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Editorial on the Research Topic

Ultrasound in Oncology: Application of Big Data and Artificial Intelligence

With the rapid development of science and technology, big data and artificial intelligence (AI) have
ushered in a new era for medicine, especially the medical imaging. AI techniques are particularly
applicable to imaging-based domains because the pixel values of the images themselves are
quantifiable, which is the primary source of data for training and validating algorithms. Big data-
based AI has attracted extensive attention for its superior performance and repeatability in medical
image recognition. The application of AI technology can provide new clinical perspectives in
complex medical imaging to improve diagnostic and surveillance accuracy (1, 2).

As a flexible imaging method, ultrasound (US), with its unique advantages including radiation-
free, real-time imaging and ease of use, is expanding globally into various clinical areas as a first-line
imaging modality. Ultrasomics is a field of image analysis with a bright future by extracting high-
throughput quantitative data information from images and objectively characterizing and
interpreting them for clinical analysis and diagnosis (3, 4). AI algorithm-based high-throughput
data analysis of ultrasomics can reduce the high operator-dependent inherent nature of US
technology, which clearly facilitates precision medicine with clinical decision systems support
(Yin et al.; Kuang et al.). In our previous work (5), we summarized the relevant applications of US
based on AI technology in different organs in recent years. The related studies also confirmed that
this technology undoubtedly has a broad prospects in the field of US. For example, with a
prospective and multicenter study design, we (6) developed an assembled convolutional neural
network model for identifying molecular subtypes of breast cancer that could contribute to the
clinical management of patients with breast disease. And the adoption of tele-US could improve the
quality of breast US examinations for inexperienced US doctors (7). In addition, the machine
learning-based US visual method (8) achieved an area under the curve (AUC) of 0.9 for the
diagnosis of thyroid nodules, effectively reducing unnecessary fine needle aspiration biopsies in the
clinical treatment of thyroid nodules. Significantly, the implementation of telemedicine
technologies, including tele-US, has shown great value in protecting the health of patients and
physicians while providing clinical care decisions for them during the coronavirus disease 2019
(COVID-19) pandemic (9–11). The advanced technologies such as big data analytics, AI
technology, 5G networks and the internet of things undoubtedly provide invaluable
December 2021 | Volume 11 | Article 81948715
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opportunities for the development of ultrasomics. The main
contributions of this Frontiers Research Topic are as follows:

Nowadays, ultrasonography has been endorsed as the first-line
imaging modality for diagnosing thyroid diseases by many
guidelines (12). Two of the researches Zhang et al. as well as
Liang et al. focused on the application of computer-aided
diagnosis (CAD) systems to significantly improve the diagnostic
accuracy of thyroid nodules, which reduced the need for
unnecessary fine needle punctures. It is worth noting that Hou
et al. constructed a deep learning-based ultrasonomic model and
achievedanAUCof0.924 for thediagnosisofbenignandmalignant
nodules in patients with Hashimoto’s thyroiditis. Of particular
interest is that the study’s dedicated to develop a radiomic
nomogram model to non-invasively and reliably predict
extrathyroidal extension in patients with papillary thyroid cancer
(Wang et al.). These researches all contribute to the response of
clinical decision making for precision US medicine.

In recent years, US has been widely used as a significant
supplementary modality for breast cancer screening. With the
application of AI-based ultrasomics, the diagnostic efficacy of
breast disease evaluation has been greatly improved. Xiao et al.
studied and demonstrated that deep learning-based computer-
aided diagnostic system could significantly outperform the
experienced radiologists in terms of diagnostic specificity,
sensitivity, and accuracy for patients with asymptomatic breast
disease. Benefit from this, unnecessary biopsies in asymptomatic
screening patients can be avoided, reducing the waste of medical
resources. Another meaningful study designed an ultrasomics
feature-based nomogram to predict axillary lymph node status
for breast cancer patients with relative accuracy, which helps in
clinical decision making (Luo et al.).

It is vital for us to accurately identify gallbladder polyps
preoperatively, of which cholesterol polyps and adenomatous
polyps are the two most common types, while only adenomatous
polyps are true polyps that potentially tend to develop into
gallbladder cancer. Yuan et al‘s ultrasomics analysis of spatial
and morphological features extracted from raw US images can
effectively improve the preoperative diagnosis of true and false
gallbladder polyps and provide a reliable basis for clinical
decisions related to gallbladder polyp surgery.

Considering that different subtypes of liver cancer determine
different treatment modalities and the poor prognosis of
hepatocellular-cholangiocarcinoma subtypes, precise
identification of liver disease preoperatively is critical. Peng
et al. developed a machine learning-based moderate radiomics
Frontiers in Oncology | www.frontiersin.org 26
model to extract high-throughput US image features and achieve
superior differentiation of histopathological subtypes of primary
liver cancer. In addition, Li et al. conduced a machine learning-
based ultrasomics method for analyzing and processing US
images, which achieved preoperative individualized diagnostic
performance comparable to that of radiologists for patients with
atypical hepatocellular carcinoma (aHCC) and focal nodular
hyperplasia (FNH). Based on this, the combination of
ultrasomics (Nishida and Kudo) approach with AI is gradually
becoming an effective tool for the diagnosis and analysis of liver
tumors demonstrating the great potential of AI-based
ultrasomics applications for precision medicine (13).

It is well known that image feature extraction is the most vital
step of data analysis for ultrasomics. To address this critical issue,
Jin et al. investigated automatic segmentation algorithms based
on the multiple U-net model for ultrasomics features extraction
of ovarian cancer patients, which showed good operational
reproducibility and reliability. Another research is worthy of
our attention is a U-net based on gastric wall detection network
developed by Sui et al. By automatically analyzing the
hierarchical structure of the gastric wall in gastric ultrasomics,
which enable to accurately identify gastric diseases. The data
quality and privacy involved in the application of AI in clinical
practice and the transparency of algorithms are two important
issues that need to be addressed urgently. With the attention and
the resolution of these troubles, in the future, AI-based
ultrasomics will be considered as a part of routine US
examinations that will benefit both patients and physicians. AI
technology, encouraged by the demand for ultrasomics
application from computer technologies and clinical practice,
AI-based ultrasomics will undoubtedly have a broad future. The
wide application of AI-based ultrasomics help us to acquire
quantify diagnostic information of diseases as well as improve
the accuracy and reproducibility of US diagnosis.

We hope that this Frontiers Research Topic will be an
enrichment for US medicine, we give our acknowledgement to all
authors for their efforts and commitments, as well as the reviewers
who have corrected each of the inadequate contributions.
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Diagnostic Value of Breast Lesions
Between Deep Learning-Based
Computer-Aided Diagnosis System
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Mengsu Xiao, Chenyang Zhao, Jianchu Li, Jing Zhang, He Liu, Ming Wang,

Yunshu Ouyang, Yixiu Zhang, Yuxin Jiang and Qingli Zhu*

Department of Ultrasound, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing, China

Purpose: The purpose of this study was to compare the diagnostic performance

of breast lesions between deep learning-based computer-aided diagnosis (deep

learning-based CAD) system and experienced radiologists and to compare the

performance between symptomatic and asymptomatic patients.

Methods: From January to December 2018, a total of 451 breast lesions in 389

consecutive patients were examined (mean age 46.86 ± 13.03 years, range 19–84

years) by both ultrasound and deep learning-based CAD system, all of which were

biopsied, and the pathological results were obtained. The lesions were diagnosed by two

experienced radiologists according to the fifth edition Breast Imaging Reporting and Data

System (BI-RADS). The final deep learning-based CAD assessments were dichotomized

as possibly benign or possibly malignant. The diagnostic performances of the radiologists

and deep learning-based CADwere calculated and compared for asymptomatic patients

and symptomatic patients.

Results: There were 206 asymptomatic screening patients with 235 lesions (mean

age 45.06 ± 10.90 years, range 21–73 years) and 183 symptomatic patients with 216

lesions (mean age 50.03 ± 14.97 years, range 19–84 years). The sensitivity, specificity,

positive predictive value (PPV), negative predictive value (NPV), accuracy and area under

the receiver operating characteristic curve (AUC) of the deep learning-based CAD in

asymptomatic patients were 93.8, 83.9, 75.0, 96.3, 87.2, and 0.89%, respectively. In

asymptomatic patients, the specificity (83.9 vs. 66.5%, p< 0.001), PPV (75.0 vs. 59.4%,

p= 0.013), accuracy (87.2 vs. 76.2%, p= 0.002) and AUC (0.89 to 0.81, p= 0.0013) of

CADwere all significantly higher than those of the experienced radiologists. The sensitivity

(93.8 vs. 80.0%), specificity (83.9 vs. 61.8%,), accuracy (87.2 vs. 73.6%) and AUC (0.89

vs. 0.71) of CAD were all higher for asymptomatic patients than for symptomatic patients.

If the BI-RADS 4a lesions diagnosed by the radiologists in asymptomatic patients were
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downgraded to BI-RADS 3 according to the CAD, then 54.8% (23/42) of the lesions

would avoid biopsy without missing the malignancy.

Conclusion: The deep learning-based CAD system had better performance in

asymptomatic patients than in symptomatic patients and could be a promising

complementary tool to ultrasound for increasing diagnostic specificity and avoiding

unnecessary biopsies in asymptomatic screening patients.

Keywords: computer-aided diagnosis, deep learning, breast, ultrasound, symptomatic

INTRODUCTION

Breast cancer is a leading cause of cancer-related mortality
in women worldwide (1). As an important supplementary
modality for mammography, ultrasound plays an important role
in dense breast tissue. Ultrasound is more suitable for Asian
women, most of whom have thinner and denser breast glands
and a younger age of onset for breast cancer, than Western
women. A multicenter randomized trial across China compared
ultrasound and mammography for breast cancer screening in
high-risk Chinese women and showed that ultrasound had a
significantly higher sensitivity and accuracy than mammography
(2). Currently, ultrasound is widely used as the primary screening
modality for breast cancer in China (3). However, ultrasounds
often lead to a certain number of false-positive lesions and
unnecessary biopsies or surgeries because ultrasound has low
specificity and positive predictive value (PPV) (4–6). This has
become an urgent problem of ultrasound in breast cancer
screening in China.

In recent years, a deep learning-based computer-aided
diagnosis (CAD) system for breast ultrasound (S-DetectTM for
Breast in RS80A; Samsung Medison Co., Ltd., Seoul, Korea)
has become commercially available (7). This system has good
performance in diagnosing benign and malignant breast lesions
and especially in improving the specificity of ultrasound (8). Our
early study showed that the deep learning-based CAD had the
same diagnostic accuracy as experienced radiologists, and the
specificity of the CAD was higher than that of the radiologists,
which helped to reduce the number of unnecessary biopsies (9).
Our recent study also showed that the deep learning-based CAD
had a better performance in the breast benign lesions than the
radiologists, especially in fibroadenomas and adenosis (10).

Radiologists often consider clinical factors (such as age, high-
risk factors, clinical symptoms, and surgical history) as well
as the images to make comprehensive judgments; in contrast,
the CAD only considers ultrasound images without any clinical
factors. Thus, we believe that the deep learning-based CAD is
better at diagnosing asymptomatic patients than symptomatic
patients since it only analyzes imaging data. Currently, the major
mode of achieving early detection for breast cancer in China
is hospital-based opportunistic screening among asymptomatic
self-referred women (3), so we proposed CAD may be more

Abbreviations: CAD, deep learning framework-based computer-aided diagnosis;

SE, sensitivity; SP, specificity; PLR, positive likelihood ratio; NLR, negative

likelihood ratio; 95% CI, 95% confidence interval.

helpful in breast cancer asymptomatic screening. To the best of
our knowledge, no reports have been published on this topic yet.
This study prospectively analyzed the value of deep learning-
based CAD in asymptomatic screening patients by comparing
with symptomatic patients.

MATERIALS AND METHODS

Patients
From January to December 2018, a total of 409 consecutive
patients were examined at the Peking Union Medical College
Hospital. All lesions underwent biopsy, and the pathologies
were obtained. This prospective study was approved by the
institutional review board. Informed consent was obtained from
all patients included in the study.

Inclusion criteria were listed as follows:

(1) Had breast lesions clearly visualized by ultrasound;
(2) Underwent biopsy of the lesions and had

pathological results;
(3) Provided informed consent.

Exclusion criteria were listed as follows:

(1) Patients who were pregnant or lactating;
(2) Patients who had breast biopsy or were undergoing

neoadjuvant chemotherapy or radiotherapy.

Among these patients, 8 women whose lesions can’t be visualized
by ultrasound, 5 women who were pregnant or lactating
and 7 women who had breast biopsy or were undergoing
neoadjuvant chemotherapy were excluded. Ultimately, a total of
451 breast lesions in 389 patients were included in this study.
The patients were divided into symptomatic and asymptomatic
groups. Patients with any clinical manifestations of the breast
are classified as symptomatic group, including palpable breast
masses, localized pain, nipple discharge, trauma, redness and
swelling of the breast, skin changes, nipple retraction, and nipple
eczematoid changes. The patients in the asymptomatic group had
no symptoms in their breasts and had undergone ultrasound for
breast cancer screening. Figure 1 shows the flow chart of study.

Ultrasound Examination
The ultrasound examinations were performed using a 3–12 MHz
linear transducer (RS80A with Prestige, Samsung Medison, Co.
Ltd., Seoul, Korea). Two radiologists (QL Zhu and MS Xiao)
with 17 and 12 years of experience in breast imaging bilaterally
examined the whole breasts of all patients by using ultrasound.
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FIGURE 1 | The flow diagram of the study.

The radiologists were aware of the clinical information (history,
symptoms, etc.), mammographic results, magnetic resonance
imaging (MRI) results, and previous ultrasound results before
performing the ultrasound examination. When a breast lesion
was detected, two images of the longitudinal and transverse
sections of the largest lesion diameter were routinely obtained,
and still images were recorded. The lesions were diagnosed by
the experienced radiologists based on fifth edition Breast Imaging
Reporting and Data System (BI-RADS) by the American College
of Radiology (11). The radiologists were blinded to the CAD
results when they made the diagnosis for breast lesions. The
final diagnosis was classified as follows: category 3, probably
benign; category 4a, low suspicion for malignancy; category 4b,
intermediate suspicion for malignancy; category 4c, moderate
concern for malignancy; and category 5, highly suggesting
malignancy. The radiologists were blinded to the pathologic
results. The diagnostic cutoff was category 4a. Category 3 lesions
were considered benign, while category 4a, 4b, 4c, and 5 lesions
were considered malignant.

Deep Learning-Based CAD Examination
The CAD examination was performed by using deep learning-
based CAD software (Samsung Healthcare, South Korea) by the
same two radiologists who performed ultrasound examination.
The CAD system utilizes large data sets collected from numerous
breast exam cases and provides the characteristics of displayed
lesion. The CAD applies a novel feature extraction technique and

support vector machine classifier. By adopting a deep learning
algorithm in the processes of lesion segmentation, analysis of
characteristics and assessment, the CAD gives a dichotomized
diagnosis whether a selected lesion is benign or malignant
according to the proposed feature combinations integrated
according to the BI-RADS.

On the maximum diameter section of the lesion, the
radiologists started the CAD in the center of the lesion. If the
maximum diameter of tumor was larger than the machine
screen, we selected the most representative section (showing
the most suspicious features) of the lesion for CAD to analyze.
A region of interest (ROI) was automatically drawn along
the border of the lesion. If the automatic outline of ROI
was not considered accurate, the radiologists could manually
modify the tumor boundary. Based on the given ROI, all of
the data and information about the lesion were extracted
and analyzed. The CAD system comprehensively analyzed
the extracted information, provided a BI-RADS lexicon of
the lesions including shape, orientation, margins, pattern and
posterior acoustic features, and made a dichotomized diagnosis
(possibly benign and possibly malignant) (Figures 2–4).
The entire deep learning-based CAD process took only a
few seconds.

Pathological Diagnosis
All of the breast lesions in our study underwent biopsy, and
histopathological results were considered the gold standard,
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FIGURE 2 | The breast mass of an asymptomatic 57-year-old woman. (A,B) The longitudinal section and cross-section of the lesion showed a 6-mm mass with

calcifications and posterior shadowing. The orientation is not parallel. The experienced radiologists diagnosed the lesion as BI-RADS 4a. (C) A ROI was automatically

drawn along the margin of the mass (green line). The raw imaging data were automatically analyzed, and the final diagnosis of the deep learning-based CAD system

was a possibly benign tumor. The mass was pathologically proven to be a fibroadenoma.

FIGURE 3 | The breast lesion of an asymptomatic 46-year-old woman. (A,B) The longitudinal section and cross-section of the lesion showed a 7-mm lesion with

irregular shape and ill-defined margins. The diagnosis of the experienced radiologists was a BI-RADS 4b lesion. (C) The diagnosis of the deep learning-based CAD

system was a possibly benign tumor. The pathological result was fat necrosis.

FIGURE 4 | The breast lesion of an asymptomatic 50-year-old woman. (A) The longitudinal section of a 9-mm lesion. (B) Color Doppler flow imaging of the lesion. The

diagnosis of the experienced radiologists was a BI-RADS 3 lesion. (C) The diagnosis of the deep learning-based CAD system was a possibly malignant tumor. The

pathological result was invasive ductal carcinoma.

including all of the category 3 lesions. The category 3 lesions
underwent biopsy according to the patients’ choices or patients
with high risk factors, including family history and nipple
discharge. Immunohistochemical examinations were performed
when needed.

Statistical Analysis
Statistical analysis was performed using SPSS 21.0 (SAS Inc.,
Cary, NC, USA). The diagnostic performances of the physician

and deep learning-based CAD system were analyzed and
compared in terms of the sensitivity, specificity, positive
likelihood ratio (PLR), negative likelihood ratio (NLR), PPV,
negative predictive value (NPV) and accuracy. The 2 × 2
contingency table, chi-square test and McNemar test were used
to compare the differences in performance. Receiver operating
characteristic (ROC) curves were drawn, and the areas under the
ROC curves (AUCs) were calculated. A p < 0.05 was regarded as
statistically significant.
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TABLE 1 | The pathological types of the 220 malignant lesions.

Malignant lesions Number of

asymptomatic

lesions (ratio%)

Number of

symptomatic lesions

(ratio%)

Total

number

(ratio%)

Intraductal carcinoma 13 (16.25) 17 (12.14) 30 (13.64)

Invasive ductal carcinoma,

not otherwise specified

56 (70) 98 (70) 154 (70)

Invasive lobular carcinoma 5 (6.25) 5 (3.57) 10 (4.55)

Apocrine carcinoma 1 (1.25) 1 (0.71) 2 (0.91)

Papillary carcinoma 0 (0) 7 (5) 7 (3.18)

Mucinous carcinoma 1 (1.25) 4 (2.86) 5 (2.23)

Neuroendocrine carcinoma 2 (2.5) 0 (0) 2 (0.91)

Malignant

phyllodestumours

0 (0) 5 (3.56) 5 (2.23)

Metaplastic carcinoma 0 (0) 1 (0.71) 1 (0.45)

Medullary carcinoma 1 (1.25) 0 (0) 1 (0.45)

Tubular carcinoma 1 (1.25) 0 (0) 1 (0.45)

myofibroblastoma 0 (0) 1 (0.71) 1 (0.45)

Diffuse large B-cell

lymphoma

0 (0) 1 (0.71) 1 (0.45)

Total 80 140 220

TABLE 2 | The pathological types of the 231 benign lesions.

Benign lesions Number of

asymptomatic

lesions (ratio%)

Number of

symptomatic lesions

(ratio%)

Total number

(ratio%)

Fibroadenoma 92 (59.35) 34 (44.74) 126 (54.55)

Adenosis 39 (25.16) 15 (19.74) 54 (23.38)

Intraductal papilloma 13 (8.39) 16 (21.05) 29 (12.55)

Phyllodestumour 1 (0.65) 2 (2.63) 3 (1.30)

Chronic

inflammation

7 (4.52) 4 (5.26) 11 (4.76)

Granular

inflammation

1 (0.65) 3 (3.95) 4 (1.73)

Hamartoma 0 (0) 1 (1.32) 1 (0.43)

Epidermoid cyst 0 (0) 1 (1.32) 1 (0.43)

Cyst 1 (0.65) 0 (0) 1 (0.43)

Fat necrosis 1 (0.65) 0 (0) 1 (0.43)

Total 155 76 231

RESULTS

In total, 206 asymptomatic screening patients had 235 lesions;
the mean age was 45.06 ± 10.90 years (range 21–73 years), and
the mean lesion size was 1.44 ± 0.60 cm (range 0.4–4.9 cm).
A total of 183 symptomatic patients had 216 lesions, including
16 patients with nipple discharge, 157 with palpable masses, 8
with recurrence after malignant tumor resection, and 2 with
nipple depressions or skin changes. The mean age was 50.03 ±

14.97 years (range 19–84 years), and the mean lesion size was
2.42 ± 1.26 cm (range 0.3–9.2 cm). The symptomatic patients

were significantly older than the asymptomatic patients (p <

0.001). The lesions in the symptomatic patients were significantly
larger than those in the asymptomatic patients (p < 0.001). The
pathological results of the lesions are listed in Tables 1, 2.

The diagnostic performances of the deep learning-based CAD
system and radiologists (asymptomatic patients and symptomatic
patients) are shown in Table 3. The diagnostic performances of
the deep learning-based CAD system and radiologists for lesions
<1 cm (asymptomatic patients and symptomatic patients) are
shown in Table 4. The false-positive and false-negative results of
the deep learning-based CAD system are shown in Tables 5, 6.
The subcategorization of asymptomatic and symptomatic breast
lesions by the experienced radiologists is shown in Table 7. The
ROC curves are shown in Figures 5, 6.

Comparing the Performances of the
Deep Learning-Based CAD System and
Radiologists
For Asymptomatic Patients
The specificity (83.87 vs. 66.45%, p < 0.001), PPV (75.00 vs.
59.38%, p = 0.013) and accuracy (87.23 vs. 76.17%, p = 0.002),
and AUC (0.89 to 0.81, p = 0.0013) of the CAD were all
significantly higher than those of the radiologists. The sensitivity
and NPV were not significantly different between the CAD and
the radiologists (p > 0.05).

For Symptomatic Patients
The sensitivity (97.14 vs. 80.00%, p < 0.001), NPV (92.00 vs.
62.67%, p < 0.001) and accuracy (84.26 vs. 73.61%, p = 0.002),
and AUC (0.79 to 0.71, p = 0.040) of the radiologists were all
significantly higher than those of the CAD. The specificity and
PPV were not significantly different between the radiologists and
the CAD system (p > 0.05).

Comparing the Performances of the Deep
Learning-Based CAD System for
Asymptomatic Patients and for
Symptomatic Patients
The sensitivity (93.75 vs. 80.00%), specificity (83.87 vs. 61.84%),
and accuracy (87.23 vs. 73.61%), and AUC (0.89 vs. 0.71)
of the CAD were higher for asymptomatic patients than for
symptomatic patients.

For the Asymptomatic Screening Patients
With Lesions <1 cm
In this study, a total of 87 lesions were <1 cm, of which, 61
were in asymptomatic patients. In the asymptomatic patients
with lesions <1 cm, both the specificity (88.64 vs. 65.91%,
p = 0.002) and accuracy (91.80 vs. 75.41%, p = 0.014)
of the system were significantly higher than those of the
experienced radiologists.

For the BI-RADS 4a Lesions of the
Asymptomatic Patients
For the asymptomatic patients, 42 lesions were diagnosed as
BI-RADS 4a by the radiologists. The pathologic results showed
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TABLE 3 | The diagnostic performances of the deep learning-based CAD system and experienced radiologists for asymptomatic lesions and symptomatic lesions.

SE(%) SP(%) PLR NLR PPV(%) NPV(%) Accuracy (%) AUC

(95%CI) (95%CI) (95%CI) (95%CI) (95%CI) (95%CI) (95%CI) (95%CI)

Asymptomatic lesions CAD 93.75 83.87 5.81 0.07 75.00 96.30 87.23 0.89

(86.01–97.94) (77.12–89.28) (4.04–8.36) (0.03–0.17) (65.34–83.12) (91.57–98.79) (82.28–91.22) (0.84–0.93)

radiologists 95.00 66.45 2.83 0.08 59.38 96.26 76.17 0.81

(87.69–98.62) (58.43–73.83) (2.26–3.55) (0.03–0.20) (50.34–67.96) (90.70–98.97) (70.20–81.47) (0.75–0.86)

Symptomatic lesions CAD 80.00 61.84 2.10 0.32 79.43 62.67 73.61 0.71

(72.41–86.28) (49.98–72.75) (1.56–2.82) (0.22–0.47) (71.82–85.77) (50.73–73.57) (67.20–79.36) (0.64–0.77)

radiologists 97.14 60.53 2.46 0.05 81.93 92.00 84.26 0.79

(92.85–99.22) (48.65–71.56) (1.86–3.26) (0.02–0.13) (75.22–87.46) (80.77–97.78) (78.70–88.85) (0.73–0.84)

SE, sensitivity; SP, specificity; PLR, positive likelihood ratio; NLR, negative likelihood ratio; PPV, positive predictive value; NPV, negative predictive value; AUC, area under the receiver

operator characteristics curve; 95% CI, 95% confidence interval.

TABLE 4 | The diagnostic performances of the deep learning-based CAD system and experienced radiologists for lesions <1 cm.

SE(%) SP(%) PLR NLR PPV(%) NPV(%) Accuracy (%) AUC

(95%CI) (95%CI) (95%CI) (95%CI) (95%CI) (95%CI) (95%CI) (95%CI)

Asymptomatic lesions CAD 100.00 88.64 8.80 0.00 77.27 100.00 91.80 0.94

(80.49–100.00) (75.44–96.21) (3.86–20.09) (54.63–92.18) (90.97–100.00) (81.90–97.28) (0.85–0.99)

Radiologists 100.00 65.91 2.93 0.00 53.13 100.00 75.41 0.83

(80.49–100.00) (50.08–79.51) (1.95–4.42) (34.74–70.91) (88.06–100.00) (62.71–85.54) (0.71–0.91)

Symptomatic lesions CAD 60.00 72.73 2.20 0.55 75.00 57.14 65.38 0.66

(32.29–83.66) (39.03–93.98) (0.77–6.29) (0.27–1.13) (42.81–94.51) (28.86–82.34) (44.33–82.79) (0.45–0.84)

Radiologists 86.67 63.64 2.38 0.21 76.47 77.78 76.92 0.75

(59.54–98.34) (30.79–89.07) (1.06–5.34) (0.05–0.82) (50.10–93.19) (39.99–97.19) (56.35–91.03) (0.54–0.90)

SE, sensitivity; SP, specificity; PLR, positive likelihood ratio; NLR, negative likelihood ratio; PPV, positive predictive value; NPV, negative predictive value; AUC, area under the receiver

operator characteristics curve; 95% CI, 95% confidence interval.

TABLE 5 | False positive cases of deep learning-based CAD system.

False positive

cases

Number of

asymptomatic

lesions (ratio%)

Number of

symptomatic lesions

(ratio%)

Total number

(ratio%)

Fibroadenoma 6 (24) 8 (27.59) 14 (25.93)

Adenosis 9 (36) 7 (24.14) 16 (29.63)

Intraductal papilloma 6 (24) 8 (27.59) 14 (25.93)

Benign

phyllodestumour

0 (0) 2 (6.90) 2 (3.70)

inflammation 3 (12) 4 (13.79) 7 (12.96)

Cyst 1 (4) 0 (0) 1 (1.85)

Total 25 29 54

that 40 lesions (95.23%) were benign and 2 lesions (4.76%)
were malignant. If the BI-RADS 4a lesions diagnosed by the
radiologists in asymptomatic patients were downgraded to BI-
RADS 3 according to the CAD system results, then 54.8%
(23/42) of the lesions would avoid biopsy without missing the 2
malignant tumors.

TABLE 6 | False negative cases of deep learning-based CAD system.

False negative cases Number of

asymptomatic

lesions (ratio%)

Number of

symptomatic lesions

(ratio%)

Total

Number

(ratio%)

Intraductal carcinoma 1 (20) 6 (21.42) 7 (21.21)

Invasive ductal carcinoma,

not otherwise specified

2 (40) 10 (35.71) 12 (36.36)

Invasive lobular carcinoma 1 (20) 0 (0) 1 (3.03)

Papillary carcinoma 0 (0) 5 (17.86) 5 (15.15)

Mucinous carcinoma 1 (20) 3 (10.71) 4 (12.12)

Malignant

phyllodestumours

0 (0) 4 (14.29) 4 (12.12)

Total 5 28 33

DISCUSSION

As an important supplementary modality for mammography,
ultrasound has the advantages of avoiding radiation and
being simple and easy to use. Performing bilateral whole
breast screening for Asian women with small breasts is
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TABLE 7 | The subcategorization of asymptomatic and symptomatic breast

lesions by the experienced radiologists.

Radiologists

diagnosis

Pathological result

Benign Malignant

Asymptomatic lesions BI-RADS 3 103 4

BI-RADS 4a 40 2

BI-RADS 4b 9 9

BI-RADS 4c 3 27

BI-RADS 5 0 38

Symptomatic lesions BI-RADS 3 46 4

BI-RADS 4a 21 8

BI-RADS 4b 6 22

BI-RADS 4c 3 39

BI-RADS 5 0 67

FIGURE 5 | ROC curves of asymptomatic patients.

easy, and the breast lesions can be observed in detail (12).
However, ultrasound requires extensive experience since this
modality is an operator-dependent examination with lower
reproducibility, specificity and PPV than mammography (13).
In recent years, CAD has been used to overcome this
shortcoming and to increase diagnostic accuracy (14, 15),
similar to elastography, which has been used as an adjunct
tool to decrease the number of unnecessary biopsies while
improving the specificity of ultrasound without losing sensitivity
(16). Shibusawa et al. reported that CAD could significantly
increase the AUC of the observers from 0.649 to 0.783 (p
= 0.0167) (12). A recent study showed that adding CAD
results to ultrasound significantly improved the specificity,
accuracy, and PPV of radiologists without losing sensitivity and
NPV (17).

FIGURE 6 | ROC curves of symptomatic patients.

The Role of Deep Learning-Based CAD
System in the Breast Lesions
The emergence of deep learning methods has profoundly
influenced the medical field. Currently, deep learning techniques
are considered the most advanced technology for image
classification (18). Deep learning-based CAD systems are
different from conventional CAD systems based on manual
feature design. Deep learning-based CAD is superior to
conventional CAD (19). The deep learning-based CAD system
used in our study (Samsung corporation, Seoul Korea) is a
newly developed CAD system for breast ultrasound based on
deep learning of raw ultrasound signals through a convolutional
neural network. After extensive learning and training on a large
number of databases, the deep learning-based CAD system could
extract high-order statistics and optimize the balance of input
and output data through multiple hidden layers to provide
an accurate diagnosis (9). The original unprocessed ultrasound
signals were collected as the raw data and information for the
deep learning-based CAD system to analyze through a complex
hierarchical framework. Therefore, the deep learning-based CAD
system did not have interference from artifacts or man-made
interference, which leads to more realistic and reliable diagnoses.
The analysis process of the deep learning-based CAD system is
different from how by radiologists makes observations with their
naked eyes, and more inherent information can be obtained by
the CAD system. The analyses and descriptions of deep learning-
based CAD include shape, echo and texture features using spatial
gray-level dependence matrices, intensity in the tumor area,
gradient magnitude in the tumor area, orientation, distance
between the tumor shape and a best-fit ellipse, average gray value
changes or histogram changes between the tissue and tumor
area, comparison of the gray values of the tumor surroundings,
the number of lobulation/protuberances/depressions, and the
lobulation index (20). Moreover, deep learning-based CAD is
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economical, easy-to-operate, and capable of providing a rapid
diagnosis; thus, this method can be easily incorporated in clinical
practice (8). Segni et al. (21) reported that deep learning-based
CAD had good performance. The sensitivity, specificity, PPV,
NPV andAUCwere 91.1, 70.8, 85.4, 81.0, and 0.81%, respectively.
The AUC was consistent with that found in our study (0.81).

Ultrasound screening has a low specificity and PPV (4–6).
Previous studies have shown that deep learning-based CAD
could improve the specificity of ultrasound. Kim et al. (22)
reported that the specificity (65.8 vs. 30.9%), PPV (58.3 vs.
46.2%), accuracy (70.8 vs. 56.2%) and AUC (0.725 vs. 0.653) of
the deep learning-based CAD system were all significantly higher
than those of the experienced radiologists (p < 0.05) when using
BI-RADS 4a as the cutoff value. This finding indicated that deep
learning-based CAD had good clinical value. Cho et al. (8) also
showed that the sensitivity, specificity, PPV, NPV, accuracy and
AUC of deep learning-based CAD were 72.2, 90.8, 86.7, 79.7,
82.4, and 0.815%, respectively. The specificity, PPV, and accuracy
of the deep learning-based CAD system were all significantly
higher than those of 2 experienced radiologists (p < 0.05). Thus,
deep learning-based CAD could increase the specificity, PPV, and
accuracy of ultrasound. For the asymptomatic patients in our
study, the sensitivity, specificity, PPV, NPV, accuracy and AUC of
the deep learning-based CAD system were 93.8, 83.9, 75.0, 96.3,
87.2, and 0.89%, respectively. The specificity (83.9 vs. 66.5%, p
< 0.001), PPV (75.0 vs. 59.4%, p = 0.013), accuracy (87.2 vs.
76.2%, p = 0.002) and AUC (0.89 vs. 0.81, p = 0.0013) of the
deep learning-based CAD system were all significantly higher
than those of the radiologists. In our study, in the asymptomatic
patients, the PLR (5.81 vs. 2.83) and PPV (75.00 vs. 59.38) of CAD
were higher than those of radiologists. This means that, in the
asymptomatic patients, the probability of a malignant diagnosis
of CAD to be a true malignant lesion is higher than that of
radiologists. In the symptomatic patients, the NLR (0.05 vs. 0.32)
was lower of radiologist than that of CAD and the NPV (92.00 vs.
62.67) of radiologists was higher than that of CAD. This means
that, in the symptomatic patients, the probability of a benign
diagnosis of radiologist to be a true benign lesion is higher than
that of CAD.

For Asymptomatic Patients
To the best of our knowledge, this is the first study to report
the performance of a deep learning-based CAD system in the
comparison of asymptomatic and symptomatic patients with
breast lesions. Our study showed that the CAD system was
more effective for asymptomatic patients than for symptomatic
patients. Compared with those for the symptomatic patients,
the sensitivity (93.8 vs. 80.0%), specificity (83.9 vs. 61.8%),
accuracy (87.2 vs. 73.6%) and AUC (0.89 vs. 0.71) of the
asymptomatic patients were all increased. These results indicate
that the CAD system had a better performance in patients
without clinical symptoms and medical or family histories. The
CAD system is better than the human naked eye at extracting
and analyzing inherent patterns from raw information data.
Therefore, in the asymptomatic screening breast lesions, the
diagnostic performance of radiologists could be improved by
using a deep learning-based CAD approach.

For Symptomatic Patients
To diagnose breast lesions, many clinical factors are taken
into account in addition to the images, such as the patient’s
age, symptoms, surgical histories, family histories, high-risk
factors, clinical examination results, and other imaging findings,
including those from mammography, MRI, color Doppler
ultrasound, and elastography. The diagnosis is a comprehensive
analysis and judgment. In our study, there were 5 malignant
phyllodes tumors, 4 of which were postoperative recurrence.
All 4 solid tumors had regular shapes and clear boundaries
on the images. The radiologists correctly diagnosed these
lesions as recurrent malignant phyllodes tumors, while the CAD
misdiagnosed these lesions as benign tumors. In this study, one
patient who previously underwent modified radical mastectomy
for breast cancer 4 years ago had recurrence on the chest
wall. The recurrent tumor manifested as a solid nodule with a
regular shape, clear boundary, and rich internal blood flow. The
radiologists correctly diagnosed this mass as a recurrent cancer,
while the CAD also misdiagnosed this mass as a benign tumor.
There were 15 inflammatory lesions in the present study, of which
7 were misdiagnosed as malignant by the CAD. These 7 lesions
had irregular shapes and ill-defined borders; these lesions tended
to bemisdiagnosed as breast cancer without anymedical histories
or clinical symptoms. These observations indicated that the
clinical diagnostic process andCAD techniques were significantly
different. The clinical diagnostic process strongly depends on the
medical history and clinical manifestations. In contrast, the CAD
system only analyses imaging features without considering any
non-imaging factors. Thus, the CAD has a better performance
in the asymptomatic screening breast lesions. Adding clinical
information into the CAD diagnostic process may be helpful in
the future.

For the Asymptomatic Screening Patients
With Lesions <1 cm
Small cancer with an invasive component <1 cm is considered
unlikely to metastasize, and more than 90% of small cancers
do not have axillary lymph node metastases, regardless of the
histological grade (23). Therefore, detecting small cancers at the
early stage is very important for the screening program. With the
tumor size decreases, the characteristics of the cancer are also
likely to decrease, such as desmoplastic changes and surrounding
tissue changes to invasion (24). Therefore, correctly diagnosing
small cancers is a true challenge for radiologists. In our study,
the screening asymptomatic lesions were significantly smaller
than the symptomatic lesions (1.44 vs. 2.42 cm, p < 0.05), which
reveals the significance of breast screening for detecting small and
early-stage breast cancer. In total, 87 lesions were smaller than
1 cm in our study, of which 61 lesions were from asymptomatic
patients. Both the specificity (88.64 vs. 65.91%, p = 0.002)
and accuracy (91.80 vs. 75.41%, p = 0.014) of the CAD were
significantly higher than those of the experienced radiologists.
These results suggest that for small breast cancers, the deep
learning-based CAD system is more capable at extracting hidden
information contain in the raw imaging data and recognizing
the features of small cancers, which are indistinguishable to the
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radiologist’s naked eye. The miniscule signs of malignant small
breast cancer may be more easily identified by a deep learning-
based CAD system than the naked human eye. Therefore, the
diagnostic performance of radiologists for small cancer could be
improved by a deep learning-based CAD system.

For the BI-RADS 4a Lesions of the
Asymptomatic Patients
BI-RADS 4a lesions are worrisome lesions, most of which are
benign. Correct diagnoses of BI-RADS 4a lesions can reduce
unnecessary biopsies and decrease the false-positive rate, which
has always been the goal of radiologists. In the asymptomatic
patients of this study, 95.23% (40 of 42) of the BI-RADS 4a
lesions were benign. If the diagnosis process for BI-RADS 4a
lesions also involved the CAD results, then 54.76% (23 of 42)
of the benign lesions could avoid being unnecessarily biopsied
without missing any malignant tumors. Thus, deep learning-
based CAD is helpful in distinguishing benign from worrisome
lesions. Choi et al. (17) also found that deep learning-based CAD
could improve the diagnostic performance of leading radiologists
and enable radiologists to correctly diagnose lesions that are
difficult to classify as BI-RADS 3 or 4a.

There were several limitations in this study. First, the
proportion of ductal carcinoma in situ in this study was slightly
low (30/220), which may be because ultrasound is not well-suited
for detecting ductal carcinoma in situ, whose main feature is
microcalcification. The CAD did not perform well for detecting
ductal carcinoma in situ (21/30). Therefore, the results of this
study may overestimate the diagnostic efficacy of the CAD.
Second, the image acquisition for the CAD is also operator
dependent. In the present study, the representative images
analyzed by CAD were selected by two experienced radiologists
with more than 12 years experience in breast ultrasound. The
representative image might be better in this study, and the
diagnostic performance of the CAD needs further verification.
Third, the number of cases is limited and the sample size needs
to be expanded in future studies or multicenter studies.

In conclusion, a deep learning-based CAD system has the
advantages of convenient operation and accurate diagnosis of
breast lesions, especially in the asymptomatic screening patients.
For asymptomatic patients, we could rely more on the CAD
results in the future. For patients with medical histories or

symptoms, we should make comprehensive judgments based on
the clinical histories and symptoms. The deep learning-based
CAD approach also has good diagnostic performance for small
breast cancer (<1 cm). Therefore, a deep learning-based CAD
system has good screening value for asymptomatic breast cancer
at an early stage.
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Ultrasomics is the science of transforming digitally encrypted medical ultrasound images
that hold information related to tumor pathophysiology into mineable high-dimensional
data. Ultrasomics data have the potential to uncover disease characteristics that are
not found with the naked eye. The task of ultrasomics is to quantify the state of
diseases using distinctive imaging algorithms and thereby provide valuable information
for personalized medicine. Ultrasomics is a powerful tool in oncology but can also be
applied to other medical problems for which a disease is imaged. To date there is no
comprehensive review focusing on ultrasomics. Here, we describe how ultrasomics
works and its capability in diagnosing disease in different organs, including breast, liver,
and thyroid. Its pitfalls, challenges and opportunities are also discussed.

Keywords: ultrasomics, diagnosis, tumor, ultrasound, artificial intelligence, computer aided diagnosis

INTRODUCTION

Ultrasomics is the science of transforming digitally encrypted medical images that hold information
related to tumor pathophysiology into mineable high-dimensional data (1, 2). The role of
ultrasomics is to quantify the diseases using distinctive imaging algorithms and thereby provide
valuable information for personalized medicine (3).

The Precision Medicine Initiative was launched in 2015 and studied the complex biological
behaviors of tumors and their interactions. This initiative uses a holistic approach to explain the
complexity of biological systems and starts with the recognition that the network that makes
up an entire organism is not just the sum of its parts (4). In situations where traditional “one-
on-one” diagnosis and treatment are unable to meet medical requirements, a multidisciplinary
comprehensive diagnosis method is needed for both doctors and patients. This approach
incorporates not only the relatively static genetic code but also the dynamic changes and
heterogeneous nature of tumors (5). Radiomics plays a key role in precision medicine. Ultrasomics
is a branch of radiomics that extracts vast arrays of quantitative features from ultrasound images
and integrates them with the clinical data of patients. It can obtain the texture, shape, intensity,
trends and wavelet features of a tumor, distinguish heterogeneity between tumors, and provide
a comprehensive quantitative tumor phenotype for doctors (6). The aim of ultrasomics is to
obtain the optimal efficacy and safety to ensure maximum quality of life and to avoid excessive
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and ineffective treatments (7). Ultrasomics does not aim to
replace existing clinical decision-making tools but to provide a
supplement to current measures by implementing a robust, low-
cost, repeatable, and highly effective approach to current clinical
practice (8).

BASIC TECHNIQUES OF ULTRASOMICS
ANALYSIS

Ultrasomics is defined as quantitative mapping, that is, extracting
medical imaging features related to predicted targets, analyzing
the information contained, and finally establishing a model. The
basic steps of ultrasomics include data acquisition, segmentation,
feature calculation, and modeling (Figure 1).

Data Acquisition
Ultrasomics usually begins with a prediction target — the event
a doctor wishes to predict. Building a successful model usually
relies on access to a large number of medical images and clinical
data to reveal correlations. Different data sources may have an
unexpected impact on the results, therefore, it is important to
use standardized imaging protocols to eliminate unnecessary
confounding variability (9).

Data, including images, may be retrospectively collected or
prospectively acquired, depending on the study design. The
greatest obstacle to the reliability and stability of ultrasomics is
the high variability of ultrasound images acquired by different
operators. Single-center data are usually best obtained by a
few radiologists with just a few machines, which guarantees
better image consistency. However, multicenter study represents
more authority and credibility as it requires a large number of
representative teams to jointly obtain relevant data sets. This
requires the participating hospitals to reach a clear agreements
and establishment of standardized operating standards, including
unifying the machine, frequency of the probe, gain of the
image, focus, depth, resolution and gray value, and unifying
whether to add blood flow, radiography, and patient posture (10).
Retrospective image acquisition currently lacks standardization,
and raw data are usually not available. Thus, reconstructed
images must be used. Conversely, when images are acquired
prospectively, an image acquisition standard suitable for
ultrasomics should be selected for analysis. Standards in this
situation are controllable and can maximize the information for
subsequent work (11).

Segmentation
Defining the region of interest (ROI) can be undertaken
by manual segmentation, semiautomatic segmentation and
automatic segmentation (12). Regardless of which method is
used, this step is time-consuming and challenging. On the one
hand, there is no gold standard for ROI segmentation, and it is
difficult to define the morphology, echogenicity and boundary
of a variable lesion. On the other hand, a consensus for image
standardization is difficult to reach for a diffuse disease or
multiple lesions.

Ultrasomics segmentation includes outlining 2-dimensional
(2D) ROIs and 3-dimensional (3D) volumes of interest (VOIs). In
most studies, experts isolate the object of interest with a manual
algorithm. Manual delineation has well-known limitations
regarding inter- and intraobserver variability and should be
performed by at least 2, and preferably more experts with
predefined protocol consensus. This process is undoubtedly
tedious, with inevitable variability. In recent years, deep learning
has given researchers automatic or semiautomatic segmentation,
which outperforms fixed thresholding, aiming to achieve higher
accuracy. The common segmentation algorithms include region-
growing, level setting, image cutting, active contour (snake)
algorithms, semiautomatic segmentation, and livewire methods.
However, since automatic segmentation techniques are in the
exploratory stage and require much debugging and revision,
their applications are still limited. Semiautomatic segmentation
is a perfect combination of manual control and intelligence.
Region-growing is one of the semiautomatic methods that was
often used to the segmentation in computer-aided system (CAD)
(13). The method is called “click and grow,” that is, putting the
seed points in the target area, then it will automatically grow
around and automatically stop at the edge of the lesions. The
seed point is generally selected in the center of the target tumor.
This segmentation method saves both time and effort, but when
the boundary of lesion appears to be unclear, the segmentation
results may not be ideal and may need to be modified by a
professional radiologist. Regardless of the segmentation method
that researchers use, the ultimate aim is based on the reliability
of the ROI result.

Feature Calculation
Ultrasomics features are automatically extracted by computer
algorithms from the sketched ROI. The characteristics mined
by different research institutes are different and have different
content. In general, the features are divided into four parts:
morphological features, first-order features, second-order
features, and higher-order features.

Morphological features include lesion volume, shape
(spherical, non-spherical, etc.), and boundary morphology
(flat, round, clear, sharp, fuzzy, amorphous, and unclear, etc.).
These features are acquired based purely on the experience of
radiologists, but despite this, they still offer many possibilities for
generating hypotheses.

The first-order features are the common statistical elements
(gray signal-strength value) obtained from the image, which
include the average pixel signal value, standard deviation,
skewness, and kurtosis. These features are represented by a single
value or frequency distribution histogram, which quantitatively
summarizes the signal intensity of the target area. Although they
have great appeal in ultrasomics due to their simplicity, these
features do not include spatial information.

Second-order features are usually described as texture
features, which include the gray intensity of adjacent pixels.
Second-order features suggest indicative information for cancer
judgment and are used to explain the internal heterogeneity
and complexity of the spatial distribution of the tumors.
Commonly used second-order statistical descriptors include
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FIGURE 1 | The workflow of ultrasomics. The workflow includes data acquisition, segmentation, feature extraction and calculation, feature transformation and
integration, modeling, and clinical application.

gray-level co-occurrence matrices (GLCMs) and gray-level run
length matrices (GLRLMs). In GLCMs, the frequencies adjacent
to (co-occurrence) pixels of the same signal strength are
provided as a matrix to describe the density of the signal
strength in a particular direction to reveal differences in regional
heterogeneity (14). In GLRLMs, the heterogeneity of signal
strength within the ROI can be determined by calculating
the frequency at which the nearest-neighbor pixels match in
intensity or the operating frequency with the same signal
strength (15).

Higher-order features include filters and higher-order
images to describe metrics. These features describe the local
spatial organization of signal-strength values by applying and
adjusting filters in multidimensional space. This represents
a quantitative approach. Higher-order feature elements are
usually obtained from gray values by the Fourier transform
(FT), which converts spatial information to the frequency
space and then reverses the conversion process back to the
spatial domain (16). Typical techniques include the discrete
orthonormal Stockwell transform (DOST), Gabor filter
banks, the wavelet transform (WT), the Riesz transform,
the Stockwell transform (ST), and the Laplacian of the
Gaussian (17).

