-truth
measured manually (PHground), as well as RMSE, and the number (n) of genotypes considered at four growth stages (GS): 40 days after emergence (E+40),
booting (B), 7 days after flowering (A+7), and at physiological maturity (M) for PlatFW and PlatMR considering all locations in this study. Black solid line shows the 1:1
lines; light shadow color represents a 99% confidence interval. The RMSEdev in the bottom right represents the deviation between the PHaerial and the PHground
across GS. ∗∗∗ indicate p-value of the coefficient of determination (R2), with ∗∗∗P < 0.001; NS, non-significative value.

higher than PHaerial at A+7 (h2
a 0.71) and M (h2

a 0.71). The
accuracy (or R2) remains constant across GS ranging from 0.75
to 0.96 in PlatFW vs. 0.64–0.92 in PlatMR, but with lower values at
E+40 for both UAV platforms (Figure 8).

DISCUSSION

The present study aimed to prove the applicability of aerial
photogrammetry (i.e., using UAVs) to estimate PH in the
wheat breeding context. Throughout the growing season, aerial
HTP approaches were conducted on two different wheat panels

(HiBAP-I and II) with two UAV platform classes (multi-rotor
and fixed-wing) equipped with RGB cameras using PPK or
GCP corrections. Our findings showed that for most of the
growing stages, the UAV-based data (PHaerial) could be used
for reliable estimations of PH and that genotype selection based
on this data was equivalent to that obtained by manual ground
measurements (PHground) (R2 = 0.35–0.88). We attribute the
good results obtained for a large number of experimental wheat
plots (100 for HiBAP-I and 450 for HiBAP-II) partly to the
strategy used in the pixel PH values extraction within each plot.
The selection of pixels from the top 25th percentile within each
plot region of interest of the imagery was intended to increase
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FIGURE 7 | The solid color lines represent the broad-sense heritability (H2
g ) across crop cycles (2016–2017 and 2017–2018) for PlatFW , PlatMR and PHground in the

growth stages: 40 days after emergence (E+40), booting (B), 7 days after flowering (A+7), and at physiological maturity (M) and its 95% confidence interval based on
standard errors. The color bars show the Spearman Rank Correlation (ρ) from the predicted values between PHground and PHaerial. All ρ significant at P < 0.0001
except to B (non-significant) in HiBAP-II Y18.

FIGURE 8 | Narrow-sense heritability (h2
a) and coefficient of determination (R2) from genotype-by-environment interaction (G × E) model using HiBAP-I genotypes

measured in 2016–2017 and 2017–2018 growing cycles via PlatFW and PlatMR, and across growth stages (GS): 40 days after emergence (E+40), 7 days after
flowering (A+7), and at physiological maturity (M). The solid color lines represent the accuracy (R2) for predict values between PHground and PHaerial, plus the
confidence interval (CI) by the error bar. The colored squared represents the h2

a and the error bars indicate standard error. All growth stages (All_GS) were also
considered to confirm the accuracy of genetic correlations. The cross lines give the upper and lower bounds of the 95% CI of the correlations computed using
ρ̂ = 1.96

√
(1− ρ̂)/(n− 2), where ρ̂ is the estimated correlation, and n is the number of records used to compute the correlation.

the proportion of observations from the upper canopy in further
analyses (Figure 1C). This strategy showed the best results in our
study, differing from other studies, as shown in Table 1, which

used either the average or very restricted statistical methods such
as the 99th or 99.5th percentiles. These restricted models may be
“too selective”—going against field hand measurement protocols
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where randomization within the plot and a minimum number of
measurements should be respected.

Assessing the Data Quality of
UAV-Based Plant Height Estimations
A number of factors can have an impact on PHaerial
estimations. In this section, we outline major potential sources
of error discussed in previous studies, including UAV imagery
parameters, choice of platform, and environmental factors, and
their potential relevance to our study.

Ground sampling distance (GSD) is important in creating
high-quality orthomosaics via orthorectification to obtain the
DSM from the dense image matching as an additional source
of data to enhance the PH model accuracy (Madec et al.,
2017; Lu et al., 2019; Wilke et al., 2019). This orthomosaic
generation method confers more accurate 3D points due to
the extraction of common characteristic points (keypoints) in
different images and by removing perspective distortion from
the images using the DSM (Pix4D, 2019a). In our study, the
differences observed in the performance of the two aerial
platforms suggest that UAV imagery parameters such as GSD,
altitude, and point cloud density may have influenced the
PHaerial estimation accuracy. Our results indicate the PlatFW
produced slightly more accurate PH estimations using a higher
GSD (GSD = 2 cm/pixel) and a lower point cloud density
(see Supplementary Table S1) compared to PlatMR. Therefore,
our results suggest there is no need to work with sub-
centimeter resolution for DSM reconstruction when targeting
PH estimation. This is in alignment with results obtained by
Lu et al. (2019).

Even though in the case of our study PlatFW produced the
best correlations and RMSE results overall, the choice between
the two classes of platforms that have been evaluated in this
study depends on the processing pipeline used, plant breeding
target, and several other technical factors such as area extension,
pilot expertise, total flight time, and intended GSD (Puri et al.,
2017; Park et al., 2019). Each of these decisions can affect the
quality of the PH data.

Other authors have noted several sources of error in aerial
estimation of PH in wheat crops, including inefficient image pre-
and post-processing due to suboptimal flying altitude, inaccurate
DTM construction and errors in height extraction strategy from
images (Hassan et al., 2019a). Chu et al. (2017) demonstrated
that under unfavorable weather conditions, the quality of a dense
point could affect the 3D-pixel constructions. For example, wheat
PH data bias can occur due to wind conditions when using
high spatial resolution images similar to those recorded from
PlatMR (GSD = 0.7 cm/pixel). In our study, the high-resolution
images recorded from the PlatMR captured a higher variability
within the vegetation, probably making the CSM reconstruction
more susceptible to slight plant movements and changes in
illumination conditions within the canopy. Future studies or
applications should consider these factors when planning to
use high resolution imagery for 3D surface reconstruction.
Otherwise, our study shows that a GSD of (GSD = 2 cm/pixel)
may be sufficient for an efficient plant height estimation.

Environmental conditions during data acquisition can also
lead to noisy point clouds that hinder PH estimations. These
factors could result in lower 3D point accuracy during
the orthorectification processing, affecting the point cloud
densification step (Tirado et al., 2019). Indeed, our results
for HiBAP-I Y17 show evidence that the PHaerial accuracy
increased as the wind speed decreased, in contrast with the
solar radiation that only slightly influenced the correlations
(with no significant differences across GS) in HiBAP-I Y18
(Supplementary Figure S1). Other environmental factors that
can potentially have an impact on the PHaerial are shadows (Jin
et al., 2017; Brocks and Bareth, 2018), radiometric calibration
(Mafanya et al., 2018), brightness levels (López-Granados et al.,
2019), and cloudy weather (Niedzielski and Jurecka, 2018).

The UAV/PPK results in our study showed a high agreement
with those obtained from CPs and GCPs. This demonstrates that
PHaerial using PPK corrections could be an affordable method
to increase image georeference accuracy by reducing human
interference such as surveying GCPs, importing and manually
marking them into the software (Figures 2, 3). As we elaborated
in our study, correct calibration of the camera also depends
on proper image georeferencing based on the distribution of
a sufficient number of GCPs across the field and extensive
overlapping between images (Madec et al., 2017; Sanz-Ablanedo
et al., 2018). In other studies, RTK/PPK has been used to correct
the location of drone mapping imagery and improve the accuracy
of GNSS data or geotags as they are captured either during
flights (RTK) or after flight (PPK) (Forlani et al., 2018; Padró
et al., 2019). However, these previous studies haven’t concluded
whether direct georeferencing using RTK/PPK will supersede
GCPs to become the standard referencing technique for UAV
imagery. The challenges of surveying the GCPs and keeping them
in place throughout the life of the crop makes the PPK method
cost-effective. It is also time-consuming to check all GCPs on
the photogrammetry software to compute the keypoints on the
images. To avoid this issue in a practical field situation, we
recommend the use of a UAV/PPK system as implemented for
PlatFW , since the results were comparable to those orthomosaics
georeferenced with GCPs.

Finally, the settings used in the software for orthomosaics
and the DSM generation could also impact the accuracy of
PH estimation using UAVs. As discussed by Holman et al.
(2016), the software settings should be carefully selected and
accurately reported for future improvements in UAV-based
SfM methods. Our study achieved reliable outputs after testing
different combinations of the settings in Pix4D. The optimal
settings can be replicated according to Supplementary Table S1.
Additionally, we provide a user-friendly script to perform
the pixel values extractions using an open-source software (R
software) to support future user.

Accuracy and Phenotypic Variations in
UAV-Based Plant Height
The strong correlations and CI observed between PHground,
and PHaerial values indicate that this approach can be used for
growth rate analysis and wheat selection in a breeding pipeline.
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The UAV data processing chain used in this study demonstrated
itself to be quick, cost-effective, and accurate for the target trait.
Moreover, our results showed accuracy levels similar to previous
studies (Table 1) for PH estimation at individual GS, with higher
correlations at late GS, matching findings of other studies (Hassan
et al., 2019a). Nevertheless, it is essential to note that in some
studies, the authors report correlations across stages along the
growth cycle (Madec et al., 2017; Yue et al., 2017; Yuan et al.,
2018; Harkel et al., 2019; Lu et al., 2019), masking the actual
assessment power of PHaerial by stretching the response variable
(i.e., ground PHs).

Efforts using high-throughput to estimate PH have also
achieved reliable results using other platforms in several crops
(Harkel et al., 2019; Reynolds et al., 2020). In particular,
ground-based light detection and ranging (LiDAR) has been
reported to provide more accurate PH estimations than UAV
photogrammetry in wheat (Holman et al., 2016; Jimenez-Berni
et al., 2018; Deery et al., 2020). However, the implementation
of such a platform is limited and can be expensive (Nex
and Remondino, 2014; Guo et al., 2018) compared to high-
resolution RGB cameras. In addition, cutting-edge technologies
in remote sensing have triggered the rapid development of
affordable high-performance sensors (i.e., RGB, multispectral
and hyperspectral cameras) and UAVs with higher autonomy
and payload capacity, increasing the possibilities for field
phenotyping applications (Sankaran et al., 2015). Our workflow
using UAV-based imagery may be comparatively cheap and
more efficient than ground platforms for phenotyping large
and multi-location trials, targeting quick data acquisition and
reducing computer resources; concepts that are supported
by the literature via SfM approaches (Wang et al., 2018;
Reynolds et al., 2019).

Despite the high correlations and acceptable RSME of the
fitted model, in early stages (i.e., E+40 in Figure 6), the
limited range of variation of PH can limit the correlations
as demonstrated in HiBAP-I trials (Figure 4), which was also
found by Madec et al. (2017). The deviation between PHground
and PHaerial obtained in this study corroborates with errors
in the literature in wheat PH estimations using UAV platforms
(Table 1). In this study, we assessed the RMSEdev by the
agreement between PHground and PHaerial as a measure of
accuracy. Studies suggest that bias in crop height estimations
by UAV platforms is due to the inability of SfM to reconstruct
the top of the canopy accurately (Madec et al., 2017), the
influence of neighboring plants (Khanna et al., 2015; Watanabe
et al., 2017), and an inaccurate DTM strategy for pixel value
extraction (Hu et al., 2018). However, the performance of SfM
reconstruction could be improved by increasing the image
overlapping (Seifert et al., 2019), and possibly by using better
quality camera lenses and shortening flight time to avoid different
sky conditions during flight timing. In our study, using fixed-
ground targets at different heights proved to be an essential
validation step in the current data processing workflow for PH
estimations. The very accurate height estimations of the ground
targets achieved using PlatMR and PlatFW (R2 > 0.95 and
RMSE < 4.11 cm; Figure 3), show the real potential of this
method, and suggest that differences in plot-level estimations of

PH between the PHaerial and PHground may be partly related
to inaccuracies in manual scouting over very extensive field trials
and wind movement.

In our study, the lack of correlations in HiBAP-II at booting
highlighted some issues with PHground that are easily detectable
when drawing a transect to compare trend lines (Figure 5).
Accurate phenotyping is fundamental for the calibration or
validation of novel HTP approaches (Araus and Cairns, 2014),
as reported in studies on high-throughput genotyping (Ma
et al., 2014). Reynolds et al. (2019) discuss the cost-benefit
for phenotyping, showing that UAV-based photogrammetry
is relatively affordable when flights operate under favorable
conditions, i.e., with no rain, sunny days, and light to moderate
wind speed. However, during the flights performed at booting
in HiBAP-II Y18, the weather conditions for wind speed and
solar radiation were reasonable compared with the other GS
in the same trial. The weak correlations in this case could be
attributed to heterogeneity within and between plots and canopy
architecture issues in detecting the booting during the vegetative
stage in experimental wheat plots (Torres and Pietragalla, 2012;
Rosyara et al., 2019).

The accuracy of the DTM is paramount for accurate
estimations of PH, especially in highly dense canopies such
as those observed at A+7 and M (Bendig et al., 2014; Iqbal
et al., 2017; Yang et al., 2019). The DTM can be obtained from
measurements over the bare soil before the vegetation grows,
as performed in this study. Additionally, the DTM can also be
generated when vegetation is present by means of point cloud
classification (Pix4D, 2018). However, the main challenge of this
latter method is that generally at late GS, the bare soil is rarely
exposed close to the region of interest during flights to capture
in-field pixels. Furthermore, as the detection of bare soil pixels is
usually done by image classification methods, this can be affected
by rugged relief (Hassan et al., 2019a). Despite these limitations,
some authors prefer the estimation of DTM from vegetation
DSM, arguing that there are advantages in terms of processing
time (Zhang et al., 2018; Hassan et al., 2019a). In our study, we
use as a baseline a DTM generated from bare soil images acquired
before plant emergence. The advantage of this approach is that it
does not rely on image classification algorithms. A drawback of
using such DTM is that an extra flight is demanded and more
reference points for the SfM algorithm are needed.

UAV-Based Plant Height as a Reliable
Trait for Wheat Phenotyping
The satisfactory correlations (R2) between PHground and
PHaerial observed in this study indicate the applicability of our
study’s UAV-based workflow. However, this may not serve all the
needs of plant breeders, who often use heritability as a measure of
the precision of trials and/or to compute the response to selection
(Piepho and Möhring, 2007; Schmidt et al., 2019). Therefore our
study also used heritability (H2

g andh2
a) to confirm the UAV-

based approach’s ability to infer the predicted genetic values.
Additionally, we used the genotypic correlation to compare the
similarity between PHground and PHaerial rankings using the
predicted values.
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We found that the highest H2
g values across GS for PHaerial

may indicate more reliable phenotyping measurements. In this
case, the selection ranking of the best genotypes could be done
using PHaerial assessments. This finding was also confirmed
by the Spearman rank correlation (Figure 7). Therefore, our
workflow for phenotyping PH combined with reliable H2

g can be
an affordable and efficient method to offer breeders more accurate
genotype selection criteria. Other studies have also supported a
link between higher heritability (or repeatability, in some cases)
and PH in later GS (Hassan et al., 2019a; Deery et al., 2020).
However, some issues may appear in the temporal image when
the target traits depend on the geometric structure, as described
by Madec et al. (2017), who observed poor H2

g at the end of the
growth cycle due to plant lodging. These circumstances were not
evident in our study.

Medium to low levels of h2
a observed in the GS suggest

a meaningful environmental influence, indicating that G × E
interactions affect PH predictions (Figure 8). These results were
supported by the random effect significance (Wilks, 1938) of
G× E interaction at most of the GS analyzed, except in E+40 for
PlatMR and PHground (data not shown). The non-significance,
in these cases, can be attributed in part to the limited range
of variability for PH. Furthermore, lower h2

a are expected when
compared with H2

g due to pedigree information, in which the
h2

a uses the proportion of genetic variation due to additive genetic
effects only (Piepho and Möhring, 2007). The results confirmed
that PH is a critical trait responsive by G × E interaction,
as expected in quantitative traits (Tian et al., 2017; Tshikunde
et al., 2019). The high correlations between predicted values for
PHaerial and PHground across and within GS indicate that each
platform measured similar underlying genetic traits. This means
PHaerial can reliably predict genotypic values and rank genotypes
as reliably as PHground.

CONCLUSION

The present study implemented and validated an efficient and
scalable approach to acquire PH measurements under extensive
wheat breeding trials at different growth stages. The remote
sensing techniques applied in this study allowed the estimation
of PH using high-resolution RGB imagery recorded from two
UAV platforms and processed through a semi-automatic pipeline.
The results for all trials in two growing cycles prove that the
study workflow was able to estimate PH from UAV platforms
comparable in accuracy to those measured by ground-truth
notes. Our findings also indicate that using PHaerial for genotype
selection could be a cost-effective way to predict PH values
using temporal data from drone imagery taken in multiple
environments, mainly in late GS. Due to the reliable results
achieved by PlatFW to compute PH, it is reasonable to conclude
that a lower density point cloud does not confer PH noise
or underestimation in comparison to PlatMR.The accuracy was
responsive to image quality (i.e., GSD, weather conditions, etc.)
and the settings in the processing steps of the surface model
generation. A proper georeferencing of the orthomosaic is an
essential step for data extraction, and the UAV-PPK approach

was demonstrated to be a suitable method to replace laborious
conventional methods using GCPs.

As evidenced by wheat PH studies in Table 1, different
pixel extraction approaches can be made by choosing different
thresholds for capturing the genotype variability within and
among experimental plots. In this study, the reliably results
obtained using PH estimations at multiple GSs and environments
was also endorsed by the authors in Table 1. Finally, this study
demonstrates that it is feasible to process high-volume field-based
phenotypic data using UAV-based imagery.
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Identification of the QTL-allele
System Underlying Two
High-Throughput Physiological Traits
in the Chinese Soybean Germplasm
Population
Lei Wang1†, Fangdong Liu1†, Xiaoshuai Hao1, Wubin Wang1,3,4,5, Guangnan Xing1,3,4,5,
Jingjing Luo2, Guodong Zhou2, Jianbo He1,3,4,5* and Junyi Gai1,3,4,5,6*

1 Soybean Research Institute, Nanjing Agricultural University, Nanjing, China, 2 Plant Phenomics Research Center, Nanjing
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The QTL-allele system underlying two spectral reflectance physiological traits, NDVI
(normalized difference vegetation index) and CHL (chlorophyll index), related to plant
growth and yield was studied in the Chinese soybean germplasm population (CSGP),
which consisted of 341 wild accessions (WA), farmer landraces (LR), and released
cultivars (RC). Samples were evaluated in the Photosynthetic System II imaging
platform at Nanjing Agricultural University. The NDVI and CHL data were obtained from
hyperspectral reflectance images in a randomized incomplete block design experiment
with two replicates. The NDVI and CHL ranged from 0.05–0.18 and 1.20–4.78, had
averages of 0.11 and 3.57, and had heritabilities of 78.3% and 69.2%, respectively;
the values of NDVI and CHL were both significantly higher in LR and RC than in
WA. Using the RTM-GWAS (restricted two-stage multi-locus genome-wide association
study) method, 38 and 32 QTLs with 89 and 82 alleles and 2–4 and 2–6 alleles per locus
were identified for NDVI and CHL, respectively, which explained 48.36% and 51.35% of
the phenotypic variation for NDVI and CHL, respectively. The QTL-allele matrices were
established and separated into WA, LR, and RC submatrices. From WA to LR + RC, 4
alleles and 2 new loci emerged, and 1 allele was excluded for NDVI, whereas 6 alleles
emerged, and no alleles were excluded, in LR + RC for CHL. Recombination was the
major motivation of evolutionary differences. For NDVI and CHL, 39 and 32 candidate
genes were annotated and assigned to GO groups, respectively, indicating a complex
gene network. The NDVI and CHL were upstream traits that were relatively conservative
in their genetic changes compared with those of downstream agronomic traits. High-
throughput phenotyping integrated with RTM-GWAS provides an efficient procedure for
studying the population genetics of traits.

Keywords: annual wild soybean (G. soja Sieb. & Zucc.), cultivated soybean (G. max (L.) Merr.), chlorophyll index
(CHL), high-throughput phenotyping, normalized difference vegetation index (NDVI), QTL-allele matrix, restricted
two-stage multi-locus genome-wide association study (RTM-GWAS), spectral reflectance image
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INTRODUCTION

With the rapid development of high-throughput genome
sequencing technology, high-quality genotype data can be
obtained quickly and cheaply, enabling the detection of
quantitative trait loci (QTL) at a high level of resolution through
genome-wide association studies (GWAS) (Shendure and Ji,
2008; Visscher et al., 2017). Previous QTL studies have primarily
focused on the collection of phenotype data (phenotyping)
for agronomic traits to achieve various breeding objectives. As
upstream biological traits often underlie breeding target traits,
there is much interest in identifying upstream traits for the
control of downstream agronomic traits. These upstream traits
generally consist of some physiological or biochemical traits
that are time-consuming and difficult to identify without the
appropriate tools. Both high-quality genotype and phenotype
data are required for accurate and powerful QTL detection.
Because of improvements in the reliability of current genotyping
technologies, obtaining high-quality phenotype data in QTL
studies has become a major challenge (Cobb et al., 2013).
Recently, spectral reflectance has been developed as a high-
throughput phenotyping technique (Rebetzke et al., 2019; Watt
et al., 2020). Remote-sensing images have been widely used to
measure crop traits, such as plant height, biomass, chlorophyll
content, disease susceptibility, drought stress sensitivity, nitrogen
content, and yield (Gitelson et al., 2003; Estrada et al., 2015;
Nigon et al., 2015, Holman et al., 2016; Jay et al., 2017, Salas
Fernandez et al., 2017; Pérez-Bueno et al., 2019). Specifically,
the approach is based on quantifying differences in canopy
spectral reflectance among varieties for the aforementioned traits
(Yang et al., 2017). The high-throughput phenotyping platform
usually consists of several sensors and automatic systems and
provides an efficient method for characterizing plant phenotypes
(Furbank and Tester, 2011).

Multispectral and hyperspectral reflectance images have been
widely used in high-throughput phenotyping platforms; the
spectral index has been found to be closely related to the
growth and development of crops (Duan et al., 2017). In
studies of hyperspectral remote-sensing technology, vegetation
indices are typically used to maximize the relationship between
certain reflectance wavelengths and plant function when the
effect of background noise is controlled (Huete et al., 2002;
Hatfield and Prueger, 2010). Most of the vegetation indices
are correlated with plant parameters, such as pigment status,
grain yield, NDVI (normalized difference vegetation index),
RVI (ration vegetation index), and GNDVI (green and near-
infrared difference vegetation index) (Wiegand et al., 1991;
Peñuelas et al., 1997; Lewis et al., 1998; Rutkoski et al., 2016).
NDVI is calculated based on the near-infrared spectrum and
red-light spectrum (Tucker, 1979), which has been extensively
used to evaluate crop growth and estimate nitrogen content,
nitrogen uptake, and nitrogen efficiency in crops (Erdle et al.,
2011; Samborski et al., 2015; Foster et al., 2017). Studies
of crop diseases have also shown that NDVI can be used
for crop disease assessment (Kumar et al., 2016). More
recently, studies have shown that NDVI is closely related to
crop yield (Hassan et al., 2019). Zhang et al. (2019) used

hyperspectral remote sensing to establish plot-yield prediction
models for field selection in large-scale soybean breeding
programs. Specifically, they found that NDVI and RVI were the
best combination of vegetation indices for plot-yield prediction
in their models.

Chlorophyll is the primary component involved in plant
photosynthesis and is closely related to biomass accumulation
and yield formation, making it critically important for crop
improvement. The rapid and non-destructive estimation of
chlorophyll content facilitates genetic studies of chlorophyll.
Chlorophyll content can be predicted using different wavelength
spectra; for example, there is a strong correlation between the
reflectance ratio of the near-infrared band to the 700-nm band
and chlorophyll content (Gitelson et al., 2003). The hyperspectral
sensor in the high-throughput phenotyping platform is often
used to estimate the chlorophyll index (CHL), and this index
has been widely used to evaluate chlorophyll content, crop biotic
stress, and abiotic stress (Estrada et al., 2015; Awlia et al., 2016;
Pérez-Bueno et al., 2019).

NDVI and CHL are both spectral reflectance physiological
traits related to plant growth and yield. To evaluate the
usefulness of these traits in breeding programs, knowledge of
their variability and genetic basis in germplasms is essential.
Previously, the measurement of these two physiological traits
was tedious and often not possible using traditional instruments.
Now, multispectral and hyperspectral images have greatly
facilitated the measurement of these traits. The greenhouse
high-throughput phenotyping platform (GHTPP) in the Plant
Phenomics Research Center (PPRC) at Nanjing Agricultural
University (NJAU) has been used by several studies. Phenotype
data from the high-throughput phenotyping platforms of
previous studies have primarily been used for the prediction of
agronomic traits, such as plant yield (Maimaitijiang et al., 2020).
However, there is a need for more studies to assess the genetic
basis of high-throughput spectral reflectance phenotypes.

The aims of this study were the following: (i) characterize
variation in two spectral reflectance physiological traits, NDVI
and CHL, in the Chinese soybean germplasm population (CSGP),
including wild accessions (WA), cultivated farmer landraces
(LR), and released modern cultivars (RC), using the facilities and
equipment of the GHTPP at the PPRC, NJAU, to compare wild
and cultivated soybeans; (ii) explore genetic variation in QTL-
alleles through association mapping using the novel RTM-GWAS
procedure and evolutionary changes from WA to LR and RC;
(iii) predict the genetic potentials of the germplasm population
through recombination among the accessions; and (iv) predict
the candidate genes as well as the gene constitutions of NDVI and
CHL in the CSGP based on information in SoyBase1.

MATERIALS AND METHODS

Plant Materials and Experimental Design
A total of 341 soybean accessions of the CSGP, including
76 WAs, 83 LRs, and 182 RCs, were sampled in this study.

1http://soybase.org
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A randomized incomplete block design experiment with two
replicates was conducted for high-throughput phenotyping.
Because of the space limitations of the high-throughput
phenotyping platform, the accessions were randomly divided
into two groups. Two replicates of the phenotyping experiment
were performed for the first group of 172 accessions on
September 9, 2019 and October 13, 2019, and for the second
group of 169 accessions on November 20, 2019 and May
1, 2020. For each test, approximately 4∼5 viable seeds were
selected from each accession and were planted in a plastic
pot (823 × H17 cm). The experimental soil was a 3:1
mixture of vermiculite and nutrient soil; one best soybean
seedling remained in each pot on the seventh day after
sowing. The temperature in the greenhouse was maintained
between 25–33◦C, and light was provided for 16 hours
(06:00 to 22:00).

High-Throughput Phenotyping
The greenhouse high-throughput phenotyping platform at
the PPRC, NJAU, was used for phenotyping. The platform
consisted of a planting area, irrigation area, and PSII
(Photosynthetic System II) imaging room. An automatic and
high-throughput transfer system was used to transfer plants from
the planting/growing area to the imaging room. The PSII imaging
room was equipped with a camera system (CropReporter,
Phenovation B.V., Netherlands, https://www.phenovation.com/)
with a CCD (charge-coupled device) camera, spectral LEDs
(light-emitting diodes) for actinic treatment, an illuminated
area of 70 cm × 70 cm, and a spectral range of 350–
1000 nm. The spectral reflectance images were captured at
six different wavelengths. From these images, the NDVI and
CHL of the plant canopy for individual pots were estimated.
According to CropReporter, the NDVI was calculated as
(RNIR − Rred)/(RNIR + Rred), and the CHL was calculated
as R−1

700 − R−1
NIR, where RNIR, Rred, and R700 are the spectral

reflectance in the near-infrared band, the visible red band, and
the 700-nm wavelength band, respectively.

The platform was also equipped with the automatic
experiment management software IS Agriware Logistics
(Version2018.06.99, Indigo Logistics, Netherlands) to control
system operation, CropReporter (Version 4.4.2, Phenovation
B.V., Netherlands) to control the camera system, and the image
analysis software Data Analysis (Version 5.4.8-64b, Phenovation
B.V, Netherlands) to process the data. The two traits were
unitless, as they represent relative values of reflectance. All of
the NDVI and CHL values were obtained directly from the
platform system.

The automatic phenotype measurements began on the
sixth day after sowing (DAS6). Each pot with a plant was
transferred from the planting area into the PSII imaging room
to measure NDVI and CHL. Each pot was then returned
to the planting/growing area. This phenotyping process was
automatically executed every 3 days, and a total of nine
measurements (DAS6, DAS9, DAS12, DAS15, DAS18, DAS21,
DAS24, DAS27, and DAS30, which means the 6th, 9th,. . .,
and 30th day counting from sowing, respectively) were taken
throughout the experimental period for each accession type.

SNP Genotyping and SNPLDB Assembly
The 341 soybean accessions were genotyped with RAD-seq
(restriction site-associated DNA sequencing) in previous studies
(He et al., 2017; Fu et al., 2020; Liu et al., 2020). A total of 145,558,
82,966, and 98,482 SNPs were recovered in these three studies,
respectively, and the intersection of SNP data from different
studies was taken and filtered with a minor allele frequency > 2%
(each allele is present in at least six individuals). A total of 44,931
SNPs were obtained and used in the present study.

The RTM-GWAS (restricted two-stage multi-locus genome-
wide association study) procedure (He et al., 2017) was used for
QTL-allele detection in this study. With RTM-GWAS, a total
of 11,716 multi-allelic SNPLDB markers were assembled based
on the 44,931 genome-wide SNPs. The number of alleles of the
SNPLDB markers ranged from 2 to 11 with an average of 3.1,
enabling the detection of QTLs with up to 11 alleles per locus.

Statistical Analysis
The experiment consisted of an incomplete block design. The plot
values were adjusted using the block means according to the equal
block mean assumption because the material set in each block was
randomly selected; therefore, the entire experiment was treated as
a completely randomized design with two replicates. The linear
model for the adjusted dataset was yi = µ + gi + εi, where yi is
the observed corrected phenotype of the i-th accession, µ is the
population mean, gi is the genotypic effect of the i-th accession,
and εi is the random error following a normal distribution with
a mean of zero and variance of σ2. The analysis of variance of
the corrected phenotype data was performed using the PROC
GLM in SAS/STAT 9.4 (SAS Institute, Cary, NC), and variance
components were estimated using PROC VARCOMP with the
REML method. The trait heritability estimate was calculated as
h2
= σ2

g/(σ
2
g + σ2/r), where σ2

g is the genetic variance, and r is
the number of replicates. This h2 is heritability in narrow sense
because σ2

g contains only additive and additive by additive genetic
variance in selfpollinated soybean germplasm population.

Phenotype Data Selection
There were nine measurements (DAS6, DAS9, DAS12, DAS15,
DAS18, DAS21, DAS24, DAS27, and DAS30) for each trait (NDVI
or CHL) each accession. The trait heritability value was used to
assess the goodness of the trait expression, and the measurement
with a highest heritability value was chosen to represent the
trait. Therefore, the variance components and heritability values
were estimated based on analysis of variance for all the nine
measurements, and the measurement with the highest trait
heritability value was used for genome-wide association study.

Restricted Two-Stage Multi-Locus
Genome-Wide Association Study
(RTM-GWAS)
The RTM-GWAS method was used for QTL-allele detection (He
et al., 2017). Briefly, RTM-GWAS first involved the construction
of multi-allelic SNPLDB (SNP linkage disequilibrium block)
markers by grouping multiple adjacent and tightly linked SNPs
through the LD-block partition. Second, the genetic similarity
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coefficient matrix based on SNPLDB markers was used to correct
for population structure bias by incorporating its eigenvectors
as model covariates. Finally, two-stage association analysis was
conducted to detect QTLs and their corresponding multiple
alleles based on a multi-locus multi-allele model. The linear
model of RTM-GWAS in matrix form is y = 1µ+Wa+ Xb+ e,
where y is the phenotype, µ is the population mean, W is
the eigenvector matrix representing the population structure,
X is the design matrix of locus genotype, a and b are vectors
of corresponding effects. At the first stage, X includes only a
single SNPLDB marker for pre-selection. At the second stage,
X includes multiple SNPLDB markers for multi-locus modeling.
In the present study, at the first stage under the single locus
model, 1,296 and 2,147 SNPLDBs were pre-selected from the
11,716 SNPLDBs for the second stage of stepwise regression
association analysis under the multi-locus model for NDVI and
CHL, respectively. As the RTM-GWAS was based on the multi-
locus model having built-in control for the experiment-wise
error rate, a normal significance level of 0.05 was used for QTL
detection in this study.

Prediction of the Genetic Potential of
NDVI and CHL in the CSGP
To predict the recombination potential of the population,
all possible single crosses among entire accessions, among
subpopulation accessions, and between subpopulation accessions
were simulated in silico (He et al., 2017). For each cross, 2,000
inbred lines were derived, and the phenotypes were predicted
for each line according to the QTL-allele matrix. Finally, the
recombination potential of each cross was assessed using the 99th
percentiles of the predicted phenotype data.

Annotation of Candidate Genes and GO
Analysis of NDVI and CHL
According to SoyBase(see footnote 1), the candidate genes for
NDVI and CHL were annotated from the identified QTLs.
Next, the annotated candidate genes were subjected to gene
ontology (GO) analysis using the Williams 82 genome version
1 (Wm82.a1.v1.1) as the reference genome. The candidate
genes were searched within the interval (with a 50-kb flanking
expansion) of the associated loci. In order to have a preliminary
validation of the annotated candidate genes, the RNA Seq-Atlas
project data set in SoyBase (see footnote 1) was downloaded and
analyzed to assess the expression level of the annotated genes
for NDVI and CHL.

RESULTS

Phenotypic Variation of NDVI and CHL in
the CSGP
Phenotype measurements for each accession were taken nine
times on different days during growth (DAS6, DAS9, DAS12,
and DAS30); the trait heritability at each measurement ranged
between 16.0–78.3% and 25.4–69.2% for NDVI and CHL,
respectively. The NDVI at DAS21 and CHL at DAS24

had the highest heritabilities and were thus examined in
subsequent analyses.

The frequency distribution showed that the NDVI ranged
from 0.05 to 0.18 with an average of 0.11 (Table 1). The entire
population was separated into WA, LR, and RC subpopulations;
the mean NDVI of the WA was relatively small (0.07) with values
ranging from 0.05–0.13. The mean NDVI of LR and RC was 0.11
and 0.12, respectively, with values ranging from 0.06–0.18 and
0.06–0.17, respectively. The CHL frequency distribution of the
entire population ranged from 1.20 to 4.78, with an average of
3.57. The CHL mean of WA was 3.08 and ranged from 1.20–4.49;
the CHL mean of LR and RC was 3.68 and 3.72, respectively, and
ranged from 2.73–4.78 and 2.67–4.50, respectively (Table 1).

Both NDVI and CHL, two physiological traits related to
photosynthesis and growth, significantly differed between wild
(0.07, 3.08) and cultivated (0.11–0.12, 3.68–3.72) soybeans,
suggesting that cultivated soybeans have experienced significant
improvements in photosynthesis- and growth-related traits
following their domestication (Table 1). Thus, these basic
shortcomings of wild soybean should not be neglected when wild
soybeans are used to improve cultivated soybeans.

The analysis of variance revealed significant differences among
accessions for both NDVI and CHL, indicating that there was
significant genetic variation for the two spectral reflectance traits
(Supplementary Table 1). The trait heritability was estimated to
be 78.3% for NDVI and 69.2% for CHL (Table 1). These findings
indicate that phenotypic variation (PV) was primarily driven by
genetic factors, and the underlying QTLs or genes could be traced
through further genetic analysis.

Identification of the QTL-allele System
Determining NDVI and CHL in the CSGP
According to the RTM-GWAS procedure involving the use of
1,296 and 2,147 multi-allelic SNPLDB markers preselected at the
first stage for the second stage multi-locus multi-allele association
analysis, a total of 38 and 32 SNPLDBs, each with 2–4 and 2–6
alleles were determined to be significantly associated with NDVI
and CHL, respectively (Table 2, Supplementary Tables 2, 4).

The 38 NDVI-associated loci explained 48.39% of the
phenotypic variation (PV), among which 17 large-contribution
loci (R2

≥ 1%) explained 34.77% of the PV and 21 small-
contribution loci (R2 < 1%) explained 13.62% of the PV
(Table 2). The phenotypic contribution of each associated locus
to PV ranged between 0.37–3.84%. These loci were distributed
on 15 chromosomes with 1 to 5 loci on each chromosome;
chromosome 1 had the most loci (Figures 1A–C). In NDVI, the
total genetic variation (heritability) was 78.3%, and the genetic
contribution of the detected 38 QTLs was 48.39%; consequently,
29.91% of the genetic variation was not detected, which can be
attributed to a collection of unmapped QTLs that needs to be
further explored under controlled conditions where experimental
error is minimized.

The CHL-associated loci had a similar pattern to those of
NDVI (Table 2). The PV explained by the CHL-associated loci
was 51.35%, among which 19 large-contribution loci explained
42.95% of the PV and 13 small-contribution loci explained
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TABLE 1 | Frequency distribution of NDVI and CHL in the Chinese soybean germplasm population.

Trait Pop. Midpoint and frequency N Mean Range h2 (%)

NDVI 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15 ≥0.16

Entire 22 34 35 26 34 27 53 48 26 22 14 341 0.11 0.05–0.18 78.3

WA 19 26 18 7 2 1 2 1 0 0 0 76 0.07a 0.05–0.13

LR 2 3 8 6 8 8 17 13 6 6 6 83 0.11b 0.06–0.18

RC 1 5 9 13 24 18 34 34 20 16 8 182 0.12b 0.06–0.17

CHL ≤2.50 2.70 2.90 3.10 3.30 3.50 3.70 3.90 4.10 4.30 ≥4.50

Entire 4 16 22 22 46 50 69 60 30 13 5 337 3.57 1.20–4.78 69.2

WA 4 13 19 11 13 6 5 1 0 1 1 74 3.08a 1.20–4.49

LR 0 1 2 4 13 16 20 13 6 5 3 83 3.68b 2.73–4.78

RC 0 2 1 7 20 28 44 46 24 7 1 180 3.72b 2.67–4.50

Pop.: Population. N: the number of accessions.
NDVI: normalized difference vegetation index, measured on the 21st day after sowing; CHL: chlorophyll index, measured on the 24th day after sowing. h2, trait heritability.
WA, wild accessions; LR, cultivated farmer landraces; RC, released modern cultivars.
a,bdifferent letters indicate significant differences between subpopulations based on t-tests at a significance level of 0.01.

8.40% of the PV; the number of large-contribution loci was
greater than the number of small-contribution loci. The PV of
each associated locus ranged from 0.38 to 5.38%. These loci
were distributed on 18 chromosomes with 1–6 loci on each
chromosome; chromosome 5 had the most loci (Figures 1D–F).
In CHL, the total genetic variation (trait heritability) was 69.2%,
and the genetic contribution of the detected 32 QTLs was 51.35%;
therefore, 27.85% of the genetic variation was not detected and
will require further study to elucidate.

For other agronomic traits, such as 100-seed weight, days to
flowering, and drought tolerance, the number of alleles per locus
detected have been reported to range from 2–10 (He et al., 2017),
2–10 (Fu et al., 2020), and 2–12 (Wang et al., 2020), respectively.
By comparison, the alleles per locus of NDVI and CHL in the
present study were only 2–4 and 2–6, respectively, and the per-
marker number of alleles was 2–11. The differences observed
in these two spectral reflectance physiological traits potentially
indicate that genetic differentiation at single loci is less likely for
these two traits compared with other agronomic traits.

QTL-allele Matrices of NDVI and CHL and
Their Evolution From WA to LR and RC
The RTM-GWAS method provides a powerfull approach for the
detection of genome-wide QTLs and their multiple allele effects.
In this study, the effects of the 2–4 alleles per locus for a total
of 89 alleles on 38 loci were obtained for NDVI. These QTL-
alleles of the 341 accessions can be organized into a 38 × 341
(locus × accession) matrix (Figure 1G), which represents a
compact form of the genetic structure of the population and
was designated as the QTL-allele matrix of NDVI. Similarly,
the effects of the 2–6 alleles per locus for a total of 82 alleles
on 32 loci and the 32 × 341 (locus × accession) matrix were
obtained for CHL (Figure 1I). The QTL-allele matrix detected
from the RTM-GWAS contained all of the genetic constitutions
of a trait in a population and can thus be used for the study
of population genetic differentiation. The cultivated soybean is
generally thought to have been domesticated from annual wild
soybean, with released cultivars developed from farmer landraces

(Liu et al., 2020). The QTL-allele matrix can be separated into
its component matrices to facilitate the tracing of evolutionary
genetic changes from WA to LR and RC. For NDVI, there were
85 alleles on 38 loci in WA; 82 wild alleles on 38 loci were passed
to LR, with the emergence of 2 new alleles on 2 loci and the
exclusion of 3 alleles on 3 loci for a total of 84 alleles on 38
loci (Table 3). From LR, 82 alleles on 38 loci were passed to
RC, with the emergence of 2 new alleles on 2 loci, the recovery
of 2 wild alleles on 2 loci, and the exclusion of 2 alleles on 2
loci for a total of 86 alleles on 38 loci. In LR + RC, 84 alleles
on 38 loci were inherited from WA, including the emergence
of 4 new alleles on 4 loci and the exclusion of 1 allele on 1
locus for a total of 88 alleles on 38 loci. Among the 4 newly
emerged alleles on 4 loci in the cultivated LR + RC, 2 new
loci with 2 new alleles emerged in LR + RC. In LR vs. WA, 1
of the 2 newly emerged alleles was in the newly formed QTL
qNdvi-01-5 in LR, which was not polymorphic in WA; in RC
vs. LR, 1 of the 2 emerged alleles was in the newly formed QTL
qNdvi-03-1 in RC and was not polymorphic in WA and LR
(Figures 2, 3; Table 3).

Similar results were obtained for CHL. There were 76 alleles on
32 loci in WA; 76 wild alleles on 32 loci were passed to LR, with
the emergence of 4 new alleles on 4 loci for a total of 80 alleles
on 32 loci; no alleles were excluded (Table 3). From LR, 80 alleles
on 32 loci were passed to RC, with the emergence of 2 new alleles
on 2 loci and the exclusion of 1 allele on 1 locus for a total of 81
alleles on 32 loci; no wild alleles were recovered. In LR + RC, 76
alleles on 32 loci were inherited from WA, with the emergence of
6 new alleles on 5 loci for a total of 82 alleles on 32 loci; no wild
alleles were excluded.

All of the emerged and excluded alleles and their associated
QTLs are listed in Table 4. For NDVI, there were 4 newly emerged
alleles on 4 loci (qNdvi-01-5, qNdvi-02-1, qNdvi-03-1, and qNdvi-
15-2); qNdvi-01-5 and qNdvi-03-1 were also newly formed in LR
and RC, respectively. One allele in qNdvi-05-4 was excluded in
LR, and 1 allele in qNdvi-05-3 was excluded in RC. For CHL,
there were 6 newly emerged alleles on 5 loci (qChl-06-2, qChl-08-
3, qChl-18-2, qChl-19-1, and qChl-20-1), and 1 allele on qChl-01-1
was excluded in RC. The allele frequencies of the newly emerged
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TABLE 2 | The detected QTLs associated with NDVI and CHL in the CSGP.

