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Editorial on the Research Topic

Precision Medicine in Neonates

INTRODUCTION

Precision medicine can be defined as a structured approach to treat or prevent specific diseases
based on inter-individual variability in genes (like polymorphisms), diseases (like gender, co-
morbidity), environment (like drug exposure, nutrition), or lifestyle (like stress) (1). This concept
also holds the promise to improvemanagement (prevention or treatment) and subsequent outcome
in critically ill newborns. Precision medicine (subgroup approaches) hereby serves as go between
empirical (one treatment fits all) or stratified medicine (e.g., disease state or sex), and individualized
(every newborn is unique) medicine (Figure 1).

With this Frontiers special issue, we intended to increase awareness among caregivers that
precision medicine has a proven track record in e.g., oncology, and is likewise, also very promising
to improve outcome in (pre)term neonates. Unfortunately, neonatal medicine is lagging behind
in implementing this concept. To further quantify this, a PubMed for “precision medicine” on
April, 23 2021 resulted in 64,080 hits, with an exponential increase from 2010 (>1,000 hits/year)
onwards, while “precision medicine + newborn” only resulted in 826 hits, with a delayed increase
from 2015 onwards.

This reflects the relevance of this focused Research Topic on precision medicine in neonates,
as the concepts related to precision medicine and the anticipated gains in clinical outcome
matter to (pre)term neonates: the neonatal community (care providers, clinical researchers, and
parents) should move from one “uniform” protocol for every newborn toward precision driven,
patient tailored treatments and support (2). Its feasibility and relevance are illustrated in the
papers included, clustered in papers on respiratory diseases, neurology, colonization and infectious
diseases, or macro- and microcirculation related (hemodynamics, renal, and retinal) diseases.

RESPIRATORY DISEASES

Bronchopulmonary dysplasia (BPD) remains the most common complication of preterm birth
with long lasting sequelae. Most intervention studies to prevent BPD were conducted on a
population level, without “precision concepts” like variation in clinical and biological diversity,
genetic predisposition or environmental factors. In a review paper, Onland et al. explored potential
approaches to implement precision concepts in neonatal BPD care, summarizing the available
evidence on electrical impedance tomography and electromyography of the diaphragm, genomic
variation in caffeine metabolism, and volatile organic compound analysis in exhaled breath
(Onland et al.).
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FIGURE 1 | Different concepts related to empirical medicine, precision medicine, or individualized medicine.

Two other original studies focused on outcome and risk
stratification for two medical interventions for respiratory
distress syndrome (RDS), i.e., the need for a second dose of
surfactant or nitric oxide. Preterms in need of a second dose
of surfactant for RDS had identifiable risk factors (growth
restricted, outborn, no antenatal steroids). Interestingly, this
more severe RDS (reflecting the need for a second dose),
phenotype was associated with lower survival, but with similar
outcome in survivors (Greiner et al.). While a second dose of
surfactant (up to 300 mg/kg) is still standard of care, nitric
oxide remains much more controversial based on the available
evidence on benefit/(long term) outcome data (Vieira et al.). The
current analysis hereby paved the way for a precision medicine
approach within this population by providing evidence that a
specific subgroup of preterm neonates (pulmonary hypertension
present, prolonged rupture of membranes, and antenatal steroid
exposure) had better outcome.

NEUROLOGY

Despite a machinery of tools (ultrasound, Magnetic Resonance
Imaging, electro-encephalography, Near Infrared spectroscopy,
general movements) to assess neurological (dys)function during
neonatal stay, predictive performance for the subsequent
individual neurodevelopmental, long-term outcome remains
poor. Machine learning approaches were suggested as powerful
approach to change performance of prediction and prognosis in
the field of neonatal neurology (Tataranno et al.).

COLONIZATION AND INFECTIOUS
DISEASES

The evidence of lung microbiota dysbiosis and the applications
of probiotics to prevent BPD were examined and discussed

(Yang and Dong). Based on the same gut-lung axis concept and
BPD risk, the correlation between intestinal and pharyngeal
microbiota was explored in 13 premature neonates. While
intestines and pharynx shared some microbiota (like
streptococcus), both sites also had unique profiles, so that
linking of data on microbiota to gut-lung crosstalk outcome data
(like BPD) should also consider the site of collection (Yang et al.).

Colonization patterns are obviously also affected by our
practices and antibiotic prescription (when, what and how) (3).
Keij et al. therefore called for a stratified management of bacterial
infections in late preterm and term neonates. Differences
in disease susceptibility, disease severity, immune response
and pharmacokinetics and -dynamics should be considered
to develop treatment algorithms for (suspected) sepsis, to
assist clinicians in their decisions on to initiative or continue
antimicrobial therapy in specific subpopulations (Keij et al.).

MACRO- AND MICROCIRCULATORY
DISEASES

Individualized hemodynamic management, tailored to the
cardiovascular (patho)-physiology, and clinical characteristics
of each individual patient or subgroups is another promising
application of precision medicine. De Boode applied this concept
to three clinical syndromes commonly observed in the neonatal
unit: patent ductus arteriosus, shock, and hypotension and
persistent pulmonary hypertension of the newborn (De Boode).

Renal precision medicine also holds the promise to support
decisionmaking on pharmacotherapy, signal detection of adverse
(drug) events and to improve accuracy prediction of short-
and long-term prognosis. Recent advances in this field (acute
kidney definition development, specific findings in extreme
low birth weight infants, and in neonates undergoing whole
body hypothermia following asphyxia) and the potential clinical
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impact (secondary prevention and feasibility of nephrotoxicity
risk mitigation) were discussed (Allegaert et al.). Along the
same line, but integrating preterm birth with asphyxia, renal
function profiles in preterm neonates with birth asphyxia within
the first 24 h of life were described. Different profiles between
preterms with or without asphyxia were identified. This facilitates
identification of relative risks to develop renal impairment,
and brings this population closer to precision medicine, and
subsequent needed studies on long-term cardiovascular and renal
outcome (Zhang and Zeng).

Finally, the retinal circulation and the related retinopathy of
prematurity (ROP) forms another relevant morbidity in former
preterms. The extent of temporal avascular area of the retina
(disc diameter) and duration of mechanical ventilation at first
examination of the newborn (4–6 weeks postnatal life) predicted
the subsequent need for an ROP-related intervention during

neonatal stay. Such indicators can be used in a risk calculator
to predict the need for treatment or to power preventive studies
(Chaves-Samaniego et al.).

Overall the different papers added ideas and some provided
small pieces of the puzzle that we need for precision medicine.
In most areas stratified medicine is still work in progress and
it still quite far away from where we aim to be in neonatology.
We are confident that the illustrations provided in this Research
Topic will further boost the clinical research on precision
medicine concepts as a powerful tool to further improve neonatal
management, quality of care, and outcome.
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How to Convert a Cloud of Creatinine
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Medicine, Aristotle University of Thessaloniki, Hippokrateion General Hospital, Thessaloniki, Greece, 9Department of Pediatric

Nephrology and Organ Transplantation, Hospitals Leuven, Leuven, Belgium

Renal precision medicine in neonates is useful to support decision making on

pharmacotherapy, signal detection of adverse (drug) events, and individual prediction

of short- and long-term prognosis. To estimate kidney function or glomerular filtration

rate (GFR), the most commonly measured and readily accessible biomarker is serum

creatinine (Scr). However, there is extensive variability in Scr observations and GFR

estimates within the neonatal population, because of developmental physiology and

superimposed pathology. Furthermore, assay related differences still matter for Scr,

but also exist for Cystatin C. Observations in extreme low birth weight (ELBW) and

term asphyxiated neonates will illustrate how renal precision medicine contributes to

neonatal precision medicine. When the Kidney Disease Improving Global Outcome

(KDIGO) definition of acute kidney injury (AKI) is used, this results in an incidence up

to 50% in ELBW neonates, associated with increased mortality and morbidity. However,

urine output criteria needed adaptations to broader time intervals or weight trends, while

Scr and its trends do not provide sufficient detail on kidney function between ELBW

neonates. Instead, we suggest to use assay-specific centile Scr values to better describe

postnatal trends and have illustrated its relevance by quantifying an adverse drug event

(ibuprofen) and by explaining individual amikacin clearance. Term asphyxiated neonates

also commonly display AKI. While oliguria is a specific AKI indicator, the majority of term

asphyxiated cases are non-oliguric. Asphyxia results in a clinical significant—commonly

transient—mean GFR decrease (−50%) with a lower renal drug elimination. But there

is still major (unexplained) inter-individual variability in GFR and subsequent renal drug

elimination between these asphyxiated neonates. Recently, the Baby-NINJA (nephrotoxic

injury negated by just-in-time action) study provided evidence on the concept that a focus

on nephrotoxic injury negation has a significant impact on AKI incidence and severity. It
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is hereby important to realize that follow-up should not be discontinued at discharge,

as there are concerns about long-term renal outcome. These illustrations suggest that

integration of renal (patho)physiology into neonatal precision medicine are an important

tool to improve contemporary neonatal care, not only for the short-term but also with a

positive health impact throughout life.

Keywords: creatinine, Cystatin C, precision medicine, acute kidney injury, newborn, nephron number

INTRODUCTION

Precision medicine is defined as a structured approach to
treat or prevent specific diseases based on the inter-individual
variability in genes, physiology, and environment. This includes
exploration of novel research approaches to improve the use
of available information to support decision making about
pharmacotherapy, signal detection of adverse (drug) events, or to
improve individual prediction of short- and long-term prognosis.
Neonatal renal precision medicine depends on the availability of
reference intervals for any renal biomarker to support clinical

decision making, tailor therapy, or support prognosis. This is
still a major limitation, highlighted in the International Neonatal
Consortium (INC) paper on safety, dosing, and pharmaceutical
quality of medical products in neonates and during development
of the neonatal adverse event severity scale. Severity grading
for lab values—including kidney function—was omitted until
reference values became available (1, 2).

Since maturational physiological changes are most prominent
in early infancy, variability is their key feature. This is reflected
in extensive inter- and intra-individual variability in serum
creatinine (Scr), resulting in a cloud instead of extractable
and interpretable information for clinicians. This “cloud” is
illustrated in Figure 1, after plotting Scr observations (enzymatic
assay) in (pre)term neonates collected in one Neonatal Intensive
Care Unit (NICU) in the first 42 postnatal days of life (3).
This reflects a pattern with an initial increase and subsequent
decrease during postnatal life. As relevant, there is about a 4-
fold difference in Scr observed for all consecutive days, so that
improved understanding on reference values is needed to attain
precision medicine.

This Scr variability is partly explained bymaturational changes
(e.g., birth weight, gestational age [GA], postnatal age) and non-
maturational changes related to pathophysiology, e.g., perinatal
asphyxia, co-medication, congenital anomalies of the kidney
and urinary track (CAKUT), cardiac surgery with bypass,
or extra-corporeal membrane oxygenation (4, 5). Postnatal
kidney adaptation is proportional to the nephron number (GA
driven) and renal perfusion (postnatal adaptation, mean arterial
blood pressure) (6, 7). Nephrogenesis evolves as branching
morphogenesis, similar to lung, pancreas, vascular tree, or retina.
Neonates <36 GA weeks are still in active nephrogenesis and
thus have an increased risk for decreased nephron endowment
with lifelong impact (8). The main determinants of the increase
in renal function in early life are circulatory changes, driven by
the increase in proportional renal blood flow to cardiac output,
from 2 to 25%. This increased renal blood flow is combined

FIGURE 1 | Creatinine values (enzymatic assay) as observed in a cohort of

1,140 neonates (gestational age 23–42 weeks) in the first 42 days of postnatal

life (3).

with dilation of the efferent and constriction of the afferent
arterioli. This explains the significant impact of non-steroidal
anti-inflammatory drugs (NSAIDs, −20 up to −40% of the
glomerular filtration rate [GFR] in ELBW neonates, depending
on the type and dose) or asphyxia (up to−40 to−50% of GFR).

CREATININE AND CYSTATIN C AS
BIOMARKERS OF GFR IN NEWBORNS

Scr is the most commonly measured biomarker to estimate
kidney function or GFR (creatinine clearance). However, before
Scr can be used to estimate renal elimination capacity in neonates,
issues that should be considered relate to physiology (renal
tubular transport, hydration, muscle mass) and measurement
(assay validity).

Creatinine at birth does not yet reflect neonatal but maternal

Scr levels. Because of passive tubular back leak instead of active

secretion, creatinine clearance does not yet fully reflect GFR.
In contrast to later life, where creatinine clearance somewhat
overestimates GFR due to active tubular secretion mediated by
Organic Cation Transporter 2 (OCT-2), passive back leak occurs
in early neonatal life (9, 10). Hydration is another issue, as early
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FIGURE 2 | Mean Cystatin C values in umbilical cord blood as reported in 15

cohorts of healthy term neonates (2 enzymatic immuno-assay [ELISA], three

particle enhanced turbimetric immuno-assay [PETIA], and 10 particle

enhanced nephelometric immuno-assay [PENIA]) (16–22).

neonatal life is associated with weight reduction due to free water
loss, usually associated with a sodium increase. Creatinine is a
low molecular weight (133 g/mol) molecule produced by muscle
catabolism (creatine to creatinine), reflecting muscle mass. As
estimated by creatinine excretion in urine, muscle mass increased
from 12% of birth weight at 25 weeks to 19% at 34 GA weeks and
24% at term (11). In contrast, the proportional muscle mass was
estimated to remain stable (22–30%) without trend related to GA
in autopsy findings (12).

Scr values also depend on the assay, as the Jaffe assay is
affected by specific constituents of neonatal serum like bilirubin
or albumin concentrations. Harmonization through isotope
dilution mass spectrometry (IDMS) traceability has reduced,
but not eliminated, this inter-assay variability (9, 13). Scr
measurements can subsequently be converted to estimated GFR,
using the Schwartz formula (eGFR = k [L/Scr], Scr = µmol/l; k
= 0.34 in preterm, 0.45 in term infants, L = length, cm). One
should hereby be aware that this Schwartz formula has initially
been validated (to inulin clearance) with the original, non-
compensated Jaffe assay (9). Furthermore, length measurement
has limitations in neonates (14). While lower k-values have
been suggested when enzymatic assays are used, these studies
have not included (pre)term neonates and infants (9). Recently,
an eGFR specific to (pre)term neonates (median age 3 days
postnatal age, compensated Jaffe) was suggested (eGFR= 2.32 ×
[weight (g)0.64/Scr (µmol/l)0.62]) following validation with inulin
clearance (21.54 [SD 10.09] ml/min/1.73 m2). This formula
performed somewhat better compared to the original neonatal
Schwartz formula (15).

Cystatin C is an alternative to Scr to assess eGFR and is
considered to be a more sensitive indicator for minor GFR
changes. Cystatin C is a 130 amino acids containing small
protein, generated by any cell with elimination byGFR. Reference
values have been suggested, but Cystatin C also has assay-related

issues like Scr. Figure 2 reflects assay-specific differences in mean
umbilical cord blood Cystatin C values reported in 15 cohorts
of healthy term neonates. In these 15 cohorts, Cystatin C was
quantified by enzymatic immuno-assays (ELISA, n = 2), particle
enhanced turbimetric immuno-assays (PETIA, n= 3), or particle
enhanced nephelometric immuno-assays (PENIA, n = 10) (16–
22). Since 2010, certified reference material for Cystatin C assay
standardization (IDMS) has been available, but measurement
bias still exists (23). This is relevant, since the majority of studies
with Cystatin C in neonates were conducted in single units
or with one assay. Within this setting, Cystatin C values are
associated with maturational covariates (age, weight) or perinatal
diseases, like congenital renal anomalies, sepsis, and septic shock,
respiratory distress, hypotension, transient tachypnea of the
newborn, or perinatal asphyxia, serving as a more sensitive
indicator for renal dysfunction (16, 24, 25). However, clinicians
should be cautious in extracting absolute values as reported for
subsequent use in their specific setting as assay-related issues may
exist. Of specific relevance to neonates, steroid administration
or hypothyroidism may also affect Cystatin C (16, 26). Finally,
Cystatin C was not retained in the recently published eGFR
formula specific to (pre)term neonates (15).

We therefore suggest development of age-dependent, assay
specific Scr centiles to support clinical decisions and precision
pharmacotherapy. We will focus on ELBW (<1,000 g) infants
and on term neonates with perinatal asphyxia undergoing whole
body hypothermia (WBH) to illustrate how a “Scr cloud” can be
converted into a clinical decision tool. With these examples, we
will illustrate how renal precision medicine is a crucial part of
modern neonatal care. A similar approach can be considered for
other subcategories like CAKUT newborns or neonates in need
of cardiac bypass or extracorporeal membrane oxygenation.

Key Messages
• There is extensive variability in Scr and eGFR (Schwartz

formula, Wilhelm-Bals formula) within the neonatal

population, driven by (patho)physiology.
• Assay related differences exist for Scr and Cystatin C.
• We suggest to develop age-dependent, assay specific Scr

centiles to support neonatal precision medicine.

RENAL FUNCTION, AKI, AND PRECISION
MEDICINE IN ELBW INFANTS

Almost a decade ago, Jetton and Askenazi (27) suggested an
AKI definition (neonatal modified KDIGO) specific for use in
neonates. In essence, the definition is based on trends (increase)
in Scr and in urine output to result in staging (stage 0–3)
(Table 1). This definition was endorsed by a National Institute
of Diabetes, Digestive, and Kidney (NIDDK) Diseases workshop.
The attendees hereby concluded that this definition offered
a reasonable starting point, but that further evaluation was
needed (30, 31). In this context, a study protocol (Assessment
of Worldwide Acute Kidney Injury Epidemiology in Neonates,
AWAKEN) was put forward to assess its applicability and to
report on neonatal AKI epidemiology (28).
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We highlight some results of this AWAKEN study specific
to ELBW neonates to emphasize the limitations of the KDIGO
definition: (i) the overall AKI incidence was 29.9%, but was 47.9%
in preterm neonates (<29 weeks GA) (limited discriminating
power); (ii) 8/24 of the contributing units still used a Jaffe assay
(relevant differences in absolute values not considered in the
definition); (iii) the median number of Scr counts was ≤3 and
≤5/patient respectively in 10 and 15/24 of these units (suggesting
that there is not yet sufficient focus on renal function, even in
AWAKEN units) (iv) urine output has been quantified in 24 h
intervals with 1 ml/kg/h as pivotal finding (pragmatic, but not as
suggested in the definition, Table 1), (v) despite these limitations,
the AKI stage predicted mortality (adjusted Odds Ratio 3.7) but
not length of stay in <29 weeks neonates (29). In secondary
analyses specific in the most immature cohorts, an increased risk
for bronchopulmonary dysplasia was observed in 29–32 GA cases
(adjusted Odds Ratio 4.2), but not in <29 GA neonates (32).
Early (within the first week of life) caffeine administration was

TABLE 1 | Definition of neonatal Acute Kidney Injury (AKI) by serum creatinine and

urine output (28, 29).

Stage Serum creatinine (Scr) Urine output

0 No change in Scr or ↑ <0.3 mg/dl >1 ml/kg/h

1 Scr ↑≥ 0.3 mg/dl within 48 h or

Scr ↑≥1.5–1.9 X vs. Scr* within 7 days

>0.5 and ≤1 ml/kg/h

2 Scr ↑≥ 2 to 2.9 vs. reference Scr* >0.3 and ≤0.5 ml/kg/h

3 Scr ↑≥ 3 X reference Scr * or

Scr ≥2·5 mg/dl** or dialysis
≤0.3 ml/kg/h

*Reference Scr is the lowest prior Scr measurement; **a Scr of 2.5 mg/dl in neonates

reflects an estimated glomerular filtration rate <10 ml/min/1.73 m2.

associated with reduced AKI incidence (number needed to treat
= 4.3) and severity (33). This can be explained by the adenosine
related effects on the glomerular vascular tone. Finally, AKI was
not limited to early neonatal life but also occurred beyond day 7
(9%). Risk factors were the presence of a patent ductus arteriosus
with or without NSAIDs exposure, necrotizing enterocolitis, and
sepsis (34).

Although the current AKI definition may assist clinicians to
recognize renal issues, there are still limitations to using this AKI
tool for precision medicine in ELBW cases. As 47.9% of cases
<29 weeks were classified as having AKI, the granularity needed
for precision medicine is somewhat lost. The issues relate to both
urine output and Scr as biomarkers of kidney function and AKI.

Continuous quantification of urine output is a technical
burden and is evenmore difficult in the most immature neonates,
as catheterization is invasive while sequential diaper weight is
hampered by evaporation (up to 80% weight losses after 2 h of
a 5ml portion added to a diaper exposed in an incubator or
under a radiant warmer) (35). This was already acknowledged
by the AWAKEN study, since urine output was quantified by
24 h increments with 12% missing observations for urine output
(29). Fluid overload and daily weight balance (change%= current
weight – birthweight/current weight) in the 1st week of life were
used as alternative markers. Based on these markers, a higher
positive peak in the 1st week of life and a positive fluid balance
on day 7 were associated with mechanical ventilation (36).

Scr itself is not an AKI biomarker, but rather an indicator
of kidney function. As mentioned earlier, absolute values are
affected by the assay (dependent on IDMS traceability), since Jaffe
results are affected by some drugs and—more relevant to ELBW
neonates—by bilirubin so that the median difference between
the original Jaffe and an enzymatic assay is 0.12 to 0.27 mg/l,
with always higher values for the Jaffe assay (37). Furthermore,

TABLE 2 | Centiles (10th−95th) of serum creatinine values (enzymatic assay) in a cohort of 217 extremely low birth weight (ELBW) infants in the first 28 days of postnatal

age (38).

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 Day 10 Day 11 Day 12 Day 13 Day 14

Samples 206 190 205 198 182 171 145 157 140 128 117 112 92 133

10th 0.45 0.64 0.74 0.64 0.58 0.55 0.54 0.50 0.50 0.44 0.42 0.41 0.41 0.41

25th 0.52 0.75 0.81 0.76 0.7 0.67 0.64 0.60 0.57 0.55 0.51 0.50 0.47 0.48

50th 0.605 0.86 0.91 0.88 0.84 0.80 0.75 0.74 0.70 0.65 0.64 0.60 0.59 0.57

75th 0.74 0.95 1.03 1.03 0.97 0.94 0.89 0.88 0.83 0.79 0.79 0.76 0.70 0.66

90th 0.91 1.065 1.18 1.18 1.14 1.12 1.11 1.04 1.01 0.93 0.96 0.87 0.86 0.8

95th 0.98 1.16 1.22 1.29 1.25 1.28 1.17 1.12 1.15 1.05 1,03 0.92 0.96 0.85

Day 15 Day 16 Day 17 Day 18 Day 19 Day 20 Day 21 Day 22 Day 23 Day 24 Day 25 Day 26 Day 27 Day 28

Samples 101 96 99 79 85 62 123 72 66 86 64 50 54 111

10th 0.36 0.36 0.37 0.35 0.38 0.37 0.36 0.37 0.36 0.35 0.33 0.34 0.32 0.32

25th 0.44 0.44 0.43 0.42 0.42 0.40 0.39 0.40 0.40 0.41 0.38 0.37 0.37 0.36

50th 0.55 0.52 0.51 0.49 0.49 0.50 0.47 0.46 0.47 0.47 0.43 0.45 0.44 0.42

75th 0.63 0.61 0.60 0.61 0.57 0.62 0.54 0.54 0.54 0.52 0.52 0.51 0.50 0.48

90th 0.81 0.69 0.71 0.73 0.66 0.68 0.62 0.68 0.64 0.64 0.58 0.59 0.70 0.55

95th 0.87 0.73 0.78 0.81 0.73 n.a. 0.68 0.72 n.a. 0.67 n.a. n.a. n.a. 0.59

The numbers in bold and italic represent the 50th centile, or the median.
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the maturational Scr changes over postnatal age are extensive in
ELBWneonates. There is an initial increase to peak on day 3, with
a subsequent slow decrease over postnatal age (38, 39). To further
illustrate this, we have summarized the postnatal Scr trends (10th,
25th,median, 75th, 90th, and 95th centile) over the first 28 days of
life in an cohort of 217 ELBW cases (single unit, enzymatic assay,
all exposed to caffeine) in Table 2 (38). If we focus on the median
estimates, there is a clear increase from day 1 to 3 by 0.3 mg/dl, so
that this median “normal” trend already qualifies for an AKI stage
1 classification. From a physiological point of view, it may even be
reasonable to classify a relevant portion of ELBW as having AKI.
However, by using a centile approach, more “granularity” in the
data is provided to facilitate precision medicine.

Plotting individual observations or Scr trends over time in a
single ELBW infant may facilitate recognition and quantification
of an adverse drug event or may even facilitate precision
pharmacotherapy, a concept somewhat similar to growth charts.
To illustrate this, we compared mean Scr in ibuprofen-exposed
ELBWs in the earlier mentioned cohort to these centiles (38).
Figure 3 (visual presentation of Table 2 data) illustrates the
reference Scr (gray lines) over postnatal age, with the plotted
trend (black line) of median Scr observed in ELBW neonates
exposed to ibuprofen. A shift of about 1 standard deviation in
Scr 133 ibuprofen-exposed neonates is hereby observed (38, 39).
On the other hand, we investigated how individual amikacin
clearances are linked to Scr centiles (38). For aminoglycosides
like amikacin, there is a strong correlation between clearance
and GFR, also in neonates (40). Consequently, GA and ibuprofen
affect amikacin clearance in early neonatal life (41). Integration of
Scr centiles (<25th centile, 25–75th centile, or >75th centile) in
this dataset further explained the individual amikacin clearance
estimates (Figure 4) (38, 39). Along the same line, Cystatin C
reference values (type of assay unclear, Modular Analytics ISE900

FIGURE 3 | Trends in median creatinine values (enzymatic assay) in extreme

low birth weight (ELBW) neonates when exposed to ibuprofen (n = 133, black

line) compared to the reference centile trends (Table, gray lines) over time in

the first 14 days of postnatal life (38).

Analyzer, Germany) for ELBW (integrated in a cohort of very low
birth weight, < 1.5 kg) infants on day 1 and 3 [mean (SD) 1.77
(0.38) and 1.61 (0.37 mg/L, respectively)] have been suggested
in the literature. In contrast to Scr values, observations were
independent of the GA (42).

Key Messages
• Using the KDIGO-AKI definition results in an AKI incidence

of about 50% in ELBW neonates. Similar to other populations,
AKI is associated with increased mortality and morbidity.

• For pragmatic reasons, the criteria on urine output were
converted to more extensive time intervals or weight trends.

• We suggest to use assay-specific Scr centiles to better describe
the normal postnatal trend and its variability. We illustrated
that this approach facilitates recognition and quantification
of adverse drug events (ibuprofen, Figure 3) or to explain
individual amikacin clearance (Figure 4).

RENAL INJURY RELATED TO ASPHYXIA
AND NEONATAL ENCEPHALOPATHY

Perinatal asphyxia is a multi-organ disease, with moderate to
severe encephalopathy as pivotal finding to initiate WBH in
term neonates (4). This also includes AKI. As part of precision
medicine, quantifying the incidence, extent, and variability of
AKI and its covariates is relevant to tailor fluid administration
and pharmacotherapy (4, 43). AKI has also been identified as
prognostic factor for adverse neurological outcome and death
(44, 45).

AKI occurs in neonates following perinatal asphyxia, but
the incidence varies and in part depends on the case mix.
In 36 neonates with asphyxia (Apgar score 5min <7), AKI

FIGURE 4 | The relation between serum creatinine and amikacin clearance in

ELBW neonates. Differences in amikacin clearance in ELBW neonates who

had a serum creatinine reference value either <25th, between 25th and 75th,

or >75th centile for ELBW neonates and for the specific postnatal day

(38, 39, 41) (permission for re-use of the figure has been granted, Rightslink).
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TABLE 3 | Overview of serum creatinine observations (assay mentioned, mean, and standard deviation or interquartile range, all converted to mg/dl) on day 1, 2, or 3 and

day 10 in term and preterm (light gray) asphyxiated neonates (criteria provided) and gestational age-matched controls (19, 44, 46, 51–54).

Reference Clinical features,

asphyxia criteria

Assay Day 1

asph.

Day 2/3

asph.

Day 10

asph.

Day 1

contr.

Day 2/3

contr.

Day 10

contr.

Gupta, 2005 (51) Apgar score 5min <8,

59 term cases

Jaffe n.a. 1.08 (0.49) n.a. n.a. 0.88 (0.26) n.a.

Kaur, 2011 (46) Apgar score 1min <7,

36/2,196 cases,

≥34 weeks

Jaffe 0.92 0.95

Sarafidis, 2012

(52)

Apgar score 5min < 7 + clinical HIE (any

stage)

13 cases, 24 controls

Jaffe 1.32 (0.43) 1.57 (1.15) 0.73 (0.43) 1.02 (0.26) 0.76 (0.19) 0.69 (0.11)

Hadzimuratovic,

2014 (44)

Apgar score 5min <7 + organ dysfunction

+ HIE

50 cases, 50 controls

Jaffe n.a. 1.06 (0.40)

(IQR)

n.a. n.a. 0.65 (0.05)

(IQR)

n.a.

Treiber, 2014

(19)

Apgar score 5min <7 + organ dysfunction

+ HIE

50 cases, 50 controls

Jaffe 0.82 (0.17) 0.66 (0.18) n.a. 0.71 (0.15) 0.57 (0.17) n.a.

Gupta, 2005 (51) Apgar score 5min <8,

11 preterm cases

Jaffe n.a. 1.34 (0.79) n.a. n.a. 0.83 (0.26) n.a.

Song, 2017 (53) Definition unclear, 34–37 weeks,

48 cases and 45 controls

? 0.74 (0.23) 1.07 (0.48) n.a. 0.7 (0.28) 0.74 (0.29) n.a.

Pan, 2018 (54) Apgar score 5min <4 + organ dysfunction

+ pH<7 (umbilical cord), <34 weeks,

71 cases, 70 controls

? 0.69 (0.15) 0.72 (0.14) n.a. 0.72 (0.15) 0.74 (0.13) n.a.

? Stands for unknown, n.a. for not available.

was documented in 1/11 (9%) with moderate and 12/25 (56%)
with severe asphyxia (46). When we focus on WBH cases,
AKI (according to the modified neonatal KDIGO criteria) was
diagnosed in 39–42% (47, 48). Oliguria (<1 ml/kg/h for 12 h)
was observed in 11% WBH neonates (49). In the most recent
Cochrane meta-analysis, there was a trend to a lower incidence
of renal impairment (urine output <0.5 ml/kg/h for ≥24 h +

Scr >1 mg/dl) for neonates undergoing WBH (38.5 vs. 45%, risk
ratio and 95% CI, 0.87, 0.74–1.02), without effect on oliguria (<1
mg/kg/h, 23 vs. 24%) (50).

Table 3 provides an overview on Scr observations (including
assay) from day 1 to 10 as reported in cohorts of (pre)term
asphyxia neonates (including criteria) in the era before WBH.
Compared to the Gupta and Kaur cohorts, the other cohorts
had more restrictive inclusion criteria and likely better reflect
the neonates that currently qualify for WBH (19, 44, 51–54).
These data remain valuable as some neonates may miss the 6-h
therapeutic window or to subsequently compare such data with
WBH-related observations. In these studies, different definitions
for AKI or kidney failure were used (Table 3).

In the Gupta cohort, 47% of asphyxia neonates were classified
as having “renal failure” [blood urea >40 mg/dl, Scr >1 mg/dl
(Jaffe) or oliguria (<0.5 ml/kg/h)] (51). Mean blood urea and
Scr on day 3 of postnatal life were significantly higher (+60 and
30%, respectively) in asphyxiated neonates, while the standard
deviation (SD) for both biochemical markers doubled, indicating
an increase in patient variability. This variability was in part
explained by the HIE stage (mean [SD] Scr for HIE stage 0, 1, 2, or
3 was 0.9 [0.2], 1.1 [0.4], 1.3 [0.8], 1.4 [0.6] mg/dl, respectively).
Interestingly, the urine output was comparable between cases and

controls while oliguria was rare (7/33 renal failure cases), while
oliguric vs. non-oliguric renal failure was associated with higher
mortality (43 vs. 8%). During follow-up, urine output normalized
from day 4–6 onwards, urea and Scr from day 7–9 onwards
(51). In the more recently reported AWAKEN cohort (113 WBH
neonates, AKI incidence 42%), oliguria was more commonly
observed in AKI cases (isolated oliguria in 47, 26%mixed with Scr
thresholds, Table 1) (47). This confirms the complexity of AKI
diagnosis, and the need to simultaneously assess both diuresis
and Scr or Cystatin C to tailor clinical care and pharmacotherapy.
Kaur et al. reported on mean Scr (Jaffe) values 24–36 h and
72–96 h in asphyxiated neonates (0.92 and 0.95 mg/dl), with
significant differences between AKI and non-AKI neonates (1.49
vs. 0.8 mg/dl and 1.65 vs. 0.81 mg/dl) for both time intervals (46).

In the Sarafidis cohort, AKI (any Scr > 1.5 mg/dl, or increase
>0.3 mg/dl from day 1, Jaffe) was observed in 8/13 (61%). The
Apgar score at 5min was significantly lower in subsequent AKI
neonates, while other indicators of asphyxia severity (inotropics,
ventilation, anti-epileptic drugs, HIEmoderate/severe, mortality)
also associated with AKI (52). Scr (day 1, 3, and 10) were
significantly higher in asphyxiated neonates (1.32, 1.57, and 0.73
mg/dl) compared to controls (1.02, 0.76, and 0.69 mg/dl) with
normalization on postnatal day 10. There is also a broader
range (SD higher), reflecting higher inter-patient variability in
renal impairment in asphyxia cases. In the Sarafidis cohort,
several other biomarkers of renal GFR or tubular damage
were also quantified. Serum Cystatin C (ELISA) was marginally
increased only on day 1 in the asphyxiated neonates, while urine
Cystatin C and Neutrophil Gelatinase-associated lipocalin were
significantly increased in cases until day 10, suggesting earlier
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restoration of glomerular than tubular impairment (52). In the
Hadzimuratovic cohort, Scr (Jaffe) and Cystatin C (turbimetric
assay) was significantly higher (63 and 49%, respectively) in
asphyxia cases. In contrast to the findings of Sarafidis, both
the absolute Cystatin C values and trends remained different,
perhaps reflecting assay-related difference. The HIE stage (I vs.
III) in part explained the Scr variability on day 3. Finally, Treiber
et al. also reported on renal biomarkers (Scr, Jaffe; Cystatin C,
nephelometry) at birth (umbilical cord) and on day 3 in a cohort
of asphyxia neonates. Interestingly, Scr and Cystatin C were
significantly higher from delivery onwards. Umbilical Cystatin
C was the most sensitive marker of asphyxia (receiver operating
characteristic curve= 0.918) (Table 3).

A specific focus on preterm neonates is warranted. These
patients do not qualify for WBH but can still display asphyxia-
related AKI (Table 3). Gupta et al. (51) documented that the
mean Scr is significantly higher (+60%) in asphyxiated (Apgar
score 5min <8) preterms. Song et al. (53) reported on Scr (assay
unclear) values in near-term (34–37 GA) asphyxia (definition
unclear, n = 48) and age-matched controls, and observed a
significant decrease (−20%) in eGFR in asphyxia cases. Pan et al.
included 71 preterms (<34weeks) with asphyxia (pH<7+Apgar
at 5min<4+multi organ dysfunction) and 70 preterm controls,
and collected samples at 24, 48, and 96 h. Scr was significantly
higher at 96 h (83.5 vs. 62.9 µmol/l) and eGFR was consistently
lower at 24 and 48 h (−30 and−20%, respectively) (54). Cystatin
C (PENIA) had good distinguishability between asphyxiated
and non-asphyxiated preterms, irrespective (<28, 28–32, or ≥32
weeks subgroups) of GA, and further discriminated between
mild, moderate, and severe asphyxia. In contrast, Scr (assay
unclear) was not discriminative (55).

AKI affects the renal and non-renal outcome in asphyxia
neonates. AKI is associated with a 4.6-fold higher mortality risk
in the AWAKEN study, and this higher mortality risk also holds
true for post-asphyxiated neonates with AKI (29, 51). When
considering the renal outcome after discharge, Hadzimuratovic
et al. (44) and Gupta et al. (51) reported on normalization
of renal findings at 1 and 6 months, respectively in asphyxia
cases (44, 51). AKI also associates with non-renal outcome, like
prolonged hospital stay (48), prolonged mechanical ventilation
(47), or abnormal brain imaging findings (73 vs. 46%) at the end
of the first week of life (56). Post-asphyxial renal injury (urine
output + Scr) was a prognostic factor for neurological outcome
at the end of the 1st year of life (44). However, the absence of AKI
neither guarantees a positive outcome (45).

Once AKI has been identified, precision medicine involves
fluid and electrolyte management, drug choice (avoid
nephrotoxic drugs, potential nephro-protective interventions),
and for those drugs, dose selection.

In the earlier mentioned AWAKEN study, the daily %-weight
change from birth weight in the 1st week of postnatal life was
used to reflect the fluid balance in 645 critically ill term neonates.
A higher peak fluid balance and higher fluid balance over the
first week of life were independently associated with mechanical
ventilation on day 7. A negative fluid balance was observed in
53% of neonates (21 vs. 41% in ventilated vs. non-ventilated
neonates). Those with AKI had a consistently higher fluid balance

throughout the 1st week of life (36). Suggested nephro-protective
interventions include “low dose dopamine” or methylxanthines,
like theophylline (57). At present, there is no robust evidence for
the use of low dose dopamine to protect kidney function, while
there is meta-analytic evidence that prophylactic theophylline
(single intravenous dose, 5 mg/kg) results in a significant lower
AKI incidence (OR 0.24) in asphyxiated neonates (58). Despite
the evidence, neonatologists remain reluctant to administer
theophylline as this increases metabolic activity of the brain,
while hypothermia and sedation are used to reduce metabolic
(cerebral) activity.

With respect to precision pharmacotherapy, it is important
to realize that the mean difference in Scr or eGFR between
asphyxiated neonates (either or not undergoingWBH) compared
to term controls is clinical significant (−40 to−50%) and further
adds tomaturational (weight, postnatal) changes. This is reflected
by the impact of asphyxia on drugs exclusively cleared by renal
elimination (4). To illustrate this, amikacin clearance trends in
early neonatal life based on pooling of reported datasets were
plotted (Figure 6). There is a maturational trend in clearance,
related to birth weight and postnatal age (day 1, 2, 3, 4,
as indicated by different colors) compared to a subgroup of
WBH neonates. These differences indicate mean differences in
clearance, but do not cover the additional unexplained between-
individual variability (59). Essentially, there is a shift in the
Gauss curve for Scr or eGFR toward renal impairment, but
mean differences do not fully cover the between individual
variability. For this type of drugs, this means that the time
interval between consecutive administrations should be extended
(in general from 24 to 36 h, so compensating for the 40–50%
decrease in clearance) but therapeutic drug monitoring remains
compulsory as there still will be toxic trough levels in 14–25% of
cases (59).

FIGURE 5 | Serum creatinine values in non-asphyxiated (n = 24) and

asphyxiated neonates (n = 13) as reported by Sarafidis et al. (52) reflecting

both the mean differences and additional variability (>5 fold) within

these cohorts.
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FIGURE 6 | Estimates of amikacin clearance (l/h) trends in early neonatal life

based on pooling of reported datasets (dashed lines). There is a maturational

trend in clearance, related to birth weight (g) and postnatal age (day 1, 2, 3, 4,

as reflected by the colors) compared to a subgroup of term neonates

undergoing therapeutic hypothermia as treatment for perinatal asphyxia (solid

lines). The arrows indicate the difference in clearance between both cohorts for

the respective postnatal age (in days) (4, 59) [this figure has earlier been
published in reference (4), permission for re-use has been granted, first author
Anne Smits].

Key Messages
• Oliguria is a specific indicator of AKI, but the majority of AKI

cases are non-oliguric. Assessment of the fluid balance is an
alternative. This confirms the complexity of AKI diagnosis,
and the need to simultaneously assess both diuresis and Scr or
Cystatin C to tailor clinical care and pharmacotherapy.

• Asphyxia with WBH results in a clinical significant—often
transient—mean decrease in eGFR (−40 to −50%), with GA
and HIE stage as additional covariates (Table 3).

• This mean decrease in GFR affects renal drug elimination.
However, there is still large (unexplained) inter-individual
variability in GFR (mean vs. SD) and renal drug clearance in
asphyxiated neonates (Figures 5, 6).

RENAL PRECISION AS CRUCIAL PART OF
CONTEMPORARY NEONATAL PRECISION
MEDICINE

Using ELBW and asphyxia as case examples, we illustrated that
kidney function and AKI are relevant to contemporary neonatal
care. In ELBW, AKI is associated with increased mortality and
morbidity while Scr centiles were used to recognize and quantify
adverse drug events and to explain individual amikacin clearance.
Asphyxia associated AKI affectsmortality andmorbidity.WBH is
associated with a significant mean (−40 to−50%) GFR decrease.
Of relevance, there is still important variability in GFR decrease

around this mean decrease, so that the mean decrease does
not predict well the GFR decrease in an individual neonate.
Although these data strongly suggest that better integration of
renal precision is important to improve contemporary neonatal
care, the AWAKEN study showed that the median number of
Scr measurements was ≤3 and ≤5/patient in 10 and 15/24 of the
units, suggesting that further improvements can be made (29).
There are some elegant illustrations on how these improvements
can be implemented and how a focus on renal aspect indeed
improves neonatal care.

In the Baby NINJA study, 476 individual events of high-
risk nephrotoxic drug exposure were observed. During these
events, a daily Scr was obtained until 2 days after exposure
or after end of AKI. Within this framework, there was
a reduction in exposure (16.4 to 9.6/1,000 patient days),
a reduction in drug-associated AKI (30.9 to 11%), and in
AKI intensity (9.1 to 2.9/100 susceptible patient days) (60).
Implementation of AKI guidelines in a single NICU resulted in
improvements in recognition, diagnosis, and subsequent follow-
up of AKI (61). This matters, as in ELBW infants, exposure to
nephrotoxic drugs is common (87%) with gentamicin (86%),
indomethacin (43%), and vancomycin (25%) as most commonly
administered drugs (62). It is hereby important to highlight
that follow-up of these populations remains important after
hospital discharge as there are concerns on the long-term
renal outcome, most pronounced in former ELBW cases (63).
Research should focus on perinatal risk factors associated
with impaired GFR in long-term outcome studies, but is
hampered by single center cohorts, small samples sizes, and
heterogeneity of GFR assessment tools (64). The diagnosis
of AKI remains complex with integrated assessment both of
diuresis and Scr or Cystatin C to tailor clinical care and
pharmacotherapy. We therefore state that further integration
of renal (patho)physiology into neonatal precision medicine
and pharmacotherapy may not only result in better short-term
outcome but also may have impact throughout pediatric life
and beyond.
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Importance: Vascular delay that occurs early in the development of retinopathy of

prematurity (ROP) is a risk factor that can be compensated by ensuring a good rate

of retinal vascularization to avoid ROP that requires treatment.

Background: The objective of the present study was to determine the association

between ROP that requires treatment and risk factors such as the extent of the temporal

avascular area of the retina and the number of days of mechanical ventilation (MV).

Design: Observational retrospective case-control study.

Participants: Two hundred and twenty-eight premature newborns included in the

screening protocol for retinopathy of prematurity.

Methods: Subjects underwent retinal examination in the 4 and 6th postnatal weeks.

Main Outcome Measures : The temporal avascular area was measured in disc

diameters (DD), while the MV time was measured in days of treatment.

Results: Patients with a longer MV time had a higher risk of treatment (R2: 24.7, p

< 0.0001; increase in risk of 8.1% for each additional day), as did those who showed

greater avascular area (R2: 24.7, p < 0.0001; increase in risk of 111% for each additional

DD). An online calculator system and a table are presented for calculating the risk of ROP

requiring treatment as a function of these two risk factors.

Conclusions and Relevance: The temporal avascular area of the retina and MV time

must be taken into account in the first examination of the newborn to predict the need

for ROP treatment.

Keywords: retinopathy of prematurity, retinal vessel, oxygen-induced retinopathy, risk factors, bronchopulmonary

dysplasia

INTRODUCTION

Retinopathy of prematurity (ROP) is currently the world’s second leading cause of preventable
child blindness (1, 2). For this reason, numerous studies have been carried out to identify the
main risk factors for ROP (3) and incorporate them into early ROP detection algorithms (4).
Current screening algorithms are mainly based on birth weight and gestational age (3). However,
several other related factors are involved, such as the avascular area of the retina, the rate of
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retinal vascularization, and the time spent by the premature
newborn under mechanical ventilation (MV) (3–6).

Various ROP predictive models to identify newborns
requiring ophthalmologic screenings are reported in the
literature. Majority show high sensitivity and medium to low
specificity (7–10). Authors themselves have made clarifications
regarding their own models, claiming that no predictive model
will work properly at a universal level (11); in many cases
newborns of ≥31 weeks or <24 weeks of pregnancy, who quite
often show a wide area of non-vascularized retina after birth, are
excluded (12). However, there is not a single model of practical
applicability and adaptability currently available in the usual
clinical practice (13) that helps physicians identify newborns
with higher risk of severe ROP requiring treatment and guides
the planning of checkup frequency.

The DIGIROP model concluded that one of the best variables
for predicting risk of requiring ROP treatment is postnatal
chronologicalage (12). Conversely, the Early Treatment for
Retinopathy Of Prematurity Study showed that the wider the
avascular area (zone I), the higher the risk of requiring treatment
(14). The more severe a ROP is, the larger the peripheral area
of retinal ischemia is, and this is associated with a greater
need for revascularization and recovery time (15). Specifically,
the revascularization time required to reverse ROP in zone I
is significantly longer than that required in zone II, which in
turn is longer than that required in zone III (16, 17). A retinal
vascularization rate of <0.5 disc diameters (DD) per week (18)
has been identified as an indication for ROP treatment (5).
Therefore, why not study the temporal avascular area of the retina
as a risk factor?

Both bronchopulmonary dysplasia and the need forMV in the
premature newborn (19) are closely related to ROP. Longer MV
times are associated with greater risk of ROP requiring treatment
(6, 20). Recently, new oxygen therapy control measures have been
implemented in neonatal intensive care units (NICUs) (21), as
has early treatment by intravitreal bevacizumab or laser diode.
Both these techniques have contributed to an improved prognosis
for newborns with ROP (22).

The objective of the present study was to determine the risk
factors for ROP requiring treatment, and to develop a system for
calculating the risk of ROP requiring treatment that is based on
the main risk factors and can be applied in clinical practice at the
first examination of the newborn.