Modeling
Model building for ultrasomics includes three main steps:
feature selection, modeling development, and validation.
Selecting the required indicators from infinite features and
avoiding overfitting should be the main focus. Ultrasomics
and non-ultrasomics features should be combined with the
prediction target to create a single dataset. This enables

the investigation of relationships between features. Feature
pruning is usually required, because computing a large
number of features from several matrices can result in
many redundant and/or highly correlated features, which
greatly increases the complexity of the problem without adding
useful information (18). Feature extraction is followed by
pruning, methods for which usually include (1) the wrapper
method, which scores features based on a performance
classification to reflect the usefulness of each feature; (2)
the filter method, which uses statistical methods to sort the
features and select the highest-ranking feature to determine
the intrinsic value of each feature; and (3) the embedded
method, which is similar to the wrapper method in some
aspects because characteristics are selected to optimize the
performance of the learning algorithm. However, unlike the
wrapper method, which uses the classification method as an
external black box to sort the features, variable selection in
the embedded method is an inherent part of the learning
algorithm itself.

Model development methods are usually based on the
skills and experience of the researcher, which has associated
limitations. When training the model, the training samples
with the corresponding clinical tags are paired with the
training model. Through a predefined loss function, the
relationships between the learning characteristics of the model
and the clinical label are found, and finally, the model with
good training results is selected for testing, this is called
supervised learning. In unsupervised learning, the training
model no longer needs clinical labeling, it divides similar
samples into a set of final generated models according
to the algorithm.
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Verification is a tool to evaluate whether a model is useful. This
research is considered successful only when both the internal and
external verification results are satisfactory.

With the application of a classifier, it is necessary to use
corresponding measures to evaluate the results as a way of
verifying the stability of the generated model. Therefore, the
measures below are considered for a confusion matrix of true
positives (TPs), true negatives (TNs), false positives (FPs), and
false negatives (FNs).

The performance of the model is evaluated by the following
formulas:

Sensitivity =
TP

TP + FN

Specificity =
TN

TN + FP

Accuracy =
TP + TN

TP + TN + FP + FN

F1−score = 2× precision ×
Sensitivity

precision + Sensitivity

Additionally, the area under the receiver operating characteristic
curve (AUROC) is commonly used to describe the overall
performance of a parameter. An AUROC value close to 1
represents an ideal value. A value less than 0.5 suggests that the
parameter does not have any classification ability.

APPLICATIONS OF ULTRASOMICS IN
PRECISION MEDICINE

The ultimate goal of ultrasomics is to assist radiologists in
diagnosing diseases. Currently, studies on ultrasomics cover
collecting imaging features, genetic features, and clinical features
for data mining analysis and performing tumor screening,
diagnosis, classification, and staging predictions. Ultrasomics
can also analyze the molecular and biological characteristics
of tumors, providing a scientific basis for targeted treatment
programs. Regarding follow-up information, ultrasomics analysis
on images before and after treatment can predict treatment
effects and patient survival, thus assisting in the development of
individualized and precise treatment plans. In this review, we
briefly introduce the applications of ultrasomics in the breast,
liver, and thyroid (Table 1).

Breast
Breast cancer is a major health problem in women. The
early detection and identification of breast tumors is of
great importance for improving quality of life. There are an
increasing number of reports on the application of ultrasomics
in breast diseases.

Screening, Diagnosis, Classification, and Staging
In traditional ultrasound diagnosis, images are purely used as
pictures for human visual interpretation. This process relies
heavily on the subjective scoring of images and the limited

sensitivity of the naked eye. It can only extract completely
macroscopic disease features and misses several pieces of
important microbiological information (19). Ultrasomics
extracts high-throughput information and performs quantitative
analysis with a CAD, which can objectively describe and explain
the features of tumors. At present, studies have combined
conventional 2D ultrasound images, shear-wave elastography
(SWE) images, strain elastography images, and contrast-
enhanced ultrasound (CEUS) images with radiomics to detect
and identify breast tumors (14, 20–22). These studies extracted
high-throughput features to quantify tumor shape, hardness,
and hardness heterogeneity to identify breast malignancies and
benign tumors. Moreover, these studies found that quantitative
ultrasound features were significantly associated with hormone
receptor status, molecular subtype and histologic grade in
breast invasive ductal carcinoma (IDC). Ultrasomics also makes
it possible to evaluate biological parameters by non-invasive
means (23–25). Moreover, in a study by Luo et al. 19 features
selected by Least absolute shrinkage and selection operator
(LASSO) were used to score the degree of malignancy of Breast
Imaging Reporting and Data System (BI-RADS) 4 and 5 breast
masses, and they obtained AUC values of 0.921 and 0.931 in
the training and validation groups, respectively (26). This study
showed the outstanding discriminative ability of ultrasomics
in grading the possibility of malignancy. Ultrasomics reflects
tissue structure and morphological features by quantitatively
analyzing the gray value of medical images and then extracting
the quantitative features with computer algorithms. This
approach can effectively avoid the subjective description of
radiologists and the large variability between observers (20,
27). Ultrasomics clarifies the correlation between the malignant
potential of masses and image features and shows good prospects
for tumor diagnosis.

Individualized Treatment and Survival Prediction
The core task of precision medicine is to identify patient
phenotypes (disease, treatment response, adverse side effects, and
survival prediction) to find individualized treatment options.
Cancer cells exhibit a high degree of heterogeneity, even in
different regions of the same tumor, different metastatic sites
in the same patient, or the same type of tumor among different
patients. This high degree of genetic variation explains the
failure of targeted therapies and allows the emergence and
proliferation of resistant clones (28). In this case, techniques
for quantifying intra- and intertumor heterogeneity are
critical because they may guide adaptive treatment (29).
Lee et al. performed ultrasomics scoring on 901 lesions
and ultimately obtained a model for distinguishing triple-
negative breast cancer (TNBC) from breast fibroadenomas
(30). Texture features were extracted using the GLCM
and GLRLM in this study, they found that both tumor
grade and receptor status had an impact on ultrasound
performance. Tumors with ER+, her 2− are associated with
irregular shapes, unbounded edges, or complex echo patterns,
and rear shadowing. This may be caused by the relatively
slow proliferation rate of cells, the long-term interaction
between a tumor and host, and hyperplasia of the fibrous
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TABLE 1 | Summary of ultrasomics studies in oncology.

Stydies Study design Cancer No. of
patients

Modality Features Feature
classifier

Type of features Statistical
analysis

Endpoint Result

Zhao et al. (37) Retrospective
Single center

Liver 177 BMUS/SWE
/SWV

2560 SRT/SVM GM/GEM/GEVM Mann–
Whitney U
test

prognosis
and
diagnosis

AUC: 0.94 (benign/malignant) AUC:
0.97 (malignant subtyping) AUC:
0.97 (PD-1 prediction) AUC: 0.94
(Ki-67 prediction) AUC: 0.98 (MVI
prediction)

Zhou et al. (20) Retrospective
Single center

Breast 205 SWE 4224 CNN — — Diagnosis Accuracy: 95.8% Sensitivity: 96.2%
Specificity: 95.7%

Li et al. (21) Retrospective
Single center

Breast 178 BMUS/SWE/
CEUS

1226 SVM Intensity/Texture/
Contourlet/Shape/Perfusion

Holdout
test

Diagnosis Accuracy: 84.12% Sensitivity:
92.86% Specificity:78.80% AUC:
0.919

Luo et al. (26) Retrospective
Single center

Breast 315 BMUS 1044 LASSO Histogram/Texture/
RLM/Form factor

Multivariate
regression
analysis

Diagnosis AUC: 0.928

Lee et al. (30) Retrospective
Single center

Breast 901 BMUS 730 LASSO Intensity/Texture/ Wavelet — Diagnosis AUC: 0.782

Zhang et al. (14) Retrospective
Single center

Breast 117 Sonoelastography364 clusters
derived

Shape/intensity/
GLCM/contourlet

Clusters
derived/SVM

Diagnosis AUC: 0.97 Accuracy: 88.0%
Sensitivity: 85.7% Specificity:
89.3%

Qiu et al. (31) Retrospective
Single center

Lymph
node

256 BMUS 843 LASSO and
ridge
regression

Shape/firstorder GLCM/gray-level size
zone matrix/gray-level distance zone
matrix/neighborhood gray-tone
difference matrix/gray-level run length
matrix

Elastic net
logistic
regression

Diagnosis AUC: 0.816

Li et al. (33) Prospective
Single center

Liver 144 BMUS/CEMF 472 Spearman’s
correlation
coefficient

Conventional radiomics/ORF/CEMF
features

— Diagnosis Mean AUC: 0.78–0.85 (the
multiparametric ultrasomics model)

Wang et al. (34) Prospective
Multicentre

Liver 654 SWE — CNN — Student’s t
test/Mann–
Whitney U
test

Prognosis AUC: 0.97 (F4) AUC: 0.98 (F3)
AUC: 0.85 (F2)

Hu et al. (38) Retrospective
Multicentre

Liver 482 CEUS 1044 LASSO — LASSO Prognosis AUC: 0.731 p = 0.015

Liang et al. (39) Retrospective
Multicentre

Thyroid 137 BMUS 1044 LASSO — Univariate
logistic
regression

Diagnosis AUC: 0.921 (training cohort) AUC:
0.931 (validation cohort)

Liu et al. (40) Retrospective
Single center

Lymph
node

1216 BMUS 614 combined
feature
selection
strategy

Echo/posterior acoustic/calcification — Prognosis AUC: 0.782

Park et al. (41) Retrospective
Single center

Thyroid 768 BMUS 730 LASSO — LASSO/Cox
regression

Prognosis C-index: 0.777; 95%[CI]: 0.735,
0.829

Liu et al. (42) Retrospective
Single center

Lymph
node

75 BMUS/SE-
US

684 SVM — Delong’s
test

Prognosis AUC: 0.90 Accuracy: 0.85
Sensitivity: 0.77 Specificity: 0.88

The design of the studies, category of tumors, number of patients, number of features, type of features, mode build method, endpoint, diagnostic modality, and results of the studies were considered. The name of
the first author and the reference number are indicated in the first column. BMUS, B-mode ultrasound; SWE, shear wave elastography; SWV, shear wave viscosity; CEUS, contrast-enhanced ultrasound; SE-US, strain
ultrasound elastography; GM, the gray-scale modality; GEM, the gray-scale and elastography modality; GEVM, gray-scale, elastography and viscosity modality; SVM, support vector machine; LASSO, least absolute
shrinkage and selection operator; RLM, gray level run-length matrix; CEMF, contrast-enhanced micro-flow; ORF, original radiofrequency; CEMF, contrast-enhanced micro-flow; and SRT, sparse representation theory.
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tissue around the lesion, which results in uneven borders,
burrs or leaves. Interstitial response and connective tissue
hyperplasia cause different acoustic impedance differences,
acoustic reflections, and echo attenuation behind the mass.
However, TNBC tends to have oval or round shapes and
circumscribed margins, reflecting a rapidly proliferating tumor
prior to significant stromal reaction. It is also more likely
to present with posterior acoustic enhancement since highly
cellular circumscribed carcinomas tend to have enhanced
through-transmission. This benign-looking might decrease
the diagnostic efficacy of ultrasound and delay treatment.
Radiomics based on texture analysis shows excellent diagnostic
performance in the differential diagnosis of fibroadenoma
and TNBC where it is indiscernible with the naked eye.
Theoretically, ultrasound images may contain hidden
information that can be difficult for radiologists to mine
(29). Ultrasomics can find heterogeneities within a region from
indistinguishable imaging data.

Sentinel lymph nodes are an important factor for the
prognosis of breast cancer patients. The precise and non-
invasive prediction of axillary lymph nodes before surgery
is of great significance for staging, treatment and prognosis.
Qiu X et al. combined ultrasomics with features of axillary
lymph nodes on B-mode ultrasound images and found that
a radiomics model with LASSO and ridge regression methods
was able to predict axillary lymph node metastasis by using
ultrasound features of primary breast tumors (31). This
strategy might be an effective alternative to early screening
for lymph node metastasis in clinically lymph node–negative
breast cancer. It also showed the great potential to serve as
an important decision support tool in clinical practice. It is
expected to reduce the axillary lymph node dissection and
sentinel lymph node biopsy and the corresponding postoperative
complications accordingly.

Liver
Screening, Diagnosis, Classification, and Staging
Hepatitis B virus (HBV) infection is a serious problem around the
world. Liver fibrosis, cirrhosis, and liver cancer are progressive
diseases of chronic hepatitis B (CHB). An accurate assessment
of liver status is essential for the prognosis, monitoring and
management of CHB patients. D Souza et al. studied the
B-mode ultrasound features of the liver in a rat model to
assess liver fibrosis (32). The computer algorithm extracted
quantitative parameters representing brightness (echo intensity
and liver and kidney index) and variance (heterogeneity) to
study the anisotropy of the liver. The echo intensity of DEN
rats increased from 37.1 ± 7.8 to 53.5 ± 5.7∼57.5 ± 6.1,
compared with an average of 34.5 ± 4.5 in the control
group. Histological analysis revealed that fibrosis fractionation
with METAVIR scores F2-F4 and specifically F0-F1 in DEN
rats increased the imaging parameters. Wang et al. and Li
et al. applied this technique in clinical practice. Li et al.
acquired ultrasound radio frequency signals and dynamic
perfusion information to construct an ultrasomics model,
and they derived an optimal algorithm for assessing liver

fibrosis in a small sample (33). Wang et al. suggested
that deep learning radiomics of elastography (DLRE) could
be successfully used to assess the liver fibrosis stage of
patients with CHB and was comparable to the current
grading criteria for cirrhosis and advanced fibrosis. The
diagnostic accuracy of the model was higher than that of
2D-SWE for overcoming the influence of inflammation on
cirrhosis assessments (34). Therefore, ultrasomics is a potential
breakthrough in image diagnosis.

Individualized Treatment and Survival Prediction
Ultrasomics applies the identification, analysis, and integration
of ultrasound images to reach a better solution for patients. The
main factors in the recurrence of liver cancer are microvascular
infiltration (MVI) and Ki-67 (35). MVI is a common predictor
of the prognosis for patients with liver cancer. MVI is highly
correlated with early recurrence and greatly influences treatment
(liver resection or orthotopic liver transplant) (36). Yao et al.
classified images by transforming them into high-throughput
features, analyzed multiple parameters in the treatment area and
used sparse representation theory (SRT), and support vector
machine (SVM) methods to mine rich texture information.
The authors found that malignant tumors had more complex
textures and structural information than benign tumors. Their
results indicated that predicting MVI (AUC = 0.98), Ki-67
(AUC = 0.94), and PD-1 (AUC = 0.97) with a non-invasive
method based on radiomics is feasible (37). This finding
showed that ultrasomics could improve the diagnostic efficiency
of ultrasound and made it possible to diagnose FLL before
operation. Additionally, ultrasomics can explain the biological
behavior of tumors and improve the diagnostic efficacy and
patient prognosis (38).

Thyroid
Screening, Diagnosis, Classification, and Staging
Thyroid disease has received widespread attention due to its high
incidence. The Thyroid Imaging-Reporting and Data System
(TI-RADS) is widely used to describe thyroid lesions and
is unavoidably subjective. In a study, Liang et al. developed
an ultrasomics model to diagnose malignant thyroid nodules.
They performed LASSO to select features and found that
ultrasomics could outperform ACR TI-RADS scoring, at least
when performed by junior radiologists (39). In addition, the
application of texture analysis and machine learning in thyroid
nodule imaging can describe thyroid nodules better and more
objectively. Liu et al. obtained predictive models though a SVM
classifier from more than 50 traits of thyroid tumors, such
as the volume, echo, margin, boundaries, posterior acoustic
pattern, and calcification features. They obtained satisfactory
results in predicting which thyroid nodules would develop
lymph node metastasis (40). Lymph node metastasis is more
likely to occur in patients with complex echoes in ultrasound
images, uniform posterior regions, large calcifications or multiple
calcifications (41). Clinically, the lymph nodes suspected
malignant are re-examined by CT, fine needle aspiration
cytology, or lymph node dissection (LND). LND has the
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risk of hyperparathyroidism and nerve injury. In addition,
whether LND can improve the survival rate of PTC patients is still
controversial, so full consideration must be given before it is used
in patients. The radiomics evaluation has potential to predict LN
status non-invasively based on preoperative ultrasound thyroid
images. It made up for the shortcomings of traditional diagnosis.
The lymph node status prediction model has the potential to
promote early medical management for thyroid cancer patients
and reduce overdiagnosis.

Individualized Treatment and Survival Prediction
Recurrence and metastasis are the key points during the
treatment of cancer and are closely related to the survival time
of patients. Long-term follow-up assessments are indispensable
after tumor treatment. The most important part of this
process is to determine whether there are any recurrences or
residual lesions. Liu et al. combined the features extracted from
B-mode ultrasound and strain ultrasound elastography (SE-
US), and multimodal feature sets were obtained through image
segmentation, quantitative feature extraction, feature selection
and classification. This study used the sparse representation
coefficient-based feature selection method with 10 bootstraps
to reduce the dimensionality of the feature sets. A SVM with
leave-one-out cross-validation was used to build the model
to estimate LN status. The model had the best ability to
diagnose lymph node metastases (42). Furthermore, ultrasomics
could not only characterize the properties of thyroid nodules
but also assess the disease-free survival of thyroid nodule
patients. This is the first application of ultrasomics to predict
the prognosis of thyroid cancer. The authors used relapsed
or persistent disease-free survival as the study endpoint
rather than mortality, demonstrating the great potential of
ultrasomics (41).

CHALLENGES

First and foremost, the greatest problem with ultrasomics is the
quality and quantity of the original data. A successful ultrasomics
model needs a sufficient quantity of data to develop an effective
knowledge system to support data integration, processing, and
analysis, which is critical for research to be optimal. Currently,
ultrasomics usually use a smaller population to extract more
features, which may lead to overfitting and overoptimistic
results. There are numerous methods for extracting useful
biomarkers from separate or combined layers of ultrasomics
and clinical data, but the results are still unsatisfactory.
Second, ultrasound examinations are less reproducible than other
imaging methods. Additionally, the device and experience of
the radiologist have a great impact on the reliability of the
diagnosis (43). Therefore, the inclusion and exclusion criteria

for ultrasomics should be rigorously developed. Recently, the
image biomarker standardization initiative (IBSI) was proposed
to improve the reproducibility of high-throughput imaging
analysis, which is a valuable step in improving radiological
research. In addition, a radiomics quality score (RQS) was
proposed to help evaluate radiomics studies (44). Moreover,
most of the published ultrasomics studies are from a single
center, with different patient numbers, different ultrasound
equipment, and different study design methods. The differences
in each step of the study design pose greater challenges to the
repeatability of the study.

CONCLUSION AND PERSPECTIVES

Although many problems still need to be solved, the potential
of ultrasomics is beyond doubt, and the field is evolving
rapidly. The development of ultrasomics has occurred over
only a few decades, and some impressive results have been
achieved. This approach fills the gap in the clinical use of
information and extracts and analyzes higher-dimensional and
quantitative data to more accurately and more specifically
describe and characterize tumors. The use of ultrasomics
to improve disease diagnosis and care for patients shows
great potential (45). In the future, we hope that ultrasomics
will provide a more personalized, higher-quality, and more
cost-effective care platform for patients. The advantages of
ultrasomics, including its speed, low cost, reproducibility, and
non-invasiveness, may make it a valuable clinical decision-
making tool.
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Introduction: This study aimed to assess the diagnostic performance and the added
value to radiologists of different levels of a computer-aided diagnosis (CAD) system for
the detection of thyroid cancers.

Methods: 303 patients who underwent thyroidectomy from October 2018 to July 2019
were retrospectively reviewed. The diagnostic performance of the senior radiologist, the
junior radiologist, and the CAD system were compared. The added value of the CAD
system was assessed and subgroup analyses were performed according to the size of
thyroid nodules.

Results: In total, 186 malignant thyroid nodules, and 179 benign thyroid nodules
were included; 168 were papillary thyroid carcinoma (PTC), 7 were medullary thyroid
carcinoma (MTC), 11 were follicular carcinoma (FTC), 127 were follicular adenoma (FA)
and 52 were nodular goiters. The CAD system showed a comparable specificity as
the senior radiologist (86.0% vs. 86.0%, p > 0.99), but a lower sensitivity and a lower
area under the receiver operating characteristic (AUROC) curve (sensitivity: 71.5% vs.
95.2%, p < 0.001; AUROC: 0.788 vs. 0.906, p < 0.001). The CAD system improved the
diagnostic sensitivities of both the senior and the junior radiologists (97.8% vs. 95.2%,
p = 0.063; 88.2% vs. 75.3%, p < 0.001).

Conclusion: The use of the CAD system using artificial intelligence is a potential tool to
distinguish malignant thyroid nodules and is preferable to serve as a second opinion for
less experienced radiologists to improve their diagnosis performance.

Keywords: thyroid nodule, ultrasonography, computer-aided system, diagnosis, thyroid cancer
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INTRODUCTION

The incidence of thyroid nodules, up to 68% of the general
population, continues to show increasing growth (1, 2). As
one of the most extensively applied methods in the detection
of thyroid nodules, the ultrasound has the advantages of
accessibility, cost-effectiveness, and non-radiation. Although the
particular ultrasound (US) features such as microcalcifications,
hypoechogenicity, and irregular margins are commonly
considered to relate to malignant thyroid disease, the presence
of interobserver variation is inevitable (3, 4). Compared with
seasoned radiologists, less experienced radiologists are at a
greater risk of a misleading diagnosis of thyroid cancer.

Computer-aided diagnosis (CAD) has attracted great
attention of researchers as a newly developed technique that
has potential in enhancing radiologists’ interpretation and
overcoming subjective limitations. The CAD detection and
diagnosis methods are based on machine learning approaches
that extract features based on shape, texture, and statistical
values, differentiating benign and malignant nodules (5–7).

Several studies have shown that CAD system has comparable
performance to radiologists in terms of sensitivity (8–10).
However, few studies have compared the distinction of diagnosis
performance between the CAD system and radiologists with
various levels of experience in the diagnosis of thyroid cancer
and no detailed study has been conducted to focus on the
influence of nodule size on CAD performance. Therefore, this
retrospective study aimed to validate the clinical role of the CAD
systems in thyroid cancer diagnosis and to evaluate their future
developmental directions.

MATERIALS AND METHODS

Ethics and Consent
This prospective study was approved by our Institutional Review
Board, and the requirement for informed consent was waived due
to its retrospective nature.

Database
We retrospectively reviewed medical records of 303 patients
who were treated at our center from October 2018 to July
2019. Patients who received an ultrasound examination prior
to scheduled surgery with sufficient clinical information were
enrolled. The histopathologic diagnosis of the nodules was
established by surgery. Finally, there were 186 malignant nodules
and 179 benign nodules included in our study.

Ultrasound Images Acquisition and
Radiology Analysis
The US scans were operated with a 12–18 MHz linear probe
(ACUSON S2000; Siemens Medical Solutions, Mountain View,
CA, United States). The US images presented in a random fashion
were assessed by a senior radiologist of more than 10 years’
experience and a junior radiologist of 2 years’ experience.

The CAD system used in the study was AI-SONIC for
thyroid nodule (AI-SONIC; Demestics Medical Technology Co.,
Zhejiang, China), which can analyze the US images for real-
time. A grayscale image of a transverse plane of each nodule was
uploaded to the software and analyzed. The software is able to
automatically mark the suspicious lesion with a square and rate
the nodule on a scale of zero to one, with higher scores indicating
the higher the risk of malignancy (Figure 1).

Statistical Analysis
The SPSS software (verion 20.0, IBM Corp, Armonk, NY,
United States) and MedCalc software (version 15.2, Mariakerke,
Belgium) were used to analyze the data. A statistically
significant difference was considered as p value is less than
0.05. Figures were produced using GraphPad Prism (version
8.0, GraphPad Software, San Diego, CA, United States). The
classification data were expressed as frequencies; Continuous
variables were expressed as means and standard deviations. The
diagnostic sensitivity, specificity, accuracy, positive predictive
values (PPVs), negative predictive values (NPVs) of the CAD
software were calculated by comparing the pathological results.

FIGURE 1 | Representative cases of benign (A) and malignant (B) thyroid nodules. For the benign nodule (A), both the CAD system and the senior and the junior
radiologists diagnosed it as a benign nodule. The CAD system rate the nodule of 0.34. For the malignant nodule (B), both the CAD system and the senior and the
junior radiologists diagnosed it as a malignant nodule. The CAD system rate the nodule of 0.7.
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TABLE 1 | Characteristics of study subjects.

Parameter Value

Mean age (years) 46.4 ± 14.6

Patient gender, n (%)

Male 59 (19.5%)

Female 244 (80.5%)

No. of nodules, n (%)

Benign nodules 179 (49%)

Malignant nodules 186 (51%)

Nodule sizes (mm)

Total nodules 18.33 ± 13.5

Benign nodules 25.58 ± 13.7

Malignant nodules 11.36 ± 8.8

McNemar’s test was used to compare the diagnostic sensitivity,
specificity and accuracy of the CAD system and the senior and
junior radiologists. The diagnostic performance of the radiologist
assisted by the CAD system was defined as positive when the
criteria meet one of the two categories: the radiologist and the
CAD system. The diagnosis performance concerning nodule size
was compared using the chi-squared (χ2) test with Bonferroni
adjustment, which result in a final P-value of 0.0167, based on
three independent tests, considered statistically significant. The
areas under the receiver operating characteristic (ROC) curve
(AUC) were also analyzed to compare the diagnostic performance
of different groups, and optimal cut-off value for CAD was
defined by the Youden index J.

RESULTS

Patients Data
A total of 303 patients (Mage = 46.4 years; range 23–80 years)
with 365 thyroid nodules were included in this study (Table 1).
There were 186 cases (51.0%) that were malignant, including 168
cases of papillary carcinoma, 11 cases of follicular carcinoma, and

7 cases of medullary carcinoma. There were 179 cases (49.0%)
that were benign, including 127 cases of follicular adenoma, and
52 cases of nodular goiters.

CAD Score Cut-Off Value for Predicting
Malignant Thyroid Nodules
We determined the positive threshold of CAD scores using the
Youden Index (= sensitivity + specificity-1) curve, which could
suggest the best cut-off value by fitting optimal sensitivity and
specificity (11). The maximum Youden Index pointed to 0.555 for
the CAD system score with a sensitivity of 71.5% and a specificity
of 86.0% (Figure 2).

Diagnostic Performance of the CAD
System, Radiologists in the Different
Groups and CAD-Assisted Radiologists
The diagnostic performances of the CAD system, radiologists
in the different groups, and CAD-assisted radiologists for
detecting thyroid cancer were summarized in Table 2 and
Figure 3. The CAD system exhibited no statistically significant
difference in terms of specificity compared with the senior
radiologist (86.0% vs. 86.0%, p > 0.99), while the sensitivity
and accuracy were markedly lower in the CAD system than
those in the senior radiologist (71.5% vs.95.2%, p < 0.001;
78.6% vs.90.7%, p < 0.001, respectively). When compared
with the junior radiologist, the CAD system resulted in
increased specificity and similar sensitivity and accuracy in the
classification of thyroid cancer (86.0% vs.78.8%, p = 0.024;
71.5% vs.75.3%, p = 0.419; 78.6% vs.77.0%, p = 0.552,
respectively). When the CAD system was used to assist
the senior and junior radiologists, the diagnostic sensitivity
improved (97.8% vs. 95.2%, p = 0.063; 88.2% vs. 75.3%,
p < 0.001, respectively), while the specificity declined (76.0%
vs. 86.0%, p < 0.001; 79.9% vs. 84.4%, p = 0.008, respectively).
A ROC analysis comparing the diagnostic values of the
CAD system, radiologists, and CAD-assisted radiologists is
illustrated in Figure 3 and Table 2. The AUCs were 0.788

FIGURE 2 | Determination of the positive threshold for the CAD system score through the Youden index.
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TABLE 2 | Diagnostic performance of CAD System, radiologists and CAD-assisted radiologists.

Diagnostic measures (%) Sensitivity Specificity PPV NPV Accuracy Area under the ROC curve

CAD system 71.5 (133/186) 86.0 (154/179) 84.2 (133/158) 74.4 (154/207) 78.6 (287/365) 0.788

Senior radiologist 95.2 (177/186) 86.0 (154/179) 87.6 (177/202) 94.5 (154/163) 90.7 (331/365) 0.906

CAD + senior radiologist 97.8 (182/186) 76.0 (136/179) 80.9 (182/225) 97.1 (136/140) 87.1 (318/365) 0.869

Junior radiologist 75.3 (140/186) 78.8 (141/179) 78.7 (140/178) 75.4 (141/187) 77.0 (281/365) 0.770

CAD + Junior radiologist 88.2 (164/186) 74.3 (133/179) 78.1 (164/210) 85.8 (133/155) 81.4 (297/365) 0.812

P-value* <0.001 >0.99 <0.001 <0.001

P-value** 0.063 <0.001 0.011 0.031

P-value‡ 0.419 0.024 0.586 0.552

P-value† <0.001 0.008 0.121 0.022

P-value† 0.015 0.003 <0.001 <0.001

P-value* is that of the CAD system vs. the senior radiologist; P-value** is that of the CAD-assisted senior radiologist vs. the senior radiologist; P-value‡ is that of the CAD
system vs. the junior radiologist; P-value† is that of the CAD-assisted junior radiologist vs. the junior radiologist; P-value† is that of the CAD-assisted junior radiologist vs.
the senior radiologist; NPV, negative predictive value; PPV, positive predictive value.

FIGURE 3 | The receiver operating characteristic (ROC) curves for the performance of the computer-aided diagnosis (CAD) system, the senior radiologist, the junior
radiologist, and CAD-assisted radiologists.

(0.742, 0.829) for the CAD system, 0.906 (0.871, 0.934) for
the senior radiologist, 0.869 (0.830, 0.902) for the CAD-
assisted senior radiologist, 0.770 (0.724, 0.812) for the junior
radiologist, and 0.812 (0.768, 0.851) for the CAD-assisted
junior radiologist.

Comparison of the Diagnostic
Performance of the CAD System for the
Diagnosis of Thyroid Nodules of Different
Sizes
The sensitivity, specificity, NPV, PPV, and accuracy of the CAD
system for diagnosing thyroid nodules of different sizes were

summarized in Table 3. The sensitivity, specificity, and accuracy
of the CAD system for the diagnosis of small thyroid nodules
diagnosis did not differ from those of medium-sized thyroid
nodules after applying Bonferroni correction (P = 041; P = 0.025;
P = 0.818, respectively). The sensitivity of the CAD system for the
diagnosis of large thyroid nodules was significantly less than for
small thyroid nodules (P < 0.0167), whereas the specificity and
the accuracy of the CAD system in the diagnosis of large thyroid
nodules were significantly higher than that of small thyroid
nodules (P < 0.001; P < 0.001, respectively). The sensitivity and
specificity of the CAD system for the diagnosis of large thyroid
nodules diagnosis did not differ from those of medium-sized
thyroid nodules (P = 0.486; P = 0.062, respectively).
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TABLE 3 | Comparison of the diagnostic performance of the CAD system in
differentiating the thyroid nodules of different sizes.

Sensitivity (%) Specificity (%)Accuracy (%)

d ≤ 15 mm 76.3 (116/152) 65.5 (36/55) 73.4 (152/207)

15 < d ≤ 25 mm 55.0 (11/20) 87.5 (28/32) 75 (39/52)

d > 25 mm 42.9 (6/14) 97.8 (90/92) 90.5 (96/106)

P-value

d ≤ 15 mm vs. 15 < d ≤ 25 mm 0.041 0.025 0.818

d ≤ 15 mm vs. d > 25 mm 0.016* <0.001* <0.001*

15 < d ≤ 25 mm vs. d > 25 mm 0.486 0.062 0.009*

*P values considered significant after applying Bonferroni correction.

DISCUSSION

Ultrasonography is playing a crucial role in the greatly
increasing detection rate of thyroid nodules (12, 13).
However, the usefulness of ultrasound may be limited for
the diagnostic performance of it is various from person to
person, which depends on the experience of a radiologist
to a large extent (14). The original CAD system was
used to diagnose the breast tumor in the 1960s (15). The
CAD system which based on artificial intelligence has
been developed to assist radiologists in analyzing images,
shortening the time cost of the diagnostic process, and reducing
interobserver variability.

In this study, a clinical assessment was performed to evaluate
the value of an ultrasound CAD system in the ultrasound
diagnosis of thyroid cancer. This retrospective study showed
that the CAD system generally performed comparably to
qualitative assessments by the senior radiologist in terms
of specificity, but had a lower sensitivity and accuracy. In
addition, the specificity of the CAD system was greatly
higher than that of the junior radiologist and the CAD
system demonstrated similar sensitivity and accuracy to the
junior radiologist.

Since the diagnostic performance for thyroid lesions
of the CAD system initially reported (16), several studies
have already revealed that CAD approaches improved the
diagnostic manifestations of thyroid ultrasound (8, 9, 17–
19). More recently, Chung et al. compared the diagnostic
performance of a real-time CAD system with that of a 7-
year experienced radiologist, CAD system had comparable
sensitivity but lower specificity than the experienced
radiologist (20). However, Gitto et al. reported that the
CAD system had a significantly lower sensitivity than the
experienced radiologist and there was no statistical difference in
specificity (21).

The added value of the CAD system was also evaluated
in this study. With the assistant of the CAD system, the
junior radiologist showed a significant increase in sensitivity
from 75.3 to 88.2%. Also, the AUC was greatly improved
from 0.770 to 0.812 (P = 0.022). The improved sensitivity,
NPV, and AUC indicated that the CAD system might function
as a supplementary opinion to avoid the missed diagnosis,
especially for less-experienced radiologists. As was shown in
the study, the CAD system had a comparable specificity to

that of a senior radiologist, which implied that the CAD
system could play a constructive role in avoiding overdiagnosis
and help to reduce unnecessary biopsies for the thyroid
nodule diagnosis.

In this study, we further analyzed whether the efficiency
of diagnosis of the CAD systems were affected by nodule
sizes. It was shown that the diagnostic performance of the
CAD system was not consistent in each group depending on
the size of the lesion. The sensitivities of the CAD system
in identifying small were significantly higher than those of
large nodules. These results may be attributed to that large
thyroid nodules tend to occupy most of the thyroid gland in
the US image, which makes it hard for the CAD system to
distinguish between the nodules and the normal thyroid gland.
This should be considered when the CAD system is used in
clinical practice.

The study contributes to several clinical implications. First,
the CAD system in this study can automatically recognize and
analyze the thyroid nodules of US images, which demonstrates
an opportunity for the combination between clinician and
machine in future clinical practice. Second, the CAD system
exhibited no statistically significant difference in terms of
specificity compared with the senior radiologist, although the
sensitivity was lower. This finding implied that the CAD system
could cut down unnecessary biopsies and also help to lighten
the load of physicians. Besides, the use of the CAD system
significantly improved the diagnostic sensitivity and AUC of
the junior radiologist, which suggested the possibility that it
could serve as a second opinion for less experienced radiologists
to minimize missed diagnosis. Lastly, the diagnostic efficiency
of the CAD system for thyroid nodules of different sizes was
evaluated, which was able to reflect the clinical value of the
CAD system further.

This study also has some limitations. First of all, the
sample capacity was relatively small and selection bias was
inevitable due to the retrospective study nature. Second, the
diagnostic criteria for the CAD system-assisted radiologist
diagnosis are artificially defined. The actual help of the
CAD system for the radiologists in clinical needs to be
substantiated in the future. Further, although this study
enrolled five pathological types of thyroid nodules, most of
the malignant nodules were PTCs. However, the follicular
thyroid carcinoma appears with different sonographic
characteristics from PTC and tend to show more benign
US features (22, 23), which make it difficult for CAD
systems to distinguish FTC from thyroid nodules. Large-scale
multicenter studies are needed to overcome these drawbacks and
generalize the findings.

In conclusion, the CAD system assessed in this study
shows comparable specificity to that of the senior radiologist
and helps to improve the diagnostic sensitivity and AUC
of the junior radiologist significantly. The nodule size
of thyroid nodules are potential influencers of CAD
diagnostic performance. Further efforts are required to
improve its diagnostic performance and future researches
are necessary to evaluate the clinical role of CAD in thyroid
nodule diagnosis.
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Ultrasound Radiomics Effective for
Preoperative Identification of True
and Pseudo Gallbladder Polyps
Based on Spatial and Morphological
Features
Hai-xia Yuan 1,2†, Qi-hui Yu 3†, Yan-qun Zhang 1,2, Qing Yu 4, Qi Zhang 3,5* and

Wen-ping Wang 1,2,4*

1Department of Ultrasound, Zhongshan Hospital of Fudan University, Shanghai, China, 2Department of Ultrasound, Xiamen

Branch, Zhongshan Hospital of Fudan University, Xiamen, China, 3 The SMART (Smart Medicine and AI-based Radiology

Technology) Lab, School of Communication and Information Engineering, Shanghai University, Shanghai, China, 4 Shanghai

Institute of Medical Imaging, Shanghai, China, 5Hangzhou YITU Healthcare Technology, Hangzhou, China

Purpose: To explore the value of ultrasound radiomics in the preoperative identification of

true and pseudo gallbladder polyps and to evaluate the associated diagnostic accuracy.

Methods: Totally, 99 pathologically proven gallbladder polyps in 96 patients were

enrolled, including 58 cholesterol polyps (55 patients) and 41 gallbladder tubular

adenomas (41 patients). Features on preoperative ultrasound images, including spatial

and morphological features, were acquired for each lesion. Following this, two-stage

feature selection was adopted using Fisher’s inter-intraclass variance ratios and Z-scores

for the selection of intrinsic features important for differential diagnosis achievement with

support vector machine use.

Results: Eighty radiomic features were extracted from each polyp. Eight intrinsic

features were identified after two-stage selection. The contrast 14 (Cont14) and entropy

6 (Entr6) values in the cholesterol polyp group were significantly higher than those in the

gallbladder adenoma group (4.063 ± 1.682 vs. 2.715 ± 1.867, p < 0.001 for Cont14;

4.712 ± 0.427 vs. 4.380 ± 0.720, p = 0.003 for Entr6); however, the homogeneity 13

(Homo13) and energy 8 (Ener8) values in the cholesterol polyp group were significantly

lower (0.500 ± 0.069 vs. 0.572 ± 0.057, p < 0.001 for Homo13; 0.050 ± 0.023 vs.

0.068 ± 0.038, p = 0.002 for Ener8). These results indicate that the pixel distribution

of cholesterol polyps was more uneven than that of gallbladder tubular adenomas. The

dispersion degree was also significantly lower in the cholesterol polyp group than the

gallbladder adenoma group (0.579 ± 0.054 vs. 0.608 ± 0.041, p = 0.005), indicating

a lower dispersion of high-intensity areas in the cholesterol polyps. The long axis length

of the fitting ellipse (Maj.Len), diameter of a circle equal to the lesion area (Eq.Dia) and

perimeter (Per) values in the cholesterol polyp group were significantly lower than those in

the gallbladder adenoma group (0.971± 0.485 vs. 1.738± 0.912, p< 0.001 for Maj.Len;

0.818 ± 0.393 vs. 1.438 ± 0.650, p < 0.001 for Eq.Dia; 2.637 ± 1.281 vs. 5.033 ±

2.353, p < 0.001 for Per), demonstrating that the cholesterol polyps were smaller and
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more regular in terms of morphology. The classification accuracy, sensitivity, specificity,

and area under the curve values were 0.875, 0.885, 0.857, and 0.898, respectively.

Conclusions: Ultrasound radiomic analysis based on the spatial and morphological

features extracted from ultrasound images effectively contributed to the preoperative

diagnosis of true and pseudo gallbladder polyps and may be valuable in their

clinical management.

Keywords: gallbladder true-polyps, gallbladder pseudo-polyps, ultrasound radiomics, gallbladder cholesterol

polyp, gallbladder adenoma, preoperative identification

INTRODUCTION

With the development of high-resolution ultrasound equipment
and increased frequency of periodic health examinations,
numerous gallbladder polyps are now diagnosed at an
early phase. Although the reported incidence rate in adults
is∼0.3–12.3%, only about 5% of polyps are true polyps (1, 2).
Postoperative pathological gallbladder polyp types include
cholesterol polyps, inflammatory polyps, adenomyomas,
adenomas, and early gallbladder cancer. Gallbladder cholesterol
polyps and gallbladder adenoma polyps are the two most
commonly observed types and are associated with different
clinical procedures. Gallbladder cholesterol polyps are a type
of pseudo polyps and are usually caused by the accumulation
of cholesterol crystals in the inner wall of the gallbladder that
are swallowed by macrophages. This subsequently promotes
the formation of foam cells at the surface of the gallbladder
mucosa; most cholesterol polyps tend to remain in a benign
state (3, 4). Inversely, gallbladder adenomas are true polyps
and usually coexist with atypical hyperplasia; they tend to
progress to gallbladder cancer (5, 6). Therefore, the preoperative
identification of gallbladder true polyps is vital.

At present, the accurate identification of the aforementioned
polyps before cholecystomy using the existing imaging
techniques is extremely challenging. Ultrasonography is the
preferred imaging method owing to its characteristics that
include radiation absence, clear imaging and scanning section
flexibility. However, few studies have focused specifically on
how gallbladder cholesterol polyps and adenomas can be
distinguished from each other. Park et al. (7) found different
types of gallbladder adenomas and cholesterol polyps in
progression by the application of endoscopic ultrasound, the use
of which is limited in clinical practice due to its invasiveness.
With the use of contrast-enhanced ultrasound, our previous
study (8) revealed that gallbladder adenomas exhibit uniformly

Abbreviations: GLCM, Gray-level co-occurrence matrix; IMean, Mean of the

pixels within the lesion; IMedian, Median of the pixels within the lesion; HE,

Histogram entropy; RImedian, Corresponding ratio of the median of the pixels;

RImean, Corresponding ratio of the mean of the pixels; Ener, Energy; Cont,

Contrast; Entr, Entropy; Homo, Homogeneity; AR, Area ratio; CDD, Center

deviation degree; DD, Dispersion degree; Area, Area of the lesion; C.area, Area

of minimum convex polygon; Maj.Len, Long axis length of the fitting ellipse;

Min.Len, Short axis length of the fitting ellipse; Per, Perimeter; Ori, Orientation;

Eq.Dia, Diameter of a circle equal to the lesion area; Sol, Solidity; AUC, Area under

the curve; SVM, Support vector machine; AI, Artificial intelligence.

eccentric enhanced characteristics and slower regression
compared to gallbladder cancer. However, as some hospitals
do not use contrast-enhanced ultrasound, the distinction of
gallbladder adenomas from cholesterol polys is a tremendous
challenge for radiologists. Further reliable and objective methods
are needed for a larger number of imaging features to be obtained
for differential diagnosis.

Nowadays, surgical guidelines recommend that gallbladder
polyps of size >1 cm be surgically resected as gallbladder
adenomas and carcinomas are larger than benign polyps (9).
However, of 1,541 cases of gallbladder polyps investigated
in our hospital from January 2011 to November 2018, only
∼30% of gallbladder polyps were pathologically proven as
being gallbladder adenomas, adenomas with severe atypia,
or cancerous adenomas, indicating that the remaining 70%
were pseudo gallbladder polyps, including cholesterol polyps,
adenoma-like hyperplasia, and inflammatory polyps. Therefore,
there is an urgent need for clinical surgery aimed at the
identification of a novel imaging method with higher diagnostic
accuracy that may allow for the avoidance of unnecessary
cholecystectomy, reduce the wastage of medical resources, and
relieve patient suffering.

The field of radiomic technology based on artificial
intelligence (AI) has been developing rapidly in recent years,
with computers processing massive datasets through layered
mathematical models that can detect patterns not otherwise
decipherable using biostatistics (10). Many researchers have
made progress in the field of radiomics. Wang et al. (11) showed
that the newly developed deep learning radiomics of elastography
(DLRE) was valuable in liver fibrosis stage prediction. Liu et al.
(12) developed a radiomics model that incorporated radiomics
signatures and independent clinicopathological risk factors, that
allowed for the performance of the individualized, non-invasive
prediction of pathologic complete response to neoadjuvant
chemoradiotherapy in patients with locally advanced rectal
cancer. Song et al. (13) demonstrated the individualized
prediction of progression-free survival probability associated
with epidermal growth factor receptor tyrosine kinase inhibitor
therapy in non-small cell lung cancer on the basis of computed
tomography features. In general, AI is widely used in the field of
medical radiomics analysis, with computers capturing changes
in the protein genes on macroscopic images using information
of a higher dimension. This is expected to provide accurate
and reliable diagnostic recommendations for doctors’ clinical
decisions (14–17).
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In this study, we aimed to retrospectively analyse the
preoperative two-dimensional ultrasound images of patients
with gallbladder adenomas and gallbladder cholesterol polyps.
Multiple groups of imaging features were extracted automatically
for the detection of early imaging differences between the two
diseases so as to provide accurate diagnosis.

MATERIALS AND METHODS

Patients
Approval was obtained from the Institutional Ethics
Committee for the retrospective review of images and patients’
medical records(Y2020-188).

The exclusion criteria were as follows: (1) diagnosis of
gallbladder carcinoma on previous imaging; (2) insufficient
liver, kidney or heart function; (3) presence of a thickened
gallbladder wall lesion; and (4) imaging scanning demonstrated
liver metastasis.

From July 2018 to December 2019, 263 patients with
gallbladder polyps (size >7mm) were referred to our hospital
for surgical treatment (Figure 1), and all of them underwent
ultrasound. After a discussion with their surgeons, 152 cases
chose clinical follow-up, and 111 underwent cholecystectomy.
The polyps were pathologically proven as being cholesterol
polyps (n = 58) in 55 patients and gallbladder tubular adenomas
(n = 41) in 41 patients. Gallbladder polypoid adenocarcinomas
(n = 8), inflammation polyps (n = 4), and adenomyomas (n =

3) were also observed. Patients with polypoid adenocarcinomas,
inflammation polyps and adenomyomas were excluded from
this study owing to the small sample size. Finally, we enrolled
99 gallbladder polyps (cholesterol polyps and adenomas) in 96
patients (40 men and 56 women; mean age 36.5 years, age range
27–71 years).

Ultrasound Scanning and Instruments
All patients fasted for at least 8 h before undergoing ultrasound
examination. Gray-scale and color Doppler ultrasound were
performed. The target area was magnified to ensure the ideal
plane for the display of the whole gallbladder and adjacent liver
parenchyma. Ultrasound was performed by two experienced
technologists using one of the following ultrasonographic
systems: Aplio 500 (Canon Healthcare, Japan; PVT-375BT, 1.9–
6 MHz), Ascendus (Hitachi Medical Systems, Japan; EUP-C715,
1–5 MHz), Resona 7s (Mindray Medical Systems, China; SC5-
1U, 1–5 MHz), and Mylab Twice (Esaote Medical Systems, Italy,
CA431, 1–5 MHz). The maximum diameter of the polyp was
measured, and the original ultrasound images of the lesion were
captured for further analysis.

Ultrasound Radiomics Analysis Procedure
Overall Design
The radiomic analysis based on ultrasound images comprised
seven steps, as shown in Figure 2.

Image Processing
In this retrospective study, the ultrasound images of cholesterol
polyps and gallbladder adenomas were acquired, and the edge

of each lesion was circled with a red curve by the drawing
software (Figure 3A). Then, the images were binarised with the
thresholding method to obtain mask images on which the outline
was filled with white inside and the rest set to black. The area
(orange rectangle) showing the gallbladder polyp was zoomed
partially (Figure 3B), and the mask of the gallbladder polyp
lesion was shown as in Figure 3C.

