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Salivary Gland Carcinoma: Novel
Targets to Overcome Treatment
Resistance in Advanced Disease
Larissa Di Villeneuve 1, Ive Lima Souza 1, Fernanda Davila Sampaio Tolentino 1,

Renata Ferrarotto 2† and Gustavo Schvartsman 1*†
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Salivary gland carcinomas (SGC) account for less than 5% of head and neck malignant

neoplasms, further subcategorized in over 20 histological subtypes. For the most

part, treatment for advanced disease is guided by morphology. SGC in general

respond poorly to standard chemotherapy, with short durability and significant toxicity.

More recently, next-generation sequencing provided significant input on the molecular

characterization of each SGC subtype, not only improving diagnostic differentiation

between morphologically similar tumor types, but also identifying novel driver pathways

that determine tumor biology and may be amenable to targeted therapy. Amongst the

most common histological subtype is adenoid cystic carcinoma, which often harbors

a chromosome translocation resulting in a MYB-NFIB oncogene, with various degrees

of Myb expression. In a smaller subset, NOTCH1 mutations occur, conferring a more

aggressive disease and potential sensitivity to Notch inhibitors. Salivary duct carcinomas

may overexpress Her-2 and androgen receptor, with promising clinical outcomes after

exposure to targeted therapies approved for other indications. Secretory carcinoma,

previously known as mammary analogue secretory carcinoma, is distinguished by an

ETV6-NTRK3 fusion that can both help differentiate it from its morphologically similar

acinar cell carcinoma and also make it susceptible to Trk inhibitors. In the present article,

we discuss the molecular abnormalities, their impact on tumor biology, and therapeutic

opportunities for the most common SGC subtypes and review published and ongoing

clinical trials and future perspectives for this rare diseases.

Keywords: salivary gland cancer, molecular targeted therapy, androgen receptor, immunotherapy, ERBB-2

receptor, gene fusion, drug resistance

INTRODUCTION

Salivary gland carcinoma (SGC) is a rare tumor and represents ∼6% of head and neck cancers
(1). Malignant tumors of the salivary glands constitute a heterogeneous group of neoplasms
that vary depending on the histology and their anatomical location. According to the 2017
WHO Classification, there are 24 malignant histological subtypes (2). The most prevalent are
mucoepidermoid carcinoma (MEC), representing around a third of SGC cases, followed by adenoid
cystic carcinoma (ACC), with 23.8% (3). The parotid gland is the most frequent site of salivary
gland tumors, although only 25% of such lesions are malignant. SGC can also originate in the
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submandibular glands (40–45% of the tumors are malignant),
sublingual glands (70–90% are malignant), and minor salivary
glands (50% are malignant) (4).

Treatment for metastatic disease is still mostly based on
chemotherapy, despite low response, and survival rates (5).
Currently, encouraging progress in immunohistochemical and
molecular alterations, such as the presence of an NTRK fusion,
overexpression of Her-2 and androgen receptor, has been made
to improve outcomes with targeted therapy.

The aim of this article is to review the main molecular
and immunohistochemical characteristics of the most common
histological subtypes of SGC, in addition to reviewing current
data on biomarker-driven targeted therapy and genomic findings
that may be potentially actionable in the future.

MUCOEPIDERMOID CARCINOMA

MEC is themost common SGC (6). In addition to clinical staging,
the grade of the tumor is also a prognostic factor in MEC and
may guide treatment decision (7). Despite its prevalence, it is one
of the subtypes with the least breakthroughs achieved so far.

A unique t (8, 9) translocation, leading to the CRTC1/MAML2
fusion, is present in 56–82% of all MECs (10, 11). This fusion
protein induces aberrant activation of the Notch signaling
pathway, inducing cell proliferation and, therefore, tumor
progression (12). Data on how this abnormality impacts tumor
biology and prognosis are conflicting. While some series indicate
that fusion-positive MECs were diagnosed at an earlier stage,
with lower grade, and a better prognosis (8, 12, 13), other
studies do not suggest a prognostic role for the translocation (10,
14). CRTC1-MAML2-positive cells were sensitive to epidermal
growth factor receptor (EGFR) tyrosine kinase inhibition
pre-clinically, suggesting a potential role for such drugs (15).

The most common genomic abnormalities described in a
study of 48 MEC patients were as follows: CDKN2A (41.6%),
TP53 (39.6%), CDKN2B (29.2%), BAP1 (20.8%), PIK3CA
(20.8%), HRAS (10.4%), BRCA (10.5%) mutations, and ERBB2
amplifications (8.3%) (16). The latter, though infrequent, may be
amenable to Her-2 targeted therapy (17). TP53mutation is one of
the most common genomic alterations in MEC and is associated
with the transformation of low-grade into high-grade tumors
(12). In high-grade MEC, EGFR is overexpressed in 72.7% and
was associated with a more aggressive behavior (18).

SALIVARY DUCT CARCINOMA

Salivary duct carcinoma (SDC) is an aggressive subtype of SGC
that microscopically resembles high-grade ductal carcinoma of
the breast. They can develop as de novo disease or arise from
a pleomorphic adenoma (carcinoma ex-pleomorphic adenoma)
(19). The first line of treatment is currently based on platinum
chemotherapy, with low response rates and of short duration
(9). Biomarkers of interest have been found within this subtype,
showing promising results with targeted therapy.

Androgen receptor (AR) and Her-2 receptors are frequently
overexpressed in SDC. In a study of 177 patients with SDC,

AR was expressed in 96% of cases (20). Her-2 overexpression
can be found in one third to two thirds of cases, by
immunohistochemistry and/or fluorescent in situ hybridization
(FISH) (20, 21). These markers were not associated with disease
biology and prognosis.

As in breast cancer, patients with SDC, and Her-2
overexpression derive benefit from anti-Her-2 therapy. In a
phase II study, 57 patients with advanced SDC received docetaxel
and trastuzumab, with an objective response rate (ORR) of
70.2%. The median progression-free survival (PFS) was 8.9
months and overall survival (OS) was 39.7 months (22).

The use of double Her-2 blockade with trastuzumab and
pertuzumab was also evaluated in a basket study, which included
five patients with advanced, refractory SDC, all with Her-2
amplification/overexpression. Trastuzumab and pertuzumab,
without chemotherapy, yielded a partial response in four out of
five patients with Her-2-positive SDC (ORR of 80%) (23).

Ado-trastuzumab emtansine (T-DM1) was also studied in
another basket trial, where 10 patients with a median of two
previous systemic treatments and HER-2 amplification by next-
generation sequencing (NGS) had an ORR of 90%, half of which
were complete metabolic responses. Median duration of response
and PFS had not been reached with a median follow-up of 12
months (24). In this same study, the amplification of HER-
2 by NGS correlated well with HER2/CEP17 ≥2 by FISH or
IHC 3+ (24).

Treatment with androgen deprivation therapy (ADT)
has been proposed after progression to platinum-based
chemotherapy when AR is present. In a phase II study, 36
patients with metastatic or locally advanced unresectable SGC,
being 34 SDCs, received combined androgen blockade with
the luteinizing hormone-releasing hormone (LHRH) analog
leuprorelin associated with bicalutamide, with an ORR of 41.7%.
The median PFS was 8.8 months and median OS was 30.5
months. The treatment was well-tolerated, with a low rate of
toxicity (25). ADT was also studied in the adjuvant setting in a
retrospective study. Stage IVA/B, AR-positive SDC patients who
underwent a complete tumor resection received bicalutamide,
an LHRH analog or a combination of both. The treatment was
associated with a statistically significant increase in the 3-year
disease-free survival when compared to a control group (48.2
vs. 27.7%) (26). A randomized phase II study comparing the
efficacy and safety of ADT with platinum-based chemotherapy
as first-line therapy for patients with metastatic SDC and AR
expression is ongoing (NCT01969578).

Enzalutamide, a more selective AR inhibitor, was given as
monotherapy to patients with AR-positive SGC in a phase II
trial (27). The majority (85%) of patients had SDC and 32.6%
had prior AR-directed therapy. This study showed that 7 out
of 46 patients (15%) had a partial response as best response,
but only 4% (2/46) maintained the response until 8 weeks, thus
failing to meet its primary endpoint. Therefore, we favor the
administration of an antiandrogen agent in combination with an
LHRH analog.

The experience of patients with prostate cancer can again
be used in patients with SDC. Mechanisms of AR blockade
resistance have been discovered in castration-resistant prostate
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cancer patients. The AR isoform splice variant 7 (AR-V7) results
in a truncated receptor that lacks the binding site for androgen,
activated even in the absence of ligands and stimulating tumor
growth. Detection of AR-V7 in circulating tumor cells from
patients with castrate-resistant metastatic prostate cancer was
associated with worse PFS and OS in patients who received
abiraterone or enzalutamide (28). In salivary duct carcinomas,
the prevalence of AR-V7 is high, varying between 48 and 70%
(29, 30). Interestingly, it is frequently detected in treatment-naive
patients, as opposed to a mechanism of resistance to ADT as in
prostate cancer. Therefore, its role in ADT sensitivity in SDC
patients remains to be established, warranting further biomarker
analysis in future trials. One case report of a patient with AR-
positive SDC who expressed AR-V7 did not show response to
second-line hormonal therapy with abiraterone (31).

Other potentially targetable pathways found in 28 SDC
patients include TP53 (68%), HRAS (25%), PIK3CA (18%),
NF1 (18%), PTEN (10%), BRAF (7%), and NOTCH1 (7%).
In the same study, patients did not have common predictive
biomarkers of response to immunotherapy: 82% were PD-L1
negative, 91% had a low tumor mutational burden, and no
patients presented microsatellite instability (29). Tipifarnib, a
potent inhibitor of farnesyltransferase, an enzyme required for
downstream signaling in HRAS-mutated tumors, was evaluated
in 12 patients with SGC, with 4 being SDC, none of whom
achieved a response. A single patient with acinic cell carcinoma
had a partial response lasting at least 14 months (32).

SECRETORY CARCINOMA

Secretory carcinoma (SC), formerly known as mammary analog
secretory carcinoma (MASC), was first described by Skálóva
et al. a decade ago (33). It shows morphological, genetic,
and immunohistochemical similarities with breast secretory
carcinoma (34). One of the main differential diagnoses is acinic
cell carcinoma (AcCC), which typically contains a basophilic
cytoplasm with periodic acid-Schiff-positive zymogen granules
and a more diverse cytologic profile compared to SC (35). SC
has several architectural patterns (microcystic, solid, tubular, and
cribriform), an abundant and eosinophilic cytoplasm, uniform
proliferation and positivity for vimetin, mammaglobin, and
S-100 protein in immunohistochemistry (36). The presence of
a chromosomal translocation, t(12, 15), between the ETV6 gene
on chromosome 12 with NTRK3 on chromosome 15, generates
the fusion product ETV6–NTRK3. It can be detected with a high
specificity by reverse-transcriptase polymerase chain reaction
(RT-PCR), NGS, or FISH, being the gold standard methods for
the diagnosis of this subtype (33, 34). Nuclear pattern of pan-Trk
immunohistochemistry staining has a good sensitivity to detect
an ETV6–NTRK3 fusion, thus aiding in differentiating SC from
AcCC. However, it may miss other less frequent ETV6-X fusions,
only detected by FISH or RT-PCR (37).

SC is more commonly found in men (55%), with a mean age
of 44 years and mostly arising in the parotid gland, followed
by several head and neck locations, including the oral cavity,
submandibular glands, soft palate, buccal mucosa, base of tongue,

and lips (38). It usually presents with an indolent clinical course
and a good prognosis (39). Though a few cases of SC with high-
grade histology and aggressive behavior have been described in
association with ETV6-MET and ETV6-RET fusions, it has not
yet been possible to correlate these recently described fusions
with an overall behavioral pattern and disease prognosis (40, 41).

An NTRK fusion provides an actionable target for this disease
by the Trk inhibitors larotrectinib and entrectinib. The benefit
of larotrectinib was demonstrated by a phase II study including
12 cases of SC, with an objective response in 10 cases and
an ORR of 80% by investigator’s assessment (42). Entrectinib’s
activity was demonstrated by an integrated analysis of three
phase I and II clinical trials (ALKA-372-001, STARTRK-1, and
STARTRK-2), with the presence of seven (13%) cases of SC,
which demonstrated an objective response in six of the seven
cases (86%) (43). Both drugs received a tissue-agnostic FDA
approval for tumors harboring an NTRK fusion.

Mechanisms of acquired resistance to larotrectinib have been
described with an on-target mutation in the drug-binding site
(42, 44). Selitrectinib (LOXO-195), a second-generation Trk
inhibitor, was designed to overcome the acquired resistance to the
first-line treatment. A phase I/II trial is ongoing (NCT03215511)
and has evaluated 29 patients so far, with an ORR of 34% (45).

ADENOCARCINOMA, NOT OTHERWISE
SPECIFIED

Adenocarcinoma, not otherwise specified (NOS), presents as a
particularly difficult diagnosis to establish. It is characterized by
the presence of areas of glandular or ductal differentiation mixed
with a variety of specific growth patterns (46). Therefore, it is an
exclusion diagnosis. The literature is controversial regarding its
incidence among SGCs, ranging from 5 to 25% (3, 47). They are
highly malignant tumors, with an overall 15-year survival rate
of 3%, associated with early development of distant metastases
and limited treatment options (48). Since this entity can share
some characteristics of other SGCs, it is important to test for
actionable biomarkers, such as AR and HER-2. Despite at a lower
prevalence, they may be present and predict responses to targeted
therapy (26, 49).

IMMUNOTHERAPY IN NON-ADENOID
CYSTIC CARCINOMA

SGCs seem particularly resistant to immune checkpoint
inhibitors. However, they represent a rather heterogeneous group
of diseases that may behave differently in regard to the immune
system. Linxweiler et al. demonstrated a distinct behavioral
pattern in the different subtypes of SGCs. SDC exhibited higher
levels of immune infiltration, T-cell dysfunction, and higher
mutational load, whereas ACC presented with an overall lower
mutational burden and an immune-excluded environment (50).
PD-L1 expression was found to be associated with inferior
disease-free survival (51).

Clinically, the KEYNOTE-028 study, a phase Ib basket
trial, treated 26 patients with PD-L1-positive SGC with
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pembrolizumab at 10mg/kg every 2 weeks. The low rate of PD-L1
positivity (<30%) limited patient accrual in the screening phase.
Patients had adenocarcinoma, NOS (38%), mucoepidermoid
(12%), undifferentiated (8%), squamous cell (8%), andACC (8%).
Despite being a PD-L1-enriched cohort, the results were overall
disappointing, with an ORR of 12%. There were only three partial
responses (two in adenocarcinoma, NOS and one in a high-grade
serous carcinoma). The median PFS was 4 months (95% CI: 2 to
5 months) and median OS was 13 months (95% CI: 6 months to
not reached) (52).

Another programmed-death 1 (PD-1) inhibitor is being
evaluated in an ongoing phase II trial (NISCAHN trial). The use
of nivolumab in 52 non-ACC patients demonstrated a 6-month
non-progression rate (NPR6M) in 7 patients (14%, 90% CI: 6.8–
24.7), with 2 partial responses (3.8%) and 22 patients with stable
disease (42.3%). The median PFS was only 1.8 months (95% CI:
1.7–3.5) (53).

The role of tumormutation burden (TMB) is unclear in SGCs.
The subgroup analysis by TMB from the KEYNOTE-158 trial
led to the approval of pembrolizumab for patients with TMB
>10 mut/Mb as an agnostic treatment. There were three patients
with salivary histologies and high TMB, one of whom achieved a
partial response (54).

The addition of vorinostat, a histone deacetylase (HDAC)
inhibitor, to pembrolizumab was evaluated in a phase I/II trial
with 25 SGC patients. The association yielded a partial response
in 4 patients (16%) and stable disease in 14 (56%), with a median
PFS of 6.9 months and a median OS of 14 months (55). The
combination of nivolumab and ipilimumab is being evaluated in
an ongoing phase II study (NCT02834013). A summary of all
relevant trials in non-ACC histologies is displayed in Table 1,
and ongoing studies are shown in Table 2. We acknowledge
the challenge in treating advanced SGC and propose practical
alternatives to chemotherapy based on biomarkers in daily
practice, displayed in Figure 1.

ADENOID CYSTIC CARCINOMA

ACC is the second most common malignant salivary neoplasm,
accounting for around one quarter of cases. It is more frequently
diagnosed in females, affecting all age groups and often arising
from the minor salivary glands (3, 67).

ACC usually has an indolent course, albeit difficult to eradicate
due to its persistent nature and recurrent growth pattern, with
predilection for perineural invasion. The literature demonstrates
that 5-year disease-free survival in patients with ACC is only
30–40% (67). ACC commonly metastasizes to lungs, bones, and
liver, with a median OS of 20–32 months in this setting (68).

While surgery, with or without postoperative radiotherapy, is
the mainstay treatment for localized disease, systemic therapy
is reserved to the metastatic or unresectable locally advanced
setting, with poor response rates and no consensus about the
proper timing to be initiated. In this section, we will review
proliferation pathways, molecular insights, and the development
of new targeted drugs for patients with advanced disease. Though
several actionable pathways are under scrutiny, limited evidence

can aid in clinical practice. We propose a practical approach
for newly diagnosed advanced ACC and options for later lines
of therapy in Figure 2. Ongoing clinical trials are displayed in
Table 3 and a summary of the main ACC studies conducted to
date are displayed in Table 4.

CHEMOTHERAPY

Despite response rates of <30%, chemotherapy remains one
of the most used treatments for this condition (85). The most
consolidated regimen consists of cisplatin, doxorubicin and
cyclophosphamide (CAP) (86). The best time to start treatment
remains controversial, though it is commonly deferred until
either symptomatic disease or a more accelerated growth pattern.
Other cytotoxic agents have also been shown to be minimally
active, such as mitoxantrone and vinorelbine, though other drugs
such as paclitaxel should be avoided as single agents due to lack
of proven efficacy (85).

MYB–NFIB PATHWAY

Myb, a nuclear transcription factor, is overexpressed in 60–80%
of ACCs, usually correlated with a genetic translocation of the
MYB gene to the transcription factor gene NFIB, resulting in the
MYB-NFIB fusion, an important oncogene (t[6, 9]). This fusion
has been postulated as the main driver of tumor proliferation in
ACC (87, 88). The Myb protein has an N-terminal DNA-binding
domain and a central transactivation domain that regulate genes
involved in cell cycle control, such as NSR, MET, EGFR, IGF1R,
and specifically IGF2 (89). The latter, by autocrine stimulation,
controls the expression of the MYB-NFIB fusion in ACC cells,
increasing proliferation and generating changes in the cell cycle
and RNA processing (89–91). Other MYB-related fusions were
described, however at lower frequencies than MYB-NIFB. Myb
overexpression can also occur in the absence of detectable genetic
alterations, implying that unknown pathways may be involved in
its expression at the protein level (89).

Pre-clinical studies evaluated the role of targeted therapies,
such as linsitinib (Igf1r inhibitor), gefitinib (EGFR inhibitor), and
crizotinib (Alk andMet inhibitor) in vitro both as monotherapies
and as a triplet regimen. Individually, none showed encouraging
results, whereas a significant reduction of Myb expression was
seen with the triplet regimen, suggesting a potential clinical
benefit (92). In vivo studies are necessary to confirm activity in
clinical practice with a tolerable toxicity profile, a major concern
of combining these drugs.

More recently, the use of transretinoic acid (ATRA) showed
interesting results in pre-clinical models. The drug reduced
Myb binding in intensifying regions in MYB-translocated
patient-derived xenograft models, thereby reducing the positive
feedback for Myb overexpression cycle and thus reducing
tumor proliferation (93). Two clinical trials are underway
to address its role in treating patients with advanced ACC
(NCT03999684; NCT04433169). Additionally, a study evaluating
a Myb vaccine in combination with a novel anti-PD-1 is being
conducted (NCT03287427).
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TABLE 1 | All available data about advanced non-ACC therapy.

Subtype Study type Drug Number of patients ORR (%) mPFS, months References

All histologies Phase II Trastuzumab 10 0 4.2 (56)

All histologies Phase IIa Trastuzumab + pertuzumab 5 1 N/A (23)

All histologies Phase II T-DM1 10 0.9 NR (24)

All histologies Phase II T-DM1 3 0.7 N/A (57)

All histologies Phase II Lapatinib 17 0 2.1 (58)

All histologies Phase II Enzalutamide 46 0 5.5 (27)

All histologies Phase Ib Pembrolizumab 26 0.1 4 (52)

All histologies Phase II Nivolumab 52 9 1.8 (53)

All histologies Phase I/II Pembrolizumab + vorinostat 25 0.2 7 (55)

All histologies Phase II Cetuximab 7 0 3.0 (59)

All histologies Phase II Gefitinib 18 0 2.1 (60)

All histologies Phase II Axitinib 20 0 5.5 (61)

All histologies Phase II Sorafenib 19 0.2 4.2 (62)

All histologies Phase II Pazopanib 20 0 6.7 (63)

All histologies Phase II Nintedanib 7 0 N/A (64)

All histologies Phase II Dasatinib 14 0 N/A (65)

Secretory carcinoma Phase I/II Larotrectinib 12 1 NR (42)

Secretory carcinoma Phase I/II Entrectinib 7 1 11 (43)

Salivary duct carcinoma Phase II Trastuzumab + docetaxel 67 0.7 8.9 (22)

Salivary duct carcinoma Retrospective study Trastuzumab + paclitaxel + carboplatin 13 0.6 N/A (66)

Salivary duct carcinoma Retrospective study Bicalutamide or bicalutamide + goserelin 35 0,18 4 (20)

Salivary duct carcinoma & NOS Phase II Leuprorelin acetate + bicalutamide 36 0.4 8.8 (25)

ORR, overall response rate; mPFS, median progression free survival; N/A, not available; NR, not reached; NOS, adenocarcinoma; not otherwise specified.

TABLE 2 | Clinical ongoing trials in different types of non-ACC.

Subtype Target Drug Study type Status ClinicalTrials identifier

All histologies c-MET Cabozantinib Phase II Active, not recruiting NCT03729297

All histologies PD-1 Nivolumab Phase II Active, not recruiting NCT03132038

All histologies PD-1 CTLA-4 Nivolumab + ipilimumab Phase II Active, not recruiting NCT03146650

All histologies PD-1 Pembrolizumab Phase II Recruiting NCT02628067

All histologies PD-1 CTLA-4 Nivolumab + ipilimumab Phase II Recruiting NCT02834013

All histologies AR PD-1 Goserelin + pembrolizumab Phase II Recruiting NCT03942653

All histologies AR Abiraterone Phase II Recruiting NCT02867852

All histologies AR Apalutamide + GnRH Phase II Recruiting NCT04325828

All histologies NTRK Selitrectinib Phase II Recruiting NCT03215511

All histologies MDM2 APG-115 Phase I/II Recruiting NCT03781986

All histologies PD-1 VEGF Pembrolizumab + lenvatinib Phase II Not yet recruiting NCT04209660

Salivary duct carcinoma & NOS AR Bicalutamide + triptorelin Randomized Phase II Recruiting NCT01969578

GnRH, gonadotropin-releasing hormone; AR, androgen receptor.

NOTCH1, 2, 3

Notch are transmembrane proteins that bind to neighboring
cells and activate a biochemical cascade that gives rise to the
process of cell differentiation, in addition to acting in the
process of lateral regulation, proliferation, and angiogenesis
of cells through the MAPK pathways (87). Mutations in the
NOTCH gene family, particularly NOTCH1, are present in

around 20% of ACC patients and are potential oncogenic drivers.
The presence of this mutation characterizes a population with
more advanced disease, along with the presence of bone and
liver metastases and worse outcomes compared to a wild-type
population (94).

A phase I trial tested the efficacy of brontictuzumab (OMP-
52M51), a humanized monoclonal antibody against the Notch1
protein in a basket trial for solid tumors. Twelve patients
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FIGURE 1 | Algorithm for biomarker testing and treatment options in non-adenoid cystic carcinomas.

(25%) had a diagnosis of ACC, with two developing a partial
response and three with stable disease as best response, with
tolerable adverse events (81). Another phase Ib/II study is
evaluating the role of amcasertib (BBI-553), a cancer stemness
kinase inhibitor that impairs cancer stem cell survival, which
is intimately related to deregulated Notch pathway activity
(95). Preliminary results demonstrated a disease control rate of
86% and median overall survival of 28.3 months (82). AL101,
a γ-secretase inhibitor, also works by inhibiting the Notch
pathway during the cleavage process for Notch’s protein action
in the intracellular domain. A phase I basket trial revealed a
partial response lasting 8 months in 1 of 2 patients with ACC
accrued (83). The phase II trial ACCURACY (NCT03691207) for
ACC patients bearing NOTCH activating mutations is ongoing.
A trial with another Notch inhibitor, CB103, is also being
conducted (NCT03422679).

IMMUNOTHERAPY IN ACC

The ACC cohort of the aforementioned KEYNOTE-028
represented only 8% of patients (N = 2), with none achieving
a response. In terms of PFS and OS, results were poorer

than with chemo or targeted therapy (52). Similarly, the
combination of pembrolizumab in association with vorinostat
was also disappointing in treatment of salivary gland tumors,
including ACC, with low response rates (55). Nivolumab as
a single agent was also evaluated in SGCs. In the ACC
cohort, an ORR of 8.7% was observed (4/46 patients) (53).
The combination of ipilimumab and nivolumab was initially
thought to improve outcomes; however, only 2 out of 32
patients treated achieved a partial response, with a median
PFS of 19.3 weeks in a prospective study (96). As previously
stated, ACC appears to lack immune infiltration and harbors
a lower mutation burden, being unlikely to benefit from
immunotherapy (50).

EGFR PATHWAY

EGFR is commonly overexpressed in ACC, though its presence
in normal salivary gland tissue precludes any conclusions in its
role in cancer development. Mutations in genes related to the
EGFR pathway, including EGFR, RAS family, PIK3CA, BRAF,
and AKT1 are also present in ACC (97). Activating mutations
in EGFR can be found in 10% of cases, though unlikely to be
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FIGURE 2 | Algorithm for biomarker testing and treatment options in adenoid cystic carcinomas.

TABLE 3 | Clinical ongoing trials in ACC.

Subtype Target Drug Study type Status ClinicalTrials identifier

All histologies c-MET Cabozantinib Phase II Active, not recruiting NCT03729297

All histologies PD-1 Nivolumab Phase II Active, not recruiting NCT03132038

All histologies PD-1 CTLA-4 Nivolumab + ipilimumab Phase II Active, not recruiting NCT03146650

All histologies PD-1 Pembrolizumab Phase II Recruiting NCT02628067

All histologies PD-1 CTLA-4 Nivolumab + ipilimumab Phase II Recruiting NCT02834013

All histologies PD-1 VEGFR Pembrolizumab + lenvatinib Phase II Not yet recruiting NCT04209660

All histologies PSMA Lutetium-177 PSMA Phase II Not yet recruiting NCT04291300

Adenoid cystic only VEGFR PD-L1 Axitinib + avelumab Phase II Recruiting NCT03990571

Adenoid cystic carcinoma + other tumors NOTCH CB-103 Phase I/II Recruiting NCT03422679

All histologies + other tumors NOTCH BBI503 (amcarsetinib) Phase Ib/II Active, not recruiting NCT01781455

Adenoid cystic only NOTCH AL 101 Phase II Recruiting NCT03691207

Solid tumors MYB TeTMYB + BGBA17 Phase I Not yet recruiting NCT03287427

driver oncogenes in this setting (98). A phase I study tested
gefitinib at 250 mg/day in 18 patients with ACC, and no
responses were observed (60). Cetuximab was also evaluated in
a single-arm, phase II study of EGFR-overexpressing patients,
with disappointing results (59). Lapatinib has also been studied
in patients who showed overexpression of EGFR and/or Her-2,
again with unremarkable outcomes. Clinical benefit with stable
disease was achieved in 36% of patients, with no objective
responses (58).

PRMT-5

PRMT5 is an enzyme that methylates arginines in proteins
important for tumor growth and development (99). The phase
I basket trial METEOR-1 evaluated the role of GSK3326595, a
potent and selective PRMT5 inhibitor. Of the selected patients,

14 (26%) had metastatic ACC. Clinical activity was observed in
several tumor types, notably with partial responses observed in
3/14 ACC cases, with tolerable adverse events (79).

HISTONE DEACETYLATION

Epigenetic changes were found in most studies that carried
out NGS. The acetylation of histone pathways, with mutations
in chromatin remodeling genes, such as SMARCA2, CREBBP,
and KDM6A, suggests aberrant epigenetic regulation in ACC
oncogenesis (100). A pre-clinical study combining cisplatin
and vorinostat found a remarkable efficacy in depleting
CSCs and reducing tumor viability in all ACC primary
cells (101). A phase II trial of vorinostat in ACC showed
a partial response in 2/30 patients and stable disease in
another 27 patients (80). However, a phase II trial combining
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TABLE 4 | Available data about advanced ACC therapy.

Subtype Study type Drug Number of patients ORR (%) mPFS, months References

ACC Phase Ib Pembrolizumab 2 0 4 (52)

ACC Phase I/II Pembrolizumab + vorinostat 12 0 7 (55)

ACC Phase II Cetuximab 23 0 3.0 (59)

ACC Phase II Gefitinib 18 0 4.3 (60)

ACC Phase II Sorafenib 19 0 11.3 (69)

ACC Phase II Sorafenib 19 0 8.9 (62)

ACC Phase II Axitinib 33 0 5.7 (70)

ACC Phase II Regorafenib 38 0 N/A (71)

ACC Phase II Lenvatinib 28 0 9.0 (72)

ACC Phase II Lenvatinib 32 0.2 17.5 (73)

ACC Phase II Nintedanib 65 0 8.2 (64)

ACC Phase II Dovitinib 34 0 8.2 (74)

ACC Phase II Imatinib 16 0 N/A (75)

ACC Phase II Imatinib 17 0 N/A (76)

ACC Phase II Dasatinib 40 0 4.8 (65)

ACC Phase II Lapatinib 33 0 3.5 (58)

ACC Phase II Everolimus 34 0 11.2 (77)

ACC Phase II Bortezomib + doxorrubicina 24 0,04 6.4 (78)

ACC Phase I GSK3326595** 14 0.2 N/A (79)

ACC Phase II Vorinostat 30 0.7 7,7 (80)

ACC Phase I Bronticizumab 12 0.2 N/A (81)

ACC Phase Ib/II Amcasertib (BBI503)** 14 0 6.1 (82)

ACC Phase I AL101 2 0 8 (83)

ACC Phase I Crenigacestat (LY3039478) 22 0 5.3 (84)

**Trials ongoing with preliminary results.

vorinostat and pembrolizumab for recurrent or metastatic
salivary gland cancer, as aforementioned, showed disappointing
results, likely reflecting the immune-tolerant environment of
ACC (55).

KIT/VEGFR

Other overexpressed potential target receptors in ACC are
the vascular endothelial growth factor receptor (VEGFR) and
fibroblast growth factor receptor 1 (FGFR1). These are well-
established oncogenic pathways and can be inhibited by
anti-VEGFR/FGFR drugs (102). Sorafenib, nintedanib, axitinib,
regorafenib, dovitinib, and other multi-kinase inhibitors were
tested and showed only a modest benefit, with few objective
response rates (Table 4). Notably, lenvatinib was evaluated in
a population with metastatic ACC, who had already received
up to one line of chemotherapy. A total of 28 patients were
enrolled in the study, and 11.5% showed a partial response
(72). Additionally, 25 to 27% of patients with ACC had at least
20% reduction in target lesion size. The median PFS and OS
were 9.1 and 27 months, respectively. Despite the encouraging
results, 50% of the patients presented grade 3 toxicity and dose
reductions were necessary in most of the study population.

Similarly, Tchekmedyian et al. conducted another phase II study
with lenvatinib, with a 15.6% ORR and a remarkable median PFS
of 17.2 months (73). Axitinib is another multi-kinase inhibitor
with interesting results in ACC, but with a lower ORR and
median PFS (9.1% and 5.7 months, respectively) (70). More
recently, the first randomized phase II trial of its kind showed
a significant improvement in PFS with axitinib vs. observation
(HR: 0.25; 95% CI: 0.14–0.42; P < 0.0001), but with no
improvement in OS (HR: 0.6; 95% CI: 0.26–1.38; P= 0.23) (103).
In this study, none of the 27 patients treated achieved a response,
but all (100%) had stable disease. This rekindles the discussion
of whether deferring treatment until a more symptomatic or
aggressive course of disease remains acceptable. We favor the use
of lenvatinib due to its numerical superiority in ORR and PFS
compared to axitinib, but starting at a lower dose of 20 mg/day,
with subsequent dose escalation if adequately tolerated.

Despite the high percentages (90%) of overexpression of c-Kit
by IHC in ACC, targeted agents such as imatinib and dasatinib
failed to show a meaningful activity in this disease (65, 75, 76,
104). The best response was stable disease in 50% of the patients
treated with dasatinib (65). The disappointing outcomes likely
result from the lack of an underlying gene amplification and/or
a KIT activating mutation, such as seen in other malignancies
(gastrointestinal stromal tumors and chronic myeloid leukemia).
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177LU-PSMA

ACC cells can express prostate-specific membrane antigen
(PSMA) in over 90% of cases, with significant uptake in PSMA-
PET/CT (105). Such as in prostate cancer, this can be useful
not only for staging and surveillance but also as an opportunity
for PSMA-directed therapy. Lutetium-177 (177Lu)-PSMA is a
radiolabeled small molecule that binds with high affinity to
PSMA, enabling beta particle therapy targeted to metastatic
castration-resistant prostate cancer, with promising results in
this tumor type (106). A single case report so far has been
reported in ACC, with a transient pain relief after one dose.
However, the patient died within 6 weeks due to a highly
refractory and advanced tumor (107). An ongoing clinical trial
is prospectively evaluating the role of 177Lu-PSMA in advanced
ACC (NCT04291300).

CONCLUSIONS

In conclusion, SGCs may be challenging to treat due to its
several histological subtypes. Molecular diagnostics are able to
aid in diagnosis and guide discovery for subtype-specific targeted
therapy. Currently, significant efforts are being undertaken to
improve outcomes for advanced disease with biomarker-driven
research. Given the limited efficacy with chemotherapy, a more
personalized approach is of utmost importance to move forward
in the management of this infrequent entity.
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For differentiated thyroid cancer (DTC), systemic therapy with radioactive iodine (RAI) is
utilized for radiosensitive disease, while for radioiodine refractory (RAIR) disease, current
standard of care is treatment with multikinase tyrosine kinase inhibitors (TKI). For BRAF-
mutant DTC or anaplastic thyroid cancer (ATC), treatment with inhibitors targeting BRAF
and MEK are important advances. RET-inhibitors for RET-mutated medullary thyroid
cancer (MTC) recently have been FDA-approved for metastatic disease. Nevertheless,
treatment of thyroid cancer resistant to current systemic therapies remains an important
area of need. Resistance mechanisms are being elucidated, and novel therapies including
combinations of BRAF and MEK inhibitors with RAI or other targeted therapies or TKIs
combined with checkpoint inhibition are current areas of exploration.

Keywords: thyroid cancer, tyrosine kinase inhibitor, BRAF mutation V600, mechanisms of resistance to therapy,
anaplastic thyroid cancer, medullary thyroid cancer, differentiated thyroid cancer, papillary thyroid cancer
INTRODUCTION

The incidence of thyroid cancer (TC) in the United States is rapidly increasing, with over 52,000
new patients diagnosed and greater than 2,000 deaths recorded each year (1). Whether this is
secondary to increased frequency of cross-sectional imaging, better sensitivity in various imaging
modalities or a true increase in incidence has been questioned, but regardless, prognosis is generally
exceptional, with the vast majority of patients surviving at least ten years, even in the setting of
locally advanced or widespread disease. The clinical course can be quite variable between different
patients and among the TC subtypes.

The three main subtypes of TC include DTC, MTC, and ATC. DTC comprises 85% of all thyroid
cancers, with papillary thyroid cancer (PTC) the most common histologic subtype. MTC and ATC
make up 2–8 and 1% of diagnoses, respectively, generally behave more aggressively than DTCs, and
can often be less responsive to therapy. While 45% of patients with metastatic DTC are alive at ten
years (2), only 20% of patients with MTC are living at 10 years. Though ATC is an epithelial-derived
carcinoma and often arises from DTC, prognosis is significantly worse, with a median overall
survival of 3–6 months (3).

TCs are generally successfully managed with a multimodal approach, incorporating surgical
resection with thyroidectomy and lymph node dissection when disease only involves local
structures, followed by ablation with RAI as adjuvant therapy for patients at high risk for
January 2021 | Volume 10 | Article 592202117
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recurrence, and thyroid hormone suppression long-term. RAI
also is utilized in the setting of iodine sensitive recurrent and
metastatic disease. The National Comprehensive Cancer
Network (NCCN) guidelines recommend considering other
systemic therapies for progressive, disseminated disease and/or
symptomatic disease that is refractory to RAI. Cytotoxic
chemotherapy such as adriamycin has limited utility for
metastatic TC (4); in contrast, targeted agents are the mainstay
of standard therapy, building on the knowledge that aberrant
signaling of the MAPK and PI3K/Akt/mTOR pathways are
responsible for tumorigenesis (5). Current options for systemic
therapy involve the use of TKIs targeting these aforementioned
pathways which are often both effective in controlling disease
and have manageable toxicity. Inevitably, however, most TCs
develop resistance. Mechanisms of resistance and strategies to
overcome treatment resistance are areas of active investigation.
PATHOGENESIS OF THYROID CANCER

Like many other cancers, TC arises as a result of accumulation of
multiple genetic mutations that cause abnormal cellular
proliferation and prolonged survival of malignant cells.
Virtually all TC pathogenesis centers around aberrant signaling
involving the PI3K/Akt/mTOR and MAPK signaling pathways,
which under normal circumstances, both help regulate cellular
functions and survival (Figure 1).

The PI3K/Akt/mTOR pathway is classically activated by
induction of receptor tyrosine kinase (RTK) at the cell
membrane. Activated intracellular PI3K phosphorylates and
activates AKT. AKT then travels inside the nucleus to
Frontiers in Oncology | www.frontiersin.org 218
upregulate several oncogenes as well the mTOR pathway,
triggering tumorigenesis (5, 6).

Similar to the PI3K/Akt/mTOR pathway, MAPK signaling is
stimulated first by activation of a RTK. RTK then activates
multiple other genes, including RAS, BRAF, MEK, and ERK.
ERK ultimately enters the nucleus to promote tumorigenesis.
Most commonly mutated genes in TC include those in the
MAPK pathway—BRAF and RAS mutations as well as RET
fusions—which in total account for approximately 80% of cases.
Notably, activation of RET, a RTK which when constitutively
activated either by mutation or fusion with another partner such
as PTC1 or PTC3, is involved in the pathogenesis of 5–30% of
PTCs, in the vast majority of familial MTC (96% of cases) as well
as in sporadic MTC (25–50% of cases), and results in constitutive
activation of the MAPK signaling pathway which promotes cell
growth and tumorigenesis (6, 7). RET inhibition has been an
important advance for treatment of MTC, while blockade with
BRAF and MEK inhibitors are a mainstay of therapy for BRAF-
mutated ATC and DTC. Mutations in RET, RAS, and BRAF tend
to be mutually exclusive in PTC, underscoring the importance of
constitutive activation of the MAPK pathway for TC (8).
RADIOACTIVE IODINE

Thyroid cells have the unique ability to uptake iodine from the
blood. Consequently, for DTC which has retained this property,
treatment with RAI, 131I, is a mainstay of therapy as adjuvant
therapy, to address micrometastatic disease or as treatment for
limited low burden metastatic disease (9). Over time, however,
RAI becomes ineffective as many DTCs lose the ability to uptake
FIGURE 1 | Molecular Pathogenesis of Thyroid Cancer. RAS/RAF/MEK and PI3K/AKT/mTOR pathways are key signaling pathways in thyroid cancer pathogenesis.
Mutations in RAS (RASm) or BRAF result in constitutive activation of the MAPK pathway, causing downstream activation of the MAPK and PI3K pathways which
promotes cell growth and tumorigenesis. Effective agents include multikinase inhibitors (cabozantinib, vandetanib, sorafenib and lenvatinib) which inhibit receptor
tyrosine kinases (RTK) at the cell surface, selective RET inhibitors (selpercatinib and pralsetinib) which inhibit mutant RET RTK (RETm), BRAF V600E inhibitors
(dabrafenib and trametinib) and the mTOR inhibitor everolimus. These small molecule inhibitors are used clinically for treatment of RAIR TC with the goal of arresting
uncontrolled proliferation.
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iodine or as patients have received maximal lifetime doses of 131I.
A joint statement from societies including the American Thyroid
Association (ATA) lists clinical scenarios indicating RAIR
disease, including (1) lack of 131I uptake on diagnostic 131I
scan (2), no 131I uptake on a 131I scan performed several days
after 131I therapy (3), selective 131I uptake in only some tumor
foci (4), progression of metastatic DTC despite 131I uptake and
(5) progression of metastatic DTC despite a cumulative 131I
activity of 600mCi (9). Whether DTC can be resensitized to RAI
is a subject of many research studies. As MTC and ATC do not
uptake iodine, RAI is not an effective systemic therapy strategy
for these subtypes.
MULTIKINASE INHIBITORS

The use of kinase inhibitors has proven to be an effective
treatment option for metastatic TC given the activity of the
PI3K/Akt/mTOR and MAPK signaling pathways in this disease.
Current Food and Drug Administration (FDA) approvals for
kinase inhibitors in thyroid cancer include vandetanib,
cabozantinib, sorafenib, and lenvatinib, which have activity
against many RTKs, including the vascular endothelial growth
factor (VEGF) isoforms (Table 1).

Vandetanib, a multikinase inhibitor that targets epidermal
growth factor (EGF), RET, VEGF2, and VEGF3 receptors, is
FDA approved for use in MTC based on results of the ZETA trial
(10) which compared the effects of vandetanib dosed at 300
milligrams (mg) daily to placebo in 331 patients with advanced
and unresectable MTC. Patients treated with vandetanib had a
longer progression free survival (PFS) (30.5 vs 19.3
months); hazard ratio (HR) 0.46; 95% confidence interval (CI)
0.31 to 0.69; P < 0.001). 44% of patients achieved partial
response (PR).

Subsequently, cabozantinib was approved by the FDA for
advanced, progressive or symptomatic MTC. Cabozantinib
works specifically by inhibiting c-MET, RET, and VEGF2
receptors. Inhibition of c-MET has been hypothesized to
portend longer responses and delayed development of
resistance. The EXAM trial included 330 patients with
advanced MTC with progressive disease for at least 14 months
(11). Patients treated with 140 mg daily of cabozantinib had a
median PFS of 11.2 months compared to 4 months for placebo
Frontiers in Oncology | www.frontiersin.org 319
(HR 0.28; 95% CI 0.19–0.30; P < 0.001). 28% of patients treated
with cabozantinib achieved a PR with a median duration of
response of 14.7 months. Although PFS was shorter than that
reported for vandetanib, this was attributed to the variability in
the respective patient populations of each trial. Patients in the
ZETA trial had relatively indolent disease while the EXAM trial
required progressive disease for enrollment. Furthermore,
cabozantinib has promising activity as frontline therapy for
RAIR as a phase II single arm study of 35 patients with RAIR-
DTC demonstrated 54% PR and 43% stable disease, with an 80%
clinical benefit rate at six months (18). Cabozantinib is currently
being evaluated in the Phase III study COSMIC-311 for patients
with DTC that has progressed on up to two prior VEGFR
inhibitors (NCT03690388).

Sorafenib, an inhibitor of VEGF1-3, platelet derived growth
factor (PDGF), fibroblast growth factor (FGF), KIT, and RET, is
approved for RAIR DTC. Benefit of treatment is modest at best,
with a PFS of 10.8 months (HR 0.59; 95% CI 0.45–0.76; P <
0.0001) and an overall response rate (ORR) of 12.2% with no
benefit in overall survival (OS) (12).

The final TKI approved for use in advanced DTC is
lenvatinib, which targets VEGF1-3, FGF1-4, PDGF, KIT, and
RET and is the only kinase inhibitor that has shown survival
benefit. Data from the SELECT trial revealed a PFS of 18.3
months for lenvatinib versus 3.6 months for placebo, an ORR of
64.8% and four documented complete responses. An OS benefit
was demonstrated on subgroup analysis of patients older than 65
years of age (OS not reached vs. 18.4 months in placebo arm);
however, the validity of this benefit remains unclear and has not
been reproduced in other studies (13).
BRAF INHIBITION

There has been a significant amount of success in targeting BRAF
driver mutations most notably in the treatment of melanoma,
where approximately 50% of cases harbor activating
BRAFV600E mutations. For DTC, about 40% of PTCs are
BRAF-mutated (8), and 20–50% of ATCs harbor a BRAF V600
mutation. The safety and efficacy of the BRAF inhibitor
dabrafenib combined with trametinib, an inhibitor of MEK1/2,
in ATC were explored as part of the BRF117019
(NCT02034110) trial. 16 patients with BRAF V600E mutant
TABLE 1 | Tyrosine Kinase Inhibitors with Activity for Thyroid Cancers.

Drug Trial Name Indication Targets PFS (months) ORR

Vandetinib ZETA (10) MTC EGF, RET, VEGF2, VEGF3 30.5 vs 19.5 placebo 44%
Cabozantinib EXAM (11) MTC c-MET, RET, VEGF2 11.2 vs 4 placebo 28%
Sorafenib DECISION (12) DTC VEGF1-3, PDGF, FGF, KIT, RET 10.8 vs 5.8 placebo 12.20%
Lenvatinib SELECT (13) DTC VEGF1-3, FGF1-4, PDGF, KIT, RET 18.3 vs 3.6 placebo 64.80%
Dabrafenib/Trametinib BRF117019 (14) ATC BRAF V600E/MEK1&2 NR 69%
Vemurafenib NCT01286753 (15) PTC BRAF V600E 18.2 39%
Selpercatinib LIBRETTO-001 (16) MTC RET NR 73%
Pralsetinib ARROW (17) MTC RET NR 74%
Janu
ary 2021 | Volume 10 | Article
PFS, progression free survival; ORR, overall response rate; MTC, medullary thyroid carcinoma; DTC, differentiated thyroid carcinoma; ATC, anaplastic thyroid carcinoma; PTC, papillary
thyroid carcinoma; NR, not reached.
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ATC were enrolled in this phase II, open-label trial. At a median
follow-up of 47 weeks, ORR was 69% (11 of 16; 95% CI, 41–
89%), and seven patients had continued response to therapy at
the time of follow-up. Median DOR, PFS, and OS were not
reached. The most common AEs seen were fatigue (38%),
pyrexia (37%), and nausea (35%) (14).These data led to the
FDA approval of dabrafenib and trametinib for BRAFV600E
mutated ATC.

BRAF inhibition with dabrafenib or vemurafenib is also
effective for DTC. In a non-randomized, open-label phase II
study of vemurafenib in 51 patients with BRAF V600E mutated
PTC, 10 of 26 patients who were VEGFR TKI-naive had PRs
(38.5%, 95% CI 20.2–59.4) and a majority had at least SD
(57.5%). Median PFS was 18.2 months (95% CI, 15.5–29.3
months). Median OS was not reached. Among 25 patients who
had previously received a VEGFR TKI, 27.3% of patients had
achieved a PR with 63.6% of patients achieving SD. Median PFS
was only 8.9 months in comparison and OS was 14.4 months
(95% CI, 8.2 to 29.5 months) (15).

In a phase II, randomized study, patients with BRAFV600E
mutated PTC were randomized to dabrafenib or dabrafenib with
trametinib. Among the 26 patients who received dabrafenib
monotherapy, 10 of 26 (38%) had RECIST defined PR, while
nine of 27 in the combination arm had a radiographic PR. A total
of 50% and 54% in monotherapy and combination, respectively,
had at least 20% decrease in target lesions. Median PFS was 11.4
months for dabrafenib and 15.1 months for dabrafinib and
trametinib (19).
RET INHIBITION

Selpercatinib, or LOXO-292, is an oral selective RET kinase
inhibitor recently FDA-approved for RET mutated MTC and
RET fusion-positive thyroid cancers. The phase I/II LIBRETTO-
001 trial evaluated the safety and efficacy of selpercatinib in
patients with RET-mutant MTC. Patients were treated with 160
mg of selpercatinib twice daily. Among 55 patients previously
treated with TKIs including cabozantinib and vandetinib, ORR
was 69% (95% CI; 55–81%). The median DOR was not reached
at a median follow up of 14 months. Among 88 TKI naïve
subjects, ORR was 73% (95% CI; 62–82%). Finally, in a cohort of
patients with RET-fusion positive thyroid cancer, ORR was 62%
(95% CI; 41–80%) with 16 patients with ongoing response and
two PRs awaiting central confirmation. The most frequently
reported adverse events were dry mouth (20), increased
transaminases (25%), hypertension (24%), diarrhea (22%), fatigue
(18%), and peripheral edema (15%). The discontinuation rate due
to side effects was only 2% (16).

Pralsetinib, BLU-667, is a second potent RET-inhibitor with
activity in RET-fusion positive MTC and lung cancer. Among 13
RET-fusion positive TC patients enrolled in ARROW, a phase I/
II trial of pralsetinib for RET-mutated cancers, ORR was 91%
and all patients had stable disease or better. For RET-mutated
treatment naïve MTC patients, ORR was74%, while for
previously treated patients, a 60% ORR was reported (17).
Frontiers in Oncology | www.frontiersin.org 420
MECHANISMS OF RESISTANCE AND
TREATMENT STRATEGIES FOR TC

Patients with RAIR TC have a poor prognosis with a 10-year
survival rate of only 10%. One mechanism underlying the
development of RAIR thyroid cancer is impairment of the
sodium-iodine symporter (NIS). NIS is a plasma membrane
glycoprotein located on the basolateral surface of the thyroid
follicular cells that mediates iodide transport into follicular cells.
RAI enters TC cells via the NIS, and therefore, loss or
downregulation of NIS through genetic alteration of the RTK/
BRAF/MAPK/ERK and PI3K/AKT/mTOR pathways is thought
to contribute to RAIR (5). Furthermore, constitutive activation of
the MAPK pathway, and in particular, the presence of the BRAF
activating mutation, alters genes involved in iodine metabolism,
resulting in more aggressive tumorgenesis and thyroid cell de-
differentiation. Consequently, BRAF V600E mutant TC have
higher risk of relapse, poorer outcomes and are less likely to be
responsive to RAI. Therefore, strategies to “re-sensitize” tumors
to RAI utilizing BRAF and MEK inhibitors have been evaluated.
20 patients with RAIR TC were treated with MEK1/2 inhibitor
selumetinib 75 mg twice daily (21). Following selumetinib
treatment, RAI uptake increased in 12 of 20 patients. Eight of
12 patients were re-treated with RAI of which three achieved SD
and five achieved PR. For BRAFV600E mutated PTC, dabrafenib
treatment reinduced new RAI uptake in six of 10 patients, with
two PRs and four SD at three months post RAI (22). This
strategy has also been evaluated with vemurafenib in a pilot study
of 12 BRAF mutated TC patients. Among the 10 evaluable
patients, four demonstrated increased 123I uptake after four
weeks of vemurafenib therapy. Treatment with 131I resulted in
ongoing tumor control at 6 months. Of note, vemurafenib was
discontinued two days after 131I treatment, raising the possibility
of RAI treatment after MAPK inhibition as a strategy to allow for
treatment breaks from TKIs, which can have significant
toxicity (23).
BRAF RESISTANCE

Several mechanisms can confer primary or secondary resistance
to BRAF inhibitors (24). Intrinsic resistance to BRAF inhibitors
may result from inhibition of apoptosis via inhibiting the B-Cell
CLL/Lymphoma 2 (BCL2) pathway. In vitro, TC cells harboring
a copy number gain of myeloid cell leukemia 1 (MCL1) as well as
a loss of (cyclin-dependent kinase inhibitor 2A (CDK2NA),
components of the BCL2 pathway, are resistant to
vemurafenib, and combining the BCL2 inhibitor obatoclax
with vemurafenib improved sensitivity (25). Furthermore,
concurrent mutations in BRAFV600E and PI3KCA can confer
intrinsic resistance to BRAF inhibitors (26). To this end,
combination treatment with MAPK inhibitors and inhibitors
targeting PI3K/AKT/mTOR pathway such as everolimus may be
an effective strategy.

Indeed, everolimus does have some clinical activity for TC. In
a phase II clinical trial, 28 patients with locally advanced or
January 2021 | Volume 10 | Article 592202
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metastatic RAIR DTC and seven patients with ATC were treated
with everolimus 10 mg daily. The median follow-up duration was
38 months. Seventeen patients (65%) had SD; however, no PR or
CR was observed. The response was quite durable: 58% had SD
for greater than 24 weeks. Toxicity was generally mild and
consistent with its known side effect profile (27). Additionally,
in a case series of five patients with ATC treated with everolimus
10mg daily, mOS was 7.4 months. One patient had a durable
response that lasted 27.9 months, and two others had SD for 3.7
and 5.9 months, respectively (28).

Acquired resistance to BRAF inhibitors may develop via
secondary mutations in the MAPK pathway, such as acquisition
of NRAS Q61K (29, 30), or KRAS G12V (30), similar to that seen
with BRAFV600E melanoma. Whether addition or substitution of
MEK inhibitors, novel MAPK inhibitors such as KRAS or ERK
inhibitors would be of clinical utility are intriguing potential
treatment options. For VEGFR inhibitors such as lenvatinib,
sorafenib, cabozantinib, and vandetinib, upregulation of FGFR
may mediate acquired resistance, and anti-FGFR agents may have
application in this setting (31).
COMBINATION THERAPIES

The utility of combining TKIs and immunotherapeutic agents is
currently an area of active investigation. Several published case
series in TC highlight the potential for combination targeted
therapy with checkpoint inhibition to confer prolonged tumor
Frontiers in Oncology | www.frontiersin.org 521
control, even in patients who have progressed on prior targeted
therapy (32, 33). Eight patients with metastatic ATC or DTC were
treated with lenvatinib (24 mg/kg daily) in combination with
pembrolizumab (200 mg every 3 weeks). Four patients achieved a
PRand twoachieved SD.Onepatient achievedaCRandonepatient
expired fromPD.Notably, no significant grade 3 or 4 toxicitieswere
observed with treatment (20). Among 30 patients with VEGFR-
inhibitor naïve progressive DTC, 18 of 30 patients (62%) treated
with lenvatinib and pembrolizumabhad aPR, and 10 (35%) had SD
(34). A separate cohort of this study is evaluating responses among
patient who have progressed on lenvatinib (NCT02973997). For
ATC, in a single institution study of 38 patients, the combination of
atezolizumab with vemurafenib and cobimetinib for BRAF V600E
mutant demonstrated an ORR of 59%, including one CR and 9 PR,
and seven SD. An 81 and 70% 1- and 2-year survival, respectively,
withmedianOSwere not reached. For theATC cohort withRAS or
NF1 orNF2 alterations, patients were treated with cobimetinib and
atezolimabwith anORR17%,with 2 PR and four SD (35).Ongoing
clinical trials for RAIR TC are listed in Table 2.
CONCLUSIONS

There are currently a number of therapies available for treatment
of metastatic TC. Understanding the molecular mechanisms
underlying pathogenesis of thyroid malignancies has allowed
the development of a myriad of effective therapies targeting these
underlying mechanisms. Most successful has been the use of
TABLE 2 | Ongoing Clinical trials for Radioactive Iodine Refractory Thyroid Cancer.

Intervention/Treatment Phase Disease Type Trial Name/Number

Lenvatinib + Denosumab 2 Metastatic DTC NCT03732495
Cyclophosphamide + Sirolimus 2 Metastatic DTC NCT03099356
RAI + Durvalumab 1 RAI avid/M TC NCT03215095
177Lu-PP-F11N + Sacuitril 1 Metastatic MTC NCT03647657
RAI + Selumetinib 2 RAI avid R/M TC NCT02393690
RAI + Trametinib 2 RAI refractory R/M TC NCT02152995
Durvalumab + Tremelimumab 2 Metastatic DTC NCT03753919
177Lu-PP-F11N 1 Metastatic MTC NCT02088645
Imatinib 1 PTC NCT03469011
Durvalumab + Tremelimumab 1 Metastatic ATC NCT03122496
RAI + Dabrafenib/Trametinib 2 RAIR R/M TC +RAS/BRAF mutated NCT03244956
Regorafenib 2 Metastatic MTC NCT02657551
MLN0128 2 Metastatic ATC NCT02244463
Apatinib Mesylate 2 Locally Advanced or Metastatic DTC NCT03167385
Dabrafenib + Lapatinib 1 Unresectable or Metastatic TC NCT01947023
Apatinib 2 Advanced and Metastatic DTC NCT04180007
Sorafenib Tosylate 2 Locally Advanced or R/M MTC NCT00390325
Apatinib 2 RAI refractory Locally Advanced or R/M DTC NCT02731352
Apatinib 3 RAI refractory DTC NCT03048877
Pembroliumab 2 Undifferentiated/ATC NCT02688608
Vandetinib 3 Locally Advanced or Metastatic DTC NCT01876784
Vandetinib 3 Unresectable Locally Advanced or Metastatic MTC NCT00410761
Bevacizumab + Temsirolimus +/− Valproic Acid or Cetuximab 1 R/M TC NCT01552434
TPX-0046 1/2 RET Fusion or Mutated Solid Tumors NCT04161391
Lenvatinib + pembrolizumab (34) 2 DTC NCT02973997
Atezolizumab + Chemotherapy (35) 2 Undifferentiated/ATC NCT03181100
January 2021 | Volum
DTC, differentiated thyroid carcinoma; RAI, radioactive iodine; M, metastatic; TC, thyroid cancer; MTC, medullary thyroid carcinoma; R/M, recurrent/metastatic; ATC, anaplastic
thyroid carcinoma.
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TKIs which can portend improvement in PFS, and even OS, in
the case of lenvatinib. Targeting BRAF mutations as well as
inhibition of RET has led to further approvals for treatments in
this space. Nonetheless, many patients develop resistance to
these therapies, and therefore the focus on developing newer,
more effective treatments has become even more pressing.
Frontiers in Oncology | www.frontiersin.org 622
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Head and neck squamous cell carcinoma (HNSCC) is the sixth most incident cancer
worldwide. More than half of HNSCC patients experience locoregional or distant relapse
to treatment despite aggressive multimodal therapeutic approaches that include surgical
resection, radiation therapy, and adjuvant chemotherapy. Before the arrival of
immunotherapy, systemic chemotherapy was previously employed as the standard
first-line protocol with an association of cisplatin or carboplatin plus 5-fluorouracil plus
cetuximab (anti-EFGR antibody). Unfortunately, acquisition of therapy resistance is
common in patients with HNSCC and often results in local and distant failure. Despite
our better understanding of HNSCC biology, no other molecular-targeted agent has been
approved for HNSCC. In this review, we outline the mechanisms of resistance to the
therapeutic strategies currently used in HNSCC, discuss combination treatment
strategies to overcome them, and summarize the therapeutic regimens that are
presently being evaluated in early- and late-phase clinical trials.

Keywords: head and neck squamous-cell carcinoma, resistance, chemotherapy, cetuximab, immunotherapy,
targeted therapy
INTRODUCTION

Head and neck squamous cell carcinoma (HNSCC) is the sixth most incident cancer worldwide,
responsible for more than 700,000 cases worldwide per year and around 350,000 deaths, making it a
particularly fatal disease (1).

Squamous cell cancers of the oral cavity, the pharynx, and the larynx (the most frequent) are linked
to smoking and alcohol consumption, and squamous cell carcinomas of the oropharynx are most
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commonly associated with human papilloma virus (HPV)
infection, especially for young or nonsmoker patients. The
incidence of the latter is rising, mostly among men (2).
Cigarette- or alcohol-related and HPV-induced cancers are
described by the 2017 World Health Organization (WHO) as
two different clinical entities with different oncogenic pathways and
prognostics (3). Other anatomical localizations of head and neck
cancers include the sinus cavities and nasal fossae, which are rare
and rather linked to professional and environmental exposures.

More than half of HNSCC patients experience locoregional or
distant relapse despite aggressive multimodal therapeutic
approaches that include surgical resection (often with neck
dissection), radiation therapy (exclusive or postoperative), and
adjuvant chemotherapy given as a radiosensitizer (4). After
relapse, treatment options are often limited due to a high risk of
complications (e.g., fistulas, dysphagia, spinal cord myelopathy) if
surgery or reirradiation are attempted. If a salvage surgery (with
R0 resection) or reirradiation is indeed deemed unfeasible, then
systemic treatment options (detailed in this review) are proposed.
Before the arrival of immunotherapy, systemic chemotherapy was
employed as the standard first-line protocol with an association of
cisplatin or carboplatin and 5-fluorouracil plus cetuximab (anti-
EFGR antibody), known as the EXTREME protocol, which
confers a dismal median overall survival (OS) of around 10
months (5).

In this review, we outline the mechanisms of resistance to the
therapeutic strategies currently used in HNSCC, discuss
combination treatment strategies to overcome them, and
summarize the therapeutic regimens that are presently being
evaluated in early- and late-phase clinical trials.
MECHANISMS OF RESISTANCE
TO CHEMOTHERAPY

Chemotherapy is currently used as the therapeutic option for
advanced HNSCC tumors (T3 or T4), concurrent to radiation, if
surgical resection is deferred in the primary setting. For recurrent
or metastatic disease and for cases in which first-line treatment
with immunotherapy is not feasible, first-line systemic
chemotherapy is advised with a protocol that includes cisplatin
or carboplatin plus 5-fluorouracil and cetuximab (5, 6).
Unfortunately, acquisition of chemotherapy resistance is
Abbreviations: EGFR, Epidermal Growth Factor Receptor; PTPRS, The protein
tyrosine phosphatase receptor S (interacts with EGFR and inactivates EGFR);
CTX, cetuximab; TGF-a, transforming growth factor alpha; TGF-ß, transforming
growth factor beta; EGF, Epidermal Growth Factor; HB-EGF, heparin-binding
growth factor; JAK2, Janus kinase 2; MAPK, Mitogen-activated protein kinases;
MET, Mesenchymal Epithelial Transition; HER2 or ERbB2, human epidermal
growth factor receptor 2; HER3 or ERbB3, human epidermal growth factor
receptor 3; ROR2, receptor tyrosine kinase-like orphan receptor 2; IGF-1R,
Insulin growth factor type 1 receptor; VEGFR, vascular endothelial growth
factor receptor; PI3K, Phosphoinositide 3-kinases; mTOR, Mechanistic Target
Of Rapamycin Kinase; SMAD4, Mothers against decapentaplegic homolog 4;
DNA, deoxyribonucleic acid; RNA, ribonucleic acid; EMT, Epithelial-to-
mesenchymal transition; T cells, T lymphocyte; T regs, regulatory T lymphocyte.
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common in patients with HNSCC and often results in local
and distant failure.

Cancer Stem Cells and EMT
Epithelial-to-mesenchymal transition (EMT) is a reversible
embryonic transdifferentiation program that allows partial or
complete transition from an epithelial to a mesenchymal state
(7). Although EMT was initially considered to be involved in
invasion and metastatic spread, its key role in the initiation and
development of primary tumors as well as in resistance to
therapy is also demonstrated (8).

Nasopharyngeal carcinoma (NPC) is a highly invasive head–
neck cancer derived from the nasopharyngeal epithelium.
Preclinical studies in NPC cells demonstrate that resistance to
radiotherapy and adjuvant cisplatin (DDP) chemotherapy is
associated with morphological and molecular marker changes
consistent with EMT. Mechanistically, depletion of NEDD4 in
resistant cells leads to a partial reversion of the EMT phenotype,
suggesting that NEDD4 promotes EMT features and
chemoresistance of NPC in vitro (9). In a subsequent study,
analysis of parental HNE1 and cisplatin-resistant HNE1/DDP
NPC cells reveals that the upregulation of miR-139-5p
expression inhibits proliferation, invasion, migration, and
EMT. In these cells, miR-139-5p expression levels positively
correlate with DDP-induced apoptosis, suggesting that miR-
139-5p is associated with DDP resistance in human NPC by
modulating the EMT (10).

More recently, it was demonstrated that epithelial
mesenchymal crosstalk (EMC), which constitutes the interaction
of the tumor stroma and associated fibroblasts with epithelial
cancer cells, induces a hybrid epithelial–mesenchymal phenotype
in HNSCC cells that is associated with chemotherapy resistance,
via IL-6/STAT3 pathway activation (11). Interestingly,
transcriptome analyses of HNSCC cell lines reveals that STAT1
and STAT3 activation enable aldo-keto reductase family 1
member C1 (AKR1C1)-induced resistance to cisplatin, which
can be overcome by ruxolitinib treatment (12).

Cisplatin-resistant oral squamous cell carcinoma (OSCC)
cells exhibit an enriched putative cancer stem–like signature
with increased expression of CD44 and Oct-4 and enhanced
sphere-forming ability, coupled with the acquisition of an EMT
phenotype. This study also reveals that, irrespective of drug
treatment, cell migration is significantly increased in cisplatin-
resistant cell lines compared with drug-sensitive cells. In line
with these observations, bioinformatic analysis of miRNA–
mRNA networks in cisplatin-resistant OSCC cells reveals the
upregulation of ATP-binding cassette (ABC) transporter genes,
genes associated with inhibition of apoptosis (e.g., BIRC family)
and cancer stem cell (CSC) marker CD44 (13).

A subpopulation of CSCs characterized by high levels of
CD44v3 and aldehyde dehydrogenase-1 (ALDH1) expression
has been identified in HNSCC-derived HSC-3 cells and HNSCC
patient samples. In HSC-3 cells, it is shown that hyaluronan
(HA) stimulates the interaction of CD44v3 with Oct-4-Sox2-
Nanog, which results in the nuclear translocation of these three
CSC transcription factors. Notably, it is demonstrated that Oct-
4-Sox2-Nanog– dependent activation of miR-302 promotes the
February 2021 | Volume 11 | Article 614332
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upregulation of the survival proteins cIAP-1, cIAP-2, and XIAP,
leading to self-renewal and cisplatin resistance. In this context,
transfection with an anti-miR-302 inhibitor is shown to
downregulate the expression of these survival proteins and to
abrogate the HA-CD44v3–mediated sphere formation and
chemoresistance (14). It is noteworthy that the histone
methyltransferase DOT1L is also upregulated by HA in CSCs
isolated from HSC-3 cells and results in the overexpression of
RhoGTPases and survival proteins involved in cell invasion and
cisplatin resistance (15).

Inhibition of the aldehyde dehydrogenase 1 family member
A1 (ALDH1A1) in cisplatin-resistant HNSCC cells results in
downregulation of CSC markers that are diminished in
migratory, self-renewal, and tumorigenic potential and
resensitizes HNSCC cells to cisplatin. These observations are
further validated in four ex vivo explants from HNSCC patients
in which combined treatment of cisplatin and NCT-501, a
theophylline-based inhibitor of ALDH1A1, results in a
significant decrease in proliferating cells as compared with
monotherapy (16). In a subsequent study, gene set enrichment
analysis identified enhanced FGF2 expression in cisplatin-
resistant ALDHhigh/CD44high HNSCC cells. Pharmacological
inhibition of FGF signaling using BGJ398 preferentially targeted
the ALDHhigh/CD44high subpopulation, suggesting that FGFR
signaling plays a key role in in vitro stemness and in cisplatin
resistance in HNSCC cells (17).

Of note, preclinical studies show that long noncoding RNA
FOXD2-AS1 regulates therapeutic resistance in laryngeal squamous
cell carcinoma (LSCC) by acting as an upstream activator of
STAT3, which is essential to maintain cancer stemness. In LSCC
patients, FOXD2-AS1 expression was predictive of poor prognosis
in chemotherapy-resistant patients (18).

Overall, these studies show that the acquisition of CSC
properties and the transition to a mesenchymal phenotype
mediate chemotherapy resistance of HNSCC.

DNA Damage
Cisplatin triggers the formation of phosphorylated histone
H2AX (g H2AX)-positive foci at the site of DNA damage (19),
dependent on ATR and via the activation of downstream
CHEK1/2 (20). In HNSCC, as well as in other cancer types,
altered DNA damage response signaling has been associated with
resistance to chemotherapies (21).

Indeed, functional depletion of DDR effectors WDHD1,
DSCC1, CSNK2B, POLR2I, and RAD54L in HNSCC cells
treated with cisplatin results in decreased ATR serine/
threonine kinase (ATR) phosphorylation and reduces cisplatin-
induction of g H2AX foci, suggesting that impaired DDR
signaling is a driving mechanism of cisplatin resistance in
HNSCC in vitro (21). Moreover, gene expression analysis of
pretreatment biopsy specimens from 64 HNSCC patients treated
with 5−FU/cisplatin identified that ERCC1 expression is a
significant predictor of response to chemotherapy, further
indicating that DNA repair is a pivotal mechanism implicated
in response to chemotherapy in HNSCC (22).

At present, clinical trials are evaluating the efficacy of targeting
DNA damage response in HNSCC. ATR acts as a DNA damage
Frontiers in Oncology | www.frontiersin.org 326
sensor, activating cell cycle checkpoint signaling upon DNA stress.
Pharmacological inhibition of ATR using M6620 is currently
being tested in combination with cisplatin and radiation therapy
in the setting of locally advanced HNSCC (NCT02567422).
Similarly, a modular, phase-I/Ib, open-label trial is ongoing to
evaluate the efficacy of ceralasertib (AZD6738, ATR inhibitor) in
combination with carboplatin (NCT02264678).

Along the same lines, because PARP is involved in DNA
repair, inhibition of PARP may enhance the damaging effects of
chemotherapy on tumor DNA. A phase-I/II study recently
reported the safety and efficacy of veliparib, a PARP inhibitor,
in combination with carboplatin-paclitaxel chemotherapy in
patients with locoregionally advanced HNSCC (23). The WEE1
tyrosine kinase maintains genomic stability and regulates G2–M
transition, particularly in p53-deficient tumors, protecting cells
against replication stress and subsequent cell death. A phase-I
clinical trial evaluating the triplet combination of AZD1775
(WEE1 inhibitor), cisplatin and docetaxel reported satisfactory
results in terms of safety and tolerability as well as promising
antitumor efficacy in patients with stage-III/IVB HNSCC (i.e.,
partial response in 5 patients and stable disease in 4
patients) (24).

Epigenetic Modifications
Resistance to cisplatin-based chemotherapy can be also
modulated by epigenetic alterations. Indeed, hypermethylation
of the promoter CpG islands of the neurofilament light
polypeptide (NEFL) gene is associated with resistance to
cisplatin-based chemotherapy in HNSCC cell lines. Functional
analyses showed that NEFL interacts with tuberous sclerosis
complex 1 (TSC1) at the protein level. Because TSC1 is a negative
regulator of the mTOR pathway, it is suggested that NEFL
downregulation results in functional activation of the mTOR
pathway and, thus, cisplatin resistance. Interestingly, in this
study, analysis of more than 50 HNSCC patient samples
evidenced that NEFL promoter hypermethylation predicted
diminished OS and disease-free survival in patients treated
with cisplatin-based chemotherapy (25). A recent clinical trial
evaluated the impact of mTOR pathway inhibition in HNSCC
patients in the neoadjuvant setting. This study reports that
rapamycin treatment was well tolerated, reduced mTOR
signaling (i.e., phosphorylation of S6, AKT, and 4EBP) and
tumor growth, and resulted in significant clinical responses in
4/16 of patients (1 complete response, 3 partial responses, and 12
stable disease) (26).

Histone modifiers are essential for chromatin dynamics and
gene expression, and their dysregulated function may alter gene
regulation in favor of oncogenic growth. Elevated expression of
p21-activated kinase 2 (PAK2), a binding partner of the Rho
GTPases that are implicated in chromatin remodeling, cell
proliferation, and apoptosis, is correlated with chemoresistance
and is associated with the poor clinical outcome of HNSCC
patients. Mechanistically, PAK2 upregulates c-Myc expression,
which, in turn, transcriptionally activates and induces pyruvate
kinase M2 (PKM2) expression, resulting in reduced aerobic
glycolysis, proliferation, and chemotherapeutic resistance of
HNSCC cells (27).
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Small noncoding RNAs are also key effectors of transcriptional
gene silencing in HNSCC. Analysis of global miRNA expression in
CD44-expressing HNSCC cells reveals that miR-629-3p expression
promotes cell migration and inhibits apoptotic cell death upon
cisplatin treatment. Of note, miR-629-3p-transfected cells display a
significant enrichment of gene sets associated with drug
metabolism and EMT. Interestingly, the role of miR-629-3p in
conferring resistance to cisplatin was also observed in a xenograft
model, and the expression of miR-629-3p was associated with
decreased survival in HNSCC patients, potentially suggesting a
physio-pathological role of miR-629-3p in resistance to cisplatin in
HNSCC (28).

Enhanced expression of miR-96-5p is shown to promote cell
migration but not cell proliferation, in p53-mutant HNSCC cell
lines and to drive resistance to radiotherapy and cisplatin-
based chemotherapy in vitro (29). Of note, this study identified
PTEN, a negative regulator of the intracellular levels of
phosphatidylinositol-3,4,5-trisphosphate as a direct target
of miR-96-5p through the binding to its cognate site on the
3’UTR of PTEN. Interestingly, functional experiments
performed in vitro shows that PTEN depletion recapitulates
the biological effects of miR-96-5p overexpression in HNSCC
cells as they were less prone to cisplatin-induced cell killing (29).

At present, a noninterventional clinical trial (NCT03953443)
is evaluating the impact of expression and epigenetic silencing of
microRNAs for predicting therapeutic response and prognosis of
HPV-negative HNSCC.

Further knowledge on the epigenetic alterations that promote
HNSCC chemoresistance can open the possibility for the
development of therapeutic strategies that can be used as an
adjuvant therapy associated with conventional chemotherapeutic
drugs to enhance treatment effectiveness.

Evasion of apoptosis
The adaptive response to chemotherapy in HNSCC is modulated
by changes in the expression of pro- or anti-apoptotic proteins
and include defects in cellular responses caused by mutations of
tumor suppressor gene TP53 (30, 31).

Survivin (BIRC5), a member of the inhibitor of apoptosis (IAP)
gene family, is shown to be significantly upregulated in HNSCC
primary tumors and cell lines and to be particularly highly
expressed in HPV-negative patients who generally respond poorly
to cisplatin treatment (32). Immunohistochemical and mutational
analyses on HNSCC biopsies from patients displaying high levels of
nuclear survivin (BIRC5) identified the presence of the somatic
mutation c.278T>C (p.Phe93Ser). Functional characterization of
this mutant by ectopic expression and microinjection experiments
revealed that it attenuates the cytoprotective activity of survivin
against chemoradiation-induced apoptosis. Therefore, genetic
inactivation of survivin may promote an increased therapy
response in cancer patients (33).

Interestingly, pharmacological inhibition of survivin using the
small molecule YM155, either as a single agent or in combination
with cisplatin, evidenced a significant dose-dependent decrease
in cell proliferation and the reversion of cisplatin resistance in in
vitro and in vivo models of HNSCC. Mechanistically, YM155
induced a rapid reduction of survivin in the cytoplasm, which is
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key for its antiapoptotic function (32). Thus, survivin inhibition
might potentially be a novel strategy to enhance the effectiveness
of chemotherapy in HNSCC.

The x-linked inhibitor of apoptosis (XIAP) is an E3 ubiquitin
protein ligase that functions through binding to tumor
necrosis factor receptor–associated factors TRAF1 and TRAF2
to inhibit apoptosis. Analysis of XIAP expression in tumor
samples from 60 patients with advanced HNSCC, before and
after chemotherapy, evidenced that XIAP is a predictor of
cisplatin response and prognosis for patients with advanced
HNSCC. Interestingly, preclinical experiments show that
inhibiting XIAP expression with siRNA in XIAP-high HNSCC
cells markedly increased their sensitivity to cisplatin treatment
(30). Of note, the dual cIAP/XIAP antagonist ASTX660
significantly delays growth of both HPV- and HPV+ human
tumor xenografts in combination with radiotherapy.

Resistance to the activity of TNF-related apoptosis inducing
ligand (TRAIL), an effector of tumor cell–specific apoptosis, is
associated with HPV positivity in HNSCC in vitro. HPV-positive
HNSCC cell lines were sensitized to TRAIL-induced cell death by
bortezomib-mediated proteasome inhibition via the activation of
caspases 8, 9, and 3; increased membrane expression of TRAIL-
R2; and G2/M arrest. Of note, XIAP depletion also augmented
HPV-positive HNSCC cell death in response to TRAIL alone and
in combination with bortezomib (34).

Tumor Microenvironment (TME)
HNSCC tumors are commonly associated with hypoxia,
which is characterized by an acute or chronic decline in
oxygen tension.

Activin receptor–like kinase (ALK)-1 represents a promising
target for antiangiogenic therapy in solid tumors. activin
receptor–like kinase-1 ligand trap (ALK1-Fc) is a chimeric
protein consisting of the ALK1 extracellular domain fused to
the Fc-part of an antibody. ALK1-Fc prevents the binding of
BMP9 and BMP10 to the endothelial ALK1 receptor, which
results in decreasing angiogenic responses (35). Therapeutic
combination of ALK1-Fc with cisplatin is shown to inhibit
tumor growth in HNSCC in vivo models more efficiently than
chemotherapy alone. Treatment of mice with ALK1-Fc strongly
decreased the microvascular density of tumors, increased the
pericyte coverage of the remaining tumor vessels, and decreased
the hypoxia within the tumor (36). Interestingly, results of an
early-phase clinical trial show that the ALK1-Fc displayed
promising antitumor activity in HNSCC patients with advanced
refractory cancer (35).