MATERIALS AND METHODS

The present study was approved by the Biomedical Research
Ethics Committee of Andalusia and was carried out in
accordance with the ethical principles of the Declaration of
Helsinki for medical research. All medical data were collected
anonymously after informed consent was given and after
the parents or legal guardians of the study participants gave
express authorization.

Abbreviations: ROP, retinopathy of prematurity; MV, mechanical ventilation; DD,

disc diameters; GA, gestational age; NICU, neonatal intensive care unit.

Subjects of the Study
An observational, retrospective case-control study was
conducted on 228 premature newborns who were examined
between 1999 and 2019 at the NICU of the San Cecilio University
Hospital in Granada, Spain. One eye of each patient was included
in the study.

Inclusion criteria were: (1) birth weight < 1,500 g or GA
≤ 32 weeks, (2) birth weight between 1,501 and 2,000 g and
GA ≥ 32 weeks with oxygen supply > 72 h or unstable clinical
course as determined by the NICU neonatologist (apneas,
neonatal acidosis, twin death, intraventricular hemorrhage,
persistent ductus, sepsis, necrotizing enterocolitis, or concurrent
surgical interventions), (3) preterm newborns that could be
examined between the fourth and sixth postnatal weeks, and (4)
preterm newborns with at least three examinations performed.
Participants were excluded from the study when (1) they could
not be examined between the 4 and 6th weeks after delivery,
(2) they underwent fewer than three examinations, (3) they had
complete retinal vascularization in the first examination, and (4)
they showed medial opacity.

Eye Examination
All patients were examined by the same pediatric
ophthalmologist between the 4 and 6th postnatal weeks. The
examinations used indirect ophthalmoscopy with indentation
and were carried out under pharmacological mydriasis with
topical anesthesia using a 20 diopter lens. This technique
provides an approximate field of vision of 8 DD, which is
equivalent to 45◦. First, estimation of the vascular caliber is
carried out and presence or absence of dilation or vascular
tortuosity found in the vessels of the central retina is evaluated.
Subsequently, the ROP stage and compromised area are
identified. Next, eyeball indentation is performed in order
to observe the peripheral retina by aligning the binocular
ophthalmoscope until the raised gray line corresponding to the
indentation is visible. Indentation is moved in parallel until the
first temporal vessel is visualized in the periphery.

In each examination, the following data were collected: ROP
stage according to the International Classification of Retinopathy
of Prematurity (16), affected retinal area (zones I, II, and III), time
extension, presence of preplus and plus disease, and extent of
retinal avascular area (in DD) from the periphery to the center of
the retina. Examinations were performed weekly or every 2 weeks
until the retina was completely vascularized, except in patients
with preplus or plus disease, in those with limited vascularization
in zone I or posterior zone II, or in those with stage 3 ROP in any
zone. In such cases, examination was carried out weekly.

Eye selection for the study (right or left) was carried out
through random allocation.

The need for ROP treatment was recorded as a dependent
variable, while the following parameters were recorded as
independent variables: temporal avascular area of the retina
in DD, GA (weeks), and MV time (days). We also collected
weight gain in the first 4 weeks of postnatal life (g/day),
Apgar score (23), degree of bronchopulmonary dysplasia (19),
number of blood transfusions received, presence of apnea
(24), persistence of arterial ductus, presence of sepsis (25),
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presence of necrotizing enterocolitis, presence of intraventricular
hemorrhage and presence of periventricular leukomalacia.

Disc diameters: The measurement unit used to quantify non-
vascularized area of the retina was the disc diameter (DD). The
horizontal diameter of the subject’s optic nerve can be quickly
and easily identified during fundus exploration. Once the optic
disc diameter is known, extension of any retinal territory can
be quantified in DDs. This measurement unit has been used by
several authors to quantify the territory of retinal immaturity
(26, 27).

Mechanical ventilation time (MV) was defined as the
treatment time using endotracheal intubation. MV time was
measured in days. However, between 2009 and 2012, the
oxygen supply protocols were modified. Saturation levels were
maintained at ∼95% during the years 2000–2009; from 2009–
2012 they varied between 85 and 93% (6).

Postnatal weight gain was defined as the weight gained from
birth up to week 4. It is expressed in g/day and is the result
of the weekly weight gain average measured during routine
neonate screenings.

The Apgar Scale was described by Virginia Apgar to assess the
newborn’s overall condition based on heart rate, breathing effort,
response to stimuli, muscles tone, and skin color of the newborn.
Apgar Scale at minute 1 of birth reflects the newborn’s tolerance
to birth, and Apgar at minute 5 reflects their adaptability level to
the environment (23, 28).

Bronchopulmonary dysplasia was defined as a preterm infant
chronical pulmonary disease with limited respiratory function
caused by airway immaturity and exposure to high oxygen
saturation due to mechanical ventilation (19). Three levels of
severity (mild, moderate, and severe) were established based on
gestational age (over or under 32 weeks of pregnancy) and ability
to breathe room air or require oxygen at a concentration above
or below 30% (29).

Presence of neonatal apnea was defined as the absence of
respiratory effort for more than 20 s, or for more than 10 s with
bradycardia or desaturation in newborns within the first 28 days
of life (30).

Anemia and the need for blood transfusions are two
conditions that have been related to ROP severity. The literature
shows conflicting results. Some studies show that receiving a
higher amount of blood supply has no significant impact on ROP
severity (31). However, other studies show that receiving a low
number of blood transfusions could result in a higher percentage
of fetal hemoglobin, instead of adult hemoglobin, which could be
a ROP protective factor (32).

Presence or absence of patent ductus arteriosus was confirmed
in all of the cases using echocardiography. Rate of spontaneous
closure of ductus arteriosus decreases considerably in newborns
of <28 weeks and/or <1,000 g at birth, and its presence has been
associated with several pathologies, such as ROP (33).

Sepsis was defined as a life-threatening organ dysfunction
caused by a dysregulated host response to infection. Organ
dysfunction can be identified as an acute change in total
SOFA (Sequential Organ Failure Assessment) score ≥2 points
consequent to the infection (25).

Necrotizing enterocolitis was defined as an abdominal
distention with pneumatosis intestinalis, portal venous gas, or
both; or presence of other radiographic signs, such as fixed,
dilated intestinal loops and ileus patterns (34). Most published
articles show a higher risk of ROP in preterm infants with
necrotizing enterocolitis. However, some authors claim that this
relation could be caused by the impact of prolonged treatment
with oxygen (3).

Presence of cerebral hemorrhage with intraventricular
extension diagnosed by a pediatrician or neuropediatrician
and confirmed through imaging was included in the study.
Severity was classified using the Graeb Score (35). The presence
of intraventricular hemorrhage has been associated with severe
stages of ROP (36) and as one of the pathologies with higher
morbidity and mortality in preterm newborns.

Presence of periventricular leukomalacia was determined
using neuroimaging (primarily, ultrasonography, and/or
magnetic resonance imaging) (37).

Identified cases included eyes that received treatment
for threshold retinopathy of prematurity (ROP) or type 1
prethreshold ROP. Identified controls included other eyes
that did not receive treatment for ROP or those presenting
progression-free type 2 prethreshold ROP.

Statistical Analysis
Statistical analysis was performed using the Statistical Package
for Social Sciences (SPSS 25.0; IBM Corp. Armonk, NY: IBM
Corp). The variables were analyzed descriptively and expressed

as means ± standard deviation. Cuantitative variables were
compared using Mann-Whitney U-test. Qualitative variables
were compared using Pearson’s χ2 test. The predictive risk model
was implemented using binary logistic regression between the
dependent variable (ROP requiring treatment) and each of the
independent variables.

RESULTS

Descriptive Analysis
A total of 683 premature newborns were screened, of which 455
were excluded because they did not meet the inclusion criteria.
Of the 228 newborns ultimately included in the study, 38 (16.7%)
received treatment, while 190 (83.3%) did not.

Themean GA of the study population was 28.83± 2.03 weeks;
34.6% of the newborns had a gestational age of 24–27 weeks,
47.4% of 28–30 weeks, and 18% of 31–34 weeks. The lowest GA
in the study sample was 24 weeks, while the highest was 34 weeks.

The mean MV time of the entire sample was 9.4± 13.64 days;
28.07% of the newborns did not require MV, 42.98% required ≤

10 days of MV, and 28.95% required > 10 days of MV.
The mean temporal avascular retinal area in the study sample

was 3.46 ± 1.63 DD; 40.4% of the newborns had a temporal
avascular area of < 3 DD, while 37.7% had an avascular area
between 3–4 DD and 21.9% had an avascular area of ≥ 5.00 DD
(Table 1).
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TABLE 1 | Descriptive statistics of the study sample, average difference in continuous variables (Mann–Whitney U-test) and percentage difference in qualitative variables

(Pearson’s chi-square test) within treated and untreated ROP groups.

Variable Total mean ± SD or % Untreated Treated p

Gestational age (weeks) 28.83 ± 2.03 29.10 ± 1.88 27.44 ±1.96 <0.001

(Min 24.0/Max 34.0)

Birth weight (g) 1094 ± 268.9 1126.92 ± 257.67 935.16 ± 270.09 <0.001

(Min 537/Max 1970)

Duration of mechanical ventilation

(days)

9.4 ± 13.64 6.73 ± 8.62 22.74 ± 23.28 <0.001

(Min 0/Max 100.0)

Avascular area of the retina (DD) 3.46 ± 1.63 3.13 ± 1.44 5.13 ± 1.53 <0.001

(Min 1.0/Max 8.0)

Weight gain in the first 4 weeks

(g/day)

12.19 ± 6.03 12.68 ± 6.01 9.70 ± 5.52 0.003

(Min 0.1/Max 39.7)

Number of blood transfusions 0.64 ± 0.67 0.58 ± 0.60 0.95 ± 0.89 0.006

(Min 0/Max 5.0)

Apgar score (1min) - - - 0.046

(Min 0/Max 10)

Apgar score (5min) - - - 0.001

(Min 0/Max 10)

Presence of bronchopulmonary

dysplasia

81.6% 79.5% 92.1% 0.067

Presence of apnoea 14.5% 7.4% 50.0% <0.001

Presence of persistent arteriovenous

ductus

20.6% 15.8% 44.7% <0.001

Presence of sepsis 40.4% 35.8% 63.2% 0.002

Presence of necrotizing enterocolitis

(NEC)

20.6% 18.9% 50.0% <0.001

Presence of intraventricular

hemorrhage

14.0% 10.5% 31.6% 0.001

Presence of periventricular

leukomalacia

24.1% 19.5% 47.4% <0.001

Min, minimum; Max, maximum.

Relationship Between ROP Requiring
Treatment and Study Variables
Table 2 shows the results of the binary logistic regression analysis
between ROP requiring treatment and the risk factors related to
retinal vascular development in ROP identified in the study.

Relationship Between ROP Requiring Treatment

Retinal Temporal Avascular Area
Greater retinal avascular area was significantly associated with
greater risk of ROP requiring treatment (Nagelkerke’s R2: 30.1%,
p < 0.0001). The first patients who were treated presented with
2.00 DD without vascularization. Of the patients with ≥ 6 DD
of retinal avascular area, 58.83% required treatment (Table 3,
Figure 1).

Relationship Between ROP Requiring Treatment and

Mechanical Ventilation Time
Longer MV times were significantly associated with greater
risk of ROP requiring treatment (Nagelkerke’s R2 =

24.7%, p < 0.001), as shown in Table 4. After 31 days of

MV, 72.7% of the newborns required treatment (Table 4,
Figure 2).

Models for Calculating the Probability of
ROP Requiring Treatment
Binary Logistic Regression Between ROP Requiring

Treatment and Gestational Age at Birth
According to the logistic regression analysis, newborns
with lower GA had a greater probability of requiring
treatment (Nagelkerke’s R2 = 16.1%, p < 0.001; OR: 0.631,
95% confidence interval [CI]: 0.513–0.775, p = 0.005].
Applying the logistic regression model between the dependent
variable (ROP requiring treatment) and GA in weeks yielded
the following:

Probability of ROP requiring treatment

= 1/(1+ e−11.417−0.461(weeks of GA))
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TABLE 2 | Analysis of the risk factors for severe ROP requiring treatment (assuming that the other variables remain constant in the sample).

Variable OR (CI 95%) Nagelkerke’s R2

Avascular temporal retinal diameter (DD) 2.11 (1.64, 2.70)* 30.1%**

Duration of mechanical ventilation (days) 1.08 (1.05, 1.11)* 24.7%**

Weight gain in the first 4 weeks (grams/day) 0.90 (0.84, 0.97)* 6.5%**

Apgar score (1min) 0.95 (0.83, 1.09)* 0.4%**

Apgar score (5min) 0.98 (0.82, 1.17)* 0.01%**

Gestational age (weeks) 0.63 (0.51, 0.77)* 16.1%**

Birth weight (g) 0.99 (0.98, 0.99)* 13.2%**

Degree of bronchopulmonary dysplasia 1.70 (1.21, 2.41)* 7.9%**

Number of blood transfusions 2.05 (1.22, 3.41)* 6.1%**

Presence of apnoea 12.57 (5.44, 29.03)* 24.5%**

Presence of persistent arteriovenous ductus 4.32 (2.04, 9.13)* 10%**

Presence of sepsis 3.07 (1.49, 6.33)* 7%**

Presence of necrotizing enterocolitis (NEC) 4.28 (2.06, 8.89)* 10.6%**

Presence of intraventricular hemorrhage 3.92 (1.72, 8.96)** 7.0%**

Presence of periventricular leukomalacia 3.72 (1.79, 7.73)* 8.6%**

*p < 0.05, **p < 0.001.

TABLE 3 | Relationship between retinal temporal avascular area and ROP requiring treatment in the sample. As avascular area increases, so did the percentage of

individuals requiring treatment.

Retinal avascular

area

Untreated ROP Treated ROP Total % ROP treated

1-1.9 DD 20 0 20 0%

2-2.9 DD 69 2 71 2.9%

3-3.9 DD 47 5 52 10.6%

4-4.9 DD 27 8 35 22.8%

5-5.9 DD 13 4 17 23.5%

6-6.9 DD 10 13 23 56.5%

7-7.9 DD 1 4 5 80%

8-8.9 DD 3 2 5 40%

The probability of treatment decreased by 36.9% for
each additional week of GA, if the rest of the variables
remained constant.

Binary Logistic Regression Between ROP Requiring

Treatment and Duration of MV
The risk of requiring treatment for ROP is directly proportional
to the days of duration of MV (Nagelkerke’s R2: 24.7%, p <

0.001) [OR:1.08 (CI: 1.049, 1.115), p= 0.005]. As in the previous
section, following the logistic regression equations between ROP
requiring treatment and the days of duration of MV:

Probability of ROP requiring treatment

= 1/(1+ e−2.571+0.078(days of MV))

For each additional day of MV, the probability of ROP requiring
treatment was increased by 8.1% provided the rest of the variables
remained constant.

Logistic Regression Between ROP Requiring

Treatment and Temporal Avascular Area
A directly proportional relationship was observed between risk of
ROP requiring treatment and size of retinal temporal avascular
area. That is, larger avascular area was associated with greater
risk of requiring treatment (Nagelkerke’s R2 = 30.1%, p < 0.001;
OR: 2.11, 95% CI: 1.648–2.701, p = 0.005). Again, following the
logistic regression equations, we concluded that:

Probability of ROP requiring treatment

= 1/(1+ e−4.640+0.746(DD of avascular area))

For every DD of additional retinal temporal avascular area
in the premature newborn, the probability of requiring
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FIGURE 1 | Relationship between retinal avascular area and ROP requiring treatment, adjusted by gestational age. U Mann Whitney medium range differences: ROP

no requiring treatment, 101.78; ROP requiring treatment, 178.08 (p < 0.0001).

TABLE 4 | Relationship between MV time and ROP requiring treatment. As the MV time increases, so does the percentage of individuals treated.

Mechanical

ventilation

ROP not treated ROP treated Total % ROP treated

0 days 59 5 64 7.8%

1–10 days 89 9 98 9.2%

11–20 days 23 9 32 28.1%

21–30 days 16 7 23 30.4%

≥ 31 days 3 8 11 72.7%

treatment increased by 111% provided the rest of the variables
remained constant.

Risk Calculator for ROP Requiring Treatment Based

on the Retinal Temporal Avascular Area and MV Time
According to the multiple logistic regression model, longer MV
time was significantly associated with greater avascular area and
greater likelihood of ROP requiring treatment (Nagelkerke’s R2

= 42.9%, p < 0.001; OR for avascular area in DD: 1.986, 95% CI:
1.527–2.582, p = 0.005; OR for MV time in days: 1.067, 95% CI:
1.033–1.101, p= 0.005).

Probability of ROP requiring treatment

= 1/(1+ e−5.251+0.686(avascularareainDD)+0.064(MV time in days))

On the basis of the equations of this analysis, we can conclude the
results shown in Table 5. An automatic online calculator system
for predicting ROP requiring treatment was created (available
on: www.roprequiringtreatment.com).

The risk calculator sensitivity and specificity for predicting
severe ROP requiring treatment, based on the levels of probability
are shown in Table 6.

DISCUSSION

The clinical examinations performed during the present
study were carried out by a single pediatric ophthalmologist
based on the guidelines of the screening program for ROP
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FIGURE 2 | Relationship between mechanical ventilation time and ROP requiring treatment, adjusted by gestational age. U Mann Whitney medium range differences:

ROP no requiring treatment, 104.98; ROP requiring treatment, 162.09 (p < 0.0001).

TABLE 5 | Table for calculating risk of ROP requiring treatment based on the retinal temporal avascular area in DD and the MV time in days, according to the ET-ROP

study (38, 39).

Mechanical

ventilation (days)

Avascular area (DD)

0 1 2 3 4 5 6 7 8 9 10

0 0.52% 1.03% 2.03% 3.94% 7.54% 13.93% 24.32% 38.96% 55.90% 71.57% 83.33%

5 0.72% 1.41% 2.77% 5.35% 10.09% 18.23% 30.68% 46.78% 63.58% 77.61% 87.31%

10 0.98% 1.94% 3.77% 7.22% 13.39% 23.49% 37.87% 54.76% 70.62% 82.68% 90.46%

15 1.35% 2.65% 5.12% 9.68% 17.55% 29.71% 45.64% 62.50% 76.80% 86.80% 92.88%

20 1.85% 3.61% 6.92% 12.86% 22.67% 36.80% 53.62% 69.66% 82.01% 90.05% 94.73%

25 2.53% 4.90% 9.29% 16.90% 28.76% 44.50% 61.42% 75.97% 86.26% 92.57% 96.12%

30 3.45% 6.63% 12.36% 21.87% 35.73% 52.47% 68.68% 81.32% 89.63% 94.50% 97.15%

The percentages in green correspond to those subjects with a < 10% risk of requiring treatment, those in yellow correspond to those with a 10–15% risk, and those in red to those with

a ≥ 15% risk.

in Spain (40). Fundus examination was performed using
indirect binocular ophthalmoscopy with scleral indentation,
which is currently considered the gold standard technique for
complete evaluation of the retina. Unlike other automated
techniques such as the use of RetCam R©, indirect binocular
ophthalmoscopy with scleral indentation enables adequate

evaluation of the peripheral retina, which is extremely important
in the initial stages of ROP (41–43). However, this method
does not allow photographic images to be recorded, as the
RetCam R© does. This limitation was partially resolved using
real time video recordings of the images obtained by the
binocular ophthalmoscope.
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TABLE 6 | Model sensitivity and specificity for predicting severe ROP requiring

treatment, based on the three different levels of probability in Table 5 (low

risk—green; moderate risk—yellow; high risk—red).

Probability Sensitivity Specificity

<10% 100% 48%

10–14.9% 87% 55%

≥15% 70% 66%

Examination instruments such as RetCam R©, retinoscopy, or
wide-field angiography have allowed repeated examination and
analysis of retinal images in numerous studies (41–44). However,
these techniques are rarely available in hospitals, so the indirect
binocular ophthalmoscope continues to be used by numerous
specialists. Many previous authors have measured the extent of
retinal vascularization in patients with ROP to identify ROP stage
and evaluate treatment efficacy (26, 45, 46).

Pediatric ophthalmology experts have a great ability to
distinguish vascular dilation, ROP stages in poorly dilated eyes,
and color and traction morphology of injuries. Several authors
have previously measured the degree of retinal vascularization
in patients with ROP to identify the ROP stage and evaluate
treatment efficacy (26, 45–47). We believe that, with additional
practice, indenting the temporal periphery retina and obtaining
the avascular area in the DD observed during each neonatal
screening should be easy. This information collected all
throughout screening also allowed us to identify another
progression marker: vascularization speed. Thus, insufficient
vascularization speed of <0.5 DD is an indicator of ROP
requiring treatment (48).

In our series, two children treated for ROP (5%) had a birth
weight equal or above 1,501 g, or a gestational age of more than
30 weeks, implying that they would not have been detected by
any predictive factor model, such as G-ROP (49). Two preterm
infants with 2.5 DD of non-vascularized temporal retina were
treated for ROP. Retinal vascularization of zone III without prior
ROP of zone I or II must be accomplished to be discharged from
the screening program (if screener has doubts regarding the zone,
confirmatory tests may be justified) (50).

Postnatal weight gain was expressed in g/day and is the result
of the weekly weight gain average measured during routine
neonate screenings. After a thorough analysis of the literature
(7, 10, 51–53), the measurement unit chosen for postnatal
weight gain was g/day instead of g/kg/day. Newborns who are
underweight at birth have been traditionally associated with
a lower weight gain during neonatal period and delays in
neurological development. However, a lower birth weight is not
a pathogenic factor of retinopathy of prematurity (ROP) in itself,
but rather, majority of cases reported in the literature are related
to gestational factors (delays in fetal growth from maternal,
placental or fetal causes, and prioritization of development of
vital organs at the expense of other secondary structures, such as
the retina) (54, 55) and newborn comorbidity, which can be the
cause of lower birth weight (54, 56, 57).

Risk factors that could be related to or derived from
treatment with oxygen (presence/absence of apnea and degree
of bronchopulmonary dysplasia, which did not show significant
differences between the groups with treated and untreated
ROP) were excluded from the predictive model for calculating
severe ROP requiring treatment, as these factors could be
influenced by duration of mechanical ventilation (19, 29),
which is indeed included in the model. It was also decided
to exclude neonatal comorbidity (number of transfusions,
sepsis, necrotizing enterocolitis, intraventricular hemorrhage,
and periventricular leukomalacia) from the model (3, 31, 33,
37). In our study, statistically significant differences were found
between the presence of those comorbidity factors and the
degree of ROP. However, results described in the literature are
heterogeneous, and extrapolating the prediction of this sample to
other study populations that showed different results would be
difficult. We believe that neonatal comorbidity must be valued
individually, and that it is closely related to gestational age and
birth weight.

A first model of logistic regression, including avascular area,
duration of mechanical ventilation, gestational age and birth
weight, was elaborated. Ninety-five percent (95%) confidence
intervals deriving from this logistic regression for gestational age
and birth weight were 0.74–1.37 and 0.99–1.01, respectively. As
confidence intervals include the value 0, these were excluded
from the calculator tool due to their low statistical significance
value in the predictive model. This lack of significance could be
the result of patients already being selected at the beginning of the
study based on their gestational age and birth weight, according
to the Screening Program for Retinopathy of Prematurity in
Spain (40).

In ourmodel, avascular area replaces gestational age given that
both variables are strongly correlated, as the avascular area of the
first test collects information on the pre and postnatal vascular
delay. Thus, the calculator tool was developed based on two
variables: avascular area and duration of mechanical ventilation.
Gestational age and birth weight are the two most relevant
variables considered to select newborns requiring screenings for
ROP. Both variables are included in the Screening Program for
Retinopathy of Prematurity in Spain (40), and most countries
have their own screening criteria (40, 50, 58–60).

However, the calculator tool cannot be used to determine
which neonate must be screened, but rather to customize the
frequency of ophthalmological checkups. The calculationmodel’s
main use is to identify neonates that while participating in the
screening program must be subject to more frequent screenings
and a more intensified comorbidity control, due to a high risk of
severe ROP requiring early treatment; or, neonates that can be
subject to less frequent screenings due to low risk of severe ROP.

The simple design of the table based on only two
variables allows for a quick and easy observation and
interpretation by clinicians during their usual clinical
practice, in case of unavailability of electronic device
at hand. However, this calculator must be improved in
the future as these variables only explain 41% of the
outcome and must be validated through studies executed at
other centers.
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ROP has a hereditary component that ranges between 70
and 73% (61, 62). Furthermore, the vascularization of the
choroid, vitreous, and retina occurs alongside the development
of nutritional supply to these structures (63). In premature
newborns, vascular development of the retina occurs parallel to
neurological development (64). Genetics and the environment
can interact during pregnancy, birth, or in the postnatal period.
However, numerous factors, such as oxygen concentration, can
influence vascular delay or inhibition of the retina during phase
I of ROP. The resulting retinal ischemia may subsequently
contribute to the development of neovessels during phase II of
ROP (3).

Michaelson reported that the growth rate of the superficial
retinal vessels was 100 µm/day in the human fetus (65). Factors
such as low GA and other vascular development inhibitors may
lead to a greater avascular area in the temporal retina (5, 48).
Premature newborns who present with absence of vascularization
in zone I at the first examination have a higher risk of ROP
requiring treatment than those who present with absence of
vascularization in zone II or III (38).

Various models of ROP screening, such as WINROP (7),
CHOP-ROP (66), PINT-ROP (51), NED-ROP (67), and CO-ROP
(68), have been proposed to identify newborns at risk of ROP
andminimize unnecessary examinations in newborns at low risk.
However, ROP cannot always be seen to its fullest extent at the
first examination of the newborn (69). Therefore, once newborns
are selected to undergo ophthalmological examination, clinicians
must take into account the above risk factors, especially the
avascular area (in DDs) and the MV time (in days). In so doing,
at the first examination they will be able to identify newborns at
higher risk of requiring treatment. Therefore, the risk calculation
model presented in the present study may be useful for pediatric
ophthalmologists during clinical practice.

The objective of this study differs from that of most studies
published in the literature in a sense that it is not an ROP
or severe ROP screening tool, but rather a tool to be used
after the first screening, following the screening criteria of each
country. By using the screening criteria of each center or country,
newborns that are subjected to serial ophthalmologic screening
are identified. In each country or center, screenings are carried
out on a weekly or biweekly basis (40, 50), or customized
to the severity of each newborn. By applying the model for
predicting the risk of severe ROP requiring early treatment on
the cohort of neonates, we will be able to adapt the periodicity
of checkups.

Each country has its own ROP screening program based on
gestational age, birth weight, and neonatal comorbidity, although
almost all of them share common characteristics. Gestational age
threshold is between week 30 (50, 58) and 32 (40, 59) for most
countries, and birth weight is around 1,500 g (40, 50, 58, 59).
However, in many developing countries, screening criteria are
broader, reaching week 34 of pregnancy and 1,850 g of birth
weight (60).

Previous studies carried out at our center on a preliminary
patient cohort have shown the usefulness of measuring the
vascular/avascular area (5, 48). Thus, vascularization speed from
the temporal avascular area to the posterior pole below 0.5

DD/week has been identified as an independent risk factor
for severe ROP requiring treatment (5). A study carried out
at another center on a different patient cohort analyzed the
impact of the risk factors for ROP and the effect of control
measures of oxygen saturation levels implemented through the
Oxygen With Love (OWL) program. This study revealed that
the implementation of the OWL program had a significantly
positive impact on the reduction of the number of days of
tracheal intubation, and reduction of sepsis rates and extremely
low postnatal weight gain (<7 g/day) (6).

Many severe ROP screening or early diagnosis tools have
been described in the literature in the past few years. However,
most of them are proposed as an initial screening tool to
minimize screenings in newborns (7–10, 67, 68). whereas the
model described in this study is proposed as a tool to be used
on neonates who have already been selected for screenings,
following the screening criteria of the country involved–in our
case, Spain (40). Neonatal algorithms consider risk factors other
than gestational age, postmenstrual age, birth weight, and weight
gain. However, when models include ocular fundus data, other
risk factors appear, such as pre-plus disease, or prolonged use of
mechanical ventilator, which also contribute to a higher risk of
guaranteed ROP (70).

The WINROP (Weight, IGF-I, Neonatal, ROP) study was
carried out by Hellström et al. (71) to identify preterm newborns
with risk of severe ROP early on and avoid unnecessary
screenings on other neonates. Initially, this algorithm was based
on birth weight, gestational age, and serum insulin-like growth
factor-1 levels (IGF1) (7), which were later substituted by weekly
weight gain (71, 72). This screening tool, like the calculator
proposed by our team, can be checked online.

Another screening model, described with the purpose of
identifying newborns that need ophthalmologic screenings
due to risk of ROP, is the Children’s Hospital of Philadelphia
Retinopathy of Prematurity Risk Model. A total of 524
neonates of ≤30 weeks of pregnancy (WOP) or <1,501 g
of weight were included in this retrospective study to
determine, through multivariate logistic regression techniques,
the cut-off point of each parameter that allowed an
adequate identification of subjects with risk of type 1 or
2 ROP (8, 66).

On the other hand, the ROP Score algorithm, introduced by
Eckert, Fortes Filho et al., was based on the aggregate risk of its
risk factors. This algorithm was compared with the individual
use of birth weight and gestational age in a cohort of 474
neonates of ≤1,500 g and/or ≤32 WOP. Risk factors included
in the algorithm were the following: birth weight, gestational
age, postnatal weight gain during the first 6 weeks, treatment
with oxygen and need for blood transfusion in the first 6
weeks (9).

The Premature Infants in Need of Transfusion (PINT)
study was created to analyze the effect of blood transfusions
and level of hemoglobin on the morbidity and mortality of
preterm infants (10). However, a model of early diagnosis
in newborns with extremely low birth weight was developed
from a patient cohort of the PINT study, based on gestational
age, birth weight, and daily weight gain (51). The CO-ROP
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model, developed at the University of Colorado, describes
a new ROP screening algorithm based on birth weight,
gestational age and postnatal weight gain. The algorithm
included newborns of ≤30 WOP and ≤1,500 g at birth and a
net weight gain of ≤650 g during the 1st month of postnatal
life (68). The Netherlands Retinopathy of Prematurity Study
Model (NEDROP) studied several ROP screening strategies
and concluded that the strategy that most efficiently diagnosed
ROP was the one including newborns of ≤30 WOP and
≤1,250 g of birth weight and neonates of gestational age
between 30–32 WOP and 1,250–1,500 g of birth weight,
with at least one risk factor (treatment with oxygen or
corticosteroids, sepsis, necrotizing enterocolitis, or heart
disease) (73).

Gopal suspects intuitively that the extension of the avascular
retina at birth should be a predictive factor for the need
for treatment of ROP (74). Meanwhile, Jayadev classifies the
temporal avascular area of the retina into three degrees:
(a) mild: vessels reach posterior zone III; (b) moderate:
vessels enter anterior zone II; (c) severe: vessels in posterior
zone I or zone II. Thus, type 1 and type 2 ROP are
predicted during the first screening visit (27). Jayadev and
we have determined that the avascular area of the retina is
the main risk factor for ROP requiring treatment. Jayadev’s
multivariate analysis also includes gestational age, birth weight
and sex, whereas our new model includes duration of
mechanical ventilation.

Limitations of the Study
As previously mentioned, our examination method did not
allow quality photographic images to be collected. However,
we were able to capture the examination images obtained.
The examinations were performed by a single pediatric
ophthalmologist during routine clinical practice, and the images
or scans were not repeated or analyzed by multiple observers.
On the other hand, over the course of the study, from 2009 to
2012, the oxygen therapy protocols underwent a drastic change,
because theOxygenwith Love (OWL) programwas implemented
in the NICU. The application of this program significantly
reduced the duration of MV, and therefore the rates of sepsis and
ROP (6).

One of the strengths of our study is the wide sampling
size, which provides more reliable results. However, one of
the limitations is that more studies are needed to confirm the
results and validate them in other populations. Additionally, this
calculator model does not include every ROP risk factor, for the
reasons stated above.

CONCLUSION

Premature newborns should be evaluated in a multifactorial
manner, taking into account all ROP risk factors, and the
neonatal comorbidities such as presence of sepsis, apnea,
bronchopulmonary dysplasia, arteriovenous ductus, and blood
transfusions. The MV time and the extent of the retinal avascular
area in the first examination are crucial for the development and
evolution of ROP, so both should be taken into account when
predicting ROP severity and the need for treatment. The risk
calculator can identify the premature newborns with risk of ROP
that requires treatment from their first examination in order to
adapt the frequency of examinations according to the level of risk.

The calculator is not a substitute for ROP screening programs
or gestational age and birth weight thresholds in each country.
It is rather an additional tool to be used for neonates who are
already included in the screening to identify those needing closer
follow-up or special care. More studies involving a larger number
of patients, different centers and a specific cohort of individuals
with extremely-low birth weight are needed to confirm and
validate these results.
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In our aim to improve patient outcome we are transitioning from a “one-size-fits-all”

protocolized approach toward an individualized hemodynamic management, that is

tailored to the cardiovascular (patho-)physiology and the specific clinical characteristics

of each individual patient. In this narrative review an overview is provided about an

individualized approach toward various neonatal hemodynamic conditions.

Keywords: hemodynamics, individualized medicine, neonatology, shock, hypotension, patent ductus arteriosis,

persistent pulmonary hypertension in the newborn (PPHN)

INTRODUCTION

Newborns admitted to the neonatal intensive care unit have an increased risk of hemodynamic
failure for several reasons. The immaturity of the cardiovascular system in preterm infants,
combined with impaired compensatory mechanisms, makes them prone to injury related to
hypoperfusion and hypoxemia. Many conditions may affect the heart and vasculature, for example
perinatal hypoxia-ischemia, sepsis, necrotizing enterocolitis, air leakage syndromes, and congenital
anomalies, such as structural heart defects and congenital diaphragmatic hernia. Moreover,
well-intended therapeutic interventions could potentially have adverse hemodynamic effects, for
instance invasive ventilation with high mean airway pressure impeding venous return, iatrogenic
tachycardia secondary to chronotropic properties of cardiovascular drugs limiting the filling phase
(preload) of the heart, and drug-induced systemic vasodilation in case of sedation, analgesia, and
muscle relaxation. It is therefor imperative that cardiovascular disturbances are detected as soon
as possible or preferably prevented. The fact is, however, that this is easier said than done. It has
been shown that severe systemic hypoperfusion can remain clinically undetected, irrespective of
the level of experience of the health care professional (1, 2). This is probably related to the fact that
hemodynamic monitoring and management is generally based on the interpretation of indirect
markers of systemic perfusion, such as heart rate, blood pressure, urine output, blood gas analysis,
capillary refill time, “peripheral perfusion” et cetera (3). For decades hemodynamic management
could be classified as a “pressure-based approach,” in which the presence of hypoperfusion
was falsely predominantly evaluated by monitoring of blood pressure. This has resulted in a
“one-size-fits-all” protocol with hypotension as main criterium to intervene, that has been used
by many (4).

Nowadays, we are transitioning from an empirical approach via stratified medicine toward an
individualized hemodynamic management (Figure 1). Not all newborn infants with hemodynamic
instability are treated in a similar (“protocolized”) manner (Figure 1A), since we stratify patients
based upon presumed underlying pathophysiological mechanisms (diagnosis) and adapt our
therapeutic interventions accordingly (Figure 1B). For example, systemic hypotension is treated
different in an extreme preterm infant in transition, than in a full-term newborn with perinatal
hypoxic-ischemic encephalopathy or congenital diaphragmatic hernia, or in a patient after
surgery for severe necrotizing enterocolitis. However, not all patients within the same diagnostic

29
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FIGURE 1 | Empirical, “one-size-fits-all” approach, irrespective of cardiovascular physiology and clinical context (A). Hemodynamic management that is stratified by

presumed underlying pathophysiology (B). Individualized hemodynamic management that is tailored to the cardiovascular (patho-)physiology and the specific clinical

characteristics of each individual patient (C).

category necessarily share similar etiologic factors related to
alike hemodynamic disturbances. As an example, systemic
hypotension in a septic patient could be caused by either
myocardial impairment or systemic vasodilation secondary
to cardiodepressive or vasoplegic action of cytokines,
respectively, requiring a totally different cardiovascular
intervention. In other words, an individualized hemodynamic
management is indicated, that is tailored to the cardiovascular
(patho-)physiology and the specific clinical characteristics of
each individual patient (Figure 1C).

Several aspects of personalized hemodynamic management
will be discussed for patients with highly prevalent hemodynamic
conditions, namely persistent patent ductus arteriosus (PDA),
shock/hypotension, and persistent pulmonary hypertension of
the newborn (PPHN).

PATENT DUCTUS ARTERIOSUS

One of the most controversial issues in neonatology is whether
or not a persistent PDA should be treated. Although a PDA is
associated with serious adverse outcomes, such as mortality,
pulmonary hemorrhage, bronchopulmonary dysplasia,
intraventricular hemorrhage, and necrotizing enterocolitis,
firm evidence is currently still lacking for a causal relationship,
despite many clinical trials. The question remains whether
a PDA should be considered a binary entity in (extreme)
preterm infants, that should either be treated and actively
closed or can be managed conservatively awaiting spontaneous
closure.(5). Given the high spontaneous closure rate in preterm
infants born after more than 28 weeks’ gestation, there is
generally no routine screening of the PDA performed in this
subpopulation. From a pathophysiological perspective it would
be highly informative to objectively quantify the transductal
left-to-right shunt volume, since this would enable triage of
preterm infants and identify those that could benefit from active
medical closure of the ductus arteriosus. Higher transductal

shunt volumes are associated with increased pulmonary and
decreased systemic perfusion, that possibly explains associated
morbidities as pulmonary hemorrhage, high need for respiratory
support, bronchopulmonary dysplasia on the one hand and
necrotizing enterocolitis, cerebral injury on the other hand.
Neonatologist Performed Echocardiography (NPE) is used to
estimate the degree of transductal shunt volume and determine
the hemodynamic significance of the PDA (6, 7). Several scoring
systems, incorporating clinical, and/or echocardiographic
characteristics, have been published to stage the severity
(hemodynamic significance) of the PDA (8–10). These scoring
systems are used to estimate the risk of mortality or chronic
lung disease in preterm infants with a PDA with a positive and
negative predictive value of 92 and 82%, respectively (9).

When it is decided to treat a PDA in a preterm infant,
NPE can be used to monitor the effect of the therapeutic
intervention. It has been shown that the intensity of treatment
with cyclooxygenase-inhibitors can safely be reduced by
evaluating the vasoconstrictive action on the ductus arteriosus.
Su et al. performed a non-blinded randomized controlled
trial of conventional vs. echocardiography-guided treatment
of a PDA with indomethacin in 93 preterm infants <1,500 g
(11). In the echocardiography-guided study arm, an additional
dose of indomethacin was only given if the transductal flow
pattern persisted to be classified as “pulsatile” or “growing,”
suggestive of high transductal shunt volume. This resulted in
a significant reduction in number of doses indomethacin (3.2
± 1.4 vs. 1.6 ± 0.9 doses; p < 0.01) and less side-effects
without causing a difference in ductal closure rate or obvious
effects on mortality or incidence of chronic lung disease. In two
similar studies, a subsequent dose of cyclooxygenase-inhibitor
was only prescribed when ductal constriction was considered
insufficient by evaluating the change in transductal diameter
(12, 13). In the first, a next dose of indomethacin was only
administered if the transductal diameter was more than 1.6mm.
This approach reduced the total number of doses indomethacin
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from a median of three to only one without any increase
in the incidence of ductal closure failure, ductal reopening,
surgical ligation, pulmonary hemorrhage, chronic lung disease,
necrotizing enterocolitis, or renal failure (12). Bravo et al.
showed in a randomized trial that echocardiography-guided
treatment with ibuprofen, i.e., only administration of a next
dose of ibuprofen if the transductal diameter measured more
than 1.5mm, reduced the number of doses from a median of
three [IQR 3–4] to two [IQR 1–5.7] (13). No differences in
ductal closure failure, mortality of major neonatal morbidity
was observed.

In addition to classification of the severity of transductal shunt
volume and optimization of dosing schemes of indomethacin
or ibuprofen, NPE is helpful in anticipating and identifying of
complications of surgical ligation of the ductus arteriosus, such
as post ligation cardiac syndrome (PLCS). PLCS is characterized
by systemic hypotension secondary to myocardial impairment,
oxygenation failure, and increased need of ventilatory support.
Jain et al. observed that a left ventricular output<200mL/kg/min
in patients 1 h after ductal ligation was predictive of low cardiac
output 8 h post-surgery (sensitivity (Se) 1.0; specificity (Sp)
0.89), systemic hypotension (Se 0.83; Sp 0.72), and need for
inotropes (Se 1.0; Sp 0.65) (14). In a subsequent epoch study
echocardiography was used to anticipate on PLCS and if a LVO
<200 mL/kg/min was measured 1 h after ligation, milrinone
was started in an attempt to prevent a low cardiac output
state (14). This echocardiography-guided management resulted
in a lower incidence of ventilatory failure (15 vs. 48%; p <

0.05), less inotropic support (19 vs. 56%; p < 0.05), and a
trend toward less oxygenation failure (26 vs. 52%; p = 0.08).
Despite the prophylactic use of milrinone, it was observed
that about 50% of patients still developed PLCS, reason why
other echocardiographic parameters are studied as potential
preemptive indicators of myocardial impairment. For example, a
prolonged isovolumic relaxation time (IVRT) in the preoperative
phase, indicating myocardial diastolic dysfunction, is associated
with an increased risk of PLCS (15).

As illustrated, hemodynamic management of preterm infants
with a PDA can be adapted according the specific cardiovascular
physiology and clinical context of the individual patient. In this
way it is possible (1) to predict the hemodynamic significance
of the PDA, that is associated with an increased risk of
chronic lung disease and mortality, (2) to potentially reduce
the number of doses of cyclooxygenase-inhibitors, and (3) to
anticipate and prevent complications after surgical ligation of the
ductus arteriosus.

SHOCK/HYPOTENSION

The terms shock and hypotension are obviously not
interchangeable. Shock is defined as a condition characterized by
an imbalance between oxygen demand and delivery on a cellular
level. Oxygen delivery is mainly determined by hemoglobin
concentration, arterial oxygen saturation, and cardiac output.
When the amount of oxygen delivered to the peripheral tissues
doesn’t fulfill the demands, compensatory mechanisms will
aim to redistribute blood to the vital organs in an attempt to
prevent these from hypoxemic-ischemic injury. Three stages

of shock are distinguished, namely (1) compensated shock,
(2) uncompensated shock, and (3) irreversible shock. In the
first stage, neuroendocrine compensatory mechanisms are
responsible for preservation of blood (and oxygen) supply to the
brain, the heart and the adrenal glands. This phase is called the
compensated shock and is characterized by selective constriction
of the vasculature perfusing the non-vital organs, such as
kidneys, intestines, muscles, liver and skin. By the counteracting
effects of constriction of non-vital organ vasculature and
dilation of vessels supplying the vital organs, blood pressure
can remain unaffected. There is no linear relation between
cardiac output and blood pressure, as can be understood from
Hagen-Poiseuille’s Law. According this law, cardiac output is
determined by the pressure gradient (arterial blood pressure
minus right atrial pressure) divided by the systemic vascular
resistance. This means that blood pressure can be in the
normal (or even high) range during a state of low cardiac
output provided that vascular resistance is increased. Systemic
hypotension will occur when compensatory vasoregulatory
mechanisms fail, known as the uncompensated phase of shock.
Relying solely on the level of blood pressure, a “pressure-based”
approach, might lead to misinterpretation of the hemodynamic
status of newborns and the initial, compensated phase of shock
might be missed. Neglecting the possibility of the presence of
a compensated shock might have detrimental effects. There
are indications that in fetuses and very preterm infants the
blood vessels perfusing the cortex are not acting as high-priority
vasculature and therefore not dilating in response to decreased
blood flow, as would be expected for a vital organ as the brain
(16–18). One might speculate that this observation could be
(partially) responsible for the fact that survival in (extreme)
preterm infants is increasing without an equivalent reduction in
neurodevelopmental impairment (19–23).

Hence, it is imperative to detect low cardiac output
already in the compensated stage of shock and not wait for
intervention after systemic hypotension occurs, suggestive
for the uncompensated stage of shock. This requires
comprehensive hemodynamic monitoring with at least
simultaneous measurement of arterial blood pressure and
cardiac output. Under normal physiological circumstances
both systemic blood flow and blood pressure are in the normal
reference range. The combination of low cardiac output with a
normal or high blood pressure suggest a compensated shock,
whereas in a uncompensated shock both blood pressure and
cardiac output are in the lower ranges (24). Measurement of
cardiac output is feasible and applicable in (preterm) newborn
infants, such as transthoracic echocardiography, electrical
biosensing technologies (bioimpedance and bioreactance), and
transpulmonary ultrasound dilution (25). Interpretation of both
cardiac output and arterial blood pressure enables the selection
of the optimal cardiovascular drug that is based on the presumed
etiology of impaired perfusion and oxygenation. For this it is
imperative that the clinician is aware of the pharmacokinetic
and pharmacodynamic characteristics of the available drugs.
Algorithms are available for this purpose (24). Comprehensive
hemodynamic monitoring has been shown to potentially
improve outcome. Integrating clinical assessment with NPE and
regional (cerebral and intestinal) oxygenation monitoring using
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near infrared spectroscopy resulted in a shorter time to clinical
recovery in critically ill infants with cardiovascular compromise
(26, 27).