QTL No. alleles −lgP R2 (%) QTL No. alleles −lgP R2 (%)

qNdvi-01-1 2 3.80 1.28 qChl-01-1 3 7.32 2.97

qNdvi-01-2 2 1.82 0.53 qChl-02-1 2 8.17 2.96

qNdvi-01-3 3 4.06 1.69 qChl-03-1 2 3.66 1.18

qNdvi-01-4 2 8.42 3.18 qChl-05-1 2 2.98 0.93

qNdvi-01-5 2 1.72 0.49 qChl-05-2 2 1.96 0.56

qNdvi-02-1 4 8.33 3.84 qChl-06-1 2 2.37 0.70

qNdvi-03-1 2 2.85 0.92 qChl-06-2 3 6.74 2.73

qNdvi-05-1 2 1.96 0.58 qChl-07-1 3 3.01 1.20

qNdvi-05-2 2 1.46 0.40 qChl-07-2 3 6.35 2.57

qNdvi-05-3 4 7.73 3.57 qChl-08-1 2 1.84 0.51

qNdvi-05-4 4 3.80 1.82 qChl-08-2 3 12.97 5.38

qNdvi-05-5 2 1.74 0.50 qChl-08-3 3 3.74 1.50

qNdvi-05-6 2 1.55 0.43 qChl-08-4 2 1.46 0.38

qNdvi-06-1 2 6.24 2.27 qChl-09-1 2 2.41 0.72

qNdvi-06-2 2 2.44 0.76 qChl-10-1 3 12.42 5.14

qNdvi-06-3 2 2.58 0.81 qChl-11-1 3 5.90 2.38

qNdvi-08-1 2 2.73 0.87 qChl-13-1 2 2.59 0.78

qNdvi-08-2 2 3.96 1.35 qChl-13-2 2 3.93 1.29

qNdvi-08-3 2 3.36 1.11 qChl-14-1 2 1.91 0.54

qNdvi-10-1 3 1.78 0.74 qChl-14-2 2 2.77 0.85

qNdvi-10-2 2 5.58 2.00 qChl-15-1 2 1.68 0.46

qNdvi-11-1 2 2.58 0.81 qChl-15-2 2 2.50 0.75

qNdvi-11-2 2 5.16 1.83 qChl-15-3 2 1.98 0.56

qNdvi-11-3 3 2.18 0.90 qChl-16-1 2 4.24 1.40

qNdvi-13-1 3 2.57 1.06 qChl-16-2 2 3.66 1.18

qNdvi-13-2 2 1.98 0.59 qChl-16-3 2 3.78 1.23

qNdvi-13-3 2 1.37 0.37 qChl-17-1 2 2.24 0.66

qNdvi-14-1 2 1.63 0.46 qChl-17-2 2 5.88 2.04

qNdvi-14-2 3 7.06 2.97 qChl-18-1 4 2.65 1.26

qNdvi-15-1 3 1.89 0.78 qChl-18-2 4 3.58 1.66

qNdvi-15-2 3 6.27 2.63 qChl-19-1 6 4.25 2.36

qNdvi-15-3 2 3.88 1.32 qChl-20-1 4 5.59 2.52

qNdvi-15-4 2 2.06 0.62 Total 82 32 51.35

qNdvi-16-1 2 1.93 0.57

qNdvi-17-1 2 2.63 0.83

qNdvi-18-1 2 4.76 1.67

qNdvi-19-1 2 3.53 1.18

qNdvi-19-2 2 2.17 0.66

Total 89 38 48.36

NDVI, normalized difference vegetation index, measured on the 21st day counting from sowing; CHL, chlorophyll index, measured on the 24th day counting from
sowing; CSGP, Chinese soybean germplasm population. h2, trait heritability. R2, genetic contribution of a QTL; A QTL is designated as qNdvi-01-1, where -01 represents
chromosome 1, and -1 represents its order on the chromosome; No. alleles: number of alleles in a SNPLDB; -lgP, P-value in the log10 scale of the association test in the
RTM-GWAS. The corresponding SNPLDB of a QTL and its position are shown in Supplementary Table 2.

alleles in LR + RC ranged between 3.40–13.58%, and the new
alleles were not dominant over older alleles.

Thus, genetic changes were limited during the evolution
from WA to LR and RC, as the three subpopulations shared
a large number of common alleles. Among the 89 wild alleles
of 38 NDVI-associated loci, 80 alleles were shared among the
three subpopulations and among the 76 wild alleles of 32 CHL-
associated loci, and 75 wild alleles were shared among the three
subpopulations (Figure 3). Here, the total change (emerged
plus excluded) in alleles (5 alleles (5.7%) on 5 loci (13.2%)

for NDVI and 6 alleles (7.3%) on 5 loci (15.6%) for CHL)
was much lower relative to the changes in alleles observed
for other agronomic traits. For example, there were a total
of 261 alleles on 75 loci in Chinese cultivated soybeans for
drought tolerance, and 46 alleles (17.6%) on 27 loci (36.0%)
were changed in RC relative to LR (Wang et al., 2020). In
addition, there were a total of 342 alleles on 81 loci in Northeast
China soybeans for earliness, and 143 alleles (41.8%) on 67 loci
(82.7%) were changed in the early group relative to the late group
(Fu et al., 2020).
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FIGURE 1 | Genetic analysis of NDVI and CHL phenotypic variation in the soybean population using the restricted two-stage multi-locus genome-wide association
study (RTM-GWAS) method. (A) Manhattan plot of the RTM-GWAS results for NDVI. (B) QQ plot of the RTM-GWAS results for NDVI. (C) The phenotypic
contribution of the detected 38 NDVI QTLs. The vertical and horizontal axes indicate the genetic contribution R2 (%) and the order of QTLs according to their genetic
contribution. (D) Manhattan plot of RTM-GWAS results for CHL. (E) QQ plot of the RTM-GWAS results for CHL. (F) The phenotypic contribution of the detected 32
CHL SNPLDBs. The vertical and horizontal axes indicate the genetic contribution R2 (%) and the order of QTLs according to their genetic contribution. (G) The NDVI
QTL–allele matrix. (H) The predicted NDVI of progenies in the optimal crosses among the 341 lines based on the linkage model. On the horizontal axis, the crosses
are arranged in increasing order of the predicted 50th percentile (P50) NDVI from left to right. The black dotted horizontal lines are the minimum and maximum values
in the entire population, which were 0.039 and 0.193, respectively. The vertical axis is the predicted NDVI value of the crosses. (I) The CHL QTL–allele matrix. (J) The
predicted CHL of the progenies in the optimal crosses among the 341 lines based on the linkage model. On the horizontal axis, the crosses are arranged in
increasing order of the predicted 50th percentile (P50) NDVI from the left to right. The black dotted horizontal lines are the minimum and maximum values in the
entire population, which were 2.26 and 4.95, respectively. The vertical axis is the predicted CHL value of the crosses.
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TABLE 3 | The QTL-alleles changes from WA to LR and RC.

WA LR vs. WA RC vs. LR LR + RC vs. WA

Locus Allele Locus Allele Locus Allele Locus Allele

NDVI

Total 38 85 38 84 38 86 38 88

Inherited 38 82 38 82 38 84

Emerged 2 2 2 2 4 4

Recovery – – 2 2 – –

Excluded 3 3 2 2 1 1

Changed 4 5 5 6 5 5

CHL

Total 32 76 32 80 32 81 32 82

Inherited 32 76 32 80 32 76

Emerged 4 4 2 2 5 6

Recovery – – – – – –

Excluded – – 1 1 – –

Changed 4 4 3 3 5 6

WA, wild accession; LR, cultivated farmer landraces; RC, released modern cultivars. LR vs. WA means the number of changed alleles or changed loci of LR compared
with WA. Inherited: the inherited allele/locus between populations. Emerged: the emerged allele/locus between populations. Excluded: the excluded allele/locus between
populations. Changed: the changed allele/locus between populations (the emerged plus excluded alleles). Recovery: the alleles that were excluded from WA to LR but
were recovered in RC. In LR vs. WA of NDVI, 1 of the 2 emerged alleles was in the newly formed QTL qNdvi-01-5 in LR, which was not polymorphic in WA, while in RC
vs. LR of NDVI, 1 of the 2 emerged alleles was in the newly formed. QTL qNdvi-03-1 in RC, which was not polymorphic in WA and LR.

FIGURE 2 | Venn diagram of QTL-allele changes among populations. (A)
Venn diagram of the NDVI allele distribution in populations. (B) Venn diagram
of the CHL allele distribution in populations. WA, wild accessions; LR,
cultivated farmer landraces; RC, released modern cultivars.

In summary, these two spectral reflectance physiological traits
(NDVI and CHL) were genetically conservative. Inheritance
played a major role in determining the genetic motivation, For
NDVI, 4 alleles on 4 loci emerged; for CHL, 6 alleles on 5 loci
emerged. Two new loci emerged for NDVI, but none emerged for
CHL. For NDVI, only 1 allele on 1 locus was excluded, whereas
no alleles were excluded for CHL. The transition from WA to
LR and from LR to RC took approximately 5,000 and 100 years,
respectively; despite this long history, large genetic changes have
not occurred, especially during the transition from WA to LR.
This genetic stability indicates that the two physiological traits
NDVI and CHL are highly conservative compared with other
agronomic traits. However, the same number of genetic changes
occurred during the transition from WA to LR (5,000 years)

and the transition from LR to RC (100 years), indicating that
the enhanced artificial breeding in the transition from LR to RC
accelerated the rate of genetic change.

Prediction of the Recombination
Potential of NDVI and CHL in the CSGP
To assess the recombination potential for NDVI and CHL in
the CSGP, a total of 57,970 possible single crosses among the
341 accessions were simulated based on the QTL-allele matrix;
possible crosses between the accessions for each subpopulation
were also simulated. The 99th percentile of 2,000 progenies of
each cross was used to represent the recombination potential
(Table 5). For NDVI, the recombination potential within the
WA, LR, and RC was not large (0.15 vs. 0.13 of the extreme
phenotype, 0.20 vs. 0.18 of the extreme phenotype, and 0.20 vs.
0.17 of the extreme phenotype, respectively), but the predicted
value was larger in LR and RC (the superior subpopulations)
than in WA. Among the three between-subpopulation crosses,
the highest recombination potential was observed for LR × RC
(0.21 vs. 0.19 in WA × LR and WA × RC); for the crosses at the
entire population level, the NDVI was 0.21, which was the same
as that observed for LR× RC (Table 5, Figure 1H).

For CHL, the recombination potentials within WA, LR, and
RC were also not large (4.93 vs. 4.49 of the extreme phenotype,
5.31 vs. 4.78 of the extreme phenotype, and 5.06 vs. 4.50 of the
extreme phenotype, respectively), but the predicted value was
larger in LR and RC (the superior populations) than in WA.
Among the three between-subpopulation crosses, the highest
recombination potential was observed for WA× LR (5.41 vs. 5.38
and 5.21 in WA× RC and LR× RC, respectively); for the crosses
at the entire population level, the CHL was 5.41, which was the
same as that observed for WA × LR (Table 5, Figure 1J). Thus,
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FIGURE 3 | QTL-allele changes among populations. (A) NDVI QTL-allele
changes among populations. (B) CHL QTL-allele changes among
populations. a1 –a6 are the alleles of each QTL, arranged in descending order
according to their allele effect values. The cells marked with white (positive
effect) and gray (negative effect) are all alleles in WA. The cells with lowercase
letters l and r are alleles excluded in LR and RC (vs. WA), respectively. The
uppercase letters L and R in cells are alleles that emerged in LR and RC (vs.
WA), respectively. In addition, the QTL qNdvi-01-5 emerged in LR and was
not polymorphic in WA. The QTL qNdvi-03-1 emerged in RC and was not
polymorphic in WA and LR.

crosses with the WA had a greater recombination potential for
CHL, which was opposite to the pattern observed for NDVI.

Annotation of Candidate Genes and GO
Analysis of NDVI and CHL in the CSGP
From the detected QTLs, a total of 39 candidate genes were
annotated on 20 NDVI-associated loci, and 32 candidate genes
on 22 CHL-associated loci (Supplementary Table 3). Only 9
candidate genes were annotated on 7 large-contribution loci of
NDVI, but most (21 out of 32) of the CHL-related candidate
genes were annotated on 13 large-contribution loci of CHL. Gene
ontology (GO) analysis revealed that these candidate genes for
both NDVI and CHL can be classified into three categories:
biological process, molecular function, and cellular component
(Table 6, Supplementary Figure 1). In biological process, NDVI
involved 14 of 15 function groups, and CHL involved 11 of

15 function groups with five group differences. In molecular
function, NDVI and CHL both involved 4 of 5 groups with two
group differences. In cellular component, both NDVI and CHL
involved all of the 5 function groups (Table 5, Supplementary
Figure 1). The candidate gene systems of NDVI and CHL
both involved a similar set of genes, although their frequency
distributions differed. The two genetic systems consisted of a
series of genes involved in a complex gene network.

The validation of these candidate genes are left for further
studies, however, a preliminary verification was carried out using
the transcriptome data set of RNA Seq-Atlas project in SoyBase
(see footnote 1). The gene expression results (Supplementary
Figure 2) showed that 31 out of the 39 annotated genes
for NDVI were expressed in 14 soybean tissues, among
which Glyma05g23230 and Glyma14g06630 showed especially
high expression level. For CHL, there were 28 out of 32
annotated genes were expressed in 14 soybean tissues, and
Glyma08g10960 showed high expression level in young leaf
and pod shell, indicating these identified candidate genes are
possibly functional.

DISCUSSION

Efficiency of High-Throughput
Phenotyping Integrated With RTM-GWAS
in Identifying NDVI and CHL QTL-allele
Systems
This study presented a genetic analysis of two spectral reflectance
traits, NDVI and CHL, using a high-throughput phenotyping
platform. Both NDVI and CHL showed significant genetic
variation in CSGP, indicating that the spectral reflectance
phenotyping data can not only be used for predicting agronomic
traits but also for dissecting their underlying genetic basis. In this
study, 89 alleles on 38 loci for NDVI and 82 alleles on 32 loci
for CHL were detected, and the RTM-GWAS method was used
to characterize their allele effects. High-throughput phenotyping
integrated with RTM-GWAS was an efficient method for
identifying the QTL-allele systems for NDVI and CHL. However,
only 48.36% and 51.35% of the PV for NDVI and CHL were
explained by the detected loci, which is low compared with other
agronomic traits, such as 100-seed weight (139 QTLs explained
98.2% of the PV with a heritability of 98.9%, He et al., 2017).
Although the large-contribution QTLs have been identified,
many small-contribution QTLs consisting of unmapped minor
QTLs have yet to be identified according to the RTM-GWAS.
This observation might stem from experimental error given that
the heritability values were only 78.3% and 69.2% for NDVI
and CHL, respectively. Such error might have decreased the
sensitivity of our analysis to detect QTLs, leaving 29.91% and
27.85% of the genetic variation (presumably unmapped minor
QTLs) undetected. In the present study, an incomplete block
design was conducted to separate all accessions into two sets for
two respective tests to circumvent the space limitations associated
with the high-throughput phenotyping platform. Although we
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TABLE 4 | Emerged and excluded alleles conferring NDVI and CHL from WA to LR and then to RC.

QTL R2 (%) Allele Effect Frequency (%)

Entire WA LR RC LR + RC

qNdvi-01-5 0.49 a1 −0.0049 96.48 100.00 98.78 93.99 95.47

a2 0.0049 3.52 0.00 1.22 6.01 4.53

qNdvi-02-1 3.84 a1 −0.0138 24.34 90.79 14.63 1.09 5.28

a2 0.0000 54.84 7.89 76.83 64.48 68.30

a3 0.0051 5.28 1.32 0.00 9.29 6.42

a4 0.0087 15.54 0.00 8.54 25.14 20.00

qNdvi-03-1 0.92 a1 −0.0068 4.11 0.00 0.00 7.65 5.28

a2 0.0068 95.89 100.00 100.00 92.35 94.72

qNdvi-05-3 3.57 a1 −0.0208 2.05 5.26 3.66 0.00 1.13

a2 −0.0002 28.74 44.74 29.27 21.86 24.15

a3 0.0056 63.64 26.32 67.07 77.60 74.34

a4 0.0154 5.57 23.68 0.00 0.55 0.38

qNdvi-05-4 1.82 a1 −0.0081 2.64 11.84 0.00 0.00 0.00

a2 −0.0016 15.54 19.74 26.83 8.74 14.34

a3 0.0003 76.83 47.37 71.95 91.26 85.28

a4 0.0093 4.99 21.05 1.22 0.00 0.38

qNdvi-15-2 2.63 a1 −0.0063 7.33 0.00 0.00 13.66 9.43

a2 0.0029 78.30 90.79 75.61 74.32 74.72

a3 0.0034 14.37 9.21 24.39 12.02 15.85

qChl-01-1 2.97 a1 −0.2100 22.29 9.21 21.95 27.87 26.04

a2 −0.0740 73.31 75.00 74.39 72.13 72.83

a3 0.2840 4.40 15.79 3.66 0.00 1.13

qChl-06-2 2.73 a1 −0.0927 15.25 57.89 87.80 74.86 78.87

a2 −0.0070 74.19 42.11 8.54 7.10 7.55

a3 0.0997 10.56 0.00 3.66 18.03 13.58

qChl-08-3 1.5 a1 −0.2560 2.64 0.00 3.66 3.28 3.40

a2 0.0771 39.59 98.68 45.12 12.57 22.64

a3 0.1789 57.77 1.32 51.22 84.15 73.96

qChl-18-2 1.66 a1 −0.1740 6.45 0.00 6.10 9.29 8.30

a2 −0.0214 58.36 39.47 54.88 67.76 63.77

a3 0.0585 22.58 35.53 30.49 13.66 18.87

a4 0.1369 12.61 25.00 8.54 9.29 9.06

qChl-19-1 2.36 a1 −0.1815 7.62 25.00 4.88 1.64 2.64

a2 −0.0625 10.56 36.84 1.22 3.83 3.02

a3 −0.0619 29.62 1.32 31.71 40.44 37.74

a4 0.0009 41.64 13.16 58.54 45.90 49.81

a5 0.0899 7.33 23.68 3.66 2.19 2.64

a6 0.2152 3.23 0.00 0.00 6.01 4.15

qChl-20-1 2.52 a1 −0.1325 72.73 92.11 81.71 60.66 67.17

a2 0.0005 14.37 7.89 13.41 17.49 16.23

a3 0.0358 2.93 0.00 0.00 5.46 3.77

a4 0.0963 9.97 0.00 4.88 16.39 12.83

WA, wild accession; LR, cultivated farmer landraces; RC, released modern cultivars. Boldface QTLs are newly emerged QTLs. Heavy shaded alleles are emerged ones,
while light-shaded alleles are excluded ones; the number of changed alleles is consistent with that shown in Figure 2.

employed a method to make the environment uniform between
the different tests, much room for improvement remains.

In the present study, the PV explained by individual QTL
ranged between 0.37-3.84% for NDVI, and 0.38-5.38% for CHL.
There were 17 and 19 large-contribution (R2 ≥ 1%) and 21 and
13 small-contribution (R2 < 1%) QTLs for NDVI and CHL,
respectively. The PV in RTM-GWAS is relatively lower than that

in single-locus model such as the mixed linear model method (Yu
et al., 2006). In single-locus model, association test is performed
for each locus individually, and the estimated contribution of a
locus may be inflated obviously due to the correlations among
neighboring loci (He et al., 2017). But in RTM-GWAS, multiple
QTLs are jointly fitted in a multi-locus model and the estimated
PV for each QTL is unbiased and the total PV is controlled within
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TABLE 5 | The predicted optimal crosses for NDVI and CHL in the different material groups.

Trait Population Extreme phenotype phenotype No. crosses Predicted phenotype

Mean Max

NDVI WA 0.05–0.13 2,851 0.10 0.15

LR 0.06–0.18 3,322 0.14 0.20

RC 0.06–0.17 16,427 0.14 0.20

WA × LR – 6,234 0.13 0.19

WA × RC – 13,834 0.14 0.19

LR × RC – 14,926 0.14 0.21

Entire 0.05–0.18 57,594 0.14 0.21

CHL WA 1.20–4.49 2,702 3.66 4.93

LR 2.63–4.78 3,322 4.18 5.31

RC 2.67–4.50 16,111 4.20 5.06

WA × LR – 6,070 3.97 5.41

WA × RC – 13,322 4.01 5.38

LR × RC – 14,762 4.21 5.21

Entire 1.20–4.78 56,289 4.11 5.41

WA, wild accession; LR, cultivated farmer landraces; RC, released modern cultivars. The extreme phenotype is the observed minimum and maximum phenotype in the
population. The predicted phenotype is the 99th percentile of a cross in the group of crosses.

TABLE 6 | The number of candidate genes enriched in different GO annotations
for NDVI and CHL.

GO category GO group NDVI CHL

Biological process Biological regulation 11 10

Cellular component biogenesis 13 3

Cellular process 20 18

Developmental process 12 4

Localization 4 3

Metabolic process 18 19

Multicellular organismal process 11 4

Multi-organism process 7 –

Response to stimulus – 10

Regulation of biological process 11 –

Reproduction 9 –

Response to stimulus 14 –

Others 5 4

Molecular function Binding 20 15

Catalytic activity 12 9

Structural molecule activity 3 –

Transcription regulator activity – 3

Others 2 2

Cellular component Cell 34 6

Membrane 8 21

Organelle 27 7

Protein-containing complex 5 3

Others 5 3

Total candidate genes 39 32

heritability value, therefore, the individual QTL in RTM-GWAS
may look smaller than those from single locus model procedure.

The fact of many QTLs each with a smaller PV is a
characteristic of a quantitative trait controlled by a large number
of QTLs. Or as we understand, the total PV of a quantitative

trait in fact is a projection of a large number of genes/QTLs
with different but interrelated biological functions onto the trait
plane in a specific population. The statistically estimated genetic
effect or PV of a QTL is relative to and largely depends on the
genetic background of the population. A same QTL may exhibit
varying effects in different populations with different genetic
background. For example, the PV of a QTL in a simple genetic
background such as near-isogenic lines is much greater than that
in a germplasm population. Therefore, the small-contribution
QTL in a study may exhibit large effects in other populations
with simple genetic background. In fact, the purpose of the RTM-
GWAS method is to achieve a relatively thorough detection of
whole-genome QTLs and their multiple alleles or the QTL-allele
system rather than a few individual large PV QTLs. Thus for
the genetic improvement of quantitative traits in plant breeding,
background control and foreground control are both important.
It is likely that breakthroughs can be achieved through increase
of positive alleles and decrease of negative alleles among multiple
loci, rather than through recombination between/among a few
loci like in the qualitative trait situation.

Genetic Conservativeness of NDVI and
CHL, Their Improvement Potential and
Implications to Breeding for Seed-Yield
of Soybeans
Both phenotypic and genotypic analysis showed that the
two spectral reflectance traits were genetically conservative in
comparison to the agronomic traits, such as seed yield, 100 seed
weight, days to flowering (He et al., 2017; Zhang et al., 2019;
Fu et al., 2020). Because in the present results, (i) no significant
phenotypic improvements were observed in RC, and trait values
were low in LR and RC; (ii) there was a limited number of alleles
per locus; (iii) there was a large number of shared wild alleles
among WA, LR, and RC, few new alleles, and little exclusion
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of wild alleles; and (iv) the recombination potential was low.
In other words, the two spectral reflectance traits, NDVI and
CHL, were more conservative than other agronomic traits in
their genetic changes. We suspect that these spectral reflectance
traits are upstream traits, whereas the other agronomic traits are
downstream traits, the upstream traits may be more conservative
than the downstream traits due to more factors may influence the
downstream traits. For example, NDVI and CHL are traits related
to the biological process of photosynthesis or organic synthesis
while the agronomic traits such as seed yield may relate to the
biological processes of transportation and storage of organics in
addition to organic synthesis. The fact that breeding generally
acts on downstream traits more readily compared to upstream
traits may explain why the latter was more conservative and with
less phenotypic improvements. Thus, additional effort is needed
to improve upstream traits, such as NDVI and CHL, which are
involved in light interception, light function and therefore, in
photosynthesis and organics production.

However, some potential for improvement in NDVI and CHL
was observed from WA to LR + RC, although the improvement
was small (Table 1). The genetic mechanism underlying the
observed evolutionary improvements might be recombination
among loci-alleles given that all of the wild alleles passed to
LR + RC except one negative wild allele excluded; furthermore,
new alleles did not make up a large proportion of the alleles, given
that few new alleles emerged (Tables 3, 4). This point is supported
by the optimal cross prediction that the recombination among
the loci/accessions might result in transgressive progenies, i.e.,
approximately 13–16% of genetic progress for NDVI and CHL
might be achieved through hybridization in the CSGP (Table 5).

The previous studies on high-throughput phenotypes in crops
usually focused on predicting yield-related agronomic traits, such
as plant height, biomass and seed yield (Holman et al., 2016;
Salas Fernandez et al., 2017, Maimaitijiang et al., 2020). For
example, our previous results showed that NDVI was selected
as the best vegetation indices in the establishment of plot-yield
prediction models in breeding programs of soybeans (Zhang
et al., 2019). Here in the present study, genetic dissection of
the two high-throughput physiological traits, NDVI and CHL,
was performed based on the high-throughput phenotyping
technique. As NDVI and CHL are upstream traits and agronomic
traits are breeding-acted target traits, identifying the genetic
system of upstream traits may help to understand the genetic
mechanism of downstream targets and also may provide
additional control of downstream targets. For example, it was
reported that NDVI was also a proxy for drought-adaptive
traits in durum wheat, and high-throughput data collection of
NDVI with capable precision can facilitate the genetic dissection

of drought-adaptive traits (Condorelli et al., 2018). Thus, in
breeding programs, breeders can combine the selection for
upstream traits using high-throughput phenotyping data and the
selection for downstream traits using agronomic data to have
both selected and improved, which might benefit the enhanced
selection of the downstream traits. This explains the reason that
we suggested in yield breeding programs to combine the selection
before harvest using NDVI prediction models established from
hyperspectral reflectance data and the selection of harvested
yield to achieve an enhanced selection for genotypic yield
(Zhang et al., 2019).

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and
accession number(s) can be found below: https://github.com/
njau-sri/leiwang2020ndvichl.

AUTHOR CONTRIBUTIONS

JG designed the study. LW and FL performed the experiments.
JH, LW, and FL performed data analysis. XH, WW, GX, JL,
and GZ participated in the experiments and data collection. JH,
LW, and JG drafted the manuscript. All authors reviewed and
approved the manuscript.

FUNDING

This research was supported by the China National Key R&D
Program for Crop Breeding (2017YFD0101500), the Natural
Science Foundation of China (31701447), the MOE 111 Project
(B08025), the MOE Program for Changjiang Scholars and
Innovative Research Team in University (PCSIRT_17R55),
the Fundamental Research Funds for the Central Universities
(KYZZ201901), and the MARA CARS-04 program and the
Jiangsu JCIC-MCP. This research was also supported by the
Bioinformatics Center of Nanjing Agricultural University.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fgene.
2021.600444/full#supplementary-material

REFERENCES
Awlia, M., Nigro, A., Fajkus, J., Schmoeckel, S. M., Negrão, S., Santelia, D., et al.

(2016). High-throughput non-destructive phenotyping of traits that contribute
to salinity tolerance in Arabidopsis thaliana. Front. Plant Sci. 7:1414. doi: 10.
3389/fpls.2016.01414

Cobb, J. N., Declerck, G., Greenberg, A., Clark, R., and McCouch, S. (2013).
Next-generation phenotyping: requirements and strategies for enhancing our

understanding of genotype-phenotype relationships and its relevance to crop
improvement. Theor. Appl. Genet. 126, 867–887. doi: 10.1007/s00122-013-
2066-0

Condorelli, G. E., Maccaferri, M., Newcomb, M., Andrade-Sanchez, P., White,
J. W., French, A. N., et al. (2018). Comparative aerial and ground based high
throughput phenotyping for the genetic dissection of NDVI as a proxy for
drought adaptive traits in durum wheat. Front. Plant Sci. 9:893. doi: 10.3389/
fpls.2018.00893

Frontiers in Genetics | www.frontiersin.org 12 February 2021 | Volume 12 | Article 600444127

https://github.com/njau-sri/leiwang2020ndvichl
https://github.com/njau-sri/leiwang2020ndvichl
https://www.frontiersin.org/articles/10.3389/fgene.2021.600444/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2021.600444/full#supplementary-material
https://doi.org/10.3389/fpls.2016.01414
https://doi.org/10.3389/fpls.2016.01414
https://doi.org/10.1007/s00122-013-2066-0
https://doi.org/10.1007/s00122-013-2066-0
https://doi.org/10.3389/fpls.2018.00893
https://doi.org/10.3389/fpls.2018.00893
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-600444 February 23, 2021 Time: 12:38 # 13

Wang et al. QTL-allele System Underlying High-Throughput Traits

Duan, T., Chapman, S. C., Guo, Y., and Zheng, B. (2017). Dynamic monitoring of
NDVI in wheat agronomy and breeding trials using an unmanned aerial vehicle.
Field Crops Res. 210, 71–80. doi: 10.1016/j.fcr.2017.05.025

Erdle, K., Mistele, B., and Schmidhalter, U. (2011). Comparison of active and
passive spectral sensors in discriminating biomass parameters and nitrogen
status in wheat cultivars. Field Crops Res. 124, 74–84. doi: 10.1016/j.fcr.2011.
06.007

Estrada, F., Escobar, A., Romero-Bravo, S., González-Talice, J., Poblete-Echeverría,
C., Caligari, P. D. S., et al. (2015). Fluorescence phenotyping in blueberry
breeding for genotype selection under drought conditions, with or without heat
stress. Sci. Hortic. 181, 147–161. doi: 10.1016/j.scienta.2014.11.004

Foster, A. J., Kakani, V. G., and Mosali, J. (2017). Estimation of bioenergy crop
yield and N status by hyperspectral canopy reflectance and partial least square
regression. Precis. Agric. 18, 192–209. doi: 10.1007/s11119-016-9455-8

Fu, M., Wang, Y., Ren, H., Du, W., Wang, D., Bao, R., et al. (2020). Genetic
dynamics of earlier maturity group emergence in south-to-north extension of
Northeast China soybeans. Theor. Appl. Genet. 133, 1839–1857.

Furbank, R. T., and Tester, M. (2011). Phenomics—technologies to relieve the
phenotyping bottleneck. Trends Plant Sci. 16, 635–644. doi: 10.1016/j.tplants.
2011.09.005

Gitelson, A. A., Gritz, Y., and Merzlyak, M. N. (2003). Relationships between leaf
chlorophyll content and spectral reflectance and algorithms for non-destructive
chlorophyll assessment in higher plant leaves. J. Plant Physiol. 160, 271–282.
doi: 10.1078/0176-1617-00887

Hassan, M. A., Yang, M., Rasheed, A., Yang, G., Reynolds, M., Xia, X., et al.
(2019). A rapid monitoring of NDVI across the wheat growth cycle for grain
yield prediction using a multi-spectral UAV platform. Plant Sci. 282, 95–103.
doi: 10.1016/j.plantsci.2018.10.022

Hatfield, J., and Prueger, J. (2010). Value of using different vegetative indices
to quantify agricultural crop characteristics at different growth stages under
varying management practices. Remote Sens. 2, 562–578. doi: 10.3390/
rs2020562

He, J., Meng, S., Zhao, T., Xing, G., Yang, S., Li, Y., et al. (2017). An innovative
procedure of genome-wide association analysis fits studies on germplasm
population and plant breeding. Theor. Appl. Genet. 130, 2327–2343. doi: 10.
1007/s00122-017-2962-9

Holman, F., Riche, A., Michalski, A., Castle, M., Wooster, M., and Hawkesford, M.
(2016). High throughput field phenotyping of wheat plant height and growth
rate in field plot trials using UAV based remote sensing. Remote Sens. 8:1031.
doi: 10.3390/rs8121031

Huete, A., Didan, K., Miura, T., Rodriguez, E., Gao, X., and Ferreira, L. (2002).
Overview of the radiometric and biophysical performance of the MODIS
vegetation indices. Remote Sens. Environ. 83, 195–213. doi: 10.1016/s0034-
4257(02)00096-2

Jay, S., Maupas, F., Bendoula, R., and Gorretta, N. (2017). Retrieving LAI,
chlorophyll and nitrogen contents in sugar beet crops from multi-angular
optical remote sensing: comparison of vegetation indices and PROSAIL
inversion for field phenotyping. Field Crops Res. 210, 33–46. doi: 10.1016/j.fcr.
2017.05.005

Kumar, S., Röder, M. S., Singh, R. P., Kumar, S., Chand, R., Joshi, A. K., et al.
(2016). Mapping of spot blotch disease resistance using NDVI as a substitute
to visual observation in wheat (Triticum aestivum L.). Mol. Breed. 36:95. doi:
10.1007/s11032-016-0515-6

Lewis, J., Rowland, J., and Nadeau, A. (1998). Estimating maize production in
Kenya using NDVI: some statistical considerations. Int. J. Remote Sens. 19,
2609–2617. doi: 10.1080/014311698214677

Liu, F., He, J., Wang, W., Xing, G., and Gai, J. (2020). Bi-phenotypic trait may be
conferred by multiple alleles in a germplasm population. Front. Genet. 11:559.
doi: 10.3389/fgene.2020.00559

Maimaitijiang, M., Sagan, V., Sidike, P., Hartling, S., Esposito, F., and Fritschi,
F. B. (2020). Soybean yield prediction from UAV using multimodal data fusion
and deep learning. Remote Sens. Environ. 237:111599. doi: 10.1016/j.rse.2019.
111599

Nigon, T., Mulla, D., Rosen, C., Cohen, Y., Alchanatis, V., Knight, J., et al.
(2015). Hyperspectral aerial imagery for detecting nitrogen stress in two potato
cultivars. Comput. Electron. Agric. 112, 36–46. doi: 10.1016/j.compag.2014.
12.018

Peñuelas, J., Isla, R., Filella, I., and Araus, J. (1997). Visible and near infrared
reflectance assessment of salinity effects on barley. Crop Sci. 37, 198–202. doi:
10.2135/cropsci1997.0011183X003700010033x

Pérez-Bueno, M. L., Pineda, M., and Barón, M. (2019). Phenotyping plant
responses to biotic stress by chlorophyll fluorescence imaging. Front. Plant Sci.
10:1135. doi: 10.3389/fpls.2019.01135

Rebetzke, G. J., Jimenez-Berni, J., Fischer, R. A., Deery, D. M., and Smith, D. J.
(2019). Review: High-throughput phenotyping to enhance the use of crop
genetic resources. Plant Sci. 282, 40–48. doi: 10.1016/j.plantsci.2018.06.017

Rutkoski, J., Poland, J., Mondal, S., Autrique, E., Pérez, L. G., Crossa, J., et al.
(2016). Canopy temperature and vegetation indices from high-throughput
phenotyping improve accuracy of pedigree and genomic selection for grain
yield in wheat. G3 (Bethesda) 6, 2799–2808. doi: 10.1534/g3.116.032888

Salas Fernandez, M. G., Bao, Y., Tang, L., and Schnable, P. S. (2017). A high-
throughput, field-based phenotyping technology for tall biomass crops. Plant
Physiol. 174, 2008–2022. doi: 10.1104/pp.17.00707

Samborski, S. M., Gozdowski, D., Walsh, O. S., Lamb, D. W., Stępień, M.,
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One of the objectives of many studies conducted by breeding programs is to
characterize and select rootstocks well-adapted to drought conditions. In recent years,
field high-throughput phenotyping methods have been developed to characterize plant
traits and to identify the most water use efficient varieties and rootstocks. However, none
of these studies have been able to quantify the behavior of crop evapotranspiration
in almond rootstocks under different water regimes. In this study, remote sensing
phenotyping methods were used to assess the evapotranspiration of almond cv.
“Marinada” grafted onto a rootstock collection. In particular, the two-source energy
balance and Shuttleworth and Wallace models were used to, respectively, estimate
the actual and potential evapotranspiration of almonds grafted onto 10 rootstock under
three different irrigation treatments. For this purpose, three flights were conducted during
the 2018 and 2019 growing seasons with an aircraft equipped with a thermal and
multispectral camera. Stem water potential (9stem) was also measured concomitant
to image acquisition. Biophysical traits of the vegetation were firstly assessed through
photogrammetry techniques, spectral vegetation indices and the radiative transfer
model PROSAIL. The estimates of canopy height, leaf area index and daily fraction of
intercepted radiation had root mean square errors of 0.57 m, 0.24 m m−1 and 0.07%,
respectively. Findings of this study showed significant differences between rootstocks
in all of the evaluated parameters. Cadaman R© and Garnem R© had the highest canopy
vigor traits, evapotranspiration, 9stem and kernel yield. In contrast, Rootpac R© 20 and
Rootpac R© R had the lowest values of the same parameters, suggesting that this was
due to an incompatibility between plum-almond species or to a lower water absorption
capability of the rooting system. Among the rootstocks with medium canopy vigor,
Adesoto and IRTA 1 had a lower evapotranspiration than Rootpac R© 40 and Ishtara R©.
Water productivity (WP) (kg kernel/mm water evapotranspired) tended to decrease with
9stem, mainly in 2018. Cadaman R© and Garnem R© had the highest WP, followed by INRA
GF-677, IRTA 1, IRTA 2, and Rootpac R© 40. Despite the low 9stem of Rootpac R© R, the
WP of this rootstock was also high.

Keywords: thermal, field phenotyping, water productivity, TSEB model, stem water potential, crown area, yield
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INTRODUCTION

The study of the behavior of Prunus cultivars grafted on different
rootstocks in fruit production serves to adapt cultivars to
different edaphic and environmental conditions and to enhance
sustainable crop production. The selection of a suitable scion-
rootstock combination is the first step to monitor the vegetative
growth, yield and fruit composition parameters of the scion
(Caruso et al., 1996; Mestre et al., 2017; Font i Forcada et al.,
2020; Reig et al., 2020). There is growing interest in selecting
and breeding new rootstocks and cultivars with a higher water
use efficiency (WUE) in order to improve water productivity
and better adapt fruit production to future climate changes
(Solari et al., 2006; Xiloyannis et al., 2007; Díez-Palet et al.,
2019). In almonds [Prunus dulcis (Mill.) DA Webb], with the
recent introduction of high-density planting systems, particular
attention has been paid to using dwarf rootstocks in order
to control canopy vigor and facilitate mechanical harvesting
(Pinochet, 2009; Casanova-Gascón et al., 2019). In addition, with
the introduction of new dwarfing rootstocks and hybrids coming
mainly from the peach sector, the paradigm has changed since
information about their response to drought or a limited water
supply is scant.

For many years, breeding programs for fruit crop rootstocks,
as well as for obtaining scion cultivars, have used similar
evaluation methods based on both agronomic and molecular
traits. Some of the commonly measured agronomic traits are
trunk cross-sectional area (TCSA), plant height, tree canopy
vigor, phenology, yield parameters, and fruit quality attributes
(Reighard et al., 2011; Font i Forcada et al., 2012; Legua et al.,
2012; Lordan et al., 2019). However, most of these agronomic
traits are a consequence of differences in the root system
architecture or the hydraulic properties of a rootstock, which
contribute in influencing the transpiration rate through their
effects on the stem water potential (9stem) and the control of
stomatal conductance (Hernandez-Santana et al., 2016). On the
other hand, the development of markers to help select individuals
with traits that are complex to evaluate should speed up the
development of new rootstocks that are resistant or tolerant to
multiple biotic or abiotic stresses (Cantini et al., 2001; Arismendi
et al., 2012; Jiménez et al., 2013; Guajardo et al., 2015). However,
the types of methodology required for this remain fairly time-
consuming, costly and, in some cases, are still scarce.

In recent years, proximal and remote sensing (RS)
technologies have increasingly been used to assess vegetation
in the context of field-based phenotyping (FBP) (Deery et al.,
2014; Araus and Kefauver, 2018). These technologies have shown
the potential to reduce labor requirements in the assessment of
“breeder-preferred” traits and, in some cases, can deliver more
detailed information about the biophysical crop parameters.
Usually, most efforts in this field are focused on using low-cost
RGB (visible), multispectral/hyperspectral, light detection and
ranging (LIDAR) or thermal infrared imaging sensors. Detailed
information can be found in the literature about different
applications for field phenotyping using these sensors (Araus and
Cairns, 2014; Deery et al., 2014; Araus et al., 2018). For example,
applications of digital RGB sensors in FBP include visible

imaging to estimate leaf color, crop ear counting, canopy cover,
or canopy height (Kefauver et al., 2015; Holman et al., 2016;
Fernandez-Gallego et al., 2019). Spectral imaging sensors are
normally used to derive the spectral response of the vegetation
and their biophysical traits such as leaf water content, chlorophyll
and xanthophyll levels, biomass or the leaf area index (LAI) (Li
et al., 2014; Mazis et al., 2020). Thermal imaging has been used
to estimate plant water status (Romano et al., 2011; Prashar and
Jones, 2014), and LIDAR point clouds to estimate vegetation
structural parameters (Madec et al., 2017; Jimenez-Berni et al.,
2018). However, most of the breeding programs focused on these
targets have tended to use RS technologies to phenotype annual
crops. Such studies are rarely performed in woody crops. To
the best of our knowledge, only Virlet et al. (2014); Ampatzidis
et al. (2019); Coupel-Ledru et al. (2019); Gutiérrez-Gordillo et al.
(2020), and López-Granados et al. (2019) have used RS imagery
for FBP in woody crops such as apple, citrus and almond.

As previously mentioned, there is an urgent need to identify
rootstocks with improved WUE, which, for instance, could
be planted in drylands or to cope with scarce water supplies.
For this purpose, it is critical to develop tools capable of
determining actual transpiration rates at canopy level which
can be widely used in breeding programs. Until now, the field
phenotyping response of woody crops to water use constraints
has constituted a bottleneck for breeding programs due to the
complexity of measuring actual transpiration or water status in
a large number of trees (Virlet et al., 2014). The few studies
that have been published were conducted using high-throughput
phenotyping platforms deployed in greenhouses and under
controlled conditions, which have the advantage that plants
in pots can be weighed and biomass estimated from imagery
(Pereyra-Irujo et al., 2012; Lopez et al., 2015).