Signaling via the SDF-1/CXCR4 axis, a chemokine-receptor
pathway, is involved in cancer progression due to its roles in
modulation of dendritic cells, enhanced matrix metalloproteinase
activity, and the induction of TNF-alpha production and
angiogenesis. Analysis of the expression of SDF-1 and CXCR4 in
a cohort of 221 patients with locally advanced HNSCC evidenced
that SDF-1 is associated with resistance to adjuvant radiotherapy
concurrent with cisplatin-based chemotherapy (37). In this study,
neither SDF-1 nor CXCR4 expression were associated with distant
metastasis or with OS. The functional basis of these observations
as well as the potential role of SDF-1/CXCR4 as a therapeutic
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target to overcome treatment resistance in HNSCC remains to
be determined.

In preclinical models of OSCC, combination therapy of cisplatin
and inhibitors of VEGFR (i.e., pazopanib and nintedanib) was more
potent than treatment with chemotherapy alone (38). The efficacy
and toxicity of docetaxel with or without vandetanib, an inhibitor of
VEGFR, RET, and EGFR, was investigated in patients with
advanced recurrent or metastatic HNSCC. This trial shows only a
minor trend toward improved PFS for the combination arm (39).
Of note, a current clinical trial is ongoing to evaluate the
combination of atezolizumab (humanized IgG1 antibody against
PD-L1) and bevacizumab (monoclonal antibody developed against
VEGF) in patients with recurrent or metastatic HNSCC
(ATHENA, NCT03818061).

The TME also constitutes a reservoir of cancer-associated
fibroblasts (CAFs) which, in a close crosstalk with tumor cells,
enhance the production of growth factors, cytokines, chemokines,
and inflammatory mediators to promote tumor growth (40). CAFs
are observed in both primary and metastatic HNSCC, and oral
CAFs are reported to acquire rapid growth and increased
proliferation and viability compared with normal oral fibroblasts
(40). CAF-secreted paracrine factors increase HNSCC migration,
invasion, and proliferation in vitro and promote tumor growth and
metastases in vivo (i.e., orthotopic floor-of-the-mouth tumor
model) (41).

CAFs are also known to mediate resistance to anticancer drugs
in HNSCC. In HNSCC cell lines, culture with conditioned medium
from a tumor cell/CAF coculture induced cisplatin resistance and
increased their colony-formation capacity (11). Interestingly,
exosomal miR-196a released by CAFs targets CDKN1B and
ING5 and, thus, confers cisplatin resistance in vitro (42).
Interestingly, in this context, high levels of plasma exosomal miR-
196a are clinically correlated with poor OS and chemoresistance in
HNSCC patients. In line with these observations, it is demonstrated
that, in OSCC patients, CAFs secrete increased levels of midkine (a
heparin-binding growth factor that promotes carcinogenesis and
chemoresistance) and abrogated cisplatin-induced cell death (43).
Finally, analysis of tumor specimens obtained from 60 OSCC
patients who underwent surgery following 5-fluorouracil-based
chemoradiotherapy revealed that higher numbers of CAFs and
tumor-associated macrophages (TAMs) were significantly
correlated with a poor prognosis, suggesting their potential as
biomarkers for predicting the clinical response to 5-FU-based
chemoradiotherapy (44).

Understanding how CAFs contribute to drug resistance,
proliferation, invasion, and metastasis might open up new
strategies for the diagnosis, prognosis, and therapy of HNSCC.
MECHANISMS OF RESISTANCE
TO CETUXIMAB

Initially described in 1962 by Cohen (45, 46), the epidermal
growth factor receptor (EGFR) is a transmembrane receptor with
tyrosine kinase activity (47). Several ligands bind specifically
EGFR (e.g., epidermal growth factor [EGF], tumor growth
Frontiers in Oncology | www.frontiersin.org 528
factor-alpha [TGF-alpha], and amphiregulin), and others
(betacellulin, heparin-binding growth factor [HB-EGF], and
epiregulin) bind to both EGFR and ErbB4 (48–50). Ligand
binding induces the homo- or hetero-dimerization of EGFR,
which is followed by the activation of downstream signaling,
mainly via the RAS–RAF–MEK–ERK, the PI3K–AKT–mTOR,
and the JAK–STAT cascades (51). These pathways are involved
in the carcinogenesis and invasiveness of many cancer types (52).

Because EGFR is overexpressed in 80%–90% of HNSCC
cases, tumors are often addicted to EGFR signaling for
sustained survival and proliferation, and this overexpression is
correlated with poor prognosis and treatment outcomes (53–55),
therapies targeting EGFR have been widely evaluated for
HNSCC (56–58): first, intravenous anti-EGFR antibodies that
bind to the extracellular domain of the receptor causing its
internalization to prevent its activation by other ligand–
receptor interactions (59) while favoring antibody-dependent
cell-mediated cytotoxicity (i.e., ADCC, which refers to the
linking to innate and adaptive antitumor immune responses
via NK cells and antigen-presenting cells that lead to EGFR-
specific T cells) (60–63) and ii-oral EGFR tyrosine kinase
inhibitors (TKI) binding to the intracellular domain of EGFR
inhibiting its autophosphorylation (blocking of the ATP binding
to the intracellular tyrosine kinase domain of EGFR) and
downstream signaling (56, 64, 65).

Cetuximab (CTX), a monoclonal antibody targeting the
EGFR extracellular domain, is to date the only targeted therapy
that has demonstrated benefits in OS in combination with both
radiotherapy for patients with locally advanced HNSCC (66) and
chemotherapy (platinum, 5-FU, and CTX) as the first-line
treatment of patients with recurrent and/or metastatic HNSCC
(5, 67). Of note, CTX has never proven to be effective
postoperatively (56, 58, 68).

Despite our better understanding of HNSCC biology (51, 69–
71), no other molecular-targeted agent has been approved for
HNSCC (12). Furthermore, CTX has shown limited efficacy in
HNSCC with an overall response rate of 10%–20%, contrasting
with the high rates of EGFR overexpression (51, 72). This
underlines the existence of resistance mechanisms, remaining
unresolved, but for which several hypotheses have been proposed
(48, 56, 64, 67, 73–81) (4, 12, 21, 24, 29–37). The different type of
resistance mechanisms to CTX could be defined as follows:
alterations of the EGFR-ligand binding, alterations of the
EGFR downstream signaling effectors, parallel/bypass pathway
activation, alterations of proteins involved in classic cancer
pathways, EMT, epigenetic alterations and establishment of an
immunosuppressive TME (Figure 1). In this review and for each
CTX resistance mechanism, we report preclinical (based on
HNSCC cell lines/xenograft) and clinical evidence of CTX
resistance as well as ongoing clinical trials of CTX-based
combined therapies to overcome CTX resistance (Table 1).

Alterations in EGFR and Its ligands
Alterations of the antibody–receptor interactions can be induced
by either alteration of the EGFR (82–92) or via competition with
other EGFR ligands (87, 93–98).
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EGFR Alterations
Several EGFR alterations have been reported in preclinical
studies. First, loss of the EGFR phosphatase transmembrane
protein tyrosine phosphatase RPTP sigma (PTPRS), which is
known to directly interact, dephosphorylate, and inactivate
EGFR (99), enhances EGFR-induced transformation and
promotes EGFR/PI3K pathway activation, resulting in
resistance to EGFR inhibition (88). Furthermore, constitutive
activation of the EGFR, such as the EGFR variant III (EGFRvIII,
activating mutation), results in activation of several downstream
modulators (preferentially the PI3K pathway) and participates in
increasing tumorigenicity and CTX resistance (92).

On the other hand, several CTX resistance mechanisms are
based on the perturbation of CTX binding on EGFR. Indeed,
contrary to the classic EGFR located on the plasma membrane,
the nuclear EGFR (translocation mediated by the Src family
kinases) cannot be targeted by CTX and, thus, functions as a
transcription factor for several factors, inducing proliferation
(cyclin D1, iNOS, B-myb, and aurora kinase A) (91). Moreover,
the single nucleotide polymorphism encoding EGFRK521 (K-
allele), which is expressed in >40% of HNSCC cases, has been
shown to reduce stability of the EGFR and, thus, the affinity for
CTX binding (85). Finally, the two concurrent, nonsynonymous
missense G33S and N56K mutations in the extracellular domain
Frontiers in Oncology | www.frontiersin.org 629
of EGFR restrict adoption of a fully closed (tethered) and inactive
EGFR conformation, thus, not permitting binding of CTX to the
EGFR (82, 86).

Besides the preclinical evidence, clinical studies support some
of the previously cited CTX-resistance mechanisms. Based on
analysis of n=31 HNSCC (oral cavity) cases, Morris et al. find
significant PTPRS loss or deletion in 32% of cases (88). They
observed pathway activation (elevated levels of phospho-EGFR
and phospho-AKT) in tumors with PTPRS deletion but not in
tumors lacking PTPRS deletion. Smilek et al. show that a somatic
EGFR mutation located in exon 19 may contribute to the limited
clinical response to therapy with CTX plus radiotherapy (n=2/29
patients with advanced HNSCC) (86). Moreover, the high
EGFRvIII expression, detected in 17%–42% of HNSCC tumors,
was significantly and independently associated with shorter
progression-free survival in patients with recurrent or
metastatic HNSCC treated by CTX + Docetaxel (87, 92). For
some authors, the role of this EGFR polymorphism in CTX
resistance remains limited (100). The EGFR extracellular domain
mutation G465R is reported to confer resistance to CTX by
altering its binding to EGFR in a patient with a regional neck
recurrence of an oral cavity HNSCC (83).

CTX-based combined therapy has been tested in the
preclinical as well as clinical setting to overcome the previously
FIGURE 1 | Molecular mechanisms contributing to Cetuximab resistance, in particular through alterations of the EGFR pathways, activation of bypass pathways and
alterations of downstream signaling effectors. Red lines and arrows show mechanisms contributing to Cetuximab resistance, and green lines and arrows show
mechanisms contributing to Cetuximab sensitivity. (CTX, Cetuximab; EGFR, Epidermal Growth Factor Receptor; RTK, Tyrosine Kinase Receptor; EMT, epithelial-
mesenchymal-transition; uPAR, urokinase-type plasminogen activator receptor; STAT3, signal transducer and activator of transcription 3; PTPRS, Transmembrane
Protein Tyrosine Phosphatase RPTPsigma; PTEN, phosphatase and tensin homolog; AURKA, Aurora Kinase A; AURKB, Aurora Kinase B).
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TABLE 1 | Resistance mechanisms to chemotherapy (left), cetuximab (middle) and immunotherapy (right), described in head and neck squamous cell carcinoma.

CHEMOTHERAPY CETUXIMAB

Target alterations DNA damage EGFR and its ligands EGFR alterations
Loss of PTPRS
EGFR variant III
Nuclear translocation
SNP EGFR-K521

DNA damage response
effectors

EGFR G465R and concurrent EGFR G33S and EGFR N56K

ERCC1 expression Competition with other ligands
ATR, WEE1 and PARP
activation

Aberrant expression of TGF-a, TGF-b, EGF, HB-EGF,
amphiregulin and heregulin

EGFR downstream
effectors

STAT3 activation by EGFR, JAK2 or a Src Kinase
Src kinase activation
RAS/MAPK pathway activation
PI3K/Akt/mTOR pathway activation (e.g. PTEN mutation)

Bypass pathway activation Apoptosis
evasion

Survivin expression RTK activation MET, AXL, HER2, HER3, ROR2, IGF-1R and VEGFR
Increased XIAP and TRAIL
expression

Apoptosis evasion Loss of the tumor suppressor gene TP53

Metabolism Hypoxia (i.e. HIF-1a overexpression)
Epithelial-to-mesenchymal
transition / cancer stem
cells

NEDD4 overexpression Expression of lymphotoxin
miR-139-5p down-regulation EGFR methylation
IL-6/STAT3 pathway activation Secretion of CTX-containing extracellular vesicles
Increased expression of CD44 and Oct-4 Upregulation of EMT-related genes
Upregulation of ABC transporter genes Loss of the tumor suppressor gene SMAD4
Increased ALDH1 expression

Epigenetic modifications Activation of miR-302 Altered expression of growth factor receptors and EMT-related genes by:
Increased FOXD2-AS1 expression DNA methylation
Up-regulation of histone methyltransferase
DOT1L

Histone modifications

NEFL promoter hypermethylation Chromatin remodeling
Elevated expression of PAK2 Noncoding RNAs
miR-629-3p expression

TME Enhanced expression of miR-96-5p
ALK1 activation T regs and MDSC proliferation
SDF-1/CXCR4 expression T cells exhaustion or impairment
Cancer associated fibroblasts (CAF) proliferation Toll-like receptor 4 (TLR4) pathway activation

Cancer associated fibroblasts (CAF) proliferation
Frontiers in Oncology | www.fro
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IMMUNOTHERAPY

Intrinsic resistance Tumor Immunogenicity and Antigen presentation
Selection of subclones lacking the expression of neoantigens
downregulation of MHC class I (MHC-I)
Loss of function of b2-microglobulin
Alterations in STAT1
Oncogenic pathways
MAPK pathway
WNT/b-catenin pathway
PI3K pathway
Soluble molecules
Secretion of pro-tumoral cytokines IL-6, and IL-10
IDO1 overexpression
Secretion of immunosuppressive exosomes containing TGF-b, PD-1 and CTLA4

Extrinsic resistance Inhibitory checkpoint molecules
CTLA-4 expression in Treg TILs
LAG-3
TIM-3
KIR2DL-1, KIR2D-2, KIR2D-3
Stimulatory agonist molecules
Costimulatory agonists: Ox40, 4-1BB, ICOS and CD40
Immunosuppressive cells
Myeloid derived suppressor cells
Tregs
Tumor-associated macrophages
For each resistance mechanism, preclinical and/or clinical evidence of their role in resistance as well as combined therapeutic strategies to overcome it are developed in the manuscript.
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cited resistance mechanisms. Dasatinib (BMS-354825), a
tyrosine kinase inhibitor (TKI), limits the nuclear EGFR
translocation (by blocking the Src family kinases), which leads
to increased EGFR on the plasma membrane and restores
sensitivity to CTX (90). Thus, Dasatinib is currently evaluated
in combination with CTX in patients with recurrent HNSCC
(NCT01488318, phase 2) (84) as well as in combination
with CTX/cisplatin/RT (NCT00882583, phase 1). Interestingly,
in the CTX + Dasatinib combination setting, patients with
low serum IL6 have shown clinical benefit and improved OS
(NCT01488318) (84).

Aberrant Expression of EGFR Ligands
The CTX-EGFR interactions are reduced in the context of
competitive interaction with the overexpression of some
ligands, such as TGF-a, TGF-b, EGF, HB-EGF, amphiregulin,
and the aberrant HER3 ligand heregulin-expression (87, 93–98).
Thus, this autocrine/paracrine growth factor production reduces
CTX effectiveness in several HNSCC cell lines.

Indeed, based on the analysis of tumor biopsies from n=47
recurrent/metastatic HNSCC, the amphiregulin overexpression
(representing 47% of cases) was a statistically significant
prognostic factor of worse OS and progression-free survival
(87). Yonesaka et al. report that n=2/28 HNSCC tumor
samples that presented aberrant heregulin expression
comparable to that of HNSCC CTX-resistant cell lines
(FaDuCR cells) were resistant to CTX (94).

Interestingly, FaDuCR recovered the sensitivity to CTX in
combination with Pertuzumab (anti-HER2 antibody) (94).
Indeed, Pertuzumab prevents the binding of HER2 with its
ligand (heregulin), avoiding the coupling of HER2/HER3, thus,
resulting in the absence of the HER3-AKT pathway activation,
which is responsible for inducing CTX resistance.

Alterations of EGFR Downstream
Signaling Effectors
Activation of downstream signaling effectors, such as STAT3
(signal transducer and activator of transcription 3) (77, 84, 101–
106), Src Kinases (64, 107, 108), RAS/MAPK pathways (86, 96,
109–115), and PI3K/Akt/mTOR pathway (102, 105, 116–127)
could induce CTX resistance independently of the EGFR-
ligand activation.

STAT3 Activation
STAT3, a member of the STAT family of transcription factors, is
considered as an oncogene activated in several cancers, including
HNSCC (128). Its activation could be driven by EGFR as well as
in an independent EGFR way by another growth factor receptor,
the Janus kinase 2 (JAK2) or by the Src kinase family.
Furthermore, loss of the PTPRS tumor suppressor gene that
dephosphorylates STAT3 may lead to permanent activation of
STAT3. Several studies report that hyperactivation of STAT3 is
implicated in CTX treatment resistance.

Indeed, several HNSCC cells lines that develop acquired
resistance to CTX are characterized by increased total STAT3
expression (77). The role of STAT3 in HNSCC cell CTX that
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acquires resistance is supported by recovering increased
sensitivity to CTX (greater antiproliferative effects and
cytotoxicity) when STAT3 is knocked down (104) or by
blocking JAK2–STAT3 signaling (using miR-204) (101).
Moreover, analysis of n=22 samples from patients with
HNSCC tumors that recurred following CTX treatment finds
increased phosphorylated STAT3 (103).

Regarding CTX-based combinations, guggulsterone, a natural
compound contained in the Commiphora mukul plant resin
used in Indian ayurvedic medicine and considered as an anti-
STAT3 agent, enhances the efficacy of CTX when combined with
CTX (106). Moreover, the combination of CTX + JAK2 inhibitor
(miR-204) inhibits STAT3 activation, resulting in inhibition of
angiogenesis and promotion of in vivo CTX sensitivity (101).
Given that STAT3 may be activated by the Src kinase family,
Dasatinib (SRC inhibitor), which is tested in combination with
CTX in phase-2 (84) and phase-1 clinical trials (NCT01488318
and NCT00882583, respectively), could provide some insight
about the utility of the STAT3 inhibition in overcoming
CTX resistance.

Activation of Src Kinases
Src family kinases are frequently overexpressed and/or activated
in several cancers, including those arising in the head and neck
(85). These nonreceptor protein tyrosine kinases play critical
roles in signaling pathways, regulating cell division, motility,
adhesion, angiogenesis, and survival (129). Thus, activation of
Src kinases could be involved in proliferation/migration/invasion
of cancer cells as well as in treatment resistance.

Based on gene expression profiles of CTX-resistant OSCC
cells as well as of publicly available data sets, Uzawa et al. identify
a 12-gene expression signature of CTX resistance, including the
urokinase-type plasminogen activator receptor (uPAR) (107).
They show that CTX resistance could be mediated by uPAR
upregulation. Indeed, through the uPAR/integrin b1/Src/FAK
signal circuit, the uPAR upregulation activates ERK1/2
phosphorylation to maintain cell proliferation/invasion
resulting in CTX resistance in vitro and in vivo even in the
absence of EGFR overexpression or acquired activating
mutations. Src kinases could also induce CTX resistance by
EGFR-ligand independent transactivation (cell-substratum
adhesion), which phosphorylates ErbB3 to form a heterodimer
complex, inducing proliferation via AKT (108).

Based on previous evidence, the CTX-based combination
with the Src inhibitor-1 or resveratrol (uPAR inhibitor) are
shown to overcome CTX resistance in vitro and in vivo (tumor
growth suppression and uPAR downstream protein
downregulation), respectively.

Activation of the RAS/MAPK Pathway
The family of mitogen-activated protein kinases (MAPK) are a
family of serin-threonin kinases implicated in the regulation of
the majority of physiological cellular processes, including
proliferation, differentiation, and apoptosis in response to
changes in the cellular environment (130). In particular, the
Ras/Raf/MEK/ERK1/2 (extracellular signal-regulated protein
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kinases) cascade is the MAPK signaling cascade most frequently
associated with carcinogenesis of several cancer types (131).
Regarding HNSCC, this signaling cascade can be activated by
several tyrosine kinase receptors, such as EGFR, as well as
independently of them by alterations of the Ras/Raf oncogenes.
This highlights the variety of CTX-resistance mechanisms
involving this signaling cascade.

First, the MAPK signaling pathway activation related to the
HNSCC CTX resistance could involve a RAS-activating
mutation (G12V HRAS) (113). The restored sensitivity to CTX
by silencing H-Ras in H-Ras mutant HNSCC cell lines reinforces
this observation (132). However, activation of the RAS/MAPK
pathway even in the absence of constitutive gene mutations
could lead to CTX resistance (111). Indeed, overexpression the
K-Ras, H-Ras, and N-Ras proteins (96) leads to CTX resistance.
Furthermore, dysregulation of the regulating proteins of the
RAS/MAPK pathway could also contribute to CTX resistance
as supported by the low expression of DUSP5 and DUSP6
(negative regulators of ERK1/2) and upregulation of AURKB
(100) and AURKA (114), which are key regulators in mitosis.

In the clinical setting, Braig et al. show that acquisition of RAS
mutant clones (KRAS G12S, G13C; NRAS Q61K, NRAS A146P;
HRAS G13R) correlates significantly with clinical resistance to
CTX in a cohort of n=20 patients treated by CTX/platinum/5-
fluorouracil treatment with monitoring of the circulating
tumoral DNA (ctDNA) (110). The role of the KRAS
p.Gly12Val mutation in CTX resistance previously found in
vitro, is also demonstrated in only one patient carrying this
mutation (among the n=29 studied) associated with an absence
of response to treatment (86). Rampias et al. confirm that the
HRAS mutation (n=7/50 patients with HNSCC) is associated
with de novo resistance to CTX-based therapy (113). Overall,
Bossi et al.’s observations (cohort of n=40 recurrent/metastatic
HNSCC) are in accordance with others and show that
overactivation of the RAS pathway leads to CTX/platinum
resistance (111).

On the basis of their results, especially the interesting
observation of the crosstalk between the RAS/RAF/MAPK and
PI3K/AKT pathways, Rampias et al. tested the combination of
CTX + a PI3K inhibitor (LY294002) in an H-Ras mutated cell
line and found a marked reduction of their viability (113).
Apigenin, an ERK 1/2 inhibitor, in combination with CTX
resulted in a significant decrease of HNSCC CTX-resistant cell
survival (112). Interestingly, the combination of CTX + tipifarnib
(farnesyltransferase inhibitor) showed enhancement of the
tipifarnib antitumor effect through concomitant ERK
inhibition in vitro and in vivo (109). Finally, a combination of
CTX with inhibition of the ERK upregulators, i.e., aurora kinase
knockdown (siRNA) and inhibitor (the pan aurora kinase
inhibitor R763), showed inhibition of proliferation and
increased apoptosis in HNSCC cells lines (112, 114, 115).

PI3K/Akt/mTOR Pathway
The phosphatidylinositol-3-kinase (PI3K)/Akt and the
mammalian target of rapamycin (mTOR) signaling pathways
are involved in several physiological as well as pathological
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cellular processes, including proliferation, differentiation,
survival, and motility (133). In HNSCC, PI3K/AKT/mTOR
signaling is active in more than 90% of HNSCC as a result of
EGFR activation, PI3K overexpression, phosphatidylinositol-4,5-
bisphosphate 3-kinase catalytic subunit alpha (PI3KCA)
mutations/amplifications, and PTEN mutation (116, 134).
Activated PI3K/AKT/mTOR signaling is related to
radiotherapy and cytostatic drug resistance, likely through
enhanced DNA-repair mechanisms.

Several genetic alterations causing PI3K/AKT/mTOR
activation, such as activating mutations in the oncogene
PI3KCA or inactivating mutations in the tumor suppressor
protein PTEN, are driving CTX resistance in different HNSCC
cell lines (125, 127). Indeed, Izumi et al. show that loss of PTEN
conferred independence from EGFR activity and resistance to
EGFR inhibition by CTX in terms of downstream signaling,
proliferation, and tumor growth both in vitro and in in vivo
xenograft models (119).

Moreover, Eze et al. recently reported the analysis of PTEN
and PIK3CA expression in samples from patients with recurrent
or metastatic HNSCC enrolled in two trials of cetuximab-based
therapy (n=48 patients in the E5397 trial and n=37 in the NCI-
8070 trial) (117). Patients with low PTEN expression had
significantly worse survival.

Thus, CTX-based combined therapy has been realized using
ATP-competitive PI3K inhibitors as well as mTOR inhibitors
(Rapamycin and analogues). Regarding ATP-competitive PI3K
inhibitors, the CTX combination with Buparlisib or BKM120
demonstrates the highest antiproliferative effect and inhibition of
PI3K/protein kinase B, AKT/mTOR signaling pathways in vitro
(122) and in vivo (121). The BYL719 (PI3Ka specific inhibitor),
namely Alpelisib (123) and the Copanlisib (highly selective, pan-
class I PI3K inhibitors) (120), are shown to improve CTX-
induced tumor inhibition in HNSCC CTX-resistant cell lines
and PDX. Interestingly, the combination of CTX plus the
PKI-587 (PI3K/mTOR inhibitor), namely Gedatolisib, which
restored sensitivity to CTX in resistant HNSCC cell lines and
xenografts (124), is found to have a greater synergistic
enhancement of the CTX effectiveness, especially in basal-like
HNSCC cells with mutated CDKN2A (118). Regarding mTOR
inhibitors, Rapamycin (Rad001) (126) and Temsirolimus (105)
show improving CTX antiproliferative effects in xenografts.

Interestingly, combinations of CTX with PI3K/Akt/mTOR
inhibitors are widely investigated in clinical trials. Regarding
ATP-competitive PI3K inhibitors, there are several phase-1 and
-2 trials enrolling patients with HNSCC to be treated by CTX +
Buparlisib (BKM 120) (NCT01816984, phases 1 and 2), Alpelisib
(BYL719) (NCT01602315, phases 1b and 2) (126), and Copanlisib
(NCT02822482, phases 1b and 2, COPAN-ORL06, specifically for
patients harboring a PI3KCA mutation/amplification and/or a
PTEN loss). PX-866, a noncompetitive PI3K inhibitor, was also
tested in combination with CTX (NCT01252628, phases 1 and 2).
Analogues of the rapamycin, temsirolimus (NCT01256385, phase
2, MAESTRO HN) and everolimus (NCT01637194, phase 1;
NCT01283334, phases 1 and 2) (57) have already brought some
interesting results to overcome CTX resistance.
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Bypass-Pathway Activation
Another resistance mechanism involves the abnormal activation
of parallel signaling pathways to counteract the blockade of the
EGFR signaling by CTX. Thus, cancer cell survival is ensured by
increased expression/activation of alternative receptor tyrosine
kinases (RTK) (50, 77, 79, 123, 135–150), ensuring the activation
of several parallel pathways, including the VEGF pathway (72,
151–153).

Receptor Tyrosine Kinases
Among the growth-factor receptor family, RTK are
transmembrane receptors implicated in several physiological as
well as pathological (oncogenesis) processes (154). The binding
ligand-extracellular domain induces receptor dimerization,
activation of the intrinsic tyrosine-kinase activity of the RTK,
and activation of downstream signaling cascades implicated in
cell proliferation, differentiation, motility, survival, and cell–cell
communication (155). Thus, activation of these RTKs is a
mechanism of resistance to CTX during HNSCC treatment
(50, 77, 79, 123, 135–150).

Indeed, the increased expression and activation of RTK, such
as MET, AXL, HER2, HER3, and ROR2, are reported in several
CTX-resistant cell lines (148) as well as in vivo (PDX). For
example, MET/HGF (146) as well as AXL (123, 139, 148)
overexpression and activation stimulate cell proliferation
despite CTX treatment in vitro and in vivo, especially through
MAPK downstream signaling. Recently, McDaniel et al.
investigated the AXL-mediated CTX-resistance mechanisms in
HNSCC and report that the tyrosine 821 of AXL mediates
resistance to CTX by activation of c-ABL (oncoprotein) (156).

Other ErbB family members, ErbB2 (HER2) (102) and ErbB3
(HER3), could also be implicated in CTX resistance. Indeed,
Yonesaka et al. report the persistence of ERK 1/2 signaling
caused by the permanent activation of ErbB2 signaling
(amplification of the receptor ErbB2 or upregulation of the
ligand heregulin) induces CTX resistance in HNSCC cell lines
(141). The restoration of CTX sensitivity through inhibition of
ErbB2 or disruption of ErbB2/ErbB3 heterodimerization
reinforce their observations. On the other hand, this
heterodimerization also highlights the role of HER3 activation
in resistance to CTX treatment of some HNSCC cell lines (135).
The permanent activation of ErbB3/Akt signaling could be
caused by an autocrine neuregulin expression (autocrine loop)
as well as by aberrant HER3 ligand heregulin expression (94).
Furthermore, increased activity of the IGF1R signaling pathways
has been reported in several CTX-resistant HNSCC cell lines
(136, 137, 143). IGF1R and HER3 activations with partial EGFR
persistent activity are intertwined during CTX resistance as
supported by the ability of a multitarget mAb mixture against
EGFR, HER3, and IGF1R to overcome CTX resistance.

These preclinical observations are supported by clinical
evidence. Indeed, in a retrospective cohort of n=57 patients
with recurrent/metastatic HNSCC, patients who presented
HGF/MET pathway overexpression and activation had worse
prognoses (138). Moreover, Chung et al. report the case of a
patient with recurrent HNSCC who presented an interesting
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response to AMG-479 (a monoclonal antibody against IGF-1R)
after CTX resistance. Tumor sample analysis suggests the
potential benefit of a combined therapy using AMG-479 plus
CTX (142).

To overcome CTX-resistance, several combined therapies
using RTK inhibitors have been tested. The BET inhibitor JQ1,
which binds preferentially to the bromodomains of BRD4,
abrogates the expression of the alternative RTK (HER3 and
AXL), resulting in significantly delayed acquired resistance in
two PDX models of HNSCC (148). Combined with CTX, MET
inhibitor PHA-665752 is also shown to restore CTX sensitivity in
vitro and in vivo, especially by decreasing akt and ERK1/2
phosphorylation (146, 147). Inhibition of the AXL receptor is
explored by using imatinib (which targets c-Abl) in CTX-
resistant HNSCC PDX (156). This led to complete tumor
regression and a prolonged effect (no recurrence up to 3
months after cessation of treatment). Moreover, the Lida et al.
experiment brings general support to the implication of several
ErbB family members in CTX resistance. They find that the pan-
HERmixture of six antibodies targeting EGFR, HER2, and HER3
decreases HER family receptors in acquired CTX-resistant
HNSCC cells lines and overcomes CTX resistance in PDX
(98). More precisely, a dual EGFR/HER2 inhibitor with CTX
plus Afatinib shows significantly improved tumor volume
reduction in CTX-resistant xenografts compared with either
agent alone in monotherapy (140). ErbB3 inhibition has also
been realized in vitro and in vivo using MM-121 (97, 113) as well
as CDX-3379 (ErbB3-specific blocking antibody) (93). These
combinations inhibit proliferation through inhibition of PI3K/
Akt and ERK signaling pathways. When combined with CTX,
the anti-IGF-IR antibody (IMC-A12) A12 provides important
inhibitions of cell proliferation and migration in vitro and in vivo
(regression of tongue cancer cell xenografts) (144). Although the
rationale of dual VEGF and EGFR inhibition is proposed in
several other cancers (157), Argiris et al. show that combined
targeting of EGFR with CTX and VEGF with bevacizumab
enhances growth inhibition both in vitro and in vivo (153).

Given that ErbB3 activation induced by heregulin is
previously described as a CTX-resistance mechanism, the
combination of Patritumab (U3-1287), an anti-HER3
monoclonal antibody, and CTX with platinum-based therapy
was evaluated in a randomized, double-blind, phase-II study of
first-line treatment of patients with recurrent or metastatic
HNSCC (NCT02633800) (158). Although tolerable, the
combination Patritumab + CTX + platinum was not superior
to CTX + platinum. Based on the previous rationale as well as on
a phase-I study (149), Deeken et al. evaluate the combination of
lapatinib (which blocks both EGFR and ErbB2) plus CTX
(NCT01184482) in patients with advanced solid malignant
tumors, including HNSCC. Results were interesting with an
overall response rate of 17% and a clinical benefit rate of 67%.

CDX-3379, an anti-ErbB3 monoclonal antibody, has been
recently reported to inhibit tumor ErbB3 phosphorylation in
HNSCC and induce measurable tumor regression and was well
tolerated (93). Thus, a phase-2 clinical trial (NCT03254927) is
ongoing and aims to determine the clinical benefit, safety, and
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tolerability of combining CDX-3379 and CTX in patients with
advanced HNSCC who have previously received CTX
and progressed.

IGF-1R inhibitors are also widely explored in combination
with CTX for recurrent/metastatic HNSCC. Glisson et al. as well
as Ferrarotto et al. report no improvement of progression-free
survival and OS using the Cixutumumab + CTX compared with
CTX alone (159, 160). The OSI-906, a dual kinase inhibitor of
both IGF-1R and insulin receptor was evaluated in combination
with CTX among patients with HNSCC (NCT01427205, phase
2), but results are not available. More recently, the combination
of CTX plus the anti-IGF-1R antibody A12 (IMC-A12) was
evaluated in the neoadjuvant setting for patients with HNSCC
NCT00957853 (Phase 2).

Finally, VEGF inhibitors combined with CTX have been
also investigated. Although some results are not available
(NCT00906360, phase 1, CTX + Sunitinib), others are
contradictory. Indeed, although some trials report that
bevacizumab + cisplatin + CTX + intensity-modulated
radiation therapy (IMRT) in locally advanced HNSCC is
associated with favorable efficacy outcomes (NCT00968435,
phase 2), Argiris et al. find that adding bevacizumab
increases toxicity without apparent improvement in efficacy
(NCT00703976, phase 2) (151). Thus, the potential clinical
benefit of combined EGFR–VEGF targeting is not clearly
established.

Other Signal Transducers
Several proteins involved in classic cancer pathways, such as
proliferation, apoptosis, invasion, and metastasis, could be
altered and implicated in CTX resistance during HNSCC
treatment (64, 115, 161–165).

Among all somatic genomic alterations in HNSCC, the tumor
suppressor gene TP53 is the most frequent (166), highlighting its
importance in carcinogenesis and progression. Indeed, although
the tumor suppressor protein p53 has a critical role in cell cycle
arrest, apoptosis, and senescence, loss of its function is linked to
disease progression and treatment response (64). Regarding
CTX, comparative analysis of sensitive vs. CTX-resistant
HNSCC cells reveals the central role of the loss of p53 in the
development of acquired resistance to CTX (163).

The precise role of hypoxia in acquired resistance to
cetuximab is not clearly established, and further studies are
needed. Indeed, Boeckx et al. find that the sensitivity to CTX is
not altered but increased in HNSCC cells exposed to prolonged
hypoxia (164). On the other hand, Lu et al. report that HNSCC
cells with acquired CTX resistance express a high level of the
alpha subunit of the hypoxia-inducible factor-1 (HIF-1a) and
are highly glycolytic (aerobic glycolysis, i.e., the Warburg effect).
Furthermore, the experimental overexpression of HIF-1a
confers resistance to CTX as well as abolishes CTX-mediated
radiosensitization in HNSCC cells (161).

These preclinical observations have caused Lu et al. to explore
the inhibition of hypoxia and its relationship with CTX efficacy.
Downregulation of HIF-1a by siRNA or a small molecule
inhibitor (1-methyl 1, 9 PA) enhances response of CTX-
resistant HNSCC cells to CTX plus radiotherapy (161). Finally,
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Lu et al. confirm that CTX inhibits HNSCC cell proliferation
through inhibition of glycolysis and that the combination of
CTX + oxamate (inhibition of LDH-A, an enzyme catalyzing the
conversion of pyruvate to lactate in anaerobic conditions)
improves the therapeutic effect of CTX in cancer cells (162).
As a continuation of their work on the role of hypoxia and
glycolysis during HNSCC treatment, Lu et al. explore the role in
CTX resistance of the mitochondrial enzyme pyruvate
dehydrogenase kinase-1 (PDK1), known to allow the switching
glucose metabolism toward aerobic glycolysis in cancer cells
(165). They found that the combination of CTX plus PDK1
knockdown (siRNA) or with pharmacological inhibition of
PDK1 with dichloroacetic acid (DCA) overcomes CTX-
resistance in vitro and in vivo (xenografts) thanks to the
overproduction of reactive oxygen species (ROS) and the
subsequent apoptosis.

Epithelial-to-Mesenchymal Transition
The importance of EMT in human disease, especially in
carcinogenesis, has been reviewed elsewhere (167). The EMT
can be considered as a continuum of multiple and dynamic
transitional states whereby cells exhibit epithelial, intermediate,
and mesenchymal phenotypes. Regarding HNSCC, acquisition
of an EMT phenotype (modulation of cell polarity and adhesion)
by cancer cells is involved in disease progression as well as in
CTX resistance (168–179).

Indeed, several authors report that HNSCC cells exhibiting a
mesenchymal-like phenotype are resistant to CTX treatment in
vitro and in vivo (xenografts) (174, 176, 177). Several potential
mechanisms implicated in this EMT-induced CTX resistance are
observed, such as (i) expression of lymphotoxin-b; (ii)
methylation of EGFR that promotes the EGFR ligand-binding
ability and dimerization (EGFR persistent activity) (169); (iii)
secretion of CTX-containing extracellular vesicles, which lead to
cancer cell protection (179); (iv) upregulation of EMT-related
genes (133), especially by epigenetic regulation (170, 180); and
(v) loss of the tumor suppressor gene SMAD4, which induces
JNK and MAPK pathway activation (172, 173). Indeed, Ozawa
et al. find that SMAD4 loss is associated with CTX resistance and
poor survival in HPV-negative patients (cohort of n=130 newly
diagnosed and n=43 patients with recurrent HNSCC) (172).
Thus, Ozawa et al. tested the combination of CTX + JNK
inhibitor (SP600125) or MAPK/MEK inhibitor (U0126) and
show that it contributes to overcome CTX resistance in vitro.

Moreover, the development of CTX resistance could also be
accompanied by increasing hedgehog pathway transcription factor
expression in vitro (175). Thus, Keysar et al. tested the
combination of CTX and IPI-926 (hedgehog pathway inhibitor)
in four different PDXmodels. This combination forced tumor cells
into an EGFR-dependent state and blocked tumor recurrences.

Epigenetic Modifications
Epigenetic alterations, including DNA methylation, histone
modifications, chromatin remodeling, and noncoding RNAs,
are frequently involved in head and neck carcinogenesis, tumor
progression, and resistance to therapy (137), especially to
CTX (75).
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As previously described, Kagohara et al. report that
genes associated with CTX resistance in HNSCC cell lines,
including TFAP2A, which regulates growth factor receptors
and EMT, are epigenetically regulated (170). Stein-O’Brien
et al. show that FGFR1 demethylation is associated with CTX
resistance and this type of epigenetic alteration might stabilize
the resistant phenotype (171). Interestingly, Shimizu et al.
recently reported that nicotine (one of the main tobacco
components) contributes to CTX resistance in vitro as well as
in vivo (xenografts) (181). Indeed, they show that nicotine
induces, through the nicotinic acetylcholine receptor, both
EGFR phosphorylation (and the subsequent Akt and mTOR
downstream cascade activation) and nuclear translocation of the
phosphorylated EGFR.

Establishment of an Immunosuppressive
TME
In addition to all the previously cited intrinsic resistance
mechanisms, there are also extrinsic resistance mechanisms, i.e.,
involving the TME (182). These mechanisms encompass, in fact,
the cancer cell–TME crosstalk, contributing to CTX resistance (40,
75). In HNSCC, establishment of an immunosuppressive
microenvironment is an important resistance mechanism to
treatment, especially to CTX (6, 70, 183, 184) (Figure 2).

Regulatory T Cells (Tregs) and Myeloid-Derived
Suppressor Cells (MDSC) Proliferation
Proliferation of immunosuppressive cells, such T regs and
MDSC, in response to CTX treatment is one of the key
resistance mechanisms (185–188). Indeed, several coculture
experiments show that CTX expands CTLA-4+FOXP3+ Tregs
in part by inducing dendritic cell maturation. These Tregs lead to
CTX resistance by suppressing the CTX-mediated ADCC
(cytolytic functions of NK cells) (188). Based on the analysis of
blood samples from CTX-treated patients with locally advanced/
metastatic (stage III/IV) HNSCC (n=22 patients, NCT 00226239
and n=18, NCT 01218048), Jie et al. confirm their in vitro
observations (188). Indeed, they find that CTX increased the
frequency of intratumoral Tregs expressing the inhibitory
checkpoint cytotoxic T-lymphocyte-associated protein 4
(CTLA-4), which is known to inhibit T cell activation (6).
Thus, Tregs suppress the CTX-mediated ADCC. Their
presence is correlated with poor clinical outcomes in these
cohorts. Based on these results, Jie et al. tested CTX in
combination with ipilimumab, a monoclonal antibody that also
induces NK cell–mediated ADCC. Ipilimumab treatment
enhanced the CTX-mediated ADCC by eliminating Tregs
(targeting CTLA-4), allowing effector T cell activation and
restoration of the cytolytic functions of NK cells (n=6 HNSCC
tumors) (188).

Furthermore, Shayan et al. hypothesized that the combination
of CTX plus motolimod, a small-molecule TLR8 agonist that can
activate monocytes, DCs, and NK cells (189), might enhance T
cell stimulation and CTX effects (187). They find that the TLR8
stimulation through motolimod skewed monocytes toward an
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antitumor M1 phenotype and reversed MDSC suppression of T
cell proliferation. These in vitro observations are confirmed in
patients. Indeed, in a phase-Ib trial (NCT02124850) enrolling
n=14 patients with previously untreated stage-III/IV HNSCC,
Shayan et al. tested the combination of CTX plus motolimod
(formerly VTX-2337) (187). The combination reversed MDSC-
induced immunosuppression and improved antitumor
immunity with increased circulating tumor antigen-specific T
cells (EGFR specific) and increased the number and function of
tumor-infiltrating CD8 T cells. These encouraging results are
confirmed in another phase-Ib study (n=13 patients with
recurrent/metastatic HNSCC, NCT01334177) demonstrating
the significant increasing antitumor activity of this
combination (increased plasma cytokines and activated
circulating NK cells). To finish, the potential benefit of adding
motolimod to the standard EXTREME regimen (CTX +
platinum + fluorouracil) was evaluated in a phase-2 trial
enrolling n=195 patients with recurrent/metastatic HNSCC
(NCT01836029) (185). Ferris et al. find that the combination
fails to prove a benefit for survival when considering the intent-
to-treat population, but significant benefits are observed when
considering only the selected subgroup of patients with HPV-
positive tumors and injection site reactions.

T Cell Exhaustion/Impairment
HNSCCs are among the most immune-infiltrated cancers, and
several mechanisms are implemented by tumor cells to escape to
the host immune defense system (190, 191). The immune-
modulatory effect of CTX treatment, in particular ADCC,
might be inhibited by cancer cells through several mechanisms
inducing T cell exhaustion/impairment and all CTX resistance
(67, 97, 192–204). Indeed, to counteract the antitumor activity of
CTX, tumor cells express TGF-b, which inhibits the expression
of cytotoxic effector molecules in immune cells (Apo2L/TRAIL,
CD95L/FasL, granzyme B, and IFN-g) and suppresses their
ability to induce cetuximab-mediated ADCC (97).

Moreover, in a cohort of n=18 patients with stage-III/IV
HNSCC treated by CTX alone (NCT 01218048), Jie et al. find
that the increased frequency of PD-1+ and TIM-3+ tumor-
infiltrating lymphocytes (TILs) during CTX treatment inversely
correlates with objective response (200). Besides PD-1 and TIM
immune checkpoint (ICP) receptors, KIR, the ICP on NK cells
that modulate their activation, is also indirectly implicated in
CTX resistance. Indeed, Faden et al. report a statistically
significant increase of missense mutations and loss of
heterozygosity in HLA-C (the ligand for KIR) in patients not
responding to CTX compared with responders (196).

In accordance with the previously cited in vitro observations,
several CTX combinations have been tested in the preclinic as
well as clinic setting.

For example, Bedi et al. explored the combined effect of CTX
and TGF-b blocking in vivo (PDX). Although CTX alone forced
the selection of resistant clones, i.e., TGF-b–overexpressing tumor
cells, the combined treatment prevented it and induced complete
tumor regression (97). In the same way, Faden et al. observed
increasedHNSCC cell killing when combining CTX and lirilumab,
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a monoclonal antibody that blocks NK inhibitory KIR signaling
(196). Moreover, the upregulation of CD137 or 4-1BB (a member
of the TNF-receptor superfamily, which is broadly induced and
activated on several effective immune cells) was corelated to
clinical response to neoadjuvant CTX (NCT01218048).
Srivastava et al. tested the effect on several HNSCC cell lines of
the combination CTX plus urelumab (BMS-663513, CD137-
agonist monoclonal antibody) (201). This combination
enhanced the CTX-mediated ADCC as supported by the
increased NK-cell survival, DC maturation, and tumor antigen
cross-presentation. Regarding other ICP inhibitory signals,
Concha-Benavente et al. explored several HNSCC cell lines
and found that the programmed death ligand-1 (PD-L1), which
limits the function of activated T lymphocytes when they
interact with the ICP receptor programmed death-1 (PD-1), is
expressed by tumor cells in an EGFR- and JAK2/STAT1-
dependent manner (159). Thus, they tested the combination of
CTX and JAK2 inhibition. They found that JAK2 inhibition
prevented tumor PD-L1 expression and that the combination
enhanced the CTX NK-mediated killing via ADCC against
PD-L1+ HNSCC cells.

The better comprehension of immune evasion mechanisms as
well as of the immune-modulatory effect of CTX, i.e., CTX-
mediated ADCC, brings evidence to support the evaluation of
combined approaches with ICP inhibitors in both locally
Frontiers in Oncology | www.frontiersin.org 1336
advanced and recurrent/metastatic HNSCC (6, 67, 192). Among
the tested agents, inhibition of the PD-1/PD-L1 synapse is widely
explored. The anti PD-1 Nivolumab, for which efficacy and
safety prior to CTX in HNSCC has been recently reported
(CheckMate 141) (205), is actually tested in combination with
CTX in phase-1 and -2 trials for patients with recurrent/
metastatic HNSCC (NCT03370276). Sacco et al. recently
reported some preliminary results of the first trial evaluating
the antitumor activity of anti-PD-1 Pembrolizumab combined
with CTX in n=33 patients with platinum-refractory/ineligible,
recurrent/metastatic HNSCC (NCT03082534, phase 2) (197).
Results are promising with an observed 41% response rate.
Regarding anti PD-L1, Durvalumab combined with CTX and
radiotherapy is currently tested in a phase-I/II clinical trial
(NCT03051906, DUCRO) (193). Based on previous safety
studies (154, 163, 167), several clinical trials are testing the anti
PD-L1 Avelumab in combination with CTX (NCT03494322,
phase 2 EACH) (206) +/- radiotherapy (NCT02999087 phase 3
REACH) or Palbociclib (a selective CDK4/6 inhibitor)
(NCT03498378 phase 1 and NCT02101034 phase 2) (195).
Other interesting combinations involve the 4-1BB agonist
Urelumab (NCT02110082) (201), the anti-CTLA-4 monoclonal
antibody ipilimumab (NCT01935921, phase 1) (202) and
Monalizumab (anti NKG2A receptors expressed on TIL-CD8+
and NK cells) (NCT02643550) (199).
FIGURE 2 | Molecular mechanisms contributing to Cetuximab resistance through the establishment of an immunosuppressive TME. Red lines and arrows show
mechanisms contributing to Cetuximab resistance, and green lines and arrows show mechanisms contributing to Cetuximab sensitivity. (EGFR, Epidermal Growth Factor
Receptor; NK, Natural Killer; PD1, Programmed death 1; PDL1, Programmed Death Ligand 1; KIR, Killer Immunoglobulin-like Receptor; ADCC, Antibody-dependent
cellular cytotoxicity; HLA-C, Human leukocyte antigen-C; TGF, transforming growth factor; Treg, regulatory T-cells; MDSC, Myeloid-derived suppressor cells).
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Toll-Like Receptor 4 (TLR4) Pathway Activation
TLR4 is an innate immune receptor involved in defense against
microbial agents by recognizing inflammation-associated
microbial ligands (such as lipopolysaccharide) and promoting
the activity of innate immune cells (207). TLR4 are also
expressed by tumor cells, and the role of the TLR4 signaling
pathway in the TME has been reviewed elsewhere (208).
Unfortunately, by inducing immunosuppressive cytokines,
apoptosis resistance, and EMT, the TLR4 signaling pathway can
promote cancer cells’ immune escape in several cancer types
(including lung, pancreas, and ovarian cancers, HNSCC) as well
as resistance to therapy (paclitaxel in ovarian cancer) (209–212).

Indeed, Ju et al. recently reported that the crosstalk between
the EGFR and TLR4 pathways could participate in CTX
resistance in vitro and in vivo (xenograft) (213). They found
that EGFR inhibition led to decreased MyD88 degradation, and
thus, MyD88 could activate TLR4 (receptor homodimerization).
TLR4 activation induced activation of NF-kB and MAPK
signaling pathways, resulting in the release of proinflammatory
cytokines (TNF-a, iNOS, COX2, PGE2, NO) favoring EGFR
permanent activation as well as the release of anti-apoptosis
proteins (Bcl-2, Bcl-xl) allowing tumor cell survival. Overall, the
TLR4 signaling pathway leads to CTX-resistance. Thus, Ju et al.
tested the combination of CTX and a TLR4 inhibitor (TAK242).
They find that this combination overcomes acquired CTX
resistance in vivo, in particular by decreasing the secretion of
pro-inflammatory cytokines (TNF-a, PGE2, and NO) (175).

CAF Proliferation
Among the different components of the HNSCC TME, CAFs are
among the most critical elements contributing to proliferation,
invasion, and metastasis (214), in particular by altering the
antitumor immune response (215, 216). Furthermore, CAFs
have been shown to contribute to drug resistance in HNSCC
(e.g., platinum and CTX) (42, 217–219).

Indeed, during CTX treatment, CAFs, especially those
activated by TGF-b (218), participate in resistance by secreting
immunosuppressive factors, such as IL-6, HGF, and
metalloproteinases (219). Thus, co-inhibition of TGF-b and
HNSCC cells by the combination of CTX + SIS3 (an inhibitor
of the TGF-b pathway), delayed tumor progression and lowered
tumor volume/weight (HNSCC PDX) (218). Johansson et al. also
tested the combined effect of CTX + MMP inhibitor III
(inhibiting MMP-1, -2, -3, -7, and -13), which significantly
reduced the protective effect of CAFs (219).
IMMUNOTHERAPY IN HNSCC

HNSCC is among the most inflamed, immune-infiltrated
cancers, especially with CD8+ TILs and NK cells (183). A high
genetic instability and somatic mutation rate is often observed
(220, 221) (about 180 somatic mutations per mega base), in
either HPV positive or negative tumors (222, 223).
Immunogenicity of HNSCC can result from the overexpressed
but nonmutated native proteins that have escaped central
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tolerance, neo-antigens derived from mutated proteins (224),
or HPV-induced viral antigens (e.g., oncogenic drivers E6 and
E7) (225). The microenvironment can also vary in terms of
intensity or constitution depending on carcinogens or
localization (226).

Genetic and epigenetic alterations in cancer cells create a vast
array of neoepitopes potentially recognizable by the immune
system. However, a key feature of malignant cells is their ability
to escape recognition by the immune system, and the
dysregulation of immune checkpoints, such as PD-L1, in
tumors appears to be a major immune-resistance mechanism
affecting T cell response. It was, hence, shown that the reversal of
the anergic state of T lymphocytes is possible via the blockade of
coinhibitory signals (227), and research initially focused mainly
on immune checkpoint inhibitors (ICI) of the PD-L1/PD-1 axis.
These antibodies (Abs) have since completely transformed the
treatment of R/M HNSCC.

The expression of PDL1 is positive in most cases, estimated at
almost 60%–70% with a higher expression in HPV+ compared to
HPV- tumors (228, 229). It results either from an immune-
adaptive phenomenon induced by IFNg or from intrinsic
oncogenic events, such as the mutation/deletion of the PTEN
suppressor gene or the deregulation of the AKT/mTOR, NF-kB
and mitogen-activated protein kinase (MAPK) pathways (230).
PD-1 binding with PD-L1/PD-L2 causes immunosuppression
via reduced t cell receptor (TCR) signaling, reduced cytokine
production, reduced target cell lysis, altered lymphocyte motility,
and metabolic reprogramming (231).

After showing antitumor activity in multiple other tumor
types, nivolumab was the first anti-PD-1 agent to improve OS in
recurrent/metastatic (R/M) HNSCC progressing after a first-line
platinum-based therapy in the Checkmate 141 trial with a 32%
reduction in the risk of death (205, 232). OS was 7.7 months
compared with 5.1 months with chemotherapy. Benefit was
greater in ≥1% PD-L1 positive (PD-L1+) TPS (tumor cell
membrane positivity for PD-L1 or tumor proportion score)
patients with an OS of 8.2 versus 4.7 months. Pembrolizumab
is the other agent to show efficacy in the second line in the
Keynote 0-40 trial (233). Median OS was 8.4 vs 6.9 months with a
hazard ratio (HR) of 0.80. Contrary to the Checkmate 141 essay,
crossover was allowed. Subgroup analysis shows that, for PD-L1
TPS ≥ 50% patients, survival was significantly increased from 7.9
to 11.6 months with immunotherapy, whereas there was no
difference for the PD-L1<50% population.

This same agent is the new standard of front-line therapy in
R/M HNSCC following the results of the Keynote-048 trial
comparing pembrolizumab alone or in combination with
platinum-based and 5FU chemotherapy to the EXTREME
standard of care protocol (cisplatin or carboplatin, 5-
fluorouracile (5FU) and cetuximab) (234). Survival was
significantly increased with pembrolizumab compared with the
EXTREME regimen for PD-L1 ≥20 CPS (expression on both
tumor cells and immune cells in the microenvironment or
combined positive score) patients (14.7 vs. 11 months) and
PD-L1 ≥1 CPS patients (12.3 vs. 10.4 months) but not in the
total population (11.5 vs. 10.7 months). It is important to note
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that the experimental treatment was deleterious for some
patients in the beginning with more deaths occurring in the
first 6 months. Pembrolizumab added to chemotherapy
significantly improved OS in the total population with safety
comparable to the EXTREME arm (13 vs. 10.7 months). The
median durat ion of response was impress ive with
pembrolizumab at 22.6 months (vs. 4.5 for EXTREME).
Tolerance was also far better with immunotherapy. The FDA
approved pembrolizumab for use in combination with platinum
and fluorouracil for all patients and as a single agent for patients
with a CPS ≥1. In Europe, the EMA approved the use of
pembrolizumab alone or in combination for patients with a
CPS ≥1. Unlike PD-L1, blockade of cytotoxic T-lymphocyte
antigen 4 (CTLA4) as monotherapy has not proven beneficial
in HNSCC.

Evidently, monotherapy with ICI seems to be a losing battle
despite providing substantial clinical improvements over the
previous standards of care. The majority of patients do not
respond to treatment, and durable responses are observed only
in a minority (generally less than one third) of patients.

Resistance to Immune Checkpoint
Inhibitors
Resistance to ICI can be primary (never-responder patients)
or secondary (acquired after a certain amount of time of
response). It can also be classified as intrinsic to tumor cells
(cancer cells directly induce immune resistance via various
mechanisms) or extrinsic (other cells or factors mediate
immune resistance).

HNSCC hijacks numerous cellular and molecular
immunomodulatory pathways to evade recognition and
eradication by the immune system. Mechanisms of immune
evasion include direct T cell suppression with surface or
soluble inhibitory factors, decreased immune stimulation, and
the recruitment of immuno-suppressive cell populations (231).
In this section, we review the different types of resistance
reported in HNSCC and present some of the currently studied
strategies to overcome them.

Intrinsic Resistance
Tumor Immunogenicity and Antigen Presentation
HNSCC is one of the cancers with the highest levels of tumor
mutational burden (TMB), accompanying elevated neoantigen
expression (220). These tumoral neoantigens that derive from
nonsynonymous mutations drive (T lymphocytes) TL cytotoxic
response against tumor cells. In that sense, a positive correlation
between response and TMB was found in a recent meta-analysis
(235). Constant interactions between immune and cancer cells
can result in a selection of subclones lacking the expression
of neoantigens, subsequently resulting in poor immunogenicity
and decreasing efficacy of ICI (236). This could explain
how some HNSCC tumors with high TMB are unresponsive
to ICI.

Furthermore, deficiencies in antigen presentation can result
in primary or acquired resistance to ICI as shown in multiple
studies (237, 238). This includes downregulation of MHC class I
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(MHC-I) and loss of function (e.g., truncating mutations) of b2-
microglobulin (238). HNSCC has been shown to alter
neoantigen presentation and processing by altering key genes,
such as signal transducer and activator of signal (STAT) 1 and
other antigen processing machinery components (239, 240).

Combining ICI with radiation therapy is a promising strategy
as radiotherapy leads to an increased rate of neoantigens and
antigen presentation induced by DC activation, increased
cytokine production, and tumor cell death, promoting a TIL
phenotype (241, 242). Chemotherapy increases antigen release
upon cell death and, thus, the priming of cytotoxic TL (243), and
this was the rational in combining platinum-based
chemotherapy with ICI in the Keynote-048 trial that resulted
in added benefit (234).

Emerging novel therapies include oncolytic virus therapy and
cancer vaccines with tumor peptides or DCs (244, 245). Their
aim is to enhance antigen presentation and TL priming.
Oncolytic viruses can also directly infect and induce lysis of
tumor cells. Talimogene laherparepvec (TVEC), which is derived
from herpes simplex virus type 1, is currently under evaluation in
combination with pembrolizumab in the Keynote-137 trial in R/
M HNSCC patients. Other novel therapeutics, such as toll-like
receptor (TLR) agonists (NCT02521870) and adoptive cell
therapy (NCT03247309), are also being evaluated in this
same context.

Oncogenic Pathways
Aberrations in canonical oncogenic pathways can change the
TME by altering cytokine production and immune cell
composition. These include the MAPK (246), WNT/b-catenin
(247), and PI3K pathways (248). The activation of the latter
creates an immunosuppressive TME. Combined inhibition of
PD-1 and PI3K in a preclinical model of HNSCC demonstrates a
synergistic growth inhibitory effect and increased survival of
mice by activating an immunostimulatory transcriptional
program, enhancing T cell cytotoxicity and expression of
proinflammatory cytokines (249).

Soluble Molecules
HNSCC cells can also avoid T cell rejection by secreting
immunosuppressive exosomes containing transforming growth
factor (TGF) b, PD-1, and CTLA4, which impair T and NK cell
functions and upregulate Tregs (250). They can also produce and
secrete protumoral cytokines, including TGF-b, interleukin (IL)-
6, and IL-10 (251). Tumor cells can overexpress Indoleamine 2,3-
dioxygenase 1 (IDO1), a rate-limiting enzyme that converts
tryptophan to kynurenine, leading to an immune suppression
through T cell apoptosis and loss of function. In a study of the
immune microenvironment of HPV-negative OSCC from
never-smoker and never-drinker (NSND) patients, it was
suggested that blockade of IDO1 and PD-1/PD-L1 could
insure a higher clinical benefit. However, a phase-III clinical
trial evaluating Epacadostat, an IDO inhibitor, in combination
with Pembrolizumab was halted after a similar trial in
melanoma revealed no improvement compared with the
control arm (252).
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Extrinsic Resistance
Inhibitory Checkpoint Molecules
Overexpression of alternative immune checkpoints can be a
source of adaptive resistance to ICI. These receptors serve to
limit effector functions of the immune system to prevent
autoimmunity in a normal state. Multiple inhibitory immune
checkpoint receptors with different cell distributions and
expression patterns have been described, including PD-L1,
CTLA4, lymphocyte-activation gene 3 (LAG-3), T-cell
immunoglobulin, mucin domain-3 protein (TIM-3), B and T
lymphocyte attenuator (BTLA), V-domain immunoglobulin-
containing suppressor of T cell activation (VISTA), and T cell
immunoreceptor tyrosine-based inhibition motif domain
(TIGIT) (253, 254).

PD-L1 status has been shown to be partially correlated with
response to ICI in HNSCC, but complete responses have been
observed in PD-L1-negative patients (232–234). CTLA4 is
upregulated in HNSCC tumor cells and enriched on Treg
TILs (255). These cells are a subset of CD4+ T cells with
immunosuppressive effects through various humoral and
cellular mechanisms, such as CTLA4-mediated suppression
of antigen-presenting cells (256). LAG-3 is expressed on
activated CD4+ and CD8+ T cells, NK cells, B cells, and DCs
(257). It binds with major histocompatibility complex class II
(MHCII) and is highly expressed on Tregs. It was shown that
blockade of LAG-3 decreases the inhibitory function of
these cells (257). TIM-3 is expressed on both T and NK cells
and binds with galectin-9 (258). When specifically coexpressed
with PD-1, TIM-3 is the signature of an exhausted T cell
phenotype (259).

Because these alternate coinhibitory receptors induce T-cell
exhaustion (231), they have been identified as a putative strategy
to overcome resistance to PD-1 in previous and many ongoing
studies. Based on these observations, two essays of ICI anti-PD1
and anti-CTLA4 combination in HNSCC have been reported to
date (260). The CONDOR trial compared outcomes of patients
who had low/negative PD-L1 (TPS<25%) tumors and had
progressed after first-line platinum-containing therapy.
Patients were treated with either durvalumab, an anti-PDL1
Ab, or tremelimumab, an anti-CTLA4 Ab, or the combination
(260). Results were deceiving as there was no significant
increase in response rate (RR) (7.8% vs. 9.2%), PFS (2 vs. 1.9
months) or OS (7.6 vs. 6 months) compared with durvalumab
alone. One toxic death from acute respiratory failure was
attributed to the combination regimen. The same combination
failed to improve survival regardless of PD-L1 status in the
EAGLE trial (261). Monotherapy with the anti-CTLA4 agent in
CONDOR appeared clearly inefficient with a 1.6% RR, a 1.9 and
5.5 median PFS and OS, respectively (260). The authors
hypothesize that the lack of efficacy of tremelimumab may be
in part related to its mechanism of action, which, as an IgG2
Ab, does not cause lysis of regulatory T cells through ADCC,
contrary to what is observed with ipilimumab, another anti-
CTLA4 agent (262).

Inhibitors of other checkpoint molecules, such as TIM-3 and
LAG-3, are still in earlier phases of development. For example,
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blockade of TIM-3, whose expression is synonymous to T cell
exhaustion, is efficient in producing an antitumoral T cell
response in a mouse model of HNSCC (263).

Inhibitory checkpoints can also be expressed on the surface of
innate immune cells, such as NK cells. The inhibitory killer
immunoglobulin-like receptor (KIR) 2DL-1, -2, -3 receptors,
which partially control NK cell activation upon binding with
their ligands, primarily human leukocyte antigen-C (HLA-C)
molecules, can be targeted by Lirilumab, a fully human IgG4
monoclonal Ab. PD-1 blocking on T cells can induce the release
of cytokines, such as IL-2, that enhance NK cell function,
whereas blockade of KIR can result in the secretion of IFN-g
that may boost T cell–mediated antitumor responses (264). This
rationale of NK–T cell crosstalk led to the testing of the
combination in phase-1/2 trials (265).

Stimulatory Agonist Molecules
The balance between coinhibitory and costimulatory signals is
what determines the state of the immune response.
Costimulatory agonists include Ox40, 4-1BB, inducible T cell
co-stimulator (ICOS), and CD40. Ox40 is expressed on the
surface of T cells and promotes proliferation and IFN-y
production. It is shown to be present in HNSCC, but
expression of its ligand (Ox40L) is reduced, rendering this
pathway ineffective (266). ICOS is expressed on the same cells,
promoting a Th2 response [62], and 4-1BB, present on the
surface of activated T cells, NK cells, and DCs, is shown to be
downregulated in HNSCC patients (267).

Many promising ongoing trials are evaluating receptor
agonists in order to reverse resistance to ICI and augment
durable responses. For example, agonists of ICOS are being
evaluated in combination with anti-PD-1, anti-CTLA-4, and
chemotherapy in various tumors, including HNSCC
(NCT03693612, NCT02904226). In addition, urelumab (an
agonistic 4-1BB monoclonal antibody), is evaluated in
combination with cetuximab (NCT02110082) in R/M
HNSCC patients.

Immunosuppressive Cells
In addition to all the complex interactions between coinhibitory
and costimulatory pathways, immunosuppressive cells can
modulate the immune response and create a protumoral
environment via multiple diverse mechanisms (268). Their
recruitment to the TME is regulated by HNSCC cells. MDSCs,
Tregs, and TAMs all modulate NK and T cell responses to
various degrees.

MDSCs are an immature myeloid cell population that
promotes HNSCC invasiveness, angiogenesis, and metastasis
(269, 270) by secreting immunosuppressive enzymes, such as
enzymes arginase 1 (Arg-1) and nitric oxide synthase (iNOS)
(251). Their presence correlates with poor outcomes with ICI as
shown in melanoma patients (271). Monoclonal Ab and
small molecule inhibitors that inhibit MSDC functions are
currently investigated in R/M HNSCC patients in various
clinical trials.

Tregs facilitate self-tolerance through direct contact and
inhibitory cytokines, such as IL-10 and TGF-b (272), they also
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play a key role in immune evasion in HNSCC. These cells
preferentially express CCR4 (believed to have a major role in
the recruitment of Tregs to the TME), which is being targeted
with an anti-CCR4 monoclonal antibody, mogamulizumab, in
different tumor types, including HNSCC.

TAMs, particularly M2 macrophages, enhance tumor
angiogenesis, motility, growth, and immune evasion by
secreting protumoral cytokines in the TME [69]. Their
presence in HNSCC is associated with poor prognosis (273).
Antibodies and small molecules that inhibit colony-stimulatory
factor 1 receptor (CSF1R) binding with CSF1, which serves
recruitment to the tumor of M2 TAMs, are currently
underway in various advanced solid tumors, including
HNSCC (NCT02526017).
CONCLUSIONS AND PERSPECTIVES

Treatment of the majority of patients with HNSCC requires
multimodality approaches. Currently, cetuximab is used in the
clinical routine as a radiation sensitizer alone or in combination
with chemotherapy for the treatment of patients with recurrent
or metastatic disease. More recently, pembrolizumab was
approved as a first-line therapy in patients who present with
metastatic disease, and treatment with either pembrolizumab
or nivolumab is used in the setting of cisplatin-refractory
recurrent or metastatic HNSCC. Despite the encouraging
results observed in some patients, tumor responses observed
in most patients are only partial and are systematically
followed by acquired resistance due the reactivation of
oncogenic signaling, leading to tumor regrowth, as discussed in
this review.

Most of the developments toward understanding HNSCC
have fallen short of clinically meaningful discoveries,
highlighting an urgent need for more effective therapies to
improve treatment outcomes. The increasing knowledge on the
genomic driver alterations in HNSCC enables their use as
predictive markers of targeted therapy regimens, currently
evaluated in clinical trials, which are shown to improve
survival and tumor response in subgroups of patients (274,
275). For instance, late-phase clinical trials show that HRAS-
mutant HNSCC patients (8% of HNSCC) treated with tipifarnib,
a selective farnesyltransferase inhibitor, shows promising
outcomes with an overall response rate (ORR) of 42.9% with
a median duration of response of 14.7 months (275). The
Akt/mTOR axis is activated in most HNSCC, particularly in
surrounding normal mucosa, and is associated with recurrences.
In this context, a phase-II trial (NCT01111058) shows significant
improvement in 1-year PFS in patients with locally advanced
HNSCC treated with everolimus (276). More recently,
Xevinapant, an investigational inhibitor of apoptosis protein
(IAP) blocker, showed prolonged OS when added to standard
chemoradiotherapy for locally advanced head and neck
squamous cell carcinoma. Based on these results, Xevinapant
received breakthrough therapy status from the FDA for the first-
line treatment of HNSCC in September 2020.
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The molecular heterogeneity of HNSCC has hampered the
identification of specific targets and, thus, the development of
targeted therapies for this group of tumors (51). Indeed,
much of the difficulty in studying and treating HNSCC lies
in the fact that they are a heterogeneous group of cancers
arising from distinct anatomic subsites that display distinct
molecular features and are associated with diverse risk factors.
However, these diseases are treated uniformly and with
limited success.

Genome-wide expression profiling led to the identification of
four robust molecular classes of HNSCC (277–279). In this
classification, the “classical,” “basal,” and “mesenchymal”
subtypes exhibit canonical genomic alterations, such as nuclear
factor erythroid 2−related factor 2 (NFE2L2) mutations and high
expression of genes in oxidative stress response pathways, high
frequency of HRAS mutations, and upregulation of EMT-related
genes, respectively (278, 279). Of note, multiple findings have led
to increased interest in the mechanisms by which cancer cells
undergoing EMT or oscillating within the EMT spectrum might
contribute to immune escape through various routes. The
“atypical” subtype contains a high proportion of HPV+
tumors, who themselves are very heterogenous and can be
subclassified into HPV-KRT (HPV-keratinocyte differentiation
and oxidative reduction process) or HPV-IMU (HPV-immune
response and mesenchymal cell differentiation) tumors (69).
These different subtypes of HNSCC may harbor different
patterns of sensitivity to oncogenic-driven targeted therapy and
radiotherapy (280, 281); however, the clinical implication of
these subtypes is currently unknown.

More recently, based on the gene expression profiles of
1368 patients with SCC in the Cancer Genome Atlas (TCGA),
Li B et al. (282) proposed six immune subtypes, including an
immune-cold subtype, an immune-hot subtype, a subtype
dominated by M2-polarized macrophages, and three other
immune subtypes with more diverse immunologic features.
Their association with response or resistance to immunotherapy
is unclear.

Complementary strategies to assess the molecular programs
that are specific to each histological subtype or anatomical
location of HNSCC may benefit from comprehensive analyses
of patient samples (283) to identify molecular vulnerabilities and,
thus, enable rapid clinical deployment to guide therapeutic
decisions. Furthermore, single-cell transcriptomics may help
revealing intratumoral heterogeneity (ITH) (284, 285) with
subtypes as well as identifying cell populations that drive drug
resistance. Spatial transcriptomics might also be an informative
approach to enable simultaneous capture of the distribution and
localization of the different components of the TME and, thus,
better understand its interaction in response to treatment.
Finally, the establishment of relevant preclinical models of
HNSCC (ref) that reflect the disease at the genetic, histological,
and functional level may provide a tool to study the molecular
modifiers of response to therapies currently used in the clinical
routine or tested in clinical trials.

Overall, understanding the molecular vulnerabilities of
HNSCC may contribute to identify and therapeutically target
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residual disease and prevent or delay the evolution of acquired
resistance. Of note, acknowledging that drug resistance depends
not only upon cancer cells but also upon the TME might enable
the identification of potential drug targets to limit cancer cell
adaptation to therapy.
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Preclinical data suggest that head and neck squamous cell carcinomas (HNSCC) may
evade immune surveillance and induce immunosuppression. One mechanism of immune
evasion involves the expression of programmed death ligand-1 (PD-L1) in tumor and
immune cells, which is, to date, the only biomarker routinely used in clinical practice to
select patients with advanced HNSCCs more likely to benefit from anti-PD-1 therapy.
Nonetheless, PD-L1 expression alone incompletely captures the degree of sensitivity of
HNSCCs to PD-1 inhibitors. Most patients exposed to anti-PD-1 antibodies do not
respond to therapy, suggesting the existence of mechanisms of de novo resistance to
immunotherapy. Furthermore, patients that initially respond to PD-1 inhibitors will
eventually develop acquired resistance to immunotherapy through mechanisms that
have not yet been completely elucidated. In this article, we will provide an overview of
the immune landscape of HNSCCs. We will briefly describe the clinical activity of inhibitors
of the PD-1/PD-L1 axis in this disease, as well as biomarkers of benefit from these agents
that have been identified so far. We will review pre-clinical and clinical work in cancers in
general, and in HNSCCs specifically, that have characterized the mechanisms of de novo
and acquired resistance to immunotherapy. Lastly, we will provide insights into novel
strategies under investigation to overcome resistance to immune checkpoint inhibitors.

Keywords: head and neck (H&N) cancer, immunotherapy, programmed death-1 (PD-1), programmed death ligand-1
(PD-L1), programmed death-1 (PD-1)/programmed death ligand-1 (PD-L1) axis, resistance
INTRODUCTION

In recent years, our understanding of the importance of the immune system and its interaction with
tumor cells and tumor microenvironment has allowed us to explore an increasing number of
immune modulation strategies for cancer therapies (1). The identification of so-called checkpoints
in T-cell immunity—namely, the molecules programmed death-1 (PD-1) and cytotoxic T-
lymphocyte-associated protein 4 (CTLA-4), as well as the development of function-blocking
antibodies against these molecules, have paved the way towards our understanding of the
relevance of the immune system against cancer and its manipulation.

Immunologic checkpoints are a complex homeostatic system of signaling pathways that mediate
the activation or selective tolerance of the immune system towards target cells (2). These pathways
serve to establish an effector response to non-self-antigens while preventing the induction of
autoimmune activity. Tumor cells, including head and neck squamous cell carcinomas (HNSCCs),
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hijack these mechanisms of immunologic surveillance and
control to create an immunosuppressive and protumor
microenvironment. As a result, immunotherapy with PD-1
blockade has emerged as the latest standard-of-care treatment
strategy developed for advanced HNSCCs.

In this article, we will provide an overview of the immune
landscape of HNSCCs. We will briefly describe the clinical
activity of inhibitors of the PD-1/PD-L1 axis in this disease, as
well as biomarkers of benefit from these agents that have been
identified so far. We will review pre-clinical and clinical work in
cancers in general, and in HNSCCs specifically, that have
characterized the mechanisms of de novo and acquired
resistance to immunotherapy. Lastly, we will provide insights
into novel strategies under investigation to overcome resistance
to immune checkpoint inhibitors.
HEAD AND NECK SQUAMOUS CELL
CARCINOMAS AND THE CANCER
IMMUNITY CYCLE

HNSCC can evade immune surveillance through several
crosslinked mechanisms that have now been recognized as
being central to the development and progression of upper
aerodigestive tract malignancies (3). The most clinically
relevant mechanism of immune evasion identified so far is the
modulation of cytotoxic T lymphocyte (CTL) activity.

A dual signal is mandatory for activation of CTLs against
tumor antigens: the recognition of major histocompatibility
complex (MHC)-antigen by the T cell receptor, and the
interaction of B7 in the antigen presenting cell with CD28 in
the CTL (4). This process primarily occurs in the lymph nodes
and is regulated by immune checkpoint molecules. CTLA-4 is
mostly expressed in CTLs, as well as in regulatory T lymphocytes
(T regs). Upon binding to CTLA-4, the B7 protein induces CTL
inhibition, and may cause CTL exhaustion (5). CTLA-4
expression is also upregulated by the immunosuppressive
molecule transforming growth factor-b (TGF-b) produced by
tumors cells (6). T regs are also one of the most important
sources of TGF-b, thus contributing to T cell exhaustion (7, 8).

At the tissue level, T cell cytotoxicity is modulated by PD-1
and its ligands. PD-1 is a transmembrane protein belonging to
the CD28 receptor family, which is highly expressed on T and B
lymphocytes. The most important ligands for PD-1 include PD-
ligand 1 and 2 (PD-L1 and PD-L2). These ligands are mostly
expressed on antigen presenting cells, endothelial cells, as well as
in CTLs (9, 10). Tregs inhibit CTLs by PD-1-PD-L1 interaction,
thus promoting immunosuppression (11, 12). Hyperexpression
of PD-1 in CTLs may also contribute to the immunosuppressive
status due to enhanced sensitivity to PD-L1 (13). Like many
other cancers, HNSCCs express PD-L1 on tumor cells,
generating an immunosuppressive state and contributing to
tumor progression and metastasis, with a negative impact on
prognosis (14–16). Depending on the assay, PD-L1 is detected in
about 50–70% of HNSCCs, and expression in Human Papilloma
Virus (HPV)-related HNSCC is higher than in unrelated tumors
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(16). Indeed, HPV-related HNSCC are especially dependent on
PD-L1 expression. HPV (+) tumors are characterized by
more lymphocyte infiltration, with higher expression of PD-1
on CTLs when compared to HPV (−) tumors (17). In fact, at least
three types of immune response in HPV (+) HNSCC have
been described, rendering our understanding of the tumor
host immune interactions more complex than previously
thought (18).