PERSISTENT PULMONARY
HYPERTENSION OF THE NEWBORN

Increased pulmonary blood pressure can be the consequence
of either an increase in pulmonary blood flow (e.g., congenital
heart disease with large left-to-right shunting), pulmonary wedge
pressure (left ventricular failure; pulmonary vein stenosis), or
pulmonary vascular resistance. Increased pulmonary vascular
resistance is caused by maladaptation (reactive vasoconstriction
on various stimuli), maldevelopment (remodeling of blood
vessels), or underdevelopment (hypoplasia) of the pulmonary
vasculature. The typical clinical presentation of a patient with
PPHN is hypoxemic respiratory failure with sometimes signs
of transductal right-to-left shunting (difference in pre- and
postductal oxygen saturation ≥5%) and systemic hypotension.
PPHN is associated with both left and right ventricular failure
(28–32). Increased right ventricular (RV) afterload potentially
leads to impaired systolic and diastolic myocardial impairment.
Left ventricular (LV) preload is impeded by dilation of the
right ventricle, deceased right ventricular output and right-to-
left transductal shunting, resulting in decreased left ventricular
output. Hypoxia and acidosis may further deteriorate myocardial
performance. It is important to be informed about (imminent)
ventricular failure in patients with PPHN, since treating systemic
hypotension by increasing systemic vascular resistance might
further impair myocardial performance, resulting in low cardiac
output. Sehgal et al. found biventricular failure (ventricular
output <150 mL/kg/min) in 67% of patients with PPHN (RV
and LV failure in 64 and 76%, respectively) (29). In 70% of these
patients signs of RV diastolic dysfunction was observed. NPE
can be used to assess the severity of PPHN and estimate the risk
of mortality or need for support with extracorporeal membrane
oxygenation (ECMO) in order to timely transfer the patient to an
ECMO center. Aggarwal studied the predictive value of the S/D-
ratio, an indicator of systolic and diastolic global RV function
reflecting ventricular loading and contractility (30). This ratio
is calculated from the Doppler signal of tricuspid regurgitation,
dividing the systolic duration by the diastolic duration within
one heart cycle. An RV S/D>1.3 is associated with mortality
or need for ECMO in patients with PPHN with a positive and
negative predictive value of 68 and 81%, respectively. Advanced
echocardiographic modalities can also stratify PPHN patients
and predict adverse outcomes. In a retrospective study in 86
patients born after ≥ 35 weeks’ gestation, diminished tricuspid
annular plane systolic excursion (TAPSE) <4mm and global
longitudinal peak strain (GLPS) ≥9% was associated with the
need for ECMO of risk of death.

In a case report pulmonary vasodilation could successfully
be evaluated in a patient with pulmonary hypertension with RV
failure with the use of speckle tracking echocardiography (33).

In a retrospective observational study in 20 preterm infants with
prolonged preterm rupture of membranes (PPROM) before 24
weeks’ gestation, Shah and Kluckow showed that NPE identified
the presence of PPHN earlier and enabled targeted treatment
with nitric oxide inhalation (iNO) (34). This approach resulted
in improved survival in this severely affected population. It is
known that not all patient with congenital diaphragmatic hernia
(CDH) respond successfully to iNO and its use is discouraged,
based on the results of the NINOS trial, in which an increased
mortality and ECMO requirement was observed in the iNO-
treated patients (35). However, a recent study showed that the
non-response to iNO in patients with CDH might be related
to the presence of LV failure (36). Hypoplasia or myocardial
dysfunction of the LV is more often observed in newborn infants
with CDH. Decreasing pulmonary vascular resistance with iNO
will augment pulmonary venous return, that might further
deteriorate LV function. It was concluded that iNO treatment
improved oxygenation and reduced the need for support with
ECMO in CDH patients with preserved LV systolic function (36).

Being informed about myocardial performance is important
in patients with PPHN, since hemodynamic management will be
quite different in the presence of ventricular failure.

INDIVIDUALIZED HEMODYNAMIC
MANAGEMENT

The clinical scenarios discussed above illustrate the importance
of a comprehensive hemodynamic assessment in order to
timely diagnose cardiovascular failure, elucidate underlying
pathophysiology, guide hemodynamic therapy, monitor the
effects of the interventions, and adjust treatment as appropriate.
This enables an individualized hemodynamicmanagement that is
optimized for the patient’s specific pathophysiology and clinical
situation. However, this personalized hemodynamic approach
is more complex than a strict protocolized management and
requiring more complicated algorithms. Moreover, accurate
and precise monitoring of neonatal hemodynamics, using
for example neonatologist performed echocardiography (NPE),
non-invasive cardiac output assessment and near infrared
spectroscopy (NIRS), is challenging (25). The implementation of
individualized hemodynamic management in neonatal intensive
care is more difficult and associated with higher variability
in care (37). Nevertheless, our aim is to provide the best
treatment for our patients, that takes into account the
specific characteristics and cardiovascular physiology of the
individual patient with the use of personal, adaptive target
values for different hemodynamic variables. High quality
trials are warranted to provide evidence for superiority of
individualized hemodynamic management regarding short- and
long-term outcomes.

AUTHOR CONTRIBUTIONS

This minireview is written by WB.

Frontiers in Pediatrics | www.frontiersin.org 4 October 2020 | Volume 8 | Article 58047032

https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org
https://www.frontiersin.org/journals/pediatrics#articles


de Boode Individualized Hemodynamic Management in Newborns

REFERENCES

1. Tibby SM, Hatherill M, Marsh MJ, Murdoch IA. Clinicians’ abilities to

estimate cardiac index in ventilated children and infants. Arch Dis Child.

(1997) 77:516–8. doi: 10.1136/adc.77.6.516

2. Egan JR, FestaM, Cole AD, NunnGR, Gillis J, WinlawDS. Clinical assessment

of cardiac performance in infants and children following cardiac surgery.

Intensive Care Med. (2005) 31:568–73. doi: 10.1007/s00134-005-2569-5

3. de Boode WP. Clinical monitoring of systemic hemodynamics

in critically ill newborns. Early Hum Dev. (2010) 86:137–

41. doi: 10.1016/j.earlhumdev.2010.01.031

4. Dasgupta SJ, Gill AB. Hypotension in the very low birthweight infant: the

old, the new, and the uncertain. Arch Dis Child Fetal Neonatal Ed. (2003)

88:F450–4. doi: 10.1136/fn.88.6.F450

5. Hundscheid T, Onland W, van Overmeire B, Dijk P, van Kaam AHLC,

Dijkman KP, et al. Early treatment versus expectative management of

patent ductus arteriosus in preterm infants: a multicentre, randomised,

non-inferiority trial in Europe (BeNeDuctus trial). BMC Pediatr. (2018)

18:262. doi: 10.1186/s12887-018-1215-7

6. van Laere D, van Overmeire B, Gupta S, et al. Application of NPE in

the assessment of a patent ductus arteriosus. Pediatric Res. (2018) 84:46–

56. doi: 10.1038/s41390-018-0077-x

7. de Boode WP, Kluckow M, McNamara PJ, Gupta S. Role of neonatologist-

performed echocardiography in the assessment and management of patent

ductus arteriosus physiology in the newborn. Semin Fetal Neonatal Med.

(2018) 23:292–7. doi: 10.1016/j.siny.2018.03.007

8. McNamara PJ, Sehgal A. Towards rational management of the patent ductus

arteriosus: the need for disease staging. Arch Dis Child Fetal Neonatal Ed.

(2007) 92:F424–7. doi: 10.1136/adc.2007.118117

9. El-Khuffash A, James AT, Corcoran JD, Dicker P, Franklin O, Elsayed

YN, et al. A patent ductus arteriosus severity score predicts chronic

lung disease or death before discharge. J Pediatr. (2015) 167:1354–61

e1352. doi: 10.1016/j.jpeds.2015.09.028

10. Fink D, El-Khuffash A, McNamara PJ, Nitzan I, Hammerman C. Tale of two

patent ductus arteriosus severity scores: similarities and differences. Am J

Perinatol. (2017) 35:55–8. doi: 10.1055/s-0037-1605576

11. Su BH, Peng CT, Tsai CH. Echocardiographic flow pattern of patent ductus

arteriosus: a guide to indomethacin treatment in premature infants. Arch Dis

Child Fetal Neonatal Ed. (1999) 81:F197–200. doi: 10.1136/fn.81.3.F197

12. Carmo KB, Evans N, Paradisis M. Duration of indomethacin treatment of the

preterm patent ductus arteriosus as directed by echocardiography. J Pediatr.

(2009) 155:819–22.e811. doi: 10.1016/j.jpeds.2009.06.013

13. Bravo MC, Cabanas F, Riera J, Pérez-Fernández E, Quero J, Pérez-

Rodríguez J, et al. Randomised controlled clinical trial of standard

versus echocardiographically guided ibuprofen treatment for patent ductus

arteriosus in preterm infants: a pilot study. J Matern Fetal Neonatal Med.

(2014) 27:904–9. doi: 10.3109/14767058.2013.846312

14. Jain A, Sahni M, El-Khuffash A, Khadawardi E, Sehgal A, McNamara

PJ. Use of targeted neonatal echocardiography to prevent postoperative

cardiorespiratory instability after patent ductus arteriosus ligation. J Pediatr.

(2012) 160:584–9.e581. doi: 10.1016/j.jpeds.2011.09.027

15. Ting JY, Resende M, More K, Nicholls D, Weisz DE, El-Khuffash A, et al.

Predictors of respiratory instability in neonates undergoing patient ductus

arteriosus ligation after the introduction of targeted milrinone treatment. J

Thorac Cardiovasc Surg. (2016) 152:498–504. doi: 10.1016/j.jtcvs.2016.03.085

16. Ashwal S, Dale PS, Longo LD. Regional cerebral blood flow: studies in the

fetal lamb during hypoxia, hypercapnia, acidosis, and hypotension. Pediatric

Res. (1984) 18:1309–16. doi: 10.1203/00006450-198412000-00018

17. Hernandez-Andrade E, Figueroa-Diesel H, Jansson T, Rangel-Nava H,

Gratacos E. Changes in regional fetal cerebral blood flow perfusion in

relation to hemodynamic deterioration in severely growth-restricted fetuses.

Ultrasound Obstet Gynecol. (2008) 32:71–6. doi: 10.1002/uog.5377

18. Soleymani S, Borzage M, Seri I. Hemodynamic monitoring in

neonates: advances and challenges. J Perinatol. (2010) 30(Suppl):S38–

45. doi: 10.1038/jp.2010.101

19. Lagercrantz H. The hard problem. Acta Paediatr. (2008)

97:142–3. doi: 10.1111/j.1651-2227.2007.00640.x

20. Johnson S, Marlow N. Early and long-term outcome of infants

born extremely preterm. Arch Dis Child. (2017) 102:97–

102. doi: 10.1136/archdischild-2015-309581

21. Synnes A, Hicks M. Neurodevelopmental outcomes of preterm

children at school age and beyond. Clin Perinatol. (2018)

45:393–408. doi: 10.1016/j.clp.2018.05.002

22. Vollmer B, Stalnacke J. Young adult motor, sensory, and cognitive outcomes

and longitudinal development after very and extremely preterm birth.

Neuropediatrics. (2019) 50:219–27. doi: 10.1055/s-0039-1688955

23. Padilla N, Alexandrou G, Blennow M, Lagercrantz H, Aden U. Brain growth

gains and losses in extremely preterm infants at term. Cereb Cortex. (2015)

25:1897–905. doi: 10.1093/cercor/bht431

24. de Boode WP, van der Lee R, Eriksen BH, Nestaas E, Dempsey E, Singh

Y, et al. The role of neonatologist performed echocardiography in the

assessment and management of neonatal shock. Pediatric Res. (2018) 84:57–

67. doi: 10.1038/s41390-018-0081-1

25. de Boode WP. Advanced hemodynamic monitoring in the neonatal intensive

care unit. Clin Perinatol. (2020) 47:423–34. doi: 10.1016/j.clp.2020.05.001

26. Amer R, Kalash R, Seshia MM, Elsayed YN. The impact of integrated

evaluation of hemodynamics on management of preterm infants with late-

onset compromised systemic circulation. Am J Perinatol. (2017) 34:1011–

9. doi: 10.1055/s-0037-1601439

27. Elsayed YN, Amer R, Seshia MM. The impact of integrated evaluation

of hemodynamics using targeted neonatal echocardiography with indices

of tissue oxygenation: a new approach. J Perinatol. (2017) 37:527–

35. doi: 10.1038/jp.2016.257

28. Skinner JR, Hunter S, Hey EN. Haemodynamic features at presentation in

persistent pulmonary hypertension of the newborn and outcome. Arch Dis

Child Fetal Neonatal Ed. (1996) 74:F26–32. doi: 10.1136/fn.74.1.F26

29. Sehgal A, Athikarisamy SE, Adamopoulos M. Global myocardial function is

compromised in infants with pulmonary hypertension. Acta Paediatr. (2012)

101:410–3. doi: 10.1111/j.1651-2227.2011.02572.x

30. Aggarwal S, Natarajan G. Echocardiographic correlates of persistent

pulmonary hypertension of the newborn. Early Hum Dev. (2015) 91:285–

9. doi: 10.1016/j.earlhumdev.2015.02.008

31. Patel N, Mills JF, Cheung MM. Assessment of right ventricular function using

tissue Doppler imaging in infants with pulmonary hypertension.Neonatology.

(2009) 96:193–9; discussion 200–192. doi: 10.1159/000215585

32. Malowitz JR, Forsha DE, Smith PB, Cotten CM, Barker PC, Tatum GH. Right

ventricular echocardiographic indices predict poor outcomes in infants with

persistent pulmonary hypertension of the newborn. Eur Heart J Cardiovasc

Imaging. (2015) 16:1224–31. doi: 10.1093/ehjci/jev071

33. Sehgal A, Ibrahim M, Tan K. Cardiac function and its evolution

with pulmonary vasodilator therapy: a myocardial deformation

study. Echocardiography. (2014) 31:E185–8. doi: 10.1111/ech

o.12596

34. Shah DM, Kluckow M. Early functional echocardiogram and inhaled nitric

oxide: usefulness in managing neonates born following extreme preterm

premature rupture of membranes (PPROM). J Paediatr Child Health. (2011)

47:340–5. doi: 10.1111/j.1440-1754.2010.01982.x

35. Inhaled nitric oxide and hypoxic respiratory failure in infants with

congenital diaphragmatic hernia. The Neonatal Inhaled Nitric Oxide

Study Group (NINOS). Pediatrics. (1997). 99:838–45. doi: 10.1542/peds.9

9.6.838

36. Lawrence KM, Monos S, Adams S, Herkert L, Peranteau WH,

Munson DA, et al. Inhaled nitric oxide is associated with

improved oxygenation in a subpopulation of infants with congenital

diaphragmatic hernia and pulmonary hypertension. J Pediatr. (2020)

219:167–72. doi: 10.1016/j.jpeds.2019.09.052

37. Saugel B, Vincent JL. Protocolised personalised peri-operative

haemodynamic management. Eur J Anaesthesiol. (2019) 36:551–

4. doi: 10.1097/EJA.0000000000001015

Conflict of Interest: The author declares that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 de Boode. This is an open-access article distributed under the

terms of the Creative Commons Attribution License (CC BY). The use, distribution

or reproduction in other forums is permitted, provided the original author(s) and

the copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Pediatrics | www.frontiersin.org 5 October 2020 | Volume 8 | Article 58047033

https://doi.org/10.1136/adc.77.6.516
https://doi.org/10.1007/s00134-005-2569-5
https://doi.org/10.1016/j.earlhumdev.2010.01.031
https://doi.org/10.1136/fn.88.6.F450
https://doi.org/10.1186/s12887-018-1215-7
https://doi.org/10.1038/s41390-018-0077-x
https://doi.org/10.1016/j.siny.2018.03.007
https://doi.org/10.1136/adc.2007.118117
https://doi.org/10.1016/j.jpeds.2015.09.028
https://doi.org/10.1055/s-0037-1605576
https://doi.org/10.1136/fn.81.3.F197
https://doi.org/10.1016/j.jpeds.2009.06.013
https://doi.org/10.3109/14767058.2013.846312
https://doi.org/10.1016/j.jpeds.2011.09.027
https://doi.org/10.1016/j.jtcvs.2016.03.085
https://doi.org/10.1203/00006450-198412000-00018
https://doi.org/10.1002/uog.5377
https://doi.org/10.1038/jp.2010.101
https://doi.org/10.1111/j.1651-2227.2007.00640.x
https://doi.org/10.1136/archdischild-2015-309581
https://doi.org/10.1016/j.clp.2018.05.002
https://doi.org/10.1055/s-0039-1688955
https://doi.org/10.1093/cercor/bht431
https://doi.org/10.1038/s41390-018-0081-1
https://doi.org/10.1016/j.clp.2020.05.001
https://doi.org/10.1055/s-0037-1601439
https://doi.org/10.1038/jp.2016.257
https://doi.org/10.1136/fn.74.1.F26
https://doi.org/10.1111/j.1651-2227.2011.02572.x
https://doi.org/10.1016/j.earlhumdev.2015.02.008
https://doi.org/10.1159/000215585
https://doi.org/10.1093/ehjci/jev071
https://doi.org/10.1111/echo.12596
https://doi.org/10.1111/j.1440-1754.2010.01982.x
https://doi.org/10.1542/peds.99.6.838
https://doi.org/10.1016/j.jpeds.2019.09.052
https://doi.org/10.1097/EJA.0000000000001015
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org
https://www.frontiersin.org/journals/pediatrics#articles


REVIEW
published: 23 October 2020

doi: 10.3389/fped.2020.570247

Frontiers in Pediatrics | www.frontiersin.org 1 October 2020 | Volume 8 | Article 570247

Edited by:

Sinno Simons,

Erasmus Medical Center, Netherlands

Reviewed by:

Jonathan Michael Davis,

Tufts University, United States

MaryAnn Volpe,

Tufts University School of Medicine,

United States

*Correspondence:

Wenbin Dong

dongwenbin2000@163.com

Specialty section:

This article was submitted to

Neonatology,

a section of the journal

Frontiers in Pediatrics

Received: 07 June 2020

Accepted: 13 August 2020

Published: 23 October 2020

Citation:

Yang K and Dong W (2020)

Perspectives on Probiotics and

Bronchopulmonary Dysplasia.

Front. Pediatr. 8:570247.

doi: 10.3389/fped.2020.570247

Perspectives on Probiotics and
Bronchopulmonary Dysplasia
Kun Yang and Wenbin Dong*

Department of Newborn Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China

Bronchopulmonary dysplasia (BPD) is a chronic respiratory disease of preterm infants,

associated with high morbidity and hospitalization expenses. With the revolutionary

advances in microbiological analysis technology, increasing evidence indicates that

children with BPD are affected by lung microbiota dysbiosis, which may be related to the

illness occurrence and progression. However, dysbiosis treatment in BPD patients has

not been fully investigated. Probiotics are livingmicroorganisms known to improve human

health for their anti-inflammatory and anti-tumor effects, and particularly by balancing

gut microbiota composition, which promotes gut-lung axis recovery. The aim of the

present review is to examine current evidence of lung microbiota dysbiosis and explore

potential applications of probiotics in BPD, whichmay provide new insights into treatment

strategies of this disease.

Keywords: bronchopulmonary dysplasia, probiotics, gut-lung axis, microbiota dysbiosis, inflammation

INTRODUCTION

For more than 50 years, the definition, epidemiology, pathophysiology, and pathogenesis of BPD
have been continuously updated (1–4). BPD was initially proposed by Northway and colleagues
(5) in 1967 as a lung injury in preterm neonates due to mechanical ventilation and oxygen
poisoning. However, current pathogenesis is more complex, involving exposure of infants to one
or multiple pre- and/or post-natal high-risk events associated with lung immaturity, perinatal
infection, inflammation, and altered blood vessel development (1, 2, 4, 6) (Figure 1).

The term probiotics derived from a Greekmeaning “for life” (7), was coined by Lilly and Stillwell
(8) in 1965, and described microorganisms with potential to release growth-promoting factors.
In 2002, the FAO/WHO defined probiotics as “live microorganisms which when administered in
adequate amounts confer a health benefit on the host,” but in 2013, The International Scientific
Association for Probiotics and Prebiotics reached a consensus on modifying the concept to “live
microorganisms that, when administered in adequate amounts, confer a health benefit on the host,”
includingmicrobial species that have been shown to confer health benefits in controlled studies, and
new commensal and consortium strains from human samples, with evidence of safety and efficacy
(9). At present, commonly used probiotics derive from the Bifidobacterium and Lactobacillus genus.

In recent years, a large body of evidence has related BPD to microbiota dysbiosis, however,
therapy approaches have rarely been discussed or investigated. Therefore, this review explores new
frontiers of probiotics to ameliorate BPD based on microbiota recovery.
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FIGURE 1 | Risk factors for BPD (IUGR, intrauterine growth restriction; PDA,

patent ductus arteriosus).

LUNG MICROBIOTA AND BPD

Microorganisms living in a given environment constitute a
microbiota, whereas a microbiome relates to microbial genome,
metabolism, and growth surroundings (10). It then becomes
relevant to understand the impact ofmicrobiota on human health
and disease.

Airway Microbiota Dysbiosis in BPD
Contrary to conventional wisdom, the human respiratory tract
immediately acquires microbiota, detecting a low bacterial DNA
load before or shortly after birth (11–13), which gradually builds
up by the 1st month of life, developing colonization of relatively-
stable bacteria at the phylum level (14). In this regard, different
individuals and even distinct anatomical parts have their unique
bacterial colonization patterns, and microbiota in each zone
has its preponderant operational taxonomic units (OTUs) (14).
Elucidating lung microbiota composition is a challenge, since
it requires highly sensitive detection methods and reagents,
and collected samples are susceptible to contamination by
pathogenic microorganisms in the upper respiratory tract,
such as oropharynx and nasopharynx (15). Furthermore, pre-
and post-natal lung microbiota is compromised because of
the use of antibiotics, maternal chorioamnionitis, mechanical
ventilation, infection/inflammation, nutritional deficiencies, and
abnormal colonization of the intestine (16). For example,
antibiotics enhance the invasive potential of pathogenic bacteria
by increasing their nutrient requirements such as organic
acids, carbon, and nitrogen, thereby temporarily or permanently
reducing the diversity and richness of the microbiota (17). As
a result, some advances in research have generated inconsistent
results in reporting lung microbiota at birth. However, in
general terms, in a period after birth, the pulmonary microbiota

composition at the phylum level is predominantly Proteobacteria
and Firmicutes (12, 14).

The incipient composition of the lung microbiota cannot be
neglected because it is closely related to the onset of mucosal
immunity (18), the development of immune tolerance in the
lungs (19), and healthy breathing (15). Several reports have
shown alterations in the stability and diversity of the respiratory
tract microbiota in BPD. Lohmann et al. (11) tested tracheal
aspirates of 25 premature infants at different periods and
showed that bacterial multiplicity of 10 patients with BPD
significantly decreased, according to the observed species count
and the Shannon index. As the disease progresses, Firmicutes and
Proteobacteria populations increase and decrease respectively;
at the genus level, the relative abundance of Acinetobacter
sp. significantly decreases, whereas that of Staphylococcus and
Klebsiella increases. However, microbiota in the non-BPD group
invariably maintains high diversity and stability, indicating that
lower diversity of airway microbiota may be associated with
the disease.

A study by Lal et al. (12) showed that at the phylum level,
the Proteobacteria amount was higher than that of Firmicutes
and Fusobacteria in babies with BPD, whereas at the genus-
level, Lactobacillus content was significantly low, which persisted
during the disease. The reduction of Lactobacillus leading
to an inflammatory response and consequently interfering
with lung development is an important reason why the
microbiota directly affects BPD, as many studies have shown that
Lactobacillus possesses very strong anti-inflammatory properties.
Furthermore, increased endotoxin was observed in the airways of
patients with BPD, which was attributed to microbiota dysbiosis.

Lohmann et al. (11) and Lal et al. (12) put forward that
conflicting results related to changes in the populations at the
phylum level may indicate that lung microbiota is affected
by multiple factors, including demographic characteristics,
geographic position, living environment, methods and detection
reagents, and sequencing platforms. In fact, both studies differed
in criteria for the inclusion of children and timing of the sample
collection. However, the ecological imbalance of the airway
microbiota in children with BPD is an important characteristic
in such investigations.

Imamura et al. (20) examined 169 infants with or without
severe BPD and noted that all patients with the disease exhibited
maladaptive changes in the lungmicrobiota. The detection rate of
Corynebacterium species in the lower respiratory tract of severe
BPD was higher than that of non-severe disease, and sepsis
was commonly observed seven days after birth, speculating that
airway microbiota dysbiosis is associated with infections, which
may be a significant cause of BPD exacerbation.

Another longitudinal investigation of two research centers
found that preterm infants with severe BPD contained abundant
Ureaplasma after birth, and diversity in lung microbiota was
more prominent with age (13). Ureaplasma colonization is
considered an independent risk factor for BPD (21). On the one
hand, it causes chronic infection of the uterine cavity to promote
preterm delivery (22), whereas preterm birth is one of the most
important causes of BPD. Furthermore, Ureaplasma damages
the respiratory mucosa and interferes with lung development
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by producing virulence factors and stimulating the release of
pro-inflammatory mediators. Importantly, colonization of the
respiratory tract by this species is negatively correlated with
gestational age (22), which may partly explain the higher risk of
BPD in preterm infants with low gestational age.

In addition, a recent systematic review of microbiota and
BPD reported that microbiome disorders are present in patient
airways and the frequency of microbiota transformation was
associated with BPD impairment (23).

Taken together, lung microbiota composition establishes early
in life, but the stabilization and diversity of microorganisms are
altered by a number of factors, which are particularly relevant
in children with BPD. Therefore, it becomes important to the
relationship between microbiome dysregulation and this disease.

BPD and Lung Microbiota Dysbiosis
Association
Although the causal link between lung microbiota and BPD
has not been fully demonstrated, it can be assumed that
the lung maladaptive microbiome is an effective driver
for other potentially harmful factors in this illness (24).
Dysregulation of the lung microbiota elicits local or systemic
infection/inflammation, activates the immune response (25–27),
and is related to oxidative stress and metabolic disorders in the
host (24), which impairs dysbiosis, thus creating a vicious circle
involved in the disease onset and exacerbation.

Gut-lung Axis in BPD
Lung microbiota dysbiosis in BPD may disrupt gut microbiota,
which probably plays an important role in worsening this disease.
Ryan et al. (28) analyzed stool samples of 50 preterm BPD
infants and observed that among transvaginal babies, Escherichia
and Shigella were significantly increased, whereas Klebsiella and
Salmonella were in lower amounts, demonstrating that the
disease is involved in gut microbiota dysbiosis. Furthermore, a
case-control study of eight subjects with BPD and 10 subjects
without the disease showed that gut microbiota diversity in the
BPD group was significantly reduced (OTU, relative abundance,
and Shannon index), and severe BPD may make gut microbiota
more susceptible to destruction early in life (29).

In turn, gut microbiota dysbiosis also affects BPD. Cantey et
al. (30) reported that for infants with a very low birth weight
receiving antibiotics for 2 weeks significantly increased the risk
of death or BPD, which still exists after controlling the severity
of the disease. Furthermore, this risk increases with the duration
of antibiotic exposure [i.e., every additional day of antibiotics
increases the risk of BPD by ∼13% (30)]. A possible explanation
is that antibiotics destroy the gut microbiota, and the dysbiosis
exacerbates the disease. In a perinatal antibiotics-exposed BPD
mouse model, it was shown that gut maladaptive microbiota
increased pulmonary fibrosis and worsened the condition, which
may be related to the reduced expression of lung IL-22 caused
by gut microbiota dysbiosis (31). Moreover, gut microbiota,
which controls trimethylamine N-oxide (TMAO) production
(32), regulates BPD susceptibility by changing TMAO levels (33).

A growing body of research indicates an apparent
bidirectional influence of intestinal and lung microbiota.

The gut-lung axis hypothesis, which involves a complex cross-
talk between lung/gut disease and gut/lung microbiota dysbiosis,
has been extensively tested (34–37). Newborn mice that have
been depleted of gut microbiota with antibiotics become more
susceptible to Streptococcus pneumoniae infection, however,
restoring intestinal microbiota increases neonatal and germ-
free (GF) mice resistance (38) and potentiates phagocytosis
of alveolar macrophages (39), thus protecting lungs from
bacterial infection. In addition, two separate studies on severe
pneumonia and childhood community-acquired pneumonia
have shown that maladaptive gut microbiota may be relevant in
the onset and development of pneumonia (40, 41). Moreover,
the administration of lipopolysaccharide (LPS) in mouse lungs
significantly alters gut microbiota (42).

Influenza virus-infected mice develop gut microbiota
dysbiosis earlier, which reduces the secretion of metabolites by
intestinal microorganisms, thus increasing the susceptibility of
mice to S. pneumoniae infection (43), suggesting a close link
between gut microbiota and the lung immune response. Dickson
et al. (44) demonstrated live intestinal bacteria in lungs in a
murine model of sepsis and in bronchoalveolar lavage fluid
(BALF) of 68 patients with acute respiratory distress syndrome,
which indicates that local or systemic inflammation mediates
gut microbiota displacement, disrupting the lung microecology
homeostasis, and in turn, dysregulated lung microbiota
exacerbates the inflammatory response. These data suggest an
important interrelationship between gut and lung microbiota,
and BPD onset and development. Microbiota dysbiosis in these
organs may trigger the inflammatory process, leading to immune
disorders and exacerbating the disease outcome. Therefore,
preserving the intestines and lungs microecological balance
significantly improves BPD.

Infection/Inflammation
Infection/inflammation may play a central role in BPD
pathogenesis. Stressmann et al. (45) observed a number of
pathogens (particularly S. aureus, Enterobacter sp., Moraxella
catarrhalis, Pseudomonas aeruginosa, and Streptococcus sp.) in
the tracheal secretions of eight preterm infants at risk of
developing BPD. Another investigation of 192 newborns found
that lung infections in early newborns (particularly in the
first 3 days of life) were related to the evolution of chronic
lung disease (46). Under a combined effect of other BPD risk
factors such as hyperoxia and mechanical ventilation, infection
triggers a series of pro-inflammatory substances, such as IL-
1β, IL-6, IL-8, NLRP3, TNF-α, and collagen I, which are
further regulated by infiltrating neutrophils and macrophages
(47–49). These inflammatory mediators in immature lungs of
premature infants restrict the activity of surfactant proteins
and the vascular endothelial growth factor (49), contributing
to the development of alveolar and vascular alterations and
other characteristic pathologies in BPD. Furthermore, TLR
binding-induced reactive oxygen species (ROS) activate the
NLRP3/caspase-1 pathway, which promotes IL-1b production
(47), amplifying the inflammation process.

Microbiota dysbiosis may stimulate a robust inflammatory
response and have a significant impact on BPD (Figure 2).
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FIGURE 2 | The impact of microbiota dysbiosis on BPD and the potential function of probiotics in BPD.

Lung microbiota dysbiosis triggers the release of the pro-
inflammatory cytokines IL-1β, IL-6, MIP-1α, IL-12p70, and
CXCL8, which are associated with pulmonary fibrosis (50).
Among them, IL-6 increases with the rise of Firmicutes richness,
but IL-12P70 augments with the reduction of Proteobacteria
richness. Similarly, a series of cytokines such as IFN-α2, IL-13,
IL-4, IL-15, TNF-α, TNF-β, andMCP1were detected in the BALF
of hematopoietic cell transplantation recipients, and changes in
their concentration were mostly associated with lung microbiota
dysbiosis (51). In this regard, IFN-α2, IL-13, TNF-β, and TNF-α
negatively correlated with the relative abundance of Firmicutes,
whereas IL-4 and IL-13 positively correlated with Bacteroidetes.
Another study demonstrated that the increased inflammation
observed in the LPS-induced mouse lung injury model was
associated with lung microbiota dysbiosis, which enhanced the
IL-6 pro-inflammatory effect probably mediated by abnormally
dominant OTUs (52). Moreover, in the bleomycin-induced lung
fibrosis model, Th1 cells in GF mice were reduced, whereas

Foxp3+ T regulatory cells were higher compared with non-GF
mice, thus demonstrating the regulatory effect of lungmicrobiota
on cellular immunity (50).

The inflammatory reaction attributable to the lung
maladaptive microbiota may also be closely related to Th17
activation (27). In this regard, the lung microbiota has been
shown to modulate local mucosal barrier function by enhancing
or reducing the release of IL-17 family cytokines, which are
mainly secreted by Th17 cells (26). However, microbiota
dysbiosis may activate pulmonary fibrosis by stimulating IL-
17B production, which in turn acts on Th17 and neutrophil
recruitment genes under TNF-α coordination in a feedback
event (53). Furthermore, lung microbiota may intervene in
inflammation by altering alveolar macrophages, DCs, invariant
natural killer T cells, Treg cells, and lung-resident Tgd cells
function (26). These cells induce neutrophil migration. They
are involved in the intestine-lung axis by controlling pathogenic
microorganisms, maintaining pulmonary homeostasis, and
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FIGURE 3 | Gut-lung axis diagram.

affecting chronic inflammatory activities of lung diseases (26),
but microbiota dysbiosis may modify these effects. Dysbiosis
activates the lung immune response through the gut-lung axis
(Figure 3), by stimulating lymphocyte infiltration in the gut and
lung mucosa (54). DCs first recognize pathogens in the intestine
and present antigens to T lymphocytes of mesenteric lymph
nodes or gut-associated lymphoid tissue, where T cell subsets
are activated and migrate to the respiratory mucosa, attracted
by chemotactic molecules, and stimulate a local inflammatory
response (37). Furthermore, microbiota dysbiosis increases LPS,
which stimulates TLR and NF-κB to produce IL-18, IL-4, IL-1,
IL-6, TGF-b, IFN-g, and TNF-α involved in pulmonary immune
responses (37, 55).

Taken together, these data suggest that gut and lung
microbiota may have a significant impact on BPD, and that the
disease outcomemay be improved by protecting themicrobiome.

ROLE OF PROBIOTICS IN BPD

In recent years, the potential of probiotics to exert several
biological activities is remarkable. Lactobacillus reesei has been
shown to be useful in delaying tissue damage and relieving upper
respiratory tract infections in patients with cystic fibrosis with
mild to moderate lung disease (56), whereas Bifidobacterium
mixture reduces the clinical manifestations of allergic rhinitis
and improves the quality of life of children with the occasional
paroxysm of asthma (57). In addition, prophylactic use of
probiotics decreases lung infections in mechanically ventilated
children (58) and lessens the likelihood of late-onset sepsis in
preterm infants (59, 60).

It is not difficult to infer that probiotics have great potential
in the treatment of respiratory diseases. More importantly,
some studies have shown interest in probiotics and BPD.
Consequently, we attempted to explore the feasible influence of
probiotics on BPD.

Anti-infection and Anti-inflammatory Roles
of Probiotics
Probiotics, as living microorganisms, become useful in relieving
microbiome dysregulations. It has been shown in animal studies
that oral probiotics enhance the richness and diversity of
airway microbial communities (61), which provide a starting
point for understanding the interaction of probiotics and BPD.
Furthermore, probiotics have unexpected anti-infection and anti-
inflammatory elements and the potential to recover nutrition and
antioxidant properties (Figure 2), which are essential for children
with BPD.

Oral administration of Lactobacillus plantarum was observed
to significantly reduce pulmonary inflammation in Klebsiella
pneumoniae-infected mice, as shown by the decreased number of
macrophages and neutrophils, and pro-inflammatory cytokines
(KC, IL-6, and TNF-α), and the blocking of NF-κB activation by
an interaction with TLR (62). L. plantarum also down-regulates
T-bet and IL-2 levels, stimulates Foxp3+ and z/70mRNA
expression in lung tissue, and expands the number of
CD4+CD25+Foxp3+ cells in mediastinal lymph nodes (62).
Although L. plantarum failed to increase the amount of
DCs, it attracts them to produce IL-10, promoting Treg cell
immunoregulatory action (62).

In a mouse model of Neisseria meningitides secondary to
influenza A virus (IAV) infection, Belkacem et al. (63) observed
that L. paracasei increased the amount of DCs, neutrophils,
and monocytes in the lungs. Although some highly expressed
inflammatory cytokines, such as IL-6, MCP1, KC, and IL-12p70,
were detected, only IL-6 and MCP1 were statistically significant.
They consider that L. paracasei simultaneously augments the
health status of IAV and influenza-meningococcal infection in
mice, by attracting interstitial monocytes and DCs (63). In
addition, intratracheal administration of Lactobacillus probably
suppresses the PAO1 virulence factor and reduces IL-6 and TNF-
α activities, affecting lung infection outcome by Pseudomonas
aeruginosa in mice (64).

Similarly, Bifidobacterium bifidum was shown to produce a
significant anti-inflammatory response with a high production of
IFN-g, IL-12, and IL-4 (cellular immunity) and IgG1 and IgG2α
levels (humoral immunity) in mice infected with influenza virus,
but reduced IL-6 production in lung tissue (65). In a mice model
of severe asthma, Bifidobacterium breve significantly decreased
the levels of the pro-inflammatory cytokines IL-1α and IL-1b and
the chemokine CXCL-2, which stimulate neutrophil migration to
pulmonary tissue, as compared with control, where an increase of
IL-1α was observed (66). Furthermore, B. breve down-regulated
activated CD11b+ cells, up-regulated CD4+CD44+ cells and
CD4+FoxP3+ cells, and increased the number of macrophages.

In vitro experiments showed antibacterial activity of
Bifidobacterium and Lactobacillus against Clostridium (67),
which was probably mediated by bacteriocins, microcins, and
short-chain fatty acids (SCFAs) (68). Bacteriocins change the
permeability of the inner membrane of pathogenic bacteria,
affecting cell wall synthesis (69), whereas microcins directly
impair the activity of enzymes required by pathogens in the
process of gene replication and transcription (70).
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SCFAs generated by probiotics interfere with pathogenicity
by reducing intestinal pH, destroying pathogen cell membrane
structure, accelerating oxidative phosphorylation, enhancing the
antibacterial potential of other molecules (68), regulating the
expression of histone deacetylase, and coupling with G protein
receptors (71). In addition, SCFAs blocks secretion of IL-8
and macrophage inflammatory protein 2 by intestinal IL-1b
in naive mice, evidencing the characteristic anti-inflammatory
effect of SCFAs (72). Moreover, probiotics improve immunity by
stimulating IgA production through the following mechanisms:
(a) triggering the activation of TLR9 and TLR2, (b) promoting
DCsmaturation, (c) regulating B lymphocytes, (d) being involved
in mucosa cytokines production, and (e) inducing the release of
TGF-β, IL-10, and IL-6 (68, 71).

The Antioxidant and Nutritional Effects of
Probiotics
It is well-known that oxidative stress plays a central function in
BPD pathogenesis. Hyperoxia exposure activates an excessive
production of ROS, inhibits the development of alveolar and
pulmonary blood vessels, and participates in the inflammatory
process (73). In addition, ROS causes endothelial dysfunction
and increases vascular permeability, leading to pulmonary
tissue edema (74). Microbiota dysbiosis may initiate oxidative
stress because lung microbiota stimulates the aryl hydrocarbon
receptor, which regulates the activity of antioxidant enzymes, by
changing the levels of tryptophan catabolites (74). Lactobacillus
and Bifidobacterium are known to possess antioxidant properties
(75). In vitro experiments showed that Lactobacillus plantarum
MA2 inhibits hydrogen peroxide and lipid peroxidation, and
possesses the great potential to chelate Fe2+ and scavenge
free radicals such as 1,1-diphenyl-2-picrylhydrazine (DPPH),
hydroxyl radicals, superoxide anion radicals, and has exceptional
reducing activity (76). Mechanistically, antioxidant genes
(e.g., glutathione peroxidase, catalase, NADH oxidase, NADH
peroxidase, and glutathione reductase genes) encode superoxide
dismutase and glutathione peroxidase to exert antioxidant
effects (76). Furthermore, exopolysaccharides extracted from
Lactobacillus plantarum possess antioxidant activities. At a
concentration of 10 mg/mL, exopolysaccharides reached the
maximum 80.4, 65.5, and 60.5% scavenging rates for hydroxyl,
2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonate), and DPPH
radicals, respectively (77). Similarly, Bifidobacterium has a
high potential to scavenge free radicals and an acceptable
reducing activity (78). However, it should be recognized that
the antioxidant properties of probiotics are unique. The free
radical scavenging activity of probiotics greatly varies from
strain to strain (79). In short, probiotics prevent oxidative
stress in different ways, ① chelating metal ions, ② activating
antioxidant enzymes and metabolites, ③ boosting antioxidant
signaling pathways such as Nrf2-Keap1-ARE, mitogen-activated
protein kinases, and protein kinase C pathway, ④ reducing ROS
production, ⑤ protecting gut microbiota, and ⑥ increasing the
host’s antioxidant capacity (80).

The nutritional factor is also important in BPD onset. It
has been observed that providing enrichment proteins and

energy complements to children with protracted mechanical
ventilation, reduces the disease incidence (81). Probiotics may
increase the nutritional status of preterm infants. In this regard,
it was observed that intestinal digestive enzymes (for example,
α-amylase, lipase, and trypsin) of mice fed with Bacillus subtilis
and Bacillus velezensis were significantly increased, as compared
with control (82). In addition, it was shown that from weeks
2 to 3, the average daily weight gain of mice in the probiotic
group was significantly higher and the feed conversion rate was
lower, indicating that probiotics promote mice growth. Similarly,
probiotics increase the appetite and weight of older dogs,
improve immunity, and enrich gut microbiota (83). Moreover, a
meta-analysis demonstrated that supplementing with probiotics
reduces the time to full enteral feeding for premature infants
to achieve better weight gain and growth development (84).
Probiotics decrease nutrient wastage by protecting the integrity
of the intestinal mucosa, promoting digestion and absorption,
and blocking undesirable metabolic pathways (85).

Lactobacillus sp.may also alter alveolar structure and regulate
alveolar growth (86). Furthermore, probiotics were shown in
animal studies to be involved in angiogenesis (87).

In general, given the outstanding advantages of probiotics,
we may need to broaden our horizons to fully comprehend the
activities and mechanisms of probiotics, particularly associated
with their potential to improve BPD outcome.

CHALLENGE

As we envision the benefits of probiotics for BPD patients, we
must also be very aware that there are still numerous problems
that must be overcome. A meta-analysis indirectly evaluated
the impact of probiotics on BPD (88). Unfortunately, the result
was denied by the authors. However, all studies by the authors
exclusively use BPD as a secondary result of the research, which
may be one of their limitations. In addition, several studies have
not given the importance the disease and probiotics deserve,
possibly impacting judgment. In fact, the designated species and
strains are likely to largely dominate the efficacy of probiotics,
which has been certified in tests by Monteiro et al. (67) Different
doses and preparations of probiotics may produce divergent
conclusions as well. It is also probable that each host system
possesses its own “proprietary probiotics.”

Detection of high-quality probiotics that may relate to BPD
requires a number of well-established, safe, reliable, and laborious
scientific methods. However, in any case, this meta-analysis is
suggested, as it opens a new direction in the discussion of
probiotics and BPD.

For immensely frail infants with BPD, they can only
face the following burdensome issues: How to determine the
optimal therapy time window and duration of probiotics? Are
combination medications used? How to choose the route of
administration? Oral administration should anticipate whether
probiotics will add to the burden of the gastrointestinal tract
and whether a safe dose of probiotics achieves the therapeutic
concentration. Theoretically, compared with oral administration,
probiotics possibly have a more apparent curative effect by
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aerosolized inhalation and intratracheal administration, since
they directly act on the respiratory mucosa, but this assumption
needs experimental verification.

Even though probiotics are beneficial bacteria for humans,
they also can produce adverse effects, including involvement
in systemic disease, harmful metabolic events, and excessive
stimulation of the immune system (89). Thus, it is necessary
to find more effective and precise probiotic action pathways to
optimize their use in human health. They produce differential
effects on the population. Particularly in infancy, premature
babies may become a high-risk group to use probiotics, because
of their immature immunity. Previous investigations reported
that probiotic supplementation early after birth increases
the occurrence of mucosal (oral, respiratory, gastrointestinal)
infection diseases (90). Infants taking probiotics have complained
of unpleasant taste, dry skin, bloating, vomiting, rash, and other
adverse events (91). Some premature babies may be affected

by bacteremia when receiving probiotics treatment, and the
infected strain derives from the probiotics themselves (92, 93).
In this regard, it is necessary to conduct a thorough long-term
evaluation of the safety of probiotics in children (especially
newborns) in consecutive trials, before using them in therapy.

In conclusion, probiotics have promising applications,
particularly to improve BPD prognosis. However, it is essential
to carefully select the probiotic strains, medication dosage,
frequency, and routes. Furthermore, more valid scientific
information and follow-up studies are required to support the
adequate use of probiotics in human health.
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The characteristics of early renal function in preterm neonates of different gestational ages

(GAs) with birth asphyxia (BA) remain unclear. Kidneys are sensitive to oxygen deprivation,

and renal insufficiency may occur within 24 h of BA. We aimed to elucidate the renal

function profiles within the first 24 h after the development of BA among vulnerable

preterm neonates of different GAs. The medical records of 128 preterm neonates born

to mothers with normal renal function were retrospectively analyzed. Data regarding

the serum creatinine (SCr) and urea nitrogen (BUN) levels in venous blood, estimated

creatinine clearance (eCCI) within the first hours after birth, and urinary output (UOP)

in the first 24 h after birth were compared between the preterm with BA population and

GA-matched population without BA (n= 64 and n= 64, respectively). Significantly higher

SCr levels and lower eCCI were observed in mid-late preterm neonates with BA than in

preterm neonates without BA (84.05 versus [vs.] 64.20 µmol/L, z = 4.41, p < 0.001;

15.02 vs. 21.30 mL/min/1.73 m2, z = 3.57, p < 0.001, respectively). Very preterm

neonates showed a higher UOP (2.01 vs. 1.66 mL/kg/h, z = 2.01, p = 0.045) after the

development of BA than before. In preterm neonates with BA, the incidence of SCr> 133

µmol/L, CCI < 16 mL/min/1.73 m2 and UOP < 1.0 ml/kg/h, was 10.94%, 62.50%,

and 20.31%, respectively. Within 24 h after birth, BA was associated with eCCI < 16

mL/min/1.73 m2 (p= 0.016, odds ratio= 2.83, 95% confidence interval: 1.210–6.613) in

preterm neonates. Different renal function profiles were observed in preterm neonates of

different GAs within the first 24 h of life after the development of BA. Candidate therapies

based on different renal function statuses will bring these vulnerable patient populations

of different GAs closer to receiving precision medicine.