In recent years, improvements in computational performance,
open-source programming languages, lower data requirements,
and the simplification of different complex approaches used to
estimate actual crop evapotranspiration (ETa) through RS have
contributed, at least in part, to reducing the existing gap between
RS physical modeling methods and agricultural applications.
Among the different methods, the surface energy balance (SEB)
models are probably the most complex to run, but at the same
time provide high accuracy and robustness in estimating ETa in
different environments (Norman et al., 1995; Bastiaanssen et al.,
1998; Mecikalski et al., 1999; Allen et al., 2007; Boulet et al., 2015).
These models have mostly been used for assessing the spatial
and temporal variability of ETa at regional and field scale using
satellite imagery (Semmens et al., 2016; He et al., 2017; Knipper
et al., 2019), although some of them have also been used with very
high-resolution aircraft imagery (Hoffman et al., 2016; Xia et al.,
2016; Nieto et al., 2019). Among the different SEB models, the
two-source energy balance (TSEB) modeling scheme allows the
possibility to estimate transpiration and evaporation separately
(Norman et al., 1995), by using the Priestley-Taylor approach
(Priestley and Taylor, 1972) when radiometric temperature (Trad)
is obtained from satellite imagery (e.g., Knipper et al., 2019),
or through a contextual approach if high-resolution thermal
imagery is available, in which case it is possible to directly obtain
soil (Ts) and canopy (Tc) surface temperatures (Nieto et al., 2019).
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The TSEB is a two-source model built on the Shuttleworth-
Wallace (S-W) energy combination model which can be used
to estimate potential evapotranspiration (ETp) and its partition
components separately (Shuttleworth and Wallace, 1985).

Based on the hypothesis that the ratio between ETa and
ETp can be used as a crop water stress indicator, this paper
aims to demonstrate the potential of the TSEB and S-W
models for phenotyping and breeding purposes in woody crops.
Differences in the amount of evapotranspired water and water
status will be explored in the almond cultivar “Marinada” grafted
onto a collection of 10 rootstocks irrigated under different
water regimes. Different RS approaches to determine certain
biophysical traits of the vegetation are also explored and the
values obtained are used as inputs of the TSEB and S-W models.

MATERIALS AND METHODS

Study Site and Experimental Design
The study was carried out in an experimental almond orchard
located at the experimental station of IRTA (Institute of Research
and Technology, Food and Agriculture) in Les Borges Blanques,
Spain (41◦30′31.89′′N; 0◦51′10.70′′E, 323 m elevation) during the
2018 and 2019 growing seasons (Figure 1). The climate in the
area is Mediterranean, with annual rainfall of 535 and 377 mm
for 2018 and 2019, respectively. The orchard is the result of a
rootstock trial planted in 2010 which used cv. “Marinada” as the
scion cultivar (Vargas et al., 2008) and the following rootstocks:
Adesoto, Cadaman R©, Garnem R©, INRA GF-677, IRTA 1, IRTA 2,
Ishtara R©, Rootpac R© R, Rootpac R© 40, and Rootpac R© 20 (Table 1).
Trees were planted at a spacing distance of 4.5 m with 5.0 m
between rows, and trained to an open vase system.

The study followed a split-plot design, where irrigation
treatment is the main plot and the rootstocks are the sub-
plots. The trial consisted of three irrigation treatments: (i)
conventional irrigation (I100), receiving 100% of ETc during the

whole irrigation season; (ii) half irrigation (I50), receiving 50% of
ETc during the whole irrigation season, and (iii) deficit irrigation
(I0), which received 100% of ETc during the whole irrigation
season except for ∼30 days before the airborne campaign when
irrigation was halted. The total amount of water applied in I100
throughout the growing season (from April to October) was
652 mm and 618 mm in 2018 and 2019, respectively. Each
treatment had three repetitions, each in a row, with the 10
different rootstocks in each row. Rootstock distribution within
each row followed a randomized design. One additional row was
included between treatments for protection.

Trees were irrigated on a daily basis calculating water
requirements through a water balance method for replacing
crop evapotranspiration (ETc) as follows: ETc = (ETo x
Kc)–effective rainfall. The ETo was collected from the
public network of weather stations closest to the study site
(Xarxa Agrometeorològica de Catalunya (XAC), and Servei
Meterorològic de Catalunya., 2020), which uses the Penman-
Monteith method (Allen et al., 1998) to calculate it. Annual
ETo was 1061 and 1133 mm in 2018 and 2019, respectively.
The Kc used were derived from Goldhamer (2012): Kc1 = 0.70
(April), Kc2 = 0.95 (May), Kc3 = 1.09 (June), Kc4 = 1.15
(July), Kc5 = 1.17 (August), and Kc6 = 1.12 (September).
Effective rainfall was estimated as half of the rainfall for a single
event-day with more than 10 mm of precipitation; otherwise was
considered to be zero. The irrigation system consisted of two drip
lines, with fifteen drippers per tree (3.5 L h−1 per dripper). Soil
texture was clay-loam and the effective soil depth was ∼150 cm.
Tree management for pruning, diseases and pests control, soil
management and fertilization was based on Spanish integrated
production management practices (BOE, 2002).

Image Collection
The airborne campaign was conducted on 24th July and 28th
of August 2018, and on 24th July 2019. Air temperature (Ta)

FIGURE 1 | Location of the field experiment, observing in (A) the study site located at the IRTA experimental station in Les Borges Blanques (Lleida, Spain), and (B)
design of the almond rootstock trial with three irrigation treatments (I100, I50, and I0).
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TABLE 1 | List of evaluated rootstock, parentage, origin and tested cultivar.

Rootstock Parentage Origin

Adesoto Clonal selection of Prunus
insititia

CSIC-Aula Dei (Spain)

Cadaman R© Prunus persica × Prunus
davidiana

IFGO (Hungary) and
INRA

Garnem R© Prunus dulcis × Prunus persica CITA (Spain)

INRA GF-677 Prunus dulcis × Prunus persica INRA (France)

IRTA-1 Prunus dulcis × Prunus persica IRTA (Spain)

IRTA-2 Prunus cerasifera × Prunus
dulcis

IRTA (Spain)

Ishtara R© (Prunus cerasifera × Prunus
salicina) × (Prunus
cerasifera × Prunus persica)

INRA (France)

Rootpac R© R Prunus cerasifera × Prunus
dulcis

Agromillora Iberia
(Spain)

Rootpac R© 40 (Prunus dulcis × Prunus
persica) × (Prunus
dulcis × Prunus persica

Agromillora Iberia
(Spain)

Rootpac R© 20 Prunus besseyi × Prunus
cerasifera

Agromillora Iberia
(Spain)

and vapor pressure deficit (VPD) at the moment of image
acquisition were, respectively, 33.4◦C and 2.9 kPa for 24th July
2018, 31.3◦C and 2.2 kPa for 28th August 2018, and 34.4◦C
and 3.6 kPa for 24th July 2019. Flights were conducted at 12:00
solar time (14:00 local time) with a thermal (FLIR SC655, FLIR
Systems, Wilsonville, OR, United States) and multispectral sensor
(MACAW, Tetracam, Chatsworth, CA, United States) on board
a manned aircraft. Flight altitude was ∼200 m above ground
level, providing thermal and multispectral images at ∼0.25 and
0.03 m pixel−1 average resolution, respectively. The thermal
sensor has a spectral response in the range of 7.5–13 µm and
an image resolution of 640 × 480 pixels. The optical focal length
is 13.1 mm, yielding an angular field of view of 45◦. The sensor
has a focal plane array based on uncooled microbolometers. The
MACAW sensor has 1.4 mega-pixel complementary metal-oxide
semiconductor (CMOS) sensors with a 9.6 mm fixed lens. These
provide images of 1,280 × 1,024 pixels. The sensor contains six
user-selectable narrow band filters at 10 nm full width at half
maximum (FWHM), with center wavelengths at 515.3, 570.9,
682.2, 710.5, 781.1, and 871.8 nm. The thermal sensor was
connected to a laptop via ethernet, and the multispectral camera
via USB 3.0 protocol. All thermal and multispectral images were
radiometrically, atmospherically and geometrically corrected.
The radiometric calibration of the thermal sensor was assessed in
the laboratory using a blackbody (model P80P, Land Instruments,
Dronfield, United Kingdom). The radiometric calibration of
the multispectral sensor was conducted through an external
incident light sensor which measured the irradiance levels of
light at the same bands as the MACAW multispectral sensor.
In addition, in situ spectral measurements in ground calibration
targets were performed using a Jaz spectrometer (Ocean Optics,
Inc., Dunedin, FL, United States). The Jaz has a wavelength
response from 200 to 1,100 nm and an optical resolution
of ∼0.3–10.0 nm. During spectral collection, spectrometer

calibration measurements were taken with a reference panel
(white color Spectralon) and dark current before and after taking
readings from radiometric calibration targets. In addition, a
range of field calibrations were conducted through in situ surface
temperature measurements in ground calibration targets using
a portable IR gun (Fluke 62 mini IR thermometer, Everett,
WA, United States). Geometric correction was conducted using
ground control points (GCP), and measuring the position in
each with a handheld GPS (Global Positioning System) (Geo7×,
Trimble GeoExplorer series, Sunnyvale, CA, United States) with
a precision of ∼0.20 cm. All images were mosaicked using
the Agisoft Metashape Professional software (Agisoft LLC., St.
Petersburg, Russia) and geometrically and radiometrically terrain
corrected with QGIS 3.4 (QGIS 3.4.15). Figure 2 shows the
flowchart of the procedures used to process the images and obtain
the information of the different parameters.

Field Measurements
The fraction of photosynthetically active radiation (PAR)
intercepted by the canopy (fiPAR) was measured on the same
clear days as image acquisition from 11:00 to 14:00 h (local
time) using a portable linear ceptometer (AccuPAR model LP-
80, Decagon Devices Inc., Pullman, WA, United States). Incident
PAR above and below the canopy was measured for each tree.
Twenty PAR readings were recorded below each tree canopy
covering the tree spacing. The ceptometer was placed in a
horizontal position at ground level perpendicular to the row. The
fiPAR was calculated by dividing the averaged PAR below the
canopy by the incident PAR taken in full sunlight at an open site
with no interference from the canopy. The LAI was derived by
means of fiPAR, using the Norman-Jarvis model (Norman and
Jarvis, 1974) and assuming a leaf absorptivity for light at 0.9.
Daily fiPAR (fiPARd) was estimated using an hourly model of light
interception (Oyarzun et al., 2007). In the model, the porosity
parameter was estimated so that the simulated hourly intercepted
value at noon equalled the instantaneous value measured in the
field. Then, fiPARd was calculated by integrating the diurnal
course of the simulated fiPAR. Tree architectural parameters such
as canopy height, crown width perpendicular to and along rows,
and branch insertion height were also measured.

Concomitant to image acquisition, one midday 9stem was
measured in each tree. Shaded leaves were selected and kept
in a plastic bag covered by aluminum foil for 2 h before the
measurement in order to equilibrate the water potential between
leaf, stem and branches. All measurements were acquired in less
than 2 h with a pressure chamber (Plant Water Status Console,
Model 3500; Soil Moisture Equipment Corp., Santa Barbara, CA)
and following the protocol established by Shackel et al. (1997).

Biophysical Traits of the Vegetation
Three different approaches were tested to estimate LAI and
fiPARd: (i) estimates of canopy height and volume through
photogrammetry, (ii) spectral vegetation indices (VIs), and (iii)
the PROSAIL radiative transfer model.

The three-dimensional (3D) tree canopy volume was
obtained following the protocol described by Caruso et al.
(2019). The digital surface model (DSM) was generated from
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FIGURE 2 | Flowchart of the procedures used for processing the multispectral and thermal images in order to obtain the different biophysical variables of the
vegetation and some of the inputs for the two-source energy balance (TSEB) and Shuttleworth and Wallace (S-W) models.

the photogrammetric point cloud of multispectral images.
A classification of bare ground pixels located between tree rows
were used to obtain the digital terrain model (DTM) of the
orchard. Then, a raster corresponding to heights (from the
ground to maximum height of the canopy) was obtained by
subtracting the DTM from the DSM using the raster calculator
tool of the QGIS software.

The semi-automatic OS v.6 classification plugin of the QGIS
software (Congelo, 2016) was used to classify vegetation, sunlit
and shadowed bare soil and weeds (Figure 2). Then, the
vegetation mask was used to delineate each crown area through
the watershed object-based segmentation algorithm included in
the Orfeo Toolbox, and to obtain the average height and crown
area of each individual tree. Canopy volume of each pixel was
obtained by multiplying the pixel area by its corresponding height
value (from the ground to the maximum height within the pixel)
(Caruso et al., 2019). The total volume of each tree was obtained
by adding all the canopy pixels. Finally, the net canopy volume
was calculated by subtracting the volume comprised between the
ground and the branch insertion of the canopy from the total
volume of each tree.

Several spectral VIs were obtained from multispectral images
(Table 2). These indices have been shown to be closely
related to certain specific features of plant structure and have
demonstrated a great potential to estimate the LAI (Haboudane
et al., 2004). Besides the extensively used normalized difference
vegetation index (NDVI), this study tested different indices
within the red-edge spectral region. The red-edge region is
characterized by a sharp change in vegetation reflectance due
to chlorophyll absorption, and it has been demonstrated that
this is strongly influenced by the LAI (Delegido et al., 2013;
Xie et al., 2018).

The LAI and fiPAR were also estimated following the protocol
described by Weiss and Baret (2016), which retrieves these
parameters from Sentinel-2 bands. Instead, this study used the six

very-high resolution spectral bands of the multispectral sensor.
The method consists of generating a large comprehensive dataset
of vegetation characteristics, covering all possible ranges in the
vegetation parameters described in Table 3, after which simulated
reflectance factors are obtained by running the PROSAIL model
(Jacquemoud et al., 2009) in forward mode. With these two
arrays of values (vegetation parameters and simulated spectra),
a neural network was built per each parameter (many-to-one
relation). Finally, the trained neural network was applied to
the multispectral images for each tree, computing the average
reflectance of a rectangular grid with tree spacing distance (4.5
× 5.0 m), in order to predict the biophysical parameters from the
reflectances acquired by the multispectral camera.

Evapotranspiration and Crop Water
Stress Index
The TSEB model was used to estimate ETa and its partition
between soil and vegetation. One of the main advantages of
TSEB is that it estimates evaporation (E) and transpiration
(T) separately using information from Trad and biophysical
parameters of the vegetation, which are available from RS. The
TSEB was originally formulated by Norman et al. (1995) and
further improved by Kustas and Anderson (2009). The energy

TABLE 2 | List of spectral vegetation indices (VI), their formulation and reference.

Index Formula References

NDVI (R870−R680)/(R870 + R680) Rouse et al., 1973

GNDVI (R870−R570)/(R870 + R570) Gitelson et al., 1996

MCARI [(R710−R680)−0.2 (R710-R570)] R710/R680 Daughtry et al., 2000

NDRE (R870−R710)/(R870 + R710) Barnes et al., 2000

MSRRE (R870/ R710)− 1/
√

R870 + R710 + 1 Wu et al., 2008

R is defined as reflectance.
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balance is based on the principle of conservation of energy, which
calculates latent heat flux as a residual of the surface energy
equation (Eq. 1):

LE ≈ Rn −H − G (1a)

LES ≈ Rn, S −HS − G (1b)

LEC ≈ Rn, C −HC (1c)

where LE is the latent heat flux (W m−2), Rn is the net radiation
flux (W m−2), G is the soil heat flux (W m−2), and H is the
sensible heat flux (W m−2). The subscripts c and s refer to canopy
and soil, respectively. Surface soil heat flux around solar noon (G)
is often calculated in TSEB as a constant fraction of Rn,S.

Sensible heat flux (H) is partitioned into soil (Hs) and canopy
(Hc) fluxes, in which heat flux transport between soil and canopy
are connected in series following an analogy of Ohm’s law for
electric transport:

Hs = ρCp
Ts − Tac

rs
(2a)

Hc = ρCp
Tc − Tac

rx
(2b)

Hs +Hc = H = ρCp
Tac − Ta

rah
(2c)

where ρ is the air density (kg m−3), Cp is the specific heat of air
(J kg K−1), Ts is the soil temperature (K), Ta is the air temperature

TABLE 3 | List of parameters and their ranges used in PROSAIL
reflectance modeling.

Image acquisition 24th July
2018

28th August
2018

24th July
2019

DOY 205 240 205

Time image acquisition 12.50 12.25 12.25

Solar irradiance (W.m−2) 924 778 910

Solar zenith angle (◦) 21.81 32.04 21.38

Solar azimuth angle (◦) 193.43 184.53 183.91

Spectral bands (nm) 515.3, 570.9, 682.2, 710.5, 781.1, 871.8

Soil reflectance 0.121, 0.163, 0.192, 0.319, 0.373, 0.363

Number of simulations 100,000

Latitude 41.5

Longitude 0.85

Nleaf 1.2–2.2

Cab (µg.cm−2) 0–90

Car (µg.cm−2) 0–40

Cbrown 0.0–1.0

Cw (g.cm−2) 0.003–0.011

Cdm (g.cm−2) 0.003–0.011

LAI 0.0–6.0

Average leaf angle (◦) 30–80

Hotspot (m.m−1) 0.1–0.5

Nleaf , Leaf mesophyll structure parameter; Cab, Leaf chlorophyll content; Car ,
Carotenoids content; Cbrown, Leaf brown pigments content; Cw, Leaf water
content; Cdm, Leaf dry matter content.

(K), Tac is the air temperature in the canopy layer (K), rs is the
resistance to heat flow in the boundary layer immediately above
the soil surface (s m−1), rx is the total boundary layer resistance of
the complete canopy leaves (s m−1), and rah is the aerodynamic
resistance (s m−1) to turbulent heat transport between the air-
canopy layer and the overlying air layer.

When TSEB runs with coarse resolution satellite-derived
images, soil and canopy temperature cannot be directly retrieved.
In such cases, Tc and Ts are estimated in an iterative process
in which it is first assumed that green canopy transpires at a
potential rate based on the Priesley-Taylor equation (Priestley and
Taylor, 1972). In this study, however, the high spatial resolution
imagery allowed direct retrieval of Ts and Tc without the need to
compute an initial canopy transpiration (Nieto et al., 2019). That
is, Tc and Ts were individually obtained for each tree and for the
bare soil pixels within the 5× 4.5 m square grid, respectively. For
this purpose, the previously mentioned supervised classification
was used, and Ts corresponded to the averaged sunlit and
shadowed bare soil pixels within each grid.

As in other TSEB models, this methodology also requires
LAI to calculate radiation partitioning as well as wind
attenuation through the canopy toward the soil surface. Ground
measurements of LAI were used in the TSEB. Ancillary variables
that were needed, such as meteorological data, were obtained
from the closest weather station to the study site (XAC, Les
Borges Blanques: 41◦30′40.85′′N; 0◦51′22.21′′E). Given Tc and Ts,
the heat fluxes from the soil and canopy can be derived directly
using Eqs. (2a,b) and the sensible heat flux from Eq. (2c). Actual
evapotranspiration at the instant of aircraft image acquisition
(ETinst) was calculated as:

ETinst = 3600
LE
Iρw

(3)

where ETinst is the instantaneous ET (mm h−1), ρw represents
the density of water (1,000 kg m−3), and λ is the latent heat of
vaporization (J kg−1). Then, ETinst was upscaled to daily water
fluxes, in units of mm/day, by multiplying the instantaneous ratio
between latent heat flux and solar irradiance by average daily solar
irradiance (Cammalleri et al., 2014).

The ETp was retrieved from the S-W model (Shuttleworth and
Wallace, 1985). This model also considers two coupled sources
in a resistance network: the transpiration from vegetation and
the evaporation from substrate soil. The theoretical basis of
the S-W model is the Penman-Monteith energy combination
equation, and includes two parts, one for the soil surface and the
other for the plant surface. The potential evapotranspiration and
transpiration computed by the S-W model, setting a minimum
stomatal resistance value of 100 sm−1, are then used as the basis
for estimating the theoretical metrics of the crop water stress
index (CWSI). In this study, the CWSI was calculated as:

CWSI = 1−
ETa

ETp
(4)

where ETa and ETp correspond to actual and potential
evapotranspiration, estimated, respectively, from the TSEB and
S-W models.
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FIGURE 3 | Comparison between ground measured and airborne-estimated
maximum canopy height of almond trees on 24th July and 28th August 2018
and 24th July 2019. Linear regression corresponds to aggregated data of the
three dates.

Statistical Analysis
Data was analyzed using the JMP R© statistical software (SAS
Institute Inc., SAS Campus Drive, Cary, NC, United States).
Estimates of LAI and fiPARd were also derived using a stepwise
multiple regression analysis which included the VIs and canopy
volume estimates as dependent variables. All the variables were
evaluated with a three-way analysis of variance (three-way
ANOVA). Statistical significance was established for P < 0.05.
Tukey’s HSD test was applied to separate least square means that
differed significantly.

RESULTS

Estimates of the Biophysical Variables of
the Vegetation
The one-to-one relationship between observed and estimated
canopy height was significant for the three dates of image
acquisition, with R2-values ranging from 0.54 to 0.77 and RMSE
values from 0.43 to 0.65 m. The R2 and RMSE were, respectively,
0.60 and 0.57 m when aggregating data from the three dates
(Figure 3). Values of measured canopy height and LAI ranged
between 2.7–5.9 m and 0.3–2.0 m m−1, respectively. Estimates
of crown area and canopy volume through photogrammetry
were linearly related with fiPARd and LAI, with R2 ranging
from 0.38 to 0.72 (Table 4), and being slightly higher for LAI.
Non-significant differences were found when estimating these
parameters either through crown area or canopy volume, in part
because canopy height (used to estimate canopy volume) was
quadratically correlated with crown area (R2

= 0.60, p < 0.001).
All the tested spectral VIs were significant and linearly correlated
with LAI and fiPARd when the data was analyzed for individual

dates, but most of the regressions were not significant when
the data from the three dates was aggregated. The modified
chlorophyll absorption in reflectance index (MCARI) showed the
lowest R2 in all cases. The NDVI and normalized difference red-
edge (NDRE) index had the highest R2 with LAI on 28th August
2018 and 24th July 2019. In addition, NDRE had the highest R2

on 24th July 2018. On that day, estimates of LAI through NDVI,
MCARI and the green normalized difference vegetation index
(GNDVI) showed the lowest R2. The VIs with the highest R2

with fiPARd were similar to those reported for LAI. The use of
the radiative transfer model PROSAIL significantly improved the
estimates of LAI and fiPARd in comparison to the use of simple
VIs. The R2 and RMSE for LAI ranged from 0.46 to 0.67 and from
0.24 to 0.39 m m−1, respectively, and for fiPARd from 0.45 to 0.64
and from 0.07 to 0.14%, respectively. In addition, when the data
from the three dates were analyzed together, the R2 and RMSE
were, respectively 0.40 and 0.34 m m−1 for LAI and 0.29 and
0.12% for fiPARd.

The multiple regression analysis using the empirical variables
slightly increased the predictions of LAI and fiPARd in all cases.
Results indicated that the best predictions were obtained when
canopy volume was combined with other VIs, which varied
between dates. Overall, the best predictions of LAI and fiPARd
using the three dates of data together were observed with the
multiple regression analysis. The R2 and RMSE were, respectively,
0.60 and 0.22 m m−1 for LAI and 0.56 and 0.07% for fiPARd
(Table 4 and Figure 4).

Comparison Between Rootstocks
The analysis of variance showed that the rootstock source was
significant for all the evaluated variables (p < 0.0001) and that
the treatment x rootstock interactions were not significant, except
for 9stem (Table 5). Significant differences between treatments
and for the date x treatment interaction were also observed for
9stem (p < 0.0001). The remotely sensed estimates of crown
area, canopy volume, LAI and fiPARd were significant for the
interaction date x rootstock. The date source was also significant
for ETa, ETa/fiPARd, and kernel yield.

Overall, Cadaman R© and Garnem R© had the highest crown
area, canopy volume, LAI and fiPARd, followed by INRA GF-
677 (Table 6). On the other hand, Rootpac R© 20 had the lowest
values for all the evaluated variables. Non-significant differences
were detected between IRTA 1, IRTA 2, Ishtara R©, Rootpac R©

R, Rootpac R© 40, and Adesoto. Figure 5 shows the significant
differences in9stem between rootstock and irrigation treatments.
The results show that Rootpac R© R and Rootpac R© 20 were the
two rootstocks with the lowest 9stem for the three measured
dates. However, the latter had slightly lower values, mostly during
2018. On the other hand, Garnem R©, Cadaman R©, Adesoto, INRA
GF-677, IRTA 1, IRTA 2, and Rootpac R© 40 displayed similar
behavior for the three dates, showing the highest 9stem values.
Measurements conducted on 24th July 2018 showed significant
differences between treatments in Adesoto, IRTA 1, Ishtara R© and
Rootpac R© 20. Significant differences in 9stem for 28th August
2018 were only observed in INRA GF-677 and Rootpac R© 40.
On 24th July 2019, all rootstocks except Garnem R©, IRTA 2
and Rootpac R© R had significant differences in 9stem between
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TABLE 4 | Coefficients of determination (R2) of the regressions between leaf area index (LAI) and daily fraction of intercepted radiation (fiPARd ) with spectral vegetation
indices (VIs), crown area and canopy volume, PROSAIL radiative transfer model, and multiple regression analysis with empirical variables.

Parameters NDVI GNDVI MCARI NDRE MSRre Crown
area
(m2)

Canopy
volume

(m3)

Predicted LAI
and fiPAR
(PROSAIL)

Multiple regression analysis

LAI 24/7/2018 0.24 0.25 0.30 0.56 0.54 0.72 0.72 y = 0.45x+0.60,
R2
= 0.67,

RMSE = 0.24

y = −0.74+3.31NDRE+0.03Volume,
R2
= 0.74, RMSE = 0.19

LAI 28/8/2018 0.57 0.50 0.49 0.51 0.48 0.65 0.64 y = 0.57x+0.20,
R2
= 0.46,

RMSE = 0.38

y = −1.81+6.93GNDVI-1.98MSRre+
0.02Volume, R2

= 0.70, RMSE = 0.17

LAI 24/7/2019 0.41 0.41 0.36 0.42 0.41 0.44 0.49 y = 1.00x+0.05,
R2
= 0.56,

RMSE = 0.39

y = −1.22+3.50NDRE+ 0.02Volume,
R2
= 0.54, RMSE = 0.30

LAI all ns ns ns 0.15 ns 0.59 0.58 y = 0.59x+0.49,
R2
= 0.40,

RMSE = 0.34

y = 0.49+1.98NDRE-
1.06NDVI+0.03Volume, R2

= 0.60,
RMSE = 0.24

fiPARd 24/7/2018 0.37 0.39 0.15 0.49 0.46 0.53 0.50 y = 0.54x+0.28,
R2
= 0.64,

RMSE = 0.07

y = −0.91+0.05MSRre+
2.22NDVI+0.01Volume, R2

= 0.64,
RMSE = 0.06

fiPARd 28/8/2018 0.45 0.49 0.38 0.47 0.46 0.49 0.45 y = 0.80x+0.09,
R2
= 0.45,

RMSE = 0.14

y = 0.03+0.83GNDVI+0.01Volume,
R2
= 0.56, RMSE = 0.05

fiPARd 24/7/2019 0.38 0.40 0.32 0.41 0.39 0.38 0.43 y = 1.15x−0.15,
R2
= 0.51,

RMSE = 0.14

y = −2.93–3.21MSRre+12.75NDRE,
R2
= 0.53, RMSE = 0.10

fiPARd all ns 0.18 ns 0.16 ns 0.49 0.48 y = 0.44x+0.34,
R2
= 0.29,

RMSE = 0.12

y = −0.24+0.62GNDVI+6.95MCARI+
1.19NDRE-0.65NDVI+0.01Volume,

R2
= 0.56, RMSE = 0.07

FIGURE 4 | Relationships between observed and estimated (A) LAI and (B) fiPARd in almond trees, calculated from the equations obtained in the multiple regression
analysis for the three dates together (LAI = 0.49+1.98NDRE-1.06NDVI+0.03Volume; fiPARd = –0.24+0.62GNDVI+6.95MCARI+1.19NDRE-0.65NDVI+0.01Volume).

irrigation treatments. In all cases, the I0 treatment tended to have
the lowest9stem values.

Among other parameters, LAI and Tc are inputs required
by the TSEB model to estimate the ETa of a crop. In
this study, differences in canopy to air temperature (Tc-Ta)
between rootstocks were also significant and agreed with 9stem
measurements. More specifically, the relationships between Tc-
Ta and 9stem had R2 values of 0.57, 0.60, and 0.53 for 24th July
2018, 28th August 2018 and 24th July 2019, respectively (graphs
not shown). The relationships between ETa with Tc-Ta and LAI

gave respective R2-values of 0.57 and 0.87 for 24th July 2018, 0.66
and 0.87 for 28th August 2018, and 0.63 and 0.68 for 24th July
2019 (graphs not shown). These results suggest that ETa had a
stronger relationship with LAI than with Tc-Ta, probably due
to the lack of range in Tc-Ta values. In fact, both ETa and ETp
were also positive and linearly correlated with the canopy crown
area (Figures 6A,B). Values of ETa ranged from 1.8 to 8 mm
day−1, depending on date and rootstock. For a given crown area,
ETa values varied between dates, with ETa rates corresponding
to 28th August 2018 lower than those of 24th July 2018 and 24th
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TABLE 5 | Results of an analysis of variance (three-way ANOVA) testing the factor effects (date, treatment and rootstock) on the different variables estimated
through remote sensing.

Variables/Source Area Volume LAI fiPARd 9stem Tc-Ta ETa ETa/fiPARd CWSI Kernel yield

Date ns ns ns ns ns ns <.0001* <.0001* ns <.0001*

Treatment ns ns Ns ns <.0001* ns Ns ns ns ns

Rootstock <.0001* <.0001* <.0001* <.0001* <.0001* <.0001* <.0001* <.0001* <.0001* <.0001*

Date*Rootstock 0.0242* 0.0001* <.0001* 0.0076* ns ns ns ns ns <.0001*

Date*Treatment ns ns Ns ns 0.0084* ns ns ns ns ns

Rootstock*Treatment ns ns Ns ns 0.033* ns ns ns ns ns

Date*Rootstock*Treatment ns ns Ns ns ns ns ns ns ns ns

*Corresponds to significant differences at p ≤ 0.05; ns, not significant.

TABLE 6 | Comparison of crown area, canopy volume, leaf area index (LAI) and daily fraction of intercepted radiation (fiPARd ) between almond rootstocks for each image
acquisition date.

Date Rootstock/
Variable

Adesoto Cadaman R© Garnem R© INRA
GF-677

IRTA 1 IRTA 2 Ishtara R© Rootpac R© R Rootpac R©

40
Rootpac R©

20

24th July 2018

Area

3.29 ef 10.97 a 11.30 a 8.72 b 5.31 cde 6.02 cd 6.09 cd 4.36 cde 6.97 bc 2.58 f

28th August 2018 8.34 cde 14.12 a 11.03 abc 9.51 bcd 9.02 bcd 7.21 de 7.09 de 8.62 cd 4.98 e 5.18 e

24th July 2019 4.58 fg 12.15 ab 12.62 a 10.02 bc 6.37 def 7.24 de 6.98 def 5.48 efg 8.21 cd 2.96 g

Mean 6.52 c 12.41 a 11.65 a 9.41 b 6.90 c 6.82 c 6.74 c 6.15 c 6.79 c 3.74 d

24th July 2018

Volume

4.81 ef 23.58 a 26.29 a 17.58 b 8.46 cde 10.87 cd 10.81 cd 6.77 def 12.81 c 3.04 f

28th August 2018 20.98 bc 36.32 a 28.52 ab 18.85 bc 19.55 bc 13.20 cd 14.24 cd 19.77 bc 7.39 d 8.11 d

24th July 2019 6.87 fg 29.86 ab 33.08 a 23.66 bc 11.87 ef 16.65 de 12.24 ef 8.46 fg 19.31 cd 2.87 g

Mean 10.57 c 29.92 a 29.21 a 20.03 b 13.29 c 13.57 c 12.49 c 11.67 c 13.39 c 5.07 d

24th July 2018

LAI

0.66 d 1.46 a 1.51 a 1.33 ab 0.84 cd 0.93 cd 0.96 cd 0.73 d 1.09 bc 0.60 d

28th August 2018 1.22 bcd 1.57 a 1.34 abc 1.27 abcd 1.19 bcd 0.98 def 1.05 cde 1.17 bcd 0.81 f 0.90 ef

24th July 2019 0.79 ef 1.25 abcd 1.69 a 1.60 ab 1.08 cde 1.08 cde 1.32 abc 0.81 def 1.23 bcd 0.46 f

Mean 0.92 bc 1.44 a 1.51 a 1.39 a 1.04 b 0.99 b 1.08 b 0.91 bc 1.05 b 0.67 c

24th July 2018

fiPARd

0.47 0.63 ab 0.65 a 0.60 abc 0.50 cde 0.51 bcd 0.54 abcd 0.46 de 0.55 abcd 0.41 e

28th August 2018 0.68 ab 0.70 a 0.67 abc 0.64 abcd 0.61 abcd 0.57 cde 0.59 bcde 0.61 bcd 0.51 e 0.54 de

24th July 2019 0.49 de 0.61 abcd 0.68 ab 0.69 a 0.56 cd 0.56 bcd 0.65 abc 0.53 d 0.60 abcd 0.39 e

Mean 0.54 b 0.65 a 0.66 a 0.64 a 0.55 b 0.55 b 0.59 ab 0.53 b 0.55 b 0.45 c

Different letters mean significant differences between rootstocks at p ≤ 0.05 using Tukey’s honest significant difference test.

July 2019 (Figure 6A). These differences in ETa between dates
were more pronounced as crown area increased. The highest ETa
and ETp were observed in Cadaman R© and Garnem R© in the three
dates, followed by INRA GF-677. On the other hand, Rootpac R©

20 was the rootstock with the lowest ETa and ETp. Adesoto and
Rootpac R© R also had low ETa and ETp values. When differences
between dates were atmospherically normalized through the
CWSI, all the data followed the same polynomial regression,
indicating that rootstocks with a low crown area (Rootpac R© 20)
also seemed to be more stressed than those with higher crown
areas (Cadaman R© and Garnem R©) (Figure 6C). Maximum CWSI
values reached ∼0.6 for trees with a crown area of ∼2.5 m−2.
The relationship between averaged ETa and9stem was significant
(Figure 7A), as was the regression between CWSI and 9stem
(Figure 7B). These regressions indicate that trees grafted on the
least vigorous rootstocks (Rootpac R© 20 and Rootpac R© R) were
also those with the lowest 9stem values. Accordingly, these two
rootstocks also had the highest CWSI and lowest ETa rates,
with values ranging from 1.4 to 5.3 mm day−1. Of these two
rootstocks, Rootpac R© 20 had the lowest9stem and ETa.

It can be seen in Figure 8A that kernel yield was positively
linearly related to ETa in both years, although the R2 varied
between them. It can also be seen that kernel yield tended to
decrease as CWSI increased, reaching minimum yields at CWSI
values of around 0.5–0.7 (Figure 8B).

DISCUSSION

The effect of rootstock on tree canopy vigor has been widely
reported through in situ measurements of TSCA, canopy volume
or LAI (Russo et al., 2007; Gullo et al., 2014; Mestre et al.,
2015; Yahmed et al., 2016; Lordan et al., 2019). However, this
study demonstrates the feasibility of using very high-resolution
multispectral airborne imagery to estimate the architectural traits
of the vegetation in an almond rootstock trial and to use them to
estimate ETa.

The results confirm that the best fit to estimate LAI and
fiPARd was through the combination of information derived
from photogrammetry and VIs (Table 4). The highest R2 values
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FIGURE 5 | Differences in stem water potential (9stem) between rootstock and irrigation treatments (I100, I50, I0) for the three dates of image acquisition (24th July
and 28th August 2018 and 24th July 2019). Letters indicate statistically significant differences between rootstock (P < 0.05, Tukey’s HSD test).

FIGURE 6 | Relationships between estimated canopy crown area and (A) actual evapotranspiration (ETa), (B) potential evapotranspiration (ETp) and (C) CWSI,
calculated as 1-ETa/ET0, for the three dates of image acquisition (24th July 2018 and 2019 and 28th August 2018). Shadowed lines indicate the 95% confidence
intervals of the regression models.

with both LAI and fiPARd were obtained when photogrammetric
techniques were used to estimate crown area and canopy
volume. Since the latter depends on canopy height, which
showed an RMSE of 0.57 m (Figure 3), it is possible that any
advance in accuracy when estimating canopy height could also
contribute to improving estimates of LAI and fiPARd. Increasing
the number of images acquired from different viewing angles,
higher overlap, or lower flying altitude in order to describe
the full 3D scene and avoid occlusion effects are some of

the ways that could help to improve canopy height estimates.
Other authors have been able to estimate canopy height with
greater accuracy. For instance, Zarco-Tejada et al. (2014) and
Caruso et al. (2019) obtained RMSE values of 0.22 and 0.35
m, respectively, in olive trees. However, the difference between
these two studies and ours was flight altitude (∼130 m of
difference) and the trajectories taken by the unmanned aerial
vehicle platform which ensured larger image overlaps and point
cloud densities.
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FIGURE 7 | Relationships between stem water potential (9stem) and (A) actual evapotranspiration (ETa), and (B) crop water stress index (CWSI) calculated as
1-ETa/ETp.

FIGURE 8 | Relationships between kernel yield (kg tree−1) and (A) actual evapotranspiration (ETa) and (B) CWSI of the different rootstocks estimated on 24th July
2018 and 2019. Shadowed lines indicate the 95% confidence intervals of the regression models.

The use of the PROSAIL model did not improve the estimates
of LAI and fiPARd in comparison to the multiple regression
analysis, probably because this model was not designed for
sparse canopies with multiple layers, as is the case of almond
orchards (Berger et al., 2018). Until now, PROSAIL has been
mostly used to estimate LAI and fiPAR with multispectral
satellite imagery in non-woody vegetation canopies such as
croplands (Duan et al., 2014; Li et al., 2015) and grasslands
(Darvishzadeh et al., 2008; Casas et al., 2014), as PROSAIL
assumes a homogeneous canopy of randomly placed leaves.
However, the model has barely been used in woody crops in
combination with very high resolution airborne multispectral
imagery. This study also showed that PROSAIL tends to
overestimate LAI (Table 4).

On the other hand, it is well-established that VIs are
strongly influenced by canopy architecture, optical properties,
sun illumination angle, viewing properties and soil background
(Huete, 1988; Guillen-Climent et al., 2012; Xie et al., 2018;

Prudnikova et al., 2019). In addition, saturations at moderate-
to-dense canopies, leaf area distribution, and clumping effect are
three of the most important issues influencing the accuracy of
optical LAI estimates in row crops (Delalieux et al., 2008; Shafian
et al., 2018; Yan et al., 2019). For instance, our study showed that
NDVI, GNDVI and MCARI had low R2 with LAI and fiPARd
on 24th July 2018, probably caused by a soil background effect.
The previous week, and up to 3 days before the flight, a series
of rainfall events occurred at the study site amounting to a total
precipitation value of 20.2 mm. These events resulted in the moist
soil (i.e., “darker”) absorbing more light than other days, mostly
in the visible and NIR bands, and therefore affecting the values
provided by the indices that used these bands. On the other hand,
since most of these parameters are taken into consideration in
the PROSAIL model, estimates of LAI and fiPARd tended to be
better and more consistent over time, although with a systematic
overestimation. The methodology used in this study to obtain
the biophysical variables of the vegetation was the same as that
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developed for the Sentinel-2 toolbox (Weiss and Baret, 2016). In
that case, a database containing the input radiative transfer model
variables was generated first. Then, the corresponding top-of-
canopy reflectance for the eight Sentinel-2 bands were simulated
with the PROSAIL model. In contrast, in our study we used the
six bands derived from the MACAW multispectral sensor. It is
also possible that the use of different and a lower number of bands
slightly affected the estimates of the biophysical variables.

In this study, all the estimates of the structural parameters of
the vegetation indicated that the most dwarfing rootstock was
Rootpac R© 20, followed by Rootpac R© R, Rootpac R© 40, Adesoto,
Ishtara, IRTA 1, and IRTA 2. Garnem R©, Cadaman R©, and INRA
GF-677 provided the highest values for the same structural
traits. These results are in agreement with, for instance, those
reported by Lordan et al. (2019), who evaluated tree canopy
vigor in the same rootstock trial for a longer period and also
identified Garnem R©, Cadaman R© and INRA GF-677 as those with
the greatest tree volume, and Rootpac R© 20 as the most dwarfing
rootstock in the trial. In agreement, Yahmed et al. (2016) also
observed that Garnem R© and Rootpac R© 40 were, respectively the
most and medium vigorous rootstocks and that scions grafted on
Rootpac R© 20 were the most dwarfing.

The observed differences in ETa between dates could be
attributable to changes in atmospheric water demand, plant
response (stomatal closure) due to water stress, or some
phenological effect. In this case study, water stress can be
discarded because 9stem values of the date with the lowest ETa
(28th August 2018) were slightly less negative in comparison to
the other two dates, and because the same behavior was observed
with the estimates of ETp with the S-W model (Figure 6B).
Our hypothesis for the lower ETa values observed for 28th
August 2018 is that these are associated with a lower atmospheric
demand of water, since the midday VPD and daily solar
irradiance (Rs) for that day were slightly lower (VPD = 2.2 KPa
and Rs = 195 W m−2) than the other 2 days (respectively, 2.9 KPa
and 319 W m−2 for 24th July 2018 and 3.6 KPa and 294 W m−2

for 24th July 2019). Accordingly, Tc-Ta values for that day were
also higher. Several studies have published non-water-stressed
baselines (NWSB)for different crops, which consist in relating
Tc-Ta with VPD at midday for well-watered trees (Bellvert
et al., 2016; García-Tejero et al., 2018; Gonzalez-Dugo et al.,
2019; Gutiérrez-Gordillo et al., 2020). These regressions indicate
that Tc-Ta tended to decrease as VPD increased. In addition,
Bellvert et al. (2018) showed that the regression between Tc-Ta
and VPD in California almonds was sensitive to the phenology,
indicating that for a given increase in VPD, early growth stages,
which correspond to vegetative growth (shell expansion and
hardening), have more transpiration cooling than the kernel and
post-kernel filling stages.

Although the amount of water applied in the different
irrigation treatments was the same for all rootstocks, the response
of most of the evaluated parameters varied between rootstocks,
particularly for 9stem where the rootstock x treatment and
date x treatment interactions were significant (Table 5). As
seen in Figure 7, the least vigorous rootstocks (Rootpac R© 20,
Rootpac R© R) had the lowest 9stem and ETa values. However,
Rootpac R© 20 had slightly lowest 9stem than Rootpac R© R.

These rootstocks are characterized by having Prunus cerasifera
(myrobolan) as one of the parents, which may lead to a
slight and delayed “localized” incompatibility between plum-
almond species, as has previously been described in cherry
and peach/plum (Treutter and Feucht, 1991) or almond/plum
(Bernhard and Grasselly, 1959) combinations. This type of
incompatibility is characterized by anatomical irregularities at
the rootstock/scion union interface with breaks in vascular
connections, which, in turn, prevent quick resumption of the
growth of both root and canopy (Errea et al., 2001; Leonardi and
Romano, 2004). It has also been demonstrated that trees grafted
on dwarfing rootstocks such as Rootpac R© 20 and Rootpac R© R
tend to have lower 9stem values, and that this is likely related
to the lower water absorption capability of the root system to
satisfy the transpiration demand of the canopy (Yahmed et al.,
2016). In our case, defoliation and yellowing problems were
also observed in some trees of the I0 treatment. The lower
9stem observed in Rootpac R© 20 could be explained because
this rootstock was obtained by crossing two plum species
(Prunus besseyi× Prunus cerasifera), and therefore probably
displaying a smaller root system, while Rootpac R© R had a higher
compatibility with the scion because at least has a Prunus dulcis
as one of the parents.