In addition to CTLA-4 and PD-1 axes-mediated mechanisms,
tumor immune evasion involves other related processes (19),
selectively and briefly described as follows, some of which may
represent therapeutic targets: (i) Neoangiogenesis induced by
tumor associated macrophages exacerbates hypoxia and lowers
the microenvironment pH, leading to PD-L1 upregulation and
impairment of CTLs proliferation and efficiency (20–22); (ii)
Chemokines and molecules, such as vascular endothelial growth
factor (VEGF), interleukin 10 (IL-10), prostaglandin E2 and
TGF-b, produced by Tregs and myeloid-derived suppressor
cells (MDSCs), as well endothelial cells, reduce the attraction
of CTLs (23). On the other hand, release of CXCL8, CCL2,
CXCL5, and CXCL12, CCL22, and CCL28 attracts Tregs (24);
(iii) Arrest of clonal expansion of CTLs, mediated by tumor cell,
dendritic cell, and MDSCs secretion of indolamine-2,3-
oxygenase (IDO), which induces degradation of tryptophan, an
indispensable molecule for CTLs growth and production of
Granzyme B (25); (iv) Impaired expression of human
lymphocyte antigen-I (HLA-I) and other molecules involved in
the antigen presentation machinery, leading to reduced tumor
antigen recognition, impaired immune response, and worse
prognosis (26, 27). Genetic alterations identified by The
Cancer Genomic Atlas Network (TCGA), such as mutations in
KMTD2 and HLA-A, contribute to this immunosuppressive
behavior (28). Even though the complete loss of HLA-I could
lead to T cell recognition evasion, activation of natural killer
(NK) cells could take place, illustrating the potential for targeting
multiple immune pathways for cancer therapy (29, 30).
THE IMMUNE LANDSCAPE OF HEAD AND
NECK SQUAMOUS CELL CARCINOMAS

Analyses of transcriptomics, genetic mutations, and copy
number alterations in HNSCCs have revealed subtypes with
common characteristics that may determine sensitivities to
immunotherapies. Specifically, HPV (−) HNSCC may be
subdivided into copy number high and low (28). Copy number
low HPV (−) HNSCC, as well as HPV (+) HNSCC have been
shown to have increased expression of immune signatures
predictive of benefit from immune checkpoint inhibitors (31).
Likewise, in a pan-TCGA analysis including HNSCC,
lymphocyte infiltration correlated negatively with copy number
variation segment burden, and positively with aneuploidy, loss of
heterozygosity, homologous recombination deficiency, and
tumor mutational burden (TMB) (32). In another pan-TCGA
analysis, somatic copy number variation scores were positively
correlated with mutations in driver genes involved in the DNA
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damage response pathway, as well as reduced cytotoxic immune
infiltration—arm/chromosome somatic copy number variation
scores were stronger predictors for decreased expression of
immune signatures compared to focal copy number variation
scores, including in HNSCCs with high TMB (33).

Recently, six immune subtypes across multiple tumor types were
identified in an extensive pan-cancer TCGA immunogenomic
analysis: wound healing, interferon-g dominant, inflammatory,
lymphocyte depleted, immunologically quiet, and TGF-b
dominant. These tumors were characterized by differences in
macrophage or lymphocyte signatures, Th1:Th2 cell ratio, intra-
tumoral heterogeneity, copy number alterations, neoantigen load,
cell proliferation, expression of immunomodulatory genes, and
prognosis (34). The vast majority of squamous cell carcinomas
were of the wound healing or interferon-g dominant subtypes, with
no significant differences in survival between these two groups.
However, a more recent TCGA evaluation further stratified
squamous cell carcinomas into six immune subtypes with distinct
molecular characteristics and outcomes (35). The immune-cold
subtype had the lowest level of T cell infiltration, the highest rate of
aneuploidy, translating into worst survival. A subtype with M2-
polarized macrophages, TGF-b signaling and reactive stroma also
had a poor outcome compared to the other subtypes. The subgroup
with the best survival rates was characterized by high CTLs and NK
infiltration and elevated interferon-g signature (35). In another
study focusing specifically on HNSCCs, Chen et al. proposed
three subgroups which were consistent with (albeit less granular
than) the aforementioned analysis: immune active (enriched by
proinflammatory M1 macrophage signature, with increased
cytolytic activity and tumor infiltrating lymphocytes, and high
incidence of HPV infection); immune exhausted (enriched by
activated stroma and anti-inflammatory M2 macrophage
signatures, with activation of the WNT/TGF-b signaling pathway
activation and poor survival), and a non-immune class (36). In
another TCGA comprehensive HNSCC immune landscape study,
Mandal et al. demonstrated that both HPV (+) and HPV (−)
HNSCCs were one of the most immune infiltrated tumors.
However, most of the immune infiltrate was comprised of Tregs,
which suppress immunological activities. NK population was also
remarkably abundant in both subtypes of HNSCC (37). HPV-
related HNSCC demonstrated the highest immune infiltration and
increased cytolytic activity, which was counterbalanced by an
increased Treg/CTLs ratio, whereas smoking related HNSCC had
the lowest level of immune infiltration and interferon-g signature.
Patients with adaptative immune response cell infiltrates and
mutations had improved survival when compared to those with
innate immune response infiltrate and copy number alterations,
suggesting a possible role for new immunotherapeutic approaches
targeting Tregs and NK cells in improving efficacy of anti-PD-1
(37). Lastly, Cillo et al. assessed the transcriptional profiles of single
cells from peripheral and intra-tumoral immune populations from
patients with HPV (−) and HPV (+) HNSCCs and showed that
helper CD4+ T cells and B cells were relatively divergent and CD8+
T cells and CD4+ regulatory T cells were relatively similar. They also
identified a gene expression signature associated with CD4+ T
follicular helper cells and longer progression-free survival (38).
Frontiers in Oncology | www.frontiersin.org 352
The immune phenotype of HNSCC has also been characterized
in terms of spatial distribution of tumor infiltrating lymphocytes.
Troiano et al. classified tongue carcinomas into immune-inflamed
(when lymphocytes were found next to tumor cells), immune-
excluded (when lymphocytes were found in the stroma, outside
the tumor), or immune-desert (absence of lymphocytes). Immune
desert was the less frequent subgroup, but exhibited worse overall
survival (39).

Taken together, these findings suggest a complex immune
landscape, associated with (and possibly determined by) genomic
alterations, with important implications to HNSCC prognosis.
Interestingly, in one report, the transcriptomic variability of
immunologic signatures seemed to be stable in both a spatially,
and short-term, timely manner, minimizing the importance of
tumor heterogeneity in selecting immunotherapeutic
approaches, at least for untreated patients (40). The data
provide rationale for development of PD-1 inhibitors for
HNSCCs along with potential biomarkers of efficacy, and for
development of combination immunotherapeutic approaches
for management of patients harboring tumors with de novo
and/or acquired resistance to such immunotherapies.
STANDARD IMMUNOTHERAPIES FOR
HEAD AND NECK SQUAMOUS CELL
CARCINOMAS

The identification that lymphocytes could take part in the immune
response in cancers (including HNSCCs) was identified several
years ago (41), and evolved to the development of cancer
immunotherapy, initially for melanomas, later extended to
HNSCCs and other tumor types. Simplistically, the ultimate goal
of immunotherapy is to relieve immunosuppression, and thus
induce responses in tumor, without auto-immune adverse events
(42, 43). To date, the anti-PD-1 antibodies nivolumab and
pembrolizumab have been investigated in phase 3 studies and
are the only immunotherapies approved by regulatory agencies
worldwide for treatment of advanced HNSCCs.

In patients with recurrent or metastatic HNSCC that failed
platinum-based chemotherapy enrolled in the Checkmate-141
study, nivolumab, when compared to the investigators’ choice
single agent therapy, improved overall survival (OS) and overall
response rate (ORR). Importantly, the rate of grade 3–4 adverse
events was lower with nivolumab than chemotherapy (44). In the
KEYNOTE-040 study with analogous design, pembrolizumab
demonstrated similar benefits against investigators’ choice
standard therapy, although statistical significance for the
primary OS endpoint was not reached (45).

These encouraging results led to the development of
pembrolizumab in the first-line setting for recurrent/metastatic
disease. In the KEYNOTE-048 study, with a complex statistical
design and assumptions, pembrolizumab either as monotherapy
or in combination with cisplatin or carboplatin and 5-
fluorouracil (5-FU) was compared to platinum plus 5-FU
combined with cetuximab (EXTREME regimen) in patients
March 2021 | Volume 11 | Article 596290
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that had failed curative-intent therapies including surgery and/or
radiation therapy (46). Compared to the EXTREME regimen,
pembrolizumab monotherapy improved OS in the PD-L1
combined positive score (CPS) ≥ 20 or CPS ≥ 1 populations.
The safety profile was improved in the pembrolizumab arm. Data
on the chemotherapy plus pembrolizumab cohort is discussed
below [see PD-(L)1 inhibitors plus chemotherapy subsection].
These results led to the FDA-approval of pembrolizumab as first-
line monotherapy in patients with recurrent or metastatic disease
with PD-L1 CPS ≥1, and in combination with chemotherapy
independently of PD-L1 expression (47). However, the European
regulatory agency recommended the approval of first-line
pembrolizumab (whether monotherapy or in combination with
platinum and 5-FU) only in patients with PD-L1 expressing
tumors (CPS of 1 or above) (48). Nonetheless, PD-L1 expression
alone incompletely captured the degree of sensitivity of HNSCCs
to PD-1 inhibitors. Most patients exposed to anti-PD-1
antibodies did not respond to therapy, suggesting the existence
of mechanisms of de novo resistance to immunotherapy.
Furthermore, most patients that initially respond to PD-1
inhibitors eventually develop acquired resistance to
immunotherapy through mechanisms that have not yet been
completely elucidated. These data illustrate the need to discover
more accurate biomarkers of sensitivity to PD-1 axis blockade, as
well as strategies to enhance activity of and/or overcome
resistance to these drugs.
PREDICTIVE FACTORS FOR
IMMUNOTHERAPY BENEFITS

Both PD-L1 and PD-L2 expression have been reported in many
tumor types (including HNSCCs) and were amongst the first
candidate biomarkers of immunotherapy efficacy investigated
across several trials (49–51). Several PD-L1 assays are available in
oncology, and they seem to be highly interchangeable in HNSCC
(52), specially for assays evaluating tumor cells by the antibodies
SP263, 22C3, and 28-8 (53). Concordance between staining
scores that involve immune cells, and/or other antibodies (e.g.,
SP142) are more modest (53, 54) and require more careful
interpretation. In the pivotal phase 3 Checkmate-141 trial, OS
and ORR were improved by nivolumab across the entire study
population. However, the magnitude of benefit seemed higher in
patients with PD-L1 expression in at least 1% of the tumor cells
using the 28-8 assay. HPV (+) and HPV (−) cancers derived the
same benefit from nivolumab. No interaction between HPV and
PD-L1 status was observed in this clinical trial (44, 55).
Pembrolizumab was first explored in advanced HNSCC in the
multi-cohort phase Ib KEYNOTE-012 trial (56). Anti-PD-L1
22C3 and anti-PD-L2 3G2 antibodies were used for PD-L1 and
PD-L2 immunohistochemical assays, respectively. Overall, a 4%
complete response (CR) and 14% partial response (PR) rate was
observed, and 60% of patients experienced reductions in target
lesions. PD-L1 CPS (which takes into account PD-L1 expression
in both tumor and immune cells) performed better than the
tumor proportion score (TPS) in predicting response to
Frontiers in Oncology | www.frontiersin.org 453
pembrolizumab, emerging as the most reliable biomarker for
pembrolizumab. PD-L2 and PD-L1 expression were correlated,
and PD-L2 expression was also associated with higher ORR.
Patients with co-expression of PD-L1 and PD-L2 had higher
ORR compared to PD-L1 positive patients alone. However, a 9%
ORR was found in patients without the expression of any
biomarker, underscoring the limitations of these strategies in
selecting patients for pembrolizumab therapy (56). Similar
results were found in the single arm, phase 2 KEYNOTE-055
study (57). These data supported the incorporation of PD-L1
expression (assessed by CPS) into the statistical design of the
first-line KEYNOTE-048 study, as previously described.

TMB has been postulated as a possible biomarker of
immunotherapy efficacy in cancers. Presumably, high TMB
increases the abundance of neo-antigens (or neo-epitopes)
resulting from non-synonymous mutations on cancer cells,
allowing immune recognition and specific CTLs activation
(58–60). However, only a small number of missense mutations
produce neo-antigens, and a smaller part of those neo-antigens
ultimately are recognizable by CTLs (61, 62). As such, specific
immunogenic mutations, rather than total mutational burden,
may be associated with improved prognosis, as it leads to
increased expression of CD8A and hyperexpression of PD-1
and CTLA-4 (61). Despite these limitations, TMB has been
associated with improved outcomes in clinical trials. In
KEYNOTE-012, using a cut off ≥ 102 mutations per exome,
TMB was associated with improved ORR (63–65). In a series of
126 patients treated at the Dana Farber Cancer Institute, TMB
was higher in former smokers compared to non-smokers and
HPV (+) patients, as well as in responders. Among HPV (−)
responders, NOTCH1 and SMARCA4 were more frequently
mutated, and frameshift events in tumor suppressor genes
occurred more frequently. T cell immunoglobulin mucin-3
(TIM-3)/lymphocyte activated gene-3 (LAG-3) co-expression
with PD-1 was higher on T cells among non-responders,
suggesting a possible mechanism of adaptive de novo immune
resistance (66). Consistent with the KEYNOTE-012 and Dana
Farber data, a post hoc analysis of the EAGLE study revealed that
a blood TMB of 16 mutations/Mb was associated with improved
OS in the second-line setting for the anti-PD-L1 durvalumab
alone, or in combination with the anti-CTLA4 tremelimumab
versus single agent chemotherapy (67). Of note, blood TMB
seemed also to be prognostic in the EAGLE study, since median
OS in the standard of care arm was 4.0 months for high TMB
versus 8.6 months for low TMB, raising the question whether this
biomarker could be associated with poor outcomes to
chemotherapy alone (67).

Interferon-g and its co-stimulatory chemokines are implicated in
tumor innate immune sensing, leading to immediate CTLs
recruitment into the tumor micro ambient, a key step for an
effective immune response (68–70). Interferon-g gene expression
was associated with clinical response in several cancer types treated
with pembrolizumab (71). Likewise, in the KEYNOTE-012 study, a
6-gene interferon-g signature including IDO1, CXCL10, CXCL9,
HLA-DRA, STAT1, IFN-g gene expression was found to be
associated with improved ORR or progression-free survival (65).
March 2021 | Volume 11 | Article 596290

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


dos Santos et al. Resistance to Immunotherapy in HNSCCs
A major role of fecal microbiome in determining response to
immunotherapy has been increasingly recognized in recent years
(72). Several mechanisms have been implicated in the dynamic
interaction between microbiome and immunologic response,
including T-cell activation, influence on recognition pattern of
antigens (73). Some specific bacterial genera have been identified
as predictors of response and toxicity in fecal microbiota
transplant (FMT) experiments in mice. Akkermansia
muciniphila was associated with increased response to anti-
PD-1 (74). A. muciniphila, and Enterococcus hirae was able to
reverse resistance to immunotherapy in mice. The mechanism
implicated in such effects were related to increase in CCR9,
CXCR3, and promotion of CTLs infiltration (75). Studies in
melanoma suggested that the presence of certain genera, like
Bifidobacterium longum, Collinsella aerofaciens, Enterococcus
faecius, Faecalibacterium spp and Ruminococcaceae spp were
associated with increased response to immunotherapy, and
Bacteriodales were more common among non-responders.
Responders were more likely to harbor greater microbiome
diversity than non-responders (76, 77). Recently, data from
phase 3 randomized trials comparing anti-PD-1 to
chemotherapy showed that the use of antibiotics impaired the
OS of patients receiving anti-PD-1 without compromising
survival in the control group, suggesting a major role of
microbiota in the benefit of immunotherapy in HNSCC (78).
Oral cavity microbiome has also been implicated in HNSCC
carcinogenesis and progression. Usually, Fusobacteria are
abundant in primary and metastatic tissues, whereas
Streptococcus have limited homing (79). Smoking and alcohol
consumption are major risk factors for both HNSCC and
periodontal disease, and are key modifiers of oral microbiota
(80, 81). Abundant F. periodonticum and S. mitis and P. pasteri
paucity are associated with late stage oral cancer (82). Despite
these promising data, oral microbiome was not associated with
outcomes in the Checkmate 141 study (83). Evaluation of fecal
specimens may better reflect patients’ microbiome, but have not
been assessed in anti-PD-1 trials in HNSCCs.

Taken together, these data demonstrate that a robust
biomarker of sensitivity to PD-1/PD-L1 blockade has yet to be
developed. It is likely that multiple mechanisms of resistance to
immunotherapies are in place, leading to low response rates to
single agent PD-1 inhibitors in all HNSCC clinical trials
performed to date. Few comprehensive upfront and re-biopsy
studies for biomarker evaluation (especially upon disease
progression) have been completed. As will be discussed below,
such investigations would be essential for the rational design of
strategies aiming at mitigating resistance to treatment.
RESISTANCE TO IMMUNOTHERAPIES

From a clinical perspective, resistance to immunotherapy may be
divided into de novo or acquired. De novo (or primary) resistance
may be defined as lack of benefit from upfront immunotherapy
treatment, whereas acquired (or secondary) resistance is
characterized by an initial period of benefit from immunotherapy
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followed by disease progression. Mechanistically, de novo and
acquired resistance to immunotherapy may share common
processes, including adaptive immune resistance (whereby the
cancer is recognized by, but evades the immune system, by
adapting to the immune attack). Additionally, acquired resistance
to immunotherapy may emerge from adaptive resistance that
occurs in a relatively homogenous fashion, and/or by selection of
heterogenous clones over time that were already resistant to
immunotherapy, even before treatment initiation (84).

Mechanisms of resistance to immunotherapy include tumor
cell-intrinsic and tumor cell- extrinsic factors. Tumor cell-
intrinsic resistance may stem from absence of antigenic
proteins, absence of antigen presentation, genetic T cell
exclusion, and/or insensitivity to CTLs. Tumor cell-extrinsic
resistance may be a result of absence of CTLs, expression of
inhibitory immune checkpoints, and/or presence of
immunosuppressive cells (84–86). None of these mechanisms
have been extensively studied in HNSCCs, limiting our
understanding about the dynamic pressures on the immune
system at play upon immunotherapy administration, and
hindering our ability to rationally design combination and/or
sequential approaches to mitigate resistance to PD-1 inhibitors.
Knowledge gained from other cancers and pre-clinical work
might prove to be relevant to HNSCC patients and is therefore
described below.

Beta-2-microglobulin (B2M) has an important function on
HLA class I transport to cell membrane, and inactivating
mutations in B2M lead to loss of expression of HLA class I,
impairing immune response (87, 88). This mechanism of
resistance to anti-PD1 in metastatic melanoma has been
detailed elsewhere (89). Other groups reported that B2M
mutation in other clinical settings could also lead to acquired
resistance to immunotherapy (90–92). Other causes of HLA class
I loss of expression with intact B2M may also induce disease
progression to anti-PD1 (90). Saloura et al. have demonstrated
more diverse T-cell repertoire in HPV (+) versus (−) HNSCC,
possibly due to impaired HLA class I expression induced by the
virus (93). As such, strategies that could restore HLA class I
expression could potentially be developed to augment immune
response in this setting.

Release of IFN-g by CTLs may induce PD-L1 andMHC class I
expression in tumor cells through activation of the JAK-STAT
pathway. Several mechanisms of tumor cell death derive from
this pathway (94). Clinical evidence recognizes that mutations in
JAK1 and JAK2 can be responsible for the progression of
metastatic melanoma after initial response to anti-PD1 (89). It
is unknown whether alterations in other molecules in the JAK-
STAT pathway could be implicated in acquired resistance to
immunotherapy, but their role in primary resistance has already
been demonstrated (95).

The loss of mutations that preclude the expression of
neoantigens recognized by the immune system through clonal
selection, copy-number loss, or epigenetic mutation may lead to
immune evasion and clinical progression (96). In a case series of
four patients with non-small cell lung cancers, mutations
encoding neoantigens were lost, and progressive disease
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occurred after initial response do anti-PD1 therapy (97) Clonal
pressure has been implicated in immunoselection of tumor cells
that respond to CTLs and adoptive cell transfer immunotherapy
(98–100).

Phosphatase and tensin homolog on chromosome 10 (PTEN)
inactivation and, consequently, phosphoinositide 3-kinase
(PI3K) pathway activation is related to an immunosuppressive
tumor microenvironment that may have implications in
resistance to immunotherapy (101). A total of 55 isocitrate
dehydrogenase 1 wild-type glioblastoma patients who received
immunotherapy, including 13 long-term responders, were
analyzed in one report, and PTEN mutations were identified
in 23 out of 32 non-responders, but only in 3 responders
(102). PTEN mutations were also associated with an
immunosuppressive signature. Similar results were found in
non-small cell lung cancer and melanoma patients, indicating a
putative effect of PTEN-loss in acquired resistance to
immunotherapy (103, 104). PTEN-loss may also be implicated
in secondary resistance to immunotherapy in other distinct
tumor types (105, 106). Patients with metastatic melanoma
who initially responded to anti-PD-1 alone or in combination
with anti-CTLA-4 and then progressed were analyzed, and
PTEN-loss was identified in 5 cases in the post-progression
biopsy out of 18 intact PTEN expression in pre-treatment
biopsies (107). In surgically treated oral cavity squamous cell
carcinomas, PTEN loss in tumor infiltrating immune cells has
been associated with worse prognosis (108). Similarly to PTEN-
loss, WNT-b-catenin promotes an immunosuppressive tumor
microenvironment that may be responsible for secondary
resistance to immunotherapy (106, 109).

Modulation of other immune checkpoints has been identified
in patients with secondary resistance to immunotherapy,
including, but not limited to, TIM-3, LAG3, and V-domain
immunoglobulin suppressor of T cell activation (VISTA),
glucocorticoid induced TNFR family related gene (GITR), and
T cell immunoglobulin and immunossupressor tyrosine kinase-
based inhibitory motif (TIGIT) (90, 107, 110).

TIM-3 is a member of TIM family expressed on CD4(+) Th1
but not Th2 lymphocytes (111). It is also expressed in tumor cells
and other immune cells (112). TIM-3 and its ligands, such as
galectin-9, may regulate several biological functions of tumor
cells, including aggregation, adhesion and apoptosis (113, 114).
The binding of TIM-3 to galectin-9 leads to promotion of
apoptosis of Th1 cells, impairs function of CTLs and induces
major expansion of MDSCs, suppressing immune response. In
early stages of disease, TIM-3 may have an immunostimulatory
effect favoring CTLs secretion of interferon-g, but TIM-3
expression in Tregs in late-stage tumors favor the suppression
of CTLs and are important to create an immunosuppressive
environment. Anti-TIM-3 monoclonal antibody may suppress
the inhibition of CTLs and improve antitumor response (115).
TIM-3 expression has been implicated in nodal metastasis and
recurrence in HNSCC (116). TIM-3 may be related to the
exhaustion of CTLs and ineffective immune response in
HNSCC, favoring metastatic behavior (117) In a HNSCC
mouse model, anti-TIM-3 antibody induced activation of CTLs
Frontiers in Oncology | www.frontiersin.org 655
and suppressed MDSCs, inhibiting carcinogenesis and
improving antitumor responses (116).

LAG3, also known as CD223, is mainly expressed in activated
T cells and, to a lesser extent, NK cells, B cells and dendritic cells.
LAG-3 reduces T cell proliferation and activation (118, 119).
LAG-3 is also an effector of Tregs inhibitory function (120).
Tumor-infiltrating lymphocytes co-expressing PD-1 and LAG-3
may be susceptible to inhibition, leading to immune scape of
cancer cells (121). LAG-3 also binds to liver and lymph node
sinusoidal endothelial cell C-type lectin (LSECtin) and inhibit
the secretion of interferon-g by CTLs, therefore inhibiting
immune response (122). Fibrinogen-like protein 1 (FGL1) is a
liver secreted protein which inhibits the activation of T cells (123,
124). FGL1 is upregulated in several human cancers and it is
associated with impaired outcome and blocking of FGL1-LAG-3
interaction enhances T cell response and improves antitumor
immunity (123, 124). In HNSCCs, LAG-3 overexpression is
associated with worse prognosis, and LAG-3 blockade retarded
tumor growth in a HNSCC mouse model (125).

VISTA is another checkpoint similar in function to PD-L1
and capable of suppressing T effector cells. VISTA is expressed
on myeloid APCs and Tregs (126). VISTA enhances Treg
maturation and suppresses T cell activation (127). V-set and
immunoglobulin domain-containing 3 (VSIG3) interacts with
VISTA on activated T cells, suppress T cell proliferation and
induces the production of immunosuppressive cytokines and
chemokines. Data from several tumor types support blocking of
VSIG3/VISTA pathway as a promising immunotherapy strategy
(128). In HNSCC patients, overall survival was reduced when
VISTA expression was high simultaneously with low CD8+
infiltration (129).

GITR is expressed on the surface of CD25+CD4+ Tregs,
CTLS and NK cells (130). Binding of GITR to its ligand GITRL
may impair the attraction of Tregs, weaken their suppression
activity and activate the MAPK (mitogen-activated protein
kinase)/ERK pathway and NF-kB signaling, which ultimately
induces T cell proliferation and pro-inflammatory cytokines
(131–133).

TIGIT is expressed mainly in effector lymphocytes and NK
cells (134). CD155 is highly expressed in tumor cells and has high
affinity to TIGIT, and induces IL-10 secretion, reduces the
secretion of pro-inflammatory cytokines and inhibits
antitumor response (135). TIGIT shares the same ligands with
CD226, which, in part, counterbalances the TIGIT
immunosuppressive effect (136). In mouse models of HNSCCs,
TIGIT blockade delayed tumor progression through
mechanisms involving CD8+ CTLs activation and Tregs
inhibition. PD-1/PD-L1 inhibition increased expression of
TIGIT on Tregs (137).

Some mechanisms of resistance may be induced by previous
treatment. For example, in the Checkmate-064 study, patients
with metastatic melanomas were randomized to ipilimumab
followed by nivolumab after 12 weeks or the opposite order,
and the immune landscape was analyzed at baseline and at week
13. Some immunophenotypes were more prone to show
responses to ipilimumab and progression to nivolumab, and
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vice versa. Ipilimumab and nivolumab induced different patterns
or immune landscape change after 12 weeks, and such patterns
were related to patient outcomes. Furthermore, the alterations
induced by ipilimumab favored progression in the nivolumab-
ipilimumab cohort, whereas the alterations induced by
nivolumab favored response in the nivolumab-ipilimumab
cohort (138). These findings explain the superior survival
outcomes in the nivolumab-ipilimumab arm (139).
DISCUSSION AND FUTURE DIRECTIONS

There is an intricate interplay between the immune system, other
components of the tumor microenvironment, and cancer cells
that ultimately contribute to carcinogenesis and determine
sensitivity and resistance to therapeutic strategies that have
been developed so far to manage HNSCCs. The complexities
of the microenvironment-cancer cell equilibrium outlined above
in this review suggest that single-agent anti-PD-1/PD-L1 therapy
would not be sufficient to promote long-term disease control. A
natural evolution in the clinical development process of
pharmacologic agents to treat HNSCCs would be the study of
drug combinations, many of which have not been thoroughly
investigated in pre-clinical systems specific to head and neck
cancers but are already undergoing testing in human trials. This
rapid pace of clinical investigations underscores a new model of
information “cross pollination” from one cancer type to the next
that, on the one hand, could reduce the likelihood of success of
each individual study (given less robust rationale), but on the
other hand may collectively result in identification of improved
treatment options for patients with malignant diseases that were
Frontiers in Oncology | www.frontiersin.org 756
previously considered low priority for drug development, such as
HNSCCs. Indeed, at the time of this writing, a search on
clinicaltrials.gov using the terms “head and neck cancer” AND
“nivolumab”, “pembrolizumab”, “durvalumab”, “atezolizumab”,
“avelumab”, OR “cemiplimab” (i.e., PD-1/PD-L1 inhibitors
already approved for at least one cancer type) resulted in 270
studies (Figure 1). Below, we briefly discuss all phase 3 drug
combination trials identified, whether ongoing, completed
or terminated.

Programmed Death Ligand-1 Inhibitors
Plus Chemotherapy
Chemotherapy has been proposed as a combination strategy to
enhance immunotherapy efficacy and bypass de novo and/or
acquired resistance to PD-(L)1 inhibitors, through mechanisms
that might involve increase of mutational load in cancer cells,
depletion of suppressive regulatory T cells and myeloid-derived
cells, normalization of neovasculature (thus facilitating T cell
infiltration), upregulation of HLA class I expression and other
components of antigen presentation machinery, induction of
immunogenic cancer cell death (leading to neoantigen cross
presentation), and modulation of cell signaling to increase
sensitivity to interferon-gamma (140). In the KEYNOTE-048
phase 3 study, platinum, 5-FU plus pembrolizumab was
compared to platinum, 5-FU plus cetuximab, and results
demonstrated an improvement in overall survival for patients
with PD-L1 expression CPS ≥ 20, CPS ≥ 1, or in the total
population (regardless of PD-L1 expression) (46). Post-hoc
analysis has demonstrated that efficacy improvement for the
combination was primarily restricted to the PD-L1 positive
group (141), raising the possibility that chemotherapy may not
270 an�-PD-1/PD-L1 clinical trials

161 combina�on studies

Phase I
N=95

Phase II
N=93

Phase III
N=12

Pembrolizumab
N=75

Nivolumab
N=44

Durvalumab
N=32

Atezolizumab
N=13

Avelumab
N=10

Cemiplimab
N=4

Excluded:

45 single agent
40 XRT combo
15 chemo combo
9 other reasons

BA

C

FIGURE 1 | Clinical trials evaluating immunotherapy in HNSCC. (A) Completed, ongoing, or terminated HNSCC clinical trials involving pembrolizumab, nivolumab,
durvalumab, atezolizumab, avelumab, or cemiplimab as single agents or in combination with drugs other than cytotoxic chemotherapy. (B). Most common co-
targets (or mechanism of action, when appropriate – e.g. oncolytic virus) for anti-PD-1 or anti-PD-L1 combinations (C). A word cloud visual representation of PD-1 or
PD-L1 inhibitors (in capital letters) and their co-targets (in small caps) under evaluation in combination studies. The font size is proportional to the number of studies
employing the intervention.
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contribute to overcoming resistance to immunotherapy in
patients without PD-L1 expression. A comparison between the
pembrolizumab and chemotherapy plus pembrolizumab arms
was not planned per trial design, and therefore it remains to be
determined whether the long-term benefits from treatment in the
pembrolizumab-containing arms can be attributed to the
immunotherapy alone, or may be a result of a synergistic effect
between chemotherapy and immunotherapy contributing to
mitigation of resistance to treatment. Several chemotherapy
plus immunotherapy trials are under way (Figure 1),
combined or not with radiation therapy (see below).

Programmed Death Ligand-1 Inhibitors
Plus Radiation Therapy
The tumor immune microenvironment is dynamic and has been
shown to be depleted of CD8+ T cells and B lymphocytes in
recurrent versus primary tumors, with immune suppressive features
apparent after receipt of chemoradiation therapy (142). Clonal
expansion of tumor-infiltrating T cells has been identified in
patients with untreated, locoregionally advanced SCCHN (93).
These observations increase the enthusiasm for incorporating
immunotherapy for earlier stages of HNSCC, in which immune
function seems to be better preserved, and for which radiation
therapy-based strategies are often used as a standard of care.
Adiotherapy-induced immunosuppression has been well
characterized (143). In animal models, PD-L1 blockade combined
with radiation therapy reverses T cell exhaustion and leads to
oligoclonal T cell expansion (144), suggesting a possible role of
PD-(L)1 inhibitors in contributing to disease control in this setting.
Radiation therapy may also synergize with immune checkpoint
inhibitors through other nonredundant pathways that enhance
antitumor activity, reviewed elsewhere (143, 145). Results of the
first randomized studies combining PD-(L)1 inhibitors with
radiation therapy for locally advanced HNSCC have recently been
presented. In the GORTEC 2015-01 PembroRad trial,
pembrolizumab plus radiation therapy failed to improve
locoregional control compared to cetuximab plus radiation
therapy in patients unfit for platinum (146). Likewise, in the
phase 3 JAVELIN Head and Neck 100 trial, addition of avelumab
to cisplatin/radiation therapy did not improve progression-free or
overall survival (147). In advanced disease, addition of stereotactic
radiation therapy to nivolumab has also been evaluated as a strategy
to induce abscopal effect in a randomized phase 2 trial.
Unfortunately, there were no improvements in overall response
rates of nonirradiated lesions (primary endpoint), progression-free
or overall survival (148). Despite these early negative results, several
studies continue to evaluate immunotherapy in the context of
radiation therapy (Figure 1) and will eventually determine
whether PD-(L)1 inhibitors and radiation therapy can be
combined to effectively circumvent resistance to treatment.

Programmed Death Ligand-1 Plus
Cytotoxic T-Lymphocyte-Associated
Protein 4Inhibitors
CTLA-4 was the first modern immunotherapy strategy to be
widely explored in oncology. CTLA-4 can bind to B7, precluding
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the interaction between B7 and the co-stimulatory molecule
CD28 and limiting the proliferation of T cells and the release
of interleukin-2 (149). Blocking of CTLA-4 may limit the
inhibitory effect on CTLs favoring host immune response. Due
to its limited efficacy in other tumor types than melanoma,
including HNSCC, anti-CTLA-4 has been developed mostly in
combination with other agents (150–155). More recently,
building on the results of the phase 2 CONDOR study (154),
durvalumab, alone or in combination with tremelimumab, were
compared to investigator’s choice chemotherapy (cetuximab,
taxane, methotrexate, or fluoropyrimidine) in the phase 3
EAGLE study involving patients with HNSCC whose disease
failed platinum-based chemotherapy. Durvalumab alone or in
combination did not meet the primary outcome of OS benefit.
Duration of response and 2-year survival were improved in the
durvalumab monotherapy arm, suggesting that this drug is active
in HNSCCs (156). PD-L1 expression, as assessed by SP263 assay,
did not impact on any of the efficacy results, but a small benefit
was found in patients with high TMB (≥16mutations/Mb) (67,
156). Despite these disappointing results, durvalumab alone or in
combination with tremelimumab was evaluated in the first line
setting in comparison with the EXTREME regimen in the
KESTREL trial (NCT02551159), and results are pending.
Nivolumab has also been tested in combination with
ipilimumab versus nivolumab alone in the Checkmate-714
trial, and although the data have not yet been formally
reported, a press release dated April 25, 2019 has indicated
that the study did not meet its primary endpoint. In
Checkmate-651 nivolumab plus ipilimumab has been
compared against the EXTREME regimen (NCT02741570).
Recruitment has already been completed, and the main data
for these trials are expected in the following months. Nivolumab
plus ipilimumab is also under development in the setting of
locally advanced, potentially curable disease (NCT03700905).
Taken together, the strategy of targeting PD-(L)1 plus CTLA-4
has not yielded promising results so far in phase 2/3 trials (154,
156). Unless the recently completed studies (NCT02551159,
NCT02741570) report superior outcomes in the near future,
other immunotherapy-immunotherapy combinations may need
to be explored, as discussed below.

Programmed Death-1 Plus Indolamine-2,3-
Oxygenase Inhibitors
IDO is an enzyme that metabolizes tryptophan, limiting CTLs
cytotoxicity. It is highly expressed in tumor-cells, macrophages
and dendritic cells (157). Tryptophan depletion and its
inhibitory metabolites has been implicated on how IDO is
responsible for T cell anergy and suppression, as well as Treg
activation and MDSCs infiltration (158, 159). IDO activity has
been implicated on resistance to anti-PD-1 therapy (160, 161).
Epacadostat, an IDO inhibitor, was evaluated in combination
with pembrolizumab in advanced solid tumors, including
HNSCCs. In phase I study ECHO-202/KEYNOTE-037, the
ORR for this combination was 55%, including 13% complete
responders. Two patients with refractory HNSCC were included,
and one achieved a partial response and the other had stable
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disease with minor reduction in tumor burden (162). This study
had a phase II part, including 36 additional HNSCC patients.
The ORR was 30.5%, which was lower in patients with 3 or more
lines of treatment (163). Nivolumab was also combined with
epacadostat, with an ORR of 22.6% (164). Despite these results,
its development as adjunctive therapy to anti-PD-1 in HNSCC
(NCT03358472, NCT03342352) was halted due to the negative
results of the combination IDO inhibitor and pembrolizumab in
melanoma (165).
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Programmed Death-1 Plus B7H3 Inhibitors
B7 constitutes a superfamily of inhibitory molecules in the cancer
microenvironment was highly related to the immune evasion of
cancer cells (4). B7-H3 (also known as CD276) is a newly
identified member of the B7 family (166, 167), which is found
in several human cancer cells and APCs. B7-H3 induces
proliferation of both CD4+ and CD8+ T cells, enhances CTLs,
and stimulates IFN-g production in the presence of T cell
receptor signaling (167). B7-H3 was later found to negatively
TABLE 1 | Select Phase I and II drug combination clinical trials with PD-1/PD-L1 inhibitors.

Drugs PD-1/PD-L1
co-target

Summary of results Reference

avelumab/
cetuximab

EGFR Phase-I feasibility trial evaluating RT plus cetuximab-avelumab in cisplatin-ineligible advanced HNSCC. 8/10
completed therapy. No grade 4-5 toxicity was found. PFS was 10mo. (NCT02938273)

Elbers et al. (171)

durvalumab/
cetuximab

EGFR Phase II clinical trial evaluating cetuximab plus durvalumab in advanced/metastatic HNSCC. The first
preliminary report identified an activation of NK cell immune response. (NCT03691714)

Gulati et al. (172)

Pembrolizumab/
cetuximab

EGFR Multi-cohort phase II trial evaluating cetuximab plus pembrolizumab in advanced/metastatic, cisplatin-
refractory or cisplatin-ineligible HNSCC patients. In anti-PD-1/cetuximab naïve patients cohort, 33 subjects
were enrolled. ORR was 41% and PFS was 8.2mo. (NCT03082534)

Sacco et al. (173)

nivolumab/
cetuximab

EGFR Phase II clinical trial evaluating cetuximab plus nivolumab in previously treated advanced/metastatic HNSCC
patients. Median PFS and OS were 3.4 and 11.5 months, respectively. (NCT03370276)

Chung et al. (174)

durvalumab/
MEDI0457

HPV Phase II window of opportunity trial evaluating durvalumab plus MEDI0457, a therapeutic vaccine against
HPV, in potentially curable p16+ HNSCC patients. Only 3 out of 21 patients recurred. (NCT02163057)

Aggarwal et al.
(175)

avelumab/
TG4001

HPV Phase Ib window of opportunity trial evaluating avelumab plus TG4001, a therapeutic vaccine against HPV,
in advanced/metastatic HPV+ patients. T cell responses were observed. Three out of nine patients (including
5 with HNSCC) showed partial responses. (NCT03260023)

Le Tourneau et al.
(176)

nivolumab/
ISA101

HPV Phase II clinical trial evaluating nivolumab plus ISA101, a therapeutic vaccine against HPV-16, in patients with
advanced/metastatic HPV-16 positive cancers. Twenty two out of 24 patients had HPV+ oropharyngeal
cancer. The ORR was 33.3%, and median PFS and OS were 2.7 and 17.5 months, respectively.
(NCT02426892)

Massarelli et al.
(177)

pembrolizumab/
enoblituzumab

B7H3 Phase I clinical trial evaluating pembrolizumab and enoblituzumab in solid tumors. The ORR was 33.3% in 18
patients with HNSCC not previously exposed to anti-PD-1. (NCT02475213)

Aggarwal et al.
(170)

pembrolizumab/
eftilagimod
alpha

LAG3 Phase II multi-cohort trial evaluating pembrolizumab plus eftilagimod alpha in lung and HNSCC patients. The
ORR in HNSCC were 40% in 15 patients. (NCT03625323)

Felip et al. (178)

nivolumab/
lirilumab

KIR2DL1/2L3 Phase I/II trial evaluating nivolumab plus lirilumab in advanced/metastatic HNSCC patients. Amongst 41
patients, the ORR was 24.1%, including 10.3% complete responders.

Leidner et al. (179)

atezolizumab/
varlilumab

CD27 Phase I trial evaluating atezolizumab plus varlilumab in solid tumors. A total of 36 patients with solid tumors
were included. Amongst three HNSCC patients, one responded. (NCT02335918)

Sanborn et al. (180)

pembrolizumab/
SD-101

TLR9 Phase Ib/II trial evaluating pembrolizumab plus SD-101 in patients with advanced/metastatic HNSCC.
Twenty-three patients out of 28 were evaluable for efficacy. The ORR was 22%, including two patients with
complete response. (NCT02521870).

Cohen et al. (181)

durvalumab/
AZD9150
durvalumab/
AZD5069

STAT3
CXCR2

Phase Ib/II trial evaluating durvalumab in combination with AZD9150 or AZD5069 in anti-PD-1/PD-L1 naïve
patients with advanced/metastatic HNSCC. In 38 patients in the AZD9150 cohort, ORR was 26%, including
4 complete responders. In 20 patients of AZD5069 cohort, ORR was 10%. (NCT02499328)

Cohen et al. (182)

pembrolizumab/
GR-MD-02

Galectin3 Phase Ib trial evaluating pembrolizumab plus GR-MD-02 in patients with malignant melanoma, lung cancer
and HNSCC. The ORR was 33% in the six HNSCC treated patients. (NCT02575404)

Curti (183)

pembrolizumab/
INCB001158

Arginase Multi-cohort phase I/II trial evaluating INCB00158 alone or in combination with pembrolizumab in advanced/
metastatic solid tumors. Mature data for MSS CRC showed 28% ORR. HNSCC is yet to be reported.
(NCT02903914)

Naing et al. (184)

durvalumab/
metformin

AMPK Phase I window of opportunity trial evaluating durvalumab plus metformin in patients with operable HNSCC.
The combination was safe. Data on response is pending. (NCT03618654)

Richa et al. (185)

nivolumab/
tadalafil

PDE5 Phase II window of opportunity trial evaluating nivolumab alone or in combination with tadalafil in patients
with operable HNSCC. Patients (N=47) were randomized to nivolumab alone or in combination. Half of the
patients responded, including 9% complete response rate. Tadalafil improved T cell infiltration.
(NCT03238365)

Luginbuhl et al.
(186)

durvalumab/
olaparib

PARP Phase II window of opportunity trial randomized operable HNSCC patients to cisplatin/olaparib, olaparib
alone, no treatment or olaparib plus durvalumab. Two patients out of 11 responded to Olaparib-durvalumab,
including a complete responder.

Psyrri et al. (187)
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regulate T cell function, affecting preferentially T helper type 1-
mediated immune responses (168). Overexpression of B7-H3
was associated with larger tumor, advanced stage, and impaired
survival in oral cancer patients (169). Retifanlimab, an anti-PD-1
antibody, and enoblituzumab, an anti-CD276, were evaluated in
combination in multiple tumor types cohorts. In the anti-PD-1
naïve HNSCC cohort, 18 patients were treated, and ORR were
33.3%, with five partial responders and one complete responder
(170). This led to the subsequent development of a phase II/III
study (NCT04129320).

Programmed Death Ligand-1 Plus
EGFR Inhibitors
As described in Table 1, a number of phase 2 studies have been
completed targeting the PD-1/PD-L1 axis and EGFR in
recurrent/metastatic disease. A randomized, phase 3 study is
currently ongoing evaluating the role of avelumab added to
concurrent cetuximab/radiation therapy in locally advanced
HNSCCs. GORTEC-2017-01 is a two-cohort prospective
clinical trial enrolling treatment naïve patients with resectable
stage III-IVa HNSCC. Cisplatin-eligible patients will be
randomized to radiation therapy plus cisplatin or radiation
therapy plus cetuximab plus avelumab. Those who are unfit for
cisplatin therapy will be randomized to radiation therapy plus
cetuximab or radiation therapy plus cetuximab plus
avelumab (NCT02999087).

Programmed Death-1 Inhibitor
Plus Lenvatinib
As mentioned above, angiogenesis is closely related to immune
response and may take part in the development of de novo or
acquired resistance to immunotherapy. Lenvatinib is a multi-
kinase inhibitor of vascular endothelial growth factor receptors
1–3, was combined with pembrolizumab in a phase Ib/II clinical
trial. The ORR was 36.4% in 22 evaluated HNSCC patients (188).
These results lead to the development of a placebo-controlled
randomized phase 3 trial enrolling patients with HNSCC with no
prior therapy for advanced or metastatic disease and CPS ≥ 1 to
pembrol izumab plus Lenvatinib or pembrol izumab
alone (NCT04199104).
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Programmed Death-1 Inhibitor Plus
Inducible Co-Stimulator of T Cells Agonist
The inducible co-stimulator of T cells (ICOS, or CD278) and its
ligand (ICOSL) play important roles in memory and CTLs
development and specific immune responses (189). ICOS and its
pathway potentiates immunosuppression mediated by Tregs, but
also induces antitumor responses when activated in CTLs (190,
191). Data on combination of anti-PD-1 with ICOS agonists are
scarce, but synergy has been observed (192, 193). These data led to
the rapid launching of a randomized phase 2 study evaluating the
combination of ICOS agonists and anti-PD-1. Treatment naïve
patients with advanced/metastatic HNSCC expressing PD-L1 (CPS
≥ 1) are randomized to receive pembrolizumab with GSK3359609
or placebo in the INDUCE-3 trial (NCT04128696). A second study
will encompass HNSCC with or without PD-L1 expression. In this
study, patients will be randomized to platinum-fluorouracil-
pembrolizumab plus GSK3359609 or placebo (NCT04428333).

In addition to the aforementioned phase 3 studies, multiple
phase 1/2 clinical trials with PD-1/PD-L1 inhibitors combined
with a second drug targeting a variety of pathways are ongoing or
have been completed (Table 1) (170–187). Studies for which data
have been reported are summarized in Table 1. These clinical
trials include patients that are immunotherapy-naïve (thus
potentially addressing de novo resistance) and/or patients who
have developed acquired resistance to anti-PD-1. While it is
premature to elect a dominant combination strategy that will
move forward to become a new standard of care, preliminary
results for many of these studies are encouraging. Nonetheless, it
is expected that resistance mechanisms will not be uniform in all
patients, and biomarker-informed approaches will likely be
needed to maximize the chances of achieving long-term
successful outcomes, thus leading, in the future, to the
development of precision immunotherapy for recurrent/
metastatic HNSCCs, and ultimately earlier stage disease as well.
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Mutations of the proto-oncogene KRAS are the most frequent gain-of-function alterations
found in cancer. KRAS is mutated in about 30% of all human tumors, but it could reach
more than 90% in certain cancer types such as pancreatic adenocarcinoma. Although
historically considered to be undruggable, a particular KRAS mutation, the G12C variant,
has recently emerged as an actionable alteration especially in non-small cell lung cancer
(NSCLC). KRASG12C and pan-KRAS inhibitors are being tested in clinical trials and have
recently shown promising activity. Due to the difficulties in direct targeting of KRAS, other
approaches are being explored. The inhibition of target upstream activators or
downstream effectors of KRAS pathway has shown to be moderately effective given
the evidence of emerging mechanisms of resistance. Various synthetic lethal partners of
KRAS have recently being identified and the inhibition of some of those might prove to be
successful in the future. The study of escape mechanisms to KRAS inhibition could
support the utility of combination strategies in overcoming intrinsic and adaptive
resistance and enhancing clinical benefit of KRASG12C inhibitors. Considering the role of
the microenvironment in influencing tumor initiation and promotion, the immune tumor
niche of KRAS mutant tumors has been deeply explored and characterized for its unique
immunosuppressive skewing. However, a number of aspects remains to be fully
understood, and modulating this tumor niche might revert the immunoresistance of
KRAS mutant tumors. Synergistic associations of KRASG12C and immune checkpoint
inhibitors are being tested.

Keywords: KRAS, NSCLC, pancreatic cancer, colon cancer, G12C mutation
INTRODUCTION

Using an oversimplified description, cancer could be defined as a disease caused by the
accumulation of alterations in genes coding for proteins involved in cell growth induction or
control defined oncogenes or tumor suppressor genes, respectively. In the last half-century, the
largest efforts made in the field of experimental targeted therapeutics have been mainly focusing
towards the development of therapeutic agents capable of inhibiting oncogenes or restoring the
function of tumor suppressor genes. The most important successes in cancer treatment have been,
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indeed, represented by experimental therapeutics able to
effectively interfere with the product of some of the most
relevant oncogenes in human cancers. In this regard, those
human cancers for which the development of appropriate
targeted therapeutics has been most frustrating are sustained in
their proliferation by altered genes whose function is essential for
the integration and the transduction of physiologic signals in
normal cells.

KRAS has been the first oncogene identified in human cancer
in 1982 (1). Mutations affecting members of the RAS family
genes (KRAS, HRAS, NRAS) are the most frequent genetic
alterations in human cancers accounting for about 27% of all
tumors. KRAS mutations are involved in the pathogenesis of
different epithelial cancer histotypes, including lung and
colorectal cancer, but its role has been especially investigated
in pancreatic ductal adenocarcinoma, which is considered the
type of tumor mostly dependent on KRAS for its development,
metastatic progression, and treatment resistance (2–5).

Because of its high incidence in different tumors and its role
in cancer initiation and progression, many efforts have been
made in finding effective treatments directly or indirectly
targeting KRAS. However, due to the lack of accessible binding
pockets and its complex downstream signaling, most of the
efforts in targeting KRAS have failed, and mutated KRAS still
remains an undruggable target.

Here, we describe and discuss the most recent efforts aimed to
identify novel therapeutic approaches of mutated KRAS-
driven tumors.
THE RAS/MAPK PATHWAY

KRAS gene encodes for a small GTPase that in normal cells
functions as a molecular switch between an active and an inactive
state. In quiescent cells, KRAS is inactive and GDP-bound, while
in cells receiving extracellular stimuli it is active and GTP-bound.
KRAS in its active state leads to the activation of a number of
different intracellular transduction signaling pathways, including
MAPK and AKT pathways. The switching between inactive and
active state is mediated by the guanine nucleotide exchange
factors (GEFs) which allow GTP loading. Conversely, the
inactive state is mediated by GTPase-activating proteins
(GAPs) through GTP hydrolysis (6). GTP-bound RAS
interacts and recruits RAF, promoting its accumulation at the
plasma membrane and inducing its dimerization and activation
of RAF kinases. Activated RAF phosphorylates MEK1 and
MEK2 kinases, that consequently phosphorylate and activate
ERK1 and ERK2 kinases. ERK1/2 translocate into the nucleus
where they phosphorylate several transcription factors that
regulate the expression of genes involved in proliferation and
cancer progression. MAPK pathway is a linear cascade
characterized by complex regulatory mechanisms and feedback
loops controlling several kinases. The attempt of inhibiting
MAPK pathway, in order to block proliferation signaling,
generates cross-talk between different pathways and the
activation of compensatory pathways such as the PI3K-AKT-
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mTORC1 signaling. Noteworthy, PI3K-AKT-mTORC1
pathway, unlike MAPK pathway, can also be activated
independently from KRAS, by receptor tyrosine kinases
(RTKs) or G-protein coupled receptors (GPCR) and integrin
signaling (7).

KRAS mutated cancer cells carry mostly missense mutations
causing single amino-acid substitutions in three hotspots,
glycine12 (G12), glycine13 (G13), and glutamine61 (Q61). These
mutations prevent GAPs from accessing GTP so that hydrolysis is
blocked, resulting in a persistently activated GTP-bound state.
KRAS activity becomes therefore independent from extracellular
stimuli, resulting in overstimulation of downstream pathways and
induction of signals for cell proliferation, migration, and
metastasis (8). Interestingly, different KRAS mutations can
reflect differences in signaling and oncogenic mechanisms, that
can have a role in tailoring treatments. In an in vitro colorectal
cancer study, phosphotyrosine proteomic profiles comparison
between the two most frequent KRAS mutations, KRASG12D and
KRASG13D, has been performed. KRASG12D mutation enhances
membrane and adherens junct ion signal ing, whi le
KRASG13Dactivates signaling molecules such as MAPK kinases,
non-receptor tyrosine kinases, and regulators of metabolic
processes (9).
DIRECT TARGETING OF KRAS

KRAS mutations types and incidence vary among epithelial
cancer histotypes. Whereas KRASG12C mutations are frequent
in lung adenocarcinoma, they are rare in pancreatic ductal
adenocarcinoma (PDAC). PDAC are enriched in KRASG12D,
KRASG12V, and KRASG12R point mutations (10). These
differences are crucial for the development of new potential
therapeutic strategies.

Recently, encouraging results using direct KRASG12C

inhibitors have been reported. KRAS mutation G12C is present
in about 13% of lung cancer, 3% of colorectal cancer, and in a
smaller percentage of other epithelial tumors (11). The mutant
cysteine-12 is located next to a cryptic pocket (SWII) in GDP-
KRAS. The proximity of this cryptic pocket (SWII) to cysteine-
12 has driven the development of covalent inhibitors targeting
SWII, getting an allosteric inhibition of cysteine-12. ARS-1620
was the first covalent inhibitor binding SWII pocket of
KRASG12C-GDP complex developed (12). Starting from this
pioneering milestone, many efforts have been made in order to
improve potency, drug permeability, solubility, and oral
bioavailability and create suitable drugs for clinical use. As a
result of these efforts several drugs have been developed and
tested in preclinical and clinical studies, including AMG 510 (or
sotorasib) and MRTX849 (or adagrasib). Sotorasib was
developed by Amgen. Improvements in drug potency have
been achieved by taking advantage of an alternative orientation
of His95, located in the switch II pocket. The alternative
orientation creates a larger surface groove which guarantees an
irreversible interaction between KRASG12C and its inhibitor. The
almost complete inhibition of pERK observed upon sotorasib
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treatment confirmed its enhanced potency (13). Interestingly,
while durable responses were obtained in immune-competent
tumor-bearing murine models, this activity was not durable in
immune-deficient models. Further studies demonstrated that
sotorasib induces a pro-inflammatory microenvironment
through the expression of chemokines, such as CXCL10 and
CXCL11. These chemokines attract tumor-suppressive immune
cells, including T cells, macrophages, and dendritic cells, leading
to long-term anti-tumor T cells responses. This observation
suggested that a more significant and prolonged tumor
response could be induced by a combination therapy with
immune checkpoint inhibitors (14).

The small molecule covalent inhibitor sotorasib is currently
under active clinical development for the treatment of KRASG12C

mutated tumors. Successful results have been recently reported
in the phase 1 CodeBreaK100 trial, that investigated sotorasib in
patients with advanced and pretreated solid tumors, mainly
NSCLC and colorectal cancer, harboring a KRASG12C mutation
(15). About one third of NSCLC patients responded to therapy.
Disease control rate was remarkable in both NSCLC (88.1%) and
colorectal cancer (73.8%). Median progression free survival was
6.3 months for NSCLC patients and 4.0 months for colorectal
cancer patients. Some patients exhibited a rapid disease
progression after an initial response, but a group of patients
presented durable responses. The lower response rate in
colorectal cancer patients (7.1%) suggests a different KRAS
dependency across diverse tumor types harboring the same
mutation. Sotorasib showed a good safety profile, with
diarrhea, fatigue, and nausea as the most common adverse
events, and no dose-limiting toxic effects have been observed.
Combination treatments of sotorasib with immunotherapy are
currently under clinical evaluation and invested of great
expectations (NCT04303780, NCT04185883).

A different KRASG12C covalent inhibitor, named adagrasib,
has been developed by Mirati Therapeutics Inc. Adagrasib also
binds SWII pocket of GDP-KRAS, inhibiting KRAS pathway and
inducing in turn a potent anti-tumor response, as demonstrated
in different in vivo models. Nonetheless, resistance mechanisms
emerged early through the activation of other pathways and
activation of compensatory mechanisms, leading to transient or
submaximal response to adagrasib. Indeed, high expression or
activated mutations of RTKs can activate feedback mechanisms
reactivating RAS and stimulating mTOR pathway. Similarly, the
co-occurrence of alteration in genes involved in cell cycle
regulation, such as CDKN2A and CDK4/6, can induce Rb
phosphorylation and cell cycle transition. Based on these
evidences, the combination of adagrasib with different drugs,
such as EGFR, SHP2, and mTORC inhibitors have been tested in
different in vivo murine models. The combination of adagrasib
with afatinib, RMC-4550, and vistusertib respectively, obtained a
stronger inhibition of ERK and S6 phosphorylation than did any
single agent treatment with an improved anti-tumor activity.
Moreover, the combination of adagrasib and palbociclib
decreased Rb and E2F family target genes expression levels,
reduced S6 phosphorylation level, and induced major tumor
regression, especially in CDKN2A altered models (16). In the
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phase 1/2 multi-expansion cohort KRYSTAL-1 trial
(NCT03785249), adagrasib has been evaluated in patients with
advanced solid tumors harboring KRASG12C mutations,
demonstrating an acceptable safety profile and promising
clinical activity. In NSCLC patients previously treated with
chemotherapy and anti-PD-1/PD-L1 therapy the disease
control rate was 96% and objective response rate (ORR) was
45% (https://cm.eortc.org/cmPortal/Searchable/ENA2020/
config/normal#!abstractdetails/0000902150). The only
commonly reported (>2%) grade 3/4 adverse event was
hyponatremia. Disease control was observed in 94% of
colorectal patients. Confirmed partial responses (PRs) were
observed in a patient with endometrial cancer and a patient
with pancreatic cancer (https://cm.eortc.org/cmPortal/
Searchable/ENA2020/config/normal#!abstractdetai ls/
0000902140). The most commonly reported adverse events
included diarrhea, nausea, fatigue, and vomiting. Other trials
have been designed to evaluate the combination of adagrasib
with other drugs, such as EGFR, SHP2, or PD1 inhibitors
(KRISTAL-1, -2, -7). Among clinical trials conducted in
patients with cancers harboring KRASG12C, ARS-3248/JNJ-
74699157, LY3499446, and GDC-6036 are being investigated
(NCT03114319, NCT04165031, NCT04449874).

PanKRAS inhibitors represent a different category of drugs that
do not target a single KRAS isoform selectively but aim to inhibit a
broader spectrum of targets. Among these molecules, we count BI
2852, which binds between switch I and switch II pocket and
inhibits KRAS interactions with GEFs, GAPs, and its downstream
effectors. BI 2852, indeed, effectively reduces pERK and pAKT
levels, achieving antiproliferative effects on KRAS mutant cell lines.
Because of the high conservation of the SI/II-pocket across RAS
isoforms, this molecule can bind with similar affinity most of them
(17). SOS1 inhibitors are also panKRAS inhibitors. These drugs,
indeed, do not bind directly to KRAS but inhibit the interaction
between KRAS: SOS1, preventing KRAS GTP loading and its
switching in to the active state. The main representatives are BI
3406 and BI 1701963. BI 3406 has been proven to be active in in
vitro and in vivo murine models, harboring KRAS G12 and G13
codon mutations, but not G12R mutation. SOS1 can be
downregulated by ERK-mediated phosphorylation, representing
an important negative feedback modulator of KRAS pathway.
During treatment with MEK inhibitors, pERK levels reduction
induces a decrease of SOS1 phosphorylation, resulting in RAS
pathway activation. These observations suggest that inhibition at
both levels represents a good strategy to efficiently block KRAS
pathway and prevent escape. The combination treatment of SOS1
with MEK inhibitor achieved good results in vitro and in vivo
murine models, with robust pathway inhibition and tumor
regression (18). Based on these preliminary preclinical results, BI
1701963, the second representative of SOS1 inhibitors, is being
tested, alone and in combination with MEK inhibitor trametinib,
in a phase I clinical trial in cancer patients carrying pan-KRAS
mutations (NCT04111458).

RAS direct targeting has also been investigated in several
studies. The bacterial Ras/Rap1-specific endopeptidase (RRSP)
represents a good candidate for RAS direct targeting therapy.
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RRSP induces a proteolytic cleavage of RAS proteins between
residues Tyr-32- and Asp-33 in SWI pocket, this cleavage alters
RAS SWI structure, blocking the interaction of RAS with GEFs
and preventing the transition of RAS into the active state. It also
prevents the interaction with RAF and the downstream signaling
pathway (19). RRSP can disrupt both wild type and mutant RAS
proteins (including KRAS, HRAS, and NRAS). This blockage
allows the inhibition of signal transduction depending from
various RAS mutations, overexpression of upstream receptor
tyrosine kinases (RTKs), or amplification of wild-type RAS as it
happens in head and neck squamous cell carcinoma, esophageal
and gastric carcinoma, ovarian adenocarcinoma, and triple-
negative breast cancer. To enable the migration of RRSP
through the biological membrane, a chimeric toxin formed by
RAS/Rap1 specific endopeptidase and the translocation
machinery of diphtheria toxin has been developed. The use of
this engineered chimeric toxin has achieved good results in vitro
and in vivo murine models, especially in lung and colorectal
tumor cell lines and in cells expressing high levels of HB EGF. In
human cells HB EGF is highly represented and this could
represent a limit for its clinical application, influencing the
dose limiting toxicities (DLT). Further engineering steps could
allow to overcome this possible limit, aiming to vehicle RRSP
across tumoral membrane cells only and sparing normal
human cells.
INDIRECT TARGETINGOF KRAS SIGNALING

In the attempt of inhibiting KRAS signaling, different strategies
intended to target upstream activators or downstream effectors
of KRAS pathway have been developed (Figure 1). Because of the
redundancy of the intracellular networks involved, the initial
enthusiasm for the development of a single target therapy has
been mitigated by evidence of emerging mechanisms of
resistance. The combination of different drugs targeting
different signal pathways could prevent or delay the
development of resistance mechanisms, often, however, at cost
of increased toxicities.

Inhibiting KRAS Processing and Activation
Different critical steps are necessary for KRAS activation:
nucleotide exchange, localization, processing, effector binding.
The blockage of each of them could prevent KRAS activation.

- Nucleotide exchange: The previously described pan-KRAS
inhibitors should belong to this category despite their name,
since their function is linked to SOS1 (GEF) binding and not
KRAS directly. Nucleotide exchange is also favored by SHP2,
across their binding to GRB2 and SOS1. Different SHP2
inhibitors, including TNO155 and RMC-4630, directed versus
non-receptor protein tyrosine phosphatase, are being clinically
evaluated in combination therapies in advanced solid tumors
(20, 21).

- Processing: prenylation–proteolysis–methylation.
Many efforts have been made to inhibit RAS farnesylation,

aiming to prevent its membrane localization. These efforts led to
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the development of tipifarnib, a small molecule farnesyl
transferase inhibitor (22). However, tipifarnib has been
evaluated in HRAS mutated cancers only, since KRAS is
prenylated by geranylgeranyl transferase and does not need
farnesylation for membrane localization. Unfortunately, a dual
inhibition of both transferases did not inhibit KRAS prenylation
in human patients (23).

- Localization: KRAS splices into KRAS 4A and KRAS 4B.
KRAS4B needs a chaperone, PDE6d, to translocate to the
membrane surface. Deltarasin, a PDE6d inhibitor, prevents
PDE6d from binding to KRAS, causing accumulation of KRAS
4B onto endomembranes (24). It is not clear yet if the cellular
effects are due to KRAS inhibition or to other PDE6d
effectors inhibition.

Targeting Downstream Mediators of
Intracellular Signaling
Activated KRAS induces RAF proteins phosphorylation and
dimerization with consequent activation of their kinases. There
are three isoforms of RAF, represented by BRAF, RAF1/CRAF,
and ARAF. Numerous studies conducted on BRAF, which is the
best characterized isoform, have led to the development of
therapies targeting V600E mutation specifically. These targeted
therapies are widely used in melanoma and recently have been
approved for the treatment of BRAF mutated NSCLC.
Unfortunately, the application of BRAF inhibitors vemurafenib,
dabrafenib, and encorafenib has failed in KRAS driven tumors,
because of the paradoxical activation of ERK1/2. BRAF inhibitors,
indeed, bind to BRAF and induce the heterodimerization BRAF/
RAF1. The binding of BRAF inhibitors to BRAF mediates an
allosteric activation of RAF1, with consequent MEK/ERK
activation (25). Novel panRAF inhibitors, known as paradox
breakers, have been developed to overcome this effect. Among
these panRAF inhibitors we count PLX8394, which seems to have
higher affinity with BRAF homodimers and BRAF/RAF1
heterodimers (26, 27), and LY3009120, which blocks the kinase
activity of RAF dimers (28). Despite the promising data seen in
preclinical studies (29, 30), LY3009120 failed to demonstrate
efficacy in early clinical trials as monotherapy. A phase I study
conducted in patients affected by RAS or BRAFmutated advanced
tumors reported as best response stable disease in 8 of 51 patients
(15%) with no complete or partial response achieved (31).
LXH254 and belvarafenib are panRAF inhibitors also in active
clinical development. A phase I clinical trial with LXH254 alone
and in combination with an anti PD1 antibody is ongoing
(NCT02607813). Belvarafenib has been tested in a phase I study
including patients affected by advanced solid tumors harboring
RAS or BRAF mutations, demonstrating good safety profile and
antitumor activity (32). A study exploring its use in combination
with anti-MEK agents is ongoing (NCT03284502).

MEK inhibitors, such as selumetinib, have been tested in
KRAS mutated NSCLC as single agents and in combination with
chemotherapy, without showing any clinical benefit (33). The
same results have been seen with trametinib (34) and
pimasertinib (35) in pancreatic cancer. This failure has been
attributed partially to vertical compensation mechanisms of
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upstream elements, such as RTKs, BRAF, or KRAS, that lead to
ERK reactivation, or alternative compensatory mechanisms as
the activation of PI3K-AKT-mTORC1 pathway.

ERK inhibitors, such as ulixertinib/BVD523 and LY3214996,
have been tested in phase I clinical trials (NCT02608229,
Frontiers in Oncology | www.frontiersin.org 570
NCT02857270). Ulixertinib has recently moved to phase II
clinical development. The frequent reactivation of ERK
observed during treatment with MEK or BRAF inhibitors calls
for a better characterization of ERK inhibitors. This class of
inhibitors is being studied accurately, to evaluate their
FIGURE 1 | KRAS signaling cascade. Inhibitors of KRAS and upstream and downstream mediators of KRAS are reported.
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employment in vertical combination (2, 36). Other strategies
have been tested to target simultaneously different molecules
aiming to vertical combination (NCT01229150, NCT02230553,
NCT02258607, NCT04185883, NCT04330664) (Table 1).

The other pathway activated by KRAS is the PI3K-AKT-
mTORC1 pathway, important for cellular proliferation, motility,
and survival. Its persistent activation due to KRAS mutation
contributes to cancer progression. Class I PI3K phosphorylates
PIP2, which attracts AKT to plasma membrane and induces
mTOR activation. Inhibition of PI3K pathway using AKT
inhibitors failed in in vitro and in vivo trials, perhaps because of
the activation of other signaling pathways. The compensatory
mechanisms between the two pathways, MAPK and PI3K
pathway, that emerge blocking one of them, led to the idea of
blocking both pathways simultaneously. The combination ofMEK
inhibitors and AKT inhibitors showed promising results in
pancreatic cancer in in vitro and in vivo studies (37). In a
similar way, the combination of PI3K inhibitors with ERK
inhibitors (38), MEK inhibitors (NCT01363232, NCT01337765,
NCT01392521, NCT01390818) or RAF inhibitors are being tested
with promising results in early clinical trials. However, at cost of
higher toxicity associated to the double treatment (39).
Frontiers in Oncology | www.frontiersin.org 671
SYNTHETIC LETHAL PARTNERS OF KRAS

Since direct inhibition of KRAS has been proven to be
exceptionally challenging, one potential strategy to target tumors
dependent upon this oncogene has been through the identification
of its synthetic lethal partners. Synthetic lethal partners are genes
that if mutated individually are compatible with viability, but the
simultaneous perturbation of their expression or pharmacological
inhibition of their products determines cell death (40). Synthetic
lethality can be exploited in order to target tumor cells harboring
undruggable mutations. An example of synthetic lethality is
represented by the sensitivity of BRCA mutant cells to PARP
inhibition (41). Synthetic lethal partners of KRAS could be
downstream of its pathway or acting in parallel adaptative
signaling. Targeting synthetic lethal partners should reduce the
risk of adverse events because mutated cancer cells are more
sensitive to this strategy compared to normal cells (42).

Among the different methods used to identify novel KRAS
synthetic lethal partners, RNA interference has been the approach
initially andmore frequently applied (42). Unfortunately, evidence
suggests that the reproducibility of this technology could be
limited by the library quality and off target effects (43). More
TABLE 1 | Clinical trials investigating combination treatments reported as “Drug 1” and “Drug 2” that target effectors of the same pathway (vertical combination). For
each trial the study phase and the setting of patients is indicated.

Clinical trial Phase Drug 1 Drug 2 Indication

NCT04185883
(CodeBreak101)

1 AMG510 or sotorasib (KRAS-G12C inhibitor) PD1 inhibitor
PD1 inhibitor
MEK inhibitor
SHP2 inhibitor
pan-ErbB inhibitor
EGFR inhibitor + chemotherapy
EGFR inhibitor + chemotherapy
PDL1 inhibitor
Chemotherapy
MEK + EGFR inhibitor
mTOR inhibitor
CDK inhibitor

Solid tumors
NSCLC
Solid tumors
Solid tumors
NSCLC
Solid tumors
Colorectal cancer
NSCLC
NSCLC
Colorectal cancer
Solid tumors
Solid tumors

NCT04330664
(KRISTAL-2)

1/2 MRTX849 or adagrasib (KRASG12C inhibitor) TNO155
(SHP2 inhibitor)

Solid tumors

NCT03785249
(KRISTAL-1)

1/2 MRTX849 or adagrasib (KRASG12C inhibitor) Pembrolizumab
Cetuximab
Afatinib

NSCLC
Colorectal cancer
NSCLC

NCT04613596
(KRISTAL-7)

2 MTRX849 or adagrasib (KRASG12C inhibitor) Pembrolizumab NSCLC

NCT04111458 1 BI 1701963
(pan-RAS inhibitor)

Trametinib
(MEK inhibitor)

Solid tumors

NCT01229150 2 AZD6244
(MEK inhibitor)

Erlotinib
(EGFR inhibitor)

NSCLC

NCT02230553 1/2 Trametinib (MEK inhibitor) Lapatinib
(ErbB1-2 inhibitor)

NSCLC

NCT02857270 1 LY3214996 (ERK inhibitor) Encorafenib + Cetuximab
Abemaciclib
Chemotherapy

Solid tumors

NCT03284502 1 HM95573 or belvarafenib (RAF inhibitor) Cobimetinib
(MEK inhibitor)

Solid tumors
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recently, CRISPR-Cas9 screening technology has been applied to
loss-of-function genetic screening, enabling the complete knockout
of target genes, that has been useful in identifying essential genes in
KRAS mutant cancer cells (44). Results from different studies
looking for synthetic lethal partners are scarcely overlapped and
attempts to reproduce published KRAS synthetic lethal targets
failed (45, 46). The novel CRISPR-Cas9 technology improves
genetic perturbation but is not able alone to overcome limitations
associatedwith different cellular and genetic contexts. Interestingly,
a meta-analysis of published synthetic lethal screens highlighted
that different studies’ results overlap at the pathway rather than at a
gene level (47). Furthermore, these differences have beenascribed to
changes in genetic context or cellular conditions.

Several studies have identified different putative KRAS
synthetic lethal partners (Table 2). Inhibitors of the MAPK
pathway showed greater sensitivity in KRAS mutated cancers
compared to the wild-type ones (58). Probably because of their
sole cytostatic effect, MEK inhibitors have proved no clinical
efficacy as single agents in RAS mutant cancers (59). The
combination of a MEK inhibitor with an inhibitor of the
antiapoptotic BCL-XL led to increased apoptosis in many KRAS
mutant cell lines from different histologies, and tumor regression
in in vivo lung cancer mouse models (48). A phase 1b/2 trial is
investigating the safety, pharmacokinetics, pharmacodynamics,
and clinical activity of the combination of the MEK inhibitor
trametinib and the BCL2-family inhibitor navitoclax (ABT-263) in
patients with KRAS or NRAS mutated advanced solid tumors
(NCT02079740). An interim analysis showed a good safety profile
and initial signs of efficacy, in particular in gynecologic tumors.
Evidence coming from other in vitro and in vivo studies
demonstrated efficient induction of apoptosis in KRAS or BRAF
mutant colorectal cancer cell lines treated with navitoclax in
combination with the TORC1/2 inhibitor AZD8055 but not in
the wild-type controls. Similar results were obtained in murine
models (60). IGF1R and MEK inhibition resulted in growth
inhibition of KRAS muted NSCLC cell lines and murine tumors
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(61). FGFR1 inhibition combined with the MEK inhibitor
trametinib has shown to mediate cell death in KRAS-mutant
lung cancer both in vitro and in vivo (49).

CDK4 has been proposed as synthetic lethal partner in KRAS
mutant NSCLC. This synthetic lethal interaction was observed only
in lung cancer, not in colon or pancreatic cancer, pointing to a
different tissue specificdependencyofKRASsignaling (50).Targeting
AKT and the glutathione antioxidant pathway mimicking Nrf2
ablation inhibited pancreatic adenocarcinoma tumors ex vivo and
in vivo (51). NF-kB pathway has a central role in KRAS mutated
cancers (62, 63). RAL-GEF family is one of the effectors of KRAS and
mediates the activation of NF-kB, contributing to oncogenesis (64).
NF-kB inhibition in a mouse model of lung adenocarcinoma
expressing KRASG12D and lacking p53 has been demonstrated to
reduce tumor development (65).

Another putative synthetic lethal partner of oncogenic KRAS
is represented by the IkB kinase (IKK)–related kinase Tank-
binding kinase-1 (TBK1). TBK1 is activated by RalB, a small
GTPase downstream of KRAS belonging to the Ral signaling
pathway, and Sec5, a component of the exocyst (66). TBK1
regulates an autocrine CCL5 and IL-6 signaling, inducing
carcinogenesis in KRAS mutated cancer (52). Furthermore,
activated TBK1 promotes NF-kB signaling through BCL-XL
and the c-Rel protooncogene. Inhibiting TBK1 induces cell
death in KRAS driven NSCLC adenocarcinoma murine models.

The JAK-STAT signaling pathway has a recognized role in
pancreatic cancer development. In KRAS driven pancreatic cancer
models, inhibiting JAK1/2 and TBK1 with momelotinib showed
preclinical efficacy in vitro and in vivo (52).Nevertheless, todate it has
not exhibited signs of activity in human pancreatic cancer (67).

XPO1 has also been proposed as synthetic lethal partner of
KRAS. XPO1, overexpressed in many types of human cancers, is
an export receptor in charge of the nuclear-cytoplasmic
transport of many proteins. XPO1 has been proposed as a
therapeutic target in several tumors including KRAS-mutant
lung cancer. The effect of XPO1 inhibition consists in the
accumulation of nuclear IkBa and consequent suppression of
NFkB activity. Studies conducted on KRAS-mutant NSCLC cells
showed that inhibition of the nuclear export XPO1 leads to a
synthetic lethal interaction with oncogenic KRAS (53).

TAK1 has been suggested as mutant KRAS synthetic lethal
target in colon cancer (54). In APC/KRAS mutant cells, KRAS
mediates TAK1 activation and enhances Wnt activity by
stimulating BMP-7 secretion and BMP signaling. TAK1
inhibition prompted apoptosis in KRAS-dependent colon cancer
cells. However, TAK1 dependency may not be restricted to colon
cancer, and approaches in targeting TAK1 have shown activity in
other KRAS dependent tumors as well (68–70).

The transcription factor YAP1 is sustained by TAK1 and
mediates KRAS independent growth (71, 72). YAP1 has been
shown to overcome KRAS blockade to prompt pancreatic cancer
growth in murine models (55). Representing a central hub in
resistance to RAF and MEK inhibition, targeting YAP1 could
represent a combination therapy in KRAS mutated cancers (73).

Loss of the transcription factor Wilms tumor 1 (WT1) has
been correlated with decreased proliferation and increased cell
TABLE 2 | RAS synthetic lethal partners and KRAS mutant cell lines in which
they have been identified. Synthetic lethal gene inhibition is reported if tested.

Synthetic lethal
genes or pathways

Cell lines Drug inhibition

BCL-XL (BCL2L1) (48) KRAS mutant cell lines from
different histologies

MEK inhibitor plus BCL-
XL inhibition

FGFR1 (49) KRAS mutant lung cancer MEK inhibitor plus
FGFR1 inhibition

CDK4 (50) KRAS mutant NSCLC Not tested*
AKT (51) KRAS mutant pancreatic

cancer
AKT and glutathione
synthesis inhibition

TBK1 (52) KRAS mutant NSCLC TBK1 inhibition
XPO1 (53) KRAS mutant NSCLC XPO1 inhibition
TAK1 (54) KRAS mutant colon cancer 5Z-7-oxozeaenol
YAP1 (55) KRAS pancreatic cancer Not tested*
WT1 (55) KRAS mutant lung cancer Not tested*
GATA2 (56) KRAS mutant NSCLC Not tested*
SNAI2 (57) KRAS mutant colon cancer Not tested*
*Drug inhibition of the correspondent synthetic lethal gene has not been tested in in vitro or
in vivo studies.
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senescence in KRAS driven cancer cell lines (55). However, WT1
remains not druggable to date (74).

The transcription factor GATA2 has been identified as a
synthetic lethal target in RAS pathway mutant NSCLC models.
However, GATA2 itself remains undruggable (56).

Deficiency of the DNA repair machinery has been described
in KRAS mutant cells (47). BRCA1 is a strong synthetic lethal
partner of PARP inhibition. PARP inhibition has also been
proposed as a putative effective strategy in KRAS mutant cells.

RAS signaling is a known mediator of epithelial-mesenchymal
transition (EMT). Thus, EMT regulators could represent
therapeutic targets in KRAS driven tumors (75). The SNAI2
gene encoding SNAIL, a transcription factor and regulator of
EMT, has been identified as a KRAS synthetic lethal target in
colorectal cancer cell lines (57).