Keywords: preterm, renal function, profiles, first 24h of life, asphyxia, gestational age

INTRODUCTION

Renal function in neonate changes markedly daily, and different degrees of renal immaturity exist
in preterm neonates of different gestational ages (GAs) (1); Thus, evaluating the renal function of
the preterm population is challenging. The estimated global preterm birth rate for 2018 ranged
between 5 and 18% across 184 countries worldwide (2). Preterm neonates have multiple organ
immaturity and high mortality, which increases with decreasing GA (3). Birth asphyxia (BA), a
critical condition of transient anoxia experienced by neonates at or around the time of delivery,
occurs at 1–10% per 1,000 live births and is more likely to occur in preterm neonates (4).
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BA leads to dysfunction of the central nervous system and
multiple organs, including the heart, lungs, kidneys, and bowel
(5). Kidneys are sensitive to oxygen deprivation, and renal
insufficiency may occur within 24 h of BA, which if prolonged
may even lead to irreversible cortical necrosis (6). Changes,
such as elevation of serum creatinine (SCr) levels in early
kidney function have been associated with short- and long-
term consequences, including fluid overload, increased length
of hospitalization, and death (7–9). Most studies focused on
early renal function status of term infants, and the earliest
observation time was 3 days after birth (6, 10, 11). However, in
vulnerable preterm neonates, the first 24 h after birth is a critical
period, and detailed renal function is beneficial for reasonable
management and timely interventions, such as antibiotic dosage
choice and parenteral nutrition. Studies on the early renal
function status of preterm neonates of different GAs within
24 h after the development of BA are rare. Therefore, this
study aimed to clarify the early profiles of the conventional
indicators of renal andmicturition functions in preterm neonates
with BA within the first 24 h after birth by comparing the
levels of SCr, blood urea nitrogen (BUN), estimated creatinine
clearance (eCCI), and urinary output (UOP) between preterm
neonates of different GAs with and without BA, with the goal of
providing advisable information for tailor clinical management.
In addition, candidate therapies based on their GAs will bring
these vulnerable patient populations closer to receiving precision
medicine, including fluid and electrolyte management, drug
choice, and for those drugs, dose selection.

MATERIALS AND METHODS

Study Design and Population
After obtaining institutional ethical clearance (2019-KY-023-01),
this retrospective, matched case-control study was conducted in
a neonatal intensive care unit (NICU) of our institution between
March 2014 and March 2018.

The preterm neonates diagnosed with asphyxia by an
experienced neonatologist team were included as preterm
neonates with observed BA. Premature neonates (no history of
fetal distress and Apgar score < 7 at 5min) were continuously
included as controls until the patients in each group were
evenly distributed. The exclusion criteria were as follows: (a)
congenital malformation in the newborn; (b) inherited metabolic
diseases in the neonate; (c) congenital renal dysplasia detected
on prenatal screening; (d) family history of kidney disease; (e)
maternal use of opioids (fentanyl, remifentanil, or sufentanil),
captopril, indomethacin, or other drugs that affect renal function
during pregnancy; (f) maternal renal dysfunction during the
perinatal period; (g) severe maternal anemia during pregnancy;
(h) inadequate liquid intake within 24 h after birth; and (i) use of
mannitol, ibuprofen, or diuretics within 24 h after birth.

Abbreviations: AKI, acute kidney injury; BA, birth asphyxia; BUN, blood urea

nitrogen; eCCI, estimated creatinine clearance; GAs, gestational ages; GFR,

glomerular filtration rate; NICU, neonatal intensive care unit; SCr, serum

creatinine; UOP, urinary output.

Asphyxia was diagnosed based on a delivery history of
fetal distress and/or 5min Apgar score of <7, which was
defined by the World Health Organization as failure to
initiate and sustain normal breathing at birth (12–14). Fetal
distress was recorded in the presence of bradycardia (fetal
heart rate [FHR] <100 beats/min for >3min) or persistent
severe variable or late decelerations (persistent recording of
a reduction in FHR by >15 beats/min from baseline for
more than 15 s of recording with associated decreased beat-
to-beat variability or reduction of FHR to <100 beats/min
for >1min) during fetal heart rate monitoring (15). GA was
determined based on the date of the last menstrual period
reported by themother and on themodified Ballardmaturational
scoring system.Maternal complications were recorded, including
eclampsia; hemolysis, elevated liver enzymes, and low platelets
(HELLP) syndrome, diabetes mellitus; hypothyroidism; placental
abruption; intrapartum hemorrhage; and neonatal complications
including shock, sepsis, respiratory distress syndrome, and
multiple organ dysfunction, were recorded.

All observed premature neonates with BA and controls were
admitted to the NICU within 30min after birth, managed by the
same experienced neonatology team, given timely treatment, and
guaranteed standard input, but they did not received diuretics
during the observation.

Data Collection
Emergency care and resuscitation procedures took precedence
over any other procedure. All neonates were uniformly managed
as per standard NICU guidelines. All patient details were treated
with the strictest confidence. The neonate’s gender, GA, birth
length, weight, and head circumference, 1 and 5min Apgar
scores, fluid intake, and UOP within 24 h after birth were
recorded. Serum samples were isolated from the peripheral
vein blood for routine admission examination within the first
hours after birth. Then, serum concentrations of creatinine and
BUN were determined by enzymatic assay using an automatic
biochemical analyzer (Beckman Coulter, Miami, FL, USA).
The eCCI rate was calculated using the Schwartz formula:
eCCI (mL/min/1.73 m2) = [0.34 × length (cm)]/SCr (mg/dL)
(1 µmol/L = 0.0113 mg/dL) (16). UOP was systematically
measured based on diaper weight every 3 h. The volumes of
UOP and fluid intake within 24 h were obtained from the
nursing records. We also analyzed the incidences of SCr > 133
µmol/L (6, 17), eCCI < 16 mL/min/1.73 m2 (11), and oliguria
(UOP < 1.0 mL/kg/h for 24 h) (18). The material’s information,
including primiparity, delivery mode, gestational complication,
and perinatal SCr level was recorded.

Sample Size Calculation
The sample size was calculated and showed that examining 128
neonates would have a power of 80% in detecting a significant
difference in the SCr level using a two-sided F-test with a
confidence level of 95% (type 1 error, 0.05).

Statistical Analysis
Quantitative variables are expressed as median (interquartile
range), whereas categorical variables are expressed as absolute
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TABLE 1 | Demographic and clinical characteristics of preterm neonates and their mothers.

Items Preterm neonates with BA (n = 64) Control (n =64) P-value

28–31 week

(n = 32)

32–36 week

(N = 32)

28–31 week

(n = 32)

32–36 week

(n = 32)

Mother

baseline

Primiparity Yes 37 39 p = 0.72

18 19 18 21

Delivery mode Nature labor 10* 21 p = 0.04

8 2 12 9

Gestational complication Yes 41 46 p = 0.26

22 19 22 24

Serum creatinine (µmol /L) 49.50 47.10 p = 0.416

49.50 49.75 47.25 47.1

Neonatal

baseline

Gender Male 34 37 p = 0.86

18 16 19 18

GA (weeks) 32.00 ± 2.79 32.00 ± 2.52 p = 1.00

30.00 ± 1.50 34.00 ± 1.70 29.87 ± 1.16 34.13 ± 1.52

Birth weight (g) 1723.00 ± 673.74 1703.90 ± 528.24 p = 0.86

1232.40 ± 292.58 2207.00 ± 591.80 1335.31 ± 275.92 2072.00 ± 458.78

Birth length (cm) 41.42 ± 4.58 41.75 ± 4.14 p = 0.67

38.31 ± 2.87 44.53 ± 3.79 38.875 ± 2.88 44.63 ± 3.09

24 h fluid intake (ml) 106.19 ± 37.55 100.00 ± 30.00 p = 0.31

118.93 ± 43.65 93.45 ± 25.08 107.28 ± 29.18 92.71 ± 31.21

Perinatal complication Yes 43 33 p = 0.07

26 17 28 5

BA, birth asphyxia; GA, gestational age.

*Statistically significant difference (p < 0.05) between gestational age-matched preterm neonates with asphyxia and control preterm neonates.

frequency (percentage). The neonate characteristics were
compared between the preterm BA and preterm control groups.
Continuous variables with normally distributed values (i.e.,
eCCI) were compared using the independent Student’ t-test,
whereas those with non-normally distributed values (i.e., SCr,
BUN, and UOP) were compared using the Mann-Whitney
U-test. The chi-square or Fischer’s exact test (as appropriate)
was used to compare dichotomous variables between the
groups. Univariate logistic regression analysis was performed to
evaluate the potential associations of demographic and clinical
variables with deteriorating renal function risk. A p < 0.05 was
considered to indicate statistical significance. Statistical analysis
was conducted using SPSS version 23.0 (IBM Corp., Armonk,
NY, USA).

RESULTS

Study Population
BetweenMarch 2014 andMarch 2018, 2,977 hospitalized preterm
neonates were treated in the NICU. Seventy-one preterm
neonates had a history of fetal distress and an Apgar score
<7 at 5min. After screening by the exclusion criteria, 64
preterm neonates with BA (BA group), including 32 very preterm
neonates (GA: 28–31 weeks) and 32 mid-late preterm neonates
(GA: 32–36 weeks), were enrolled in the observation group.
Sixty-four GA-matched preterm neonates without BA were
included as controls until patients in each group were evenly

distributed. All 128 patients had NICU admission charts available
for review, and their mothers had normal SCr levels.

Demographic and clinical characteristics of the neonates
and their mothers are summarized in Table 1. No significant
differences in gender, gestational age, birth weight, birth
length, 24 h fluid intake, and perinatal complications were
observed between the BA and control groups. No significant
differences in primiparity, gestational complications, and SCr
level of mothers were found between the matched groups.
No abnormal SCr levels was observed in all 128 mothers
throughout their pregnancy. Gestational complications,
including hypertension/preeclampsia/HELLP syndrome,
diabetes, abnormal thyroidal function, placental abruption, and
postpartum hemorrhage occurred in 41/64 (64.06%) mothers
of preterm neonates with BA and 46/64 (71.88%) mothers of
control neonates (p = 0.260). The vaginal delivery rate was
higher in the BA group than in the control group (p= 0.040).

Differences in Renal Function Between
Preterm Neonates With and Without
Asphyxia Within the First Day After Birth
Preterm neonates with BA had a significantly higher SCr levels
(85.00 versus [vs.] 69.70 µmol/L; z = 3.61, p < 0.001), but a
significantly lower eCCI rate (14.47 vs. 18.00 mL/min/1.73 m2;
t = 3.51, p < 0.001), especially in the mid-late preterm neonates
(SCr: 84.05 vs. 64.20 µmol/L; z= 4.41, p < 0.001; eCCI: 15.02 vs.
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TABLE 2 | Comparison of renal function of preterm neonates with or without asphyxia within 24 h after birth.

Very preterm neonates (n = 64) Mid-late preterm neonates (n = 64) All preterm neonates (n = 128)

Control (n = 32) BA (n = 32) Control (n = 32) BA(n = 32) Control (n = 64) BA (n = 64)

SCr (µmol/L) 73.60 (64.10–93.28) 85.00 (67.38–106.60) 64.20 (58.15–73.80) 84.05 (72.00–114.25)* 69.70 (60.80–83.30) 85.00 (70–109.34)*

BUN (mmol/L) 5.72 (3.86–7.49) 5.60 (3.93–6.90) 4.82 (3.66–5.80) 4.88 (4.03–7.66) 5.26 (3.75–6.84) 5.00 (4.00–6.50)

eCCI (mL/min/1.73 m2) 14.88 (12.42–18.65) 14.16 (10.08–16.90) 21.30 (17.61–24.16) 15.02 (11.76–19.23)* 18.00 (13.92–22.95) 14.47 (11.27–22.17)*

UOP (mL/kg/h) 1.66 (1.17–2.40) 2.01 (1.56–3.04) * 1.45 (1.11–2.19) 1.18 (0.83–2.17) 1.58 (1.18–2.31) 1.71 (1.07–2.44)

BA, birth asphyxia; BUN, blood urea nitrogen; eCCI, estimated creatinine clearance; SCr, serum creatinine; UOP, urinary output.

*Statistically significant difference (p < 0.05) between gestational age-matched preterm neonates with asphyxia and control preterm neonates.

TABLE 3 | Incidences of changed parameters related to renal function in asphyxiated preterm neonates within 24 h after birth.

Abnormal renal function indicators Very preterm neonates Mid-late preterm neonates Preterm neonates

Control (n = 32) BA (n = 32) Control (n = 32) BA (n = 32) Control (n = 64) BA (n = 64)

SCr ≥ 133 µmol/L 1 (3.13%) 2 (6.25%) 0 (0%) 5 (15.63%) 1 (1.56%) 7 (10.94%)

eCCI ≤ 16 mL/min/1.73 m2 19 (59.38%) 22 (68.75%) 5 (15.63%) 18 (56.25%)* 24 (37.50%) 40 (62.50%)*

UOP < 1.0 mL/kg/h 3 (9.38%) 1 (3.13%) 7 (21.88%) 12 (37.50%) 10 (15.63%) 13 (20.31%)

BA, birth asphyxia; eCCI, estimated creatinine clearance; SCr, serum creatinine; UOP, urinary output.

*Statistically significant difference (p < 0.05) between gestational age-matched preterm neonates with asphyxia and control preterm neonates.

21.30 mL/min/1.73 m2; z = 3.57, p < 0.001) than GA-matched
controls. However, no significant difference was found in the SCr
levels and eCCI rate between the very preterm neonates with and
without BA. Although the very preterm neonates with BA had
a significantly higher UOP than the GA-matched controls (2.01
vs. 1.66 mL/kg/h; z = 2.01, p = 0.045), there was no significant
difference in the UOP between the mid-late preterm neonates
with and without BA and between all preterm neonates with BA
and without BA. Additionally, BA did not associated with the
BUN level in all preterm neonates, including the mid-late and the
very preterm neonates (Table 2).

Incidences of Changed Parameters
Related to Renal Function in Preterm
Neonates With Asphyxia Within 24h After
Birth
Within 24 h after birth, in all 64 preterm neonates with BA, the
incidences of SCr > 133 µmol/L, CCI < 16 L/min/1.73 m2 and
UOP < 1.0 ml/kg/h were 10.94% (7/64), 62.50% (40/64), and
20.31% (13/64), respectively. There was no significant difference
in the incidences of SCr > 133 µmol/L (10.94% [7/64] vs.
1.56% [1/64] and oliguria (UOP < 1.0 mL/kg/h; 20.31% [13/64]
vs. 15.63% [10/64]) between the 64 preterm controls and 64
preterm neonates with BA. However, the incidence of eCCI <

16 mL/min/1.73 m2 was significantly higher in the 64 preterm
neonates with BA than in the preterm controls (62.50 % vs.
37.50%; χ

2 = 8.00, p = 0.005), especially in the 32 mid-late
preterm neonates (56.25% [18/32] vs. 15.63% [5/32]; χ2 = 11.47,
p = 0.001). The incidence of eCCI < 16 mL/min/1.73 m2

was similar in the very preterm neonates with and without BA
(68.75% [22/32] vs. 59.38% [19/32], respectively; χ

2 = 0.61,
p= 0.430 (Table 3).

Predisposing Factors of Deteriorating
Renal Function in Preterm Neonates Within
24h After Birth
In the univariate logistic regression analysis, asphyxia (p= 0.016;
odds ratio [OR]= 2.83; 95% confidence interval [CI]: 1.21–6.61),
perinatal complications of neonates (p = 0.003; OR = 3.08; 95%
CI: 1.48–6.43), Preterm birth with very small GA (GA < 32
weeks) (p = 0.001; OR = 3.41; 95% CI: 1.65–7.06), and natural
birth (p= 0.002; OR= 4.91; 95%CI: 0.17–9.84) were significantly
associated with an increased risk of eCCI < 16 mL/min/1.73 m2

in all preterm neonates within the first hours after birth. Preterm
birth with very small GA (<32 weeks) (p = 0.002; OR = 0.16;
95% CI: 0.05–0.50) and gestational complications (p = 0.0260;
OR = 0.35; 95% CI: 0.14–0.88) were inversely associated with
UOP < 1.0 ml/kg/h in preterm neonates within 24 h after birth.
Primiparity and gender were not significantly associated with the
change of renal function in preterm neonates within 24 h after
birth (Table 4).

DISCUSSION

Our research showed that the renal function of preterm neonates
was altered after BA in the first hours after birth, and different
renal function profiles were observed in neonates of different GAs
after BA in the first day of life. In mid-late preterm neonates
after BA, a higher initial SCr value and lower initial eCCI were
observed. In the very preterm neonates after BA, higher UOP
was seen within the first day after birth. The incidences of SCr
> 133 µmol/L, eCCI < 16 mL/min/1.73 m2 within the first
hours after birth, and UOP < 1.0 ml/kg/h on the first day after
birth were 10.94, 62.50, and 20.31%, respectively, in preterm
neonates after BA. The influencing factors of early renal function
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TABLE 4 | Maternal and neonatal risk factors for early deteriorating renal function in preterm neonates.

Parameter n SCr ≥ 133

µmol/L

Univariate logistic

regression

UOP < 1.0

ml/kg/h

Univariate logistic

regression

eCCI < 16

mL/min/1.73

m2

Univariate logistic

regression

Yes N = 8 OR (95% CI) P-value Yes N = 23 OR (95% CI) P-value Yes N = 29 OR (95% CI) P-value

Primiparity Yes 76 4 0.70 (0.52–2.80) 0.579 17 2.21 (0.81–6.05) 0.120 38 0.68 (0.52–1.53) 0.683

Delivery mode Nature 31 1 0.43 (0.05–3.63) 0.437 5 0.84 (0.29–2.50) 0.759 7 4.91 (0.17–9.84) 0.002*

Gestational

complication

Yes 87 7 3.5 (0.42–29.43) 0.246 11 0.35 (0.14–0.88) 0.026* 45 1.62 (0.78–3.37) 0.196

Gender Male 71 6 2.54 (0.49–13.09) 0.260 12 0.85 (0.34–2.10) 0.726 34 1.21 (0.60–2.43) 0.594

GA <32 week 64 3 0.58 (0.13–2.54) 0.470 4 0.16 (0.05–0.50) 0.002* 53 3.41 (1.65–7.06) 0.001*

Birth asphyxia Yes 64 8 7.74 (0.92–64.83) 0.059 13 1.38 (0.56–3.42) 0.491 40 2.83 (1.21–6.61) 0.016*

Perinatal

complication

Yes 76 8 5.17 (0.62–43.38) 0.130 12 0.69 (0.28–1.73) 0.439 46 3.08 (1.48–6.43) 0.003*

CI, confidence interval; eCCI, estimated creatinine clearance; OR, odds ratio; SCr, serum creatinine; UOP, urinary output.

*The p < 0.05.

in preterm neonates included BA, GA, maternal complication,
and postnatal complications of neonates. Preterm birth with very
small GA (<32 weeks) was inversely associated with UOP < 1.0
ml/kg/h. BA was associated with an increased incidence of eCCI
< 16 mL/min/1.73 m2, at an OR of 2.83. Therapies based on
the different renal function statuses may bring these vulnerable
patient populations of different GAs closer to receiving precision
medicine after BA.

In preterm neonates hospitalized in the NICU, the incidence
of acute kidney injury (AKI), functional renal failure, and
intrinsic renal failure were reported to be 12, 48.14, and
51.85% respectively (19). despite the great advances in neonatal
resuscitation, many preterm infants still suffer from asphyxia,
which is an important risk factor for impaired renal function
in preterm neonates (20). Severe asphyxia leads to diffuse
tubular dysfunction, which results in impaired water and
sodium reabsorption and decreased GFR (21). The damage
caused by impaired renal function-related complications is
significantly more severe in most immature neonates with
impaired glomerulogenesis (2–4, 22). Therefore, it is critical to
early identify the deterioration in renal function associated with
asphyxia in these vulnerable premature neonates of different GAs
within the first day of life, which would bring these vulnerable
patient populations closer to receiving timely precision treatment
and achieving a better outcome. These treatments included fluid
and electrolyte management, drug choice (avoid nephrotoxic
drugs and potential nephroprotective interventions), and for
those drugs, dose selection (16).

Evaluating kidney injury in preterm neonates is challenging,
but it is relevant for postnatal care and crucial for the future of
a patient. Although the definitions of kidney impairment and
AKI staging in adults and children have become widely adopted,
no single-accepted definition exists for AKI in neonates, and
no single accepted definition exists for AKI in neonates
and no definition has been proposed for preterm neonates
(4). Additionally, the measurement of preterm neonatal renal
function is challenging (16, 20). GFR represents the most

recognized measure of kidney function. Although the clearance
rate of inulin is the gold standard of GFR, it was difficult
to measure it because intravenous pre-infusion, followed by
continuous infusion of insulin, was needed. The GFR of neonates
is generally based on the eCCI (23). Accurate, easy-to-use
markers to estimate the actual GFR of neonates are lacking.
In clinical practice, the commonly used endogenous glomerular
filtration markers are SCr and BUN, especially in developing
countries such as China. However, SCr and BUN are affected
by extrarenal factors (e.g., muscle mass, intake of nitrogen, and
protein) and associated with age, sex, and body weight (20). The
reference intervals for SCr, BUN, and eCCI in preterm neonates
of each gestational age have been rarely reported until now.

In the context of the above challenges, studies on the early
renal function profiles of asphyxiated preterm neonates with
different GAswithin the first day after birth have been rare. In this
study, widely used renal function indicators, namely, SCr, BUN,
eCCI, and UOP, were studied and compared between preterm
neonates with BA and their GA-matched controls. Considering
GAs related to renal function development, the renal function
profiles of the very and mid-late preterm neonates with BA were
separately observed. Our results suggest that the renal function of
preterm neonates with BA change just a few hours after birth and
that their early renal function profiles within the first day after
birth were related to GAs. Changes in SCr levels and eCCI value
in mid-late preterm and UOP in very preterm neonates should be
carefully monitored. Within the first few hours after birth, higher
SCr levels but lower eCCI values have already been observed in
mid-late preterm neonates with BA. The very preterm neonates
with BA only showed higher UOP within the first 24 h after
birth. Both the very and mid-late preterm neonates showed no
asphyxia-related change in the initial BUN level in this study. Pan
et al. also reported on the renal function status of asphyxiated
preterm neonates (GA ≤ 34 weeks) at 24 h after birth, and
similar SCr, BUN, and UOP values but a reduced eCCI value
was observed (20). The differences in changes of renal function
parameters between the above two studies may be related to the
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different time points of serum collection and the composition
of GAs. Precision medicine is urgently needed in early renal
function evaluation for the vulnerable preterm neonates of
different stages of development. SCr values reflected a pattern
with an initial increase and subsequent decrease during postnatal
life, as observed in a cohort of 1,140 neonates (GAs 23–42 weeks)
in the first 42 days of postnatal life (16, 24). In preterm neonates
with gestational age ≥32 weeks, the SCr level may increase for
the first several days following birth and the degree and duration
of the increase is proportional to the degree of prematurity.
This increase in creatinine is thought to be secondary to tubular
resorption of creatinine by the immature kidney, compounded
by the total body fluid loss and intravascular volume contraction
typically encountered in preterm neonates (25, 26). Absolute SCr
≥133 µmol/L on the second or third day of life were frequently
proposed to indicate AKI in most neonatal AKI studies (19,
27). All mothers in this study had normal SCr levels during
pregnancy, labor, and delivery. The renal function of preterm
neonates whose SCr levels have already been ≥133 µmol/L
within the first day after birth should be paid more attention to.
Therefore, we evaluated the incidence of SCr level ≥133 µmol/L
according to routine examination results on admission and found
that 10.94% of preterm neonates with BA had already shown
an SCr level ≥ 133 µmol/L within the first hours after birth.
However, the incidence of SCr ≥ 133 µmol/L in these neonates
was not significantly different from that in their GA-matched
controls. More sensitive cut-off values of creatinine in preterm
neonates of different GAs still need to be explored. Thus far, no
unifying accepted cut-off values of eCCI or GFR exist for preterm
neonates of different GAs. Kastl (24) reported that GFRmeasured
by renal inulin clearance may be as low as 10–20 mL/min/1.73
m2 at birth, and a rapid increase is then seen within the first 14
days of life and GFR is typically between 35 and 45 mL/min/1.73
m2. VIEUX et al. (28) reported that median GFR reference values
in infants aged 27 to 31 weeks’ gestation ranged from 7.9 to
30.3 mL/min per 1.73 m2 on day 7. In the study conducted by
Nkidiaka et al. (11), AKI was diagnosed within 3 days of life when
the eCCI was ≤16 mL/min/1.73 m² and occurred in 42.85% of
the 70 full-term neonates with perinatal asphyxia. Considering
that very few studies have explored the cut-off values of eCCI
or GFR in preterm neonates within the first day, a tentative
comparison of the incidence of eCCI ≤ 16 mL/min/1.73 m² was
conducted between the preterm neonates with and without BA
in our present study. We found that the eCCI ≤ 16 mL/min/1.73
m² occurred in 62.50% of the 64 preterm neonates with BA
within the first hours after birth, when compared to GA-matched
preterm neonates without BA, and eCCI ≤ 16 mL/min/1.73 m²
was significantly seen more often in the preterm neonates with
BA, especially the mid-late preterm neonates with BA. Compared
to the occurrence of SCr ≥ 133 µmol/L, the occurrence of eCCI
< 16 mL/min/1.73 m2 may have more potential as an index
for the early evaluation of renal function of preterm neonates
after the development of BA, considering that the eCCI contains
much information related to GAs and SCr reabsorption in the
proximal tubules varies according to the prematurity level (22).
Further studies of more preterm neonates should be conducted
to detect more precise interval range values of eCCI. Oliguria

is common after perinatal asphyxia, which is a manifestation of
renal dysfunction. This is due to the reduction of cardiac output
or AKI secondary to renal tubular necrosis (21).

The Acute Kidney Injury Network (AKIN) criteria; the
modified pediatric risk, injury, failure, loss, and end-stage
(RIFLE) kidney disease criteria, and the Kidney Diseases:
Improving Global Outcomes (KDIGO) criteria were used in
numerous researches for the diagnosis of neonatal AKI based on
the increase in SCr levels and/or decrease in UOP, and UOP <

1.0 ml/kg/h was the most often used cut-off value for oliguria
(17, 29). Almost all neonates urinate within 24 h after birth
(19). However, the prognosis is poor, and the mortality rate is
high if oliguria develops (4). Therefore, in our present study, a
tentative comparison of the incidence of UOP < 1.0 ml/kg/h
was conducted between the preterm neonates with and without
BA within the first 24 h after birth. The incidences of oliguria
were similar in the two groups. The very preterm neonates with
oliguria should be more carefully monitored within the first 24 h
after the development of BA.

BA has been often reported as one of the most common early
and late causes of renal function decline in neonates (30). In this
study, we also found that asphyxia was significantly associated
with an increased risk of impaired renal function in preterm
neonates within the first day after birth. BA was associated
with a significantly higher incidence of eCCI < 16 mL/min/1.73
m2 in the preterm neonates. The potential risk factors of a
higher incidence of eCCI < 16 mL/min/1.73 m2, including very
small GA (<32 weeks), perinatal complications of neonates, and
natural birth, were also observed in this study. The precise cut-off
value of eCCI for neonates of different GAs needs to be further
studied with a large sample in the future. Additionally, we found
that preterm birth with very small GA (<32 weeks) and mothers’
gestational complications were negatively associated with UOP<

1.0 ml/kg/h in preterm neonates within 24 h after birth. Oliguria
was not likely to occur in very preterm neonates, which may be
related to the high proportion of water content in their body
and the immature function of renal tubular concentration and
dilution (27). Our results suggest that the influencing factors
of early renal function in preterm neonates include BA, GA,
maternal complication, and postnatal complications of neonates.
Preterm neonates’ renal function may be protected by active
treatment of the basic maternal diseases during pregnancy,
timely and effective asphyxia neonatorum resuscitation, and then
reasonable treatment of neonatal complications.

There are several strengths and limitations of this study.
Early renal function evaluation in preterm neonates of different
GAs after BA within the first 24 h of life were beneficial to the
vulnerable population in decreasing the risk of developing AKI
within 2–3 days after birth, and better clinical outcomes were
achieved after the preterm neonates received reasonable fluid
and electrolyte management, drug and dose choice, and timely
interventions by a neonatologist. Several measures have been
taken to ensure the objectivity of this study, as all neonates
were given guaranteed standard input and timely treatment;
mothers’ SCr levels were all normal during pregnancy, labor,
and delivery; and serum was all isolated from peripheral venous
blood. This study was a cross-sectional survey on the renal

Frontiers in Pediatrics | www.frontiersin.org 6 October 2020 | Volume 8 | Article 58354048

https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org
https://www.frontiersin.org/journals/pediatrics#articles


Zhang and Zeng Renal Function of Asphyxiated Premature

function profiles of preterm neonates after BA. It was difficult
to obtain multiple blood samples for continuous evaluation of
renal function because premature neonates have a small blood
volume and very preterm neonates, especially, have a low body
weight. Further research should extend the observation period to
> 48 h after birth to fully clarify the early renal function profiles
according to the GAs of neonates. Additionally, our sample size
in this study was limited since the number of premature neonates
with BA has decreased substantially owing to improvements in
perinatal screening and management. Large multicenter studies
are needed in the future. Finally, studies using novel and more
sensitive blood or urinary markers must be conducted in the
future to detect the decline in neonatal renal function as early as
possible. Recently, biomarkers of renal GFR or tubular damage as
predictors of early renal damage prior to SCr elevation have been
explored in term and preterm neonates (16). Compared with the
classic endogenous glomerular filtration markers (e.g., SCr and
BUN), neutrophil gelatinase-associated lipocalin (NGAL) has
emerged as a promising indicator of kidney injury. NGAL was
found 34 h earlier than SCr to detect AKI (20). Protein cystatin
C is not filtered by the placenta, and elevated cystatin C levels
directly reflect fetal and neonate GFRs. Urinary cystatin C shows
approximately 90% sensitivity and>80% specificity in predicting
AKI in preterm neonates, meaning that these measures have
excellent reliability for positively identifying disease and ruling
out the possibility for not having the disease (31). Moreover,
cystatin C had good distinguishability between asphyxiated and
non-asphyxiated preterm neonates, irrespective of GA (<28,
28–32, or ≥32 week subgroups), and further discriminated
between mild, moderate, and severe asphyxia (16).

Kidneys are sensitive to oxygen deprivation, and renal
insufficiency may occur within 24 h of BA. Accurate evaluation
of renal function status remains difficult in the newborn period.
Thus far, in clinical practice, commonly used endogenous
glomerular filtrationmarkers have still been SCr, BUN, and UOP.
Our results based on these classic biomarkers are helpful for
understanding the asphyxia related to the early renal function
profile of preterm neonates with different developmental

maturity statuses, especially in developing countries. When the
early renal function assessment is conducted in preterm neonates
with BA within the first 24 h after birth, the changes in SCr levels
and eCCI should be monitored more intensively in mid-late
preterm neonates with BA, whereas oliguria should be carefully
monitored in very preterm neonates. Early identification of
deterioration of renal function associated with asphyxia and
tailored clinical care and pharmacotherapy of the vulnerable
preterm neonates of different GAs are beneficial to improve
preterm neonate outcomes.
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B, Doronjski A. Acute kidney injury in premature newborns-

definition, etiology, and outcome. Pediatr Nephrol. (2017) 32:1963–70.

doi: 10.1007/s00467-017-3690-8

22. Gubhaju L, Sutherland MR, Horne RSC, Medhurst A, Kent AL, Ramsden

A, et al. Assessment of renal functional maturation and injury in preterm

neonates during the first month of life. Am J Physiol Renal Physiol. (2014)

307:F149. doi: 10.1152/ajprenal.00439.2013

23. Allegaert K. Creatinine assays in early infancy: how to aim for a moving target.

In: Patel VB, Preedy VR, editors. Biomarkers in Kidney Disease. Dordrecht:

Springer Science+Business Media (2015). pp. 271–300.

24. Kastl JT. Renal function in the fetus and neonate – the creatinine enigma.

Semin Fetal Neonatal Med. (2017) 22:83–89. doi: 10.1016/j.siny.2016.12.002

25. Gallini F, Maggio L, Romagnoli C, Marrocco G, Tortorolo G. Progression of

renal function in preterm neonates with gestational age < or = 32 weeks.

Pediatr Nephrol. (2000) 15:119–24. doi: 10.1007/s004670000356

26. Okechukwu AA, Achonwa A. Morbidity and mortality patterns of admission

into the special baby care unit of university of Abuja Teaching Hospital,

Gwagwalada, Nigeria. Niger J Clin Pract. (2009) 12:389–94.
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Bronchopulmonary dysplasia (BPD) is the most common complication of pre-term birth

with long lasting sequelae. Since its first description more than 50 years ago, many

large randomized controlled trials have been conducted, aiming to improve evidence-

based knowledge on the optimal strategies to prevent and treat BPD. However, most

of these intervention studies have been performed on a population level without regard

for the variation in clinical and biological diversity (e.g., gestational age, ethnicity, gender,

or disease progression) between patients that is driven by the complex interaction of

genetic pre-disposition and environmental exposures. Nevertheless, clinicians provide

daily care such as lung protective interventions on an individual basis every day despite

the fact that research supporting individualized or precision medicine for monitoring

or treating pre-term lungs is immature. This narrative review summarizes four potential

developments in pulmonary research that might facilitate the process of individualizing

lung protective interventions to prevent development of BPD. Electrical impedance

tomography and electromyography of the diaphragm are bedside monitoring tools to

assess regional changes in lung volume and ventilation and spontaneous breathing

effort, respectively. These non-invasive tools allow a more individualized optimization of

invasive and non-invasive respiratory support. Investigation of the genomic variation in

caffeine metabolism in pre-term infants can be used to optimize and individualize caffeine

dosing regimens. Finally, volatile organic compound analysis in exhaled breath might

accurately predict BPD at an early stage of the disease, enabling clinicians to initiate

preventive strategies for BPD on an individual basis. Before these suggested diagnostic

or monitoring tools can be implemented in daily practice and improve individualized

patient care, future research should address and overcome their technical difficulties,

perform extensive external validation and show their additional value in preventing BPD.

Keywords: individualized medicine, targeted treatment, personalized medicine, newborn, neonatal intensive care

INTRODUCTION

Improvements in neonatal care have led to an increased survival of very low birth weight (VLBW)
infants over the past decades (1, 2). Evidence based intervention aiming to improve the pulmonary
condition, such as exogenous surfactant treatment, antenatal corticosteroids, more gentle modes
and restrictive use of invasive ventilation have greatly contributed to this improved survival
(3–5). However, many of the VLBW infants will be at high risk of developing bronchopulmonary
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dysplasia (BPD), which is considered the most common
complication after pre-term birth (6). BPD is histologically
characterized by an arrest in normal lung development,
resulting in a prolonged need for respiratory support and
(re)hospitalization (7). Although studies have consistently shown
the independent association between BPD and increased risk
for repeated respiratory infections (bacterial and viral), asthma,
and a compromised lung function lasting into adolescence (7,
8), not every infants with the diagnosis BPD will suffer from
these pulmonary sequelae. However, there is also a general
concern that pre-term infants with BPD have more risk of
developing chronic obstructive pulmonary disease in later life
(9). In addition to pulmonary sequelae, BPD is also associated
with an increased risk of cerebral palsy and developmental delay
(10). BPD is considered a multifactorial disease with genetic
susceptibility, intrauterine growth restriction, nutritional deficits,
oxygen toxicity, pulmonary inflammation, and direct mechanical
injury caused by mechanical ventilation as the most important
risk factors (11–13).

Over the last decades, several interventions aiming to reduce
the incidence of BPD have been studied in large high quality
randomized controlled trails, but the results have so far been
disappointing. In contrast to other morbidities related to pre-
term birth, the incidence of BPD as not declined over time (2).
It is important to acknowledge that most intervention studies,
although restricting eligible participants to infants below 30
weeks of gestational age, used a population based approach,
targeting infants based on a single, often indirect, risk factor
for BPD, such as having a gestational age below 30 weeks
gestational age or treatment with invasivemechanical ventilation.
This approach does not account for the complexity of developing
BPD, and the individual diversity that is often present in infants
randomized in these studies. At an individual level, a pre-term
infant might have to be differentiated into different respiratory
disease phenotypes using for instance biomarkers, metabolomics,
and genomics (14). However, in order to prevent pre-mature
phenotyping based on clinical intuition, the hypothesis of
multiple BPD phenotypes needs to be investigated extensively
using large subgroups of datasets after external validation
before it can be used in neonatal precision medicine of the
lung (15). Using a similar line of reasoning, the intervention
applied should probably be tailored to the individual patient
and lung characteristics instead of using the “one size fits all”
approach routinely investigated in large randomized controlled
trials (16). This individualized approach using both prognostic
enrichment or predictive enrichment in randomized controlled
trials requires individual monitoring of the BPD risk profile, the
underlying respiratory phenotype, and the correct application of
the intervention (17, 18).

Precision medicine, also referred to as personalized or
individualized medicine has become an increasingly used
approach in adult and pediatric research (19). Prognostic
enrichment in precision medicine focusses on patient
stratification based on a combination of clinical (e.g., gestational
age, ethnicity, gender) information, genetic pre-disposition, and
individual biomarkers, enabling more precise differentiation of
different phenotypes within this group of pre-term infants (20),

whereas predictive enrichment identifies subgroups of patients
with a higher chance of responding to a specific therapy based
on a specific clinical or biological phenotype (18). However, a
literature search in MEDLINE combining the words “precision”
or “individualized” and “pulmonary” and “pre-term” results in
zero citations. This suggests that individualized risk profiling
and tailored intervention for BPD, are not part of daily practice
and/or research. This is largely caused by lack of appropriate
monitoring tools to assess the individual risk of developing BPD
and the successful and correct application of intervention to
reduce BPD. This narrative review highlights some promising
developments in neonatal pulmonary research enabling the
use of precision medicine in the search for more effective
interventions to prevent BPD.

ELECTRICAL IMPEDANCE TOMOGRAPHY

As previously mentioned, invasive mechanical ventilation is
one of the risk factors for developing BDP. Pre-clinical studies
have indicated that overdistension (volutrauma) and collapse
(atelectrauma) of alveoli play a major role in ventilator
induced lung injury and subsequent development of BPD.
Pre-term infants are prone to loss of lung volume due to
their immature lung physiology and underlying lung disease.
This leads to impaired lung function and respiratory failure
and the need for non-invasive or invasive respiratory support
to restore gas exchange. Ideally, respiratory support should
reverse atelectasis and avoid alveolar overdistention, resulting in
homogeneous aeration and ventilation of the lungs. Reaching
this goal requires an individual and dynamic approach, as
lung condition differs between patients and lung disease is
often heterogeneous in nature. This heterogeneity results in co-
existence of overdistended and collapsed lung regions in the
same lung (21, 22). It is clear that monitoring of regional
aeration and ventilation is essential to individualize respiratory
support in pre-term infants with respiratory failure and at risk
for developing BPD.

Monitoring regional ventilation distribution and end
expiratory lung volume in pre-term infants is challenging,
especially at the bedside. Currently available monitoring
tools such as chest X-ray, tracer gas wash-in/out methods, or
respiratory inductive plethysmography have serious limitations,
including lack of regional and online information, cumbersome
to perform at the bedside, and use of radiation. Electrical
Impedance Tomography (EIT) is a technique developed in
the early 1980’s that uses differences in tissue conductance in
response to an electrical currents to visualize changes in lung
aeration (23). EIT is non-invasive, radiation free, and generates
continuous bedside information on relative changes in regional
ventilation distribution and end expiratory lung volume, which
shows a high correlation to actual intra-thoracic changes in
air-content (24). Measurement requires placement of a belt
containing non-sticky electrodes placed around the chest at the
level of the nipple.

In pre-term infants, EIT research has mainly focused on the
pathophysiology of lung disease and the impact of interventions
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on (regional) lung aeration. Studies have shown that EIT is able
to detect and monitor changes in (regional) aeration caused by
pneumothoraces (25–27), postural changes (28, 29), atelectasis
(30), incorrect endotracheal tube placement (31), endotracheal
suctioning (32, 33), (minimal) invasive surfactant administration
(34, 35), changes in nasal continuous positive pressure levels
(36, 37), and lung recruitment procedures during conventional
and high frequency ventilation in pre-term infants (Figure 1)
(38, 39).

These observational studies show the potential of EIT to
individualize respiratory care in pre-term infants at high risk of
developing BPD. EIT can assist the clinician in the challenge to
optimize ventilator support at an individual level, and thereby
achieving the goal of homogeneous non-injurious ventilation.
Although EIT has important potential, there are still some
technical and practical issues that need to be resolved before
it can be implemented in clinical practice. First, results from
most studies are based on off-line EIT data analysis. Software
allowing continuous online analysis of EIT data is currently being
developed. Second, well-designed easily applicable equipment
for neonates is still lacking. A user-friendly textile electrode
belt, a well-tolerated skin conductance substance, and wireless
recording are needed for successful implementation in clinical
practice. These improvements will also allow testing of a longer
recording time than what was used in most observational
studies (1–2 h). Third, developmental and production costs of the
hardware need to be reduced in order to make implementation
feasible from an economic perspective. Finally, the effect of
EIT on important clinical outcomes needs to be investigated in
future studies.

Key Messages
• EIT can visualize regional lung volume and ventilation

changes at the bedside and individualize pulmonary treatment.
• Future development should focus on improvement in

EIT hardware and software so the final step to clinical

implementation can made.

ELECTROMYOGRAPHY OF THE
DIAPHRAGM

Respiratory failure is a common complication in pre-term
infants primarily caused by an impaired control of breathing
and a compromised lung function (40). Impaired control of
breathing leads to apnea of pre-maturity, which can lead to
hypoxemia and bradycardia, thereby increasing the risk of
adverse neurodevelopmental outcome (41). In an attempt to
stabilize the respiratory system and reduce the work of breathing,
pre-term infants often receive respiratory support. Non-invasive
support is the preferred modality, which can be applied via
continuous nasal positive airway pressure (nCPAP), heated
humidified high flow nasal cannula, and nasal intermittent
positive pressure ventilation (nIPPV) (42). If this is insufficient
to restore gas exchange and work of breathing, endotracheal
intubation and invasive mechanical ventilationmay be necessary.
Despite the frequent use of respiratory support, objective criteria

to select the optimal mode and setting are not well-established
(43, 44). Conventional parameters such as oxygen need and
blood gas analysis are not very specific and lack information
on work of breathing. As a result, respiratory support modes
are often selected and set according to general protocols and
timely individual titration is often lacking. This might have
important consequences, because both too little and too much
support may injure the lungs. In case non-invasive support is
adjusted, most clinicians use a “trial and error” strategy (43).
For example, the nCPAP pressure is lowered and if the patients’
respiratory condition deteriorates, the pressure is increased to
the previous setting. Ideally, selection and weaning off the
mode and level of respiratory support should be based on
bedside, continuous and quantitative individual information on
breathing activity or the work of breathing. As the diaphragm
is the main respiratory muscle in pre-term infants, retrieving
information on its activity might provide objective information
on breathing activity. Electrical activity of the diaphragm can
be with electromyography (dEMG) and there are currently two
methods to detect the electrical signal of the diaphragm; the
transcutaneous method in which sensors are placed on the skin
and the invasive transesophageal method in which sensors are
mounted on a catheter positioned in the esophagus. Recent
studies have shown that both techniques are feasible in pre-term
infants (45, 46), and are able to detect changes in diaphragmatic
activity (47, 48) (Figure 2). However, transesophageal dEMG is
relatively invasive, expensive and only available on one specific
ventilator. The transcutaneous method is less invasive, cheap,
and uses stand-alone equipment allowing its use during all
modes of respiratory support, independent of the ventilator.
Observational studies in pre-term infants have shown that
transcutaneous dEMG is able to detect changes in diaphragmatic
activity in response to weaning the mode of respiratory support
from nCPAP to low flow nasal cannula. Furthermore, the
diaphragmatic activity was significantly higher in those infants
that failed this transition compared to those in who weaning was
successful (49).

In addition to unloading the additional work of breathing,
the delivered respiratory support should be, if applicable,
synchronized to the individual breathing efforts of the infants.
Historically, changes in airway pressure or flow are used
for synchronization of invasive mechanical ventilation (50).
However, these parameters are not always accurate in the
presence of leak, either around the endotracheal tube or via
the upper airways during nasal positive pressure ventilation
(51). Being independent of airway flow or pressure, dEMG
might therefore also be an ideal candidate for triggering
respiratory support. Indeed, measuring the electrical activity of
the diaphragm by the transesophageal method can be used for
synchronizing the individual breaths with the ventilator (52).
A Cochrane review performed in 2017 identified one small
underpowered randomized control trial comparing conventional
ventilation to ventilation triggered by diaphragmatic activity with
no significant effects on the primary outcomes. However, the
conclusion of that review was that lower level evidence studies,
such as case series and non-randomized cross over studies are
suggesting a physiological benefit associated with diaphragma
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FIGURE 1 | Lung recruitment visualized by Electric Impedance Tomography. Change in functional electrical impedance tomography in end expiratory lung impedance

during an oxygenation guided lung recruitment procedure in a high frequency ventilated pre-term infant (945 grams). The impedance changes are referenced to the

starting pressure of 8 cm H2O. Row (A) shows the inflation and row (B) the deflation limb of the recruitment procedure (39). All images have the same scale where red

indicates a large change and blue a small change in impedance.

FIGURE 2 | Effect of caffeine on the amplitude of the diaphragm measured by electromyography. The transcutaneous electromyographic (EMG) analysis of the

diaphragm showed a significant increase in logarithm of the EMG Activity Ratio (logEMGAR) after a loading dose caffeine, compared to baseline. The logEMGAR

described the relative changes in EMG activity, either increasing or decreasing symmetrical around unity.

triggered ventilators, and that new high quality randomized
controlled studies are urgently needed (53).

Studies have also shown that (spontaneous) breath detection is
feasible and appropriate via transcutaneous dEMG (54). Optimal
triggering might also have clinical implications, as studies suggest
that synchronized nasal positive pressure ventilation reduces the
need for invasive mechanical ventilation (55).

It is clear that measuring diaphragmatic activity with dEMG
has the potential to individualize the application of respiratory
support in pre-term infants. However, more and larger studies are

needed to determine which dEMGoutput parameters provide the
best information on the individual patients’ needs. Furthermore,
transcutaneous dEMG triggering of non-invasive support still
needs to be tested in pre-term infants.

Key Messages
• Most clinicians use a “trial and error” strategy when selecting

and setting the mode of respiratory support. Furthermore,
synchronizing support to the individual spontaneous
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breathing effort is often not optimal, especially during
non-invasive support.

• The activity of the diaphragm can be measure with
electromyography and provides objective information on the
patients’ breathing effort. Furthermore, breath detection is
feasible and accurate with dEMG.

• dEMG can potentially be used to titrate and trigger the mode
and level of respiratory support but future studies are needed
to explore these potential indications in pre-term infants.