In terms of WUE or drought tolerance, several studies have
related canopy vigor and root system with the level of tolerance
(Serra et al., 2014; Zhang et al., 2016). The hypothesis is
that vigorous plants are usually more tolerant due to a bigger
root system, and vice versa. However, a comparison between
rootstocks with statistical differences in canopy vigor is not
always the most appropriate method because both plant water
demand and the amount of water available in the soil per unit
of canopy vigor will differ depending on canopy size and may
therefore lead to inappropriate interpretations of the results. In
this study, in order to explain the differences between rootstocks,
we grouped them according to canopy vigor (mean of canopy
volume) (Table 7), and then analyzed the statistical differences
in the relations between 9stem and ETa within each group by
using data of the three flights. A first group, which contained
Garnem R©, Cadaman R© and INRA GF-677, was characterized
by having the highest ETa rates due to high canopy volume
and probably a longer root system which permitted a higher
water absorption capacity. Concurring with this finding, Black
et al. (2010) described Cadaman R© as a rootstock with a high
root biomass. The ANCOVA analysis showed no significant
differences between rootstocks in the ETa vs. 9stem regressions
of the group 1 (p = 0.721) (Table 8). Despite of this, it seems
that INRA GF-677 had slightly lower 9stem and ETa values and
a higher CWSI. A second group with medium canopy vigor
rootstocks was composed of Rootpac R© 40, Adesoto, IRTA 1, IRTA
2, Ishtara R©, and Rootpac R© R. Rootpac R© R had by some way the
lowest 9stem values, which together with Adesoto and IRTA
1 corresponded with the lowest ETa rates, without significant
differences among them. However, the low 9stem of Rootpac R©

R suggests that this rootstock was acting as if it had a lower
hydraulic conductivity or root biomass in comparison to the
others which caused a fall in 9stem. The ANCOVA analysis of
group 2 only showed significant differences between rootstock
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TABLE 7 | Mean of the variables 9stem, ETa, and CWSI, and slope and intercept of the regression ETa vs. 9stem for each rootstock grouped on the basis of the analysis
of variance of canopy volume.

Rootstock Group by canopy volume 9stem ETa CWSI Slope Intercept

Garnem R© 1 −0.95 ± 0.07a 5.99a 0.10b 10.13 15.46

Cadaman R© 1 −0.99 ± 0.07a 5.55ab 0.11b 5.59 11.07

INRA GF-677 1 −1.08 ± 0.12 b 5.05b 0.18a 2.66 7.92

Rootpac R© 40 2 −0.99 ± 0.09 a 4.32a 0.22c −0.01 4.43

Adetoso 2 −1.07 ± 0.11 ab 3.07b 0.33ab 3.91 7.12

IRTA 1 2 −1.09 ± 0.15 ab 3.66ab 0.29b 2.99 6.93

IRTA 2 2 −1.11 ± 0.07 b 4.04a 0.22c 0.34 4.35

Ishtara R© 2 −1.16 ± 0.17 b 4.35a 0.22c 0.84 5.33

Rootpac R© R 2 −1.52 ± 0.18 c 3.12b− 0.34a 0.67 4.29

Rootpac R© 20 3 −1.63 ± 0.24 − 2.12 − 0.49 − 0.66 3.14

Different letters mean significant differences within each group at p ≤ 0.05 using Tukey’s honest significant difference test. – means that no statistical analysis was
performed. *Corresponds to significant differences at p ≤ 0.05

TABLE 8 | Analysis of covariance (ANCOVA) of the relationships between ETa and 9stem shown in Table 7 for rootstocks of groups 1 and 2.

Source g.l Sum squares Mean square F Prob > F HSD Tukey

Group 1 Model 5 28.71 5.74 4.13 0.003* Garnem R© 5.56 a

Error 68 94.57 1.39 Cadaman R© 5.37 a

Total 73 123.28 INRA GF-677 5.22 a

9stem 1 15.99 11.49 0.001*

Rootstock 2 0.91 0.32 0.721

Rootstock * 9stem 2 3.84 1.38 0.257

Group 2 Model 11 42.52 3.86 5.46 <.0001* Rootpac R© 40 3.99 ab

Error 129 91.39 0.71 Adesoto 2.87 c

Total 140 133.92 IRTA 1 3.49 bc

9stem 1 3.26 4.61 0.034* IRTA 2 3.97 ab

Rootstock 5 21.73 6.13 <.0001* Ishtara R© 4.22 a

Rootstock * 9stem 5 3.18 0.89 0.495 Rootpac R© R 3.62 bc

Different letters mean significant differences between rootstocks at p ≤ 0.05 using Tukey’s honest significant difference test.

FIGURE 9 | Relationships between kernel yield/ETa (kg tree−1 / mm of water evapotranspired) and stem water potential (9stem) for (A) 24th July 2018, and (B) 24th
July 2019.

in the intercept (p = 0.034) (Table 8). Therefore, as there were
not significant differences between slopes, we cannot affirm
that these rootstocks have differences in the root hydraulic

resistance (Rroot). In order to improve our understanding of
the response of rootstocks to water stress, future studies should
be able to determine the hydraulic resistances of different
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rootstocks through measurements of water potential gradients
and transpiration (López-Bernal et al., 2015). Differences in the
intercept could be explained either due to still small differences
in the canopy volume between rootstocks of group 2 or due
to a physiological response related with an anisohydric or
isohydric behavior. In fact, the rootstock with the significantly
lower intercept (Adesoto) was the one with the lowest crown
area (Figure 6). The last group consisted solely of Rootpac R©

20, which had the lowest 9stem and ETa values. Opazo et al.
(2020) compared Rootpac R© 20 and Rootpac R© 40 and reported
that plants grafted on the former had lower transpiration rates,
less root biomass and proved to be less tolerant to drought
than the latter. Results obtained in our study reinforce these
observations (Table 7).

The establishment of the relationship between crop yield
and the consumptive use of water (the so-called production
function) in row crops is of particular interest, but at the
same time is not easy to obtain due to the need for long-
term studies and the difficulty in assessing consumptive use
(Goldhamer and Fereres, 2017). Although many studies have
demonstrated that almonds are one of the species able to
maintain high kernel yield under deficit irrigation conditions
(Torrecillas et al., 1989; Girona et al., 2005; Egea et al., 2010),
other studies have reported that yield is dependent on canopy
PAR light interception, and therefore this will increase with
fiPARd (Jin et al., 2020). In our study, the rootstocks with the
highest canopy volumes and fiPARd (Cadaman R© and Garnem R©)
had the highest ETa and yields, while the lowest yields were
observed in those which had the lowest ETa (Rootpac R© 20,
followed by Rootpac R© 40 and Rootpac R© R) (Figure 8A). It should
also be noted that the R2 of both the yield-ETa and yield-
CWSI regressions were higher in 2018 than in 2019, because
the former had higher yield while the latter coincided with an
alternate bearing year.

This study also shows the daily water production function
as yield per unit of water evapotranspired, using data from
24th July 2018 to 24th July 2019. Figure 9 shows that water
productivity (kernel yield/mm water evapotranspired) differed
between rootstocks and that the regression with 9stem tended to
decrease as water stress increased. This regression was significant
for 2018 (Figure 9A) but not for 2019 (Figure 9B). The
rootstocks in the previously mentioned first group (Garnem R©

and Cadaman R©) showed the highest water productivity in
both years, together with INRA GF-677, IRTA 1, IRTA 2,
and Rootpac R© 40. Although Adesoto and Ishtara R© had similar
high 9stem values, water productivity was slightly lower.
Interestingly, despite the negative 9stem of Rootpac R© R, water
productivity values were similar to those obtained in the
rootstocks in group 1. This is attributable to the significantly
higher yield of Rootpac R© R, despite having 9stem and ETa values
similar to Rootpac R© 20.

CONCLUSION

This study has demonstrated, for the first time, the feasibility
of using a surface energy balance model for high-throughput

phenotyping of crop evapotranspiration in an almond rootstock
collection. The analysis allowed the quantification of the
following almond traits that are of paramount importance
in rootstock phenotyping: canopy tree height, crown area,
canopy volume, LAI, fiPARd, actual and potential crop
evapotranspiration, and the crop water stress index. The
LAI and fiPARd were, respectively, estimated with an R2 of 0.60
and 0.56 through a multiple linear regression equation, which
included estimates of both parameters obtained from spectral
vegetation indices and estimates of crown area and canopy
volume through photogrammetry techniques. Cadaman R© and
Garnem R© were identified as the rootstocks with the highest
canopy vigor as well as the highest ETa. These two rootstocks
were characterized by maintaining high 9stem values despite
reducing the amount of irrigation water applied. In contrast,
Rootpac R© 20 and Rootpac R© R had the lowest canopy vigor and
ETa, and also the lowest 9stem in the I100 treatment suggesting
that this was due to a localized incompatibility between plum-
almond species, differences in the root system and/or low
hydraulic conductivity. Other rootstocks had medium canopy
vigor. Of these, Adesoto and IRTA 1 had the lowest ETa values
and Rootpac R© 40 and Ishtara the highest. Yield was linearly
related with ETa. Cadaman R© and Garnem R© also had the highest
water productivity, and Rootpac R© 20 and Rootpac R© R the lowest.
However, the water productivity of Rootpac R© R was significantly
higher than that of Rootpac R© 20.

The use of energy balance models such as the TSEB using
very high-resolution imagery opens the possibility to efficiently
evaluate the WUE of a crop in many other different rootstock
collections or varieties located in different environments.
This will improve the manner in which field phenotyping
has been applied until now and will help crop breeders
to better understand and identify the rootstocks/varieties
best adapted to drought. In addition, since the TSEB
allows the partitioning of plant transpiration and surface
evaporation components, future studies will focus on using
transpiration instead of ETa, and together with measurements
of water potential gradients, to determine differences in root
hydraulic resistances.
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Determining the performance of white clover cultivars under drought conditions is critical
in dry climates. However, comparing the differences in cultivar performance requires
equivalent soil water content for all plants, to reduce the water deficit threshold eliciting
stomatal closure. In this study, the objective was to compare the rate of stomatal closure
in eighty white clover cultivars in response to soil drying. Two glasshouse experiments
were conducted, and the daily transpiration rate was measured by weighing each
pot. The transpiration rate of the drought-stressed plants were normalized against the
control plants to minimize effects from transpiration fluctuations and was recorded as the
normalized transpiration rate (NTR). The daily soil water content was expressed as the
fraction of transpirable soil water (FTSW). The FTSW threshold (FTSWc) was estimated
after which the NTR decreases linearly. The FTSWc marks the critical point where the
stomata start to close, and transpiration decreases linearly. The significant difference
(p < 0.05) between the 10 cultivars with the highest and lowest FTSWc demonstrates
the cultivars would perform better in short- or long-term droughts.

Keywords: transpiration, normalized transpiration rate, fraction of transpirable soil water, white clover, drought
tolerance, abiotic stress tolerance

INTRODUCTION

White clover is the most important pastoral legume in temperate regions of the world and is
usually grown in companion with ryegrass (Caradus et al., 1989). The pasture mix of ryegrass
and white clover is common in a variety of grazing systems, including sheep and beef, deer, and
dairy. Globally, white clover is an attractive plant to have in pastoral systems due to the nitrogen
fixation ability and the resulting role in sustainable farming systems. White clover is economically
important to New Zealand and fixes approximately 1.57 million tons of nitrogen annually (Caradus
et al., 1996). New Zealand has the highest export share of white clover globally (57.5%), exporting
approximately 4500 tons of white clover seed annually (Rattray, 2005). In a more recent report by
Nixon (2016), the estimated direct and dependent industry GDP total contribution from white and
red clover was ∼$2.3billion. The domestic impact was ∼$1.5million and the export impact was

Abbreviations: NTR, Normalized transpiration rate; FTSW, Fraction of transpirable soil water; VPD, Vapor pressure deficit;
ISH, Interspecific hybrid.
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∼$6.3million. Pyke et al. (2004) used data from Nas (2003) and
estimated that in 2002, New Zealand had a 38% share of the global
white clover seed production market. Hampton et al. (2012)
stated in 2010 and 2011, 3108, and 3745 tons of white clover seed
were produced in New Zealand.

Globally, drought stress is one of the major limiting factors
in white clover performance in pastoral systems. Climate
change predictions show that there will be a global increase
in temperature of 4.5–18◦C over the next century; increasing
drought periods globally (Fischlin et al., 2007; IPCC, 2013). With
the expansion of farming into arid geographic areas, climate
change and increased water restrictions, there has been more
urgency to breed and utilize cultivars that can perform under
drought stress (Jahufer et al., 2013).

There have been several studies investigating the response of
white clover to drought conditions (Thomas, 1984; Annicchiarico
and Piano, 2004; Bermejo et al., 2006; Li et al., 2013). Thomas
(1984) showed that the competitiveness of white clover in a sward
is reduced significantly in drought-stressed environments which
impacts severely on farm production.

Recurring droughts in New Zealand have increased farm
management challenges for farmers. There have been many
studies aimed at increasing performance in drought through
agronomic practices (van den Bosch et al., 1993; Widdup
and Barrett, 2011). Although there has been little success in
breeding drought tolerance white clover cultivars, differing
grazing management schemes can aid in protecting the plants
under drought conditions (Brock, 1988).

White clover cultivars need to be exposed to the same drought
condition to make accurate assumptions on differences of
phenotypic performance in drought (Tuberosa, 2012). In a field
trial environment, phenotypic differences in performance can be
due to differences in water regimes. Other measures of drought
tolerance are needed to accurately determine the performance of
plants in drought conditions (Sinclair and Ludlow, 1986; Weisz
et al., 1994; Ray and Sinclair, 1997, 1998).

Selecting genotypes that are conservative in water use is
a selection strategy to increase drought tolerance (Ray and
Sinclair, 1997, 1998; Giday et al., 2013; Fanourakis et al.,
2015). Traits such as normalized transpiration rate (NTR) and
fraction of transpirable soil water (FTSW) can be used to
determine cultivars or families that perform better in drought-
like conditions (Lecoeur and Sinclair, 1996; Ray and Sinclair,
1997, 1998; Miller, 2000). Short-term drought is defined as
being less than 6 months, while long-term drought is defined as
longer than 6 months (Dziegielewski, 2003). Transpiration rate
is controlled by stomatal closure (Ray and Sinclair, 1997, 1998).
Genotypes that are more sensitive to drought will close their
stomata earlier to preserve soil water content and may perform
better in long-period drought conditions as water-conserving
efforts occur earlier. Genotypes that have late stomatal closure
may be better suited for short-period drought conditions.

Currently, there is limited published literature on calculating
the NTR and FTSW critical threshold (FTSWc) of white
clover cultivars in drying soil. This study aims to build on
previous reports of FTSWc in plant species (Sinclair and
Ludlow, 1986; Weisz et al., 1994; Lecoeur and Sinclair, 1996;

Ray and Sinclair, 1998; Gholipoor et al., 2013). We used a panel
of 80 white clover cultivars to determine the FTSWc, marking
permanent stomatal closure and the start of senescence.

METHODOLOGY

Germplasm
The 80 cultivars used in this study were the same as in Hoyos-
Villegas et al. (2019) and were released from 1920 to 2010
by both public and private breeding programs. The cultivars
were from across New Zealand, Australia, United Kingdom,
and the United States of America. The cultivars ranged in leaf
size from small (N = 1), to medium (N = 53), and to large
(N = 26) (Table 1).

NTR and FTSW Trial Design
Two glasshouse experiments were conducted at AgResearch,
Lincoln, New Zealand in the summer months (December–
February). The data was from both trials were combined
and analyzed together. The first experiment ran for 14 days
(09/12/2016–22/12/2016) after planting. Weather and glasshouse
data for that period showed that the average temperature
was 22.39◦C, the average relative humidity was 57.00% and
the average total daily solar radiation was 24.39MJ/m2. The
second experiment ran for 19 days (02/02/2017–20/02/2017)
after planting. The average temperature was 22.79◦C, the average
relative humidity was 56.51% and the average total daily solar
radiation was 19.82 MJ/m2. The average vapor pressure deficits
for each experiment are reported in Figures 1A,B. The weather
station was not equipped to measure sunshine hours.

The 80 cultivars were exposed to two treatments, irrigated
(control) and drought, and replicated twice (technical replicates)
in a randomized complete block design. Four stolons (biological
replicates) were potted individually in potting mix in 4L pots
and grown in a glasshouse with the optimum temperature of
20–25◦C maintained. The pots were arranged in a 4 × 80 pot
arrangement across 8 glasshouse tables. The plant stolons were
cut and transplanted from trays and were young plants. Stolons
from mother plants were cut after 3 weeks of growth. Vegetative
growth is the primary way that white clover survives under
natural conditions after it loses its taproot in the first year. We
utilized stolons to emulate growth after the second year of growth
under field conditions. The irrigated pots were watered with the
exact amount of water that had transpired. Ten bare pots were
used to measure water loss through evaporation. The pots were
watered to container capacity and then left to drain and sealed on
the bottom with duct tape. The saturated weight of each pot was
recorded. Daily measurements of soil water content, measured
as the weight of each pot, and the amount of water transpired,
measured as the difference in pot weight, were recorded. The
drought treatment ceased once the cultivars had died.

Dry weight was measured by the harvesting the roots and
shoots together and weighed as total plant weight. The samples
were dried at 80◦C for 12 h and weighed (g) until a constant
weight was reached. The leaf size used was the commercially
stated leaf size associated with the cultivar.
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TABLE 1 | The cultivar names, the decade of release, countries of release, registered leaf sizes, dry weights of the drought and irrigated treatments and the critical
fraction of transpirable soil water (FTSWc) threshold of eighty white clover cultivars.

Cultivar Decade of release Country of origin Leaf size Dry weight drought Dry weight irrigated FTSWc

LSD(0.05) 1.99 1.99 2.02

Dutch white 1920 Netherlands Medium 13.58 17.75 0.23

Irrigation 1930 Australia Medium 18.63 20.78 /

Kent White 1930 UK Small 16.85 26.28 0.17

Louisiana 1930 USA Medium 17.78 29.08 0.25

S 100 1930 UK Medium 18.73 20.70 0.35

Kersey 1940 UK Medium 21.55 28.68 /

S 184 1940 UK Medium 17.18 23.05 0.28

California Ladino 1950 USA Large 15.65 23.18 /

Grasslands Huia 1950 NZ Medium 17.45 25.95 0.36

Ladino Gitante Lodigiano 1950 USA Large 23.33 27.40 /

Louisiana S1 1950 USA Medium 20.53 26.25 /

Pilgrim 1950 USA Medium 17.35 29.25 0.28

Sonja 1950 Sweden Large 18.70 23.30 0.33

Tribla 1950 Belgium Medium 13.70 21.38 0.42

Clarence 1960 Australia Medium 15.88 19.83 0.22

Crau 1960 France Medium 16.43 22.38 /

Haifa 1960 Israel Medium 14.95 22.35 0.38

Regal 1960 USA Large 13.80 20.23 /

Donna 1970 UK Medium 13.75 19.78 0.37

Lune de mai 1970 France Large 17.28 24.23 0.21

Milkanova 1970 Denmark Medium 17.18 24.13 0.26

Olwen 1970 UK Large 15.08 21.88 /

Pitau 1970 NZ Medium 14.00 19.20 0.48

Radi 1970 Poland Large 15.85 24.23 0.23

Sacramento 1970 Poland Large 15.85 21.48 0.49

Siral 1970 Australia Medium 15.25 18.35 /

Alice 1980 UK Medium 14.18 19.38 0.36

Aran 1980 Ireland Large 13.30 22.78 /

Kopu 1980 NZ Large 17.05 21.93 /

Lirepa 1980 Germany Medium 17.65 22.83 0.34

Menna 1980 UK Medium 12.23 21.90 0.39

Merwi 1980 Belgium Medium 15.35 22.33 0.37

Osceola 1980 USA Medium 12.93 17.20 0.42

Ross 1980 Ireland Large 16.75 24.95 0.40

AberHerald 1990 UK Medium 14.13 22.25 0.12

Challenge 1990 NZ Medium 14.40 21.40 0.27

Crescendo Ladino 1990 USA Large 12.88 19.75 0.32

Dacia 1990 Romania Large 16.53 26.03 0.28

Jumbo 1990 USA Medium 18.80 24.00 0.20

Kopu II 1990 NZ Large 14.33 20.80 0.34

Le Bons 1990 NZ Medium 16.10 18.80 0.24

Prop 1990 NZ Medium 14.20 23.00 0.34

Regal Graze 1990 USA Large 18.15 28.40 /

Reisling 1990 Netherlands Medium 15.75 22.75 0.30

Sustain 1990 NZ Medium 16.05 17.50 0.32

Triffid 1990 France Large 16.23 24.30 0.30

Waverley 1990 Australia Large 12.93 22.53 /

AberConcord 2000 UK Medium 15.95 23.13 0.20

AberDance 2000 UK Medium 17.88 22.65 0.35

AberNormous 2000 UK Large 16.78 21.58 0.26

(Continued)
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TABLE 1 | Continued

Cultivar Decade of release Country of origin Leaf size Dry weight drought Dry weight irrigated FTSWc

Aquiles 2000 Uruguay Medium 20.50 24.40 0.13

Artigas 2000 Uruguay Large 16.10 22.90 /

Barblanca 2000 France Medium 15.75 25.08 0.27

Bounty 2000 NZ Medium 12.53 20.43 0.47

Chieftain 2000 Ireland Medium 17.25 21.40 0.17

Crusader 2000 France Medium 15.60 16.40 /

Emerald 2000 NZ Medium 15.98 20.78 0.33

Goliath 2000 Uruguay Large 17.95 26.58 0.17

Klondike 2000 Denmark Medium 13.95 25.33 /

Kotare 2000 NZ Large 14.65 19.45 0.42

Quest 2000 NZ Medium 13.95 20.95 0.33

Saracen 2000 Australia Medium 15.28 24.20 0.27

Super Haifa 2000 Australia Medium 15.93 21.75 0.24

Super Ladino 2000 Australia Large 17.10 22.98 0.18

Tasman 2000 NE Medium 13.48 21.80 0.30

Tillman II 2000 USA Large 16.80 23.15 0.28

Tribute 2000 NZ Medium 16.48 21.05 0.52

Trophy 2000 Australia Medium 10.65 11.23 /

Vysocan 2000 Czech Large 15.33 21.93 /

ABM21252 2010 NZ Large 17.33 24.25 0.18

Calimero 2010 USA Medium 17.93 22.50 /

Dairy B GC276 2010 Australia Medium 16.18 21.58 /

Dairy D 2010 NZ Medium 21.53 26.08 0.18

Elite Breeding A 2010 Australia Medium 18.05 24.73 0.24

Kakariki 2010 NZ Large 18.08 25.93 /

Katy 2010 USA Medium 18.70 21.28 0.24

Legacy 2010 NZ Large 18.15 27.98 0.29

Mainstay 2010 NZ Medium 18.40 26.95 0.29

Quartz 2010 NZ Medium 16.53 23.58 0.24

Weka 2010 NZ Medium 18.75 25.98 0.18

LSD0.05 is presented for the dry weights of the irrigated and drought cultivars and the FTSWc. The “/” denotes that the FTSW threshold was unable to be calculated for
the cultivar because of the irregularities in the data for curve generation. Abbreviations: NZ, New Zealand; UK, United Kingdom; USA, United States of America.

Calculations
Vapor pressure deficit (VPD) was calculated using the formula in
Conaty et al. (2014):

VPD = es − ea

where VPD is the difference between ambient water vapor (ea)
and the saturated vapor pressure (es) at the same temperature.
The air temperature (Ta in ◦C) and relative humidity (RH in %)
where:

es = 0.6108e
(

17.27Ta

Ta + 237.3

)

ea =

(
RH
100

)
es

The transpiration data were analyzed by the methodology
described in Ray and Sinclair (1997).

The transpiration rate (TR) was calculated using the formula:

TR =
Weight of drought pot
Weight of control pot

where the soil water content and amount of water transpired were
normalized against the control pots.

The NTR was calculated using the formula:

NTR =
TR

Day 3 and 5 average TR

The transpiration values were normalized against the days 3
and 5 average TR to minimize the effects of fluctuations in
transpiration. The TR on days 3 and 5 are considered to be under
well-watered conditions (Sinclair and Ludlow, 1986), allowing
the plants to have an average NTR near-equal to one when
sufficient soil water was available.

FTSW was calculated using the formula:

Daily FTSW =
(Daily pot weight − Final pot weight)
(Initial pot weight − Final pot weight)

where the initial and final pot weights were the first and last
day of the trials.

The relationship between the transpiration value and FTSW of
each cultivar was explained by using non-linear regression to fit
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FIGURE 1 | The relative humidity (%), mean temperature (◦C), daily solar radiation (MJ/m2) and vapor pressure deficit (kPa) for the (A) 14 days of the first experiment
(09/12/2016–22/12/2016) and (B) 19 days of the second experiment (02/02/2017–20/02/2017).

the equation:

NTR =
1

[1+ A × exp(B × FTSW)]

Comparisons of the curve generated for each cultivar were based
on 95% confidence intervals of coefficients A and B. A and B
were empiric parameters generated through curve fitting. Plateau
regression was used to determine the FTSWc. The curve predicts
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that NTR will remain near 1 up until a critical point, after which
NTR decreases. The FTSWc is estimated, where NTR decreases
linearly after that. The FTSWc marks the critical point where the
stomata start to close, and transpiration decreases linearly.

Statistical Analysis
ANOVA in GenStat (VSN-International, 2019) examined the
main effects of water and cultivar, as well as their interaction.
Before ANOVA, data were tested for homogeneity of variances
and no transformation of the data was required.

A linear spline model was used to analyze the trend of the
FTSWc over decades. Since the average trend showed a linear
increase from 1920 up to 1960, then, changed into a decrease after
1960, the trend pattern was modeled as a linear spline model with
a single knot at 1965. The linear spline trend model was estimated
in regression by the formula:

Inflection point = a+ b × Time+ c x Time_2

where Time is a variable representing the decades in order,
Time_2 is a variable also representing decades in non-sequential
order, and a, b and c are parameters to be estimated. In this
formula, the increasing trend up to 1960 was estimated as a
positive b value—i.e., b = increasing rate per decade till 1960,
while the decreasing trend after 1960 was estimated as the sum of
b+ c, which should be a negative value—i.e., the absolute value of
b + c = decreasing rate per decade after 1960. In addition, since
the value of c indicated the difference of two trend slopes (one
till 1960 and the other after 1960), the significance level (p-value)
associated with c indicated if the change of the trend from the
increase to the decrease was statistically significant.

Duncans lettering was used to indicate groups that are
significantly different at the 5% significance level (Duncan, 1955).

RESULTS

Dry Weights
The average total plant dry weight for drought and irrigated
plants was 16.27 and 22.70 g, respectively. The plant total
dry matter weights ranged from 11.23 to 29.25 g for control
plants and 10.65 g and 23.32 for drought plants (Table 1).
There was a significant overall difference (p < 0.01) in the dry
weights of the cultivars when averaged across the two water
treatments (Figures 2A,B; Duncan, 1955). The average dry
weight of medium-leaved cultivars was highest between 1930
and 1950. The medium-leaved cultivars released in the 1920s
were significantly different from all other groups for drought
and irrigated plant dry weight (Supplementary Tables 1, 2).
The large-leaved cultivars released in the 1950s and 1960s were
significantly different from all other groups for drought plant
dry weight (Supplementary Table 1). The cultivar and drought
interaction was not significant.

Shoot to root ratio was unable to be calculated as only total
plant weight was recorded. However, in future experiments the
effect of drought on shoot to root ratio would be beneficial.

Transpiration Rate, NTR, and FTSW
No significant difference (P > 0.05) in the average transpiration
rate data between leaf size was found. There was a significant
difference (P < 0.05) in the average transpiration rate data
between the decade of cultivar release. Over the decades, the
average NTR decreased from 1920 (0.84) to 1940 (0.78) before
increasing to the peak in the 1960s (0.92) (Figure 3A). There
was a decrease to 1980 (0.82), followed by a slight increase in the
1990s (0.84). The average NTR decreased in 2000 (0.81) before an
increase in 2010 (0.83).

A consistent relationship was found between NTR and FTSW
values for each cultivar, as illustrated in Figure 4 by the cultivars
Tribute and Chieftain (Figures 4A,B). On average among all
cultivars, the NTR value was equivalent to well-watered plants
until the FTSWc reached 0.29. The NTR value decreased linearly
to 0 below an FTSW value of 0.29. Generally, there was no
decrease in NTR until FTSW reached 0.7. The average number
of days until the end of transpiration for the NTR was 9.95 and
14.48 for the FTSW. The FTSW values ranged from 0.11 to 0.50,
with an average of 0.29.

Stomatal Closure
Plateau regression was used to determine the FTSW value where
the stomata permanently closed. The average FTSWc across the
decades had an increasing trend from 1920 (0.23) to 1960 (0.38)
(Figure 2B). There was a slight decrease in the 1970s (0.34)
before it increased back to 0.38 in the 1980s. From the 1980s to
2010, there is a general decreasing trend until 2010 (0.23). The
trend in the decade of release and FTSWc had an r2-value of
0.81. The P-value of 0.016 associated with parameter b indicated
that the FTSWc value statistically significantly increased on
average at a rate of 0.0329 (with a standard error of 0.013) per
decade until 1960 (Supplementary Table 3). Then, the P-value of
0.002 associated with parameter c indicated that the increasing
trend changed statistically significantly downwards after 1960.
The P-value of 0.001 associated with the sum of parameters
b + c, indicated that the FTSWc value statistically significantly
decreased on average at a rate of 0.0307 (with standard error of
0.0089) per decade after 1960.

There was a significant (P < 0.001) difference between the
10 cultivars with the highest and lowest FTSWc (Figure 5).
The five cultivars with the lowest FTSW were AberHerald
(0.12), Aquiles (0.13), Kent White (0.17), Goliath (0.17), and
Chieftain (0.17). The five cultivars with the highest FTSW were
Kotare (0.44), Bounty (0.47), Pitau (0.48), Sacramento (0.49),
and Tribute (0.52).

DISCUSSION

FTSW Threshold
The objective of this study was to evaluate the response
of 80 white cultivars to drying soil. The results of this
experiment are similar to previous reports (Muchow and
Sinclair, 1991). The transpiration rate in plant species has
shown to be unaffected by drying soil until the FTSWc
decreases to between approximately 0.25 and 0.35 (Ritchie, 1973;
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FIGURE 2 | (A) The dry weights and transpiration rates for drought and irrigated plants for eighty white clover cultivars per decade of release. (B) The average water
use efficiency (WUE) of drought and irrigated plants for eighty white clover cultivars per decade of release expressed as gram of dry matter per gram of water (g DM
per g H20−1). The error bars are the standard error of the means. All data was averaged across the two biological replicates.
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FIGURE 3 | The average normalized transpiration rate (A) and critical fraction of transpirable soil water threshold (FTSWc) (B) per decade of release for eighty white
clover cultivars. The error bars are the standard error of the means.

Meyer and Green, 1981; Sinclair and Ludlow, 1986; Rosenthal
et al., 1987; Lecoeur and Sinclair, 1996; Ray and Sinclair,
1997, 1998; Miller, 2000; Gholipoor et al., 2013). The
dependency of NTR and FTSW is shown through
similar patterns of the NTR-FTSW relationship. The
fact that the average FTSW in 1920 was similar to the
average FTSW in 2010 suggests that breeding efforts
have not implicated the relationship. Regardless of the
decade of the release of the cultivar, the response to
drought is similar.

White clover breeding in the 1900–1950s is documented
most thoroughly in New Zealand compared to Europe and
the United States (Zeven, 1991). The large majority of the

understanding of white clover genetics and diversity and the
effect of selection techniques began in the mid-1960s and
onwards (Williams, 1987; Williams et al., 2007). Hoyos-Villegas
et al. (2019) showed that breeding progress of white clover
cultivars could be divided into two eras; pre- and post-
1965. There were significant increases in white clover sward
content and dry matter yield after 1965, but not pre-1965. The
results in this study were consistent with the results found
by Hoyos-Villegas et al. (2019) as the significant increase and
decrease of FTSWc could be divided into the same two eras;
pre- and-post 1965.

Prior to 1965, the breeding decisions for white clover breeding
programs were based on increasing the performance of ecotypes
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FIGURE 4 | The average daily normalized transpiration rate (NTR) response to the fraction of transpirable soil water (FTSW) of two white clover cultivars, (A) Tribute,
released in 2000, and (B) Chieftain, released in 2000, that show contrasting FTSWc. The FTSWc where NTR begins to decrease are shown.

and existing cultivars, and simple phenotypic selection. The
breeding programs and trials were performed across multiple
regions and trial sites, and populations were selected for broad
adaptation across a range of farming systems (Williams et al.,
2007). The breeding programs relied on the variation that was
present within countries and local environments, as there was
little germplasm exchange between countries. Cultivars bred
post-1965 utilized foreign germplasm and selection techniques
such as recurrent phenotypic selection and wide hybridization
(Ellis and Young, 1967; Williams, 2014). In the 1980s in
New Zealand, a large and stable clover seed export market

had been established. The cultivars that were exported were
bred through a variety of techniques. Local ecotypes and
local populations were utilized for adaptation to the target
environment, and elite breeding populations were incorporated
for a range of desirable traits. The populations were combined
and evaluated through phenotypic selection methods (Caradus
and Christie, 1998). The introduction of mixed swards to evaluate
populations and grazing animals as a selection pressure occurred
after 1965 (Woodfield and Caradus, 1994). It is possible that
the breeding objectives of production-based traits took priority
and tied with the intensification of agriculture, reduced the
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FIGURE 5 | The five highest and five lowest fraction of transpirable soil water thresholds (FTSWc) for eighty white clover cultivars. The cultivars with the highest
FTSWc (Kotare, Bounty, Pitau, Sacramento, and Tribute) are denoted in blue, while the cultivars with the lowest FTSW threshold (AberHerald, Aquiles, Kent White,
Goliath, and Chieftain) are denoted in orange.

drought tolerance of germplasm. Understanding the history of
white clover breeding will inform future breeding decisions and
increase efficiency of germplasm utilization.

Globally, germplasm exchange increased to widen the genetic
base of populations in the later 1900s. Egan et al. (2019a,b)
showed that in white and red clover, the introduction of foreign
germplasm into the MFGC peaked in the 1970s and 1980s. By
the 1980s, large-scale multi-country breeding programs were
established (Williams et al., 2007). It is estimated that exotic
germplasm used since the mid-1960s has contributed∼$1 billion
annually to the pastoral agricultural exports (Lancashire, 2006).
The characterization of the germplasm and new methods of
utilizing the foreign germplasm could be expected to increase the
performance of white clover germplasm (Williams et al., 2007;
Egan et al., 2019a).

However, although foreign germplasm has been utilized
effectively worldwide (Rumball and Armstrong, 1974), the
world checklists of white clover cultivars show that the large
majority of the cultivars with good tolerance to drought and
heat were released before 1965 (Caradus, 1986; Caradus and
Woodfield, 1997). The rankings could suggest that locally
adapted germplasm has outperformed foreign germplasm for
drought tolerance. Conversely, germplasm collected from the
Mediterranean has been used in breeding programs to produce
cultivars with increased winter-growth activity (Cooper et al.,
1997; Woodfield et al., 2001; Ayres et al., 2007).

Throughout the decades of breeding, different breeding goals
have been the focus of breeding programs. Caradus et al. (1989)
summarized the breeding goals for each decade of white clover
breeding in New Zealand. The early programs focussed on
advancing ecotypes and existing cultivars. In comparison, the
later breeding programs focussed on whole plant production
and the integration of different farm and grazing management
practices. The only decade to focus specifically on physiological

and morphological responses to environmental changes was the
1950s, where it is likely that drought tolerance was integrated
into cultivars released. A focal breeding target in the 1970s was
on the productivity. The lack of statistical significance difference
between the average FTSW and the leaf size of cultivars suggests
that all cultivars perform similarly under drought conditions.
However, these results suggest that certain cultivars may be
better utilized in certain environments and farming systems,
i.e., short- and long-term droughts. Although the differences
between the cultivars are not deemed statistically significant, the
implications of a small difference in the NTR-FTSW relationship
and FTSWc can be important knowledge for field conditions.
Similarly, Barbour et al. (1996) assessed the water use efficiency
of ten white clover cultivars under moisture stress and found
that there was there were no significant differences between the
cultivars. Although statistical significance was not found, the
results are biologically relevant and could be utilized in different
farming environments.

Understanding the relationship between drought tolerance
and persistence will be beneficial for further development
of cultivars (Sanderson et al., 2003). Persistence is defined
as the maintenance of long-term agronomic yield and is
a function of stolon growth and density (Williams, 1987;
Annicchiarico and Piano, 2004). Drought is one of the main
persistence-limiting traits (Bouton, 2012). Drought conditions
limit white clover stolon branching and rooting (Chapman,
1983), and higher stolon density is often associated with superior
water conservation (Collins, 1998). The success of a forage
cultivar is largely dependent on the ability to survive summer
droughts and retain productivity (Annicchiarico et al., 2011;
Pecetti et al., 2011). Drought tolerance and stolon density can
increase persistence. Hutchinson et al. (1995) carried out a
30 year study of environmental factors affecting the persistence
of white clover and found that drought stress in late summer was
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the most critical limiting factor. Belaygue et al. (1996) saw an 80%
decrease in stolon density when rainfall decreased by 30%. In
orchardgrass, Saeidnia et al. (2018) noted that drought-tolerant
genotypes had high persistence and Saeidnia et al. (2016) showed
that drought conditions reduced forage yield and persistence.

Traditional breeding methods, such as phenotypic selection,
have been the most common in white clover breeding programs
(Hoyos-Villegas et al., 2018). Selecting for deeper and more
extensive rooting systems is a common breeding strategy.
However, the correlation between root depth and drought
tolerance remains unclear. The results from studies which
analyzed the association of rooting depth and drought tolerance
are mixed. Caradus (1981) reported that germplasm with
larger leaf size and rooting system outperformed germplasm
with smaller root systems. Large-leaved cultivars are often
characterized by low stolon density, compared to small-leaved
cultivars which have high stolon density (Widdup and Barrett,
2011). However, Barbour et al. (1996) found no significant
difference between the market class of the cultivar and the
performance under drought conditions. Selecting for a deeper
root system is convoluted by the rooting pattern of white clover.
A taproot is present for the early life of the plant (12–18
months) and afterward is replaced with a shallow nodal root
system (Pederson, 1989). Caradus and Woodfield (1986) found
that the cultivar with the highest proportion of root to total
plant weight did not have a large proportion of taproot to total
root weight, suggesting that some nodal roots were more “tap
rooted.” Annicchiarico and Piano (2004) proposed an alternative
in selecting for greater rooting systems by selecting for thicker
stolons and found that the plants with thicker stolons had
increased root dry weight.

Drought Tolerance in White Clover
Photosynthesis is the critical process that influencing plant
performance. Under drought stress, plants close stomata to
conserve water, reducing photosynthesis. Stomatal conductance
can be influenced by plant anatomy in long term drought (Xu
and Zhou, 2008). Plant cultivars with smaller stomata have
been reported to have a higher rate of gas exchange and faster
stomatal response times. Faster stomatal response times can
reduce the impact of drought to plants (Drake et al., 2013).
This experiment gives an objective measurement of white clover
cultivar transpiration rates and the critical FTSW threshold at
which each cultivar begins to have permanent stomatal closure.
This deepens the understanding of the expected response of
cultivars to drought-like conditions.

A low FTSWc suggests that the cultivar can sustain normal
transpiration for a longer period in soils with less available
water implying that it would perform advantageously under
short-period drought conditions, compared to cultivars with a
high FTSW (Ray and Sinclair, 1997). However, He and Dijkstra
(2014) found that drought stress had a stronger negative effect
on plant nitrogen and phosphorus concentrations in short-term
droughts compared to long-term droughts. AberHerald had the
lowest FTSWc of the eighty cultivars. AberHerald is a medium
leaved cultivar originating from Wales, United Kingdom. It
performs well in cold environments, ensuring good stolon

survival over winter. Helgadóttir et al. (2001) showed that
AberHerald showed morphological adaptation to more marginal
climates. AberHerald has good stolon survival and rapid stolon
recovery after grazing (Rhodes and Webb, 1993). Other cultivars
with a low FTSWc have high persistence under grazing (Charlton
and Giddens, 1983; Widdup et al., 2006).

A high FTSWc proposes that the cultivar can perform better
in long-period drought conditions as they conserve water stores
by closing their stomata early (Ray and Sinclair, 1997). Tribute
had the highest FTSWc value (0.52) of the eighty cultivars.
Tribute is a medium-leaved cultivar bred from germplasm from
New Zealand and Europe and was initially bred through a
breeding program for increased drought tolerance in Australia.
Woodfield et al. (2003) noted that Tribute had good drought
performance in the third year of a grazing trial in Canterbury.
Whilst Widdup and Barrett (2011) found that Tribute produced a
greater number of stolons and stolon density than other cultivars
of medium leaf size.

Generally, the cultivars released pre-1965 have a higher
FTSWc than the cultivars post-1965. A high FTSWc could imply
an increase in persistence in the cultivar. Figures 2A,B illustrate
the relationship between average total water transpired and the
average dry weights of drought and irrigated exposed plants.
All three measurements follow the same trend; a peak in 1940
and decreasing to 1980, before increasing to 2010. The increase
in transpiration and dry weights is supported by the study by
Hoyos-Villegas et al. (2019). They found that in the same panel of
80 white clover cultivars, dry matter increased more than clover
content post-1965, implying that persistence had decreased in
post-1965 cultivars. Clover content, the amount of clover present
in a sward, is a measurement often used to infer persistence.
We could conclude that the stomatal behavior of white clover
cultivars has shifted the major agronomic of persistence.

Canopy Wilting
The underlying mechanisms of drought-tolerant phenotypes are
vast. Canopy wilting is one of the first signs of drought stress
caused by soil water deficits (Kunert and Vorster, 2020). In
soybean, the slow-wilting phenotype was first reported in a
Japanese landrace (Sloane et al., 1990) and the development
of slow-wilting genotypes has enabled selection for breeding
(Sinclair et al., 2010). The development of genotypes with delayed
canopy wilting phenotypes have been studied thoroughly in
soybean and in several plant introductions, and could lead to
increased yield stability in drought conditions (Steketee et al.,
2020). Simulations have suggested if the phenotype was bred into
populations, yield in drought conditions could improve by >80%
(Sinclair et al., 2010). However, the physiological mechanisms
controlling the slow-wilting phenotype remain uncertain. Failure
to understand the mechanisms will constrain breeding efforts.