Spatial Feature Extraction
The imaging features of the lesion were extracted based on the
original ultrasound image and the corresponding mask image.
Some spatial features were extracted based on the ultrasonic
gray-scale image, which included first-order statistic features
and gray-level co-occurrence matrix (GLCM) texture features.
Additionally, binary texture spatial features were extracted based
on the ultrasonic binary mask image for the reflection of pixel
distribution inside the lesion.

The first-order statistic features included the mean (IMean),
median (IMedian), standard deviation, coefficient of variation,
histogram entropy, skewness, and kurtosis of the pixels within
the lesion. The corresponding ratio of the median (mean) of the
pixels was calculated, which was within the lesion and within the
reference area (the rectangular area expanding outwards from the
lesion), and the ratio was defined as RImedian (RImean).

The GLCM is an important technique for texture analysis (18),
which represents the characteristics of the intensity distribution
and respective distance of the intensity levels in the original
image. In this study, the GLCM texture features were of
four types: energy (Ener), contrast (Cont), entropy (Entr), and
homogeneity (Homo), and each type of GLCM feature was
constructed for different values of offset d. Here, d was an integer
between 1 and 15 pixels. Therefore, each type of GLCM feature
included 15 texture features; a total of 60 GLCM texture features
was extracted for each lesion.

The binary texture features included the following: the
area ratio (AR), which denotes the ratio of the high-intensity
area to the whole lesion area; center deviation degree, which
characterizes the normalized distance between each pixel point
in the high-intensity area of the lesion and the center point of the
lesion; and dispersion degree (DD), which characterizes themean
of the normalized Euclidean distance between each pixel point in
the high-intensity area of the lesion and the center point of the
high-intensity area (19).

Morphological Feature Extraction
As shown in Figure 4, the morphological features of the lesion
were extracted, including the area of the lesion (Area), area of the
minimum convex polygon corresponding to the lesion (C.area),
long axis length (Maj.Len), and short axis length (Min.Len) of
the fitting ellipse with the same standard second order center
distance as the lesion, number of contour pixel points of the
lesion (perimeter, Per), angle between the long axis of the fitting
ellipse and X-axis (orientation, Ori), diameter of a circle equal
to the lesion area (equivalent diameter, Eq.Dia), and ratio of the
lesion area to convex area (solidity, Sol).
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FIGURE 1 | Flow chart of participant enrolment. Totally, 263 patients with gallbladder polyps (size >7mm) were referred to our hospital: 152 cases chose clinical

follow-up, 111 underwent cholecystectomy for pathological proven cholesterol polyps (n = 58), gallbladder tubular adenomas (n = 41), gallbladder polypoid

adenocarcinomas (n = 8), inflammation polyps (n = 4), and adenomyomas (n = 3). Finally, 99 gallbladder polyps (cholesterol polyps and adenomas) in 96 patients

were enrolled.

FIGURE 2 | Overall design of radiomic analysis based on ultrasound images. The radiomic analysis comprised the following steps: (1) acquisition of the ultrasound

images and lesion contour delineation; (2) image processing to obtain the mask image; (3) spatial feature extraction based on the ultrasonic gray-scale and binary

image; (4) morphological feature extraction; (5) first-stage feature selection; (6) second-stage feature selection; (7) support vector machine (SVM) classification using

the selected features. GLCM, gray-level co-occurrence matrix.

First-Stage Feature Selection
Assuming the features were normally distributed, the non-
paired t-test was used to analyse the features of the gallbladder
cholesterol polyps and gallbladder tubular adenomas. Otherwise,
the Kruskal–Wallis test was used to analyse the features. Here,
p-values lower than 0.05 indicated statistical significance.

In order to further enhance the reliability of the features and
select intrinsic features from among all the significant features,
we adopted two indicators—Fv and F values. Here, the Fv-
value was Fisher’s inter-intraclass variance ratio and F-value was
defined using Z-scores (20):

Fv =
|x̄0 − x̄1|

√

(

σ
2
0 + σ

2
1

)

(1)

f =
∣

∣meani(z-scoreoi)−meani(z-score1i)
∣

∣

=

∣

∣

∣

∣

meani(
x0i − x̄0

σ0
)−meani(

x1i − x̄1

σ1
)

∣

∣

∣

∣

(2)

where the subscripts 0 and 1 represented the gallbladder
cholesterol polyps and gallbladder tubular adenomas,
respectively, x̄ and σ denoted the mean and standard
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FIGURE 3 | Image processing of gallbladder cholesterol polyps. (A) Original ultrasound image of a gallbladder polyp: the polyp is circled (red line) and the area (orange

rectangle) showing the gallbladder polyp) has been zoomed in partially to (B). (B) Partially enlarged gallbladder polyp (orange arrows). (C) Mask of gallbladder polyp

after binarisation processing.

FIGURE 4 | Schematic diagram illustrating the morphological features of a

lesion (denoted as the white region). Features included the area of the lesion

(Area), area of minimum convex polygon encompassing the lesion (C.area;

denoted as the area inside the red line), long axis length (Maj.Len), and short

axis length (Min.Len) of the fitting ellipse (blue line), perimeter (Per), orientation

(Ori), equivalent diameter (Eq.Dia), and solidity (Sol).

deviation of a feature. X0i represented the i-th data of a
feature in class 0, and X1i represented the i-th data of a feature
in class 1.

Considering the presence of a large number of GLCM features
(60) and the likelihood of internal redundancy, we first retained
the feature with the largest Fv value in each type of GLCM feature
as the representative feature of GLCM. In addition to the GLCM
features, other statistically significant features were retained.

Second-Stage Feature Selection
Next, we selected a few more important features after first-stage
feature selection. In terms of spatial features, we retained the
features that satisfied both the following criteria: (1) Fv value was
greater than themedian Fv value of the alternative spatial domain
features. (2) F value was greater than the median corresponding
F value of the alternative spatial domain features. Similarly, in
terms of morphological features, we retained the features that
satisfied both the following criteria: (1) Fv value was greater than
the median Fv value of the alternative morphological features. (2)
F value was greater than the median corresponding F value of the
alternative morphological features.

Classification
For the classification of features, we used the supervised support
vector machine (SVM) algorithm. The SVM is used for the
identification of a decision boundary to maximize the margin
between two classes and is a very popular classification method
(21). First, we divided the data set into the training set and
test set in a ratio of 6:4. In the training set, we used 5-fold
cross validation for the identification of the optimal model of
the features, which was then used for the test set classification.
Finally, we acquired the classification performance of the test
set, including the classification accuracy, classification sensitivity,
specificity, Youden index, and area under the curve (AUC).
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RESULTS

Features After First-Stage Feature
Selection
The enrolled cases were confirmed by surgical pathology, and
included 58 cases of cholesterol polyps in 55 patients and 41
cases of gallbladder tubular adenomas in 41 patients. Each case
corresponded to 72 spatial features and eight morphological
features. Finally, 69 significant features were obtained from
among all the features of the two diseases, including 52 GLCM
features. The spatial and morphological features obtained after
first-stage feature selection are shown in Table 1, in which,
if a feature was normally distributed, its mean and standard
deviation are shown, otherwise its median and interquartile range
are given.

Features After Second-Stage Feature
Selection
In the second-stage feature selection, we retained the spatial
features that satisfied Fv> = 0.396 and F> = 0.564. Similarly, we
retained the morphological features that satisfied Fv> = 0.740
and F> = 0.964. Finally, a total of eight features was selected, as
shown in Table 2.

As Table 2 indicates, in terms of spatial features, the Cont14
and Entr6 values in the cholesterol polyp group were significantly
higher than those in the gallbladder adenoma group, but the
Homo13 and Ener8 values in the cholesterol polyp group were
significantly lower than those in the gallbladder adenoma group.
These results indicate that the pixel distribution of the cholesterol
polyp lesions was more uneven than that of the gallbladder
tubular adenomas. The DD was also significantly lower in the
cholesterol polyps than gallbladder adenomas, indicating a lower
degree of dispersion of the highlight area in the cholesterol
polyps. In addition, in terms of morphological characteristics,
the Maj.Len, Eq.Dia and Per values in the cholesterol polyp
group were significantly lower than those in the gallbladder
adenoma group, demonstrating that the cholesterol polyps were
smaller and more regular in appearance than the gallbladder
tubular adenomas.

As shown in Figure 5, it is very hard to manually and
visually distinguish gallbladder adenomas (Figures 5C,D) from
cholesterol polyps (Figures 5A,B) based on their ultrasound
images. Using radiomic analysis, the Cont14 value was found
to be significantly higher (3.850 and 2.387) than that of the
gallbladder adenomas (1.460 and 1.898). These results indicate
that the pixel distribution of the cholesterol polyp lesions was
more uneven than that of the gallbladder tubular adenomas, and
that ultrasound radiomics based on spatial and morphological
features may be valuable for the differential diagnosis of these
two diseases.

Classification Results of SVM
Finally, we used the SVM to obtain the optimal models of
five spatial features and three morphological features. The
classification performance in the test set (Table 3) indicated
that the accuracy of the spatial feature model was higher than
that of the morphological feature model, but the sensitivity

and specificity the spatial feature model were more unbalanced
than those of the morphological feature model. When we
applied the SVM to all eight features for the classification
performance of the test set, the accuracy, sensitivity, and
specificity of the model including all features increased to 0.875,
0.885, and 0.857, respectively. Additionally, while comparing
the AUC values between the SVM models including three
morphological features, five spatial features and all eight
features, the AUC of the all features model (0.898) was the
highest, while that of the spatial feature model (0.886) was
higher than the AUC of the morphological feature model
(0.862) (Figure 6).

DISCUSSION

In this study, we demonstrated that ultrasound radiomics
analysis, based on the spatial and morphological features
extracted from ultrasound images, effectively contributed to
the preoperative diagnosis of true and pseudo gallbladder
polyps, and may be valuable in the clinical management of
gallbladder polyps.

For true gallbladder polyps, cholecystectomy is indeed
required for the prevention of malignancy development. The 5-
year survival rate associated with gallbladder cancer is 2∼80%,
which is closely correlated to the stage of gallbladder cancer in
surgery. The 5-year survival rate of gallbladder carcinoma in situ
is as high as 80%, while it decreases to 8% in cases with lymph
nodemetastasis, and even drops to values as low as 2% in stage 4b
gallbladder cancer (22). Therefore, it is of significance to improve
the diagnostic accuracy of gallbladder cancer or precancerous
lesions at an early stage.

Recently, several imaging methods have been applied in the
examination of gallbladder tumors, such as transabdominal
ultrasound, high-frequency ultrasound, contrast-enhanced
ultrasound, endoscopic ultrasound, enhanced computed
tomography, and enhanced magnetic resonance imaging. As the
preferred imaging method for gallbladder lesion examination,
conventional trans-abdominal ultrasound is widely used in
different levels of hospitals for gallbladder polyp screening
and follow-up. However, it is unreliable to distinguish true
and pseudo polyps only based on the results of lesion echo,
morphology, and blood flow obtained by conventional trans-
abdominal ultrasound. Compared to traditional low-frequency
ultrasound scans, high-frequency ultrasound scans greatly
heighten the accuracy of the determination of the preoperative
stage of gallbladder cancer as well as differentiating benign
and malignant lesions (23, 24). However, an obvious limitation
of high-frequency ultrasound is that it is not effective when
the polyps are located deep within the gallbladder body or
neck. Moreover, due to the low resolution, contrast-enhanced
computed tomography, and enhanced magnetic resonance
imaging too do not provide satisfying results in terms of true
gallbladder polyp diagnosis.

Owing to the significantly high potential of malignancy
development in larger polyps, clinical surgery guidelines highly
recommend the performance of cholecystectomy in cases
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TABLE 1 | Features showing statistical significance.

Features Gallbladder cholesterol

polyps (Class 0)

Gallbladder tubular

adenomas (Class 1)

P Fv F

Spatial features CDD 0.614 ± 0.052 0.639 ± 0.031 0.007 0.413 0.545

DD 0.579 ± 0.054 0.608 ± 0.041 0.005 0.421 0.564

AR 0.536 ± 0.119 0.580 ± 0.090 0.046 0.298 0.408

Imedian 88.474 ± 24.727 104.256 ± 31.886 0.007 0.391 0.550

Imean 88.237 ± 24.154 102.897 ± 30.604 0.009 0.376 0.530

CoV 0.307 ± 0.105* 0.263 ± 0.084 0.001 0.322 0.674

Kurtosis 2.858 ± 0.858* 3.279 ± 1.051* 0.012 0.310 0.235

Cont14 4.063 ± 1.682* 2.715 ± 1.867 <0.001 0.536 0.883

Ener8 0.050 ± 0.023* 0.068 ± 0.038* 0.002 0.414 0.583

Homo13 0.500 ± 0.069 0.572 ± 0.057 <0.001 0.796 0.980

Entr6 4.712 ± 0.427* 4.380 ± 0.720 0.003 0.396 0.564

Morphological features Area 0.525 ± 0.489* 1.623 ± 1.405* <0.001 0.738 0.883

Maj.Len 0.971 ± 0.485* 1.738 ± 0.912* <0.001 0.742 1.045

Min.Len 0.651 ± 0.298* 1.135 ± 0.602* <0.001 0.720 1.117

C.Area 0.537 ± 0.511* 1.707 ± 1.423* <0.001 0.774 0.882

Eq.Dia 0.818 ± 0.393 1.438 ± 0.650* <0.001 0.816 1.131

Ori 15.261 ± 41.013* 33.606 ± 44.117 0.002 0.305 0.562

Per 2.637 ± 1.281* 5.033 ± 2.353* <0.001 0.894 1.124

Sol 0.980 ± 0.030* 0.963 ± 0.053* 0.005 0.273 0.283

*Parameters with non-normal distribution.

CDD, center deviation degree; DD, dispersion degree; CoV, coefficient of variance; C.area, area of minimum convex polygon; Maj.Len, long axis length of the fitting ellipse; Min.Len,

short axis length of the fitting ellipse; Per, perimeter; Ori, orientation; Eq.Dia, diameter of a circle equal to the lesion area; Sol, solidity; AR, area ratio; IMean, mean of the pixels within

the lesion; Imedian, median of the pixels within the lesion; Cont, Contrast; Ener, energy; Homo, homogeneity; Entr, entropy.

TABLE 2 | Features filtered using the Fv value and F value.

Features Gallbladder

cholesterol polyps

Gallbladder tubular

adenomas

P Fv F

Spatial features Cont14 4.063 ± 1.682* 2.715 ± 1.867 <0.001 0.536 0.883

Ener8 0.050 ± 0.023* 0.068 ± 0.038* 0.002 0.414 0.583

Homo13 0.500 ± 0.069 0.572 ± 0.057 <0.001 0.796 0.980

Entr6 4.712 ± 0.427* 4.380 ± 0.720 0.003 0.396 0.564

DD 0.579 ± 0.054 0.608 ± 0.041 0.005 0.421 0.564

Morphological features Maj.Len 0.971 ± 0.485* 1.738 ± 0.912* <0.001 0.742 1.045

Eq.Dia 0.818 ± 0.393 1.438 ± 0.650* <0.001 0.816 1.131

Per 2.637 ± 1.281* 5.033 ± 2.353* <0.001 0.894 1.124

DD, dispersion degree; Maj.Len, long axis length of the fitting ellipse; Per, perimeter; Eq.Dia, diameter of a circle equal to the lesion area; Cont, Contrast; Ener, energy; Homo, homogeneity;

Entr, entropy.

with a gallbladder polyp diameter >1 cm (25). However, this
recommendation is being questioned by a growing number of
scholars and clinical doctors, with their concerns predominantly
centring on the fact that many pseudo non-cancerous gallbladder
polyps have a diameter larger than 1 cm and that cholecystectomy
performance in such cases may lead to injury and huge wastage
of the health system resources. Meanwhile, it has been deemed
unreasonable to “watch” the growth of malignant polyps with
atypical hyperplasia that have diameters smaller than 1 cm
(i.e., 6∼10mm) by ultrasound in the early phase (26–28).
Therefore, there is a need for a larger number of studies

focusing on the development of new imaging methods to
distinguish such true gallbladder polyps for the performance of
cholecystectomy as early as possible, as well as efficiently increase
the 5-year survival rate of patients and reduce public health
resource wastage.

As a medical research hot spot, AI technology is now being
applied in medical imaging. In particular, the use of AI in
magnetic resonance imaging has proven successful in terms of
pathological slide reading (29–32). With the use of computer-
based big data analysis, hundreds of unbiased data of image
features from existing images can be obtained in a reasonable
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FIGURE 5 | Ultrasound images of gallbladder cholesterol polyps (A,B) and gallbladder tubular adenomas (C,D). When combined with spatial parameter analysis, the

Cont14 values were significantly higher (3.850 and 2.387) than those of the gallbladder adenomas (1.460 and 1.898), indicating the pixel distribution of the cholesterol

polyp lesions was more uneven than that of the gallbladder tubular adenomas. Cont, contrast.

TABLE 3 | Classification performance on the test set using SVM.

Features Acc Sen Spc Yi AUC

All features 0.875 0.885 0.857 0.742 0.898

Morphological features 0.825 0.826 0.824 0.650 0.862

Spatial features 0.850 0.864 0.833 0.697 0.886

SVM, support vector machine; Acc, accuracy; Sen, sensitivity; Spc, specificity; Yi, Youden

index; AUC, area under the curve.

span of time.With a resolution that far exceeds that of the human
eyes, the characteristics for the differentiation of benign and
malignant polyps can be obtained by computers from the analysis
results of a large number of cases, which can further be used to
train computers for deep learning.

In our current study, computer aided high-throughput
imaging analysis was applied for the analysis of the medical
images of the 99 gallbladder polyps. According to the existing
literature, gallbladder cholesterol polyps and adenomas display
different patterns of echoes, as obtained by endoscopic
ultrasonography (7, 33, 34). Impressively, we found that
compared to gallbladder adenomas, cholesterol polyps exhibit a
greater degree of unevenness in terms of the pixel distribution
of the lesion area and higher aggregability of the highlight
area. Meanwhile, our results revealed that the cholesteric polyps
exhibited smaller lesion area perimeters and showed greater
regularity than the gallbladder tubular adenomas. Particularly,
these imaging features of gallbladder cholesterol polyps are
closely correlated to their pathophysiological characteristics. Due

FIGURE 6 | Diagnostic performance of different support vector machine (SVM)

models. The (areas under the curve) AUCs obtained using the SVM models of

various feature sets were compared, including three morphological features

(0.862), five spatial features (0.886), and all eight selected features (0.898).

to the cholesterol crystals in foam cells (3, 6, 35), the images
of cholesterol polyps by conventional ultrasound usually show
point-like strong echoes or high echoes. For small-size polyps,
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these echoes are too weak for their detection by the human eye,
but may be well-obtained by computers, which have a greater
sensitivity. In contrast to the echoes of cholesterol polyps, those
of gallbladder adenomas are more uniform in nature as a result of
the smaller surface area and similar acoustic impendence inside
the adenoma that comprises proliferating glandular epithelial
cells and mesenchymal cells. With real-time harmonic contrast
ultrasound use, small focal areas of non-enhancement within
the peaks could be detected in gallbladder cholesterol polyps,
while the enhancements within the peaks usually showed more
uniformity in adenomas (8). Strikingly, these newly revealed
features are consistent with the pathological characteristics
of the lesion. Additionally, these features have potential
classification ability. The present study also demonstrated that
compared to cholesterol polyps, gallbladder adenomas have a
relatively larger girth and volume and show greater shape-
related irregularity, consistent with previous reports. Although
statistically, the diameter of adenoma is significantly larger
than that of cholesterol polyps, for individual cases, we cannot
accurately determine true or false polyps by the size of the
lesions. In cases with a lesion size of 1 cm with similar echo
appearance, it was extremely difficult for the radiologist to
provide a pathological diagnosis using conventional ultrasound.
However, when combined with AI analysis, including potential
morphological and spatial features, a higher diagnostic accuracy
in distinguishing true and pseudo gallbladder polyps could
be achieved.

Our study also have some limitations. As an initial
attempt aimed at the application of up-to-date radiomics
technology to distinguishing true and pseudo polyps in the
gallbladder, we did not collect a large number of cases.
In our following studies, the sample size will be expanded,
and deep learning will further be performed on various
ultrasound instruments, to provide more promising and
reliable parameters for clinical diagnosis. Moreover, we will
also attempt to introduce radiomics to the study susing
multi-modal ultrasound to obtain more novel indicators.
Moreover, combining the automated radiomics technique with
the traditional 2D image descriptors, assessed visually by
radiologists, could integrate more useful information, which may
contribute to more accurate differential diagnosis and deserves
further study.

CONCLUSION

Ultrasound radiomic analysis based on the spatial and
morphology features of original ultrasound images could
effectively improve the preoperative diagnostic ability of true and
pseudo gallbladder polyps, which may inform gallbladder polyp
procedure-related decision-making. Compared to gallbladder
adenomas, gallbladder cholesterol polyps showed a greater
degree of unevenness and the highlight area showed a higher
degree of clustering; these characteristics can be useful in the
performance of differential diagnosis in such settings.
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Background: Preoperative identification of hepatocellular carcinoma (HCC), combined
hepatocellular–cholangiocarcinoma (cHCC-ICC), and intrahepatic cholangiocarcinoma
(ICC) is essential for treatment decision making. We aimed to use ultrasound-based
radiomics analysis to non-invasively distinguish histopathological subtypes of primary
liver cancer (PLC) before surgery.

Methods: We retrospectively analyzed ultrasound images of 668 PLC patients,
comprising 531 HCC patients, 48 cHCC-ICC patients, and 89 ICC patients. The
boundary of a tumor was manually determined on the largest imaging slice of the
ultrasound medicine image by ITK-SNAP software (version 3.8.0), and then, the high-
throughput radiomics features were extracted from the obtained region of interest
(ROI) of the tumor. The combination of different dimension-reduction technologies and
machine learning approaches was used to identify important features and develop the
moderate radiomics model. The comprehensive ability of the radiomics model can be
evaluated by the area under the receiver operating characteristic curve (AUC).

Results: After digitally processing tumor ultrasound images, 5,234 high-throughput
radiomics features were obtained. We used the Spearman + least absolute shrinkage
and selection operator (LASSO) regression method for feature selection and logistics
regression for modeling to develop the HCC-vs-non-HCC radiomics model (composed
of 16 features). The Spearman + statistical test + random forest methods were used for
feature selection, and logistics regression was applied for modeling to develop the ICC-
vs-cHCC-ICC radiomics model (composed of 19 features). The overall performance
of the radiomics model in identifying different histopathological types of PLC was
moderate, with AUC values of 0.854 (training cohort) and 0.775 (test cohort) in the
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HCC-vs-non-HCC radiomics model and 0.920 (training cohort) and 0.728 (test cohort)
in the ICC-vs-cHCC-ICC radiomics model.

Conclusion: Ultrasound-based radiomics models can help distinguish
histopathological subtypes of PLC and provide effective clinical decision making
for the accurate diagnosis and treatment of PLC.

Keywords: primary liver cancer, histopathological subtype, radiomics, ultrasound, identification

INTRODUCTION

Primary liver cancer (PLC) is one of the most lethal and
prevailing tumors, which is estimated to rank the fifth in cancer
mortality among men and the seventh among women. In recent
years, the incidence of PLC has continued to increase, rising faster
than that of other cancers (1, 2). In the same solid malignant
neoplasm, PLC can be classified according to histological sources.
A tumor that contains only cancerous hepatocytes is defined as
hepatocellular carcinoma (HCC), only cancerous bile duct cells
are defined as intrahepatic cholangiocarcinoma (ICC), and a
mixture of HCC and ICC is defined as combined hepatocellular–
cholangiocarcinoma (cHCC-ICC) (3, 4).

cHCC-ICC is a relatively rare subtype of PLC with a
variably reported incidence between 0.4 and 14.2%, and its
overall prognosis is worse than that of either HCC or ICC
alone (5, 6). Studies have revealed that in patients with PLC
undergoing liver resection surgery, the survival outcome of
cHCC-ICC is worse than that of HCC and that it is similar to
or worse than that of ICC patients (7). HCC patients who meet
the Milan criteria are indicated for liver transplantation, and
their transplantation effect is excellent (8). However, increasing
evidence indicates that the prognosis for cHCC-ICC patients
undergoing liver transplantation is worse than that of patients
with HCC alone and that cHCC-ICC is regarded as a relative
contraindication for liver transplantation (9–11). Considering
the scarcity of liver sources available for transplantation and
the poor prognosis for cHCC-ICC, the correct identification of
different PLC subtypes before surgery is a necessary condition
for the reasonable selection of surgical candidates for liver
transplantation and liver resection surgery, and it can improve
overall survival outcomes (12, 13). PLC is often diagnosed
as advanced, and many patients do not qualify for a curable
treatment; systemic treatments that are effective for either
HCC or ICC alone appears to be ineffective for cHCC-ICC
(5). Therefore, precise and proper preoperative diagnosis is
important for patient management to distinguish cHCC-ICC
from HCC and ICC since different PLC subtypes may determine
different treatment decisions.

Due to the high heterogeneity in the proportion and existing
forms of the two tumor components, the imaging manifestations
of cHCC-ICC have lacked specificity. At present, most cases of
cHCC-ICC are misdiagnosed as simple HCC or ICC. Theodora
et al. showed that the liver imaging reporting and data system
(LI-RADS) as a common method for qualitative diagnosis of liver
tumors applied in liver-contrast-enhanced ultrasound (CEUS)
diagnosis may misdiagnose 54.1% of cHCC-ICC lesions as HCC

(14). In contrast-enhanced imaging, cHCC-ICC has overlapping
imaging modes with HCC and ICC. The main tissue in the
tumor largely determines the main imaging features, making
it difficult to distinguish cHCC-ICC from HCC and ICC (15).
Moreover, most tumors can be diagnosed with core needle biopsy
before surgery, but due to the different proportions of ICC and
HCC in cHCC-ICC and sampling error, even histological biopsy
may lead to preoperative diagnosis error and misdiagnosis of
cHCC-ICC as HCC or ICC (16). Therefore, although accurate
preoperative diagnosis of the three subtypes of PLC is important,
it is still difficult.

Radiomics, a newly emerging concept in recent years, uses
computers to extract a large amount of non-visual quantitative
image information to realize the extraction of tumor features
and model establishment, and it further excavates and analyzes
image data information to assist doctors in diagnosis (17).
Through the radiomics approach, the features that can be
identified by human eyes and extracted by computers build a
complementary relationship; in addition, radiomics combined
with currently effective clinical evaluation indicators can improve
the accuracy of medical diagnosis (18, 19). Tumor features vary
from different tumor morphologies and biological behaviors.
Radiomics as a method of deep mining high-dimensional
image features can capture the characteristics of tumors
more comprehensively, providing a feasible new method for
identifying different tumors. Rafael et al. extracted 2D texture
features and 3D texture features from T1-weighed MR images
of 67 brain metastases and established a radiomics model
using a random forest method. This model was helpful in
distinguishing the primary tumors from brain metastases (breast
cancer, lung cancer, and melanoma) (20). In the research
by Yin et al., the radiomics model based on MR images
can effectively identify different sacral tumors for preoperative
identification of chordoma, giant cell tumor, and metastatic
tumor (21).

Currently, the diagnosis of cHCC-ICC is usually based on
postoperative pathology. Radiomics studies based on ultrasound
evaluation of three different PLC subtypes are still lacking, and
relevant reports have not been reported. In different imaging
examinations, ultrasound technology has the advantages of no
radiation, real-time observation, and simplicity with regard
to liver disease examinations. An ultrasound-based radiomics
approach may be better than other approaches in identifying
three types of PLC to provide additional information. In this
study, an ultrasound-based machine learning method was used
to extract radiomics features and develop radiomics models to
identify different pathological types of PLC.
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MATERIALS AND METHODS

Study Population
This study was approved by the Ethics Committee of the
First Affiliated Hospital of Guangxi Medical University.
A comprehensive retrospective research was implemented on the
medical records of patients diagnosed with PLC after surgery in
the First Affiliated Hospital of Guangxi Medical University from
January 2017 to September 2019.

The following inclusion and exclusion criteria were
implemented in this study. Inclusion criteria included the
following: (1) the lesions were primary liver tumors; (2) the
target nodule was confirmed by surgery pathology; (3) liver
ultrasound examination was performed within 14 days before
resection; and (4) the target lesions were displayed clearly on the
ultrasound images. Exclusion criteria included the following: (1)
anticancer treatment before surgery; (2) poor image quality; and
(3) uncompleted clinical data.

Finally, 668 eligible patients (544 male/124 female; mean
age, 50.5 ± 11.4 years; age range, 22–79 years) were enrolled
(Figure 1). The pathological tissue of the lesions was obtained by
surgical hepatic resection for pathological diagnosis to determine
the histological classification of PLC, of which there were 531
HCC patients, 89 ICC patients, and 48 cHCC-ICC patients.

Patient Clinical Pathological Parameters
Basic patient information was collected including data on gender,
age, tumor size, cirrhosis, hepatitis, and serum tumor markers.
Serological data included carbohydrate antigen 19-9 (CA19-9),
alpha fetoprotein (AFP), and carcinoembryonic antigen (CEA)
levels. These data were measured within 2 weeks before surgery.

We also collected patient pathological information, including
tumor differentiation, microvascular invasion (MVI), TNM
stage, and immunohistochemical information on Ki67, p53, and
vascular endothelial growth factor (VEGF). MVI referred to the
observation of a nest of cancer cells in a blood vessel lining
the endothelial cells by microscopy. In this study, the TNM
staging of PLC patients was analyzed according to the American
Joint Cancer Commission (AJCC) eighth edition staging system
(22, 23).

Radiomics Analysis
The research of radiomics mainly includes the following steps:
tumor segmentation, data preprocessing and feature selection,
modeling, and evaluation (Figure 2). In the training cohort,
we performed a combination of different dimension-reduction
technologies and machine learning approaches to establish
radiomics models. Finally, the test cohort was taken to evaluate
the generalization performance of the model.

Ultrasound Imaging and Tumor
Segmentation
GE Logiq E9 ultrasound diagnostic instruments (GE Healthcare,
United States, C5-1 abdominal probe, 2.8–5.0 MHz), Philips
EPIQ 5 ultrasound diagnostic instruments (Philips Medical
Systems, United States, C5-1 abdominal probe, 1–5 MHz), and

Aloka EZU-MT28-S1 ultrasound diagnostic instruments (Aloka,
Japan, abdominal probe, 2–6 MHz) were used to collect images.
We conducted a retrospective review of the image data and
selected two-dimensional ultrasound images in digital imaging
and communications in medicine (DICOM) format that clearly
showed the largest cross section of each lesion. We imported the
images into the ITK-SNAP software (version 3.8.0)1 to manually
draw the tumor boundary and determine the tumor region of
interest (ROI) (Figure 3). Under the supervision of a radiologist
with over 20 years of ultrasound diagnosis experience, another
radiologist with 15 years of ultrasound diagnosis experience
completed the ROIs for all tumors.

Feature Extraction and Data
Preprocessing
Intelligence Foundry software (GE Healthcare, version 1.3) was
used for radiomics analysis. Since the images were collected by
different ultrasound equipment and the feature vectors had a
wide range, we preprocessed the data before modeling analysis
to improve the accuracy of the calculation, including ultrasound
system supplier data alignment, median value replacement of
missing value processing, and data normalization processing.

We used 256 as the bin size to discretize the gray value of
the images and used the ComBat method to standardize the
radiomics features. The ComBat method was previously used
in radiomics studies of different PTE or MRI protocols (24,
25). The wavelet features were based on the original gray value
image for wavelet transformation (including HLH, LLL, and
HHL, with eight local matrices); the energy, skewness, and other
series of parameters were extracted from the obtained wavelet
transform matrix. In the same way, the shearlet change and
the gabor operator transformation were also carried out, and
different step lengths were used in the change to obtain multiple
sets of transformation intermediate value matrices. Based on the
above transformations, the radiomics parameters were extracted,
and finally, we obtained 5,234 high-throughput features. The
types of features included the following: first-order features
(energy, mean, skewness, kurtosis, etc.), shape features (minor
axis length, major axis length, elongation, etc.), wavelet features
and textural features [gray level co-occurrence matrix (GLCM)
features, grey level run length matrix (GLRLM) features, etc]
(Supplementary Part A). The feature parameters extracted by
the Intelligence Foundry software (GE Healthcare, version 1.3)
were algorithms provided using the pyradiomics package, which
calculated the radiomics features in accordance with the feature
definition described in the 2016 version of the image biomarker
standardization initiative (IBSI) (26, 27). The median was used
to fill in missing extracted feature values and substitute abnormal
value. Z-score normalization was used to convert different data
to the same order of magnitude, and the calculation formula was
as follows:

y = (x− µ)/σ

where µ is the mean and σ is the standard deviation.

1http://www.itksnap.org
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FIGURE 1 | Flow chart of study population screening.

The PLC patients were labeled according to different
histological types into different layers. In the HCC-vs-non-HCC
model, the non-HCC label was “0,” and the HCC label was “1.”
In the ICC-vs-cHCC-ICC model, the cHCC-ICC label was “0,”
and the ICC label was “1.” Then, PLC patients with different
histological types were grouped based on a 7:3 ratio (training
cohort : test cohort) in each layer using the method of stratified
sampling. The training cohort was used to build the model,
and the test cohort was an independent external verification to
evaluate the model established by the training cohort.

Feature Selection
We obtained 5,234 high-throughput radiomics features and
normalized the quantitative expression values of the radiomics
features using the Z-score method. Considering that some highly
correlated and redundant features in the data may affect the
classification effect of the model, we calculated the Spearman
correlation coefficient. A correlation coefficient between the two
variables close to 1 indicated that the linear relationship between
them was strong and that one of the two variables could be used
instead of the other. In this study, the high-correlation features
were removed with a threshold of 0.95 (HCC vs. non-HCC)

and 0.75 (ICC vs. cHCC-ICC). Then, we used the statistical test
method to screen for features that had differences.

Finally, we used four dimension-reduction technologies to
further deal with the features that were processed above.
Dimension-reduction technologies included random forest, max-
relevance and min-redundancy (mRMR), logistic regression, and
support vector machine recursive feature elimination (SVM-
RFE) (Supplementary Part B).

Modeling and Evaluation
The final selected radiomics features were imported into
the classifier to build a model for evaluating three different
histopathological types of PLC. Ten machine learning approaches
were used in this study, which were decision tree, naïve Bayes,
k-nearest neighbor (KNN), logistics regression, support
vector machine (SVM), bagging, random forest, extremely
randomized trees, AdaBoost, and gradient boosting tree
(Supplementary Part B).

We extracted 5,234 features from the ultrasound images. We
quantify the discriminative ability of the radiomics model by
calculating the receiver operating characteristic curve (AUC). We
constructed the model by separately combining the above four
dimension-reduction technologies and the above 10 machine
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FIGURE 2 | Important steps for the radiomics research. (A) Tumor regions-of-interest identification. (B) After the tumor images are digitalized, a total of 5,234
quantitative features were obtained, and data were standardized for preprocessing. (C) The combination of dimension reduction and classifier was performed to
develop radiomics models to identify primary liver cancers of different histopathological types. (D) Evaluation of the classification effects of the radiomics model in
identifying different histopathological types of primary liver cancer.

learning approaches and chose the combination with the highest
AUC to build the optimal radiomics model. In the training
cohort, to avoid overfitting the classifier, we used a 10-fold cross-
validation method.

We performed a receiver operating characteristic (ROC) curve
analysis and calculated the accuracy and precision. We also used
the confusion matrix as a measure of the quality of the machine
learning approaches to verify whether the prediction results were
consistent with the actual results. The confusion matrix is a
useful tool for evaluating the classification ability of radiomics
models (28).

In the HCC-vs-non-HCC and ICC-vs-cHCC-ICC radiomics
models, we performed univariate and multivariate logistic
regression analyses to analyze the relevant factors of different
pathological types of PLC. Univariate analysis factors with
P-values less than 0.1 were further analyzed by multivariate
logistic regression analysis. In multivariate analysis, a P-value less
than 0.05 was considered significant.

Statistical Analysis
R software (version 3.6.0) and SPSS software (version 22.0) were
applied for statistical analysis. In the quantitative data with a
normal distribution, the completely random design t-test was
performed for the two-samples contrast, the analysis of variance
was used to contrast several independent samples, and variables
were summarized as the mean ± standard deviation (SD). For
quantitative data with a skewed distribution, the Mann–Whitney
U test was performed to compare two independent samples, the
Kruskal–Wallis H test was used to compare several independent

samples, and variables were summarized as the median (q1–
q3). Qualitative data were compared using chi-square tests,
with variables described as percentages. P-values below 0.05 was
considered to be statistically significant differences. In the R
software (version 3.6.3), the “pheatmap” package was used to
draw heat maps of features.

RESULTS

Clinicopathological Data of PLC Patients
A total of 668 PLC patients were adopted in this research
(Figure 1). The clinicopathological parameters of the training
and test cohorts were shown in Table 1. There were no significant
differences in the distribution of clinicopathological features
between the two cohorts, including gender, age, tumor size,
hepatitis, cirrhosis, serum tumor markers, pathological subtype,
immunohistochemistry, or tumor stage. These results showed the
rationality of our training and test cohort partitions.

In the HCC-vs-non-HCC group, the study sample included
467 people in the training cohort (379 male/88 female, mean age,
50.5 ± 11.4 years), 371 cases of HCC, and 96 cases of non-HCC.
There were 201 patients in the test cohort (165 male/36 female,
mean age, 50.6 ± 11.3 years), 160 cases of HCC, and 41 cases
of non-HCC. In the ICC-vs-cHCC-ICC group, the study sample
included 95 people in the training cohort (65 male/30 female,
mean age, 49.4± 11.6 years), 33 cases of cHCC-ICC and 62 cases
of ICC. There were 42 patients in the test cohort (27 male/15
female, mean age, 51.8± 10.3 years), 15 cases of cHCC-ICC, and
27 cases of ICC.
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FIGURE 3 | Ultrasound and pathological images, tumor segmentation, and feature extraction of three different pathological types of PLC. (A,D) A 57-year-old man
with a pathological diagnosis of cHCC-ICC. (B,E) A 64-year-old woman with a pathological diagnosis of HCC. (C,F) A 44-year-old man with a pathological diagnosis
of ICC. (G) An example of manually sketching the region of interest (ROI) of a tumor on an ultrasound image and gray level co-occurrence matrix (GLCM) features,
run length matrix (RLM) features, and grayscale histogram feature extraction from the grayscale ultrasound image.

Identification of the Radiomics Signature
In the HCC-vs-non-HCC group, we used the LASSO regression
method for dimension reduction and modeling with the
logistics regression method. In the ICC-vs-cHCC-ICC group,
we used the random forest method for dimension reduction,
feature selection with a threshold value of 1.25 times the
mean value, and modeling with the logistics regression
method. Finally, we respectively identified 16 and 19 optimal
radiomics features for HCC-vs-non-HCC model and ICC-vs-
cHCC-ICC model predictions (Table 2). Figure 4 showed
the heat map of 16 features (HCC-vs-non-HCC model)
and 19 features (ICC-vs-cHCC-ICC model) of the final
radiomics models.

Radiomics Model Assessment
The results showed that the radiomics models we built had
a high overall classification performance for identifying three
subtypes of PLC. The AUC values in the training cohort and
test cohort were 0.854 and 0.775 (HCC vs. non-HCC) and 0.920
and 0.728 (ICC vs. cHCC-ICC), respectively (Figures 5A,B).
The confusion matrix was shown in Figures 5C,D. In
the HCC-vs-non-HCC model, the predicted results showed
that of the 160 actual HCC patients, 155 were correctly
predicted to be HCC. In the ICC-vs-cHCC-ICC model, the

15 patients with actual cHCC-ICC, 6 were predicted to
be cHCC-ICC, and among the 27 actual ICC patients, 22
were correctly predicted to be ICC. These results indicated
that the radiomics models can moderately distinguish three
different histological types of PLC and performed best at
HCC identification.

Tables 3, 4 showed the results of univariate and multivariate
logistic regression analyses of HCC-vs-non-HCC and ICC-
vs-cHCC-ICC radiomics models. In the HCC-vs-non-HCC
radiomics model, gender, hepatitis, AFP, CA19-9, CEA, stage,
and radiomics score were independent factors related to HCC
(P < 0.05). In the ICC-vs-cHCC-ICC radiomics model, AFP and
radiomics score were independent factors related to cHCC-ICC
(P < 0.05).

DISCUSSION

In this research, as far as we know, we are the first to identify an
ultrasound-based radiomics models that can be used to predict
HCC, ICC, and cHCC-ICC. The radiomics models achieved
good diagnostic efficiency in both the training cohort and the
test cohort, which is expected to help doctors improve the
accuracy of presurgical diagnosis and guide the further treatment
of PLC patients.
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TABLE 1 | Clinicopathological profiles of two radiomics models in the training cohort and test cohort.

HCC vs. non-HCC Model ICC vs. cHCC-ICC Model

Variables Training cohort
(n = 467)

Test cohort
(n = 201)

P-value Variables Training
cohort (n = 95)

Test cohort
(n = 42)

P-value

Gender Gender

Male 379 (81.2) 165 (41.8) 0.78 Male 65 (68.4) 27 (64.3) 0.63

Female 88 (18.8) 36 (58.2) Female 30 (31.6) 15 (35.7)

Age (years) Age (years)

<40 88 (18.8) 35 (174) 0.89 <40 21 (22.1) 5 (11.9) 0.27

40–60 280 (60.0) 124 (61.7) 40–60 59 (62.1) 27 (64.3)

>60 99 (21.2) 42 (20.9) >60 15 (15.8) 10 (23.8)

Tumor size (cm) Tumor size (cm)

≤5 246 (52.7) 115 (57.2) 0.28 ≤5 40 (42.1) 15 (35.7) 0.48

>5 221 (47.3) 86 (42.8) >5 55 (57.9) 27 (64.3)

Hepatitis Hepatitis

Yes 364 (80.2) 159 (79.9) 0.15 Yes 58 (61.1) 23 (54.8) 0.09

No 103 (19.8) 59 (20.1) No 37 (38.9) 19 (45.2)

Cirrhosis Cirrhosis

Yes 218 (46.7) 108 (53.7) 0.09 Yes 36 (37.9) 14 (33.3) 0.61

No 249 (53.3) 93 (46.3) No 59 (62.1) 28 (66.7)

AFP (µ g/ml) AFP (µ g/ml)

≤400 344 (73.7) 139 (69.2) 0.23 ≤400 76 (80.0) 38 (90.5) 0.13

>400 123 (26.3) 62 (30.8) >400 19 (20.0) 4 (9.5)

CA19-9 (U/ml) CA19-9 (U/ml)

≤37 389 (83.3) 158 (78.6) 0.15 ≤37 62 (65.3) 23 (54.8) 0.24

>37 78 (16.7) 43 (21.4) >37 33 (34.7) 19 (45.2)

CEA (µ g/ml) CEA (µ g/ml)

≤5 411 (88.0) 179 (89.1) 0.70 ≤5 75 (78.9) 33 (78.6) 0.96

>5 56 (12.0) 22 (10.9) >5 20 (21.1) 9 (21.4)

Histological type Histological type

HCC 371 (79.4) 160 (79.6) 0.96 cHCC-ICC 33 (34.7) 15 (35.7) 0.91

Non-HCC 96 (20.6) 41 (20.4) ICC 62 (65.3) 27 (64.3)

Differentiation Differentiation

Well 21 (4.5) 5 (2.5) 0.61 Well 1 (1.0) 0 (0) 0.87

Moderate 331 (70.9) 149 (74.1) Moderate 60 (63.2) 25 (59.5)

Poor 83 (17.8) 33 (16.4) Poor 23 (24.2) 11 (26.2)

No data 32 (6.8) 14 (7.0) No data 11 (11.6) 6 (14.3)

Immunohistochemistry, Positive/Negative Immunohistochemistry, Positive/Negative

Ki67, >10%/≤10% 286/181
(61.2/38.8)

129/72
(64.2/35.8)

0.47 Ki67, >10%/≤10% 46/14
(48.4/51.6)

32/10
(76.2/23.8)

0.96

P53 254/213
(54.4/45.6)

122/79
(60.7/39.3)

0.13 P53 63/32
(66.3/33.7)

28/14
(66.7/33.3)

0.96

VEGF 219/248
(46.9/53.1)

102/99
(50.7/49.3)

0.36 VEGF 40/55
(42.1/57.9)

20/22
(47.6/52.3)

0.55

Microvascular invasion 132/335
(28.3/71.7)

62/139
(30.8/69.2)

0.50 Microvascular invasion 33/62
(34.7/65.3)

11/31
(26.2/73.8)

0.32

(Continued)
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TABLE 1 | Continued

HCC vs. non-HCC Model ICC vs. cHCC-ICC Model

Variables Training cohort
(n = 467)

Test cohort
(n = 201)

P-value Variables Training
cohort (n = 95)

Test cohort
(n = 42)

P-value

Depth of invasion Depth of invasion

T1 255 (54.6) 111 (55.2) 0.53 T1 35 (36.8) 24 (57.2) 0.15

T2 111 (23.8) 55 (27.4) T2 30 (31.6) 8 (19.0)

T3 6 (1.3) 3 (1.5) T3 1 (1.1) 0 (0)

T4 95 (20.3) 32 (15.9) T4 29 (30.5) 10 (23.8)

Lymph node metastasis Lymph node metastasis

N0 450 (96.4) 194 (96.5) 0.92 N0 81 (85.3) 38 (90.5) 0.40

N1 17 (3.6) 7 (3.5) N1 14 (14.7) 4 (9.5)

Distant metastasis Distant metastasis

M0 451 (96.6) 198 (98.5) 0.17 M0 87 (91.6) 40 (95.2) 0.45

M1 16 (3.4) 3 (1.5) M1 8 (8.4) 2 (4.8)

Stage Stage

I 251 (53.7) 107 (53.2) 0.38 I 30 (31.6) 23 (54.8) 0.08

II 107 (22.9) 54 (26.9) II 27 (28.4) 7 (16.7)

III 89 (19.1) 36 (17.9) III 30 (31.6) 10 (23.8)

IV 20 (4.3) 4 (2.0) IV 8 (8.4) 2 (4.7)

Radiomics score 1.58 (0.97–2.04) 1.58
(0.95–2.10)

0.74 Radiomics score 0.91
(−0.31−2.39)

0.85
(−0.40−1.76)

0.29

Values were shown as the number of patients (percentage) unless otherwise explained. Radiomics score data were shown as median (Q1 – Q3). AFP, alpha fetoprotein;
CA19-9, carbohydrate antigen 19-9; CEA, carcino-embryonic antigen; VEGF, vascular endothelial growth factor.

Another highlight of this study is that we constructed the
optimal model through a variety of combinations of dimension-
reduction technologies and classifiers. Shiri et al. found that the
performance of machine learning models depends on the type
of data or application and that there was no general algorithm
or single model (29). Different combinations of feature selection
methods and classifiers can provide different results (30–32). In
the current study, we performed different dimension-reducing
technologies and machine learning approaches to find the
optimal models to predict HCC vs. non-HCC and ICC vs. cHCC-
ICC. Therefore, the models that we obtained comprehensively
captured the potential of radiomics-based differential diagnosis
of PLC in the current clinical medical environment.

In the current clinical practice, physicians preoperatively rely
on clinical symptoms, tumor serum markers, and imaging tests to
determine the type of PLC patient, but these data can sometimes
lead to false diagnoses because they may overlap. In addition,
due to high heterogeneity in the proportion and existing forms of
the two tumor components, the imaging findings of mixed HCC
currently lack performance, and most cases are misdiagnosed
as simple HCC or ICC. Preoperative differentiation of PLC
subtypes has important clinical significance, as different types
are associated with different treatment options and prognosis.
Improving the accuracy of initial diagnosis can provide more
optimized and active treatment for cHCC-ICC patients (16). In
addition, clinical medicine is currently moving toward a trend

of precision and personalized medicine. In the precise medical
environment, medical imaging as an important diagnostic tool
is also rapidly evolving and gradually playing an important role
(33). Radiomics, which provides a non-invasive method to assess
lesions and performs well in the diagnosis and prediction of
tumors, is widely considered to be a step in the evolution of
imaging toward a concept of personalized cancer management
(34, 35).