Direct targeting of KRAS has been approached and the need
for targeting synthetic lethal partners could be questioned.
However, synthetic lethal partner inhibitors could be used in
the future in combination with direct inhibition in order to
overcome possible escape mechanisms.
TARGETINGMETABOLIC REPROGRAMMING
INKRASMUTANTCANCERS

Studies conducted using murine pancreatic cancer models have
shown that KRASG12D stimulates the expression of glucose
transporter 1 (GLUT1) and glycolytic enzymes and conveys
glucose intermediates into the hexosamine biosynthesis pathway
(HBP) and non-oxidative pentose phosphate pathway (PPP). The
inhibition of the HBP gene (Gfpt1) or non-oxidative PPP genes
(Rpia or Rpe) suppresses the KRAS dependent tumor growth (76).
It has been shown that an increase in glucose uptake through
enhanced GLUT1 expression is dependent on KRAS and BRAF
mutation in colorectal cancer cell lines and sustained their survival
(77). Furthermore, glucose deprivation with a glycolysis inhibitor
suppressed tumor growth. Mutated KRAS determines higher 18F-
fluorodeoxyglucose accumulation possibly by upregulation of
GLUT1 (78). A retrospective study reported a significantly higher
18F-fluorodeoxyglucose accumulation detected with positron
emission tomography in KRAS mutant colorectal cancer patients
compared with wild-type ones (79). High levels of vitamin C have
been found to selectively kill colorectal cancer cells harboringKRAS
or BRAF mutations. The increased uptake of the oxidized form of
vitamin C through GLUT1 causes oxidative stress and cell death
only in KRAS or BRAF mutant cells (80).

Cancer cells are characterized by increased anabolic
metabolism, which requires the use of the amino acid glutamine.
It has been demonstrated that oncogenic KRAS mediates the
reprogramming of glutamine metabolism in pancreatic
adenocarcinoma cells by modifying the transcription of
metabolic enzymes in a noncanonical pathway of glutamine
(81). However, the tissue of origin and the microenvironment
can impact on metabolic features. For example, pancreatic cells do
not depend on the branched-chain amino acid (BCAA) processing
enzymes Bcat1 and Bcat2, which enables BCAAs to be utilized as a
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nitrogen source, contrary to NSCLC (82). In KRAS mutated
colorectal cancer cells the pentose phosphate pathway has been
demonstrated to be essential for the growth in aerobic conditions
and glutamine conversion into a-ketoglutarate and alanine
aminotransferase for KRAS induced anchorage-independent
growth (83). In KRAS driven lung cancer mouse models
mitochondrial metabolism and mitochondrial reactive oxygen
species generation, which is allowed by glutamine conversion
into a-ketoglutarate, are essential for KRAS induced
tumorigenicity (83). Models obtaining the suppression of KRAS
led to reveal potential KRAS independent escape mechanisms. In
KRAS G12D mouse model of pancreatic cancer surviving cells
responsible for tumor relapse rely on oxidative phosphorylation,
making the combined inhibition of the KRAS pathway and
mitochondrial respiration a possible therapeutic strategy (84).

Autophagy is a mechanism characterized by degradation of
intracellular components. It is stimulated by oxidative stress,
nutrient shortage, and protein damage through inhibition of the
AMPK and mTOR pathways and the activation of the unfolded
protein response system (85). Pancreatic adenocarcinoma tumors
show raised autophagy, whose inhibition demonstrated to reduce
tumor growth (86). However, the role of KRAS in autophagy
remains controversial. In a study conducted in different cancer
cell lines, KRAS mutation was not correlated with the dependance
to autophagy (87). The use of hydroxychloroquine, that inhibits
autophagy preventing lysosome acidification, failed to show
therapeutic activity in pancreatic cancer patients (88). However,
several studies are ongoing to investigate hydroxychloroquine in
combination with chemotherapy in pancreatic cancer
(NCT04524702, NCT04132505). The deficiency of atg7, an
essential autophagy gene, in KRASG12D mutated NSCLC mouse
models determined the accumulation of dysfunctional
mitochondria and inhibited cancer growth (89).

RAS proteins have been demonstrated to enhance
macropinocytosis, a process by which extracellular fluid and
extracellular proteins are internalized through vesicles.
Macropinocytosis inhibition with amiloride blocked the growth
of KRAS mutated pancreatic cancer xenografts (90).

The metabolism of fatty acids has been correlated with KRAS
mutation in NSCLC. It has been shown that KRAS regulates lipid
homeostasis and Acyl-coenzyme A synthetase, an enzyme
involved in fatty acid metabolism, essential for mutant KRAS
lung cancer tumorigenesis in vivo (91). Furthermore, KRAS has
been reported to promote lipogenesis through the induction of
fatty acid synthase in lung cancer (92).

In KRAS/p53 mutant lung cancer mouse models the
inhibition of HSP90 combined with rapamycin was shown to
promote endoplasmic reticulum stress and mitochondrial
damage and tumor regression (93).
PUTATIVE ESCAPE PATHWAYS TO
KRAS INHIBITION

Although a clinically relevant strategy for effectively targeting
KRAS in all of its mutated status seems still far to be developed,
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potential mechanisms of resistance for KRAS inhibition have
been already explored in several preclinical models.

KRASG12C inhibitors bind specifically to inactive GDP-bound
form of KRAS. Thus, the potency of KRASG12C inhibition is
reduced by increased RTK activity, that promotes cycling of
KRASG12C to its active GTP-bound form, hindering KRASG12C

drug inhibition (94). Furthermore, the suppression of nucleotide
exchange activity downstream of tyrosine kinases enhances
KRASG12C inhibition, suggesting possible combination strategies.

By targeting KRASG12C with ARS-1620, the phosphorylation
of multiple RTKs was augmented in different ways across diverse
KRASG12C mutant models (95). Synergistic effects of RTK
inhibitors combined with KRAS blockade may vary across
different tumor cell types (96).

KRASG12C inhibitors induce growth inhibition mainly by
targeting MAPK/ERK pathway. The redundancy of parallel
growth factor signals can bypass KRAS blockade, underlying
intrinsic resistance to KRASG12C inhibitors (96). However,
combining this strategy with the inhibition of SHP2, a
phosphatase that mediates signaling of different RTKs to
KRAS, blocked the feedback reactivation and enhanced
efficacy of KRASG12C inhibition in vitro and in vivo, also in
models refractory to KRASG12C inhibition alone (16). This
encouraging preclinical evidence led to move to an early-phase
clinical trial investigating combination therapies aimed to
simultaneously targeting KRASG12C and SHP2 (NCT04330664,
NCT04185883). Another central node stimulated by RTK is
represented by SOS1, a guanine nucleotide exchange factor
activating KRAS (97). The SOS1 inhibitor BAY-293 can synergize
with the KRASG12C inhibitor ARS-853 reducing cell
proliferation (98).

Noteworthy, the scenario of KRAS mutated cancer is
extremely heterogeneous and complex. The dependency on
KRAS signaling varies across different KRAS mutant cancer
types and could reflect the variability in the tumor response,
representing a possible mechanism of intrinsic resistance (75,
99). KRASG12C colorectal cancer cells have been shown to have
higher basal EGFR activity compared to NSCLC cells, leading to
higher phospho-ERK rebound and thus resistance to KRASG12C

blockade (100). This finding is consistent with clinical results, in
which activity of sotorasib seems to be lower in colorectal cancer
patients. Thus, combining KRASG12C inhibition with EGFR
inhibition could represent an effective treatment strategy.
Indeed, in KRAS mutant cancer cells KRASG12C inhibition
with ARS-853 was increased by the combination with EGFR
inhibitors (94).

Other adaptive resistance mechanisms for KRASG12C

inhibition involved reactivation of MAPK pathway and failed
PI3K–AKT pathway inactivation (96). The combination of the
KRASG12C inhibitor ARS1620 with PI3K inhibition has
demonstrated to be effective in vitro and in vivo in different
models resistant to single-agent KRASG12C inhibitor. Also a
strategy of blocking PI3K effectors, such as AKT and mTOR,
together with KRASG12C, proved to be effective in preclinical
studies (94, 101).
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Activation of RTK signaling in KRASG12C mutant cancers
could limit the KRASG12C therapeutic inhibition both by
increasing regulation of GTPase activity and promoting KRAS
independent ERK and mTOR/S6 pathway activation (16). The
combination of the mTOR inhibitor vistusertib with the
KRASG12C inhibitor MRTX849 also improved antitumor
activity in vitro.

mTOR and IGF1R could also play a central role in KRAS
inhibition resistance. The addition of mTOR and IGF1R to the
KRASG12C inhibitor ARS1620 improved efficacy in KRASG12C

mutant lung cancer in in vitro and in vivo mouse models.
Another mechanism proposed for the adaptive resistance to

KRASG12C inhibitors is represented by feedback reactivation of
wild-type RAS (95). In KRASG12C models, an adaptive RAS
pathway reactivation after a rapid KRASG12C inhibition with
ARS-1620 and AMG-510 is driven by activation of wild-type
RAS (NRAS or HRAS) mediated by RTKs and is not inhibited
by KRASG12C inhibitors.

In response to KRASG12C inhibitors, proliferation of cancer
cells can be resumed through the production of new KRASG12C

(102). The distribution of newly synthetized KRASG12C between
the active and inactive state, which is the only conformation
bound by KRASG12C inhibitors, modulated the divergent
response. Cells producing new KRASG12C, which is converted
to the active and drug insensitive state, are able to escape
KRASG12C inhibition.

Another possible mechanism responsible for resistance to
KRASG12C inhibitors is represented by the presence of additional
KRAS genetic alterations that can potentiate nucleotide exchange
or impair inherent GTPase activity (94). Furthermore, the
resistance to KRASG12C inhibitors could be cause by the
presence of a heterogeneous spectrum of KRAS mutations in
the same patient (103).

Moreover, aurora kinase A (AURKA) was shown to promote
drug inhibition escape by interacting with KRASG12C and c-Raf
(102). In KRASG12C mutant cancer models a synergic effect was
demonstrated with the KRASG12C inhibitor ARS-1620 and the
AURKA inhibitor alisertib (102).

In an inducible KRASG12D pancreatic cancer mouse model,
the amplification and overexpression of the transcriptional
coactivator Yap1 has been demonstrated to be a potential
KRAS independent bypass mechanism (55). In this study,
indeed, after KRAS extinction and complete tumor regression
in all mice, about two thirds of them relapsed. At least three
possible resistance mechanisms have been identified. In about
half of the relapsed tumors, a KRAS transgene amplification has
been found, meaning that genomic alteration on target itself
could bypass target blockade. Another possible mechanism
leading to tumor relapse is represented by the compensatory
activation of other key growth pathways. According to this,
previous findings showed that expression of receptor tyrosine
kinases bypasses the KRAS dependency (75). Furthermore, a
novel mechanism of resistance to KRAS inhibition through a
Yap1-mediated transcriptional program has been proposed.
Although Yap1 is not sufficient for driving de novo pancreatic
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cancer development, it can drive tumor recurrence in inducible
KRASG12D pancreatic cancer models (104).

Since increased cell proliferation and antiapoptotic signaling
could represent a possible mechanism of resistance to
KRASG12C inhibitors, their combination with chemotherapy,
that inhibits cell proliferation, could boost responses and deter
resistance. There are also evidences showing a synergistic effect
of cell cycle inhibitors like palbociclib in combination with
KRASG12C inhibitors (14). Indeed, genetic alterations in
CDKN2A, CDK4, or CCND1 can be found in up to 20% of
KRAS mutated NSCLC cancers (105).

Overall, these data support the utility of combination
therapies in overcoming intrinsic and adaptive resistance and
enhancing clinical benefit of KRASG12C inhibitors.
KRAS REPROGRAMMING OF
TUMOR MICROENVIRONMENT AND
POTENTIAL IMPLICATION FOR
IMMUNOTHERAPEUTIC APPROACHES

The development and progression of tumors depend not only on
oncogenic mutations but also on the interaction with the
surrounding microenvironment, which creates a nurturing niche
for cancer cells. KRAS mutant tumors are typically characterized by
an immunosuppressive state (106). KRAS signaling induces in
tumor cells the expression of immunomodulatory factors and
inflammatory cytokines, with subsequent recruitment of
neutrophils and myeloid-derived suppressor cells (MDSCs),
creating an immunosuppressive tumor microenvironment.
KRASG12D was shown to induce ELR CXC chemokines in human
embryonic kidney cells (107). Large production of chemokines was
observed also in KRASmutant pancreatic cell lines (108). In murine
lung cancer models KRASG12D demonstrated to stimulate CXCL1,
2, and 5, leading to neutrophils and macrophages infiltration (109).
A tumor growth promoting role for CXCL2 and CXCL5 was also
found in KRAS mutated pancreatic cancer cell lines (110).

The binding of CXCL3 with CXCR2 and the production of
GM-CSF induce the accumulation of MDSCs. In colorectal
cancer models KRASG12D has shown to downregulate the
expression of interferon regulatory factor 2 (IRF2), which in
turn suppresses CXCL3 expression, resulting in high expression
of CXCL3 and promoting migration of myeloid-derived
suppressor cells to the tumor microenvironment (111).
Responsiveness to anti-PD-1 therapy was increased in
colorectal cancers with higher IRF2 expression. The tumor
microenvironment is populated by other myeloid cells, such as
alternatively activated immune suppressive M2 macrophages,
and lymphoid cells, including CD4+FoxP3+ T regulatory (Treg)
cells, CD19+IL-10+ B regulatory (Breg) cells, and interleukin
(IL)-17-producing T helper (Th)17 cells (112, 113).

IL-6 expression has been correlated with KRAS mutated
signaling and seems to play a central role in shaping the immune
milieu. In pancreatic cancer models IL-6 signaling was accompanied
by an infiltration of myeloid cells and lymphocytes (114).
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Upregulation of IL-10 transcription through MEK/ERK/AP-1
pathway was shown in KRAS mutant colorectal cancer cells and
its secretion was required for the conversion of CD4+ T cell to
CD4+FoxP3+ Treg cells (113). High IL-10 levels were associated
with a worse prognosis in patients with KRASmutated cancers (106).

The capacity of TGF-b in regulating the immune system and
inhibiting inflammation is acknowledged since many years (115).
Either RAS downstream MAPK and PI3K pathways seem to
contribute to TGF-b production (116). In KRAS mutated
colorectal cancer lines TGF-b secretion was required for Treg cell
differentiation as mediated via the MEK/ERK/AP-1 pathway (117).
In a lung cancer mouse model, it has been demonstrated that IL-10
and TGFb secreted by KRAS mutated cancer cells, induce the
conversion of CD4+ CD25- T-cells into FOXP3+/CTLA4+/
CD122+ T regulatory cells (Tregs) (117). In immune-excluded
colorectal cancer models the inhibition of TGF-b promoted anti-
tumorigenic immune infiltration, restoring sensitivity to PD-L1/
PD-1 blockade (118). Considering that pancreatic cancer is a poorly
immunogenic, “cold” tumor, novel approaches targeting the
microenvironment have been explored. Signals of activity using
TGF-b-inhibitor galunisertib in combination with gemcitabine have
been showed in advanced pancreatic cancer patients (119).
Moreover, conventional therapy is able to shape the immune
landscape in KRAS mutant tumors. It has been demonstrated
that mutant KRAS pancreatic cancer cell lines treated with
chemotherapy activate MAPK and NF-kB pathways, inducing the
secretion of inflammatory cytokines able to enhance monocyte
differentiation towards MDSCs and thus counteracting therapy
response (120). Other mechanisms have also been proposed. High
circulating IL-8 levels have been suggested to be a potential
predictive biomarker of resistance to nanoliposomal irinotecan
(nal-IRI) in gemcitabine-refractory patients with pancreatic cancer
(121). Nal-IRI has been developed to exploit tumor-associated
macrophages (TAMs) for accumulation and conversion into its
active metabolite. IL-8 has shown an increased mobilization of
immature CD11b+Gr-1+ myeloid cells, thus, it has been
hypothesized that high IL-8 levels and low TAMs activity could
be correlated with lack of nal-IRI activity (122).

Mutated KRAS has a central role in pancreatic cancer
development and growth through regulation of T cell cytokines in
the microenvironment, therefore shaping the metabolic cancer cell
landscape (123). The presence of T cells in the microenvironment is
of crucial importance considering their therapeutic potential with
immune checkpoints inhibitors. TH1 cells are generally associated
with response to immunotherapy and promote CD8+ T cell
infiltration (124). TH2 cells prevent tumor rejection and promote
tumor growth (125). In addition to promoting macrophage M2
polarization, IL-4, which is abundantly produced by TH2 cells, has
been recently demonstrated to stimulate tumor cell proliferation
through KRAS in pancreatic cancer. Mutant KRAS in cancer cells
stimulates cytokine receptor expression such as such as IL4R, IL2Rg,
and IL13Ra1 that, in turn, facilitate the Jak1-Stat6-cMyc pathway
activation by IL-4 and IL-13. cMyc, which is activated by Stat6, is
required for metabolic reprogramming and drives glycolysis.

GM-CSF can exert both immune suppression and stimulation
and the balance could be dependent on its levels (106).
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KRASG12D is responsible for GM-CSF transcription through
MAPK and PI3K pathways in pancreatic cancer cells (126).
The correlation between reduced overall survival and high
levels of GM-CGF observed in pancreatic cancer patients is
probably due to the ability of GM-CSF to cause MDSC
differentiation and inhibition of T cell proliferation (120).

Although IL-10 andTGF-b can induce a shifting ofmacrophages
towards the alternative activated immunosuppressive M2 state, a
clear correlation between their secretion by KRAS mutated cancer
and macrophage polarization has not been established (106). In
pancreatic cancer both M1 and M2 macrophage phenotypes have
been hypothesized to play an important role in tumor initiation and
progression and growth (127). In advanced pancreatic cancer
macrophages represent the most abundant immune cell
population, playing mainly an immunosuppressive role (128). The
correlation of macrophages with prognosis in lung cancer patients
remains controversial (129). Mechanisms of macrophage
recruitment in KRAS mutant lung cancer are not well defined, but
it has been hypothesized a role for CXCR2 signaling (130).

Also, a crosstalk between cancer-associated fibroblasts (CAFs)
and KRAS mutant cancer cells has been shown. In a
KRASG12D mutant lung cancer and CT26 colon cancer mouse
models, the depletion of fibroblast activation protein (FAP),
expressed by CAFs, was demonstrated to inhibit tumor cell
proliferation through accumulation of collagen and decrease of
myofibroblast content and blood vessel density (131). In pancreatic
cancer cells KRAS activates Hedgehog pathway, which is involved in
the generation and maintenance of the typical dense tumor stroma
(132). In a pancreatic cancer mouse model, mutant KRAS induced
the expression of Sonic hedgehog, which in turn activated the
transcription factor GLI1. GLI1 regulates IL-6 expression in
fibroblasts by binding its promoter and IL-6/STAT3 axis is
involved in pancreatic carcinogenesis (133).

Pancreatic stellate cells are essential in disease progression
and are the most represented cell type of tumor stroma (134).
TGF-b and many other factors secreted by pancreatic cancer
cells contribute to the activation of stellate cells which, in turn,
produce and release several other growth factors and cytokines
(106). Pancreatic stellate cells and mutant KRAS cancer cells
have a synergistic effect on the immune microenvironment.

The composition of the immune population and its crosstalk
with KRAS altered tumor cells have a central role not only in
determining tumor onset and progression but also in sensitivity to
immunotherapeutic drugs (135). A study reported that oncogenic
RAS signaling can upregulate PD-L1 expression on tumor cells
through a mechanism of increased PD-L1 mRNA stability (136).
Indeed, KRAS-induced MEK signaling promotes the inhibition of
tristetetrapolin, a negative regulator of PD-1 expression. In human
lung and colorectal tumors, RAS pathway activation has been
correlated with elevated expression of PD-L1. It has been reported
that PD-1 and PD-L1 expression is more frequent in KRAS
mutated NSCLC (137). Some studies have already shown a
clinical relevance of the combination of MEK inhibitors with
immunotherapy (138, 139). An ongoing phase 1b/2 trial is testing
the activity of the treatment with MEK inhibitor binimetinib in
combination with nivolumab or nivolumab plus ipilimumab in
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pretreated patients with microsatellite stable metastatic colorectal
cancer harboring a RAS mutation (NCT03271047).

Differently from other TKIs, novel KRASG12C inhibitors are
specifically selective for the mutation variant of KRAS and
should not have any effects on the immune cells directly. Thus,
KRAS inhibition in cancer cells can shift the balance from an
immunosuppressive state to a microenvironment favoring
effective antitumor activity and can sensitize tumors to
checkpoint inhibitor therapy.

The predictive role of KRAS status to immune checkpoint
inhibitors in NSCLC is controversial. Although KRAS status has
never been included as stratification factor in clinical trials with
immune checkpoint inhibitors for NSCLC, a subgroup analysis
of the CheckMate 057 trial revealed that patients with tumors
harboring a KRAS mutation had a greater clinical benefit with
nivolumab compared to docetaxel (140). A meta-analysis
conducted on five prospective randomized trials has revealed
that (141) KRAS mutation is associated with a better outcome in
patients treated with PD-1/PD-L1 inhibitors in second-line
setting (142). However, the study failed to prove that KRAS
status is an independent predictive factor for treatment. The
retrospective IMMUNOTARGET registry confirmed a greater
benefit from immune checkpoint inhibitors in patients with
KRAS mutated NSCLC compared to those with EGFR mutant
tumors (143). Another retrospective study found similar activity
of immunotherapeutic agents in KRAS mutated compared to
KRAS wild-type lung cancer patients (141). The mutation
variants KRASG12V, KRASG12D, and KRASG13C have been
associated with higher tumor expression of PD-L1 compared
with other variants in NSCLC.

Interestingly, some evidence supports the hypothesis that STK11/
LKB1 co-mutation in KRAS mutated NSCLC could represent a
negative predictive factor for immunotherapy (144). LKB1 loss is
involved in the suppression of stimulator of interferon genes
(STING), determining a decreased expression of type I interferon
genes and chemokines that facilitate T-cell recruitment (145).
STING activation has been associated with response to
immunotherapy and is stimulated by chemotherapy (146). A
subgroup of STK11 and p53 co-mutated NSCLC is characterized
by high STING- and immune-related gene expression. KRAS
mutated tumors with co-occurring CDKN2A/B mutations have a
scarce immune infiltrate and low PD-L1 expression, resulting in
resistance to anti-PD-1 therapies (147). Another group of KRAS
mutant NSCLC presents p53 co-mutation and they also have high
PD-L1 expression, high T-cell infiltration and, thus, enhanced
response to immunotherapy. For the resistance to anti-PD-1
observed in this latter group, a mechanism involving STAT
signaling has been proposed (148). In KRAS/p53 mutant murine
lung cancer models neurotrophic receptor tyrosine
kinase 1 (NTRK1) has been found to be upregulated after
treatment with PD-1 inhibitors and to regulate JAK/STAT
signaling, promoting PD-L1 expression and CD8+ T cell
exhaustion in the microenvironment.

p21-activated kinase 4 (PAK4) is a serine/threonine kinase acting
downstream of RAS signaling. PAK4 overexpression has been found
in tumor biopsies of anti-PD-1 non-responders and was correlated
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with low T cell and dendritic cell infiltration across different cancer
types, with a strong negative correlation in pancreatic cancer
(https://doi.org/10.1038/s43018-019-0003-0). The genetic
knockout of PAK4 augmented tumor infiltration by T cells and
natural killer cells and pharmacological inhibition of PAK4
synergized with PD-1 blockade immunotherapy in melanoma
mouse models, suggesting the possibility of enhancing the efficacy
of immunotherapy also in KRAS mutant tumors.

Therefore, combining KRAS inhibition with immune
checkpoint blockade has a strong biological rationale and could
open the way to therapeutic options, reversing the innately
immunoresistant phenotype of some RAS mutant cancers.

A recent study has suggested that the novel KRASG12C inhibitor
sotorasib (AMG 510) can potentiate immune rejection when
combined with anti-PD-1 immune checkpoint inhibitor (14). On
one side, sotorasib promotes tumor regression by blocking growth
and proliferation pathways, on the other side, it induces a change in
the expression of immunomodulating factors in cancer cells, such as
increased production of T-cell chemoattractants CXCL10 and
CXCL11. The combination of sotorasib with anti-PD-1 determined
complete regression in nine out of ten CT26 KRAS mutated colon
carcinomamice,which is oneof themost immune-responsivemouse
tumor models, and induced T cell memory. The immunological
memory was demonstrated by the fact that the growth of isogenic
KRAS G12D tumors in treated mice was impaired.

The phase 1b trial CodeBreakTM 101 testing the combination
of sotorasib with anti-PD-1 is ongoing in patients with a
KRASG12C advanced solid tumors (NCT04185883).

Further investigation about the synergistic association of
KRASG12C and immune checkpoint blockade is warranted. It has
to be explored if this combination will be effective only in tumors
that are already moderately sensitive to immunotherapy or even in
those intrinsically resistant to immune checkpoint inhibition.

CONCLUSIONS

Although KRAS is the most mutated oncogene in human cancer,
it has considered to be undruggable because of its structural
biology. Recently, exciting data of activity have been reported
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with KRASG12C inhibitors in early-phase clinical trials, raising a
growing interest for KRAS inhibition, especially in lung cancer.

Different strategies are being explored in order to overcome
resistance mechanisms and enhance the efficacy of KRAS
inhibition, for example targeting synthetic lethal partners of
KRAS. There is a hope that in the next future it will be
achievable to block other mutation variants of KRAS other
than G12C, making possible to exploit this approach also in
other KRAS mutant tumors. Combinations of KRAS inhibitors
and immune checkpoint inhibitors are being tested, since they
showed a synergistic effect in a preclinical setting. Considering
the immunosuppressive microenvironment characterizing KRAS
mutant cancers, results from clinical trials utilizing this
mechanism are anxiously awaited.

Many improvements have been made in targeting
the oncogene KRAS, that was previously thought impossible
to block, paving the way for a novel clinical field of research
that will probably lead to new horizons in the future
clinical practice.
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A low NM23-H1 expression in head and neck squamous cell carcinoma (HNSCC) was
found to be associated with poor clinical outcome. Therefore, we investigated the role of
NM23-H1 in the susceptibility of HNSCC cells to irradiation and its clinical significance. An
in vitro study was also conducted to validate the results. Furthermore, we used
immunohistochemistry to analyze NM23-H1 expression found in specimens of 50
HNSCC patients with cervical metastases receiving postoperative radiotherapy. Low
tumor NM23-H1 expression was associated with locoregional recurrence of HNSCC
(p=0.040; Hazard ratio=5.62) and poor clinical outcome (p=0.001; Hazard ratio=4.90). To
confirm the effect of NM23-H1 on radiation-induced cytotoxicity, we generated several
stable clones derived from a human HNSCC cell line (SAS) using knockdown and
overexpression of NM23-H1. Knockdown of NM23-H1 decreased the radio-sensitivity
of SAS cells, possibly associated with a decrease in the radiation-induced G2/M-phase
accumulation and upregulation of cyclin B1. On the contrary, overexpression of NM23-H1
can reverse the aforementioned adverse results. Consequently, we suggest that NM23-
H1 expression may be considered as a potential therapeutic treatment option for
HNSCC patients.
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INTRODUCTION

The prevalence of Head and neck cancers (HNC), mainly squamous cell carcinomas (HNSCC), are
increasing worldwide (1). HNSCC patients’ prognosis hasn’t been able to improve due to early
metastases and poor response to chemoradiotherapy. Most HNSCC patients with potentially
removable tumors also have lymphatic metastases at the time of their diagnosis (2). At present, there
are no useful biomarkers for treatment planning for HNSCC patients with metastases.
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Low NM23-H1 expression is long known to be associated
with therapeutic resistance and metastasis in some cancers (3–6).
However, clinical observation on NM23-H1 expression in
treatment outcome of various cancers had yielded inconsistent
results (7–10). Metastatic cancer cells were considered as
unstable cells originated from the primary tumor, which could
derive from a low-NM23-H1-expression (11, 12). NM23-H1
expression may decrease slow overtime during the course of
tumor development (13). The survival mechanism of spreading
cells was the major contributor to therapeutic resistance of
recurrent tumors (4). Therefore, restoring NM23-H1
expression might lead to better treatment outcome of residual
cancer cells (13).

There were very few studies on the clinical significance of
NM23-H1 expression in cancer patients with metastasis
receiving postoperative radiation. In our previous study, we
discovered a low NM23-H1 expression of HNSCCs was
associated with lymphatic metastases. The metastatic colonies
were noted to have a reduced protein level compared to their
neighboring normal cells (11). To investigate the effect of NM23-
H1 expression on remaining tumor receiving adjuvant therapy,
we analyzed the correlation between NM23-H1 expression and
clinical pathological factors in HNSCC patients with cervical
metastases treated with postoperative radiotherapy. To verify the
effect of NM23-H1 on irradiation-induced cytotoxicity in
HNSCC cells, we generated stable clones derived from a
human HNSCC SAS ce l l l ine by knockdown and
overexpression of NM23-H1 (14). The aim of the present
study was to evaluate the impact of NM23-H1 on radio-
sensitivity of HNSCC cells.
PATIENTS, MATERIALS, AND METHODS

Patients and Surgical Specimens
The surgical specimens were collected from fifty HNSCC
patients and their cervical metastases were treated by surgery
and postoperative irradiation between 1984 and 1998. Patient’s
age ranged between 30-88 years with a median of 50 years.
Written informed consent was obtained from all patients and
this study was approved by the Institutional Review Broad of
Taipei Veterans General Hospital. The present workup and
treatment include general physical examination, computed
tomography (CT) scan of head and neck, intraoral soft tissue
biopsy, chest radiography, abdominal sonography, and whole-
body radioisotope bone scan. Same treatment plan was given to
all patients including postoperative local irradiation. Cancer
staging was defined by the multidisciplinary head and neck
cancer tumor board based on the sixth edition of American
Joint Commission on Cancer TNM system. During the surgery,
tumor tissues and the normal tissues (the neighboring grossly
disease-free mucosa of surgical margins) were collected and
examined by the surgical pathologist. Postoperative
radiotherapy was given to patients due to the presence of
insecure or positive resection margins, multiple metastatic
lymph nodes, extracapsular spread, and perineural invasion.
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Furthermore, tumor recurrence was confirmed by clinical
examinations. The median follow-up period was 65.7 months
with a range of 3-218 months. For final analysis, 24 out of 50
patients survived and were considered free of HNSCC. The
cumulative survival rates at 1-, 3- and 5-year were 76%, 54%,
and 51%, respectively.

Immunohistochemistry and Scoring
Expression of NM23-H1 in the pathologic tissues was observed
and evaluated as previously described (2, 14).

Irradiation on SAS Cells
In the previous study, we generated a few stable clones derived
from a human HNSCC SAS cell line by using knockdown and
overexpression of NM23-H1 (14). SASshRNAnm23 (carrying
nm23-H1 shRNA) and SASshRNA (carrying the pSuper
plasmid) clones were obtained. Stable SAS clones expressing
ectopically introduced HA-tagged NM23-H1 and harboring a
control plasmid were also established and designated as SASnm23

and SAScontrol. By using the Western blot, NM23-H1 protein
level found in the mock controls (SASshRNA and SAScontrol)
were not different from the parental SAS cells, whereas NM23-
H1 protein level of SASshRNAnm23 decreased by about 75%
compared to the mock control (SASshRNA). Overexpression
of the ectopically introduced HA-tagged NM23-H1 was
noted (14).

SAS cells were plated in 6-cm dishes at a density of 2.0 × 105

cells/dish for 24 hours and cells were exposed to irradiation at
different doses in a single fraction (sham RT, 1, 2 and 4 Gy). Six
MeV of electron beam energy was delivered by a linear
accelerator (Clinac® 1800, Varian Associates, Inc., CA; dose
rate 2.4 Gy/min). For each fraction, full electron equilibrium
was reached by using a parallel plate PR-60C ionization chamber
(Capintel, Inc., Ramsey, NJ).

Colony Formation Assay of SAS Clones for
Radiation Survival
Viable SAS cells were plated and allowed to grow in McCoy’s 5A
medium containing 20% heat-inactivated FCS and 0.24% agarose
at 37°C. After incubation of 10 to 14 days, the dishes were stained
with 0.4% ≥ 50 cells were counted. The surviving fraction was
presented as mean colonies/(cells inoculated × plating efficiency).
The efficiency of control plating for SAS cells was approximately
60%. Survival curves were plotted using a linear-quadratic
model. The sensitizer enhancement ratio (SER) was computed
by using the required irradiation dose divided by the radiation
dose needed for NM23-H1 over expression plus the irradiation
dose needed to yield a surviving fraction of 37%.

Western Blot Analysis and Cell
Cycle Analysis
After exposure to radiation, cells were analyzed according to
methods reported previously (11).

Statistical Analysis
To examine the associations between NM23-H1 expression and
each clinical- pathologic parameter, Chi-square (c2) tests with
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Yates correction or Fisher’s exact test were performed. For
prognostic analyses, Kaplan−Meier method was used to plot
survival curves. Log-rank test was applied to examine the
significant difference in survival between the patient groups.
The collective effects of clinical-pathological factors were
further analyzed by Cox proportional hazards model.

For in vitro studies, data were presented as the mean ±
standard error in the three independent experiments.
Differences between groups at each specific time frame were
identified by one-way analysis of variance (ANOVA) or
Wilcoxon-signed rank test. Statistical comparison between two
independent variables was determined by two-way ANOVA
followed by Dunnet’s test. This study used Statistical Package
of Social Sciences (SPSS) software (SPSS Inc., Chicago, IL) for all
statistical analyses. Probability P-values < 0.05 were considered
statistically significant.
RESULTS

Low NM23-H1 Expression in HNSCC
Tumors Was Associated With Poor
Prognosis of Patients Treated With
Postoperative Radiation
In order to understand the role of NM23-H1 in prognosis of
HNSCC patients with cervical metastases treated by surgery and
postoperative irradiation, we inspected the NM23-H1 expression
found in the specimens. By immunochemistry, NM23-H1
proteins were mostly localized in the cytoplasm while some
were found in the nucleus (Supplementary Material). We
focused mainly on nuclear expression of NM23-H1 in
consideration of recent findings (15, 16). The interpretation of
NM23-H1 expression was performed by two investigators
(Wang YF and Chang CJ) unaware of the clinical data and
kappa statistics revealed excellent agreement (kappa=0.79;
p<0.001). In the discrepant cases, a final opinion was made
based on two investigators’ consensus. The clinical significance
of tumor NM23-H1 expression was assessed in comparison with
clinical-pathologic features including age, primary tumor size,
nodal involvement of neck, distant metastasis, and tumor
recurrence (Table 1). The analysis showed more patients (17/
31) with NM23-H1-negative tumors had locoregional recurrence
compared to those (4/19) with NM23-H1-positive tumors
(p=0.040). Eighty-six percent (12/14) patients with distant
metastasis had NM23-H1-negative tumors while 53% (19/36)
patients without distant metastasis had NM23-H1-negative
tumors. Overall, patients with distant metastasis appeared to
have a higher rate of NM23-H1-negative tumors compared to
those without distant metastasis with a marginal significance
of p=0.067.

To confirm whether a low NM23-H1 level affects treatment
outcome, we evaluated the prognostic relevance of NM23-H1
expression in HNSCC patients. When conducting univariate
analyses using log-rank tests, patients with recurrence
(p<0.001), distant metastasis (p<0.001) and negative NM23-H1
expression in primary tumors (p=0.001) were shown to have
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poorer survival. By immunohistochemistry, patients with NM23-
H1-negative tumors appeared to have a less desirable outcome
than those with NM23-H1-positive tumors (Figure 1). During
multivariate analyses using a Cox proportional hazard model,
distant metastasis (p=0.011) and tumor recurrence (p=0.012)
remained as independent factors associated with patients’
TABLE 1 | Relationship between NM23-H1 expression in head and neck
squamous cell carcinoma and clinicopathologic parameters of 50 patients with
resectable cervical metastasis treated by postoperative radiation.

Clinicopathologic
parameters

Number of
patients

Interpretation of tumor
NM23-H1 expression

Negative
(31)

Positive
(19)

p
value1

Age (years)
≤50 28 18 10 0.935
>50 22 13 9
Primary tumor size
≤4 cm 31 22 9 0.171
>4 cm 19 9 10
Metastatic lymph node(s)
=1 10 4 6 0.216
>1 40 27 13
Distant metastasis
Negative 36 19 17 0.067
Positive 14 12 2
Tumor recurrence
Negative 29 14 15 0.040
Positive 21 17 4
March 202
1 | Volume
 11 | Article
1Based on Chi-square test with Yates′ (continuity) correction.
FIGURE 1 | Overall survival curve of 50 patients with head and neck
squamous cell carcinoma treated by postoperative radiation associated with
NM23-H1 expression of primary tumors. Patients with NM23-H1-positive
tumors had significantly longer survival time than those with NM23-H1-
negative tumors (p < 0.01).
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prognosis. However, tumor NM23-H1 expression was found not
significantly correlated with patients’ prognosis (Table 2).

Knockdown of NM23-H1 Attenuated the
Susceptibility of SAS Cells to Radiation
To clarify the role of NM23-H1 in radiosensitivity of SAS cells,
cell viability was examined using colonogenic assays following
irradiation. The survival fraction of NM23-H1-knockdown
(SASshRNAnm23) cells seemed higher than that of the mock
control (SASshRNA) at 2 Gy, 4 Gy and 6 Gy, indicating that
knockdown of NM23-H1 attenuated radiosensitivity of SAS cells.
Conversely, the survival fraction of NM23-overexpressing
(SASnm23) cells was significantly lower than that of the mock
control (SAScontrol) when they were treated with radiation doses
at 2 Gy, 4 Gy and 6 Gy (Figure 2A). Overexpression of NM23-
H1 slightly enhanced the radiation response of SAS cells with a
maximal sensitizer enhancement ratio (SER) of 1.3, whereas
knockdown of NM23-H1 attenuated the radiosensitivity with a
SER of 0.7.
Neither Knockdown Nor Overexpression
of NM23-H1 Significantly Affects
Radiation-Induced Apoptosis
To confirm the impact of NM23-H1 expression on radiation-
induced apoptosis of SAS cells, we assessed the percentage of
apoptotic cells by DNA fragmentation, TUNEL assays and
annexin V-propidium iodide (PI) staining. Among SAS clones
with different levels of NM23-H1 expression, no significant
difference was found in the amount of apoptosis after irradiation
(data not shown). Our findings suggested that classic apoptosis
Frontiers in Oncology | www.frontiersin.org 485
may not be the primary pathway of radiosensitization associated
with NM23-H1 expression in SAS cells (17, 18).
Knockdown of NM23-H1 Decreased the
Proportion of Radiation-Induced SAS Cell
Accumulation at the G2/M Phase
SAS cells were treated with graded radiation doses (0, 1, and 2
Gy) and the cell cycle was analyzed by flow cytometry. Exposure
to radiation caused an increase in the percentage of SAS cells at
G2/M phase of the cell cycle (19). Knockdown of NM23-H1
diminished the proportion of SASshRNAnm23 cells in radiation-
induced G2/M-phase arrest compared to the mock control
(SASshRNA). In contrast, overexpression of NM23-H1 enhanced
post-irradiation G2/M-phase accumulation of SASnm23 cells
compared with the mock control (SAScontrol) (Figure 2B).
TABLE 2 | Survival analysis of 50 patients with head and neck squamous cell
carcinoma with resectable cervical metastasis treated by postoperative radiation.

Clinicopathologic parameters (Number of
patients analyzed)

p value

Univariate
analysis1

Multivariate
analysis2

Age (years) 0.236
≤50 (28)
>50 (22)
Primary tumor size 0.086
≤4 cm (31)
>4 cm (19)
Metastatic lymph node(s) 0.181
=1 (10)
>1 (40)
Distant metastasis < 0.001 0.011
Negative (36)
Positive (14)
Tumor recurrence < 0.001 0.012
Negative (29)
Positive (21)
NM23-H1 expression in primary tumor 0.001 0.171
Negative (31)
Positive (19)
1Based on Log-rank test.
2Based on Cox proportional hazards model.
A

B

FIGURE 2 | Knockdown of NM23-H1 attenuated the susceptibility of SAS
cells to irradiation and decreased the G2/M-phase cell accumulation. (A) Cell
viability and radiation survival curves. (B) Cell cycle analysis. Data represent
the mean ± standard error of three independent experiments. *p < 0.05
compared with mock controls; statistical significance was determined using
the paired t-test.
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Knockdown of NM23-H1 Downregulated
Cyclin E and A and Upregulated Cyclin B1
and D1
To convey the physiologic relevance of NM23-H1 proteins in
SAS cells, we examined whether NM23-H1 is involved in
modulating the expression of cyclin D1, E, A and B1. Prior to
irradiation, knockdown of NM23-H1 downregulated cyclin E
and cyclin A and slightly increased cyclin B1 and cyclin D1,
compared to the mock controls. These findings supported the
fact that NM23-H1 may involve in modulating cell cycle
(Figure 3).

Following the exposure to irradiation, SAS cells displayed a
slight increase in cyclin B1 levels compared to the controls without
irradiation. However, we did not observe other significant effects
of NM23-H1 expression on the protein levels of cyclin D1, E and
A in response of SAS cells to irradiation (Figure 4).
DISCUSSION

The salient findings of this study showed low NM23-H1
expression in primary tumors was associated with locoregional
recurrence in HNSCC patients with cervical metastases receiving
Frontiers in Oncology | www.frontiersin.org 586
surgery and radiotherapy. Cells with low NM23-H1 expression
were less susceptive to irradiation compared to those with high
NM23-H1 expression. We also found that irradiation can induce
DNA damage and G2/M-phase arrest in SAS cells, eventually
resulting in cell death. Knockdown of NM23-H1 reduced the
radiosensitivity of SAS cells through diminished irradiation-
induced G2/M-phase arrest, possibly due to the upregulation
of cyclin B1.

We recently reported a low NM23-H1 expression could
decrease cisplatin sensitivity of HNSCC cells (14). However,
many HNSCC patients with cervical metastases only
underwent post-operative radiation without cisplatin-based
chemotherapy. To investigate whether NM23-H1 expression
has an impact on radiosensitivity, we evaluated the relationship
between NM23-H1 expression and the response to irradiation in
HNSCC patients with cervical metastases. Clinical data
demonstrated a low tumor NM23-H1 expression was
associated with poor survival and locoregional recurrence of
HNSCC in patients with cervical metastases receiving
postoperative radiation. Our finding is consistent with a
previous report on patients with laryngeal squamous cell
carcinoma (20). To the best our knowledge, there were limited
researches discussing the role of NM23-H1 in response to
postoperative irradiation in HNSCC patients with cervical
metastases (14, 20). Our study found a correlation between low
NM23-H1 expression and locoregional recurrence of HNSCC.
The underlying mechanism could be attributed to patients’ poor
response to irradiation.

Both clinical data and in vitro studies supported our
hypothesis that NM23-H1 should be considered as one of the
important factors in evaluating the susceptibility of HNSCC cells
to radiotherapy. Our findings were in agreement with other
previous reports showing a higher NM23-H1 expression in
tumor had a favorable response to radiotherapy in laryngeal
and nasopharyngeal cancers (21, 22). However, some
publications reported NM23-H1 expression of cancer cells did
not have an influence on cell growth kinetics, but the knockdown
of NM23-H1 can induce therapy resistance by promoting the
survival mechanism (23). We postulated that the influence of
NM23-H1 on radiation-induced cytotoxicity may be related to
DNA damage of the cells or the regulation of cell cycle in our
tested cell line.

Radiotherapy achieves its therapeutic effects by prompting
apoptosis and non-apoptotic cell death (24). In our study on SAS
cells, no early apoptotic DNA fragmentation was observed after
irradiation, suggesting typical apoptosis may not be the primary
pathway for radiation-induced death. Nevertheless, we are
unable to eliminate the possibility that NM23-H1 could have a
role in the caspase-independent apoptotic pathway, where DNA
is damaged by single-strand nicks under certain circumstances
(25). Furthermore, we noticed most SAS cells exhibited growth
arrest following irradiation, and this finding was similar to
previous studies conducted on other cancers (26–28).

The cells at the late S-phase seem relatively radioresistant and
those found at the G2/M-phase appear to be sensitive to
radiation (29). Without radiation exposure, there was no
significant difference in cell cycle distribution among the SAS
FIGURE 3 | Western blot of NM23-H1 and cyclin D1, E, A1, and B1 in the
SAS head and neck squamous cell carcinoma clones. Knockdown of NM23-
H1 downregulated cyclin E and A, and upregulated cyclin D1 and B1 in
SASshRNAnm23 cells, compared with SASshRNA. SAS, parent SAS clone;
SASshRNA, mock knockdown clone; SASshRNAnm23,NM23-H1 knockdown
clone; SAScontrol, mock overexpression clone; SASnm23, NM23-H1
overexpression clone.
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clones established by knockdown and overexpression of NM23-
H1 (6). Therefore, we proposed that the effect of NM23-H1
expression on tumor growth was triggered by the radiation-
induced DNA damage in SAS cells. Most anticancer treatments
exert their cytotoxicity through the cell cycle arrest and cell death
is usually the outcome. Irradiation could cause SAS cells to be
accumulated at the G2/M-phase, and this phenomenon is similar
to how SAS cells with normal p53 function regulating the cell
cycle (30). It is documented from other studies that NM23-H1
positively regulates p53 activities, and thus NM23-H1 may
involve in radiation-induced cell cycle arrest (31, 32).
Knockdown of NM23-H1 usually resulted in less SAS cells
arresting at the G2/M-phase after irradiation. It is possible that
some NM23-H1-knockdown cells may recover from irradiation-
induced damage and return to the cell cycle. During fractionated
radiotherapy, the aforementioned mechanism may prevent
survived cells from becoming radiosensitive to the next
radiotherapy fraction.

Certain reports indicated NM23-H1 might modulate the cell
cycle regulators (33, 34). Prior to irradiation, knockdown of
NM23-H1 in SAS cells upregulated cyclin B1 and cyclin D1
compared with the mock controls. Some studies mentioned an
elevated expression of cyclin B1 or D1 conferred radioresistance,
while reduced expression enhanced radiosensitivity (35, 36). In
NM23-H1-knockdown cells, increased cyclin B1 protein
presumably facilitates cell cycle progression, resulting in better
survival than the mock controls (37). It was evident that NM23-
H1 inhibited the activity of STAT3 via a negative feedback, and the
inhibition of STAT3 downregulated cyclin D1, resulting in
subsequent antitumor effects (38, 39). However, we did not
Frontiers in Oncology | www.frontiersin.org 687
observe any significant effects of NM23-H1 expression on cyclin
B1 and D1 in SAS cells after irradiation (Figure 4). We suggest the
NM23-H1 effect on radiation-induced G2/M arrest may not be
associated with the post-radiation cyclins expression. Additional
studies are warranted to clarify the link between NM23-H1 and
radiation-induced G2/M arrest and radiocytotoxicity.

Our study found that knockdown of NM23-H1
downregulated cyclin A in SAS cells and this was consistent
with a decreased cyclin A level noted in the transgenic NM23-M-
knockout hepatoma (4). NM23-H1-knockdown SAS cells with a
low cyclin A level exhibited less susceptibility to radiation
compared with the mock control. However, we didn’t observed
any significant effect of NM23-H1 on cyclin A after exposure to
radiation. In SAS cells without irradiation, knockdown of NM23-
H1 significantly downregulated cyclin E. High cyclin E
expression was associated with cell cycle arrest at the G0/G1-
phase, influencing cells’ response to radiotherapy (40). However,
downregulation of cyclin E in NM23-H1-knockdown cells did
not significantly affect cell cycle distribution at the G1-phase.
Therefore, it is reasonable to assume that cyclin E may not be
involved in NM23-H1-mediated radiosensitivity in SAS cells.

NM23 proteins acted as a scaffold in signal transduction (41).
Loss of NM23 may cause genomic instability, contributing to the
progression of cancer stem cells (40, 42). Upregulation of NM23
was found in tumor of mice under cotreatment of Paclitaxel and
electro-acupuncture (43). Our study results may be a cell line-
specific scenario. Further work is needed to thoroughly
investigate the functional role of NM23-H1 in DNA damage.
Furthermore, our results should be validated in other human
HNSCC cell lines.
FIGURE 4 | Western blot showing the effect of NM23-H1 expression on cyclin D1, E, A1, and B1 after SAS cells treated by irradiation. Following irradiation at
graded doses of 0, 1 and 2 Gy, cells were collected, lysed, and analyzed by Western blot for SAS clones, including parental (SAS), mock knockdown (SASshRNA),
NM23-H1 knockdown (SASshRNAnm23), mock overexpression (SAScontrol), and NM23-H1 overexpression (SASnm23) cells.
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We followed the REMARK guidelines (44) and checked all
items as far as possible based on our available data. One
limitation of this study is retrospective design, so some details
are difficult to be presented according to REMARK
recommendations. Therefore, more investigation is needed for
further validation. However, we believed such concerns do not
interfere with our results for the prognostic significance of
NM23-H1 in HNSCC patients.

In summary, clinical data demonstrated low NM23-H1
expression of cancer cells was associated with locoregional
recurrence and poor prognosis of HNSCC patients after
postoperative radiation. In vitro study, knockdown of NM23-H1
expression lessened radiation-induced cytotoxicity, whereas
overexpression of NM23-H1 enhanced radiosensitivity.
Knockdown of NM23-H1 upregulated cyclin B1 and cyclin D1
in SAS cells compared with the mock control. Following the
exposure to radiation, knockdown of NM23-H1 decreased G2/
M-phase cell accumulation compared with the mock control.
Overexpression of NM23-H1 increased post-irradiation G2/M-
phase cell cycle arrest compared with the mock control. Our study
suggested that downregulated NM23-H1 expression may reduce
radiosensitivity through decreased radiation-induced G2/M-phase
arrest. Further research is warranted to clarify the link between
NM23-H1 and other cell cycle regulators in the response of
HNSCC cells to irradiation. As for clinical relevance, enhancing
tumor NM23-H1 expression may potentially be a therapeutic
strategy to improve the effectiveness of postoperative radiotherapy
for HNSCC patients with cervical metastases.
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While increased glycolysis has been identified as a cancer marker and attracted

much attention in thyroid cancer (THCA), the prognostic role of it remains to be

further elucidated. Here we aimed to determine a specific glycolysis-associated risk

model to predict THCA patients’ survival. We also explored the interaction between

this signature and tumor immune microenvironment and performed drug screening

to identify specific drugs targeting the glycolysis-associated signature. Six genes

(CHST6, POM121C, PPFIA4, STC1, TGFBI, and FBP2) comprised the specific model,

which was an independent prognostic indicator in THCA patients determined by

univariate, LASSO and multivariate Cox regression analyses. The receiver operating

characteristic (ROC) curve analysis confirmed the excellent clinical performance of

the prognostic signature. According to the specific gene signature, patients were

categorized into high- and low-risk subgroups. The high-risk group was characterized

by decreased immune score and elevated tumor purity, as well as worser survival

prognosis compared to the low-risk group. We also validated the expression of these

genes in clinical samples and in-vitro experiments. Lastly, we identified potential drugs

targeting the glycolysis-associated signature. The derived glycolysis-related signature is

an independent prognostic biomarker for THCA patients andmight be used as an efficacy

of biomarker for drug-sensitivity prediction.

Keywords: tumor glycolysis, thyroid cancer, gene signature, TME, prognosis

INTRODUCTION

Thyroid cancer (THCA) is one of the most frequently diagnosed malignancies of the endocrine
system worldwide, and this cancer incidence rate is still on the rise (1–3). The average annual
incidence rate of THCA is more than 6%, which is the highest among all cancers (4). Although
THCA is considered to be a curable disease after standard treatment, tumor recurrence, and distant
metastasis result in unsatisfactory clinical results in a small proportion of patients. Thus, there is
a real need to investigate novel and effective factors, which may predict THCA patient prognosis
more accurately.
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Warburg effect, also known as aerobic glycolysis, is a
phenomenon whereby various types of cancer cells characterize
by excessive conversion of glucose to lactate for their energy
substrate regardless of oxygen levels (5). Growing evidence
indicates that accelerated glycolysis in cancers influence the
therapy outcome that most cancers show significant increases
in glucose uptake when compared with adjacent normal tissue
(6–8). Moreover, increased glycolysis has been reported to
promote angiogenesis and invasive cancer growth (9). Lactate,
produced by glycolytic tumor cells, plays crucial roles in the
suppression of anticancer immune cells and then promotes the
tumor recurrence following anticancer therapies (10). The high
accumulation of lactate in tumor microenvironment (TME),
which lowers extracellular pH to 6.0–6.5, blocks the function and
proliferation rate of T cells (11). High concentrations of lactate in
TME affects antitumor therapy, which leads to the suggestion that
inhibiting glycolytic pathway, and therefore lactate production
may provide an effective and potential strategy to enhance
anticancer agents.

In our study, we established a glycolysis-related gene model,
which may be a robust prognostic indicator for clinical use.
In addition, by applying ESTIMATE algorithm, we gained
insight into the interaction of glycolysis-related gene signature
with TME. In-vivo and in-vitro experiments confirmed the
influence of glycolysis-related gene on tumor growth. Finally,
we discovered candidate compounds targeting the glycolysis-
related gene signature through the publicly available drug
sensitivity database.

MATERIALS AND METHODS

Data Collection
All RNA-seq expression profile and the clinical data
for THCA patients were obtained from the Cancer
Genome Atlas (TCGA) database. Our study meets TCGA’s
publication guidelines. Glycolysis-associated gene sets were
downloaded from publicly available gene set databases-
Molecular Signatures Database v7.0, namely three different
gene sets (KEGG_GLYCOLYSIS_GLUCONEOGENESIS,
HALLMARK_GLYCOLYSIS, and REACTOME_GLYCOLYSIS).
These gene sets are presented in the Supplementary Table 1.

Construction of Glycolysis-Related Risk
Model
We performed a univariate Cox regression analysis to consider
the association between glycolysis-related gene expression level
and THCA’s over survival, and genes were identified significantly
when the p < 0.05. After primary filtration, the least absolute
shrinkage and selection operator (LASSO) logistic regression
with ten-fold cross validation was conducted to reduce glycolysis-
related genes for THCA patients by using R package “glmnet.”
Finally, the glycolysis-related risk model was finally established
by a multivariate Cox regression analysis to identify the
prognostic value of specific gene signature as our study previously
described (12). THCA patients were then divided into high-
and low-risk groups through the median score as a cutoff. The
Kaplan-Meier method was applied to evaluate the significant

difference of overall survival using “survival” R package between
high- and low-risk groups. The receiver operating characteristic
(ROC) analysis was applied to estimate the sensitivity and
specificity of the prediction model.

The cBioPortal Analysis
The cBioPortal for cancer genomics provides visualization
features and analyzes multidimensional cancer genomics data
(13). We used the THCA (TCGA, Firehouse Legacy) dataset
for genetic mutations of glycolysis-related genes. The genomic
profiles were determined as mutations, mRNA expression Z
scores (RNA-seq v.2 RSEM), putative copy number alterations
from GISTIC, and protein expression Z scores (RPPA).

Estimating Immune Microenvironment
To predict the proportion of immune score and tumor purity
in the TME of each THCA patient, we applied the ESTIMATE
algorithm to estimate the immune score in THCA patients from
the TCGA cohort (14, 15). Based on the ESTIMATE score, tumor
purity was acquired using a fitted formula as previous study
described (15).

Independence of the Glycolysis-Related
Gene Model From Other Clinical Features
In order to explore whether the prognostic signature was
independent of other clinical variables, univariate, and
multivariate Cox analyses were carried out.

Cell Culture
The Nyth-ori-3-1, BCPAP, and TPC-1 cell lines were obtained
from Guangzhou JENNIO Biotech Technology (Guangzhou,
China). Nyth-ori-3-1 and TPC-1 cells were cultured in RPMI
1640 (GIBCO, Invitrogen, Carlsbad CA, USA), supplemented
with 10% fetal bovine serum (FBS) (GIBCO, Melbourne,
Australia). BCPAP cells were cultured in Dulbecco’s modified
Eagle’s medium (DMEM) (GIBCO) containing 10% FBS of
Australia origin. All the cells were cultured at 37◦C in 5% CO2.

RNA Isolation and Quantitative Real-Time
PCR Analysis
Total RNA of Nyth-ori-3-1, TPC-1, and BCPAP cells was
extracted utilizing Trizol method and 500 ng total RNA
was reversely transcribed into cDNA with “PrimeScriptTM RT
reagent Kit with gDNA Eraser” (Takara, Japan). Quantitative
real time-PCR (qRT-PCR) was perform using “SYBR Green
Premix PCR Master Mix” (Takara, Japan) according to the
manufacturer protocols. We calculated the relative mRNA
expression markers utilizing the Ct method (2−11Ct) after
being normalized to β-actin. All reactions were carried out
independently and repeated three times each time. A primer
sequence of the six genes was used and is presented in the
Supplementary Table 2.

Immunohistochemistry
The tissue samples were obtained from THCA patients and
nodular goiter patients after surgery in our hospital. In
addition, the sections were created after the tissues were
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FIGURE 1 | Identification of glycolysis-related genes significantly correlated with patients’ survival. (A) The Univariate Cox analysis of glycolysis-related genes. (B)

LASSO coefficient profiles of the glycolysis-related genes. (C) Plots of the cross-validation error rates. (D) Multivariate Cox analysis of glycolysis-related genes.

FIGURE 2 | Construction of the prognostic glycolytic gene signature in TCGA. (A) Heatmap of six-gene expression profiles between the high- and low-risk groups. (B)

The distribution of the glycolysis-based risk score. (C) Vital statuses of patients between the high- and low-risk groups. (D) Kaplan-Meier survival curves of the relative

overall survival of high- and low-risk patients. (E) ROC curve analysis.
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FIGURE 3 | Glycolysis-related gene mutations and the correlation with gene expression in THCA patients. (A) Mutations of six genes in patients with THCA. (B)

Kaplan–Meier survival curve for THCA patients stratified by the six-gene mutations. (C) Pearson correlation of six genes.

FIGURE 4 | Association between tumor immune microenvironment and gene signature-based subsets in THCA. (A) Heatmap indicating the relationship of THCA

subtypes with the expression of tumor immune microenvironment. (B) Immune score in THCA subtypes. (C) Tumor purity in THCA subtypes.
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dehydrated and embedded. The Ethics Committee from our
hospital approved all the procedures of our study. Formalin-
fixed paraffin embedded (FFPE) sections were subjected to
antigen retrieval using citrate buffer for 15min at 100◦C
and incubated in anti-CHST6 (1:30 Lifespan), anti-FBP2
(1:50 Abcam), anti-PPFIA4 (1:300 Abcam), anti-TGFBI (1:100
Abcam), and anti-STC1 (1:300 Abcam) at 4◦C overnight. The
primary antibody was omitted for negative-control sections.
Sections were washed and placed in a biotinylated secondary
antibody. After washing, the biotinylated secondary antibody,
avidin-biotin complex, and horseradish peroxidase were applied
(all the reagents were made from MXB, CHINA). Peroxidase
activity was visualized by using DAB staining, which were
then counterstained with hematoxylin (16–18). The figures of
Immunohistochemistry were captured using a Nikon-inverted
research-grade microscope.

The expression localizations of the glycolysis-associated
genes in THCA tissues are clarified in Supplementary Table 3.
Then the expression levels of target proteins in tissue were
examined by two independent pathologists blinded to the clinical
characteristics of the patients according to proportion of cell
staining (0 = 0%, 1 = ≤25%, 2 = 26–50%, 3 = 51–75%,
4 = >75% positive cells) and the staining intensity (0 = no
staining, 1 = weak, 2 =moderate, 3 = strong). A final score
was calculated by multiplying the above two scores (19, 20).
Protein expression was considered high if the final score was
>6 points and low if the final score was 6 points or less.
The specific scores of immunohistochemistry are clarified in
Supplementary Table 4.

Ethics Statement
Ethics approval for this project was obtained from the First
Affiliated Hospital of Shantou University Medical College Ethics
committee (No. B-2020-217).

Therapeutic Response Prediction
With the R package “pRRophetic,” the drug-response
prediction was estimated based on the half maximal inhibitory
concentration (IC50) of each THCA patient on the Genomics of
Drug Sensitivity in Cancer (GDSC) website (21).

RESULTS

Identification of Glycolysis-Related Genes
Significantly Correlated With Patients’
Survival
A univariate Cox regression was used to explore the interaction
of the glycolysis-related genes with the overall survival of THCA
patients and determined 17 survival-related genes in THCA
patients when the p < 0.05 (Figure 1A). Then, a LASSO-
penalized Cox analysis was developed to narrow the genes,
which were selected over 900 times a total of 1,000 repetitions
(Figures 1B,C). As a consequence, 10 genes were identified. In
addition, a stepwise multivariate Cox regression analysis was
performed, and six glycolysis-related genes were finally selected
to construct the prognostic gene signature (Figure 1D).

Construction of the Prognostic Glycolytic
Gene Signature in TCGA
The risk score for predicting prognostic value was calculated
using the formula: risk score = (0.0149 × TGFBI expression
level) + (0.0517 × STC1 expression level) + (1.866 × PPFIA4
expression level) + (0.345 × POM121C expression level) +

(0.542 × CHST6 expression level) + (2.672 × FBP2 expression
level). We calculated the risk score for each THCA patient
according to this formula and categorized the patients into
high- or low-risk groups (Figures 2A–C). Kaplan-Meier analysis
showed that high-risk patients had significantly worse overall
survival than low-risk patients (p = 0.0007; Figure 2D). The
prognostic capacity of the six-gene signature was assessed by
calculating the area under the curve (AUC) of a time-dependent
ROC curve (Figure 2E). The higher AUC demonstrated the
better model performance for THCA-specific survival. The AUC
of ROC analysis for the six-gene signature was 0.929, implying
excellent performance for survival prediction.

Glycolysis-Related Gene Mutations and
the Correlation With Gene Expression in
THCA Patients
Genetic mutations of six genes were analyzed through cBioPortal
online tool for THCA patients. Six genes were altered in

FIGURE 5 | Univariate and multivariate Cox regression analyses between the glycolysis-related gene model and clinical features with overall survival.
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98 samples of 516 patients with THCA (19%) (Figure 3A).
According to the relationship between the six-gene status
and disease prognosis indicated that patients with these gene
mutations showed poorer prognosis (Figure 3B), indicating that
the glycolysis-related gene mutation may contribute to THCA
progression. A Pearson correlation analysis was performed
using gene expression data of six glycolysis-related genes
collected from TCGA for THCA patients (Figure 3C). The
results found out low correlations between each glycolysis-related

gene, suggesting that these six genes were independent of
each other.

Association Between Tumor Immune
Microenvironment and Gene
Signature-Based Subsets in THCA
We then explored the TME differences in high- and low-
risk THCA patients. As a result, TME were significantly

FIGURE 6 | Measurement of glycolysis-related genes at mRNA levels in cell lines. Relative mRNA levels of (A) CHST6, (B) FBP2, (C) PPFIA4, (D) POM121C, (E)

TGFBI, and (F) STC1 in thyroid cancer cells (BCPAP and TPC-1) and thyroid cells (Nyth-ori-3-1). *p < 0.05, **p < 0.01, and ***p < 0.001.
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different in high- and low-risk THCA patients (Figure 4A).
On the basis of the ESTIMATE algorithm, the immune score
in low-risk group was higher than those in high-risk group
(Figure 4B). In addition, we compared the tumor purity of the
two groups, and found the opposite trend (Figure 4C). These
results showed that the glycolysis-related genes had significantly
and negatively correlations with immune microenvironment,
and the poor prognosis of the high-risk group was partly due to
the immunosuppressive microenvironment.

Associations Between the
Glycolysis-Related Gene Signature and
Clinical Properties
We then elucidated whether the glycolysis-related gene model
was an independent marker compared to clinical properties.
Univariate Cox regression analysis revealed the T stage, TNM
stage, and risk score were significantly associated with THCA
patient prognosis, and multivariate Cox regression analysis
documented that the glycolysis-related gene signature showed a
remarkable prognostic value when compared with other clinical
properties (p < 0.001; Figure 5).

Measurement of Glycolysis-Related Genes
at mRNA and Protein Levels in Cell Lines
and Clinical Samples
To further validate the results, qRT-PCR was applied to
analysis the relative mRNA expressions of six glycolysis-
related genes in THCA cells (BCPAP, TPC-1) and normal

thyroid cells (Nyth-ori-3-1). The results showed that THCA cell
lines exhibited relative higher mRNA levels of CHST6, FBP2,
PPFIA4, POM121C, and TGFBI, but a lower mRNA level of

FIGURE 8 | Kaplan–Meier analysis of recurrence rate according to CHST6

expression level.

FIGURE 7 | Measurement of glycolysis-related genes at protein levels in clinical samples. Representative immunohistochemical staining images of (A) CHST6, (B)

FBP2, (C) PPFIA4, (D) TGFBI, and (E) STC1 in human thyroid cancer sections (left line) and nodular goiter sections (right line). (F) Protein expression scores in human

thyroid cancer sections and nodular goiter sections. *p < 0.05, **p < 0.01, and ***p < 0.001.
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STC1 than normal thyroid cells (Figures 6A–F). In addition,
immunohistochemistry analysis was also conducted to determine
CHST6, FBP2, PPFIA4, TGFBI, and STC1 protein expression
levels in THCA patients. According to the immunostaining, we
could observe the similar results (Figures 7A–E). CHST6, FBP2,
PPFIA4, and TGFBI proteins were all upregulated in THCA
tissues compared with nodular goiter tissues. On the other hand,
the result of STC1 was opposite (Figure 7F). In order to verify
the specific efficacy in predicting recurrence of these genes,
we collected patients who were diagnosed with THCA in our
hospital in 2011–2015 and did follow-up surveys until November
in 2020 to know their prognosis. According to the results of the
immunohistochemistry, we divided those patients into a low-
risk group and high-risk group and analyzed the recurrence rates
of patients with THCA. The result showed that the recurrence
rate in the high-risk group was higher than that in the low-
risk group, according to the classification of the expression of
CHST6 (Figure 8). In addition, the relationship between CHST6
and clinicopathologic factors of THCA patients is clarified in
Supplementary Table 5.

Analysis of GDSC Database Identifies
Novel Candidate Compounds Targeting the
Glycolysis-Related Gene Model
After characterizing the key features of six glycolysis-related
genes, we also explore potential compounds that capable of
targeting the pathways linked to glycolysis on the basis of
IC50 available in the GDSC database for each TCGA sample.
It was excited that 26 chemo compounds were selected with
significant differences in the estimated IC50 between high-
and low-risk groups, and that the high-risk group was more

sensitive to all of these drugs (Figure 9 and Table 1). These
findings further suggested that the heterogeneity of glycolysis
activation in THCA patients was a better model for predicting
the therapeutic response.

According to GDSC database analysis, five drugs (Crizotinib,
Axitinib, Motesanib, PHA-665752, and PD173074) shared
the RTK signaling pathway, four drugs (Pictilisib, AZD6482,
AZD8055, and MK2206) shared the PI3K/MTOR signaling
pathway, three drugs (PAC-1, Navitoclax, and TW37) shared
the apoptosis regulation pathway, three drugs (BAY-61-3606,
Imatinib, and LFM-A13) shared the kinases pathway, and two
drugs (VX702 and Doramapimod) shared the JNK and p38
signaling. We also observed DMOG as a metabolism inhibitor,
Linsitinib as an IGF1R signaling inhibitor, Rucaparib as a genome
integrity inhibitor, Vorinostat as a chromatin histone acetylation
inhibitor, CCT007093 as a cell cycle inhibitor, Elesclomol as a
protein stability and degradation inhibitor, and Serdemetan as a
p53 pathway inhibitor.

DISCUSSION

Recently, studies on immune evasion and energy metabolism
have attracted people’s attention, and the emerging hallmarks
of cancer have been discovered (22–24). Unlike normal cells,
cancer cells rely mainly on glycolysis for producing ATP energy,
even when in the presence of adequate levels of oxygen (25).
Many researchers also have explored the glucose metabolism
features of THCA (26, 27). Thus, targeting the glycolytic pathway
may have the promising future to provide an effective target for
THCA therapy. Our study has identified glycolysis-related genes
providing a new prognostic biomarker and therapeutic target

FIGURE 9 | Analysis of GDSC database identifies novel candidate compounds targeting the glycolysis-related gene model.
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TABLE 1 | Screened drugs with selective sensitivity targeting

glycolysis-associated signature.

GDSC name P-Value Targets Target pathway

CCT007093 <0.0001 PPM1D Cell cycle

Tretinoin <0.0001 Retinoic acid Other

Navitoclax <0.0001 BCL2, BCL-XL,

BCL-W

Apoptosis regulation

Imatinib <0.0001 ABL, KIT, PDGFR Kinases

VX702 <0.0001 p38 JNK and p38 signaling

Pictilisib <0.0001 PI3K PI3K/MTOR signaling

Rucaparib <0.0001 PARP1, PARP2 Genome integrity

AZD6482 <0.0001 PI3Kbeta PI3K/MTOR signaling

Crizotinib <0.0001 MET, ALK, ROS1 RTK signaling

Vorinostat <0.0001 HDAC inhibitor Class I,

IIa, IIb, IV

Chromatin histone

acetylation

MK2206 <0.0001 AKT1, AKT2 PI3K/MTOR signaling

AZD8055 <0.0001 MTORC1, MTORC2 PI3K/MTOR signaling

Motesanib <0.0001 VEGFR, RET, KIT,

PDGFR

RTK signaling

Serdemetan <0.0001 MDM2 p53 pathway

Linsitinib <0.0001 IGF1R IGF1R signaling

Axitinib <0.0001 PDGFR, KIT, VEGFR RTK signaling

IPA-3 0.0002 PAK1 Cytoskeleton

LFM-A13 0.0003 BTK Kinases

BAY-61-3606 0.0005 SYK Kinases

PD173074 0.0006 FGFR1, FGFR3 RTK signaling

PAC-1 0.0006 Procaspase-3,

Procaspase-7

Apoptosis regulation

TW37 0.0025 BCL2, BCL-XL, MCL1 Apoptosis regulation

Doramapimod 0.0116 p38, JNK2 JNK and p38 signaling

Elesclomol 0.012 HSP90 Protein stability and

degradation

DMOG 0.0248 HIF-PH Metabolism

PHA-665752 0.0311 MET RTK signaling

for THCA patients. The AUC of ROC curve of this prediction
model was 0.929, revealing this gene signature has an excellent
effect in predicting survival. THCApatients were categorized into
high- and low-risk groups through a glycolytic risk-prognosis
model, and the overall survival rate of high-risk patients was
worse. Clinical analysis also showed that THCA patients with
the six-gene mutation have a poorer survival prognosis. In
addition, qRT-PCR and immunohistochemistry were also applied
to confirm the differential expressions of these glycolysis-related
genes between THCA patients and non-tumor patients. We also
found the recurrence rate in the high-risk group was higher
than that in the low-risk group, according to the classification
of the expression of CHST6. Those results indicated that these
glycolysis-related genes might play crucial roles in determining
the prognosis of cancer patients with THCA.

According to glycolysis-related signature, the clinician
could establish individualized treatment for THCA patients.
Additionally, experimental evidence indicated the accumulation
of extracellular lactate produced by glycolytic cancer cells
was related to the inhibition of anticancer immune cells. For

instance, the high concentration of lactate in TME affected
T cells’ proliferation and function through disturbing their
intracellular pH (28). Tumor-derived lactate was an important
factor regulating dendritic cell phenotype in a TME and might
be related to the tumor avoidance mechanism (29). Moreover,
lactate, increased arginase I (ARG1) expression in macrophages,
inhibited proliferation and activation of T-cell (30). Natural
killer (NK) cells could also be inhibited by lactate, hence allowing
for cancer progression (10). According to these reasons, we
hypothesized that different groups of patients may have different
immune responses. As consequence, we reported a significant
negative correlation between glycolytic activity (high-risk group)
and immune activity (quantified by immune score and tumor
purity). Thus, we may further support the immunosuppressive
role of glycolysis in patients with THCA, and suppress glycolysis
to improve the immune status to increase the survival of patients
with THCA.

We documented that the clinical TNM stage, T stage, and
risk score indicated significant association with overall survival
of THCA patients. What’s more, we confirmed that the six-gene
signature indicated an indispensable relationship with survival
compared with other clinical characteristics. In standard clinical
practice, the pathologic stage is considered to be an important
prognostic determinant of THCA. However, there are some
differences in clinical outcomes differ among patients at the same
stage, demonstrating the present staging systems are inadequate
for effective prognosis, and the biological heterogeneity of
patients with THCA cannot be fully reflected. Thus, it is
vital to obtain novel biomarkers to use as prognostic and
therapeutic factors. To our knowledge, this is the first glycolysis-
associated gene model confirmed in THCA. Our model provides
a new method for the evaluation of THCA patients and guides
prognostic prediction and treatment decisions.

Finally, according to the GDSC database, high-risk
THCA patients were found to be more sensitive to 22
compounds compared with low-risk THCA patients. Twenty-
two compounds revealed 13 mechanisms shared by the
above compounds. Among the 22 compounds, Crizotinib,
Axitinib, PD173074, Motesanib, and PHA-665752 shared the
RTK signaling pathway. The RTK signaling stimulated the
accumulation of cellular metabolites, thereby increasing lactate
excretion, which led to T cell activity inhibition (31). Pictilisib,
AZD6482, MK2206, and Serdemetan shared the PI3K/MTOR
signaling pathway. The PI3K oncogene has been reported to
stimulate glycolysis and promote cancer growth in a variety
of human cancers (32–35). The mTOR, a downstream effector
of PI3K/Akt signaling, had two forms and both were involved
in the regulation of glycolysis (36, 37). We also explore other
approaches thatmay eventually contribute to the implementation
of targeted glycolysis therapy.

Our research provides a new perspective for the study
of THCA immune microenvironment. However, as our
study was retrospective, our study needed to be validated
by further prospective studies. In addition, most public
database data included in the analysis were from patients
in developed countries but data from developing countries
were lacking.
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In conclusion, our study identifies a six-gene model related
to glycolysis, which could independently predict THCA patient
prognosis. In addition, in-vivo and in-vitro experiments reveal
that expression of glycolysis-related genes are associated
with tumor growth, which may be helpful to provide new
therapeutic target for THCA patients in the future. Our study
also identifies several specific drugs targeting glycolysis for
individualized treatment.
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Chemotherapy resistance is a huge barrier for head and neck cancer (HNC) patients and
therefore requires close attention to understand its underlay mechanisms for effective
strategies. In this review, we first summarize the molecular mechanisms of chemotherapy
resistance that occur during the treatment with cisplatin, 5-fluorouracil, and docetaxel/
paclitaxel, including DNA/RNA damage repair, drug efflux, apoptosis inhibition, and
epidermal growth factor receptor/focal adhesion kinase/nuclear factor-kB activation.
Next, we describe the potential approaches to combining conventional therapies with
previous cancer treatments such as immunotherapy, which may improve the treatment
outcomes and prolong the survival of HNC patients. Overall, by parsing the reported
molecular mechanisms of chemotherapy resistance within HNC patient’s tumors, we can
improve the prediction of chemotherapeutic responsiveness, and reveal new therapeutic
targets for the future.

Keywords: head and neck cancer, chemotherapy resistance, chemotherapy, immunotherapy, combination therapy
Abbreviations: 5-FU, 5-fluorouracil; APC, adenomatous polyposis coli; BAX, Bcl-2-associated X; BID, Bcl-interacting
domain; BER, base excision repair; BIRC1, baculovirus inhibitor of apoptosis protein repeat (BIR)-containing protein 1;
CBP, CREB-binding protein; cIAP, cellular inhibitor of apoptosis protein; CR, complete response; CTR1, copper uptake
protein 1; DSSR, double-strand break repair; dTTP, deoxythymidine triphosphate; dUTP, deoxyuridine triphosphate; DVL,
disheveled; ERCC1, excision repair cross-complementation group 1; FAK, focal adhesion kinase; FdUMP, fluorodeoxyuridine
monophosphate; FdUTP, fluorodeoxyuridine triphosphate; FUTP, fluorouridine triphosphate; GPCR, G-protein-coupled
receptor; GSH, reduced glutathione; HNC, head and neck cancer; HNSCC, head and neck squamous cell carcinoma; IAP,
inhibitor of apoptosis; MDR, multidrug resistance; MDR1, multidrug resistance 1; MMR, mismatch repair; MOMP,
mitochondrial outer membrane permeabilization; MPM, malignant pleural mesothelioma; MRP1, multidrug resistance
protein 1; MRP3, multidrug resistance protein 3; MRP5, multidrug resistance protein 5; MT, metallothionein; NF-kB,
nuclear factor-kappa B; OS, overall survival; PDGFR, platelet-derived growth factor receptor; PFS, progression-free survival;
ROS, reactive oxygen species; RSF1, remodeling and spacing factor 1; SMAC, second mitochondria-derived activator of
caspases; TCF, T-cell factor; TS, thymidylate synthase. UDG, uracil-DNA glycosylase; VEGF, vascular endothelial
growth factor.
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INTRODUCTION

The global incidence of head and neck cancers (HNCs) continued to
rise from 6.55 to 10.91% in the 10 years from 2008 to 2018. In 2018,
over 1.9 million individuals were diagnosed with HNC including
354,864 lip and oral cavity, 177,422 larynx, 129,079 nasopharynx
(NPC), 92,887 oropharynx, and 80,608 hypopharynx tumors (1).
More than90%ofHNCsare squamouscell carcinoma(HNSCC) that
occur from the mucosal epithelial tissue of oral cavity, oropharynx,
and larynx (2). The common treatments include surgery,
radiotherapy, chemotherapy, and concurrent chemoradiotherapy
according to the stage of the disease, anatomical site, and surgical
accessibility.Approximately 30~40%of stage I or IIHNCpatients are
curable and show improved survival rates after surgery or
radiotherapy alone. However, over 60% of stage III or IV HNC
patients require advanced therapeutic options (3). For instance,
chemotherapy or chemoradiotherapy is considered a promising
approach to controlling tumor growth and prolonging survival
rates in portions of stages III and IV HNC patients (4, 5). In a
comparison of radiotherapy alone and with concurrent
chemoradiotherapy, a meta-analysis of 19,248 HNC patients
indicated that the additional use of chemotherapy with
radiotherapy showed an increase in 5-year absolute survival (8.9%
for oral cavity, 8.1% for oropharynx, 5.4% for larynx, and 4% for
hypopharynx tumors) in a part of stages III and IV HNC
patients (5, 6).