Recent studies have shown some understanding of the
underlying genetic architecture of the slow-wilting phenotype.
Quantitative trait loci (QTLs) have been identified for canopy
wilting (Abdel-Haleem et al., 2012; Ye et al., 2020) and it has
been concluded that it is a polygenic trait (Charlson et al., 2009).
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A recent study by Kaler et al. (2017) has identified SNPs
associated with canopy-wilting that are located within or close
to genes with connections to transpiration or water transport.
Devi et al. (2015) analyzed gene expression in the leaves of
two slow-wilting accessions and showed that 944 genes were
differentially expressed in one accession compared to the other.
More recently, Steketee et al. (2020) used a GWAS to identify
45 marker-trait associations with canopy wilting and as a
result, several new accessions were identified with the slow-
wilting phenotype. Although the research into the slow-wilting
phenotype has primarily been performed in soybean, other crops,
such as cowpea [Vigna unguiculata (L.) Walp], have utilized
the phenotype to identify accessions with increased drought
tolerance (Pungulani, 2014).

The utilization of a slow-wilting phenotype in white
clover could increase the performance under drought
conditions. Although the cultivars in this study have
been characterized by FTSWc under drought conditions,
germplasm exploration to identify accessions with a slow-
wilting phenotype is needed to accelerate breeding efforts
(Barbour et al., 1996).

CONCLUSION

The results from this study highlight the variable rates of stomatal
closure for eighty white clover cultivars. The relationship between
NTR and FTSW is consistent for all cultivars, regardless of
the decade of release. Cultivars that have a significantly higher
or lower FTSWc have been identified and have deepened the
knowledge of the cultivar response to drought conditions, follow
up studies focusing on stomatal characteristics of contrasting
genotypes would be a natural next step. The white clover
ISH program shows promise for increasing drought tolerance
but further replicated trials are needed to assess performance.
The increasing demand for cultivars to perform under extreme
conditions in response to climate change requires more research

into the genetic and phenotypic basis of drought traits and how
these can be incorporated into breeding programs.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

VH-V conceived the project and designed the experiments. LE
and JH analyzed the data, prepared figures, and manuscript.
RH and SN contributed with revisions, comments, and writing.
All authors contributed to the article and approved the
submitted version.

FUNDING

Funding was provided by the AgResearch internal
investment funds.

ACKNOWLEDGMENTS

We thank Chikako van Koten (AgResearch) for help provided
with the statistical analyses and Portia Crabtree for conducting
the glasshouse work.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fpls.2021.
595030/full#supplementary-material

REFERENCES
Abdel-Haleem, H., Carter, T. E., Purcell, L. C., King, C. A., Ries, L. L., Chen, P., et al.

(2012). Mapping of quantitative trait loci for canopy-wilting trait in soybean
(Glycine max L. Merr). Theor. Appl. Genet. 125, 837–846. doi: 10.1007/s00122-
012-1876-9

Annicchiarico, P., Pecetti, L., Bouzerzour, H., Kallida, R., Khedim, A., Porqueddu,
C., et al. (2011). Adaptation of contrasting cocksfoot plant types to agricultural
environments across the Mediterranean basin. Environ. Exp. Bot. 74, 82–89.
doi: 10.1016/j.envexpbot.2011.05.002

Annicchiarico, P., and Piano, E. (2004). Indirect selection for root development
of white clover and implications for drought tolerance. J. Agron. Crop Sci. 190,
28–34. doi: 10.1046/j.0931-2250.2003.00070.x

Ayres, J., Caradus, J., Murison, R. D., Lane, L., and Woodfield, D. (2007).
Grasslands Trophy - a new white clover (Trifolium repens L.) cultivar with
tolerance of summer moisture stress. Aust. J. Exp. Agric. 47, 110–115. doi:
10.1071/EA04029

Barbour, M., Caradus, J., Woodfield, D., and Silvester, W. (1996). “Water stress
and water use efficiency of ten white clover cultivars,” in ‘White Clover:
New Zealand’s Competitive Edge’, ed. D. R. Woodfield (Palmerston North:
Special Publication - Agronomy Society of New Zealand), 159–162.

Belaygue, C., Wery, J., Cowan, A., and Tardieu, F. (1996). Contribution of leaf
expansion, rate of leaf appearance, and stolon branching to growth of plant
leaf area under water deficit in white clover. Crop Sci. 36, 1240–1246. doi:
10.2135/cropsci1996.0011183X003600050028x

Bermejo, R., Irigoyen, J. J., and Santamaría, J. M. (2006). Short−term
drought response of two white clover clones, sensitive and tolerant
to O3. Physiol. Plant. 127, 658–669. doi: 10.1111/j.1399-3054.2006.00
695.x

Bouton, J. (2012). Breeding lucerne for persistence. Crop Pasture Sci. 63, 95–106.
doi: 10.1071/CP12009

Brock, J. (1988). Evaluation of New Zealand bred white clover cultivars under
rotational grazing and set stocking with sheep. Proc. N. Z. Grassl. Assoc. 49,
203–206. doi: 10.33584/jnzg.1988.49.1819

Caradus, J. (1986). World checklist of white clover varieties. N. Z. J. Exp. Agric. 14,
119–164. doi: 10.1080/03015521.1986.10426137

Caradus, J., Brock, J., and Hay, M. (1989). Fifty years of white clover research in
New Zealand. Proc. N. Z. Grassl. Assoc. 50, 25–39. doi: 10.33584/jnzg.1989.50.
1868

Caradus, J., and Christie, B. (1998). Winter hardiness and artificial frost tolerance of
white clover ecotypes and selected breeding lines. Can. J. Plant Sci. 78, 251–255.
doi: 10.4141/P96-147

Frontiers in Plant Science | www.frontiersin.org 12 March 2021 | Volume 12 | Article 595030158

https://www.frontiersin.org/articles/10.3389/fpls.2021.595030/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpls.2021.595030/full#supplementary-material
https://doi.org/10.1007/s00122-012-1876-9
https://doi.org/10.1007/s00122-012-1876-9
https://doi.org/10.1016/j.envexpbot.2011.05.002
https://doi.org/10.1046/j.0931-2250.2003.00070.x
https://doi.org/10.1071/EA04029
https://doi.org/10.1071/EA04029
https://doi.org/10.2135/cropsci1996.0011183X003600050028x
https://doi.org/10.2135/cropsci1996.0011183X003600050028x
https://doi.org/10.1111/j.1399-3054.2006.00695.x
https://doi.org/10.1111/j.1399-3054.2006.00695.x
https://doi.org/10.1071/CP12009
https://doi.org/10.33584/jnzg.1988.49.1819
https://doi.org/10.1080/03015521.1986.10426137
https://doi.org/10.33584/jnzg.1989.50.1868
https://doi.org/10.33584/jnzg.1989.50.1868
https://doi.org/10.4141/P96-147
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-595030 March 13, 2021 Time: 12:58 # 13

Egan et al. White Clover Water Use

Caradus, J., and Woodfield, D. (1986). “Evaluation of root type in white
clover genotypes and populations,” in Proceedings of the DSIR Plant Breeding
Symposium 1986. Agronomy Society of New Zealand Special Publication no 5,
Lincoln, OR, 322–325.

Caradus, J., and Woodfield, D. (1997). World checklist of white clover varieties II.
N. Z. J. Agric. Res. 40, 115–206. doi: 10.1080/00288233.1997.9513239

Caradus, J. R. (1981). Root growth of white clover (Trifolium repens L.) lines in
glass–fronted containers. N. Z. J. Agric. Res. 24, 43–54. doi: 10.1080/00288233.
1981.10420870

Caradus, J. R., Woodfield, D. R., and Stewart, A. V. (1996). “Overview and
vision for white clover,” in White Clover: New Zealand’s Competitive Edge. Spec.
Publ. 11. Agron. Soc. New Zealand, ed. D. R. Woodfield (Palmerston North:
New Zealand Grassland Association), 1–6.

Chapman, D. F. (1983). Growth and demography of Trifolium repens stolons
in grazed hill pastures. J. Appl. Ecol. 20, 597–608. doi: 10.2307/24
03529

Charlson, D. V., Bhatnagar, S., King, C. A., Ray, J. D., Sneller, C. H., Carter,
T. E., et al. (2009). Polygenic inheritance of canopy wilting in soybean [Glycine
max (L.) Merr.]. Theor. Appl. Genet. 119, 587–594. doi: 10.1007/s00122-009-
1068-4

Charlton, J., and Giddens, N. (1983). Establishment of hill country white clover
selections from oversowing. Proc. N. Z. Grassl. Assoc. 44, 149–155.

Collins, R. P. (1998). “The effect of drought stress and winter stress on
the persistence of white clover,” in Proceedings of FAO/CIHEAM Lowland
Grasslands Sub-Network Meeting, Eds G. Fisher and B. E. Frankow-Lindberg
(La Coruña: FAO).

Conaty, W. C., Mahan, J. R., Neilsen, J. E., and Constable, G. A. (2014). Vapour
pressure deficit aids the interpretation of cotton canopy temperature response
to water deficit. Funct. Plant Biol. 41, 535–546. doi: 10.1071/FP13223

Cooper, B., Clifford, P., and Williams, W. (1997). Development of white clover
(Trifolium repens L.) cultivar Grasslands challenge (G23). Proc. Conf. N. Z.
Grassl. Assoc. 59, 99–102. doi: 10.33584/jnzg.1997.59.2272

Devi, M. J., Sinclair, T. R., and Taliercio, E. (2015). Comparisons of the effects
of elevated vapor pressure deficit on gene expression in leaves among two
fast-wilting and a slow-wilting soybean. PLoS One 10:e0139134. doi: 10.1371/
journal.pone.0139134

Drake, P. L., Froend, R. H., and Franks, P. J. (2013). Smaller, faster stomata: scaling
of stomatal size, rate of response, and stomatal conductance. J. Exp. Bot. 64,
495–505. doi: 10.1093/jxb/ers347

Duncan, D. B. (1955). Multiple range and multiple F tests. Biometrics 11, 1–42.
doi: 10.2307/3001478

Dziegielewski, B. (2003). “Long-term and short-term measures for coping with
drought,” in Tools for Drought Mitigation in Mediterranean Regions. Water
Science and Technology Library, eds G. Rossi, A. Cancelliere, L. S. Pereira, T.
Oweis, M. Shatanawi, and A. Zairi (Dordrecht: Springer), 319–339.

Egan, L. M., Hofmann, R. W., Barrett, B. A., Ghamkhar, K., and Hoyos-Villegas, V.
(2019a). Identification of founding accessions and patterns of relatedness and
inbreeding derived from historical pedigree data in a white clover germplasm
collection in New Zealand. Crop Sci. 59, 2087–2099. doi: 10.2135/cropsci2018.
11.0688

Egan, L. M., Hofmann, R. W., Ghamkhar, K., and Hoyos-Villegas, V. (2019b).
Identification of founding accessions and patterns of relatedness and inbreeding
derived from historical pedigree data in a red clover germplasm collection
in New Zealand. Crop Sci. 59, 2100–2108. doi: 10.2135/cropsci2019.01.
0045

Ellis, W., and Young, N. R. (1967). The characteristics of European, Mediterranean
and other populations of white clover (Trifolium repens L.). Euphytica 16,
330–340. doi: 10.1007/BF00028939

Fanourakis, D., Giday, H., Milla, R., Pieruschka, R., Kjaer, K. H., Bolger, M., et al.
(2015). Pore size regulates operating stomatal conductance, while stomatal
densities drive the partitioning of conductance between leaf sides. Ann. Bot.
115, 555–565. doi: 10.1093/aob/mcu247

Fischlin, A., Midgley, G. F., Price, J. T., Leemans, R., Gopal, B., Turley, C. M., et al.
(2007). “Ecosystems, their properties goods and services,” in Climate Change
2007: Impacts, Adaptation and vulnerability. Contribution of Working Group
II to the Fourth Assessment Report of the Intergovernmental Panel on Climate
Change, eds M. L. Parry, J. P. Canziani, J. P. Palutikof, P. J. van der Linden, and
C. E. Hanson (Cambridge: Cambridge University Press), 211–272.

Gholipoor, M., Sinclair, T., Raza, M., Löffler, C., Cooper, M., and Messina, C.
(2013). Maize hybrid variability for transpiration decrease with progressive soil
drying. J. Agron. Crop Sci. 199, 23–29. doi: 10.1111/j.1439-037X.2012.00530.x

Giday, H., Kjaer, K. H., Fanourakis, D., and Ottosen, C.-O. (2013). Smaller stomata
require less severe leaf drying to close: a case study in Rosa hydrida. J. Plant
Physiol. 170, 1309–1316. doi: 10.1016/j.jplph.2013.04.007

Hampton, J., Rolston, M., Pyke, N. B., and Green, W. (2012). Ensuring the long
term viability of the New Zealand seed industry. Agron. Soc. N. Z. 42, 129–140.

He, M., and Dijkstra, F. A. (2014). Drought effect on plant nitrogen and
phosphorus: a meta−analysis. New Phytol. 204, 924–931. doi: 10.1111/nph.
12952

Helgadóttir, Á, Dalmannsdóttir, S., and Collins, R. P. (2001). Adaptational changes
in white clover populations selected under marginal conditions. Ann. Bot. 88,
771–780. doi: 10.1006/anbo.2001.1438

Hoyos-Villegas, V., Arief, V., Yang, W.-H., Sun, M., DeLacy, I., Barrett, B., et al.
(2018). QuLinePlus: extending plant breed-ing strategy and genetic model
simulation to cross-polli-nated populations: case studies in forage breeding.
Heredity 122, 684–695. doi: 10.1038/s41437-018-0156-0

Hoyos-Villegas, V., O’Connor, J., Heslop, A., Hilditch, A., Jahufer, M., and Barrett,
B. (2019). Rate of genetic gain for persistence to grazing and dry matter yield
in white clover across 90 years of cultivar development. Crop Sci. 59, 537–552.
doi: 10.2135/cropsci2018.07.0471

Hutchinson, K., King, K., and Wilkinson, D. (1995). Effects of rainfall, moisture
stress, and stocking rate on the persistence of white clover over 30 years. Aust.
J. Exp. Agric. 35, 1039–1047. doi: 10.1071/EA9951039

IPCC (2013). “Climate change 2013: the physical science basis,” in Contribution of
Working Group I to the Fifth Assessment Report of the Intergovernmental Panel
on Climate Change, eds T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K.
Allen, J. Boschung, et al. (Cambridge: Cambridge University Press).

Jahufer, M. Z. Z., Ford, J. L., Widdup, K. H., Harris, C., Cousins, G., Ayres, J. F., et al.
(2013). Improving white clover for Australasia. Crop Pasture Sci. 63, 739–745.
doi: 10.1071/CP12142

Kaler, A. S., Ray, J. D., Schapaugh, W. T., King, C. A., and Purcell, L. C.
(2017). Genome-wide association mapping of canopy wilting in diverse soybean
genotypes. Theor. Appl. Genet. 130, 2203–2217. doi: 10.1007/s00122-017-2
951-z

Kunert, K., and Vorster, B. J. (2020). In search for drought-tolerant soybean: is
the slow-wilting phenotype more than just a curiosity? J. Exp. Bot. 71:457.
doi: 10.1093/jxb/erz235

Lancashire, J. (2006). “The importance of exotic germplasm to the NZ livestock
industry. Breeding for success: diversity in action,” in Proceedings of the 13th
Australasian Plant Breeding Conference, Christchurch, 1034–1041.

Lecoeur, J., and Sinclair, T. R. (1996). Field pea transpiration and leaf growth in
response to soil water deficits. Crop Sci. 36, 331–335. doi: 10.2135/cropsci1996.
0011183X003600020020x

Li, Z., Peng, Y., and Ma, X. (2013). Different response on drought tolerance and
post-drought recovery between the small-leafed and the large-leafed white
clover (Trifolium repens L.) associated with antioxidative enzyme protection
and lignin metabolism. Acta Physiol. Plant. 35, 213–222. doi: 10.1007/s11738-
012-1066-z

Meyer, W., and Green, G. (1981). Plant indicators of wheat and soybean crop water
stress. Irrig. Sci. 2, 167–176. doi: 10.1007/BF00257978

Miller, G. L. (2000). Physiological response of bermudagrass grown in soil
amendments during drought stress. HortScience 35, 213–216. doi: 10.21273/
HORTSCI.35.2.213

Muchow, R., and Sinclair, T. (1991). Water deficit effects on maize yields modeled
under current and “greenhouse” climates. Agron. J. 83, 1052–1059. doi: 10.2134/
agronj1991.00021962008300060023x

Nas, M. (2003). “A global perspective on future trends and opportunities in herbage
seed markets,” in Proceedings of the 5th International Herbage Seed Conference,
Gatton, 1–9.

Nixon, C. (2016). How Valuable is that Plant Species? Application of a Method for
Enumerating the Contribution of Selected Plant Species to New Zealand’s GDP.
Wellington: Ministry for Primary Industries.

Pecetti, L., Annicchiarico, P., Abdelguerfi, A., Kallida, R., Mefti, M., Porqueddu,
C., et al. (2011). Response of Mediterranean tall fescue cultivars to contrasting
agricultural environments and implications for selection. J. Agron. Crop Sci. 197,
12–20. doi: 10.1111/j.1439-037X.2010.00443.x

Frontiers in Plant Science | www.frontiersin.org 13 March 2021 | Volume 12 | Article 595030159

https://doi.org/10.1080/00288233.1997.9513239
https://doi.org/10.1080/00288233.1981.10420870
https://doi.org/10.1080/00288233.1981.10420870
https://doi.org/10.2307/2403529
https://doi.org/10.2307/2403529
https://doi.org/10.1007/s00122-009-1068-4
https://doi.org/10.1007/s00122-009-1068-4
https://doi.org/10.1071/FP13223
https://doi.org/10.33584/jnzg.1997.59.2272
https://doi.org/10.1371/journal.pone.0139134
https://doi.org/10.1371/journal.pone.0139134
https://doi.org/10.1093/jxb/ers347
https://doi.org/10.2307/3001478
https://doi.org/10.2135/cropsci2018.11.0688
https://doi.org/10.2135/cropsci2018.11.0688
https://doi.org/10.2135/cropsci2019.01.0045
https://doi.org/10.2135/cropsci2019.01.0045
https://doi.org/10.1007/BF00028939
https://doi.org/10.1093/aob/mcu247
https://doi.org/10.1111/j.1439-037X.2012.00530.x
https://doi.org/10.1016/j.jplph.2013.04.007
https://doi.org/10.1111/nph.12952
https://doi.org/10.1111/nph.12952
https://doi.org/10.1006/anbo.2001.1438
https://doi.org/10.1038/s41437-018-0156-0
https://doi.org/10.2135/cropsci2018.07.0471
https://doi.org/10.1071/EA9951039
https://doi.org/10.1071/CP12142
https://doi.org/10.1007/s00122-017-2951-z
https://doi.org/10.1007/s00122-017-2951-z
https://doi.org/10.1093/jxb/erz235
https://doi.org/10.2135/cropsci1996.0011183X003600020020x
https://doi.org/10.2135/cropsci1996.0011183X003600020020x
https://doi.org/10.1007/s11738-012-1066-z
https://doi.org/10.1007/s11738-012-1066-z
https://doi.org/10.1007/BF00257978
https://doi.org/10.21273/HORTSCI.35.2.213
https://doi.org/10.21273/HORTSCI.35.2.213
https://doi.org/10.2134/agronj1991.00021962008300060023x
https://doi.org/10.2134/agronj1991.00021962008300060023x
https://doi.org/10.1111/j.1439-037X.2010.00443.x
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-595030 March 13, 2021 Time: 12:58 # 14

Egan et al. White Clover Water Use

Pederson, G. (1989). Taproot and adventitious root growth of white clover
as influenced by nitrogen nutrition. Crop Sci. 29, 764–768. doi: 10.2135/
cropsci1989.0011183X002900030045x

Pungulani, L. L. M. (2014). Exploring the Genetic Potential of Locally Adapted
Germplasm for Drought Tolerance: A Case for Cowpea (Vigna unguiculata (L.))
Walp) from Malawi. Doctoral thesis, Massey University, Palmerston North.

Pyke, N., Rolston, P., and Woodfield, D. R. (2004). National and export trends in
herbage seed production. Proc. N. Z. Grassl. Assoc. 66, 95–102.

Rattray, P. V. (2005). in Clover Management, Research, Development & Extension
in the New Zealand Pastoral Industries, ed. M. o. P. Industry Wellington: M. o.
P. Industry.

Ray, J. D., and Sinclair, T. R. (1997). Stomatal closure of maize hybrids in
response to drying soil. Crop Sci. 37, 803–807. doi: 10.2135/cropsci1997.
0011183X003700030018x

Ray, J. D., and Sinclair, T. R. (1998). The effect of pot size on growth and
transpiration of maize and soybean during water deficit stress. J. Exp. Bot. 49,
1381–1386. doi: 10.1093/jxb/49.325.1381

Rhodes, I., and Webb, K. J. (1993). Improvement of white clover. Outlook Agric. 22,
189–194. doi: 10.1177/003072709302200310

Ritchie, J. T. (1973). Influence of soil water status and meteorological conditions
on evaporation from a corn canopy. Agron. J. 65, 893–897. doi: 10.2134/
agronj1973.00021962006500060014x

Rosenthal, W., Arkin, G., Shouse, P., and Jordan, W. (1987). Water deficit effects on
transpiration and leaf growth. Agron. J. 79, 1019–1026. doi: 10.2134/agronj1987.
00021962007900060014x

Rumball, W., and Armstrong, C. (1974). The performance of overseas ryegrass
cultivars in New Zealand. Proc. N. Z. Grassl. Assoc. 36, 97–104.

Saeidnia, F., Majidi, M. M., Mirlohi, A., and Ahmadi, B. (2018). Physiological
responses of drought tolerance in orchardgrass (Dactylis glomerata) in
association with persistence and summer dormancy. Crop Pasture Sci. 69,
515–526. doi: 10.1071/CP17314

Saeidnia, F., Majidi, M. M., Mirlohi, A., and Shahidaval, S. (2016). Selection for
productivity, persistence and drought tolerance in orchardgrass. Euphytica 212,
111–130. doi: 10.1007/s10681-016-1776-1

Sanderson, M., Byers, R., Skinner, R., and Elwinger, G. (2003). Growth and
complexity of white clover stolons in response to biotic and abiotic stress. Crop
Sci. 43, 2197–2205. doi: 10.2135/cropsci2003.2197

Sinclair, T., and Ludlow, M. (1986). Influence of soil water supply on the plant
water balance of four tropical grain legumes. Funct. Plant Biol. 13, 329–341.
doi: 10.1071/PP9860329

Sinclair, T. R., Messina, C. D., Beatty, A., and Samples, M. (2010). Assessment
across the United States of the benefits of altered soybean drought traits. Agron.
J. 102, 475–482. doi: 10.2134/agronj2009.0195

Sloane, R. J., Patterson, R. P., and Carter, T. E. Jr. (1990). Field drought tolerance of
a soybean plant introduction. Crop Sci. 30, 118–123. doi: 10.2135/cropsci1990.
0011183X003000010027x

Steketee, C. J., Schapaugh, W. T., Carter, T. E., and Li, Z. (2020). Genome-
wide association analyses reveal genomic regions controlling canopy wilting
in soybean. G3 Genes Genomes Genetics 10, 1413–1425. doi: 10.1534/g3.119.
401016

Thomas, H. (1984). Effects of drought on growth and competitive ability of
perennial ryegrass and white clover. J. Appl. Ecol. 21, 591–602. doi: 10.2307/
2403431

Tuberosa, R. (2012). Phenotyping for drought tolerance of crops in the genomics
era. Front. Physiol. 3:347. doi: 10.3389/fphys.2012.00347

van den Bosch, J., Black, I., Cousins, G., and Woodfield, D. (1993). Enhanced
drought tolerance in white clover. Proc. N. Z. Grassl. Assoc. 55, 97–101.

VSN-International (2019). Genstat for Windows, 20th Edn. Hemel Hempstead:
VSN International Ltd.

Weisz, R., Kaminski, J., and Smilowitz, Z. (1994). Water deficit effects on
potato leaf growth and transpiration: utilizing fraction extractable soil water
for comparison with other crops. Am. Potato J. 71, 829–840. doi: 10.1007/
BF02849378

Widdup, K., and Barrett, B. (2011). “Achieving persistence and productivity
in white clover,” in Pasture Persistence Symposium. Grassland Research and
Practice Series No. 15, ed. C. F. Mercer (Dunedin: New Zealand Grassland
Association), 173–180.

Widdup, K., Garcia, J., Amadeo, J., Guillen, R., and Real, D. (2006). “White clover
cultivars developed for temperate regions of South America,” in Proceedings of
the 13th Australasian Plant Breeding Conference, Christchurch, 18–21.

Williams, W. (1987). “Genetics and breeding,” in White Clover, eds M. J. Baker and
W. M. Williams (Wallingford: CAB Int), 343–420.

Williams, W. (2014). Trifolium interspecific hybridisation: widening the white
clover gene pool. Crop Pasture Sci. 65, 1091–1106. doi: 10.1071/CP13294

Williams, W., Easton, H., and Jones, C. (2007). Future options and targets for
pasture plant breeding in New Zealand. N. Z. J. Agric. Res. 50, 223–248. doi:
10.1080/00288230709510292

Woodfield, D., Clifford, P., Baird, I., Cousins, G., Miller, J., Widdup, K., et al. (2003).
Grasslands Tribute: a multi-purpose white clover for Australasia. Proc. N. Z.
Grassl. Assoc. 65, 157–162.

Woodfield, D., Clifford, P., Cousins, G., Ford, J., Baird, I., Miller, J., et al. (2001).
Grasslands Kopu II and Crusader: new generation white clovers. Proc. N. Z.
Grassl. Assoc. 63, 103–108.

Woodfield, D. R., and Caradus, J. R. (1994). Genetic improvement in white clover
representing six decades of plant breeding. Crop Sci. 34, 1205–1213. doi: 10.
2135/cropsci1994.0011183X003400050011x

Xu, Z., and Zhou, G. (2008). Responses of leaf stomatal density to water status
and its relationship with photosynthesis in a grass. J. Exp. Bot. 59, 3317–3325.
doi: 10.1093/jxb/ern185

Ye, H., Song, L., Schapaugh, W. T., Ali, M. L., Sinclair, T. R., Riar, M. K., et al.
(2020). The importance of slow canopy wilting in drought tolerance in soybean.
J. Exp. Bot. 71, 642–652. doi: 10.1093/jxb/erz150

Zeven, A. (1991). Four hundred years of cultivation of Dutch white clover
landraces. Euphytica 54, 93–99. doi: 10.1007/BF00145635

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Egan, Hofmann, Nichols, Hadipurnomo and Hoyos-Villegas. This
is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums
is permitted, provided the original author(s) and the copyright owner(s) are credited
and that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does not
comply with these terms.

Frontiers in Plant Science | www.frontiersin.org 14 March 2021 | Volume 12 | Article 595030160

https://doi.org/10.2135/cropsci1989.0011183X002900030045x
https://doi.org/10.2135/cropsci1989.0011183X002900030045x
https://doi.org/10.2135/cropsci1997.0011183X003700030018x
https://doi.org/10.2135/cropsci1997.0011183X003700030018x
https://doi.org/10.1093/jxb/49.325.1381
https://doi.org/10.1177/003072709302200310
https://doi.org/10.2134/agronj1973.00021962006500060014x
https://doi.org/10.2134/agronj1973.00021962006500060014x
https://doi.org/10.2134/agronj1987.00021962007900060014x
https://doi.org/10.2134/agronj1987.00021962007900060014x
https://doi.org/10.1071/CP17314
https://doi.org/10.1007/s10681-016-1776-1
https://doi.org/10.2135/cropsci2003.2197
https://doi.org/10.1071/PP9860329
https://doi.org/10.2134/agronj2009.0195
https://doi.org/10.2135/cropsci1990.0011183X003000010027x
https://doi.org/10.2135/cropsci1990.0011183X003000010027x
https://doi.org/10.1534/g3.119.401016
https://doi.org/10.1534/g3.119.401016
https://doi.org/10.2307/2403431
https://doi.org/10.2307/2403431
https://doi.org/10.3389/fphys.2012.00347
https://doi.org/10.1007/BF02849378
https://doi.org/10.1007/BF02849378
https://doi.org/10.1071/CP13294
https://doi.org/10.1080/00288230709510292
https://doi.org/10.1080/00288230709510292
https://doi.org/10.2135/cropsci1994.0011183X003400050011x
https://doi.org/10.2135/cropsci1994.0011183X003400050011x
https://doi.org/10.1093/jxb/ern185
https://doi.org/10.1093/jxb/erz150
https://doi.org/10.1007/BF00145635
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-616975 June 14, 2021 Time: 15:8 # 1

ORIGINAL RESEARCH
published: 14 June 2021

doi: 10.3389/fpls.2021.616975

Edited by:
Ankush Prashar,

Newcastle University, United Kingdom

Reviewed by:
Bernardo Ordas,

Consejo Superior de Investigaciones
Científicas,

Spanish National Research Council,
Spain

Glenn Bryan,
The James Hutton Institute,

United Kingdom

*Correspondence:
Mitchell R. Tuinstra

mtuinstr@purdue.edu

Specialty section:
This article was submitted to

Plant Breeding,
a section of the journal

Frontiers in Plant Science

Received: 13 October 2020
Accepted: 17 May 2021

Published: 14 June 2021

Citation:
Tolley SA, Singh A and

Tuinstra MR (2021) Heterotic Patterns
of Temperate and Tropical Maize by

Ear Photometry.
Front. Plant Sci. 12:616975.

doi: 10.3389/fpls.2021.616975

Heterotic Patterns of Temperate and
Tropical Maize by Ear Photometry
Seth A. Tolley1, Amritpal Singh1,2 and Mitchell R. Tuinstra1*

1 Department of Agronomy, Purdue University, West Lafayette, IN, United States, 2 Advanta Seeds, College Station, TX,
United States

As the plant variety protection (PVP) of commercial inbred lines expire, public breeding
programs gain a wealth of genetic materials that have undergone many years of intense
selection; however, the value of these inbred lines is only fully realized when they have
been well characterized and are used in hybrid combinations. Additionally, while yield is
the primary trait by which hybrids are evaluated, new phenotyping technologies, such
as ear photometry (EP), may provide an assessment of yield components that can
be scaled to breeding programs. The objective of this experiment was to use EP to
describe the testcross performance of inbred lines from temperate and tropical origins.
We evaluated the performance of 298 public and ex-PVP inbred lines and 274 Drought
Tolerant Maize for Africa (DTMA) inbred lines when crossed to Iodent (PHP02) and/or
Stiff Stalk (2FACC) testers for 25 yield-related traits. Kernel weight, kernels per ear, and
grain yield predicted by EP were correlated with their reference traits with r = 0.49,
r = 0.88, and r = 0.75, respectively. The testcross performance of each maize inbred
line was tester dependent. When lines were crossed to a tester within the heterotic
group, many yield components related to ear size and kernels per ear were significantly
reduced, but kernel size was rarely impacted. Thus, the effect of heterosis was more
noticeable on traits that increased kernels per ear rather than kernel size. Hybrids of
DTMA inbred lines crossed to PHP02 exhibited phenotypes similar to testcrosses of
Stiff Stalk and Non-Stiff Stalk heterotic groups for yield due to significant increases in
kernel size to compensate for a reduction in kernels per ear. Kernels per ear and ear
length were correlated (r = 0.89 and r = 0.84, respectively) with and more heritable than
yield, suggesting these traits could be useful for inbred selection.

Keywords: ear photometry, heterotic groups, hybrid breeding, multivariate analysis, tropical maize, high-
throughput phenotyping

INTRODUCTION

Maize production in the United States totaled 363.2 billion kg on 33.5 million hectares with an
average yield of 10,860 kg ha−1 in the five growing seasons from 2015 to 2019; an incredible feat
considering the nationwide average yield of 2,950 kg ha−1 in 1956, which was the beginning of the
single-cross hybrid maize era (USDA NASS). In the early 20th century, maize was commonly grown
as an open-pollinated variety and yield improvement was stagnant. Since the implementation of
double-cross and subsequently single-cross hybrids, maize yields have increased at a rate of 48 and
119 kg ha−1, respectively (USDA NASS). Duvick (2005) attributes about 50% of the increases in
maize yields to hybrid maize breeding and the development of superior genetics, while optimized
genotype placement and management practices are other key factors.
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In 1970, the Plant Variety Protection Act (PVP) allowed
commercial breeding programs to register varieties and inbred
lines as intellectual property restricting the use, sale, and
importation of this material for 20 years (Beckett et al., 2017).
Inbred lines selected in commercial breeding programs are
highly advanced and have undergone many rounds of intense
selection. As PVPs expire, public breeding programs have access
to these highly advanced inbred lines that can be used to quickly
incorporate useful alleles into breeding programs. Many studies
have used genomic and pedigree information to characterize ex-
PVP and founder temperate inbred lines (Mikel, 2006, 2008,
2011; Mikel and Dudley, 2006; Nelson et al., 2008; White
et al., 2020); however, phenotypic information describing these
temperate inbred lines is less common.

Commercial maize is grown as a hybrid F1 cross of inbred
lines from divergent heterotic groups to leverage heterosis (Shull,
1908, 1909a,b, 1911, 1914; East, 1909, 1936). In the United States,
maize germplasm is largely classified into three predominant
heterotic groups: Stiff Stalk (SS), Non-Stiff Stalk (NS), and Iodent
(IO) (Nelson et al., 2008; Beckett et al., 2017; White et al.,
2020). Maize breeders exploit the heterotic pattern between
these complementary heterotic groups to form hybrids with
greater yield potential than their inbred parents. Inbred lines
within heterotic groups have been characterized and selected for
their combining ability with inbred lines from other heterotic
groups. They are evaluated for their testcross rather than per
se performance (Bernardo, 2014). To conserve the genetic
diversity between heterotic groups, germplasm improvement
within heterotic groups is typically limited to recycling and
recombining the best inbred lines in a population through
reciprocal recurrent selection (Duvick et al., 2004; Mikel, 2008).
While the founding germplasm for the United States Corn Belt
Dent population was large and diverse (Duvick et al., 2004), Mikel
and Dudley (2006) stated that much of the current commercial
germplasm can be traced back to seven progenitor inbred
lines: B73, LH82, LH123, PH207, PH595, PHG39, and Mo17.
Yield stagnation due to limited genetic diversity has not been
evident, though researchers question whether this bottleneck
could restrict future genetic gains (Holland and Goodman, 1995;
Goodman, 2005; Nelson and Goodman, 2008). Incorporation
of tropical germplasm is one solution to broadening genetic
diversity and is a goal of many breeding programs (Uhr and
Goodman, 1995a,b; Duvick et al., 2004; Henry et al., 2014). Thus,
understanding the combining ability of temperate inbred lines
with tropical germplasm could be an important consideration
for public and private breeding programs to sustain genetic
improvement of maize in the 21st century.

The International Maize and Wheat Improvement Center,
CIMMYT, hybrid maize breeding program began in 1985
(Vasal et al., 1992). As a large collection of germplasm was
available, the first goal of the program was to assess combining
ability and empirically determine heterotic groups. Heterotic
groups explored included Tuxpeño, Cuban flints, Coastal tropical
flints, ETO, Tuson, Chandelle, Haitian yellow, and Perla
(Vasal et al., 1999). However, concurrent development of several
heterotic groups for their combining ability was difficult and
was further simplified as Tuxpeño, heterotic group A (dent

kernel type), and non-Tuxpeño, heterotic group B (flint kernel
type) (Vasal et al., 1999; Wu et al., 2016; Cupertino-Rodrigues
et al., 2020). Nevertheless, due to the relatively short-term
selection of the heterotic groups, tester dependent heterotic
group classification of a given line, and diversity in the base
population, heterotic groups A and B can often be difficult to
classify (Wu et al., 2016).

The recent emergence of high-throughput phenotyping is
an important tool with the potential to relieve the bottleneck
of testing programs (Furbank and Tester, 2011; Araus and
Cairns, 2014; Araus et al., 2018). High-throughput phenotyping
can increase the genetic gain by increasing selection intensity,
phenotype repeatability, and trait heritability (Araus et al.,
2018). Selection intensity is a function of the number of
lines selected compared to the number of lines evaluated.
With high-throughput phenotyping, larger populations can
be evaluated and more stringent selection intensities can be
imposed. Response to selection can be increased by minimizing
the non-genetic variance by increasing phenotype repeatability
and trait heritability (Bernardo, 2014). Minimizing non-
genetic variance is often the case of appropriate experiment
design and statistics involving blocking, randomization, and
replication. High-throughput phenotyping allows for greater
replication and reduced between-measurement error by
removing the human-element of phenotyping. Limitations
of low-throughput phenotyping methods such as its time-
consuming and laborious nature, often force breeding programs
to limit selection to yield evaluated in multi-environment,
multi-year trials; even though the heritability of yield is
among the lowest of commonly evaluated traits (Furbank
and Tester, 2011). Selection based on yield components
that are highly related to and more heritable than yield
could be beneficial.

Phenotyping of maize yield components such as ear and kernel
properties has been one of the interests for breeding programs
and research geneticists. Typical yield components include kernel
number, kernel weight, and ears per plant. Previous studies have
used manual methods to record ear and kernel traits to dissect the
genetic basis of these traits (Flint-Garcia et al., 2005; Ross et al.,
2006). However, the process is time-consuming, labor-intensive
and difficult to scale to large breeding programs (Cooper et al.,
2014). Using a high-throughput phenotyping method known as
ear photometry (EP), yield components, such as ear and kernel
characteristics, can be measured or predicted (Grift et al., 2017;
Miller et al., 2017; Makanza et al., 2018). These studies reported
great prediction accuracies for many yield-related traits, giving
credibility to the idea that EP could be valuable in assessing large
breeding populations.

In 2017 and 2018, testcross hybrids of ex-PVP inbred lines
from the United States and tropical inbred lines from the drought
tolerant maize for Africa (DTMA) panel from CIMMYT were
assessed for 25 yield-related traits when crossed to SS and/or
IO testers. Representative ears were hand harvested from each
plot for EP studies. The objectives of this experiment were to (1)
validate the use of ear photometry on a diverse set of hybrids
representing temperate and tropical maize, (2) characterize the
relationships among and heritability of ear photometry traits,
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and (3) describe the heterotic patterns of temperate and tropical
inbred lines in testcross hybrids using ear photometry.

MATERIALS AND METHODS

Experimental Design and Germplasm
This experiment was grown in the summer of 2017 and 2018
at the Purdue University Agronomy Center for Research and
Education (40◦48′ N, 86◦99′ W). The soil type at this location
is a Chalmers silty clay loam (Fine-silty, mixed, superactive,
mesic Typic Endoaquolls) (Purdue Agriculture Data Engine).
Experimental plots followed a maize-soybean crop rotation with
planting dates of June 1, 2017 and April 30, 2018. In both
years, the fields were cultivated prior to planting. Fertilizer was
applied in the fall of 2016 as 168 kg ha−1 of mono-ammonium
phosphate (11-52-0) and 224 kg ha−1 of potash (0-0-60), and in
the spring of 2017, 180 kg ha−1 of pre-plant ammonium nitrate
was applied. Weed control [Bicep II (Atrazine + S-metolachlor),
Syngenta] was applied pre-plant at a rate of 3.7 kg ha−1. In
2018, nitrogen was applied in mid-March at a rate of 224 kg
ha−1 of ammonium nitrate. Weed control [Bicep II (Atrazine
+ S-metolachlor), Syngenta], was applied pre-plant at a rate of
4.7 kg ha−1. Additionally, [Laudis (Tembotrione), Bayer], was
applied after planting at a rate of 210 g ha−1. Prior to silk
emergence in 2018, insecticide [Sevin (Carbaryl), Bayer] was
applied due to a Japanese Beetle infestation.

Experimental plots were two rows 4.5 m long by 1.5 m wide
with a spacing of 76 cm in 2017 and 3 m long by 1.5 m wide
with a spacing of 76 cm in 2018 planted to a population of 74,000
seeds ha−1 in each year. The hybrids were blocked by temperate
or tropical origin and tester to promote pollination among hybrid
types and evaluated in a randomized complete block design with
two replications.

Germplasm consisted of temperate inbred lines from public
breeding programs and available ex-PVP inbred lines and DTMA
inbred lines from CIMMYT. Testcross performance of 286
temperate inbred lines and the 274 DTMA inbred lines were
evaluated in combination with PHP02 (IO). The choice of a
commercial IO tester for the tropical germplasm differentiates
this study from previous work which tested per se performance
(Uhr and Goodman, 1995b) and combining ability to B73/Mo17
(Uhr and Goodman, 1995a). Additionally, 298 temperate inbred
lines were evaluated for testcross performance to 2FACC (SS).
Heterotic group assignment (SS, IO, or NS) of temperate inbred
lines used in this study were previously described by Beckett et al.
(2017). CIMMYT provided the heterotic group classification (A,
B, or AB) of the DTMA inbred lines.

Ear Photometry Pipeline
Prior to machine harvest, 10 representative ears were selected
from the plots in 2017 and 5 representative ears were selected
from the plots in 2018 and dried to about 15% moisture followed
by red-green-blue (RGB) imaging. These ears were imaged from
a single angle using a Canon EOS Rebel T6i camera and an
imaging system from Corteva Agriscience formerly DuPont
Pioneer (Hausmann et al., 2009). Before imaging, the ears were

thoroughly cleaned to remove silks and other debris. In total,
more than 4,200 RGB images were acquired and processed to
determine the phenotypes of more than 21,000 ears.

Common image processing techniques such as filtering,
thresholding, edge finding, edge enhancement, color selection,
spectral filtering, and water shedding were used to process
images in a semi-automated process (Hausmann et al., 2009).
Using a supervised classification method, ears (with kernels)
and cobs (without kernels) were extracted from the background.
As a template, a representative image with variation in kernel
color was selected from each year to define the pixel attributes
associated with the cob and kernels. Length measurements were
calibrated using a reference image of a ruler.

EP was used to measure or predict 25 traits to provide unique
insight into the characteristics of an ear. Traits measured or
predicted in EP include, but are not limited to, grain yield
(PHTYLD), kernels per ear (PHTKPE), average single kernel
weight (KERWGT), and ear length (EARLGT). For a full
description and heritability of the 25 EP traits, please refer to
Table 1: Ear Photometry.

Reference Trait Measurements
Reference traits were measured either to provide additional
in-season information related to a hybrid or to validate the
EP platform. Reference traits were measured throughout the
growing season. The description and heritability of the reference
traits are provided in Table 1: Reference Physiology. Anthesis
date (AD) and silking date (SD) were recorded as date when
50% of the plot reached anthesis or silking, respectively. Growing
degree days (GDD) (C◦) was calculated for each day from
planting to AD and SD and summed to determine accumulated
GDD. GDD for each day was calculated using the formula,
GDD = [(Tmax + Tmin)/2] − 10. When the maximum and
minimum temperatures were greater than 30◦C or less than
10◦C, then Tmax and Tmin were set to 30 and 10◦C, respectively
(Gilmore and Rogers, 1958). Anthesis-to-silking interval (ASI)
was the duration between AD to SD and was measured in GDD
and days. In 2017, plant height (PH) was measured from the
ground to the top collared leaf, and ear height (EH) was measured
from the ground to the node of the primary ear.