So far, only a few studies have attempted to identify three
different tissue types of PLC by imaging methods, and most
previous studies have been based on CT and MR images. Wang
et al. previously attempted to use preoperative CT and MR
imaging to identify cHCC-ICC with HCC and ICC. The study
found that compared with ICC and cHCC-ICC, the incidence
of HCC pseudocapsule was significantly higher. Compared with
their occurrence in HCC and cHCC-ICC, rim enhancement,
abnormal perfusion, capsular retraction, and biliary dilatation
were more common in ICC. However, in that study, the number
of features obtained from images was small, and imaging features,
such as tumor size, were all visible to the naked eye; the approach
failed to identify and analyze microscopic image features with
potential value for clinical diagnosis (36). Lewis et al. used MR
images of 65 liver cancer patients. The tumor characteristics
and LI-RADS classification were evaluated by two independent
observers. Among the two independent observers, the combined
AUC of sex and LI-RADS and apparent diffusion coefficient
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TABLE 2 | Features and corresponding coefficients of HCC vs. non-HCC radiomics model and ICC vs. cHCC-ICC radiomics model.

HCC vs. non-HCC Model ICC vs. cHCC-ICC Model

Radiomics features Coefficient Radiomics features Coefficient

Roughness index of boundary −0.034 Ipris_shell0_id_mean 0.019

Textural_phenotype_level_20–30% −0.423 Ipris_shell1_gd_mean 0.026

Wavelet-LHL_lbp-3D-m1_firstorder_InterquartileRange −0.068 CoLIAGe2D_WindowSize9_Sum Entropy_firstorder_RobustMean Absolute Deviation 0.021

Shearlet2didxs[1 2 -2]_glszm_Small Area Emphasis −0.020 Wavelet-LLH_lbp-3D-k_firstorder_Minimum 0.019

Shearlet2didxs[1 2 -2]_glszm_Small Area High GrayLevel Emphasis −0.006 Wavelet-HHL_lbp-3D-m1_firstorder_MeanAbsoluteDeviation 0.026

Shearlet2didxs[1 2 -1]_glszm_Small Area High GrayLevel Emphasis −0.053 Wavelet-LLL_lbp-3D-m1_firstorder_Mean 0.029

shearlet2DIdxs[1 3 4]_glszm_GrayLevel Non-Uniformity −0.058 Shearlet2didxs[1 2 -2]_glszm_GrayLevel Non-Uniformity Normalized 0.028

Shearlet2didxs[2 3 -3]_firstorder_Maximum −0.028 Shearlet2didxs[1 2 0]_firstorder_Entropy 0.023

Shearlet2didxs[2 3 -2]_firstorder_Minimum 0.017 Shearlet2didxs[1 2 2]_glszm_Size Zone NonUniformity Normalized 0.028

Shearlet2didxs[2 3 0]_firstorder_Skewness −0.038 shearlet2DIdxs[1 3 −4] _glrlm_Low GrayLevel Run Emphasis 0.021

Shearlet2didxs[2 3 2]_firstorder_Minimum 0.023 Shearlet2didxs[1 3 −1]_glszm_GrayLevel Non-Uniformity Normalized 0.025

Shearlet2didxs[2 3 3]_firstorder_Maximum −0.165 Shearlet2didxs[2 2 −1]_glrlm_Low GrayLevel Run Emphasis 0.024

glbp_hist_kernel1_2 −0.323 Shearlet2didxs[2 3 0]_glrlm_GrayLevel Non-Uniformity Normalized 0.023

glbp_hist_kernel4_3 −0.008 Shearlet2didxs[2 3 1]_firstorder_Median 0.022

gLTCoPs1_hist_kernel6_1 0.056 Shearlet2didxs[2 3 1]_glszm_GrayLevel Non-Uniformity Normalized 0.022

gLTCoPs1_hist_kernel6_2 0.061 gldp_hist_45_kernel7_0 0.019

gldp_hist_90_kernel9_0 0.031

WL_lbp_hist_cH2_7 0.022

WL_lbp_hist_cH2_9 0.021

Frontiers
in

O
ncology

|w
w

w
.frontiersin.org

S
eptem

ber
2020

|Volum
e

10
|A

rticle
1646

51

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


fonc-10-01646 September 24, 2020 Time: 16:50 # 10

Peng et al. Radiomics of Histopathological Subtypes Differentiation

FIGURE 4 | Heat maps of the final features of radiomics models. A total of 16 features were used to build the HCC-vs-non-HCC model, and 19 features were used
to build the ICC-vs-cHCC-ICC model. The radiomics features were normalized by Z-score. (A) Training cohort in the HCC-vs-non-HCC model. (B) Test cohort in the
HCC-vs-non-HCC model. (C) Training cohort in the ICC-vs-cHCC-ICC model. (D) Test cohort in the ICC-vs-cHCC-ICC model.

(ADC) at the fifth percentile for the diagnosis of liver cancer
were 0.90 and 0.89, respectively. This result showed that HCC can
be better distinguished from ICC and cHCC-ICC by combining

the ADC histogram parameters and LI-RADS categorization.
However, the number of samples included in that study and
the number of extracted features were small, and the study did
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FIGURE 5 | Evaluation of the predictive performance of the radiomics models. (A) ROC curve of the HCC-vs-non-HCC model in the training cohort and test cohort.
(B) ROC curve of the ICC-vs-cHCC-ICC model in the training cohort and test cohort. (C) Confusion matrix of the HCC-vs-non-HCC model in the test cohort. The
non-HCC label was “0,” and the HCC label was “1.” (D) Confusion matrix of the ICC-vs-cHCC-ICC model in the test cohort. The cHCC-ICC label was “0,” and the
ICC label was “1.” The abscissa represents the predicted label, and the ordinate represents the actual label.

not distinguish between ICC and cHCC-ICC (37). Compared
with CT/MRI, ultrasound examination has the advantages of
simplicity and real-time observation, and it plays a vital role in the
diagnosis and treatment of liver tumors. However, no radiomics
study has sought to identify HCC, cHCC-ICC, and ICC. In view
of this knowledge gap, we used ultrasound images to establish
radiomics models to distinguish three different pathological
classifications of PLC, and we obtained promising results.

Our results showed that the radiomics models we built have a
good overall AUC and could well to accurately predict pure HCC,
while obtaining lower accuracy in cHCC-ICC. Our findings are
roughly consistent with the results of some previous studies
that suggest that identifying cHCC-ICC from PLC remains

challenging, possibly due to the greater histological heterogeneity
of cHCC-ICC. Wang et al. studied the CT and MR images of
136 patients with PLC and found that the features of capsular
retraction, abnormal perfusion, and rim enhancement showed
better performance in the identification of HCC and ICC, while
the ability to distinguish cHCC-ICC from the other two types
of PLC was not significant (36). Many image features such as
shape, size, edge, position, and enhancement mode in cHCC-ICC
mostly behave like ICC or HCC, creating some difficulties in its
diagnosis (38).

We finally used the LASSO and random forest methods
for feature selection. LASSO regression is also called L1
regularization of linear regression, which is a popular method
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TABLE 3 | Results of the univariate and multivariate analyses in HCC-vs-non-HCC Model.

Factors (reference) Univariate analysis Multivariate analysis

OR (95% CI) p value OR (95% CI) p value

Gender (female) 0.357 (0.233–0.549) 0.000* 0.379 (0.190–0.758) 0.006

Age (years)

<40 Reference − −

40–60 0.804 (0.436–1.482) 0.485 − −

>60 0.797 (0.487–1.305) 0.367 − −

Tumor size (>5 cm) 0.508 (0.347–0.745) 0.001 1.618 (0.855–3.061) 0.139

Hepatitis (yes) 3.433 (2.279–5.172) 0.000* 2.642 (1.360–5.133) 0.004

Cirrhosis (yes) 1.883 (1.279–2.774) 0.001 1.436 (0.775–2.661) 0.250

AFP (µg/ml)

≤400 Reference Reference

>400 2.176 (1.340–3.533) 0.002 3.533 (1.702–7.335) 0.001

CA19-9 (U/ml)

≤37 Reference Reference

>37 0.244 (0.159–0.374) 0.000* 0.232 (0.118–0.456) 0.000*

CEA (µg/ml)

≤5 Reference Reference

>5 0.379 (0.229–0.627) 0.000* 0.427 (0.189–0.965) 0.041

Differentiation

Well Reference Reference

Moderate 10.366 (1.350–79.590) 0.025 4.266 (0.361–50.333) 0.249

Poor 1.927 (1.212–3.063) 0.006 1.681 (0.867–3.258) 0.124

Immunohistochemistry, Negative/Positive

Ki67, ≤10%/>10% 0.407 (0.263–0.629) 0.000* 0.632 (0.306–1.303) 0.214

P53 0.586 (0.395–0.868) 0.008 0.531 (0.275–1.025) 0.059

VEGF 1.241 (0.850–1.810) 0.264 − −

Microvascular invasion 0.832 (0.555–1.248) 0.374 − −

Stage

I Reference Reference

II 4.111 (1.735–9.736) 0.001 4.077 (1.152–14.425) 0.029

III 2.668 (1.090–6.532) 0.032 5.245 (1.410–19.504) 0.013

IV 1.518 (0.621–3.712) 0.360 2.267 (0.616–8.342) 0.218

Radiomics score 3.555 (2.789–4.532) 0.000* 4.295 (3.098–5.953) 0.000*

In univariate analysis, variables with P < 0.1 were included in multivariate logistic regression analysis. In multivariate analysis, P < 0.05 was considered significant. AFP,
alpha fetoprotein; CA19-9, carbohydrate antigen 19-9; CEA, carcino-embryonic antigen; VEGF, vascular endothelial growth factor. * represents P < 0.0001.

used in radiomics researches. The basic idea of LASSO is to
minimize the residual sum of squares under the constraint that
the sum of the absolute values of the regression coefficients is less
than a constant, so as to produce some regression coefficients
strictly equal to 0 to get an interpretable model. Essentially,
it is a process of seeking a sparse expression of the model
(39, 40). Random forest is an ensemble learning algorithm
based on decision tree analysis and has a good performance in
classification and regression. Random forest can also be used as
a feature selection technology, and it has been widely used in
machine learning, determining the importance of features during
model training (28, 41, 42).

The texture features showed high importance in our
prediction model. Image texture is a visual feature that reflects
homogeneous phenomena in the image, and it reflects the surface
structure organization and arrangement properties of the object
with slow or periodic changes. The texture can be layered by the

statistical order of the information encoded in the image, which
can be divided into first-order texture features, second-order
texture features, and high-order texture features (43). Texture
features are widely recognized as quantitative biomarkers of
tumor heterogeneity (44, 45).

The large sample size of our study helped to improve the
generality and stability of our results. However, our research
also has certain limitations. First, all ultrasound imaging data
were from a unitary center, and the study was retrospective
in nature. The grayscale ultrasound images used in our study
were collected by different commercial ultrasound systems.
Although the data extracted from the images were preprocessed,
the imaging of different instruments may still have some
influence on the results of feature extraction, so whether the
model can play a prospective role remains an open question.
Therefore, it is necessary to conduct a multicenter prospective
study with a rigorous control of ultrasound machines to
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TABLE 4 | Results of the univariate and multivariate analyses in ICC-vs-cHCC-ICC Model.

Factors (reference) Univariate analysis Multivariate analysis

OR (95% CI) p value OR (95% CI) p value

Gender (female) 2.943 (1.272–6.814) 0.012 1.924 (0.638–5.806) 0.245

Age (years)

<40 Reference − −

40–60 0.431 (0.129–1.434) 0.170 − −

>60 0.560 (0.202–1.551) 0.265 − −

Tumor size (>5 cm) 1.781 (0.874–3.632) 0.112 − −

Hepatitis (yes) 0.246 (0.109–0.554) 0.001 0.572 (0.178–1.832) 0.347

Cirrhosis (yes) 0.413 (0.199–0.854) 0.017 0.700 (0.232–2.112) 0.527

AFP (µg/ml)

≤400 Reference Reference

>400 0.198 (0.077–0.507) 0.001 0.205 (0.057–0.735) 0.015

CA19-9 (U/ml)

≤37 Reference Reference

>37 2.449 (1.128–5.318) 0.024 1.222 (0.400–3.740) 0.725

CEA (µg/ml)

≤5 Reference Reference

>5 6.190 (1.765–21.711) 0.004 4.554 (0.919–22.571) 0.063

Differentiation

Well/Moderate Reference − −

Poor 2.174 (0.849–5.569) 0.106 − −

Immunohistochemistry, Negative/Positive

Ki67, ≤ 10%/> 10% 0.703 (0.294–1.678) 0.427 − −

P53 0.733 (0.344–1.565) 0.423 − −

VEGF 0.523 (0.257–1.065) 0.074 0.570 (0.211–1.540) 0.267

Microvascular invasion 0.596 (0.284–1.250) 0.171 − −

Stage

I Reference − −

II 0.302 (0.059–1.559) 0.153 − −

III 0.281 (0.052–1.523) 0.141 − −

IV 1.417 (0.240–8.367) 0.701 − −

Radiomics score 2.292 (1.662–3.160) 0.000* 2.395 (1.636–3.506) 0.000*

In univariate analysis, variables with P < 0.1 were included in multivariate logistic regression analysis. In multivariate analysis, P < 0.05 was considered significant. AFP,
alpha fetoprotein; CA19-9, carbohydrate antigen 19-9; CEA, carcino-embryonic antigen; VEGF, vascular endothelial growth factor. * represents P < 0.0001.

further explore the diagnostic potential of radiomics-based
modeling. Second, our study included only PLC and did
not include benign and metastatic tumors of the liver. The
identification of more types of tumors is more challenging.
We will add data for other types of liver tumors in future
studies to optimize the universality and clinical value of
the model. Third, we took into account the characteristics
of general clinical applications of ultrasound, and this is a
retrospective study, so we finally adopted two-dimensional
ultrasound images. However, the quantitative features extracted
based on two-dimensional ultrasound images cannot stand for
the overall lesion, and a more precise radiomics analysis depends
on the acquisition of 3D images. Further research on three-
dimensional ultrasound radiomics is necessary in the future.
Fourth, our study focused on the relationship between high-
throughput imaging features extracted from tumor ROI and
pathological typing. In order to quantify the heterogeneity of
tumors more comprehensively, it is necessary to pay more

attention to the peritumoral information and combine more
clinicopathological information to establish a more accurate
individualized disease assessment model. Therefore, in the
future, we need to optimize our model based on the above
limitations and carry out prospective studies, which may
be helpful to improve the discrimination performance of
radiomics model for PLC.

In summary, we developed and validated the ultrasound-
based radiomics models to distinguish different histopathological
types of PLC, thus providing a new approach for doctors to
non-invasively identify HCC, cHCC-ICC, and ICC.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusion of this manuscript will
be made available by the authors, without undue reservation, to
any qualified researcher.

Frontiers in Oncology | www.frontiersin.org 13 September 2020 | Volume 10 | Article 164655

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


fonc-10-01646 September 24, 2020 Time: 16:50 # 14

Peng et al. Radiomics of Histopathological Subtypes Differentiation

ETHICS STATEMENT

This study was approved by the Ethics Committee of the First
Affiliated Hospital of Guangxi Medical University.

AUTHOR CONTRIBUTIONS

HY and YH: guarantor of the article. HY, YH, YP, and PL:
conception and design. YP, PL, LW, YZ, LL, XM, DW, YL, and
HQ: collection and assembly of data. YP, PL, LW, XL, and XW:
data analysis and interpretation. All authors: manuscript writing
and final approval of manuscript.

FUNDING

The study was supported by funds from the Guangxi Science
and Technology Program (Grant no. GuiKeAB17195020) and
the National Natural Science Foundation of China (Grant nos.
NSFC81860319 and NSFC81960329).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fonc.
2020.01646/full#supplementary-material

REFERENCES
1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. (2019)

69:7–34. doi: 10.3322/caac.21551
2. Sia D, Villanueva A, Friedman SL, Llovet JM. Liver cancer cell of origin,

molecular class, and effects on patient prognosis. Gastroenterology. (2017)
152:745–61. doi: 10.1053/j.gastro.2016.11.048

3. Connell LC, Harding JJ, Shia J, Abou-Alfa GK. Combined intrahepatic
cholangiocarcinoma and hepatocellular carcinoma. Chin Clin Oncol. (2016)
5:66. doi: 10.21037/cco.2016.10.02

4. Akiba J, Nakashima O, Hattori S, Tanikawa K, Takenaka M, Nakayama M, et al.
Clinicopathologic analysis of combined hepatocellular-cholangiocarcinoma
according to the latest WHO classification. Am J Surg Pathol. (2013) 37:496–
505. doi: 10.1097/PAS.0b013e31827332b0

5. Stavraka C, Rush H, Ross P. Combined hepatocellular cholangiocarcinoma
(cHCC-CC): an update of genetics, molecular biology, and therapeutic
interventions. J Hepatocell Carcinoma. (2019) 6:11–21. doi: 10.2147/JHC.
S159805

6. O’Connor K, Walsh JC, Schaeffer DF. Combined hepatocellular-
cholangiocarcinoma (cHCC-CC): a distinct entity. Ann Hepatol. (2014)
13:317–22.

7. Lee JH, Chung GE, Yu SJ, Hwang SY, Kim JS, Kim HY, et al. Long-term
prognosis of combined hepatocellular and cholangiocarcinoma after curative
resection comparison with hepatocellular carcinoma and cholangiocarcinoma.
J Clin Gastroenterol. (2011) 45:69–75. doi: 10.1097/MCG.0b013e3181ce5dfa

8. Mazzaferro V, Regalia E, Doci R, Andreola S, Pulvirenti A, Bozzetti F, et al.
Liver transplantation for the treatment of small hepatocellular carcinomas
in patients with cirrhosis. N Engl J Med. (1996) 334:693–9. doi: 10.1056/
NEJM199603143341104

9. Park YH, Hwang S, Ahn CS, Kim KH, Moon DB, Ha TY, et al. Long-
term outcome of liver transplantation for combined hepatocellular carcinoma
and cholangiocarcinoma. Transplant Proc. (2013) 45:3038–40. doi: 10.1016/j.
transproceed.2013.08.056

10. Chang CC, Chen YJ, Huang TH, Chen CH, Kuo FY, Eng HL, et al. Living
donor liver transplantation for combined hepatocellular carcinoma and
cholangiocarcinoma: experience of a single center. Ann Transplant. (2017)
22:115–20. doi: 10.12659/aot.900779

11. Lee DD, Croome KP, Musto KR, Melendez J, Tranesh G, Nakhleh R, et al. Liver
transplantation for intrahepatic cholangiocarcinoma. Liver Transplant. (2018)
24:634–44. doi: 10.1002/lt.25052

12. Pinna AD, Yang T, Mazzaferro V, De Carlis L, Zhou J, Roayaie S,
et al. Liver transplantation and hepatic resection can achieve cure for
hepatocellular carcinoma. Ann Surg. (2018) 268:868–75. doi: 10.1097/SLA.
0000000000002889

13. Meirelles Junior RF, Salvalaggio P, Rezende MB, Evangelista AS, Guardia BD,
Matielo CE, et al. Liver transplantation: history, outcomes and perspectives.
Einstein. (2015) 13:149–52. doi: 10.1590/S1679-45082015RW3164

14. Potretzke TA, Tan BR, Doyle MB, Brunt EM, Heiken JP, Fowler
KJ. Imaging features of biphenotypic primary liver carcinoma
(Hepatocholangiocarcinoma) and the potential to mimic hepatocellular

carcinoma: LI-RADS analysis of CT and MRI features in 61 cases. AJR Am J
Roentgenol. (2016) 207:25–31. doi: 10.2214/AJR.15.14997

15. Li F, Han J, Han F, Wang JW, Luo RZ, Li AH, et al. Combined
hepatocellular cholangiocarcinoma (Biphenotypic) tumors: potential role of
contrast-enhanced ultrasound in diagnosis. AJR Am J Roentgenol. (2017)
209:767–74. doi: 10.2214/AJR.16.17513

16. Gera S, Ettel M, Acosta-Gonzalez G, Xu R. Clinical features, histology,
and histogenesis of combined hepatocellular-cholangiocarcinoma. World J
Hepatol. (2017) 9:300–9. doi: 10.4254/wjh.v9.i6.300

17. Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures,
they are data. Radiology. (2016) 278:563–77. doi: 10.1148/radiol.2015151169

18. Gu D, Hu Y, Ding H, Wei J, Chen K, Liu H, et al. CT radiomics may predict the
grade of pancreatic neuroendocrine tumors: a multicenter study. Eur Radiol.
(2019) 29:6880–90. doi: 10.1007/s00330-019-06176-x

19. Hu HT, Wang Z, Huang XW, Chen SL, Zheng X, Ruan SM, et al.
Ultrasound-based radiomics score: a potential biomarker for the prediction
of microvascular invasion in hepatocellular carcinoma. Eur Radiol. (2019)
29:2890–901. doi: 10.1007/s00330-018-5797-0

20. Ortiz-Ramon R, Larroza A, Ruiz-Espana S, Arana E, Moratal D. Classifying
brain metastases by their primary site of origin using a radiomics approach
based on texture analysis: a feasibility study. Eur Radiol. (2018) 28:4514–23.
doi: 10.1007/s00330-018-5463-6

21. Yin P, Mao N, Zhao C, Wu J, Chen L, Hong N. A triple-classification radiomics
model for the differentiation of primary chordoma, giant cell tumor, and
metastatic tumor of sacrum based on T2-weighted and contrast-enhanced
T1-weighted MRI. J Magn Reson Imaging. (2019) 49:752–9. doi: 10.1002/jmri.
26238

22. Kamarajah SK, Frankel TL, Sonnenday C, Cho CS, Nathan H. Critical
evaluation of the American joint commission on cancer (AJCC) 8th
edition staging system for patients with hepatocellular carcinoma (HCC): a
surveillance, epidemiology, end results (SEER) analysis. J Surg Oncol. (2018)
117:644–50. doi: 10.1002/jso.24908

23. Lee AJ, Chun YS. Intrahepatic cholangiocarcinoma: the AJCC/UICC 8th
edition updates. Chin Clin Oncol. (2018) 7:52. doi: 10.21037/cco.2018.07.03

24. Lucia F, Visvikis D, Vallieres M, Desseroit MC, Miranda O, Robin P,
et al. External validation of a combined PET and MRI radiomics model
for prediction of recurrence in cervical cancer patients treated with
chemoradiotherapy. Eur J. Nuclear Med Mol Imaging. (2019) 46:864–77. doi:
10.1007/s00259-018-4231-9

25. Orlhac F, Frouin F, Nioche C, Ayache N, Buvat I. Validation of a method
to compensate multicenter effects affecting CT radiomics. Radiology. (2019)
291:53–9. doi: 10.1148/radiol.2019182023

26. van Griethuysen JJM, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V,
et al. Computational radiomics system to decode the radiographic phenotype.
Cancer Res. (2017) 77:e104–7. doi: 10.1158/0008-5472.CAN-17-0339

27. Zwanenburg A, Leger S, Vallières M, Löck S. Image biomarker
standardisation initiative. arXiv [preprint]. (2016):doi: 10.1148/radiol.202019
1145

28. Yu L, Tao G, Zhu L, Wang G, Li Z, Ye J, et al. Prediction of pathologic stage
in non-small cell lung cancer using machine learning algorithm based on CT

Frontiers in Oncology | www.frontiersin.org 14 September 2020 | Volume 10 | Article 164656

https://www.frontiersin.org/articles/10.3389/fonc.2020.01646/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2020.01646/full#supplementary-material
https://doi.org/10.3322/caac.21551
https://doi.org/10.1053/j.gastro.2016.11.048
https://doi.org/10.21037/cco.2016.10.02
https://doi.org/10.1097/PAS.0b013e31827332b0
https://doi.org/10.2147/JHC.S159805
https://doi.org/10.2147/JHC.S159805
https://doi.org/10.1097/MCG.0b013e3181ce5dfa
https://doi.org/10.1056/NEJM199603143341104
https://doi.org/10.1056/NEJM199603143341104
https://doi.org/10.1016/j.transproceed.2013.08.056
https://doi.org/10.1016/j.transproceed.2013.08.056
https://doi.org/10.12659/aot.900779
https://doi.org/10.1002/lt.25052
https://doi.org/10.1097/SLA.0000000000002889
https://doi.org/10.1097/SLA.0000000000002889
https://doi.org/10.1590/S1679-45082015RW3164
https://doi.org/10.2214/AJR.15.14997
https://doi.org/10.2214/AJR.16.17513
https://doi.org/10.4254/wjh.v9.i6.300
https://doi.org/10.1148/radiol.2015151169
https://doi.org/10.1007/s00330-019-06176-x
https://doi.org/10.1007/s00330-018-5797-0
https://doi.org/10.1007/s00330-018-5463-6
https://doi.org/10.1002/jmri.26238
https://doi.org/10.1002/jmri.26238
https://doi.org/10.1002/jso.24908
https://doi.org/10.21037/cco.2018.07.03
https://doi.org/10.1007/s00259-018-4231-9
https://doi.org/10.1007/s00259-018-4231-9
https://doi.org/10.1148/radiol.2019182023
https://doi.org/10.1158/0008-5472.CAN-17-0339
https://doi.org/10.1148/radiol.2020191145
https://doi.org/10.1148/radiol.2020191145
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


fonc-10-01646 September 24, 2020 Time: 16:50 # 15

Peng et al. Radiomics of Histopathological Subtypes Differentiation

image feature analysis. BMC Cancer. (2019) 19:464. doi: 10.1186/s12885-019-
5646-9

29. Shiri I, Maleki H, Hajianfar G, Abdollahi H, Ashrafinia S, Hatt M, et al.
Next-generation radiogenomics sequencing for prediction of EGFR and KRAS
mutation status in NSCLC patients using multimodal imaging and machine
learning algorithms. Mol Imaging Biol. (2020) 22:1132–48. doi: 10.1007/
s11307-020-01487-8

30. Parmar C, Grossmann P, Rietveld D, Rietbergen MM, Lambin P, Aerts
HJ. Radiomic machine-learning classifiers for prognostic biomarkers of
head and neck cancer. Front Oncol. (2015) 5:272. doi: 10.3389/fonc.2015.
00272

31. Hajianfar G, Shiri I, Maleki H, Oveisi N, Haghparast A, Abdollahi
H, et al. Noninvasive O6 methylguanine-DNA methyltransferase status
prediction in glioblastoma multiforme cancer using magnetic resonance
imaging radiomics features: univariate and multivariate radiogenomics
analysis. World Neurosurg. (2019) 132:e140–61. doi: 10.1016/j.wneu.2019.
08.232

32. Leger S, Zwanenburg A, Pilz K, Lohaus F, Linge A, Zophel K, et al. A
comparative study of machine learning methods for time-to-event survival
data for radiomics risk modelling. Sci Rep. (2017) 7:13206. doi: 10.1038/
s41598-017-13448-3

33. Saini A, Breen I, Pershad Y, Naidu S, Knuttinen MG, Alzubaidi S, et al.
Radiogenomics and radiomics in liver cancers. Diagnostics (Basel). (2018) 9:4.
doi: 10.3390/diagnostics9010004

34. Youk JH, Kwak JY, Lee E, Son EJ, Kim JA. Grayscale ultrasound radiomic
features and shear-wave elastography radiomic features in benign and
malignant breast masses. Ultraschall Med. (2019) 41:390–6. doi: 10.1055/a-
0917-6825

35. Lambin P, Leijenaar RTH, Deist TM, Peerlings J, de Jong EEC, van Timmeren
J, et al. Radiomics: the bridge between medical imaging and personalized
medicine. Nat Rev Clin Oncol. (2017) 14:749–62. doi: 10.1038/nrclinonc.2017.
141

36. Wang Y, Yang Q, Li S, Luo R, Mao S, Shen J. Imaging features of
combined hepatocellular and cholangiocarcinoma compared with those of
hepatocellular carcinoma and intrahepatic cholangiocellular carcinoma in a
Chinese population. Clin Radiol. (2019) 74:407.e1–407.10. doi: 10.1016/j.crad.
2019.01.016

37. Lewis S, Peti S, Hectors SJ, King M, Rosen A, Kamath A, et al. Volumetric
quantitative histogram analysis using diffusion-weighted magnetic resonance
imaging to differentiate HCC from other primary liver cancers. Abdom Radiol.
(2019) 44:912–22. doi: 10.1007/s00261-019-01906-7

38. Panjala C, Senecal DL, Bridges MD, Kim GP, Nakhleh RE, Nguyen JH, et al.
The diagnostic conundrum and liver transplantation outcome for combined

hepatocellular-cholangiocarcinoma. Am J Transplant. (2010) 10:1263–7. doi:
10.1111/j.1600-6143.2010.03062.x

39. Ji GW, Zhu FP, Zhang YD, Liu XS, Wu FY, Wang K, et al. A radiomics
approach to predict lymph node metastasis and clinical outcome of
intrahepatic cholangiocarcinoma. Eur Radiol. (2019) 29:3725–35. doi: 10.
1007/s00330-019-06142-7

40. Wu S, Zheng J, Li Y, Yu H, Shi S, Xie W, et al. A radiomics nomogram for
the preoperative prediction of lymph node metastasis in bladder cancer. Clin
Cancer Res. (2017) 23:6904–11. doi: 10.1158/1078-0432.CCR-17-1510

41. Kaissis G, Ziegelmayer S, Lohofer F, Algul H, Eiber M, Weichert W, et al.
A machine learning model for the prediction of survival and tumor subtype
in pancreatic ductal adenocarcinoma from preoperative diffusion-weighted
imaging. Eur Radiol Exp. (2019) 3:41. doi: 10.1186/s41747-019-0119-0

42. Chen T, Li M, Gu Y, Zhang Y, Yang S, Wei C, et al. Prostate cancer
differentiation and aggressiveness: assessment with a radiomic-based model
vs. PI-RADS v2. J. Magn Reson Imaging. (2019) 49:875–84. doi: 10.1002/jmri.
26243

43. Chitalia RD, Kontos D. Role of texture analysis in breast MRI as a cancer
biomarker: a review. J Magn Reson Imaging. (2019) 49:927–38. doi: 10.1002/
jmri.26556

44. Yu H, Scalera J, Khalid M, Touret AS, Bloch N, Li B, et al. Texture analysis
as a radiomic marker for differentiating renal tumors. Abdom Radiol. (2017)
42:2470–8. doi: 10.1007/s00261-017-1144-1

45. Kirienko M, Cozzi L, Rossi A, Voulaz E, Antunovic L, Fogliata A, et al. Ability
of FDG PET and CT radiomics features to differentiate between primary and
metastatic lung lesions. Eur J Nuclear Med Mol Imaging. (2018) 45:1649–60.
doi: 10.1007/s00259-018-3987-2

Conflict of Interest: XL and XW were employed by GE Healthcare.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

The handling editor declared a past co-authorship with one of the authors XL.

Copyright © 2020 Peng, Lin, Wu, Wan, Zhao, Liang, Ma, Qin, Liu, Li, Wang, He
and Yang. This is an open-access article distributed under the terms of the Creative
Commons Attribution License (CC BY). The use, distribution or reproduction in
other forums is permitted, provided the original author(s) and the copyright owner(s)
are credited and that the original publication in this journal is cited, in accordance
with accepted academic practice. No use, distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Oncology | www.frontiersin.org 15 September 2020 | Volume 10 | Article 164657

https://doi.org/10.1186/s12885-019-5646-9
https://doi.org/10.1186/s12885-019-5646-9
https://doi.org/10.1007/s11307-020-01487-8
https://doi.org/10.1007/s11307-020-01487-8
https://doi.org/10.3389/fonc.2015.00272
https://doi.org/10.3389/fonc.2015.00272
https://doi.org/10.1016/j.wneu.2019.08.232
https://doi.org/10.1016/j.wneu.2019.08.232
https://doi.org/10.1038/s41598-017-13448-3
https://doi.org/10.1038/s41598-017-13448-3
https://doi.org/10.3390/diagnostics9010004
https://doi.org/10.1055/a-0917-6825
https://doi.org/10.1055/a-0917-6825
https://doi.org/10.1038/nrclinonc.2017.141
https://doi.org/10.1038/nrclinonc.2017.141
https://doi.org/10.1016/j.crad.2019.01.016
https://doi.org/10.1016/j.crad.2019.01.016
https://doi.org/10.1007/s00261-019-01906-7
https://doi.org/10.1111/j.1600-6143.2010.03062.x
https://doi.org/10.1111/j.1600-6143.2010.03062.x
https://doi.org/10.1007/s00330-019-06142-7
https://doi.org/10.1007/s00330-019-06142-7
https://doi.org/10.1158/1078-0432.CCR-17-1510
https://doi.org/10.1186/s41747-019-0119-0
https://doi.org/10.1002/jmri.26243
https://doi.org/10.1002/jmri.26243
https://doi.org/10.1002/jmri.26556
https://doi.org/10.1002/jmri.26556
https://doi.org/10.1007/s00261-017-1144-1
https://doi.org/10.1007/s00259-018-3987-2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Frontiers in Oncology | www.frontiersin.org

Edited by:
Katsutoshi Sugimoto,

Tokyo Medical University, Japan

Reviewed by:
Hirohito Takeuchi,

Tokyo Medical University, Japan
Mutsumi Nishida,

Hokkaido University Hospital, Japan

*Correspondence:
Yuxin Jiang

jiangyuxinxh@163.com
Qingli Zhu

zqlpumch@126.com

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Cancer Imaging and
Image-directed Interventions,

a section of the journal
Frontiers in Oncology

Received: 08 July 2020
Accepted: 29 September 2020

Published: 27 October 2020

Citation:
Luo Y, Zhao C, Gao Y, Xiao M, Li W,

Zhang J, Ma L, Qin J, Jiang Y and
Zhu Q (2020) Predicting Axillary

Lymph Node Status With a
Nomogram Based on Breast
Lesion Ultrasound Features:

Performance in N1
Breast Cancer Patients.

Front. Oncol. 10:581321.
doi: 10.3389/fonc.2020.581321

ORIGINAL RESEARCH
published: 27 October 2020

doi: 10.3389/fonc.2020.581321
Predicting Axillary Lymph Node
Status With a Nomogram Based
on Breast Lesion Ultrasound
Features: Performance in N1
Breast Cancer Patients
Yanwen Luo†, Chenyang Zhao†, Yuanjing Gao, Mengsu Xiao, Wenbo Li , Jing Zhang,
Li Ma, Jing Qin, Yuxin Jiang* and Qingli Zhu*

Department of Ultrasound, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing, China

Objective: To develop a nomogram for predicting axillary lymph node (ALN) metastases
using the breast imaging reporting and data system (BI-RADS) ultrasound lexicon.

Methods: A total of 703 patients from July 2015 to January 2018 were included in this
study as a primary cohort for model construction. Moreover, 109 patients including 51
pathologically confirmed N1 patients (TNM staging) and 58 non-metastatic patients were
recruited as an external validation cohort from March 2018 to August 2019. Ultrasound
images and clinical information of these patients were retrospectively reviewed. The
ultrasonic features based on the BI-RADS lexicon were extracted by two radiologists. The
features extracted from the primary cohort were used to develop a nomogram using
multivariate analysis. Internal and external validations were performed to evaluate the
predictive efficacy of the nomogram.

Results: The nomogram was based on two features (size, lesion boundary) and showed
an area under the curve of 0.75 (95% confidence interval [CI], 0.70–0.79) in the primary
cohort and 0.91 (95% CI, 0.84–0.97) in the external validation cohort; it achieved an 88%
sensitivity in N1 patients.

Conclusion: The nomogram based on BI-RADS ultrasonic features can predict breast
cancer ALN status with relatively high accuracy. It has potential clinical value in improving
the sensitivity and accuracy of the preoperative diagnosis of ALN metastases, especially
for N1 patients.

Keywords: nomogram, breast cancer, axillary lymph node metastasis, ultrasound, prediction model
INTRODUCTION

Breast cancer, posing a serious threat to women’s health and social economy, has drawn great attention
from researchers for years (1). Axillary lymph node (ALN) status plays an essential role in treatment
planning for breast cancer (2), being the most significant prognostic indicator for early stage patients (3).
Preoperative staging of ALN status can make a way for optimized clinical decision making. While,
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currently recognized method for identifying ALN status is sentinel
lymph node biopsy (SLNB), which is performed during surgery and
requires pathological diagnosis. The SLNB-negative patients would
be diagnosed as pN0 in TNM staging (4, 5).

In current clinical practice, axillary ultrasound (US) is
commonly recommended for all patients with breast cancer to
evaluate ALN status preoperatively (6, 7). However, the SLN
cannot be identified by grayscale US, and metastases of isolated
tumor cells or micro-metastases are not visible on US. As a
consequence, it is difficult for conventional US to achieve high
accuracy in identifying axillary nodal metastases. It was reported
that US has a sensitivity of 45% to 87% in diagnosing ALN
metastases and specificity of 55% to 97% (8). Zhang et al. proved
that among N1-3 patients, axillary US had the highest false-
negative rate in pathologic N1 patients (9). Hence, it is crucial to
improve the preoperative diagnostic accuracy of US in
identifying ALN metastases, especially for patients with a
minimal number of abnormal nodes.

Previous studies have demonstrated that some ultrasonic
features of breast lesions, such as tumor size, margin, and
location might be associated with breast cancer nodal metastases
and thus can help predict ALN status (10–13). However, in those
studies, US findings and tumor clinicopathologic characteristics
were simultaneously incorporated to predict ALN metastases (11–
13), or a risk model was developed for predicting ALN metastases
in a subgroup of patients with invasive ductal carcinoma (10, 11,
13). Considering that the clinicopathologic characteristics, such as
histological type, histological grade, and molecular subtype,
might directly be related to the probability of ALN metastases, it
is necessary to explore the independent contributions of
breast lesion US features in determining the likelihood of
positive lymph nodes in a preoperative patient population.
Therefore, we aimed to construct a predictive model for ALN
metastases based on breast lesion US features, to investigate the
feasibility of using only US features in identifying nodal
metastases preoperatively.

In this study, we summarize the ultrasonic features of the
malignant lesions using the breast imaging reporting and data
system (BI-RADS) lexicon, the widely accepted standard for
defining ultrasonic feature of breast lesions (14). We analyzed the
correlations of these ultrasonic features with nodal metastases,
developed an ALN metastases predictive model based on these
features, and presented it as a nomogram. Such a tool is expected to
improve preoperative diagnostic efficacy, especially for N1 patients.
MATERIALS AND METHODS

This study is retrospective and was approved by the Institutional
Review Board of Perking Union Medical College Hospital.

Patient Recruitment
A total of 1,024 female patients with breast cancer were enrolled
consecutively for model construction and internal validation
from July 2015 to January 2018. The clinical data, US images,
and pathological results were reviewed. The inclusion and
Frontiers in Oncology | www.frontiersin.org 259
exclusion criteria for establishing the primary and internal
validation cohorts were as follows.

Inclusion criteria:

(1) patients pathologically diagnosed as having breast cancer;

(2) ALN status clearly illustrated by pathology after SLNB or
ALN dissection (ALND);

(3) breast US scanning performed within one month before
surgery;

(4) only a single lesion pathologically identified in each patient,
with a diameter less than 5 cm (T1 and T2 stage).

Exclusion criteria:

(1) neoadjuvant chemotherapy or biopsy performed before US
scanning;

(2) multiple malignant lesions;

(3) target neoplasms that could not be visualized on US;

(4) incomplete clinical and pathological information.

Finally, a total of 703 consecutive patients were included in this
study for model construction and internal validation from July 2015
to January 2018. Then, to validate the efficacy of the prediction
model in early breast cancer patients, based on the inclusion and
exclusion criteria described above, another 109 patients with pN1/
pN0 were recruited at 1:1 ratio as the external validation cohort after
primary cohort (From March 2018 to August 2019). Including 51
patients classified as having N1 according to the TNM classification
(with one to three metastatic ALN nodes) by postoperative
pathology and 58 patients with no ALN metastases (15).

Clinical and Pathological Information
Collection
The clinical and pathological features of the patients, including
age, pathological results, and ALN status (LN-positive or LN-
negative), were extracted from the medical records.

Ultrasound Scanning and Imaging
Acquisition
All the included patients underwent US scanning before surgery in
our Department. Our study did not specify US equipment. The
high-quality US images are acquired by four different commercial
US devices, which are RS85A (Samsung), IU22 (Philips), Logic 9
(GE) and RS85A (Samsung) with Linear probes (3–12 MHz,
centered at 10 MHz). And do not affect the handcrafted
extraction of BI-RADS features. The recorded imaging data of the
patients were carefully reviewed and selected for further analysis by
one experienced radiologist (QZ, 23-year experience in breast US),
blinded to the clinical and pathological results. The grayscale and
color-Doppler ultrasonic images of both longitudinal section and
cross-section were acquired for feature extraction. The largest
diameter of each lesion was measured on the grayscale US images.

BI-RADS-Based US Feature Extraction
Referring to the BI-RADS lexicon and previous researches (16–
18), a total of eight ultrasonic features were selected in this study
October 2020 | Volume 10 | Article 581321
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as evaluation indices (Table 1). Image reading and feature
extraction were conducted by the two radiologists (CZ, 4-year
experience in breast US, and YL, 2-year experience in breast US),
who were also blinded to the patient’s clinical and pathological
information. As discrepancies occurred, the agreement would be
reached through discussion. Before participating in the study, the
two radiologists received systematic training on the BI-RADS
lexicon. Inter-observer reliability was assessed by comparing the
results of the 2 radiologists in 100 randomly chosen lesions. CZ
performed the second feature extraction from 100 randomly
selected lesions after 1 week with the same procedure. Then by
comparing the results of CZ at two different time points
evaluated intra-observer reliability. Finally the inter-observer
and intra-observer agreement were measured by kappa statistics.

Model Construction and Validation
The prediction model was built based on multivariate logistic
regression analysis. Before construction, multicollinearity
analysis was performed by calculating the variance inflation
factor (VIF) among the features; a VIF value > 10 was
considered to indicate multicollinearity, and the corresponding
variables were excluded from the model. All the US features were
modeled as categorical data with a dummy variable, adding age
as continuous variables, to construct models. In multivariate
models, a backward stepwise variable selection procedure was
used for model selection based on the Akaike information
criterion (AIC). The final model thus built was tested for
predictive power using both internal and external validation.
Internal validation was performed with the bootstrap resampling
Frontiers in Oncology | www.frontiersin.org 360
method by randomly drawing 500 samples from the primary
dataset to avoid overoptimism. The developed model underlying
the nomogram was used to predict ALN status of the patients in
the external validation cohort. The diagnostic performance of the
model in the primary and validation cohorts was evaluated by
calculating sensitivity, specificity, positive likelihood ratio,
negative likelihood ratio, positive predictive value, and negative
predictive value. Receiver operating curves (ROC) and the
corresponding area under the curve (AUC) values were used to
assess the discriminating ability of the nomogram.

Statistical Analysis
Statistical analysis was performed using R (http://www.R-project.
org) and EmpowerStats software (X&Y Solutions). The variables
were compared using Student’s t-test (continuous data) and the
Pearson chi-squared test (categorical data). Continuous variables
are expressed as the mean ± SD, categorical variables as
percentages (%), and p values < 0.05 were considered
statistically significant. The degree of intra-observer and inter-
observer agreement between the two readers was measured using
the k value, which was interpreted as follows: k < 0, poor
agreement; 0 < k < 0.20, slight agreement; 0.20 < k < 0.40, fair
agreement; 0.40 < k < 0.60, moderate agreement; 0.60 < k < 0.80,
substantial agreement; and 0.80 < k < 1, perfect agreement. The
“glm” function was used for the univariate and multivariate
logistic regression analyses. The “Hmisc” package was used to
plot the nomogram. The “pROC” package was used to plot the
ROC curves and measure the AUCs. The “calibration curve”
function was used to plot the calibration curves.
TABLE 1 | Extracted US features.

Feature Number Description

Shape regular 1 A mass that is oval (egg-shaped or elliptical) or round (spherical, ball-shaped).
irregular 2 Neither oval nor round.

Orientation horizontal 1 The long axis of the lesion is parallel to the skin line (“wider-than-tall”).
vertical 2 The anterior-posterior or vertical dimension is greater than the transverse or horizontal dimension (“taller-than-wide”).

Margin circumscribed 1 The demarcation is well defined and clear, with abrupt transition between the lesion and the surrounding tissue.
not circumscribed 2 The boundary is poorly defined, and can be characterized as indistinct, angular, microlobulated, or spiculated.

Lesion
boundary

abrupt interface 1 The demarcation between the lesion and the surrounding tissue is imperceptible or is a distinct well-
defined echogenic rim without any thickness.

echogenic halo 2 A band bridged by an echogenic transition zone can be perceived.
Echo pattern hypoechoic 1 The mass has decreased echogenicity compared with fat.

complex 2 A complex mass containing both anechoic (cystic) and echogenic
(solid) components.

Posterior
acoustic
features

no 1 No shadowing or enhancement is present deep in the mass; the echogenicity of the area immediately behind the
mass is not different from that of the adjacent tissue at the same depth.

enhancement 2 Sound transmission is unimpeded in its passage through the mass. Enhancement appears as a more echogenic
(whiter) column deep into the mass. Enhancement is a criterion for cyst diagnosis.

shadowing 3 Shadowing, i.e., posterior attenuation of acoustic transmission.
Sonographically, the area posterior to the mass appears darker.

Calcification no 1 No calcification.
macrocalcification 2 Macrocalcifications: coarse calcifications 0.5 mm or

greater in size are depicted.
microcalcification 3 Microcalcifications embedded in the mass are well depicted. The punctate, hyperechoic foci appear conspicuous in a

hypoechoic mass.
Vascularity no 1 Little or No vascularity.

adjacent 2 present immediately adjacent to lesion
diffusely increased 3 Diffusely increased vascularity surrounding lesion.
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RESULTS

Clinical Characteristics and Ultrasonic
Features of the Primary and External
Validation Cohorts
Table 2 shows the baseline clinical characteristics and ultrasonic
features of the 703 patients in the primary cohort and 109 patients in
the external validation cohort. A total of 167 (23.9%) patients with
ALNmetastases were included in the primary cohort and 51 patients
(46.8%) with ALN metastases in the external validation cohort.

The inter-operator agreements for the ultrasonic features
ranged from 0.77 to 0.92 (shape: 0.87; orientation: 0.92; margin:
Frontiers in Oncology | www.frontiersin.org 461
0.91; lesion boundary: 0.77; echo pattern: 0.92; posterior
acoustic features: 0.90; calcification: 0.78; vascularity: 0.81).
The intra-operator agreements for the ultrasonic features
ranged from 0.79 to 0.96 (shape: 0.91; orientation: 0.94;
margin: 0.89; lesion boundary: 0.82; echo pattern: 0.96;
posterior acoustic features: 0.91; calcification: 0.85;
vascularity: 0.90).

Diagnostic Performance of the Nomogram
Using multivariate logistic regression analysis, several
multivariate models were generated. And after stepwise model
selection, two features showed independent correlation with the
TABLE 2 | Baseline characteristics in the primary and external validation cohorts.