PHARMACOGENETICS AND CAFFEINE

Administration of caffeine to pre-term infants is standard of
care in all neonatal intensive care units. A large randomized
controlled trial provided solid evidence that besides reducing
apnea of pre-maturity (56), pre-term infants treated with
caffeine have a reduced risk of BPD (57), and an improved
neurodevelopmental outcome at 2 years corrected age (58, 59).
Despite this clear evidence, there are uncertainties regarding
the exact working mechanism of caffeine and the optimal
caffeine dose (60). Comparable to the adult population, effective
and safe dosing probably differs between pre-term infants
(61). Standardized regimens, i.e., the same dose to all infants,
lead to high variation of serum levels of caffeine and its
metabolites (62). This observation is important because it has
been shown that in some infants a high caffeine loading-
dose is associated with negative effects on pre-term infant
brain development (63). On the other hand, low caffeine
concentrations may lead to insufficient apnea treatment,
increased use of invasive mechanical ventilation posing a higher
risk for BPD and neurodevelopmental impairment (64). Since
most studies evaluated the effect of a standardized caffeine dosage
regimen on important neonatal outcomes at population level,
they were neither able to determine patient-specific risks and
benefits nor incorporate these in the evaluation of an optimal
dosing regimen. Heterogeneity due to genomic differences likely
contributes to the lack of a strong correlation between serum
caffeine levels and clinical effects. Precision medicine might help
to optimize caffeine dosing and treatment-associated outcomes.
Caffeine metabolism is limited in pre-term infants because
cytochrome P4501A2 (CYP1A2) enzyme activity is markedly
reduced relative to term neonates, leading to a prolonged half-
life and increased urinary excretion of unmetabolized caffeine.
Enzyme activity increases with increasing gestational age and
advancing post-natal age (65). Although the exact molecular
mechanisms underlying the benefits of caffeine administration
have not been elucidated (57), it is likely that genomic and
metabolomic heterogeneity influences optimal patient dose due
to infant-specific caffeine metabolism and risk susceptibility (66–
68). Several candidate genes have been suggested based on the
known genetic associations with caffeine (e.g., cytochrome P450
enzymes, adenosine receptors) (66, 69–72).

It is highly likely that there is a dose-specific response to
caffeine treatment in pre-term neonates. Individual genomic
variants are a potential indicator for its effectiveness but also the
risk to develop complications due to caffeine treatment. Genomic

variance probably explains why the correlation between caffeine
plasma concentrations and clinical outcome remains poor. An
observational cohort study including infants with a gestational
age ≤30-weeks and treated with caffeine should be conducted
to investigate to which extent genomic variation contributes to
this poor correlation, and to what extend adopting individualize
treatment in this population can improve outcome. In the future,
clinicians may be able to evaluate a genomic profile at birth which
they can then utilize to determine a personalized caffeine dose.

Key Messages
• Caffeine treatment is a well-established evidence-based

standard of care treatment for the prevention of BPD.
• Similar to adults, pre-term infants might need individual

dosing of caffeine based on their genomic profile.
• Future research should investigate the correlation between

genomic variation in caffeine metabolism to optimize and
individualize caffeine treatment in pre-term infants.

VOLATILE ORGANIC COMPOUNDS

Many interventions to reduce the risk of BPD have been tested
in randomized clinical trials, but to date few have shown to be
effective and safe. It has been suggested that these disappointing
results might be caused by failure of clinical variables or
biomarkers to accurately predict the risk of BPD at an early
stage in life. This is also called a lack of prognostic enrichment:
the study population has a low a-priori risk for the outcome of
interest and therefore many patients are exposed to the treatment
without any chance of a positive effect, limiting efficacy,
yet experiencing the side effects, increasing safety concerns
(73). Consistent with this assumption, a systematic review
summarizing all published clinical prediction models failed to
show accuracy in discriminating and calibrating performance
after external validation using a large individual patient database
(74). Therefore, clinical prediction models are infrequently used
in current clinical practice and research.

Besides prognostic enrichment, trials may further benefit
from predictive enrichment: increasing the likelihood of the
included patient for a beneficial treatment response. Although
BPD is multifactorial in nature, inflammation and growth
failure are considered important risk factors and mediators
in its development. Most BPD associated inflammatory and
growth factor biomarkers investigated, such as interleukin-6
or−8, monocyte chemoattractant protein-1, vascular endothelial
growth factor, keratinocyte growth factor, angiopoietin 2 and
interferon-γ failed as predictors of BPD development (75)
emphasizing the complex pathophysiology. Irrespective of this
underwhelming result for BPD prediction, a set of biomarkers
that identifies a homogeneous group of patients with a shared
pathogenesis might serve as a predictive tool for treatment
response. However, it is important to emphasize that most
evaluated biomarkers require sampling of urine, blood or saliva,
and need complicated laboratory analysis techniques. This may
hamper implementation in clinical practice as these techniques
are usually not available in every hospital. This means that
the search for better predictive indices with bedside availability,
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FIGURE 3 | Study design for developing BPD specific eNose. Volatile organic compounds (VOCs) are absorbed onto a stainless-steel tube containing Tenax GR

60/80 (Interscience, Breda, The Netherlands) for 5min at a flow rate of 50 ml/min. The captured VOCs in the tubes are released by re-heating the tubes after which

the fragment ions are detected using a quadrupole mass spectrometer (GCMS-GP2010; Shimadzu, Den Bosch, The Netherlands) with a scan range of 37–300 Da.

Ion fragment peaks were used for statistical analysis. GC-MS analysis will be performed in all infants.

without the need for complicated laboratory techniques, and
preferably without requiring blood needs to be continued.

Exhaled breath might be the medium that meets the
requirements for such a prognostic and predictive test in pre-
term infants. Collection is fully non-invasive and analysis may
be rapid when sensor technology is used. Hundreds to thousands
of volatile organic compounds (VOCs) have been described
in exhaled breath, which represent metabolic processes in the
host, bacterial metabolism, and organ function (76). VOCs
are reported to serve as potential biomarker in several adult
respiratory diseases, such as pleural mesothelioma, pulmonary
sarcoidosis, asthma, chronic obstructive pulmonary disease,
ventilator associated pneumonia and acute respiratory distress
syndrome (77–79).

There are several distinct technologies to analyze exhaled
breath of which gas chromatography-mass spectrometry (GC-
MS) and electronic nose analysis (eNose) are most frequently

used. VOCs can be separated, quantified and identified by GC-
MS, which remains the gold-standard for untargeted biomarker
analysis in exhaled breath. GC-MS analysis is a time-consuming
and off-line analysis, making it unpractical as a clinical prediction
instrument. However, it does enable researchers to measure a
broad range of compounds and identify unknown compounds
semi-quantitatively. A diagnostic study that uses GC-MS for
breath analysis will therefore result in a list of potential
biomarkers. These potential markers can be used to develop a
disease-specific measurement tool based on technologies that
can provide rapid, bedside results. One technique that has
gained substantial traction is the eNose, which relies of on
sensor technology (79). The eNose enables real-time analyses
of the patterns of selected VOCs in complex gas mixtures.
It does not allow measurement of individual VOCs, but uses
pattern recognition to capture composite VOC mixtures by
cross-reactive sensors, called a breath-print (80). This device is
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highly attractive in daily clinical practice since it can be used at
the bedside and because it provides instant results, which is so
highly needed in predicting BPD at an early age.

Given the multifactorial etiology of BPD, analysis of
exhaled breath of pre-term infants with GC-MS might enable
us to quantify the prognostic accuracy of individual and
combinations of VOCs in exhaled breath. As BPD has several
pathophysiological links to lung injury in adults, we expect that
the VOCs might also be equipped to detect markers of BPD.
One of the challenges will be the collection of breath in pre-term
infants. The minute volume ventilation is quite low and there
is a relatively high bias flow delivered by the devices used for
respiratory support.

A recent study suggested that the eNose can discriminate
pre-term infants developing BPD at an early age from those
who do not. However, this study only included mechanically
ventilated infants, using headspace analysis of tracheal aspirates
rather than exhaled breath (81). Nowadays, more and more
infants are initially managed without invasive ventilation and
tracheal aspirates are therefore not available in these infants
(4). We studied breaths of four pre-term infants on non-
invasive respiratory support in a pilot study. Several breath
collection techniques were investigated, but the introduction
of a suction catheter positioned under the nasal mask was
the only technique that provided positive results defined as
a range of known human VOCs above the detection limit.
We are currently collecting exhaled breaths at multiple time
points in 100 pre-term infants born <28 weeks of gestation,
treated with both invasive and non-invasive respiratory support
(Figure 3). The GC-MS analyses will be performed, allowing
us to determine which selected set of VOCs to focus on when
developing the eNose for identifying infants at risk of BPD
within the first week of life. Once the GC-MS analyses of exhaled
breath in pre-term infants show which selected VOCs predict
BPD, an eNose specific breath print for BPD can be developed
following an efficient translation from promising biomarker to
established bedside tool for predicting BPD as described in
the BEST (Biomarkers, EndpointS, and other Tools) Resource
(82). This has to be validated in a large population of pre-
term infants in a multicenter setting. After showing a good
external validation, the final step will be performing an impact
analysis showing the additional value of this prediction model.
Another potential application of exhaled breath analysis might
be discriminating between different (main) pathophysiological
causes of BPD. An appropriate grown pre-term infant born
after severe chorioamnionitis might develop a different BPD
phenotype than a pre-term infants born after severe intrauterine
growth retardation. If the development of the eNose shows

promising discrimination between infants with and without the
development of BPD, it might also be possible to differentiate in
infants with BPD what is the main pathophysiological pathway is
and select the optimal treatment accordingly.

Key Messages
• To date, there is no prediction model based on clinical

characteristics or biomarkers with accurate discriminating
ability to detect BPD at an early stage.

• Measuring VOCs is increasingly being used in adult
respiratory medicine.

• Observational cohort studies should investigate which VOCs
in exhaled breath accurately predict BPD at an early stage of
the disease.

LIMITATIONS

First, given the narrative nature of the article, this review
has the limitation that we did not identify systematically all
publications regarding precision medicine for pre-term lungs.
We have selected these four items on precision medicine because
the recent publication dates, and are deemed most promising

to have an important clinical impact. Second, every of these
promising technological, diagnostic or prognostic tools need
further development to go from bench to bedside tools, need
extensive internal and external validation before submitted to
impact analyses in daily practice.

CONCLUSION

These four presented potential developments in pulmonary
research might improve precision medicine in order to prevent
development of BPD. EIT and dEMG are bedside monitoring
tools with the potential to individualize invasive and non-
invasive respiratory support, whereas pharmacogenetic research
of caffeinemetabolism and VOC analysis of exhaled breathmight
optimize preventive drug therapy for BPD on an individual basis.
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Objective: There are mutual influences between intestine and lung, that propose a

concept of the gut-lung axis, but the mechanism is still unclear. Microbial colonization

in early life plays an important role in regulating intestinal and lung function. In order

to explore the characteristics of early microbiota on the gut-lung axis, we studied the

correlation between intestinal and pharyngeal microbiota on day 1 and day 28 after birth

in premature neonates.

Methods: Thirteen neonates born at 26–32 weeks gestational age (GA) hospitalized at

the neonatal intensive care unit (NICU) of the West China Second Hospital of Sichuan

University were enrolled in this study. Stool samples and pharyngeal swabs samples

were collected from each neonate on the first day (T1) and the 28th day (T28) after birth.

Total bacterial DNA was extracted and sequenced using the Illumina MiSeq Sequencing

System based on the V3–V4 hyper-variable regions of the 16S rRNA gene. Based on

the sequencing results, the composition of the intestinal and pharyngeal microbiota was

compared and analyzed.

Results: At T1, the difference in microbial composition between intestine and pharynx

was not statistically significant. The intestinal microbiota was mainly composed

of Unidentified Enterobacteriaceae, Ralstonia, Streptococcus, Fusobacterium,

Ureaplasma, etc. The pharyngeal microbiota was mainly composed of Ureaplasma,

Bacteroides, Fusobacterium, etc.Ureaplasma and Fusobacteriumwere detected in both

intestine and pharynx. At T28, there was a significant difference in microbial composition

between intestine and pharynx (p < 0.001). The intestinal microbiota was mainly

composed of Unidentified Clostridiales, Klebsiella, Unidentified Enterobacteriaceae,

Enterobacter, Streptococcus, etc. Pharyngeal microbiota was mainly composed of

Streptococcus, Rothia, etc. Streptococcus was detected in both intestine and pharynx.

Conclusions: The intestine and pharynx of premature neonates have a unique microbial

composition, and share some common microbiota. Whether these microbiotas play a

role in the mechanism of gut-lung crosstalk needs further study.

Keywords: intestinal micriobiota, pharyngeal microbiota, 16S rRNA sequencing, preterm neonate, gut-lung axis
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INTRODUCTION

Intestinal microbiota plays an important role in human health
and disease (1). In recent years, numerous studies have
shown that infant intestinal microbiota affects the growth and
development of children (2, 3), and are associated with neonatal
sepsis, neonatal necrotizing enterocolitis (4), childhood obesity
(5), asthma, eczema (6), and diabetes (7), hypertension (8), and

other diseases in adulthood. It is commonly believed that the
uterus is sterile and the colonization of microbiota began after
birth. But recent research results suggested that the intestinal

microbiota could colonize in neonates before delivery. The
concept of sterile uterus has been challenged, but the results
are still controversial and worth further study (9, 10). The
initial colonization of microbiota in the lung may affect the
development of the respiratory system and even lead to disease
(11, 12). Chronic respiratory diseases can affect the composition
of the intestinal microbiota, and in turn, intestinal microbiota
may affected the function of the respiratory system (13, 14). These
results suggest that there is a crosstalk between the respiratory
system and the intestine, which proposes a concept of the gut-
lung axis (15). There are many studies on the gut-lung axis, but
the mechanism is still unclear (16). Therefore, it is very crucial to
study the microbial characteristics of the intestine and lung for
further exploring the mechanism of the gut-lung axis.

The pharynx connects the oral cavity, nasal cavity, lower
respiratory tract, and digestive tract. It communicates with
the outside world and is exposed to a variety of exogenous
and endogenous microbes. Thus, the pharynx is an ecological

niche for potentially pathogenic microbe, which may cause local
inflammation or lead to lung diseases (17). Previous studies
have shown that there was a large amount of overlap between
the pharyngeal microbiota and the respiratory microbiota (18),
so the pharyngeal microbiota could, to some extent, reflect
the characteristics of the respiratory microbiota. Besides, the
pharyngeal swab is a fairly accurate method to define the
composition of the respiratory microbiota. Therefore, studying
the composition and characteristic of pharyngeal microbiota may
open a window for exploring respiratory microbiota.

The concept of the gut-lung axis was born out of the
observation that different lung diseases can be influenced
by intestinal microenvironment changes and vice versa. The
microbiota is an important factor responsible for interactions
between these two sites in asthma (19). In addition, the intestinal
microbiota of patients with severe bacterial pneumonia (20),
cystic fibrosis (19), and influenza differs from that of healthy
controls (21). Many studies show that early life is the most
important period during which microbiota dysbiosis in the
intestine may lead to the development of many respiratory
diseases, as the intestine microbiota has a significant influence on
immune cell maturation and resistance to pathogens (22).

In this study, we took premature neonates with GA<32 weeks
as study subjects to analyze intestinal and pharyngeal microbial
characteristics and influencing factors. Meanwhile, we studied
the correlation between intestinal and pharyngeal microbiota, to
provide some evidence for the role of early microbiota in the
mechanism of the gut-lung axis.

PATIENTS AND METHODS

Study Participants
Premature neonates who were delivered and hospitalized in the
NICU of West China Second Hospital of Sichuan University
from December 2019 to May 2020 were enrolled. Selection
criteria were as follows: GA < 32 weeks; single birth; the
birth weight of the infant appropriate for gestational age
(between the 10–90th percentile of the average weight of
the infant of the same gestational age) (23, 24). Exclusion
criteria were as follows: infants with congenital malformations;
intrauterine growth retardation; neonatal hypoxic-ischemic
encephalopathy; immunodeficiency or severe infectious diseases;
mother’s antibiotic therapy for more than 3 days within 2 weeks
before delivery; the neonate using antibiotics after birth more
than 3 days within 2 weeks before delivery; the mother or the
neonate used probiotics or prebiotics during perinatal period;
and the guardian does not agree to participate or withdraws
from the study. The following information was obtained from
the medical records: duration of ruptured membranes; prenatal
antibiotic use; delivery mode; GA; birth weight; gender. The
study protocol was approved by the medical ethics committee
of the West China Second Hospital of Sichuan University, and
written informed consents were obtained from the parents or
guardians of the neonates.

Sample Collection Method
Stool samples were collected from baby diapers with sterile
test tubes at T1 and T28. Pharyngeal secretions samples were
collected with sterile pharyngeal swabs within 30min after birth
and T28. Stool and pharyngeal swabs samples were quickly placed
in a −20◦C refrigerator after being collected, and stored in a
−80◦C refrigerator within 24 h until further processing.

DNA Extraction and Amplification
Total genome DNA from samples was extracted using
Hexadecyltrimethy Ammonium Bromide (CTAB) method. DNA
concentration and purity were detected by a spectrophotometer.
According to the concentration, DNA was diluted to 1 ng/µl
using sterile water. The bacteria genomic DNA was amplified
with the 341F and 806R primers specific for the V3–V4
hypervariable regions of the 16S rDNA gene. All DNAs were
amplified by following a protocol described previously (25).
Samples were sequenced on an Illumina MiSeq platform
according to the manufacturer’s recommendations. The
sequencing service was provided by Beijing Novogene Genomics
Technology Co. Ltd (China).

Data Processing
Paired-end reads from the original DNA fragments are merged
by using FLASH (26), which is designed to merge paired-end
reads when there are overlaps between reads 1 and reads 2.
Paired-end reads were assigned to each sample according to the
unique barcodes. Sequences were analyzed using QIIME software
package (Quantitative Insights Into Microbial Ecology), and in-
house Perl scripts were used to analyze alpha (within samples)
and beta (among samples) diversity. First, reads were filtered by
QIIME quality filters. Thenwe use pick_de_novo_otus. py to pick
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TABLE 1 | Clinical characteristics of neonates (N = 13).

Subject Antibiotics,

yes/no*

GA,

weeks

Delivery,

cesarean/

vaginal

Gender,

male/

female

Prolonged rupture

of membranes,

yes/no

01 Yes 27.6 Cesarean Female Yes

02 Yes 27.6 Cesarean Female Yes

03 No 29.4 Vaginal Male No

04 No 28.1 Vaginal Female No

05 Yes 29.9 Vaginal Male Yes

06 Yes 29.0 Cesarean Male No

07 Yes 29.7 Cesarean Male Yes

08 Yes 28.7 Cesarean Female No

09 Yes 31.4 Cesarean Female No

10 No 31.9 Vaginal Male No

11 Yes 26.1 Vaginal Male Yes

12 Yes 27.9 Cesarean Female Yes

13 Yes 29.9 Vaginal Male Yes

*Mother’s intrapartum antibiotic therapy (duration < 3days).

TABLE 2 | The result of 16S rRNA was amplified from samples (O: microbiota was

detected).

Subject Meconium

(T1s)

Pharyngeal

swabs

(T1y)

Stool

(T28s)

Pharyngeal

swabs

(T28y)

01 O O O

02 O O O

03 O O O

04 O O O O

05 O O O

06 O

07 O O O

08 O O

09 O O

10 O O

11 O O O O

12 O O

13 O O

operational taxonomic units (OTUs) by making an OTU table.
Sequences with≥97% similarity were assigned to the sameOTUs.
We pick representative sequences for each OTU and use the
RDP classifier (27) to annotate taxonomic information for each
representative sequence. In order to compute Alpha Diversity,
we rarify the OTU table and calculate the Shannon index and
Chao1 estimator. QIIME calculates weighted unifrac, which
are phylogenetic measures of beta diversity. We used weighted
uniFrac for Principal Coordinate Analysis (PCoA). LefSe tool was
implemented to identify differentially abundant taxa.

Statistical Analysis
Continuous variables were reported as means ± standard
deviations, and categorical data were presented as ratios or

TABLE 3 | Analysis of influencing factors of intestinal and pharyngeal microbial

colonization.

Factors Microbiota was

detected in

meconium

Microbiota was

detected in

pharyngeal swabs

Antibiotics Yes (Total: 10) 4 3

No (Total: 3) 2 1

P-value 0.559 >0.999

Delivery Vaginal (Total: 6) 3 3

Cesarean (Total: 7) 3 1

P-value >0.999 0.266

GA >28w (Total: 9) 3 2

<28w (Total: 4) 3 2

P-value 0.266 0.530

Gender Male (Total: 7) 3 2

Female (Total: 6) 3 2

P-value >0.999 >0.999

percentages. Non-parametric Wilcoxon rank-sum test was used
to study differences in continuous variables and Fisher’s exact
tests were used to analyze categorical variables. p < 0.05 was
considered statistically significant.

RESULTS

Clinical Characteristics, and Influencing
Factors of Microbial Colonization
In this study, 22 infants with GA <32 weeks in the NICU
of West China Second Hospital of Sichuan University were
included. Based on the exclusion criteria, 9 cases were excluded,
and the remaining 13 cases were included in the final analysis
(Table 1). At T1, 13 meconium samples were collected and
included in the T1s group, and 13 pharyngeal swabs samples
were collected and included in the T1y group. At T28, 13 stool
samples were collected and included in the T28s group, and
13 pharyngeal swabs samples were collected and included in
the T28y group. In total, 52 samples were collected from the
enrolled neonates, 16S rRNA was amplified from 34 samples (6
samples in T1s group; 4 samples in T1y group; 13 samples in
T28s group; 11 samples in T28y group; Table 2), and 2,944,688
reads were obtained. At T1, maternal antibiotics, GA, delivery
mode, and gender had some effect on the microbial colonization
of meconium and pharyngeal swabs, but these were not
significant (Table 3).

Comparisons Between Intestinal and
Pharyngeal Microbiota
At T1, 1,340 OTUs were detected in the intestine, and 2,404
OTUs were detected in the pharynx, among which 179 OTUs
were commonly shared. At T28, 536 OTUs were detected in
the intestine, and 1,377 OTUs were detected in the pharynx,
among which, 120 OTUs were commonly shared (Figure 1A).
At T1, there was no significant difference in Shannon index and
Chao1 index between the T1s group and the T1y group. At T28
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FIGURE 1 | Comparisons between intestinal and pharyngeal microbiota. (A) OTUs were shared by the intestine and pharynx. (B) Comparison of the microbial

biodiversity between intestine and pharynx, the shannon index, and chao1 were shown as estimators. (C) PCoA plot based on OTU abundance. Each point

represents the intestinal or pharyngeal microbiota of a subject. (D) Histogram of the LDA scored for differentially abundant genera between intestine and pharynx. LDA

scores were calculated by LDA effect size using linear discriminant analysis.

there was no significant difference in Shannon index between the
T28s group and the T28y group; the Chao1 index of the T28y
group was higher than that of the T28s group, the difference was
significant (p < 0.05; Figure 1B).

In order to compare the composition of the overall microbiota
of the intestine and pharynx, PCoA was implemented based
on the OTU level. At T1, the results of PCoA showed no
difference in microbiota composition between the T1s group
and the T1y group. At T28, the results of PCoA showed a
significant difference in microbiota composition between the

T28s group and the T28y group (p < 0.001; Figure 1C).
Next, the LEfSe tool (28) was used to analyze microbiota in
stool samples and pharyngeal swabs samples, and to detect
potential significant differences in relative abundances between
the intestinal and pharyngeal microbiota. There were significant
differences in 2 genera between the T1s group and the T1y group.
Ureaplasma was relatively more abundant in the T1y group,
whereas Unidentified Enterobacteriaceae was relatively more
abundant in the T1s group. There were significant differences
in some genera between the T28s group and the T28y group.
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Streptococcus, Rothia were relatively more abundant in the
T28y group, whereas Unidentified Clostridiales, Unidentified
Enterobacteriaceae, Klebsiella were relatively more abundant in
the T28s group (Figure 1D).

The Microbial Composition of the Intestine
and Pharynx at the Genus Level
We analyzed the microbial composition of the intestine
and pharynx at the genus level and found that all samples
were dominated by a specific genus (Figure 2A). At T1,
intestinal microbiota was mainly composed of Unidentified
Enterobacteriaceae (18.8%), Ralstonia (16.7%), Streptococcus

(16.6%), Fusobacterium (14.2%), Ureaplasma (11.9%), etc.
Pharyngeal microbiota was mainly composed of Ureaplasma
(38.1%), Bacteroides (14.9%), Fusobacterium (1.8%), etc. At T28,
intestinal microbiota was mainly composed of Unidentified
Clostridiales (30.0%), Klebsiella (19.6%), Unidentified
Enterobacteriaceae (18.8%), Enterobacter (7.0%), Streptococcus
(2.0%), etc. Pharyngeal microbiota was mainly composed of
Streptococcus (70.7%), Rothia (17.6%), etc. At T1, the relative
abundance of Ureaplasma between the T1s group and the T1y
group was 11.9 vs. 38.1% (p = 0.053); The relative abundance
of Unidentified Enterobacteriaceae between the T1s group
and the T1y group was 18.4 vs. 0.08% (p < 0.05). At T28,

FIGURE 2 | The composition of intestinal and pharyngeal microbiota.at the genus level. (A) The microbial composition of each sample. (B) Average microbiota of T1s,

T1y, T28s, and T28y (T1s: meconium samples at T1; T1y: pharyngeal swabs samples at T1; T28s: stool samples at T28; T28y: pharyngeal swabs samples at T28).
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the relative abundance of Streptococcus between the T28s
group and the T28y group was 2.0 vs. 70.7% (p < 0.05); the
relative abundance of Rothia between the T28s group and
the T28y group was 0.1 vs. 17.6% (p < 0.05); the relative
abundance of Unidentified Clostridiales between the T28s
group and the T28y group was 30.0 vs. 0.002% (p < 0.05);
the relative abundance of Unidentified Enterobacteriaceae
between the T28s group and the T28y group was 18.8 vs. 0.02%
(p < 0.05); the relative abundance of Klebsiella between the
T28s group and the T28y group was 19.6 vs. 0.5% (p < 0.05;
Figure 2B).

DISCUSSION

Microbial colonization is a complex and dynamic process.
In this study, premature neonates with GA <32 weeks were
selected as study subjects. Microbiota was detected in 6
meconium samples and 4 pharyngeal swabs samples at birth,
which seems to be a challenge to the concept of a sterile
uterus, but it needs to be determined by a larger sample
size and the exclusion of more interfering factors. Maternal
antibiotics, GA, delivery mode, and gender had no significant
effect on the microbial detection rate of meconium and
pharyngeal swabs, this is inconsistent with the results of some
previous studies that the delivery mode affects the microbiota
colonization of the neonates (29). The possible reason is that
our sample collection was carried out immediately after birth,
and the colonization of environmental microbiota has not

been completed.
Through Venn diagram analysis, at T1, intestine and pharynx

sharedmore OTUs than at T2.Wemay speculate that this pattern
of colonization can be driven by the developing host immunity
(30), or, alternatively, one pioneer group of bacteria (31) might
metabolically prime the environment for replacement by a
particular successor. Our observations support the hypothesis
that temporal factors influence the microbial colonization of
preterm infants, such as there was no significant difference in
Shannon index between the T28s group and the T28y group.
The Chao1 index of the T28y group was higher than that
of the T28s group, and the difference was significant. The
results show that the pharyngeal microbiota diversity was higher
than that of the intestinal and that the low abundance and
rare species are present in the community at T28y group.
Through PCoA analysis, there was no significant difference in
microbial composition between the T1s group and the T1y
group. At T28, there was a significant difference of microbial
composition between the T28s group and the T28y group.
Streptococcus, Rothia were relatively more abundant in the T28y
group, whereasUnidentified Clostridiales, Klebsiella,Unidentified
Enterobacteriaceae, Enterobacter were relatively more abundant
in the T28s group.

The analysis of microbial composition show that, at T1, the
intestine was dominated by Unidentified Enterobacteriaceae,
Ralstonia, Streptococcus, etc. among which Unidentified
Enterobacteriaceae and Streptococcus are potential pathogenic

microbes, and the rest are mostly pathogenic microbes. It
suggests that premature neonates have very few beneficial
microbes in the intestine, but a large number of potentially
pathogenic microbes and pathogenic microbes, which is
consistent with previous studies (32). At T1, pharyngeal
microbiota was mainly composed of Ureaplasma, Bacteroides,
Fusobacterium, etc, which are similar to the oropharyngeal
microbiota of infants (33, 34). Ureaplasma was detected in
both intestine and pharynx, the relative abundance has no
significant difference between the T1s group and the T1y
group. This may indicate that the origin of intestinal and
pharyngeal microbiota may be the same at birth. The relative
abundance and composition of the intestinal and pharyngeal
microbiota was significantly different on the 28th day after
birth. Streptococcus mainly existed in the pharynx, while
Unidentified Clostridiales mainly existed in the intestine.
We analyzed the characteristics of intestinal microbiota at
different time, the results show that the intestinal microbiota
colonization with beneficial bacteria is delayed in preterm
infants, while the number of potentially pathogenic bacteria
is high. Ureaplasma was relatively more abundant in the
T1y group, Streptococcus was relatively more abundant in
the T28y group. There was significant difference between
early and late pharyngeal microbiota. These preliminary and
explorative results suggested that the neonatal microbial
colonization is a highly dynamic process, which is sensitive to
environmental factors.

However, several potential limitations should be taken
into consideration. Firstly the sample amount might not
be adequate. Secondly, if the characteristics of neonatal
microbiota and maternal microbiota were studied together,
it is more meaningful to know the initial source of
microbial colonization.

In conclusion, the study’s results suggest that, in some
neonates, the microbiota may exist in both the intestine and the
pharynx at birth. There was no significant difference between
intestinal and pharyngeal microbiota composition on day 1,
but on day 28, site-specific microbial was already established.
Despite the initial similarity of pharyngeal and gut microbiotas,
the specific bacterial genera were determined in both sites.
Further we hypothesize that these genera may contribute to the
functioning of the gut-lung axis.
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Inhaled nitric oxide (iNO) use in premature newborns remains controversial among

clinicians. In 2014, the American Academy of Pediatrics, Committee on Fetus and

Newborn released a statement that the available data do not support routine iNO

use in pre-term newborns. Despite the absence of significant benefits, 2016 California

data showed that clinicians continue to utilize iNO in pre-term infants. With studies

as recent as January 2017, the Cochrane review confirmed no major advantages of

iNO in pre-term newborns. Still, it recognized that a subset of pre-term infants with

pulmonary hypertension (PHTN) had not been separately investigated. Furthermore,

recent non-randomized controlled trials have suggested that iNO may benefit specific

subgroups of pre-term newborns, especially those with PHTN, prolonged rupture of

membranes, and antenatal steroid exposure. Those pre-term infants who showed

a clinical response to iNO had increased survival without disability. These findings

underscore the need for future studies in pre-term newborns with hypoxemic respiratory

failure and PHTN. This review will discuss the rationale for using iNO, controversies

regarding the diagnosis of PHTN, and additional novel approaches of iNO treatment

in perinatal asphyxia and neonatal resuscitation in the pre-term population < 34

weeks gestation.

Keywords: pre-term infants, pulmonary hypertension, cardiovascular, inhaled nitric oxide, inhaled nitric oxide

(iNO), persistent pulmonary hypertension of the newborn

IMPACT STATEMENT

• The report aims to explain why neonatologists prescribe inhaled nitric oxide to premature
newborns, despite recommendations against it.

• The article reviews biological factors that may predispose premature newborns to benefit from
inhaled nitric oxide.

• Themanuscript takes a different approach from systematic reviews. It discusses non-randomized
controlled trials to analyze the rare events of pulmonary hypertension in pre-term newborns that
appropriately responded to inhaled nitric oxide.
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INTRODUCTION

Nitic oxide (NO) is a known free radical important as a
chemical intermediate in multiple environmental reactions (1–
4). In the 1990’s, Nitric oxide’s function was better elucidated
as an endothelium-derived relaxing factor and signaling
molecule (5, 6). Later, many investigations targeted NO in the
cardiovascular, nervous, immune, and gastrointestinal systems,
demonstrating its significant regulatory effects in physiological
and pathophysiological processes (7–14).

Nitric oxide has been extensively investigated in the fetus
and newborn due to its ability to influence basal pulmonary
vascular tone (15–17). Term and late-pre-term newborns with
poor postnatal vascular adaptation, leading to pulmonary
hypertension of the newborn and hypoxemic respiratory failure
(HRF), experienced significant benefits after inhaled nitric oxide
(iNO) treatment. Systematic reviews confirmed a decreased
need for extracorporeal membrane oxygenation (ECMO) and
related complications after iNO (18). In 1999, the US Food
and Drug Administration approved iNO therapy for HRF in
term and late pre-term newborns (19). Subsequently, researchers
investigated the benefits of iNO in pre-term infants. The
investigations focused on iNO use in reducing chronic lung
disease development in extremely premature infants. These
randomized controlled trials showed mixed results, and no
consensus has been achieved for recommending iNO use in
pre-term infants <34 weeks gestation. This review discusses the
findings and controversies regarding iNO administration in pre-
term newborns. A focused PubMed R© search with the term nitric
oxide appearing with either pre-term or premature resulted in
272 articles through February 2020. Case report and case series
were excluded. Retrospective case controls, comparative or larger
population-based studies were the primary source of this analysis
showing clinical improvement after iNO exposure.

PHYSIOLOGY AND PRE-TERM NEWBORN
CONSIDERATIONS FOR INHALED NITRIC
OXIDE TREATMENT

Vascular Mechanism of Action
Nitric oxide released by endothelial cells, which covers the
entire vascular system, acts on adjacent smooth muscle cells
by paracrine signaling, causing vasodilation (20, 21). Nitric
oxide is produced by nitric oxide synthase (NOS), which
has three different gene isoforms. Neuronal NO synthase
(nNOS), cytokine-inducible NOS (iNOS), and endothelial
NOS (eNOS), as the name suggests, have a preferential
expression, but all participate in vascular tone regulation
(22). Different stimuli, including acetylcholine, bradykinin,
histamine (calcium-dependent), and shear stress, 17β-estradiol
(calcium-independent), induce NOS phosphorylation and
production of nitric oxide. NO is generated when L-arginine
is converted to L-citrulline, which requires multiple co-factors
as heme group, oxygen (O2), nicotine adenine dinucleotide
phosphate (NADPH), tetrahydrobiopterin (H4B), flavin adenine
dinucleotide (FAD), flavin mononucleotide (FMN), and

FIGURE 1 | Summary of the Nitric Oxide (NO) mechanism in smooth muscle

relaxation. NADPH, Nicotine adenine dinucleotide phosphate; H4B,

tetrahydrobiopterin; FAD, flavin adenine dinucleotide; FMN, flavin

mononucleotide; GTP, guanosine triphosphate; cGMP, cyclic guanosine

monophosphate; sGC, soluble guanylate cyclase; PGK, phosphoglycerate

kinase; SR, sarcoplasmic reticulum; MLCK, myosin light-chain kinase; ATP,

adenosine triphosphate.

calmodulin (23–27). In the smooth muscle cells, nitric oxide
combines with soluble guanylyl cyclase (sGC) and promotes
the formation of cyclic guanosine monophosphate (cGMP)
(28). Cyclic GMP mobilizes protein kinase G, decreasing
intracellular calcium by stimulating calcium reuptake by the
sarcoplasmic reticulum (SR) and opening calcium-activated
potassium channels (29). The reduction of intracellular
calcium decreases phosphorylation of myosin by myosin light
chain kinase (MLCK), causing muscle relaxation (30, 31)
(Figure 1). The arterial vasodilation effect of iNO in pulmonary
circulation maximizes perfusion in well-aerated airspaces,
improving oxygenation, and decreasing ventilation-perfusion
mismatch (32).

Inhaled nitric oxide supposedly has a half-life of 2–6 s since it
is degraded by various mechanisms (33–35). However, it directly
affects the lung endothelium by diffusion, reaching the alveolar
lining (36). As pre-term newborns have limited peripheral
vascular tone control and may present with left ventricular
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dysfunction, side effects, including systemic hypoperfusion, must
be considered during iNO administration (37–40).

Other Effects of Nitric Oxide
Nitric oxide has multiple effects on cellular function, which can
be protective or detrimental in pre-term newborns during major
organogenesis (41). These conflicting results demonstrate that
iNO should be used judiciously in clinical practice. The most
complicating factor is that most of the studies were conducted
in vitro or in animal models that are not easily extrapolated to
pre-term human newborns.

Toxicity vs. Protective Effective
Nitric oxide is a free radical (NOx). In mammalian tissues,
it can be converted to other toxic compounds, including
peroxynitrites (ONOO−), nitrogen dioxide (NO2), nitrous acid
(HNO2), and S-nitrosothiols (SNOs). Such compounds cause
DNA breakage, lipid peroxidation, protein oxidation, protein
nitration, and mitochondrial respiratory enzyme inhibition,
leading to apoptosis and necrosis (42–51). One important
discussion in pre-term infants is the interaction between nitric
oxide and surfactant. In animal experiments with iNO exposure
>48 h at doses of > 80 ppm, there was a decrease in surfactant
adsorption. In contrast, the surfactant’s lipid peroxidation was
decreased in isolated surfactant complex exposed to nitric oxide
during surface cycling due to reduced conversion of surfactant
to small vesicles (52). It is worth noticing, in term newborns, no
significant surfactant function change, cytokine profile, or lipid
peroxidation has been identified in analyzed airway specimens
after iNO treatment. Furthermore, one study detected cell
damage markers related to nitric oxide 10 days after the end of
iNO treatment, which could be related to endogenous nitric oxide
other than iNO (53). Another toxic iNO effect is methemoglobin
(metHb) (54). Term and pre-term infants are at higher risk
for this condition due to easier fetal hemoglobin oxidation and
metHb reductase system immaturity (55, 56). However, metHb
above 5% (outside safety range) is rare in newborns of all
gestational ages (GA), as long as the iNO dose is below 40
ppm (57–59).

On the other hand, in multiple in vitro and animal studies,
nitric oxide had protective effects according to environmental
factors. Endogenous NO produced in response to reactive
oxygen species due to pathogens and pathophysiological
conditions served as a free radical scavenger and decreased
peroxide-mediated cell damage (51, 60–62). Furthermore, in
mature rats and 1-month-old ventilated pigs, iNO decreased
inflammatory response by inhibiting the NFκβ pathway (63,
64). In another rat model, iNO reduced leukocyte adhesion
and vascular permeability dysfunction in the mesenteric venules
(65). Also, in a swine model of cardiopulmonary bypass, iNO
decreased interleukin−8 (a chemoattractant) and induced early
programmed apoptosis, reducing long-term inflammation (66,
67). The inflammatory regulation of iNO may be beneficial in
combating pathogens in the airway. In a rat model of pneumonia,
iNO decreased signs of inflammation and improved bacterial
clearance (68). In another study in patients with cystic fibrosis

and antibiotic resistance microbes, clinical improvement was
noticed after iNO exposure (69).

Cellular Effects
Nitric oxide can regulate multiple mechanisms and cellular
functions, as shown in in vitro animal model studies. For
example, Cook et al. andNakaki et al. showed that NO-producing
vasodilators decrease DNA synthesis through cAMP and cGMP
signaling (70, 71). Furthermore, in rat’s smooth muscle cells,
induction of endogenous NO played a role in the depression
of growth cells (72, 73). In other in vitro studies, NO-releasing
agents interfered with essential immunologic system pathways
by inhibiting cytochrome P450 (74, 75). Even though these
studies were not related to NO’s inhaled administration, a similar
mechanism occurs in vivo after iNO exposure in the lung
endothelium and smooth muscle.

Another considerable iNO side effect is the modification of
platelet function with increased bleeding time in newborns, as
shown by George et al. (76). Such an effect can predispose pre-
term patients to intracranial hemorrhage, pulmonary edema,
and pulmonary hemorrhage. However, a metanalysis of pre-term
infants exposed to iNO had no increased complications from
bleeding (77).

Alveolar and Lung Development
Animal trials of iNO showed a promising effect in improving
lung development, which drove clinical trials of the inhaled
treatment in pre-term newborns. Following are some of the
findings that justified such human trials. Newborn rats exposed to
hyperoxia have impaired alveolarization. The use of iNO restored
growth factors known to participate in developing the airway, like
fibroblast growth factor and vascular endothelial growth factor
(78, 79). Curiously, Lopez et al. showed rats treated with iNO
had similar mortality, lower weight gain, and capillary alveolar
density than non-treated animals (78). On the other hand, Lin
et al. showed enhanced lung growth and alveolarization in the
recovery period if animals were treated with iNO at 10 ppm (79).

In animal models of pre-term ventilated lambs, Kinsella et al.
exposed their animals to iNO for a short period of time after birth
(3–4 h). Treated animals had a decrease in neutrophil migration,
no significant changes in vascular permeability, and improved
gas exchange (80). These findings were expanded by Bland et al.
with a model of chronic lung disease. Lambs were ventilated and
treated for 3 weeks. Animals in the iNO group had improved
radial alveolar count and capillary surface density (81).

McCurnin et al. applied a similar strategy to a baboon model
of neonatal chronic lung disease. Improvement was noticed in
pulmonary-to-systemic blood flow ratio (Qp/Qs), ventilation
index, lung compliance, and expiratory resistance, mostly in the
first 8–10 days after iNO exposure. Yet, after the day of life
10, there was no statistical significance, indicating the initial
benefit only for early and short use of iNO, but not chronic
administration. However, lung weight and DNA content were
improved after the study if animals were treated with iNO for
a total of 14 days (82).
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FIGURE 2 | Common causes of cyanosis in the pre-term infant. After ruling out pulmonary parenchymal disease and cyanotic congenital heart disease, the clinician

should determine the primary cause of hypoxic respiratory failure. If elevated pulmonary vascular resistance (PVR) with a right to left shunt (RL) is the primary

determinant of cyanosis, inhaled nitric oxide (iNO) is the recommended treatment. If there is significant left ventricle (LV) dysfunction, not related to RV dilation from

PHTN, iNO can decrease left cardiac output (CO) even further, worsening the clinical status. PBF, Pulmonary blood flow; PHTN, pulmonary hypertension; PFO, patent

foramen ovale; PDA, patent ductus arteriosus.

Cardiovascular Effects
In adult studies, when used in pulmonary hypertension
associated with right heart failure, inhaled nitric oxide has
been shown to lower pulmonary vascular resistance (PVR)
and improve left ventricle (LV) output (83). However, when
used in patients with LV dysfunction, the resultant increase in
pulmonary venous blood flow further compromised LV function
and decreased cardiac output. One exception is LV dysfunction
related to RV dilation due to PHTN and major bulging to the
interventricular wall compressing the LV cavity (84). For this
reason, neonatologists have to understand the hemodynamics
and the cause of the hypoxic failure before using iNO. Patients
with high PVR causing right-to-left shunt at the PDA level will
benefit from pulmonary vasodilator as iNO. If the right to left
shunt is related to LV dysfunction or low systemic vascular
resistance (SVR), inotropic drugs and volume expansion can
reverse this shunt by increasing arterial blood pressure, and
iNO could be detrimental if used as a primary treatment agent
(Figure 2) (85–87). Another consideration, PHTN rebound after
iNO discontinuation, is not commonly reported but is a potential
complication before full endothelium recovery (88–90).

Summary
The nitric oxide role of vascular relaxation is well-determined in
the developed lung. Animal and human data still demonstrate
the controversial role of iNO in inflammation and toxicity.
Furthermore, the clinician should identify the cause of the

hypoxic failure in the pre-term infant since iNO can be
detrimental if used in patients with primary LV dysfunction.

Physiologic Considerations of Pulmonary
Hypertension in Pre-term Newborns
At any GA, the fetus PVR is elevated compared with systemic
vascular resistance (SVR) since the lungs have constricted vessels
and are fluid-filled in utero. After birth, PVR reduction occurs
due to air entry, establishing functional residual capacity, higher
PaO2, decreased lung fluid, and multiple chemical pathways,
including intrinsic nitric oxide (91). The reduction in PVR/SVR
ratio diminishes right-left shunting and increases blood flow to
the lungs, resulting in improved gas exchange. In situations where
this transition is impaired, PHTNmay develop, for which iNO is
the current standard treatment in late pre-term and term infants
(92, 93).

Multiple factors are involved in PVR regulation after
birth in pre-term newborns. Nevertheless, the anatomical and
physiological lung structure of the pre-term lung may influence
iNO response (94–97). Primarily, the endothelium of lung
vasculature is underdeveloped, and the lack of intra-acinar
arterial muscular layer is the most significant barrier for proper
iNO response (98, 99). For example, in fetal lamb studies,
increased PVR and response to oxygen are likely related to better
vascular smooth muscle development with the advancement of
GA (100, 101).
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Summary
Inhaled NO can facilitate a decrease in PVR by smooth
muscle relaxation. However, the pre-term lung vasculature
is underdeveloped to respond to the vasodilatory effects of
iNO appropriately.

MAJOR CONTROVERSIES OF iNO USE IN
PRE-TERM NEWBORNS

Current Recommendations vs. Utilization
of iNO in Pre-term Newborns
The existing literature on iNO in term and late-pre-term
newborns in the presence of PHTN has raised a question about
the possible benefits of the same drug in newborns ≤ 34 weeks
GA. Early case reports proposed the benefits of iNO in pre-
term infants with HRF (102–105). As discussed above, some
animal models of lung injury have shown positive results, with
enhanced lung growth and development, when exposed to iNO
(78–81). These findings suggest that iNO could be used as a
preventive agent for bronchopulmonary dysplasia (BPD). On the
other hand, no pre-clinical trial has investigated the ideal GA to
offer iNO since pre-term lungs may lack the structures necessary
to respond to the treatment properly (101).

Prematurity-related complications are not decreasing because
of increased survival of extremely pre-term infants (106),
including infants with BPD (107, 108). According to the Institute
of Medicine, prematurity’s overall financial burden reached
$26 billion in 2005. To combat this increased burden, many
investigators focused on overcoming these complications in pre-
term neonates by utilizing iNO to prevent BPD, as well as a
treatment for acute HRF.

Current Recommendations
The first randomized placebo-controlled iNO trials were
published in 1999. The results demonstrated the efficacy of
iNO in improving oxygenation in HRF, but it failed to
improve survival or BPD in pre-term newborns (109, 110).
Other randomized trials have been published with similar
or contradictory results, leading to the first Cochrane review
in 2010. This systematic review was divided into three
categories based on initial iNO exposure and the following
criteria; (1) initial 3 days of life based on hypoxia criteria,
(2) initial 3 days due to pulmonary disease, and (3) later
recruitment according to an elevated risk of BPD. No statistically
significant positive results were found in any of these groups
for decreases in BPD, infant mortality, or adverse events,
such as an increase in intraventricular hemorrhage (IVH)
or neurodevelopmental impairment (111). Besides, two other
independent comprehensive data reviews, JHU EPC and
MAPPiNO, found no significant benefits for the pre-term
newborns exposed to iNO (112, 113).