The accuracy of EP predicted traits PHTYLD, PHTKPE, and
KERWGT was assessed through manual measurements of the
reference traits. The abbreviations for reference traits start with
REF and the heritabilities and descriptions of these traits are
provided in Table 1: Reference Yield Components. In 2017, the
10 ears per plot used in EP were shelled (Agriculex Single Ear
Corn Sheller). The kernels of the 10 ears were combined and a
seed counter (VMek Sorting Technology) was used to measure
the number of kernels. The total weight of the kernels was
measured using an Ohaus (NVT10001/1, Ohaus Corporation,
Parsippany, NJ, United States) balance. Kernel number and total
weight were subsequently divided by 10 to get measurements
on a per ear basis. Kernel number per ear (REFKPE) manually
measured was the reference trait for PHTKPE. Total weight per
ear (REFYLD) manually measured was the reference trait for
PHTYLD. Reference kernel weight (REFKW) was the quotient
of REFYLD (g ear−1) divided by REFKPE (count ear−1) and
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TABLE 1 | Description of the phenotypes evaluated in this study.

Trait Sections Traits Units Heritability Definition

Entry-Mean Plot-Mean

Reference Physiology AD GDD* 0.91 0.75 Growing degree days to reach anthesis

SD GDD 0.92 0.78 Growing degree days to reach silking

ASI GDD 0.51 0.22 Anthesis-silking interval measured in growing degree days

ASI Days 0.60 0.31 Anthesis-silking interval measured in days

PH† Cm 0.91 0.83 Height from ground level to the top collared leaf

EH† Cm 0.86 0.76 Height from ground level to the node of the primary ear

Reference Yield Components REFKW† g kernel−1 0.79 0.66 Reference average kernel weight manually measured

REFKPE† count ear−1 0.84 0.73 Reference kernels per ear manually measured

REFYLD† g ear−1 0.82 0.70 Reference grain yield manually measured

REFYLD18‡ kg ha−1 0.69 0.52 Reference grain yield at 15% moisture measured by combine

MOISTURE‡ % 0.80 0.66 % moisture at harvest measured by combine

Ear Photometry PHTYLD g ear−1 0.52 0.25 Grain yield

PHTKPE count ear−1 0.60 0.30 Total number of kernels per ear

KERWGT g kernel−1 0.51 0.25 Average kernel weight

EARAREA cm2 ear−1 0.61 0.32 Ear area

EARBOX – 0.49 0.22 Ear boxiness

EARCW – 0.65 0.38 Ear central width

EARLGT cm ear−1 0.71 0.41 Total length of cob

EARPER cm ear−1 0.70 0.40 Ear perimeter

EARTR cm2 ear−1 0.46 0.19 Ear tip ratio

EARVOL cm2 ear−1 0.56 0.28 Ear volume

EARWTH cm ear−1 0.63 0.35 Width of ear including kernels and cob

ETB – 0.50 0.22 Ear tip boxiness

KERARE cm2 kernel−1 0.67 0.39 Average area per kernel

KERCC – 0.54 0.25 Kernel central count

KERFIL cm2 (cm2)−1 0.50 0.25 Percent of total ear area with filled kernels

KERLEN cm kernel−1 0.58 0.30 Average kernel length

KERMAXD cm kernel−1 0.59 0.30 Kernel maximum diameter

KERMEAND cm kernel−1 0.71 0.44 Kernel mean diameter

KERMIND cm kernel−1 0.74 0.46 Kernel minimum diameter

KERPER cm kernel−1 0.75 0.47 Kernel perimeter

KERWTH cm kernel−1 0.73 0.45 Average kernel width

PHTKR count ear−1 0.63 0.32 Kernel row number

PHTKPR count ear−1 0.64 0.34 Total number of kernels per row

SCTTER cm2 (cm2)−1 0.51 0.26 Percent of ear area lost due to scatter grain

TKERAB cm cm−1 0.42 0.17 Percent of ear length affected by kernel abortion

Trait heritability on an entry-mean and plot-mean basis using Equations 2, 3. Traits in the reference section refer to traits measured manually or by combine, while traits in
the ear photometry section were measured using the ear photometry platform. *Daily Growing Degree Days (C◦) = Tmax C − Tmin C

2 − 10C If Max Temp > 30◦C, then Max
Temp = 30◦C. If Max Temp < 10◦C, then Max Temp = 10◦C. If Min Temp > 30◦C, then Min Temp = 30◦C. If Min Temp < 10◦C, then Min Temp = 10◦C. †Only measured
in 2017. For these traits, the effect of Year was removed from the model. ‡Only measured in 2018. For these traits, the effect of Year was removed from the model.

was used as the reference trait for KERWGT. The average EP
predicted PHTYLD, PHTKPE, and KERWGT was correlated to
their corresponding reference measurement. Subsequently, this
validation dataset was split into temperate (n = 989) and tropical
(n = 424) origin to verify the use of EP in these perspective
backgrounds and are shown in Supplementary Figure 1.

In addition to using reference yield (g ear−1) to validate
the EP platform, reference yield (REFYLD18) (kg ha−1) was
measured on a per plot basis (n = 1,568) in 2018 using a plot
combine (Kincaid 8-XP, Haven, KS, United States) with grain
weights standardized to 15% moisture. Stand count was used

as a covariate in the linear model between REFYLD18 and
PHTYLD to limit the variability in yield due to differences in
stand. Moisture was measured as the percent moisture in the
grain at harvest with the plot combine. This validation dataset
was split into temperate (n = 1,120) and tropical (n = 448)
origin to verify the use of EP in these perspective backgrounds
(Supplementary Figure 1).

Genotypic Data
Genotypic data for the temperate ex-PVP and public breeding
lines was provided by the Rocheford Lab of Purdue University
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and previously described in Beckett et al. (2017). Briefly, the
genotypic information of 291 temperate lines was aligned and
merged with 58 additional ex-PVP inbred lines. In total, there
were 1,281,671 Single Nucleotide Polymorphisms (SNPs) in the
merged genotype file for the 349 temperate inbred lines.

Genotypic data for the DTMA germplasm was sourced by
CIMMYT from an online repository1. This dataset consisted
955,690 SNPs for 282 inbred lines and have been previously
described by Guo et al. (2020), Yuan et al. (2019), and Wu et al.
(2016). Once aligned and merged, the dataset of temperate and
tropical germplasm consisted of 533 inbred lines phenotyped in
this project with 755,339 common SNPs.

Statistical Analysis
Data analyses were performed in R (R Core Team, 2019).
Best linear unbiased predictions (BLUPs) were predicted using
lme4::lmer (Bates et al., 2015) according to equation 1. While the
Hybrid × Year interaction was significant for most traits, the
amount of variation explained by the Hybrid was typically far
greater than the interaction. As such, BLUPs were predicted over
the 2 years rather than BLUPs for each year using the following
equation.

Yijkl = µ+Hi + Yrj +HYrij + R(Yr)jk + εijkl (1)

Where Yijkl is the phenotypic measurement of the ith hybrid, in
the jth year, in the kth rep. µ represents the grand mean; Hi is
the random effect of the ith hybrid; Yrj is the fixed effect of the
jth year; HYrij is the random interaction effect of the ith hybrid
in the jth year; R(Yr)jk is the fixed effect of the kth rep nested
in the jth year. ε is the random residual error term associated
with each phenotypic measurement. Significant differences of
heterotic groups were determined using analysis of variance
(ANOVA) of the BLUPs. When ANOVA was significant, Tukey
test was performed to distinguish between the heterotic groups in
R library agricolae::HSD.test.

Broad-sense heritability (Nyquist and Baker, 1991; Piepho and
Möhring, 2007) using variance components estimated through
restricted maximum likelihood (REML) in Equation 1 was
determined on an entry-mean and plot-mean basis as shown in
Equations 2, 3, respectively, and are given in Table 1.

H2
=

σ 2
H

σ 2
H +

σ 2
HY
y +

σ 2
ε
yr

(2)

H2
=

σ 2
H

σ 2
H + σ

2
HY + σ

2
ε

(3)

Where H2 represents broad-sense heritability of a given
trait. Hybrid, hybrid × year interaction, and error variance
components are denoted by σ 2

H, σ 2
HY, and σ 2

ε , respectively.
Number of years (y = 2) and number of reps per year (r = 2) were
y and r in equation 2. Phenotypic correlations were computed
using R function cor and visualized using corrplot::corrplot.

1http://hdl.handle.net/11529/10548156

Hierarchical clustering of the EP traits was performed through
stats::hclust using Ward’s Minimum Variance (ward.D2). The
Ball-Hall Index was used to determine the appropriate number
of clusters among the traits. To visualize the dendrogram, the
R function plot was used with stats::cutree for colorization and
ape::as.phylo to convert our object to class phylo. Principal
component analysis (PCA) was performed in PLINK v1.9
(Purcell et al., 2007) for SNP data and R function prcomp for
the EP traits. Data visualization was performed with R libraries
ggplot2::ggplot, plot3d::text3d, and scatterplot3d::scatterplot3d.

RESULTS

Weather Conditions
Weather conditions for 2017 and 2018 as well as the 30-year
average from 1988 to 2018 are shown in Supplementary Figure 2.
Maximum and minimum air temperature generally follow the 30-
year average. Precipitation was found to be more variable across
the 30-year average than temperature. In 2017, temperature
was characterized by average monthly minimum and maximum
typically falling within one standard deviation of the 30-year
average. Precipitation was above average throughout much of
the growing season. In 2018, average minimum temperatures
were below the 30-year average in March and April. Elevated
average minimum temperatures began in May. Average monthly
maximum temperature was similar to the 30-year average.
Precipitation was greater than one standard deviation of the 30-
year average for May, June, August, October, and November, and
below one standard deviation of the 30-year average for July.

Validation of Ear Photometry Traits
Ear photometry traits that were validated with this dataset include
KERWGT, PHTKPE, and PHTYLD. The correlation between
KERWGT, PHTKPE, and PHTYLD to their respective reference
measurements (REFKW, REFKPE, REFYLD) were r = 0.49,
r = 0.88, and r = 0.75, respectively (Figure 1). When the dataset
was split based on the background origin, the correlation among
KERWGT, PHTKPE, and PHTYLD to their respective reference
measurements in temperate germplasm was r = 0.51, r = 0.89,
and r = 0.86. In the tropical germplasm these correlations were
r = 0.38, r = 0.89, and r = 0.49 (Supplementary Figure 1).
PHTYLD was further validated on a per plot basis in 2018.
The correlation between PHTYLD and REFYLD18 was r = 0.39.
Nevertheless, unaccounted variation in the stand count for each
plot limited the correlation between these two yield measures.
When using stand count as a covariate in the model the
correlation between adjusted PHTYLD and REFYLD18 increased
to r = 0.47 (r = 0.54 and r = 0.29, in temperate and tropical
germplasm, respectively) (Figure 1D).

Analysis of Ear Photometry Traits
Multivariate analyses were used to assess the relationship among
EP traits including PCA (Figure 2A), hierarchical clustering
(Figure 2B), and correlation analysis (Supplementary Figure 3).
The Ball-Hall index distinguished five groups in the hierarchical
clustering. Traits clustered with PHTYLD were those related
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FIGURE 1 | Linear regression and Pearson correlation between reference kernel weight (REFKW) (x-axis) to photometry-estimated kernel weight (KERWGT) (y-axis)
in 2017 (n = 1,413) (A). Linear regression and Pearson correlation between reference kernels per ear (REFKPE) (x-axis) to photometry-estimated kernels per ear
(PHTKPE) (y-axis) in 2017 (n = 1,413) (B). Linear regression and Pearson correlation between reference yield (REFYLD) (x-axis) to photometry-estimated yield
(PHTYLD) (y-axis) in 2017 (n = 1,413) (C). Linear regression and Pearson correlation between reference yield on a plot basis (REFYLD18) and the fitted values for
PHTYLD adjusted for stand count in modeling REFYLD18 (REFYLD18 = PHTYLD + Stand Count) in 2018 (n = 1,568) (D).

to ear size and kernels per ear (EARVOL, EARAREA,
EARPER, EARLGT, EARCW, EARWTH, KERCC, PHTKPE,
and PHTKPR). Traits regarding the size, shape, and weight
of the individual kernels were less correlated with PHTYLD,
nevertheless, they were correlated amongst themselves. The
remaining clusters relate to the boxiness of the ear, percent of ear
filled with kernels, and kernel rows.

PCA was employed on the EP traits to gain a greater
understanding of their relationships (Figure 2A). The first three
PCs explained 36.5% of the total variance and our interpretations
were checked for their orthogonality; beyond PC3, loading factors
of the EP traits could not be biologically interpreted. PC1
explained 15.6% of the variation among the traits and was found
to separate the traits based on their correlation to yield. PC2
explained 13.7% of the variation and was a contrast between
traits involved with increased kernel size and traits that increase
kernel number. PC3 explained 7.2% of the variation and was a
contrast between the traits that indicated the percent of the ear
with kernels and overall ear size.

Broad-sense heritability was estimated for the 25 traits
evaluated in this study on an entry-mean and plot-mean
basis (Table 1). Among EP traits, entry-mean heritability
estimates ranged from 0.42 to 0.75. PHTYLD was among
the traits with the lowest entry-mean heritability of 0.52.
PHTKPE was marginally more heritable than PHTYLD

with a heritability of 0.60. EP traits with an entry-mean
heritability greater than or equal to 0.70 include EARLGT,
EARPER, KERWTH, KERMEAND, KERMIND, and KERPER.
Heritability of the physiology traits measured throughout
the growing season and reference yield components ranged
from 0.51 to 0.92.

Population Structure of Germplasm
Through visual assessment using the elbow method, four PCs
were found to sufficiently explain the population structure
among these inbred lines with 55.5% of the total variation
explained in the PCA of SNP data. PC1 explained 20.2%
of the total variance and visually separated the temperate
and tropical inbred lines (Figure 3). PC2 explained 16.6%
of the genomic variation and distinguished the SS from the
NS and IO temperate heterotic groups. In PC3, 11.6% of the
variance was explained from which the NS and IO heterotic
groups could be discriminated (Supplementary Figure 4). 6.5%
of the total variance in population structure was explained
by PC4 which largely differentiated inbred lines in the NS
heterotic group. Within these four PC the heterotic groups of
the DTMA inbred lines were never visually separated. When
performing PCA on the SNPs from DTMA inbred lines without
the temperate material, CIMMYT designated heterotic groups
remain difficult to separate (Supplementary Figure 5). Thus, our
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FIGURE 2 | Principal Component Analysis (PCA) to visualize the ear photometry (EP) traits and their correlation to photometry-estimated yield (PHTYLD) (A).
Dendrogram displaying the hierarchical clustering of EP traits using Ward’s Minimum Variance. The Ball-Hall index was used to determine the correct number of
groups (5) among the EP traits (B).

analysis does not separate the DTMA inbred lines into known
heterotic groups.

FIGURE 3 | Principal component analysis (PCA) for 533 inbred lines in this
study using 755,339 Single Nucleotide Polymorphisms (SNPs). PC1 (x-axis)
explains 20.2% of the variation of the SNP data while PC2 (y-axis) explains
16.6% of the variation of the SNP data. Testers in this experiment (2FACC and
PHP02) are individually labeled with distinct shapes while heterotic groups are
differentiated based on color. A, B, and AB are DTMA heterotic groups, while
Iodent (IO), Non-Stiff Stalk (NS), and Stiff Stalk (SS) are temperate heterotic
groups.

Analysis of Heterotic Patterns Through
Ear Photometry
The heterotic patterns of the temperate and tropical inbred
lines were evaluated for their testcross performance with 2FACC
(Table 2) and PHP02 (Table 3). In these tables, the heterotic
groups were presented as the mean and range for each trait.
Considerable differences were found within and among the
heterotic groups based on the means and ranges of the
phenotypic traits.

A decrease in testcross performance was seen when 2FACC
was crossed within the SS heterotic group compared to
NS and IO (Table 2 and Figure 4). Traits significantly (p
value< 0.05) reduced included PHTYLD, PHTKPE, EARAREA,
EARBOX, EARLGT, EARPER, EARVOL, PHTKPR, REFKPE,
and REFYLD. There was also a significant (p value < 0.05)
reduction in heterotic potential of the IO heterotic group
as compared to NS in testcrosses to 2FACC for PHTYLD,
PHTKPE, EARAREA, EARCW, EARVOL, EARWTH, ETB,
KERCC, PHTKR, PHTKPR, SCTTER, REFKW, REFKPE,
REFYLD, REFYLD18, MOISTURE, AD, SD, and PH. Traits
KERWTH, KERMIND, AD, SD, and ASI (GDD) were the
only traits significantly greater in the SS as compared to
NS heterotic group with IO material as an intermediate not
significantly different from either SS or NS for KERMIND,
KERWTH, and ASI. In testcross performance with 2FACC,
kernel attributes were generally not significantly improved as a
result of heterosis.

Many agronomic and EP traits were significantly
reduced when PHP02 was crossed within the IO heterotic
group as compared to SS and NS heterotic groups. Traits
significantly (p value < 0.05) reduced were PHTYLD,
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TABLE 2 | Best linear unbiased predictions (BLUPs) of all traits measured in this study for inbred lines crossed to 2FACC based on heterotic group, NS (Non-Stiff Stalk),
SS (Stiff Stalk), and IO (Iodent).

Trait Sections Trait Units Significance NS (n = 146) IO (n = 48) SS (n = 104)

Reference Physiology AD GDD* *** 709.9 (656.1–760.1) b 699.3 (676.1–750.4) c 719.9 (666.3–757.9) a

SD GDD *** 720.3 (659.2–774.7) b 711.7 (689.2–763.9) c 732.5 (673–779.5) a

ASI GDD * 68.7 (52.3–93.9) b 70.3 (58.7–93.7) ab 71.5 (53.3–107.3) a

ASI Days ns 1.2 (−0.4–2.3) 1.3 (0.8–2.3) 1.3 (0–2.9)

PH† Cm ** 223.9 (189.7–250) a 217.8 (193.5–235.3) b 219.9 (187.3–244.8) b

EH† Cm ns 93.7 (71.6–124.4) 93.6 (77.4–109.1) 95 (71.4–122.1)

Reference Yield Components REFKW† g kernel−1 * 0.324 (0.262–0.45) a 0.318 (0.277–0.342) b 0.318 (0.252–0.356) b

REFKPE† count ear−1 *** 626.7 (422.7–792.6) a 596 (476.7–706.9) b 562.8 (396.6–735.1) c

REFYLD† g ear−1 *** 201.5 (151.2–234.8) a 188.9 (153.5–227.7) b 179 (138.1–209.1) c

REFYLD18‡ kg ha−1 *** 10,334.8 (7,155–12,484.8) a 9,567.8 (7,718.4–11,224.3) b 9,556 (6,727.2–14,118.8) b

MOISTURE‡ % * 15 (14.5–16.4) a 14.9 (14.5–16.5) b 15 (14.6–16.4) ab

Ear Photometry PHTYLD g ear−1 *** 162.2 (141.3–193.7) a 156.4 (142.7–175) b 151.7 (129–173.9) c

PHTKPE count ear−1 *** 597 (480.4–681.7) a 575.1 (524.5–635.6) b 556.5 (438.9–648) c

KERWGT g kernel−1 ns 0.272 (0.252–0.315) 0.271 (0.254–0.287) 0.27 (0.249–0.291)

EARAREA cm2 ear−1 *** 88.8 (76.5–100.9) a 85.4 (77–96.7) b 82.4 (69.2–92.7) c

EARBOX – *** 0.846 (0.829–0.864) a 0.843 (0.819–0.855) a 0.84 (0.817–0.857) b

EARCW – *** 5.12 (4.61–5.76) a 4.96 (4.77–5.19) b 5.02 (4.67–5.37) b

EARLGT cm ear−1 *** 19.6 (17.3–22.8) a 19.4 (17.3–21.8) a 18.5 (15.5–20.3) b

EARPER cm ear−1 *** 49.7 (44.8–55.7) a 48.9 (44.1–54.6) a 46.8 (40.2–51.2) b

EARTR cm2 ear−1 *** 81.9 (77.4–85.7) a 81.1 (75.8–83.8) b 81.1 (75.5–84.6) b

EARVOL cm2 ear−1 *** 373.3 (313–435.7) a 352.4 (322.6–406.6) b 343.9 (292.9–394.2) c

EARWTH cm ear−1 *** 5.34 (4.96–5.9) a 5.2 (5–5.43) b 5.25 (4.91–5.58) b

ETB – *** 69.3 (64.1–74.2) a 68.4 (62.1–71.6) b 68.1 (61.6–72.5) b

KERARE cm2 kernel−1 ns 0.337 (0.305–0.427) 0.339 (0.311–0.362) 0.339 (0.306–0.377)

KERCC – *** 153 (121.5–176) a 146.5 (134.7–162.9) b 143.9 (111.2–163.3) b

KERFIL cm2 (cm2)−1 *** 86.5 (78.3–89.2) b 86.9 (84.7–89.9) b 87.6 (83.2–90.4) a

KERLEN cm kernel−1 ns 0.867 (0.793–0.939) 0.866 (0.81–0.908) 0.861 (0.81–0.908)

KERMAXD cm kernel−1 ns 0.893 (0.822–0.962) 0.892 (0.837–0.933) 0.887 (0.837–0.933)

KERMEAND cm kernel−1 ns 0.639 (0.603–0.734) 0.641 (0.615–0.662) 0.641 (0.608–0.68)

KERMIND cm kernel−1 * 0.435 (0.394–0.572) b 0.438 (0.419–0.462) ab 0.441 (0.404–0.483) a

KERPER cm kernel−1 ns 2.41 (2.24–2.73) 2.4 (2.25–2.5) 2.4 (2.25–2.55)

KERWTH cm kernel−1 * 0.454 (0.416–0.605) b 0.455 (0.438–0.478) ab 0.459 (0.423–0.506) a

PHTKR count ear−1 *** 17.3 (15.5–19.6) a 16.9 (15.5–18.5) b 17.1 (15.8–18.4) ab

PHTKPR count ear−1 *** 40.4 (32.4–47) a 39.5 (34.9–45.4) b 37.6 (29.1–42.3) c

SCTTER cm2 (cm2)−1 *** 11.5 (8.7–18.6) a 10.8 (8–13.1) b 10.3 (7.7–15) b

TKERAB cm cm−1 ** 6.5 (4.5–9.6) b 7.1 (5–10.4) a 6.7 (4.9–10.3) ab

Given in terms of mean for the heterotic group with the range in parenthesis. Letters following the BLUPs indicate significant differences between heterotic groups at p
value < 0.05. The same letters signify no significant differences between groups. *Daily Growing Degree Days (C◦) = Tmax C − Tmin C

2 − 10C If Max Temp > 30◦C, then Max
Temp = 30◦C. If Max Temp < 10◦C, then Max Temp = 10◦C. If Min Temp > 30◦C, then Min Temp = 30◦C. If Min Temp < 10◦C, then Min Temp = 10◦C. †Only measured
in 2017. For these traits, the effect of Year was removed from the model. ‡Only measured in 2018. For these traits, the effect of Year was removed from the model.

PHTKPE, KERWGT, EARAREA, EARCW, EARLGT,
EARPER, EARVOL, EARWTH, KERCC, KERLEN, PHTKPR,
PH, and EH (Table 3). SS and NS heterotic groups were
only significantly (p value < 0.05) different for EARBOX,
EARTR, ETB, PHTKR, TKERAB, and REFYLD18 when
crossed to PHP02.

In testcross performance with PHP02, the DTMA
inbred lines exhibited similar performance to SS and NS
heterotic backgrounds (Figure 5). PHTYLD, EARAREA,
EARCW, EARLGT, EARVOL, EARWTH, REFKW, and
REFYLD were not significantly different from the SS and
NS heterotic groups; however, PHTKPE, EARBOX, EARTR,

ETB, KERCC, KERFIL, PHTKPR, REFKPE, and REFYLD18
were significantly (p value < 0.05) reduced. The reduction
in kernel number attributes was present due to a significant
(p value < 0.05) increase in SCTTER compared to NS
and SS heterotic groups and TKERAB compared to NS.
PHTYLD was not significantly different between SS, NS,
and DTMA heterotic groups though due to a significant (p
value < 0.05) increase in KERWGT, EARPER, KERARE,
KERLEN, KERMAXD, KERMEAND, KERMIND, KERPER,
and KERWTH in DTMA compared to NS and SS inbred
lines. In addition to EP traits, hybrids from DTMA inbred
lines exhibited significantly (p value < 0.05) greater AD, SD,
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TABLE 3 | Best linear unbiased predictions (BLUPs) of all traits measured in this study for inbreds crossed to PHP02 based on heterotic group, NS (Non-Stiff Stalk), SS (Stiff Stalk), IO (Iodent), and DTMA (Drought
Tolerant Maize for Africa).

Trait Sections Trait Units Significance NS (n = 151) IO (n = 46) SS (n = 89) DTMA (n = 247)

Reference Physiology AD GDD* *** 704.4 (704.4–761.3) b 702.4 (670.1–747.9) b 696.7 (652.9–751.7) b 774.7 (699.6–856.9) a

SD GDD *** 720.8 (720.6–770.7) b 727.5 (678.1–846.8) b 714.5 (676.1–754.3) b 804.9 (713.4–956) a

ASI GDD *** 74.4 (72.5–107.5) c 80 (62.2–111.2) b 76.5 (56.9–104.5) bc 85.5 (58.2–124.4) a

ASI Days *** 1.5 (1.4–3.2) c 1.9 (0.9–9.7) b 1.5 (0.6–2.9) bc 2.3 (0.7–6.9) a

PH† Cm *** 221.1 (221.3–258.3) b 205.9 (171.6–250.3) c 223.5 (183.5–255.5) b 254.9 (216.5–312.3) a

EH† Cm *** 101.6 (101.7–130.7) b 93.9 (66.1–120.2) c 103.1 (79–125.3) b 133.3 (100.8–175.1) a

Reference Yield Components REFKW† g kernel−1 *** 0.334 (0.247–0.383) a 0.318 (0.268–0.364) b 0.335 (0.297–0.377) a 0.338 (0.273–0.41) a

REFKPE† count ear−1 *** 618.9 (472.4–799.4) a 562.4 (451.5–714.8) c 620.9 (503.3–737.4) a 597.5 (399.1–730.9) b

REFYLD† g ear−1 *** 206.6 (133.8–252.3) a 180.5 (132.8–241.5) b 207.3 (153–257.3) a 201.4 (141.2–240.7) a

REFYLD18‡ kg ha−1 *** 10,054.1 (4828.2–16,128.4) b 8,885.1 (5,717.2–13,035.7) c 10,529.2 (8,342.4–13,726.5) a 8,598.6 (5,174.6–12,161.3) c

MOISTURE‡ % *** 14.9 (10.2–16) b 14.8 (14.2–15.4) b 14.9 (10.3–16.1) b 16.6 (14.9–20.5) a

Ear Photometry PHTYLD g ear−1 *** 167.1 (132.9–192) a 154 (131.1–195.2) b 166.7 (140.3–185.7) a 165.6 (128.7–194) a

PHTKPE count ear−1 *** 601.9 (505.6–688.9) a 562.2 (473–718.7) c 604.8 (530.6–686.5) a 582.8 (423.5–682.3) b

KERWGT g kernel−1 *** 0.278 (0.251–0.312) b 0.272 (0.256–0.287) c 0.277 (0.26–0.299) b 0.284 (0.255–0.327) a

EARAREA cm2 ear−1 *** 91.4 (72–104.7) a 83.7 (70.5–102) b 91.5 (76.5–99.6) a 92 (71.3–104.7) a

EARBOX – *** 0.854 (0.832–0.871) a 0.85 (0.83–0.864) ab 0.85 (0.838–0.866) b 0.845 (0.803–0.869) c

EARCW – *** 5 (4.56–5.56) a 4.84 (4.53–5.25) b 5.04 (4.65–5.41) a 5.02 (4.6–5.41) a

EARLGT cm ear−1 *** 20.4 (17–23.8) a 19.2 (16.8–22.2) b 20.4 (17.8–22.3) a 20.6 (16.9–25) a

EARPER cm ear−1 *** 51.5 (43.1–57.9) b 48.3 (42.7–55.7) c 51.3 (45.1–56.6) b 52.5 (44.6–67.6) a

EARTR cm2 ear−1 *** 83.9 (80.3–86.7) a 83.4 (78.8–85.9) ab 82.8 (80.2–86) b 82.1 (75.9–86.7) c

EARVOL cm2 ear−1 *** 378 (284.4–453.1) a 341 (278.8–435.4) b 380.6 (304.6–424.3) a 383.3 (296.8–451.4) a

EARWTH cm ear−1 *** 5.24 (4.75–5.81) a 5.08 (4.75–5.52) b 5.29 (4.88–5.57) a 5.28 (4.85–5.67) a

ETB – *** 71.7 (67.1–75.6) a 71.1 (65.3–74.3) ab 70.5 (67.3–74.6) b 69.4 (61.7–75.6) c

KERARE cm2 kernel−1 *** 0.352 (0.315–0.398) b 0.346 (0.318–0.369) b 0.349 (0.316–0.391) b 0.365 (0.307–0.443) a

KERCC – *** 155.3 (125.5–185.1) a 144.6 (119.5–184.5) c 157.1 (136.7–178.5) a 152.2 (111.5–179.6) b

KERFIL cm2 (cm2) −1 *** 86.5 (75.8–89.3) a 87.3 (83.3–89.9) a 86.5 (79.5–88.8) a 85.1 (76.5–90.6) b

KERLEN cm kernel−1 *** 0.872 (0.8–0.949) b 0.854 (0.794–0.909) c 0.866 (0.832–0.934) b 0.882 (0.817–0.966) a

KERMAXD cm kernel−1 *** 0.898 (0.83–0.974) b 0.881 (0.823–0.934) c 0.893 (0.857–0.96) bc 0.91 (0.849–0.989) a

KERMEAND cm kernel−1 *** 0.655 (0.619–0.703) b 0.651 (0.624–0.675) b 0.653 (0.619–0.696) b 0.67 (0.61–0.746) a

KERMIND cm kernel−1 *** 0.454 (0.408–0.507) b 0.458 (0.426–0.487) b 0.453 (0.42–0.51) b 0.47 (0.41–0.56) a

KERPER cm kernel−1 *** 2.44 (2.28–2.72) b 2.4 (2.26–2.5) c 2.42 (2.29–2.58) bc 2.54 (2.36–2.97) a

KERWTH cm kernel−1 *** 0.471 (0.424–0.524) b 0.473 (0.442–0.507) b 0.468 (0.434–0.523) b 0.49 (0.429–0.592) a

PHTKR count ear−1 *** 16.9 (15.3–19) b 16.6 (15.4–18.3) b 17.2 (15.6–18.4) a 16.8 (15.2–19.6) b

PHTKPR count ear−1 *** 41.3 (34–48.2) a 38.5 (32.4–45.8) c 40.9 (37–45.1) a 39.9 (28.2–45) b

SCTTER cm2 (cm2) −1 *** 11.8 (9.1–22.9) b 10.9 (8.3–15.2) b 11.7 (9.3–19) b 12.9 (7.4–21.7) a

TKERAB cm cm−1 *** 5.2 (3.5–8.2) c 5.5 (3.8–7.4) bc 5.9 (3.5–8) ab 6.1 (3.2–10.8) a

Given in terms of mean for the heterotic group with the range in parenthesis. Letters following the BLUPs indicate significant differences between heterotic groups at p value < 0.05. The same letters signify no significant
differences between groups. *Daily Growing Degree Days (C◦) = Tmax C − Tmin C

2 − 10C If Max Temp > 30◦C, then Max Temp = 30◦C. If Max Temp < 10◦C, then Max Temp = 10◦C. If Min Temp > 30◦C, then Min
Temp = 30◦C. If Min Temp < 10◦C, then Min Temp = 10◦C. †Only measured in 2017. For these traits, the effect of Year was removed from the model. ‡Only measured in 2018. For these traits, the effect of Year was
removed from the model.
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FIGURE 4 | Representative ears for each of the heterotic groups in hybrid combination with 2FACC. Selected ears had an average yield and yield components for
their heterotic group combination. Abbreviations for heterotic groups include: NS (Non-Stiff Stalk), IO (Iodent), and SS (Stiff Stalk).

ASI (GDD and Days), PH, and EH as expected due to their
tropical origin.

Variance of PHTYLD was estimated on a per plot basis
from 10 ears in 2017 and five ears in 2018. Due to the
differences in number of ears sampled per plot, analysis was not
combined between years. In 2017, mean within-plot variance
per plot was 427.5. DTMA testcrosses had significantly greater
(p value < 0.001) within-plot variance than plots of temperate
descent (510.2 and 392, respectively). In 2018, mean within-plot
variance per plot was 316.3. DTMA testcrosses had significantly
greater (p value < 0.05) within-plot variance than temperate
testcrosses (351.6 and 302.5, respectively).

DISCUSSION

Ear Photometry
Grain yield as measured on a per plot basis has been
the primary trait selected upon in commercial breeding
programs. As a complex trait, grain yield is a composite of
many yield-related traits known as yield components. While
yield components generally are found to be more heritable
(Table 1), phenotyping these traits has historically been time-
consuming, labor-intensive, prone to error, and difficult to
scale in a large breeding program (Bernardo, 2014; Cooper
et al., 2014). Ear photometry removes many of these barriers
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FIGURE 5 | Representative ears for each of the heterotic groups in hybrid combination with PHP02. Selected ears had an average yield and yield components for
their heterotic group combination. Abbreviations for heterotic groups include: NS (Non-Stiff Stalk), IO (Iodent), SS (Stiff Stalk), and DTMA (Drought Tolerant Maize for
Africa).

while providing a more in-depth understanding of yield and
yield components.

Photometry-estimated yield was validated in this study with
regards to reference yield measured from a combine in 2018
(n = 1,568) and on a per ear basis in 2017 (n = 1,413). The
correlation between photometry-estimated yield and reference
yield in 2018 was r = 0.39. When stand count was used as a
covariate in the model, the correlation increased to r = 0.47
(Figure 1D). On a per ear basis, yield is the product of
kernel number and average kernel size. The correlation between
photometry-estimated yield per ear and reference yield per ear
was r = 0.75 (Figure 1C).

Yield components, kernels per ear and kernel weight, were
other traits that were validated in 2017 (n = 1413) (Figure 1).
Kernel number per ear was taken at the plot level and
divided by 10, the number of ears taken per plot. Kernel
weight was determined by dividing the total kernel weight
by the total kernel number. Photometry-estimated kernels per
ear was correlated with reference kernels per ear (r = 0.88)
(Figure 1B). Photometry-estimated kernel weight was correlated
with reference kernel weight (r = 0.49) (Figure 1A). The

correlation between photometry-estimated kernels per ear and
reference kernels per ear was unaffected by the background
of the germplasm, while the correlation between photometry-
estimated kernel weight and reference kernel weight was reduced
in the tropical (r = 0.38) compared to the temperate germplasm
(r = 0.51) (Supplementary Figure 1). As such, the correlation of
photometry-estimated yield to reference yield fell in the tropical
germplasm (r = 0.49) as compared to the temperate germplasm
(r = 0.86). Pioneer Hi-Bred International also validated many of
the traits in this platform including kernels per ear (R2 = 0.87;
n = 287) and yield (R2 = 0.97; n = 1,500) in temperate germplasm
(Hausmann et al., 2009). This study shows that EP can be
extended to quantify variation in ear traits in tropical germplasm.

Grift et al. (2017), Miller et al. (2017), and Makanza et al.
(2018) previously evaluated high-throughput methods for yield
component assessment in maize. Grift et al. (2017) used machine
learning to evaluate kernel number per year on 23 maize ears.
Using the full ear, they found errors ranging from −7.67 to
8.60% which indicated under- and over-counting, respectively,
and a coefficient of determination of R2 = 0.7. Miller et al. (2017)
evaluated the yield components of 445 diverse inbred lines. In
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FIGURE 6 | Visual description of hybrid breeding. Inbred line 2FACC, on the left, from the Stiff Stalk heterotic group and inbred line PHP02, on the right, from the
Iodent heterotic group show reduced vigor due to inbreeding depression. The hybrid of these inbred lines displays greater yield potential than either inbred parent
due to hybrid vigor. *2FACC inbred was not produced in this study. As the progenitor of 2FACC, PB80 produced a highly inbred line when crossed to 2FACC.

their platform, three types of images were obtained. First, each
genotype had three ears imaged from two angles where the
second angle was a 90-degree rotation of the ear. After being
shelled, these cobs were again imaged. Finally, the kernels were
imaged when spread out on a black sheet. Using this platform,
these authors found high correlations between ear length and
kernel length to their reference phenotypes with coefficients of
determination of R2 = 0.99 and 0.74, respectively. Makanza et al.
(2018) evaluated 10 hybrids from an experiment performed in
Zimbabwe. Ears were collected from these field trials, arranged
on a black cloth, and were photographed from a mounted camera
tripod stand. Shelled kernels were imaged on a black background.

Yield components related to the ears (i.e., ear length and ear
width) were accurately correlated to reference measurements
(r = 0.99 and 0.97, respectively). Yield components such as kernel
count and kernel weight were also correlated to their reference
measurements (r = 0.99 and 0.94, respectively).

The phenotyping platform described in this paper presents
a potential improvement over the previously mentioned
phenotyping strategies as the kernels do not need to be shelled
from the ears and the ears are only imaged from one angle. The
ease of using this platform enables it to be scaled to the level
needed in a breeding program; however, the accuracy of kernel
weight assessment was reduced in this study from the platform
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described in Makanza et al. (2018) as the kernels were not shelled
prior to imaging.

Heritability of a given trait is a function of the germplasm
under evaluation and the effect of the environment (Bernardo,
2014). In our study, heritability of photometry-estimated yield
was among the lowest traits evaluated (H2 = 0.52). Lian
et al. (2014) evaluated the heritability of multiple traits in
969 maize biparental crosses. They found that heritability
of grain yield ranged from 0.17 to 0.92 with a mean of
0.46. In our study, the heritability of many yield components
was increased in comparison to photometry-estimated yield
(Table 1). Photometry-estimated traits such as kernels per
ear (H2 = 0.60), ear length (H2 = 0.71), and kernel
perimeter (H2 = 0.75) are a subset of yield components
with an increased heritability. Ross et al. (2006) evaluated
heritability of yield components and found that ear length
and kernel row number were more heritable than grain
yield. In their study which used a biparental population,
kernel attributes such as kernel length, kernel width, kernel
thickness, and 100-kernel weight had heritabilities ranging from
0.65 to 0.79. Selection based on these traits with increased
heritability could improve genetic gain and selection accuracy
(Araus et al., 2018).

Variation between plots is the foundation of plant breeding,
indicating sources of genetic variation from which breeders make
selections. Variation within plots is measured relatively less often
as grain yield is often estimated at a plot level. Nevertheless,
within-plot variability has been suggested to be an indicator
for yield stability in varying environments (Hausmann et al.,
2009). In both of these years, testcrosses to DTMA inbred lines
resulted in a significant (p value < 0.001, 2017; p-value < 0.05,
2018) increase in within-plot variance compared to temperate
testcrosses. Many of the temperate inbred lines used in this
study were the result of intensive selection where inbred lines
were evaluated in multi-environment trials within commercial
breeding programs where yield stability was an important
consideration (Cooper et al., 2014). Additionally, the unadapted
nature of the DTMA inbred lines to the United States Corn Belt
could have been an extra source of the within-plot variation.
However, the range in variability in the DTMA material was 23–
2,866 in 2017 and 12–3,166 in 2018 suggesting variability in the
yield stability of these testcrosses.

Description of Heterotic Groups
Principal component analysis is commonly employed to assess
population structure in genomic studies (Figure 3). The heterotic
groups of the temperate inbred lines were classified in accordance
with Beckett et al. (2017). From canonical axes 2 and 3
(16.6 and 11.6% of the total variation explained, respectively)
of the principal component analysis, Stiff Stalk, Non-Stiff
Stalk, and Iodent heterotic groups were visually separated
(Supplementary Figure 4). The Stiff Stalk heterotic group was
first separated from the Non-Stiff Stalk and Iodent inbred
lines suggesting that the Non-Stiff Stalk and Iodent heterotic
groups are more closely related than inbred lines of Stiff Stalk
origin as previously reported (Mikel, 2008; Nelson et al., 2008;
Beckett et al., 2017).

Mikel (2008) evaluated the genetic diversity of 55 inbred
parents used in Holden’s Foundation Seeds and Pioneer Hi-
Bred International. They classified two major heterotic groups
among temperate germplasm: Stiff Stalk and Non-Stiff Stalk.
Through pedigree-based records, Mikel and Dudley (2006) and
Mikel (2008) trace the lineage of the Stiff Stalk heterotic group
to public inbred line B73 and conclude there is less genetic
diversity within Stiff Stalk material than Non-Stiff Stalk material.
In evaluating the Non-Stiff Stalk material, subgroups included
germplasm derivatives from Lancaster Sure Crop, Minnesota 13,
Leaming Corn, Northwestern Dent, and Iodent (Troyer, 1999;
Mikel, 2008). The role of Iodent germplasm has increased in
commercial programs and hybrids composed of Iodent and Non-
Stiff Stalk inbred parents are commercially viable (Mikel, 2011)
leading to its own designation in this study as has previously
been done (Nelson et al., 2008; Beckett et al., 2017; White et al.,
2020).

The temperate and tropical inbred lines could be visually
separated along principal component 1 (20.2%) (Figure 3).
Multiple heterotic groups are represented within the CIMMYT
breeding program (personal communication), but their
classification was difficult to distinguish in PCA with (Figure 3)
and without the temperate material (Supplementary Figure 5)
as has previously been reported by Wu et al. (2016). Additionally,
inclusion into United States breeding programs did not appear
to be dependent on their tropical heterotic group classification.
Based on the variation in the genotypic information, we believe
that the DTMA germplasm could have potential in hybrid
combination with all temperate heterotic groups. Holland and
Goodman (1995) report similar findings of broad utility of
several exotic families to temperate heterotic groups.