Variable Primary cohort External validation cohort

Negative for LN metastasis
(n = 536)

Positive for LN
metastasis(n = 167)

P-
value

Negative for LN
metastasis (n = 58)

Positive for LN
metastasis (n = 51)

P-value

Age 51.3 ± 11.6 50.6 ± 11.4 0.517 51.6 ± 11.5 55.4 ± 11.6 0.088
Size 2.1 ± 0.9 2.7 ± 1.0 <0.001 1.7 ± 0.8 2.5 ± 1.1 <0.001
Shape <0.001 <0.001
regular 206 (38.4%) 35 (21.0%) 46 (79.3%) 4 (7.8%)
irregular 330 (61.6%) 132 (79.0%) 12 (20.7%) 47 (92.2%)

Orientation 0.342 0.002
horizontal 327 (61.0%) 95 (56.9%) 43 (74.1%) 23 (45.1%)
vertical 209 (39.0%) 72 (43.1%) 15 (25.9%) 28 (54.9%)

Margin 0.004 <0.001
circumscribed 82 (15.3%) 11 (6.6%) 58 (100.0%) 1 (2.0%)
not circumscribed 454 (84.7%) 156 (93.4%) 0 (0.0%) 50 (98.0%)

Lesion boundary <0.001 <0.001
abrupt interface 327 (61.0%) 40 (24.0%) 55 (94.8%) 12 (23.5%)
echogenic halo 209 (39.0%) 127 (76.0%) 3 (5.2%) 39 (76.5%)

Echo pattern 0.333 0.056
hypoechoic 524 (97.8%) 161 (96.4%) 54 (93.1%) 51 (100.0%)
complex 12 (2.2%) 6 (3.6%) 4 (6.9%) 0 (0.0%)

Posterior acoustic
features

0.054 <0.001

no 396 (73.9%) 109 (65.3%) 39 (67.2%) 24 (47.1%)
enhance 69 (12.9%) 24 (14.4%) 18 (31.0%) 11 (21.6%)
decrease 71 (13.2%) 34 (20.4%) 1 (1.7%) 16 (31.4%)

Calcification 0.531 0.556
no 375 (70.0%) 110 (65.9%) 47 (81.0%) 37 (72.5%)
macro 6 (1.1%) 3 (1.8%) 2 (3.4%) 2 (3.9%)
micro 6 (1.1%) 54 (32.3%) 9 (15.5%) 12 (23.5%)

Vascularity 0.050 0.068
no 210 (39.2%) 48 (28.7%) 21 (36.2%) 13 (25.5%)
minimal 202 (37.7%) 73 (43.7%) 18 (31.0%) 27 (52.9%)
abundant 124 (23.1%) 46 (27.5%) 19 (32.8%) 11 (21.6%)

Histological type 0.163 0.471
invasive ductal

carcinoma
396(73.9%) 135(80.8%) 42 (72.4%) 41 (80.4%)

invasive lobular
carcinoma

23(4.3%) 7(4.2%) 9 (15.5%) 5(9.8%)

ductal carcinoma
in situ

101(18.8%) 19(11.4%) 4 (6.9%) 2 (3.9%)

Others 16(3.0%) 6(3.6%) 3 (5.2%) 3 (5.9%)
pN status <0.001 <0.001
pN0 536(100%) 0(0.0%) 58(100%) (0.0%)
pN1 0(0.0%) 98(58.7%) (0.0%) 51(100%)
pN2 0(0.0%) 29(17.4%) (0.0%) (0.0%)
pN3 0(0.0%) 40(23.9%) (0.0%) (0.0%)
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risk of ALN metastases (Table 3) and thus were incorporated
into the final nomogram, namely, size and lesion boundary. The
nomogram is presented in Figure 1.
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The diagnostic performance of the nomogram in the primary
dataset is shown in Table 4. The ROC curve of the nomogram
showed good predictive power, with an AUC of 0.75 [95%
confidence interval (CI), 0.70–0.79] (Figure 2).

Good calibration was observed for the probability of ALN
metastases in the primary cohort (Figure 3).

Nomogram Validation in N1 Patients
An external validation cohort of 109 patients was enrolled using
the same criteria used to select the primary cohort and included
51 patients (46.8%) with ALN metastases (the mean number of
metastatic ALN nodes was 1.57). The nomogram demonstrated
good predictive power (Table 4) with an AUC of 0.91 (95% CI:
0.84–0.97) in these N1 patients (Figure 4).
DISCUSSION

Axillary imaging plays an essential role in evaluating ALN status.
Axillary US is the primary method for evaluation of axillary
TABLE 3 | Results of Univariate and Multivariate logistic regression analysis in
the primary cohort.

Exposure Univariate analyses Final multivariate model

Age 1.0 (1.0, 1.0) 0.734
Size 1.7 (1.4, 2.1) < 0.001 1.7 (1.4, 2.0) < 0.001
Shape
regular 1.0
irregular 2.1 (1.3, 3.4) 0.002

Orientation
horizontal 1.0
vertical 1.2 (0.8, 1.7) 0.501

Margin
circumscribed 1.0
not circumscribed 1.6 (0.8, 3.2) 0.169

Lesion boundary
abrupt interface 1.0 1.0
echogenic halo 3.7 (2.4, 5.8) < 0.001 4.5 (3.0, 6.7) < 0.001

Echo pattern
hypoechoic 1.0
complex 1.5 (0.5, 4.5) 0.434

Posterior acoustic features
no 1.0
enhance 1.1 (0.6, 2.1) 0.651
decrease 1.4 (0.8, 2.4) 0.249

Calcification
no 1.0
macro 2.2 (0.5, 9.5) 0.285
micro 1.3 (0.8, 2.0) 0.250

Vascularity
no 1.0
minimal 1.4 (0.9, 2.3) 0.141
abundant 1.6 (0.9, 2.7) 0.105
FIGURE 1 | The nomogram was developed in the primary dataset. it included two factors (size, lesion boundary). The nomogram plot provides a visual way to
predict the risk of LN metastases for breast cancer patients.
TABLE 4 | Diagnostic performance of the nomogram.

Diagnostic performance P set EV Set

AUC 0.7468
(0.7038–0.7898)

0.9065
(0.8424–0.9707)

Specificity 0.6124 0.8966
Sensitivity 0.7711 0.8824
Accuracy 0.6500 0.8899
Positive likelihood ratio 1.9892 8.5294
Negative likelihood ratio 0.3738 0.1312
Positive predictive value 0.3821 0.8824
Negative predictive value 0.8959 0.8966
O
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nodes, especially in the evaluation of early ALN metastasis.
Breast MRI can better demonstrate lymph node metastasis on
higher stations (19). However, the use of axillary US in
evaluating ALN has been limited by its moderate accuracy and
considerable discrepancy among the studies. Some studies have
shown that malignant lymph nodes detected by US had a higher
node burden than those detected by SLNB, implying a disparity
between “ultrasound positive” and “SLNB positive” (20, 21).
Moreover, according to previous studies, axillary US tends to
perform poorly in identifying metastases in pathologic N1
patients, characterized by one to three abnormal nodes (9).
Therefore, to improve the US diagnostic performance for ALN
Frontiers in Oncology | www.frontiersin.org 663
metastases, it is important to improve its accuracy and lower its
false-negative rate in N1 patients.

In our study, we developed a prediction model based on BI-
RADS ultrasonic features to predict the risk of LN metastases,
achieving an accuracy of 65.0% in the primary cohort,and 89.0%
in the external validation cohort. A nomogram, incorporating
two factors among the lesion US features, showed significant
discriminating ability in the primary cohort, and also showed
high predictive power in an external validation cohort of early-
stage breast cancer patients.

Recent studies have investigated the potential value of
ultrasonic images of breast lesions in predicting nodal
metastases, with reported AUCs ranging from 0.731 to 0.848
(22–25). Some of these studies showed that US features of breast
lesion and axillary lymph nodes are correlated with ALN status
(22), and in some studies, high-throughput features of ultrasonic
images were proved useful for the prediction of ALN metastases
(24, 25). Taken together, these results demonstrate that
ultrasonic images of breast lesions can potentially be useful in
the preoperative diagnosis of ALN metastases. Considering the
nonspecific ultrasonic presentations of metastatic ALNs and the
disparity in positive rates between US and SLNB, the images of
breast lesions are worth exploring, as they might contain helpful
information for the prediction of nodal metastases.

In 2003, a standard protocol for breast US was established in
the BI-RADS lexicon and received worldwide recognition (18).
The definition and description of the ultrasonic features, the
lesion classification, and the reporting system were all clearly
defined and illustrated in the lexicon, allowing reliable feature
identification. Previous studies have validated clinical-
pathological factors and US BI-RADS features of masses could
FIGURE 2 | The ROC curves of the prediction model in the primary dataset.
FIGURE 3 | The calibration curves of the nomogram in the primary cohort.
FIGURE 4 | The ROC curve of the prediction model in the N1 patients of the
external validation cohort.
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predict breast cancer LN metastasis. Zong et al. (26) suggest that
US features of breast mass, like margin, microcalcification, and
blood flow signals are significantly correlated with ALN
metastasis in early breast cancer. Besides, Guo et al. (12) have
proven that irregular shape and high color Doppler flow imaging
grades are independent impact factors of ALN metastasis.
However, both of them incorporated some clinical-pathological
factors simultaneously, like immunohistochemical analysis (ER,
PR, Ki-67, and so on) and the histologic grade, which are also
highly associated with ALN status. To figure out the independent
contributions of breast lesion US features in determining the
likelihood of ALN metastasis preoperatively, and to develop a
simple and practical nomogram based on US features, we
adopted the ultrasonic features defined by the BI-RADS
lexicon in 2013 to construct our models (17). A total of eight
features were included for modeling, which has been commonly
used in differentiating benign and malignant breast lesions. Our
results show that some features are also related to ALN status. As
shown by the nomogram, tumor size and lesion boundary had
more significant impacts on total scores than other features. The
prediction model displayed a remarkable ability to predict ALN
status, especially in N1 patients, yielding an AUC of 0.901. More
importantly, it achieved 88% sensitivity for N1 patients,
compared with that in previous studies, which presented false-
negative rates as high as 46.2% (9). These results indicate the
potential value of our model in increasing sensitivity in the
identification of abnormal lymph nodes, as well as in decreasing
the rate of preoperatively missed diagnoses, thus bringing
benefits to early-stage breast cancer patients.

To note, US readers can predict the probability of ALN
metastases associated with the lesion using this nomogram,
after routinely extracting the standardized features from the
breast lesion ultrasonic images. Apart from its high accuracy,
compared with some complex models using additional image
processing software, the prediction process used by this model is
simple and time-saving. We hope that this model will be widely
used in clinical practice as a supplementary to conventional
breast US, allowing improved accuracy of preoperative diagnosis
of nodal metastases.

Our predictive model has several limitations. First, the sample
size of the external cohort was relatively small, and increasing the
Frontiers in Oncology | www.frontiersin.org 764
sample size would be necessary to obtain more convincing
results. Moreover, the single-center design of the study might
lead to an un recognized bias in patient recruitment, imaging
acquisition, and image analysis. Adding data from other medical
centers would be helpful in further improving the clinical efficacy
of the model.

In this study, a nomogram based on ultrasonic features of
breast lesions was developed to predict the risk of ALN
metastases in breast cancer patients. The model demonstrated
clinical potential in providing a non-invasive, effective, and easy-
to-use approach to identify ALN metastases preoperatively,
which might aid in clinical decision making.
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Recent advancement in artificial intelligence (AI) facilitate the development of AI-powered
medical imaging including ultrasonography (US). However, overlooking or misdiagnosis of
malignant lesions may result in serious consequences; the introduction of AI to the
imaging modalities may be an ideal solution to prevent human error. For the development
of AI for medical imaging, it is necessary to understand the characteristics of modalities on
the context of task setting, required data sets, suitable AI algorism, and expected
performance with clinical impact. Regarding the AI-aided US diagnosis, several
attempts have been made to construct an image database and develop an AI-aided
diagnosis system in the field of oncology. Regarding the diagnosis of liver tumors using US
images, 4- or 5-class classifications, including the discrimination of hepatocellular
carcinoma (HCC), metastatic tumors, hemangiomas, liver cysts, and focal nodular
hyperplasia, have been reported using AI. Combination of radiomic approach with AI is
also becoming a powerful tool for predicting the outcome in patients with HCC after
treatment, indicating the potential of AI for applying personalized medical care. However,
US images show high heterogeneity because of differences in conditions during the
examination, and a variety of imaging parameters may affect the quality of images; such
conditions may hamper the development of US-based AI. In this review, we summarized
the development of AI in medical images with challenges to task setting, data curation,
and focus on the application of AI for the managements of liver tumor, especially for
US diagnosis.

Keywords: artificial intelligence, ultrasound, imaging, liver cancer, neural network, diagnosis
INTRODUCTION

Artificial intelligence (AI) is generally considered as the intelligence performed by compactional
statistics, where machine learning is a subset of AI. Recently, AI is emerging as a major constituent
in the field of medicine and healthcare. In particular, AI can be easily applied to imaging data
because these data are electronically organized, and AI excels at recognizing unique and complex
features of images and facilitates quantitative assessments in an automated fashion. This
characteristic of AI is ideal in the constrained clinical setting wherein medical staff must
December 2020 | Volume 10 | Article 594580166
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interpret large image datasets based on their visual perception
with uncertainty, in which human errors are inevitable. For
example, AI is a powerful tool in radiomics where extracting a
large number of features form medical images is required. Based
on this advantage, AI have been applied for classification of
lesions, such as liver tumors, and prediction of the prognosis
using image data from computed tomography and magnetic
resonance imaging (MRI) (1). In addition, AI-based image
processing techniques have also introduced in the field of
ultrasonography (US). This review shows the recent progress
in AI for medical imaging, especially for an AI-aided diagnosis
for the detection, characterization, subsequent monitoring, and
prediction of outcomes in patients with liver cancer, especially in
the field of US diagnosis.
HISTORY AND RECENT PROGRESS OF AI
IN MEDICAL IMAGING

The application of pattern recognition in medical issues has been
proposed in the early 1960s. In the 1980s, the prevalence of
computers induced the development of medical AI in radiology
using a quantitatively computable domain. After the emergence
of deep neural network, the rate at which AI is evolving radiology
is rapidly growing that is proportional to the growth of data
volume in medical image and computational power (2).

For the image analysis, a convolutional neural network (CNN) is
commonly applied, which is a class of deep neural networks using
pixel value and assembling complex patterns to smaller and simpler
patterns (2). The algorism contains multiped hidden layer with
multiple convolutional and pooling layers. A trained CNN-based AI
model using ≥120,000 retinal fundus images has been demonstrated
to show high performance comparable to that of an experienced
ophthalmologist for detecting referable diabetic retinopathy, which
is expected to effectively assist ophthalmologists in the clinical
workflow (3). Assessment of AI models for detecting lymph node
metastasis of breast cancer based on whole microscopic slide images
showed the superior performance of AI for detecting cancer cells in
specimens to that of pathologists (4). A pre-trained CNN-based AI
model for the diagnosis of skin cancer achieves performance on
par with that by expert dermatologists in terms of the
discrimination of skin cancers from corresponding benign
lesions on dermography (5). AI models for the detection of
pediatric pneumonia on chest radiography images and for the
discrimination of diabetic macular edema from age-related
macular degeneration on optical coherence tomography images
are also reported with high performance, comparable to that of
human experts (6). An AI-based colonoscopy system has been
shown to accurately differentiate neoplastic lesions from non-
neoplastic lesions on stained endocytoscopic images and
endocytoscopic narrow-band images in endoscopic evaluation
of small colon polyps (7). The application of AI for US-based
diagnosis has been mainly reported for the diagnosis of
malignant tumors, such as mammary and thyroid cancers (8–
11). Le et al. reported an AI model for the diagnosis of thyroid
cancer pre-trained with 312,399 B-mode US images of cancer
Frontiers in Oncology | www.frontiersin.org 267
and healthy controls (12). The model’s diagnostic performance
was validated in three test datasets with AUCs of 0.908–0.947.
The AI model showed higher specificity in identifying thyroid
cancer and comparable sensitivity to those corresponding to
experienced radiologists. Another report described a real-time
detection system of thyroid tumors based on real-time images
using the “You Only Look Once” (YOLO) algorithm. This model
achieved a similar sensitivity, positive predictive value, negative
predictive value, and accuracy for the diagnosis of malignant
thyroid tumors with higher specificity compared to those
corresponding to experienced radiologists (12, 13). For the
detection of breast cancer, Kumar et al. reported a real-time
segmentation model of breast tumors using a CNN (14). This
system can reportedly segment tumor images in real-time,
suggesting its potential for clinical applications. Collectively,
diagnostic accuracy of well-trained AI model for medical
image is, at least, on par with human experts with much
quicker output, suggesting the higher efficiency for diagnosis in
clinical setting.

On the other hand, recently, Skrede et al. reported the use of
AI for the prediction of outcomes after colorectal cancer
resection using a pre-trained CNN-based model with
pathological images (15). They discriminated the cases of poor
prognosis from those of good prognosis, indicating the potential
of medical AI for the management of cancer, such as the
identification of patients who would benefit from adjuvant
treatment after resection.
PROCESS FOR DEVELOPING AI MODELS
FOR IMAGING DIAGNOSIS

Setting Tasks for AI in Medical Imaging
For the development of AI in medical imaging, it is important to
select tasks that reflect important needs at clinical sites. For
example, large-volume screening of medical images requires
extensive effort, which is time consuming and invites human
errors. In this setting, AI should be a powerful tool for clinicians
because of its advantageous for precise detection of subtle
features of lesions, segmentation, and quick output. AI models
that can estimate the risk of disease may contribute to avoiding
invasive examinations, representing an attractive task (16).

Data Sets for Developing AI Models
for Medical Images
Generally, three independent datasets are required for
developing medical AI (17). A training set is required for the
training of AI models, which contains many images to update
model parameters. A tuning set is for the selection of a model’s
hyperparameters that are necessary for the best expected output.
A test set is for the final assessment of the performance of AI
models. The splitting of curated data must be clean, and each
dataset should be completely independent without any overlap
with respect to lesions to avoid overfitting the output.

For disease classification, such as that corresponding to
diagnosis, the data volume in each subclass should be similar
December 2020 | Volume 10 | Article 594580
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because imbalances in data volumes among subclasses may lead
to overfitting of the output, which may limit the performance of
an AI model. For the image of rare diseases, the AI-based image
created through generative adversarial networks might also
be applicable.

AI Algorithm
During training, AI models automatically detect specific features
of images through the fitting of model parameters, which
improves the performance. CNNs are commonly applied for
AI algorithm of imaging data (2). However, US examinations
require real-time output, and an algorithm that requires many
mathematical operations might not be appropriate for analyzing
US images. The YOLO-based algorithm is suitable for the real-
time detection and classification of lesions with high-speed
processing. The process of selecting a model’s architecture and
training essentially involves a balance between model
underfitting and overfitting (17). Underfitting occurs when a
low-capacity model is used relative to the problem complexity
and data size. Overfitting indicates that the evaluation
overestimates the model’s performance on previously
unencountered data, in which case low performance on the
test set is observed. Because there is a large diversity among
US images in terms of the conditions of the examination and
image parameter settings, larger volumes of data are required
compared to those required for the development of other
medical imaging AI.

Evaluation of Performance and
Potential Impact
One of the major categories of evaluation of AI-aided imaging
diagnosis is the ability to discriminate the lesions, such as benign
or malignant. The area under the receiver operating characteristic
curve (AUC) is commonly used as a threshold-free discriminative
metric. Evaluation may also be based on other metrics, such as
sensitivity (recall), specificity, and precision (positive predictive
value); these are threshold-dependent. On the other hand,
calibration, which evaluates how effectively the predicted
probability matches the actual diagnosis should also be
estimated (17). In addition, variability in the probability in the
same lesion may also need to be analyzed because there can be
variations among US images even within the same lesion, which is
attributed to differences in parameter settings. Validation for
accuracy is a critical process in the transitional process of
medical AI. The performance of AI models must be evaluated
using independent test cohorts and be compared with an
experienced human control in real-world scenarios.
CURRENT AI MODELS FOR MEDICAL
IMAGING OF LIVER LESIONS

AI Using Medical Image for the
Management of Liver Tumors
Recently, many reports have described the development of AI
models for the detection and diagnosis of liver tumors; some
Frontiers in Oncology | www.frontiersin.org 368
studies have aimed to predict outcomes after treatments, which
may be applicable for the personalized management of patients
(18, 19).

Hamm et al. reported the classification of 6 types of liver
tumors by a pre-trained CNN using MRI data of 494 lesions from
334 cases (20). After data augmentation of the images for training,
the established AI model demonstrated 90% sensitivity and 98%
specificity for the test cohort. The average sensitivity and
specificity for the radiologist were 82.5 and 96.5%, respectively.
For the diagnosis of hepatocellular carcinoma (HCC), the
sensitivities were 90% for the AI model and 60–70% for the
radiologists. Considering the short processing time (only 6.6 ms)
for output, the pre-trained AI model showed superior
performance compared to that of the human radiologists.

On the other hand, AI is also useful for the detection of
specific radiological features that may reflect histopathological
characteristics associated with the biological behavior of a tumor.
From this point of view, the development of AI for the prediction
of outcomes after treatment, including tumor recurrence after
surgery, may be possible. If pathological diagnosis is applied for
constructing an AI model for medical imaging, it may be a non-
invasive substitute for biopsy, which may significantly impact the
management of cancer. Fent et al. reported a preoperative
prediction model for microvascular invasion in patients with
resectable HCC who do not show macroscopic vascular invasion
through training using gadolinium-ethoxybenzyl (EOB)-
diethylenetriamine-enhanced MRI data (21). The AI model
selected ten specific features of EOB-enhanced MRI data to
predict microvascular invasion. The performance of the AI
model showed an AUC of 0.83 with 90.0, 75.0, and 84.0%
sensitivity, specificity, and accuracy, respectively, which were
much better than those of human radiologists. Kim et al.
reported an AI model for the prediction of early and late
recurrence of tumors after surgery using EOB-MRI data from
solitary HCC cases (22). They established their AI model using a
random survival forest to predict disease-free survival and found
that peritumoral image features 3 mm outside the tumor border
are important for the prediction of early recurrence after
curative surgery.

AI Using Histopathological Images
for Diagnosis and Management
of Liver Cancers
It has also been reported that an AI model pre-trained with
histopathological images of liver cancer using transfer learning
can distinguish cancerous tissue from healthy liver tissue (23).
Saillard et al. showed that a deep-learning model of
histopathological images predicts survival after resection of
HCC (24). They developed two kinds of AI models pre-trained
with supervised image data, which was annotated based on the
tumor portion in the slide images by pathologists, and non-
supervised data without human annotations. The concordance
indices for survival prediction were 0.78 and 0.75 for the pre-
trained AI models with supervised and non-supervised data,
respectively. Reportedly, these histopathological AI models
showed a higher discriminatory power than that derived from
December 2020 | Volume 10 | Article 594580
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a combination of known clinical risk factors. Some pathological
findings, including vascular space, a macrotrabecular pattern of
tumor cell architecture, a high degree of cytological atypia, and
nuclear hyperchromasia, effectively predicted poor survival, and
immune infiltrates and fibrosis in tumor and non-tumor tissues
were associated with a low risk of short survival. These studies
indicate that histopathological images yield useful training data
for the prediction of prognosis in HCC cases (25).
AI-Aided Diagnosis for Liver Tumors
in Ultrasonography
Generally, US images are heterogeneous because of the multiple
image parameters and conditions of examination compared to
other kind of medical images. Such heterogeneity of image data
makes it difficult to develop the AI for US diagnosis, especially
for liver tumors (18).

AI models are trained using cropped images of regions of
interest that specifically focus on tumors for applying neural
network and can be evaluated using cross-validation methods for
small sample cohorts. The studies regarding the application of B-
mode US images on machine learning for the diagnosis of liver
tumor are summarized in Table 1. Virmani et al. reported the
machine learning for discriminating HCC and metastatic liver
tumor using support vector machine (SMV), where overall
accuracy was 91.6 %; sensitivity of 90% for HCC and 93.3% for
metastatic tumor were achieved (26). Hwang et al. tried to extract
textural features of liver tumors including cysts, hemangiomas,
and malignant lesions for the diagnosis; they examined the
accuracy of two-class discriminations for cyst vs. hemangioma,
cyst vs. malignant tumor, and hemangioma vs. malignant tumor,
demonstrating the accuracy of more than 95% for each
comparison (28). On the other hand, the study using artificial
neural network (ANN) show 4-class discrimination for normal
liver, cyst, hemangioma, and HCC: accuracy of almost 90%, and
similar levels of sensitivity, and specificity are reported (29).
Generally, these early studies failed to show the superiority of
neural network for the diagnostic accuracy of liver tumors
compared to the conventional machine learning because of the
small size of learning cohort. Schmauch et al. reported the
performance of an AI model for the diagnosis of liver tumors
from B-mode US images (30). They reported an AI model for
lesion detection and diagnosis from whole-liver US images using
a 50-layer residual network. Despite the relatively small volume
of training data, the performance for tumor detection and 5-class
discrimination (HCC, metastatic tumors, hemangiomas, cysts,
and focal nodular hyperplasia) achieved considerable AUCs
(0.953 and 0.916) for tumor detection and discrimination,
respectively, by cross validation. To reduce the heterogeneity of
the US images, they cropped the images maximally to remove the
black borders and standardize the aspect ratio. They also
performed rescaling of the image intensity for normalization
based on the intensity of the abdominal wall.

In addition to the gray scale B-mode US, doppler US,
contrast-enhanced US (CEUS), shear wave elastography (SWE)
and three-dimensional US images are also applicable for the
Frontiers in Oncology | www.frontiersin.org 469
training of AI models. Still image of contrast-enhanced US
(CEUS) was applied for the learning data for more accurate
discrimination of liver tumors. Streba et al. applied ANN for 4-
class discrimination of liver tumor with 94.5, 94.2, and 89.7% for
accuracy, sensitivity and specificity, respectively, for the
discriminaton (31). Gatos et al. and Kondo et al. reported the
4-class classification of benign tumors, hepatocellular carcinoma,
and metastatic tumors using SMV pretrained with CEUS images
(32, 33). A contrast agent, Sonazoid, was used and, reportedly,
sensitivity, specificity, and accuracy that discriminate malignant
lesions from benign were 94.0, 87.1, and 91.8%, respectively (33).
Another report applied a pretrained SMV using CEUS images
and achieved the accuracy, sensitivity, and specificity of 90.4,
93.6, and 86.9%, respectively, for the different diagnosis of benign
and malignant liver tumors (34). Discrimination of benign and
malignant lesions is a critical task for the management of patients
with liver tumors, and CEUS images yield attractive data for the
development of AI models to detect malignant tumors.

On the other hand, because of the development of new
treatments in HCC, management of this type of cancer is
becoming complex (39). Recently, in addition to detection and
diagnosis, AI model regarding the management of HCC, such as
prediction of microvascular invasion, pathological grading, and
treatment outcomes have been reported. Hu et al. proposed US-
based radiomics score consisted of six selected features was an
independent predictor of microvascular invasion in HCC (35).
On the other hand, model for predicting pathological grading of
HCC before surgery was also reported using ultrasomics of
CEUS images (36). Liu et al. developed an AI model for the
prediction of responses to transarterial chemoembolization in
patients with HCC through training with B-mode US and CEUS
images (37). They reported AUCs of 0.93 and 0.81 for the AI
based on CEUS and B-mode US images, respectively, indicating a
higher performance of the model pre-trained with CEUS images
than that with B-mode US images. They also reported AI models
for predicting outcomes in patients with HCC after two types of
treatment—radiofrequency ablation (RFA) and liver resection—
from radiomics information based on CEUS images (38). For the
prediction of two-year progression-free survival (PFS), both
models provided high prediction accuracy. Interestingly, the
models showed that some patients who underwent RFA and
surgery should swap their treatments, so that a higher probability
of increased 2-year PFS would be achieved. In addition, another
report showed radiomic signature from grayscale US images of
gross-tumoral region had potential for prediction of microvascular
invasion of HCC before surgery, suggesting the potential of
radiomic approach for the prediction of outcome (40). Such AI
prediction models using radiomic signature may be applicable for
personalized medicine in HCC treatment.

The grading of liver fibrosis and steatosis is also an important
task for the management of liver disease because these
backgrounds may confer a risk of liver cancer. Several reports
have described the classification of fibrosis and steatosis based on
disease progression using AI models trained with B-mode US
and SWE images (18, 41). Deep-learning models show hyper-
performance in terms of detection and risk stratification of fatty
December 2020 | Volume 10 | Article 594580
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liver disease compared to that corresponding to conventional
machine-learning models (42). AI models pre-trained with color
images of US-SWE can also discriminate chronic liver disease
from healthy cases (43). Reportedly, the combination of B-mode
US images, raw radiofrequency data, and dynamic contrast-
enhanced microflow is a useful dataset for developing AI
models that classify the stage of liver fibrosis (44), where
datasets involving raw radiofrequency data provide better
Frontiers in Oncology | www.frontiersin.org 570
predictive value than those from conventional US image only.
Therefore, it should be possible that AI using multiparametric
ultrasomics can help improve the performance of the model. For
the development of AI that determine the stage of liver fibrosis
more accurately, Gatos et al. reported a detection algorithm that
excludes unreliable regions on SWE images, which contributes to
a reduction in interobserver variability (45). Applying these AI
models may be an alternative to invasive liver biopsy for
TABLE 1 | Performance for diagnosis of liver tumor based on the machine learning using image of ultrasonography.

Algorism Liver lesions:number of the cases Performance References

Pre-trained AI using B-mode US images
SVM normal liver: 15

cirrhotic liver: 16
HCC: 25

accuracy: 88.8% (26, 27)

SVM HCC: 27
metastatic tumor: 27

overall accuracy: 91.6%
sensitivity:
90% for HCC
93.3% for metastatic carcinoma

(26)

ANN cyst; 29
hemangioma: 37
malignant tumor: 33

cyst vs. hemangioma
accuracy: 99.7%
cyst vs. malignant
accuracy: 98.7%
hemangioma vs. malignant
accuracy: 96.1%

(28)

ANN (sparse
autoencoder)

normal liver: 16
cyst: 44
hemangioma: 18
HCC: 30

accuracy: 90.5%
sensitivity: 91.6%
specificity: 88.5%

(29)

CNN non-tumorus liver: 258
hemangioma: 17
metastatic tumor: 48
HCC: 6
cyst: 30
focal nodular hyperplasia: 8

AUC for tumor detection: 0.935
AUC for tumor discrimination: 0.916 (mean)

(30)

Pre-trained AI using CEUS images
ANN hemangioma: 16

focal fatty liver: 23
HCC: 41
metastatic tumor: 32
hypervascular: 20
hypovascular: 12

accuracy: 94.5%
sensitivity: 93.2%
specificity: 89.7%

(31)

SVM benign tumor: 30
malignant tumor: 22

accuracy: 90.3%
sensitivity: 93.1%
specificity: 86.9%

(32)

SVM benign tumor, HCC, or metastatic
tumor 98

benign vs. malignant
accuracy: 91.8%
sensitivity: 94.0% specificity: 87.1%
benign vs. HCC vs. metastatic carcinoma
accuracy: 85.7%
sensitivity: 84.4% specificity: 87.7%

(33)

SVM (multiple kernel
learning)

benign tumor: 46
malignant tumor: 47

accuracy: 90.4%
sensitivity: 93.6%
specificity: 86.9%

(34)

Logistic regression
analyses

Solitary HCC without macrovascular
invasion: 468

Prediction of microvascular invasion using ultrasomics feature: AUC = 0.731 (35)

SVM HCC: 235
High-grade: 65
Low-grade: 170

Discrimination of HCC pathological grades using ultrasomics and clinical factors:
AUC = 0.785

(36)

CNN HCC before TACE: 130 Prediction of response to TACE: AUC = 0.93 (37)
CNN HCC: 419

patients who underwent RFA; 214
patients who underwent resection; 215

prediction of RFS for 2 years after curative treatment
C-index 0.726 for RFA
C-index 0.726 for resection

(38)
December 2020 | Volume 10 | A
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predicting the progression of liver disease, which may be
associated with a risk of liver cancer.
CONCLUSION

Among the imaging modalities, US is the most commonly used in
clinical practice for detection of liver tumors because of its low-
cost, non-ionizing, and portable point-of-care characteristics
providing real-time images. From this point of view, the AI-
powered US carries more advantage in routine clinical
applications compared to that in CT and MRI (46). Although,
US images involve operator-, patient-, and scanner-dependent
variations, AI-aided US diagnosis is becoming mature that is
attributed to the recent advancement in the US equipment and
increase in computing power to identify the complex imaging
features. In addition to the B-mode image, images from CEUS and
US elastography is becoming promising data applicable in AI-
based diagnosis in the field of liver tumor according to the
prevalence of high-end US equipment (46, 47). These could also
Frontiers in Oncology | www.frontiersin.org 671
be a safeguard for misdiagnosis in the actual workflow. The
development of AI-aided technologies for the detection and
diagnosis of malignant tumors may carry sufficient potential to
reduce cancer-related mortality in the near future.
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Few studies have reported the reproducibility and stability of ultrasound (US) images
based radiomics features obtained from automatic segmentation in oncology. The
purpose of this study is to study the accuracy of automatic segmentation algorithms
based on multiple U-net models and their effects on radiomics features from US images
for patients with ovarian cancer. A total of 469 US images from 127 patients were
collected and randomly divided into three groups: training sets (353 images), validation
sets (23 images), and test sets (93 images) for automatic segmentation models building.
Manual segmentation of target volumes was delineated as ground truth. Automatic
segmentations were conducted with U-net, U-net++, U-net with Resnet as the
backbone (U-net with Resnet), and CE-Net. A python 3.7.0 and package Pyradiomics
2.2.0 were used to extract radiomic features from the segmented target volumes. The
accuracy of automatic segmentations was evaluated by Jaccard similarity coefficient
(JSC), dice similarity coefficient (DSC), and average surface distance (ASD). The reliability
of radiomics features were evaluated by Pearson correlation and intraclass correlation
coefficients (ICC). CE-Net and U-net with Resnet outperformed U-net and U-net++ in
accuracy performance by achieving a DSC, JSC, and ASD of 0.87, 0.79, 8.54, and 0.86,
0.78, 10.00, respectively. A total of 97 features were extracted from the delineated target
volumes. The average Pearson correlation was 0.86 (95% CI, 0.83–0.89), 0.87 (95% CI,
0.84–0.90), 0.88 (95% CI, 0.86–0.91), and 0.90 (95% CI, 0.88–0.92) for U-net++, U-net,
U-net with Resnet, and CE-Net, respectively. The average ICC was 0.84 (95% CI, 0.81–
0.87), 0.85 (95% CI, 0.82–0.88), 0.88 (95% CI, 0.85–0.90), and 0.89 (95% CI, 0.86–0.91)
for U-net++, U-net, U-net with Resnet, and CE-Net, respectively. CE-Net based
segmentation achieved the best radiomics reliability. In conclusion, U-net based
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automatic segmentation was accurate enough to delineate the target volumes on US
images for patients with ovarian cancer. Radiomics features extracted from automatic
segmented targets showed good reproducibil ity and for reliabil ity further
radiomics investigations.
Keywords: automatic segmentation, U-net, ultrasound images, radiomics, ovarian cancer
INTRODUCTION

Ovarian cancer remains the second most common gynecological
malignancy and the leading cause of death in women with
gynecological cancer (1). Several imaging modalities, such as
computed tomography (CT), ultrasonography (US), positron
emission tomography (PET), and magnetic resonance imaging
(MRI) have been used as diagnostic and treatment assessment
tools for gynecological cancer all over the world (2, 3). US is
a well recognized and most common applied image modality
for diagnosis and assessment of ovarian cancer due to its
advantage characteristics of non-invasive, no radiation, cheap
and affordable (4, 5). Recently, the emerging radiomics to find
association between clinical characteristics and qualitative and
quantitative information extracted from US images, has further
expanded the application and importance of US images for
gynecological cancer (6).

By converting medical images into quantitative information,
which was then analyzed subsequently using conventional
biostatistics, machine learning techniques, and artificial
intelligence (7), radiomics has been developed rapidly for
clinical application to promote precision diagnostics and
cancer treatment (8, 9). Multiple processes, such as imaging
acquisition, region of interests (ROIs) segmentation, image
feature extraction, and modeling, were involved in the
radiomics analysis, in which ROI segmentation is the most
critical, challenging, and contentious step (7).

Segmentation is the step of extracting or distinguishing a ROI
from its background. It is a common and crucial stage in the
quantitative and qualitative analysis of medical images, and
usually it is one of the most important and earliest steps of
image processing (10). Due to the low contrast, speckle noise, low
signal noise ratio and artifacts inherently associated with
ultrasound images, it presents unique challenges for the
analysis on US images, especially for accurate segmentation of
different structures and tumor volumes compared with other
image modalities, e.g., CT, MRI (11, 12). The image quality of US
has a high intra- and inter-observer variability across different
institutes and manufactures. It also highly depends on the
abundance and experience of operators or diagnosticians. All
these render manual segmentation more variable and
significantly impact the quantitative (e.g., radiomics) and
geometric analyses with US images (13, 14).

The US segmentation problems have been the hot research
topics and rapidly evolved over the past few years (11).
Currently, no golden standard for tumor segmentation had
been established and manual segmentation is usually applied
(15). However, except for the inter and intra varieties mentioned
274
above, the manual segmentation is also quite time consuming
and boring. More recently, automatic segmentation techniques
based on deep learning have become a main stream and show
significant improvement in image classification predictions
and recognition tasks (16). A well-known U-net architecture
for biomedical imaging segmentation (17), which built
uponfully convolutional network (18), has been successfully
adapted to segment US images of breast (19), arterial walls
(20), and gynecological cancer (21). Studies reported that the
reproducibility and reliability of radiomics features could be
deeply affected by the segmentation methods for CT (22), MR
(23), and PET images (24). However, few studies have reported
the reproducibility and stability of US based radiomics features
obtained in oncology.

Previously, the feasibility of radiomics based on US images to
predict the lymph node status for patients with gynecological
cancer had been investigated (6). The purpose of this study is to
investigate the accuracy of automatic segmentation algorithms
based on multiple U-net models and their effects on radiomics
features from US images for patients with ovarian cancer.
MATERIALS AND METHODS

Patients and Images
Patients with ovarian cancer underwent radical hysterectomy and
transvaginal US diagnosis at authors’ hospital from January 2002
to December 2016 were retrospectively reviewed in this study. The
US images were acquired with a transvaginal ultrasonography
using Voluson-E8 (GE Healthcare, Wilmington, USA) at 5–9
MHz, Philips (ATL HDI 5000, Netherland) at 4–8 MHz, and
Esaote (MyLab classC) at 3–9 MHz or Hitachi (HI Vison Preirus)
(Hitachi Ltd, Tokyo, Japan) at 4–8 MHz. All the images were
reviewed with a Picture Archiving and Communication
Systems (PACS).

Manual segmentation of target volumes was contoured by a
radiologist with 7 years of experience in gynecological imaging
and was further confirmed by a senior radiologist with > 15 years
of experience in gynecological imaging. This retrospective study
was approved by the Ethics Committee in Clinical Research
(ECCR) of authors’ hospital (ECCR#2019059). ECCR waived the
need of written informed consent for this retrospective study.
Patient data confidentiality was confirmed.

Automatic Segmentation Models
In this work, the classical U-net scheme and its multiple
variations were used for the automatic segmentation task.
Generally, the U-net is a symmetrical U-shaped model
February 2021 | Volume 10 | Article 614201
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consisting of an encoder-decorder architecture (17). The left side
encoder is a down-sampling used to get feature map, similar to a
compression operation, while the right side decoder is an up-
sampling used to restore the encoded features to the original
image size and to output the results. Skip-connection was added
to encoder-decoder networks in order to concatenate the features
of high- and low-level together (17). When Resnet is used as a
fixed feature encoder to deepen the layers of the network and
solve the vanishing gradient, the U-net structure is changed to U-
net with Resnet as the backbone (U-net with Resnet) (25).
Resnet34 was preferred in this study.

A so-called context encoder network (CE-Net) was also
employed in this study, which consists of three major parts: a
feature encoder module, a feature decoder module and a context
extractor. In CE-Net, Resnet block is used as a fixed feature
extractor; a residual multi-kernel pooling (RMP) block and a
dense atrous convolution (DAC) block consist of the context
extractor module (26). U-net++ is a modified U-net with deeply-
supervised encoder-decoder network, in which a series of nested,
dense skip pathways are applied to connect the encoder and decoder
sub-networks (27). A typical U-net structure was shown in Figure 1.

Image Preprocessing
Image clipping was performed on each image set in order to
satisfy the size requirement of U-net and to shift the center of
clipping box so as to make the training model robust (28). The
tumor center minus the offset (a number from 360 to 0 at -60
intervals) was selected as the starting point for a 480 * 512
clipping box. The clipping box should not exceed the image edge.
A typical image preprocessing was shown in Figure 2.
Frontiers in Oncology | www.frontiersin.org 375
Radiomics Feature Extraction
After manual and automatic segmentations, the arbitrary gray
intensity values on US images were transformed into a
standardized intensity range by intensity normalizing. A python
3.7.0 and package Pyradiomics 2.2.0 were used to extract radiomic
features from the segmented target volumes. According to different
matrices capturing the spatial intensity distributions with four
different scales, 79 texture features and 18 first-order histogram
statistics were extracted from neighborhood gray-level different
matrix (NGLDM), gray level co-occurrence matrix (GLCM),
grey-level zone length matrix (GLZLM), and gray-level run length
matrix (GLRLM).

Evaluation and Statistical Analysis
The automatic segmentation models were built with the image
dataset randomly divided into training sets, validation sets
and test sets. The results of automatic segmentation models
were evaluated by comparing them with manually segmented
targets. Jaccard similarity coefficient (JSC), dice similarity
coefficient (DSC), and average surface distance (ASD) were
applied during the evaluation of delineation using the four
U-net-related models with test data sets (29). The effects of
segmentation on the radiomics features were evaluated with
Pearson correlation coefficient and intraclass correlation
coefficients (ICC), in which the agreement of a certain
radiomic feature (e.g., shape features, texture features)
between automatic and manual segmentation was evaluated
by ICC (30). General statistical analyses were performed in
SPSS Statistics (version 20.0.0). Statical significance was
considered as a p< 0.05.
FIGURE 1 | The architecture of a typical U-net model, where Xi, j is the operation of convolution block; Every Xi, j(j>0)’s input is concatenated from the up-sampling
of Xi+1, j-1 from the previous convolution layer of the same dense block and all of Xi, k(k<j) from same pyramid level.
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RESULTS

There were 127 patients with ovarian cancer and with
transvaginal US images included in the study. The median age
of these patients was 56 years old (from 23 to 80 years). A total of
469 US images were analyzed and randomly divided into three
groups: training sets (353 images), validation sets (23 images),
Frontiers in Oncology | www.frontiersin.org 476
and test sets (93 images) for the building of automatic
segmentation models. Detailed characteristics of patients and
images were presented in Table 1. No significant difference
among the training, validation, testing sets in terms of age,
histological type, and tumor stages was observed.

U-net, CE-Net, U-net++, and U-net with Resnet were applied
to delineate automatically the target volumes of ovarian cancer
TABLE 1 | Clinical characteristics of enrolled patients and images.

Category Patients characteristics Images

Training sets Validation sets Testing sets p

Total number 127 353 23 93
Age (years) 0.344

Mean 54.65 53.96 56.22 55.53
Median 56 54 59 56
Range 23~80 23~80 32~73 23~80
SD 11.85 11.38 11.01 9.79

Histological types 0.679
Epithelial 105 308 21 83
None epithelial 16 38 2 7
N.A. 2 12 1 5

Tumor stages 0.691
I 36 87 4 24
II 15 34 5 11
III 68 213 13 54
IV 3 19 1 4
N.A. 1 5 1 2
February 2021 |
 Volume 10 | Article 6
Note. p value is calculated from the univariate association test between sub-groups, one-factor ANOVA for continues variables, Fisher’s exact test for categorized variables.
FIGURE 2 | (A) shows the original ultrasound image; (B) shows ovarian tumor segmented by radiologist; (C) shows the image after clipping; (D) shows the mask of
ovarian.
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on US images. Figure 3 presents typical contours achieved by
these automatic segmentation models and their comparison with
manual contours. Detailed results of segmentation accuracy
metrics were presented in Table 2. CE-Net and U-net with
Resnet achieved a DSC and JSC of 0.87, 0.79, and 0.86, 0.78,
respectively. The ASD of CE-Net and U-net with Resnet were
8.54 and 10.00, respectively.

There were 97 features extracted from the delineated target
volumes. Figure 4 shows the hot maps of Pearson correlation
and ICC for the comparison between features extracted from
automatic segmentations and manual contours. The average
Pearson correlation was 0.86 (95% CI, 0.83–0.89), 0.87 (95%
CI, 0.84–0.90), 0.88 (95% CI, 0.86–0.91), and 0.90 (95% CI, 0.88–
0.92) for U-net++, U-net, U-net with Resnet, and CE-Net,
Frontiers in Oncology | www.frontiersin.org 577
respectively. The average ICC was 0.84 (95% CI, 0.81–0.87),
0.85 (95% CI, 0.82–0.88), 0.88 (95% CI, 0.85–0.90), and 0.89
(95% CI, 0.86–0.91) for U-net++, U-net, U-net with Resnet, and
CE-Net, respectively.

High correlations were observed for most of the features except
for some features of shape GLZLM. Detailed results of Pearson
correlation and ICC for all the 97 features were presented in
Supplementary Tables 1 and 2. Further analysis on the shape
GLZLM features was shown in Figure 5. Sphericity and
PerimeterSurfaceRatio were the two shape features that showed
weak correlation between automatic and manual segmentations.
Excluding these two shape features, the Pearson coefficient and
ICC between features extracted by CE-Net and manual
segmentation ranged from 0.71–0.98, and 0.70–0.97, respectively.
TABLE 2 | Automatic segmentation accuracy metrics for U-net-related models.

Evaluation metrics

Models JSC (95%CI) DSC (95%CI) ASD (95%CI)

U-net 0.71 0.68~0.75 0.81 0.79~0.85 10.57 9.25~11.89
CE-Net 0.79 0.76~0.82 0.87 0.85~0.90 8.54 7.21~9.86
U-net++ 0.72 0.68~0.75 0.82 0.79~0.85 10.15 8.90~11.40
U-net with Resnet 0.78 0.75~0.82 0.86 0.83~0.89 10.00 8.03~11.97
February 202
1 | Volume 10 | Ar
Note. JSC, Jaccard similarity coefficient; DSC, Dice similarity coefficient; ASD, Average surface distance.
FIGURE 3 | Typical segmentation results from manual delineation, U-Net, CE-NET, U-net++, and U-net with Resnet models.
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DISCUSSION

Automatic segmentation of target volumes for ovarian cancer on
US images were generated with multiple U-net models. The
segmentation accuracy and its effects on radiomics features were
evaluated in this study. CE-Net and U-net with Resnet models
achieved a relatively higher accuracy on target delineation.
Except for some shape features, most features extracted with
automatic segmentation algorithms achieved high Pearson
correlation and ICC in correlation with features extracted from
manual contours.

US is a standard imaging modality for lots of diagnostic and
monitoring purposes, had has been significantly investigated with
deep learning based automatic segmentation (31). Yang et al. (32)
used a fine-grained recurrent neural network to segment prostate
US images automatically and achieved a high DSC around 0.92.
Ghavami et al. (33) also proposed convolutional neural networks
Frontiers in Oncology | www.frontiersin.org 678
(CNNs) to automatically segment transrectal US images of
prostate and got a mean DSC of 0.91 ± 0.12. Automatic
segmentations on cardiac and carotid artery US images were
proposed by Chen et al. (34) and Mechon-Lara et al. (35) using
deep learning methods. Amiri et al. (36) fine-tuned the U-Net on
breast US images and got a mean DSC of 0.80 ± 0.03. Similarly, a
DSC of 0.83 to 0.90 was achieved on US images of ovarian cancer
using different U-net models in this study.