The standard chemotherapy regimens for stage III or IV
patients are cisplatin, 5-fluorouracil (5-FU), and docetaxel/
paclitaxel (7–9). A combined strategy of docetaxel, cisplatin,
and 5-FU (TPF) treatment in a total of 358 unresectable HNSCC
patients show significantly improved progression-free (11.0
month in TPF and 8.2 months in PF) and OS (18.8 months in
TPF and 14.5 months in PF) (7). Another combined strategy of
paclitaxel, cisplatin, and 5-FU (PPF) treatment on 80 stage III
and IV HNSCC patients showed the 88% overall response rate
and the 44% overall survival (OS) rates (10). Moreover, a 2016
phase III study report of PPF treatment in a total of 382 locally
stage III and IV HNSCC patients indicated that a higher
complete response (CR, 33% in PPF and 14% in PF) rate and a
longer OS rate (43 month in PPF and 37 month in PF) (9). It is
now widely accepted that TPF (docetaxel, cisplatin, and
fluorouracil) treatment is the standard induction chemotherapy
regimen (7, 11) and it has become the new standard for
induction chemotherapy in the locally advanced HNSCC since
the TAX323/EORTC24971 and TAX324 studies were published
in Europe and the USA, respectively (7, 8). This TPF treatment is
also used in the recurrent or metastatic HNSCC, which showed
an improved overall response rate up to 44%, a median time to
progression of 7.5 months, and a median OS of 11 months (12).
TPF treatment may confer survival and organ preservation
benefits in a part of HNSCC patients when it is administered
safely by several clinical teams, though there is no consensus on
the survival benefit (11).

However, the overall situation is still not optimal. The number of
deaths from HNC continues to rise globally, from 586,400 deaths in
2008 to 980,787 deaths in 2018 (1). Chemotherapy resistance results
Frontiers in Oncology | www.frontiersin.org 2103
in poor treatment outcome in HNC patients, and the reasons of
chemotherapy resistance are multifaceted. Thus, building up a
framework for understanding molecular mechanisms of
chemotherapy resistance is the essential way to explore new
therapeutic strategies (13). In this review, we summarize the
molecular mechanisms of chemotherapy resistance after
chemotherapies, such as cisplatin, 5-FU, and docetaxel/paclitaxel.
We also describe up-to-date clinical trials, such as combination
therapy and chemo-immunotherapy. Overall, this review provides
intelligible and valuable information to readers to understand
chemotherapy resistance in HNCs for effective treatment strategies.
CHEMOTHERAPY MECHANISMS

Cisplatin
The anti-tumor properties and contribution to clinics of the
platinum-based drug, cisplatin, were discovered in the 1970s
(14). Cisplatin is known to induce cytotoxicity to tumor cells
through binding to DNA and impairing its repair mechanism.
First, cisplatin can be transported into the cells through copper
transporters and subsequently aquated due to low chloride
concentrations in the cytosol (15). Aquated cisplatin induces
DNA damage by binding to the guanine N7 position on either
nuclear DNA or mitochondrial DNA. Finally, cisplatin-induced
DNA damage leads to mitochondrial outer membrane
permeabilization (MOMP). Bcl-2-associated X/Bcl interacting
domain (BAX/BID) forms a pore to release mitochondrial
protein cytochrome c into the cytoplasm. Released cytochrome
c can activate the apoptotic protease-activating factor (Apaf)-1
apoptosome, which eventually results in the activation of
caspases and induction of cell apoptosis. On the other hand,
aquated cisplatin also binds to cytoplasmic molecules, including
reduced glutathione (GSH) and metallothionein (MT), which
results in the generation of reactive oxygen species (ROS) that
also trigger MOMP and DNA damages (16) (Figure 1A).
5-FU
5-FU is an anti-metabolite drug and its anti-tumor properties
were discovered in the 1950s, and it has been widely used to treat
a range of cancers (17). 5-FU can be transported into the cells
through similar transport mechanisms as uracil due to its uracil-
like analog structure (18). Intracellular 5-FU is converted to three
primary active metabolites: fluorodeoxyuridine monophosphate
(FdUMP), fluorodeoxyuridine triphosphate (FdUTP), and
fluorouridine triphosphate (FUTP). (i) FdUMP inhibits
thymidylate synthase (TS) and results in dNTP imbalance
which decreases levels of deoxythymidine triphosphate (dTTP)
and increases levels of deoxyuridine triphosphate (dUTP)
conversely (17, 19). (ii) FdUTP is misincorporated into DNA
and increases the FdUTP/dTTP ratio, which results in DNA
damage due to false nucleotide incorporation (17, 20). (iii) FUTP
is incorporated into RNA, which results in disruption of RNA
processing and function, including the processing of pre-
ribosomal RNA, post-transcriptional modification of transfer
May 2021 | Volume 11 | Article 640392
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RNA, and the splicing of pre-messenger RNA (17, 21–23)
(Figure 1B).

Paclitaxel/Docetaxel
Paclitaxel is both anti-cytoskeletal and anti-neoplastic drugs that
were discovered in the 1990s, and it was subsequently approved
for clinical use to treat several types of cancer (24). Paclitaxel
binds to the b-subunit of microtubules (25), promotes tubulin
assembly, and suppresses microtubule dynamics, which results in
inhibition of mitotic blockage, chromosome segregation, and cell
division (24). First, paclitaxel stabilizes microtubules and
prevents them from disassembly; then chromosomes are
unable to proceed to metaphase, and thus this mitotic blockage
limits cell division and triggers cell apoptosis (24, 26, 27). It is
worth noting that paclitaxel can also suppress microtubule
detachment from centrosomes and reduces the tension on
kinetochores that damages the bipolar attachment of sister
chromatids and the interaction between kinetochores and
spindle microtubules (28, 29) (Figure 1C). As an analog of
paclitaxel, docetaxel is also an inhibitor of microtubule
depolymerization mechanically (Figure 1C). Docetaxel and
paclitaxel share most parts of their structures and mechanisms
of action but differ in some aspects. Structurally, docetaxel
(C43H53NO14) differs from paclitaxel (C47H51NO14) in the 10-
position on the baccatin ring and in the 3’-position of the lateral
chain. Efficiently, docetaxel is approximately twice higher
binding affinity to tubulin compared with paclitaxel. Clinically,
the respective response rates of paclitaxel and docetaxel were
43% in 28 HNC patients and 44% in HNC 38 patients, suggesting
both paclitaxel and docetaxel are active in HNC patients (30).
Frontiers in Oncology | www.frontiersin.org 3104
CHEMOTHERAPY RESISTANCE

There are four main mechanisms that HNC cells acquire to avoid
cell death following cisplatin (14, 16, 31, 32), 5-FU (33, 34), and
paclitaxel/docetaxel treatments (35–37), including DNA/RNA
damage repair, drug efflux, apoptosis inhibition, and epidermal
growth factor receptor (EGFR)/focal adhesion kinase (FAK)/
nuclear factor (NF)-kB activation. Below, we summarize these
resistance mechanisms of chemotherapy regimens that occur in
HNC cells and describe the most current reports available.

Cisplatin
DNA damage is repaired through four major mechanisms,
including double-strand break repair (DSSR), mismatch repair
(MMR), base excision repair (BER), and nucleotide excision repair
(NER) (Figure 2A). NER is known as the primary strategy
acquired by cancer cells to resist cisplatin-induced DNA
damage. NER and its associated protein called the DNA excision
repair protein ERCC1 were studied in several reports, and
experimental evidence supports high EERC1 expression being
associated with cisplatin resistance in HNSCC patients (38–40).
For example, a previous study evaluated the effect of ERCC1
expression on the response to cisplatin in 57 patients with locally
advanced unresectable HNSCC. Those HNSCC patients with high
ERCC1 expression showed lower cisplatin treatment responses
(50%, 13 out of 26 patients) and lower 2-year OS (44%), relative to
those patients with low ERCC1 expression who showed higher
responses (90.3%, 28 out of 31 patients) and better survival
(74.2%) (39) (Table 1). Although a correlation between the
ERCC1 expression level and cisplatin resistance was reported,
FIGURE 1 | Chemotherapy mechanisms. (A) Cisplatin is transported into cells through copper transporters and is aquated in the cytosol. Aquated cisplatin induces
DNA damage by binding to nuclear or mitochondrial DNA. On the other hand, aquated cisplatin also binds to cytoplasmic structures, including reduced glutathione
(GSH) and metallothionein (MT), which results in the generation of reactive oxygen species (ROS) that trigger mitochondrial outer membrane permeabilization
(MOMP). Both DNA damage and MOMP lead to cell death. (B) 5-Fluorouracil (5-FU) can be transported into cells by uracil transporters due to its uracil-like analog
structure. Intracellular 5-FU is converted to three primary active metabolites which result in DNA/RNA damage: (i) fluorodeoxyuridine monophosphate (FdUMP)
inhibits thymidylate synthase (TS); (ii) fluorodeoxyuridine triphosphate (FdUTP) is misincorporated into DNA; and (iii) fluorouridine triphosphate (FUTP) is incorporated
into RNA. (C) Docetaxel/Paclitaxel can bind to microtubules which promotes tubulin assembly, suppresses microtubule dynamics and cell division, and ultimately
results in cell death. These figures were created with BioRender.com.
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the mechanism through which ERCC1 acts is not yet clarified and
is still under investigation (Figure 2A).

Drug efflux enables cancer cells to resist cisplatin by reducing
intracellular drug levels. The ATP-binding cassette (ABC)
transporter superfamily is one of the platinum-drug efflux
transporters, which are mediated by multidrug resistance
(MDR) genes (56). Some ABC transporter proteins were
previously reported, including MDR1, MDR protein 1 (MRP1),
MPR2, MPR3, and MPR5 (14, 56). Furthermore, the copper
transporter family is another type of platinum-drug influx/efflux
transporter, such as high-affinity copper uptake protein 1 (CTR1,
involved in cisplatin influx) and two P-type ATPases (ATP7A and
ATP7B, involved in cisplatin efflux) (15, 57, 58). Clinical data from
The Cancer Genome Atlas database were used to evaluate the
effects of expression of different types of platinum-drug efflux
transporters on the response to cisplatin in 317 HNSCC patients.
This evaluation indicated that HNSCC patients with cisplatin
resistance and low survival were associated with the high MDR1
Frontiers in Oncology | www.frontiersin.org 4105
and MRP1 expressions by their tumor biopsy, but were not
associated with ATP7B and MRP2 expressions (41), which
highlights the critical roles of MDR1 and MRP1 in cisplatin
resistance (Figure 2B; Table 1). It is worth noting that both
MDR1 and MRP1 are regulated by the activation of the Wnt/
glycogen synthase kinase (GSK)-3b/b-catenin pathway (42, 59,
60). The Wnt signaling pathway is initiated by the binding of the
Wnt ligand to a Frizzled receptor. The GSK-3b protein complex
[which includes axin, disheveled (DVL), adenomatous polyposis
coli (APC), and GSK-3b] activates b-catenin by phosphorylation.
Activated b-catenin further cooperates with the T-cell factor
(TCF) transcription factor, lymphoid enhancer-binding factor
(LEF), and CREB-binding protein (CBP) to initiate MRD1 and
MRP1 expressions in the nucleus (61). Some very recent studies on
HNCs provided evidence to support the correlation between the
activation of the Wnt/GSK-3b/b-catenin pathway and cisplatin
resistance (42, 62, 63) (Figure 2B; Table 1). For example, Long Li
et al. investigated the effect of b-catenin on cisplatin resistance by
FIGURE 2 | Chemotherapy resistances. Chemotherapy resistance is involved in (A) DNA/RNA damage, (B) drug efflux, (C) apoptosis inhibition, and (D) epidermal
growth factor receptor (EGFR)/focal adhesion kinase (FAK)/nuclear factor (NF)-kB activation. These figures were created with BioRender.com.
May 2021 | Volume 11 | Article 640392
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using HNSCC cell lines (SCC-15 and SCC-25) and evaluated the
cisplatin susceptibility of SCC-15/SCC-25 cells with b-catenin
gene knockdown. After b-catenin gene knockdown in SCC-15/
SCC-25 cells, low b-catenin expressing SCC-15/SCC-25 cells were
inoculated into BALB/c nude mice. The tumor growth analysis
showed that low expression of b-catenin in SCC15/SCC-25 cells
could increase cisplatin sensitivity and reduce tumor progression
after cisplatin treatment (42) (Table 1). Taken together, the
expression level of b-catenin is associated with cisplatin resistance.

Apoptosis inhibition is one of the acquired capabilities used by
cancer cells to resist cisplatin. The inhibitor of apoptosis protein
(IAP) can prevent activation of the apoptosis signaling pathway by
blocking caspases (64, 65). As to the apoptosis signaling pathway,
cisplatin-induced DNA damages first causes p53 upregulation in
the nucleus. Those upregulated p53 proteins bind to the upstream
promoter region of BAX and BID to initiate their gene expressions
(66). The BAX and BID apoptotic proteins permeabilize the outer
mitochondrial membrane, which results in the release of
cytochrome c and the second mitochondrion-derived activator of
caspases (SMAC) into the cytoplasm. In the cytosol, cytochrome c
further interacts with apoptotic protease activating factor 1
(APAF1) to form apoptosomes. These apoptosomes transactivate
caspase-9, caspase-3, and caspase-7, and consequently leads to
Frontiers in Oncology | www.frontiersin.org 5106
intrinsic apoptosis (67, 68) (Figure 2C). Regarding apoptosis
inhibition by IAPs, as recently reported, high expressions of
cellular inhibitor of apoptosis protein 1 (c-IAP1), X-linked
inhibitor of apoptosis protein (XIAP), and Apollon observed in
HNSCC patients were associated with the low survival rates and
cisplatin resistance (43–45, 69) (Figure 2C; Table 1). For example,
approximately 20.83% (17 out of 60) advanced HNSCC patients
showed high XIAP expression by their biopsies, which were
associated with cisplatin resistance (p = 0.036) and poor clinical
outcomes (p = 0.025) (44) (Table 1). Another study of 80 HNSCC
patients indicated that 60% (48out of 80) of those patients exhibited
high expressions of Apollon protein and mRNA, which was
correlated to a low OS rate (median survival time: 28 months,
p < 0.001) (Table 1).

EGFR/FAK/NF-kB are critical signal pathways activated and
used by cancer cells to resist cisplatin. In the FAK pathway, FAK
can be activated by receptor tyrosine kinases (RTKs), integrins,
and G-protein-coupled receptors (GPCRs) (70). Activated FAK
involves three major signaling pathways: SRC/extracellular
signal-regulated kinase (ERK)/external transcribed spacer
region (ETS)-1 (71, 72), phosphatidylinositol 3-kinase (PI3K)/
Akt/NF-kB (47), and p53 (73, 74). FAK can (i) induce
MDR1-mediated drug efflux through SRC/ERK/ETS-1/b-
TABLE 1 | Markers of chemotherapy resistance in head and neck cancers (HNCs).

Drug Type Markers Results Ref.

Cisplatin DNA repair ERCC1 Thirteen of 26 HNSCC patients with high ERCC1 expression showed a lower cisplatin treatment
response (50%) and lower 2-year OS (44%).

(39)

In total, 1,263 HNSCC patients from 17 studies were performed in a meta-analysis. Pooled HRs with
95% confidence intervals (CIs) for OS and PFS were 2.14 and 2.60, respectively.

(40)

Drug efflux MDR1 MRP1 In total, 317 HNSCC patients with high expression level of MDR1 and MRP1 showed lower OS and PFS. (41)
b-catenin Knockdown of b-catenin in HNSCC cell lines (SCC-15 and SCC-25) sensitized their response to cisplatin

and reduced tumor growth.
(42)

Apoptosis inhibition c-IAP1 High cIAP-1 expression in 17 HNSCC patients was correlated with lymph node metastasis, an advanced
disease stage, and poor prognosis.

(43)

XIAP High XIAP expression in 17 (20.83%) of 60 advanced HNSCC patients was associated with cisplatin
resistance and poor outcomes.

(44)

Apollon In total, 80 HNSCC patients with high levels of Apollon expression also had shorter OS, compared to the
group with low Apollon expression group.

(45)

Livin Livin-knockdown in HNSCC cell lines (SNU1041, PCI1 and PCI50) induced apoptosis and enhanced
chemotherapy-induced apoptosis to cisplatin, 5-FU, and docetaxel.

(46)

EGFR/FAK/
NF-kB activation

BST2 Knockdown of BST2 in HNC cell lines (HONE1, HNE1, and CNE2) sensitized their response to cisplatin
and enhanced cisplatin-induced apoptosis. In total, high BST2 expression is associated with poor
prognosis in 117 HNC (locally advanced nasopharyngeal carcinoma) patients with platinum-based
chemotherapy

(47)

KRAS In total, 103 recurrent and/or metastatic HNSCC patients with the KRAS-variant had poor PFS when
treated with cisplatin.

(48)

5-FU Apoptosis inhibition Livin Livin-knockdown in HNSCC cell lines (SNU1041, PCI1, and PCI50) induced apoptosis and enhanced
chemotherapy-induced apoptosis to cisplatin, 5-FU, and docetaxel.

(46)

c-IAP2 Downregulation of cIAP2 enhanced the sensitivity of 5-FU-resistant HNSCC cell line (SAS) to 5-FU, with a
significant increase in apoptosis.

(49)

Paclitaxel Drug efflux MDR1 MRP5 Depletion of MDR1 or MRP5 in paclitaxel-resistant HNSCC cell lines (CNE1, CNE2, and EC109) by siRNA
blocked drug efflux, led to increased intracellular concentrations of paclitaxel and resulted in paclitaxel-
induced cell death.

(50, 51)

Apoptosis inhibition Survivin High survivin expression in HNSCC biopsies and HNSCC cell lines (Cal27, NT8e, CNE-2, 5-8F, and 6-
10B) was associated with paclitaxel resistance and progression

(52–54)

Docetaxel Drug efflux MDR1 High MDR1 expression in HNSCC cell line (DR-Hep2) was associated with paclitaxel resistance (55)
Apoptosis inhibition ROS The docetaxel-resistant HNSCC cell line (DR-Hep2) increased the amount of mitochondrial DNA (mtDNA)

and reduced the ROS generation.
(55)
May 2021 | Volume 11 | Article
OS, overall survival; HNSCC, head and neck squamous cell cancer; HR, hazard ratio; CI, confidence interval; PFS, progression-free survival; Ref, reference; 5-FU, 5-fluorouracil; ERCC1, excision
repair cross-complementation group 1; MDR1, multidrug resistance 1; MRP1, multidrug resistance protein 1; cIAP2, cellular inhibitor of apoptosis protein 2; ROS, reactive oxygen species.
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catenin pathway (70–72, 74, 75); (ii) promote cell proliferation
through PI3K/Akt/mTOR/NF-kB pathway (70); (iii) also directly
suppresses p53-caused apoptosis (73, 76) (Figure 2D). In the
EGFR pathway, there are two primary pathways activated, such
as KRAS/methyl ethyl ketone (MEK)/ERK and PI3K/AKT/
mTOR in HNC cells (77, 78) (Table 1). The EGFR can
(i) induce MDR1 and/or MRP-mediated drug efflux through
KRAS/MEK/ERK/ETS-1/b-catenin pathway (48, 79, 80); (ii) can
also promote cell proliferation through PI3K/Akt/mTOR/NF-kB
pathway (Figure 2D). A preclinical study indicated that cisplatin-
resistant HNSCC cell lines (HONE1, HNE1, and CNE2) highly
express BST2, and BST2 can prevent cell apoptosis via the NF-kB
pathway. Moreover, high BST2 expression levels can serve as an
indicator of cisplatin resistance and poor prognosis in a total of
117 locally advanced NPC patients (47) (Table 1). This report
provides a new aspect of the cisplatin resistance mechanisms, but
the l and scape o f BST2 /NF-kB pa thway r equ i r e s
further investigation.

5-FU
DNA/RNA damage repair by MMR and BER is one of the
acquired capabilities used by cancer cells to resist 5-FU. As far as
we know, BER-mediated DNA repair can remove modified or
inappropriate bases by uracil-DNA glycosylase (UDG), cleavage
the phosphodiester bond at the resulting AP site by an
endonuclease, clean-up the 3’ or 5’ terminal end, replace the
excised nucleotides by a polymerase, and seal the final DNA nick
by a ligase. In 5-FU resistant cancer cells, after FdUTP is
incorporated into DNA, the UDG can lyse the uracil-
deoxyribose glycosyl bond of the dUTP and 5-FdUTP residues
in DNA (81). MER-mediated DNA repair corrects replication
errors between base and base mismatches and the polymerase
slippage products at nucleotide repeat sequences, such as
insertion and deletion loops (81) (Figure 2A).

Apoptosis inhibitions by c-IAP2 and Livin were found in two
HNSCC studies (46, 49). One study evaluated the role of cIAP2
based on DNAmicroarray data using parental and 5-FU-resistant
HNSCC cell line (SAS). Overexpression of cIAP2 contributes to
5-FU resistance and a poor prognosis in those 5-FU-resistant SAS
cells (49). Another study evaluated the role of Livin in the
susceptibility of HNSCC cell lines (SNU1041, PCI1, and PCI50)
to 5-FU. Unlike c-IAP2, Livin preferentially binds to SMAC and
then prevents SMAC from blocking XIAP-mediated inhibition of
caspase-9 (64, 65). Livin gene-knockdown in those three HNSCC
cell lines (SNU1041, PCI1, and PCI50) enhanced 5-FU-induced
apoptosis (46) (Figure 2C; Table 1).

Paclitaxel/Docetaxel
Drug efflux plays a critical role in paclitaxel resistance. Several
types of paclitaxel/docetaxel resistant HNC cells overexpress
MDR1 and MRP5 (50, 51, 55), which rescues those cancer cells
from paclitaxel/docetaxel induced cytotoxicity. Interestingly, both
Hou et al. and Shi et al. pointed out that the axis of forkhead box
protein M1 (FOXM1) and MDR1/MRP5 is a newly defined drug
efflux mechanism in HNSCC cell lines (CNE1, CNE2, and
EC109) (50, 51); however, the FOXM1/MPR5 or FOXM1/
MDR1 axis has not yet been clarified in HNC cells.
Frontiers in Oncology | www.frontiersin.org 6107
The potential molecular mechanism of FOXM1 was
investigated in glioma stem cells. FOXM1, a downstream factor
of the Wnt/b-catenin signaling pathway, supports b-catenin
translocation to nuclei, combines TCF/LEF transcriptional
factors, and thereby activates target genes (82) (Figure 2B),
suggesting that FOXM1 may promote MRP5 expression
through the Wnt/b-catenin signaling pathway.

Apoptosis inhibition is another strategy found in paclitaxel
resistance. Liu et al. indicated that remodeling and spacing factor
1 (RSF1) inhibits cell apoptosis via promoting the NF-kB
pathway. Activated NF-kB signaling triggers Survivin
expression on HNSCC cell lines (CNE-2, 5-8F, and 6-10B)
(52). Survivin can inhibit the active caspase-9, which blocks
the apoptosis (53, 54, 83) (Figure 2C; Table 1), and also
maintains the integrity of the mitotic spindle that suppresses
aberrant mitosis from producing mitotic damage by paclitaxel
(84). For example, approximately 72% (21 out of 29) HNSCC
patients showed high survivin expression by in tumor biopsies,
which were associated with p53 expression, paclitaxel resistance,
and progression (53, 54). On the other hand, the docetaxel-
resistant HNSCC cell line (DR-Hep2) increased the amount of
mitochondrial DNA (mtDNA) and reduced the ROS generation.
Although the mechanism remains unclear, Mizumachi et al.
hypothesized that the mtDNA plays a critical role in docetaxel
resistance through suppressing ROS generation from the
mitochondrial respiratory chain (55).

Changes in microtubule assembly alter the sensitivity of
cancer cells to paclitaxel due to mismatched binding of
paclitaxel to b-tubulin isotypes. Common b-tubulin isotypes
include bI, bII, bIII, bIVa, bIVb, bV, and bVI. In particular, it
is widely accepted that increased levels of bIII-tubulin cause
paclitaxel resistance by rendering microtubules less sensitive to
its effects (85, 86). However, Nienstedt et al. found that over 90%
of 445 HNSCC biopsies expressed TUBB3 (known as the bIII
coding gene), with 69 of them (15.5%) with weak expression, 149
of them (33.5%) with moderate expression, and 188 of them
(42.2%) with cancers. The TUBB3 expression level showed no
significant correlation with clinical implications or treatment
outcomes (87). Thus, the critical roles of b-tubulin isotypes in
paclitaxel-resistant HNC patients need further investigation.

It is worth noting that multidrug cross-resistance mechanisms
possibly occur on HNC cells. As previously reported, triple drugs
(docetaxel, cisplatin, and 5−FU)−resistantHNSCCcell lines (Hep−2
and CAL−27) exhibited higher chemotherapy resistance, reduced
apoptotic cell death, and an increased expression of MDR1, MRP2,
ERCC1, CTR, Survivin, and TS (88), which suggests that multiple
drug-resistant HNSCC cells can simultaneously have multidrug
cross-resistance mechanisms, including DNA/RNA damage repair,
drug efflux, and apoptosis inhibition.
CHEMOTHERAPY RESISTANCE IN HEAD
AND NECK CANCER STEM CELLS

A rare subset of cells with stem cell features known as cancer
stem cells (CSCs) have been demonstrated to highly tumorigenic,
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metastatic, and therapeutic resistance in both chemotherapy
and radiotherapy (89). In HNC biopsies, a subpopulation of
cells identified as CSC with high expression of stemness-related
markers CD44 and BMI-1 (90). The CSC-related carcinogenesis
and therapeutic resistance require us to rethink how to re-
evaluate the efficacy of cancer therapies with regard to CSC
(91). The isolated sphere-forming CSC from primary HNCs
exhibited stemness markers CK5, OCT4, SOX2, and Nestin.
HNC CSCs showed chemotherapy resistance to cisplatin, 5-
FU, paclitaxel, and docetaxel due to their increased expression
levels of ABC transporters (92). Interestingly, the Wnt/b-catenin
signaling contributes to abnormal ABC transporter-mediated
drug efflux property in HNC CSCs. Moreover, the Wnt/b-
catenin signaling also maintains the self-renew capacity and
promotes the expression of stemness-associated genes SOX2,
OCT4, CD44 in HNC CSCs (93). It is worth noting that targeting
the Wnt/b-catenin signaling pathway in HNC CSCs has been
reported as a promising strategy to reduce tumorigenicity,
suppress drug efflux, induce cancer cell apoptosis, and increase
sensitivity to chemotherapy (94).
STRATEGIES TO OVERCOME
RESISTANCE AND IMPROVE
THERAPEUTIC EFFECTS

DNA/RNA Damage Repair
DNA repair inhibitors can be used in combination with cisplatin.
It is possible to inhibit different DNA repair pathways by
blocking several targets, such as blocking ERCC1-XPF on the
NER process by E-X PPI2 or E-X AS7 (95, 96). ERCC1–XPF is a
structure-specific endonuclease that is required for repairing
DNA damages caused by cisplatin. Two candidate inhibitors of
ERCC1-XPF (E-X PPI2 and E-X AS7) reduced the ERCC1-XPF
expression level, suppressed the NER process, and sensitized
melanoma to cisplatin treatment (96) (Figure 3A). Although no
reference describes the use of ERCC1-XPF inhibitors in HNCs so
far, the previous references on other cancers suggest the possible
use of DNA repair inhibitors in combination with cisplatin
for HNCs.

Drug Efflux
Wnt/b-catenin signaling inhibitors were examined in clinical
trials. WNT974 was used as a Wnt/b-catenin inhibitor in a phase
II trial of HNSCC patients (NCT02649530). These HNSCC
patients received 10 mg of WNT974 daily for a month, and
those patients showed tumor regression and improved disease-
free survival (DFS) and OS rates with a tolerable toxicity profile.
Combined treatment with cisplatin and WNT974 can be
expected (97, 98) (Figure 3B).

Apoptosis Inhibition
High expressions of IAPs by HNC cells can rescue them from cell
apoptosis (64, 65). Targeting IAPs in cancer has become a new
strategy to re-sensitize cancer cells to chemotherapies (99, 100).
Birinapant is one of the IAP inhibitors in combination with
Frontiers in Oncology | www.frontiersin.org 7108
carboplatin (a platinum analog of cisplatin) that can suppress
cIAP1/2 expressions and improved the treatment outcomes of
carboplatin in several different cancer cell lines, including
ovarian cancer cell lines (S1-GODL, S8-GODL, S9-GODL, and
Ovcar-3), lung cancer cell lines (A549, H226, and H460), cervical
carcinoma cell lines (CaSki, HeLa, and SiHa), urinary bladder
carcinoma cell line (5637, J82, and HT1197), colon cancer cell
lines (DLD1, Colo205, and SW620), and HNSCC cell lines (PCI-
1, PCI-9, PCI-13, PCI-52, and PCI-68) (101, 102) (Figure 3C,
Table 2). Moreover, another IAP inhibitor, DEBIO1143
promotes apoptosis of cancer cells by mimicking the structure
and activity of SMAC, which can block the XIAP and reactivate
the caspase-9. A previous study on ovarian cancer cells suggests
the possible use of DEBIO1143 combined with carboplatin to
reverse carboplatin resistance and trigger cancer cell apoptosis
(103). There is an ongoing phase II double-blind and
randomized trial of combination treatment with DEBIO1143
and high-dose cisplatin chemoradiotherapy in high-risk
locoregionally advanced HNSCC patients (104) (Figure 3C,
Table 2).

EGFR/FAK/NF-kB Activation
Cetuximab is a monoclonal immunoglobulin G1 (IgG1)
antibody that blocks the EGFR (105). The HNSCC patients
with high EGFR expression are associated with chemotherapy
resistance and poor treatment outcomes (48, 106). According to
a phase III randomized trial of 117 recurrent/metastatic HNSCC
patients, combined treatment with cetuximab and cisplatin
improved the response rate from 10 to 26% and prolonged
PFS from 2.7 to 4.2 months compared to cisplatin alone (107).
Moreover, additional use of cetuximab with platinum/5-FU-based
chemotherapy of 220 untreated recurrent or metastatic HNSCC
patients significantly prolonged OS from 7.4 to 10.1 months in the
group of patients who received chemotherapy plus cetuximab
(108). Results of combined treatment with cetuximab and
platinum/5-FU chemotherapy suggested that blocking the EGFR
pathway by cetuximab is a potential way to improve the therapeutic
effects of chemotherapy (Figure 3D, Table 2).

Vascular endothelial growth factor (VEGF) and its receptor
(VEGFR) mediate tumor angiogenesis, which is associated with
tumor progression and metastasis. Approximately 60~67% of
NPC patients showed higher VEGF/VEGFR expressions and
exhibited lower OS (109). The multi-kinase inhibitor, sorafenib,
can block the autophosphorylation of several receptor tyrosine
kinases (RTKs) such as the VEGFR and platelet-derived growth
factor receptor (PDGFR) (110). In a phase II study, the combination
of sorafenib, cisplatin, and 5-FU improved the objective response
rate to 77.8% and prolonged the progression-free survival to 7.2
months in 54 recurrent or metastatic NPC patients (111) (Figure
3D, Table 2).

Bevacizumab is an antibody against the VEGF approved by
the US Food and Drug Administration (FDA) for combined
treatment with chemotherapy of lung cancer in 2006, recurrent
ovarian cancer in 2016, and non-squamous non-small cell lung
cancer in 2018 (112). So far, bevacizumab has been combined
with chemotherapy in several clinical trials of other types of
cancers, including HNCs (Figure 3D, Table 2). In a phase II
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study, combined treatment with intensity‐modulated radiation
therapy (IMRT), cisplatin, and bevacizumab on 42 previously
untreated stages III and IV advanced HNSCC patients improved
their 2-year PFS rate to 75.9% (113). In another phase II study,
combined treatment with radiotherapy, docetaxel, and
bevacizumab on 30 previously untreated locally advanced
HNSCC patients prolonged their 3-year PFS rate to 61.7%
(114) (Figure 3D, Table 2).

Defactinib (also known as VS-6063) is an inhibitor of FAK
(115), a primary downstream signal transducer of the VEGFR
(116) (Figure 3D, Table 2). There are no clinical trials using
defactinib on HNC patients, but there are on other types of
cancers. Combined treatment with docetaxel and defactinib
reduced the cell viability of docetaxel-resistant prostate cancer
cells, suggesting that a combination of defactinib and docetaxel
represents a strategy to overcome docetaxel-resistant prostate
cancer (117). However, additional use of defactinib on 344
Frontiers in Oncology | www.frontiersin.org 8109
malignant pleural mesothelioma (MPM) patients who received
first-line chemotherapy did not improve PFS, suggesting that the
use of defactinib with chemotherapy requires further
consideration (118) (Figure 3D, Table 2).

Immunosuppression
Treatment of HNC cells with cisplatin or 5-FU upregulates the
expression of programmed cell death ligand 1 (PD-L1) via the
NF-kB pathway. PD-L1-expressing cancer cells can suppress
cytotoxic activity and proliferation of CD8+ T cells by a PD-L1/
programmed cell death (PD)-1 interaction (119–121). A
preclinical trial revealed that the concurrent use of cisplatin
and either an anti-PD-1 or anti-PD-L1 antibody suppressed
tumor growth and prolonged survival in the HNC mouse
model. This combined treatment did not produce side effects
of decreasing the function of and the number of immune cells
or increasing cisplatin-induced toxicities (121) (Figure 3E,
FIGURE 3 | Strategies to overcome resistance and improve therapeutic effects. These involve (A) DNA/RNA damage, (B) drug efflux, (C) apoptosis inhibition,
(D) epidermal growth factor receptor (EGFR)/focal adhesion kinase (FAK)/nuclear factor (NF)-kB activation, and (E) immunosuppression. These figures were created
with BioRender.com.
May 2021 | Volume 11 | Article 640392

https://BioRender.com
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Kanno et al. Molecular Mechanisms of Chemotherapy Resistance
Table 2). On the other hand, a clinical trial of recurrent or
metastatic HNSCC patients revealed that nivolumab (an anti-
PD-1 antibody approved by the US FDA) improved OS from
5.1 to 7.5 months, and 6-month PFS from 9.9 to 19.7%, and the
response rate from 5.8 to 13.3% in these patients who had been
pretreated with cisplatin (122). Two years of a follow-up study
of the same trial revealed that these recurrent or metastatic
HNSCC patients who had received both nivolumab and
cisplatin showed higher 24-month OS (16.9%) compared to
patients who received only cisplatin (6.0%) (123) (Figure 3E,
Table 2). Another clinical trial of recurrent or metastatic
HNSCC patients showed that pembrolizumab combined with
platinum and 5FU is an appropriate first line treatment that
improved OS up to 13.0 months (124). Thus, the concurrent
treatment of immune checkpoint inhibitors and chemotherapy
could be considered a promising strategy for PDL1 highly
expressed HNC patients.

Limitations and Moving Forward
Unfortunately, the combined treatment approaches with
chemotherapy and an inhibitor of DNA/RNA damage repair
(such as an ERCC1 inhibitor, ERCC1-XPF) or drug efflux (such
as a Wnt/b-catenin inhibitor, WNT974) are still under
investigation, and none of them had clinical trials for HNSCC
patients in the past (96, 98). Currently, there are two types of
combined treatment with IAP inhibitor with platinum-based
chemotherapy (birinapant and carboplatin; DEBIO1143 and
cisplatin) reported (102, 104). Owing to high cIAP1 and XIAP
Frontiers in Oncology | www.frontiersin.org 9110
expressions on cisplatin-resistant HNSCC patients, blocking
cIAP1 or XIAP could be a possible strategy to improve cisplatin
treatments. The birinapant inhibits cIAP1/2 to reactivate caspase-
8, and the DEBIO1143 suppresses XIAP to reactivate caspase-9
both facilitates cancer cell apoptosis, which results in synergistic
anti-tumor effects in combination with cisplatin (or carboplatin).
On the other hand, due to high EGFR and VEGFR expressions on
HNSCC patients with chemotherapy resistance and poor
prognosis, there are multiple combined treatment trials with
EGF/EGFR or VEGF/VEGFR axis inhibitor and chemotherapy
reported, including cetuximab and cisplatin (107); cetuximab and
platinum/5-FU (108); sorafenib and ciplatin/5-FU (111);
bevacizumab and cisplatin/IMRT (113); bevacizumab and
docetaxel/RT (114). Blocking EGF/EGFR or VEGF/VEGFR axis
can suppress downstream FAK and PI3K signal pathways, which
hampers MDR1-mediated drug efflux and p53-caused cell
apoptosis. Blocking EGF/EGFR or VEGF/VEGFR axis could be
the reason why these combinations increased the chemotherapy
treatment’s effectiveness; however, these combinations’
mechanisms should be clarified in more detail and
demonstrated the preclinical/in vitro findings in clinical aspects.
Moreover, it is concerned that the expression level of EGFR and
VEGF/VEGFR could impact the therapeutic effects of these
combinations because only part of HNSCC patients showed
high EGFR and VEGF/VEGFR expressions (109). Thus, an
evaluation for these expression levels before considering
combination treatment is required. Furthermore, it is worth
noting that immune checkpoint inhibitors plus chemotherapy
TABLE 2 | Summary of chemotherapy resistance in head and neck cancers (HNCs).

Drug Effects Resistance Strategy

Cisplatin Generate ROS
Trigger MOMP
Cause DNA/mtDNA damages

DNA repair Unknown
Drug efflux Wnt/b-catenin inhibitor (WNT974)
Apoptosis inhibition IAP inhibitor

(birinapant + carboplatin)
(DEBIO1143 + cisplatin)

EGFR/FAK/
NF-kB activation

EGFR inhibitor
(cetuximab + cisplatin)
VEGF inhibitor
(sorafenib + cisplatin/5-FU)
(bevacizumab + cisplatin/IMRT)

Immunosuppression PD-1 blockade
(nivolumab + cisplatin)
(pembrolizumab + platinum/5-FU)

5-FU Generate FdUMP/FdUTP/FUTP
FdUMP inhibits TS
FdUTP causes DNA damage
FUTP causes RNA damage

DNA repair Unknown
Drug efflux Unknown
Apoptosis inhibition Unknown
EGFR/FAK/
NF-kB activation

EGFR inhibitor
(cetuximab + platinum/5-FU)
VEGF inhibitor
(sorafenib + cisplatin/5-FU)

Immunosuppression Unknown
Docetaxel/
Paclitaxel

Binds to microtubule b-subunit
Promotes tubulin assembly
Inhibits microtubule dynamics
Limits cell division

DNA repair Unknown
Drug efflux Unknown
Apoptosis inhibition Unknown
EGFR/FAK/
NF-kB activation

VEGF inhibitor
(bevacizumab + docetaxel/RT)

Immunosuppression Unknown
May 20
EGFR, epidermal growth factor receptor; ERCC1, excision repair cross-complementation group 1; IMRT, intensity‐modulated radiation therapy; MOMP, mitochondrial outer membrane
permeabilization; mtDNA, mitochondrial DNA; ROS, reactive oxygen species; RT, radiation therapy; TS, thymidylate synthase; VEGF, vascular endothelial growth factor.
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have become a promising strategy. Chemotherapeutic agents
induce immunogenic cell death (ICD), which facilitates antigen
cross-presentation and cytotoxic T cell generation. Immune
checkpoint inhibitors can further rescue cytotoxic T cells from
cancer cells and reinvigorate cytotoxic T cell function. The
beneficial combination between chemotherapy and immune
checkpoint inhibitors has recently been demonstrated as a first-
line treatment of recurrent HNSCC patients (124).
CONCLUSIONS

Chemotherapy resistance largely influences the therapeutic
efficacy and results in poor prognoses in HNC patients. This
review summarizes and updates the mechanisms underlying
chemotherapy resistance on HNCs. Four primary resistance
mechanisms, including DNA/RNA damage repair, drug efflux,
apoptosis inhibition, and EGFR/FAK/NF-kB activation after
cisplatin, 5-FU, and paclitaxel/docetaxel treatments, have been
described. The corresponding strategies to those four
mechanisms are listed, which can be translated into developing
Frontiers in Oncology | www.frontiersin.org 10111
innovative cancer therapeutics to overcome chemotherapy
resistance in HNC patients.
AUTHOR CONTRIBUTIONS

YK, C-YC, H-LL, J-FC, and Y-JC were involved in the design,
wrote the article, and supervised the research. All authors
contributed to the article and approved the submitted version.
ACKNOWLEDGMENTS

This work was financially supported by the “TMU Research
Center of Cancer Translational Medicine” from The Featured
Areas Research Center Program within the framework of the
Higher Education Sprout Project by the Ministry of Education
(MOE) in Taiwan and also partially supported by the Ministry of
Science Taiwan (MOST 109-2635-B-038-001). We thank the
support from Translational Laboratory, Department of Medical
Research, Taipei Medical University Hospital for space support.
REFERENCES
1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global

Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality
Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin (2018) 68
(6):394–424. doi: 10.3322/caac.21492

2. Johnson DE, Burtness B, Leemans CR, Lui VWY, Bauman JE, Grandis JR.
Head and Neck Squamous Cell Carcinoma. Nat Rev Dis Primers (2020) 6
(1):92. doi: 10.1038/s41572-020-00224-3

3. Chow LQM. Head and Neck Cancer. New Engl J Med (2020) 382(1):60–72.
doi: 10.1056/NEJMra1715715

4. Pfister DG, Spencer S, Brizel DM, Burtness B, Busse PM, Caudell JJ, et al.
Head and Neck Cancers, Version 2.2014. Clinical Practice Guidelines in
Oncology. J Natl Compr Canc Netw (2014) 12(10):1454–87. doi: 10.6004/
jnccn.2014.0142

5. Pignon JP, le Maitre A, Maillard E, Bourhis J, Group M-NC. Meta-Analysis
of Chemotherapy in Head and Neck Cancer (Mach-Nc): An Update on 93
Randomised Trials and 17,346 Patients. Radiother Oncol J Eur Soc Ther
Radiol Oncol (2009) 92(1):4–14. doi: 10.1016/j.radonc.2009.04.014

6. Blanchard P, Landais C, Petit C, Zhang Q, Grégoire V, Tobias J, et al. Meta-
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Treatment of head and neck cancers requires multidisciplinary collaboration to reduce
morbidity and mortality associated with the tumor burden, as well as to preserve function
of organs and structures. With the use of various new targeted therapies come new
adverse events including dermatologic toxicities, which may consist of xerosis, nail and
hair changes, morbilliform or papulopustular rashes, to more severe eruptions such as
Stevens–Johnson syndrome. We describe the dermatologic toxicities and corresponding
grades of severity and associated pathophysiology resulting from seven therapeutics
used to treat head and neck cancers: cetuximab, trastuzumab, pembrolizumab,
nivolumab, lentatinib, larotrectinib, and entrectinib. Being familiar with these
dermatologic toxicities allows clinicians to provide comprehensive counseling for
patients, encourage preventative measures, and to know when it is appropriate to hold
therapy or permanently stop treatment.

Keywords: immunotherapy, dermatologic toxicity, adverse event, head and neck cancer, cetuximab,
pembrolizumab, nivolumab, trastuzumab
INTRODUCTION

Head and neck (H&N) cancers are those that primarily affect the lip, oral cavity, pharynx, larynx,
and paranasal sinuses (1). The incidence of these cancers is rising, with over 60,000 new cases
reported each year in the United States. Major risk factors for developing H&N cancers include
heavy tobacco and alcohol use, as well as human papillomavirus (HPV) infection (2). Treatment
requires multidisciplinary collaboration to reduce morbidity and mortality associated with the
tumor burden, as well as to preserve function of organs and structures. With the use of various new
targeted therapies come new adverse events including dermatologic toxicities which may range from
a limited morbiliform rash to diffuse bullous eruptions and more severe manifestations. These
dermatologic toxicities can greatly impact a patient’s quality of life so clinicians must be familiar
with these toxicities, know how to manage them, and recognize when it is necessary to hold or
permanently stop the targeted therapies. In this review we aim to describe the dermatologic
toxicities and corresponding treatments associated with the following H&N cancer therapeutics:
cetuximab, trastuzumab, pembrolizumab, nivolumab, lentatinib, larotrectinib, and entrectinib. We
will cover common skin reaction patterns resulting from targeted therapies and immunotherapies
and then will review each of these seven therapeutics independently.
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Espinosa et al. Dermatologic Toxicities
COMMON DRUG INDUCED SKIN
REACTION PATTERNS

Common dermatologic toxicities that arise in the treatment of
head and neck cancers include papulopustular eruptions,
paronychia and other nail changes, mucositis, xerosis, and
bullous eruptions. Descriptions, corresponding inciting drugs,
and severity staging are found in Table 1. Severity staging is
defined by the Common Terminology Criteria for Adverse event
guidelines (22). Papulopustular reactions are pruritic eruptions
consisting of papules and pustules along the head, neck, trunk,
and upper extremities. Historically, these papulopustular
eruptions have been closely associated with EGFR/HER1
inhibition (15). These lesions occur in a seborrheic dermatitis-
like pattern on the scalp, face, and chest and are often pruritic
which is not common in other acneiform eruptions (15). It is
important to note that papulopustular eruptions in these patients
are not acne; the skin is devoid of comedones with this rash (23).
Oral mucositis is a painful inflammation of the mucosa of the
oral cavity which may decrease a patient’s quality of life by
making it difficult to eat and speak. Xerosis is more widespread
and can even affect vaginal and perineal tissues. Xerotic skin
facilitates eczematous dermatitis, and many patients experience
eczematous patches and plaques on palmoplantar surfaces that
can lead to painful fissuring of fingertips (15). Palmar-plantar
erythrodysesthesia syndrome (PPES), or hand foot syndrome, is
frequently associated with oncologic treatments and is
comprised of dysesthesia, erythema, edema, and possible
desquamation and blisters along the fingers and toes (24).
TARGETED THERAPY AND
IMMUNOTHERAPY

Cetuximab
Cetuximab is an epidermal growth factor (EGFR) inhibitor
approved for the treatment of H&N cancers. Over half of patients
with squamous cell carcinoma (SCC) will require a combination
therapy due to advanced disease at diagnosis (1). Currently, the
preferred standard of care is high-dose cisplatin with concurrent
radiotherapy (1). For patients that are not candidates for cisplatin
therapy, cetuximab combined with radiotherapy is the preferred
regimen (1). In cases of non-pharyngeal SCCs that are recurrent,
metastatic, or unresectable, the recommended treatment is a
combination of cisplatin, cetuximab, and 5-fluorouracil. Patients
with this specific H&N cancer that are deemed medically unfit for
the chemotherapy agents in this combination therapy may receive
treatment with single agent cetuximab (1). To date, cetuximab
combined with radiotherapy is shown to be superior to
radiotherapy use alone in stages III–IVB SCCHN. There are no
randomized controlled trials that demonstrate with statistical
significance that cetuximab and radiotherapy combination is
superior to chemotherapy agents, specifically cisplatin and
radiotherapy (25). Yet, it is recommended that treatment plans
are patient-specific and developed in collaboration with other
specialties, like radiation oncology, surgery, and supportive
Frontiers in Oncology | www.frontiersin.org 2116
medicine to administer medication safely with respect to
prognosis, feasibility, and patient characteristics (1).

Squamous cell histology dominates the cellular lineage in
H&N cancers, and epidermal growth factor (EGFR) is almost
always expressed in squamous cell carcinoma of the H&N
(SCCHN) (2). EGFRs represent a diverse set of ligands of the
receptor tyrosine kinases (RTKs) that transduce extracellular
signals through intracellular activation to exact the specific
functions of growth factors (26). Overexpression of EGFR
leads to gene amplification, aberrant cellular proliferation, and
is one of the mechanisms identified in human malignancies
which have sparked massive effort in the development of targeted
therapies for anti-cancer properties. Cetuximab is one such
therapy aimed at inhibiting EGFR function via competitive
binding of the receptor’s extracellular domain. It is a chimeric
monoclonal antibody of immunoglobulin G1 class and exhibits
more affinity for EGFR than endogenous ligands, making
cetuximab effective at binding to the target (2).

Cetuximab has been reported to cause a variety of skin
reactions (15). The human skin, specifically epidermal
keratinocytes and pilosebaceous units, are replete with EGFR
ligands (27). Hence, inhibition of EGFRs by both small-molecule
EGFR inhibitors and anti-EGFR antibodies exerts inflammatory
and toxic effects on the skin. Blocking the domain function of
EGFR leads to inhibition of DNA synthesis and transcriptive
functions, which in turn increases the terminal keratinization
(17). The resulting thinned epidermis impairs the protective
function of the skin (17). EGFR or ERK inhibition also leads to
aggravation of the skin inflammatory response with upregulated
chemokine expression as evidenced by tissue samples displaying
dermal infiltration by T cells and macrophages (27). These
repeatedly discovered inflammatory patterns lead to skin
toxicities related to alteration of EGFR and not off-target
effects of inhibitors (23).

Adverse cutaneous reactions with use of cetuximab for the
treatment of SCCHN occur in greater than 80% of patients (15).
Hair and nails can also be affected in about 10–20% of patients.
Common reactions related to skin, hair, and nails are described
as papulopustular rash, pruritus, xerosis, paronychia, hair
abnormalities, and mucositis (15). Papulopustular eruptions
are the most common cutaneous reaction with cetuximab use,
affecting 60–80% of patients (15). Most patients will have a mild
to moderate reaction, with less than 20% of patients experiencing
a severe reaction. Typically, these erythematous, papular, and
pustular lesions manifest within one to three weeks of starting
cetuximab, often peaking and worsening around week five.

Xerosis is present in about 35% of patients treated with
cetuximab and causes eczematous patches and plaques on
palmoplantar surfaces that can lead to painful fissuring of
fingertips (15). One study found that within six weeks of
initiation of treatment with an EGFR inhibitor, patients
developed exsiccation and exfoliation, leading to complaints of
pruritus (28). Specifically, the study found that horny layer
moisture content of the stratum corneum decreased significantly
and seemed to be more exaggerated in the upper extremities (28).
Nail and hair changes are rare adverse events and typically develop
May 2021 | Volume 11 | Article 605941
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TABLE 1 | Dermatologic skin reaction patterns resulting from targeted therapies and immunotherapies for head and neck cancers.

ositis Paronychia Bullous pemphigoid

lceration of
oral cavity
se a
f life by
to eat and

Inflammation along the soft tissues of the
nail with variable superinfection.

Pruritic tense vesiculobullous eruptions along
torso and extremities, frequently with
mucosal involvement.

matic or

e pain or
t indicated
ain;
l intake
tening

Grade 1: nail fold edema or erythema,
cuticle disruption
Grade 2: local and oral intervention
indicated; pain along nail fold with edema
or erythema, associated with discharge or
nail plate separation
Grade 3: limited self-care ADL; operative
intervention and IV antibiotics indicated

Grade I: asymptomatic blisters covering
<10% BSA
Grade 2: bullous dermatitis (painful blisters
covering >30% BSA)
Grade 3: blisters covering >30% BSA,
limited self-care, fluid and electrolyte
abnormalities
Grade 4: life threatening consequences,
urgent intervention needed
Grade 5: death related to adverse event

oral
e of mint-
te or alcohol
ash.
roids,
r
te (6, 12) for
.
mouthwash

Prevention with properly trimmed nails,
avoidance of ill-fitting shoes, and diluted
bleach soaks (14).
For acute inflammation with
serosanguinous drainage: warm soaks, a
high potency topical corticosteroid and
antimicrobial, such as betamethasone
dipropionate 0.05% ointment and
gentamycin 0.05% cream (15). Incision
and drainage if abscess develops;
consider systemic antibiotics if drainage
not fully successful or overt cellulitis (16)
Biotin supplementation has proven in
some studies to be efficacious for
enhancing nail plate strength after
becoming brittle from EGFR inhibitor
treatment (17).

Grade 1: hold immunotherapy and start high
potency topical steroids to the affected
areas. Grade 2: hold immunotherapy and
prescribe prednisone/methylprednisolone
0.5–1 mg/kg/day.
Grade 3: permanently stop the
immunotherapy, prescribe prednisone/
methylprednisolone 1–2 mg/kg/day, admit
patient, consider ophthalmology and urology
consults if involvement of the eyes or
genitals (9).
If needed, steroid-sparing agents to consider
include azathioprine, mycophenolate mofetil,
methotrexate, tetracycline antibiotics,
dapsone, or niacinamide (18).
Recalcitrant BP: consider rituximab (19),
omalizumab (20), or dupilumab (21).

Cetuximab Pembrolizumab, nivolumab

Espinosa
et

al.
D
erm

atologic
Toxicities

Frontiers
in

O
ncology

|
w
w
w
.frontiersin.org

M
ay

2021
|
Volum

e
11

|
A
rticle

605941
Papulopustular/acneiform eruption Morbilliform eruptions Palmar plantar
erythrodysesthesia
syndrome (PPES),
also known as hand

foot syndrome

Oral muc

Description Papules and pustules along the head,
neck, trunk, and upper extremities with or
without pruritus and tenderness.

Macules and papules, typically along
upper torso, spreading centripetally,
with or without pruritus.

Erythema, edema,
and possible
desquamation and
blisters along the
fingers and toes with
or without pain.

Inflammation or u
the mucosa of th
which may decre
patient’s quality o
making it difficult
speak.

Severity
scoring
according to
CTCAE
guidelinesa

Grade 1: papules and/or pustules covering
<10% BSA (with or without pruritus/
tenderness)
Grade 2: papules and/or pustules covering
10–30% BSA, with or without pruritus/
tenderness, associated psychosocial
impact
III: papules and or pustules covering >30%
BSA with moderate to severe symptoms,
associated with superinfection
Grade 4: life threatening consequences,
urgent intervention needed
Grade 5: death related to adverse event

Grade 1: macules/papules covering
<10% BSA), with or without
symptoms
Grade 2: 10–30% BSA with or without
symptoms; limiting instrumental ADL
Grade 3: macules and papules
covering >30% BSA with moderate to
severe symptoms; limiting self-care
ADL

Grade 1: minimal skin
changes or dermatitis
(erythema, edema,
hyperkeratosis), non-
painful
Grade 2: Skin
changes (Peeling,
blisters, fissures,
edema, or
hyperkeratosis) with
pain, limiting
instrumental ADL
Grade 3: severe skin
changes with pain,
limiting self-care ADL

Grade 1: asympt
mild symptoms.
Grade 2: modera
ulcer, modified d
Grade 3: severe
interfering with or
Grade 4: life-thre
consequences
Grade 5: death

Treatments Grade 1: topical antibiotic agents
(erythromycin/clindamycin) +/− topical
corticosteroids if there is an inflammatory
component.
Grade 2: oral antibiotics
Grade 3 or higher: Stop anti-EGFR
therapy and provide oral corticosteroids
an antibiotics until inflammation was
decreased (3–6)
-Isotretinoin or acitretin for EGFR-inhibitor
induced papulopustular eruptions (7, 8)

Grade 1: continue the immunotherapy
and provide supportive care with
topical emollients, oral antihistamines,
and topical steroids to affected areas.
Grade 2 toxicity: hold immunotherapy,
provide supportive care, and prescribe
prednisone 0.5–1 mg/kg/day. Grades
3–4: stop immunotherapy, apply high
potency topical steroids to affected
areas, start prednisone (up to 2 mg/
kg/day), and providers may consider
inpatient care (9).
Notes: Once Grade 2–3 eruptions
improve to Grade 1, immunotherapy
may be re-started. However, patients
that experience a Grade 4 toxicity
should discontinue the inciting drug
permanently (10, 11).

Grade 1: application
of a moisturizer is
recommended.
Grade 2: topical
corticosteroids or
urea creams.
Grade 3: consider
stopping drug until
symptoms resolve to
Grade ≤1 (12).

Prophylaxis: goo
hygiene, avoidan
flavored toothpas
containing mouth
-Topical corticos
topical lidocaine,
triamcinolone pas
painful ulceration
-Dexamethasone
(13).

Inciting head
and neck
cancer
targeted
therapies and
immunotherapy

Trastuzumab, Afatinib Pembrolizumab, nivolumab Trastuzumab;
lenvatinib

Lenvatinib

Staging is based on the Common Terminology Criteria for Adverse events guidelines.
ADL, activities of daily living; BSA, body surface area, BP, bullous pemphigoid.
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after several weeks up to several months of cetuximab use (15).
Nail toxicity can encompass a variety of physical changes, such as
pitting, discoloration, onycholysis and lead to the development of
acute paronychia (Table 1). Hair changes include the hair
becoming curly or wavy, brittle or fine texture, and alopecia of
the scalp or beard (23). Eyelashes can also grow out long and rigid,
causing pain and keratitis if growing inward (23). There are few
preventative methods that prove to be efficacious at avoiding these
hair and nail changes, but it is recommended that patients trim
eyelashes regularly and perform daily antiseptic soaks for nails. In
general, there is a lack of rigorous clinical trials aimed at assessing
and identifying prophylactic measures to avoid the development
of cutaneous side effects of EGFR inhibitors.

Trastuzumab
Trastuzumab is approved for treatment of adjuvant breast
cancer and metastatic breast and gastric cancers that are
positive for human epidermal growth factor receptor 2
(HER2). Trastuzumab therapy has also been explored to treat
various other malignancies where HER2 is overexpressed such as
cutaneous and head and neck squamous cell carcinomas (SCCs)
as well as cervical adenocarcinomas (29, 30). Trastuzumab is a
monoclonal antibody engineered to target HER2 receptors.
HER2 receptors are traditionally found in low levels in the
epithelial cells of a variety of tissues (31). However, HER2 in
HER2+ breast, GI, and various other cancers, have been shown
to be amplified making HER2 an attractive anti-cancer target
(29, 32, 33). HER2 plays a significant role in cell proliferation
signaling pathways, and therefore alterations in HER2 expression
have been linked to cancer’s hallmark trait of relentless and
uncontrolled growth (31, 34).

Although the precise mechanism of action of trastuzumab is
not fully understood, it is believed to block intracellular signaling
pathways. When blocked, apoptosis and a slowing of cell
proliferation are observed. This blocking prevents the
activation of HER2 by its proper activators, promotes
antibody-dependent cellular cytotoxicity through natural killer
cells, and helps prevent HER2 shedding (35–37).

HER1 receptors are expressed in the skin in keratinocytes in
the basal layer. Thus, HER1 inhibitors disrupt these cells’
development resulting in stratum corneum such as follicular
infundibulum. In addition, the inhibitor promotes chemokine
expression leading to apoptosis of keratinocytes (38). These
numerous changes result in hyperkeratosis, follicular plugging,
and inflammation which then manifest as a papulopustular rash
which is a common and well-established side effect of HER1/
EGFR inhibitor treatments as it is reported to occur at some
point during therapy in 60–90% of treated patients (38). HER2
has been also detected in keratinocytes in the upper spinous
layers and both HER1 and HER2 heterodimers are found in
keratinocytes albeit at very low levels. Thus, it is hypothesized
that trastuzumab by inhibiting HER2 in the skin causes
papulopustular eruptions via HER2 homodimer inhibition or
HER1–HER2 heterodimer inhibition.

Rare cutaneous adverse reactions to trastuzumab have been
noted to occur. In one woman who received monotherapy with
trastuzumab, tufted hair folliculitis was observed (39). Also,
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albeit uncommon, rash associated with a serious infusion
reaction was noted in less than 0.3% of patients. Mild to
moderate infusion reactions were found to be more common
with the combination of trastuzumab and chemotherapy
compared with chemotherapy alone (40). Another uncommon
adverse event is carotenoderma, also referred to as carotenosis
cutis, and aurantiasis cutis refers to the manifestation of yellow-
orange skin coloration resulting from carotenemia (41). There
have also been reported cases of trastuzumab induced
dermatomyositis, a complement-mediated idiopathic
inflammatory myopathy manifested by skin changes and
proximal muscle weakness (42).

Pembrolizumab and Nivolumab
Pembrolizumb is a humanized IgG4 monoclonal antibody serving
as an immune checkpoint inhibitor by targeting the programmed
cell death 1 (PD-1) receptor on activated T cells. When PD-1 is
engaged by a ligand, PD-1 inhibits the kinase signaling pathways
that usually leads to T-cell activation through phosphatase activity
(43). In a phase 3 open label trial (KEYNOTE-048) comparing
pembrolizumab alone, pembrolizumab with platinum and 5-
fluorouracil, and EXTREME therapy (cetuximab, platinum, and
5-fluorouracil), pembrolizumab was determined to be an
appropriate first line treatment for recurrent or metastatic head
and neck squamous cell carcinoma (HNSCC) with platinum and
5-fluorouracil or as monotherapy for patients with PD-L1 positive
tumors (44, 45). Nivolumab is another humanized IgG4
monoclonal antibody which targets the PD-1 receptor. In 2016,
two months after pembrolizumab was approved for the treatment
of HNSCC, the Food and Drug administration (FDA) approved
nivolumab for treating platinum refractory HNSCC after the
results from the CheckMate 141 phase III clinical trial showed a
median overall survival of 7.5 months in the nivolumab group
versus 5.1 months in the group with standard single-agent
systemic therapy (methotrexate, docetaxel, or cetuximab) (46, 47).

Cutaneous reactions are common with anti-PD-1 therapy
with about half of all patients developing some kind of cutaneous
toxicity (48). The most common dermatologic adverse events
(dAEs) that arise after treatment with pembrolizumab and
nivolumab include pruritus, morbilliform eruptions, and
lichenoid eruptions (10, 49). Less common dAEs include
vitiligo, bullous pemphigoid, psoriasis; even more rare yet
highly morbid dAEs include Stevens–Johnsons syndrome (SJS),
Toxic Epidermal Necrolysis (TEN), and drug reaction with
eosinophilia and systemic symptoms (DRESS) (49).

Pruritic morbilliform eruptions are non-specific findings seen
as a result of many medications, and their diagnosis relies on a
thorough history of all medications and timing of the resulting
skin eruptions to identify the culprit drug. PD-1 inhibitor
induced morbilliform eruptions typically present three to six
weeks after initial dose with erythematous macules and papules
coalescing into plaques, primarily over the trunk (10, 50).
Lichenoid drug eruptions present typically on the torso as red
to violaceous papules and plaques or flat topped papules and
erosions along the oral mucosa about 12 weeks after initial dose,
with a range of 1–266 days (51). Incidence rates for morbilliform
and lichenoid eruptions after PD-1 therapy are very similar and
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have been seen to arise in about one fifth of patients who receive
anti-PD-1 therapy (51, 52). Lichenoid drug eruptions are
diagnosed based on exam findings, histology that reveals a
dense, band-like lymphocytic infiltrate in the dermis, and a
thorough history of medication (11, 53).

Vitiligo is an autoimmune skin disorder presenting with
localized or generalized hypopigmented patches from the loss
of melanocytes in the epidermis. In 2020, analysis of the World
Health Organization pharmacovigilance database showed an
association between vitiligo and pembrolizumab with a
reporting odds ratio (ROR) of 116.9 (95%CI 94.8, 144.3) and
between vitiligo and nivolumab (ROR 22.6, 95% CI 15.8, 32.4)
(54). The occurrence of vitiligo typically occurs several months
after initiation of PD-1 inhibition (50). The development of
vitiligo in melanoma patients treated with PD-1 inhibition is well
documented, but only few case reports have shown this
association in patients with solid tumors treated with PD-1
inhibi t ion (55, 56) . Furthermore, the first case of
pembrolizumab induced vitiligo in a patient being treated for
HNSCC was reported in 2019. The author describes a 32-year-
old man with stage IVA T2N2M0 squamous cell cancer of the
tonsil and achieved complete remission with docetaxel,
carboplatin, 5FU, and radiation but relapsed two years later
and was treated with pembrolizumab after IHC of the biopsy
demonstrated 90% PD-L1 expression (55). Five months after
stopping pembrolizumab, he developed a few hypopigmented
patches on his face that were biopsy proven to be consistent with
vitiligo. The mechanism behind PD-1 inhibitor associated
vitiligo is likely due to aberrant recognition of antigens in the
dermis and epidermis by reactivated CD4+/CD8+ T cells,
thereby leading to a potent inflammatory process (55). In most
cases, the PD-1 inhibitor was continued despite the occurrence of
vitiligo. Treatment recommendations for cosmetic reasons
includes topical corticosteroids, strict sun protection, and
phototherapy if disease extent is diffuse (57–59).

Bullous pemphigoid (BP) typically arises weeks to months
after initiation of anti-PD-1 and anti-PD-LI therapy (49). PD-1
inhibitor induced BP is a rare but well established association
with an estimated incidence of 1–2% according to two
retrospective reviews at single institutions (48, 60–62). An
analysis of the FDA Adverse Event Reporting System found a
proportional reporting ratio of 5.87 for nivolumab and 6.36 for
pembrolizumab used across many cancers, showing that this
association is more common with pembrolizumab (63). Unlike
the non-specific morbilliform and lichenoid drug eruptions, the
diagnosis of BP can easily be made with direct and indirect
immunofluorescence assays, quantification of circulating
autoantibodies against BP180 and/or BP230, and physical
exam findings. The pathophysiology of the development of BP
may be due to the recognition of common antigens BP180 and
BP230 shared between cutaneous basement membrane and
tumor cells (64). Additionally, PD-1 inhibition can activate B
cells and inhibit immunosuppressive B regulatory cells, thereby
unmasking BP (65). Patients that develop BP after PD-1
inhibition may already have antibodies against BP180 and
BP230, which is why pembrolizumab and nivolumab may
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unmask BP by further activating these B cells and unleashing
the existing antibodies. Unlike other types of drug-induced BP,
PD-1 inhibitor induced BP may even persist up to one year after
cessation of immunotherapy likely due to sustained immune
activation associated with anti-PD-1 therapy and may require
maintenance therapy.

Psoriasis clinically presents with well-demarcated, scaly
erythematous patches and plaques on the trunk and extremities,
typically developing days to months after initiation of PD-1
inhibitors and has been seen in patients with and without a
previous history of psoriasis (66). Exacerbation of psoriasis in
patients with an established history of psoriasis tend to flare within
a few days of immunotherapy, and de novo tends to appear
months after initiation (67). The prevalence and incidence rates
of psoriasis with anti-PD1 inhibitors are lacking but a literature
review in 2018 revealed 35 reported cases, and it is clear that de
novo is less common than flaring of established disease (48, 68).
The pathogenesis of PD-1 inhibition induced psoriasis is due to
the upregulation of pro-inflammatory Th-1/Th-17 pathways with
elevated levels of interferon-gamma, tumor necrosis factor-alpha,
and interleukins 2,6,17 (69). Since psoriasis is an autoimmune
disease mediated by Th17, the upregulation of Th17 as a result of
PD-1 inhibition is a likely culprit behind this dAE (68). Generally,
patients with limited disease can tolerate continued
immunotherapy (with prolonged intervals if needed) along with
standard treatment for psoriasis including topical steroids, and
topical vitamin D analogs (68, 70, 71). If psoriasis is recalcitrant or
is affecting the patient’s quality of life, providers may consider
cessation of immunotherapy and starting oral prednisone,
acitretin, or phototherapy (67, 72).

Less common cutaneous toxicities include granulomatous
reactions, erythema multiforme, SJS/TEN, and DRESS (59).
SJS/TEN may present initially with a non-specific morbilliform
eruption, later developing targetoid lesions, mucosal ulcerations
and full thickness epidermal sloughing. This dAE can manifest
weeks to months after the initial dose of a PD-1 inhibitor (49).
Morbidity is high, and case reports have shown that stopping the
medication does not greatly ameliorate symptoms. Treatment
includes immediate cessation of inciting drug, close monitoring,
and interventions such as prednisone 1–2 mg/kg/day,
intravenous immunoglobulin, and cyclosporine (9, 73). A
randomized controlled trial comparing the use of an etanercept
and corticosteroids for cytotoxic T-lymphocyte mediated severe
cutaneous adverse reactions showed decreased mortality and
shorter skin healing time in the etanercept group (74).

In sum, PD-1 inhibitors cause a wide-range of dermatologic
toxicities. Interestingly, some of these dAEs such as spongiotic
dermatitis, vilitigo, and bullous pemphigoid arising after
treatment with pembrolizumab have been associated with
improved tumor response and survival outcomes, albeit in
various cancers including melanoma, lung cancer, merkel cell
carcinoma, and non-melanoma skin cancer (75, 76). Therefore,
the presence of these toxicities may be a sign that the drug is
working against the cancer as well, and providers may reassure
patients by sharing this association and managing their
symptoms as mentioned above.
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Afatinib
Afatinib is an orally administered irreversible tyrosine kinase
inhibitor which halts adenosine triphosphate (ATP) binding to
the intracellular domain of the epidermal growth factor (EGFR)
receptor and blocks downstream signaling (77, 78). Afatinib has
been found to be a promising therapeutic for the treatment of
HNSCC since >80% of patients with HNSCC overexpress EGFR
(79, 80). In a randomized phase III trial, 322 patients with recurrent
or metastatic HNSCC were randomized to receive afatinib, and 161
patients receivedmethotrexate. The group that received afatinib had
longer progression free survival (2.9 vs. 1.7 months in the
methotrexate group), improved quality of life, and was overall
well tolerated. Notably, 215 (67%) of patients that received
afatinib had grade 3 or higher adverse events, and the most
common toxicities included rash and diarrhea. The term rash in
this study encompassed a variety of conditions including but not
limited to acne, dermatitis, dermatitis acneiform, erythema,
folliculitis, and morbilliform rash. Furthermore, analysis of seven
phase II/III studies using afatinib at a starting dose of 50mg daily for
998 patients with various solid tumors found that 82% of patients
experienced rash/acne (81). These morbilliform or acneiform
eruptions are non-specific and make diagnosis and treatment
difficult since oncology patients are frequently on various
concomitant drugs that may be the culprit. Therefore, it is
important to educate patients about this potential side effect so
that it may be recognized and managed early.

Specifically the dermatologic toxicities seen with afatinib most
commonly consist of a papulopustular rash, which typically
arises two weeks after the initiation of therapy (82). Other
dermatologic toxicities include paronychia, xerosis, pruritus,
and cheilitis (3, 83). The pathophysiology of EGFRI-associated
dermatologic toxicities is likely multidimensional. First, EGFR is
essential for normal skin development since it is present on
epidermal keratinocytes, sebaceous glands, and on the
epithelium of hair follicles so EGFR inhibition leads to
disruption in proliferation (84). Secondly, tyrosine kinase
inhibitors may recruit additional inflammatory cells via
secretion of chemokines that cause leukocyte chemotaxis and
infiltration of follicles, leading to inflammation (4, 38).

Lenvatinib
Lenvatinib is an oral tyrosine kinase inhibitor that blocks various
receptors including vascular endothelial growth factor (VEGF)
receptors 1–3, fibroblast growth factor (FGF) receptors 1–4,
platelet derived growth factor (PDGF) receptor-a, RET, and
KIT proto-oncogenes (85, 86). This drug is FDA approved for
radioactive-iodine refractory thyroid cancers after results from a
phase 3 multi-center study randomized patients to lenvatinib or
placebo and found that those that received lenvatinib had
significantly improved progression free survival (18.3 versus 3.6
months in placebo group) (87). However, 97% of the 261 patients
in the lenvatinib arm experienced an adverse event of any grade,
with 76% of patients experiencing Grade ≥3 adverse events
compared to 10% in the placebo arm. Dermatologic toxicities
resulting from lenvatinib include stomatitis in 20–36% of
patients in clinical trials (87, 88), PPES in 32–75%, more
commonly in patients of Japanese background (87, 89, 90),
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rash in 16% (87), and alopecia in 11% (87). These toxicities are
a known class effect of VEGF inhibitors.

Larotrectinib
Larotrectinib is approved by the FDA in November 2018 for the
treatment of adult and pediatric patients with solid tumors that
have a neuotrophic receptor tyrosine kinase (NTRK) gene fusion
without known acquired resistance mutation, metastatic disease.
Or in cases when surgical resection may result in severe
morbidity (91). NTRK genes (NTRK1, NTRK2, NTRK3) code
for tropomyosin receptor kinase (TRK) proteins (TRKA, TRKB,
TRKC). The TRK proteins are mainly expressed on neural cells
and later may fuse with other proteins, thereby leading to
constitutively active downstream signaling (92). Larotrectinib
blocks this fusion protein and prevents the downstream
signaling, effectively blocking tumor progression in cancers
with this fusion protein. Approval was based on data from
three multicenter, open-label, single-arm clinical trials: LOXO-
TRK-14001 (NCT02122913), SCOUT (NCT02637687), and
NAVIGATE (NCT02576431) (92). Patients had various solid
tumor types including 12 with salivary gland tumors and five
with thyroid tumors. Analysis of the first 55 patients enrolled
showed a 75% overall response rate by independent review (92).
NTRK gene fusion mutations have been identified in 2.4–25.9%
of thyroid cancer (93, 94) and only in less than 1% of head and
neck squamous cell carcinoma (94). Therefore, larotrectinib is
not the drug of choice for most head and neck cancers since not
all tumors will have this targetable fusion protein.

Dermatologic toxicities associated with larotrectinib and
other NRTK blockers are not well documented. The most
common adverse events associated with larotrectinib in the
trials that led to FDA approval include liver transaminsase
elevations, anemia, fatigue, nausea, dizziness, and diarrhea (92,
95). The authors only reported adverse events that occurred in at
least 15% of patients, so it is possible that cutaneous toxicities
arose but were not reported since they were very rare. Based on
the mechanism of action of larotrectinib blocking tyrosine kinase
downstream signaling, it is possible that it may cause rash,
pruritus, and painful skin-dermatologic side effects with
entrectinib, another drug that works by inhibiting TRK (96).
There are several open clinical trials assessing the long-term
efficacy and tolerability of larotrectinib.

Entrectinib
Entrectinib is an orally administered inhibitor of TRKA, TRKB,
TRKC, ROS1, and ALK with the ability of crossing the blood–brain
barrier (97). It was approved by the FDA in August 2019 after
review of the findings of three ongoing, phase 1 or 2 clinical trials
(ALKA-372-001, STARTRK-1, and STARTRK-2) (96). An analysis
of these three pivotal trials included 54 patients with advanced or
metastatic solid tumors with any NRTK gene fusion (seven had
mammary analog secretory carcinoma, and five had thyroid cancer)
and found efficacy (96). In the overall safety evaluable population (n
= 355) across all three studies which included patients of any tumor
type and gene rearrangement, dermatologic toxicities included rash
(6%), pain of the skin (4%), and pruritus (5%) primarily of grades
1–2 (96). The pathophysiology of these cutaneous toxicities may be
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from the inhibition of TRKA receptors on human keratinocytes,
thereby inhibiting phosphorylation and leading to reduced
keratinocyte proliferation (98, 99). These toxicities can be treated
similar to the pruritus and morbiliform eruptions seen with other
immunotherapy and molecularly targeted therapies, and entrectinib
can be safely continued (96).
TREATMENTS FOR THE DERMATOLOGIC
TOXICITIES ASSOCIATED WITH
TARGETED THERAPY AND
IMMUNOTHERAPY FOR HEAD
AND NECK CANCERS

Treatments for the common skin reaction patterns are described in
Table 1. In general, papulopustular and morbilliform eruptions are
the most common reaction patterns incited by drugs. It is generally
safe to continue targeted therapy or immunotherapy for Grades 1–2
reactions (Table 1) but recommend holding Grade 3 and beyond.
Although patients and providers may be concerned by the
appearance of a rash covering up to 30% BSA, we recommend
using CTCAE guidelines to determine severity and appropriate
treatment and not halting immunotherapy immediately. For all
patients starting a new therapy, we recommend providers do a
thorough preliminary skin exam and explain common
dermatologic toxicities along with warning symptoms such as
significant BSA involvement, severe pain, or inability to perform
activities of daily living. Proactive interventions should also be
clearly communicated to patients prior to therapy. Recommended
discussion points include education on avoiding tight clothing,
exposure to sunlight without photoprotection, products that cause
dry skin, depilatory wax and plucking, and alcohol-based cleansers
and cosmetics (15).