Phenotypic Characteristics of Heterotic
Groups
Since maize in the United States is commercially grown as
a hybrid crop, inbred lines are normally selected based on
testcross rather than per se performance (Bernardo, 2014). In
this study, inbred testers PHP02 (Iodent) and 2FACC (Stiff
Stalk) were used to characterize the heterotic patterns and
ear phenotypes of available inbred lines. The implications of
heterosis were evident when inter- and intra-heterotic group
crosses were compared (Tables 2, 3 and Figures 4, 5). Within
the crosses to PHP02, Iodent inbred lines were significantly
reduced as compared to Stiff Stalk and Non-Stiff Stalk material
with regards to traits pertaining to yield, ear size, kernels per
ear, and kernel size (Table 3). Within crosses to 2FACC, Stiff
Stalk inbred lines were significantly reduced for yield, ear size,
and kernels per ear; however, many kernel size traits were not
significantly reduced (Table 2). The effects of heterosis were
more noticeable in traits related to yield, ear size, and kernel
number than kernel size. Stiff Stalk and Non-Stiff Stalk groups
were found to have similar heterotic potential when crossed
with Iodent tester PHP02 (Table 3 and Figure 5), while Stiff
Stalk tester 2FACC was found to combine best with Non-
Stiff Stalk inbred lines with the Iodent heterotic group being
an intermittent improvement to the Stiff Stalk heterotic group
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(Table 2 and Figure 4). As Plant Variety Protection expires on
inbred lines, ear photometry can provide valuable information
about these inbred lines which are considered as sources of new
germplasm in breeding programs without previous access to the
proprietary material.

Heterosis and hybrid vigor are the foundations for the success
of modern maize breeding in the United States (Figure 6). Hauck
et al. (2014) found that the effects of heterosis were apparent
in many yield components including kernel row number,
kernel weight, and kernels per row. Additionally, in evaluating
midparent heterosis, Tollenaar et al. (2004) found the heterotic
effect of kernels per area to be greater than kernel weight.
While primarily measured at harvest, these yield components are
determined throughout the growing season. Maximum kernel
number per ear is determined in the vegetative growth stages with
optimum growth conditions maximizing this yield component.
Subsequently, kernel weight is a function of the number of kernels
on a given ear and the amount of resources that are allocated to
the reproductive organs in their critical period of grain filling
following pollination (Nielsen, 2002). Average kernel weight is
the more elastic yield component in comparison with kernel
number per ear which leads to its heritability (Table 1) and
midparent heterosis (Tollenaar et al., 2004) being reduced. The
effect of heterosis and genetic gain in physiological processes
of maize development is the foundation for greater grain yield
(Tollenaar and Lee, 2006).

In hybrid combination with PHP02, the tropical germplasm
performed well for many ear traits including yield, kernels
per ear, and ear length in this study. Tropical germplasm was
previously considered for inclusion into commercial germplasm
pools (Holland and Goodman, 1995; Mikel, 2011). Holland
and Goodman (1995) found that several semiexotic topcrosses
were comparable in yields compared to B73Ht × Mo17Ht F1
hybrids. These results indicate the potential of these lines to
simultaneous increase genetic diversity and grain yield upon
intensive plant breeding efforts. Exotic germplasm was previously
used in commercial breeding programs. For example, inbred
PHG39, a main contributor of the contemporary Pioneer Hi-
bred International Stiff Stalk heterotic group, is comprized of
25% exotic germplasm (Maize Amargo) (Mikel and Dudley,
2006; Mikel, 2011). Pre-breeding efforts are needed on traits
such as plant height, ear height, and growing degree days to
flowering to adapt these inbred lines to production in the
United States Corn Belt.

CONCLUSION

Ear photometry methods can be used to identify and quantify
traits that were previously difficult to measure at scale in a
breeding program. In this study, kernels per ear (r = 0.88) and
kernel weight (r = 0.49) were both correlated with their reference
measurements. Grain yield on per ear basis and plot basis were
also correlated with reference measurements with correlations
of r = 0.75 and r = 0.47, respectively. Twenty-five ear traits
were assessed. Traits related to ear size and kernels per ear
were found to be more related to yield than kernel attributes.

Similarly, traits related to ear size and kernels per ear were found
to be affected by heterosis to a greater degree than kernel size
when evaluating inter-heterotic group crosses compared to intra-
heterotic group crosses. Yield components were generally found
to be more heritable than grain yield indicating their potential in
inbred selection. Temperate, commercial United States heterotic
groups had a wide range of phenotypes when inter- and intra-
heterotic group testcrosses were evaluated. DTMA inbred lines,
when evaluated using an Iodent tester, were found to have
comparable yields to temperate material due to an increase in
kernel weight that overcame the decrease in kernels per ear.
Detailed phenotypic description of inbred lines is instrumental
in the use of ex-PVP inbreds in public breeding programs and the
incorporation of diverse germplasm to sustain long-term genetic
gain in the commercial United States maize industry.
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Phenotyping plants is an essential component of any effort to develop new crop
varieties. As plant breeders seek to increase crop productivity and produce more
food for the future, the amount of phenotype information they require will also
increase. Traditional plant phenotyping relying on manual measurement is laborious,
time-consuming, error-prone, and costly. Plant phenotyping robots have emerged as
a high-throughput technology to measure morphological, chemical and physiological
properties of large number of plants. Several robotic systems have been developed to
fulfill different phenotyping missions. In particular, robotic phenotyping has the potential
to enable efficient monitoring of changes in plant traits over time in both controlled
environments and in the field. The operation of these robots can be challenging as a
result of the dynamic nature of plants and the agricultural environments. Here we discuss
developments in phenotyping robots, and the challenges which have been overcome
and others which remain outstanding. In addition, some perspective applications of the
phenotyping robots are also presented. We optimistically anticipate that autonomous
and robotic systems will make great leaps forward in the next 10 years to advance the
plant phenotyping research into a new era.

Keywords: autonomous robotic technology, agricultural robotics, phenotyping robot, high-throughput plant
phenotyping, computer vision

INTRODUCTION: ROBOTIC TECHNOLOGY IS VITAL FOR
HIGH-THROUGHPUT PLANT PHENOTYPING

Agriculture must produce enough food, feed, fiber, fuel, and fine chemicals in next century to meet
the needs of a growing population worldwide. Agriculture will face multiple challenges to satisfy
these growing human needs while at the same time dealing with the climate change, increased
risk for drought and high temperatures, heavy rains, and degradation of arable land and depleting
water resources. Plant breeders seek to address these challenges by developing high yielding and
stress-tolerance crop varieties adapted to future climate conditions and resistant to new pests and
diseases (Fischer, 2009; Furbank and Tester, 2011; Rahaman et al., 2015). However, the rate of crop
productivity needs to be increased to meet projected future demands. Advances in DNA sequencing
and genotyping technologies have relieved a major bottleneck in both marker assisted selection and
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genomic prediction assisted plant breeding, the determination of
genetic information for newly developed plant varieties. Dense
genetic marker information can aid in the efficiency and speed
of the breeding process (Wang et al., 2018; Happ et al., 2019;
Moeinizade et al., 2019). However, large and high quality plant
phenotypic datasets are also necessary to dissect the genetic
basis of quantitative traits which are related to growth, yield
and adaptation to stresses (McMullen et al., 2009; Jannink et al.,
2010; Phillips, 2010; Fahlgren et al., 2015; Tripodi et al., 2018;
Chawade et al., 2019).

Plant phenotyping is the quantitative and qualitative
assessment of the traits of a given plant or plant variety in a given
environment. These traits include the biochemistry, physiology,
morphology, structure, and performance of the plants at various
organizational scales. Plant traits are determined by both genetic
and environmental factors as well as non-additive interactions
between the two. In addition, variation in one phenotypic trait
(e.g., leaf characteristics) can result in variation in other plant
traits (e.g., plant biomass or yield). Therefore, phenotyping large
numbers of plant varieties for multiple traits across multiple
environments is an essential task for plant breeders as they work
to select desirable genotypes and identify genetic variants which
provide optimal performance in diverse and changing target
environments (Granier and Tardieu, 2009; Dhondt et al., 2013; Li
et al., 2014; Foix et al., 2015; Walter et al., 2015; Costa et al., 2019;
Pieruschka and Schurr, 2019).

Traditionally plant traits are quantified using manual and
destructive sampling methods. These methods are usually labor-
intensive, time-consuming, and costly. In addition, manual
sampling and analysis protocols generally involve many steps
requiring human intervention, with each step increasing the
chances of introducing mistakes. Often the plant and its organ
is cut at fixed time points or at particular phenological stages in
order to measure its phenotypic traits. This method destroys or
damages the plant at one time point, disallowing the temporal
examination of the traits for individual plants during the growing
season. For example, yield measurement (such as plant biomass
and grain weight) is invasive and more labor intensive compare
to the measurement of plant height and leaf chlorophyll content
(measured by a handheld sensor). As a result of the labor and
resource intensive nature of plant phenotyping, many plant
breeders rely solely on a single measurement most critical to their
efforts: yield. However, yield is considered as one of the most
weakly inherited phenotypes in crop breeding (Richards et al.,
2010; Furbank and Tester, 2011). The measurement of other traits
in addition to yield can increase the accuracy with which yield
can be predicted across diverse environments. Enabling high-
throughput and non-destructive measurements of plant traits
from large numbers of plants in multiple environments would
therefore lead to increases in breeding efficiency (McMullen
et al., 2009; Andrade-Sanchez et al., 2013; Fahlgren et al., 2015;
Foix et al., 2018; Vijayarangan et al., 2018; Ge et al., 2019;
Hassanijalilian et al., 2020a).

In recent years, high-throughput systems and workflows have
been developed to monitor and measure large populations of
plants rapidly in both greenhouse and field environments. These
systems combine modern sensing and imaging modalities with

the sensor deployment technologies (including conveyor belts,
ground and aerial vehicles, and field gantries) to enable fast
measurement and wide area coverage (Busemeyer et al., 2013;
Ge et al., 2016; Virlet et al., 2017; Hassan et al., 2019). Although
not fully autonomous, these systems represent the state of the art
in modern plant phenotyping with several advantages over the
traditional, manually collected phenotypic traits.

Robotic systems have been playing a more significant role
in modern agriculture and considered as an integral part of
precision agriculture or digital farming (Wolfert et al., 2017;
Chlingaryan et al., 2018; Zhang et al., 2019; Hassanijalilian et al.,
2020b; Jin et al., 2020; Pandey et al., 2021). The robots are
fully autonomous and do not need experienced operators to
accomplish farming tasks. This is the biggest advantage of the
robots compared to tractor-based systems (White et al., 2012).
Autonomous robots have taken over a wide range of farming
operations including harvesting [Arad et al., 2020 (sweet pepper);
Hemming et al., 2014 (sweet pepper); Lili et al., 2017 (tomato);
van Henten et al., 2002 (cucumber); Hayashi et al., 2010; Xiong
et al., 2020 (strawberry); Silwal et al., 2017 (apple)], pest and
weed control [Raja et al., 2020 (tomato and lettuce); Oberti
et al., 2016 (grape); Åstrand and Baerveldt, 2002 (sugar beet);
Blasco et al., 2002 (lettuce)], spraying [Hejazipoor et al., 2021
(Anthurium); Gonzalez-de-Soto et al., 2016 (wheat); Adamides
et al., 2017 (grape)], and pruning [Zahid et al., 2020 (apple);
Chonnaparamutt et al., 2009; Ishigure et al., 2013 (cedar and
hinko trees)]. Together with imaging and sensing, autonomous
robotic systems are also deemed essential and integral parts
for high-throughput plant phenotyping, as they will enhance
substantially the capacity, speed, coverage, repeatability, and cost-
effectiveness of plant trait measurements.

In this paper, we reviewed the latest development of robotic
technologies in high-throughput plant phenotyping. We define
the robotic technologies as a system having three components:
(1) a sensing module that senses the target (plants or crops)
and its environment, (2) a computational module to interpret
the sensed information and form adaptive (or context-specific)
decisions, and (3) an actuation module to complete certain
desired operations (e.g., robotic probing, trait measurements, and
navigation). For example, the robot makes decision based on the
existing status of environment, obstacles, and plant geometry to
manipulate a robotic arm to locate an imaging system with less
occlusion and collision free close to plant organs, find appropriate
target point on the leaf and control the end-effector based on
the leaf angle for effective grasping, or accurately navigate the
ground-based vehicles between crop rows. With this definition,
systems like LemnaTec’s conveyor-based phenotyping platform
(Fahlgren et al., 2015; Ge et al., 2016) was not considered in the
review, because the plant movement usually follows a pre-defined
schedule and no adaptive decision is made during phenotyping.
Also not considered in this review are self-propelled ground
vehicles or unmanned aerial vehicles (Bai et al., 2016; Han et al.,
2018) that are merely used as a sensor deployment platform with
no automated path planning or navigation.

Different artificial intelligence (AI) technologies such as deep
learning, fuzzy logic, and genetic algorithms are actively used
for control of the phenotyping robots. In recent years, deep
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learning techniques has gained increased interest to guide robotic
manipulators and mobile platforms. In this regard, deep neural
networks (DNNs) are commonly used to detect different objects
in images such as crop rows, plant organs, soil, and obstacles.
DNNs are typically operate directly on raw images and actively
learn a variety of filter parameters during the training of a model
(Pound et al., 2017; Irshat et al., 2018). Aguiar et al. (2020)
presented a DNN models to detect the vine trunks as reliable
features and landmarks to navigate a mobile robot in a vineyard.
Parhar et al. (2018) used variation of Generative Adversarial
Network (GAN) to detect the stalk of sorghum in the field and
grasp it by a robotic manipulator.

There are three motivations behind writing this review paper.
Firstly, robotic technologies in agriculture have seen rapid
advancement recently with many emerging applications in plant
phenotyping. A timely review of the literature is warranted
to summarize the newest development in the field. Secondly,
there is large and growing interest from the plant breeding and
plant science communities in how these new technologies can
be integrated into research and breeding programs to improve
phenotyping throughput and capacity (Furbank and Tester, 2011;
Fiorani and Schurr, 2013; Araus and Cairns, 2014). Thirdly,
robotic phenotyping has advanced through cross-disciplinary
collaborations between engineers and plant scientists. Outlining
capabilities, goals and interests across these two very different
disciplines may help readers to identify research gaps and
challenges as well as provide insight into the future directions of
the plant phenotyping robotic technologies.

REVIEW: MANY INDOOR AND
OUTDOOR ROBOTS WERE DEVELOPED
TO MEASURE A WIDE RANGE OF PLANT
TRAITS

Phenotyping robotic systems have emerged to automate
the phenotyping process in different aspects. The robotic
manipulators and ground-based vehicles are used as platforms
to attach different sensors to collect data rapidly and with
higher repeatability. Robotic systems are deployed to collect and
measure the human-defined phenotypic traits (such as plant
height, and leaf area). Additionally, in some cases it is needed
to collect repeated measurements of plant traits within large
populations at several time points during a growing season.
Robotic systems are highly desirable in this scenario as they
provide the necessary speed and accuracy for this kind of
phenotyping tasks.

Robotic platforms for plant phenotyping applications can
be divided into two categories: those developed for indoor or
controlled environments (greenhouse or laboratory), and those
for outdoor environments (field) (Shafiekhani et al., 2017). In
controlled environment, plants are either placed in a fixed
position and the robot moves around the facility to interact with
the plants, or the plants are moved by conveyor belts or other
automated systems to a fixed location where the robot operates.
Often the robotic system does not need to touch the plants. The

robotic arm is equipped with RGB cameras or depth sensors
[Time of Flight (TOF) cameras or 3D laser scanners] to acquire
visible images or point cloud data. The morphological traits of
the plants are then estimated from the reconstructed 3D model
of the plants. Stem height and leaf length of corn seedlings were
measured using a robotic arm at a fixed position and a TOF
camera (Lu et al., 2017). Chaudhury et al. (2017) developed a
gantry robot system consisted of a 3D laser scanner installed on
the end-effector of a seven Degree of Freedom (DOF) robotic
arm to compute the surface area and volume of Arabidopsis
and barley. The settings of both robotic systems were unable
to position the vision system to capture images from the leaves
hidden by other leaves or the stem. This occlusion problem is
common in image-based phenotyping (Das Choudhury et al.,
2019). Even with imaging from multiple views (e.g., enabled by
rotating plants during image acquisition), occlusion can still be
substantial. The use of imaging systems carried by a robotic
manipulator can provide viable solution to this issue, due to
the flexibility of the robotic manipulator to position and orient
cameras at the best intended viewpoints. Wu et al. (2019)
proposed an automated multi-robot system, which comprised of
three robotic arms each equipped with a depth camera to obtain
the point cloud data of the plant (Figure 1A). Deep learning
based next-best view (NBV) planning pipeline was presented to
evaluate and select the next-best viewpoints to maximize the
information gain from the plant in data acquisition process. The
robotic arms then were manipulated based on the determined
optimal viewpoints. Their system was more efficient and flexible
compared to other robotic systems to address the occlusion issue.
The ability of the system to find the optimal viewpoints, however,
can be challenging, because its performance depends upon the
predictions produced by the trained deep networks. This means
that the best view-points may not be determined by the system if
the deep networks can not generate accurate predictions.

A second group of indoor plant phenotyping robots sought
to touch or probe plants or plant organs, in order to
extend the ability of robotic phenotyping from plant’s outward
morphological traits to innate physiological and biochemical
traits (Schulz and Baranska, 2007; Biskup et al., 2009). In this
sense, the phenotyping robot was designed to mimic humans
to manipulate plants and measure certain traits from targeted
plant organs (Figure 2). This type of the robotic systems usually
included a robotic gripper designed to attach specialized plant
sensors, and a vision module to segment the plant from the
background and find an appropriate point on the organs for
probing [Alenyà et al., 2011; Shah et al., 2016; Bao et al.,
2017 (Ficus plant)] or grasping process [Alenya et al., 2013;
Ahlin et al., 2016 (Anthurium, Pothos, and Dieffenbachia)].
A sensor-equipped robot was presented to measure physiological
parameters of the plant (Bao et al., 2019c). The sensor unit
including RGB, hyperspectral, thermal, and TOF cameras, and a
fluorometer were attached to a robotic arm. The robot measured
the reflectance spectra, temperature, and fluorescence by imaging
the leaf or placing probes with millimeter distance from the leaf
surface (Figure 1B). Two different plant phenotyping robotic
systems were introduced to measure leaf and stem properties
of maize and sorghum plants (Atefi et al., 2019, 2020). The
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FIGURE 1 | Plant phenotyping robotic systems for indoor environment: (A) A multi-robot system equipped with deep learning technique to determine optimal
viewpoints for 3D model reconstruction (Wu et al., 2019), (B) Sensor-equipped robot to measure the reflectance spectra, temperature, and fluorescence of leaf (Bao
et al., 2019c), (C) Robotic system to measure leaf reflectance and leaf temperate (Atefi et al., 2019), and (D) Robotic system for direct measurement of leaf
chlorophyll concentrations (Alenyá et al., 2014).

systems consisted of a TOF camera, a four DOF robotic
manipulator, and custom-designed grippers to integrate the
sensors to the robotic manipulator. Image-processing and deep-
learning based algorithms were presented to find the grasping
point on leaves and stem. An optical fiber cable (attached to
a spectrometer) and a thermistor were used to collect leaf
hyperspectral reflectance and leaf temperature simultaneously.
The stem diameter was measured by a linear potentiometer
sensor. Leaf hyperspectral reflectance was used to build predictive
models for leaf chlorophyll content, water content, N (nitrogen),
P (phosphorus), and K (potassium) concentrations (Figure 1C).
Alenyà Ribas et al. (2012) mounted a SPAD meter to a robotic
arm to directly measure leaf chlorophyll concentrations of
Anthurium White, Anthurium Red, and Pothus (Figure 1D).
Quadratic surface models were applied to segment leaves from
infrared-intensity images and depth maps captured by a TOF
camera. The estimation issues of probing point caused by
poor leaf-fitting model reduced the probing success rate of the
robotic system (82%).

Although controlled environments can make it easier to grow
plants and quantify their phenotypic traits, because environment
plays a large role in determining plant traits, plants grown in
controlled environments show many differences from plants
grown in field conditions. Therefore, with the exception of a
growing range of horticultural crops where production occurs
in control environments, for many crops the assessment of
phenotypic responses in field conditions provides more directly
actionable information for crop improvement. A wide range of
platforms have been developed for field-based high-throughput
plant phenotyping [Montes et al., 2007; White et al., 2012;
Gao et al., 2018 (soybean); Weiss and Biber, 2011 (detection
and mapping of maize plants); Jenkins and Kantor, 2017 (stalk
detection of sorghum); Iqbal et al., 2020 (plant volume and
height); Smitt et al., 2020 (fruit counting of sweet pepper and
tomato)]. These robotic systems are guided between crop rows
and moved toward plants. This creates several new challenges
for both navigation and data collection which are absent when
robotic phenotyping is conducted in control conditions. Factors
like temperature, sunlight, wind, and unevenness of soil surface,

can negatively impact the performance of the system. Therefore,
the hardware and software of the robotic system must be designed
to be resilient to the unique challenges of operating in field
conditions. In the field plants are always stationary, necessitating
that (1) phenotyping robots move to the plants rather than vice
versa, (2) all components of the phenotyping robot including the
vision system, robotic arm, and sensors as well as power supplies
be carried by a robotic mobile platform, and (3) this platform
be capable of navigation whether through global positioning
system (GPS) data and/or employing sensors to perceive its local
environment to guide navigation.

Unmanned ground vehicle (UGV) robotic systems employ
a range of sensor types including light detection and ranging
(LIDAR) and cameras [RGB, TOF, near infrared (NIR), and
stereo vision] for data collection. They can be installed on a fixed
stand within the overall mobile platform, or affixed a robotic
arm to increase the number of diversity of positions from which
sensor data can be collected. Different techniques such as 3D
reconstruction, image processing, and machine learning are used
for data analysis and quantify morphological traits. Existing UGV
robotic systems have been employed to measure plant height,
plant orientation, leaf angle, leaf area, leaf length, leaf and stem
width, and stalk count of various species such as maize, and
sorghum, sunflower, savoy cabbage, cauliflower, and Brussels
sprout (Jay et al., 2015; Fernandez et al., 2017; Baweja et al.,
2018; Choudhuri and Chowdhary, 2018; Vázquez-Arellano et al.,
2018; Vijayarangan et al., 2018; Bao et al., 2019b; Breitzman et al.,
2019; Qiu et al., 2019; Young et al., 2019; Zhang et al., 2020),
count the cotton bolls (Xu et al., 2018), architectural traits and
density of peanut canopy (Yuan et al., 2018), berry size and color
of grape (Kicherer et al., 2015), and shape, volume, and yield
estimation of vineyard (Lopes et al., 2016; Vidoni et al., 2017).
A compact and autonomous TerraSentia rover equipped with
three RGB cameras and a LIDAR was demonstrated to acquire
in-field LIDAR scans of maize plants to extract their Latent Space
Phenotypes (LSPs) (Gage et al., 2019). They were inferred from
the images using machine learning methods (Ubbens et al., 2020)
and contained information about plant architecture and biomass
distribution. Shafiekhani et al. (2017) introduced a robotic system
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FIGURE 2 | Manual measurements of leaf reflectance (left), leaf temperature (middle), and chlorophyll content (right) (Atefi et al., 2019).

(Vinobot) including a six DOF robotic arm with a 3D imaging
sensor mounted on a mobile platform. The Vinobot collected
data in order to measure plant height and leaf area index (LAI) of
maize and sorghum (Figure 3A). The authors reported that the
use of a semi-autonomous approach created most of challenges
for navigation of the system. In this approach, the alignment of
the robot with the crop rows was required before autonomously
moving between the rows and collecting data from the plants.

Measurements of some biochemical and physiological
properties require a direct contact between sensors and plants.
Measuring these properties therefore requires a robot capable
of grasping or touching plant organs. Grasping plant organs in
turn requires a dexterous robotic arm as well as onboard sensors
and algorithms capable of reconstructing the 3D geometry of the
target plant. Robotanist, a UGV equipped with a custom stereo
camera, was established to measure stalk strength of sorghum
(Mueller-Sim et al., 2017; Figure 3B). A three DOF robotic arm
along with a special end-effector was mounted on Robotanist.
The end-effector consisted of a rind penetrometer that was
modified by attaching a force gauge and a needle. When the
stalk was grasped by the end-effector, the needle and force gauge
were pushed into the stalk to accomplish the measurement.
The authors suggested to develop algorithms using laser scan
and navigation camera data to improve the performance of the
navigation system to reliably work under taller sorghum canopy
and throughout the entire growing season. Abel (2018) attached
a spectrometer to the robotic manipulator of Robotanist to
capture spectral reflectance measurements of leaves and stems
of sorghum. Random sample consensus (RANSAC) method was
used for leaf and stem detection. A machine learning approach
was applied to estimate the chlorophyll content of leaves, and
moisture and starch contents of stems from reflectance spectra.
Two factors reduced the grasping success rate of leaves (68%).
First, the grasping process was failed because the wind moved
the leaves and changed the position of the grasping point.
Second, the occlusion and overlapping affected the performance
of the segmentation algorithms to detect more leaves in the
images. Chen et al. (2021) developed a robotic system including
LeafSpec (invented at Purdue University) attached to a robotic
manipulator to collect hyperspectral images of maize leaves in
the field (Figure 3C). The robot slid the LeafSpec across the
leaf from the beginning to tip to acquire hyperspectral images

of entire leaf. The system predicted leaf nitrogen content with
R2 = 0.73.

Other autonomous ground-based systems were presented
to measure both morphological and biochemical/physiological
attributes. A visible and near infrared (VIS/NIR) multispectral
camera was mounted on a mobile robot called “Thorvald I” to
measure the normalized difference vegetation index (NDVI) of
wheat from multispectral images (Burud et al., 2017). The robot
then modified to a new version called “Thorvald II” to have better
performance for phenotyping tasks (Grimstad and From, 2017;
Figure 3D). BoniRob was proposed as an autonomous robot
platform including spectral imaging and 3D TOF cameras which
can be used to measure plant parameters such as plant height,
stem thickness, biomass, and spectral reflection (Ruckelshausen
et al., 2009; Biber et al., 2012; Figure 3E). Underwood et al.
(2017) introduced a ground-based system (Ladybird) for row
phenotyping of grain and legume crops (wheat, faba bean, lentil,
barley, chickpea, and field pea) (Figure 3F). Crop height, crop
closure, and NDVI were determined after processing the data
from the LIDAR and the hyperspectral camera. Flex-Ro, a multi-
purpose field robotic platform was used for high-throughput
plant phenotyping to measure phenotyping traits of soybean
(Murman, 2019; Figure 3G). Three sets of sensors were installed
on Flex-Ro to collect data from crop rows. For each set, a passive
fiber optic cable, a RGB camera, an ultrasonic distance sensor,
and an infrared radiometer were used to measure NDVI, canopy
coverage, canopy temperature, and height.

Table 1 summarizes the indoor and outdoor robotic systems
which could successfully measure plant traits for different crops.

Figure 4 gives summary statistics regarding the plant
phenotyping robotic systems that is discussed in this section.
It can be seen that the robotic phenotyping research targeted
maize and sorghum more than other species (soybean, wheat,
barley, chickpea, pea, faba bean, lentil, cabbage, cauliflower,
cotton, peanut, sunflower, grape, tomato, sweet pepper, and
Arabidopsis) (Figure 4A). Maize and sorghum are two of the
most economically important and highly diverse cereal crops
with vast numbers of accessions (Zhao et al., 2016; Bao et al.,
2019b). Therefore, more attention was devoted to breed Maize
and sorghum to produce food, animal fodder, and biofuel.
Moreover, the available genetic resources for these crops required
the phenotyping data to map their genotypes to phenotypes and
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FIGURE 3 | Plant phenotyping systems for outdoor environment: (A) Vinobot: robotic system including six DOF robotic manipulator and a 3D imaging sensor
mounting on a mobile platform to measure plant height and LAI (Shafiekhani et al., 2017), (B) Robotanist: UGV-based robotic system equipped with a three DOF
robotic manipulator and a force gauge for stalk strength measurement (Mueller-Sim et al., 2017), (C) A robotic system to slide LeafSpec across entire leaf to collect
its hyperspectral images (Chen et al., 2021), (D) Thorvald II: VIS/NIR multispectral camera mounted on a mobile robot to measure NDVI (Grimstad and From, 2017),
(E) BoniRob: autonomous robot platform using spectral imaging and 3D TOF cameras to measure plant height, stem thickness, biomass, and spectral reflection
(Biber et al., 2012), (F) Ladybird: ground-based system consisted of a hyperspectral camera, a stereo camera, a thermal camera, and LIDAR to measure crop
height, crop closure, and NDVI (Underwood et al., 2017), and (G) Flex-Ro: high-throughput plant phenotyping system equipped with a passive fiber optic, a RGB
camera, an ultrasonic distance sensor, and an infrared radiometer for the measurement of NDVI, canopy coverage, and canopy height (Murman, 2019).

thus crop yield improvement. Accordingly, there has been an
emerging need for phenotyping robots to automatically measure
the phenotypic traits. Regarding the plant structure, maize, and
sorghum have similar morphology. Their leaves are arranged
alternately on each side of the stem that has cylindrical/elliptic-
cylinder shape and is positioned in the middle part of the plant.
This plant structure provides less complexity for the robotic
system to distinguish between the stem and leaves and extract
their features. Figure 4B shows that the height, width, and
volume of plant/canopy are three main (morphological) traits
that more frequently measured by the robotic systems than other
traits, each of them being ≤ 5% (leaf length, leaf width, leaf angle,
leaf area, leaf reflectance, leaf chlorophyll content, leaf/canopy
temperature, LAI, plant/canopy NDVI, stem reflectance, stalk
strength, stalk count, berry size, and fruit count). Two reasons
can be considered for the frequent measurements of these
phenotypic traits. Firstly, the plant architectural traits (such as
plant height) are the most common and important parameters
for field plant phenotyping since they have significant effects
on light interception for photosynthesis, nitrogen availability,
and yield (Barbieri et al., 2000; Andrade et al., 2002; Tsubo and
Walker, 2002). Consequently, by studying and then manipulation
of the plant architecture, the crop productivity will be increased.

Secondly, as it was discussed in this section, the robot just needs
non-contact based sensors (RGB camera or depth sensor) to
collect data from the plants. Then, by analyzing the 2D images
or creating plant 3D models, the aforementioned plant traits can
be estimated in either ways: (1) the correlation between the pixel
counts in the images and the ground truth measurements, or
(2) extracting the distance/volume in real world from the depth
sensor data. Hence, the measurement of these morphological
properties is less challenging for the phenotyping robots using
simple sensors and algorithms. In addition to the more frequent
measurements of stem height and width (of maize and sorghum),
these properties were also measured more accurately by the
robotic systems because they are less affected by the plant
morphology (Figure 4C). The first step to extract the stem height
and width is to detect the stem and segment it from other
plant organs. The morphology of maize and sorghum (alternately
arranged leaves, and cylindrical-shaped stem in the middle)
provides more hints for stem detection and segmentation.
Moreover, the height and width can be measured as linear
measurements. Accordingly, these two stem properties can be
measured with less complexity and higher accuracy. Figure 4D
illustrates that non-contact based sensing systems (such as RGB,
stereo vision, and multispectral cameras, and LIDAR) were
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FIGURE 4 | Summary statistics of the phenotyping robotic systems: (A) Targeted plants, (B) Plant/canopy traits measured by the robots, (C) Average accuracy (R2)
to measure the phenotypic traits, (D) Robot vision/sensing systems, and (E) Robot software systems.

used more in phenotyping robots compared to contact-based
sensors (chlorophyll meters, spectrometers, thermistors, and
linear potentiometers). This can be explained by the fact that the
majority of the robotic systems were developed to measure the
morphological traits or some physiological properties. To achieve
these goals, the phenotyping robots are required to use the 2D
images/3D models of plants using non-contact based sensors.
Among the non-contact sensors, the sensor-fusion based systems
(including RGBD/stereo vision cameras, RGB camera + LIDAR,
RGB + TOF cameras, spectral imaging + TOF camera) and
depth sensors (TOF camera, LIDAR, laser scanner, and ultrasonic
sensor) were commonly used as vision/sensing systems for the
phenotyping robots. The key is to acquire depth information as
a vital parameter to manipulate a robotic arm to grasp the plant
organs, navigate a mobile robot between crop rows, and measure
plant properties (such as height, width, and volume). Sensor-
fusion based systems were employed by phenotyping robots more

often than depth sensors. The reason would be that these sensors
prepare the plant color/spectral information along with the depth
information. Consequently, by acquiring more information, the
plant can be effectively segmented from the background and the
plant properties can be effectively measured. Regarding the robot
software system, it can be found that Robot Operating System
(ROS) is one the most popular systems to develop the software
of the phenotyping robots (Figure 4E). ROS is an open source
system that provides services, libraries, and tools for sensors-
actuators interface, software components communication, and
navigation and path planning1. Different manufacturers of robot’s
hardware provide ROS drivers for their products such as imagery
systems, sensors, actuators, robotic manipulators, and mobile
platforms. This allows the researchers to develop the phenotyping
robotic systems more efficiently.

1https://www.ros.org/
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Regarding the platform of the mobile phenotyping robots,
most of the mobile platforms were developed by researchers
(86%) and few off-the-shelf robots were used (14%). The custom-
designed platform offers potential to meet specific conditions
regarding soil, weather, and plant which vary with experimental
site and phenotyping task. Moreover, the researcher has more
control on modifying the hardware and software. Based on
the reviewed papers, most of the mobile platforms used four
wheels/legged-wheels (88%) as their driving system compared
with tracked mechanism (12%). In the wheeled-vehicles, the
wheels can be independently steered (good maneuverability)
which provides high flexibility with respect to control and
navigation (desired orientation angle and rotation speed) of the
vehicles between the crop rows in the field. Moreover, the vehicle
can move faster using (legged) wheels and has high ground
adaptability (crop height, and irregular and sloped terrain)
using legged-wheels. However, the tracked-vehicles create more
traction and less pressure on soil (work better in wet soil and less
soil compaction), and can drive over rough terrain and obstacles
easier than the wheeled-vehicles (Bruzzone and Quaglia, 2012).
Accordingly, a hybrid locomotion system can be developed
with the combination of legged-wheels and tracked systems.
Therefore, this platform can use the advantages of the both
driving systems to accomplish phenotyping tasks more effectively
and efficiently.

PHENOTYPING ROBOTS FACE SEVERAL
CHALLENGES

There are several outstanding challenges in the development of
robotic systems for plant phenotyping. Some of these challenges
related to segmentation (vision systems) and grasping (robotic
manipulators) are shared or at least similar for both indoor
and outdoor phenotyping robots. Other challenges, particularly
those related to navigation are specific to outdoor robotic
phenotypic applications.

Complex and Deformable Nature of
Plants Represents a Major Issue for
Robot’s Vision and Sensing System
The UGV or robotic manipulator equipped with contact/non-
contact based sensing systems offer a great potential to measure
plant phenotypic data compare to non-autonomous robotic
sensing systems. For example, the UGV equipped with stereo
vision camera can move between crop rows and collect images
from the canopy or individual plant. The image data can be
analyzed immediately or can be processed later to extract plant
properties. The long-term measurement of the plant traits can
provide useful knowledge for crop modeling purposes over time
(Duckett et al., 2018). Another example would be the robotic
manipulator equipped with a hyperspectral imaging system.
The robotic arm can move around the plant to locate the
sensor close to the plant organs. With this proximal sensing,
more phenotyping information can be acquired about the

organs. However, the robotic vision/sensing technologies for the
phenotyping task encounter different challenges.

Various imaging technologies are utilized as vision systems of
the robots. Visible imaging/RGBD camera are commonly used
technologies that rely on the color/texture information of an
object. Images are processed to segment plant organs and identify
desirable targets for grasping. The identification and localization
of different plant organs (such as leaves, stems, flowers, and fruits)
is one of the major problems in computer vision, due to complex
structure and deformable nature of plants. The overlap between
the adjacent leaves or leaf-stem causes occlusion; even though
leaf and stem have different architecture, they share similarities
in color and texture. Accordingly, it is difficult to distinguish
occluded leaves or stem in the image. The morphology of
plants (shape and size) varies dramatically across different plant
species and even within a single species different varieties or
the same variety grown in different conditions may exhibit
radically different morphology. In this regard, the software of
the robotic system should cover a wide range of scenarios and
possibilities to be able to respond and adapt appropriately to day-
to-day changes in the same plant or differences between plants
within the same experiment. Additionally, non-uniform imaging
conditions (lighting and background) make it more complex to
find an appropriate color space and optimal approach for the
segmentation purposes (Zhang et al., 2016; Narvaez et al., 2017;
Qiu et al., 2018; Bao et al., 2019a).

Multispectral/hyperspectral and thermal imaging systems are
sensitive to illumination since the reflectance from the plant
organ is depend on its distance and orientation toward the
light source/incident radiation and camera. Moreover, multiple
reflectance and also shade will occur due to the curvature nature
and complex geometry of plant (Li et al., 2014; Mishra et al., 2017;
Qiu et al., 2018). To deal with these issues, researchers introduced
different technical solutions. Behmann et al. (2016) combined the
hyperspectral image with 3D point cloud (using a laser scanner)
of sugar beet to create hyperspectral 3D model. Then, it was used
to quantify and model the effects of plant geometry and sensor
configuration. Finally, the geometry effects in hyperspectral
images were weakened or removed using reflectance models.
Shahrimie et al. (2016) used inverse square law and Lambert’s
cosine law along with Standard Normal Variate (SNV) for maize
plants to remove the distance and orientation effects.

Robotic Control System Needs to Deal
With Dynamic and Unstructured
Environment
The size and orientation of the plant organs are constantly
changing across their growth stages. Therefore, the lack of needed
DOF or enough workspace of the robotic manipulator are the
limitations for the robots to grasp the plant organs and sense their
properties successfully. The robotic arm cannot reach the organs
if they are out of its workspace. In addition, a robot arm with less
flexibility (DOF) might not able to properly adjust the angle of its
end-effector in grasping process.

Field-based robots need to navigate between crop rows and
then turned to the next row safely and autonomously. To achieve
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this task, the crop rows and obstacles should be detected to
build a map of the surrounding area. Then, their position and
orientation relative to the vehicle will be found to compute an
optimal path and avoid unexpected obstacles. Finally, adequate
action will be determined to steer the wheels and guide the system
around the field. However, the uncontrolled and unstructured
field environment creates challenges for accurate navigation and
control of the robot (De Baerdemaeker et al., 2001; Nof, 2009;
Bechar and Vigneault, 2016; Shamshiri et al., 2018). GPS is a
common method for robot navigation. However, the tall plant
canopy affects on the accuracy of GPS for navigation purposes
as the canopy blocks the satellite signals to the GPS receiver.
Hence, the information provided from other sensors along with
GPS is also required to detect the obstacles, precisely guide
the phenotyping robot, and minimize the damage to the robot
and plants. The UGV based phenotyping robots can facilitate
the data fusion of GPS and other sensors since the robot can
equipped with various sensors (such as LIDAR, RGB/stereo
vision cameras) and also precisely control their location (Duckett
et al., 2018). Nonetheless, varying ambient light conditions,
changing crop growth stages (size, shape, and color), and similar
appearance between crops and weeds are common factors that
fail visual navigation. In these situations, RGB sensor-based
systems usually cannot find a stable color-space or plant features
to detect different objects. Incomplete rows and missing plants
can cause errors to compute distance between the robot and
plants using range sensors. Different soil properties (soil types
and moisture) and terrain variation (even, uneven, flat, slope) are
other factors that influence robot dexterous manipulation, wheel-
terrain interaction, wheel slip, and steering control algorithms
(Åstrand and Baerveldt, 2005; Grift et al., 2008; Li et al., 2009;
Shalal et al., 2013).

After navigating the robot between the rows, a suitable
path should be selected for the robotic manipulator with
minimum collisions inside a plant or canopy to reach and
grasp the targets delicately. However, robots operate in extremely
complex, dynamic, uncertain, and heterogenous real world
condition. In this situation, visual occlusion of a plant by others
caused by high plant density should be taken into account
for target identification and segmentation. In addition, the
target information will be affected by sunlight and wind. For
instance, TOF/RGBD cameras use infrared light to measure
distance. Since the sunlight has infrared wavelengths and wind
moves the targets, the location of the target in 3-dimensional
space might not be accurately measured (Andújar et al., 2017;
Narvaez et al., 2017; Qiu et al., 2018; Li et al., 2020a).
Consequently, the obstacle-avoidance path-planning algorithm
cannot be determined correctly. Another example would be
when the targets are seen shinier or darker because of specular
reflection or shade.

Issues With Robot Software for
Phenotyping Robotic System
Development
Two main drawbacks present in many robot software are: (1)
the lack of support for certain functional packages (of open

source software) and (2) real-time constraints (Barth et al., 2014;
Park et al., 2020). For the first issue, it can be supposed that a
phenotyping robot is developed by researchers to accomplish a
phenotyping task. They create the robot library and share their
codes with the (open source) software community. However, by
ending the project, there is no guarantee to fix the bugs and
update the codes. In the case of other researchers might start
similar research using the shared codes, it might be problematic
to make the research forward because of the lack of support
for the robot library. The second challenge is the real-time
constraints that causes system malfunction due to latency. One
example would be when a UGV moves between crop rows to
measure plant traits. If the robot cannot satisfy the real-time
constraints, the robot will have delay to identify the obstacles
or adjust its position relative to the crop rows. Accordingly,
the robot could hit the obstacles and the plants and this
causes the physical damage to the robot or plants. Regarding
ROS, although ROS1 has real-time constraints, however the
community is actively working on software improvement.
For example, RT-ROS supports the real-time communication
that leads to performance enhancement of ROS1 (Wei et al.,
2016). It is obvious that by growing the ROS community,
sophisticated libraries and packages will be developed for more
plant phenotyping applications.

Other Challenges: Managing Big Data,
Reliable Power Source, Durability Under
Harsh Environment, and High Cost
The phenotyping robot collects massive volumes and various
types of data (such as images, multi/hyperspectral data) taken
by different sensors from large population of plants. The robot
needs to analyze large quantities of data in real-time for suitable
action/decision-making process. In addition, the large-scale
phenotypic data could be stored properly for the benefit of future
research. Therefore, managing and analyzing the big data as a
result of high-throughput, robotically collected plant traits is an
emerging issue for the phenotyping robot.

The field-based mobile robots need to be equipped with
reliable power sources to provide energy for the vehicle carriage
weight, distance traveled, and different electrical components
such as sensors for data collection. Batteries are commonly used
for this purpose. The problems with batteries are: (1) limited
operating time that prevents the robots to work for long time and
accomplish large-scale missions, and (2) need to recharge which
typically takes a long time.

Another challenge is the durability and stability of these
robotic systems under harsh outside environment caused by
extreme temperature, high humidity, strong sunlight, and dust.
These harsh conditions can cause damages for the components
of the robotic system and accordingly will have negative effects
on the robot’s performance.

The cost of phenotyping robots (in general agricultural robots)
is still high and this makes limitations for wide-spread use
of the robots. In most cases the phenotyping robotic systems
are developed for research purposes and the robots are not
commercially available yet. Both the hardware and software
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systems were restricted to a very specific condition and could
not be transferred to a different scenario. This leads to high
R&D (research and development) cost that can not be spread
over multiple units. However, more general purpose phenotyping
robots can be developed and commercialized in the future and
their cost will be reduced substantially. Moreover, with the
consistent trend of price reduction of electronics, sensors, and
computers, the robotic systems will become cost-effective enough
to be more widely used for phenotyping tasks.