U-net is a structure for medical image segmentation with
superior skip connections design for different stages of the
network, which had inspired the development of many
variations (37). Marques et al. (21) explored different U-Net
architectures with various hyperparameters in their automatic
segmentations on the transvaginal US images of ovary and
ovarian follicles, and indicated that architecture takes into
account the spatial context of ROI is important for a better
performance (21). In this study, Unet++, U-net, CE-Net, and
FIGURE 5 | Pearson correlation and intraclass correlation coefficients for shape features extracted from different U-net automatic segmentations.
FIGURE 4 | Hot maps of Pearson correlation and intraclass correlation coefficients for radiomics features extracted from manual segmentation and U-net models
based automatic segmentations.
February 2021 | Volume 10 | Article 614201
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U-net with Resnet were applied for the automatic segmentations.
As shown in Table 2, CE-Net and U-net with Resnet exhibited
higher mean DSC and JSF, and lower mean ASD compared with
U-net++ andU-net, where CE-Net achieved the best performance.

In radiomics analysis, usually the ROI contoured is the region
analyzed. The reproducibility and reliability of radiomics features
were highly impacted by the segmentation methods. Parmar et al.
(38) demonstrated that semi-automatic segmentation (ICC: 0.85
± 0.15) provided a better feature extraction reproducibility than
manual segmentation (ICC, 0.77 ± 0.17) in CT images for 20
non-small cell lung cancer patients. Heye et al. (23) achieved an
ICC of 0.99 with a semiautomatic segmentation on dynamic
contrast material-enhanced MR images. In this study, a highest
Pearson correlation and ICC of 0.90 (95% CI, 0.88–0.92) and 0.89
(95% CI, 0.86–0.91) were achieved with CE-Net automatic
segmentation. Similarly, Lin et al. (39) achieved an ICC
of 0.70–0.99 on first-order apparent diffusion coefficient
radiomics parameters using U-net automatic segmentation for
cervical cancer.

However, a few of shape textures showed worse correlation,
as shown in Figures 4 and 5. This may be caused by artifacts
resulted from less optimal automatic segmentation algorithms as
shown in Figure 3, which could be improved by manual correction
during clinical practice. This also indicated that automatic
segmentation for US images needs further investigation to
improve the reliability and reproducibility of delineated volumes
and radiomics features. Future evaluation of the reliability and
reproducibility may be focused on prediction modeling level
instead of at the level of radiomics features.
CONCLUSIONS

U-net based automatic segmentation was accurate enough to
delineate the target volumes on US images for patients with
ovarian cancer. Radiomics features extracted from automatic
segmented ROI showed high reliability and reproducibility for
further radiomics investigations.
Frontiers in Oncology | www.frontiersin.org 779
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Purpose: To construct a sequence diagram based on radiological and clinical factors for the
evaluation of extrathyroidal extension (ETE) in patients with papillary thyroid carcinoma (PTC).

Materials and Methods: Between January 2016 and January 2020, 161 patients with
PTC who underwent preoperative ultrasound examination in the Affiliated People’s
Hospital of Jiangsu University were enrolled in this retrospective study. According to
the pathology results, the enrolled patients were divided into a non-ETE group and an ETE
group. All patients were randomly divided into a training cohort (n = 97) and a validation
cohort (n = 64). A total of 479 image features of lesion areas in ultrasonic images were
extracted. The radiomic signature was developed using least absolute shrinkage and
selection operator algorithms after feature selection using the minimum redundancy
maximum relevance method. The radiomic nomogram model was established by
multivariable logistic regression analysis based on the radiomic signature and clinical
risk factors. The discrimination, calibration, and clinical usefulness of the nomogram
model were evaluated in the training and validation cohorts.

Results: The radiomic signature consisted of six radiomic features determined in ultrasound
images. The radiomic nomogram included the parameters tumor location, radiological ETE
diagnosis, and the radiomic signature. Area under the curve (AUC) values confirmed good
discrimination of this nomogram in the training cohort [AUC, 0.837; 95% confidence interval
(CI), 0.756–0.919] and the validation cohort (AUC, 0.824; 95%CI, 0.723–0.925). The decision
curve analysis showed that the radiomic nomogram has good clinical application value.

Conclusion: The newly developed radiomic nomogram model is a noninvasive and
reliable tool with high accuracy to predict ETE in patients with PTC.

Keywords: nomogram, ultrasound radiomics, papillary thyroid carcinoma, extrathyroidal extension, thyroid
neoplasms, ultrasonography
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INTRODUCTION

Papillary thyroid carcinoma (PTC) occurs in 90% of patients
with thyroid carcinoma (1–3). PTCs are inert, differentiated
cancers with relatively low recurrence and incidence rates.
However, some histologic PTC subtypes (high cell count,
diffuse sclerosing type, infiltrative type) show aggressive
behavior and recurrence with extrathyroidal extension (ETE),
vascular invasion, and distant metastasis.

According to the TNM classification of differentiated thyroid
cancer by the Eighth Edition of the American Joint Committee
on Cancer (AJCC) (2–5), minimal ETE (i.e., T3) refers to a
primary tumor of more than 4 cm that is limited to the thyroid
gland or has invaded the strap muscles surrounding the thyroid,
whereas extensive ETE (i.e., T4) describes the primary tumor
invasion of the subcutaneous soft tissue, larynx, trachea,
oesophagus, recurrent laryngeal nerve, prevertebral fascia,
carotid artery, or mediastinal vessels. Several studies
demonstrated that ETE is an independent risk factor for high
recurrence and mortality in PTC patients (3, 4). The detection of
ETE is also clinically significant regarding the selection of the
optimal treatment. PTC surgery mainly involves either total/
subtotal thyroidectomy or resection of the affected thyroid lobe
and isthmus, but both surgical procedures have no significant
effect on postoperative distant metastasis and mortality. Besides,
surgical procedures targeting only one thyroid lobe or the
isthmus do not only retain some functionality of the thyroid
gland but protect also parathyroid functions and prevent injuries
of the contralateral laryngeal recurrent nerve. Total/subtotal
thyroidectomy is usually suggested for PTC patients with ETE,
whereas PTC patients without ETE are treated with resection of
the affected thyroid lobe and isthmus. Thus, there is a need for a
noninvasive method to evaluate ETE, thereby avoiding total/
subtotal thyroidectomy in patients without ETE.

Ultrasound is the most common imaging modality for
preoperative PTC diagnosis (6–9), but it is subjective and relies
on the experience level of the operator. Computed tomography
(CT) has a certain advantage in evaluating whether PTC has
invaded neighboring tissue, but CT requires ionizing radiation.
Magnetic resonance imaging can improve soft tissue resolution;
however, it is expensive and not widely used in the examination
of thyroid tumors. Ultrasound radiomics (USR) is a new tool that
can extract hundreds of quantitative features from medical
images and combine the key features into a radiomic signature,
an image-based biomarker, that can be used for cancer diagnosis
(10, 11). Some studies demonstrated that ultrasound imaging has
great value in the diagnosis of various diseases, as well as the
assessment of their prognosis (12–14). It has been reported that
the texture features of ultrasound images have good predictive
Abbreviations: AJCC, American Joint Committee on Cancer; AUC, area under
the curve; CI, confidence interval; CT, computed tomography; ETE, extrathyroidal
extension; GLCM, gray-level co-occurrence matrix; GLDM, gray-level dependence
matrix; GLRLM, gray-level run length matrix; GLSZM, grey-level size zone matrix;
ICC, interclass correlation coefficient; LASSO, least absolute shrinkage and
selection operator; mRMR, maximum relevance minimum redundancy;
NGTDM, neighbourhood grey-tone dependency matrix; PTC, papillary thyroid
carcinoma; ROI, region of interest; USR, ultrasound radiomics.

Frontiers in Oncology | www.frontiersin.org 282
value for cervical lymph node metastasis in PTC (12–15).
However, only a few studies analyzed ETE in PTC using USR.
Therefore, we developed and validated in this study a USR model
for the noninvasive prediction of the preoperative ETE status
in PTC.
MATERIALS AND METHODS

Patients
This retrospective study was approved by the local ethics
committee at the Affiliated People’s Hospital of Jiangsu
University, and the requirement for informed consent was
waived. Between January 2016 and January 2020, 161 patients
of our hospital were retrospectively selected. Figure 1 shows the
enrolment procedure. The inclusion criteria were defined as
follows: (1) preoperative thyroid ultrasound examination,
providing relevant ultrasound image data, and a PTC
diagnosis; (2) the postoperative pathology confirmed the PTC
diagnosis; (3) a single unilateral lesion; and (4) no prior
thyroidectomy. Exclusion criteria were: (1) the primary tumor
was not unequivocally identifiable on the ultrasound image and
(2) the maximum diameter of the primary tumor was <5 mm.
The clinical and pathological information of the enrolled patients
included age, sex, tumor size, tumor position, and tumor
location. The AJCC deleted in the eighth edition of the TNM
classification the definition of minimal ETE because it was not
considered an independent risk factor related to PTC prognosis.
However, this concept remains controversial, and some
researchers suggest that minimal ETE increases the risk of
PTC recurrence (3, 4). Therefore, in this study, minimal ETE
and extensive ETE were uniformly classified as ETE.

Ultrasound Examination
Preoperatively, all patients underwent a routine ultrasound
examination, performed by well-trained technicians using a
Philips Q5, Philips iU22 (both Healthcare, Eindhoven, the
Netherlands) or a GE LOGIQ s8, LOGIQ E20, LOGIQ E9 (GE
Medical Systems, American General) ultrasound system with a
5–12 MHz linear array transducer. The patient was placed in a
supine position with the pillow removed to lower and slightly
recline the head. This exposed the neck region as much as
possible to carry out the ultrasound examination of the thyroid
and cervical area using longitudinal, horizontal continuous
scanning. This allowed the observation of the thyroid tumor
size (maximum long axis of the nodule), tumor position (left
lobe, right lobe, or isthmus), tumor location (upper, middle, or
lower pole), internal echo pattern (uniform, less uniform, or
nonuniform), tumor border (clear, less clear, or fuzzy), tumor
vascularization (without, rare, or abundant), elastic properties (0
points: tumor tissue color-coded between red and green; 1 point:
uniform green tumor; 2 points: tumor mainly between green and
blue-green; 3 points: tumor mainly between blue-green and blue;
4 points: uniform blue tumor), and the ETE diagnosis.
Preoperative imaging criteria for US diagnosis ETE were as
follows: the lesions contact the thyroid capsule >25% or
protrude the thyroid capsule to invade the sternum thyroid
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muscle and the soft tissue around the thyroid gland, the fat space
between the trachea, esophagus, trachea and esophagus sulcus,
cervical sheath vessels, and the thyroid gland disappears.

Diagnostic Criteria for Image Analysis
Two radiologists blinded to the clinical and pathological
information assessed the ultrasound images, and any
disagreement was resolved by agreement. According to the
AJCC guidelines (3–7), ETE can be diagnosed when one of the
following two criteria exists: (1) >25% of the circumference of
the lesion is in contact with the thyroid capsule or the envelope
line of the contact between the lesion and the thyroid gland
disappears; (2) a tumor of any size exceeds the thyroid capsule and
invades the subcutaneous soft tissue, larynx, trachea, oesophagus,
recurrent laryngeal nerve, carotid artery, or mediastinal vessels.

Region of Interest (ROI) Segmentation
and Radiomic Feature Extraction
To indicate focal areas within the thyroid gland, ROIs were
manually drawn on ultrasound images by one radiologist with 15
years of experience in the diagnosis of thyroid diseases using the
software ITK-SNAP (version 3.8.0, http://www.itksnap.org). The
ROI was placed on the solid component of the tumor, avoiding
necrotic, hemorrhagic, and cystic areas.
Frontiers in Oncology | www.frontiersin.org 383
To assess the consistency of the ROI placements, 30 patients
were randomly selected, and a second physician with 8 years of
experience in thyroid ultrasound diagnosis independently placed
ROIs on the relevant structures.

From these ROIs on ultrasound images, 479 image features
were extracted using PyRadiomics (version 2.2.0, https://github.
com/Radiomics/pyradiomics). These features included 18 first-
order features, 14 shape features, 16 grey-level run length matrix
(GLRLM) features, 16 grey-level size zone matrix (GLSZM)
features, 14 grey-level dependence matrix (GLDM) features, 5
neighbourhood grey-tone dependencymatrix (NGTDM) features,
24 grey-level co-occurrence matrix (GLCM) features, and 372
features derived from first-order GLCM, GLRLM, GLSZM,
GLDM, and NGTDM features using wavelet filter images.

Feature Selection and Radiomic
Signature Construction
The consistency of the extracted ROI characteristics was
evaluated using the interclass correlation coefficient (ICC). The
analysis revealed an ICC of >0.8, demonstrating a good
consistency of these characteristics. Next, we used the
independent sample t-test or Mann-Whitney U test in the two
groups to eliminate nonsignificant features with P-values of
>0.05. The minimum redundancy maximum relevance
FIGURE 1 | Schematic diagram of the patient selection. PTC, papillary thyroid carcinoma.
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(mRMR) algorithm was employed to assess the relevance and
redundancy of the remaining features, and the top 10 features
with high relevance and low redundancy were selected for the
following analyses. The least absolute shrinkage and selection
operator (LASSO) logistic regression model with 10-fold cross-
validation was adopted for further feature selection and radiomic
signature construction in the training cohort. The radiomic
signature was generated by LASSO regression using a linear
combination of the selected features with nonzero coefficient
weight. Finally, the potential association of the radiomic
signature with ETE was evaluated in the training and
validation cohorts. Figure 2 shows the workflow of this study.

Development of the Ultrasound
Radiomic Nomogram
Based onmultivariate logistic regression analysis, the clinical model
was generated using clinical factors with P-values of <0.05. In this
model, clinical risk factors such as age, sex, tumor size, tumor
position, tumor location, internal echo pattern, tumor border,
tumor vascularization, elastic properties, and radiological ETE
diagnosis were included. A radiomic nomogram incorporating
the radiomic signature and clinical risk factors was developed
and used to intelligently predict ETE based on the multivariate
analysis in the training cohort (Figure 2). For comparison, a
clinical model was developed using the independent clinical risk
factors alone.

Performance and Clinical Utility
of the Radiomic Nomogram
The radiomic nomogram was evaluated using a calibration curve
and the Hosmer-Lemeshow test (a nonsignificant test denotes
that the model calibrates perfectly). The nomogram-predicted
probability of each patient was calculated according to the
nomogram algorithm. The discrimination performance of the
radiomic nomogram-predicted probability was evaluated based
on the receiver operating characteristic curve, sensitivity, and
specificity. Then, the performances of the radiomic nomogram-
predicted probabilities were tested in the training and validation
cohorts. The decision curve analysis was applied in determining
the clinical usefulness of the radiomic nomogram by calculating
the net benefits at different threshold values in the combined
training and validation cohort (16–18).
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Histopathological Examination
PTC specimens of paraffin embedding slice, after HE dyeing, by
two attending pathologists according to the American Thyroid
Association (ATA) published guidelines for the diagnosis and
treatment of thyroid cancer malignant degree classification
standard, classification under the lens. The tumor is considered
to be invasive if one of the following pathological manifestations
is present: (1) the vascular or enveloped thyroid gland is invaded
by the tumor; or (2) tumor invasion beyond the thyroid, tumor
regional metastasis, and distant metastasis.

Statistical Analysis
Statistical analyses were processed using the R software (version
3.6.1, https://www.r-project.org). Pearson’s chi-square or Fisher’s
exact test was used to compare differences for categorical
characteristics. The independent sample t-test was performed for
continuous factors with normal distribution, whereas the Mann-
Whitney U test was used for continuous factors without normal
distribution. A two-sided P < 0.05 denoted statistically
significant differences.
RESULTS

Clinical Characteristics
A total of 161 patients with PTC were enrolled with an average
age of 46.09 ± 11.79 years and a male-to-female ratio of 38:123.
The pathology excluded ETE in 68 patients and confirmed it in
93 patients. Using stratified sampling, all patients were randomly
divided into a training group (n = 97) and a validation group (n =
64). The clinical data of the training group and the validation
group are shown in Table 1. There was no significant difference
between the two groups in pathology and ultrasound image
characteristics (all P > 0.05).

Radiomic Signature Construction
and Diagnostic Validation
A total of 479 imaging features were extracted from each
greyscale ultrasound image. Of those, 87 image features with
ICC values ≤0.8 were deleted, and 256 radiomic features with no
statistical significance in the training cohort according to the
FIGURE 2 | Radiomics workflow in this study.
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t-test or Mann-Whitney U test were eliminated. Then, 10 image
feature subsets with the best ETE discrimination were screened
Frontiers in Oncology | www.frontiersin.org 585
using the mRMR method. Finally, using LASSO regression and
10-fold cross-validation, six features with nonzero coefficients
were selected in the training cohort (Figure 3). According to the
result of the LASSO regression analysis, the mathematical
expression of the radiomic signature was:

Radiomic   signature  

=   0:335   +   0:176  �   LLglszm

+   0:122  �   ngtdm  −   0:100  �  HHglcm

−   0:080  �   LHglcm  Corr −   0:024  �   LHglcm  Clus

−   0:016  �   LHglszm

th LLglszm being Zone Entropy of the wavelet low frequency
filtered image GLSZM, (wavelet.LL_glszm_ZoneEntropy), ngtdm
being Busyness of the original image NGTDM (original_
ngtdm_Busyness), HHglcm being Cluster Shade of the wavelet
high frequency filtered image GLCM (wavelet.HH_glcm_
ClusterShade), LHglcmCorr being wavelet low frequency filtered
image has correlation of GLCM (wavelet.LH_glcm_Correlation),
LHglcmClus being Cluster Shade of GLCM (wavelet.LH_glcm_
ClusterShade), and LHglszm being grey-level nonuniformity
normalized of GLSZM (wavelet.LH_glszm_GLNUN).
Development and Validation
of the Radiomic Nomogram
The clinical model was built using the variables age, sex, tumor
size, tumor position, tumor location, internal echo pattern,
tumor border, tumor vascularization, elastic properties, and
radiological ETE diagnosis. The univariate logistic regression
analysis selected three statistically significant clinical factors,
namely tumor size (P = 0.039), tumor position (P < 0.001),
and radiological ETE diagnosis (P = 0.002). Multivariate logistic
A B

FIGURE 3 | Least absolute shrinkage and selection operator (LASSO) regression with 10-fold cross-validation (A) was used to reduce the dimension of the
grouping characteristics (B). Six features corresponded to the minimum error.
TABLE 1 | Patient characteristics of the training and validation cohorts.

Characteristic Training cohort
(n = 97)

Validation cohort
(n = 64)

P

Age, mean ± SD, years 45.57 ± 11.87 46.89 ± 11.73 0.972
Sex, n
Female 72 51

0.425
Male 25 13

Tumor size in ultrasound 10.25 ± 7.99 11.58 ± 8.75 0.089
Tumor location
Left lobe 45 30

0.991Right lobe 5 3
Isthmus 47 31

Tumor position
Upper pole 50 31

0.066Middle pole 32 14
Inferior pole 15 19

Internal echo pattern
Uniform 12 11

0.691Owe uniform 44 27
Nonuniform 41 26

Tumor border
Clear 35 33 0.254
Less clear 39 21
Fuzzy 19 9

Tumor vascularization
Without 33 19

0.831Rare 28 33
Abundant 16 12

Elastic properties classification
2 11 7

0.9073 70 48
4 16 9

Radiological ETE diagnosis
Without ETE 20 22

0.052
With ETE 77 42
ETE, extrathyroidal extension; SD, standard deviation.
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regression analysis was then used to further analyze the influence
of these parameters. Because the parameter tumor size was not
statistically significant (P = 0.081), this variable was excluded
from the model. Thus, tumor position and radiological ETE
diagnosis constituted the clinical model for ETE diagnosis in
PTC patients (Table 2).

Next, a radiomic nomogram with the parameters tumor
location, radiological ETE diagnosis, and radiomic signature
was developed. Multivariate logistic regression analysis was
used to assess this radiomic nomogram, and all three
predictors were statistically significant (Table 2, Figure 4A).
Table 3 shows the results of the clinical model and the radiomic
nomogram model in distinguishing ETE in PTC patients.

In the training cohort, the radiomic nomogram model
showed the best discrimination (Table 3) with an area under
the curve (AUC) value of 0.837 (95% confidence interval [CI]:
0.756–0.919). This AUC value of the radiomic nomogram was
higher than that of the clinical model alone (AUC: 0.768, 95% CI:
0.676–0.860; DeLong test, P = 0.031) and the radiomic signature
alone (AUC: 0.736, 95% CI: 0.633–0.838; DeLong test, P =
0.024). The radiomic nomogram model also presented the best
discrimination (Table 3) in the validation cohort with an AUC of
0.824 (95% CI: 0.723–0.925), which was higher than that of the
clinical model alone (AUC: 0.741, 95% CI: 0.619–0.863; DeLong
test, P = 0.012). The calibration curve and the Hosmer-
Lemeshow test showed a good calibration in the training set
Frontiers in Oncology | www.frontiersin.org 686
(Figure 4B, P = 0.077) and the validation set (Figure 4C, P =
0.531). Thus, the nomogram model performed well in both
training and validation sets.

The decision curve analysis demonstrated that the radiomic
nomogram provided a high overall net benefit and was more
beneficial than either the treat-all or the treat-none strategy
(Figure 5).
DISCUSSION

PTC patients with ETE have higher recurrence and mortality
rates than those without ETE (1–4). PTC patients with ETE
require total/subtotal thyroidectomy; postoperatively, these
patients will inevitably be affected by chronic hypothyroidism.
Moreover, this procedure is more demanding for the surgeon
requiring higher levels of skills, may impair the postoperative
parathyroid function, and increases the probability of laryngeal
recurrent nerve injury (13–15). Therefore, the accurate diagnosis
of ETE before the operation can help the surgeon determine the
most suitable surgical plan and reduce the risk of reoperation.

Previous studies showed (6–8) that of the 176 included PTC
patients with pathology-confirmed ETE, only 84 patients were
accurately diagnosed by ultrasound. Therefore, it is of great
importance to improve the accuracy of ultrasound-based ETE
TABLE 2 | Multivariate logistic regression analysis.

Variable Clinical model Radiomic nomogram model

b OR (95% CI) P B OR (95% CI) P

Cut off 0.671 −0.363
Tumor location −1.070 0.343 (0.180–0.653) 0.001 1.065 0.345 (0.172–0.690) 0.003
Radiological ETE diagnosis 1.786 5.964 (1.827–19.46) 0.003 1.645 5.183 (1.470–18.28) 0.011
Radiomic signature NA NA NA 4.130 62.167 (4.760–811.9) 0.002
Ma
rch 2021 | Volume 11 | Article 6
b, beta coefficient; CI, confidence interval; ETE, extrathyroidal extension; NA, not applicable; OR, odds ratio.
A B C

FIGURE 4 | Performance of the radiomic nomogram. (A) A nomogram based on the radiomic signature and clinical factors. (B, C) Calibration curve of the radiomic
nomogram for the training cohort (B) and the validation cohort (C). ETE, extrathyroidal extension.
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diagnosis in PTC. Some studies have suggested that radiomic is
of great value in the diagnosis and prognosis assessment of many
diseases (16, 19–23). In our study, we used the radiomic
nomogram to identify ETE preoperatively. The constructed
radiomic nomogram provides an easy-to-use diagnostic and
predictive tool, which can prevent unnecessary surgery for
patients without ETE. The higher AUC values of the radiomic
nomogram indicate that the nomogram including the radiomic
signature performs better than the clinical model in diagnosing
ETE. The radiomic nomogrammodel was established using three
variables, including the radiomic signature that incorporated six
parameters extracted from a large number of image features by
data dimension reduction. This model showed a high predictive
value for the identification of ETE.

Ultrasound is the preferred imaging modality for the
evaluation of PTC (24–27). It can show the degree of PTC
contact with the adjacent thyroid capsule, but the diagnostic
accuracy is low. Gweon et al. (7) showed that in 79 patients with
PTC diagnosed by preoperative ultrasound, the accuracy rates
were 60.8% and 66.2% for 2D and 3D ultrasound, respectively.
Lee et al. (14) reported that if >50% of the PTC circumference
was in contact with the adjacent thyroid capsule, ultrasound had
a better AUC than CT (0.674 vs. 0.638, respectively) in the
diagnosis of ETE, whereas combined ultrasound and CT had the
highest accuracy (sensitivity 92.9%, specificity 70.4%, AUC
0.744). In the present study, the AUC of the radiomic
nomogram model for the diagnosis of ETE was significantly
higher than that reported by Lee et al. (0.824 vs. 0.744,
Frontiers in Oncology | www.frontiersin.org 787
respectively). This indicates that the newly developed radiomic
nomogram model contained more information that is
significantly related to ETE but not considered a traditional
risk factor. For instance, PTC density and enhanced
nonuniformity are characteristics that are difficult to quantify
with the human eye. But these features are associated with tissue
heterogeneity in PTC. The radiomic nomogram model takes the
imaging biomarker PTC heterogeneity, a quantifiable feature
related to the degree of malignancy in PTC, into account for the
ETE evaluation. Thus, the quantitative nomogram model does
not only overcome the subjectivity of the traditional ultrasound
imaging diagnosis but also utilizes a lot of information that the
naked eye cannot identify, thereby improving the accuracy of the
ETE diagnosis.

Our study has several limitations. First, this is a retrospective
study, causing a case selection bias that may have affected the
study results. Second, our radiomic nomogram model for
distinguishing ETE was established and validated in a single
hospital. Third, in some PTC cases with unclear boundaries, the
tumor was difficult to delineate. These cases were excluded from
this study. Most of these cases were PTC with ETE, leading to a
certain sample bias in this study. Fourth, the sample size
included in this study is not large enough; further multicenter
studies with larger sample sizes should be carried out. Forth,
since the data in this study are from a single center and the same
type of machine, the model will have some robust problems
Finally, our radiomic nomogram model only used greyscale
ultrasound images, and we will add radiomic characteristics of
multimodal ultrasound to the nomogram in the future. In further
studies, we will also use elastography and contrast-enhanced
ultrasound images, which may contain more radiomic features
than conventional 2D images.

In summary, a radiomic nomogram based on clinical risk
factors and a radiomic signature was constructed for the
prediction of ETE. This nomogram is expected to inform
treatment strategies and assist clinical decision-making for a
personalized ETE treatment of patients with PTC.
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FIGURE 5 | Decision curve analysis of the radiomic nomogram model.
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on Ultrasound in Patients
With Hashimoto’s Thyroiditis
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1 Department of Ultrasound Diagnosis, Ruijin Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China, 2 Ping An
Technology (Shenzhen) Co., Ltd., Shenzhen, China, 3 Computer Centre, Ruijin Hospital Affiliated to Shanghai Jiaotong
University, Shanghai, China

Objective: The aim of this study is to develop a model using Deep Neural Network (DNN)
to diagnose thyroid nodules in patients with Hashimoto’s Thyroiditis.

Methods: In this retrospective study, we included 2,932 patients with thyroid nodules
who underwent thyroid ultrasonogram in our hospital from January 2017 to August 2019.
80% of them were included as training set and 20% as test set. Nodules suspected for
malignancy underwent FNA or surgery for pathological results. Two DNN models were
trained to diagnose thyroid nodules, and we chose the one with better performance. The
features of nodules as well as parenchyma around nodules will be learned by the model to
achieve better performance under diffused parenchyma. 10-fold cross-validation and an
independent test set were used to evaluate the performance of the algorithm. The
performance of the model was compared with that of the three groups of radiologists
with clinical experience of <5 years, 5–10 years, >10 years respectively.

Results: In total, 9,127 images were collected from 2,932 patients with 7,301 images for
the training set and 1,806 for the test set. 56% of the patients enrolled had Hashimoto’s
Thyroiditis. The model achieved an AUC of 0.924 for distinguishing malignant and benign
nodules in the test set. It showed similar performance under diffused thyroid parenchyma
and normal parenchyma with sensitivity of 0.881 versus 0.871 (p = 0.938) and specificity
of 0.846 versus 0.822 (p = 0.178). In patients with HT, the model achieved an AUC of
0.924 to differentiate malignant and benign nodules which was significantly higher than
that of the three groups of radiologists (AUC = 0.824, 0.857, 0.863 respectively, p < 0.05).

Conclusion: The model showed high performance in diagnosing thyroid nodules under
both normal and diffused parenchyma. In patients with Hashimoto’s Thyroiditis, the model
showed a better performance compared to radiologists with various years of experience.

Keywords: thyroid nodule, ultrasound, deep learning, Hashimoto’s thyroiditis, diagnosis
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INTRODUCTION

Thyroid cancer has gained much attention because of its rapidly
increasing incidence since the last decades though the increase in
incidence is partially due to the improvements in diagnosis. It
has become the 11th most common cancer in the world and the
5th most common cancer among female worldwide (1–3).
Among all thyroid cancer, papillary thyroid cancer (PTC) is
the most common histologic type, accounting for 80–90% of all
thyroid cancer (4, 5). Hashimoto’s thyroiditis (HT) is the most
common auto-immune thyroiditis. The worldwide incidence was
reported to range from eight to 46 cases per 1,000 each year
depending on different inclusion criteria in various studies. It was
at least eight times more prevalent in female, and its incidence is
still increasing over time due to social and physical risk factors
such as pressure, hormone disorder, and smoking (6, 7). It is
considered a risk factor of PTC with an incidence of 0.5–30% in
HT patients which is higher than the reported 14.2 per 100,000
person in the general population (4, 8).

Ultrasonography is the most common tool to diagnose
thyroid disease, but the accuracy of the diagnosis usually
depends on the experience of radiologists. Despite a higher
incidence of PTC in patients with HT, it’s more difficult to
distinguish between benign and malignant nodules in these
patients because they often present a coarse and heterogeneous
thyroid parenchyma caused by the repetitive damage of chronic
inflammation (9). It was reported that the underlying
heterogeneous echogenicity can affect the ultrasound
characteristics of thyroid nodule, especially the margin.
Microlobulated or irregular margins were more frequently
observed among benign nodules under heterogeneous thyroid
parenchyma. Since these two features were considered as typical
malignant features (10), benign nodules under heterogeneous
parenchyma would more likely to be misdiagnosed as malignant
nodules, thereby reducing the diagnostic performance of doctors,
especially those with less experience. Park et al. (11) reported that
in patients with heterogeneous thyroid parenchyma, the
accuracy, specificity, and positive predictive rate for diagnosing
malignancy were 77.6, 76.3, and 48.7% which were significantly
lower than 84.4, 83.7, and 60.9% for patients with homogeneous
parenchyma. That means more benign nodules will be
misdiagnosed as thyroid cancer. Thus, overdiagnosis and
overtreatment are more likely to occur in this part of the
population because differential diagnosis between malignant
and benign nodules is more challenging in patients with HT.

Computer aided diagnosis (CAD) system has made
remarkable progress during these years. From the classic
machine learning method (12) to the now prevailing deep
learning model, the performance of the CAD system has
greatly improved over time. In the traditional machine
learning method (13), the explicit features such as size, shape,
margin, echogenicity, microcalcification, and macrocalcification
were extracted by algorithms or labeled by radiologists, and then
sent into the classifiers for training. This kind of expert-
knowledge-based system failed to meet the increasing demand
for precision, generalization, and efficiency. Recently, deep
neural network showed its competency in various tasks for
Frontiers in Oncology | www.frontiersin.org 290
medical image analysis, such as lesion detection and lesion
pattern recognition (14, 15). DNN can extract more complex
and implicit features and train classifiers synchronously in one
unified framework. It can achieve better accuracy and ability of
generalization not only because of its huge model capacity but
also its deeper and more complex structure. In a recent study
with a large training set containing 312,399 images (16), the
DNN-based CAD system outperformed most of the radiologists.
For these reasons, CAD was considered as a possible solution to
reduce overdiagnosis of thyroid cancer. It can overcome the
heterogeneity of human radiologists and has shown similar
diagnostic performance to human radiologists in many
studies (17).

However, no previous studies have been performed to
develop a computer aided diagnosis (CAD) system in
identifying PTC in HT patients which is believed to be a more
challenging task. In this study, we aim to establish a CAD system
using deep learning model and test its ability to differentiate
malignant and benign thyroid nodules underlying diffused
background of HT. Considering the complex heterogeneous
echogenicity of thyroid parenchyma in HT patients, we trained
and compared two DNN models, one focused only on the
interior region of the nodule while another focused not only
on the nodule area but also the parenchyma around the nodule.
These two models are both pretrained with ImageNet Database.
MATERIALS AND METHODS

Study Design and Inclusion Criteria
This study was a retrospective study approved by the Institutional
Review Board, with waiver of informed consent. We
retrospectively included 2,932 patients who underwent thyroid
ultrasonography from January 2017 to August 2019. 1,666 patients
had HT and 1,266 patients had normal thyroid parenchyma.
Among all patients, 80% were included as the training set and
the rest 20% as the test set so that images in the training set do not
appear in the test set.

All selected patients meet the following criteria for image
quality control: (1) each nodule should have at least one image
from at least two orthogonal planes, (2) the position and size
match the ultrasound report and pathological report if
pathological result is needed.

The requirement for pathological results depended on the
grading of nodules. All nodules were graded using K-TIRADS in
this study. Nodules with TIRADS 4A or above need to have
definitive pathological results to be included in this study, while
nodules graded TIRADS 2 or 3 were recognized as benign nodules
and did not necessarily need pathological results.

The inclusion criteria for benign nodules are: (1) nodules
graded TIRADS 2 or 3 with or without negative pathological
results, (2) nodules graded TIRADS 4A or above with a negative
cytological pathology result and Braf mutation verified by repeated
FNA, (3) nodules graded TIRADS 4A or above with histological
pathology proved to be benign. The inclusion criteria for
March 2021 | Volume 11 | Article 614172
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malignant nodules are malignancy proved by cytological or
histological pathology.

The inclusion criteria for HT were as follows: (1) thyroid
parenchyma showed heterogeneous echogenicity under
ultrasound; (2) serum TPOAb >5.61 IU/ml and/or TGAb >4.11
IU/ml; (3) TRAb within normal range(0–1.75 IU/L).

Image Acquisition and Evaluation
Ultrasound images were collected by radiologists with at least 3
years’ clinical experience to ensure the quality of images. The
ultrasound examinations were performed using MyLab 90,
Esaote; iU22, Philips; Resona 7, Mindray; RS 80A Samsung;
and Logic E9, GE Healthcare equipped with 7–12 MHz linear-
array transducer. The original settings of thyroid mode were used
to perform the examination. The region of interest (ROI) of the
lesions was annotated using four crossed calipers.

All images included were graded according to K-TIRADS
(18). Images in the test set were evaluated by three groups of
doctors with clinical experience <5 years, 5–10 years and >10
years respectively. Each group consists of two doctors, and they
were asked to give a consensus for whether a nodule was benign
or malignant.

Development of Deep Learning Model
Our proposed model is illustrated in Figure 1. We chose
DenseNet-161 pretrained with the ImageNet (19, 20) as our
model backbone. DenseNet architecture explicitly differentiates
between information that is added to the network and
information that is preserved. Dense connections with feature
maps being concatenated together are used, which are effective
for feature exploration, thus DenseNets have made nearly the
best performance on the general image classification tasks while
substantially reducing the number of model parameters. We used
one DenseNet structure with four dense blocks, which extracted
features and gradually down-sampled the feature maps, and then
input to the full connection layer. Finally, the model outputs the
benign probability and the malignant probability of the input
Frontiers in Oncology | www.frontiersin.org 391
image. Then the pathology prediction result, benign or
malignant, would be computed according to the probabilities
and the threshold value,

We trained a baseline DNN model using only the region of
nodule and a modified DNNmodel using features of both nodule
and parenchyma. We expand the annotated nodule ROI
according to the rules defined in Table 1, letting the model
capture more features around the nodule edge and context
information. Each ROI was padded with 0 if it reached the
image boundary while expanding, and was rescaled without
altering the original aspect ratio. To fit the input size of the
pre-trained DenseNet-161 model, all training and testing images
were resized to 224 × 224.

To avoid overfitting, data augmentation is also implemented.
We adopted random horizontal flipping, random cropping and
rotation within a small range for augmentation because excessive
randomization cannot mimic the speckle noise in the ultrasound
image. In specific, the range of random translation is not larger
than 10% of the longer side length of ROI; the range of random
rotation is not bigger than 12.5 angle degrees.

The diffused change information and pathology information
on training data were given by the radiologists. Guided by the
cross-entropy loss, we can learn the neural network end to end
using deep learning framework.

In the training set, we used 10-fold cross validation for the
identification of the optimal model, which was then used for the
test set classification. We acquired the average classification
performance for the test set, plotted in the receiver operating
FIGURE 1 | Architecture of our proposed model. DenseNet-161(k = 48) used as the backbone. Different ROI expansions adopted for annotated nodule images of
different sizes.
TABLE 1 | Rules of expanding nodule ROI.

Longer side length of nodule ROI Expanded square ROI size

0 < len < 65 len +256
65 < len < 150 len +128
150 < len < 256 len +64
len>= 256 len +32
March 2021
Different ROI expansions adopted for nodule images of different sizes in pixels.
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characteristic (ROC) curve. As usually recommended, the
optimal threshold value was set at the highest Youden Index,
or equivalently, the highest Sensitivity + Specificity (21).
Accuracy, sensitivity, specificity, precision, and area under
curve (AUC) of ROC curve were extracted from the 10 folds
and presented as means ± SD.

Our proposed model was implemented using Python and DL
toolkit Pytorch (22). We trained the network with stochastic
gradient descent using Adam optimizer with a weight decay rate
of 0•0005. All experiments were conducted on two workstations
equipped with a 16-core 2.10 GHz Intel Core Processor (Skylake)
and two NVIDIA Tesla V100 GPUs.

Statistical Analysis
General information such as the distribution of sex, age, and
percentage of malignancy between training set and test set was
calculated and compared between HT and normal groups. The
group difference for age was calculated using t test. The group
differences for qualitative data such as sex ratio and percentage of
malignancy were analyzed using chi-square test.

Accuracy, sensitivity, specificity, precision, and AUC were
exploited to evaluate the performance of our model versus
radiologists. Statistical differences of AUCs between various
diagnostic methods were compared using Delong test (23).
Mann–Whitney U test was used for the comparison of the
model’s specificity, sensitivity, accuracy, and precision between
HT subset and normal subset. Chi-square test was used for the
comparison between model and radiologists in terms of
specificity, sensitivity, accuracy, and precision.

Python was used to perform the Delong test and plot the ROC
curve. The rest statistical analysis was performed by SPSS 24.0. p
<0.05 was considered statistically significant.
RESULTS

Study Population
In total, 2,932 patients with 3,634 nodules and 9,106 images were
included in this study. The images were split into training set and
test set. All sets were partitioned strictly according to the criteria:
images that belonged to the same patient were assigned to the
same set. Test set contained 568 patients (710 nodules, 1,805
images) with 332 HT patients (58%). The training set had a total
of 2,364 patients (2,924 nodules, 7,301 images), with 1,334
patients (56%) having HT. The baseline characteristics of the
training set and test set were listed in Table 2.
Threshold Value and Comparison of Two
Deep Neural Network Models
The ROC curve was plotted in Figure 2 and the corresponding
AUC demonstrated the diagnostic performance of our baseline
and modified DNN model across all threshold values. The
sensitivity, specificity, and Youden Index curve for modified
DNN model were mapped in Figure 3 to show the optimal
threshold value. The maximum of Youden Index was 0.729, the
corresponding threshold was 0.358. The performance metrics at
Frontiers in Oncology | www.frontiersin.org 492
TABLE 2 | Baseline characteristics.

Training Set Test Set

Number of patients, n (%) 2,364 568
Patients with HT 1,334 (56.4%) 332 (58.5%)
Patients without HT 1,030 (43.6%) 236 (41.5%)

Number of images, n (%) 7,301 1,805
Images from patietns with HT 4,128 (56.5%) 1,086 (60.2%)
Images from patietns without HT 3,173 (43.5%) 722 (39.8%)

Number of nodules, n (%) 2,924 710
Benign nodules 1,920 (65.7%) 476 (67%)
malignant nodules 1,004 (34.3%) 234 (33%)

Nodule sizes (cm)
Benign nodules 1.09 (0.86) 1.08 (0.89)
malignant nodules 1.08 (0.63) 1.06 (0.61)

Patient gender, n (%)
Male 539 (22.8%) 136 (23.9%)

Female 1825 (77.2%) 432 (76.1%)
Mean age (years) 45.29 ± 12.45 45.09 ± 12.41
Marc
h 2021 | Volume 11 |
FIGURE 2 | Comparison of ROC curves and AUC of two DNN models.
Baseline DNN model learned only the nodule area. Modified DNN model
learned the nodule area as well as the surrounding parenchyma.
FIGURE 3 | Youden Index and threshold for modified DNN model.
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the optimal threshold were compared between the two models.
The AUC, sensitivity, and specificity for the baseline DNNmodel
was 0.918, 0.874, 0.820 compared to 0.924, 0.881, 0.839 for the
modified DNN model. The modified model showed a slightly
better performance, and therefore we chose the modified DNN
model as our CAD model in the following experiments.

Performance of Deep Neural Network
Model on Test Sets
The performance metrics of our DNN model in distinguishing
malignant and benign nodules on test set and the two subsets
were listed in Table 3. It achieved similar AUC under the test set,
HT subset and normal subset (AUC = 0.924, 0.924,
0.906 respectively).

When comparing the performance between HT subset and
normal subset, the model showed similar accuracy, sensitivity,
and specificity (p all >0.05). Only precision showed a significant
difference (0.540 vs 0.784, p < 0.01). When stratified by nodule
sizes, listed in Table 4, precision showed a notable decrease in the
HT subset compared to normal subset among all nodule sizes,
and it is more pronounced in nodules <5 mm.

The influence of nodule size on DNN model was
demonstrated in Table 4 and Figure 4. It was evaluated in
normal subset and HT subset respectively. In both subsets, AUC
values among nodules <5, 5–10, and 10–20 mm were similar
while that for nodules >20 mm was slightly lower. However the
ROC curves for nodules with different sizes were quite close as
illustrated in Figure 4. For both HT subset and normal subset,
the accuracy and specificity were similar among different nodule
sizes while sensitivity for nodules >20 mm and precision for
nodules <5 mm were greatly reduced. What’s more, the precision
for nodules >20 mm was also greatly reduced.
Performance of Deep Neural Network
Model Compared to Radiologists Under
Diffused Background
For HT subset, the DNNmodel achieved a higher AUC than that
of the three groups of radiologists which showed significant
difference as listed in Table 5. However, in the ROC curve
(Figure 5), the operation points of the radiologists are close to
the DNN model’s ROC curve. For the other performance
metrics, no significant difference was found for accuracy and
precision between DNN model and radiologists. The model
showed a higher sensitivity and a lower specificity but
significant difference only exist between the DNN model and
radiologists with <5 years of experience.
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Besides, in the test set and normal subset, the model also
showed higher AUC but close operation point on the ROC curve
compared to radiologists, as shown in Table 5 and Figure 5. The
difference of other metrics between model and radiologists was
similar to that under HT subset.
DISCUSSION

Many studies have achieved satisfied results in nodule diagnosis
by using DNN. Buda et al. reported the sensitivity and specificity
of a DNN model trained under 1,230 cases (1377 nodules) to be
87 and 52% respectively, which were higher than those of the
radiologists with experience ranging from 3 to 32 years and were
similar to the consensus of three ACR experts (24). Li et al.
included a training set with a total of 42,952 cases which
contained the largest sample size so far. The trained DNN
model was tested on one internal test set and two external test
sets. The AUC of model under three test sets were 0.947, 0.912,
and 0.908 respectively, which were significantly higher than
those of the six experienced radiologists (16). On the contrary,
Gao et al. found that the DNN model performed significantly
lower than the radiologists (25). However, they chose AlexNet as
their backbone which was different from ours. In our research,
TABLE 3 | Performance of model in diagnosing malignant nodules on test set and its subsets.

AUC Accuracy Sensitivity Specificity Precision

Test set 0.924 (0.006) 0.851 (0.018) 0.881 (0.027) 0.839 (0.031) 0.673 (0.038)
HT subset 0.924 (0.010) 0.852 (0.026) 0.881 (0.035) 0.846 (0.036) 0.540 (0.053)
Normal subset 0.906 (0.010) 0.843 (0.011) 0.871 (0.033) 0.822 (0.029) 0.784 (0.024)
P-Value 0.587 0.938 0.178 <0.01
March 2021 | Volume 11 | A
P-Value is that of diagnostic performance on HT subset versus normal subset; AUC, Areas under the ROC curve. All metrics were the average of 10-fold, presented as Mean (SD).
TABLE 4 | Performance metrics of DNN model in diagnosing malignant nodules
of different sizes, evaluated on normal subset versus HT subset.

HT Subset Normal subset

Average size (SD) 0.975 (0.51) 1.25 (0.77)
<5 mm AUC 0.915 0.895

Accuracy 0.83 0.825
Sensitivity 0.859 0.82
Specificity 0.828 0.826
Precision 0.327 0.651

5–10 mm AUC 0.909 0.895
Accuracy 0.82 0.846
Sensitivity 0.902 0.868
Specificity 0.794 0.822
Precision 0.577 0.841

10–20 mm AUC 0.883 0.907
Accuracy 0.832 0.837
Sensitivity 0.854 0.878
Specificity 0.824 0.792
Precision 0.652 0.827

>20 mm AUC 0.871 0.845
Accuracy 0.836 0.801
Sensitivity 0.722 0.724
Specificity 0.864 0.837
Precision 0.594 0.688
AUC, Areas under the ROC curve. All metrics were the average of 10-folds.
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DenseNet was chosen as the backbone for its higher performance
on the general image classification tasks while substantially
reducing the number of model parameters (19, 20).

It is worth mentioning that there was no research revealing
the performance of DNN model under diffused thyroid
background, and our research filled in this gap. We designed a
Frontiers in Oncology | www.frontiersin.org 694
modified DNN model for diffused background, which learned
nodule features as well as background features using border
extension. We compared the baseline model which analyzed only
the nodule area with our modified DNN model to see how
learning thyroid parenchyma helped nodule diagnosis. It turned
out that the baseline DNN model showed a slightly lower AUC
A B

C D

FIGURE 4 | Comparison of ROC curves and performance metrics of DNN model under different nodule sizes. (A, C) ROC curves and performance metrics for
different nodule sizes under HT subset. (B, D) ROC curves and performance metrics for different nodule sizes under normal subset.
TABLE 5 | Performance of model versus radiologists of clinical experience <5 years, 5–10 years, and >10 years in diagnosing malignant nodules on the test set and its subsets.

Diagnostic method AUC Accuracy Sensitivity Specificity Precision

Test set Model 0.924 0.851 0.881 0.839 0.673
Radiologist <5 yr 0.818 0.868 0.707 0.928 0.784
Radiologist 5–10 yr 0.843 0.864 0.798 0.888 0.726
Radiologist >10 yr 0.848 0.858 0.826 0.87 0.701
P-Value* <0.01 0.781 <0.01 <0.01 0.016
P-Value** <0.01 1.000 0.001 0.04 0.346
P-Value*** <0.01 0.733 0.777 0.3 0.752

HT subset Model 0.924 0.852 0.881 0.846 0.540
Radiologist <5 yr 0.824 0.897 0.723 0.924 0.588
Radiologist 5–10 yr 0.857 0.875 0.831 0.882 0.514
Radiologist >10 yr 0.863 0.863 0.862 0.863 0.487
P-Value* <0.01 0.401 0.001 0.003 0.226
P-Value** <0.01 0.928 0.060 0.312 0.811
P-Value*** <0.01 0.787 0.486 1.000 0.874

Normal subset Model 0.906 0.843 0.871 0.822 0.784
Radiologist <5 yr 0.825 0.842 0.712 0.938 0.893
Radiologist 5–10 yr 0.846 0.853 0.797 0.894 0.847
Radiologist >10 yr 0.844 0.85 0.804 0.885 0.837
P-Value* <0.01 0.603 0 0 0.017
P-Value** <0.01 0.916 0.01 0.035 0.179
P-Value*** <0.01 0.833 0.015 0.072 0.272
March
 2021 | Volume 11 | Arti
P-Value* is that of model versus radiologist with <5 years’ clinical experience; P-Value** is that of model versus radiologist with 5–10 years’ clinical experience; P-Value*** is that of model
versus radiologist with >10 years’ clinical experience; AUC, Areas under the ROC curve.
All metrics were the average of 10-folds.
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compared to the modified DNNmodel. In Figure 2, there was an
obvious separation between the two ROC curves in the upper left
area of the figure which means the modified DNN model had
higher sensitivity as well as specificity. This result further
supported our hypothesis that learning thyroid parenchyma
can help improve the diagnostic accuracy of CNN under
heterogeneous background.