It should be noted that these studies varied in iNO dosing, age
at first dose, and treatment duration. Despite these irregularities,
an NIH Consensus and the Committee on Fetus and Newborn
published a policy statement that the current data do not support
the routine use of iNO in pre-term infants (114, 115). The

consensus made it clear that subpopulation analysis, including
demographics (gestational age, ethnic groups) and medical
factors (pulmonary hypertension and lung hypoplasia), were
not sufficiently evaluated. Therefore, targeted clinical trials are
needed with predefined subgroups (116). The latest Cochrane
review concluded that no significant benefits are gained when
pre-term infants are exposed to iNO. As with the earlier studies,
these studies did not evaluate the use of iNO for commonmedical
conditions, such as PHTN, in pre-term newborns (117).

Increasing Use of iNO in Pre-term Newborns
Inconsistent with published recommendations, 2016 data from
California showed that 2.61% of newborns ≤34 weeks GA had
been treated with iNO. The highest percentage of utilization
was in newborns with gestational ages from 22 to 24 6/7
weeks GA (10.6% in regional centers). Furthermore, newborns
< 27 weeks GA had the highest increase in iNO exposure
since 2007 (118).

According to Manja et al. a national survey showed that
most neonatologists continue to prescribe iNO to pre-term
newborns based on the imperative that physicians should “do
something/do everything” to treat HRF on maximal ventilatory
support (119). Taken together, these data make clear that
clinicians remain uncertain about the possible benefits of iNO in
the vulnerable population of extremely pre-term infants, mainly
due to a lack of studies on its efficacy in treating specific medical
conditions in this population. This underscores the importance
of specifically targeted clinical trials that are needed to resolve
this uncertainty.

Summary
Despite the lack of evidence for using iNO in pre-term newborns,
the use of iNO continues to increase.

Pulmonary Hypertension Diagnosis in
Premature Newborns
The benefits of iNO in pulmonary hypertension in term infants
are very well-described. However, diagnosis and characterization
of pulmonary hypertension in premature neonates are incredibly
challenging due to the presence of intra- (patent foramen
ovale-PFO) or extra-cardiac shunts (patent ductus arteriosus–
PDA) and continued change in hemodynamics according to
gestational age. Multiple echocardiography parameters have
been beneficial as modified shunt blood flow allows accurate
hemodynamic assessment and can be used to follow response to
the prescribed therapy.

PHTN is consistent with a right-left communication or a
bidirectional PDA shunt >60% right-to-left (120). When shunts
are not present or conclusive, other indirect measures, such
as tricuspid regurgitation jet, leftward/flattened intraventricular
septum, right ventricular dysfunction or dilation, and low
left ventricular output, are used to indicate the presence of
PHTN. Unfortunately, there is no normative data for post-
conception age due to the multitude of factors implicated in
shunt direction as systemic blood pressure, PFO size, right
and left ventricular function, and pathology causing elevated
PVR (85). In 2016, Levy et al. used echocardiogram-derived
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FIGURE 3 | Different main pulmonary artery (MPA) flow velocity profile patterns depend on the pulmonary vascular resistance (PVR). PVR is an index ratio of right

ventricular ejection time (RVET) and pulmonary artery acceleration time (PAAT), both obtained from the right outflow tract’s pulse-wave doppler. PAAT, as shown, is the

interval from the onset of ejection through the pulmonic valve to the peak flow velocity. These are three distinct patterns of flow velocity envelope: (A) Parabolic or

normal PVR - Isosceles triangle, RVET:PAAT <4; (B) Right-angle triangle or increased PVR - RVET:PAAT>4; (C) Notched pulmonary artery doppler or severe increase

in PVR - two distinct peaks (arrow) from midsystolic flow deceleration.

pulmonary artery acceleration time (PAAT) with 95% feasibility,
97% sensitivity, and 95% specificity when compared with right
heart catheterization in diagnosing children (121). In 2019, Patel
et al. demonstrated that PAAT could reliably be used in pre-term
newborns (122). Due to the recent validation of PAAT, no studies
presented in this review used PAAT as criteria for diagnosing
PHTN (Figure 3).

Considering that the echocardiography diagnosis of
PHTN is challenging in pre-term infants, adding clinical
and echocardiography parameters may maximize the accuracy
of diagnosing PHTN (85). The classical findings of a differential
oxygen saturation >10% between pre-and post-ductal with
pre-ductal being greater is often used to diagnose the presence
of right-to-left shunts (85). The absence of differential saturation
does not exclude the presence of a right-to-left shunt if the
shunting is predominantly at the atrial level.

In recent years, the combination of clinical findings
and echocardiogram results triggered the development of
targeted neonatal echocardiography (TnECHO) or functional
echocardiogram by neonatologists. This patient’s overall
evaluation provided novel physiologic insights and permitted
individualized care of these neonates. For example, Ahmed
et al. developed a scoring system using echocardiogram findings
associated with clinical findings to better diagnose PHTN in
pre-term newborns in a cohort study, specifically using the
relationship between right ventricular and systolic pressure
(123). Such a scoring system requires bedside evaluation
of the neonatologist from the TnEcho team. The real-time
assessment of the hemodynamic changes, early pathological
situations assessment, and response to treatment interventions
improves the outcomes of pre-term neonates (124–127).
Still, it is essential to mention the importance of the
pediatric cardiologist’s echocardiogram or review of the
echocardiogram done by TnEcho to rule out anatomical
congenital heart disease.

Summary
Diagnosis of PHTN in pre-term newborns clinically or by
echocardiogram continues to be controversial, but with the
development of TnEcho better outcomes could be expected.

A PERSONALIZED EVALUATION AND
TREATMENT OF PHTN IN PRE-TERM
NEWBORNS

In the era of personalized and precision medicine, prevention
and treatment strategies are increasingly sensitive to individual
differences (128). One recent application of specialized medicine
in the pre-term newborn population is the Askie et al. meta-
analysis showing that African-American pre-term newborns
respond better to iNO therapy than do infants of other racial
groups (129). This finding suggests that large studies with average
data across a diverse population, regardless of their unique
medical status, can mask the specificity of the benefits in subsets
of patients (130). Therefore, we evaluated non-randomized
controlled trials (RCT) studies showing the benefits of providing
iNO to pre-term newborns. Though the quality of evidence
in these non-RCT studies is limited, continued evaluation of
available retrospective or prospective data may give new insight
into the apparent conflicts between studies and in differing
clinical practices.

Following the rationale of precision medicine, we identified
and then narrowed the range of clinical indications for which
iNO could be recommended to decrease side effects while
reducing costs. The rationale that iNO inhalation might benefit
a subset of pre-term newborns was based on existing case reports
and series. Initially, the investigated pre-term infants presented
with PHTN and HRF associated with pre-term premature
rupture of membranes (PPROM), as this was proposed to
cause PHTN in term and pre-term newborns, possibly by chest
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compression or decreased distal airway pressure (103, 131–134).
However, the observation that iNO and effective ventilation
management dramatically improve oxygenation in newborns
with a short period of PPROM is not always consistent with
the theory of severe lung hypoplasia. In fact, retrospective
studies found a correlation of PPROM >120 h as a poor
predictor for iNO treatment failure (135, 136). Aikio et al.
showed that PPROM patients decreased nitrites and nitrates,
which improved after iNO administration. The vasodilation
that proposedly improved oxygenation does not explain the
increase in lung compliance and ventilation (137). Likely the
same relaxation of smooth vascular cells could be applied to
acinar smooth muscle cells but has not been evaluated in
term and pre-term infants (138). Pre-term infants can still
present with similar pathophysiology as term babies due to slow
or complicated pulmonary transition, which can benefit from
iNO (139).

The limiting factor to this research is that this patient
subset (pre-term newborn with acute PHTN) is frequently
underdiagnosed if early echocardiogram assessment is not
pursued. With the advancement of TnECHO techniques,
placebo-controlled clinical will be possible, as shown in recent
PDA treatment trials (140). One example, Cheng et al. utilized
TnECHO in newborns <34 weeks GA to determine early
PHTN diagnosis (141). Their findings were consistent with
other studies showing that early iNO initiation in pre-term
newborns more than 1,000 g produce better outcomes than
does in smaller newborns with late-onset HRF attributable
to sepsis

Another critical factor is the safety of iNO in pre-term
infants. Both Carey et al. and Ellsworth et al. indicated that pre-
term newborns receiving iNO within 7 days of birth had no
increase in mortality (142, 143). Furthermore, most of the studies
presented here reinforced the safety of iNO, even when no benefit
was found.

The findings of these non-randomized studies, however,
remain equivocal. To provide maximal clarity, they will be
grouped and reviewed by the following characteristics: GA
and BW, chronological age, inclusion criteria, dose of iNO,
clinical features that predict better iNO response, and outcomes.
This will allow readers to apply these findings to clinical
practice appropriately. Table 1 summarizes the key elements of
each reference.

Gestational Age and Birth Weight
This discussion focuses on pre-term newborns <34 weeks GA
and <2,500 g. However, some of the retrospective studies also
addressed BW limits that involved late-pre-term newborns. In
all studies, the most common finding was that newborns with
birth weight above 750 g were more likely to benefit from iNO
administration. Post-hoc analysis of two large RCTs, the PINO
trial and the Large Preemie Pilot trial, found that newborns
with BW >1,000 g had lower mortality than newborns with
lower BW (146). Other retrospective studies suggested that
newborns>1,000 g were more likely to benefit from iNO (136,
145). Conversely, three studies reported that newborns as small
as 750 grams could still benefit from iNO, likely because of

receiving surfactant before iNO initiation (123, 135, 147). Since
most studies focused on birthweight, few studies mentioned GA
as a limiting factor. The three studies’ threshold was around 27–
29 weeks, which could correlate with lower BW, as discussed
above (136, 145, 150).

Summary
Newborns with a birth weight of ≥750 g and older than 27 0/7
weeks GA may benefit from iNO.

Time and Duration of iNO Administration
The goal of all non-RCTs presented in Table 1was to evaluate the
effect of iNO on acute PHTN and HRF. Consequently, newborns
receiving iNO for BPD prevention and BPD with PHTN were
excluded. The patients analyzed were under 4 weeks of age. Pre-
term newborns benefitting most from iNO administration were
those treated between the first hour of life and 3 days of life
(123, 135, 144, 147, 148). Treatment duration also correlated with
hypoxia improvement after treatment initiation. The included
studies varied in the criteria used to indicate a clinical response
to iNO administration; however, a decrease in FiO2 by 0.15–
0.30 or an increase in PaO2 by at least 20 mmHg were the most
common outcome measures. OI was not reported in all studies.
Kettle et al. indicated a median improvement in FiO2, PaO2, and
OI, even when non-responders were included (149). Most studies
reported clinical response latencies between 30min and 6 h of
treatment onset (135, 145, 147–150). Due to its short half-life
and rapid clinical effect, FiO2 and PaO2 should be assessed no
later than 6 h after iNO treatment initiation. iNO discontinuation
and dose adjustments should be considered to decrease potential
side effects and eliminate unnecessary costs in newborns with
inadequate iNO treatment response.

Summary
iNO should be started early in the disease course, preferentially
before 72 h of life. Evaluation of treatment response should be
done within the first 6 h of treatment.

Inhaled Nitric Oxide Dosing
The most common iNO dosing in the studies analyzed was
between 10 and 20 ppm due to the risk of methemoglobinemia
with higher dosing (57, 58). iNO dosing was extensively evaluated
in multiple RCTs; dosing outside this range should be closely
monitored (117). Only one study, Uga et al. used a higher dose
range, between 30 and 40 ppm. However, this group did not find
an increased incidence of IVH, BPD, or metHb above 2% in the
treatment group (144). Three of the studies analyzed iNO dosing
as low as 5 ppm. These protocols adjusted doses up to 20 ppm.
Except by Rallis et al. (protocol increased up to 20 ppm in all
patients), it is unclear how many patients had iNO increased to
the maximum dose or if any clinical benefits resulted from iNO
adjustment (145, 146, 148).

Summary
iNO dosing should begin between 5 and 10 ppm in pre-term
infants. There is no evidence of clinical benefits with dosing above
20 ppm, and the risk for side effects increases at higher doses.
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TABLE 1 | Characteristics of pre-term infants that responded to iNO treatment.

References Type of study GA and/or weight N Inclusion criteria PHTN on echo Intervention Significant findings Major weakness

Uga et al. (144)
Retrospective

comparative study

<1,500 g 18 PPROM >5 days; HRF;

PEEP>8

7 out of 7 iNO 30 ppm, up to 40

ppm;

< 24 h of life

iNO increased PaO2 and survival

at 28 days

Small N; no echocardiogram in

controls.

Kumar et al. (145) Retrospective,

case-control

analysis

<37 wks 61 Echocardiogram

evidence of PHTN up

to 4 weeks of life

61 iNO 5 ppm, up to 15

ppm

Newborns >1,000 g were more

likely to respond to iNO;

Non-responders have

higher mortality

No echocardiogram in the

control group.

Chock et al. (146) Retrospective post
hoc subset

analysis from PiNO

trial & larger

preemie pilot

<34 wks, <1,500 g

(PiNO) & <34 wks

>1,500 g (large preemie)

12 Pulmonary hypoplasia;

PPROM or

oligohydramnios.

iNO vs. O2 placebo

4 out of 5 iNO 5 ppm, up to 10

ppm

iNO group: increased PaO2;

decreased ventilation and

oxygen days

Small N; echocardiogram not

done routinely.

Chandrasekharan

et al. (136)

Retrospective

comparative Study

<34 wk 93 iNO use in first 28 days

of life

Not clear iNO 20 ppm;

< 28 days of life

iNO responders, responded early

with better survival.

PPROM and antenatal steroids

predicts survivors

Echocardiogram not done

routinely.

Baczynski et al.

(135)

Retrospective

cohort study

<35 weeks 89 iNO for early PHTN at

<3 days of life

Echocardiogram done,

but not detailed

iNO 20 ppm;

<3 days of age after

acute PHTN was

diagnosed by

echocardiogram or

clinical diagnosis

Responders: females, PPROM,

received surfactant, 1st DOL,

PaO2 improvement at 1 h;

responders had higher survival

and lower disability.

No control group,

echocardiogram not done

routinely.

Dani et al. (147) Retrospective

cohort Study

<30 wks, <1,250 g 42 Severe RDS despite

surfactant

28 out of 42 iNO 20 ppm, up to 40

ppm,

PHTN group had faster and

better improvement after iNO;

responders had a higher birth

weight (>750 g), FiO2 ≥ 0.65,

PPROM did not have a better

response

Small N to evaluate responder

vs. non-responders with or

without PHTN.

Rallis et al. (148) Retrospective

cohort Study

<34 wks 55 HFR with evidence of

PHTN

52 out of 52 iNO 5 ppm, up to 20

ppm.

PHTN by

echocardiogram or

clinical diagnosis

PHTN and oligohydramnios had

better response; early PHTN

(<72 h) had higher survival.

PPROM alone did not have a

better response to iNO

No control group

Kettle et al. (149) Retrospective

observational

study

< 34 wks 72 Pulmonary hypoplasia

treated with iNO

30 out of 44 iNO 20 ppm Non-responders had higher

mortality.

PHTN by echo did not predict

response to iNO

Voluntary data submission to a

registry.

No control group.

No clear definition of

pulmonary hypoplasia.

Rhine et al. (150) Retrospective

registry analysis

< 34 wks, mean of 27.1

wks GA

431 Received iNO ≤7 days

of life

Echocardiogram done,

but not detailed

iNO 20 ppm 60% improvement, mostly in the

1st h. 99.5% presented with

HRF and PHTN.

No control group.

Echocardiographic findings

not described.

Ahmed et al. (123) Retrospective

Cohort study

<36 weeks 213 FiO2 ≥ 0.6, OI ≥ 10,

Echocardiogram within

24 h of iNO initiation

53 out of 73 Targeted neonatal

echocardiogram

(TnECHO) followed by

iNO and

vasopressors/inotropes

Presence of PHTN on echo and

treatment before 72 h of life had

better response. IVH III/IV higher

in the iNO group.

TnECHO not done in all patients.

Head US not standardized.

N, number.
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Clinical Characteristics Predicting
Improvement After iNO Treatment
Identifying the best iNO response predictor in pre-term
newborns varies among studies. Differential inclusion criteria
and research methodologies (cohort vs. case-control) prevent
the identification of reliable recommendations. For example,
Uga et al. and Chock et al. used PPROM as a typical inclusion
criterion. While most patients received an ECHO to document
PHTN, ECHOs were not always done on controls. In both
studies, iNO was shown to improve PaO2 with increased
survival and decreased ventilator support days (144, 146).
Chandrasekharan et al. and Baczynski et al. followed pre-term
newborns receiving iNO from birth and reported outcomes.
Both studies identified PRROM >18 h as a significant predictor
for improvement after iNO. Interestingly, patients with PPROM
exceeding 120 h had lower iNO treatment response (135, 136).
Kumar et al. proposed that patients exposed to PPROM with
oligohydramnios and low Apgar scores were more likely to
develop PHTN. Newborns with PHTN responded better to iNO
treatment, with higher survival rates than non-responders in
all conditions except sepsis-induced PHTN (145). Conversely,
studies focusing on HRF and PHTN as inclusion criteria did
not consistently identify PPROM as a common characteristic
of iNO responders. For example, Dani et al. and Rallis et al.
evaluated patients with HRF or severe RDS despite surfactant
administration. Patients diagnosed with PHTN had a better
iNO response than non-PHTN patients. However, PPROM did
not predict iNO response. Alternatively, oligohydramnios was a
positive predictor of iNO treatment (147, 148). It should be noted
that not all patients with PPROM develop pulmonary hypoplasia
unless they have prolonged oligohydramnios.

One obvious but often overlooked finding is that pre-
term newborns with PHTN were more likely to respond to
iNO treatment than were newborns without ECHO confirmed
PHTN (123, 147). Also, patients exposed to prenatal steroids
and receiving surfactant postnatally had better iNO responses,
possibly related to improved ventilation from surfactant,
ultimately maximizing ventilation-perfusion (V/Q) ratio (135,
136). Clinicians dealing with pre-term newborns progressing
toward HRF should also know that FiO2 of 1.0 is not
required before considering iNO. Dani et al. showed significant
improvement in pre-term newborns receiving FiO2 between
0.6 and 1.0 with a baseline of 0.77 (147). This provides
evidence for starting iNO therapy before PHTN advances to an
irreversible status.

Summary
Pre-term newborns with PPROM, oligohydramnios, and
echocardiography or clinical PHTN diagnosis are more likely to
benefit from iNO if they progress to HRF. The surfactant should
be given before iNO if clinically indicated. iNO should be started
before FiO2 reaches 1.0.

Positive iNO Response Predicts Better
Outcomes
The current literature shows a positive iNO response (PiR) from
43 to 78% in pre-term newborns with HRF and even better

response rates for newborns with PHTN diagnosis who receive
early iNO treatment (123, 135, 136, 147, 148, 150). However,
not all studies included long-term outcomes other than clinical
improvements, such as FiO2 decrease or PaO2 increase. Studies
analyzing long-term disabilities and survival showed that PiR
experienced benefits in addition to oxygenation improvement.

Survival rates for PiR exceeded those of iNO non-responders
(NiR) in four different studies. Survival rates were 74 vs. 33%
(148), 88 vs. 70% (136), 80 vs. 41% (149), and 66 vs. 29%,
respectively, for PiR and NiR (135). The latter study further
compared mortality by comparing early (<7 days) and late
(>7 days) iNO exposure, finding significantly higher survival
rates for those receiving iNO in the 1st week. Furthermore,
PiR had lower IVH grades and PVL (2.8 vs. 28.5%) and
higher disability free-survival at 18 months (51 vs. 15%)
(135, 136). Other comorbidities, such as cerebral palsy and
chronic lung disease, were similar in PiR and NiR (135,
149).

Summary
iNO responders are more likely to survive than were
non-responders. Responders may experience lower
neurodevelopmental disability rates but with similar chronic
lung disease rates.

NOVEL iNO USE IN PREMATURE
NEWBORN RESUSCITATION

This review found that many controversies remain in pre-term
newborn care, including delivery room resuscitation. Presently,
optimal FiO2 in premature newborns during resuscitation is
unknown (151). Current resuscitation guidelines recommend
maintaining target oxygen saturation for both term and pre-
term infants (152, 153). Despite this, pre-term infants may
be exposed to high oxygen concentration during resuscitation
to maintain optimal oxygen saturation targets (154). The
morbidities associated with increased oxygen concentration
exposure in premature infants are well-known (155). The
primary emphasis of current NRP guidelines is on ventilation
to facilitate pulmonary vasodilation. However, there is no
alternative to such measures for non-responders. Hence, iNO
may be an adjunct therapy to decrease PVR and reduce excessive
oxygen exposure. In the neonatal lamb model of asphyxia
and studies of premature newborns, lower FiO2 use during
resuscitation after birth decreased oxidative stress (156, 157).
Therefore, the administration of iNO may facilitate less oxygen
exposure to premature newborns during neonatal resuscitation
by improving V/Q mismatch. This novel hypothesis was studied
in a randomized controlled pilot trial in premature newborn
infants between 25 0/7 and 31 6/7 weeks GA. Premature infants
were randomized to oxygen + nitrogen as a placebo or oxygen
+ iNO starting at 20 ppm and titrated down during the first
17min of resuscitation. The results showed a trend toward
lower oxygen exposure in the oxygen + iNO group, with
significantly less cumulative oxygen exposure than the oxygen-
only group. Besides, the placebo group had significantly higher
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exposure to hyperoxia (FiO2 > 60%) than did the treatment
group. There were no differences in the secondary outcomes
measured, including IVH. This first pilot human trial suggested
that the administration of iNO during resuscitation is feasible
and decreased exposure to supplemental oxygen in premature
infants (158). It should be noted that an acute reduction in PVR
during the transition with iNO may increase the pulmonary
venous return and increase organ perfusion, particularly to the
brain, increasing the risk of IVH. Therefore, caution should be
exercised when iNO is administered during early adaptation.
A larger randomized trial is needed to validate this novel
approach further.

CONCLUSION

Non-randomized controlled trials suggest that inhaled nitric
oxide can be a treatment option for pre-term newborns
with hypoxic-respiratory failure associated with pulmonary
hypertension. To achieve better outcomes, we advocate for
early assessment with echocardiogram or TnECHO for the
certainty of diagnosis and prompt treatment with iNO.

However, the debate on the risks and benefits of iNO
in pre-term newborns is far from over. Investigations of
pathophysiology, pharmacology, and pharmacogenetics are

needed to validate such treatment in pre-term newborns with
pulmonary hypertension.
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Bacterial infections remain a major cause of morbidity and mortality in the neonatal

period. Therefore, many neonates, including late preterm and term neonates, are

exposed to antibiotics in the first weeks of life. Data on the importance of inter-individual

differences and disease signatures are accumulating. Differences that may potentially

influence treatment requirement and success rate. However, currently, many neonates

are treated following a “one size fits all” approach, based on general protocols and

standard antibiotic treatment regimens. Precision medicine has emerged in the last

years and is perceived as a new, holistic, way of stratifying patients based on large-

scale data including patient characteristics and disease specific features. Specific to

sepsis, differences in disease susceptibility, disease severity, immune response and

pharmacokinetics and -dynamics can be used for the development of treatment

algorithms helping clinicians decide when and how to treat a specific patient or a specific

subpopulation. In this review, we highlight the current and future developments that could

allow transition to a more precise manner of antibiotic treatment in late preterm and

term neonates, and propose a research agenda toward precision medicine for neonatal

bacterial infections.

Keywords: neonatal bacterial infection, diagnostics, antibiotic stewardship, precision medicine, late preterm and

term neonates

BACKGROUND

Neonatal Bacterial Sepsis and Infections
Bacterial infection can lead to sepsis, a state in which dysregulation of the hosts’ response to
the infection leads to potentially fatal organ dysfunction (1). Consensus on specific criteria to
define this state in neonates is still lacking, and hitherto the most common proxy definition of
neonatal sepsis is the presence of a positive blood culture (indicating bacteremia), or a positive
cerebrospinal fluid culture (indicating meningitis). This paper will acknowledge the limitations of
this proxy definition by incorporating the uncertainties it carries when making clinical decisions,

83

https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/journals/pediatrics#editorial-board
https://www.frontiersin.org/journals/pediatrics#editorial-board
https://www.frontiersin.org/journals/pediatrics#editorial-board
https://www.frontiersin.org/journals/pediatrics#editorial-board
https://doi.org/10.3389/fped.2021.590969
http://crossmark.crossref.org/dialog/?doi=10.3389/fped.2021.590969&domain=pdf&date_stamp=2021-04-01
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org
https://www.frontiersin.org/journals/pediatrics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:f.keij@erasmusmc.nl
https://doi.org/10.3389/fped.2021.590969
https://www.frontiersin.org/articles/10.3389/fped.2021.590969/full


Keij et al. Stratified Management for Neonatal Infections

demonstrating how precision medicine can help with those
decisions and highlighting how a future consensus definition can
further advance precision medicine in treating neonatal sepsis
(2, 3).

Neonatal bacterial infections (bacterial infections presenting
in the first 28 days of life) affect an estimated 3.0 million
neonates yearly, resulting in significant morbidity and mortality
(4–6). Early-onset sepsis (EOS), defined as bacteremia within
the first 72 h after birth, affects an average of 10 per 1,000
live births among neonates born below 33 weeks of gestation.
Lower incidences of 0.73 and 0.56 per 1,000 live births are
seen among late preterm neonates [gestational age (GA): 34–
36 weeks] and term neonates (GA ≥ 37 weeks), respectively
(7). Although the incidence and mortality remain much higher
among extreme preterm neonates, the absolute number of cases
of EOS is higher among late preterm- and term neonates,
since prematurity (GA < 37 weeks) affects about 11% of total
live births of which 85% occurs in the late preterm period
(GA 32–37 weeks) (8). Pathogens associated with EOS include
both Gram-positive and -negative pathogens with significantly
higher rates of Gram-negatives, especially Escherichia coli (E.
coli) infections among preterm neonates compared to term
neonates. In contrast, Group B Streptococcus (GBS) infections
seem to affect term neonates more frequently (7). Late-onset
sepsis (LOS) involves infections occurring >72 h after birth.
However, the onset of late-onset GBS infection is frequently
defined in literature as an infection that occurs >7 days after
birth (9). LOS develops due to contact of the host with
environmental organisms and includes both hospital-acquired
infections (nosocomial infections) and community-acquired
infections. Causative pathogens include skin commensals such
as coagulase-negative staphylococci (CoNS) and Staphylococcus
aureus, and gut-associated microbiota such as E. coli. The
latter is thought to reach the bloodstream through translocation
across the immature intestine (10). CoNS can be pathogenic,
especially for preterm neonates, and these infections are therefore
often seen in hospitalized preterm neonates undergoing invasive
procedures or with intravenous catheters (5, 11).

Host Susceptibility
The neonatal immune system is a complex network, constantly
adapting and undergoing an age-dependent maturation
during gestation and after birth. It is shaped by intra- and
extra uterine exposures such as antigens, medication, and
environmental factors, necessitating both immunotolerance
(to prevent immunoreactivity between mother and fetus) and

Abbreviations: EOS, early-onset sepsis; GA, gestational age; E. coli, Escherichia

coli; GBS, group B Streptococcus; LOS, late-onset sepsis; CoNS, coagulase-

negative staphylococci; NICU, neonatal intensive care unit; CRP, C-reactive

protein; HRV, heart rate variability; HRC, heart rate characteristics; MIC,

minimal inhibitory concentration; MIPD, model-informed precision dosing;

PK, pharmacokinetics; PD, pharmacodynamics; Cmax, maximum concentration;

AUC, area under the curve; %fT, percentage of time fraction of the free, unbound

concentration; TDM, therapeutic drug monitoring; IgG, immunoglobulin G;

IVIG, iv immunoglobulins; PTX, pentoxifylline; PCT, procalcitonin; RNA,

ribonucleid acid; MMP8, metalloproteinase-8; TNF-α, tumor necrosis factor-

alpha; PROM, premature rupture of membranes; ETEC, enterotoxigenic e.coli;

SMS, Sepsis MetaScore.

pro-inflammation (infection protection) (12). Reviewing the
neonatal immune system and the development of neonatal
sepsis is beyond the scope of this review. Several excellent
reviews have been published elaborating on this topic (13–15).
In summary, in the presence of a pathogen, the host’ immune
system dysregulates; alternating phases of hyper inflammation
(“cytokine storm”), potentially causing multi-organ failure, and
immunosuppression (window for opportunistic infections).
As pathogen exposure in utero is limited, and thus memory
function is lacking, neonates primary rely on innate immunity
and maternal transplacental immunoglobulin G (IgG) in early
life (13).

Consequently, neonates are vulnerable for infections. The
differences between preterm and term neonatal immune
development do partly explain the differences observed in
infection and sepsis incidence and severity between both
groups. However, this does not explain interpatient variability
in infection susceptibility seen within each group. Many late
preterm and term neonates, fortunately, develop only mild
symptoms when exposed to a pathogen. But a small group of late
preterm and term infants, without any apparent co-morbidities,
does develop severe infection (16).

Balancing Under- and Over-Treatment
In case of a clinical suspicion of neonatal bacterial infection,
empirical therapy using intravenous administration of broad-
spectrum antibiotics is generally started without further delay.
Although lifesaving in case of a true infection, unnecessary and
inadequate antibiotic use has many downsides for both patient
and health care system including gut microbiome alterations,
multi-drug resistance and costs (17, 18). The balance between
timely and proper diagnosis and overtreatment of neonatal
infections remains a daily clinical challenge. This is illustrated
by the fact that, in most cases, antibiotics can be discontinued
after 36–48 h when clinical and laboratory signs are reassuring, or
are continued in the presence of clinical and laboratory signs of
infection, despite culture negativity (culture-negative infection)
(19, 20). As a result, a substantial number of late preterm- and
term neonates are exposed to intravenous antibiotics in their first
weeks of life and antibiotics are among the most prescribed drugs
on the neonatal medium and intensive care units (NICU) (11).
Wide variation in neonatal antibiotic exposure between countries
and hospitals, unexplained by infection rates, demonstrates the
difficulty in ascertaining neonatal infection This, together with
the differences in susceptibility, highlights the need for precision
medicine in neonatal sepsis (21, 22).

Precision Medicine
The term precision medicine has emerged in the last years. Yet,
no consensus definition exists and many other terms such as
“personalized” or “stratified” medicine are used interchangeably.
However, experts view precision medicine as a novel, improved
concept that goes beyond the personal doctor-patient relation
(23). Precision medicine is viewed as a way to identify, stratify,
and treat patients using large-scale data that relate to the
underlying causes of their disease (24). It implicates deep
phenotyping of patients in which information is gathered at
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different levels (“big data”) and involves the use of clinical-
and life style data, omics and biomarkers. Collected data are
used for the development of algorithms and models for disease
or therapy risk assessment, screening, diagnosis, treatment
selection, prognosis, prevention, and surveillance or monitoring.
Those tools allow a more tailored and targeted therapy (24).
Precision medicine is not yet widely practiced in the field of
neonatal sepsis. However, recent studies evaluating different
tools for neonatal sepsis have been performed and results could
be a step toward better understanding of the disease-specific
pathophysiology (25).

This could be achieved through the use of newer techniques,
such as “omics,” in addition to conventional methods. The suffix
-omics generally refers to the biotechnology that characterizes
and quantifies biological molecules and structures at different
levels of an organism. It compromises genomics, transcriptomics,
proteomics, and metabolomics and allows detection of a “unique
barcode” that could predict the underlying response to infection
for an individual patient (26).We will discuss some of the current
“omics” findings applicable to late preterm and term neonates.

Genomics
Variation in the host genetics could partly explain the variability
in disease susceptibility. Genetic signatures or polymorphisms
have been discovered for several infectious diseases. One of the
well-known examples is malaria, where patients suffering from
haemoglobinopathies are protected against malaria because of an
altered erythrocyte structure (27). Another example, applicable
to the pediatric population, is the PAI-1 polymorphism in
meningococcal sepsis. PAI-1 is an acute phase protein and
elevated concentrations correlate with disease severity and
mortality. The 4G/4G PAI-1 polymorphism is associated with
higher concentrations of PAI-1, and thus worse prognosis,
compared to other genotypes (28). Sex has also been found to
influence sepsis susceptibility and outcome as reflected in the
increased vulnerability to infections and higher sepsis mortality
in male neonates compared to females. The X-chromosome
encodes multiple genes related to the immune system. Moreover,
it is involved in the generation of the sex hormones, of
which estrogen has showed to influence several pathways of
innate immunity, possibly explaining a better sepsis outcome in
females compared to males (29–31). Finally, pharmacogenomics
allows us to study genetic polymorphisms associated with
pharmacokinetics or –dynamics (drug response).

Transcriptomics
Transcriptomics refers to the study of the ribonucleic acid (RNA)
transcripts allowing to study changes in gene expression over
time or under certain circumstances, such as sepsis. Studies
using next-generation sequencing and RNA-sequencing have
showed that differences are present in gene expression between
septic and non-septic neonates with overexpression of genes
related to innate immunity and inflammation [CD177; Matrix
metalloproteinase-8 (MMP8); tumor necrosis factor-alpha (TNF-
α)] (25, 32). Moreover, Cernada et al. reported that genome wide
expression profiles differ between Gram-negative and Gram-
positive sepsis (32). A recent published study by Ng et al. reported

whole blood transcriptomic profiles of very preterm infants (n=

18) with proven, possible, and no sepsis. Significant differences
were seen in gene expression between proven and no sepsis cases.
Altered genes were associated with cytokine signaling, pattern
recognition and metabolism (33). With regard to gestational age,
Cernada et al. (32) reported no differences in gene expression
between very preterm- and late-preterm and term neonates.
However, the proportion of late preterm and term neonates
included in the study is low, and those are, in most cases,
suspected sepsis episodes, not culture proven sepsis. Wynn et al.
(34) reported significant differences between the transcriptome
of septic neonates and that of septic infants and older children,
illustrating an association with developmental age (35).

Proteomics
Protein-coding genes eventually lead to the expression of specific
proteins, and the structure, function and interaction of those
proteins can be studied revealing potentially useful biomarkers
for neonatal sepsis. One of the advantages of proteomics
is that these new biomarkers can be discovered through a
hypothesis-free approach as more than a thousand proteins and
modifications can be screened using mass spectrometry (25).

Metabolomics
The metabolome includes all low molecular weight molecules
produced by the human body and is considered to be a reflection
of a patient’s phenotype and real-time physiological condition
(36). Metabolomic perturbations due to a higher energy demand
and oxidative stress during sepsis can therefore be used as
possible predictors or biomarkers for neonatal sepsis (37, 38).
Only a few studies have used metabolomics in neonatal sepsis
revealing different metabolic pathways involved in neonatal
sepsis. Levels of metabolites of energy and glucose metabolism
(glucose, glutamine, and lactate) were significant altered in septic
neonates (39, 40).

Microbiome
The microbial community of the gut (“gut microbiome”) is
shown to be an important influencer of health and disease. It
protects from potential pathogens through both the development
of barrier function and by shaping the immunological and
metabolic pathways. Alterations in early life have been associated
with several diseases, such as asthma and obesity, at a later
age (41, 42). Significant differences are seen between the
gut microbiome of preterm neonates compared to that of
term neonates, independent of other environmental factors
(“exposome”) that influence bacterial colonization such as
the mode of delivery, type of feeding or the administration
of antibiotics (43). Decreased bacterial diversity in preterm
neonates is associated with LOS, although the microbiome was
reported to be highly variable in time (44, 45). Moreover,
the causative pathogen retrieved in blood culture is often the
most dominant species present in the gut microbiota. A recent
prospective study by El Manouni et al. (46) showed that the
causative pathogen could already be detected 3 days prior to LOS

Frontiers in Pediatrics | www.frontiersin.org 3 April 2021 | Volume 9 | Article 59096985

https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org
https://www.frontiersin.org/journals/pediatrics#articles


Keij et al. Stratified Management for Neonatal Infections

FIGURE 1 | Concept of precision medicine and -omics techniques and its potential for neonatal bacterial infections. ApoSAA score, Serum Amyloid A (SAA) and

Apolipoprotein (Apo)C2 score; LOS, late-onset sepsis. Figure (with all the icons) is created using https://www.flaticon.com/.

onset in fecal samples. These finding support the hypothesis of
bacterial translocation, gut dysbiosis, and the occurrence of LOS.

In the next paragraphs, we will elaborate on the current and
future options to move toward a more stratified approach in
the antibiotic management of proven and probable bacterial
infection, focusing on late preterm and term neonates. These
options include a wide variation of antibiotic stewardship
programs and guidelines, clinical decision tools, pharmacological
advances, biomarkers, and prevention strategies. We separate
these options for each stage of decision-making that can
be personalized: prevention, treatment initiation, treatment
modality and optimization, and treatment duration. Figure 1
shows the concept of precision medicine and the use of
-omics techniques with some recent findings relevant for
neonatal bacterial infections. Figure 2 illustrates opportunities
for precision medicine in neonatal bacterial infections during
different phases of disease management. Finally, Table 1 presents
a research agenda toward more precise medicine for neonatal
bacterial infections.

PREVENTION

Current Strategies
Mother-to-child transmission is considered to be the main route
of transmission for EOS. In the presence of risk factors such as

premature rupture of membranes (PROM) and signs of sepsis
before birth, broad spectrum antibiotics are usually administered
to the mother. To date, intrapartum prophylactic antibiotic
therapy is only used in mothers with risk factors for GBS and has
showed to be an effective way to decrease the transmission and
incidence of GBS by 50–80% (47). However, several components
and effects of this strategy are under debate, especially in the
context of late preterm and term pregnancies.

First, considerable variation exists in maternal GBS
colonization testing strategies (21). For instance, the American
Academy of Pediatrics recommends universal antenatal GBS
colonization testing in all pregnant women, and the use of
intrapartum antibiotic prophylaxis in case of GBS colonization
(48). In contrast, countries like the United Kingdom, Switzerland,
and the Netherlands, opt for a risk-based management and only
screen and treat high risk pregnancies (49). A disadvantage of
the risk-based approach can be that cultures may be obtained too
late to allow timely prophylaxis, whereas universal screening in
the third trimester may not reflect the actual colonization status
at birth. Second, the evidence with regard to optimal dose and
timing of intrapartum antibiotics is evolving; it appears that the
duration prior to birth is less important than previously thought
(50). Third, there are concerns and uncertainties about potential
adverse effects of intrapartum antibiotics on the neonate, such
as perturbations of the developing microbiome (51, 52). A
promising development for precision medicine in preventing
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FIGURE 2 | Overview of opportunities for precision medicine in treatment of (suspected) neonatal bacterial infection, at different stages of disease. ApoSAA score,

Serum Amyloid A (SAA) and Apolipoprotein (Apo)C2 score; E. coli, Escherichia coli; EOS, early onset sepsis; GBS, Group B streptococcus; IM, intramuscular; MIC,

minimal inhibitory concentration.

neonatal EOS has been the application of point-of-care molecular
testing for GBS colonization (53), which is likely to allow for
quick and reliable qualification of maternal GBS colonization
status and thereby facilitating more precise prophylaxis on
admission. Validation and confirmation studies evaluating
timing and dosage of intrapartum antibiotic prophylaxis as
well workflows involving molecular testing are necessary to
further improve this prevention strategy and minimize any of its
adverse effects.

Future Opportunities
Vaccination
Vaccination is traditionally used as a preventive measure
targeting the general population and applied at a universal scale.
However, there is increasing interest on the use of “precise
vaccination,” targeting specific subpopulations and tailoring
vaccination on a more individual level, taking into account
factors such as age, sex, and disease susceptibility. Adjusting
formulation, dosage and timing to patient factors could help
maximize the effects of vaccination while reducing the risks
(54). In the specific setting of neonates, immunization through
vaccination of subpopulations of pregnant women could be an
elegant manner to protect the neonate against invasive infections
in the first 3 months of life, including bacterial infections.
Vaccine-specific IgG can be transferred across the placenta
during late-second to third trimester and provides a time window
for effective and safe vaccination (55). To illustrate feasibility
and relevance of this approach, safety, and efficacy has been
documented for maternal pertussis vaccination which resulted
in higher antibody concentrations in newborns in the first 3
months of life and a maternal vaccination program has already

been implemented in several countries (56, 57). Similar efforts
are ongoing for GBS and E. coli.

Several phase I/II trials in non-pregnant and pregnant women
have evaluated the safety and tolerability of a multivalent GBS
vaccine. Studies have shown the vaccine to be safe and did
not report related major adverse events in vaccinated women.
GBS-specific antibody responses were significantly higher among
vaccinated women compared to controls (58). A phase II study
reported that vaccination reduced the vaginal and rectal GBS
colonization in healthy non-pregnant women (59). Only a few
studies evaluated safety for the fetus and no severe events have
been reported in offspring. Women are vaccinated in their third
trimester and therefore toxicity for the fetus is considered to
be low (60). Unfortunately, this also means that vaccination
would mainly be effective to prevent invasive GBS infection in
late preterm and term neonates. Earlier vaccination, during the
second trimester, would be needed to protect preterm neonates,
although transplacental antibody transport is reduced before the
third trimester, resulting in lower anti body concentrations in
general following preterm birth (61). To our knowledge, there are
no phase III trials currently ongoing but maternal immunization
could be a potential additional strategy to further reduce the
burden of GBS infection (55, 62).

As E. coli infections are associated with substantial morbidity
and mortality among newborns it would be tempting to evaluate
whether maternal immunization, as discussed for GBS, could be
beneficial for E. coli infections as well. Till date, trials on E. coli
vaccination mainly focus on vaccination against Enterotoxigenic
E. coli (ETEC), which is associated with childhood and travelers’
bacterial diarrhea with a high mortality (63). A rodent study
examined the use of Outer membrane protein A (OmpA) based
vaccine for E. coli. Gu et al. were able to generate an artificial
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protein (OmpAVac) which was subsequently injected in adult
and neonatal mice. They report an increased specific antibody
response and better survival in immunized mice, including
neonatal mice (64). A first in human phase 1b randomized
clinical trial evaluated the safety and immunogenicity of a
bioconjugate vaccine containing the O-antigens of four E. coli
serotypes (ExPEC4V) in healthy, non-pregnant women with
recurrent urinary tract infections. Authors reported no vaccine
related adverse events and elevated antibody responses were
detected against all four serotypes compared to placebo (65).
These studies highlight the potential for further research on E.
coli vaccination against invasive infection, with special focus on
maternal immunization and neonatal protection.

TREATMENT INITIATION

Current Strategies
National guidelines, taking into account both maternal and
neonatal risk factors and the clinical condition of the patient,
have been developed to provide support for recognition and
optimization of diagnosis and treatment of neonatal infections,
especially for EOS (11, 21). Much less guidance is present for
suspected LOS; therapy is usually initiated when clinical signs
are present. Overall, guidelines for EOS on treatment initiation
show similarities: antimicrobial treatment is often initiated
based on the presence of risk factors or non-specific clinical
symptoms. With regard to treatment initiation, some guidelines,
such as the Swiss guideline, recommend clinical observation
with monitoring of vital signs every 4 h for a period of 48 h in
asymptomatic neonates with risk factors while other guidelines
recommend treatment initiation even in the presence of risk
factors only (21, 48, 66).

Due to low specificity of mentioned risk-factors as well
as clinical signs at onset of possible bacterial infection, a
quest for biomarkers to assist in the decision-making regarding
initiation of antibiotics has been ongoing for years. A long list
of hematologic parameters, interleukins, endothelial molecules,
and various other biomarkers have been or are currently being
evaluated for the early detection of neonatal sepsis (67, 68).
There is, in general, consensus that classic and well-researched
biomarkers such as the complete blood count and C-reactive
protein (CRP) are insufficient to guide the initial decision
on antibiotic initiation (69). For EOS, this is largely due to
physiological fluctuation of thrombocytes, leukocytes, and CRP
after birth (11, 67). For LOS, low specificity as well as a
delay of hours between infection and rise of biomarker levels
currently limits the usability of biomarkers at moment of
infection suspicion (67). Further research is needed to analyze
if biomarkers, especially those reflecting inflammation early in
the sepsis course, such as interleukin-6, may be used to inform
precise treatment decisions beyond the start of antibiotics, such
as start of adjuvant therapies, transferal to higher levels of care,
or inotropic support (70).

Several developments may allow transition to a more precise
risk assessment without the need for biomarker analysis as a
basis for the decision to start antibiotics or not. The neonatal
EOS Calculator (kp.org/eoscalc) has been developed based on

a dataset of over 600,000 term and late-preterm neonates. It
provides an individual quantitative risk estimate calculated from
five quantitative objective risk factors at birth (exact gestational
age, highest intrapartum maternal temperature, duration of
ruptured membranes, and maternal GBS colonization status),
and an assessment of the neonate based on objective clinical
parameters (71, 72). Although several characteristics of the EOS
Calculator affect the accuracy of the individual risk estimates
(73), it has proven markedly useful for risk stratification. Studies
have shown that its implementation is associated with a marked
reduction (relative risk reduction 44%) in neonates receiving
empiric antibiotics, without occurrence of adverse effects such as
increases in sepsis incidence or worse clinical outcome (74, 75).
Although the EOS Calculator does provide an individual risk
estimate, such risk stratification remains imperfect, meaning that
clinical vigilance remains mandatory even for low-risk neonates
(73, 76).

An approach completely depending on the clinical vigilance
is the use of serial clinical observations in term neonates. It
encompasses structured and repetitive examinations of selected
or all newborns by a skilled and trained nurse or physician,
for the first 24–48 h postpartum (77, 78). It deliberately restricts
antibiotic treatment initiation to clearly symptomatic neonates,
and can reduce the rate of antibiotic treated neonates for
suspected EOS to as low as 1.3% (compared to 2.9% pre-
implementation) (79). Protocols for serial clinical observations
differ greatly but require intensive individual medical assessment,
such as hourly physical examinations. This approach has, until
now, only been evaluated in a few, mostly well-staffed settings
(79, 80). As a result, safety data are still limited, and the approach
may not easily be implemented in settings unable to provide
repeatedly assessments by clinical professionals.

For neonates admitted beyond the 1st days of life, clinicians
may face similar clinical decision dilemmas if signs of a bacterial
infection become present but may be explained by other factors
or diagnoses. This may lead to both unnecessary treatment of
uninfected neonates, as well as delayed treatment initiation in
sick neonates.