CONCLUSION

The treatment of H&N cancers has been revolutionized by the
development of targeted therapies and immunotherapies.
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Patients with cancers that were unresponsive to traditional
chemotherapies now have more targeted treatment options
which overall have a better side effect profile; however, patients
may be more prone to certain dermatologic toxicities.
Cetuximab, trastuzumab, and afatinib commonly lead to
papulopustular eruptions, xerosis, and hair and nail changes.
Pembrolizumab and nivolumab can have a wide range of
dermatologic findings including pruritus, morbiliform
eruptions, vitiligo, bullous pemphigoid, and more. Lenvatinib,
a VEGF inhibitor, may lead to stomatitis, PPES, and other side
effects commonly seen in this drug class. Finally, larotrectinib
and entrectinib tend to have limited non-specific cutaneous
adverse events but as other immunotherapies, patients on these
treatments should be closely monitored. Appropriate
characterization and staging of these dermatologic toxicities
can lead to better outcomes and improved patient quality of
life by allowing patients to stay on the targeted therapy if the
dermatologic toxicities are adequately managed. Most
papulopustular and morbilliform eruptions up to Grade 3 may
be treated with supportive care and the targeted therapy can be
safely continued; however, more severe reactions may require
temporary or permanent cessation of therapy. We recommend
conducting a thorough skin exam and providing patient
education on common cutaneous toxicities prior to initiation
of any new therapy so that patients know what to monitor for
and report to their clinicians. Additionally, patients may be
counseled on proactive measures such as wearing loose
clothing, applying moisturizing emollients, and using
sunscreen to optimize skin health. In conclusion, patients on
targeted therapy and immunotherapy may experience unique
dermatologic toxicities that can be appropriately managed in
order to continue their life-saving therapies.
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Radiation therapy remains at the center of head and neck cancer treatment. With
improvements in treatment delivery, radiation therapy has become an affective ablative
modality for head and neck cancers. Immune checkpoint inhibitors are now also playing a
more active role both in the locally advanced and metastatic setting. With improved
systemic options, local noninvasive modalities including radiation therapy are playing a
critical role in overcoming resistance in head and neck cancer. The aim of this review is to
describe the role of radiation therapy in modulating the tumor microenvironment and how
radiation dose, fractionation and treatment field can impact the immune system and
potentially effect outcomes when combined with immunotherapy. The review will
encompass several common scenarios where radiation is used to improve outcomes
and overcome potential resistance that may develop with immunotherapy in head and
neck squamous cell carcinoma (HNSCC), including upfront locally advanced disease
receiving definitive radiation and recurrent disease undergoing re-irradiation. Lastly, we will
review the potential toxicities of combined therapy and future directions of their role in the
management of HNSCC.

Keywords: radiation therapy, SBRT, stereotactic body radiation therapy (SBRT), immunotherapeutic, immune
check inhibitors, head and neck cancer
INTRODUCTION

Head and neck cancer is the sixth most common cancer worldwide, resulting in over 350,000 deaths
per year (1). Many patients with head and neck cancer present with locally advanced disease, and
radiation therapy is a mainstay of treatment for these patients, often supplemented with additional
therapies including chemotherapy, surgical resection, or immunotherapy for more advanced disease
(2). Radiation therapy is preferred for localized disease and is used for curative intent for a large
proportion of non-oral cavity head and neck cases. Conventional radiation treatment in 2-2.25 Gy
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per fraction to a total of 70 Gy is the current standard for the
majority of cases (3–7). In addition, retrospective data has shown
that radiotherapy treatment of the primary tumor in patients
with tumor recurrence and limited metastases may prolong
disease-free survival (8).

Stereotactic body radiation therapy (SBRT) or stereotactic
ablative radiation therapy (SABR) is another radiation modality
used in select situations in the treatment of head and neck
cancer. It is particularly useful for patients with recurrent head
and neck tumors who have had previous radiation therapy. This
is due to the smaller and more precise field of radiation applied in
SBRT, leading to lower radiotoxicity and a better ability to spare
normal tissue. In addition, SBRT delivers high, ablative doses of
radiation therapy typically in 5 or less fractions (9). SBRT has
been shown to be useful in prolonging survival while
maintaining quality of life in elderly patients with unresectable
head and neck tumors (10–12). SBRT has also been shown to be
safe with minimal toxicity for head and neck cancer patients who
are poor candidates for larger field, conventionally fractionated
reirradiation (13). Overall, SBRT is a useful and safe treatment
option for patients with primary, metastatic, and recurrent head
and neck cancers squamous cell cancers (HNSCC) (10).

The immunological effects of radiation were first described
initially in the 1970s and now there have been a vast amount of
published literature describing how radiotherapy modulates the
immune system. Recently, due to the advent of immune
checkpoint inhibitors that have shown promising success in
treating certain types of cancers, there has been mounting
interest towards how radiation therapy and immunotherapy
drugs can be used for a synergistic effect in treating patients.
Especially in the treatment of HNSCC, the combination of
immunotherapy and radiation therapy is a novel approach,
therefore, there is a lack of data describing patient outcomes
and toxicities.

The aim of this review is first to describe the role of radiation
therapy in modulating the tumor microenvironment. Then, we
will discuss how radiation therapy dose, fractionation, and target
can affect the immune system and how that translates to
treatment outcomes. Next, we will discuss the published data
as well as ongoing studies that combine radiation therapy and
immunotherapy in the treatment of HNSCC in different contexts
such as: upfront definitive, re-irradiation, oligometastatic and
oligoprogression. Lastly, we will review the potential toxicities of
combined therapy and future directions of their role in the
management of HNSCC.
METHODS

An extensive analysis of the current medical literature from peer-
reviewed journals was conducted from January 1, 2008 to March
1, 2020 using the Preferred Reporting Items for Systematic
Reviews and Meta-analyses (PRISMA) guidelines to
systematically search the PubMed (Medline) database to
retrieve a comprehensive set of relevant articles. The search
strategy was developed based on National Library of
Medicine® Medical Subject Headings (MeSH®) with addition
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of subject-specific keywords. The bibliographies of full articles
were reviewed to include studies which were potentially relevant.
The literature was reviewed for quality of study design, cohort
size, selection bias, evaluation of participants in relation to time
from exposure, and methods of assessments. A well-established
methodology (modified Delphi) was used by the expert panel to
rate the appropriate use of procedures (14).

Immunological Effects of Radiation
Immune System Activation
Beyond the direct effects of radiation therapy causing tumor cell
death via DNA damage, radiation therapy has various other
effects on the immune system. These include activating immune
responses that lead to indirect tumor cell death via upregulated
expression of major histocompatibility complex (MHC) class I
and increased innate immune ligand expression. MHC class I
molecules present endogenous peptides to cytotoxic T
lymphocytes (CTL), allowing T cells to examine the peptide
and induce apoptosis if the presented peptide is foreign (2, 3, 15–
24). Tumor cells evade the immune system by downregulating
MHC class I, so the upregulation of MHC class I by radiotherapy
can cause increased cancer cell death (15, 16). Reits et al. found
that MHC class I expression increased in a dose-dependent
manner in two phases due to radiotherapy. The first phase was
radiotherapy-produced free radicals tagging proteins for rapid
degradation. The second phase was caused by mTOR kinase
activation, leading to increased protein synthesis. When tumor
cells were irradiated with 25 Gy, MHC class I molecules
remained saturated with peptide for more than 24 hours (15, 16).

Furthermore, radiation therapy increases presentation of FAS
and tumor antigens, leading to increased immune-mediated
apoptosis of tumor cells. When FAS engages with its ligand,
FAS-L, the apoptotic pathway is induced and caspases are
activated, leading to cell death (19, 20, 25, 26). Garnett et al.
showed how 91% of tumor cell lines upregulated surface
molecules, including FAS, ICAM-1, CEA, MUC-1, and MHC-1
after low-dose irradiation. In addition, they showed that 6 out of
10 cell lines that expressed FAS underwent enhanced cell lysis.
Furthermore, Garnett et al. observed enhanced killing of cancer
cell lines by cytotoxic T lymphocytes (CTLs), even if FAS was not
expressed or nonfunctional after irradiation. The apoptosis may
have been due to upregulation of other molecules, such as ICAM,
or increased presentation of tumor antigens by MHC class I, as
discussed previously. Additionally, even nonlethal doses of
radiation therapy were enough to activate the immune system,
suggesting that a combination of radiation therapy and
immunotherapy may be helpful even in cancers where
radiation therapy is not the standard of care (16, 19). Several
studies have demonstrated these effects and more between
radiation therapy and the immune system (2, 3, 18–26).

Immune System Suppression
Radiation can be a double-edged sword in its impact on the
immune system, leading to the suppression of the immune
system via increased expression of regulatory T cells and
upregulation of programmed death-ligand 1 (PD-L1) on tumor
cells (2, 3, 18, 20, 24). PD-L1 overexpression by tumor cells in
July 2021 | Volume 11 | Article 592319
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turn, can result in immune evasion and is overexpressed in over
50-60% of HNSCC (27). Studies have shown that regulatory T
cells are more resistant to radiation than other types of T cells
and may be due toan increased regulatory T cell population
following radiotherapy (3, 24, 28). Regulatory T cells are
hypothesized to be recruited to a tumor microenvironment in
order to maintain immune homeostasis by immunosuppressive
effects (3). Preclinical mouse studies done by Oweida et al. have
shown significant tumor eradication in mice treated with anti-
CD25 and radiation therapy when compared to mice treated
with anti-CTLA4 and radiation therapy. Radiation and anti-
CD25 therapy lead to tumor eradication in 57.1% of mice and
improved overall survival (OS). However, tumor eradication was
only achieved in mice with low levels of regulatory T cells.
Therefore, head and neck cancers highly enriched with
regulatory T cells are resistant to radiotherapy, even with the
use of anti-PD-L1 or anti-CTLA-4 drugs. To further prove this
point, the tumor was eradicated when the regulatory T cells
population was depleted in combination with radiotherapy (29,
30). The combination of radiotherapy with regulatory T cell
depletion is a synergistic technique that can be used to combine
two antitumor modalities that are weaker on their own (3).

In addition to the suppression of the immune system via
regulatory T cells, fractionated radiotherapy causes increased
tumor cell expression of PD-L1 through production of IFN-g
(31). Normally, PD-L1 is constitutively expressed in healthy cells
to prevent unnecessary killing via CTLs but is exploited by tumor
cells to evade immune-mediated killing (2). Dovedi et al.
demonstrated increased PD-L1 expression in irradiated mouse
models and sequentially, an increase in tumor response to
radiotherapy when also treated with a monoclonal antibody
targeted against PD-1 or PD-L1. Their data shows that the
combination of anti-PD-1 or anti-PD-L1 antibodies with
radiotherapy can reduce tumor burden and improve survival.
In addition, mice treated with monoclonal antibodies against
PD-L1 and radiotherapy demonstrated significant protective
tumor antigen-specific memory T-cell responses. However,
treatment with anti-PD-L1 monoclonal antibodies 7 days after
irradiation is completely ineffective at increasing OS when
compared to only radiation therapy (31). Therefore, the timing
of these two treatments must be considered for optimal tumor
regression. Several other studies and clinical trials have expanded
on and shown the significant anti-tumor effects of radiotherapy
combined with PD-L1 inhibitors or regulatory T cell depletion
(32–38).

Radiation Delivery
Dose and Fractionation
Conventional radiation therapy, where low dose fractionated
radiation therapy is delivered, was historically used as the
standard of care in treating cancer patients. However, advances
in technology have introduced the use of high ablative doses of
radiation in lower number of fractions. To date, some
randomized controlled trials, especially in treating patients
with non-small cell lung cancer (NSCLC), have found similar
outcomes in patients who are treated with SBRT when compared
Frontiers in Oncology | www.frontiersin.org 3127
to conventional RT while others have even detected an
improvement in survival outcomes (39, 40). Not only has
SBRT quickly become a widely used option due to its
improvement in survival, but also due to its favorable toxicity
profile (41–44). However, its role when combined with
immunotherapy is less known.

A growing body of literature suggests that improvement in
survival outcomes may be attributed to dose and fractionation
dependent effects on the immune system. Recent studies have
demonstrated a link between radiation therapy induced
lymphopenia and survival outcomes in certain cancers such as
NSCLC, glioblastomas and pancreatic cancer, and lymphocyte-
sparing effects have been described in patients who receive SBRT
when compared to conventional RT (45–48). This raises
questions of whether fractionation and dose of radiation
contributes to its immunological effects through sparing
immune cells which can potentially not only improve control
at the primary tumor site but also at distant metastatic sites.

Preclinical data suggest that the dose of radiation delivered
may have an impact on its subsequent immunological effects. Lee
et al. demonstrated in a B16 melanoma mouse model that 20 Gy
in 1 fraction compared to 20 Gy in 4 fractions showed
considerable delay in all of the mice and complete tumor
regression in 35% of the mice who received 20 Gy, but
complete tumor regression in 0% of the mice who received 5
Gy x 4 (49). They hypothesized that the single fractionation leads
to improvement in outcomes possibly because the fractionated
RT continuously kills circulating T cells over time. Also they
noted that repair of damage and proliferation between low-dose
fractions could account for worse outcomes. Overall, these
findings suggest conventional RT may lead to inferior RT-
initiated antitumor immunity when compared to higher
ablative RT doses in fewer fractions, resulting in an early
relapse of tumor growth or recurrence at both local and distant
sites. Although a single dose of ablative radiation is not used for
curative intent, there have been impressive results described for
local tumor control with high-dose single-fraction radiotherapy
in palliative settings, implicating alternative mechanisms beyond
the direct killing of tumor cells (50).

Conversely, Schaue et al. found that B16-OVA mice treated
with doses delivered in 2, 3 or 5 fractions had better tumor
responses when compared to a single fraction dose (51). They
hypothesized that these findings could be due to fractionated
radiation enabling the development of immunity, which is a
larger factor in determining outcomes when compared to sub-
lethal damage repair between treatment fractions as described by
Lee et al. However, their findings partially supported Lee et al.
since they also found that immune tolerance was not induced by
a single dose of 5 Gy or less, which suggest that higher doses of
radiation are superior to the lower doses used in conventional RT
(1.5-2 Gy). Although results from Schaue et al. support that
tumor immunity is improved with fractionation, it still suggests
that higher doses are needed to derive an immunological benefit.

Another preclinical study by Tsai et al. found opposing results
when comparing gene expression after a 10 Gy dose delivered as
a single fraction vs 2 Gy x 5 fractions in human tumor cell lines.
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They found that survival after multifractionated RT was about 10
times higher than with the single dose (52). Interestingly, they
found that fractionating radiation leads to selective induction of
INF-related genes, which have been implicated in inflammatory
and possibly radiation resistance through further induction of
signal transducer and activator of transcription 1 (STAT1) (53,
54). Specifically in head and neck cancer, increased STAT1
expression have been shown to lead to radioresistance. Drugs
such as fludarabine inhibit cytokine-induced activation of
STAT1 and have been reported to enhance radiosensitivity of
tumor cells in head and neck cancer (55). Interestingly, Khodarev
et al. found that in head and neck tumor cells, STAT1, which is
an upstream mediator of INF-signaling, was protective from
ionizing radiation-mediated death (53). Dewan et al. also found
that when combined with CTLA-4 inhibition, fractionated
dosing resulted in improved control of the primary tumor
when compared with single-dose RT (56). These mixed pre-
clinical results suggest multiple complex variables other than
dose fractionation contribute to the immunological effects of
radiation therapy.

Lastly, another fractionation alternative may be hypofractionated
treatment typically given in the range of 15 to 20 fractions. Further
work in the arena of combined immunotherapy and
hypofractionated RT for head and neck cancer is needed.

Field Size and Elective Nodal Coverage (ENI)
Not only does SBRT utilize a higher dose per fraction, which may
be associated with improved outcomes in patients with
oligometastasis through various immunological effects as noted
above, but also offers decreased toxicity and immunosuppression
through a high degree of dose conformity when compared to
conventional radiation therapy which normally encompasses
larger areas. Decreased margins in SBRT when compared to
conventionally fractionated radiation therapy theoretically
decrease radiation to healthy tissue, which could blunt
destruction of lymphocytes that are necessary to illicit an anti-
tumor response.

Oftentimes, treatment fields include the primary tumor as well
as clinically uninvolved draining lymph node regions that are at
high risk for micrometastases to prevent local recurrence. Elective
nodal irradiation is currently the standard of care for the majority of
head and neck cancers based on the high rate of spread to regional
lymph nodes. However some studies in other tumor types suggest
that large field nodal radiation may not add significant
improvement in cancer outcomes. For example, in several
randomized trials and large dataset analyses, survival outcomes of
whole-pelvic vs prostate-only radiation therapy for high risk
prostate cancer were no difference (57–59). Rwigema et al.
showed that in patients with early-stage NSCLC, prophylactic RT
to the mediastinum did not improve outcomes (60). Not only have
the studies above found a lack of improvement in survival
outcomes, but also, Marciscano et al. has found that ENI actually
adversely affected survival outcomes when combined with immune
checkpoint blockades due to altering adaptive immune responses
such as chemokine expression and CD8+ T-cell trafficking (61).

The question of the use of ENI has come into a new light,
specifically in respects to its effect on the immune system, as
Frontiers in Oncology | www.frontiersin.org 4128
multiple studies have described the negative effects of treating
draining lymph nodes on the efficacy of immunological
responses. Studies have reported that radiation therapy to the
local tumor elicits different immunomodulatory effects that lead
to immune mediated tumor-specific responses. Lugade et al.
showed that radiation increases IFN-g–producing antitumor
immune cells and Apetoh et al. demonstrated that T cells in
radiation therapy decrease tumor growth by comparing T-cell
deficient mice models and wild-type mice, while Lee et al.
showed that CD8+ T cells in radiation therapy resulted in
tumor growth inhibition (49, 62, 63). Taken together, CD8+ T
cells, IFN-g–producing antitumor cells, and T-cell proliferation
in the tumor draining lymph node (DLN), lead to tumor-specific
responses. Similarly, Takeshima et al. demonstrated in their
animal models that tumor DLN were required for inducing
tumor-specific CTL and found that CTL were significantly
decreased by radiating the DLN, which lead to significantly
worse survival outcomes (64). These findings were observed in
lymph node deficient mouse models, and tumor-specific CTLs
are indispensable in creating tumor specific CD8+T cell
responses (65, 66). Sharabi et al. showed that locally directed
radiation therapy increases the activation and proliferation of an
antigen-specific antitumor T-cell population in the DLN, which
proposes the question that SBRT may lead to improved
outcomes when compared to conventional RT by sparing
destruction of T-cells in the DLN (33).

The pre-clinical findings above suggest that omitting ENI
may assist immunological responses that can potentially be
further enhanced by the use of immune checkpoint blockades.
However, although several clinical studies mentioned above fail
to demonstrate the benefits of ENI in certain cancers, the
treatment of DLN specifically in head and neck cancer
warrants additional investigation due to the extensive and
complex lymphatic drainage in the area. Currently, the
standard for upfront locally advanced head and neck cancer is
to cover elective lymph nodes whereas it is not recommended in
the setting of re-irradiation.

Radiation Combined with Immunotherapy
Mechanisms
Treatment of HNSCC typically involves a multidisciplinary
approach composed of surgery, radiation therapy, and
chemotherapy. Patients with localized disease are generally
managed with either radiation therapy or surgery, but
patients with more advanced cancers are managed with
multimodality approaches. Despite the use of multimodality
treatment, outcomes and prognosis for metastatic head and
neck cancer remain poor. There has been a growing number of
studies using immune checkpoint inhibitors in recurrent or
metastatic head and neck cancer and the results of the first
clinical trials using PD-1/PD-L1 drugs have shown a survival
benefit along with a favorable toxicity profile when compared to
standard treatments (67–71). The improved treatment
responses and clinical outcomes in these studies shed light on
the importance of not only understanding the mechanism of
immune checkpoint inhibitors but also of their interaction with
other treatment modalities.
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Radiation therapy induces apoptosis, necrosis, and senescence
of tumor cells through inducing DNA damage by directly
causing breaks in the DNA strands, or indirectly by reactive
oxygen and nitrogen species (72). The advantage of delivering a
conformal dose to the tumor while minimizing systemic toxicity
and sparing neighboring healthy tissue makes radiation therapy
an attractive choice for multimodality treatments. In addition to
DNA damage, preclinical studies substantiate that radiation can
induce tumor-specific immunity and contribute to immunogenic
cell death (73). Now, several robust preclinical studies support
the synergistic effects of systemic immunotherapy and radiation
therapy. Reits et al. found that when radiation was combined
with adoptive CTL therapy in an MC38 colon cancer model,
tumor growth inhibition was significant increased when
compared to either modality alone (15). Furthermore, Zhang
et al. found that in mouse models, radiation therapy alone was
insufficient to eradicate the cancer, but when radiation of the
MC57 tumors were followed by CTL transfer, the tumor was
eradicated (74).

In addition to these preclinical studies, Demaria et al. used
4T1 mouse models to determine if immune checkpoint blockade
can act synergistically with radiation therapy to delay tumor
growth. They found that the combination of radiation therapy
and a CTLA-4 antibody improved OS and antitumor activity.
Radiation therapy alone only slowed primary tumor growth and
anti-CTLA-4 therapy alone did not improve survival outcomes
or delay tumor growth. Furthermore the control of distant
metastases observed in mice who received the combination
therapy was immune-mediated and dependent on CD8+ T
cells (75). Additionally, other preclinical studies have proposed
mechanisms that could possibly account for the synergistic affect
seen in radiation therapy and immunotherapy. Ruocco et al.
found that in the 4T1 model, MCH-1 dependent arrest was
restored after treatment with radiation therapy and a CTLA-4
blocking antibody, which allowed improved antitumor activity
through the interaction of tumor-infiltrating lymphocytes and
tumor cells (76). Additionally, Belcaid et al. found that in an
orthotopic mice models of glioma treated with triple therapy
including 4-1BB activation, CTLA-4 blockade, and radiation
therapy these mice had increased survival, and a higher density
of CD8+ and CD4+ cells. When mice had depletion of CD4+ T
cells, the antitumor efficacy of triple therapy was abrogated,
highlighting the importance of CD4+ T cells in the synergistic
effect, and this was independent of the sequence of the
treatments delivered (77).

Preclinical work has also included studies on PD-1 inhibition
with radiation therapy. Verbrugge et al. observed that PD-1 is an
indispensable signal in mediating the antitumor response of
radiation therapy in a triple-negative breast cancer model.
They found that all mice were cured when a PD-1 antibody
was combined with single or low-dose fractionated radiation
therapy and that CD8+ T cells were essential for this curative
response. In a CT26 murine colon cancer cell line, Dovedi et al.
found that 10 Gy delivered in 5 fractions concurrently delivered
with anti-PD-L1 therapy improved OS (31). Unlike the findings
by Belcaid et al, the improvement in OS in these CT26 models
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was dependent on the sequence of treatment delivered and was
only seen when anti-PD-L1 therapy was given concurrently with
radiation therapy (31). Mechanisms have been proposed to
explain this synergistic effect between radiation therapy and
anti-PD-L1 therapy as well. Deng et al. demonstrated that
radiation causes an up-regulation in PD-L1 in the tumor
microenvironment, so the addition of a PD-L1 blockade to
radiation causes an activation of cytotoxic T cells (32).
Additionally, Sharabi et al. suggests that radiation with anti-
PD-1 therapy incudes an antigen-specific immune response as
discussed above (20).

Thus as a result of these robust preclinical studies detailing
synergistic effect between radiation therapy and immunotherapy,
many ongoing clinical trials are investigating the use of radiation
with immunotherapy. However, the optimal sequence of
treatment delivery, the radiation dosing and fractionating, and
patient selection to best illicit this synergistic effect in head and
neck cancer remains unknown. Current published data is
limited, but this will likely increase due to the high number of
ongoing clinical studies.

Upfront Definitive Radiation Therapy
Published data is sparse and many trials are still actively accruing
patients (Table 1); however, the phase III JAVELIN 100 trial,
which is a randomized, double-blind, international multicenter
trial, comparing avelumab plus chemoradiation versus standard
of care chemoradiation in patients with locally advanced HNSCC
has been terminated after a planned interim analysis. The trial
aimed to demonstrate that the combination of avelumab with
standard chemoradiation offers superior progression-free
survival (PFS) when compared to chemoradiation alone in the
treatment of patients with high-risk, locally advanced HNSCC.
At the interim analysis, they concluded that the study is unlikely
to show a statistically significant improvement in their primary
endpoint of PFS. So far, the phase III JAVELIN Ovarian PARP
100 trial and the JAVELIN 100 trial for HNSCC has been
terminated, but the JAVELIN Merkel 200 trial is still active, as
it shows durable responses and meaningful survival outcomes in
patients with Merkel cell carcinoma at 2 years (78).

The NRG recently completed the HN003 trial, which was a
phase I study in patients with HPV negative, stage III-IV
HNSCC where pembolizumab is administered concurrently
with postoperative radiation therapy and weekly cisplatin. This
study aims to compare outcomes of these patients to the current
standard of care with the primary outcome being dose-limiting
toxicities up to 4 weeks posttreatment (79). Secondary outcomes
include change in expression of peripheral immune
inflammatory biomarkers, levels of PD-L1, and survival and
disease control outcomes at 1 year. This trial is currently
undergoing scheduled interim analysis. Another NRG trial,
HN005, is a randomized phase II/III trial that studies the
outcomes of patients who are given a reduced dose of
radiation therapy with nivolumab compared to standard dose
of radiation therapy plus cisplatin in treating patients with HPV
positive early stage oropharyngeal cancer. Patients will either be
given intensity modulated radiation therapy (IMRT) over 6
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fractions per week and receive cisplatin, versus reduced dose
IMRT over 5 fractions per week with cisplatin, versus nivolumab
plus reduced dose IMRT over 6 fractions per week. These trials
aim to explore the use of up front immunotherapy in patients
with HNSCC and will be important in determining the role of
these checkpoint inhibitors in treating HNSCC.

A number of studies are ongoing in this area to identify novel
immune checkpoint inhibitors to be delivered concurrently with
radiation therapy (80). Currently the only targetable agent
combined with radiation treatment in definitive head and neck
cancer is cetuximab, an epidermal growth factor inhibitor
(EGFR), which showed improved survival outcomes when
compared to radiation alone (81). However recent randomized
data for HPV positive patients suggest inferior outcomes when
compared to cisplatin (82, 83).

Re-Irradiation
Patients with head and neck squamous cell carcinoma who recur
after definitive therapy have limited treatment options;
specifically those who fail platinum-based chemotherapy have
a survival of less than 6 months (84). Options include: surgery,
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but this may be precluded by the extent of the recurrence;
chemotherapy, which has a poor prognosis; and re-irradiation
depending on the previously treated field and the site of
recurrence. For example, for patients with metastatic HNSCC
or recurrent disease that is unable to be treated with a curative
intent, the current standard of treatment pembrolizumab with or
without chemotherapy (85).

With the recent successes in immunotherapy for the treatment
of other cancers, and promising outcomes for the use of radiation
therapy and immunotherapy upfront in HNSCC, now several
ongoing studies seek to elucidate the outcome of immunotherapy
combined with re-irradiation in patients with recurrent disease (86).
The KEYNOTE-012 trial was the first trial to show efficacy of
immune checkpoint inhibitors in HNSCC. This was a multicohort
phase Ib study to evaluate not only the efficacy by the safety of
pembrolizumab in patients with advanced solid tumors, including
patients with recurrent and metastatic HNSCC. This cohort of
patients was initially divided into 60 patients with PD-L1 positive
tumors (≥1% PD-L1 expression). Patients received pembrolizumab
10 mg/kg IV every 2 weeks and the objective response rate (ORR)
was 18% in all patients, 25% in HPV positive patients and 4% in
TABLE 1 | Select Ongoing Trials/Awaiting Results.

Trial Phase N Eligibility Regimen Studied Control Arm Primary
Endpoints

Secondary Endpoints Estimated
Completion
Date

JAVELIN
100

III 697 - HPV-, Stage III-IVb

- Non-oropharyngeal
HPV+ Stage III-IVb

- HPV+ oropharyngeal
disease T4 or N2c or
N3

Control + concurrent and
adjuvant Avelumab for 12
months

70 Gy in 35
fractions + q3
weeks cisplatin 100
mg/m2

PFS OS, pCR, LRF, ORR, DM,
DOR, AE, QOL

6/2020

JAVELIN
Merkel
200

II 204 Metastatic Merkel Cell
carcinoma

First line avelumab, and
second line avelumab

None BOR, DRR DOR, PFS, AE, OS 5/2024

HN003 I 37 Stage III-IV HNSCC RT + qweekly cisplatin + q3
weeks pembrolizumab

None DLT DFS, OS, LRF, DM, AE 10/2018

HN005 III 711 Stage T1-2, N1, or T3,
N0-N1, M0 p16+
oropharyngeal cancer

60 Gy in 6 weeks + q3 weeks
cisplatin 100 mg/m2 vs 60 Gy
in 5 weeks with nivolumab

70 Gy in 6 weeks +
q3 weeks cisplatin
100 mg/m2

PFS, QOL LRF, DM, OS, AE 2/2025

HN004 II/III 474 Stage III-IV SCCA of the
head and neck with a
contraindication to
cisplatin

RT + cetuximab vs RT +
durvalumab

None DLT, PFS,
OS

LRF, DM, PET response,
AE, AOL

12/2025

EA3161 II/III 744 Oropharyngeal cancer
p16+:

- Stage T1-2N2-3 or
T3-4N0-3 with ≥ 10
pack years

- Stage T4N0-N3 or T1-
3N2-3 <10 pack
years

RT + qweekly cisplatin +
adjuvant nivolumab

RT + qweekly
cisplatin

PFS, OS Effect of PD-L1 expression,
HPV status, SUVmax on
OS and PFS, PET response

1/2027

HN007 III 316 Recurrent
nasopharyngeal cancer

Nivolumab, gemcitabine, and
cisplatin or carboplatin

Gemcitabine and
cisplatin or
carboplatin

OS LRF, DM, PFS, ORR, AE,
QOL

5/2028

EA3191 II 282 Recurrent or second
primary HNSCC in a
previously radiated field

RT + pembrolizumab or
pembrolizumab alone

RT + cisplatin or
carboplatin

OS, AE DFS 2/2026
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HPV negative patients. 17% of these patients had grade 3-4 drug-
related adverse events, and 45% of patients experience a serious
adverse event. There were no drug-related deaths. The duration of
response was about 53 weeks and OS was 13 months (67). The
expansion cohort enrolled an additional 132 patients with
recurrent/metastatic HNSCC regardless of PD-L1 expression
status. Pembrolizumab was given once every 3 weeks instead of 2
weeks, and the ORR in this patient population was found to be 18%
in all patients, 32% in HPV positive patients and 14% in HPV
negative patients. PD-L1 status was predictive of ORR (22% for PD-
L1 positive vs 4% in PD-L1 negative patients) (68). In the pooled
analysis of the initial and expanded cohort, 17% of patients achieved
stable disease, median OS was 8.5 months, and the 6-month PFS
rate was 24.9% (87). Overall, Keynote-012 concluded that
pembrolizumab was well tolerated with good clinical outcomes,
and should be strongly considered in patients with recurrent/
metastatic HNSCC. Based on the results found in this trial,
pembrolizumab was approved by the US Food and Drug
Administration (FDA) in the treatment of recurrent and
metastatic HNSCC in 2016. Currently we are awaiting the results
of Keynote-040, which is a recent ongoing phase III trial that has
reached accrual. 466 patients with recurrent/metastatic HNSCC
were enrolled and patients were randomized to treatment with
either pembrolizumab vs methotrexate, cetuximab or docetaxel.

Checkmate-141 is a randomized phase III trial with 361 patients
with recurrent HNSCC who progressed after platinum-based
chemotherapy. This study aimed to evaluate whether nivolumab
improves OS when compared another therapy of the investigator’s
choice (including either docetaxel, methotrexate, or cetuximab).
They found that nivolumab significant improved OS when
compared to other therapies (7.5 months vs. 5.1 months,
respectively), and the 1 year OS rate was greatly improved in
patients treated with nivolumab versus standard therapy (36.0%
versus 16.6%, respectively). There was a 30% reduction in risk of
death for patients treated with nivolumab. Interestingly, regardless
of PD-L1 expression or p16 status, OS was improved in patients
treated with nivolumab when compared to patients treated with
standard therapy, although patients with PD-L1 positive or HPV-
positive status benefited the most. Overall response rate was 17% in
PD-L1 positive patients, 12.3% in PD-L1 negative patients, and
15.9% in patients with p16 positive disease versus 8.0% in patients
with p16 negative disease. Drug related adverse events were
significantly lower in the nivolumab group (59.3%) versus the
standard care group (77.5%). This trial concluded that nivolumab
had a lower incidence of drug related adverse events and improved
OS when compared to the standard therapy (70).

The KEYSTROKE trial hopes to explore the synergistic effects of
re-irradiation with PD-1/PD-L1 inhibitors and clinical outcomes of
patients treated with SBRT plus anti-PD-1 therapy versus SBRT
alone. Patients eligible for the KEYSTROKE trial must have
pathologically confirmed diagnosis of locoregional recurrent or
unresectable new primary HNSCC, must have had prior radiation
therapy to the head and neck to a minimum of 30 Gy with overlap
of at least 25% of the current planned tumor volume (PTV) with
the previously treated area, and the disease must be limited to a
single site or adjacent sites that can be treated in a single contiguous
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target volume for which the gross tumor volume (GTV) must be
<7.5 cm (86). Patients will be randomized to receive pembrolizumab
plus SBRT versus SBRT alone. Additionally, the REPORT trial is
aiming to study the outcomes of patients with recurrent HNSCC
who have had prior radiotherapy and will randomize patients with
receive with nivolumab alone or nivolumab plus radiation therapy
delivered to a total dose of 60 Gy in 1.5 Gy fractions BID for 4 weeks
(88). Similarly, a phase II trial currently accruing patients will
randomize patients to reirradiation only of 1.2 Gy BID for 5
weeks versus pembrolizumab in addition to reirradiation in
patients with locoregional inoperable recurrent HNSCC or second
primary HNSCC (Table 1) (89).

Potential Toxicities
There is a paucity of published clinical data as noted above
regarding the efficacy and survival outcomes in patients with
HNSCC treated with immunotherapy and radiation therapy.
There is more available data however, regarding the safety profile
and potential toxicities of combining immunotherapy and
radiation therapy. The GORTEC 2015-01 phase II trial accrued
133 patients with inoperable stage III-IVb HNSCC who were
unable to tolerate cisplatin and randomized them to receive
either cetuximab with RT or pembrolizumab and RT. Although
the efficacy results are still pending, they found that the tolerance
of pembrolizumab plus radiation was better when compared to
cetuximab plus radiation (90). However, they found that
treatment-related mortality was slightly higher in both arms
when compared to previous GORTEC studies, which may be
confounded by differing baseline characteristics, as these the
inclusion criteria of this study included patients who cannot
tolerate cisplatin, which could be a surrogate for poorer
baseline function.

Wise-Draper et a. recently reported the preliminary safety
data of the ongoing phase II trial (NCT02641093) which enrolled
patients with locally advanced resectable HNSCC. These patients
received one dose of pembrolizumab followed by surgery and all
patients received either adjuvant concurrent pembrolizumab
plus radiation therapy versus pembrolizumab plus cisplatin
plus radiation therapy in patients with high risk features. At
the interim analysis, no grade 4 toxicities or dose limiting
toxicities were observed (91).

Furthermore, the safety of pembrol izumab with
chemoradiation in locally advanced HNSCC was reported by
Powell et al. who showed that all patients completed radiation
therapy without delay, while 3 patients of 27 discontinued
immunotherapy due to grade 2 peripheral neuropathy, grade 1
Lhermitte syndrome, or grade 3 elevation in liver enzymes (92).
In RTOG 3504 trial, patients with intermediate risk HNSCC
were treated with nivolumab in addition to chemoradiation. At
the time of the interim analysis, 3 of the 17 patients discontinued
cisplatin, 3 patients discontinued nivolumab for known side-
effects of the drug, and only one grade 4 adverse event of elevated
amylase was seen but resolved (93). These trials above support
the safety of combined immunotherapy with radiation therapy.
In the oligometastatic setting, combination of radiation therapy
with immunotherapy does not appear to have increased rates of
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immune-related adverse events or significantly effect quality of
life (94, 95).

So far, in HNSCC and in other disease sites, immunotherapy
plus radiation therapy exhibits a favorable toxicity profile and is
well tolerated. Specifically, the safety of SBRT combined with
immunotherapy in metastatic HNSCC was studied in a phase II
trial where patients either received nivolumab alone or
nivolumab with SBRT, which was delivered as 9 Gy x 3
fractions. They found that the rates of grade 3 or greater
toxicities were low in both arms (96). Overall, these studies
support that immunotherapy combined with radiation therapy is
well-tolerated in HNSCC patients (Table 2).
CONCLUSION

Radiation therapy remains at the center of head and neck cancer
treatment. With improvements in treatment delivery, radiation
therapy has become an effective ablative modality for head and
neck cancers. Further, radiation appears to play a large role in
Frontiers in Oncology | www.frontiersin.org 8132
activating immune responses and may be the spark needed to
improve the efficacy of novel immune checkpoint inhibitors
coming down the pipeline. With improved systemic therapies,
local noninvasive modalities such as radiation are critical in
overcoming resistance in head and neck cancer. Data from
ongoing trials and future studies are needed to better
understand the mechanism of radiation and immune
checkpoint inhibitors, how best to sequence the therapies, what
dose of radiation is most optimal, and what areas should be
targeted. As data further matures in head and neck cancer
research, it will become even more critical that these patients
are discussed and treated in a multidisciplinary fashion.
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55. Grégoire V, Ruifrok ACC, Price RE, BrockWA, HittelmanWN, Plunkett WK,
et al. Effect of Intra-Peritoneal Fludarabine on Rat Spinal Cord Tolerance to
Fractionated Irradiation. Radiother Oncol (1995) 36:50–5. doi: 10.1016/0167-
8140(95)01563-V

56. Dewan MZ, Galloway AE, Kawashima N, Dewyngaert JK, Babb JS, Formenti
SC, et al. Fractionated But Not Single-Dose Radiotherapy Induces an
Immune-Mediated Abscopal Effect When Combined With Anti-CTLA-4
Antibody. Clin Cancer Res (2009) 15:5379–88. doi: 10.1158/1078-
0432.CCR-09-0265

57. Amini A, Jones BL, Yeh N, Rusthoven CG, Armstrong H, Kavanagh BD.
Survival Outcomes of Whole-Pelvic Versus Prostate-Only Radiation Therapy
for High-Risk Prostate Cancer Patients With Use of the National Cancer Data
Base. Int J Radiat Oncol Biol Phys (2015) 93:1052–63. doi: 10.1016/
j.ijrobp.2015.09.006

58. Blanchard P, Faivre L, Lesaunier F, Salem N, Mesgouez-Nebout N, Deniau-
Alexandre E, et al. Outcome According to Elective Pelvic Radiation Therapy
in Patients With High-Risk Localized Prostate Cancer: A Secondary Analysis
of the GETUG 12 Phase 3 Randomized Trial. Int J Radiat Oncol Biol Phys
(2016) 94:85–92. doi: 10.1016/j.ijrobp.2015.09.020

59. Lawton CA, DeSilvio M, Roach M, Uhl V, Kirsch R, Seider M, et al. An Update
of the Phase III Trial Comparing Whole Pelvic to Prostate Only Radiotherapy
and Neoadjuvant to Adjuvant Total Androgen Suppression: Updated Analysis
of RTOG 94-13, With Emphasis on Unexpected Hormone/Radiation
Interactions. Int J Radiat Oncol Biol Phys (2007) 69:646–55. doi: 10.1016/
j.ijrobp.2007.04.003

60. Rwigema JCM, Chen AM, Wang PC, Lee JM, Garon E, Lee P. Incidental
Mediastinal Dose Does Not Explain Low Mediastinal Node Recurrence Rates
in Patients With Early-Stage NSCLC Treated With Stereotactic Body
Radiotherapy. In: Clinical Lung Cancer. Elsevier Inc. p. 287–93.
doi: 10.1016/j.cllc.2014.01.004

61. Marciscano AE, Ghasemzadeh A, Nirschl TR, Theodros D, Kochel CM,
Francica BJ, et al. Elective Nodal Irradiation Attenuates the Combinatorial
Efficacy of Stereotactic Radiation Therapy and Immunotherapy. Clin Cancer
Res (2018) 24:5058–71. doi: 10.1158/1078-0432.CCR-17-3427

62. Lugade AA, Moran JP, Gerber SA, Rose RC, Frelinger JG, Lord EM. Local
Radiation Therapy of B16 Melanoma Tumors Increases the Generation of
Tumor Antigen-Specific Effector Cells That Traffic to the Tumor. J Immunol
(2005) 174:7516–23. doi: 10.4049/jimmunol.174.12.7516

63. Apetoh L, Ghiringhelli F, Tesniere A, Obeid M, Ortiz C, Criollo A, et al. Toll-
Like Receptor 4-Dependent Contribution of the Immune System to
Anticancer Chemotherapy and Radiotherapy. Nat Med (2007) 13:1050–9.
doi: 10.1038/nm1622

64. Takeshima T, Chamoto K, Wakita D, Ohkuri T, Togashi Y, Shirato H, et al.
Local Radiation Therapy Inhibits Tumor Growth Through the Generation of
Tumor-Specific CTL: Its Potentiation by Combination With TH1 Cell
Therapy. Cancer Res (2010) 70:2697–706. doi: 10.1158/0008-5472.CAN-09-
2982

65. Chamoto K, Wakita D, Narita Y, Zhang Y, Noguchi D, Ohnishi H, et al. An
Essential Role of Antigen-Presenting Cell/T-Helper Type 1 Cell-Cell
Interactions in Draining Lymph Node During Complete Eradication of
Class II-Negative Tumor Tissue by T-Helper Type 1 Cell Therapy. Cancer
Res (2006) 66:1809–17. doi: 10.1158/0008-5472.CAN-05-2246

66. Wakita D, Chamoto K, Zhang Y, Narita Y, Noguchi D, Ohnishi H, et al. An
Indispensable Role of Type-1 Ifns for Inducing CTL-Mediated Complete
Eradication of Established Tumor Tissue by Cpg-Liposome Co-Encapsulated
With Model Tumor Antigen. Int Immunol (2006) 18(3):425–34. doi: 10.1093/
intimm/dxh381
Frontiers in Oncology | www.frontiersin.org 10134
67. Seiwert TY, Burtness B, Mehra R, Weiss J, Berger R, Eder JP, et al. Safety and
Clinical Activity of Pembrolizumab for Treatment of Recurrent or Metastatic
Squamous Cell Carcinoma of the Head and Neck (KEYNOTE-012): An
Open-Label, Multicentre, Phase 1b Trial. Lancet Oncol (2016) 17:956–65.
doi: 10.1016/S1470-2045(16)30066-3

68. Chow LQM, Haddad R, Gupta S, Mahipal A, Mehra R, Tahara M, et al.
Antitumor Activity of Pembrolizumab in Biomarker-Unselected Patients
With Recurrent and/or Metastatic Head and Neck Squamous Cell
Carcinoma: Results From the Phase Ib KEYNOTE-012 Expansion Cohort.
J Clin Oncol (2016) 34:3838–45. doi: 10.1200/JCO.2016.68.1478

69. Mehra R, Seiwert TY, Gupta S, Weiss J, Gluck I, Eder JP, et al. Efficacy and
Safety of Pembrolizumab in Recurrent/Metastatic Head and Neck Squamous
Cell Carcinoma: Pooled Analyses After Long-Term Follow-Up in KEYNOTE-
012. Br J Cancer (2018) 119:153–9. doi: 10.1038/s41416-018-0131-9

70. Ferris RL, Blumenschein G, Fayette J, Guigay J, Colevas AD, Licitra L, et al.
Nivolumab for Recurrent Squamous-Cell Carcinoma of the Head and Neck.
N Engl J Med (2016) 375:1856–67. doi: 10.1056/NEJMoa1602252

71. Anderson AC, Joller N, Kuchroo VK. Lag-3, Tim-3, and TIGIT: Co-Inhibitory
Receptors With Specialized Functions in Immune Regulation. Immunity
(2016) 44:989–1004. doi: 10.1016/j.immuni.2016.05.001

72. Wang J, Wang H, Qian H. Biological Effects of Radiation on Cancer Cells.Mil
Med Res (2018) 5:1–10. doi: 10.1186/s40779-018-0167-4

73. Formenti SC, Demaria S. Systemic Effects of Local Radiotherapy. Lancet Oncol
(2009) 10:718–26. doi: 10.1016/S1470-2045(09)70082-8

74. Zhang B, Bowerman NA, Salama JK, Schmidt H, Spiotto MT, Schietinger A,
et al. Induced Sensitization of Tumor Stroma Leads to Eradication of
Established Cancer by T Cells. J Exp Med (2007) 204:49–55. doi: 10.1084/
jem.20062056

75. Demaria S, Kawashima N, Yang AM, Devitt ML, Babb JS, Allison JP, et al.
Immune-Mediated Inhibition of Metastases After Treatment With Local
Radiation and CTLA-4 Blockade in a Mouse Model of Breast Cancer. Clin
Cancer Res (2005) 11:728–34.

76. Ruocco MG, Pilones KA, Kawashima N, Cammer M, Huang J, Babb JS, et al.
Suppressing T Cell Motility Induced by Anti-CTLA-4 Monotherapy Improves
Antitumor Effects. J Clin Invest (2012) 122:3718–30. doi: 10.1172/JCI61931

77. Belcaid Z, Phallen JA, Zeng J, See AP, Mathios D, Gottschalk C, et al. Focal
Radiation Therapy Combined With 4-1BB Activation and CTLA-4 Blockade
Yields Long-Term Survival and a Protective Antigen-Specific Memory
Response in a Murine Glioma Model. PloS One (2014) 9:1–9. doi: 10.1371/
journal.pone.0101764

78. Nghiem P, Bhatia S, Brohl AS, Hamid O, Mehnert JM, Terheyden P, et al.
Two-Year Efficacy and Safety Update From JAVELIN Merkel 200 Part a: A
Registrational Study of Avelumab in Metastatic Merkel Cell Carcinoma
Progressed on Chemotherapy. J Clin Oncol (2018) 36:9507–7. doi: 10.1200/
jco.2018.36.15_suppl.9507

79. Cisplatin, Intensity-Modulated Radiation Therapy, and Pembrolizumab in
Treating Patients With Stage III-IV Head and Neck Squamous Cell Carcinoma.
Available at: https://clinicaltrials.gov/ct2/show/NCT02775812 (Accessed June
7, 2020).

80. von der Grün J, Rödel F, Brandts C, Fokas E, Guckenberger M, Rödel C, et al.
Targeted Therapies and Immune-Checkpoint Inhibition in Head and Neck
Squamous Cell Carcinoma: Where do We Stand Today and Where to Go?
Cancers (Basel) (2019) 11:1–23. doi: 10.3390/cancers11040472

81. Bonner JA, Harari PM, Giralt J, Azarnia N, Shin DM, Cohen RB, et al.
Radiotherapy Plus Cetuximab for Squamous-Cell Carcinoma of the Head and
Neck. N Engl J Med (2006) 354:567–78. doi: 10.1056/NEJMoa053422

82. Gillison ML, Trotti AM, Harris J, Eisbruch A, Harari PM, Adelstein DJ, et al.
Radiotherapy Plus Cetuximab or Cisplatin in Human Papillomavirus-Positive
Oropharyngeal Cancer (NRG Oncology RTOG 1016): A Randomised,
Multicentre, Non-Inferiority Trial. Lancet (2019) 393:40–50. doi: 10.1016/
S0140-6736(18)32779-X

83. Mehanna H, Robinson M, Hartley A, Kong A, Foran B, Fulton-Lieuw T, et al.
Radiotherapy Plus Cisplatin or Cetuximab in Low-Risk Human
Papillomavirus-Positive Oropharyngeal Cancer (De-Escalate HPV): An
Open-Label Randomised Controlled Phase 3 Trial. Lancet (2019) 393:51–
60. doi: 10.1016/S0140-6736(18)32752-1

84. Saloura V, Cohen EEW, Licitra L, Billan S, Dinis J, Lisby S, et al. An Open-
Label Single-Arm, Phase II Trial of Zalutumumab, a Human Monoclonal
July 2021 | Volume 11 | Article 592319

https://doi.org/10.1158/0008-5472.CAN-06-4250
https://doi.org/10.1073/pnas.0308102100
https://doi.org/10.1038/sj.onc.1205422
https://doi.org/10.1016/0167-8140(95)01563-V
https://doi.org/10.1016/0167-8140(95)01563-V
https://doi.org/10.1158/1078-0432.CCR-09-0265
https://doi.org/10.1158/1078-0432.CCR-09-0265
https://doi.org/10.1016/j.ijrobp.2015.09.006
https://doi.org/10.1016/j.ijrobp.2015.09.006
https://doi.org/10.1016/j.ijrobp.2015.09.020
https://doi.org/10.1016/j.ijrobp.2007.04.003
https://doi.org/10.1016/j.ijrobp.2007.04.003
https://doi.org/10.1016/j.cllc.2014.01.004
https://doi.org/10.1158/1078-0432.CCR-17-3427
https://doi.org/10.4049/jimmunol.174.12.7516
https://doi.org/10.1038/nm1622
https://doi.org/10.1158/0008-5472.CAN-09-2982
https://doi.org/10.1158/0008-5472.CAN-09-2982
https://doi.org/10.1158/0008-5472.CAN-05-2246
https://doi.org/10.1093/intimm/dxh381
https://doi.org/10.1093/intimm/dxh381
https://doi.org/10.1016/S1470-2045(16)30066-3
https://doi.org/10.1200/JCO.2016.68.1478
https://doi.org/10.1038/s41416-018-0131-9
https://doi.org/10.1056/NEJMoa1602252
https://doi.org/10.1016/j.immuni.2016.05.001
https://doi.org/10.1186/s40779-018-0167-4
https://doi.org/10.1016/S1470-2045(09)70082-8
https://doi.org/10.1084/jem.20062056
https://doi.org/10.1084/jem.20062056
https://doi.org/10.1172/JCI61931
https://doi.org/10.1371/journal.pone.0101764
https://doi.org/10.1371/journal.pone.0101764
https://doi.org/10.1200/jco.2018.36.15_suppl.9507
https://doi.org/10.1200/jco.2018.36.15_suppl.9507
https://clinicaltrials.gov/ct2/show/NCT02775812
https://doi.org/10.3390/cancers11040472
https://doi.org/10.1056/NEJMoa053422
https://doi.org/10.1016/S0140-6736(18)32779-X
https://doi.org/10.1016/S0140-6736(18)32779-X
https://doi.org/10.1016/S0140-6736(18)32752-1
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Hui et al. Overcoming Resistance in Head Neck Cancer
Anti-EGFR Antibody, in Patients With Platinum-Refractory Squamous Cell
Carcinoma of the Head and Neck. Cancer Chemother Pharmacol (2014)
73:1227–39. doi: 10.1007/s00280-014-2459-z

85. Guigay J, Fayette J, Mesia R, Lafond C, Saada-Bouzid E, Geoffrois L, et al.
Tpextreme Randomized Trial: Tpex Versus Extreme Regimen in 1st Line
Recurrent/Metastatic Head and Neck Squamous Cell Carcinoma (R/M
HNSCC). J Clin Oncol (2019) 37:6002–2. doi: 10.1200/jco.2019.37.15_suppl.6002

86. SBRT +/- Pembrolizumab in Patients With Local-Regionally Recurrent or
Second Primary Head and Neck Carcinoma. Available at: https://clinicaltrials.
gov/ct2/show/NCT03546582 (Accessed June 8, 2020).

87. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF,
et al. Safety, Activity, and Immune Correlates of Anti–PD-1 Antibody in
Cancer. N Engl J Med (2012) 366:2443–54. doi: 10.1056/NEJMoa1200690

88. Reirradiation and Programmed Cell Death Protein 1 (PD-1) Blockade on
Recurrent Squamous Cell Head and Neck Tumors. Available at: https://
c l in ica l t r i a l s . gov/c t2 / show/NCT03317327? term=REPORT%2C
+nivolumab&draw=2&rank=1 (Accessed June 8, 2020).

89. Reirradiation With Pembrolizumab in Locoregional Inoperable Recurrence or
Second Primary Squamous Cell CA of the Head and Neck. Available at: https://
clinicaltrials.gov/ct2/show/NCT02289209 (Accessed June 8, 2020).

90. Sun XS, Sire C, Tao Y, Martin L, Alfonsi M, Prevost JB, et al. A Phase II
Randomized Trial of Pembrolizumab Versus Cetuximab, Concomitant With
Radiotherapy (RT) in Locally Advanced (LA) Squamous Cell Carcinoma of
the Head and Neck (SCCHN): First Results of the GORTEC 2015-01
“Pembrorad” Trial. J Clin Oncol (2018) 36:6018–8. doi: 10.1200/
jco.2018.36.15_suppl.6018

91. Wise-Draper TM, Old MO, Worden FP, O’Brien PE, Cohen EEW, Dunlap N,
et al. Phase II Multi-Site Investigation of Neoadjuvant Pembrolizumab and
Adjuvant Concurrent Radiation and Pembrolizumab With or Without
Cisplatin in Resected Head and Neck Squamous Cell Carcinoma. J Clin
Oncol (2018) 36:6017–7. doi: 10.1200/jco.2018.36.15_suppl.6017

92. Powell SF, GitauMM, Sumey CJ, Reynolds JT, Lohr M, McGraw S, et al. Safety
of Pembrolizumab With Chemoradiation (CRT) in Locally Advanced
Frontiers in Oncology | www.frontiersin.org 11135
Squamous Cell Carcinoma of the Head and Neck (LA-SCCHN). J Clin
Oncol (2017) 35:6011–1. doi: 10.1200/jco.2017.35.15_suppl.6011

93. Gillison ML, Ferris RL, Harris J, Colevas AD, Mell LK, Kong C, et al. Safety
and Disease Control Achieved With the Addition of Nivolumab (Nivo) to
Chemoradiotherapy (CRT) for Intermediate (IR) and High-Risk (HR) Local-
Regionally Advanced Head and Neck Squamous Cell Carcinoma (HNSCC):
RTOG Foundation 3504. J Clin Oncol (2019) 37:6073–3. doi: 10.1200/
jco.2019.37.15_suppl.6073

94. Bauml JM, Mick R, Ciunci C, Aggarwal C, Davis C, Evans T, et al.
Pembrolizumab After Completion of Locally Ablative Therapy for
Oligometastatic Non-Small Cell Lung Cancer: A Phase 2 Trial. JAMA Oncol
(2019) 5:1283–90. doi: 10.1001/jamaoncol.2019.1449

95. Chen L, Douglass J, Kleinberg L, Ye X, Marciscano AE, Forde PM, et al.
Concurrent Immune Checkpoint Inhibitors and Stereotactic Radiosurgery for
Brain Metastases in Non-Small Cell Lung Cancer, Melanoma, and Renal Cell
Carcinoma. Int J Radiat Oncol Biol Phys (2018) 100:916–25. doi: 10.1016/
j.ijrobp.2017.11.041

96. McBride SM, Sherman EJ, Tsai CJ, Baxi SS, Aghalar J, Eng J, et al. A Phase II
Randomized Trial of Nivolumab With Stereotactic Body Radiotherapy
(SBRT) Versus Nivolumab Alone in Metastatic (M1) Head and Neck
Squamous Cell Carcinoma (HNSCC). J Clin Oncol (2018) 36:6009–9.
doi: 10.1200/jco.2018.36.15_suppl.6009

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Hui, Chau, Gan, Stokes, Karam and Amini. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.
July 2021 | Volume 11 | Article 592319

https://doi.org/10.1007/s00280-014-2459-z
https://doi.org/10.1200/jco.2019.37.15_suppl.6002
https://clinicaltrials.gov/ct2/show/NCT03546582
https://clinicaltrials.gov/ct2/show/NCT03546582
https://doi.org/10.1056/NEJMoa1200690
https://clinicaltrials.gov/ct2/show/NCT03317327?term=REPORT%2C+nivolumab&draw=2&amp;rank=1
https://clinicaltrials.gov/ct2/show/NCT03317327?term=REPORT%2C+nivolumab&draw=2&amp;rank=1
https://clinicaltrials.gov/ct2/show/NCT03317327?term=REPORT%2C+nivolumab&draw=2&amp;rank=1
https://clinicaltrials.gov/ct2/show/NCT02289209
https://clinicaltrials.gov/ct2/show/NCT02289209
https://doi.org/10.1200/jco.2018.36.15_suppl.6018
https://doi.org/10.1200/jco.2018.36.15_suppl.6018
https://doi.org/10.1200/jco.2018.36.15_suppl.6017
https://doi.org/10.1200/jco.2017.35.15_suppl.6011
https://doi.org/10.1200/jco.2019.37.15_suppl.6073
https://doi.org/10.1200/jco.2019.37.15_suppl.6073
https://doi.org/10.1001/jamaoncol.2019.1449
https://doi.org/10.1016/j.ijrobp.2017.11.041
https://doi.org/10.1016/j.ijrobp.2017.11.041
https://doi.org/10.1200/jco.2018.36.15_suppl.6009
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Frontiers in Oncology | www.frontiersin.org

Edited by:
Davide Melisi,

University of Verona, Italy

Reviewed by:
Vito Carlo Alberto Caponio,

University of Foggia, Italy
Chandra Shekhar Dravid,

Tata Memorial Hospital, India

*Correspondence:
Ammar A. Chaudhry
achaudhry@coh.org

Specialty section:
This article was submitted to

Head and Neck Cancer,
a section of the journal
Frontiers in Oncology

Received: 08 December 2020
Accepted: 08 June 2021
Published: 07 July 2021

Citation:
Gul M, Bonjoc K-JC, Gorlin D,

Wong CW, Salem A, La V,
Filippov A, Chaudhry A, Imam MH

and Chaudhry AA (2021) Diagnostic
Utility of Radiomics in Thyroid and

Head and Neck Cancers.
Front. Oncol. 11:639326.

doi: 10.3389/fonc.2021.639326

REVIEW
published: 07 July 2021

doi: 10.3389/fonc.2021.639326
Diagnostic Utility of Radiomics in
Thyroid and Head and Neck Cancers
Maryam Gul1, Kimberley-Jane C. Bonjoc2, David Gorlin2, Chi Wah Wong2,
Amirah Salem2, Vincent La2, Aleksandr Filippov2, Abbas Chaudhry1,
Muhammad H. Imam3 and Ammar A. Chaudhry2*

1 Amaze Research Foundation, Department of Biomarker Discovery, Anaheim, CA, United States, 2 Department of Diagnostic
and Interventional Radiology, City of Hope National Medical Center, Duarte, CA, United States, 3 Florida Cancer Specialists,
Department of Oncology, Orlando, FL, United States

Radiomics is an emerging field in radiology that utilizes advanced statistical data
characterizing algorithms to evaluate medical imaging and objectively quantify
characteristics of a given disease. Due to morphologic heterogeneity and genetic
variation intrinsic to neoplasms, radiomics have the potential to provide a unique insight
into the underlying tumor and tumor microenvironment. Radiomics has been gaining
popularity due to potential applications in disease quantification, predictive modeling,
treatment planning, and response assessment – paving way for the advancement of
personalized medicine. However, producing a reliable radiomic model requires careful
evaluation and construction to be translated into clinical practices that have varying
software and/or medical equipment. We aim to review the diagnostic utility of radiomics in
otorhinolaryngology, including both cancers of the head and neck as well as the thyroid.

Keywords: radiomics, head and neck cancer, thyroid cancer, imaging biomakers, immunotherapy resistance
INTRODUCTION

Head and neck cancer (HNC) malignancies include cancers within the upper aerodigestive tract –
anatomically including cancers of the mucosal linings of the sinuses and air pathways from the
thoracic inlet up to the skull base (1). This group of malignancies is the seventh most common
cancer worldwide and the ninth most common cancer within the United States (1). Considering the
various anatomical regions pertaining to HNC, cutaneous neoplasms of the head and neck (e.g.
melanoma, cutaneous squamous cell carcinomas, basal cell carcinomas, etc.) are not discussed in
this article. Instead, malignant neoplasms of the thyroid often present with similar clinical
symptoms as head and neck cancers, and both are often managed initially by
otorhinolaryngologists. The goal of this review is to illustrate the diagnostic utility the field of
radiomics can offer in differentiating pathology at the nascent setting of presentation.

Radiomics - “radi” deriving from the science of radiology and “-omics” to indicate mapping of
the human genome (2–4) - is a rapidly evolving field that aims to provide non-invasive ability to
comprehensively characterize tissues and organs from features extracted from standard-of-care
medical imaging (5), including techniques such as computed tomography (CT), positron emission
tomography (PET), magnetic resonance imaging (MRI), and so on. It is important to further
explore the implications and significance of the clinical knowledge deduced from radiological
imaging to potentiate developing a radiomic pipeline that allows for improving diagnosis
development and clinical decision making when treating cancer.
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Technological advancements in computer hardware and
artificial intelligence enable an integrative analysis of clinical,
radiomic, and bio-genomic data for cancer discovery (6–9). In
the case of radiomics, vast numbers of quantitative features can
be derived from multi-modal medical images using
computational methods (3, 10). Phenotypes represented using
radiomic features may have prognostic and diagnostic value, and
potentially improve clinical decision support in cancer treatment
(6, 11, 12).

Radiomics can be performed using multimodal (CT, PET,
MRI, and ultrasound) and/or multiparametric (multiple MRI
sequences, e.g., diffusion MRI, perfusion MRI techniques (7–9,
13–15). In a typical radiomic workflow (Figure 1), we first
perform image registration and pre-processing, then image
segmentation and annotation. Next, radiomic features are
calculated using computational methods. A variety of tools are
available to streamline the process (16–24). Radiomic features
are mostly sub-visual and can be coarsely grouped into intensity,
shape, and texture. In addition, before calculating the radiomic
values, we can apply spatial filters such as wavelets and Laplacian
of Gaussian filters to extract a variety of derivative and spatial-
frequency information.

The radiomic features are then integrated with other data
sources for prognostic (7–9, 25–39), treatment response (40–42),
histopathological (43–48), or radiogenomic (11, 49–51) analyses
using statistical or machine learning modeling techniques.
HEAD AND NECK CANCER

Oncologic disease developing in the mucosal surfaces of
anatomic subsites, such as the nasopharynx, oropharynx,
hypopharynx, oral cavity, larynx, paranasal sinuses, and
salivary glands are considered HNC (Figure 2) (52, 53). The
International Classification of Diseases, Tenth Revision (ICD-10)
reports that oral and pharyngeal cancer accounts for
approximately 2.3% of cancers within the United States. Oral
and pharyngeal cancer has a five-year survival of 27.8% and is
internationally considered to be the sixth most common cancer
(54, 55). Risks of developing this disease are commonly
associated with the consumption of tobacco and alcoholic
products. Therefore, 74% of the general population that
practice tobacco and alcohol consumption have a greater risk
Frontiers in Oncology | www.frontiersin.org 2137
of developing oral and pharyngeal cancer, with an estimated 80%
of that population being male and 61% being female (54).

Research has also indicated an etiological association of head
and neck cancer to viruses (56). The human papillomavirus
(HPV), a virus known to cause common conditions such as
warts, has developed a reputation for its association with cervical
and oropharyngeal cancers (53). Therefore, when diagnosing
HNC, patients will often be screened for HPV infection as a
potential cause of disease. There are over 170 different types of
HPV’s, categorized by the virus’s characteristics such as location
(mucosal or cutaneous anatomical sites), response to an external
stimulus, and its risk for malignancy. The mucosal subgroup of
HPV is primarily associated with HNC as this subgroup contains
over 40 subtypes that are considered to be sexually transmitted
diseases (STD) and predominantly infect the reproductive and
respiratory tracts (53).

Additional etiological associations to HNC include the
Epstein-Barr virus (EBV), which is often associated with many
different types of human cancers, including those of lymphoid
and epithelial cells (57). Considered one of the most common
human viruses, EBV infection typically spreads undetected and
can reside within the host over a span of ages in which infection
is dependent on several factors such as genetic predisposition,
diet, living conditions, hygiene, and sexual behavior (53, 58). To
further validate the commonality of EBV infection, statistics
show by adulthood approximately 90-95% of the population will
sustain a permanent, asymptomatic infection of EBV (53, 57). As
a member of the Herpesviridae family, alternatively known as
human herpesvirus type 4 (HHV4) (58), post-primary infection
of EBV is permanent and can subsequently result in the virus
shedding into genital and salivary secretions that increase the
risk of carcinogenesis into HNSSC.

Currently, radiomics can predict some tumoral characteristics
linked to patient survival in HNC (Table 1). In a study performed
by Mukherjee et.al., radiomic features were analyzed via CT
imaging to non-invasively predict the histopathological features
of HNSCC. This study was performed retrospectively, utilizing CT
images and data from clinically diagnosed patients with HNSCC.
An institutional test cohort (n = 71) and an HNSCC training
cohort derived from The Cancer Genome Atlus (TCGA) (n = 113)
were analyzed within this study (43). A machine learning model,
trained with 2,131 extracted radiomic features that were utilized to
predict tumor histopathological characteristics, was applied to the
FIGURE 1 | Typical radiomic workflow.
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training and test cohort. These features included intensity, size
and shape, texture, and filters (43). The cancer characteristics
investigated related to these features were tumor grade, perineural
invasion, lymphovascular invasion, extracapsular spread, and
HPV status (p16 expression) (43). For dimensionality reduction
and classification of these features, principal component analysis,
and regularized regression was applied, respectively (43). Results
from this study indicated that the radiomic model produced by
Mukherjee et al. showed strong-to-moderate power in predictive
prognosis for patients diagnosed with HNSCC, which was further
validated in an external institutional testing cohort. In other
words, this study concluded that radiomic CT models have
significant value in predicting features typically indicating
pathological assessment of HNSCC (43). Many of these
Frontiers in Oncology | www.frontiersin.org 3138
pathologic features are specific to the individual regions of the
head and neck and will therefore be reviewed by region (Figure 2).

Nasopharynx
Typically viewed as an endemic within the southern Chinese
population, undifferentiated nasopharyngeal carcinoma (NPC)
has the strongest association with EBV infection (57, 58). The
World Health Organization (WHO) has characterized NPC into
two primary histological types: keratinizing squamous cell
carcinoma (Type I) and non-keratinizing squamous cell
carcinoma (Type II and III). The undifferentiated histological
subtype of NPC, such as Type II and III, has the closest
association with EBV infection, which particularly affects
regions such as Hong Kong, southern regions of China, and
FIGURE 2 | Anatomy of ear, nose, and throat, sagittal view.
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Southeast Asia (58). Additional risks include are genetic
predisposition and dietary factors. It is important to note that
although EBV infection is discovered in nearly all
undifferentiated NPC cases, EBV is not detected in other head
and neck cancers, excluding salivary gland tumors (58).

Exploring the application of Radiomics to
Nasopharyngeal Cancer
In a study performed by Zhang et. al., multiparametric magnetic
resonance imaging (MRI)-based radiomics was utilized as a
prognostic factor in patients with advanced NPC. For this
study, 118 advanced NPC patients were enrolled to determine
the training cohort (n = 88) and the validation cohort (n = 30). A
total of 970 radiomic features were extracted from two
parameters: T2-weighted (T2-w) and contrast-enhanced T1-
weighted (CET1-w) MRI images. Application of LASSO
regression was utilized to select features for progression-free
survival (PFS) nomograms and the association between radiomic
features and clinical data was evaluated via heatmaps (37). The
results indicated that there are significant associations between
the radiomic features and PFS. For example, radiomic signatures
derived from joint CET1-w and T2-w images displayed
improved prognostic performance when compared to
signatures derived from the CET1-w and T2-w parameters
separately. These findings were confirmed in the validation
cohort, suggesting the application of radiomics utilizing
multiparametric MRI-based radiomics provided improved
prognosis in advanced NPC. Nonetheless, there is a need to
research features that can be utilized in radiomic application to
profile these types of advanced NPC tumors. Producing these
findings will allow for treatment advancement and precise
clinical risk stratification (20).

Exploring the application of Radiomics to the
Epstein-Barr Virus in Head and Neck Cancer
EBV in relation to HNSSC has the strongest association with
nasopharyngeal carcinoma (NPC). In a study performed by Yang
Frontiers in Oncology | www.frontiersin.org 4139
K. et. al., the study aimed to develop and validate a nomogram
that incorporated clinical data, gross tumor volume of the
nasopharynx (GTVnx) and lymph nodes (GTVnd) radiomic
signatures, and multiparametric based therapeutic dose-volume
histogram (DVH) signatures by Least Absolute Shrinkage and
Selection Operator (LASSO) to predict progression-free survival
(PFS) in patients diagnosed with locoregionally advanced NPC.
The study concluded that the developed multidimensional
nomogram incorporating radiomic signatures of lymph nodes,
planning scores, and tumor-node-metastasis stage showed
efficient predictive accuracy in determining PFS. However,
incorporating pre-treatment plasma EBV-DNA status
improved the predictive accuracy of the nomogram model.
This implication was investigated via a sub-group analysis of
EBV-DNA (59). This data was confirmed by the study’s
validation cohort, and as a result, indicated that consideration
of pre-treatment EBV-DNA was a useful prognostic biomarker
in NPC (59). Therefore, there is potential improvement in NPC
screening when considering radiomics and EBV-status.

Oropharynx
Oropharyngeal cancer (OPC) is one of the most frequent HNC,
with squamous cell carcinoma (SCC) accounting for
approximately 90% of diagnosed cases (60). The oropharynx is
a region in the pharynx located behind the oral cavity, including
structures such as the soft palate and tonsils. This cancer has a 5-
year-survival rate of approximately 50% (60). The high mortality
rate is not always due to the malignancy or intensity of the
tumor, but simply due to late detection (60). OPC tumors rarely
present symptoms that seem concerning upon initial screening.
For example, symptoms typically include a sore throat or
difficulty swallowing (60). Therefore, the tumor is usually
detected late with little to no time to treat the disease, resulting
in low survival rates and death shortly after diagnosis. OPC can
also be characterized by its aggressive tumors, with a 70%
prevalence of cervical metastases and the ability to disseminate
quickly (60). Risk factors for oropharyngeal cancer include a
TABLE 1 | Summary of radiomic applications in head and neck.

Classification Prediction Target Radiomic and Clinical Features Source

Nasopharynx Progression free survival Multiparametric MRI features (37)
Progression free survival EBV DNA, Gross tumor volume (GTVnx), lymph node (GTVnd), Dose Volume

Histogram
(59)

Oropharynx HPV status CT imaging: gross tumor volume (GTV) (63)
HPV status CE-CT imaging: gross tumor volume (GTV): high intensity, small lesions, greater

sphericity, heterogeneity
(64)

Local tumor control status post chemoradiation CT imaging: shape, intensity, texture, wavelet transformation, heterogeneity, HPV
status

(32)

Hypopharynx Treatment response PET imaging: surface to volume ratio, spherical disproportion, TGV, local homogeneity,
variance

(70)

Disease progression CE-CT and NC-CT image features, clinical identification of peripheral Invasion (71)
Larynx T category prediction radiomics model CT imaging: gradient skewness and mean, least axis, sphericity, wavelet kurtosis (72)

Overall survival CT texture features (73)
Treatment response FLT PET tumor heterogeneity (28)
Local control CT imaging: entropy, kurtosis skewness, standard deviation (74)

Parotid gland Differentiation of MALToma from benign
lymphoepithelial lesion

CT based hybrid radiomic and clinical demographic model (82)

Metastatic PDL-1 expression FDG PET textural features, HPV status, Ki-67 expression (87)
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history of smoking cigarettes and the presence of an HPV
infection (61).

The association between HPV status and HNSCC involves
distinct tumor morphology, younger patient’s age when
presented, and positive response to radiotherapy treatment.
HPV-positive status is a significant prognostic feature
regarding favorable outcomes and overall survival in patients
diagnosed with oropharyngeal squamous cell carcinoma
(OPSCC) (5). This is because HPV-positivity is considered a
strong, independent prognostic feature when diagnosing
OPSCC. HPV status of the tumor is determined by analyzing
p16 positivity using immunohistochemistry. The cyclin-
dependent kinase inhibitor p16 is a tumor suppressor gene
that is often overexpressed in HPV mediated cancers and leads
to an overall better course of disease (62).

In a study performed by Leijenaar et. al., the study examined
that HPV-positive OPSCC is biologically and clinically different
than HPV-negative cases. The study then approached
understanding these significant differences through radiomics
to evaluate the HPV status of OPSCC (63). The study included
four independent cohorts that encompassed a total of 778
patients diagnosed with OPSCC. Of the 778 cases, the data was
randomly assigned for the radiomic model training (n = 628) and
validation (n = 150) cohorts. From pre-treatment CT imaging,
902 radiomic features were extracted from gross tumor volume.
Currently, there are no MRI-based radiomic reports available
regarding radiomic signature prediction of HPV status.

Exploring the Application of Radiomics to
Oropharyngeal Cancer
Application of radiomics has been practiced within this field of
disease and poses as a promising tool to noninvasively
characterize tumor phenotypes (32, 64). In a study conducted
by Bagher-Ebadian et.al., a radiomic analysis of primary tumors
extracted from pre-treatment contrast-enhanced computed
tomography (CE-CT) images was performed on patients
diagnosed with OPC (64). Within this study, Bagher-Ebadian
et al. utilized radiomics to identify distinct features that construct
optimal characterization and prediction of HPV affecting OPC.
Amongst the 172 radiomic features that were examined, only 12
radiomic features were significantly different between HPV-
positive and HPV-negative patients. Results from this study
indicate that gross tumor volumes (GTV) for HPV-positive
patients display higher intensity, smaller lesion size, greater
sphericity, and higher patient intensity-variation/heterogeneity
on CE-CT imaging (64). These results suggest that radiomic
features of HPV status in OPC patients are associated with
spatial arrangement and morphological appearance via CE-
CT imaging.

Furthermore, in a retrospective study performed by Bogowicz
et al. CT radiomics was utilized to predict local tumor control
(LC) after chemoradiation therapy of HNSCC, as well as
examining the effects of HPV infection on tumor radiomics. A
training cohort (n = 93) and a validation cohort (n = 56) were
approved to be included in this study. 317 CT-radiomic features
were calculated within the primary tumor region, including
features based on shape, intensity, texture, and wavelet
Frontiers in Oncology | www.frontiersin.org 5140
transformation (32). Results from this study indicated that 3
features were significantly associated with LC, indicating that
tumors with a heterogeneous CT density were at risk for decreased
LC (32). As a result, this study concluded that quantified CT
radiomics examining the heterogeneity of HNSCC tumor density
is associated with LC after chemoradiation therapy and HPV
status (32). Utilizing this radiomic information from studies such
as Bagher-Ebadian et al. and Bogowicz et al. will allow for
clinicians to further optimize oral screening for OPC and
HNSCC, therefore optimizing patient diagnosis and clinical
decision making in treatment planning.

Hypopharynx
Hypopharyngeal cancer has the worst prognosis of all HNC with
a 5-year-survival of only 25% to 41% (65–67). It is uncommon,
with 2,500 new cases arising annually within the United States
(68). The hypopharynx can be divided into three distinct regions
to better distinguish the localized cancer cells: pyriform sinus,
postcricoid region, and the posterior wall (68). The pyriform
sinus is where most squamous cell carcinomas occur, with 70%
of cases arising within this region. The postcricoid region
accounts for approximately 20% of cases and the posterior wall
accounts for approximately 10% of cases (69). Because typical
presentation is usually recognized by the growth of a neck mass
or dysphonia, newly diagnosed patients are often presented at
Stage III or IV of disease, contributing to this disease history of
poor prognosis (68). Hypopharyngeal cancer typically affects
individuals ranging between the ages of 50 to 60 years, occurring
more often in men than women. Superior localization of the
cancer cells is mostly associated with heavy drinking and
smoking. Nutritional deficiencies account for the postcricoid,
the inferior part of the hypopharynx, being affected (68).
Hypopharyngeal tumors are classified as highly aggressive due
to their ability to metastasize early and infiltrate an abundant
submucosal lymphatic network, sometimes even skipping
metastasis and reappearing in various locations distinct from
the primary site. Therefore, it is very common for multiple
primary tumors to resurface (68). Treatment of hypopharyngeal
cancer is often controversial due to the desire for organ
preservation (65, 67). Early detection of this carcinoma may
only require radiotherapy, but treatment for later stages of the
disease is more complicated. Due to the complications of late-
stage disease, the standard treatment is surgical resection and is
sometimes paired with postoperative chemoradiation therapy
with or without immunotherapy (69).

Exploring the Application of Radiomics to
Hypopharyngeal Cancer
Since early detection of this disease may only require treatment
via radiotherapy, identifying significant markers that indicate the
carcinogenesis of hypopharyngeal cancers into a non-invasive
radiomic pipeline could potentially improve prognosis. Utilizing
radiomics may allow clinicians to assess the progression of the
disease earlier, and, therefore, to construct a patient-specific
treatment plan that optimizes treatment response and reduces
unnecessary high-risk intervention. Fortunately, studies have
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shown that early detection of the tumor can be found using
radiomics. Liao et al. conducted a study including a total of 80
OPC and hypopharyngeal cancer PET images were analyzed
using radiomics to distinctively select imaging features indicative
of the diseases. These imaging features were then correlated with
prognostic diagnosis, cancer stage detection, and prediction of
effective treatment. All cases included in the study had been
treated with chemoradiation therapy (70). This study found that
16 image features were significantly different between early and
late stages within the several metabolic tumor volumes (MVT).
The image features include surface area, surface to volume ratio,
compactness, spherical disproportion, TGV, energy, contrast,
local homogeneity, dissimilarity, variance, inverse variance,
inverse difference moment, inverse difference, RLNU, and
RPC. These features successfully differentiated early from late
stages of OPC and hypopharyngeal cancer. As a result, these
findings assisted in evaluating prognosis and specific treatment
response for the patient (70). 5 and 2 features had an area under
curve (AUC) in receiver operating characteristic (ROC) greater
than 0.7, indicating a promising predictor. The studied imaging
features resulted to prove to be essential indicators in tumor
differentiation, staging, overall survival (OS), relapse, and
treatment efficacy (70).