POTENTIAL IMPROVEMENTS OF
PHENOTYPING ROBOTS

Sensors and Controllers Fusion
Technique Can Improve the Performance
of Robot
Sensing-reasoning, and task planning-execution are two essential
functions for autonomous phenotyping robots. They sense the
environment, apply an appropriate control algorithms, make
decision, and act in real-time to perform the phenotyping tasks
(Grift et al., 2008; Bechar and Vigneault, 2016). The design
of the phenotyping robot and its control algorithm needs to
be optimized to achieve successful operation in continuously
changing environment. To reach this purpose, the phenotyping
robots need to employ advanced technology to cope with the
dynamic and unstructured environment. The emerging sensor
technologies such as sensor fusion increase the robot capabilities
and yield better results (Grift et al., 2008). Sensor fusion
allows the robot to combine information from a variety of
sensing modules to form better decision for navigation and path
planning, as well as increase the capacity of sensing to gather
more information from the plants. For example, Choudhuri
and Chowdhary (2018) measured the stem width of sorghum
with 92.5% accuracy using RGB data. However, they achieved
higher accuracy (98.2%) after combining RGB + LIDAR data.
Kim et al. (2012) could successfully navigate an unmanned
weeding robot using sensor fusion of a laser range finder
(LRF) and an inertial measurement unit (IMU). The robot
also needs more sophisticated and intelligent algorithms to
accomplish different subtasks such as sensing, navigation, path-
planning, and control. Different control strategies such as
genetic algorithm (GA), fuzzy logic (FL), neural network (NN),
reinforcement learning (RL), and transfer learning (TL) can
be integrated to develop such robot algorithms (Shalal et al.,
2013). Therefore, a robust controller will be provided for the
phenotyping robot since the robot control system can use the
merits of both technologies (combining two control strategies).
Batti et al. (2020) studied the performance of fuzzy logic
and neuro-fuzzy (NN + FL) approaches to guide a mobile
robot moving between the static obstacles. The authors found
that neuro-fuzzy controller provide better results for robot
navigation compare to fuzzy logic controller. Although several
different autonomous phenotyping robots were developed,
more research is needed to adapt and improve the advanced
technologies to overcome the robot limitations to accomplish the

phenotyping tasks, and also increase the autonomy level of the
phenotyping robots.

Internet of Robotic Things (IoRT):
Technology to Manage Big Data for
Phenotyping Robots
Internet of Things (IoT) technologies are helpful to send lots
of data collected by different sensors over Internet in a real-
time manner. The Internet-of-Robotic-Things (IoRT) is the
confluence of autonomous robotic systems with IoT which is
an emerging paradigm that can be employed for phenotyping
robots (Grieco et al., 2014; Ray, 2016; Batth et al., 2018;
Saravanan et al., 2018; Afanasyev et al., 2019). Mobile robots
can use IoT to transfer and store a large amount of phenotypic
datasets to a central server. By sending the data via IoT,
the robots do not need to frequently move to a place and
physically upload the collected data to a local server/computer.
Moreover, plant breeders/scientists can visualize the data using a
mobile device (a tablet or a smartphone) or an office computer
and therefore the performance of plants and changes in crop
growth and development can be remotely inspected in different
regions of the field in a real-time fashion. Another attractive
aspect of using IoRT is to send commands to robots to
accomplish phenotyping tasks. For instance, an operator can
remotely control the greenhouse robotic manipulator systems
via Internet any time from his home/office to collect phenotypic
data. Another example is when the close inspection of an
area in a field is necessary after analyzing the drone-based
image data; therefore, commands can be sent via Internet to
deploy mobile robots in this regard. Several mobile robots
can work together to operate more efficiently to achieve
a specific task.

Solar Panels and Hydrogen Fuel Cell:
Renewable Power Sources for
Phenotyping Robots
Solar panels and hydrogen fuel cell are two technologies that
produce clean, renewable, and sustainable energy. A solar panel
consists of many small units called photovoltaic cells which
convert sunlight into electricity. The maintenance cost of the
solar panel is low since it does not have moving parts (no
wear) and it just need to clean the cells. The hydrogen fuel cell
comprised a pressurized container to store hydrogen. The fuel
cell is an electrochemical device that takes oxygen from the air
and combines hydrogen with oxygen to produce electricity. Re-
fueling time of a hydrogen fuel cell is very short (5 min or less)
and its cells are fairly durable.

Based on the advantages of solar panels and hydrogen
fuel cell, both technologies can be used as renewable
power sources for different components of the phenotyping
robots (Underwood et al., 2017; Quaglia et al., 2020).
However, there is not a wide range of application of these
technologies for the phenotyping robots. The cost of both
technologies is high. For solar panels, the efficiency of
the system drops in cloudy and rainy days. In addition,
more solar panels are needed to produce more electricity
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which requires a lot of space. For hydrogen fuel cell, there
are relatively few places to re-fuel the cell. Nevertheless,
both technologies are constantly developing which can be
assumed to reduce their cost and improve their efficiency to
produce electricity.

PERSPECTIVE APPLICATIONS OF
ROBOTIC PHENOTYPING

Phenotyping Robots Has Great Potential
to Measure Other Plant Properties
Section “Review: Many Indoor and Outdoor Robots Were
Developed to Measure a Wide Range of Plant Traits” introduced
the robotic systems for indoor and outdoor applications to
measure several different plant traits. However, other leaf/stem
characteristics are also reliable indicators to detect the symptoms
of biotic/abiotic stresses and monitor the plant health during
a growing season. Stomatal conductance, gas exchange, and
chlorophyll fluorescence of leaves are indicative of their water
status, photosynthesis, and chlorophyll content (Castrillo et al.,
2001; Ohashi et al., 2006; Li et al., 2020b). Stem sap flow
and lodging resistance can provide useful information about
plant water use and stem strength (Cohen et al., 1990; Kong
et al., 2013). These aforementioned phenotypic traits are still
measured manually. On the other hand, new clip-on sensor
system can be presented to measure them automatically. The
system includes a custom-designed gripper/clip combined with
novel sensor(s) (Afzal et al., 2017; Palazzari et al., 2017).
The design of these sensing systems is important since the
accuracy and robustness of trait prediction models depend on
the phenotypic data quality (Würschum, 2019). The design
of the gripper and DOF of the robotic manipulator should
allow a good and gentle contact between the sensing unit
and the leaf/stem. Sometimes a vacuum mechanism attached
to a soft gripper can hold the leaf/stem and help the sensing
unit for effective contact and collect accurate data with less
damage to the plant organs (Hayashi et al., 2010; Hughes et al.,
2016; Zhang et al., 2020). Moreover, autonomous robots should
gather data with minimum error (high signal to noise ratio).
Therefore, sensors with high signal to noise ratio should be
selected and accurately calibrated. In addition to the accuracy,
the robots should rapidly (short execution time) accomplish
their missions. Deep reinforcement learning (DRL) technique is
an accurate and reliable method to find an optimal path with
nearest and collision avoidance route. This technique can be
adopted by phenotyping robots to manipulate a robotic arm
for grasping process or to navigate a mobile robot between
crop rows (Zhang et al., 2015; Zhang et al., 2019; Duguleana
and Mogan, 2016; Franceschetti et al., 2018; Taghavifar et al.,
2019). Although the robotic phenotyping is mainly focusing
on leaf and stem, it can be utilized for other plant organs
such as inflorescences (spike, panicle, and tassel), flowers,
fruits, and roots.

The morphometric parameters of inflorescence are highly
correlated with yield and grain quality (Leilah and Al-Khateeb,

2005; Gegas et al., 2010). Several studies discussed about
using image-based techniques (2D images/3D reconstruction)
to extract architectural traits such as length and width of
inflorescence, inflorescence volume (weight), grain shape and
size, grain angle, and number of grains, and number of flowers
(Faroq et al., 2013; Crowell et al., 2014; Gage et al., 2017; Rudolph
et al., 2019; Sandhu et al., 2019; Xiong et al., 2019; Zhou et al.,
2019). In such applications to measure the morphological traits,
a robot with LIDAR/camera can be useful to automatically take
images/point cloud data from different views of the inflorescence.
The physiological traits are indicator for stress or disease.
For instance, the temperature of the spikes was used for
detecting the plant under the water stress (Panozzo et al., 1999).
Conceivably, a robotic arm equipped with a temperature sensor
can grasp the spike and insert the sensor into spikelets to record
their temperature.

Several properties of fruits such as water content, sugar
content, chlorophyll, carotenoid, soluble solid, acidity, and
firmness are measured for fruit quality assessment. The
spectroscopy/spectral imagery are non-destructive and high-
throughput methods to estimate these qualitative parameters
(Berardo et al., 2004; ElMasry et al., 2007; Shao and He, 2008;
Wu et al., 2008; Nishizawa et al., 2009; Penchaiya et al., 2009;
Ecarnot et al., 2013; Guo et al., 2013; Dykes et al., 2014; Wang
et al., 2015; Mancini et al., 2020). However, a robotic system
can be presented to monitor the dynamics of these attributes
for hundreds of growing fruits per day. For example, a portable
spectrometer can be attached to the robot’s end-effector. After
detecting the fruit on the plant, the robot can grasp the fruit and
gather its spectral data to further infer its quality parameters.

Since the root has functional roles in resource acquisition,
the characteristics of root provide valuable information about
plant physiological and ecosystem functioning (Mishra et al.,
2016). In traditional root phenotyping, two different methods
are used to acquire images from root (in the soil or soil-free
or transparent media). In first method, a camera is mounted
on a tripod and moved by a human around the root, and
in the second method camera(s)/sensor(s) are set in fixed
point(s) and root (plant) is rotated (Atkinson et al., 2019).
This is a tedious task and some root information (such as
fine branches) might be lost due to less flexibility of the
system to take up close images from the complex architecture
of root. Consequently, automated root phenotyping systems
can facilitate and improve the traditional root phenotyping in
terms of efficiency and effectiveness with acquiring fast and
precise measurements (Wu et al., 2019). Here, the “plant to
sensor” system can be used to examine vast number of roots
(or plants) without the need of huge space of greenhouse
facility. In this system, the root (or plant) is moved toward a
robotic manipulator (equipped with camera/sensor) and located
on a rotation table. In each step angle of the table, the root
is rotated and stopped in front of the robotic system. Then,
the robotic manipulator moves the camera around the root
and gather close proximity data from different views (positions
and angles). Therefore, more detailed information of root
can be captured due to high resolution sensing offered by
the robotic system.
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FIGURE 5 | (A) Mobile Agricultural Robot Swarms (MARS) for seeding process (The European Coordination Mobile Agricultural Robot Swarms (MARS). PDF file.
November 11, 2016. http://echord.eu/public/wp-content/uploads/2018/01/Final-Report-MARS.pdf), (B) UAV-UGV cooperative system to measure environmental
variables in greenhouse (Roldán et al., 2016).

Robots in Greenhouses Complement the
Image-Based Phenotyping
Automatic greenhouses such as LemnaTec (LemnaTec GmbH,
Aachen, Germany) monitor plants using image-based technique.
While it has shown great potential to measure and predict the
plant traits, many hurdles cannot be handled by this technology.
It needs to efficiently manage “big data” problems and also
postprocess images to characterize the plant traits. Moreover, this
approach is not sufficient for early detection of stress/disease
with internal symptoms. Furthermore, this method requires
direct measurements using sensors to calibrate and validate
of its models to extract the phenotypic traits from images
(Madden, 2012; Mutka and Bart, 2015; Singh et al., 2016; Lee
et al., 2018). Hence, several robotic arms with different sensors
can be integrated to the greenhouse for real-time and direct
measurement of the chemical/physiological traits. Basically,
plants are transported by an automatic conveyor belt and stopped
in front of each robotic system. Then, the system uses “sensor-to-
plant” concept (Lee et al., 2018) in which the robot moves toward
the plant to take measurements before sending it through the
imaging chambers. These stationary robotic systems are designed
to operate in indoor environment. Moreover, several robots can
be presented to collect data from a specific plant. It is difficult
to develop a general prototype that are broadly applicable for
different conditions (Mutka and Bart, 2015; Wu et al., 2019).
However, the software and hardware of the robots should be
adapted to other species and field-phenotyping applications. The
challenge for both type of robots (indoor/outdoor) would be
continuously collect and save large amount of data.

Swarm Robot Is a New Frontier to
Efficiently Accomplish Complex
Phenotyping Tasks
Swarm robotics is a new frontier technology which has potential
application for proximal sensing of plants, and data/sample
collection in a large field. A swarm robotics system composed of
large numbers of autonomous robots that are coordinated with

local sensing and communication, and a decentralized control
system (Brambilla et al., 2013; Bayındır, 2016; Blender et al., 2016;
Chamanbaz et al., 2017; Figure 5A). The application of swarm
robots has some advantages which is suitable for large scale tasks.
Since swarm robotics has large population size, the tasks can be
decomposed using parallelism and can be completed efficiently
and consequently it would save time significantly. Moreover, the
swarm robots can achieve the distributed sensing that means they
can have a wide range of sensing in different places at the same
time (Navarro and Matía, 2012; Tan and Zheng, 2013).

Both UAV and UGV by itself have been successfully employed
in plant phenotyping tasks. The coordination between UAV and
UGV enables a new breakthrough application of UAV/UGV
cooperative systems to achieve a common goal more effectively
and efficiently (Arbanas et al., 2018; Vu et al., 2018). Both vehicles
in this cooperative team share complementarities according to
their capabilities that allow them to operate in the same field and
work together to fulfill phenotyping missions. In this manner, the
UAV can fly to quickly obtain overview of the fields beyond the
obstacles; whereas the UGV can continuously patrols in the field
with large payload capabilities of different sensors and robotic
arms (Chen et al., 2016; Roldán et al., 2016; Figure 5B). In the
context of UAV-UGV cooperation, an obstacle map of the field
will be provided by the UAV for UGV path planning. Based on
their communication and the map, the UGV can move rapidly
between the crop rows for up-close plant investigation.

CONCLUDING REMARKS

Autonomous robotic technologies have the potential to
substantially increase the speed, capacity, repeatability, and
accuracy of data collection in plant phenotyping tasks. Many
robotic systems are successfully developed and deployed in both
greenhouse and field environments, tested on a variety of plant
species (row crops, specialty crops, and vineyards), and capable
of measuring many traits related to morphology, structure,
development, and physiology. Many technical challenges remain
to be addressed regarding sensing, localization, path planning,
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object detection, and obstacle avoidance. Intensive research is
needed to overcome these limitations of phenotyping robots
and improve their speed, accuracy, safety, and reliability.
Collaborations among different disciplines (such as plant science,
agricultural engineering, mechanical and electrical engineering,
and computer science) are imperative. With this transdisciplinary
research, more efficient and robust sensing and control systems
will be developed for intelligent plant phenotyping robots.
Sophisticated sensor modules can be developed using sensor-
fusion techniques. Regarding the control systems, multiple
intelligent algorithms (such as different AI algorithms) can
be combined to design more powerful controllers. These
developments can potentially overcome the issues caused by
changing environmental parameters, and complex structure of
plants. Moreover, the suitable sensing and control systems yield
better performance for accurate object detection (mainly for
plants and crops, but also for humans, animals and other
obstacles coexisting in the environments), path planning, and
navigation. Sufficient funding from the public and private sources
is the key to fuel the high-risk research in intelligent phenotyping

robots in a sustainable way. We are optimistic that, in the
next 10 years, we will see great leaps forward in autonomous
and robotic technologies in plant phenotyping, enabled by the
confluence of the rapid advancements in sensing, controllers, and
intelligent algorithms (AIs).
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Improving drought tolerance of crops has become crucial due to the current scenario of

rapid climate change. In particular, development of newmaize germplasm with increased

drought tolerance is viewed as a major breeding goal to ensure sustainable food and

feed production. Therefore, accurate rapid phenotyping techniques for selection of

superior maize genotypes are required. The objectives of this study were to determine

whether Raman microscopy technique can be applied for accurate assessment of

drought-tolerance levels in both genetically diverse and near-isogenic maize lines that

differ in their levels of drought-tolerance. Carotenoid degradation is known to be a

direct stress response initiated by reactive oxygen species during osmotic stress such

as drought. Using Raman mapping, we observed real-time changes in the rate of

carotenoid degradation in chloroplasts that was dependent on the strength of osmotic

stress. In addition, we showed that the rate of carotenoid degradation as measured by

Raman spectroscopy correlates directly with drought tolerance levels of diverse maize

genotypes. We conclude that Raman technique is a robust, biochemically selective

and non-invasive phenotyping technique that accurately distinguishes drought tolerance

levels in both genetically diverse and near-isogenic maize genotypes. We conclude

that this technique can be further developed to render it suitable for field-based early

assessment of breeding materials with superior drought-tolerance traits.

Keywords: lipoxygenase, Raman spectroscopy, carotenoid degradation, osmotic stress, drought stress, maize

inbred lines

INTRODUCTION

Due to rapidly increasing human population, there is a crucial need to meet global food security
needs and satisfy the increasing demand for food, feed, and fuel. To do so, it is necessary to
provide improved plant phenotyping techniques to breeding programs to aid in the development of
germplasm of crops that have increased drought tolerance levels, and can thus help adapt to future
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climate changes (Borlaug, 2000; De La Fuente et al., 2014).
Improving drought tolerance of crops has become one of the
significant challenges in global agricultural production and food
security (Tilman et al., 2001; Chaves et al., 2003; De La Fuente
et al., 2014).

Maize (Zea mays) is the world’s most important production
crop: its starch, protein, and oil are essential for supplying
adequate food and nutrition to both human and animals (Ranum
et al., 2014). In addition, maize starch has recently become an
important feedstock for ethanol production (Ranum et al., 2014).
A major objective in most breeding programs is to develop
superior germplasm that tolerate water stress yet produce a
higher yield. This is achieved by employing vastly improved
breeding strategies through years of genetic research, including
marker assisted selection and hybrid seed production (Fiorani
and Schurr, 2013). The phenotype of a plant is defined by
both differences in genome and their interactions with the
environment. Therefore, genotypes that correlate with improved
yield or other agronomic traits must be considered in the contexts
of various environments to determine optimum phenotypic
responses (Fiorani and Schurr, 2013).

The majority of phenotypic traits of genotypes consist of
various morphological, physiological, and biotic stress traits;
however, the current breeding program also includes the
evaluation of germplasm performance under drought conditions.
One of the major drawbacks of conventional phenotyping
techniques is the long period of time it takes to measure the
effect of stress on plants. Current in vivo spectroscopic techniques
such as reflectance spectroscopy (Gutelson and Merziyak,
1996), IR thermal imaging (Zia et al., 2013), hyperspectral
imaging (Behmann et al., 2014), and chlorophyll fluorescence
spectroscopy (Kalaji et al., 2011) are limited by the time required
for sensing a drought stress response and the level of the
stress. Chemical extraction techniques are more relevant but are
destructive and labor-intensive.

Because of unpredictable weather patterns, drought tolerance
screening of breeding populations during the entire growing
session over many months is difficult to perform as drought
stress is difficult to control. To speed up this research, there is
an urgent need to develop more robust phenotyping techniques
for non-destructive, accurate and rapid assessment of breeding
populations for drought related responses, especially at early
seedling stages and with short periods of withholding water.

Here, we investigated whether Raman spectroscopic
techniques can overcome these limitations of traditional
phenotyping by achieving the necessary biochemical sensitivity
in vivo. For this demonstration, we chose to analyze drought
stress tolerance among 5 genotypes of maize. Specifically, we
measured drought tolerance levels by assessing the level of
transpirational water loss among the young seedlings during a
week in which water was withheld. Measuring drought tolerance
in seedlings is of interest because it shortens the time needed
to evaluate different genotypes. Previously, we demonstrated
the use of Raman spectroscopy for early in vivo detection
of plant stress in mature plants, where we found that plants
exposed to multiple abiotic stresses such as cold, excess light,
saline and drought stress conditions display rapid degradation

of carotenoids and accumulation of anthocyanins (Altangerel
et al., 2017a). In that study, we used 5 months old genetically
identical Coleus plants belonging to a single variety. Here,
we used two-week old seedlings of genetically diverse maize
and near-isogenic inbred lines that differ in their responses to
drought stress in an attempt to evaluate whether differences
in phenotypic responses to drought stress can be accurately
assessed by Raman spectroscopy. Because young seedlings
produce anthocyanins for purposes unrelated to drought stress
(Karageorgou and Manetas, 2006), we have decided not to assess
the level of anthocyanins to study stress in these plants. Instead,
we monitored the rate of carotenoid degradation during drought
stress for each genotype.

Plants undergo highly intricate physiological, biochemical,
and molecular changes when they are exposed to drought (De
La Fuente et al., 2014). Notably, highly toxic reactive oxygen
species (ROS) accumulate in plants during drought conditions.
Carotenoids play irreplaceable roles during abiotic stress such
as drought by quenching chlorophyll-excited states, scavenging
ROS, and dissipating excess energy to heat (Krinsky, 1989;
Muller et al., 2001; Davison et al., 2002; Krieger-Liszkay et al.,
2008; Shan and Li, 2008; Yoshikazu et al., 2008; Ramel et al.,
2012). They are considered to be the first line of defense
against ROS, serving as the main 1O2 quencher in chloroplasts
(Krinsky, 1989; Davison et al., 2002; Shan and Li, 2008;
Ramel et al., 2012). The oxidative degradation of carotenoids,
like the accessory photosynthetic pigment β-carotene, causes
accretion of several volatile β-carotene derivatives such as β-
cyclocitral. Beta-cyclocitral is a molecular signal responsible
for induction of 1O2-responsive genes (Davison et al., 2002;
Ramel et al., 2012). Therefore, rapid conversion of β-carotene
to β-cyclocitral during oxidative stress is an important line of
defense against osmotic stress (Davison et al., 2002; Ramel et al.,
2012).

At the same time, β-carotene, along with other carotenoids,
absorbs well in the high energy blue spectrum of visible light
and are used as accessory pigments in light harvesting complexes
(Krieger-Liszkay et al., 2008; Yoshikazu et al., 2008). These
are not core elements of the light-harvesting complex but
instead are used to saturate energy transfer into the reaction
center after excitation at wavelengths varying from those of
the more abundant chlorophyll. Degradation of carotenoids
reduces saturation, protecting the photosystem core pigments
in the reaction center and membrane tissues from the effects of
photooxidation (Muller et al., 2001).

Here we demonstrated real-time carotenoid degradation in
chloroplasts during drought stress using the combination of
our newly developed immediate osmotic stress technique
and Raman mapping. Then, we demonstrated Raman
technique’s ability to sense different rates of carotenoid
degradation under various strengths of osmotic stress. At
last, we showed that the degradation rate of the carotenoids,
as measured by the Raman microscopy technique, can be
used to accurately distinguish drought tolerance levels in
both genetically diverse and near-isogenic maize genotypes
within a short period from several days to a week of
withholding water.
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MATERIALS AND METHODS

Plant Material and Growth Conditions
Three maize inbred lines differing in their levels of drought
responses, B73, CML176, and OH28, were used in this study.
In addition, lipoxygenase mutants with contrasting drought
tolerance phenotypes, lox2 and lox4 mutants, were back-crossed
seven times to the recurrent parent B73 to generate near-
isogenic mutants which share ∼99.3% genome identity (Huang,
2017). Maize seedlings were grown in conical pots (15 by
3 cm) in the same amount (dry weight) of sieved sterile
(autoclaved) commercial potting mix (Metro-Mix 366; Scotts-
Sierra Horticultural products, Marysville, OH, U. S. A.) at 22◦C
under a 14-h day length, 50% humidity, 200 µmol m2/s of light
in the laboratory.

Specifically, two replications of six B73 maize plants per
replication were used for the in-situ Raman study of immediate
osmotic stress in plant tissues. We grew these plants under
two different lighting conditions such as normal and completely
dark conditions. The normal lighting condition was a 14-
h length of 200 µmol m2/ s of light and a 10-h length of
darkness. The completely dark condition was 24-h darkness for
a day.

Three of the plants in each replication grew under normal
growth conditions and had normal photosynthesis activities
and chlorophyll contents. The other three plants in each
replication grew under complete darkness which resulted in
lower photosynthetic activities due to extremely low content
of chlorophyll.

Three replications of 10 plants per replication per genotype
were used for the in-vivo Raman study. Before withholding
water, all experimental plants were soaked in deionized water
until reaching 100% water content in their soil. Then, five
plants of each genotype were well watered every day and served
as a control group in this study. The other five plants of
each genotypes were kept withholding water for a week, and
served as drought stressed group in this study. After a week
of in-vivo Raman measurements, all experimental plants were
harvested, and root and shoot tissues were separated for dry
weight measurement.

Transpirational Water Loss Measurement
Transpirational water loss measurements were performed with
slight modifications following the protocol from (Ruggiero
et al., 2004). Fourteen days after sowing, pots with seedlings
which have two leaves with visible leaf collars (V2 stage) were
soaked in deionized water for more than 30min to reach
100% water content in the soil before withholding water.
After the seedlings were soaked in deionized water, each pot
was covered with a para-film to avoid water loss from soil
surface. Three plants were then placed into a bigger pot
as one sample and the pot weight was measured every day
and the difference of pot weight represents the amount of
water lost via transpiration. Water loss through transpiration
was normalized by plant dry weight taken at the end of
the experiment.

FIGURE 1 | Illustration of the immediate osmotic stress technique.

In situ Raman Studies: Simulating
Immediate Osmotic Stress in Plant Tissue
and Raman Microscopic Mapping
To simulate immediate drought stress in leaf tissue, we developed
a rapid drought stressing technique that uses a dehydrating
chemical, mannitol. Watering plants with mannitol solutions
chemically induces osmotic stress (Fritz and Ehwald, 2011).
Osmotic stress occurs in plants during drought or high salinity
conditions. First, we cut about a 1 cm2 leaf disk from our
experimental subjects of two-week old B73 plants. We then
wet-mounted it on a microscopic slide in a manner that
allowed the leaf tissue to be suspended inside deionized water
between the microscopic slide and cover glass. We introduced
the dehydration solution to the plant tissue using the capillary
effect (Figure 1). In order to do so, we dropped 2 drops
of mannitol solution near the left edge of the cover glass,
holding a filter paper (Whatman, filter 1) near the right edge
of the cover glass. Once the solution started to enter between
the cover and microscope glasses, the same amount of water
was absorbed by the filter paper. Meanwhile, we made sure
the location and height of the Raman sampling area stayed
the same during this process by observing it with a camera.
When mannitol solution enters the tissue area, it creates
immediate osmotic stress on the tissue. Here, we used 100,
150, and 250mM of mannitol solutions to imitate different
strengths of osmotic stresses. We took Raman maps before
and after introducing mannitol solutions to the wet-mounted
plant tissues. Raman mapping was done by a Raman confocal
microscope system with an excitation laser of 532 nm laser.
The laser sampling size was 2 microns with 2 mW power
and 0.5 s acquisition time. Each XY map size was 180 by
140 microns with 80 sampling points, and each XZ map
was 160 microns by 15 microns with 30 sampling points.
All Raman images are based on the heights of carotenoids’
1,157 cm−1 peak.
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In vivo Raman Study: Raman Microscopic
Measurements, Data Processing, and
Statistical Analysis
We used a Raman confocal microscopic system with a 532 nm
CW laser for microscopic measurements (Horiba, LabRam HR
Revolution), placing plant leaves directly onto the sample holder
without physical detachment from the plant. Thus, we used
in vivo, or non-invasive detection. Air-cooled CCD cameras
efficiently detected the laser induced scattered radiation (signal).
The laser powers were adjusted to be low enough to not
affect the live cells in plant tissue. The laser sampling spot
size was 2 microns, and the laser power was 0.5 mW with 1
second acquisition time for microscopic measurements. Twelve
Raman spectra were collected from 3rd and 4th leaves of each
plant because 1st and 2nd leaves had signs of senescence on
drought stressed plants. We took the Raman spectral data of
the plants (leaves) every 24 h for 7 days between 8 a.m. and
12 p.m. during the on-set and development of stress. Because
plant leaf is a complex system, we used the mean spectra,
averaged over different regions, for further analysis. Since the
greatest contributor of noise to Raman spectra is the intrinsic
fluorescence of molecules in plant tissues, we removed the
fluorescence background in order to extract accurate Raman
signals from the raw spectra. The baselines of Raman raw spectral
data were corrected by fitting the background with high order
polynomials with multiple iterations (Lieber and Mahadevan-
Jansen, 2003). The spectra were then smoothed by the Savitzky-
Golay algorithm with 15 adjacent points and normalized by
the unit vector method, a common normalization method
for Raman spectra of biological samples. All data processing
programs were written in MATLAB R2013a (The Mathworks,
Natick, MA, USA). Results are reported as means ±SE, from
3 different experiments. Data were evaluated using one-way
analysis (ANOVA) using the Origin Labs 8.1 and P < 0.05 were
considered to indicate statistical significance.

RESULTS AND DISCUSSION

In situ Raman Studies: Real-Time
Carotenoid Degradations During Osmotic
Stress
Since the major objective of this study was to determine
whether Raman spectroscopy can be utilized to distinguish
maize genotypes that display diverse levels of drought tolerance,
we first aimed to establish whether carotenoid degradation
is proportional to the levels of osmotic stress that leaf tissue
experiences by using different concentrations of mannitol
treatments of leaf disks. Carotenoids are yellow to orange
accessory photosynthetic pigments that have nutritional
relevance as an antioxidant and are well-studied for their
relevance to plant stress responses (Krinsky, 1989; Muller et al.,
2001; Davison et al., 2002; Krieger-Liszkay et al., 2008; Shan and
Li, 2008; Yoshikazu et al., 2008; Ramel et al., 2012). Degradation
of carotenoids is one of the plant’s direct responses to stress, and
in our previous study, using Raman microscopy, we observed

this degradation in response to multiple stress conditions in
genetically identical Coleus plants (Altangerel et al., 2017a).

In plants, degradation of carotenoids happens slowly, within
days. We reasoned that if degradation of carotenoids could
be expedited in plant tissue from days to minutes using our
newly developed immediate stress technique, then we would
be able to observe this process more closely. One of the
important advantages of Raman mapping is the ability to
monitor distributions of molecules in real-time (Kann et al.,
2015). In addition, we addressed the question of which plastids
display carotenoid degradation during an osmotic stress such
as drought. Carotenoid contents vary in different types of
plastids, for example chlorophyll containing chloroplasts or
chlorophyll-less leucoplasts such as etioplasts (Sun et al., 2018).
To separately investigate etioplasts and chloroplasts, we grew
individual seedlings simultaneously; one in complete darkness
and the other under normal light. The plants that grew in
darkness did not produce mature chloroplasts and thus could not
perform photosynthetic functions (Alberts et al., 2002), whereas
the green plants contained photosynthetically active chloroplasts
(Figure 2A). To understand the subcellular origin of carotenoids
being degraded under osmotic stress, we compared the responses
of leaf disks from the chlorophyll-less plants that grew under
complete darkness that had few if any mature chloroplasts to
those that contain normal levels of fully mature chloroplasts.
For this, the excised leaf disks were subjected to osmotic stress
conditions while taking Raman measurements.

For Raman spectroscopy, a single frequency laser light is
used to excite molecules. The excited molecules emit light with
new optical frequencies that are downshifted from the incident
laser frequency by the amount equal to the molecule vibrational
frequencies. This new optical frequency of light (referred to
as Stokes radiation) is then measured by a spectrometer. For
example, the average Raman spectra of the white and green tissue
of live plants are shown in Figure 2B, with different intensities
of carotenoid’s Raman peaks at 1,157 and 1,007 cm−1. Note
that normally, carotenoids have the strongest Raman peak at
1,524 cm−1, but we couldn’t use it here because it overlaps
with the anthocyanin Raman peak that also exists in plant tissue
(Altangerel et al., 2017b). Since Raman peak intensity directly
correlates with the concentration of molecule, we observed that
the chlorophyll-less plants had less carotenoids compared to the
chlorophyll containing plants in Figure 2B. Indeed, etioplasts
are known to accumulate only limited amounts of carotenoids
(Lintig et al., 1997; Welsch et al., 2000).

Next, we simulated osmotic stress in the chlorophyll
containing (green) and chlorophyll-less (white) leaf disks using
our newly developed osmotic stress protocol (Figure 1). The
leaf disks from each plant were exposed to 150mM Mannitol
solution and we took Raman XZ and XY maps before and after
the stress at specific time points. According to Raman maps in
Figure 2C, one can see clearly that carotenoids emitting at the
1,157 cm−1 Raman line did not degrade in white plant tissue
during the osmotic stress, yet they did in green plant tissue.
This selective degradation seen in the green plants demonstrates
that carotenoids in chloroplasts preferentially degraded during
osmotic stress compared to carotenoids in etioplasts (Figure 2D).
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FIGURE 2 | (A) The photo images of the experimental plants: chlorophyll-containing (green) vs. chlorophyll-less (white), (B) Average Raman spectra of the

chlorophyll-containing and chlorophyll-less leaf disks, (C) Real-time carotenoid distribution changes due to the 150mM mannitol solution vs. pure deionized water,

green and white leaf disks (areas of 170 × 140µm): before treatments and 0, 5, 15, 30, and 45min after the treatments. (D) Histogram of carotenoid changes of

Raman maps. Each bar represents mean +SD (n = 80 × 3 × 2).

Furthermore, we investigated whether Raman technique can
sense shifts of carotenoid degradation rate during different
levels of the osmotic stress in the chlorophyll containing leaf
disks. In general, higher concentrations of mannitol solution
should result in faster dehydration rate, which linearly correlates
with faster carotenoid degradation. As shown in Figure 3, the
Raman images for carotenoid distributions in plant tissues
(intensities at 1,157 cm−1 Raman line) show different strengths
of stress for different concentrations of mannitol solutions.
One can see that carotenoids are distributed evenly before
stressing, suggesting that they exist in similar concentrations
throughout the plant tissue under normal conditions. After the
dehydration solution was introduced into plant tissue, the pattern
of carotenoid distribution changed in minutes in response to
different concentrations of mannitol solutions. For example,
significant carotenoid degradation was seen throughout the
mapped area after 5min exposure to 250mM mannitol solution,
whereas similar level of degradation took 15min with 100
mM solution.

Overall, when we increased the mannitol concentration
from 100 to 250mM, the Raman XZ (tissue depth) maps
(Figure 3C) show that the carotenoid, due to re-distribution

or degradation, changed rapidly between 5 and 15min after
the stress. Similarly, the XY Raman images (Figure 3A) show
that carotenoid degradation also intensifies in response to
treatment with mannitol especially between 5 and 15min after
the stress. These results confirm that this new osmotic stress
protocol indeed imitates osmotic stress in tissue as reported
in our previous study (Altangerel et al., 2017a), and that
Raman mapping is able to accurately sense the degradation rate
in carotenoid levels caused by different strengths of osmotic
stresses.

In vivo Raman Study: Carotenoid
Degradation in Maize Inbreds Due to
Drought Stress
Next, we investigated whether Raman technique can distinguish
drought tolerance levels in response to withholding water for
seven days in genetically diverse maize inbred lines including
B73, CML176, and OH28 by comparing their carotenoid
degradation rates. In Figure 4A, we compared the average Raman
spectra of OH28 inbred line before and after 72 h of stress,
focusing on the intensities of the carotenoid Raman peaks at
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FIGURE 3 | (A) XY Real-time carotenoid distribution changes depend on the mannitol concentrations of 0, 100, 150, and 250mM, before the treatments and 0, 5,

and 15min after the treatments (the green leaf disks-areas of 170 ×140µm), (B) Histogram of carotenoid changes of XY Raman maps. Each bar represents mean

+SD (n = 80 × 3 × 2), (C) XZ Real-time carotenoid distribution changes depend on the mannitol concentrations of 0, 100, 150, and 250mM, before treatments and

0, 5, 15, 30, and 45min after the treatments (the green leaf disks where z is depth inside the tissue-areas 170 × 2µm), (D) Histogram of carotenoid changes of XZ

Raman maps. Each bar represents mean +SD (n = 30 × 3 × 2).

1,157 and 1,007 cm−1. The observed decrease allows us to
conclude that carotenoids are degraded during these 2 days.
Figure 4B shows the mean amplitudes of the carotenoid peak at
1,157 cm−1 of each genotype from the onset of the experiment
to day 7. The rate of carotenoid degradation serves as a proxy
how plants respond to drought stress. The faster the carotenoids
degrade under drought stress, the less carotenoids left in the
plant tissue to scavenge damaging ROS resulting in increased
sensitivity to drought stress. Therefore, the germplasm that
exhibits greater degradation rate will likely be less drought
tolerant. According to our Raman measurements (Figure 4B),
carotenoids were degraded less in B73 and more in CML176. In
particular, the relative carotenoid degradation rates (from day 0
to day 7) were 22, 20, and 6%, respectively for CML176, OH28,
and B73 inbreds. At the 0.05 level, the population variances
showed no significant difference between 3 replicate experiments.
These results, therefore, suggest that B73 is the most drought-
tolerant maize inbred and CML176 is the least tolerant.

To measure relative drought tolerance levels in these
inbred lines directly, we measured how much water was lost
transpirationally in response to withholding water (Figure 4C).
The results show that CML176 and OH28 plants had the
highest transpirational water loss rate, indicating that they are

more drought sensitive. In contrast, B73 displayed the lowest
level of water loss through transpiration and therefore is the
most drought tolerant among these inbreds. The normalized
dry weight loss for control vs. stressed plants (Figure 4D)
agrees with the water loss data. In particular, CML176 had the
biggest differences in weight between the control and stressed
plants for both above ground and root tissues during the
week-long water deprivation. In contrast, B73 had the least
differences between control and stressed plants for both tissues.
Overall, these results agreed with our inbred line behavior as
expected from the carotenoid degradation rates determined by
Raman measurements.

In vivo Raman Study: Carotenoid
Degradation in Maize Near Isogenic
Genotypes Due to Drought Stress
Having demonstrated Raman microscopic technique’s ability to
distinguish the levels of drought tolerance in the genetically
diverse maize genotypes, we shifted the focus to using this
technique in the analyses of maize genotypes that are near-
isogenic to each other at the genome level but display
contrasting drought tolerance responses. For this, we chose
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FIGURE 4 | (A) Average Raman spectra of OH28 inbred: control vs. 72 h after drought stress. (B) Histogram of a change in the carotenoid content of plants at B73-N

(control), B73-DS (drought stressed) CML176-N (control), CML176-DS (drought stressed), OH28-N (control) and OH28-DS (drought stressed). Each bar represents

the mean +SE (n = 3x5). (C) Transpirational water loss rate of the inbreds. (D) Histogram of dry weight ratio between the control and the stressed plants at B73,

CML176, and OH28. The higher the value the more weight of tissue is lost and the more sensitive the plants are to drought stress.

B73 inbred and two of its near-isogenic lipoxygenase mutants,
lox2 and lox4, that were generated by backcrossing 7 times
to recurrent parent B73 inbred line, which resulted in their
genome being more than 99.2% identical to the parental
B73 inbred line. Transpirational water loss experiments with
these three near-isogenic lines (NILs) showed that lox2 is the
most drought sensitive line with the highest transpirational
water loss compared to B73, and was unable to recover from
a prolonged drought stress period after re-watering (Huang,
2017). In sharp contrast, lox4 is the most drought tolerant
genotype displaying lower water loss through transpiration
and better survival after 14 days of withholding water
followed by re-watering (Huang, 2017). Figure 5 shows that
relative average carotenoid degradation rates (from day 0 to
day 7) were 10, 6, and 3% for the lox2, B73 and lox4
genotypes, respectively. These Raman microscopy results mirror
the transpirational water loss experimental results in Huang
(2017) and confirm that lox4 is the most drought-tolerant
and lox2 is the most drought-sensitive line among these
three genotypes.

It is important to note that Raman spectra for the near
isogenic genotypes in Figure 5 start at nearly the same
signal strength for carotenoid levels at the beginning of
the experiment, in contrast to Figure 4B for the inbreds.
This is because the near-isogenic lines, B73, lox2 and lox4,
have almost identical genome sequences and presumably
contain near-identical levels of carotenoids, whereas the
genetically diverse inbreds (B73, CML 176, and OH28) are quite
different. Significantly, Raman technique provides the tool to
clearly separate the responses of the near-isogenic genotypes
after a week-long drought by monitoring degradation of
carotenoids. The existing techniques for measuring carotenoids
in plants such as reflectance and fluorescence spectroscopies
offer low cost but their sensing time is not as fast as
Raman. In our previous study with Coleus plants (Altangerel
et al., 2017a), we collected reflectance and fluorescence
spectra from the experimental plants in addition to Raman
measurements. The average reflectance, fluorescence and Raman
spectra of the experimental plants on the onset of the
experiment and 60 h after the drought stress are shown in the
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FIGURE 5 | Histogram of a change in the carotenoid content of plants in B73 and near-isogenic lox 2 and lox 4 mutants. While at the beginning of withholding water,

all three genotypes showed similar levels of carotenoids, by day 6 and 7 all three genotypes displayed clear separations of carotenoid level between control and

drought stressed plants. Each bar represents the mean +SE (n = 3 × 5).

Supplementary Figure 1. The Raman spectra showed significant
changes, whereas no changes were observed in the reflectance
and fluorescence spectra.

CONCLUSIONS

Carotenoid degradation in plant tissues is one of the plant’s first
defense against ROS. Since we are detecting these carotenoid
molecules in response to drought stress, rather than detecting
other physiological changes, we were able to rapidly correlate the
dynamics of these biomolecules to the plant tolerance levels. The
high accuracy of Raman technique shows that the degradation
rate of carotenoids is a reliable indicator of the drought
tolerance levels in the genotypes of maize with different levels of
drought tolerance.

Ramanmapping technique enabled us to observe the real-time
dynamics of the changes of carotenoid content in the plant
leaf tissue during osmotic stress. In this in-vitro study, we
found that the distribution of carotenoids in dark-grown (white)
tissue didn’t change during osmotic stress, and that chlorophyll-
less plastids had lower content of carotenoids compared to
chrophyll-containing chloroplasts found in the green tissue. The
results also showed that only carotenoids in the chloroplast were
degraded during osmotic stress.

Most importantly, we demonstrated that Raman technique is
a robust, non-invasive, and biochemically selective phenotyping
technique that could distinguish drought-tolerance levels not
only in genetically diverse genotypes (maize inbred lines) but
also in near-isogenic genotypes that contrast in their drought
tolerance levels. The robustness of this technique is that it can
be performed with two-week old seedlings and requires only
a weeklong withholding of water. Climate change increases
the odds of a short period of drought stress to happen under
natural field conditions in most parts of the world. Thus,
using this technique can expedite breeding processes carried
out in many areas that do not otherwise provide reliable
drought stress conditions. Moreover, this in vivo phenotyping
technique offers a rapid and accurate method to select drought
tolerant genotypes.

In summary, the versatility of Raman techniques allows
us to monitor degradation of carotenoids within days in live
plants and within minutes in plant leaf disks during drought
stress. The robustness and accuracy of this technique offers a
great opportunity for future development of high-throughput
screening for plant phenotyping. Because hand-held Raman
devices are commercially available, this technique has the
capability to become mobile and automated, allowing for
improved-precision agricultural applications for both breeders
and commercial producers.
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