Future Opportunities
The use of physiomics such as heart rate variability (HRV)
can possibly contribute to earlier infection recognition. The
autonomic nervous system plays an important role in the
maintenance of body homeostasis and regulates, among other
processes, the beat-to-beat variability of the heartbeat (81). HRV
in turn, is linked to other vital signs such as respiration and
blood pressure. Sepsis, especially the presence of endotoxins, can
induce autonomic dysfunction which leads to a decreased HRV,
which in turn has been associated with a higher disease severity
and mortality among septic patients (82, 83). Moreover, HRV is
commonly used to monitor fetal condition during labor using
cardiotocography and a decreasedHRV can be used as a predictor
for fetal distress such as intra-uterine infections (84, 85).

In preterm neonates, a decrease in HRV in combination with
the presence of transient decelerations has showed to be an early
predictor for sepsis and has consequently led to the development
of a heart rate characteristics (HRC) monitor. This monitor can
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be used to identify patients at risk for developing LOS in the
next 24 h, allowing timely initiation of antibiotic therapy (86).
A large randomized clinical trial showed a significant reduction
in mortality among (22% relative reduction from 10.2 to 8.1%)
preterm neonates in whom HRC scores were displayed to the
treating physician. Authors did however report an increase in
sepsis workups and days on antibiotics (87). A retrospective study
in which scores were available twice daily reported a limited
usability of the HRC score as many elevated scores were not
related to a LOS episode (poor specificity) (88). It is known that
non-infectious conditions such as medication (dexamethasone,
paralytics, and anesthetics), surgery, initiation of mechanical
ventilation, and bronchopulmonary dysplasia can also influence
the HRC score (86, 89, 90). Although the use of HRV does not
seem to be limited to preterm neonates, the HRC monitor has
not yet been validated in late preterm and term neonates, nor for
sepsis episodes that occur in the first 72 h of life (88, 91).

The Sepsis MetaScore (SMS) is diagnostic test aiming to
diagnose sepsis based on gene expression. The SMS has been
developed using a multicohort analysis and consists of an 11-
gene set that can discriminate non-infectious inflammation from
acute infection. It has been validated in several transcriptomic
cohorts of adults and pediatric patients (92). It has recently
been validated in three genome-wide expression based neonatal
cohorts and has a high diagnostic accuracy for the discrimination
of non-septic from septic neonates. Moreover, when combined
with “traditional” biomarkers (white blood count, CRP, and
neutrophil count) it improved the diagnostic accuracy of all
three biomarkers, mainly because it led to a rule-out of
sepsis (specificity) among low-risk patients. Moreover, and very
relevant for the late preterm and term population, the SMS
is capable of distinguishing neonates with suspected sepsis
from those with confirmed sepsis (AUC: 0.90). Although the
SMS needs to be further evaluated in prospective studies,
it underscores the potential for transcriptomics to guide
treatment (93).

Micro-ribonucleic acids (miRNAs) are involved in different
cell processes such as cell signaling and immune activity and
could therefore serve as potential biomarker for the diagnosis
of sepsis. Specifically, miRNA-23b has been associated with the
regulation of innate immunity and its expression is related to
inflammation. In adults with sepsis, lower levels of miRNA-23b
were associated with sepsis and mortality among septic patients.
Within the sepsis group, lower levels were seen among non-
survivors (94). This illustrates its usability for both diagnosis
and severity grading of sepsis. It has therefore been evaluated
in a small cohort of preterm and term neonates with EOS and
LOS (95). Reduced miRNA-23b expression compared to controls
was seen in both preterm and term neonates who died from
EOS. Among EOS survivors, miRNA-23b expression was higher
compared to controls, thus expression seems to correlate with
sepsis progression. In LOS cases, miRNA-23b expression was
lower in all septic neonates (both survivors and deaths) compared
to non-septic controls.

Proteomic studies led to the development of the ApoSAA
score, which combines serum amyloid A (SAA) and
Apolipoprotein (Apo)C2. A case control study among preterm

neonates showed that the ApoSAA score can differentiate
non-septic infants from LOS or necrotizing enterocolitis
cases (96).

Another proteomic study by Buhimschi et al. (97) revealed
haptoglobin and haptoglobin-related protein immunoreactivity
as a potential additional biomarker for EOS. In this study,
cord blood of presumed and proven EOS patients was
profiled, identifying significantly elevated levels in neonates with
EOS. Further research is needed to evaluate the usability of
miRNAs, the ApoSAA and haptoglobin as new biomarkers for
neonatal sepsis.

TREATMENT OPTIMIZATION

Antimicrobial stewardship programs have been developed
aiming to optimize clinical outcomes while reducing the negative
consequences of antimicrobial use (17). These contribute to
further tailoring of antibiotic therapy and have shown to be
beneficial in the reduction of unnecessary antibiotic use and
prevention of antimicrobial resistance (19). Principles of these
programs are appropriate selection, appropriate administration,
and timely de-escalation (20).

Current Strategies
The predominantly causative pathogens are the main
determinant for correct choice of antibiotic therapy. For
both EOS and LOS, it holds true that, at moment of infection
suspicion, the possible causative pathogen of the infection and
the antibiotic susceptibility test are not yet known. For EOS,
empiric therapy usually consists of a combination of a penicillin
with an aminoglycoside. For LOS a wider variety of combinations
is used (98). Importantly, the choice of the antibiotic regimen
highly depends on causative pathogens and antimicrobial
resistance rates which differ substantially throughout Europe
and worldwide (99). In the absence of strong evidence and in
part related to differences in product availability and preferences,
variability in daily practice between units, especially for LOS, is
extensive (98).

After identification of a pathogen, its susceptibility for
a specific antibiotic is defined by the minimal inhibitory
concentration (MIC) which is the lowest antibiotic concentration
needed to prevent further replication of the pathogen and
is thus of importance for the determination of the dosing
regimen (100). In order to facilitate precise antibiotic treatment,
several pharmacological components should be considered. Drug
dosing regimens have commonly been extrapolated from adult
studies and practices, thus the majority of drugs prescribed
to neonates are off label (101). However, neonates differ
substantially from older children or adults, thereby influencing
the pharmacokinetics (PK; what the body does to the drug)
and pharmacodynamics (PD; pharmacological response of the
body to the drug) of a drug. Simplistic extrapolation from adults
and children to neonates could lead to under- (compromising
efficacy) or overexposure (risking toxicity) (102). Consequently,
drug dosing regimens should ideally be based on integrated
knowledge concerning the disease to be treated, the physiological
characteristics of the neonate, and the PK/PD of a given drug.
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Pharmacokinetics/Pharmacodynamics of Antibiotics
Efficacy of antibiotics strongly depends on the mode of action of
the chosen class. This can be time-dependent killing (Time >

MIC; beta-lactam antibiotics), concentration-dependent killing
[maximum concentration (Cmax)/MIC; aminoglycosides] or
combined time- and concentration-dependent killing [area
under the curve (AUC)/MIC; vancomycin] (91). Besides these
targeted effects, antibiotic exposure also results in off target
effects like alterations in the gut microbiome. Intriguingly, these
alterations themselves can also alter enteral drug and first pass
metabolism (103).

PK compromises the process of absorption, distribution,
metabolism, and elimination and both maturational and non-
maturational covariates can impact a dosing regimen (get
the dose to target). The distribution of antibiotics is driven
by maturational differences in body composition (water %),
by presence of disease or by treatment modalities, like
extra-corporeal membrane oxygenation (104). Plasma protein
concentration and binding capacity may also be of relevance for
some protein bound antibiotics, like cefazolin or vancomycin.
This because the fraction of time during which the free,
unbound (%fT), antibiotic concentration is above a given MIC
(%fT > MIC) is the efficacy target (105, 106). Subsequent
elimination of antibiotics is almost exclusively by renal
elimination, and to a smaller degree through metabolism
or biliary elimination. The main factors involved in the
development of renal function are GA, postnatal age and
birth weight (107). This results in rather complex dosing
regimens within the neonatal population, as reflected in different
recent reviews on this topic (108, 109). Only for specific
antibiotics, drug metabolism by cytochrome P450 (CYP) or
glucuronidation) is involved in its clearance. Consequently, the
clearance of erythromycin (CYP3A), clindamycin (CYP3A), or
chloramphenicol (glucuronidation) clearance is driven by the
maturational activity of these enzymes, further affected by non-
maturational changes like genetic polymorphisms or disease
characteristics (e.g., inflammation affects CYP3A activity) (110).

Future Opportunities
Therapeutic Drug Monitoring and Model Informed

Precision Dosing
Therapeutic drug monitoring (TDM) is used to optimize
antibiotic dosing and is especially of interest in case of a
narrow therapeutic window. Moreover, it can be informative
for drugs that show a large interpatient variability, as serum
concentration predictions can be difficult. TDM has historically
been developed to prevent toxicity. However, nowadays it is also
used to guide therapy. It can be applied in drugs for which
a correlation is present between serum concentrations and the
pharmacological effect of the drug, thus the concentration in
the target tissue. Moreover, the pharmacological effect should
not be easily measurable through less invasive methods and a
quantification method should exist (111).

TDM is not commonly used for dosing of beta-lactam
antibiotics. They have a broad therapeutic window and are,
in general, perceived to be not very toxic. However, given the
increase in antimicrobial resistance and reported increase inMIC

of certain pathogens, and thus narrowing of the therapeutic
window in time, it could be beneficial to use TDM for other
antibiotics to confirm target attainment. Moreover, most of beta-
lactam antibiotics are renally cleared, and thus as previously
discussed, the concentration-time profiles can be influenced by
maturational and non-maturational covariates (107).

Finally, the most appropriate pharmacokinetic target remains
a point of discussion. In neonates, who are perceived as relatively
immunocompromised, a T > MIC of at least 40–50% of the
dosing interval is recommended (112). However, on the adult
ICU, targets for critically ill patients range from 100% T > MIC
up to 100% T > 4 × MIC so one could question whether 40–
50% is enough in neonates (113). It is important to notice that
the used concentration is the free unbound concentration, which
is the antimicrobial active part of the drug. This fraction varies
between neonates and adults and most centers measure total
concentrations, therefore a correction should be applied when
interpreting the concentrations (100, 113). The relevance of this
free fraction and protein binding has recently been explored for
the free vancomycin AUC target to consider in neonates (105).
The higher unbound vancomycin fraction in neonates can result
in a lower dosing regimen.

Model-informed precision dosing (MIPD) is an obvious
next step for TDM and has recently gained more attention
as it may serve as a powerful tool to help individualize
dosing. MIPD is a next generation dosing paradigm in
which mathematical models, in combination with individually
measured patient characteristics (e.g., drug concentration,
genotype, organ function) and disease characteristics (e.g.,
pathogen susceptibility), are used to calculate the optimal dose
(114). Bedside integration of combined data on exposure and
effect would allow a quick/real-time individualization of dosing
and target attainment (115). For neonates, this has yet been
evaluated for amikacin and vancomycin. A prospective study on
amikacin evaluated a model-based dosing regimen in neonates
reporting optimized concentrations in almost all neonates with
use of the model (116). A retrospective study on vancomycin also
reported improved target attainment in neonates when using a
model-based dosing approach (117).

Routes of Administration
Antibiotics are most commonly administered intravenously to
hospitalized newborns in the 1st weeks of life. It allows precise
and direct drug disposition into the circulation, but it requires
intravenous access. Moreover, dissolving all drugs and flushing
the lines in between administrations may contribute to a fluid
overload (118). Late preterm and term neonates, in general, are
not dependent on central access for feeds and fluid and receive
the venous access solely for the administration of antibiotic
therapy. As intravenous therapy is generally only provided in
hospital, this leads to prolonged hospitalization of an otherwise
relatively healthy newborn.

Intramuscular administration has been evaluated in several
large trials, especially in low- and middle-income countries, as
an alternative in case referral to a hospital is not possible and can
be an effective alternative when intravenous administration is not
possible (119). A study showed that, although parents recognize
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intramuscular administration to be more painful, they may still
prefer this modality as to their opinion, it allows better bonding
and breastfeeding compared to intravenous administration (120).

Oral administration of antibiotics is not commonly performed
in newborns in the 1st months of life because of uncertainties
on absorption, bio-availability and target exposure. However,
several small pharmacokinetic studies have evaluated the use of
oral antibiotics in neonatal infections and although absorption
is slower compared to that of older children and adults and
inter-individual variation is seen, target levels can be reached
following oral administration (121). With regard to efficacy,
several large trials have evaluated the use of an oral regimen
in low- and middle-income countries. No increase in mortality
or adverse outcome was reported. Unfortunately, results are not
applicable to a high-income setting as pathogen distribution and
the availability of diagnostics differs substantially (119, 121). A
randomized clinical trial evaluating the effectiveness and safety
of intravenous-to-oral antibiotic switch therapy in neonates with
a probable bacterial infection is currently ongoing and results are
expected by the end of 2021 (NCT03247920) (122).

Add-On Therapies and Immunomodulation
Antibiotic therapy solely targets the causing pathogen but
does not target the host’ immune system and the subsequent
inflammatory responses (123). Immunomodulation, targeting
specific cellular and molecular processes involved in the
development of neonatal sepsis, could be a very promising
add-on therapy. Unfortunately, many trials have failed to show
efficacy in neonatal sepsis (124, 125).

The transplacental transport of immunoglobulin G (IgG)
occurs for the greater part, in the third trimester (GA
> 32 weeks), thus very preterm neonates are considered
immunoglobulin deficient. Therefore, several clinical trials have
evaluated the use of iv immunoglobulins (IVIG), both for
prevention and treatment of infection in neonates. A recently
updated Cochrane Review evaluating the additional benefit of
IVIG in neonates (<28 days of age) with suspected or proven
bacterial infection reported no significant difference in mortality
between IVIG treated patients and placebo (126). When only
looking at studies in preterm neonates (GA < 37 weeks) at risk
for LOS, a small, but significant reduction in the incidence of
sepsis was reported (3%; number needed to treat: 33). However,
no significant reduction in mortality from infection, necrotizing
enterocolitis, bronchopulmonary dysplasia or intraventricular
hemorrhage was seen. With regard to safety, no major adverse
reactions following iv administration of IVIG were reported
(127). As a clear benefit of IVIG is lacking, it may be hypothesized
that pathogen-specific immunoglobulins could contribute to
sepsis management. However, a clinical trial evaluating the
use of anti-staphylococcal human immunoglobulins showed no
significant differences in S. aureus and CoNS sepsis rates, nor in
mortality rates, between treatment and placebo (128).

Pentoxifylline (PTX) could be a promising drug; it is a
vaso-active drug, originally developed for the treatment of
claudicatio intermittens in adults. It has anti-inflammatory
effects that influence cytokine production possible attenuating
the hyper inflammatory response associated with neonatal sepsis.

Moreover, it also influences the microcirculation, which is often
impaired in neonatal sepsis (129, 130). A large international
randomized placebo-controlled trial in currently ongoing in
which the survival of preterm neonates (GA < 29 weeks)
following additional treatment with PTX when LOS is suspected,
is evaluated (ACTRN12616000405415). Next, and very relevant
as PK studies on the use of PTX for neonatal sepsis are currently
lacking, a single center dose optimization study is currently
ongoing in which the optimal dose is studied (NCT04152980).

TREATMENT DURATION

Current Strategies
Treatment duration depends on several aspects and is ideally
based on the causative pathogen. However, in many cases,
cultures remain negative and therapy is continued because
laboratory or clinical signs of infection remain present. In that
case, guidelines recommend continuation of antibiotic therapy
for 5–7 days (49). For proven bacterial infections, there appears
to be little evidence for current treatment durations. For now,
the questionable “magic numbers” for treatment duration are 7,
10, 14, and 21 days, depending on the cultured microorganisms.
A trial for radiologically proven neonatal pneumonia (without

bacteremia) did not indicate a difference in treatment success
between a 4 and 7-day treatment (131). For uncomplicated GBS
infections, intravenous treatment for 10 days is recommended.
A retrospective analysis showed however that, in some cases, a
shorter course (≤8 days) is prescribed. Patients receiving a short
IV course were older compared to patients receiving prolonged
IV therapy. Recurrence rates were not higher in the short IV
therapy group (132). A systematic review on the evidence of short
vs. long duration of antibiotic treatment for neonatal bacterial
infections is currently underway (133).

Future Opportunities
In contrast to tools providing individual risk assessments to
guide the initiation of antibiotics, only a few tools allow
truly individualized decision making with regard to treatment
duration in neonatal infections. These decisions therefore mostly
rely on clinical judgment, but data from recent studies provide
opportunities for improving tailored decision making. As blood
cultures remain the best proxy for a definitive diagnosis (134),
average time-to-positivity can be an important variable when
considering (dis)continuation of treatment. Recent data show
this time-to-positivity is <36 h for at least 94% of positive blood
cultures obtained for suspected EOS, and <24 h for at least 68%
of those (135, 136). Depending on a priori risk, clinical course,
and infection parameters, this may facilitate discontinuation of
antibiotics at these time points. Molecular techniques using DNA
amplification are promising as they can detect bacterial, viral, and
fungal material and have a shorter turnaround time of on average
6 h in comparison to culture-based methods. Unfortunately,
at this moment, these techniques can only be used as add-
on diagnostics as contaminant detection and negative results
in culture positive infections have been reported. Moreover,
pathogen susceptibility testing, crucial for targeted therapy, is not
possible using these techniques (134).
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Automatic stop orders enforce proactive decisions on
continuation, which may induce more personalized decision-
making, and can be highly effective in reducing unnecessary
continuation of antibiotic treatment (137, 138). Such
personalized decisions may be further improved if guided
by combining risk stratification and age-dependent reference
values for biomarkers such as procalcitonin (PCT) and or CRP
(139–141). Serial low CRP values, normal PCT values, or the
combination of CRP and PCT can support discontinuation of
antibiotics (142). The use of PCT as guidance for antibiotic
treatment in late preterm and term neonates has been evaluated
in a large clinical trial (NeoPInS study) (143). The study showed
that PCT-guided decision making can reduce the duration of
antibiotic therapy (55 h intervention group vs. 65 h control
group) in neonates treated for suspected EOS (139). The
algorithm has recently made available as a mobile application
(NeoPInS app; Apple app store/Android) and can be used in
daily clinic as support tool in late preterm and term neonates
with suspected EOS.

A RESEARCH AGENDA TOWARD
PRECISION MEDICINE

Millions of late-preterm and term neonates are born each year
and are potentially at risk for bacterial infections. A “one size
fits all approach” is inappropriate for this population, which is
susceptible to consequences of both under- and overtreatment.
The relatively low incidence of sepsis in this group is a key
research challenge and calls for concerted and widespread
collaborations. Aiming for a future in which precision medicine
mitigates the risks of these consequences using a tailored
approach, we propose the following research agenda. Specific
research opportunities for this agenda are listed in Table 1.

Step 1: Reaching Consensus Definitions
As mentioned before, a consensus definition of neonatal sepsis
is critically lacking. The lack of agreement on the definition of
what consists a “sepsis case” not only hampers clinical diagnosis,
but also hinders research aiming to provide tailored approaches.
The myriad of terms such as “culture-negative sepsis,” “probable
sepsis,” or “clinical sepsis” makes comparing studies and their
outcomes difficult, renders implement research findings into
clinical workflow challenging, and sustains discussions that
prevent research progress. Efforts that provide objective and
measurable criteria to define a case of neonatal sepsis and/or
define the need for (sustained) antibiotic treatment constitute a
first step in progressing precision medicine, because such criteria
will be highly beneficial to the development and implementation
and evaluation of precision medicine tools as described in
this paper.

Step 2: Implementing Current
Opportunities
In spite of the limitations of hitherto used proxy definitions,
an array of current opportunities to tailor medicine for
neonatal bacterial infections are readily available for clinical

implementation today. For example, the EOS calculator is
endorsed by academic societies and widely being implemented
(22, 144). Likewise, automatic stopping orders are facilitated
by most of today’s electronic health care information systems.
Interdisciplinary efforts are envisioned to make MIPD widely
available in clinical practice (145). Despite their imperfections,
careful implementation of currently available tools presents a
large first step toward precision medicine and can directly
impacts today’s patients.

Step 3: Addressing the Understudied
Population
Relatively few clinical trials involving precision medicine have
focused on late preterm or term neonates. Consequently, several
of the tools developed for preterm neonates have not yet been
evaluated in term neonates. Although preterm neonates are
more at risk for severe disease and bad outcomes, the absolute
numbers of late preterm and term neonates render these an
understudied group for precision medicine, with large potential
for reductions of antibiotic use, hospitalization rates, economic
costs and improvements of quality of life. Validation and
development of precision medicine tools should therefore regain
priority, recognizing key differences from preterm neonates.
Examples of these include differences in pathogen distribution,
maturation-specific pharmacokinetics (volume of distribution,
renal excretion), and specific immune responses (such as mild
disease course of CoNS infections).

Step 4: Leveraging New Research Fields
Omics
The use of multi-omics is an exciting development in the field
of neonatal bacterial infections. It has the potential to reveal a
patients’ unique disease signatures in response to a pathogen,
allowing tailored therapy and disease management. However,
additional clinical studies on the development and integration of
these -omics derived biomarkers into daily clinic are required.

Computational Power
Medical data analysis and decision-making can be done
by humans without technology, by humans assisted by
technology, or completely machine-guided. Today, this decision-
making spectrum contains a myriad of possibilities including
straightforward decision aiding tools based on traditional
statistics, up to and beyond complex variations of machine
learning and artificial intelligence (146). Improvements in
computational power of recent decades allow for analysis of
massive amounts of data, and leveraging this power is projected
to fundamentally alter medical practice (147). Machine learning
models to improve precision in neonatal sepsis management
are being developed, but it will take adaptation of the
medical electronic infrastructure, evaluation cycles, and scientific
research to allow the promises of true clinical impact to become
reality (147–149).
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TABLE 1 | Current and future opportunities for precision medicine in neonatal bacterial infection management, with potential improvements, challenges, and specific

research agenda items.

Area of opportunity Potential improvement Main challenges Research agenda

Prevention

Intrapartum

antibiotics

Reduced incidence of neonatal

sepsis

Appropriate and timely indication RT-PCR implementation

Vaccination Reduced incidence of neonatal

sepsis

Achieving effective antibody

levels

Phase II/III trials

Treatment initiation

EOS calculator Reduced overtreatment Local implementation and

evaluation

Cluster-randomized trials;

integration in electronic

healthcare systems

Serial physical

examination

Reduced overtreatment; early

sepsis identification

Few large studies;

labor-intensive; lack of uniform

practice

Development and testing of

unified approach in large

studies

Heart rate variability Early sepsis identification;

reduced mortality/morbidity

Very few validation studies; not

validated for late preterm/term

neonates

Validation studies, particularly

for late preterm/term neonates

“Omics” Improved diagnostics Lack of validation; integration of

systems biology into clinic

Validation studies of promising

omics data; development of

point-of-care biomarkers

derived from omics data;

studies focused on clinical

decision-making

Computational power

(machine learning)

Better identification of neonatal

sepsis

Data collection and processing;

validating models

Improving digital

infrastructure; validation and

implementation studies

Treatment optimization

Oral administration Less invasive treatment Few data regarding

safety/efficacy

Randomized trials for oral vs.

intravenous treatment

IM administration Availability in low-resource

settings or in absence of

intravenous access

Reducing pain;

pharmacokinetic/pharmacodynamic

uncertainties

Randomized trials for IM vs.

intravenous treatment

Immunomodulation Improved treatment efficacy:

less mortality/morbidity

Limited knowledge on

mechanism and efficacy

Randomized clinical trials

Therapeutic drug

monitoring/model-

informed precision

dosing

Optimal pharmacological effect

for individual

Lack of reliable/validated models Model development and

prospective validation

MIC guidance Effective treatment Lack of PK/PD data for neonates PK/PD studies for (preterm)

neonates

Treatment duration

Automatic stop

orders

Reducing overtreatment Changing clinical paradigm Quality improvement initiatives

Biomarker algorithms Reducing overtreatment; better

identification of sepsis

Limited or variable reference

limits for biomarkers; limited

sensitivity

Studies combining clinical

parameters and multiple

biomarkers; machine learning

approaches

Blood cultures Reducing overtreatment Obtaining adequate volume;

real-time blood culture reporting

Studies reporting

time-to-positivity, Studies

researching blood volume

sensitivity; studies evaluating

additional detection

techniques

General

Neonatal sepsis

definition

Reliable and clinically relevant

diagnosis

Defining criteria for organ

dysfunction; defining long-term

outcomes

Systematic reviews on organ

dysfunction

Researching

understudied

populations

Improvements for relatively

large population

Low sepsis incidence Large cohort studies in late

preterm and term populations
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CONCLUSIONS

The global burden of suspected neonatal infections remains
high in both preterm and term neonates. This results in a high
antibiotic exposure in the first weeks of life. The heterogeneity
of disease, together with increasing evidence with regard to
the negative effects of antimicrobials and emerging resistance
rates, ask for a holistic disease approach and improved treatment
strategies. Precision medicine is a promising development
involving improved stratification of neonates at every stage of
management, thereby facilitating precise balancing of under-
and overtreatment.

Key challenges in finding that balance consist of selective
but timely administration of antibiotics to those who need
treatment, and discontinuation or de-escalation of antibiotic
therapy when possible. Fortunately, continuous effort on the
development of prediction tools has shown to be beneficial and
led to a reduction of antibiotic prescriptions. Further research
on potential biomarkers, using omics, could lead to a combined
risk stratification tool. Moreover, in case of a true infection, those
tools would give insight in the patient specific immune signatures
triggered by the interaction of the host and the causative
pathogen and possibly even predict disease severity, thereby
allowing early, targeted initiation of supplemental therapy next
to antibiotics.

In addition, therapy should be safe and effective and
one should be well aware of the negative side-effects of
treatment such as microbiome perturbations. As the host-
pathogen interaction (“disease signatures”) is unique, treatment
should be guided using biomarkers and TDM instead of
being standardized for all patients. Add-on therapies such
as immune modulation should be considered based on these
disease signatures and should be administered timely and only
when indicated.

To achieve these objectives in a field with scattered but
promising developments, there is a need for focused and
concerted research efforts. For this, we propose a research
agenda (Table 1) with distinct implementation and development
opportunities toward a reality of precision medicine in neonatal
bacterial infections. This agenda is certainly not exhaustive, but
may serve as guidance in upcoming research efforts and can be
adapted with complementary and promising developments.

In conclusion, the field of precision medicine is an
exciting development offering many opportunities for better
management of neonatal bacterial infections. Some tools,
especially decision-making tools and algorithms are readily
available for implementation, whereas other tools such as
therapeutic drug monitoring and the use of omics still require
further development or validation. Research may focus on
the late preterm and term population and how they respond
to infection early in life as this group remains relatively
understudied. Finally, in the near future, advances in data science
and analysis are likely accelerate developments in precision
medicine for neonatal bacterial infections.
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Background: Infants presenting respiratory distress syndrome (RDS) not responding to

surfactant often receive a second instillation. Few studies evaluated the consequences

of this second administration. This study aimed at determining the outcome of infants

presenting persistent RDS and receiving an early second dose of surfactant.

Methods: Infants below 32 weeks’ gestation who received a second dose of 100mg/kg

of surfactant within the first 72 h of life, were retrospectively involved in this 42 months’

study. They were matched to two controls receiving a single dose of 200mg/Kg based

upon gender and gestational age.

Results: 52/156 infants receiving two doses (Group 2-doses) were significantly more

often SGA [22 (42%) vs. 21 (20%) p = 0.04] and outborn [29 (56%) vs. 13 (12%)

p = 0.001]. They had received antenatal corticos teroid therapy less often [26 (50%)

vs. 89 (86%) p = 0.001] and presented more severe RDS based upon FiO2 level,

oxygenation index and radiography. Group 2-doses survival was lower (65.4% vs. 79.6

% p < 0.1) but surviving infants did not have different morbidity than controls.

Discussion: Premature newborn receiving a second dose of surfactant had adverse

antenatal characteristics, presented more severe RDS and only partially responded to

the first dose. Outcomes of surviving infants who received 2 doses of surfactant were

comparable to others.

Keywords: premature, two doses surfactant, neonatal respiratory distress syndrome, outcome, mortality

KEYNOTES

- Newborn receiving a second dose of surfactant had adverse antenatal characteristics, presenting
with more severe respiratory distress syndrome initially and only partially responded to the
first dose.

- Infants mortality was higher when they had received 2 doses of surfactant.
- Outcomes of surviving infants who received 2 doses of surfactant were comparable to others.
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INTRODUCTION

Respiratory distress syndrome (RDS) is a progressive respiratory
failure caused primarily by a deficit of pulmonary surfactant and
a structural immaturity of preterm infants’ lungs. It is a major
cause of morbidity and chronic lung disease. According to the
latest European recommendations considering the generalization
of antenatal corticosteroids (1), prophylactic administration of
surfactant in preterm infants is no longer a valid option. Early
administration of surfactant is now recommended for preterm
infants who need intubation and for very preterm infants whose
mothers did not receive antenatal corticosteroids. A fraction of
inspired oxygen (FiO2) of 30% or more after 2 h of continuous
positive airway pressure (CPAP) may be predictive of CPAP
failure and should indicate surfactant replacement therapy (2).

More recent approaches to deliver surfactant while
minimizing invasive ventilation have been proposed (3):
less invasive surfactant administration (LISA) (2) or similar
procedure [MIST: minimally invasive surfactant therapy (3)],
using an intra tracheal catheter or a feeding tube during CPAP
without intubation and mechanical ventilation. However, in case
of persistent RDS after a first dose of surfactant, the management
remains controversial and the use of a second dose of surfactant
is a common but poorly defined practice in timing and dosing.
A second dose of surfactant has been suggested as an option
when encountering difficulties in weaning from mechanical
ventilation, with chest X-rays showing persistence of RDS few
hours after the first dose. Studies have used an ultrasound score
to better identify the need for a second dose of surfactant (4–6).

In 1993, Halliday et al. (7) compared high and low dose
surfactant regimen for the treatment of RDS and showed that
the high dose regimen (total dose of 600 mg/kg) of Poractant
alfa was not superior to the low dose one (total dose of 300
mg/kg). On the other hand, according to Dunn et al. in1990 (8),
the administration of several doses of Beractant seemed more
effective, but the optimal dosage and time interval between doses
were not clearly defined. Of note, this study was carried out on
more mature newborn (30–36 weeks of gestation). In a Cochrane
meta-analysis, Soll et al. (9) demonstrated that a multiple dose
regimen of surfactant, rather than a single dose, further reduced

the risk of pneumothorax (RR 0.51, 95% CI 0.3–0.88) and was
associated with a tendency toward a reduction in mortality.
Another study by Speer et al. (10) showed a decrease in mortality
and pneumothorax in neonates receiving 3 doses (400 mg/kg) of
Poractant alfa.

All above studies, conducted at a time when antenatal
corticosteroids were not yet routinely used, showed decreased
rates of pneumothorax and a tendency toward a reduction in
mortality in children who received more than one dose of
surfactant for persistent RDS after the first dose.

Abbreviations: BPD, bronchopulmonary dysplasia; CPAP, continuous positive

airway pressure; FiO2, fraction of inspired oxygen; GA, Gestational age; HMD,

hyaline membrane disease; Paw, airway pressure; Pep, positive expiratory pressure;

PtCO2, transcutaneous pressure in CO2; RDS, Respiratory distress syndrome;

PRM, premature rupture of membranes; SGA, small for gestational age.

Figueras Aloy et al. (11) worked on defining an optimal timing
of the administration of the second dose of surfactant. The
57 newborn included in their study received a second dose of
surfactant at either 2 or 6 h of life. Results showed a moderate
improvement in premature infants of <1,000 g having received
the second dose at 2 h of life.

The official recommendation guidelines state that “an
additional dose of 100 mg/kg may be administered 6 to 12 h
after the first dose to neonates with persistent signs of respiratory
distress and remaining on ventilatory support. The cumulative
total dose should not exceed 400 mg/kg. ”(12).

Few studies on the administration of two doses of surfactant
are available and do not define a target population. We still do
not really know whether a second dose of surfactant instillation is
indeed beneficial. Many questions remain unanswered regarding
the time delay between the first and second dose, the correct
dosage to be administered and the criteria required for its
administration. The aim of our study was to determine
primarily the survival then secondary the short-term outcomes
of very premature newborn presenting with persistent RDS
who received a second dose of exogenous surfactant. Other
secondary outcomes were to characterize this population of
premature newborn and compare it to the infants who only
received one dose of surfactant over the same period of
time, in order to determine criteria to select which newborn
could benefit from the administration of a second dose
of surfactant.

MATERIALS AND METHODS

Very premature infants were involved in a monocentric
retrospective cohort study in the level 3 maternity hospital of
Nancy from November 1st, 2013 to April 30th, 2017 using
infants’ medical records. All infants born before 32 weeks of
gestation and who received two doses of surfactant were included
in the study. This study was approved by the Commission
Nationale Informatique et Libertés and recorded under the
number R2018-09.

Infants who presented congenital heart disease or major
congenital malformations were excluded.

The primary outcome measure was survival. Secondary
outcome was short-term morbidity of preterm neonates who
received a second dose of surfactant for persistent RDS after a
first dose of 200 mg/Kg of Poractant alfa. A favourable evolution
was defined by survival and a length of hospitalization below the
3rd quartile of the hospitalisation duration of newborns receiving
a single dose of surfactant.

Perinatal data included obstetric and neonatal information:
gestational age (GA), calculated with date of last menstruation
and first trimester ultrasound; birth weight; gender; single or
multiple pregnancy; mode of delivery; antenatal corticosteroids;
small for gestational age (SGA) defined by a birth weight less
than the 10th centile of the weight expected for their gestational
age, evaluated by Fenton growth chart (13); premature rupture
of membranes (PRM); 1-min and 5-min Apgar score; umbilical
cord pH; early onset sepsis; ventilator settings; timing and dosage
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of the first and second dose of surfactant; severe RDS was defined
by a grade greater than or equal to grade 3 radiologically.

We also recorded all additional respiratory treatments:
Doxapram, caffeine, inhaled NO, and corticosteroids.

Then, we evaluated morbidity and mortality (events and
dates) by the incidence of death, patent ductus arteriosus
(PDA) requiring treatment, necrotizing enterocolitis (NEC) as
defined by Bell (14), retinopathy of prematurity (ROP) stage
2, 3 and higher (15), late onset sepsis, pneumothorax, severe
intraventricular haemorrhage defined by a grade of 3 or 4
(16), duration of mechanical ventilation and bronchopulmonary
dysplasia (BPD). BPD was defined as mild when the infants
required 21% of FiO2 at 36 weeks of gestation, as moderate when
they required oxygen with FiO2 < 30%, and severe when they
required oxygen with FiO2≥ 30%. (17).

Statistical Analysis
Fifty-two patients received 2 doses in the cohort of 400 very
premature infants born during the study period. Two controls
per patient, paired for sex and gestational age, were chosen for
the analysis. Thus, 156 patients were evaluated in this study.

Normally distributed data are presented as mean values with
SD; non-normally distributed data are presented as medians
with range or Inter Quartile Range (IQR). A Chi2 test or Fisher
exact test was used when appropriate for categorical variables.
For continuous variables not normally distributed, we used the
Mann-Whitney U-test in comparisons.

As the FiO2 values after the first dose of surfactant have
non-normal distributions and as our aim was more to identify
subgroups of subjects than to establish an equation for the whole
sample, we did not use multivariate regression models because
of the instability that would have affected some coefficients. We
chose a strategy allowing us to hierarchize variables and identify
subgroups of subjects with respect to the SGA, Maturation,
Outborn and FiO2 1h after the first dose of surfactant. We used
a Chi-squared automatic interaction detector (CHAID) method.
The IBM SPSS statistic software has extended CHAID algorithms
to handle target or predictor variables even if they are categorical,
ordinal or continuous. An alpha level of 0.05 was chosen as a
significant difference. All analyses were performed with SPSS
IBM Statistics V25.

RESULTS

From November 1st, 2013 to April 30th, 2017, 52 out of 400
newborns born before 32 weeks of gestation (13%) receiving early
surfactant eventually had two instillations within the first 72 h of
life (Group 2-doses). Gestational age was 27.0 ± 1.9 (Mean ±

SD); range (24–31.6) WGA and birth weight 972 ± 337g. These
children were matched on sex and term of birth with 104 children
who received a single dose of surfactant over the same period
(Group 1-dose).

Newborns’ adaptation to extra uterine life, evaluated on cord
pH value (p= 0.18) and 1-min and 5-min Apgar score (p= 0.15;
p = 0.16), was not significantly different between the two
groups (Table 1).

TABLE 1 | Perinatal characteristics of the neonates.

Group 1-dose

(104)

Group 2-doses

(52)

p

Males, n (%) 54 (52) 28 (54) 0.82

Gestational age, mean, (sd,

range), weeks

27.4 (1.9,

24–31.7)

27.2 (2.0,

24–31.6)

0.44

Birth weight, mean (sd), 982.5 (338.1) 953.8 (336.1) 0.46

SGA, n (%) 21 (20) 22 (42) 0.004

Prenatal corticosteroids,

n (%)

89 (86) 26 (50) 0.001

Incomplete steroid

maturation, n (%)

12 (13) 11 (48) 0.001

Outborn, n (%) 13 (12) 29 (56) 0.001

Caesarean section, n (%) 54 (52) 28 (53) 0.82

Premature rupture of

membranes, n (%)

32 (30) 21 (40) 0.23

Multiple pregnancy, n (%) 23 (22) 19 (37) 0.05

Mfi n (%) 15 (28) 30 (29) 0.97

Apgar score (median,

IQR:1/5min)

3(2,6)/6(5,7) 3(1,5)/6(5,7) 0.15/0.16

pH at birth, mean (sd) 7.30 (0.10) 7.26 (0.15) 0.18

SGA, small for gestational age; pH, potential hydrogen; MFI, maternal-foetal infections.

Bold values are statistically significant.

In Group 2-doses, infants were significantly more often SGA
[22 (42%) vs. 21 (20%) (p = 0.04)] and outborn [29 (56%) vs.
13 (12%) (p = 0.001)] than in Group 1-dose. They had received
antenatal corticosteroids therapy less often [26 (50%) vs. 89 (86%)
(p = 0.001)] and often incompletely [11 (48%) vs. 12 (13%)
(p = 0.001)] (Table 1). The mean time of administration of the
second dose of surfactant (100 mg/kg dosing) was 15 h 30min±

42min of life; range (3-64) h.

Primary Outcome
The survival was lower in Group 2-doses (65.4 vs. 79.6 %,
p= 0.049) (Figure 1).

Median duration of hospitalization for the surviving infants
in Group 1-dose was 77.5 days with an interquartile range
(IQR) = (59; 97). In Group 2-doses, the median duration
of hospitalization was 67 days, and 20 surviving infants
(58, 9 %) had a duration of hospitalization lower than or
equal to 97 days, the 3rd quartile of Group 1-dose duration
of hospitalisation.

For these infants with a favourable evolution, mean gestation
age was 28.7 (25.2–31.0) weeks of gestation, mean birth weight
was 1224g (880-1610g), SGA was present for 6 of them, and
half of them were outborn. There were 7 multiple pregnancies
and 8 children received antenatal corticosteroids, including 4
partial courses.

Secondary Outcomes
Respiratory Status Before Surfactant Administration
A significant difference was found both for the oxygenation index
(Paw x Fio2/PaO2), (p = 0.008) and Fi02 (p = 0.001) which
were higher in Group 2-doses (Table 2). Newborn infants in
Group 2-doses had significantly more severe HMD. Surfactant
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FIGURE 1 | Survival curve.

TABLE 2 | Respiratory criteria before surfactant administration.

Group 1-dose

(104)

Group 2-doses

(52)

P

Severe hyaline membrane

disease, n (%)

42 (41) 43 (84) 0.001

Fi02 0.5 (103) [0.3; 0.7] 0.7 (50) [0.59; 0.8] 0.001

Time of the first dose (hour

since birth)

1.5 (103) [1;2] 1 (51) [1;2] 0.02

Oxygenation index 8.28 (73) [3.8; 13.5] 10.6 (34) [7.9; 13.8] 0.008

Respiratory rate (cycles/min) 48.5 (102) [40; 50] 50 (47) [45; 55] 0.10

Pep in cm h 20 4 (99) [4; 4] 4 (47) [4; 4] 1

tcPCO2 in mmhg 51 (91) [44; 56] 51 (35) [44: 60] 0.58

Conventional mechanical

ventilation, n (%)

99 (96) 46 (92) 0.28

Dosage of the first dose

mean (mg/kg)

200 (103) [200; 200] 200 (52) [200;200] 1

Airway pressure in cm h 20,

median (n) [IQR]
8.2 (74) [7.7; 9] 8.3 (39) [7.5; 9.1] 0.63

PEP, positive expiratory pressure; tcPCO2, transcutaneous pressure in CO2; PAW, airway

pressure; PaO2, pressure in O2. Bold values are statistically significant.

was administered earlier in Group 2-doses (1 h after birth vs. an
hour and a half in Group 1-dose, p= 0.02) (Table 2).

Respiratory Outcome After the First Dose of

Surfactant
After the first dose of surfactant, FiO2 decreased significantly
in both groups, with a more important decrease in the two-
doses group who started with a significant higher FiO2 level (0.23
vs. 0.31, p = 0.001). Oxygenation index also decreased more in

TABLE 3 | Respiratory criteria after surfactant administration.

Group 1-dose

(104)

Group 2-Doses

(52)

p

Fi02 0.23 (102) [0.21;0.29] 0.31(48)[0.26;0.53] 0.001

Respiratory rate

(cycles/min)

40 (101) [30; 50] 50 (46) [40; 55] 0.001

tcPCO2 in mmhg 43 (94) [38.8; 49] 47 (39) [43: 59] 0.001

Oxygenation index 3.28 (79) [2.5; 4.5] 5.2 (35) [3.3; 7.4] 0.001

Pep in cmh 20 4 (90) [3; 4] 4 (42) [4; 4] 0.98

Conventional mechanical

ventilation, n (%)

90 (87) 43 (90) 0.69

Airway pressure in cm h 20,

median (n) [IQR]

8.0 (80) [7.0; 9.1] 8.1 (40) [7.4; 9.0] 0.66

PEP, positive expiratory pressure; tcPCO2, transcutaneous pressure in CO2; PAW, airway

pressure; PaO2, pressure in O2. Bold values are statistically significant.

Group 2-doses (3.28 vs. 5.20, p= 0.001). There was no statistically
significant difference in airway pressure (p = 0.66) and positive
expiratory pressure (p= 0.98) between the two groups (Table 3).

Infants receiving two doses of surfactant had significant
higher transcutaneous PCO2 [43 vs. 47 mmHg (p = 0.01)] and
respiratory rate [40 in Group 1-dose vs. 50 in Group 2-doses
(p= 0.001)] (Table 3).

FiO2 level > 0.3 1 h after the first dose of surfactant,
was associated with a sensitivity of 0.67 and a specificity
of 0.76 for receiving a second dose, by ROC curve analysis
with an area under the curve (AUC) (0.95 CI) = 0.778
(0.702–0.855) (Figure 2).
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FIGURE 2 | FiO2 level for a second instillation of Surfactant.

Morbidity
Bronchopulmonary dysplasia rates were not different between
the two groups (p = 0.88). Neither were other neonatal
morbidities such as late-onset sepsis, cerebral intraventricular
haemorrhage or ventricular dilatation, necrotising enterocolitis,
and retinopathy of prematurity (Table 4).

Mean duration of mechanical ventilation was significantly
lower in the one-dose group (5 days vs. 6 days,
p= 0.03) (Table 4).

Based on CHAID decision tree, outborn (p = 0.0001) is
the most discriminant variable among the 4 variables that
were significant in bivariate analysis (Table 1: SGA, Maturation,
Outborn and FiO2-1) analysed together to explain Group 2-doses
association (Figure 3). For the inborn infants (outborn = 0), the
second most discriminant variable is FiO2 1 h after first dose
instillation (p = 0.013). We may notice that 57% of Group 2-
doses infants were outborn and for the 23 inborn infants of
Group 2-doses, a cut of FiO2-1 at about 0.23 concerned 91%
of them.

Characteristics of the Infants Who Died
Table 5 shows the characteristics of the infants who died vs.
those who survived in Group 2-doses. Infants who died also had
incomplete corticosteroids maturation [12 (38%) vs. 11 (13%)
infants (p = 0.003) respectively] and their adaptation to extra
uterine life was worst in the group of dead infants as illustrated
by significantly lower Apgar scores (Table 5).

Respiratory settings were also significantly different, with a
maximal FiO2 of 0.73 in the group of infants who died vs. 0.55
(p = 0,002), and an higher OI (Table 5). The timing of the first
instillation of surfactant was not different between the infants
who eventually died (14 h and 15min of life) and the surviving

TABLE 4 | Neonatal outcome.

Group 1-dose

(104)

Group 2-Doses

(52)

p

Sepsis, n (%) 59 (57) 29 (55) 0.88

Severe bpd, n (%) 39 (38) 19 (37) 0.87

Bpd, n (%) 40 (39) 12 (25) 0.09

Patents ductus arteriosus, n (%) 42 (40) 29 (58) 0.04

Severe intraventricular hemorrhage, n
(%)

10 (9) 7 (13) 0.59

Rop, n (%) 25 (24) 18 (36) 0.36

Nec, n (%) 10 (10) 6 (11) 0.78

Doxapram treatment, n (%), 53 (51) 23 (46) 0.56

Caffeine treatment, n (%) 90 (86) 39 (76) 0.12

Corticosteroid treatment, n (%) 42 (40) 23 (46) 0.51

Pneumothorax, n (%) 2 (2) 4 (8) 0.09

Mechanical ventilation duration (days),

med (n) [Q1; Q3]

5 (104) [1;11.8] 6 (52) [4;15.7] 0.03

O2 duration (days), med (n) [Q1; Q3] 52.5 (104) [29.8;76]41.5 (48) [7.3; 74.8]0.31

Hospitalization duration (days), med

(n) [Q1;Q3]
77.5 (98) [59;97] 67 (43) [19;100] 0.31

Hospitalization during the first year 1 (76) [0;2] 1 (27) [0;2] 1

Mortality, n (%) 21(20) 18(35) 0.05

BPD, bronchopulmonary dysplasia; ROP, retinopathy of prematurity; NEC,

necrotizing enterocolitis.

infants (16 h and 30min of life in average). Characteristics of
dead infants in each group were compared and presented in
Table 5. The only significant difference between the two groups
was the absence of antenatal administration of corticosteroids for
44% in Group 2-doses vs. 14% in Group 1-dose (p= 0.03).