Additionally, a study conducted by Mo et al. established a
radiomics-based model to classify early versus late detection and
metastatic disease in patients with hypopharyngeal cancer. 113
patients diagnosed with this carcinoma were treated with
chemoradiotherapy and divided into two cohorts, a training
cohort (n = 80) and a validation cohort (n = 33) (71). The
radiomics model utilized the concordance index (C-index) to
predict prognostic factors, resulting in C-indices of 0.804 with a
95% confidence interval (CI) of 0.688-0.920 and 0.756 with a
95% CI between 0.605-0.907. Furthermore, the log-rank test and
a nomogram were used in risk prediction of the model to assess
disease progression. The significant results were p=0.00016 and
p=0.00063, demonstrating an effective classification of patients
into high and low-risk categories (71). Overall, the radiomics
model in this study suggests being effective in predicting the
risk of progression for hypopharyngeal cancer along with
chemoradiotherapy (71).

Larynx
Laryngeal squamous cell carcinoma (LSCC) consists of 30-50%
of all neoplasms in the head and neck (15). Treatment
surrounding this disease is difficult due to considerable
amounts of variability concerning the region’s anatomy, its
surrounding structures, variable appearance of primary and
recurrent tumors, significant anatomic changes resulting from
tumor response, and high intratumoral heterogeneity (15).
Standard-of-care treatment towards LSCC prioritizes organ-
preserving strategies, although treatment options may be
limited for more aggressive diseases. Although these strategies
focus primarily on limiting the functional complications that are
associated with complete surgical removal of the larynx, the most
appropriate therapy for patients with advanced LSCC is a total
laryngectomy (72). Conducting a surgical plan for treatment
Frontiers in Oncology | www.frontiersin.org 6141
relies heavily on tumor T categories defined by the National
Comprehensive Cancer Network (NCCN) Guidelines (72).

However, relapse occurrence resulting from these organ-
preserving treatment approaches remains high, with recurrence
at 5-years approximately 30-40%, despite overall improvement
in radiotherapy and systemic techniques (15). Exploring the
radiomic study of one of the most anatomically complex
structures within the head and neck region can provide
additional comprehensive information and characterization of
intra-tumor heterogeneity.

Exploring the Application of Radiomics to Laryngeal
Squamous Cell Carcinoma
Surgical options for patients diagnosed with LSCC heavily
depend on preoperative T category classification, specifically
between T3 and T4 categories. This is because the distinction
between T3 and T4 categories for LSCC relies on the destruction
degree of the extralaryngeal spread and/or outer cortex of thyroid
cartilage (72). However, determining the T category pre-
operatively has its clinical challenges due to variable clinical
deductions between imaging modalities. Commonly used
imaging techniques include CT and MRI, both techniques
harboring individual benefits and limitations (72). Therefore, a
T category prediction radiomics (TCPR) model that combines
radiomic signature and T category distinction could be beneficial
in establishing optimal surgical outcomes. A study conducted by
Wang et al. was done to further validate the precise prediction of
T categories using a radiomic nomogram and the TCPRmodel to
assess appropriate treatment management for each individual
case. This study included a total of 211 patients with LSCC who
had total laryngectomies separated into two cohorts. The
training cohort (n=150) and the validation cohort (n=61)
yielded results that demonstrate great capabilities of the TCPR
model in predicting the preoperative T categories per patient.
The T category resulting from the study has an AUC of 0.775
(95% CI: 0.667–0.883). The radiomic signature resulted in a
higher AUC, with AUC 0.862 (95% CI: 0.772–0.952). Finally, the
nomogram incorporating the radiomic signature as well as the T
category, the TCPR model, resulted in an AUC of 0.892 (95% CI:
0.811–0.974). These results show that the predictive performance
of the T category improves with the application of the TCPR
model (72).

Moreover, in a study conducted by Chen et al., radiomic
analysis of laryngectomy CT imaging of 136 patients with LSCC
was performed to assess the prognostic value of radiomics
derived from CT. All patients were divided into the training
cohort (n = 96) and the validation cohort (n = 40). A method was
designed to establish a radiomics signature from the CT texture
features and a radiomics nomogram to predict overall survival
(OS) (73). The validation of the nomogram was done by a
calibration curve, C-index, and decision curve. The results
revealed the radiomics signature to have C-indices of 0.782
(95%CI: 0.656–0.909) and 0.752 (95%CI, 0.614–0.891). The
radiomics nomogram had outdone the cancer staging
capability with a C-index of 0.817 vs. 0.682; P = 0.009 in the
training cohort and a C-index of 0.913 vs. 0.699; P = 0.019 in the
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validation cohort (73). The radiomics nomogram has had a
significant difference in its discrimination capability when
compared to other cancer staging techniques. The calibration
and decision curves have been shown to have an accurate
prediction for OS as well. This study has successfully utilized
radiomics in a way that predicts OS for LSCC, is critical in
constructing a personalized treatment plan for each individual
patient (73).

In another study conducted by Ulrich et al., radiomic feature
analysis from various 18F-fluorothymidine positron emission
tomography (FLT-PET) was done to evaluate the prediction of
treatment response in patients with HNC. Thirty patients in the
late stages of OPC and LSCC who underwent chemoradiation
therapy and FLT-PET imaging before surgery were included in
the study. 377 radiomic features of FLT uptake were extracted, 9
of which were indicated as significant (28). Within the 30 HNC
cases, the study concluded that cases presenting smaller,
homogeneous lesions at baseline resulted in a better prognosis.
Furthermore, features extracted from the entire lesions had a
higher C-index than primary tumor features for the majority of
the 9 significant features. Overall, this study has shown that for
future studies integrating FLT-PET in predicting prognostic
outcome, radiomic features incorporating lesion shape, size,
and texture features should be considered to ensure an
improved understanding of the disease (28).

Additionally, the increasing application of radiomics to LSCC
has demonstrated efficacy in predicting inferior local control and
laryngectomy free survival (LFS). A study done by Agarwal et al.
explores if pre-treatment CT imaging features of the LSCC can
predict long-term local control and LFS. This study analyzed 60
imaging texture features of patients undergoing chemoradiation
(CTRT), which were further evaluated with a texture analysis
software (74). The data consisted of entropy, kurtosis, skewness,
standard deviation, mean intensity, and so on. After a median
follow-up of about 24 months, it was found that 39 patients were
locally controlled and 10 had been treated with laryngectomy
(74). Medium filtered-texture feature that had poor LFS were
entropy ≥4.54, (p = 0.006), kurtosis ≥4.18; p = 0.019, skewness
≤−0.59, p = 0.001, and standard deviation ≥43.18; p = 0.009). The
inferior local control was associated with medium filtered texture
features with entropy ≥4.54; p 0.01 and skewness ≤ – 0.12; p =
0.02. The analysis of the study has shown medium texture
entropy to be a predictor for local control and LFS (p = 0.001
& p < 0.001). This advancement is undoubtedly efficient in
developing prognostic factors for LSCC and predicting
treatment response (74).
Salivary Glands
Salivary gland cancer (SGC) is rare, compromising less than 1%
of all cancers in the United States. This type of cancer is prevalent
in the older population, mostly affecting individuals between the
ages of 50 and 60 (75). The 5-year survival rate of SGC is
approximately 7% (76). Residing within the facial region, three
major glands are used to classify different types of areas of SGC –
the parotid, sublingual, and submandibular glands. Generally,
about 80%, 11%, and less than 1% of SGC cases are found within
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the parotid gland, submandibular gland, and sublingual gland,
respectively. Regarding the frequency of malignancy, 20%, 45%,
and up to 81% of parotid tumors, submandibular gland tumors,
81% of sublingual gland tumors are malignant, respectively (77).
Although there are effective treatments for SGC, successful
treatment for sublingual gland cancer is unknown due to lack
of clinical trials and the rarity of diagnosis (78). Standard of care
treatment typically involves regional surgical resection of the
parotid gland, otherwise known as a superficial parotidectomy
(77). Although more difficult to treat, cases of malignancy
typically require a total parotidectomy. However, this
procedure is considered high risk as it involves contact with
critical facial nerves that may result in facial paralysis, in more
severe cases (77).

Parotid Gland
Parotid tumors are the most common type of SGC, with the
parotid gland accounting for approximately 25% of human saliva.
It is the largest salivary gland and resides within the parotid space
amongst the external carotid artery, retromandibular vein, and the
intraparotid lymph nodes. In some cases, an accessory parotid gland
is present on the surface of the masseter muscle (77). The majority
of parotid tumors are discovered as benign, though some lesions can
be malignant (79). The different cancer subtypes of SGC that can
occur in the parotid gland include pleomorphic adenoma,
Warthin’s Tumor (War-T), parotid carcinoma (PCa), and
Kimura’s Disease (KD) (80). The most common of the subtypes
is pleomorphic adenoma. Pleomorphic adenoma composes of
epithelial cells along with myoepithelial cells, which are
commonly referred to as benign mixed tumors (BMT) (81).
Factors that may cause carcinogenesis of pleomorphic adenoma
include irradiation, dehydration, and tobacco use (81).

Exploring the Application of Radiomics
to Parotid Tumors
Regarding parotid tumors, one study implored radiomics to
improve diagnostic efficacy and, therefore, treatment options.
To improve differentiation of a benign lymphoepithelial lesion
(BLEL) and a malignant mucosa-associated lymphoid tissue
lymphoma (MALToma) in the parotid gland, Y.-M. Zheng
et al. developed a CT-based radiomics nomogram that
integrated the radiomics signature alongside clinical data such
as demographics (82). This integrated model was trained (n=70)
and validated (n=31) on a total of 101 patients with BLEL or
MALToma (82). In developing this model, 851 radiomics
features extracted from CT images were narrowed down to 7
features by removing features with poor inter- and intra-observer
agreement between radiologists, including features that showed
significant differences between BLEL and MALToma (p < 0.000
to 0.050) and applying LASSO regression (82). After performing a
multiple logistic regression analysis, statistically significant clinical
factors of age (p = 0.0036) and maximum diameter (p = 0.019) were
integrated with the radiomics signature resulting from the 7
radiomic features to produce a CT-based radiomics nomogram
that showed a statistically significant difference between BLEL and
MALToma (82).
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Submandibular Gland
The submandibular gland is the second largest salivary gland. This
gland accounts for 70% of human saliva and is located underneath
the jawbone (79).Despite the rarity of tumors in the submandibular
gland compared to the parotid gland, the probability ofmalignancy
in the submandibular gland is approximately 43% and results in a
poorer prognosis (83). Due to rarity and high rates of malignancy,
there is a lack of knowledge pertaining to treating submandibular
gland tumors (83). There are no definitive treatments for
submandibular tumors, but there are numerous ways that have
been proven to be successful – all involving high-risk surgery.
A common procedure that is performed is submandibular
sialoadenectomy, which is to surgically remove the submandibular
gland in its entirety (84). The efficacy of radiotherapy in targeting
thesemass neoplasms is notwell knownwith this type of cancer and
is still being evaluated. Chemotherapy in general is not shown to be
successful in treating submandibular gland tumors but is sometimes
used for treatment if the tumor progressively spreads within the
gland (83).

Exploring the Application of Radiomics to
Submandibular Tumors
In general, there remains uncertainty due to a lack of knowledge
for treatment of these diseases, demonstrating the necessity of
exploratory measures. Radiomic application to diseases such as
submandibular gland cancer illuminates characteristics that can
be extracted into operational data. This data can then be utilized
to improve detection and lead the course of treatment when
managing this disease.

Sublingual Gland
Sublingual salivary gland tumors are the rarest tumors found in
SGC. The sublingual gland is the smallest of the threemajor glands,
residing just below the floor of the mouth and is positioned under
the tongue, producing 5% of human saliva (79). Sublingual salivary
gland tumors typically affect individuals between 50 to 60 years old
and are not specific to gender (85). Sublingual gland tumors are
typically malignant, boasting an 81% probability of malignancy
associated with this disease type. Adenoid cystic carcinoma and
mucoepidermoid carcinoma are the most common neoplasms
found in the sublingual gland. Prognosis for adenocarcinoma of
the sublingual gland relies on the histology of the specific tumor.
This tumor is commonly misinterpreted as minor salivary gland
tumors or other malignant lesions within the mouth due to its
compact mass (85). Patients normally present no symptoms,
making the tumor difficult to identify and accurately diagnose.
When evaluating the tumor, it is important to distinguish if it lies in
the sublingualglandoranyof theminor salivary glands.This cannot
be done solely based on location on anatomy, but from a collection
of imaging, surgical, and clinical data to ensure accurate
diagnosis (85).

Exploring the Application of Radiomics to Sublingual
Gland Tumors
Due to the rare nature of sublingual glands, specific suggestions
for treatment have not been developed, the lack of radiomic
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studies. However, proper diagnosing of malignant sublingual
glands from other types of malignancies has been a challenge
(85). Although advances in diagnostic imaging technology have
helped with more effective identification, malignant sublingual
glands vary in degrees of malignancy and lead to difficulties in
not only diagnosis but also management and treatment (85).
Radiomics has the potential to improve the initial evaluation of
malignant gland tumors since there is a recurrence rate of 50%
for these tumors (85).

Radiomic Application to Advanced Head
and Neck Cancer
The management of metastatic and locally advanced head and
neck cancer has changed dramatically in the last several years.
Keynote 048 was a landmark trial that resulted in FDA approval
for the use of immunotherapy either alone or in combination
with platinum-based chemotherapy as a first line treatment (78).
Specifically, this trial evaluated the efficacy of pembrolizumab, an
immune checkpoint inhibitor that allows cytotoxic T cells to
recognize programmed death ligand 1 (PDL-1) overexpressed by
tumor cells, resulting in their destruction (78). In general, PDL-1
expression by the tumor is evaluated by immunohistochemistry
and serves as both a prognostic indicator and as a variable in the
decision-making process when selecting an appropriate
immunotherapy regiment. The application of radiomics has
further potential of evaluating the predictive power of PDL-1
expression, and overall patient outcomes.

While the radiomics of PDL-1 expression has been studied in
other tumors such as non-small cell lung cancer, data on
radiomic PDL-1 expression in head and neck cancer is lacking
(86). One pilot study by Chen et al. was able to predict PDL-1
expression through FDG PET (87). This was accomplished by
dichotomizing other biomarkers such as HPV status (p16
positivity) and Ki-67 expression. Textural features were also
used to predict PDL-1 expression. For example, gray-level
nonuniformity for run (GLNUr), run percentage (RP), and
short-zone low gray-level emphasis (SZLGE) were inversely
proportional with PDL-1 expression. While it is promising to
see evidence of the predictive power of PDL-1 expression
afforded by radiomics, this study is limited by its small cohort
size. Further studies are needed to reproduce results and
optimize the parameters relevant to head and neck cancer.
THYROID CANCERS

Defined as a malignancy of the thyroid gland by the International
Classification of Diseases, Tenth Revision (ICD-10), thyroid
cancer accounts for 3.8% of all cancers in the United States
and has a five-year survival of 98.3 (88). Thyroid cancers include
3 main types: differentiated thyroid cancer (DTC), anaplastic
thyroid cancer (ATC), and medullary thyroid cancers (MTC)
(89). Included in DTC, which accounts for over 90% of all
thyroid cancers, are papillary thyroid cancer (PTC), follicular
thyroid cancer, Hurthle cell, and poorly differentiated thyroid
cancer (PDTC) (89). ATC accounts for less than 2% of call
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thyroid cancers, and MTC accounts for about 1%-2% of all
thyroid cancers in the United States. Both DTC and MTC
generally have good prognoses, with a 10-year survival rate of
80–95% for PTC, 70–95% for follicular thyroid cancer, and 96%
for MTC (90, 91). However, ATC does not share such numbers,
as it has a 5-year survival rate of 0-10%. Due to its rare and highly
aggressive nature, ATC requires a multidisciplinary team
approach with different treatment options of surgery,
chemotherapy, or tracheotomy (89). Surgical resection is the
standard of care treatment option for DTC and MTC (89).

Radiomic Application to Thyroid Cancers
There is a need for establishing a non-invasive assessment
technique that allows for the mapping of thyroid tumors in
their entirety. It is important to expand the knowledge of
radiomics and explore its implication to various disease types
to improve clinical diagnosis and patient’s quality of life.
According to a study performed by Liang et. al., application of
radiomics showed good performance and potentially
outperformed ACR TI-RADS (American College of Radiology,
Thyroid Imaging, Reporting, and Data System) scoring when
predicting the malignancy of thyroid nodules (92). The objective
of this study was to produce a radiomic score utilizing US
imaging to predict the probability of malignancy in thyroid
nodules when compared to the ACR TI-RADS criteria. To do
so, pathologically proven thyroid nodules were enrolled to
produce a training cohort (one hospital, n=137) and a
validation cohort (separate hospital, n=95). The radiomic score
was developed utilizing the training cohort. US images were
reviewed by two junior and one senior radiologist and scored the
nodules based on the 2017 ACR TI-RADS scoring criteria (92).
Results from this study indicated that the radiomic score had
good discrimination, with an AUC of 0.921 in the training cohort
and 0.931 in the validation cohort. This result suggests that the
radiomic score was significantly more accurate than the ACR
scores when scoring suspicious thyroid nodules (Table 2). As a
result, a decision curve analysis showed that the radiomics score
model potentially added more benefits than using the ACR TI-
RADS scoring criteria (92).

Papillary Thyroid Cancer
Papillary thyroid cancer (PTC) is the most diagnosed thyroid
cancer, accounting for approximately 80% of well-differentiated
thyroid cancers. Although PTC typically has favorable outcomes
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and a mortality rate of 1.2% at 20 years, patients with recurrent
disease have poorer outcomes. Approximately 10% to 15% of
PTC cases recur, resulting in 35% of these patients ultimately
dying from this cancer. This is because recurrent PTC patients
present aggressive features such as extrathyroidal extension
(ETE), aggressive pathological cell subtypes, the extent lymph
node involvement, resistance to therapeutic treatments, and
distant metastasis (93). To assess these aggressive features,
clinicians use a variety of techniques such as ultrasound and
ultrasound-guided fine-needle aspiration to develop a diagnosis.
An additional imaging modality that is often utilized is MRI.
This allows for superior contrast of the soft tissues when
examining the thyroid region, affording assessment of
aggressive features such as ETE and neck nodal metastasis (93,
94). Although these imaging modalities are standard-of-care
practices, both harbor limitations in accuracy and therefore
inhibit optimal clinical assessment of the disease.

Exploring the Application of Radiomics to Papillary
Thyroid Cancer
In a retrospective study conducted by Park et. al., the association
between a radiomic signature of conventional ultrasound (US)
images and disease-free survival in PTC was investigated. The
history of this disease type shows that PTC is considered a “good
cancer” with regards to its treatability and relatively favorable
survival rate (25). However, there is a small amount of PTC cases
that show clinically aggressive behavior that results in 9% to 13%
of patients experiencing recurrence and 1% to 5% of patients
ultimately dying from thyroid cancer. Considering this
information, patients diagnosed with aggressive PTC would
greatly benefit from radiomic application with a preoperative
risk stratification tool that assists in assessing treatment plans
and follow-up procedures (25).

Follicular Thyroid Cancer
Follicular thyroid cancer (FTC) is known as the second most
common differentiated thyroid cancer, accounting for 10% to
15% of all cases. When considering age and gender, this disease
subtype typically affects women 50 to 60 years old. FTC presents
more aggressively in comparison to PTC, as this disease typically
invades blood vessels and is capable of metastasizing via
hematogenous dissemination. Knowing this information, FTC
is associated with a poorer prognosis in comparison to PTC, as
FTC patients often present with more advanced staging of
TABLE 2 | Summary of radiomic applications in thyroid cancer.

Category Prediction Target Radiomic Features and Clinical Information Source

Thyroid nodules Malignancy US Thyroid radiomic score (92)
Papillary Thyroid
Cancer

Progression free survival US Thyroid: tumor size, cervical lymphadenopathy, extrathyroidal extension, gray
level scores

(25)

Follicular Thyroid
Cancer

Metastatic disease US Thyroid: tumor shape, gray level scores (97)

Medullary Thyroid
Cancer

Treatment response to PRRT SSTR- PET: textural features (gray level non uniformity) (101)

Anaplastic Thyroid
Cancer

Treatment response/dose adjustment of
Trametinib

Radiolabeled Trametinib (105)
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disease due to vascular invasion (95). Long-term survival rates in
patients diagnosed with metastatic FTC range between 31% to
43%, taking into consideration the patient’s age at the time of
diagnosis, tumor size, capsular invasion, gender, and evidence of
metastases (96). FTC is typically classified into two categories:
minimally invasive or widely invasive.

Exploring the Application of Radiomics to Follicular
Thyroid Cancer
In a study conducted by Kwon et. al, radiomics was utilized to
evaluate distant metastasis of FTC on gray-scale US images. This
retrospective study included 35 cases of FTC with distant
metastases and 134 cases of FTC without distant metastasis
(97). A total of 60 radiomic features were extracted, deriving
from the first order, shape, gray-level co-occurrence matrix, and
gray-level size zone matrix features utilizing US imaging
techniques. Results from this study indicated that the support
vector machine (SVM) classifier had an AUC of 0.90 on average
on the test folds (97). Radiomic signature (p<0.01) and widely
invasive histologies (p = 0.003) proved to be significant when
associated with distant metastasis on multivariate analysis (97).
From multivariate analysis, the SVM classifier indicated an AUC
of 0.93. As a result, this study indicated that utilizing radiomic
signatures from thyroid US can be an independent biomarker in
order to non-invasively predict the probability of distant
metastasis of FTC (97). However, this study does harbor
limitations. It primarily lacks external validation, as the study
was performed at a single institution. Additionally, FTC with
distant metastasis is considered rare, naturally limiting the study.
As a result, it is necessary to further validate radiomic application
amongst different variables in FTC in order to successfully
translate radiomics to FTC diagnosis.

Medullary Thyroid Cancer
Medullary thyroid carcinoma (MTC) derives from the
calcitonin-secreting parafollicular C cells of the thyroid,
accounting for up to 1% to 3% of all malignant thyroid cancer
cases (98–100). Two forms of MTC currently exist: sporadic and
hereditary. The hereditary form of MTC is expressed in an
autosomal dominant fashion caused by a mutation of the
receptor tyrosine kinase (RET) proto-oncogene (99). This
mutation causes hereditary MTC to be associated with diseases
such as multiple endocrine neoplasia 2 (MEN 2) syndrome (98,
99). This subtype of hereditary MTC can be further characterized
as MEN2A and MEN2B. MEN2A presents in approximately
80% of inherited MTC cases, showing symptoms such as
multifocal and bilateral MTC, pheochromocytoma, and primary
hyperthyroidism (99). MEN2B presents in approximately 5% of
inherited MTC cases and is associated with pheochromocytoma,
multiple mucosal neuroma, and Marfan syndrome (98, 100). An
additional subtype of MTC is known as familial MTC (FMTC)
and is diagnosed in patients that have a family history of MTC
which have at least four family members diagnosed with
MTC with no history of pheochromocytoma or primary
hyperthyroidism (98, 99). MTC often presents as a poor
prognosis with early lymph node metastasis, aggressive
invasiveness of key surrounding organs, and failure to respond
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to radiation therapy and/or chemotherapy. As a result, early
detection and preventative surgery is often the standard-of-care
treatment plan regarding MTC (98).

Exploring the Application of Radiomics to Medullary
Thyroid Cancer
Regarding medullary thyroid cancers, there is great potential for
radiomics to be utilized here. One study shows promise in
improving prognosis by exploring radiomic features involved
with PET images of advanced medullary thyroid cancer (101).
Lapa et al. assessed tumor heterogeneity by investigating the
association between textural parameters on somatostatin
receptor PET (SSTR-PET) and treatment response to peptide
receptor radionuclide therapy (PRRT) on 4 medullary thyroid
cancer patients and 8 radioiodine-refractory differentiated
thyroid cancer patients (101). They found that several textural
parameters showed a significant capability to assess PFS, with
“grey level non uniformity” ranking with the highest AUC (0.93)
in ROC curve analysis and “contrast” with the ranking second
highest AUC (0.89) (101). Further assessment of other radiomics
features might assist in considering PRRT as a treatment option
for patients.

Anaplastic Thyroid Cancer
Anaplastic thyroid cancer (ATC) is the rarest and most
aggressive of the thyroid cancer subtypes, accounting for 1% to
2% of all thyroid malignancies. Although incidence is rare,
diagnosis of this subtype results in over 50% of deaths from
thyroid cancer with a median survival of only six months (102).
Amongst all malignancies, ATC is a highly aggressive disease
with one of the worst prognoses due to its resistance to standard
therapies and management difficulties (102). ATC has been
known to arise in two forms: de novo or by dedifferentiation
from a well-differentiated thyroid cancer such as PTC (103).
Standard-of-care treatment is typically surgical resection of the
cancerous lesion, followed by adjuvant radiotherapy and/or
chemotherapy (104).

Exploring the Application of Radiomics Anaplastic
Thyroid Cancer
Due to anaplastic thyroid cancer’s aggressive nature and poor
prognosis, there is a major lack of radiomic studies on it.
However, utilizing radiomics can help predict resistance to an
FDA approved therapy for ATC – trametinib (105). Trametinib
is a highly potent, efficacious, yet toxic, treatment option for
ATC, so modifying the dose is desirable (105). In a study
conducted by Pratt et. al., a radiolabeled version of trametinib,
124I-trametinib was developed to potentially assess therapeutic
index and personalize individual doses for patients (105).

Parathyroid Cancer
Parathyroid carcinoma (PC) is a less common cancer, diagnosed
in <1% of cases within primary hyperparathyroidism (PHPT).
Although this disease is generally seen as sporadic, it may appear
in familial PHPT, specifically within hyperparathyroidism-jaw
tumor syndrome (HPT-JT). Extremely rare cases of PCmay arise
from multiple endocrine neoplasia type I (MEN1) (106). It is
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difficult to diagnose PC preoperatively because this disease type
has a lack of specific biochemical and clinical features (106). As a
result, this disease is typically diagnosed postoperatively when
the disease is being examined histologically and/or when the
disease recurs (106).

Exploring the Application of Radiomics to
Parathyroid Cancer
Although there are no studies on the application of radiomics to
parathyroid cancer, there is a need for clinicians to be able to
differentiate between parathyroid adenoma (benign) and
parathyroid carcinoma because of the lack of specific
biochemical and clinical features (106). CT and MRI can both
help accurately localize the primary tumor, so the use of
radiomics shows great promise in the parathyroid glands in
PC (106).
DISCUSSION/CONCLUSION

Machine learning and deep learning models have been widely
used for medical imaging research (6, 107). Although having
impressive predictive performance, these models are often
difficult to interpret. Additionally, there may be hidden bias in
the model leading to potential ethical issues (108, 109).
Interpretability of predictive models has become one of the key
factors driving their adoption in clinical decision support
environment. To ease the tension between the model
prediction accuracy and interpretability, various approaches
have been proposed to generate intuitive interpretations of
predictive models (110–113).

Radiomic studies are often exploratory in nature. They are
normally single institutional with limited cohort size. The
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associated imaging data are typically acquired from just one or
a few scanners from a single site. To deploy radiomic predictive
models at scale and possibly across institutions, we need to
address issues of potential data variability caused by scanners
from different vendors (114), and whether the models are still
predictive when they are applied to a different cohort from an
external site with similar disease types In summary, being able to
standardize image data acquisition and quality control using
phantoms, various calibration techniques, having large cohorts
from multiple locations for model training, and validation will
provide more confidence for deployment in clinical settings.

The application of radiomics to HNC and thyroid cancers is
an advancement that allows for a deeper interpretation of a
patient’s digital medical imaging data beyond visual assessment.
Utilizing this practice, especially in cancer domains that lack
radiomic studies such as anaplastic thyroid cancer and
parathyroid cancers, will allow for more personalized and
patient-specific cancer treatment. By gathering additional
statistical data and conducting subsequent analysis, clinical
decision making is improved and therefore affects patient
outcomes Court, Fave (115).
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Biochanin A Inhibits Glioblastoma
Growth via Restricting Glycolysis
and Mitochondrial Oxidative
Phosphorylation
Qiang Dong1,2†, Qiao Li1†, Lei Duan1, Hang Yin1, Xiaoqing Wang2, Yang Liu2,
Bo Wang1, Kun Li1, Xuan Yao1, Guoqiang Yuan2* and Yawen Pan1,2*

1 Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, China, 2 Key Laboratory of Neurology of
Gansu Province, Lanzhou, China

Abnormal metabolism serves a critical role in glioblastoma (GBM). Biochanin A (BCA), a
flavonoid phenolic compound found in edible and herbal plants, has antioxidative and
antitumor activities. However, it remains unclear whether BCA has an effect on energy
metabolism. The aim of the present study was to evaluate the anticancer effects and
molecular mechanism of the effect of BCA on energy metabolism. We observed that BCA
inhibited the growth of U251 cells by the mitochondria-mediated intrinsic apoptotic
pathway. BCA treatment reduced metabolic function, repressed mitochondrial
membrane potential, and increased the production of reactive oxygen species (ROS) in
GBM. In addition, we found that BCA decreased aerobic glycolysis by inactivation of the
AKT/mTOR pathway. Taken together, the results demonstrate that treatment with BCA
inhibited the proliferation of GBM by regulating metabolic reprogramming.

Keywords: biochanin A, glioblastoma, energy metabolism, reactive oxygen species, proliferation
INTRODUCTION

Glioblastoma multiforme (GBM) is the most common type of malignant primary brain tumor, with
a median survival of only 14.6 months and 5-year survival of less than 5.5% (1). The standard
treatment for GBM patients includes maximal safe neurosurgical resection and temozolomide
(TMZ) chemotherapy with concomitant radiotherapy, followed by cycles of adjuvant TMZ (2). New
non-toxic treatment strategies have become a research hotspot because the current treatment
strategies are usually accompanied by serious side effects. Studies have shown that some small
molecule drugs have therapeutic promise for a variety of cancers, including GBM through
perturbation of cell death programs, lethal autophagy, metabolic reprogramming (3), and
improvement of chemotherapy sensitivity (4). For example, plant-derived compounds ARTA and
BETA displayed a significant cytotoxic impact on glioma cell migration (5); The 5,4’-dihydroxy-
6,7,8,3’-tetramethoxyflavone compound (AB2) inhibits the growth of lung cancer cells by
attenuation of mitochondrial membrane potential and activation of caspase-3 activity (4).
However, the molecular mechanism of the occurrence and development of GBM is still poorly
understood, and there are great advantages to address malignant disease phenotypes through the
use of small molecule drugs.
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Reactive oxygen species (ROS), a type of cellular metabolite, have
important roles in biochemical functions (6). Excessive ROS
promote DNA damage and trigger mitochondrial apoptosis (7).
Due to the rapid growth of malignant tumors, there is not enough
nutrition to satisfy tumor cells. Mitochondria produce ATP as
energy required for conducting physiological processes, which can
improve energy for tumor cells by dynamically regulating the fusion
and division of mitochondrial morphology (8). Mitochondrial
division and fusion are regulated by mitochondrial fusion proteins
(MfN1, Mfn2, and OPA1) and mitochondrial division proteins
(DRP1 and FIS1) (9). Glycolysis is a common feature of tumor
cell metabolism (10). Even if there is an adequate oxygen supply, the
malignant tumor also needs to get more energy via the glycolysis
pathway, which is a phenomenon known as the “Warburg effect”
(11). Meanwhile, mitochondria are involved in the regulation of
metabolism and cell death and play an important role in tumor
progression (12). Metabolic reprogramming of cancer cells plays an
important role in maintaining the growth and proliferation of tumor
cells (13–15). Recently, the metabolism of cancer cells has been
considered a therapeutic hotspot for dietary and pharmacological
interventions. The development of anti-tumor drugs with glycolysis
inhibition and mitochondrial injury has important clinical
significance for the prevention and treatment of glioma.

Biochanin A (BCA) is a methoxy isoflavone, which derives
from the germinated germ part of chickpea, the heartwood of
twining rosewood, single-leaf red bean, whole red clover,
underground clover seedlings, soybean, alfalfa, peanut, and
other legumes (16). BCA possesses a variety of biological
activities, including antifibrotic (17), antioxidation (18), anti-
inflammation (19), neuroprotection (20), the prevention of
articular cartilage degeneration (21), and anticancer effects.

Increasing evidence suggested that natural products played a
promising role in the development of novel chemotherapeutics for
the treatment of cancers (22, 23). The previous study has reported
the anti-proliferative effect of BCA by regulating various molecular
mechanisms, such as the induction of apoptosis, cell cycle arrest,
and suppression of ERK/AKT signaling (24, 25). BCA selectively
sensitized cancer cells to apoptosis through inhibited cyclin D1 and
arrested the cell cycle in G0/G1 phase (24). Moreover, BCA also
regulated migration and invasion by suppressing the VEGF/
VEGFR2 signaling pathway (26).

In this study, we evaluated the anticancer effects and
molecular mechanisms of BCA in GBM. Considering the
important role of energy metabolism in GBM cells, we further
explored the mitochondrial oxidative phosphorylation and
glycolysis in GBM cells. Additionally, we established the effect
of BCA on intracellular ROS and mitochondrial division in GBM
cells. Furthermore, we investigated the BCA anti-GBM activity in
subcutaneous neoplasia in nude mice.
MATERIALS AND METHODS

Reagents
BCA was purchased from Selleck Chemicals (Shanghai, China).
Cell Counting Kit-8 (CCK-8) was obtained from Dojindo
Frontiers in Oncology | www.frontiersin.org 2151
Molecular Technologies (Kumamoto, Japan). PE Annexin V
apoptosis detection commercial kit was purchased from BD
biosciences (Shanghai, China). Reactive Oxygen Species (ROS)
Assay Kit was purchased from Beyotime Biotechnology
(Shanghai, China). Cell-Light EdU Apollo567 In Vitro Kit was
purchased from Guangzhou Ruibo Biotechnology Co. LTD
(Guangzhou, China). Bax, Bcl-2, ND1, SHDB, UQCRC2,
MTCO2, ATP5A, MFN2, GLUT1, HK2, PMK2, LDH, HIF-1a,
and Drp1 antibodies were obtained from proteintech (Wuhan,
China). AKT, p-AKT, mTOR, and p-mTOR antibodies were
obtained from Cell Signaling Technology. LC3B, Beclin-1, P62,
and GAPDH were obtained from Abcam (Cambridge, UK).

Cell Culture
U251 cells were cultured in DMEM complete medium with high
glucose and placed in an incubator at 37°C with 5% CO2. When
the cell density is about 70–80%, a drug intervention is
carried out.

Cell Proliferation
U251 cells were inoculated in 96-well plates and treated with
BCA for 48h and 72 h. Each well is added 10 ml of CCK8,
incubated for 2 hours at 37°C incubator, and then detected
absorbance with a microplate reader. U251 cells were seeded in
96-well plates, each well is added 100 ml of 50 uM Edu solution,
incubated for 2 hours at 37°C incubator, and then 4%
Paraformaldehyde fixation. After washing with PBS three
times, each well is added to a 100 ml 1X Hoechst33342
solution, incubated at 37°C in the dark for 30 min, and is then
observed and analyzed under a fluorescence microscope.

Apoptosis Analysis
The percentage of apoptotic cells was tested by Annexin V-PE/
FITC (BD, Biosciences). U251 cells were treated with 0, 50, and 100
mmol/L BCA for 48 h. Then, U251 cells (1 × 106) were collected,
after which 5 µl of PE Annexin V and 5 µl of 7-AAD were added.
The cells were gently vortexed at room temperature and incubated
for 15minutes in the dark and the suspension was analyzed by flow
cytometry (BD FACSCanto™ low cytometry, USA).

Wound Healing Assay
BCA-treated U251 cells were inoculated into a 6-well plate.
When the cells reached a confluence of 70–80%, cells were
gently and slowly scratched with a new 200 ml pipette tip. The
relative distance of the cells migrating was monitored and
measured using a bright-field microscope at 0, 12, and 24 h.
The experiments were repeated three times.

Transwell Assay
Transwell chambers membrane was pre-coated with diluted
Matrigel (1:8 BD biosciences). About 1×106 cells in 100 ml
serum-free medium were added into the top chambers, and
600ml of DMEM with 10% FBS was added to the lower transwell
compartment. The cells on the chambers were fixed with 4%
paraformaldehyde and stained with 0.1% crystal violet. Photos of
the cells were taken using a bright-field microscope. Cell invasion
July 2021 | Volume 11 | Article 652008
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assay was performed as above except used the cell culture inserts
coated with Matrigel (BD Biosciences).

Western Blot
U251 was harvested after being treated with drugs. After
centrifuged, total protein was extracted with RIPA buffer, and
concentration was examined via BCA protein analysis kit
(Solarbio, PC0020). Then the samples were separated by SDS-
PAGE, and transferred onto polyvinylidene fluoride (PVDF)
membranes. The membranes were incubated with primary
antibodies overnight at 4°C, and incubated with appropriate
peroxidase-conjugated secondary antibodies for 1.5 h at room
temperature, and then visualized by enhanced chemiluminescence
with imageQuant LAS 500 system.

Measurement of Oxygen Consumption
Rate (OCR) and Extracellular Acidification
Rate (ECAR)
For the oxygen consumption rate (OCR) measurement, U251
cells were seeded in the seahorse cell plate 20000/well and
incubated overnight. Before an examination, the media were
changed into 500 ml assay media (pH 7.4), which consisted of 10
mM glucose, 1 mM pyruvate, and 2 mM glutamine in XF Base
Medium. Inhibitors of electron transport chain (ETC) complexes
were added into different ports of the seahorse cartridge,
including Oligomycin A (oligo, 1 mM), Carbonyl cyanide-4-
(trifluoromethoxy)phenylhydrazone (FCCP, 1 mM), antimycin
A (AA, 0.5 mM), rotenone (rot, 0.5 mM), then the OCR value was
measured with the XF24 Seahorse Biosciences Extracellular Flux
Analyzer (Seahorse Bioscience, 102238-100). Five replicates were
repeated in each experimental group for analysis.

ROS Measurements
To evaluate intracellular ROS level, U251 cells were incubated
using 10 mM DCFH-DA (Solarbio, CA1410) for 20 min at 37°C
after BCA treatment, then washed with serum-free medium
three times and imaged under Olympus fluorescence
microscope (BX53). Meanwhile, the cell was digested with
trypsin and resuspended. The ROS level was analyzed by flow
cytometry (BD FACSCanto™ low cytometry, USA).

Mitochondrial Morphology
To observe mitochondrial morphology, the U251 cells were crawled
and treated with BCA for 48 hours, stained with 10 nM
MitoTracker at 37°C for 30min, fixed with 4% paraformaldehyde,
and then observed and analyzed under a fluorescence microscope.

Transmission Electron Microscopy
U251 cells were treated with BCA for 48 hours. Cells collected by
trypsinization were fixed with 2.5% glutaraldehyde, followed by
1%OsO4. After dehydration, thin sections were stained with
uranyl acetate and observed under a transmission electron
microscope (JEM-1230, JEOL, Japan).

Animals Experiments
Male BALB/c nude mice aged 4 weeks were purchased from
Beijing Charles River and bred under SPF conditions. A total of
Frontiers in Oncology | www.frontiersin.org 3152
1×106 U251 cells were dissolved in 0.1 mL medium to make cell
suspension, and each nude mouse was injected into the right
middle and posterior axilla. BALA/c nude mice were randomly
divided into two groups (five mice per group), the control group
(PBS 100 µL) and the BCA group (BCA 50mg/kg 100 µL). When
the size of the subcutaneous tumor is 5×5 mm, the drug is
intraperitoneally administered once a day for 2 weeks. The
tumors were weighed, and volumes were counted using the
equation V= (ab2)/2 (a: the longest axis (mm), b: the shortest
axis (mm)).

Histology and Immunohistochemistry
Analysis
At 30 days after tumor inoculation, all animals were sacrificed,
and their subcutaneous tumors were excised, fixed in 4%
paraformaldehyde, and embedded in paraffin. Sections that
were 5 mm thick were stained with hematoxylin & eosin (HE)
and immunohistochemical staining.

Statistical Analysis
The data were analyzed using SPSS22.0 software. All the figures
were performed using GraphPad Prism software. The Student’s
t-test and One-way Analyses of Variance (ANOVA) with a
Tukey’s post-hoc test were used to assess group differences.
Error bars represent the standard error of the mean (SEM).
A P value < 0.05 was considered to be statistically significant.
RESULTS

BCA Inhibited GBM Cells Growth,
Migration, and Invasion
To evaluate the cytotoxic effect of BCA, U251 cells were seed in
96-well plates and treated with different concentrations of BCA
for 24, 48, and 72 h. Cell viability decreased in a concentration-
dependent manner after treatment with BCA by CCK8 assay
(Figure 1A). In addition, the Edu assay was performed to
determine the effect of BCA on glioma cell proliferation. BCA
treatment significantly increased the percentage of Edu-positive
cells compared with the control (Figure 1B). Taken together,
these data indicated that BCA inhibited the growth of U251 in a
concentration-dependent manner. Furthermore, we further
explored whether BCA has an effect on cell invasion and
migration in U251 cells. U251 were cultured and then co-
incubated with different doses (0, 50, and 100 mM) of BCA for
various time intervals (0, 12, and 24 h). Wound healing assay
showed that after treatment of BCA for 12 and 24 h significantly
decreased cell migration rates in U251 cells (Figures 1C, E). We
also examined cell migration and invasion capacity using a
transwell chambers system after the indicated cell lines were
treated with different doses (0, 50, and 100 mM) of BCA (Figures
1D, F, G). Migration and invasion rates of U251 significantly
decreased after BCA treatment, which is consistent with the cell
wound healing assay. These results showed that BCA inhibits
U251 migration and invasion in vitro.
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BCA Increased ROS Generation and
Decreased Mitochondrial Membrane
Potential
As oxidative stress plays an important role in inducing apoptosis
of tumor cells, we then verified whether the ROS levels were
related to BCA treatment in U251. Compared with control cells,
the ROS level increased significantly in BCA treatment groups
(Figures 2A, B, D). In the mitochondrial oxidative respiratory
chain, the complex can pump hydrogen ions from the
mitochondrial matrix into the mitochondrial space, thus
forming an electric potential difference between the
mitochondrial membrane space and the mitochondrial matrix.
The complex V can use the electric potential to help itself to
synthesize ATP. Therefore, the mitochondrial potential
difference indirectly reflects the mitochondrial ability to
synthesize ATP. The green fluorescence increases significantly
after treatment of BCA, which means the mitochondrial
potential was inhibited (Figures 2C, E). Taken together, these
data indicated that BCA treatment triggers mitochondrial
dysfunction in U251.

Mitochondrial Apoptosis Is Activated by
BCA in Human U251
Some small molecule compounds play antitumor effects mainly
by inducing cell apoptosis. To verify whether BCA inhibited
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proliferation in an apoptosis-related manner. Annexin V and PE
double staining assay was used to identify the apoptosis of the
U251 cells after BCA treatment 48 h. BCA application increased
the percentages of apoptosis, compared to the control group
(Figures 2F, G). To further detect molecular markers related to
apoptosis, expression of apoptosis-related proteins was
determined in U251 cells following BCA treatment.
Application of BCA induces the expression of Bax and a
decrease in the level of cytochrome c, pro-caspase 3, and Bcl-2
(Figure 2H). Thus, these findings show that cytotoxic effects of
BCA on U251 cells were partly caused by activation of the
mitochondria-mediated intrinsic apoptotic pathway.

BCA Increased Mitochondrial Fission and
Decreased Mitochondrial Oxidative
Phosphorylation
The morphology of mitochondria plays an important role in
regulating cell metabolism. So, we examined whether BCA
intervention affects mitochondrial morphology and function by
using MitoTracker staining. The number of mitochondria is
large and filamentous morphology with tight cristae in the
control group (Figure 3E). However, after BCA treatment, the
mitochondria became smaller, punctate, and significantly
shortened in length. Meanwhile, the electron microscope
results showed that the mitochondrial morphology became
A B

D
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C

FIGURE 1 | BCA inhibited the proliferation, migration, and invasion of U251 cells. (A) U251 cells were treated with various concentrations of BCA for 24, 48, and
72 h. Cell proliferation was measured by CCK8 assay. (B) Cellular proliferation was measured via an Edu assay. (C) Wound healing assay shows the migrated cells
at 0, 12, and 24 h after treatment with BCA (0, 50, and 100 mM). (D) After treatment, the transwell assay showed that the migration and invasion cells at 24 h.
(E) Quantification of the wound healing rate in A after treatment with BCA. (F, G) Quantification of the migration and invasion cells. (∗) p < 0.05 and (∗∗) p < 0.01 for
Student’s t test.
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FIGURE 2 | BCA induces apoptosis of U251 by increasing ROS levels and decreasing the mitochondrial membrane potential. (A) U251 was incubated with 0, 50
and 100 mM BCA for 48 h, The ROS level were observed under a fluorescence microscope after DCF-DA staining; (B) Quantification of relative fluorescence intensity
in A; (C) U251 cells were incubated with 0, 50 and 100 mM BCA for 48 h, mitochondrial membrane potential was observed after JC-1 staining. (D) U251 cells were
incubated with 0, 50 and 100 mM BCA for 48 h, then subjected to flow cytometric analysis of ROS levels after DCF-DA staining; (F) Quantification of the green and
red fluorescence intensity rate in C. (F) The level of cell apoptosis was detected by flow cytometry. (G) The percentage of cell apoptosis ratio in A. (H) Expression
levels of apoptotic related proteins (Bax, Bcl-2, cytochrome c, pro-caspase 3) at different concentrations of BCA. Data are expressed as mean ± SD. *P < 0.05,
**P < 0.01, ***p < 0.001. versus control.
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smaller and vacuolated after BCA treatment (Figure 3G). To
gain insight into the mechanism by which BCA regulates
mitochondrial dynamics, we examined the expression of
mitochondrial dynamics-related proteins, including MFN1,
MFN2, and Drp1. After treatment of BCA, the western
blotting results show that mitochondrial fusion protein MFN1
and MFN2 expression significantly decrease and division protein
Drp1 expression significantly increase (Figure 3F). Fragmented
mitochondria cause the dysfunction of mitochondrial
metabolism. Next, we assessed mitochondrial function in cells
using a Seahorse Extracellular Flux XF24 Analyzer. We observed
in the oxygen consumption rate curves, both the basal and
maximal mitochondrial respiratory capacities decreased in
the BCA treatment group compared with the control group
Frontiers in Oncology | www.frontiersin.org 6155
(Figures 3A–C). ATP production was also reduced in the BCA
treatment group. Furthermore, we found that BCA treatment
reduced the expression of ND1, SDHB, and ATP5A (Figure 3D).
Together, these results showed that BCA might promote
intracellular ROS and mitochondrial division and restrain
oxidative phosphorylation of mitochondria in U251 cells.

BCA Decreased the Glycolytic
Capacity of U251 Cells
The Warburg effect, characterized by abnormal metabolic
phenomena that enhance glycolysis and reduces oxidative
phosphorylation, induces significant differences between cancer
cells and normal cells and affects tumor progression (27). Thus,
after treatment of BCA, the capacity of glycolysis of U251 cells
A B
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C

FIGURE 3 | BCA increases mitochondrial fission and decreases mitochondrial oxidative phosphorylation. (A) Mitochondrial stress test to detect mitochondrial
energy metabolism and respiratory functions in BCA (0, 50, 100 uM) group; (B) Quantification of the mitochondrial maximal respiration in A; (C) Quantification of the
mitochondrial ATP production in A; (D) Western blot analysis the relative proteins of Mitochondrial respiratory chain (ND1, SDHB, UQCRC2, MTCO2, ATP5A, and
GAPDH). (E) Mitochondria morphology was observed by mito-Tracker staining; (F) Western blot analysis of the relative proteins of mitochondrial fusion division
(MFN1, MFN2, and Drp1); (G) The morphology of mitochondria was observed by transmission electron microscope in control and BCA group. *P < 0.05, **P < 0.01
versus control.
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was examined using Seahorse XF24 extracellular flux analyzer.
The capacity of glycolysis was significantly decreased in BCA
treatment cells (Figures 4A–C). Some studies have shown that
the AKT/mTOR/HIF-1a pathway played a vital role in glycolysis
(14, 28, 29). A previous study has demonstrated that BCA can
inhibit the activity of the PI3K/AKT signaling in U251cells (30).
Our results also showed that the phosphorylation of both AKT
and mTOR as well as the expression of HIF-1a were significantly
decreased in U251 cells with BCA treatment. By testing relative
protein glucose metabolism pathways, we found that BCA
treatment reduced the expression of Glut-1, HK2, and LDHA
(Figure 4D). Together, these results clearly indicated that BCA
might decrease glycolysis inU251 cells by inhibiting the Akt/
mTOR/HIF-1a signaling pathway.

BCA Can Suppress Tumor Growth
in Nude Mice
The xenograft nude mouse model of U251 was established,
which was used to evaluate the anti-tumor effect of BCA
in vivo. We found that the tumor volume and quality of the
BCA group were markedly inhibited by intraperitoneal injection
of BCA (Figures 5A–C). Immunohistochemical (IHC) staining
was performed to detect the expression of Ki67. The expression
of Ki67 was significantly decreased in the BCA treatment group
(Figures 5D, E). Meanwhile, H&E staining (Figure 5D) showed
looser tumor tissue of mice with BCA treatment. Taken together,
our results suggested that BCA inhibited tumor growth in vivo.
Frontiers in Oncology | www.frontiersin.org 7156
DISCUSSION

The Bcl-2 protein family contains two subclasses of proteins: one
is: apoptosis-inhibiting proteins (such as Bcl-2, Bcl-Xl, and
Bcl-Xy); the other is apoptosis-promoting proteins (such as
Bax, Bix, and Bad, etc.). This present study demonstrated that
BCA treatment increased the level of Bax and decreased the
expression of Bcl-2, resulting in apoptosis induction. The
activation bcl-2/bax ratio, cytochrome C release, and Cleaved-
Caspase 3 is involved in the mitochondria-mediated intrinsic
pathway in apoptosis (31). Flow cytometry experiments
confirmed that the apoptosis rate of glioma cells increased
markedly after BCA treatment. We further verified that the
BCA inhibited the migration and invasion in U251cells by
wound healing and transwell chamber assays.

The Warburg effect theory believes that even in the case of
sufficient oxygen, tumor cells usually exhibit energy metabolism
based on glycolysis (11). Metabolic changes caused by
mitochondrial dysfunction, hypoxia, and carcinogenic signals
make malignant tumor cells have better proliferation activity and
production capacity in microenvironments such as hypoxia (27). In
addition, the acidic tumor microenvironment associated with lactic
acid accumulation due to increased glycolysis provides a tissue
environment for the selection of cancer cells with high viability and
malignant behavior (32). These changes in tumor biology and
microenvironment pose great challenges for cancer treatment.
The glucose uptake capacity of many tumor tissues is higher than
A
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C

FIGURE 4 | BCA decreases the Glycolytic Capacity of U251 cells. (A) Glycolytic stress test to detect glycolytic activities in BCA (0, 50, 100 uM) group;
(B) Quantification of the glycolytic capacity in A; (C) Quantification of the glycolytic reserve in A; (D) Western blot analysis of relative proteins of Glycolytic
(AKT, p-AKT, mTOR, p-mTOR, HIF-1a, GLUT1, PKM2, HK2, and LDHA). *P < 0.05, **P < 0.01 versus control.
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that of neighboring normal tissues (33). Therefore, regulating tumor
cell glycolysis and inhibiting the mitochondrial respiratory chain
has become an important way to fight tumors. Blocking energy
metabolism pathways may affect cell cycle activity, thus inhibiting
cell proliferation, and promoting its apoptosis (34, 35). In order to
further verify the relationship between energy metabolism and cell
proliferation and apoptosis, the effect of BCA on energy metabolism
of U251 cells was investigated by detecting glycolysis rate and
mitochondrial pressure. The results showed that BCA could
inhibit the glycolysis rate and the potential respiration capacity of
mitochondria in U251 cells.

Previous research had reported that mitochondrial fusion
enhanced oxidative metabolism, ATP production, and down-
regulated ROS. The mitochondrial division increases glucose
uptake and ROS level and weakens oxidative phosphorylation
after exposure to chemotherapy and/or radiation therapy (36, 37).
Besides, with the oxidative damage of cancer cells, an insufficient
energy supply, intracellular calcium overload, and activation of
apoptosis signals often lead to mitochondrial damage (38).
Promotion of mitochondrial fission will be possible as a key
method to prevent cancer progression. Consistent with previous
research, our study found that the application of BCA triggered
division, which also inhibited the survival rate of U251 cells in vitro.

We observed that mitochondrial ATP production and
membrane potential decreased, ROS production increased,
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triggering mitochondrial apoptosis. Thereby, from a therapeutic
perspective, BCA can active the mitochondrial division and is
critical for anticancer drug development. AKT is a serine/
threonine kinase that phosphorylates (activation or inactivation)
downstream targets and plays an important role in cancer growth
and metabolism (39). Some studies have shown that Akt activity is
associated with the promotion of the Warburg effect. The PI3K/
AKT/mTOR signaling pathway has been shown to be associated
with the upregulation of HIF-1a (40). It can upregulate the
transcription of glucose transporters and almost all glycolytic
enzymes, such as hexokinase 2 (HK2), Pyruvate kinase isozyme
type M2 (PKM2), and lactate deoxygenase (LDH) (41). The
present study shows that BCA treatment obviously inhibits the
expression of p-Akt and p-mTOR in glioma cells by Western blot
detecting. Meanwhile, downstream molecules of the HIF-1a level
of Glut-1, HK2, and LDHA were significantly decreased. These
findings indicated that BCA-induced reduced Akt activity plays a
vital role in inhibiting the levels of some glycolytic enzymes (Glut-
1, HK2, and LDHA) and leads to reduced aerobic glycolysis in
glioma cells.

In conclusion, we have demonstrated in this study the strong
anti-tumor activity of BCA both in vitro and in vivo by increasing
intracellular ROS and mitochondrial division and inhibiting
aerobic glycolysis in glioma cells. In addition, BCA treatment
significantly inhibits the Warburg effect in U251 human glioma
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FIGURE 5 | BCA inhibits tumor growth in nude mice. (A) The tumor of control and BCA treatment group. (B) Tumor volumes of the control and BCA treatment
group were measured and calculated every 3 days. (C) The tumor weight was measured in the control and BCA treatment groups. *P < 0.05, **P < 0.01 compared
with control group. (D) H&E stained tumor xenograft tissues in control and BCA treatment and immunohistochemistry was used to detect the expression of Ki-67 in
tumor xenograft tissues. (E). Quantification of Ki-67 positive rate in the different treatment groups. *p < 0.05 vs. control group.
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cells by regulating HIF-1a expression through the inactivation of
the AKT/mTOR pathway (Figure 6). Taken together, these
findings suggest that BCA may provide significant benefit in
the treatment of glioma by metabolic reprogramming.
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Background: Cancer metastasis and recurrence after radiotherapy are the significant
causes of poor prognosis in head-neck cancer (HNC). Clinically, it is commonly found that
patients with either condition may accompany the outcome of the other. We hypothesized
that HNC cells might exhibit a cross-phenotypic attribute between cell invasion and
radioresistance. To discover effective biomarkers for the intervention of aggressive cancer
at one time, the potential molecules that interplay between these two phenotypes
were investigated.

Materials and Methods: Three isogenic HNC cell sublines with high invasion or
radioresistance properties were established. Transcriptomic and bioinformatic methods
were used to globally assess the phenotypic-specific genes, functional pathways, and co-
regulatory hub molecules. The associations of gene expressions with patient survival were
analyzed by Kaplan-Meier plotter, a web-based tool, using the HNSCC dataset (n=500).
The molecular and cellular techniques, including RT-qPCR, flow cytometry, cell invasion
assay, and clonogenic survival assay, were applied.

Results: The phenotypic crosstalk between cell invasion and radioresistance was
validated, as shown by the existence of mutual properties in each HNC subline. A total
of 695 genes was identified in associations with these two phenotypes, including 349
upregulated and 346 downregulated in HNC cells. The focal adhesion mechanism
showed the most significant pathway to co-regulate these functions. In the analysis of
20 up-regulatory genes, a general portrait of correlative expression was found between
these phenotypic cells (r=0.513, p=0.021), and nine molecules exhibited significant
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associations with poor prognosis in HNC patients (HR>1, p<0.050). Three hub genes
were identified (ITGA6, TGFB1, and NDRG1) that represented a signature of interplayed
molecules contributing to cell invasion, radioresistance and leading to poor prognosis. The
ITGA6 was demonstrated as a prominent biomarker. The expression of ITGA6 correlated
with the levels of several extracellular and apoptotic/anti-apoptotic molecules.
Functionally, silencing ITGA6 suppressed cell migration, invasion, and attenuated
radioresistance in HNC cells.

Conclusions: A panel of interplay molecules was identified that contribute to cell invasion
and radioresistance, leading to poor prognosis. These panel molecules, such as ITGA6,
may serve as predictive markers of radioresistance, prognostic markers of metastasis,
and molecular therapeutic targets for refractory HNC.
Keywords: head-neck cancer, radioresistance, cell invasion, prognosis, signaling pathway, ITGA6 molecule
INTRODUCTION

Head and neck cancer (HNC), including the oral cavity and
oropharynx squamous cell carcinomas, is one of the ten leading
cancers worldwide (1–3). This cancer usually occurs in the
middle age male, at the high peak of life responsibility; it has a
tremendous impact on family and society. The head and neck
area is rich with lymphatic tissue; therefore, the bulky invasive
tumors or lymph node metastases are often found in HNC (4, 5).
In this context, gene products supporting invasion may be novel
targets for manipulating the cancer behavior with consequences
on treatment outcome. Several experimental approaches have
been used to identify invasion-related genes in HNC, including
comparing two sets of samples with different invasion
capabilities (6) or comparing cancer cell lines with normal
keratinocytes (7). However, a significant disadvantage of these
approaches lies in the heterogeneity between samples. To reduce
heterogeneity and obtain specific data on the gene expressions
related to cancer invasiveness, we previously established several
isogenic cancer cell sublines with highly invasive features derived
from HNC cell lines (8, 9). The cDNA microarrays were
performed to compare the differential transcriptome profile
between invasive sublines and the parental cells. Heretical
clustering analysis revealed 461 genes associated with cancer
invasion, including 210 up-regulated and 251 down-regulated
genes in the invasion sublines.

Radiation therapy is an indispensable part of the treatment of
HNC. The identification of radioresistant molecules for further
applications should contribute to a great improvement in
treatment outcomes. Previously, microarrays have been used to
compare gene expression profiles between parental and
radiation-treated cancer cell lines in few cancers (10, 11).
However, these cells were examined after a few hours or days
of irradiation. The results of these gene alterations thus may
represent the radiation response or induction molecules. To
obtain a more thorough profile of molecules that may
represent the intrinsic factor of radioresistance in HNC, we
previously established several isogenic radioresistant sublines
derived from HNC cancer cell lines (12, 13). The cDNA
2162
microarray database was established by comparing the gene
expression profiles between radioresistant sublines and the
parental cells. The heretical clustering analysis revealed 255
genes associated with radioresistance, including 155 up-
regulated and 100 down-regulated in the radioresistant cells.

Clinically, the worse prognosis of HNC patients was often
resulted from cancer metastasis or therapeutic resistance.
Interesting, highly invasive cancers with nodal metastasis often
accompany poor radiotherapeutic response (14, 15). Similarly,
recurrent HNC patients with radioresistant cancers often have a
higher metastasis rate (16, 17). From these clinical insights, we
hypothesized that HNC cells might exhibit a cross-phenotypic
attribute between cell invasion and radioresistance. We,
therefore, employed the invasion- and radioresistant sublines
as study models to examine the potential cross-regulatory
mechanism. We determined a molecular panel and core
pathways that may participate in the interplay of these two
phenotypes through integrative analysis of the transcriptomic
datasets. We further assessed the prognostic significance of these
cross-regulatory molecules in HNC patients and concluded a
panel of molecules facilitating worse survival. The cellular and
molecular examinations demonstrated a hub gene, ITGA6, that
played prominent roles in cellular invasion and radioresistance,
leading to refractory cancer. Our study provides prognostic
information, which may be further applied as molecular
biomarkers and therapeutic targets for the treatment of
refractory HNC.
MATERIALS AND METHODS

Cell Lines and the Isogenic Sublines With
Highly Invasive or Radioresistant
Phenotypes
The HNC cell lines, OECM1, Detroit, Fadu and SAS were used in
this study (8, 9). These cells were grown in MEM or RPMI 1640
medium supplemented with 10% fetal bovine serum. For
establishment of highly invasive sublines, the Matrigel-invasion
protocol was employed, and the selection cells were designed as
July 2021 | Volume 11 | Article 681717
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the specific sublines (OECM-Inv, Detroit-Inv, Fadu-Inv) (8, 9).
For establishment of radioresistant sublines, the serial irradiation
method was used, and the survival cells were designated as RR
sublines (OECM1-RR, FaDu-RR, Detroit-RR) (12, 13).

Transcriptomic Profiling and Functional
Pathways Associated With Cell Invasion
and Radioresistance
The differential transcriptomes between HNC parental cells and
the specific cell sublines were examined by using Affymetrix
cDNA microarray (GeneChip Human Genome HG-U133A).
The differentially expressed gene (DEG) was selected via
ANOVA analytical method based on the criteria of average
fold-change > 1.5 and P-value < 0.05 between parental and the
subline cells. Hierarchical cluster analysis was applied to assess
the similarity between sample groups. To determine the
functional pathways associated with radioresistance and cell
invasion, the DEGs identified in the microarrays were analyzed
by using computational methods, the DAVID and the KEGG
bioinformatic tools (https://david.ncifcrf.gov/) (13). Pathway
enrichment analysis was applied to identify molecular
pathways according to the KEGG database. Significantly
enriched functional terms (adjusted p-values <0.05) for up- or
down-regulated genes were reported.

Clinical Assessment of Prognostic
Significance in HNC Patients
The KM-Plotter online tool (http://kmplot.com/analysis) was
also used to assess the prognostic significance of the cross-
regulatory genes in HNC patients. The cohort of the TCGA-
HNSC dataset was analyzed. This dataset contained 500 patients
with head and neck squamous cell carcinoma and with
prognostic information (18). High- and low-risk groups were
classified using an optimization algorithm according to each
gene expression level. The Kaplan-Meier analysis was performed
to evaluate overall survival, and the log-rank test was used
to calculate hazard ratios (HRs) and their 95% confidence
intervals (CIs).

Evaluation of the Differential Expression
Genes by RT-qPCR Method
The differentially expressed levels of the genes between HNC
parental cell lines, the RR sublines, and the Invasion sublines were
evaluated using RT-qPCR method (9, 19). Briefly, the cDNA
synthesis and qPCR were performed using the MiniOpticon™

real-time PCR detection system and SYBR Green Supermix
reagents. Total of 20 genes were examined. The primers used in
this study were listed in Supplementary Table S3.

Construction of sh-ITGA6 Plasmid and
Cellular Transfection
Construction of the short hairpin (sh)-ITGA6 plasmid, and the
following transfection experiments were performed similarly as
previously described (8, 20). The sense and antisense hairpin
nucleotides complementary to ITGA6 mRNA were also
generated and cloned into the pLKO.1 vector plasmid.
Frontiers in Oncology | www.frontiersin.org 3163
The sequence for sh-ITGA6 is 5’-ATT- AAT- CTG- AAG- TTA-
GAA- CA- CCT- TCT- TCT-AAC-TTC- AGA- TTA- AT-3’. The
plasmids were transfected into cells using Lipofectamine 2000
reagent with Opti-MEM medium (Invitrogen, USA) according to
the manufacturer’s instructions. After transfection, the Opti-MEM
medium were replaced with fresh complete medium. Cellular
clones that were stably transfected with sh-ITGA6 plasmid were
selected using the neomycin antibiotic G418.

Determination of Radiosensitivity by
Clonogenic Survival Assay
Radiosensitivity was determined by clonogenic survival assay as
previously described (12, 20). Briefly, cells were seeded into a 6-
well cell culture plate for 8 hours. The cells were exposed to
various dose of radiation (0 to 6 Gy) and then continuously
cultured for 7-14 days to allow cell colony formation. The
survival fraction was calculated as the number of colonies
divided by the number of seeded cells times the plating efficiency.

Determination of Cell Migration and
Invasion Abilities
The cell migration ability was determined by using the in vitro
wound-healing assay (8, 9). Briefly, cells were seeded in an ibidi®

culture insert (Applied BioPhysics, Inc. NY) on top of a 6-well
plate. After 8 hr of incubation, the culture insert was detached to
form a cell-free gap in a monolayer of cells. After changing to
culture medium with 1% FCS, the cell migration status toward the
gap area were photographed with a specific period time point. The
cell invasion ability was evaluated by using the BioCoat Matrigel
(Becton Dickinson Biosciences, Bedford, MA) and Millicell
invasion chamber (Millipore Corporation, Bedford, MA) (8, 9).
The Matrigel were fist coated onto the membrane of the Millicell
upper chamber with a pore size of 8 mm in a 24-well plate. Cells in
1% FBS medium were seeded into the upper chamber. The lower
chamber will contain 10% FBS in medium to trap invading cells.
After a specific time point, the cells invading to the reverse side of
the membrane were fixed, stained, and photographed.

Evaluation of Cell Cycle Status by
Flow Cytometry
The cell cycle status was determined by flow cytometry analysis,
similarly as previously described (9, 19). Briefly, the cells were
first synchronized to G0 phase by replacing the culture medium
with serum-free medium. After 24 hr, cells in the exponential
phase were collected and fixed with ice-cold 70% ethyl alcohol in
PBS. Cells were then permeabilization with Triton X-100
solution, stained with propidium iodide solution, and analyzed
by a FACScan flow cytometry (Becton Dickinson). The
distribution of cell cycle phases was determined using Cell
Quest Pro and ModiFit software.

Measurement of Cellular Reactive Oxygen
Species (ROS) Level
Intracellular ROS level were measured by the H2DCF-DA
oxidation method (Invitrogen, Carlsbad, CA, USA) similarly as
previously described (12, 20). Briefly, cells were grown on coverslip
July 2021 | Volume 11 | Article 681717
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plates in HEPES buffer supplemented with H2DCF-DA reagent.
The H2DCF-DA is a cell-permeable probe that is oxidized by
intracellular ROS to generate fluorescent DCF. The green
fluorescence of DCF was monitored by flow cytometric analysis
(FACSCalibur, BD Biosciences, Franklin Lakes, NJ, USA).

Statistical Analysis
The two-tailed unpaired Student’s t-test was used for the
comparison of two variables between the means. All statistical
analyses were conducted using a significance level of P < 0.05.
RESULTS

Phenotypic Cross-Talk Between Cell
Invasion and Radioresistance in HNC
Previously, we have established several high invasion sublines
and radioresistance sublines derived from HNC cancer cell lines
(8, 9, 12, 13). In this study, we determined whether these two
phenotypes may possess a phenotypic cross-regulatory attribute.
The cell invasion and radiosensitivity were determined by
Matrigel invasion and clonogenic survival methods. First, we
assessed the invasion ability in HNC parental cells and the
radioresistant sublines (OEC-RR, Det-RR, and Fadu-RR) after
confirming higher radioresistance in the RR cells. As shown in
Figure 1A, the RR sublines possessed higher invasion ability
than their parental cells, with the 2.1- to 2.9-fold increase in three
RR sublines. We next examined the radiosensitivity in parental
cells and the invasion sublines (OEC-Inv, Det-Inv, Fadu-Inv). As
shown in Figure 1B, these invasion sublines exhibited higher
resistance to irradiation by increasing 1.3- to 1.8-fold in these
invasive sublines compared to the parental cells.

It hasbeenreported that the cell cycle lying at theG1/Sphasewas
more resistant to irradiation while G2/M is more sensitive (12, 21).
We examined whether the RR- and invasion sublines may have the
favorable cellular phase of G1/S in common when responsive to
irradiation. The flow cytometry was performed to analyze the
distribution of cell cycle status after 24 hr of radiation treatment.
The results were shown in Figure 1C. Without irradiation, the
cellular fractions at the G1/S phase were at a similar level as in
parental cells, the RR sublines, or the invasion sublines (73%, 82%,
and 79%, respectively). Upon irradiation, cells were transited from
G1/S to the G2/M phase in general. However, the RR and invasion
sublines exhibited more reluctance to this transition, as shown by
higher G1/S fraction than the parental cells (15%, 67%, and 48%,
respectively). The ratio of cellular fraction in G1/S verse G2/M
increased approximately 3- and 2-folds respectively in the RR and
invasion sublines. Thus, the RR and invasion sublines possessed a
similar characteristic that being less sensitive to irradiation. These
results suggested that HNC cells exhibited an attribute of
phenotypic cross-talk between cell invasion and radioresistance.

Functional Pathways in Cross-Regulation of
Cell Invasion and Radioresistance in HNC
The functional pathways that may crossly regulate cell invasion
and radioresistance were investigated. We integrated the
Frontiers in Oncology | www.frontiersin.org 4164
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FIGURE 1 | Phenotypic cross-talk between cell invasion and radioresistance
in HNC. (A) Radioresistant sublines exhibited higher cell invasion ability
compared to the parental cells, as determined by Matrigel invasion assay.
Total of 3 HNC parental cell lines (OECM1, Detroit, and Fadu) and their
radioresistance sublines (RR sublines) were examined. The numbers of cells
that had invaded through the Matrigel to the reverse side were stained,
photographed and quantified. (B) The invasion sublines showed statistically
more resistant to irradiation compared to their parental cells, as determined
by clonogenic survival assay. Total of 3 HNC parental cell lines (OECM1,
Detroit, and Fadu) and their invasion sublines were examined. The colony
survival fractions were determined after the cells were irradiated with 2 or 4
Gy. The experiments were performed for three times, and the similar results
were obtained. The error bars shown in the relevant figures indicated the
standard deviation of the three independent experiments. (*p < 0.05, **p <
0.01, ***p < 0.001, t-test). (C) Both Invasion and radioresistant sublines
enrich cells at G1/S phase in response to irradiation. The OECM1 parental
cell, the RR subline or the invasion subline were examined. Cells were then
synchronized to the G0 phase by replacing the culture medium with serum-
free medium. The cells were treated with a single dose of 6 Gy of irradiation
and continuously cultured for 24 hours. In each sample, cell cycle distribution
was determined by flow cytometry analysis.
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transcriptomic datasets of the DEG profiles from three HNC cell
lines and their respective sublines to obtain more comprehensive
information. Figure 2A showed the conceptional design of this
analytical strategy. We applied the bioinformatics software to
identify common hub genes between multiple cell lines to
comprise heterogeneous cancers. After combinational analysis
of these datasets, there were only 21 genes differentially expressed
in both phenotypes of the three HNC cell lines (Supplementary
Table S1). The limited number of molecules may be due to
intrinsic heterogeneity of genetic background within multiple
cell lines. The DEGs in either phenotype of these three sublines
were recruited to increase the dataset of potential cross-
regulatory genes. A total of 695 genes were obtained, with 349
up-regulated and 346 down-regulated compared to the
parental cells.

The up-regulated (349) or down-regulated (346) genes were
imported to the KEGG suite for molecular network analysis. The
top 10 pathways with either up or down-regulation were shown
in Figures 2B, C. In the up-regulatory pathways, these molecules
were enriched related to oncogenic function in general. The cell
motility mechanism was most significant, as the regulation of
focal adhesion, the association with extracellular matrix (ECM)-
receptor interaction, and actin cytoskeleton regulation. The other
molecular mechanisms participating in oncogenic signaling
pathways were also apparent, as the PI3K-Akt, the Rap1
signaling, and the MAPK signaling (Figure 2B). In the down-
regulatory pathways, these molecules were enriched most related
to infectious diseases or immune/stress responses (Figure 2C).
These included the conditions of legionellosis, the signaling
pathways of TNF-regulatory, NF-kB, or NOD-like signaling. In
all, these results indicate that the functional process participating
in the interplay of cell invasion and radioresistance involves a
wide range of molecular mechanisms, which may be required to
maintain homeostasis in HNC cells. Note that focal adhesion
regulation showed at the top-ranking among all pathways (P=
8.29E-27), indicating this mechanism’s prominence in the cross-
regulatory function of cell invasion and radioresistance.

Panel Molecules Correlative Up-
Regulation in the Invasion and
Radioresistant Cells
We next parallelly investigated the gene expression levels in both
sublines and their parental cells of the two HNC cell lines to
validate the potential molecules that may crossly regulate cell
invasion and radioresistance. A total of 20 genes were selected
and subjected to RT-qPCR examination. These genes included
the 16 up-regulations in the transcriptomic study’s phenotypes
and the four related to the focal adhesion functional pathway.
Figure 3A showed examples of the results, and Supplementary
Table S2 summarized all the data. Although various levels in
differential cell sublines, many genes were elevated in both
invasion and RR cells, including ITGA6, TGFB1, NDRG1, and
IL6. The over-expression levels in these two phenotypic cells
were plotted for each gene to assess a typical set of hub genes that
may co-regulate cell invasion and radioresistance. We averaged
the gene expression levels in two HNC cell lines to comprise
Frontiers in Oncology | www.frontiersin.org 5165
heterogeneity between different cell lines. As shown in
Figure 3B, these genes were correlatively expressed in the
invasion and RR sublines (r=0.5128, p=0.0208). These results
suggested a panel of genes that contribute to both phenotypes.

Molecular Interplays Between Cell
Invasion and Radioresistance That Led
to Poor Prognosis in HNC Patients
From the insight of the clinical findings that cancer patients with
metastasis or therapeutic resistance often led to poor prognosis,
we examined the potential significance of the 20 co-regulatory
molecules on HNC patients’ prognostic effects. We applied the
KM-Plotter suit to analyze the association of gene expression
levels and patients’ survival using the TCGA-HNSC cohort
(n=500) (18). The patient characteristics of this cohort were
summarized in Supplementary Table S4. Figure 4A showed few
examples of the highly significant results. For each gene, the
hazard ratio (HR) and P-value of the prognostic association were
summarized in Supplementary Table S2 and Figure 4B. As
shown, many molecules exhibited good prediction power to
worse prognosis, including ITGA6 (P=2.8E-05), ITGB1
(P=2.1E-04), IL6 (P=0.0029), and LAMC2 (P=0.0031), UBEL3
(P=0.0042), and NDRG1 (P=0.034).

To determine the association of clinical prognosis and gene
expressions in the phenotypes of cell invasion or radioresistance,
Figures 4C, D were plotted to show the associations of each
gene. Although various clinically relevant genes were found
between these two panels, several common molecules were
found. Figure 4E summarized the molecules that were 2-fold
over-expressed in the invasion or radioresistant cells and related
to poor prognosis in HNC patients (P<0.05, HR>1.0). As shown,
three molecules were distinguished out, as ITGA6, TGFB1, and
NDRG1. These results represented a signature of functionally
interplayed molecules between cell invasion and radioresistance
and led to poor prognosis in HNC patients.

To further assess these three genes’ carcinogenic effect, we
also examined the differential expression levels of these
molecules between normal and tumor tissues using two
microarray datasets, the GSE25099 and TCGA-HNSC (18, 22).
The GSE25099 dataset contains a transcriptomic profile of 57
carcinoma tissues from oral cancer patients and 22 normal oral
mucosa tissues from healthy individuals. The TCGA-HNSC
dataset comprised 519 patients with head-neck squamous cell
carcinoma and 44 normal tissues. Figures 4F, G showed the
results. As shown, all these molecules were significantly over-
expressed in the cancer patients in both assay cohorts. These
results suggest that the molecules ITGA6, TGFB1, and NDRG1
contribute to cancer aggressiveness and participate in the
malignant transformation from normal cells.

ITGA6 Promoted Cell Invasion via
Regulating the Integrity of Extracellular
Matrix (ECM)
ITGA6 showed at the authoritative place of cellular molecules in
the aggressive phenotypes and worse clinical presentations; this
molecule was selected for further mechanistic investigation.
July 2021 | Volume 11 | Article 681717

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


You et al. Crosstalk of Invasion and Radioresistance
ITGA6 (Integrin alpha-6) is a heterodimeric component of the
integrin receptor protein in epithelial cells, plays a critical role in
maintaining the mechanical integrity of cell membrane for tissue
architecture (23, 24). The cellular functions of ITGA6 related to
cell invasion and radiosensitivity were assessed using shRNA
Frontiers in Oncology | www.frontiersin.org 6166
stably knockdown experiments. The effects of cell migration and
invasion were evaluated by in vitro wound healing and Matrigel
invasion assays. As shown in Figure 5A, silencing ITGA6
resulted in a slower migration toward the gap area in two
HNC cell lines by decreasing approximately to 40% and 60%
A

B

C

FIGURE 2 | Transcriptomic profile and molecular pathways associated with cross-regulating function on cell invasion and radioresistance. (A) Conceptional design
of the analytical strategy to investigate cross-regulatory genes for cell invasion and radioresistance. The profiles of differentially expressed genes (DEGs) were
established after comparison of the transcriptomic datasets from three HNC cell lines (OECM1, Detroid, Fadu) and their sublines. (B) A list of the top 10 significant
molecular pathways determined by DAVID enrichment analysis of the 349 up-regulatory genes. (C) A list of the top 10 significant molecular pathways determined by
DAVID enrichment analysis of the 346 down-regulatory genes. Bar chart representing the classification of KEGG network. The enriched significance (p-value) values
were negative base-2 log-transformed.
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in OECM1 and SAS cells at 24 hr. More apparently, ITGA6-
silencing reduced cell invasion, with down to 10% and 8% in
OECM1 and SAS cells (Figure 5B). These results suggested that
ITGA6 functioned in promoting cell migration and invasion;
silencing this molecule may inhibit cancer metastasis.