The border extension design of the modified DNNmodel was
enlightened by our clinical experience that heterogeneous
thyroid parenchyma may affect nodules’ sonographic features.
This idea was supported by a series of literatures. Park et al.
found that benign nodules in this background are more likely to
show vague boundaries (11) which contribute to decrease of
accuracy and specificity in differentiating malignant and benign
nodules in HT patients. Malignant nodules could also have a
more obscure boundary and irregular margin under diffused
thyroid parenchyma (26). It could be concluded from the
literature that diffused parenchyma affects the nodule’s feature
mainly by its border. Therefore, it is reasonable to include
parenchyma features around the border using boundary
extension so that the influence of parenchyma on nodule
border can be considered when diagnosing nodules ’
malignancy under diffused background. The rule of ROI
expansion we proposed in Table 1 was based on the fact that a
small nodule usually contains less features inside the nodule due
Frontiers in Oncology | www.frontiersin.org 795
to a limited nodule area. Therefore, more border and background
information should be taken into consideration during the
diagnosis process. For large nodules, there were sufficient
features within the nodule area so border information can be
less emphasized. What’s more, all images would undergo size
normalization process after border expansion before given to the
model. For a large nodule, whose image size was already larger
than the required input size, the details inside the nodule area
would be compressed as image being zoomed out during size
normalization. To keep the original sonographic features as
unchanged as possible, we should not expand ROI of large
nodules too much for it would aggravate the loss of detail.

During the data collection process, our research included HT
patients as well as non-HT patients. There are two reasons for this
design. First, containing non-HT cases can make our model more
generalized. Second, patients with normal parenchyma can serve
as a comparison to the HT patients in the test set. Furthermore,
the images used in this study were scanned by ultrasound
machines from six different companies, which further increased
the diversity of data and were closer to the clinical reality.

In patients with HT, the trained DNN model showed a
significantly higher AUC value than human but as shown in
the ROC curve, dots of radiologists are not too far from the DNN
model’s ROC curve. Also, the model showed a higher sensitivity
but a lower specificity compared to human radiologists. This
A

B C

FIGURE 5 | Performance of DNN model and three groups of radiologists in diagnosing malignant nodules under test set (A), normal subset (B), and HT subset (C).
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indicates that the DNN model outperformed humans in
distinguishing malignant and benign nodules mainly due to a
higher sensitivity. However in a real-world setting, the overall
performance should be considered according to different clinical
tasks. Therefore, the model would be more suitable than human
radiologists for screening malignancy in a large population
especially in HT patients. But in other clinical scenario it may
not have that much remarkable advantage compared to human
radiologists. Another advantage of DNN model is its diagnostic
homogeneity. Ultrasound diagnosis is subjective, and it greatly
depends on clinical experience. In patients with HT, the
heterogeneous background could affect the margin of nodule
and thus further decrease inter-observer and intra-observer
agreement, especially between less experienced radiologists
(11). On the contrary, DNN model can extract image features
quantitatively and output a consistent conclusion through
standardized processing methods. Therefore, DNN has a
higher reproducibility compared to human radiologists.

However, the precision of our model in the HT subset is lower
than in the normal subset which means the trained DNN model is
less confident about predicting malignancy within HT subsets. One
possible explanation is that the sonograms of benign nodules under
HT parenchyma were more suspicious, and thus the model had a
higher chance to misdiagnose benign nodules as malignant ones.
This hypothesis was supported by a clinical research by Park M.
et al. (11) who discovered that benign nodules under HT
parenchyma showed more malignant features resulting in a lower
positive predictive rate in diagnosing malignancy. Another possible
reason is that the nodules in the HT subset are smaller than those in
the normal subset. We analyzed the average diameter of nodules
under each subset, and we found that the average size of nodules in
the HT subset was smaller than that in the normal subset, although
not significant. Smaller nodules tend to have less features than big
nodules which can cause the model to be less confident in the HT
subset. There was also literature supporting the negative effect of
nodule size on the performance of model (27) which further
supports this hypothesis. It was also notable that the difference of
precision between two subsets is more obvious for smaller nodules.
This could also be explained by the influence of nodule sizes. Since
larger nodules had sufficient features for the model to make reliable
predictions, they would be less affected by the heterogeneous
parenchyma than the smaller nodules.

The parenchyma had little influence on the performance for
our modified DNN model, while the size of the nodules had
certain impact on its diagnostic ability. The precision of nodules
<5 mm was significantly reduced, while the diagnostic sensitivity
of nodules >20 mm was also significantly reduced. As previously
reported, Wang et al. also discovered a similar trend (27). One
possible reason was that the ROI of small nodules contained less
features than big nodules. Therefore, the model was not as
confident in the diagnosis of small nodules as in the big ones.
The decrease in sensitivity for large nodules might be due to the
fact that follicular carcinoma accounts for a greater proportion in
nodules >20 mm than in the other three groups. The ultrasound
features of follicular carcinoma were similar to benign nodules.
However, follicular lesions account for a very low proportion in
Frontiers in Oncology | www.frontiersin.org 896
our training and test sets, and therefore the models didn’t get
enough training on identifying this kind of nodule.

Studies have shown that diagnostic accuracy and specificity of
doctors in diffused background were reduced (11). In our study,
the performance of radiologists didn’t seem to decrease in the
HT subset which is contrary to what was reported before. We
speculated that one possible reason for this paradoxical situation
is that the HT subset may contain slightly more TIRADS 2 and
TIRADS 5 nodules due to selection bias when collecting images,
which unfortunately made the HT subset relatively easier to
diagnose. This was a limitation of our study and could be avoided
by stratified sampling according to TIRADS grades in the future
study. Another possible reason is that coexisting HT may
increase the false negative rate of FNA for subcentimeter
thyroid nodules (26). In our study, to avoid false negative cases
as much as possible, nodules graded TIRADS 4A or above with a
negative cytological results without repeated FNA were
eliminated. As a result, there would be a higher chance that
subcentimeter nodules graded TIRADS 4A or above in HT
patients were excluded. However those nodules are rather
difficult to distinguish between malignant and benign. This
could also explain why radiologists did better in the HT subset.

This study had several limitations. First, the training set and
test set of this study were from the same hospital, lacking external
test set. The performance of our model needed to be verified
further more by external trials. Second, the data set contained
slightly more benign nodules. However, due to the large amount
of data used in this study, it should not be considered as a
significant deviation. Third, PTC is the main pathological type
for malignancy in this study. Only a small portion was follicular
carcinoma. The model couldn’t get enough training samples on
identifying follicular lesions. Therefore, the model cannot
accurately distinguish follicular carcinoma from benign
nodules. Another limitation is that the nodules graded as
TIRADS 2 and 3 do not necessarily have pathological results.
There may be inter-observer variation in nodules with lower
TIRADS grading, so it is possible to include very few malignant
nodules as benign nodules.
CONCLUSION

In conclusion, our modified DNN model performed slightly
better than the radiologists with different years of experience in
diagnosing thyroid nodules underlying Hashimoto Thyroiditis.
It showed higher sensitivity compared to the radiologists. It was
also capable of diagnosing malignant nodules in normal patients.
Thus, the DNN model might be a possible solution for screening
malignant thyroid nodules in the large population.
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8. Konturek A, Barczyński M, Wierzchowski W, Stopa M, Nowak W.
Coexistence of papillary thyroid cancer with Hashimoto thyroiditis.
Langenbecks Arch Surg (2013) 398(3):389–94. doi: 10.1007/s00423-012-1021-x

9. Takashima S, Matsuzuka F, Nagareda T, Tomiyama N, Kozuka T. Thyroid
nodules associated with Hashimoto’s thyroiditis: assessment with US.
Radiology (1992) 185:125–30. doi: 10.1148/radiology.185.1.1523294

10. Tessler FN, MiddletonWD, Grant EG, Hoang JK, Berland LL, Teefey SA, et al.
ACR Thyroid Imaging, Reporting and Data System (TI-RADS): White Paper
of the ACR TI-RADS Committee. J Am Coll Radiol (2017) 14(5):587–95.
doi: 10.1016/j.jacr.2017.01.046

11. Park M, Park SH, Kim EK, Yoon JH, Moon HJ, Lee HS, et al. Heterogeneous
echogenicity of the underlying thyroid parenchyma: howdoes this affect the analysis
of a thyroid nodule? BMC Cancer (2013) 13:550. doi: 10.1186/1471-2407-13-550

12. Choi SH, Kim EK, Kwak JY, Kim MJ, Son EJ. Interobserver and intraobserver
variations in ultrasound assessment of thyroid nodules. Thyroid (2010) 20
(2):167–72. doi: 10.1089/thy.2008.0354

13. Lim KJ, Choi CS, Yoon DY, Chang SK, Kim KK, Han H, et al. Computer-aided
diagnosis for the differentiation of malignant from benign thyroid nodules on
ultrasonography. Acad Radiol (2008) 15(7):853–8. doi: 10.1016/j.acra.2007.12.022

14. Huynh BQ, Li H, Giger ML. Digital mammographic tumor classification using
transfer learning from deep convolutional neural networks. J Med Imaging
(2016) 3:034501. doi: 10.1117/1.JMI.3.3.034501

15. Christodoulidis S, Anthimopoulos M, Ebner L, Christe A, Mougiakakou S.
Multisource transfer learning with convolutional neural networks for lung pattern.
Anal IEEE J Biomed Health (2017) 21:76–84. doi: 10.1109/JBHI.2016.2636929

16. Li X, Zhang S, Zhang Q, Wei X, Pan Y, Zhao J, et al. Diagnosis of thyroid
cancer using deep convolutional neural network models applied to
sonographic images: a retrospective, multicohort, diagnostic study. Lancet
Oncol (2019) 20(2):193–201. doi: 10.1016/S1470-2045(18)30762-9

17. Xu L, Gao J, Wang Q, Yin J, Yu P, Bai B, et al. Computer-Aided Diagnosis
Systems in Diagnosing Malignant Thyroid Nodules on Ultrasonography: A
Systematic Review and Meta-Analysis. Eur Thyroid J (2020) 9(4):186–93.
doi: 10.1159/000504390

18. Shin JH, Baek JH, Chung J, Ha EJ, Kim JH, Lee, et al. Ultrasonography
Diagnosis and Imaging-Based Management of Thyroid Nodules: Revised
Korean Society of Thyroid Radiology Consensus Statement and
Recommendations. Korean J Radiol (2016) 17(3):370–95. doi: 10.3348/kjr.
2016.17.3.370

19. Huang G, Liu Z, Van Der Maaten L, Weinberger KQ. Densely connected
convolutional networks. In: 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). Honolulu, HI, USA (2017). pp. 2261–9. doi:
10.1109/CVPR.2017.243

20. He K, Girshick R, Dollár P. Rethinking imagenet pre-training. In: 2019 IEEE/
CVF International Conference on Computer Vision (ICCV). Seoul, Korea
(South) (2019). pp. 4917–26. doi: 10.1109/ICCV.2019.005023

21. Krzanowski WJ, Hand DJ. ROC Curves for Continuous Data. Boca Raton:
Chapman & Hall/CRC (2009).

22. Paszke A, Gross S, Chintala S, Chanan G, Yang E, Devito Z, et al. Automatic
differentiation in pytorch. NIPS Autodiff Workshop (2017).

23. DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two
or more correlated receiver operating characteristic curves: a nonparametric
approach. Biometrics (1988) 44(3):837–45. doi: 10.2307/2531595

24. Buda M, Wildman-Tobriner B, Hoang JK, Thayer D, Tessler FN, Middleton
WD, et al. Management of Thyroid Nodules Seen on US Images: Deep
Learning May Match Performance of Radiologists. Radiology (2019) 292
(3):695–701. doi: 10.1148/radiol.2019181343

25. Gao L, Liu R, Jiang Y, Song W, Wang Y, Liu J, et al. Computer-aided
system for diagnosing thyroid nodules on ultrasound: A comparison with
radiologist-based clinical assessments. Head Neck (2018) 40(4):778–83.
doi: 10.1002/hed.25049

26. Gao L, Ma B, Zhou L, Wang Y, Yang S, Qu N, et al. The impact of presence of
Hashimoto’s thyroiditis on diagnostic accuracy of ultrasound-guided fine-
needle aspiration biopsy in subcentimeter thyroid nodules: A retrospective
study from FUSCC. Cancer Med (2017) 6(5):1014–22. doi: 10.1002/cam4.997

27. Wang L, Yang S, Yang S, Zhao C, Tian G, Gao Y, et al. Automatic thyroid nodule
recognition and diagnosis in ultrasound imaging with the YOLOv2 neural
network. World J Surg Oncol (2019) 17(1):12. doi: 10.1186/s12957-019-1558-z

Conflict of Interest: Authors CC, QYL, CG, YXQ, JX, and LYH were employed by
the company Ping An Technology Company of China, Ltd.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Copyright © 2021 Hou, Chen, Zhang, Zhou, Lu, Jia, Zhang, Guo, Qin, Zhu, Zuo,
Xiao, Huang and Zhan. This is an open-access article distributed under the terms of
the Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) and the
copyright owner(s) are credited and that the original publication in this journal is
cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.
March 2021 | Volume 11 | Article 614172

https://doi.org/10.3322/caac.21492
https://doi.org/10.3322/caac.21338
https://doi.org/10.1001/jamaoto.2016.0230
https://doi.org/10.1001/jama.2017.2719
https://doi.org/10.1038/nrendo.2016.110
https://doi.org/10.1016/j.autrev.2014.01.007
https://doi.org/10.1097/CCO.0000000000000150
https://doi.org/10.1007/s00423-012-1021-x
https://doi.org/10.1148/radiology.185.1.1523294
https://doi.org/10.1016/j.jacr.2017.01.046
https://doi.org/10.1186/1471-2407-13-550
https://doi.org/10.1089/thy.2008.0354
https://doi.org/10.1016/j.acra.2007.12.022
https://doi.org/10.1117/1.JMI.3.3.034501
https://doi.org/10.1109/JBHI.2016.2636929
https://doi.org/10.1016/S1470-2045(18)30762-9
https://doi.org/10.1159/000504390
https://doi.org/10.3348/kjr.2016.17.3.370
https://doi.org/10.3348/kjr.2016.17.3.370
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.1109/ICCV.2019.005023
https://doi.org/10.2307/2531595
https://doi.org/10.1148/radiol.2019181343
https://doi.org/10.1002/hed.25049
https://doi.org/10.1002/cam4.997
https://doi.org/10.1186/s12957-019-1558-z
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Frontiers in Oncology | www.frontiersin.org

Edited by:
Youyong Kong,

Southeast University, China

Reviewed by:
Yuming Jiang,

Stanford University, United States
Jinghao Duan,

Shandong University, China
Yan Wu,

Second Affiliated Hospital of Harbin
Medical University, China

*Correspondence:
Wei Wang

wangw73@mail.sysu.edu.cn
Bo-Wen Zhuang

zhuangbw3@mail.sysu.edu.cn

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Cancer Imaging and
Image-directed Interventions,

a section of the journal
Frontiers in Oncology

Received: 23 March 2020
Accepted: 03 March 2021
Published: 26 March 2021

Citation:
Li W, Lv X-Z, Zheng X, Ruan S-M,
Hu H-T, Chen L-D, Huang Y, Li X,

Zhang C-Q, Xie X-Y, Kuang M,
Lu M-D, Zhuang B-W and Wang W

(2021) Machine Learning-Based
Ultrasomics Improves the Diagnostic
Performance in Differentiating Focal
Nodular Hyperplasia and Atypical

Hepatocellular Carcinoma.
Front. Oncol. 11:544979.

doi: 10.3389/fonc.2021.544979

ORIGINAL RESEARCH
published: 26 March 2021

doi: 10.3389/fonc.2021.544979
Machine Learning-Based
Ultrasomics Improves the Diagnostic
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1 Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, Ultrasomics Artificial Intelligence
X-Lab, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China, 2 Department of Traditional Chinese
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Background: The typical enhancement patterns of hepatocellular carcinoma (HCC) on
contrast-enhanced ultrasound (CEUS) are hyper-enhanced in the arterial phase and
washed out during the portal venous and late phases. However, atypical variations make a
differential diagnosis both challenging and crucial. We aimed to investigate whether
machine learning-based ultrasonic signatures derived from CEUS images could
improve the diagnostic performance in differentiating focal nodular hyperplasia (FNH)
and atypical hepatocellular carcinoma (aHCC).

Patients and Methods: A total of 226 focal liver lesions, including 107 aHCC and 119
FNH lesions, examined by CEUS were reviewed retrospectively. For machine learning-
based ultrasomics, 3,132 features were extracted from the images of the baseline, arterial,
and portal phases. An ultrasomics signature was generated by a machine learning model.
The predictive model was constructed using the support vector machine method trained
with the following groups: ultrasomics features, radiologist’s score, and combination of
ultrasomics features and radiologist’s score. The diagnostic performance was explored
using the area under the receiver operating characteristic curve (AUC).

Results: A total of 14 ultrasomics features were chosen to build an ultrasomics model,
and they presented good performance in differentiating FNH and aHCC with an AUC of
0.86 (95% confidence interval [CI]: 0.80, 0.89), a sensitivity of 76.6% (95% CI: 67.5%,
84.3%), and a specificity of 80.5% (95% CI: 70.6%, 85.9%). The model trained with a
combination of ultrasomics features and the radiologist’s score achieved a significantly
higher AUC (0.93, 95% CI: 0.89, 0.96) than that trained with the radiologist’s score (AUC:
0.84, 95% CI: 0.79, 0.89, P < 0.001). For the sub-group of HCC with normal AFP value,
the model trained with a combination of ultrasomics features, and the radiologist’s score
remain achieved the highest AUC of 0.92 (95% CI: 0.87, 0.96) compared to that with the
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ultrasomics features (AUC: 0.86, 95% CI: 0.74, 0.89, P < 0.001) and radiologist’s score
(AUC: 0.86, 95% CI: 0.79, 0.91, P < 0.001).

Conclusions: Machine learning-based ultrasomics performs as well as the staff
radiologist in predicting the differential diagnosis of FNH and aHCC. Incorporating an
ultrasomics signature into the radiologist’s score improves the diagnostic performance in
differentiating FNH and aHCC.
Keywords: ultrasonography, machine learning, focal nodular hyperplasia, hepatocellular carcinoma, ultrasomics
INTRODUCTION

The typical enhancement pattern of hepatocellular carcinoma
(HCC) on contrast-enhanced ultrasound (CEUS) is characterized
by hyper-enhancement in the arterial phase and wash out during
the portal venous and late phases (1). However, atypical variations
occur, especially in some well-differentiated tumors, accounting for
5–41% of HCC cases; such lesions may show sustained hyper-/iso-
enhancement in the portal venous and late phases and are defined
as atypical HCC (aHCC) (2–4). Meanwhile, most benign focal liver
lesions show complete hyper- or iso-enhancement in the portal
venous and late phases, making differential diagnosis both crucial
and challenging (5, 6). This diagnostic difficulty could be resolved
using CEUS techniques, such as micro-flow imaging to further
characterize the enhancement features in the arterial phase, e.g., a
spoke-wheel artery for focal nodular hyperplasia (FNH) and
chaotic vessel for HCC (7–10). However, the interpretation of
features involves the experience of radiologists, making inter-
reader variability inevitable.

In contrast to the traditional practice of treating medical images
as pictures intended solely for visual interpretation, radiomics
features could reflect not only the macroscopic manifestation but
also the cellular and molecular nature of tissues (11–13). Radiomics
offers a vast scale of imaging biomarkers that could potentially assist
in detecting and diagnosing, evaluating the prognosis and
predicting the therapeutic response, and monitoring the disease
status of cancer (11, 12, 14–16). Machine learning-based
ultrasomics approaches, derived from radiomics, involve the
analysis and transformation of ultrasound images into large sets
of quantitative data and have been identified as potential
alternatives to detect and classify lesions (17, 18).

Recently, few applications of machine learning in HCC
diagnosis have been reported (19, 20). Most machine learning
systems have demonstrated excellent diagnostic performance,
with the area under the receiver operating characteristic curve
(AUC) of 0.89-0.97 for HCC characterization (19, 20). Gatos
et al. applied radiomics to segment and classify focal liver lesions
on non-enhanced T2-weighted images, providing a non-invasive
method for assessing liver lesions (21). Some studies have shown
that multi-modal ultrasound images also perform well for the
detection and classification of focal liver lesions (19, 22, 23).
However, most studies have only compared the diagnostic
performance between machine learning systems and
radiologists. The influence of the performance of these systems
on radiologists when used in clinical practice has not been
299
evaluated. Thus, the added clinical value of machine learning
systems to observers is necessary to determine and validate.

The purpose of our research was to develop a machine
learning-based ultrasomics approach to assess ultrasomics
features for improving the diagnostic performance in
differentiating FNH and aHCC.
PATIENTS AND METHODS

Patients
This retrospective analysis obtained ethical approval and waived
the informed consent requirement. From December 2013 to
January 2018, 119 patients with FNH and 107 patients with
aHCC lesions were included in the study based on the inclusion
and exclusion criteria. The inclusion criteria were as follows:
(a) CEUS was performed; (b) lesions were visually hyper-
enhanced during the arterial phase and sustained hyper- or
iso-enhanced during the portal venous and late phases;
(c) HCC was diagnosed by pathological examinations and
FNH was confirmed by pathological examinations or
supported by CT or MRI findings with a minimum 1 year
follow-up; and (d) no treatment was conducted before CEUS.
Patients were excluded if they had multiple tumors. Baseline
clinical trial data, including age, gender, and some blood test,
such as hepatitis background and alpha-fetoprotein (AFP), were
performed no more than 7 days before or after the
CEUS examination.

Image Acquisition
US examinations were performed using an Aplio 500 scanner
(Canon Medical Systems, Tokyo, Japan), equipped with a 375BT
convex transducer (frequency, 3.5 MHz) and an Aixplorer
scanner (Supersonic, Paris, France) with an SC6-1 curvilinear
transducer (frequency, 1–6 MHz). Contrast harmonic imaging
(CHI) and contrast pulse sequencing (CPS) were used with a
mechanical index of 0.06–0.10. Baseline ultrasonography was
performed to scan the liver thoroughly before CEUS.
Additionally, the target lesions were identified and observed
carefully during the baseline observation in B mode. The
imaging settings, such as the gain, depth, and focus, were
optimized for each examination. After the CHI or CPS mode
was activated, a bolus intravenous injection of 2.4 mL of
SonoVue (Bracco, Milan, Italy) was administered, followed by
flushing with 5 mL of saline. The targeted lesion was observed
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continuously for 5 minutes. The arterial, portal venous, and late
phases were defined as 10–30 seconds, 31–120 seconds, and 121–
300 seconds after injection, respectively. CEUS examinations
were performed by one of two radiologists (WW and X-YX) with
at least 10 years’ experience of performing CEUS. Three images
from the same section, which showed the maximum observation
of the target lesion, were taken from each patient, (a) a baseline
ultrasound; (b) an arterial phase image at the enhancement time
of 25–30 seconds; and (c) a portal phase image at the
enhancement time of 60–70 seconds.

Radiologist’s Scoring
Two staff radiologists (B-WZ and L-DC) reviewed ultrasound
images and videos retrospectively, and they had more than 5
years of experience in assessing liver CEUS data. The radiologists
were not involved in the feature extraction process below. All
patient identification information from the images was removed,
and the researchers were unaware of all the clinicopathological
Frontiers in Oncology | www.frontiersin.org 3100
information. The diagnostic criteria for HCC and FNH were based
on the 2012 guidelines issued by the European Federation of
Societies for Ultrasound in Medicine and Biology (EFSUMB) (2).
The diagnostic criteria for HCC were the manifestation of basket
pattern and/or chaotic vessels (Figure 1A) and non-enhanced areas
(Figure 1B). The diagnostic criteria of CEUS feature for FNH were
centrifugal enhancement (Video 1), spoke-wheel artery (Figure
1C), unenhanced central scar (Figure 1D), and feeding artery.

For each group, the diagnostic confidence was scored using a
subjective three-point scale (grade 1, definitely or most likely
FNH; grade 2, indeterminate; and grade 3, most likely or
definitely HCC). If there was inconsistency, we performed a
consensus reading, and the consensus data were used for
subsequent analysis.

Ultrasomics Feature Extraction
Digital imaging and communications in medicine (DICOM)
images were used to extract ultrasomics features using the in-
FIGURE 1 | Typical features for HCC and FNH lesions. (A) the basket pattern and/or chaotic vessels; (B) non-enhancing areas (arrow); (C) spoke-wheel arteries;
and (D) unenhanced central scar (arrow). Annotations of the ROI generated by the radiologists around the tumor outline are delineated in red.
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house designed Ultrasomics-Platform software (Version 1.0;
Ultrasomics Artificial Intelligence X-lab, Guangzhou, China).
After an image was imported, the radiologist drew a region of
interest (ROI) on the largest cross-section along the tumor contour.
Next, the software automatically extracted the features from the
ROIs. In total, 1,044 features could be extracted from a single
image. These 1,044 features extracted from a single image consisted
of five categories of features: histogram parameters, textural
parameters, form factor parameters, grey-level co-occurrence
matrix (GLCM) parameters, and run length matrix (RLM)
parameters. Detailed information on the features is provided in
Supplementary Material S1. Finally, 3,132 features were extracted
from the baseline US, arterial phase and portal phase of CEUS
images of each patient. Initially, two radiologists (WL and YH, with
at least 5 years of experience in performing US examinations) were
required to trace out ROIs on the selected images. The inter-
observer and intra-observer reproducibility in feature extraction
were assessed and are described in Supplementary Material S2.
The remaining images were delineated by the first radiologist.

Feature Selection and Model Development
for Prediction
Of the 3,132 features from each patient, many were highly
redundant, which could degrade the classification. We eliminated
redundant features by using a two-step feature selection method.
First, if two features were highly-correlated with a correlation
coefficient higher than 0.95, one of the features was removed.
Second, we eliminated features with an AUC less than 0.6.
According to the Harrell guidelines for multivariate analysis, the
number of events should be at least 10 times greater than that of the
included covariates (24). The least absolute shrinkage and selection
operator (LASSO) regression was used to perform the ultrasomics
features selection in the training dataset. All ultrasomics feature
values were normalized by using the mean and variance of the
feature values to be within similar dynamic ranges.

A support vector machine (SVM) based on the radial basis
function (RBF) kernel was trained from the selected feature
subset produced by the preceding steps. The entire data set
was randomly divided into a training dataset (comprising 80% of
subjects) and a validation dataset (comprising the remaining
20% of subjects). The training dataset was used to construct a
model, which was then evaluated using the validation dataset. A
10-fold cross-validation method was adopted to ensure the
robustness of the classifiers to training and testing data. All
processes were repeated 10 times with random seeds, generating
10 different training and validation datasets. We built the model
using the training dataset and then evaluated it using the
validation dataset repeatedly. Subsequently, the model with the
best classification performance was selected as the best model.

Statistical Analysis
Descriptive statistics are summarized as the mean ± standard
deviation (SD) or median and interquartile range. Comparisons
between groups were tested using Student’s t test or the Mann-
Whitney test for quantitative variables and the chi-squared test
or Fisher’s test for qualitative variables.
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A weighted kappa statistics test was used to assess the two
radiologists’ scores. We evaluated the reproducibility of the
ultrasomics feature extraction using the “irr” package in R. The
LASSO regression was performed using the “glmnet” package.

All observations of patients with known outcomes were
classified into three datasets (1): radiologist’s score,
(2) ultrasomics features, and (3) a combination of ultrasomics
features and radiologist’s score. The diagnostic performance of
the radiologist’s score was evaluated by plotting receiver operating
characteristic (ROC) curves. The diagnostic performance in
discriminating between FNH and aHCC is expressed as the
AUC. The ultrasomics features and the combination of the
ultrasomics features and radiologist’s score were further
compared through an SVM classifier using the “rattle” package in
R. The performance of the SVM model was tested using the AUC.
Paired comparisons of AUC values were performed by a two-sided
Wilcoxon signed-rank test at a significance level of 5%. The
predictive sensitivity (SEN), specificity (SPE), positive predictive
value (PPV), negative predictive value (NPV), positive likelihood
ratio (+LR), and negative likelihood ratio (-LR) were calculated at a
cut-off point that maximized the value of the Youden index.
Comparisons among the three datasets were performed using the
Delong test. Decision curve analysis (DCA) was performed with the
“dca.R” function. All statistical tests were two-sided tests, and
P< 0.05 indicated statistical significance. All Statistical analyses
were performed using R version 3.3.3 (http://www.r-project.org/).
RESULTS

Clinical Characteristics
The clinical characteristics are listed in Table 1. The study
included 226 patients; 107 (47.3%) patients (mean age, 54.0 ±
11.9 years old) had a final diagnosis of HCC; and the remaining
119 (52.7%) patients (mean age, 34.5 ± 11.7 years old) had a final
diagnosis of FNH. 20 FNH lesion were confirmed by pathological
examinations (11 by biopsy, 9 by surgery), while 99 cases were
supported by CT or MRI findings with a minimum one-year
follow-up. No significant difference was found in the tumor
number between the two groups (P=0.118). The average lesion
size of FNH and HCC was 3.3 ± 1.8 cm (range: 0.8-10.2 cm) and
4.8 ± 3.4 cm (range: 0.8-18.6 cm), respectively.

Ultrasomics Signature Construction
and Validation
After the feature selection and dimensional reduction process, 14
selected features were taken as the input of the SVM to train a
prediction model, including 6 features derived from baseline US
images, 3 from arterial phase images, and 4 from portal phase
images (Figure 2, Supplementary Material S3). All feature
values were normalized to achieve similar dynamic ranges. The
parameter C which is used to control the error-margin trade-off
was set at 1, and the kernel width sigma was 0.012. Next, the
training and validation procedures for tumor classification were
employed with 10-fold cross-validation.
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Diagnostic Performance of Ultrasomics
Features and Radiologist’s Score Models
A total of 83 FNHs were correctly identified while 36 lesions were
incorrectly identified as HCC, leading to a specificity of 69.8% by
the radiologists. For combined model, 100 FNHs were correctly
classified whereas 19 lesions were incorrectly assigned to HCC,
resulting in a specificity of 84.0%. Comparing the performance of
the radiologists' score and the combined model, twenty-four
cases have a different result; consequently, the combined model
leads to an additional 15 FNHs and 5 HCCs being
correctly classified.

The model trained with the combination of the ultrasomics
features and radiologist’s score performed significantly better
(AUC: 0.93, 95% CI: 0.89, 0.96) than that trained with the
ultrasomics features (AUC: 0.86, 95% CI: 0.80, 0.89, P < 0.001)
and radiologist’s score (AUC: 0.84, 95% CI: 0.79, 0.89, P < 0.001).
Overall, the model based on the radiologist’s score had the
highest diagnostic SEN of 94.4% (95% CI: 88.2%, 97.9%) but
the lowest SPE of 69.8% (95% CI: 60.7%, 77.8%) compared with
the combined model (SEN: 93.5% [95% CI: 87.0%, 97.3%], SPE:
84.9% [95% CI: 77.1%, 90.8%]), and the ultrasomics features
model (SEN: 76.6% [95% CI: 67.5%, 84.3%], SPE: 80.5% [95% CI:
70.6%, 85.9%]). Furthermore, when the ultrasomics features
were combined with the radiologist’s score, the diagnostic
performance was significantly improved in terms of the AUC,
SPE, and PPV and + LR (AUC: 0.93, SPE: 84.9%, and PPV:
84.7%, +LR 6.2) compared with the performance of the other two
models. The performance measurements of each dataset are
reported in Table 2 based on each ROC curves to distinguish
between FNH and aHCC (Figure 3).
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The DCA shows that within most reasonable threshold
probability ranges, the combined model showed the highest
overall net benefit than the radiologist’s score or ultrasound
feature model. The DCA results for the three models are
presented in Figure 4.
TABLE 1 | Clinical Characteristics and Laboratory Information of the Patients.

Patients FNH(N=119) aHCC(N =107) P value

Gender (male/female) 61/58 92/15 <0.001
Age (years) 34.5 ± 11.7 54.0 ± 11.9 <0.001
HBsAg (IU/ml) <0.001
≤0.05 116 (97.5) 15 (14.0)
0.05–250 1 (0.8) 34 (31.8)
>250 2 (1.7) 58 (54.2)

HBV-DNA (IU/mL) <0.001
<100 118 (99.2) 46 (43.0)
100–105 0 44 (41.1)
>105 1 (0.8) 17 (15.9)

HCV-Ab (S/CO) 0.212
<1.0 119 (100) 105 (98.1)
≥1.0 0 2 (1.9)

AFP (mg/L) <0.001
<20 117 (98.3) 38 (35.5)
20–400 2 (1.7) 40 (37.4)
>400 0 29 (27.1)

Tumor number 0.118
1 112 (94.1) 92 (86.0)
2 4 (3.4) 8 (7.5)
≥3 3 (2.5) 7 (6.5)

Tumor size (cm) 3.34 ± 1.80 4.76 ± 3.35 <0.01
<3 64 (53.8) 37 (34.6)
3-5 35 (29.4) 35 (32.7)
>5 20 (16.8) 35 (32.7)
Data are the number of patients, with the percentage in parentheses unless indicated.
aHCC, atypical hepatocellular carcinoma.
FIGURE 2 | Radiomics feature selection using the least absolute shrinkage
and selection operator (LASSO) regression model. The 10-fold cross-
validation (CV) process was repeated 50 times to generate the optimal
penalization coefficient lambda (l) in the LASSO model. The value of l that
produced the minimum average binomial deviance was used to select
features. Dotted vertical lines were drawn at the optimal values using the
minimum criteria and the 1 standard error of the minimum criteria (the 1-SE
criteria). A l value of 0.043 was chosen (the 1-SE criteria) according to
10-fold CV, where optimal l resulted in 14 nonzero coefficients.
TABLE 2 | Diagnostic Performance of the Three Models in Differentiating Focal
Nodular Hyperplasia and Atypical Hepatocellular Carcinoma.

Ultrasomics
score

Radiologist’s
score

Combined

Sensitivity (%) 76.6 (67.5-84.3) 94.4 (88.2-97.9) 93.5 (87.0-97.3)
Specificity (%) 80.5 (70.6-85.9) 69.8 (60.7-77.8) 84.9 (77.1-90.8)
PPV (%) 76.6 (67.5-84.3) 73.7 (65.5-80.9) 84.7 (77.0-90.7)
NPV (%) 79.0 (70.6-85.9) 93.3 (85.9-97.5) 93.5 (87.1-97.3)
+LR 3.7 (3.2-4.2) 3.1 (2.7-3.5) 6.2 (5.6-6.8)
-LR 0.3 (0.2-0.5) 0.1 (0.04-0.2) 0.1 (0.03-0.2)
AUC of training set 0.94 (0.89-0.99) 0.93 (0.85-0.98) 0.99 (0.94-1.00)
AUC of validation
set

0.86 (0.80-0.89) 0.84 (0.79-0.89) 0.93 (0.89-0.96)
Marc
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Data in parentheses are 95% confidence interval. PPV, positive predictive value; NPV,
negative predictive value; +LR, positive likelihood ratio; -LR, negative likelihood ratio; AUC,
area under the curve.
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Validation in the Sub-group of HCC With
Normal AFP Level
Forty patients were confirmed to develop HCC with normal AFP
level. The model trained above performed significantly better (AUC:
0.92, 95% CI: 0.87, 0.96) with the combination of the ultrasomics
features and radiologist’s score than that with the ultrasomics features
(AUC: 0.86, 95% CI: 0.74, 0.89, P < 0.001) and radiologist’s score
(AUC: 0.86, 95% CI: 0.79, 0.91, P < 0.001) (Table 3).
DISCUSSION

In this study, we derived and validated an ultrasomics-based
machine learning approach to analyze ultrasound images for the
preoperative individualized diagnosis of FNH and aHCC. Our
analysis reveals that the diagnostic performance of ultrasomics is
comparable to that of a staff radiologist in differentiating between
FNH and aHCC. Furthermore, when adding ultrasomics to the
radiologist’s classification, the diagnostic performance was
improved significantly with an AUC ranging from 0.84 to 0.93
(P < 0.001). Our study shows that ultrasomics may increase the
diagnostic confidence of radiologists in CEUS examinations and
potentially improve their accuracy when facing atypical features.
Thus, clinicians would benefit from this decision-making process
in the diagnosis of HCC.

In clinical practice, when radiologists face a lesion that shows
hyper-enhancement in the arterial phase and sustained
enhancement in the portal vein and late phases, it is difficult to
diagnose HCC. However, the high sensitivity and negative
Frontiers in Oncology | www.frontiersin.org 6103
predictive values of the radiologist would be useful in clinical
practice for excluding disease; thus, HCC would be excluded by
the radiologist if the result was considered to be FNH by
ultrasomics. Therefore, this system would help to reduce
unnecessary biopsies or active clinical treatment requested by
experienced radiologists.

In contrast, ultrasomics, referred to as high-throughput
computing, extracts innumerable quantitative features from US
images (18). By transforming digital medical images into mineable
high-dimensional data, ultrasomics yields features, such as textural
features, that could objectively reflect the homogeneity or
heterogeneity of an image. These patterns could represent
enhancement features just as heterogeneity might represent
chaotic vessels and necrosis. Focal liver lesions can be featured
by typical features in the arterial phase and wash-out during the
portal and late phases. In this study, the features displayed in the
arterial phase could provide a major benefit for the diagnosis of
liver tumors. In previous studies, we utilized a maximum intensity
projection technique of micro-flow imaging and achieved higher
spatial resolution and higher temporal resolution when detecting
vessel contours. Compared to conventional CEUS features (AUC:
0.84), micro-flow imaging technology provided significant
improvements over the detection rates achieved for the staff
radiologists (AUC: 0.89) (10). In this study, ultrasomics features
alone can achieve a similar diagnostic performance (AUC: 0.86) as
FIGURE 3 | Receiver operating characteristic curves of the combination of
ultrasomics features and radiologist’s score (blue curve), ultrasomics features
(green curve), and radiologist’s score (orange curve). The areas under the
curves are 0.93, 0.86, 0.84, respectively.
FIGURE 4 | Decision curve analysis for each model. The y-axis measures the
net benefit. The net benefit was calculated by summing the benefits (true
positive results) and subtracting the harms (false-positive results), weighting
the latter by a factor related to the relative harm of undetected cancer
compared with the harm of unnecessary treatment. The combined model
(yellow line) had the highest net benefit compared with the other two models
(blue line and red line) and simple strategies, such as the follow-up of all
patients (grey line) or no patients (horizontal black line), across the full range
of threshold probabilities at which a patient would choose to undergo a
follow-up imaging examination.
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micro-flow imaging (AUC: 0.868–0.873). Ultrasomics could reach
such achievement because it analyzes textural features objectively
and quantitatively to describe the intrinsic characteristics of
tumors, in particular heterogeneous tumors. Ultrasomics
analysis has already been applied to various types of disease,
such as HCC, liver fibrosis, and breast cancer (18, 25–27). The
potential of ultrasomics has already been demonstrated for liver
imaging in some studies (17, 18).

In this study, we additionally evaluated the benefit of ultrasomics
in assisting doctors with the interpretation of medical images. As an
interdisciplinary technology, it combines elements of imaging
generation, digital image processing, statistical imaging, and
knowledge engineering to manage the volume of information
related to the diagnostic process and outcome prediction (17, 18,
25). In our study, the additional information in the combinedmodel
led to improved diagnostic performance (AUC: 0.93) and higher
specificity of 84.9% compared with the ultrasomics (AUC: 0.86,
specificity: 80.5%) and radiologist’s score (AUC: 0.84, specificity:
69.8%) models. The combined model was also comparable to the
ML model based on multi-modal ultrasound images (AUC: 0.94,
sensitivity: 91.0%, specificity: 86.0%) (19). The results are also
comparable to and even better than those of MRI (AUC: 0.89,
sensitivity: 82.2%, specificity: 71.4%), as previously reported (20).
However, the use of artificial intelligence is not intended to replace
expert diagnosticians because no solution is guaranteed and
knowledge-based maintenance is required. Artificial intelligence is
also affected by several elements, such as the source of images and
the cognition of disease. Presently, most domains of large data have
not tapped the full potential of artificial intelligence technology.
However, rapid developments in the area will add more potential to
the advantages. Therefore, the most important role of artificial
intelligence is to help improve diagnostic accuracy and assist rather
than replace clinicians in making treatment decisions. It is worth
noting that the combined model greatly improved the diagnostic
ability of radiologists. A similar conclusion was obtained in another
study (28).

Our research has some limitations. First, this study was
retrospective and conducted in one center. This may cause
potential variations and selection bias in the patient population
and imaging methods, which is difficult to generalize the
outcomes to other agencies. Second, due to the relative rarity
of aHCC, the sample size is relatively small, which may cause
over-fitting to this particular population. Hence, large-scale
multicenter studies are necessary for the future to validate the
results. Third, only two radiologists were involved in the
assessment of the basic imaging features and feature extraction.
All outcomes were based on the features extracted by one
radiologist, which may not be generalizable to all radiologists.
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Fourth, the machine and imaging settings in this study were
inconsistent, which may affect the ultrasomics features (29, 30).

In conclusion, an ultrasomics approach was developed to
investigate the association between the quantitative ultrasound
features and pathological characteristics of tumors effectively and
objectively. We evaluated the added value of ultrasomics to the
radiologist, and this approach improved the performance of
CEUS by providing quantitative and standardized criteria to
radiologists, thereby enabling the more confident application of
CEUS in detecting HCC to achieve better treatment planning.
Our findings can assist clinicians in the differential diagnosis
between FNH and aHCC accurately using CEUS images, and this
allows for early and precise medical management and treatment.
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Gastric cancer is the second most lethal type of malignant tumor in the world. Early
diagnosis of gastric cancer can reduce the transformation to advanced cancer and
improve the early treatment rate. As a cheap, real-time, non-invasive examination method,
oral contrast-enhanced ultrasonography (OCUS) is a more acceptable way to diagnose
gastric cancer than interventional diagnostic methods such as gastroscopy. In this paper,
we proposed a new method for the diagnosis of gastric diseases by automatically
analyzing the hierarchical structure of gastric wall in gastric ultrasound images, which is
helpful to quantify the diagnosis information of gastric diseases and is a useful attempt for
early screening of gastric cancer. We designed a gastric wall detection network based on
U-net. On this basis, anisotropic diffusion technology was used to extract the layered
structure of the gastric wall. A simple and useful gastric cancer screening model was
obtained by calculating and counting the thickness of the five-layer structure of the gastric
wall. The experimental results showed that our model can accurately identify the gastric
wall, and it was found that the layered parameters of abnormal gastric wall is significantly
different from that of normal gastric wall. For the screening of gastric disease, a statistical
model based on gastric wall stratification can give a screening accuracy of 95% with AUC
of 0.92.

Keywords: gastric cancer, ultrasound, U-net, anisotropic diffusion, edge detection
INTRODUCTION

Gastric cancer is one of the common malignant tumors. The incidence and mortality of gastric
cancer in China account for almost half of the world’s annual rate (1). The prognosis of gastric
cancer is closely related to the timing of diagnosis and treatment. The 5-year survival rate of patients
with advanced gastric cancer is still less than 30% even if they receive comprehensive treatment
mainly by surgery (2–5). Early diagnosis of gastric cancer can make the clinical stage of the tumor
move forward, reduce the transformation to advanced cancer, improve the early treatment rate and
the overall cure rate of gastric cancer, which can not only save but also improve the consumption
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quality of medical resources (6). Therefore, early diagnosis and
treatment of gastric cancer has great clinical value.

At present, the medical imaging methods used in the
diagnosis of gastric cancer mainly include gastroscopy, CT,
MRI and gastric ultrasound. Histopathological diagnosis of
gastric mucosa biopsy under gastroscope is the gold standard
for the diagnosis of gastric cancer. Gastroscopy and biopsy of
gastric mucosa are highly valued and recommended all over the
world (7). However, the early diagnostic rate of gastric cancer in
developing countries is still unsatisfactory. In China, the early
diagnosis and treatment rate of gastric cancer is only about 10%
(8). Moreover, as an invasive examination method, gastroscopy
has poor acceptability in the population and is difficult to be
popularized as a screening method for gastric cancer. CT has
high spatial resolution and clear anatomical structure, which is
an important examination method for gastric diseases. But the
ionizing radiation of CT is harmful to human body. In addition
to the long scanning time and expensive price, MRI is also easy to
be affected by the difference of pre-scanning disposition and type,
field strength, sequence and parameters, which leads to the
unsatisfactory imaging stability of MRI in gastric cancer and
cannot be widely used in clinical screening.

In recent years, the application of gastric ultrasound is
becoming more and more popular, which has unique advantages.
Ultrasound imaging is non-invasive, painless, cheap, convenient
and real-time. Because the ultrasound beam can penetrate the
gastric wall and display the various levels of gastric wall structure,
gastric ultrasound has great application value in the diagnosis
of gastric diseases, and has a higher detection rate of gastric wall
thickening lesions. As a non-invasive and efficient diagnostic
method, gastric ultrasound can provide clinicians with a lot of
valuable information, timely detect the changes of gastric wall in
terms of morphology and thickness, help to estimate the extent of
invasion of gastric wall and understand the metastasis and diffusion
of various organs around the stomach (9). And it has been
preliminarily proved that trans-abdominal ultrasonography can
detect gastric cancer early from histopathology and ultrasound
physical characteristics (10–12).