DISCUSSION

In this study we observed that the survival rate was significantly
lower in the group receiving two doses of surfactant. This
observation is in agreement with a recent study by Cosal et al.
(18) who found a mortality of 26 vs. 35% in our study. Few
publications are available with survival data for infants who
received two doses of surfactant but, these infants were sicker
with more severe RDS to start with. Thus, a poorer outcome
was expected. The need for multiple doses of surfactant could
potentially reflect severe underlying respiratory immaturity and
associated gas exchange challenges in these extremely premature
infants (12). In the study by Cosal and al (18) newborns had a
lower GA and they may have received more than two doses of
surfactant, while two was a maximum in our study.

The median length of stay for the 98 surviving infants who
received a single dose of surfactant was 77.5 days with an upper
quartile at 97 days. The median length of stay for infants who
received two doses of surfactant was 67 days, 62% of them staying
less than or 97 days. Therefore, we may consider that 62% of
the infants receiving two doses of surfactant had a short term
favourable outcome comparable to the infants who received one
dose only. To the contrary of Cosal and al (18) we did not observe
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FIGURE 3 | Decision Tree by CHAID method.

TABLE 5 | Perinatal characteristics of neonates comparing the dead and the living preterms in the group who received two doses of surfactant and comparing the dead

in the two groups.

DEAD

Group 2-doses (18)

DEAD

Group 1-dose (21)

SURVIVING

GROUP 2-Doses (34)

pa pb

Gestation age, mean, (range), WK 25.7 (24–28.8) 26.2(24.3–31.5) 27.8(24.3–31.5) 0.001 0.48

Birth weight, mean (range), g 785 (395–1,270) 820.1 (510–1,250) 1,043 (510–1,665) 0.01 0.69

Apgar score 1 and 5min 3

[1-5]

3.5

[1-5]

4

[2–6]

0.032 0.28/0.19

Median, [IQR] 6

[2.3–7]

6.0

[4.5–7]

6

[5.5–7]

0.018

Oxygenation index (paw x fio2 / pao2),

mean (range)

16.2 (8.47–46) 12 (3.7–53) 12 (3.7–53) 0.037 0.18

Maturation by corticosteroids n (%) 11 (61) 3 (14) 0.03

pa, comparison of dead in Group 2-doses vs. surviving in Group 2-doses.

pb, comparison of dead Group 2-doses vs. dead Group 1-dose.

an increase in major morbidities such as ROP, pneumothorax,
HIV or BDP in our population. This may be related to the lower
GA in Cosal study suggesting that these morbidities are more
related to the level of immaturity than to the instillation of a
second dose of Surfactant when needed.

In our study, the evolution of the infants was similar in both
groups in of terms of comorbidities and outcome. The duration
of mechanical ventilation was one day longer in the group that
received two doses which is not clinically significant with regards

to the severity of the initial respiratory disease. Also, the duration
of hospitalization was similar in both groups. So was the number
of re-hospitalizations during the first year of life.

Over 42 months, 13% of preterm infants below 32 weeks
of gestation (WGA) who had received a first early dose of
surfactant had a second instillation within the first 72 h of life
in our NICU. All patients were intubated shortly after birth.
Early use of intubation may be explained both by the severity
of the respiratory distress syndrome and by the large number
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of outborn infants whose airways needed to be secured for
transportation to the level III NICU. Premature infants receiving
a second dose of surfactant presented more antenatal criteria of
bad prognosis and more severe RDS which is consistent with the
study of Katz et al. (19).

In our study, infants who received a second dose of surfactant
were significantly more often SGA or born from multiple
pregnancies. They were more often outborn, received less
antenatal corticosteroid therapy and when they did, it was more
often incomplete. These results are consistent with the literature
as a complete antenatal corticosteroid therapy would improve
short and long term respiratory prognosis of the newborns (20).

As compared to infants who received only 1 dose of surfactant,
infants in Group 2-doses did not differ significantly with respect
to gender, method of delivery and the rate of premature rupture
of membranes. Newborns’ adaptation to extra uterine life,
evaluated on the cord pH value and on 1-min and 5-min Apgar
score, did not appear to differ between the two groups. These
results suggest that perinatal anoxia was not associated to the
administration of a second dose of surfactant. FiO2 requirements
were significantly higher for the infants who eventually received
a second dose of surfactant. But, the two groups did not differ
significantly with respect to ventilator settings (respiratory rate,
mean pressure, positive expiratory pressure) and tcPCO2. It
would seem logical that infants with a more severe radiological
respiratory disease and higher FiO2 requirements would also
require more aggressive ventilation but it was not the case in
our study.

All infants had received a first dose of 200 mg/kg of poractant
alfa (Curosurf R©). This recommended dosing is associated with a
reduction of the need for a second dose of surfactant according
to Singh and al (21). The timing of administration was slightly
but significantly different between the two groups, Group 2-
doses having received surfactant 15min earlier in average.
This difference may be explained by the frequent absence or
incomplete antenatal corticosteroid therapy in Group 2-doses
leading to a greater severity of RDS urging the use of surfactant.
However, an impact of this difference of 15min on the infant
outcome is unlikely.

According to our study, a criterion that may indicate the
need for administering a second dose of surfactant could be
the oxygenation index which seemed to be a good indicator
associated with RDS severity. Also, the oxygen requirements were
significantly higher to start with (FiO2 of 0.7 vs. 0.5, respectively).
Finally, RDS was significantly radiologically more severe in
Group 2-doses. These three indicators appear to be appropriate
to predict the severity of RDS and the need for a second dose
of surfactant when the first dose is not rapidly successful. Indeed,
there is also a difference regarding the response to the first dose of
surfactant, despite it was administered with the samemethod and
at the same dosage. One h after the administration of surfactant,
FiO2 andOI were still significantly higher in the two doses group.
So was the PCO2 level, despite a greater respiratory rate.

The mean delay of administration of a second dose of 100
mg/kg of surfactant was about 15 h and 30min of life in average.
In the literature there is no clear recommendation about the
time of administration of the second dose of surfactant. Studies

by Figueras et al. and Koskal et al. compared two groups who
received a second dose 2 h vs. 6 h after the first one. They showed
that the group with the shortest delay between the two doses
presented greater respiratory improvement (11, 22). These results
are consistent with our data suggesting that a shorter time could
be recommended for the infants who are non-responders, as early
as 1 h after the first dose in our study. The usual recommendation
to give a second dose 6 to 12 h after the first one (12) is broad
and may reflect the absence of appropriate data. To follow these
recommendations, one could suggest considering 6 h as the very
last limit after the first dose for indicating a second dose of
surfactant, in case of persistent RDS.

In the studies allowing two doses, including ours, the
response to the first dose of surfactant was significantly lower.
The physiopathology of this lesser response remains unclear.
Because infants needing a second dose had a significantly lower
gestational age, less antenatal steroids, and more patent ductus
arteriosus, lung immaturity leading to more vulnerability to
barotrauma could be responsible of the lesser response to the
first dose of surfactant. The study by Speer et al. describes a
significant inflammatory process inducing lesions of the alveolar-
capillary unit, allowing proteins of the serum to pass into
the alveolar lumen and decreasing the effectiveness of the
surfactant. An early repeated dose of surfactant might then
help to reduce and prevent somehow this inflammation (23).
One of the limitations of our study is the fact that it was a
retrospective study. Because the prevalence of a second dose
of surfactant is rather low (13%) the power of the study is
low despite this was a retrospective study of all cohort of
patients. Anyhow, we did not observe any significant difference
for morbidity in the survivors. Thus, our study suggests
that giving a second dose of surfactant seems indeed rather
relevant. Another limitation is the large number of intubated
children, the intubation criteria in our units should be re-
evaluated.

CONCLUSIONS

The administration of a second dose of surfactant in very preterm
infants is difficult to predict. Nevertheless, our study showed that
outborn birth was the main indicator of the need for a second
dose. Physicians should also be alert in case of the absence of
appropriate antenatal maturation, multiple pregnancy, and SGA.
Some other indicators associated with an increased risk of a lesser
response to a first dose of surfactant have been shown, such as a
high oxygen requirement with an elevated oxygenation index and
a high grade of severity on chest radiography or lung ultrasound.
This observation could help to closely monitor these infants and
administrate earlier a second dose of surfactant improving the
overall outcome.

Thus, one could suggest that an FiO2 level > 0.3 1 h after a
first dose of surfactant, associated with persistent signs of RDS,
might be a guide to support a second dose of surfactant. Further
studies are needed to determine more precisely the time of
administration of a second dose of surfactant in case of persisting
RDS after a first early dose.
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Despite advances in neonatal care to prevent neonatal brain injury and

neurodevelopmental impairment, predicting long-term outcome in neonates at risk

for brain injury remains difficult. Early prognosis is currently based on cranial ultrasound

(CUS), MRI, EEG, NIRS, and/or general movements assessed at specific ages,

and predicting outcome in an individual (precision medicine) is not yet possible.

New algorithms based on large databases and machine learning applied to clinical,

neuromonitoring, and neuroimaging data and genetic analysis and assays measuring

multiple biomarkers (omics) can fulfill the needs of modern neonatology. A synergy of

all these techniques and the use of automatic quantitative analysis might give clinicians

the possibility to provide patient-targeted decision-making for individualized diagnosis,

therapy, and outcome prediction. This review will first focus on common neonatal

neurological diseases, associated risk factors, and most common treatments. After that,

we will discuss how precision medicine and machine learning (ML) approaches could

change the future of prediction and prognosis in this field.

Keywords: personalized medicine, brain injury, intraventricular hemorrhage, stroke, newborn, preterm, artificial

intelligence, precision medicine

INTRODUCTION

Despite enormous advances in neonatal care to prevent neonatal brain injury and future
neurodevelopmental impairment, predicting long-term outcome in neonates at risk for brain
injury remains difficult. Parents and families of newborns admitted to the NICU with brain injury
inevitably face many unknowns. In the initial period after birth, their first question will usually be:
“Will my baby survive?” immediately followed by other fundamental questions such as: “What kind
of future can we expect for our child? And for us as a family?” or “Will my baby be able to walk?
Will he/she go to school?”

Currently, prediction of outcome is based on developmental milestones measured at specific
ages. Early prognosis is based on CUS, MRI, EEG, and/or general movements assessment (GMA)
assessed during follow up visits. These methods’ predictive power is based primarily on population
data reflecting the general outcome in similar children. Thus, predicting the outcome in a
specific individual (personalized prediction medicine) is not yet possible and is urgently needed.
Estimating the most accurate prognosis, as early as possible, is essential to adequately inform
the child’s family and begin intervention therapy even before the onset of clinical symptoms,
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particularly given that the brain’s plasticity is highest in the first
few months after birth. An individualized approach to neonatal
brain injury and neurologic-oriented precision medicine is
warranted for fragile neonates, not only for outcome prediction
but also for preventing or reducing neonatal brain injury and
supporting decision-making. Perinatal conditions leading to
brain injury in the neonatal period include hypoxia-ischemia,

arterial ischemic stroke, and intraventricular hemorrhage

and especially its complications [post-hemorrhagic ventricular
dilatation (PHVD) and periventricular venous hemorrhagic
infarction (PVHI)], primary causes of neonatal mortality, and
life-long disabilities such as epilepsy and cerebral palsy (1, 2). It
has become clear that there is a need for individual and precise
information on the spectrum of risk factors, symptoms, early
detection, type, and location of brain injury to design/initiate
effective therapeutic and supportive strategies.

In a NICU, medical professionals are continuously trying to
obtain as much information as possible on the patients in their
care. Education and experience provide them with the skills to
make the right decisions. However, the patient load is high.
Furthermore, the human mind can only recall the outcome of
the most recent or complicated case. Computer programs can
approach human cognitive tasks. Thus, a possible approach to
fulfill the needs of modern neonatology is developing new tools
for a precision medicine approach based on large databases,
and machine learning (ML) applied to neuromonitoring and
neuroimaging data and genetic analysis and assays measuring
multiple biomarkers (omics). A synergy of all these techniques
and the use of automatic quantitative analysis could give
clinicians the possibility to provide patient-targeted answers
to parents’ questions. Artificial intelligence can mimic human
experience-based-learning with ML supervised by experts. ML
learns from past experiences, identifies trends and patterns in
data, and uses it to build a model or algorithm. These algorithms
can be used afterwards to make predictions on new data as a
supportive-decisionmaking tool. MLmodels can be created from
data where the outcome is known (supervised learning). Also,
ML can be used to identify patterns in data without previous
knowledge (unsupervised learning).

This review will first focus on common neonatal neurological
diseases such as perinatal hypoxia-ischemia, perinatal ischemic
stroke and intraventricular hemorrhage and their risk factors
and most common treatments. Afterwards, we will focus on
how precision medicine and ML approaches might accurately
identify infants who will develop HIE and cerebral palsy. We
will primarily discuss the newest (and with highest predictive
value) clinical, neurophysiological, neuroimaging, and “omics”
techniques, that in our opinion, could change the future of
prediction and prognosis in this field. However, we are aware that
the present review cannot be comprehensive of all the techniques
in the field, therefore we chose to focus on a limited list where
the first steps are already taken toward a more individualized
neonatal care and a better prediction.

Hypoxic-Ischemic Encephalopathy
Hypoxic ischemic encephalopathy (HIE) is characterized by
a disturbed neurologic function in the perinatal period,

manifesting with an abnormal level of consciousness, seizures,
respiratory insufficiency, and depressed tone and reflexes (3).
Currently, the only effective treatment to reduce death or severe
long-term neurological impairment is therapeutic hypothermia,
which led to an increase in survival rate, with a persistent rate
of death and disabilities around 16–30% (4, 5). However, timing
of intervention is a significant factor in improving outcome and
treatment efficacy (6).

Multiple mechanisms are involved in brain injury
pathogenesis, such as hypoxia-ischemia, inflammation,
excitotoxicity, and oxidative stress (7). The degree and extent
of injury and individual vulnerability depends on sex, genetic
background, maturational age, and the extent of brain injury
and the degree of brain development of particular regions at the
moment of insult (8, 9). Antenatal conditions such as maternal
infection/inflammation, intrauterine growth restriction in utero
hypoxia can also influence and modulate vulnerability to brain
injury (7). Furthermore, different stages of brain injury can
be recognized, and, for each stage, different mechanisms are
involved. This information is critical to program therapeutic
interventions (10, 11). Recent findings and ongoing studies,
using ML-based on big data and -omics approaches, suggest
that by combining clinical, neurophysiological, neuroimaging,
and metabolic/(epi)genetic data, it might be possible to identify
infants who will develop NE and cerebral palsy accurately,
shortly after birth (12, 13). This would allow early initiation of
therapy. However, these methods are currently not yet available
at the bedside.

Perinatal Arterial Ischemic Stroke
Perinatal arterial ischemic stroke (PAIS) is a relatively common
(birth-prevalence in term and near-term newborns ranges from
6 to 17/100,000) (14) and a severe neurologic disorder affecting
primarily term infants (15). The actual treatment is supportive;
however, neuroprotective approaches have been developed and
are currently under evaluation in clinical trials. Among them,
therapeutic hypothermia, erythropoietin, and stem cell therapy
showed promising results in pre-clinical and pilot studies (16–
18).

Sex (male), obstetrical conditions (first pregnancy, caesarean
section), and perinatal complications such as perinatal hypoxia,
and foetal/neonatal inflammatory state, are most commonly
associated with neonatal stroke (19). In general, most studies
emphasize the role of maternal/fetal infection/inflammation (20).
Inherited or acquired prothrombotic status contributes minor to
the PAIS (21). The cumulative perinatal risk factors increase the
incidence dramatically (22). Other conditions, such as bacterial
meningitis, hypoglycemia, and congenital heart disease, may also
be involved as risk factors in PAIS development (23).

Few studies using ML have attempted to obtain reproducible
automatic segmentation of the stroke lesion volumes, mainly
in adults (24). A comparative study evaluating different
segmentation (simple vs. complex ML) methods shows that
high-level ML methods lead to significantly better segmentation
results compared to the relatively simple classification methods.
However, none of the methods could achieve results in the
range of the human observer agreement (24). Thus, more studies
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are needed in this field since segmentation can help quantify
the size and location of injury to test the efficacy of therapies
and prognosis.

Intraventricular Hemorrhage (IVH),
Periventricular Hemorrhagic Infarction
(PVHI) and Post-hemorrhagic Ventricular
Dilatation (PVHD)
Intraventricular hemorrhage (IVH) and its severe complications:
PVHI and PVHD, are common conditions after premature birth
and are frequently associated with mortality and adverse long-
term neurodevelopmental outcome (25). Regarding treatment,
IVH prevention bundles such as delayed cord clamping,
minimal handling, midline head position, limiting the number
of infusions, and frequent multidisciplinary assessments have
emerged as essential tools for reducing IVH morbidity (26–29).

Most relevant risk factors are lower gestational age, absent
antenatal steroid treatment, low Apgar scores, pneumothorax,
early sepsis, inherited thrombophilia, and the use of inotropic
drugs during the first days of life (30, 31). However, recently
Tortora et al. (32) suggested that the congenital variation in
the vascular architecture of subependymal veins might play a
role in the pathogenesis of IVH, especially when other risk
factors affecting the cerebral circulation occur. Another recent
study demonstrated that the presence and expression of specific
vascular endothelial growth factor (VEGF) genetic phenotypes
were associated with higher incidence rates of IVH in extremely
preterm newborns (33). Regarding the possibility to apply ML
to diagnose or prevent consequences of IVH in preterm infants
early, one study attempted to determine whether ML techniques
would be able to identify specific clusters of risk factors with
different probability estimates for severe neonatal morbidity
(including IVH) in preterm infants, with promising results (34).
However, there is still much room for improvement, and further
studies on this field are needed before clinicians will be able to
use these tools in daily practice. A first, fundamental step can be
to build a big publicly available dataset of clinical data, CUS and
MRI images, neurophysiological and biochemical/genetic data by
which deep ML models can find more generalized features to
improve their performance.

THE ROLE OF PRECISION MEDICINE FOR
“BRAIN ORIENTED CARE”

Advances in neonatal care, specifically “brain oriented care,”
particularly the use of therapeutic hypothermia for the
treatment of hypoxic-ischemic encephalopathy, paved the way
for neuroprotection in newborns at risk for brain injury. A
multidisciplinary team for “brain-oriented care” is warranted
in the NICU to optimally implement such treatments (26)
and provide tailored care. This team should include pediatric
neurologists, neonatologists, and “brain-oriented” specialized
nurses (26). Furthermore, specific protocols should be combined
with neuroimaging (MRI) and neuromonitoring [video multi-
channel EEG and amplitude-integrated EEG, near infrared
spectroscopy (NIRS)] (Figure 1). Moreover, laboratory support

FIGURE 1 | Precision medicine for brain-oriented care.

for biomarkers, genetic and metabolic tests, and data scientists
to analyze big data providing rapid algorithms for diagnosis
and ad hoc treatments should be available. Dissemination of
knowledge and research personnel and facilities is also warranted.
Furthermore, genuinely personalized medicine is unlikely to be
realized without the use of artificial intelligence (AI) (35) and
ML. In neonatal neurology, ML is used to prevent brain injury
from the continuous assessment of vital signs (36). Fairchild et
al. (37) used a heart rate characteristic index (HRC index) from
the first 28 days after birth in preterm infants and related this to
neurodevelopmental outcome. They found an abnormal HRC to
correlate with acute brain injury.

Much effort wasmade to develop automated seizure detection.
When tested, all algorithms showed clinically relevant detection
rates (38). Doyle et al. (39) and Malarvilli and Mesbah (40)
used heart rate variability to detect seizures. Their model
showed relevant results with sensitivity and specificity above 80%.
Karayiannis et al. (41) designed a trained neural network that
was able to distinguish seizures from random infant movements
based on video images. In the term infant, encephalopathy
severity can be classified based on the EEG signal. Several
attempted to grade the degree of abnormality in the EEG of a
neonate with hypoxic-ischemic encephalopathy (42). The ML
models were suitable as a clinical decision support tool to
predict outcome after hypoxic-ischemic encephalopathy (43).
Furthermore, evaluating the human connectome and its relation
to normal and abnormal development in preterm and term
infants is virtually impossible without ML (44). AI and ML are
developing fields of research and will be introduced in clinical
practice. Moreover, the interpretation of MRI images of term and
preterm infants using ML can possibly individualize the outcome
prognosis. ML understanding of EEG patterns can potentially
guide medical treatment and the use of sedation. EEG and
vital parameter analysis can explore sleeping patterns in preterm
babies. The potential of automatically warning a caregiver when
a baby is sleeping makes true personalized developmental care
possible (45, 46).

The combination of clinical and ML tools trained
on combined datasets of MRI, EEGs, clinical and
biochemical/genetic data would hopefully help clinicians in
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providing all the treatments and support to mitigate the long-
term effects of brain injury through the use of “brain oriented-
care” during the whole admission and after discharge in a
follow-up program.

Particularly, many efforts have been put into implementing
MRI, EEG, GMs, Hammersmith Infant Neurological
Examination (HINE) training for clinicians worldwide.
However, achieving high education and gain experience in all
these techniques is very hard in small centers. Thus, providing a
decision support tool derived fromML algorithms can help every
physician in decision-making, hopefully, a relevant improvement
in long term outcome.

MRI

The use of magnetic resonance imaging (MRI), a non-invasive
neuroimaging method, has revolutionized our knowledge of
structural alterations to normal neural development leading
to neurological impairment later in childhood (47). MRI can
provide detailed info in vivo of the fetal and neonatal brain
that cannot be obtained in any other imaging modality,
helping clinicians define specific risk factors for neonatal brain
injury (48).

Standard sequences (T1 and T2-weighted images) provide
anatomic detail of the developing brain. They can detect
brain injury and lesions linked to common neurological
neonatal diseases: hypoxic-ischemic brain injury, perinatal
arterial ischemic stroke, IVH-PVHI, infections of the central
nervous system, and congenital cerebral malformations.
Furthermore, advanced MRI sequences can be used in specific
conditions to assess: brain metabolism (MR spectroscopy),
the presence of hemosiderin (susceptibility-weighted images),
microstructural integrity (diffusion tensor imaging), acute
ischemic injury (diffusion-weighted images), cerebral veins and
arteries (magnetic resonance angiography and venography),
brain perfusion (arterial spin labeling), and function (resting-
state functional MRI). Moreover, quantitative approaches
can measure brain volumes of all different regions, quantify
microstructural integrity and cortical development (47, 48), that
are otherwise difficult to quantify by eye. Ad hoc protocols and
specific methodologies have been developed in order to address
the methodological challenges of the newborn population such
as: sensitivity to motion, small brain size, different soft-tissue
contrast and incomplete maturation of brain structures (47).
Thus, the use of neonatal specific MRI post-processing tools is
essential in order to obtain reliable results (47).

Recently, newly developed ML techniques have been applied
to earlier acquired neonatal MRI databases to predict cognitive
scores at 4 years (49). Similar techniques have been used
to predict cognitive, and motor development in preterm
infants based on the microstructure of white matter regions
measured using diffusion tensor imaging (DTI) correlated with
the Bayley Scales of Infant-Toddler Development (BSID-III),
as well as to predict neurological outcome in patients with
neonatal encephalopathy based on connectivity networks (50–
54). Moreover, deep learning–methods based on neonatal MRI

and brain segmentation analysis have successfully automated
classification of impaired brain maturation in full-term infants
born with congenital heart disease and have provided insight
into the pathogenesis of cerebellar dysplasia (55, 56). However,
to optimize and refine the prognostic value of quantitative
MRI techniques, it would highly be recommended to use
standardized protocols, imaging modalities, and scan timing
across centers (57).

Quantitative MRI Techniques and Outcome
Prognosis
Quantitative brain MRI aims to offer objective and reliable
measures of brain structure, function, and brain connectivity, in
the normal and abnormal brain. The main aims of quantitative
neonatal MRI are: the development of automatic algorithms
for images interpretation (58), the detection, measurement, and
characterization of “subtle” brain abnormalities/injuries (59, 60),
and prediction of behavior, cognitive and motor long term
outcome based on sophisticated algorithms (61). Quantitative
MRI analysis is based on the use of multiple software packages
capable of drawing together neuroimaging data processing
routines from across, linking them together to implement end-to-
end processing and analytic solutions. These solutions not only
lead to detailed mathematical and statistical results but also help
to improve the reproducibility of measurements and reduce the
post-processing duration (62).

Using ML approaches, quantitative analysis of brain
morphometry showed significant deviations between different
groups of preterm infants (with or without brain injury,
extremely/moderately preterm) compared with full-term infants
(47). A study comparing visual vs. quantitative MRI assessment
of the thalami in infants with HIE showed that both approaches
are needed since visual assessment alone can underestimate
injury (63).

Automatic methods for brain volume and cortical
morphology quantification, early as well as term equivalent
age MRI, were good predictive tools of both motor and cognitive
outcome at 2–3 years (64, 65). Furthermore, quantitatively
assessed volume and location (frontal, parietal and temporal)
of white matter injury, measured from MRIs, were predictive
of motor outcome, while only frontal injury was predictive of
cognition in a large group of preterm infants (66).

Diffusion MRI quantitative measures have also been related
to later behavioral development in infants at risk for brain
injury. Using automatic voxelwise analyses of DTI showed
that WM microstructure in full-term newborns correlates with
neurodevelopmental outcome at 2-years (67). Another study on
neonatal connectome (detected using deep learning approaches)
at birth showed its predictive value on the 2-years cognitive
outcome in both full-term and preterm infants (68), with
connections involving the frontal lobe being the most important
for classification. Smyser et al. (69), using a multivariate
pattern analysis on resting-state functional MRIs from preterm
infants compared to term controls, were able to estimate birth
gestational age, and thus, brain maturity, with an accuracy
of 84%.
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Therefore, MRI advanced techniques provide direct
information on brain morphology, structural brain connectivity,
microstructural integrity of both gray and white matter, and also
on cerebral function (47), giving indirect insights into molecular
and cellular impairment in relation to brain injury. Thus, ML
application to neonatal MRI, combined with other clinical,
behavioral, and electrophysiological (see next paragraph)
markers, can play an essential role in early diagnosis and
prediction of neonatal brain injury and long-term impairment.

CRANIAL ULTRASOUND (CUS)

Ultrasound is a neonatal neuroimaging technique with several
advantages over other neuroimaging techniques: it is considered
less burdensome to the patient, requires no transport (e.g., to the
MRI unit), or sedation, it can be performed at the bedside with
acceptable disturbance to the infant. It can be initiated directly
after birth and repeated if necessary (70). Ultrasound is seen as
complementary to MRI because it still lacks several important
neuroimaging features such as quantitative tissue analysis US.
Furthermore, CUS is operator dependent, has a limited field of
view, and variability across the quality of ultrasound machines.
However, ultrasound technology developments are rapid, and
ultrasound techniques such as elastography, ultrafast Doppler,
contrast-enhanced ultrasound, and functional ultrasound are
examples of techniques finding their way in routine neonatal
care (71–75). Early and serial neuroimaging can provide valuable
information about the timing and evolution of neonatal brain
lesions in (pre-)term infants and enables visualization of (a-
)typical brain maturation (76).

Trained ultrasonographers, using modern ultrasound
systems, can detect most neonatal hemorrhagic and ischemic
brain lesions and major congenital as well as maturational
anomalies (77). The use of different and higher frequency
transducers (allowing submillimeter resolution) and additional
acoustic windows (e.g., the mastoid fontanel) improved
visualization, resulting in a more reliable detection of
abnormalities (78). Doppler sonography of neonatal brain
vessels enables the evaluation of intracranial blood flow velocities
and the patency of both arteries and veins (e.g., to diagnose
sinovenous thrombosis, arterial vessel occlusions) (78). Modern
ultrasound machines have advanced Doppler modes, allowing
visualization and quantification of low flows (1–2 cm/s) in small
vessels (100–200µm) (79).

ML in Cerebral Ultrasound Techniques
Both 2D and 3D ultrasound measurements are useful to study
(a-)typical fetal and neonatal brain growth (80). For example,
using 3D ultrasound measurements, ventricle volumes can be
calculated to evaluate PHVD (81, 82). Machine learning can be
applied to classify fetal brain ultrasound images as normal or
abnormal, to detect non-typical brain growth, and detect general
and focal brain injury (e.g., IVH) on neonatal CUS (83). ML
is very effective in ultrasound analysis by modeling complex
multidimensional data (84).

Ultrasound elastography is a relatively new technique that
calculates tissue stiffness and is used to study (ab-)normal

neonatal brain development. Two types of elastography are
frequently used in neonatal CUS studies: 1. strain elastography
(using external compression) and 2. shear wave elastography
(using applied acoustic energy). Contrast-enhanced neonatal
CUS (CE-CUS) is another promising technique to study
microvasculature and cerebral vascular autoregulation in infants
at risk for brain injury (e.g., infants with HIE, infants with
congenital heart defects) (85, 86). Contrast-enhanced neonatal
CUS uses injection of gas-filledmicrobubbles to study blood flow.
CE-CUS also allows targeted (localized) medication delivery,
which has potential future use for localized drug delivery in
the brain (87). Another fast-developing ultrasound technique
that holds promise for neonatal care is ultrafast doppler
(UFD). Perinatal brain injury is commonly associated with
inadequate brain perfusion, and UFD can be used to study
microperfusion in detail (72). Combining continuous UFD
with EEG could unravel the relationship between cortical
electrical activity and perfusion (e.g., infants with HIE and
seizures) (71).

Because of the large amount of data that the above-discussed
ultrasound techniques generate, the integration (registration)
with other imaging- and neuromonitoring techniques, and the
observer dependence, ML will play a significant role in the future
of neonatal CUS. ML will be needed to design clinical decision
support algorithms that take several individualized variables
into account.

THE USE OF EEG/aEEG FOR PRECISION
MEDICINE

Newborns with vital instability or at risk of serious morbidity
are admitted or transferred to the NICU, where vital parameters
such as heart rate, blood pressure, oxygen saturation, and
other measures are closely monitored. Additionally, brain
function monitoring is essential. EEG can monitor brain
function, giving continuous, long-time, and high-resolution
data on cortical function. Thus, EEG is a crucial tool for
precision medicine and a tailored approach to neonatal brain
injury. EEG can be useful for precise diagnosis, evaluation
of treatment efficacy, and prognosis. However, interpreting
conventional EEG presents significant challenges to clinicians,
and the most prominent current limitation is the need for
expertise in the interpretation of EEG traces (88, 89). Thus,
most NICU currently use the filtered and time-compressed
EEG trace (aEEG). aEEG is a non-invasive, inexpensive, bedside
tool that evaluates the brain functional status of the newborn,
with a relatively easier interpretation based on background
patterns recognition. This technique is a powerful tool for the
prediction of neurodevelopmental outcome in both preterm and
term neonates.

In the last decade, the automatic classification of EEG/aEEG
has been developed (90). Different automatic algorithm
classifications of background patterns, sleep-wake cycling, and
seizure detection have been investigated using machine learning
approaches (90). This paves the way for future incorporation of
these algorithms in the daily neuromonitoring of newborns at
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risk. The first positive results were obtained to predict adverse
seizure-related outcomes in critically ill children, albeit in a
small number of patients (91). Recently, an ML algorithm for
neonatal seizure recognition, ANSeR, was investigated in a
randomised controlled trial and was found to be safe and able
to detect neonatal seizures. However, it did not yet improve the
identification of individual neonates with seizures (38).

EEG/aEEG in HIE and Stroke Patients
Term infants with NE need continuous monitoring of brain
function using aEEG/EEG. The visual interpretation of the
background pattern is a useful tool to monitor the recovery
of cortical activity after HI injury (92, 93). Mainly, the
normalization of the EEG after HI injury correlates with the
outcome at 2 years of age. This process goes through different
recovery steps from almost no electrical activity at the time
of injury to the increasing number of bursts, toward a more
continuous EEG with the appearance of sleep-wake stages
(92, 94–96). For more personalized, brain-oriented care, visual
EEG interpretation requires high expertise, and the evaluation
incorporates multiple EEG characteristics such as continuity,
amplitude, frequency, symmetry and synchrony, presence of
sleep stages, and clinical information regarding gestational and
postnatal age, differential diagnosis, administration of sedatives
(94). This high expertise is not always continuously available
in the NICU. Thus, the development of real-time, automated
EEG analysis algorithms could be very valuable to assess cortical
brain activity for clinical management, treatment evaluation, and
prognosis. An important attempt was performed by Stevenson et
al. (94) who developed a method for automatically grading the
degree of EEG abnormality in neonates with HIE. EEG signals
were post-processed based on EEG automated classification
of abnormalities and assigned to one of four long-term EEG
grades, resulting in 83% of EEG correct grading from 54
neonates. Lofhede et al. (90) managed to achieve 100% correct
classification when separating burst suppression EEG from all
other EEG patterns and 93% true positive classification when
separating quiet sleep from the sleep stages in term infants.
Burst suppression (BS) has also been associated with poor
outcome (97), allowing for the analysis of interburst intervals
(IBI) to be used as a feature that can assess the recovery of the
infant’s brain. New machines for cerebral functional monitoring
incorporate automatic and real-time IBI calculation algorithm
(IBI%), making it available for the daily clinical management of
these infants.

Furthermore, as already stated, the presence of seizures
can be an indicator for neurodevelopmental outcome, as they
can be caused by HIE (98) or perinatal stroke and can
be detected through EEG data or clinical observation (92,
99–102). Automated seizure detection algorithms (SDA) are
being developed with a reasonable performance compared to
human expertise (103, 104) and with the advantage of being
more objective, capable of analyzing long EEG recordings
with low false detection rates and low missed seizures rates
(105). Yet, currently available SDAs show significant limitations
since seizures can be of short duration, low amplitude, and
possibly migrate from channel to channel, with large intra and

interpatient variability of seizure morphology and repetitive
patterns (106). Furthermore, there is a high number of artifacts
both of biological or technical origin mimicking seizures, that
in combination with the low incidence of seizures and the wide
range of normal rhythmic background activity (varying across
gestational ages and post-natal ages) can reduce the power in
seizure detection rates and increase the number of false-positive
detections (107).

Analysis of the newborn’s sleep-wake cycle (SWC) can also
provide helpful insights on outcome in infants with brain
injury (108). Regular SWC can distinguish those with proper
brain integrity from those with HIE (109), both in full-term
(96) and extremely preterms (110). Recent work suggested that
decreased EEG delta-frequency power and longer periods of quiet
sleep, and lower sleep-wake state entropy were also predictive
of worse neonatal neurobehavioral scores (110). Despite many
publications regarding ML and the development of automatic
EEG/aEEG algorithms, there are still studies failing to establish
the long-term predictive value of early aEEG/EEG characteristics
in neonates (111).

A possible solution to allow a more comprehensive picture
of the brain and thus yield more consistent, personalized, and
reliable results should be the use of a combination of different
measurements of brain dynamics, such as aEEG/EEG, NIRS,
and MRI, together with the clinical neurologic examination.
Nowadays, only a few studies on newborns have focused on the
use of combined early aEEG/EEG and other cerebral monitoring
techniques for the prediction of future outcome, with some
promising results (112–116).

EEG/aEEG Concerning IVH-PVHI
Preterm infants are at risk for peri/intra-ventricular hemorrhage,
especially during the transition phase, with associated adverse
outcomes such as death or neurodevelopmental delay (117).
Cerebral functional monitoring is essential to monitor preterm
brain function during the first postnatal days. aEEG/EEG is the
only effective bedside tool available in the NICU (118, 119).

In extremely preterm infants, EEG/aEEG develops through to
full term age showing increasing continuity of the background
patterns, appearance of specific transient waveforms typical of
prematurity, and the appearance of sleep-wake cycling (120).
Assessing the infants’ EEG recording can give insights into
individual brain maturation in relation to GA and postnatal age
(PNA), and serial recordings can help determine the timing and
severity of brain injury and, thus, outcome prognosis in this
high-risk group (120). Therefore, cerebral functional monitoring
(CFM) using aEEG/EEG is critical for diagnosis, prognosis, and
treatment in the newborn period (120). ML approaches have
been used to analyze several clinical factors in 230 very preterm
infants to predict the risk of intracerebral hemorrhage with good
predictive ability achieved with different combinations of clinical
and laboratory parameters (121). However, the developedmodels
need to be tested further in new larger datasets before being used
in the clinics.

Regarding neonatal seizures in preterm infants, these are
a distinctive sign of neurological dysfunction in early life,
and diagnosis is always challenging in this group. Clinical
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FIGURE 2 | aEEG for neonatal seizures.

features, when present, can often provide valuable clues
about etiology. However, the majority of neonatal seizures are
subclinical. Conventional video EEG and aEEG represents the
gold standard for diagnosis, but ∼15% of patients will require
more sophisticated algorithms for diagnosis, including metabolic
and genetic screening (110, 122, 123) (Figure 2). Currently,
the standard recommendation is to monitor all neonates at
high risk for seizures with long-term video-EEG (124) and
to develop brain-oriented NICUs where neonatologists and
pediatric neurologists would collaborate for early diagnosis and
ad hoc treatments based on electroclinical phenotypes and
etiology (125). Further steps should be taken in this direction in
a multicenter/multicultural approach.

NEAR INFRARED SPECTROSCOPY (NIRS)

Near-infrared spectroscopy (NIRS) is a bedside technique that
can provide valuable continuous information on neonatal
cerebral blood flow, cerebral blood volume, and oxygen
consumption (126–130). NIRS monitoring can help evaluate
the balance between tissue oxygen delivery and consumption,
allowing assessment of brain perfusion in critically-ill infants.
Several studies have shown correlations between cerebral
NIRS data and different neonatal conditions (e.g., anemia,
hypotension, patent ductus arteriosus, hypoxia, hypocarbia,
sepsis, HIE, stroke). The SafeBoosC studies have examined
steering treatment on guideline-driven cerebral rSO2 monitoring
in extremely premature infants to improve clinical outcomes
(131). Cerebral NIRS monitoring has now become a useful
addition to other monitoring tools in several neonatology
departments. NIRS monitoring has been incorporated in several
multimodal neuromonitoring approaches to assess neonatal
cerebral functioning in the past decade (132). For example,
NIRS is used to study cerebral vascular autoregulation, in which
machine learning is applied to unravel the complex interactions
between blood pressure, NIRS, and EEG data (114, 133–135).
ML has several uses in NIRS data analysis such as artifact

detection and correction, the quantitative evaluation of deep and
shallow tissue layers, to analyze the high-frequency raw NIRS
data signals to study in beat-to-beat variations within the NIRS
signals and to cope with the large amount of data when multiple
NIRS optodes are applied to the neonatal head (136, 137). We
believe that with the help of ML, NIRS will be part of the
multimodal neuromonitoring of infants at risk for brain injury
to diagnose injury and steer treatment to prevent further injury
and optimize neurodevelopment.

GENERAL MOVEMENTS ASSESSMENT
(GMs)

Assessment of general movements (GMs) is a
neurodevelopmental biomarker and evaluates the presence and
quality of spontaneous movements originating in the brainstem
(88). GMs begin in fetal life and are useful to build neural
connectivity between motor and sensory systems. The presence
of specific movement patterns such as cramped-synchronized
at term equivalent age, together with the absence of fidgety
movements at 3–5 months, are predictive of the development
of cerebral palsy and other developmental problems (138). GMs
has a sensitivity of 98% for cerebral palsy (CP) prediction and
represent, together with neonatal MRI (86–89% sensitivity) and
the HINE (90% sensitivity), the best predictive tool for detecting
cerebral palsy before 5 months’ of age and as early as by 3 months
(139–142). Limitations to the broader use of GMs evaluation is
the lack of trained clinicians and its subjective nature. Recently,
an attempt to a more objective and cost-effective alternative
based on the automatic video-based assessment of GMs has been
made (143–145). In the paper by Orlandi et al. (144) retrospective
videos were evaluated using automatic analysis, and GMs were
classified as typical or atypical using different classification
algorithms. This retrospective study showed up to 92% accuracy
in predicting CP. More effort should be made in this direction to
support clinicians in early diagnosis and treatment.

HAMMERSMITH INFANT NEUROLOGICAL
EXAMINATION (HINE)

As previously mentioned, HINE can predict the development
of cerebral palsy before 5 months of age with 90% sensitivity.
There is evidence that the congruent combination of abnormal
GMs trajectory, abnormal MRI and low HINE score is even more
accurate than the individual technique alone (139, 140). The
use of HINE plays a role also in the determination of severity
of disability, a very important matter for parents or caregivers.
Severity of motor outcome is difficult to predict before 2 years of
age due to the rapid brain growth and re-organization in response
to external stimuli and therapy. Thus, developing of motor skills
but also the inconstant and changing presence of hypertonia
(140), outcome prediction should always be discussed cautiously
and based on standardized examinations. In particular, the
following HINE cutoff scores predict the probable severity of
motor outcome before 2 years of age: 50–73 Indicates likely
unilateral CP (i.e., 95–99% will walk), • <50 indicates likely
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bilateral CP. Furthermore, a score <40 at 3–6 months indicates
the high chance of walking inability (142).

LARGE DATABASES

Many preterm infants are affected by the same neonatal
neurological incidents. However, their internal variation
in inflammatory response, environmental expositions, and
(epi)genetics can influence the etiology and treatment response.
Identification of individual risk factors and pathophysiological
reactions can lead to targeted interventions. The use of electronic
health records (EHR) has created vast amounts of clinical data
on infant treatment. Utilizing the knowledge extracted from this
data has the potential of providing individualized treatment plans
(36). Large databases consist of a combination of individuals.
These databases provide an insight into the epidemiology of
neonatal disease with trends over time and the distribution
of risk factors (146). Neonatal research networks, such as
the NICHD and Vermont Oxford network, are collaborative
networks that combine data from different hospitals. They can
combine relevant information on relatively rare diseases affecting
the newborn infant using large numbers. Shankaran et al. (147)
described a cohort of 4,216 infants to assess post-hemorrhagic
dilatation outcomes in extremely preterm infants. They were able
to identify several predictors of neurodevelopmental impairment
or death, such as surgery for retinopathy of prematurity, even
though the incidence in a general NICU would only be a
few cases.

Even more significant numbers can be obtained using
nationwide databases. Most of this database research is limited to
general mortality andmorbidity trends for extreme preterm birth
(43). Matsushita et al. (148) used the Neonatal Network of Japan
database to identify risk factors for epilepsy at 3 years of age in
VLBW infants. As only 1.7% of the cohort developed epilepsy, it
would have been almost impossible to identify clinically relevant
risk factors in a smaller cohort. Technological innovations make
it possible to combine different information sources and provide
information on a more detailed level. Clinically collected data
from EHR with well-regulated, international, and privacy proof
unrestricted access for researchers, such as the MIMIC-III and
AmsterdamUMCdb database, and the increased availability of
raw trial data could bring about a revolution in research on
preterm neonates (149–152).

(Epi)GENETICS AND OMICS—FUTURE

The future concept of personalized medicine will be based on
the idea that by using individual genetic/metabolic information,
scientistsmay ensure themost appropriate treatments to the right
patients—thus, “the right drug, at the right dose for the right
person” (153). Genomics and epigenetics, i.e., the interaction
between the genome and the environment, are changing the
concept of clinical medicine, and this is particularly true in the
field of neonatal neurology. Neonatologists and pediatricians
have the unique chance to ensure that young patients derive
maximal benefit from these new technologies.

In a recent study, epigenetic changes measured in blood
leucocytes and analyzed using AI/ML techniques appeared to
predict cerebral palsy accurately and provide crucial information
on the pathogenesis of long-term disability (12).

Both genomics and epigenetics will provide clinicians new
insights into the biological basis of health and disease (154). This
will also lead to the sometimes-challenging choices of both the
clinicians and the patients/families. Furthermore, understanding
the mechanisms through which the environment exerts changes
on genome expression will give new possibilities for new
treatments by modulating gene expression and should be further
investigated (155). In a not far-off future, knowledge of patients’
genomes will help improving diagnosis and, through informed
prediction of individual drugmetabolism and responsiveness, the
individualized selection of therapies.

Metabolomics can also provide valuable information for
outcome prediction. Metabolites offer a unique signature
potentially usable to predict neonatal diseases and evaluate
disease progression and treatments’ effect (156–158).

Metabolomic analysis performed in cord blood predicted
the development of NE with an AUC of 0.67, with lactic acid
and alanine as primary metabolite predictors for NE. When
metabolomic analysis results were combined with clinical data,
the AUC rose to 0.96 (13). Moreover, urinarymetabolic spectra of
extremely preterm infants early after birth were associated with
moderately to severely abnormal cortical grey matter and white
matter abnormalities at MRI performed at term equivalent age
MRI (158). A growing number of studies had been published
on this subject since metabolomic has the advantage of being
rapid and non-invasive. Thus, metabolomics could be useful for
monitoring early cellular injuries and cell death during perinatal
insults. Therefore, it can pave the way for the early preventive
measure to improve the neurodevelopmental outcome of the
affected newborns.

CONCLUSION

The machine learning approach will provide more detailed
information using AI for MRI, CUS, EEG, NIRS, and GM/HINE.
An algorithm combining all techniques might give the best
decision support tool for defining risk factors for brain injury or
impaired brain development, therefore enabling better treatment
and long-term outcome. In IVH, PAIS, and brain injury after
HIE, MRI can improve personalized prognosis and treatment
plan. EEG and aEEG provide more information on the brain than
just a background pattern and seizure activity. Together with
the HINE, GMs are the best predictive tools for early detecting
cerebral palsy, and automatization of GMs classification can
increase the rate of early diagnosis.

However, for the utilization of this potential, more expertise
and the dissemination of knowledge is essential. Machine
learning has the prospective of alleviating the task of bringing all
the pieces of knowledge together. With the increasing amount
of data on the infant in the NICU, it will become nearly
impossible to interpret all these variables for a clinician and use
it for the benefit of the individual patient. Artificial intelligence
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can fill (part of) the gap of knowledge and interpretation.
Especially when genetics, epigenetics, biomarker research, and
metabolomics will provide us with even more variables in the
near future. As the era of AI, -ethics, and –omics is approaching,
we must consider the Ethics. Will all babies benefit equally
from precision medicine? Most efforts to personalised medicine
require a high resource setting.MRI, continuousmonitoring with
ML interpretation, whole-genome sequencing, and even fully
equipped NICU are not available in most parts of the world.
Furthermore, to make an individual treatment plan and risk
assessment, many assumptions are taken into account. They hold
the risk of bias and even discrimination. Attempts to personalise
treatment plans must include careful ethical consideration;

therefore, it should eventually be considered a decision support
tool. Careful monitoring of infants in the perinatal period can

potentially identify and improve neonatal brain injury treatment.
“Precision medicine toward personalised care” is the aim for the
near future.
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