In this paper, we proposed a new method based on U-net to
automatically identify the gastric wall area in the gastric
ultrasound image. The anisotropic diffusion filter and edge
detection method are used to stratify the gastric wall structure
and calculate the ratio of each layer, which can be used as a
reference to diagnose the disease. It’s a preliminary report on
diagnosis of gastric diseases by using the ratio of thickness of
each layer of gastric wall. It is helpful to quantify the diagnostic
information of gastric diseases, improve the accuracy of
ultrasound diagnosis of gastric cancer, and is expected to
improve the screening efficiency of gastric cancer.
MATERIALS AND METHODS

Materials
In this study, we collected 251 gastric ultrasound images from 106
patients, including 47 male patients and 59 female patients. 32
Frontiers in Oncology | www.frontiersin.org 2107
cases were diagnosed with gastric disease, 11 cases were diagnosed
with gastric cancer, and the rest of cases are normal. Gastric
diseases included 10 cases of gastric ulcer, 12 cases of chronic
gastritis, 8 cases of acute gastritis, 1 case of gastric stromal tumor
and 1 case of gastric polyps. And the sites of diseases included
gastric body, gastric antrum and gastric horn. In 11 cases of gastric
cancer, there were 9 cases of early gastric cancer and 2 cases of
advanced gastric cancer. For the cases of early gastric cancer, the
sites of canceration included gastric body and gastric antrum. One
case of gastric body cancer and one case of gastric antrum cancer
were pathologically diagnosed as intramucosal cancer, and the
other 7 cases were adenocarcinoma. The other two cases of
advanced gastric cancer were gastric cardia cancer and gastric
body cancer, and both were pathologically diagnosed as
adenocarcinoma. The patient characteristics of three cohorts are
summarized in Table 1. It is worth pointing out that these 11 cases
of gastric cancer were found to be abnormal by ultrasound
examination for the first time, and they were finally confirmed
to be gastric cancer through surgery and pathology.
Ultrasound Scanning Method
The scanning equipment we used is WISONIC Clover 60
portable color Doppler ultrasound diagnostic instrument
(Huasheng Medical Technology Co., Ltd, Shenzhen, China)
and Ge LOGIQ E9 (GE company, America). Convex array
probes are routinely used with a frequency of 5.0MHz. The
center frequency will be appropriately adjusted according to the
weight of the patient. The patient obeyed the requirement and
fasted for 8 hours before the examination to ensure the gastric
cavity was empty. During the examination, the patient drinks
500-700 mL warm water with 48g of ultrasonic contrast agent
(Xin Zhang®, Huqingyutang Pharmaceutical Company,
Hangzhou, China). The stomach body, gastric angle, gastric
antrum, pylorus and duodenal bulb were routinely screened
when patients are in the standing position, and the cardia and
gastric fundus were checked in the supine position. If necessary,
take the left, right and semi-recumbent positions as a
supplementary examination position. The examiner observes
the cardia, the fundus of the stomach, the body of the stomach,
the corner of the stomach, the antrum, and the pylorus in turn. If
gastric lesions are found, perform local image magnification or
use high-frequency probes to observe the hierarchical structure of
the stomach wall, the shape of the lesion, size range and its
relationship with neighboring organs, etc.
TABLE 1 | Patient characteristics of three cohorts.

Characteristics Normal
Cohort

Benign Lesions
Cohort

Gastric Cancer
Cohort

Age (Mean ±
SD)

53.04 ± 14.96 58.04 ± 18.06 71.43 ± 9.33

Sex
Male 7 8 5
Female 16 16 2

Total 23 24 7
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To be specific, scanning can be divided into five steps:

1. Scan the cardia, ask the patient to lie on his back and move
the probe from xiphoid process to the left costal arch.

2. The gastric fundus is scanned by placing the probe in the 10th
intercostal space.

3. Scan the cross section of gastric fundus, body and antrum,
ask the patient to lie on the right side, and move the probe
from the left costal arch along the contour of the stomach.

4. Scan the coronal plane of gastric fundus, body and antrum,
ask the patient to lie on the right side, take the probe tail as
the fulcrum, rotate the probe along the left rib arch, and tilt
the probe 45° at the same time.

5. Scan the gastric antrum and pylorus, ask the patient to lie on
his back, and place the probe at the right vertical costal arch.
Methods
The flow chart of the method is shown in Figure 1. First, a U-net-
based gastric wall detection network is used to detect the region-
of-interest (ROI) area of the gastric wall. Then, in the detected ROI
area, anisotropic diffusion technology is used to extract the layered
structure of the gastric wall. By calculating and counting the
thickness of the five-layer structure of the gastric wall, a simple
and useful gastric cancer screening model was obtained.

We labeled the regions of gastric wall in 251 gastric ultrasound
images, and generated a mask corresponding to every single data
as the input of U-net. After training, we will get a model which
can automatically identify the ROI of gastric wall.
Frontiers in Oncology | www.frontiersin.org 3108
The gastric wall has five layers, which are mucosa, muscularis
mucosa, submucosa, muscularis propria and serosa. The change
of thickness ratio of each layer can be used as the basis for
diagnosing gastric diseases (Figure 2).

The image output from the model is filtered by speckle
reduced anisotropic diffusion (SRAD) to make the hierarchical
structure of gastric wall more obvious. The edge detection
algorithm is used to find the four boundaries among the five
levels, and then the five-layer structure is obtained. The ratio of
thickness between layers will be calculated, and we can
distinguish them by comparing the result of normal gastric
wall with that of abnormal gastric wall.

Gastric Wall Detection Based on U-Net
Because the structure of the stomach is fixed and the semantic
information is not rich, it is basically the stomach cavity and the
stomach wall, so it is necessary to refer to the high-level semantic
information and the low-level semantic information in the work
of automatic identification of gastric wall. In addition, the data
acquisition of medical images is much more difficult than other
images, so the model we designed should not be too large because
of the small amount of data. Otherwise, too many parameters
will easily lead to over fitting and poor prediction effect. Based on
the above reasons, we chose U-net structure to establish the
model of automatic identification of gastric wall (Figure 3). It
can meet the needs of referencing low-level and high-level
semantic information at the same time, and solve the problem
that the amount of data is small and it is difficult to build an
accurate model.
FIGURE 1 | Flow chart of the method.
March 2021 | Volume 11 | Article 627556
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U-net consists of two paths, the contraction path on the left and
the expansion path on the right. In the contraction path, there are
10 times of 3 × 3 convolutions (the size of convolution kernel is 3 ×
3), the relu activation layer, and four times of 2 × 2max pooling. In
each down sampling process, the size of the image is reduced, the
resolution is reduced, and the number of characteristic channels is
doubled. Correspondingly, each step of deconvolution in the
expansion path will reduce the number of channels by half, and
copy and cross with the previously saved low-level feature map of
the same scale. Then, the obtained results are sampled again, and
the process is repeated until the image is restored to the original
scale. This structure is also called encoder decoder structure. The
contraction path corresponds to the encoder, and the expansion
path corresponds to the decoder. The encoder part of U-net
downsamples 4 times, and the decoder part of u-net upsamples
Frontiers in Oncology | www.frontiersin.org 4109
4 times. The feature image obtained from the down sampling of
left encoder is restored to the resolution of the original image.
Finally, the final output segmentation image is obtained by
softmax (13).

U-net adopts splicing fusion mode, which is completely
different from other common segmentation networks such as
full convolution network. It stitches the features together in the
dimension of channels, which is equivalent to doubling the
number of channels to form thicker features. In the case of full
convolution network fusion, the corresponding points are added
together, and the dimensions will not change, and no thicker
features will be formed.

Compared with FCN and deeplab, U-net performs four
upsampling, and uses the method which connects the low-level
feature map to the high-level feature map. U-net does not
FIGURE 3 | The structure of U-Net.
FIGURE 2 | The structure of gastric wall. The gastric wall has five layers.
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directly carry out the back propagation of supervision and loss
function on the high-level semantic feature map, which not only
ensures that the recovered feature map integrates more low-level
features, but also makes the features of different scales get fusion
and reference, so as to make better prediction and more fine
edge information.

Gastric Wall Stratification Based on SRAD (Speckle
Reducing Anisotropic Diffusion)
Given an image I0(x,y) with finite energy and no zero intensity
value, the output image I(x,y;t) is obtained by the following
partial differential equation:

∂ I(x,y;t)
∂ t = div½c(q)∇ I(x, y; t)�

I(x, y; 0) = I0(x, y), (
∂ I(x,y;t)

∂W
! ) j ∂W = 0

8<
: (1)

It is called the SRAD PDE, in the same form as anisotropic
diffusion. The diffusion coefficient is defined as:

c(q) =
1

1 + q2(x,y;t)−q20(t)
q20(t)½1+q20(t)�

(2)

or

c(q) = exp½− q2(x, y; t) − q20(t)
q20(t)½1 + q20(t)�

� (3)

The instantaneous coefficient of variation is defined as:

q(x, y; t) =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 (

j∇I j
I )2 − 1

16 (∇
2 I=I)2

(1 + 1
4
∇2I
I )2

vuut (4)

q (x, y; t) represents the degree of dispersion between pixels,
which is large at the edge and small in the homogeneous region.
q0(t) is a speckle scale function.

SRAD encourages isotropic diffusion in homogeneous
regions, where q fluctuates and C (q) is about 1. In addition, it
is necessary to manually select a homogeneous region to
determine the value (14). After SRAD, the edge structure of
gastric wall of the image is more clear.

Quantitative Measurement of Gastric Wall
After we get the image of gastric wall, because the gastric wall has
five layers of staggered structure, after the SRAD anisotropic
diffusion filtering processing, there will be a more obvious
difference between the light and the dark, that is, the edge is
strengthened by SRAD and become more obvious. In this case,
the edge detection algorithm can be used to find out the junction
of each layer, and the thickness of each layer is the difference of
the positions of each layer. In this paper, Sobel operator is used
for edge detection (15).

The following method is proposed to determine whether the
patient with gastric ultrasound image has gastric disease:

When the gastric wall of one patient can be divided into five
layers, the proportions for the five layers in the entire gastric wall
are calculated and combined to be recorded as x which is a vector
with 5 dimensions. Then the standard value recorded as s can be
Frontiers in Oncology | www.frontiersin.org 5110
obtained by averaging the x for all the patients and we can have
s = (0.278, 0.133, 0.154, 0.154, 0.280) in our study. The distance d
between s and the x for one patient is defined as following

d =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x1 − s1)

2 + (x2 − s2)
2 + (x3 − s3)

2 + (x4 − s4)
2

q
(5)

d is the value that we use to determine the situation of gastric wall
of one patient. If the value of d is large, it might be regarded as
abnormal gastric wall.
RESULTS

Detection Results
In our study, there are three methods of labeling applied for
obtaining the ground truth of gastric wall which are as following.

1. Apply one rectangle to label the part of the gastric wall area
shown as Figure 4A

2. Apply two rectangles trying to cover more parts of the gastric
wall area compared with the method with one rectangle,
which is shown in Figure 4B

3. Label the entire area of gastric wall shown as Figure 4C.

The principle of the labeling is to cover the gastric wall as
much as possible. However due to the complexity of the
ultrasound image representation of the gastric wall in clinical
practice, it is not always possible to accurately select the entire
region of gastric wall. This is the reason that we apply the above
three methods for the labeling in our study. It should be denoted
that the labeling results based on all of them are considered as the
ground truth of gastric wall for the task of gastric wall detection.

Intersection over Union (IoU) is applied here as the metric to
quantitatively evaluate the performance of the proposed model
for the gastric detection, which is defined as:

IoU =
A∩B
A∪B

(6)

where A denotes the detection result and B is the ground truth of
gastric wall. The symbol of ∩ denotes the intersection of the two
regions and the symbol of ∪ denotes the union of the two
regions. The high value of the IoU denotes the good
performance of model detection. The detailed results are
shown in Table 2.

It can be seen that the proposed deep model for the detection
of gastric wall demonstrates its relatively effectiveness to some
extent. The fact that the largest IoU value comes from the
method of labeling the entire area of gastric wall denotes that
the proposed model effectively learns to represent the gastric
wall. Therefore, the detection result may achieve better IoU when
the ground truth is the true region of the gastric wall. It should be
also noted that the performance of the detection part should be
ultimately evaluated only by the results of the classification to
quantitatively determine the situation of the patient as the
following section since it is the only purpose of our study.
Figure 5 gives two examples of gastric wall detection based on
U-net.
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Quantitative Stratification Results
We select a column in the image, corresponding to the green line
in the image (Figure 6A). The ratio is obtained by edge detection
of pixels in the column. Each line corresponds to a column of
pixel values (Figure 6B). All the white lines in the image
represent the position of the edge detected by Sobel edge
detection (Figure 6C). Four edges of five-layer structure are
detected, which is consistent with our expectation. It is easy to get
the vertical position of each white line. We can calculate the
relative thickness of each layer of structure and the ratio between
five layers of structure by making a simple subtraction.

We select a number of such columns and average the results
as the final ratio result. In this example, the proportional
relationship between the five structures is 0.358: 0.189: 0.116:
0.2: 0.137.

For the three cohorts in our study, we calculated the d value
defined as Eq. 5 for all the patients. Figure 7 demonstrates the
distributions of d values and it can be seen that the difference
among normal, benign lesions and gastric cancer is quite obvious.

For the classification of gastric walls among normal, benign
lesions and gastric cancer, the corresponding experiments were
performed and the results are demonstrated in Table 3. We
randomly select 70% of the data in the dataset as the training set
and 30% as the test set. In the training set, we find the threshold
which can best distinguish normal and abnormal cases, and
apply this threshold to the test set. Results were validated by
quantitative indexes including Accuracy (ACC), Sensitivity
(SENS), Specificity (SPEC), Positive Predictive Value (PPV),
Negative Predictive Value (NPV), Matthew’s Correlation
Coefficient (MCC), F1 score and P-value between two target
Frontiers in Oncology | www.frontiersin.org 6111
groups. Supposing TP, TN, FP, FN represent true positive, true
negative, false positive and false negative, then accuracy (ACC),
sensitivity (SENS), specificity (SPEC), positive predictive value
(PPV), negative predictive value (NPV), Matthew’s correlation
coefficient (MCC) and F1 score can be defined and calculated as:

ACC =
TP + TN

TP + TN + FP + FN

SENS =
TP

TP + FN

SPEC =
TN

TN + FP

PPV =
TP

TP + FP

NPV =
TN

TN + FN

MCC =
TP � TN − FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP + FPð Þ TP + FNð Þ TN + FPð Þ TN + FNð Þp

F1 = 2 ·
Precision · Recall
Precision + Recall

It can be seen that the proposed quantitative method achieves
excellent results for the classification of gastric walls among
normal, benign lesions and gastric cancer.
CONCLUSIONS AND DISCUSSION

The main method for gastric cancer diagnosis and screening in
developed countries is gastroscopy, which has significantly
increased the early detection rate of gastric cancer and
A B

C

FIGURE 4 | Three methods of labeling. (A) Apply one rectangle to label the part of the gastric wall area. (B) Apply two rectangles trying to cover more parts of the
gastric wall area compared with the method with one rectangle. (C) Label the entire area of gastric wall.
TABLE 2 | Gastric wall detection results.

Labeling method IoU

One rectangle 0.36
Two rectangles 0.32
Label the entire area 0.43
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improved the survival rate of patients. Gastroscopy and gastric
mucosal biopsy techniques are also highly recommended in
China. However, the early diagnosis rate of gastric cancer is
still very poor, with the early diagnosis and treatment rate of
gastric cancer is only about 10%. China is a developing country
with more than half of the rural population. Not only is there an
inherent causal relationship between certain traditional eating
habits of rural residents and the occurrence of gastric cancer, but
the low self-care awareness of rural population is a relatively
high-risk factor for gastric cancer. What is even more
unfavorable is that the number of physicians who can perform
gastroscopy in rural areas is severely insufficient, and rural
residents have low compliance with gastroscopy, resulting in
serious practical difficulties in gastroscopy screening for gastric
cancer (16). Therefore, it is urgent to explore and establish a
Frontiers in Oncology | www.frontiersin.org 7112
gastric cancer screening and diagnosis strategy with
Chinese characteristics.

Among many clinical imaging techniques, ultrasound
imaging has the advantages of high soft tissue resolution, easy
operation, safety and painlessness. In China, the penetration rate
of ultrasound equipment is extremely high, and ultrasound
equipment at all types of medical institutions must be
equipped. For gastric cancer, ultrasound can show the location,
size, level of invasion of the stomach wall, and whether there are
swollen lymph nodes in the stomach.

The stomach is a hollow organ when without filling, so it is
indeed hard to obtain accurate measurement of gastric wall
structure by ultrasound. Therefore, we used oral contrast
trans-abdominal ultrasonography, which has obvious
advantages. The contrast agent fills the stomach cavity to form
FIGURE 5 | The prediction results of gold standard and our model. After training, the model can accurately predict the gastric wall area in gastric ultrasound
images.
A B C

FIGURE 6 | Segmentation results. (A) The green lines. (B) The pixel value of one line. (C) Detected edges.
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a high-quality “acoustic window”, which is effective in improving
the ultrasound imaging ability of the stomach wall structure. For
most of the conventional ultrasound diagnostic apparatuses, the
imaging quality can improve the hierarchical structure and
continuity of the stomach wall, and the recognition ability can
meet the detection of most gastric cancer.

We have proposed a U-net based model for automatic
recognition of gastric wall region from gastric ultrasound
images. We use speckle reduced anisotropic diffusion to make
the hierarchical structure of gastric wall more obvious. By
dividing the five layers of gastric wall and calculating the ratio
of each layer, the normal gastric wall and abnormal gastric wall
can be accurately distinguished. This method is also a useful
attempt for early screening of gastric cancer. In the existing cases,
the detection accuracy of abnormal gastric wall is 95%.

As far as we know, there is no quantitative analysis of the
thickness of five layers of gastric wall before. This article is a
preliminary report on this aspect. In normal and abnormal cases,
the ratio of gastric wall thickness is different. The change of
gastric wall thickness often means the occurrence of gastric
diseases, and our experimental results have confirmed it. The
experimental results have shown that the proposed detection and
calculation method of gastric wall is helpful to quantify the
diagnosis information of gastric diseases, and is expected to
improve the efficiency of ultrasound screening for gastric cancer.

In the future, with the advantages of noninvasive safety, cost-
effectiveness, high equipment penetration rate and inspection
Frontiers in Oncology | www.frontiersin.org 8113
compliance, gastric ultrasound will play more unique roles and
advantages in the diagnosis and screening of gastric cancer.
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FIGURE 7 | The distributions of d values.
TABLE 3 | Classification results based on diagnostic model.

Experiment AUC ACC SENS SPEC PPV NPV MCC F1score P-value
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Normal vs Benign Lesions &Gastric Cancer 0.92 0.95 1.00 0.83 0.93 1.00 0.88 0.97 <0.0001
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Artificial intelligence (AI) transforms medical images into high-throughput mineable data.
Machine learning algorithms, which can be designed for modeling for lesion detection,
target segmentation, disease diagnosis, and prognosis prediction, have markedly
promoted precision medicine for clinical decision support. There has been a dramatic
increase in the number of articles, including articles on ultrasound with AI, published in only
a few years. Given the unique properties of ultrasound that differentiate it from other
imaging modalities, including real-time scanning, operator-dependence, and multi-
modality, readers should pay additional attention to assessing studies that rely on
ultrasound AI. This review offers the readers a targeted guide covering critical points
that can be used to identify strong and underpowered ultrasound AI studies.

Keywords: ultrasound, artificial intelligence, machine learning, deep learning, radiomics
INTRODUCTION

By looking into pixels not readily visible to the human naked eyes, artificial intelligence (AI) has led
medical imaging into the era of big data (1). Articles using conventional machine learning (ML)
algorithms and deep learning, especially convolutional neural networks (CNN), have also become
more numerous over the past several years. Studies have reported the use of AI in X-rays,
computerized tomography (CT), magnetic resonance imaging (MRI), ultrasound, and other types
of scans, and they have reported superior performance of AI to that of conventional methods in
disease detection, characterization, and patient prognosis prediction (2–4).

Working groups of the Consolidated Standards of Reporting Trials-Artificial Intelligence
(CONSORT-AI) and the Standard Protocol Items: Recommendations for Interventional Trials-
Artificial Intelligence (SPIRIT-AI) have developed an extension to the core CONSORT 2010 items
and 2013 SPIRIT statement that serves as a guidance for medical AI studies (5, 6). Given the rapid
expansion of the literature published, JAMA has provided a reader’s guide to assessing clinical AI
articles (7), which reviewed the basics of machine learning and aspects of the clinical
implementation of AI. The editorial board of Radiology also highlighted several crucial
considerations meant to formalize AI methodology in medical imaging studies (8). However,
when AI is used with ultrasound, issues become complicated for the current existing guides.
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Ultrasound uses the reflection of the ultrasonic beam to reveal
tissue structure. It is one of the most widely used methods of
imaging in clinical practice. It serves as a mainstay in
obstetricians, cardiology, interventional therapy guidance and
post-treatment surveillance (9). Ultrasound-based radiomics
studies, called ultrasomics (10), follow the standard three-step
AI process for medical imaging: data preparation, model
development and testing, and evaluation of clinical
effectiveness (11). However, given ultrasound’s unique
properties of real-time scanning, operator-dependence, and
multi-modality, some specific issues may influence the
performance of AI models and the generalizability of a study’s
results. For example, operator dependence may influence the use
of expert-dataset-based model training to the resident-dataset-
based model testing and use in primary hospitals. In this
minireview, we aim to provide the readers with an overview of
how to assess medical imaging AI articles, including some
specific points regarding ultrasound AI studies.
OBJECTIVE: IS THE CLINICAL SCENARIO
CLEARLY DEFINED?

The objective of a medical imaging AI study should comply with
two principles: first, it must be derived from clinical practical
needs, and second, it must be applicable to AI technique. For
example, un-enhanced ultrasound is recommended for
monitoring populations at high risk of liver cancer (12), so it
would be a risk stratification tool. An unenhanced ultrasound AI
tool would ideally increase the detection rate of liver lesions and
assist in risk assessment. When transformed into AI tasks, target
recognition and classification are both technically feasible.
MATERIALS AND METHODS: IS THERE
AN INDEPENDENT TESTING DATASET
BESIDES THE TRAINING AND
VALIDATION SETS?

AI models are prone to overfitting. Both conventional ML and
CNN algorithms can vary greatly in performance across different
data sources (13). After a model is trained using the training set,
its hyperparameters must be tuned in the validation set (also
called the tuning set) for better generalizability. If multiple
models had been trained, the validation set could also be used
to select models. Once a model is finalized, its performance must
be evaluated in a testing set, which has no overlap with the
training or validation sets. Ideally, the testing set comes from
other centers, which involves data from different ultrasound
devices and vendors, and patients with different demographic
characteristics. A study that reports generalizable results in an
independent testing dataset would be much more valuable than a
study that relies on internal validation or single-dataset-based
cross-validation.
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MATERIALS AND METHODS: IS THE
IMAGE PROCESSING PROCEDURE
CLEARLY DESCRIBED?

A clear description of the image processing procedure is vital for
the assessment of study repeatability and reproducibility.
Readers should pay attention to the ultrasound data
acquisition process and the validity of the data range.
Questions below should be raised when acquiring such
information. Is the data collected retrospectively or
prospectively? Which modality does the study apply? Is it
radio frequency signal, grayscale, elastography, doppler
imaging, contrast-enhanced ultrasound (CEUS), or transferring
between modalities (14, 15)? Also, the number of pictures per
patient enrolled for the training or testing and whether the
patients’ clinical data are involved in the AI development
should be inspected.

In terms of ultrasound data preprocessing, each step should
be presented clearly. Ultrasound images are derived from various
devices produced by different radiologists. Ultrasound is highly
operator-dependent (16, 17), which causes variations in image
quality, target lesion identification, and selection of
representative sections. Cropping is widely adopted in image
processing in medical AI studies, and it filters out most
irrelevant, non-lesion information, and for the ultrasound,
reduces image heterogeneity by adjusting size and depth.
Augmentation can enrich data diversity, and it can simulate
the common causes of image heterogeneity as observed under
real-world conditions in ultrasound examinations (18, 19). For
example, resizing reduces resolution variation of different
devices, rotation simulates scanning from different angles and
sections, and contrast adjustment simulates variation in gain and
dynamic range.
MATERIALS AND METHODS: IS THE
ALGORITHM FOR MODELING SUITABLE?

Conventional ML algorithms such as logistic regression, support
vector machine (SVM), random forest, and Naïve Bayes have
much fewer parameters than deep learning algorithms. For
example, SVM has only 13 parameters to be adjusted, while
the ResNet-50 has an amount of 2.3×107 parameters. Thus,
conventional ML algorithms require far less training than deep
learning algorithms do (20). With a limited sample size, such as a
set of only hundreds of images (not videos), conventional ML
algorithms are preferred (21). However, with thousands or
millions of images, deep learning algorithms, principally CNN
in imaging analysis, are recommended. The minimum number
of training images needed varies across different tasks
and algorithms and may only be determined by evaluating
the relationship between its increase and changes in
model performance.

Algorithms’ clinical intelligibility, which means the level of
understandability of an algorithm in a clinical way, should also
be considered. There has not been any ultrasound-specific
June 2021 | Volume 11 | Article 631813
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imaging analysis algorithms reported. Instead, model algorithm
selection is primarily based on the type of task. Ultrasound has
multiple modalities. CEUS videos record a lesion’s hemodynamic
information revealed by the dynamic perfusion of microbubble
contrast agents. Multi-phase image features can be extracted by
simply analyzing frames from each phase but the time
sequencing features were missing. Recurrent neural networks
(RNNs) such as long short-term memory (LSTM) or gated
recurrent units can be incorporated to these time-dimension-
related tasks (18). Previous studies using LSTM in CEUS
reported excellent performance (22, 23). The application of
clinically explicable AI algorithms to modeling renders the
study findings more clinically acceptable.
MATERIALS AND METHODS: IS THE AI
ALGORITHM PUBLICLY AVAILABLE?

Even being generalizable among different datasets in a given
study, especially for studies carried out in a single center, AI
performance still needs a broad verification. The existing public
medical imaging data sets are minimal (24), and no public
ultrasound dataset exists. Authors are encouraged to make
their AI models publicly available via such websites as GitHub
(https://github.com/) to allow independent validation, fine-
tuning, and updating. A study reporting publicly available AI
algorithms may improve its results’ reliability in this way.
RESULTS: HOW DO THE RESULTS
PRODUCED BY THE AI MODEL
COMPARE TO THOSE PRODUCED BY
EXPERT RADIOLOGISTS?

Medical AI must be evaluated against the performance of
radiology experts (8). The value of a prospectively designed AI
performance testing procedure can be determined by comparing
its performance to that of human experts under real-world
conditions. In retrospectively designed studies, missing data,
and data mismatch regarding the target lesion are unavoidable
in datasets collected from clinical practice, considering which is
beyond AI’s ability (25). Radiologists make ultrasound diagnosis
in real time during face-to-face examinations, where they receive
far more information than retrospective image review does. The
common study design usually underestimates radiologists’
performance and renders meaningful evaluation of medical
AI difficult.

Combing clinician experience and AI’s advantages can render
imaging more efficient and accurate than either alone (26).
Because ultrasound offers diagnosis in real time and is heavily
dependent on the operator, ultrasound AI’s performance should
be compared to that of radiologists with varied experiences to
develop a viable human-AI interaction strategy (27). Ideally, this
strategy would involve dynamic assessment during an ultrasound
Frontiers in Oncology | www.frontiersin.org 3117
examination. A specific application scenario based AI developing
and testing study would have considerable practical value.
RESULTS: ARE THE EVALUATION
INDEXES SUITABLE?

For detection and classification purposes, an AI model is first
evaluated by the receiver operating characteristic curve (ROC) or
precision-recall curve (PRC), and further by its accuracy, error
rate or F1 value. However, in medical imaging analysis programs,
performance is assessed based on indicators of clinical
significance, such as sensitivity and specificity for diagnosis
and prediction programs (28, 29), detection rate for disease
screening and lesion detection (30, 31), k and dice coefficient
for inter-annotator agreement and overlapping in radiotherapy
planning (32, 33). For example, for a screening task model,
detection rate and sensitivity would be the primary indexes for
model evaluation, while for diagnostic tasks, high specificity or
positive predictive value would be the top priority. A specifically
preferred high evaluation index can be achieved using an
appropriate cutoff value for AI outputs but not necessarily by
the default of 0.5 or the Youden index.
DISCUSSION: ARE THE
RESULTS COMPARED TO
STATE-OF-ART REPORTS?

AI results should be compared to state-of-art reports, both the
previous studies of the same design and these using other imaging
modalities, traditional methods, or guideline recommendations.
Readers should keep in mind that results without independent
tests or internally validated results are not comparable to studies
reporting independently tested results, no matter how good the
statistics are relative to state-of-art results. A well-designed study
with practical results is much more valuable than studies with
flawed design but with good statistical results.
DISCUSSION: WHAT IS THE UNSOLVED
PROBLEM OF THE PRESENT WORK?

Limitations of medical AI studies are often the challenge of future
work. For example, what situation wouldn’t the AI system be
implemented when considering that AI performance errors and
failure cases could influence clinical practice decision-making?
What are the latent factors keeping AI systems from generalizing
to other centers and populations, given the hardware requirements,
algorithm versions, data quality, and processing procedures? How
can these be solved in further study? Is the sample size large enough
to build a robust model? The relationship between the training
dataset size and model performance should be evaluated, as
Dunnmon et al. (34) in the research reporting that the AI
performance benefited little after a certain number of images were
used for training.
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CONCLUSION

Given ultrasound’s unique properties, readers should pay additional
attention when assessing an AI study that relies on ultrasound than
those that rely on other imaging modalities. Here, we list several
crucial points to help readers distinguish strong ultrasound AI
articles from underpowered articles. With more formalized
standards for medical AI studies published in the future,
ultrasound AI studies may better benefit the clinical practice.
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Purpose: The fully automatic AI-Sonic computer-aided design (CAD) system was
employed for the detection and diagnosis of benign and malignant thyroid nodules. The
aim of this study was to investigate the efficiency of the AI-Sonic CAD system with the use
of a deep learning algorithm to improve the diagnostic accuracy of ultrasound-guided fine-
needle aspiration (FNA).

Methods: A total of 138 thyroid nodules were collected from 124 patients and diagnosed
by an expert, a novice, and the Thyroid Imaging Reporting and Data System (TI-RADS).
Diagnostic efficiency and feasibility were compared among the expert, novice, and CAD
system. The application of the CAD system to enhance the diagnostic efficiency of novices
was assessed. Moreover, with the experience of the expert as the gold standard, the
values of features detected by the CAD system were also analyzed. The efficiency of FNA
was compared among the expert, novice, and CAD system to determine whether the
CAD system is helpful for the management of FNA.

Result: In total, 56 malignant and 82 benign thyroid nodules were collected from the 124
patients (mean age, 46.4 ± 12.1 years; range, 12–70 years). The diagnostic area under the
curve of the CAD system, expert, and novice were 0.919, 0.891, and 0.877, respectively
(p < 0.05). In regard to feature detection, there was no significant differences in the margin
and composition between the benign and malignant nodules (p > 0.05), while
echogenicity and the existence of echogenic foci were of great significance (p < 0.05).
For the recommendation of FNA, the results showed that the CAD system had better
performance than the expert and novice (p < 0.05).

Conclusions: Precise diagnosis and recommendation of FNA are continuing hot topics
for thyroid nodules. The CAD system based on deep learning had better accuracy and
feasibility for the diagnosis of thyroid nodules, and was useful to avoid unnecessary FNA.
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The CAD system is potentially an effective auxiliary approach for diagnosis and
asymptomatic screening, especially in developing areas.
Keywords: thyroid nodule, ultrasound, computer-aided diagnosis, TI-RADS, fine-needle aspiration
INTRODUCTION

Approximately 95% of endocrine cancers involve the thyroid,
which contributes to the continually increasing incidence of
thyroid cancer (1, 2). Ultrasound (US) is widely used as a non-
invasive and effective screening modality for the detection of
thyroid nodules. However, although various diagnostic standards
and guidelines are available, the diagnostic specificity remains
unsatisfactory (3). Since first proposed in 2009, the Thyroid
Imaging Reporting and Data System (TI-RADS) has become
among the most widely applied approaches for US-based
diagnosis of thyroid diseases, as this system allows the physician
to analyze the composition, echogenicity, shape, orientation,
margin, calcification, presence of a halo, and type of
vascularization for more accurate diagnosis and treatment (4). In
2017, the American College of Radiology launched the final version
of the TI-RADS, which uses a scoring method to optimize and
standardize US-guided fine-needle aspiration (FNA) (5). However,
thismodality is still limitedby subjectivity and inconsistencieswhen
applied clinically.The specificity of FNAfor the detectionof thyroid
nodules is reportedly only 60–70%, suggesting a high occurrence of
non-diagnostic results (6, 7). Moreover, since there is currently no
consensus on the standardization of US-guided FNA (8), it is
difficult to unify all physicians to follow the same diagnostic
criteria, even within the same department or hospital. The use of
TI-RADS has changed the focus of diagnostic subjectivity to the
detection of features, which can decrease but not completely avoid
intra-observer variability (9). Therefore, a consistently effective and
accurate method for the diagnosis of thyroid nodules with good
repeatability is urgently needed.

Over the past decade, artificial intelligence (AI)-aided US
techniques, which integrate US and computer science, have
become increasingly employed for the detection and diagnosis
of thyroid diseases (10, 11). From traditional machine learning to
deep learning methods, many algorithms, such as the Support
Vector Machine (12), GoogleNet (13), and a convolutional
neural network (14), have been shown to be effective for US-
based diagnosis of thyroid nodules. These advanced methods
have become increasingly used in recent years due to advances in
commercial software applications, such as AmCad-UT (AmCad
BioMed Corporation, Taipei City, Taiwan) (15), S-Detect
(Samsung Medison Co., Ltd., Seoul, Korea) (3), and AI-SONIC
(Demetics Medical Technology, Zhejiang, China). AI-SONIC is a
fully automatic diagnosis system based on deep learning, which
includes a training set consisting of more than 60,000 US images
of the thyroid. A cascade convolutional neural network (CNN) is
a type of hybrid deep learning model based on a special splitting
method and two different CNN architectures (one with 15
convolutional layers and two pooling layers for segmentation,
and another with four convolutional layers and four pooling
2121
layers for detection). In this study, 10-fold cross-validation was
performed with a training set, validation set, and testing set ratio
of 8:1:1. The detection and diagnostic efficiency of AI-SONIC are
reportedly very good, as evidenced by a Dice score of 0.9224 with
a diagnostic area under the curve (AUC) of 0.98 (16, 17). Besides
the excellent diagnostic accuracy, other advantages of this
software include an automatic recommendation of a follow-up
plan, including FNA, and the provision of detailed information
about the features of the thyroid detected by the software itself to
render the recommendations more understandable and
acceptable. However, as far as we know, there is no report on
the interpretability of CAD in thyroid ultrasound diagnosis, and
the ability of CAD in improving novices’ diagnostic efficiency
based on AI-SONIC needs to be proved.

In our center, a dual-verification process is used to improve
the reliability of the results. In order to validate the use of this
approach in clinical practice in areas lacking medical resources,
the diagnostic efficiency was compared among an expert, a
novice, and a computer-aided diagnosis (CAD) system.
Furthermore, the relationship between the pathology results
and US features detected by the CAD system were analyzed to
determine whether the CAD system can improve the efficiency of
US-guided FNA.
MATERIALS AND METHODS

Patients
A total of 138 thyroid noduleswere collected from124 patientswho
received treatment at the Third Affiliated Hospital of Guangzhou
Medical University and LiwanCenterHospital ofGuangzhou from
January 2016 to May 2019. The final diagnosis of the thyroid
nodules was confirmed with the use of specimens collected
during surgery or FNA. Detailed patient data was retrieved from
the Hospital Information Manage System. The inclusion criteria
were (1) complete and clear US images before surgery or FNA and
(2) the inclusion of a single nodule in a two-dimensional US image,
while the exclusion criteria were (1) a lack of pathology results, (2) a
history of partial thyroidectomy, and (3) any complication of a
diffuse thyroid disease. The study protocol was approved by the
local ethics committee, and written informed consent was obtained
from all patients prior to study inclusion.

Equipment and Data Analysis
The US examinations were performed with the use of different
brands of equipment, which included the Phillips IU22/IE33/
CX50 systems (Philips Healthcare, Eindhoven, Netherlands),
Hitachi Hi Vision Preirus/Ascendus systems (Hitachi Ltd.,
Tokyo, Japan), GE Logiq E9/S6/S8/E6/E8 systems (GE
Healthcare, Milwaukee, WI, USA), Siemens S1000/S2000
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systems (Siemens Healthineers, Munich, German), Resona 7
(Mindary, Shenzhen, China), and Aplio 300/500 systems
(Toshiba Corporation, Tokyo, Japan). An expert with 8 years
of experience and a novice with 1 year of experience in US
examinations of the thyroid reviewed the nodules and diagnosis
recommended by the TI-RADS, respectively, and recorded the
final score of the nodules. To ensure the validity of the
assessments, the score of the TI-RADS as judged by the expert
was confirmed by another expert with 15 years of experience.

Detection and Diagnosis With the
CAD System
The CAD software was loaded into a computer, and the US images
were uploaded into the software. After confirmation that there was
only one nodule on the center of the screen, the software could
detect the nodule automatically and quantitatively analyzed the
margin, composition, echogenicity, and the existence of echogenic
foci (Figure 1). This process only took 1–2 s. If the CAD system
failed to identify a nodule, the physician defined the region of
interestmanually and the analysiswas repeated.Theprobability of a
malignant versus benignnodule and a recommendation of a follow-
upwere provided. Furthermore, the softwarewould output a six-in-
one interface, which included information of the shape, margin,
composition, echogenicity, and the existence and degree of
echogenic foci, which were used to apply the results systematically.

Recommendation of FNA
The recommendation of FNA by the TI-RADS was based on the
following classification criteria of thyroid nodules: 0 points, TR1;
2 points, TR2; 3 points, TR3; 4–6 points, TR4; and ≥7 points,
TR5. A score of >4 points indicated a 5–20% chance of
malignancy. TR1–2 indicated no need for FNA. If the largest
Frontiers in Oncology | www.frontiersin.org 3122
diameter of a TR3 nodule was ≥1.5 cm, TR4 nodule ≥1.0 cm, or
TR5 nodule ≥0.5 cm, the patient should be followed up. If the
largest diameter of a TR3 nodule was ≥2.5 cm, TR4 nodule ≥1.5
cm, or TR5 nodule ≥1.0 cm, FNA was needed. The CAD system
provided advice and scoring according to the probability value
(Figure 2). The cytological results of FNA and histological
results of surgery were considered as reference standards.

Statistical Analysis
All statistical analyses were performed using IBM SPSS Statistics
for Windows, version 25.0. (IBM Corporation, Armonk, NY,
USA). Quantitative data are expressed as the mean ± standard
deviation. The pathology results were regarded as the gold
standard. Receiver operator characteristic curve analysis was
performed to evaluate the diagnostic performance and
compared in terms of sensitivity, specificity, positive predictive
value (PPV), negative predictive value (NPV), and accuracy. The
AUCs were computed to assess the diagnostic performances of
the CAD system, while performance of the TI-RADS was
assessed by the expert and novice. Paired comparisons of
sensitivity and specificity were evaluated using the chi-squared
test and the McNemar test. A two-sided probability (p) value of
<0.05 was considered statistically significant.
RESULTS

Population Characteristics
Of the 138 thyroid nodules collected from 126 patients
(including 27 males and 99 females), 56 were malignant (54
papillary thyroid carcinomas, one follicular thyroid carcinoma,
and one indeterminate malignant tumor) and 82 were benign
FIGURE 1 | The CAD interface for detection and diagnosis of thyroid nodules. Upper row (from left to right): original image, overall evaluation (score and category),
and margin (score and category). Bottom row (from left to right): echogenic foci (percentage and classification), composition (percentage and classification), and
echogenicity (percentage and classification).
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(79 nodular goiters and three adenomas). The mean age of the
patients was 46.4 ± 12.1 (range, 12–70) years.

Analysis of Diagnostic Accuracy
The diagnostic accuracy of the CAD system, expert, and novice is
shown inTable 1. The results show that the CAD systemhad better
diagnostic sensitivity, specificity, PPV, NPV, and accuracy than the
expert and novice (p < 0.05). The AUCs of the CAD system, expert,
and novice were 0.919, 0.891, and 0.877, respectively (Figure 3).

Correlations Among Features Detected by
the CAD System and the Pathology
Results
To validate the diagnostic efficiency of features detected by the
CAD system, differences in the features of echogenic foci,
Frontiers in Oncology | www.frontiersin.org 4123
margin, composition, and echogenicity between benign and
malignant nodules were analyzed (Table 2). The results
revealed significant differences in the existence of echogenic
foci and the echogenicity of the nodules between groups
(p < 0.05).

Efficiency of FNA Recommendation
The accuracy of a recommendation of FNA was compared
between the expert (using TI-RADS) and the CAD system
(Table 3). According to the diagnoses of the expert, there were
five TR1-2 nodules, which did not require follow-up or FNA.
Corresponding to the recommendations of the TI-RADS (i.e., TR3
nodule ≥2.5 cm, TR4 nodule ≥1.5 cm, and TR5 nodule ≥1.0 cm),
of a total of 60 thyroid nodules, 31 were benign and 29 were
malignant. According to the results obtained with the CAD
system, FNA was recommended for a total of 58 thyroid nodules
(10 benign and 48 malignant). Hence, there were significant
differences between the expert and CAD system (p < 0.001).
DISCUSSION

Since most thyroid nodules have indolent behavior with positive
prognoses, patients are potentially receiving excessive care.
TABLE 1 | Diagnosis accuracy of CAD system, expert and novice in the study.

Sensitivity Specificity PPV NPV Accuracy

CAD system 0.642 0.930 0.929 0.676 0.761
Expert 0.605 0.923 0.929 0.585 0.725
Novice 0.565 0.913 0.929 0.512 0.681
PPV, Positive Predictive Value; NPV, Negative Predictive Value.
A

B

FIGURE 2 | Recommendation and scoring provided by the fully automatic CAD system. (A) Papillary thyroid carcinoma. (B) Nodular goiter.
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The key point to an accurate diagnosis is to improve efficiency
and avoid unnecessary FNA as much as possible (18, 19).
Although AI techniques continue to rapidly develop, further
investigations of efficiency and interpretability are needed before
applications for the diagnosis of thyroid nodules. In this study,
the efficiency of a CAD system (i.e., AI-SONIC) was validated for
the diagnosis of thyroid nodules by comparisons of an expert and
Frontiers in Oncology | www.frontiersin.org 5124
novice using the TI-RADS. Also, the features detected by the
CAD system, which can lead to explicable results, were analyzed.
Furthermore, the efficiency of the recommendation of FNA by
the CAD system was investigated. It seems that the CAD system,
based on deep learning, had better performance and thus is
suitable as an aid for the diagnosis and screening asymptomatic
thyroid nodules, especially in areas lacking medical resources.

Performance of the CAD System for US
Diagnosis of Thyroid Nodules
Regardless of the high incidence of thyroid nodules, there is a
relatively low risk of malignancy. Accurate diagnosis is not only
helpful for a diagnosis, but a proper recommendation of FNA
can also be obtained. The first time AI was used for US-based
diagnosis of thyroid nodules dates back to 1988 (20). AI
techniques for US-based diagnosis of thyroid nodules can be
divided into two parts: recognition (or segmentation) and
classification. In recent years, various advanced algorithms
have been proposed to improve the diagnostic accuracy,
including support vector machines (21), random forest
learning algorithm (22), and artificial neural network algorithm
(23), among others. The development of deep learning is another
great advancement, which has led to faster, more accurate, and
fully automatic diagnoses. However, clinical application is far
different from laboratory investigations, thus an objective
assessment is necessary. Therefore, since there are differences
in data, diagnostic criteria, and equipment, it is impractical to
directly compare the diagnostic efficiency of a particular system
among different studies. For example, Szczepanek-Parulska et al.
compared the performance of the S-Detect System and the
FIGURE 3 | ROC curves of the CAD system, expert, and novice for US diagnosis of thyroid nodules.
TABLE 2 | Correlation among diagnostic features detected by CAD and
pathology result.

Diagnostic features Benign Malignant P value

Echogenic foci Existent 40 17 0.031*
Nonexistent 42 39

Margin Smooth 26 18 0.957
Unsmooth 56 38

Composition Cystic (or almost) 0 3 0.065
Solid (or almost) 82 53

Echogenicity Homogeneous 10 17 0.008*
Heterogeneity 72 39
*P < 0.05.
TABLE 3 | FNA recommendation by expert (using TI-RADS) and CAD system.

Recommendation Groups Total Benign Malignant

FNA ACR TI-RADS 60 31 29
CAD system 58 10 48

Follow-up ACR TI-RADS 78 51 27
CAD system 80 72 8
FNA, Final-needle aspiration.
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European Thyroid Imaging Reporting and Data System for the
diagnosis of 133 cases, and found that the CAD system had better
performance (3). However, in another study using the same
commercial software, the results showed that the CAD system
had lower specificity than an experienced radiologist (41.2 vs
83.5%, respectively) (24). In the present study, the sensitivity,
specificity, PPV, NPV, and accuracy of the CAD system (AUC =
0.919) were higher than the expert (AUC = 0.891) and novice
(AUC = 0.877), indicating that the CAD system based on deep
learning could improve the diagnostic efficiency of a novice,
similar to the findings of a previous study (25). However, the
CAD system is more likely to be an auxiliary approach for
diagnosis and asymptomatic screening, rather than a
replacement of experienced experts. On the other hand, low
specificity remains problematic for US-based diagnoses with a
CAD system (26). Notably, in the present study, the highest
specificity was only 93.0%. There are several possible
explanations for this finding. First, the classification of thyroid
nodules with the TI-RADS by the expert and novice was based
on scoring criteria, while a diagnosis with the CAD system was
closely related to the quality of the image data. Second, since this
was a retrospective study, it was inevitable to avoid selecting
more positive cases with high-quality images. Third, all patients
in this study had undergone surgery or FNA, which may have led
to selection bias. The required time for diagnosis among the
groups was not analyzed, since it was obvious that the CAD
system can output the results and conclusions much faster.
Interpretability of the CAD System
With the continued applications in the medical field, the
interpretability of AI is gradually playing an important role in
the acceptance by clinicians (27), especially for software based on
deep learning. AI-SONIC software provides detailed feature
information detected automatically about the existence of
echogenic foci, margin, composition, and echogenicity of the
thyroid nodules. Here, analyses of the differences in features and
pathology revealed that only the existence of echogenic foci and
echogenicity of the thyroid nodules were relevant. Theoretically
speaking, the existence of echogenic, especially punctate, foci was
highly related to papillary thyroid carcinoma (28). However, the
results showed that echogenic foci detected by the CAD system
were more common with benign, rather than malignant,
nodules, likely because spongiform-type nodules associated
with goiter were not excluded. In addition, the CAD system
was unable to accurately differentiate macrocalcifications from
microcalcifications. Besides the failure to exclude lesions
associated with nodular goiter, the insignificance of
composition features might also relate to liquefactive necrosis
in rapidly growing malignant tumors. Furthermore, to better
validate the robustness of the CAD system, the validation set had
not unified the standard plane of thyroid nodules; thus, some of
the obtained images were cross-sections, while others were
longitudinal sections, which could have led to uncertainties of
boundaries of benign nodules. This was potentially one of the
reasons why there were no significant differences in margin
features between groups.
Frontiers in Oncology | www.frontiersin.org 6125
Application of CAD in FNA
Recommendation
Optimally, the diagnosis and treatment of thyroid nodules
should avoid unnecessary FNA (29). Since a CAD system can
reduce intra- and inter-observer variability, some studies have
validated the value of a CAD system to improve the efficiency of a
recommendation of FNA (30–32). In the present study, the
performance of the AI-SONIC based on deep learning was
much better for a recommendation of FNA than the expert
using the TI-RADS (p < 0.001). As compared with the TI-RADS
evaluated by expert, the CAD system recommended FNA for
more malignant thyroid nodules and follow-up for more benign
nodules. Because most of the decisions for FNA are made by
experts, the efficiency of a recommendation of FNA between the
CAD system and novice was not compared.

Limitations
There were several limitations to this study that should be
addressed. First, this was a retrospective study; thus, there was
selection bias and a lack of standardization. Although this study
was conducted in two centers, the sample size was relatively
small. In addition, the features automatically detected by the
software were not completely identical to those of the TI-RADS,
especially the shapes of the nodules. More specific situations
should be considered to further improve the CAD system,
especially accurate identification of echogenic foci of malignant
nodules and spongiform-type nodules associated with goiter.
Lastly, intra-observer variability could not be ruled out. Hence,
future studies to address these issues are warranted.
CONCLUSIONS

The application of a CAD system is now changing the
approaches for the diagnosis and treatment of thyroid nodules.
In the present study, the diagnosis on thyroid nodules was
improved with the CAD system, although many problems
remain that must be addressed. We believe that with the
continued development of technology and medical science, the
CAD system based on deep leaning and larger datasets will
become a suitable, rapid, and high-quality approach for US-
based diagnosis and screening of thyroid nodules, especially in
areas lacking medical resources.
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