To examine whether ITGA6 function may relate to molecular
presentation in clinical cancers, we further examined the
association of ITGA6 expression level and motility-related
molecules using an HNC microarray dataset GSE25099 (22).
Several extracellular matrix (ECM) molecules were determined,
including ITGB4, LAMC2, FSCN1, and PXN. The expression
levels of these molecules were shown in Figure 5C. As shown, all
these genes were significantly over-expressed in the cancer
tissues compared to the normal tissues from healthy
individuals (P<0.001 in all molecules). Furthermore, in the
cancer tissues, these genes were all statistically correlated with
the expression of ITGA6 (Figure 5D). These results suggest that
ITGA6 promoted cell invasion via regulation of ECM integrity
in HNC.

ITGA6 Facilitated Radioresistance
Through Regulation of the Apoptotic
Related Mechanism
The potential effect of ITGA6 on radiosensitivity was determined
by clonogenic survival assay. As shown in Figure 6A, ITGA6-
silencing reduced radioresistance by decreasing colony survival to
42% and 61%, respectively, at 6 Gy in OECM1 and 4 Gy in SAS
cells. It is well established that ionizing radiation can induce ROS
in the cell resulting in apoptosis (20). We further determined
whether ITGA6 contributing to radioresistance may relate to ROS
regulation. The intracellular ROS was measured using the
H2DCF-DA oxidation method, and the green fluorescence DCF
product was analyzed by flow cytometry (20). Results were shown
in Figure 6B. Without irradiation, ITGA6-silencing had minimal
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effect on intracellular ROS level. Irradiation significantly induced
ROS production in either vector- or sh-ITGA6 transfected cells.
However, the ITGA6-silencing cells increased more considerably
than the controls, by 1.7- and 1.3-fold higher in the OECM1 and
SAS cell lines. These results suggested that ITGA6 contributed to
radioresistance via inhibition of the ROS generation pathway.
Silencing ITGA6 may reverse radioresistance by sensitizing
cancer cells to radiotherapy.

We also assessed the potential association of ITGA6 with the
clinical presentation of survival-related molecules using a
microarray dataset GSE25099 (22). These molecules included
BIRC5, MCL1, XIAP, and apoptotic gene CAS9. The expression
levels of these molecules were shown in Figure 6C. As shown,
these survival genes (BIRC5, MCL1, XIAP) were significantly
increased expressions in the cancer tissues, while the apoptotic
gene (CAS9) was reduced compared to the normal tissues from
healthy individuals. Furthermore, in the cancer tissues, these
genes were all statistically correlated with the expression of
ITGA6 (Figure 6D). These results suggest that ITGA6
facilitated radioresistance by reducing cellular ROS level
leading to anti-apoptotic or survival advantage in HNC.
DISCUSSION

Cancer metastasis and recurrence after radiotherapy are the major
causes of treatment failure in HNC. It is commonly found that
patients with either condition may accompany the outcome of the
other. In this study, we revealed the molecular interplays of cell
invasion and radioresistance in HNC, aiming to discover effective
biomarkers for the intervention of aggressive cancer at one time.
Our works presented in this study can be highlighted by few
points (Figure 7). (1) The phenotypic crosstalk between cell
invasion and radioresistance was confirmed in HNC cells.
A B

FIGURE 3 | Panel molecules correlative up-regulation in the invasion and radioresistant cells. (A) Relative levels of gene expressions among the parental (Pt) cells,
radioresistant (RR) subline, and invasion (Inv) subline of the OECM1 and Detroit cell lines, by using RT-qPCR method. The expression levels are shown by bars.
(B) Correlative expressions of 20 genes between RR subline and Inv subline of HNC cells. For each gene, the average level of the fold changes compared to the
parental cells from two cell lines (OECM1 and Detroit) was used.
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FIGURE 4 | Molecular interplays between cell invasion and radioresistance that led to poor prognosis in HNC patients. (A) Prognostic significance of represent
genes in HNC patients, as determined by Kaplan-Meier Plotter online tool using the head-neck squamous cell carcinoma dataset (n = 500). (B) The overall view of
the prognostic vales of 20 genes as shown by the Hazard ratio with 95% confidence interval (CI), as determined by Kaplan-Meier Plotter using head-neck squamous
cell carcinoma dataset (n = 500). (C) The overall view of 20 gene over-expressions (x-axis) in the invasion sublines and the prognostic significance (y-axis) in HNC
patients of each gene. Value further to the right are signified higher levels of over-expression, and those toward to the top represent more significance with poor
prognosis. (D) The overall view of 20 gene over-expressions (x-axis) in the radioresistant sublines and the prognostic significance (y-axis) in HNC patients of each
gene. Value further to the right are signified higher levels of over-expression, and those toward to the top represent more significance with poor prognosis. (E) The
diagram showing the overall and overlap genes that were over-expressed in the invasion subline, in the radioresistant subline, and associated with poor prognosis in
HNC patients. Note that three molecules, ITGA6, TGFB1, and NDRG1, were recruited in these three parameters. (F, G) Relative levels of the gene expressions
between oral mucosa specimens from healthy individuals (Normal) and oral cancer tissues from HNC patients (Cancer). The gene expression data, including ITGA6,
TGFB1, and NDRG1 was retrieved from GEO Dataset GSE25099 (F) and TCGA-HNSC dataset (G). (***p<0.001, *p<0.05, t-test).
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(2) The functional pathways co-regulate between these two
phenotypes were established. The focal adhesion was revealed to
play a significant role in contributing to these attributes. (3) The
molecular interplays between cell invasion and radioresistance
were identified, as ITGA6, TGFB1, and NDRG1, further leading
to poor prognosis in HNC. (4) ITGA6 was demonstrated to play
an imperative role in these aggressive cancer phenotypes. It may
occur through modulation of ECM or anti-apoptotic mechanism
to achieve cell invasion and radioresistance. Silencing this
Frontiers in Oncology | www.frontiersin.org 9169
molecule suppressed cell migration, invasion, and attenuated
radioresistance; this molecule may be used as a molecular target
for refractory HNC treatment. In the future, further validation
studies with protein expression levels in clinical subjects are highly
recommended to confirm these results.

In this study, several functional pathways were identified
cross-regulating cell invasion and radioresistance in HNC.
Interesting, the functional mechanisms related to motility
comprised the most, as focal adhesion, proteoglycans in cancer,
A B

D

C

FIGURE 5 | ITGA6 promoted cell motility via regulating the integrity of extracellular matrix (ECM). (A) ITGA6 silencing decreased cell migration. After transfection of
ITGA6-shRNA plasmids, the HNC cells (OECM1, SAS) were subjected to in vitro wound healing assay. Cell migration toward the gap was observed, photographed,
and quantified at the indicated times. (B) ITGA6 silencing attenuated cell invasion. After transfection of ITGA6-shRNA plasmids, the HNC cells (OECM1, SAS) were
subjected to Matrigel invasion assay. The cells that invaded through the Matrigel-coated membranes to the reverse side were stained, photographed, and quantified.
(C) Significant increases of ECM-associated gene expressions in the oral cancer tissues from HNC patients (Cancer) compared to the oral mucosa specimens from
healthy individuals (Normal). The gene expression data, including ITGB4, LAMC2, FSCN1, and PXN, was retrieved from GEO Datasets GSE25099. (D) Correlative
expressions between ITGA6 and ECM associated molecules ITGB4, LAMC2, FSCN1, and PXN, in the oral cancer tissues from HNC patients. The gene expression
data was retrieved from GEO Datasets GSE25099. (**p < 0.01, ***P < 0.001, t-test).
July 2021 | Volume 11 | Article 681717

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


You et al. Crosstalk of Invasion and Radioresistance

Frontiers in Oncology | www.frontiersin.org 10170
ECM-receptor interaction, and actin cytoskeleton regulation
(Figure 2B). Although these motility-related mechanisms were
well accepted to regulate cell invasion, they were noted to
modulate radioresistance in the present study. The integrity of
ECM and focal adhesion mechanism were important in response
to radiation stress for cellular survival. Three signaling pathways
were identified for the network molecules to critically co-regulate
these two phenotypes, PI3-AKT, Rap1, and MAPK (Figure 2B).
PI3K-Akt is an intracellular signaling pathway that mediator of
several membrane-bound receptor tyrosine kinases (25). In
response to extracellular stimuli, its activation may induce
downstream oncogenic pathways to promote cancer
aggressiveness. Consistent with our findings, this pathway has
been reported to participate in cell invasion, cell proliferation,
and therapeutic resistance (26, 27). The MAPK family proteins
include three major signaling molecules, ERK, p38 kinase, and
JNK, that transduce extracellular signaling into nuclei following
turn-on gene expression (28). Since MAPK may induce multiple
downstream signals, it regulates a wide range of cellular
functions, including cell proliferation, differentiation, apoptosis,
and stress response (28, 29). Our finding of MAPK signaling
pathway in co-regulation of two aggressive cancer phenotypes
agreed with these reports. The Rap1 protein is a small GTPase
protein belonging to the RAS oncogene family. It acts as
molecular switches between an inactive GDP-bound and an
active GTP-bound conformation to turn on signal transduction
(30). Rap1 is important for molecular junction and cell adhesion,
which is significantly associated with cell invasion and cancer
metastasis (30, 31). Furthermore, the Ras family has also been
reported regulating cell proliferation and survival (30, 31). This
growth supportive function may explain the radioresistant
mechanism of the Rap1 pathway noted in this study. Thus,
activation of these pathways may contribute to a more aggressive
cancer, which is correlated with our findings related to cell
invasion and radioresistant phenotypes of HNC.

In searching panel molecules co-regulating cell invasion and
radioresistance and contributing to poor prognosis in HNC,
three molecules were prominent, as ITGA6, TGFB1, and
NDRG1 (Figure 4E). NDRG1 is a multifunctional protein that
participates in several cellular processes, including cellular
differentiation, stress response, and apoptosis (32, 33). Reports
of NDRG1 in modulating tumor development are inconsistent.
NDRG1 may act as an oncogene, for it has been reported to be
overexpressed in many types of cancers, including bladder, liver,
lung, and colorectal cancers (34–37). The oncogenic function of
NDRG1 includes promoting cellular motility, tumorigenesis, and
therapeutic resistance (36–41). Paradoxically, NDRG1 is also a
putative tumor suppressor since it has been found
downregulated in several types of cancers, such as prostate,
pancreatic, and endometrial cancers (42–44). The reported
tumor-suppressive functions were on the suppression of cell
growth and motility (43–45). The opposite effects of NDRG1 in
modulating malignancy may depend on the cells under certain
conditions or the specific types of tissues. In the present study, we
found that NDRG1 was upregulated in the invasive and
radioresistant sublines (Figure 3), over-expressed in the cancer
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FIGURE 6 | ITGA6 facilitated radioresistance through regulation of the
apoptotic related mechanism. (A) ITGA6 silencing increased radiosensitivity.
After transfection of ITGA6-shRNA plasmids, the HNC cells (OECM1, SAS)
were subjected to clonogenic survival assay. The colony survival fractions
were determined after the cells were irradiated with various doses (0 to 6 Gy).
(B) ITGA6 silencing increased ROS production in HNC cells. After transfection
ITGA6-shRNA plasmids, the HNC cells (OECM1, SAS) were subjected to
irradiation. The ROS level was determined using H2DCF-DA oxidation method
and analyzed by flow cytometry. (C) Significantly higher expressions of
survival related genes (BIRC5, MCL1, XIAP) and lower expression of
apoptotic gene (CAS9) in the oral cancer tissues from HNC patients (Cancer)
compared to the oral mucosa specimens from healthy individuals (Normal).
The gene expression data was retrieved from GEO Datasets GSE25099.
(***p < 0.001, **p < 0.01, *p < 0.05, t-test). (D) Correlative expressions
between ITGA6 and survival or apoptotic associated molecules BIRC5, MCL1,
XIAP, and CAS9, in the oral cancer tissues from HNC patients. The gene
expression data was retrieved from GEO Datasets GSE25099.
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tissues (Figure 4F), and associated with poor prognosis in HNC
patients (Figure 4A). Our results, in agreement with the
oncogenic reports, suggested that this molecule modulates
multiple malignant functions in HNC.

TGFB1 is a polypeptide member of the transforming growth
factor-beta (TGFB) superfamily, a cytokine that predominantly
exists in the tumor microenvironment (46). This molecule is
mostly considered an oncogene because it was overexpressed in
several cancers and associated with a poor prognosis (47–49).
Mechanically, TGFB1 was presumably modulating malignant
function via suppression of immunosurveillance (50). Recently,
this molecule has been reported contributing to malignancy via
induction of cellular motility through multiple mechanisms.
These include the activation of epithelial-mesenchymal
transition (51), modulating focal adhesion structure via
interacting with laminin family molecules (52) or interacting
with tyrosine kinase receptor to induce oncogenic signaling (53).
Consistently with these reports, we found that TGFB1 was
markedly upregulated in the invasive sublines (Figure 3),
overexpressed in the cancer tissues (Figure 4F), and associated
with poor prognosis in HNC patients (Figure 4A). We further
noted that TGFB1 facilitated radioresistant in HNC cells, and
which was not previously reported in our knowledge (Figure 3).
Thus, our results supported previous findings and provided a
novel functional mechanism of TGFB1 in cancer aggressiveness.
Science ITGB1 is a secretory protein; this molecule may be used
as a circulating tumor marker for prognostic application.

ITGA6 (Integrin alpha-6), also named VLA-6 and CD49f,
encodes a member of the integrin alpha-6 subunit protein (23,
24). Integrins are heterodimeric receptors that comprise paired a
and b subunits. There are 18 a and 8 b subunits in the human
Frontiers in Oncology | www.frontiersin.org 11171
genome that combine to provide 24 integrin receptors, each with
its specificity for selected extracellular matrix (24). Integrin a6b4
is a cellular adhesion molecule that binds to its ligand laminins
in epithelial cells and plays a critical structural role in the
hemidesmosome (24, 54). Although integrin’s primary
function is to maintain cell membranes’ mechanical integrity
to maintain tissue architecture, recent studies have shown many
more biological roles than what was initially thought. Through
interaction with ligand laminin or cell-surface receptor protein,
integrin may induce several downstream signal pathways,
including FAK, EGFR, and AKT oncogenic mechanisms (54–
56). Clinically, ITGA6 has been reported altered expression in
several cancers. Over-expression of this molecule was found in
several types of cancers, and this up-regulation was associated
with poor prognosis (56, 57). Mechanistically, this molecule has
been reported to participate in several malignant functions,
including cell proliferation, cell motility, and drug resistance
(58–60). All these reports were consistent with our findings in
HNC. We showed that a high level of ITGA6 was overexpressed
in cancer tissues (Figure 4F) and associated with a worse
prognosis in HNC patients (Figure 4A). Although ITGA6 was
expected to promote cell invasion, we also revealed its function in
facilitating radioresistance (Figure 6A). This result was
supported by the previous finding in breast cancer that ITGA6
plays a critical role in radioresistance via regulating Akt/Erk
signaling pathway (61). We also showed that this function could
be achieved via modulation of intracellular ROS levels
(Figure 6B) and leading to anti-apoptotic advantage
(Figure 6D). At the molecular level, we demonstrated that
ITGA6 facilitated radioresistance via regulating the apoptotic-
related mechanism. This finding was shown by the correlative
FIGURE 7 | A model of molecular crosstalk between cell invasion and radioresistance in HNC.
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expressions of ITGA6 with a panel of survival genes, including
BIRC5, MCL1, XIAP (Figure 6D). Note that BIRC5 has been
reported regulating radioresistance and metastasis (62, 63), thus
further supporting our finding of this molecule on the cross
regulatory function in these two phenotypes. Silencing this
molecule reversed malignant presentation significantly, as
attenuation of invasion ability (Figure 5) and induction of
radio-sensitization in HNC (Figure 6). Thus, ITGA6 may
serve as a predictive marker of radioresistance, a prognostic
marker of metastasis, and a molecular target for developing a
therapeutic modality for the treatment of refractory cancers.

In conclusion, the poor prognosis of HNC patients was often
resulted from cancer metastasis or therapeutic resistance. In this
study, we have employed a systemic approach by elucidation of the
molecular interplays between cell invasion and radioresistance,
aiming to identify prominent molecules contributing to the
prognosis of HNC. We revealed phenotypic crosstalk between
cell invasion and radioresistance, determined the functional
pathways (such as focal adhesion) co-regulating these two
phenotypes, and identified a panel of interplay molecules
leading to poor prognosis (ITGA6, TGFB1, and NDRG1). A
hub molecule ITGA6 was demonstrated to play an imperative
role contributing to the aggressive phenotypes. Silencing this
molecule suppressed cell migration, invasion, and attenuated
radioresistance. These panel molecules, such as ITGA6, may
serve as prognostic markers of metastasis, predictive markers of
radioresistance, and molecular therapeutic targets to treat
refractory HNC.
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A subset of head and neck cancers arising in the oropharynx and the nasopharynx are
associated with human papillomavirus or Epstein–Barr virus. Unfortunately, limited
treatment options exist once patients develop recurrent or metastatic disease in these
cancers. Interest has risen in utilizing novel strategies including combination immune
checkpoint inhibitors, vaccines, and adoptive cellular therapy, to improve treatment
response and outcomes. Several ongoing studies are investigating the potential to
overcome resistance to standard of care chemoradiation therapy with monotherapy or
combination immunotherapy strategies in these viral-associated head and neck cancers.

Keywords: immunotherapy, head and neck cancer, oropharyngeal squamous cell carcinoma, nasopharyngeal
carcinoma, viral-associated cancers, human papillomavirus, Epstein–Barr virus
INTRODUCTION

Head and neck cancers (HNC) are a heterogenous group of malignancies. Historically, the risk
factors for developing HNC were tobacco, betel nut, and alcohol consumption. With emerging data,
chronic viral infections such has human papillomavirus (HPV) and Epstein–Barr virus (EBV) have
also been associated with the development of cancer. Generally, HPV-negative HNCs are found in
older individuals with a history of tobacco and alcohol use. On the other hand, HPV-positive HNCs,
which develop in the oropharynx, are seen in much younger patients with associated risk factors
such as sexual behavior and marijuana use. EBV-associated HNCs, which develop in the
nasopharynx, are also found in younger patients often in endemic areas and are associated with
risk factors such as high consumption of salt-cured foods and tobacco use. We will focus on HPV
and EBV in the development of oropharyngeal squamous cell carcinoma (OPSCC) and
nasopharyngeal cancer (NPC), respectively.

HPV has been implicated in cervical, oropharynx, anal, and penile cancers (1). HPV is
transmitted through skin-to-skin or skin-to-mucosa contact, typically through sexual
transmission. The causative link with HPV and OPC was first described in 2000 (2). The
number of reported cases has risen over the past 20 years; it is presumed up to 70–80% of all
OPSCC in North America and Europe are now HPV-related (3, 4). Although there are
approximately 200 different HPV strains, HPV-16 makes up more than 90% of HPV-induced
OPSCC (5, 6). IHC p16 staining is a surrogate marker for HPV however, ISH (In-situ hybridization)
or PCR (polymerase chain reaction) is the gold standard for testing and can be used for
confirmatory testing. Patients diagnosed with HPV-related OPSCC are considerably younger
with a biphasic distribution which peaks at 30 to 55 years of age (4–6). Up to 10–25% of these
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patients will recur or develop metastatic disease following
definitive treatment depending on tumor biology and clinical
risk factors (7).

EBV has been implicated in multiple malignancies including
NPC, gastric carcinoma, and lymphoma. EBV is transmitted
through bodily fluids, especially saliva, as well as sexual
transmission. In developed countries, NPC has been associated
with smoking history; however, it is endemic in areas of China and
Africa (8). EBV-encoded RNA (EBER) ISH determines if NPC is
of EBV etiology. In high incidence areas, risks may be
multifactorial including EBV, tobacco, diets high in preservatives
and genetic predisposition (9). Patients in high risk populations to
develop EBV-related NPC are generally diagnosed at 50–59 years
of age (10). Approximately, 10–45% of treated NPC patients will
recur. Since the landmark trial of chemoradiation followed by
consolidative chemotherapy (11), there have been few new options
for both curative intent and palliative treatments of NPC.

Most peoplewhobecome infectedwitha virus clear the infection
and develop no sequelae. Few become chronically infected with
high risk HPV strains or EBV and those individuals may
subsequently develop cancer. Immune dysfunction is implicated
in development and progression of all head and neck malignancies
and, given the bodies expected immune response to viral infection,
thismay be especially true for viral-mediatedOPSCC(12). Immune
therapy has emerged as a treatment to overcome dysfunction in the
definitive and palliative settings for HPV- and EBV-mediated
OPSCC and NPC, respectively.
THE IMMUNE SYSTEM

There are two types of immunity, innate and adaptive. The
innate system is primitive, nonspecific and responds rapidly
utilizing barriers that already exist in the body, examples of
these are skin or cough. Cellular components of the innate
system include phagocytic cells (e.g., macrophages, dendritic
cells, and neutrophils) and Natural Killer (NK) cells which
induce apoptosis. The adaptive immune system is acquired and
involves the use of self-proteins to recognize foreign materials.
Additionally, it has ability to develop memory through use of B
and T lymphocytes for humoral and cell-mediated immunity. It
is the adaptive system of immunity that is predominately
targeted to develop immune therapies. This has been a
successful approach that is furthest along in development for
patients with leukemia/lymphoma, melanoma and lung cancers
who have progressed on other therapies.

The tumor microenvironment (TME) consists of various
components including tumor cells, endothelial cells, and
immune cells such as lymphocytes, macrophages, and
cytokines. In the TME, tumor cells gain control of signaling
pathways using components of the TME to evade detection by
the immune environment as well as promote tumor growth and
metastasis. Immune dysfunction plays a role in development and
progression of HNC. Specifically, T cytotoxic cells are
responsible for cancer immune surveillance. Disruption of T
cell response to tumor by immunosuppression in the TME or by
Frontiers in Oncology | www.frontiersin.org 2176
cancer evasion mechanisms may play a role in progression of
cancer (12). In viral-associated HNCs, the immune system is
responsible for detecting the virus, but these viruses employ
immune evasion strategies to escape detection and allow
tumorigenesis. This makes the immune system a perfect target
to exploit for treatment.

Potential targets of the immune system include, cytokine
therapies, antibody-dependent cellular cytotoxicity (ADCC),
checkpoint inhibition, vaccination, and cellular adoptive
therapies. In HNC, the use of cetuximab has shown activity,
which inhibits EGFR signaling and ADCC is believed to be a
critical component of its response (13–15). Checkpoint inhibitor
immunotherapy is an accepted paradigm for treatment in lung
cancer, melanoma, and microsatellite instability (MSI)-high
colorectal cancer (16–18). More recently, checkpoint inhibitors
have shown promise in HNC with or without chemotherapy for
treatment of metastatic disease (19). To leverage more durable
response to immunotherapy in solid tumor malignancies, ongoing
trials are investigating new immune checkpoint inhibitors,
immunotherapy combination regimens including addition of
cytokines, other checkpoint inhibitors, oncolytic virus, vaccines
(VERSATILE-002 announced at the ESMO2020AnnualMeeting),
or cellular therapies such as chimeric antigen receptor therapy
(CAR T) to program death ligand-1 (PD-L1) blockade.
OPSCC, HPV-INDUCED

OPSCC is a subset of HNC originating in the base of tongue or
tonsils which can be caused by chronic HPV infection. HPV, a
prevalent viral infection, is a DNA oncovirus with numerous
subtypes that have been implicated in tumorigenesis of several
primary sites including the oropharynx and cervix (HPV 16 and
18). The FDA approved a HPV vaccine series targeted as a
preventative measure against HPV-associated cancers (20).
Majority of people exposed to HPV will not develop cancer;
however, in some cases, viral HPV DNA oncogenes for E6 and
E7 will integrate into the DNA of the host cell and ultimately lead to
degradation and loss of p53 and RB tumor suppressor genes (21).
This dysregulation of p53 and RB leads to cancer cell
immortalization and uncontrolled cell proliferation. During its life
cycle, HPV minimizes antigen production in order to evade
recognition by the host immune system (Figure 1) (22). As well,
oncoproteins E6 and E7 bind to immune regulator proteins to
reduce and block immune responses, thus achieving immune
evasion for the virus as well as the tumor, which may create a
challenge when incorporating immunotherapy in treating HPV-
positive OPSCC.

The incidence of HPV-associated OPSCC has risen over the
past several decades while HPV-negative OPSCC has steadily
declined (6). It has been previously reported that HPV-positive
OPSCC is associated with better survival and overall prognosis
compared to its HPV-negative counterpart due to their different
etiologies (23–26). However, clinicians have found no difference in
rates of development of distant metastases between HPV and non-
HPV OPSCC (27). Treatment of early stage or locally advanced
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OPSCC generally incorporates a multi-modality approach while
recurrent or metastatic OPSCC is treated with systemic therapy.

Treatment for Locally Advanced HNC
Patients with locally advanced HNC, independent of HPV status,
have been treated with multimodality treatments, often including
some combination of surgery, radiation, and/or concurrent
chemoradiotherapy. In HPV-mediated disease, there has been
a paradigm shift to reduce long-term toxicity by de-escalating
treatment recommendations. To date, the significance of
immunotherapy has been realized in patients with metastatic
Frontiers in Oncology | www.frontiersin.org 3177
HPV-mediated OPSCC and interest has risen in exploring its use
in de-escalation strategies for definitive treatment. To date, there
is little data in this indication with immune therapy. Recently,
the Radiation Therapy Oncology Group (RTOG 1016) explored
HPV-positive OPSCC patient outcomes and concluded that
concurrent chemoradiation therapy with systemic treatment of
cisplatin demonstrated superior 5-year overall survival (OS) and
progression-free survival (PFS) compared to cetuximab (28). The
phase III De-ESCALaTE trial confirmed these findings (29).

Most studies incorporating immune therapy with HNC have
included all primary sites, including OPSCC irrespective of HPV
FIGURE 1 | Mechanisms of immune evasion by HPV and EBV: decreased antigen production and establishment of viral latency. Adapted from “Viral
Carcinogenesis”, by BioRender.com (2021). Retrieved from https://app.biorender.com/biorender-templates.
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status. Additionally, the use of response rates as primary
endpoint has generated a lot of thought-provoking data. Some
of these data are encouraging as response rates are high; however,
OS and distant failure rates are also of concern. While patients
with HPV-induced OPSCC conventionally have better survival,
approximately 10–25% of patients will develop disease
recurrence (30). HPV-positive patients also develop distant
metastasis approximately 2–3 years later than non-HPV
OPSCC patients (31). Given there may be an immune defect in
these patients, it is unclear if immune therapies in the definitive
indication will be sufficient, but there are ongoing trials.

Clinical Trials of Checkpoint Inhibitors in Locally
Advanced HNC
Locally Advanced HNSCC, Unselected Population
Historically, patients with early or locally advanced disease have
been treated with curative intent. Curative intent treatments may
include surgery, radiation, and combined chemoradiation.
Several clinical trials are currently underway in locally
Frontiers in Oncology | www.frontiersin.org 4178
advanced HNSCC (Table 1). In the neoadjuvant/adjuvant
setting, there are preliminary data available for two trials.
Preliminary results from an ongoing phase II trial
(NCT02296684) of neoadjuvant and adjuvant treatment with
pembrolizumab in surgically resectable HNSCC patients showed
safety, tolerability, and response to treatment although further
investigation is necessary (32). Preliminary results for the
IMCISION trial for 32 advanced HNSCC patients treated with
neoadjuvant nivolumab monotherapy or in combination with
ipilimumab (33) demonstrated 31% (9/29) near complete
pathological response (≥90% pathological response) and 31%
of patients 20–89% pathological response in the primary tumor
specimen at resection (33). A trial combined definitive
concurrent chemoradiation therapy with pembrolizumab (six
doses every 3 weeks) in locally advanced HNSCC patients with
high risk features of high T stage and/or nodal disease
(NCT02641093). Roughly 47% (9/19) patients demonstrated a
pathological response which was correlated with increased
immune cell infiltration into the tumor (34).
TABLE 1 | Ongoing clinical trials investigating novel immunotherapy drugs or combinations in locally advanced HNC and HPV-positive OPSCC.

Study Title NCT Primary
Endpoint

N Phase Experimental Control Definitive
treatment

IMMUNEBOOST: Feasibility and Tolerance of
Nivolumab Neoadjuvant Immunotherapy in High Risk
HPV Driven OPSCC

03838263 Feasibility 61 2,
Randomized
Multicenter

Neoadjuvant nivolumab No neoadjuvant
treatment

CRT with
high dose
cisplatin

Durvalumab Before Surgery in Treating Patients with
Oral Cavity or OPSCC

02827838 Effect of
durvalumab on
local and
systemic immune
activation

20 2
Single
center
Pilot trial

Neoadjuvant durvalumab N/A Surgical
Resection

Stereotactic Body Radiation Therapy and
Durvalumab With or Without Tremelimumab Before
Surgery in Treating Participants with HPV Positive
OPSCC

03618134 Safety, PFS,
incidence of
severe adverse
events

82 1b/2
Single
center

Neoadjuvant stereotactic
body radiotherapy and
durvalumab, plus/minus
tremelimumab

N/A Surgical
resection

Radiotherapy, Carboplatin/Paclitaxel and Nivolumab
for High Risk HPV-related HNC

03829722 PFS 40 2
Single
center

CRT plus nivolumab
followed by adjuvant
nivolumab

CRT with
carboplatin and
paclitaxel

CRT with
carboplatin
and
paclitaxel

Testing Immunotherapy Versus Observation in
Patients with HPV OPSCC

03811015 PFS and OS 744 2/3
Randomized
Multicenter

Adjuvant nivolumab after
chemoradiation therapy
with weekly cisplatin

CRT with weekly
cisplatin

CRT with
weekly
cisplatin

Ipilimumab, Nivolumab, and Radiation Therapy in
Treating Patients with HPV Positive Advanced
OPSCC

03799445 Dose-limiting
toxicity, complete
response rate,
and PFS

180 2
Single
center

Concurrent radiation
therapy, nivolumab, and
ipilumumab

N/A Radiation
therapy

Radiation Therapy with Durvalumab or Cetuximab in
Treating Patients with Locoregionally Advanced
HNC Who Cannot Take Cisplatin

03258554 Dose-limiting
toxicity, PFS, and
OS

523 2/3
Randomized
Multicenter

Concurrent radiation
therapy with durvalumab

CRT with
cetuximab

CRT with
cetuximab

De-intensified Radiation Therapy with Chemotherapy
(Cisplatin) or Immunotherapy (Nivolumab) in Treating
Patients with Early-Stage, HPV-Positive, Non-
Smoking Associated OPSCC

03952585 PFS and quality
of life

711 2/3
Randomized
Multicenter

Concurrent reduced
radiation therapy with
nivolumab q 2 weeks

Concurrent
reduced
chemoradiation
therapy with
cisplatin x 2 doses

CRT

Adjuvant Therapy for High-Risk HPV 16-Positive
OPSCC Patients with Durvalumab and MEDI0457
(INO-3112)

04001413 Clearance of HPV
biomarkers post-
treatment

66 2
Randomized
Multicenter

Adjuvant durvalumab
plus or minus DNA
vaccine, MEDI0457

Observation N/A

E7 TCR Cell Induction Immunotherapy for Stage II
and Stage III HPV-Associated OPSCC

04015336 Feasibility 180 2
Single
center

E7 TCR therapy N/A N/A
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Locally Advanced HNSCC With HPV Subset Analysis
A phase Ib trial of pembrolizumab in combination with
concurrent cisplat in-based chemoradiat ion therapy
(NCT02586207) enrolled 59 locally advanced HNSCC patients
(35). In the HPV-positive cohort (N = 34), 85.3% of patients
achieved a complete response. The study demonstrated safety
and tolerability of standard multi-modality treatment involving
pembrolizumab as the results are similar to the expected level of
response with conventional platinum-based chemoradiotherapy.

Locally Advanced HPV-Positive OPSCC
In viral-associated cancers such as OPSCC, CheckMate 358
examined the efficacy of nivolumab in the neoadjuvant setting
and presented promising results at ESMO (NCT02488759). In
the cohort ofOPSCC patients enrolled in the trial, tumor reduction
was seen in approximately 48% of evaluable patients (11/23, (5/10
HPV+, 6/13 HPV−)) prior to surgery (36). Final results from the
CIAO (Checkpoint Inhibitors Assessment in Oropharynx
Carcinoma) trial was recently published (37). Locally advanced
OPSCC patients (N = 28), 24 (86%) were HPV+, were randomized
1:1 to receive durvalumab alone or combination with anti-CTLA-4
monoclonal antibody tremelimumab prior to surgery. The primary
objective was to determine the impact of immunotherapy pre-
treatment on CD8+ tumor infiltrating lymphocyte (TIL) count in
tumor specimen. The overall response rate (ORR) was 43% in both
treatment groups and 29% of patients showed a major pathologic
response after treatment. The study concluded that although
combination durvalumab and tremelimumab did not increase
CD8+ TIL cells compared to monotherapy durvalumab, there is
clinical rationale to continue investigating immunotherapy in the
neoadjuvant setting. There are several recruiting clinical trials
examining more combination immunotherapy strategies in early
stage or locally advanced HNC and HPV-driven OPSCC in the
neoadjuvant, concurrent, and adjuvant setting (38, 39) (Refer
to Table 1).

Treatment for Recurrent and
Metastatic HNC
The first FDA approved immune therapy in HNC was single
agent cetuximab. Cetuximab as a single agent has a 12.6%
objective response rate and median survival of 5.9 months in
patients who failed platinum-based therapy (13). With the
addition of cetuximab to platinum-based therapy (EXTREME
Trial), the median OS improved from 7.4 to 10.1 months (14).
The EXTREME trial did establish a new standard of care;
however, the survival remained poor (12).

Checkpoint Inhibitors in Metastatic HNC
KEYNOTE-012 trial demonstrated the efficacy of immune
checkpoint inhibitors in HNC (19). The ORR was 21% and
median OS was 13 months in HNC patients who had failed prior
platinum therapy and who had PD-L1 combined positivity score
(CPS) of 1% or greater. These findings were confirmed in the
expansion cohort using fixed 3-week dosing (40). The degree of
PD-L1 expression was noted to be strongly predictive of overall
response, PFS and OS. The ORR was 22% and 4% for PD-L1
positive and negative patients, respectively. Additionally, HPV-
Frontiers in Oncology | www.frontiersin.org 5179
positive HNC had a higher ORR of 32% compared to HPV-
negative patients at 14% when treated with pembrolizumab.

Checkmate-141 trial was a similar checkpoint inhibitor trial
which was ongoing at the same time as KEYNOTE-012 (41).
Checkmate-141 also evaluated recurrent/metastatic HNC
patients who had failed prior platinum therapy. These trials
demonstrated similar findings although, cross-trial comparisons
need to be interpreted with caution. The Checkmate-141 trial
compared nivolumab to standard second line therapies and
demonstrated that nivolumab nearly doubled 1-year OS from
16.6% with standard therapies vs 36% with nivolumab; ORR and
OS were 16.6%, 5.1 months versus 36%, 7.5 months for standard
therapy versus nivolumab, respectively. Additionally,
exploratory analysis from the trial suggested that HPV-
associated disease appeared to benefit most with response rates
of 8% in HPV-negative and 15.9% in HPV-positive patients. This
is interesting with both KEYNOTE and Checkmate studies
suggesting HPV-positive patients have greater improvement
with checkpoint inhibition then non-HPV-mediated HNC.
Although this is provocative data, more work needs to be done
using HPV ISH or PCR as a marker opposed to p16 used in these
studies given recent data (42).

KEYNOTE-048, a phase III trial, demonstrated efficacy of
pembrolizumab monotherapy or combination treatment in
patients with recurrent or metastatic HNC (43). This trial
revolutionized first line treatment of recurrent or metastatic HNC
which was previously limited to chemotherapy and cetuximab. In
the trial, patients (N = 882) were randomized to receive
pembrolizumab monotherapy (N = 301), pembrolizumab and
chemotherapy combination (N = 281), or cetuximab and
chemotherapy combination treatment (N = 300). PD-L1
expression via CPS was tested and patients were stratified into
groups based on CPS. The primary endpoint of median OS
demonstrated significant superiority in the pembrolizumab
monotherapy group compared to cetuximab and chemotherapy
group in patientswho exhibitedaCPSof 20%ormore (14.9months
vs 10.7months, p = 0.0007) and patients who exhibited a CPS of 1%
or more (12.3 months vs 10.3 months, p = 0.0086). In the overall
trial population, pembrolizumab and chemotherapy combination
treatment demonstrated significant improved OS compared to
cetuximab and chemotherapy (13.0 months vs 10.7 months, p =
0.0034). In the subgroup of patients with CPS of 20% ormore, CPS
of 1% or more, and in the total patient population treated with
pembrolizumab and chemotherapy, the ORR was 43%, 36%, and
36% respectively. Although pembrolizumab alone or in
combination with chemotherapy did not show improved PFS in
any subgroup analysis, the OS results were significant enough to
transform first line standard-of-care practice in recurrent or
metastatic HNSCC.

Ongoing Trials and Development in HNC
Checkpoint Inhibitors
Immunotherapy is being exploited in clinical studies of HNC and
OPSCC in the recurrent or metastatic setting. Currently in
recurrent and/or metastatic HNC, there are approved antibody
treatments targeting PD-1 (pembrolizumab and nivolumab)
(44). However, since only a small cohort of patients respond to
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immune checkpoint inhibitors, other strategies are under
investigation to increase efficacy and response to immunotherapy.

Clinical trials on novel combination regimens with other
immune checkpoint inhibitors or chemotherapy agents are
currently under examination in HNC and OPSCC. Recently, the
phase III EAGLE study failed to demonstrate superior OS with
durvalumab monotherapy or in combination with tremelimumab
compared to standard-of-care in recurrent or metastatic HNSCC
patients (45). Results from a phase II trial of combination
pembrolizumab and a histone deacytelase (HDAC) inhibitor,
vorinostat, were recently published (46). In the recurrent or
metastatic HNC arm, 25 patients were reenrolled to receive both
drugs, of which the majority achieved either a partial response
(32%) or stable disease (20%). ThemedianOSwas 12.6months and
the median PFS was 4.5 months, ultimately suggesting clinical
activity in HNC patients however, further study is needed.

In patients with HPV-positive tumors, M7824, a bifunctional
fusion protein that targets both PD-L1 and transforming growth
factor-b (TGF-b) is currently under investigation. TGF-b has
been previously reported to be upregulated in HPV-associated
cancers (47), and thus dual targeting of PD-L1 and TGF-b
should ideally produce a more durable response. Results from
a phase I clinical trial investigating M7824 found an ORR of
37.5% in HPV-associated cancers (48) and it is under continued
evaluation in a phase II trial (NCT03427411).

Vaccines
Over the past several years, scientists began to study the feasibility of
combining immune checkpoint inhibitors with vaccines as a way to
augment therapeutic responses. The MASTERKEY-232 phase Ib
study enrolled recurrent ormetastatic HNSCC patients (N = 36) to
undergo treatment with pembrolizumab and talimogene
laherparepvec (T-VEC), a genetically modified oncolytic viral
therapy originally manufactured to treat melanoma (49). The
objectives were to understand any dose-limiting toxicities,
examine the safety of the combination, as well as OS and PFS.
Confirmed partial responses were observed in 13.9% of patients (N
= 5), and the median OS and PFS was 5.8 months and 3.0 months,
respectively. The trial failed to demonstrate superior efficacy in this
novel combination compared to monotherapy pembrolizumab,
thus follow-up studies were discontinued. Another clinical trial
combined nivolumabwith anHPV-16 vaccine (ISA101) to increase
therapeutic response in HPV-positive solid tumor malignancies
(50).With24patients enrolled in the trial, theORRwas33%and the
median duration of responsewas 10.3months.MedianOSwas 17.5
months and the median PFS was 2.7 months. Overall, this study
demonstrated clinical benefit in the addition of a vaccine to
immunotherapy although further studies are warranted.
Currently, there is an ongoing phase II trial of anti-PD-1
monoclonal antibody cemiplimab alone or in combination with
cancer vaccine ISA101b targeted at oncogenic E6 and E7 antigens
fromHPV-16 (NCT03669718). Another ongoing phase I/II trial is
utilizing modified viruses, HB-201 and HB-202, as single vector/
two-vector therapies engineered to recognize antigens specific to
HPV-16 (NCT04180215).

Le Tourneau et al. presented interim results of their phase Ib/
II trial investigating TG4001, a HPV vaccine targeting E6 and E7,
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in combination with avelumab, an anti-PD-L1 monoclonal
antibody, in HPV-16 positive recurrent or metastatic solid
tumors (NCT03260023) (51). The results showed increased
CD8+ T cell infiltration as well as detectable vaccine responses
against E6 and E7. Aggarwal et al. reported the results of a phase
Ib/II study in HPV-associated recurrent or metastatic HNSCC
treated with HPV DNA vaccine MEDI0457 and durvalumab
(NCT03162224) (52). The trial reported an ORR of 22.2% with
three each confirmed complete and partial responses. The
authors also noted increased levels of peripheral HPV-specific
T cells and CD8+ T cells in their treated patients. Another phase
I/II trial is investigating M7824, the anti-PD-L1/TGF-b fusion
protein, in combination with HPV-16 cancer vaccine PDS0101
and immunocytokine NHS-IL12 in metastatic/refractory HPV-
associated solid tumor malignancies (NCT04287868). M7824 is
also under examination in another phase I/II trial in combination
with PRGN-2009, a novel gorilla adenovirus GAd HPV vaccine
with agonist epitopes of E6 and E7 (NCT04432597), based on
previously reported data that demonstrated preclinical efficacy and
increased immune response in mouse models (53). VERSATILE-
002, a phase II trial, is studying the PDS0101 vaccine and
pembrolizumab combination in recurrent/metastatic HPV-
positive HNC.

Adoptive Cell Therapies
In addition to vaccines, several clinical trials have been initiated to
study treatment strategies using adoptiveTcell therapy againstHPV-
associated cancers. A phase I/II trial enrolled patients with HPV-
positive tumors (N = 12) to undergo treatment with genetically
engineered T cells with receptors targeting HPV-16 E6-expressing
tumor cells as well as cyclophosphamide, fludarabine, and
aldesleukin (NCT02280811) (54). Post-treatment results
demonstrated anti-tumor response and decrease in tumor size,
highlighting a role for adoptive T cell therapy in treating HPV-
associated cancers. To that same effect, a phase I/II trial is currently
recruiting patients to determine the dose and efficacy of engineeredT
cells targeting tumors cellswithE7protein (NCT02858310).Another
phase II trial mimicked the study design of the previous trials with
TILS treatment in combinationwith cyclophosphamide,fludarabine,
and aldesleukin in HPV-associated cancers (NCT01585428). The
trial showed an association between clinical response and HPV
reactivity of the modified T cells as well as their presence in the
peripheral blood (55). Potential biomarkers may predict response to
novel therapeutics that utilize the patient’s cells will be important
when utilizing this treatment method.
NASOPHARYNGEAL CARCINOMA,
EBV-POSITIVE

NPC is a rare epithelial cancer type of the nasal cavity occurring
most commonly in Southeastern Asia, China, Hong Kong, and
Taiwan (8). It is characterized as an aggressive, locoregional
disease that primarily affects males of Asian descent. Globally,
there are approximately 129,079 new cases of NPC and 72,987
deaths from NPC annually, with a high incidence rate in males
(3:1) (3, 56). Although early stage disease portends great 5-year
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survival rates of greater than 80%, stage IV metastatic disease is
associated with poor survival rates of less than 25% (57, 58). NPC
has been demonstrated to be highly sensitive to radiation therapy
and chemotherapy, although resistance to therapy frequently
occurs and patients with relapsed or metastatic disease inevitably
recur with limited options for treatment (59–61).

Treatment for Locally Advanced
EBV+ NPC
EBVis anoncogenic, human-tropic g-herpesvirus that infects >90%
of the global population,mainly infecting epithelial andB-cells (62–
64). After primary infection occurs, EBV establishes life-long
residency in its host through establishment of latency in infected
cells, although under different stimuli the virus can become
reactivated and undergo lytic replication to result in the
production of new virions (65). Similar to HPV, EBV miRNAs
minimize antigen production in order to evade recognition by the
immune system of the host, thus allowing for immune evasion and
EBV latency in the host cells (Figure 1) (66). Over time, these EBV-
affected cells can result in the development of various cancers. Both
viral life stages havebeenassociatedwith the development of several
malignancies of lymphoid and epithelial cell origin including
Burkitt’s lymphoma and Hodgkin lymphoma (65, 67). Of these
malignancies, NPC holds the strongest association to EBV, with
most NPC cases being EBV-positive (EBV+) (8, 62). The
association between EBV and NPC was initially reported in 1973.
Of the 129,000 cases ofNPCglobally diagnosed eachyear, ~97%are
EBV+, with those occurring in high and intermediate incidence
areas being 100%EBV+ and those in low incidence areas being 80%
EBV+ (62, 68). Of the ~72,000 annual deaths attributed to NPC,
~97% are associated with EBV (68).

Treatment of locally advanced NPC typically involves
multimodality therapy with concurrent chemoradiation
treatment using platinum-based agents. Post-treatment plasma
EBV levels have become a prognostic indicator of response and
clinical outcomes in NPC (69, 70). To date, there are no licensed
EBV-targeted strategies against EBV+ NPC.

Interest initially arose in utilizing individual patient’s immune
cells to attack EBV-mediated cancers in order to leverage durable
responses to this aggressive cancer. Ongoing clinical trials are
exploring immunotherapy approaches using autologous and
allogeneic EBV-specific T cells against NPC with promising
interim results (71, 72).

Treatment for Metastatic/Recurrent NPC
Unfortunately, recurrent ormetastatic NPC is associated with poor
outcomes and a median OS of 20 months (73). Standard-of-care
treatment of recurrent/metastatic NPC involves platinum-based
doublet chemotherapy. A milestone phase III clinical trial
investigated the efficacy of platinum-based doublet chemotherapy
treatment with cisplatin/gemcitabine or cisplatin/5-fluorouracil (5-
FU) (74). 362 recurrent/metastatic NPC patients were randomized
1:1 to receive either combination. The ORR was 64% in the
cisplatin/gemcitabine group versus 42% in the cisplatin/5-FU
while median PFS was 7.0 months (cisplatin/gemcitabine) versus
5.6 months (cisplatin/5FU) (p <0.0001). This trial demonstrated
statistically superior PFS with cisplatin/gemcitabine treatment,
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establishing the combination as standard first-line treatment for
recurrent/metastatic NPC.

Although EBV-associated NPC results from EBV latency in the
host cells due to immune evasionmechanismsbyEBV, studies have
been initiated to examine the potential of incorporating
immunotherapy in NPC. Delord et al. presented the results from
the NPC cohort in CheckMate 358, a phase I/II study evaluating
nivolumab in virus-associated tumors (75). 24 patients with
recurrent/metastatic NPC were enrolled, of which 88% were EBV
positive tumors. TheORRwas 20.8%, however theORRwas higher
inpatients thatdidnot receiveprior therapy in themetastatic setting
(N = 5).With a median follow-up of 26 weeks, median PFS was 2.4
months while median OS was not reached. Another multicenter
study (NCI-9742) examined the clinical efficacy of nivolumab in
recurrent and metastatic NPC (76). Of the 44 patients that were
enrolled in the trial, nine patients (20%) received nivolumab for
over 12 months. The ORR was 20.5% (N = 9), the median PFS was
2.8 months, and the median OS was 17.1 months. The trial also
examined the possible correlations of PD-L1 expression, human
leukocyte antigens A and B expression, or EBV virus DNA levels
with ORR and OS. They found that patients with greater than 1%
PD-L1 expression were more likely to respond to nivolumab
compared to PD-L1-negative NPC while EBV virus DNA levels
had no impact. Interestingly, tumors that lacked human leukocyte
antigens A and/or B expression were correlated with superior PFS
versus tumors that expressed both antigens (30.9% versus 5.6%, p =
0.1). Overall, these trials demonstrated promising clinical results in
treating this aggressive disease with nivolumab.

Keynote-028, phase Ib trial, evaluated the safety and efficacy of
pembrolizumab 10mg/kg every two weeks in PD-L1 positive (>1%
expression) recurrent or metastatic NPC (77). With a median
follow-up period of 20 months, the ORR was 25.9% of the 27
patients that were enrolled in the trial. By investigator review, the
median PFS was 6.5 months and the median OS was 16.5 months.
Although majority of patients were heavily pre-treated,
pembrolizumab showed good safety profile and favorable anti-
tumor activity in NPC patients with PD-L1 expression.

Ongoing Trials and Development in NPC
Checkpoint Inhibitors in Locally Advanced NPC
Trials are underway to investigate the role of immune checkpoint
inhibitors in the locally advanced setting given the encouraging
results from metastatic/recurrent NPC trials. Lim et al. recently
presented interim results from their phase II trial of nivolumab
and ipilimumab in EBV+ locally advanced NPC (NCT03097939)
(78). Eligible patients had EBV+ NPC, measurable blood EBV
DNA levels, and a history of only one line of treatment. Of the 26
evaluable patients at the time of the presentation, the median
duration of response was 5.9 months. The median PFS was 5.3
months with a median follow-up period of 10.6 months.
Interestingly, they noted a difference in median PFS of EBV-low
versus EBV-high patients (6.8 months versus 2.7 months,
respectively). Overall, Lim at al. revealed encouraging preliminary
results in combination PD-1 and CTLA-4 blockade in NPC
patients. There are several ongoing trials evaluating monotherapy
and combination immunotherapy strategies in locally advanced
NPC, see Table 2.
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Checkpoint Inhibitors in Recurrent/Metastatic NPC
In the recurrent/metastatic setting, camrelizumab is also under
investigation in combination with cisplatin and gemcitabine in a
phase III clinical trial (NCT03707509). Prior results were
published from two phase I trials where previously treated
recurrent or metastatic NPC patients received camrelizumab
monotherapy while treatment naïve patients received six cycles
of camrelizumab, cisplatin, and gemcitabine with adjuvant
maintenance camrelizumab (80). In the camrelizumab
monotherapy trial versus the camrelizumab combination trial,
the ORR was 34% versus 91%, demonstrated promising clinical
activity. Interim results from a phase II trial of patients
randomized to receive spartalizumab (PDR001), a humanized
anti-PD-1 IgG4 mAb, or chemotherapy (NCT02605967) were
recently presented (81). The trial did not reach its primary
endpoint of PFS (median PFS of 1.9 months in the spartalizumab
arm versus 6.6 months in the chemotherapy arm). However, the
duration of response at 12 months in patients responding in the
spartalizumab group was 61.0%. While spartalizumab
monotherapy did not improve PFS compared to chemotherapy
regimens, a subset of patients could potentially benefit with durable
response to the monotherapy treatment.

Keynote-122, an active phase II study of pembrolizumab versus
chemotherapy (capecitabine, gemcitabine, or docetaxel) inplatinum-
pretreated recurrent or metastatic NPC (NCT02611960) (82), was
initiated due to results from the phase IB Keynote-028 reporting an
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ORR of 25.9% as well as promising median PFS/OS in heavily pre-
treated NPC patients treated with pembrolizumab (77). A phase III
trial of tislelizumab, ahumanizedmonoclonal antibodyagainstPD-1,
with cisplatin and gemcitabine versus chemotherapy alone is
currently underway (NCT03924986) after preliminary results from
the phase II trial showed80%of patients (N=9 out of 15) achieving a
partial response or stable disease with monotherapy tislelizumab
treatment (83). Results from a trial examining an EBV-specific
immunotherapy drug (NCT00834093) demonstrated a poor ORR,
a median PFS of 2.2 months, and a median OS of 16.7 months (84).
Please refer toTable 2 for a list of ongoing trials recruitingmetastatic/
recurrent NPC patients to investigate the role of novel monotherapy
and combination immunotherapy drugs.

Vaccine Therapy in NPC
EBV+ NPC cancers express a select set of latent EBV antigens,
which offers an excellent opportunity for targeted therapeutics
(85–87). NPC is characterized by the expression of the latent
antigen EBNA1, responsible for maintenance of the viral genome
in infected cells, and the latent antigen LMP2, which supports
proliferation, survival and migration of infected cells (67, 88–90).
Currently, these two antigens are being tested together as
components of a therapeutic vaccine candidate in phase I/II
clinical trials against EBV+ NPC, and have been shown to be
immunogenic and able to elicit EBV-specific CD4+ and CD8+
T-cell responses (91, 92).
TABLE 2 | Ongoing clinical trials investigating monotherapy and combination immunotherapy strategies in locally advanced, recurrent, or metastatic NPC.

Study Title NCT Primary
Endpoint

N Phase Experimental Control Definitive treatment

Sintilimab (PD-1 Antibody) and
Chemoradiotherapy in
Locoregionally-Advanced NPC

03700476 Failure-free
survival

420 3
Randomized
Multicenter

CRT with cisplatin,
gemcitabine, and sintilimab

CRT with cisplatin and
gemcitabine

CRT with cisplatin and
gemcitabine

Neoadjuvant and Adjuvant Anti-
PD-1 Antibody Toripalimab
Combined with CCRT in NPC
Patients

03925090 PFS 138 2
Randomized
Single
center

Neoadjuvant toripalimab
followed by CRT with high
dose cisplatin and toripalimab

Neoadjuvant placebo
followed by CRT with
high dose cisplatin

CRT with high dose
cisplatin

Concurrent and Adjuvant PD-1
Treatment Combined with
Chemo-radiotherapy for High-risk
NPC

04453826 PFS 388 3
Randomized
Multicenter

Induction cisplatin and
gemcitabine followed by CRT
with high dose cisplatin and
camrelizumab

Induction cisplatin and
gemcitabine followed by
CRT with high dose
cisplatin

Induction cisplatin and
gemcitabine followed by
CRT with high dose
cisplatin

PACIFIC-NPC: Camrelizumab
(PD-1 Antibody) After
Chemoradiotherapy in
Locoregionally Advanced NPC

03427827 Disease-
free survival

400 3
Randomized
Multicenter

Adjuvant camrelizumab Observation N/A

Programmed Death-1 (PD-1)
Antibody Combined with IMRT in
Recurrent NPC Patients

03907826 OS 212 3
Randomized
Multicenter

Radiation therapy with
concurrent and adjuvant
toripalimab

Radiation therapy alone Radiation therapy

PD-1 Knockout EBV-CTLs for
Advanced Stage EBV Associated
Malignancies (79)

03044743 Participants
with
adverse
events

20 1/2
Single
center
Pilot study

Fludarabine and
cyclophosphamide followed by
PD-1 knockout EBV-CTLs and
interleukin-2

N/A Fludarabine and
cyclophosphamide

EBV-TCR-T YT-E001)for Patients
With EBV-positive Recurrent or
Metastatic NPC

03648697 Participants
with
adverse
events

20 1/2
Single
center
Pilot study

Fludarabine and
cyclophosphamide followed by
EBV-TCR-T (YT-E001) cell
infusion

N/A Fludarabine and
cyclophosphamide

LMP2 Antigen-specific TCR T-cell
Therapy for Recurrent and
Metastatic NPC Patients

03925896 Maximum
tolerated
dose

27 1
Single
center

LMP2 Antigen-specific TCR T
cells

N/A N/A
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Adoptive Cellular Therapy in NPC
The ability to target EBV as a therapeutic option represents an
important milestone, especially in light of limited treatment
strategies available for recurrent/metastatic EBV+ NPC. Adoptive
cellular therapy utilizes individual patient’s immune cells to
attacked EBV-mediated cancers including NPC. VANCE, a phase
III trial is currently underway investigating carboplatin and
gemcitabine doublet chemotherapy with infusions of autologous
EBV-specific cytotoxic T cells in advanced NPC (NCT02578641).
This trial was initiated based on the phase II trial results which
demonstrated superior survival outcomes with 2-year OS at 62.9%,
amedian PFS of 7.6months, and amedianOS of 29.9months in 35
recurrent/metastatic NPC patients who received the combination
therapy (93). They also found that high EBV-DNA levels were
correlatedwithhigh tumorburdenandpoorprognosis.Anongoing
phase Ib/2 trial (NCT03769467) is assessing the tolerability and
anti-tumor activity of combination tabelecleucel, an allogeneic T-
cell immunotherapy, and pembrolizumab in platinum-treated
recurrent/metastatic EBV+ NPC (94). The primary objective of
the phase Ib portion is to identify the maximum tolerated dose and
any dose-limiting toxicities while the phase II portion’s aims are
safety andORR.Additional trials are currently recruitingpatients to
investigate other adoptive T cell therapies in recurrent/metastatic
NPC (Table 2).
CONCLUSIONS

There has been vast work in employing the immune system in
HNSCC. Most immune therapy clinical trials include a very
heterogenous population of HNSCC patients and may only
stratify OPSCC and NPC based on viral etiology resulting
in small subgroups hence, direct comparisons of viral and
Frontiers in Oncology | www.frontiersin.org 9183
non-viral-related HNSCC are difficult to compare statistically.
Given the implications of immune dysfunction in viral-
associated malignancies, treatment targeting the immune
system is a reasonable option for clinical success but may be
challenging. Most clinical work with immune therapy has been
done in the metastatic setting with some encouraging results.
There are subsets of patients who respond very well while others
have no response at all. Lack of response is likely multifactorial
and may be due to the difficulty in leveraging the immune system
in viral-associated HNCs that employ various mechanisms of
immune evasion. There are many levels of investigation which
need attention to ensure success with these strategies including
the identification of: who is most likely to respond, the
confounding factors of non-responsiveness, which immune and
non-immune targets should be addressed, and which strategies
alone or together have a higher likelihood of eradicating the cancer.
Further work is needed to identify the line of therapy which ismost
conducive for immune therapies. Many of these immune targeted
strategies are currently under evaluation in earlier settings and
including, curative intent treatments of virally inducedOPSCC and
NPC. We believe immune resistance is multifactorial and the
biological properties of this disease need to be further delineated
to better understand mechanisms of immune resistance. Future
directions involve combination regimens including doublet
immune checkpoint inhibitors, immune checkpoint inhibitors
and vaccines, as well as adoptive cellular therapy.
AUTHOR CONTRIBUTIONS

RP, YX, MA, and VV all contributed to the conceptualizing,
writing, and editing of this work. All authors contributed to the
article and approved the submitted version.
REFERENCES

1. Bansal A, Singh MP, Rai B. Human Papillomavirus-Associated Cancers: A
Growing Global Problem. Int J Appl Basic Med Res (2016) 6(2):84–9. doi:
10.4103/2229-516X.179027

2. Gillison ML, Koch WM, Capone RB, Spafford M, Westra WH, Wu L, et al.
Evidence for a Causal Association Between Human Papillomavirus and a
Subset of Head and Neck Cancers. J Natl Cancer Inst (2000) 92(9):709–20.
doi: 10.1093/jnci/92.9.709

3. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global
Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality
Worldwide for 36 Cancers in 185 Countries. CA: A Cancer J Clin (2018) 68
(6):394–424. doi: 10.3322/caac.21492

4. O'Sullivan B, Huang SH, Su J, Garden AS, Sturgis EM, Dahlstrom K, et al.
Development and Validation of a Staging System for HPV-Related
Oropharyngeal Cancer by the International Collaboration on Oropharyngeal
Cancer Network for Staging (ICON-S): A Multicentre Cohort Study. Lancet
Oncol (2016) 17(4):440–51. doi: 10.1016/S1470-2045(15)00560-4

5. Gillison ML, D'Souza G, Westra W, Sugar E, Xiao W, Begum S, et al. Distinct
Risk Factor Profiles for Human Papillomavirus Type 16–Positive and Human
Papillomavirus Type 16–Negative Head and Neck Cancers. JNCI: J Natl
Cancer Institute (2008) 100(6):407–20. doi: 10.1093/jnci/djn025

6. Chaturvedi AK, Engels EA, Pfeiffer RM, Hernandez BY, Xiao W, Kim E, et al.
Human Papillomavirus and RisingOropharyngeal Cancer Incidence in the United
States. J Clin Oncol (2011) 29(32):4294–301. doi: 10.1200/JCO.2011.36.4596
7. Chera BS, Kumar S, Shen C, Amdur R, Dagan R, Green R, et al. Plasma
Circulating Tumor HPV DNA for the Surveillance of Cancer Recurrence in
HPV-Associated Oropharyngeal Cancer. J Clin Oncol Off J Am Soc Clin Oncol
(2020) 38(10):1050–8. doi: 10.1200/JCO.19.02444

8. Petersson F. Nasopharyngeal Carcinoma: A Review. Semin Diagn Pathol
(2015) 32(1):54–73. doi: 10.1053/j.semdp.2015.02.021

9. Chua MLK, Wee JTS, Hui EP, Chan ATC. Nasopharyngeal Carcinoma.
Lancet (2016) 387(10022):1012–24. doi: 10.1016/S0140-6736(15)00055-0

10. Chang ET, Adami H-O. The Enigmatic Epidemiology of Nasopharyngeal
Carcinoma. Cancer epidemiology Biomarkers Prev Publ Am Assoc Cancer
Research cosponsored by Am Soc Prev Oncol (2006) 15(10):1765–77. doi:
10.1158/1055-9965.EPI-06-0353

11. Al-Sarraf M, LeBlanc M, Giri PG, Fu KK, Cooper J, Vuong T, et al.
Chemoradiotherapy Versus Radiotherapy in Patients With Advanced
Nasopharyngeal Cancer: Phase III Randomized Intergroup Study 0099.
J Clin Oncol (1998) 16(4):1310–7. doi: 10.1200/JCO.1998.16.4.1310

12. Ling DC, Bakkenist CJ, Ferris RL, Clump DA. Role of Immunotherapy in
Head and Neck Cancer. Semin Radiat Oncol (2018) 28(1):12–6. doi: 10.1016/
j.semradonc.2017.08.009

13. Vermorken JB, Trigo J, Hitt R, Koralewski P, Diaz-Rubio E, Rolland F, et al.
Open-Label, Uncontrolled, Multicenter Phase II Study to Evaluate the Efficacy
and Toxicity of Cetuximab as a Single Agent in Patients With Recurrent and/
or Metastatic Squamous Cell Carcinoma of the Head and Neck Who Failed to
Respond to Platinum-Based Therapy. J Clin Oncol (2007) 25(16):2171–7. doi:
10.1200/JCO.2006.06.7447
July 2021 | Volume 11 | Article 649963

https://doi.org/10.4103/2229-516X.179027
https://doi.org/10.1093/jnci/92.9.709
https://doi.org/10.3322/caac.21492
https://doi.org/10.1016/S1470-2045(15)00560-4
https://doi.org/10.1093/jnci/djn025
https://doi.org/10.1200/JCO.2011.36.4596
https://doi.org/10.1200/JCO.19.02444
https://doi.org/10.1053/j.semdp.2015.02.021
https://doi.org/10.1016/S0140-6736(15)00055-0
https://doi.org/10.1158/1055-9965.EPI-06-0353
https://doi.org/10.1200/JCO.1998.16.4.1310
https://doi.org/10.1016/j.semradonc.2017.08.009
https://doi.org/10.1016/j.semradonc.2017.08.009
https://doi.org/10.1200/JCO.2006.06.7447
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Pharaon et al. Immunotherapy in Viral-Associated Cancers
14. Vermorken JB, Mesia R, Rivera F, Remenar E, Kawecki A, Rottey S, et al.
Platinum-Based Chemotherapy Plus Cetuximab in Head and Neck Cancer.
New Engl J Med (2008) 359(11):1116–27. doi: 10.1056/NEJMoa0802656

15. Bonner JA, Harari PM, Giralt J, Azarnia N, Shin DM, Cohen RB, et al.
Radiotherapy Plus Cetuximab for Squamous-Cell Carcinoma of the Head and
Neck. New Engl J Med (2006) 354(6):567–78. doi: 10.1056/NEJMoa053422
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Purpose: The aim of this study was to evaluate tumor blood flow (TBF) as a predictor of
radiotherapy response for nasopharyngeal carcinoma (NPC).

Materials and Method: A total of 134 patients were divided into two groups, the
complete response (CR) group and the partial response (PR) group based on RECIST 1.1
recommendations. The statistical difference was evaluated for pre- and mid- or post-
treatment TBF and changes of TBF for tumors and metastatic lymph nodes between CR
and PR, respectively. The receiver operation characteristic (ROC) curve was utilized to
evaluate the accuracy of TBF in predicting the response of radiation therapy. The
association between TBF and SUVmax was also investigated.

Results: The reduction of TBF in CR was significantly lower than that in PR for primary
tumors (P <0.001) and metastatic lymph nodes (P <0.001). The multivariate logistic
regression analysis indicated that the reduction of TBF is an independent predictor of the
response of radiation therapy for primary tumors (P <0.001) and metastatic lymph nodes
(P <0.001). The accuracy of TBF reduction in predicting the response of radiation therapy
was 0.817 in primary tumors and 0.924 in metastatic lymph nodes, respectively. No
significant correlation was observed between the TBF values and SUVmax of primary
tumors (r = -0.008, P = 0.954) and metastasis lymph nodes (r = -0.061, P = 0.652).

Conclusion: This study suggests that the reduction of TBF is a promising parameter for
evaluating the response of radiation therapy.

Keywords: tumor blood flow, radiotherapy, nasopharyngeal carcinoma, predictor, response
INTRODUCTION

Nasopharyngeal carcinoma (NPC) is one of the distinctly distributional cancers and is
geographically prevalent in southeast Asia and southern China (1). It is well known that Epstein-
Barr virus (EBV) infection, host genetics, and environmental factors contribute to the occurrence of
NPC, and EBV DNA testing is used to detect, prognose, and assess tumor response earlier (2, 3).
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The pre-treatment EBV DNA load was correlated positively with
progression of NPC after curative treatment, plasma EBV DNA
immediately post treatment had the potential as a quantitative
biomarker of tumor response assessment to guide the use of
aggressive adjuvant chemotherapy (4). There is no abundant
assay with robust analytical characteristics for clinical utility to
inform treatment management. Based on monitoring treatment
response, it is therefore essential to extract reliable prediction
factors that could divide patients into low- or high-risk groups.
The low-risk group may avoid ineffective therapies and prevent
unnecessary adverse effects, while the high-risk group may
benefit from aggressive therapies.

A reliable and accurate predictor of early response can
improve patient care by tailoring treatment and optimizing
follow-up plans. The Response Evaluation Criteria in Solid
Tumors (RECIST 1.1) criteria is usually recommended to
assess the morphologic changes of the tumor with computed
tomography (CT) or magnetic resonance imaging (MRI) (5).
Fujima reported that anatomic imaging changes had several
limitations in predicting treatment response (6) and were not
sufficient for detecting the intratumoral heterogeneity. 18F-
Fluorodeoxyglucose positron emission tomography (18F-FDG
PET) is another technique used to evaluate the recurrence,
metastasis, or prognosis of NPC, by several semi-quantitative
parameters, such as standardized uptake value (SUV),
volumetric parameters: metabolic tumor volume (MTV), and
total lesion glycolysis (TLG) (7). However, PET-CT has low
spatial resolution and a high false-positive rate, so these
parameters cannot insufficiency predict treatment response to
radiotherapy (8). Shi et al. compared 18F-FLT and 18F-FDG PET/
CT in monitoring and predicting tumor regression of NPC;
parameters of FDG PET were more strongly correlated to
treatment response than those of FLT PET (9). Hanamoto
et al. explored whether pre-treatment metabolic tumor volume
(MTV) and total lesion glycolysis (TLG) of PET-CT can predict
the local response of laryngohypopharyngeal cancer by
chemoradiotherapy (10). Xie et al. showed that SUVmax of
PET-CT may be a valuable tool to predict prognosis in locally
advanced NPC (11). Liu et al. suggested that the Hopkins criteria
was a reliable predictive and prognostic indicator in post-
treatment assessment, the addition of EBV DNA and PET/CT
did not improve evaluative accuracy of therapy response (12).

Functional MRI may predict response and allow for the
modification of a treatment schedule before or early in the
course of treatment. Liu et al. explored whether quantitative
image parameters based on contrast-enhanced MRI served as
new predictive tools for NPC response to chemoradiotherapy
(13). Huang et al. demonstrated that Kmean-post values were the
most powerful predictor for the early treatment evaluation of
NPC in the investigation of DKI and DWI (14). Tumor blood
flow (TBF) can be used to determine the tumor perfusion.
Previous studies suggested that TBF might lead to tumor cells
becoming resistant to treatment; and several factors, such as
tumor vascularity, permeability, and oxygenation, are involved in
this effect of TBF (15). However, TBF is usually obtained by
contrast-enhanced MRI, which may increase the risk of allergy
Frontiers in Oncology | www.frontiersin.org 2188
and nephrogenic systemic fibrosis. Recently, it was reported that
TBF can be achieved by the noninvasive arterial spin labeling
(ASL) MRI technique without contrast agents (16). Wu et al.
compared the TBF obtained from ASL-MRI and dynamic
contrast-enhanced (DCE)-MRI and observed that both test
methods were highly consistent (17). In this study, we explored
the feasibility of TBF with ASL-MRI in quantitatively evaluating
the tumor response of NPC.
MATERIALS AND METHODS

Patients
The retrospective study protocol was approved (No. 201807036)
by our clinical research ethic committee at the Cancer Institute &
Hospital, ** Academy of Medical Sciences. From September 2018
to December 2019, 134 newly diagnosed nasopharyngeal
carcinoma (NPC) patients were enrolled in our study and
classified as stage I (n=5), II (n=20), III (n=75), and IV (n=34)
patients according to the 8th edition of the American Joint
Committee on Cancer staging manual with the following
inclusion criteria: (1) Age > 18 years old, ECOG ≤ 2; (2) a
clear pathological diagnosis; (3) without distant metastasis;
and (4) without any anti-tumor treatment before the MR
examination. The exclusion criteria was: (1) Cases of previous
or concurrent malignancy; (2) cases with contraindication of
MRI examination, such as individuals with pacemakers, non-
detachable metal objects, or claustrophobic disorder; and (3)
patients without complete treatment. All the patients received
definitive radiotherapy and platinum-based concurrent
chemoradiotherapy. The details of standard treatment were as
follows: dosing lists of cisplatin were 40 mg/m² per week or 80–
100 mg/m² every 3 weeks, which is commonly acceptable as the
first choice with concurrent radiation therapy. The curative
radiation dose needs to reach a total of 66-70 Gy in 33-35
fractions. Two MRI examinations including ASL were obtained
from each patient as follows: (1) pre-treatment, 0-5 days between
the first MRI examination and the start of treatment; (2) mid-
treatment, 0-1 days after receiving 50 Gy radiotherapy or post-
treatment, 0-3 days from the end of radiotherapy. Owing to high
costs and unavailability of medical insurance reimbursement,
18F-FDG PET/CT scans were only acquired from 62 patients
before radiotherapy who needed to identify suspicious lesions or
exclude distant metastases. Besides, fasting blood glucose
concentration had to be under the level of 10.0 mmol/L for the
PET/CT scan in patients with diabetes.

MR Imaging Protocol
MR images were acquired using a 3.0 T positioning MR system
(Discovery MR750, GE Medical Systems, Milwaukee, Wisconsin,
USA) with a 6-channel neurovascular coil. The following
sequences were employed: the axial T1WI (fast spin echo, FSE,
TR= 670 ms, TE= 13.63 ms); the arterial spin labeling sequence,
which is a 3D fast spin echo (FSE) spiral-based pseudo-
continuous pCASL sequence (NEX= 3, bandwidth= 62.50 kHz,
thickness= 3 mm, slice gap= 0 mm, FOV= 26 cm, TE= 11.4 ms,
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PLD 2025 ms [2.0 s]: TR/TA= 5481 ms/318 s); the axial T2WI
with periodically rotated overlapping ParallEL lines with
enhanced reconstruction (Propeller) (Fast Recovery FSE, TR=
7059 ms, TE= 75 ms, NEX= 1.8, bandwidth= 83.33 kHz,
thickness= 3 mm, slice gap= 0 mm, FOV = 28 cm, matrix =
384, TA = 419 s), which are non-enhanced series. In addition, a
contrast-enhanced scan based the axial T1WI was also
accomplished by using 3D liver acquisition with volume
acceleration-flexible (LAVA-Flex) with Gadolinium -DTPA
-BMA (Ominscan, GE lifeScience, China) (dose 0.2 ml/kg and
rate of 2.0 ml/s. The parameters were TR= 6.8 ms, TE= 2.86 ms,
NEX= 1, bandwidth= 142.86 kHz, thickness= 3 mm, slice gap=
0mm, FOV= 34 cm, matrix= 296× 296, TA= 64 sec). The scan
range included nasopharyngeal tumor and neck lymph node
regions. In order to minimize motions during scanning, a head,
neck, and shoulder thermoplastic mask was used and patients
were trained to avoid moving their tongues, swallowing, or
speaking as best as they could.

Data analysis was achieved on Advantage Workstation (GE
Healthcare, Milwaukee, WI, USA). The following equation was
used to calculate the TBF values (18):

BF =
6000 · l · (SIcontrol − SIlabel) · e

PLD
T1,blood

2 · a · T1,blood · SIPD · (1 − e
− t
T1,blood )

½mL=100g=min�

where BF is blood flow, l represents the blood partition
coefficient in ml/g, SI control and SI label are the time averaged
signal intensities of the control and label images, respectively,
and PLD is the post-labeling delay time. T1, blood is the
longitudinal relaxation time of blood in seconds, a is the
labeling efficiency for pCASL, SIPD is the signal intensity of a
proton density-weighted image, and t is the pCASL label
duration. 6000 is a customary element, which changes the unit
from ml/g/s to a commonly used unit, i.e., mL/100g/min.

18F-FDG PET Imaging Analysis
All patients needed to fast for at least 8 h and measure their blood
glucose level before scanning. 18F-FDG PET/CT scans were
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performed 60 min after an injection of 5.55–7.40 MBq/kg of
18F-FDG (GE Discovery LS PET/CT). CT images were acquired
on the same scanner. The PET scans were reconstructed with the
CT-based attenuation correction using the ordered subset
expectation maximization (OSEM) algorithm. The standard
uptake value (SUV) in the region of interest (ROI) was
calculated using the tissue concentration of 18F-FDG measured
by PET/the injected FDG dose/body weight. The FDG uptake
in primary tumors and metastasis lymph nodes using
the maximum SUV (SUVmax) were calculated using
semiquantitative analysis. If the tumor extended beyond two
slices, the highest SUV value of all tumor ROIs was defined as
the SUVmax.

Tumor ROI Delineation and Evaluation
The primary tumors and metastasis lymph nodes were
delineated by a board-certified head and neck tumor
radiologist with 10 years experience. Firstly, we delineated the
polygonal ROIs along the tumor boundary for both primary
tumors and all metastasis lymph nodes on axial T2WI. The skull
base bone was excluded. Bone lesions are unmeasurable, while
the peripheral soft tissue components can be evaluated by CT or
MRI in RECIST 1.1. The diagnostic criteria for metastatic lymph
nodes (LNs) were: retropharyngeal LNs > 5 mm or cervical
LNs > 10 mm in shortest diameter; three or more contiguous and
confluent LNs, each with shortest diameter of 8–10 mm; LNs of
any size with central necrosis or a contrast-enhanced rim; LNs of
any size with extracapsular extension LNs of any size with overt
FDG uptake on the FDG-PET scan; non-metastatic lymph nodes
were without the above features. Secondly, the axial T2WI and
TBF maps derived from ASL of the same level were rigidly
registered and the ROIs were propagated to the corresponding
TBF map (Figure 1). The cystic necrosis and vessel signal void
were excluded from the TBF measurement to avoid inaccurate
perfusion information in the ROIs. If the ROIs were expanded
for two or more slices on the TBF maps, the mean TBF values of
primary tumors and all metastasis lymph nodes were calculated
in each patient. The reduction rate of TBF pre- and mid- or
FIGURE 1 | Representative examples of nasopharyngeal tumor region of interest (ROI) on different images. (A) ROI on the axial T2WI. (B) The ROI on the
corresponding TBF map, which demonstrated higher perfusion compared with the surrounding tissue. (C) The same ROI on T2WI and ASL fusion images. The
images of (A–C) were obtained from the pre-treatment MRI of a 66-year-old woman with a T3 non-keratinizing undifferentiated tumor.
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post-treatment was calculated and evaluated for each ROI. It
was calculated as follows: percentage change of TBF = (mid- or
post-treatment TBF - pre-treatment TBF)/(pre-treatment
TBF) × 100%.

In addition, the tumor volume (TV) was measured on
contoured ROIs using the Varian Eclipse Treatment System
(version 15.5, Varian Medical System, Palo Alto, CA, USA). If
tumors enlarged beyond two slices, the total of the TV was
calculated for all slices (19). The evaluation time of tumor
response was early post-treatment, 0-3 days from the end of
radiotherapy. According to the Response Evaluation Criteria in
Solid Tumors criteria, by their TV changes between pre-
treatment and early post-treatment MRI examinations, 134
patients were classified into two groups: the complete response
(CR) group was defined as the disappearance of all tumor lesions,
the partial response (PR) group was defined as a percentage
reduction of TV ≥ 30%.

Statistical Analysis
The associations between response of radiotherapy and
clinicopathologic characteristics were assessed by the chi-
square test. The statistical difference between pre- and post-
treatment TBF, and the change of TBF between CR and PR
groups were evaluated with non-paired t-test. Univariate and
multivariate logistic regression models were utilized to analyze
those parameters to determine whether they have independent
predictive value for treatment response. In order to perform
multivariate logistic regression, the variables, which were
statistically significant in univariate logistic regression, were
analyzed. The detected predictive values were also assessed
using receiver operating characteristic (ROC) curves and area
under the curve (AUC). All statistical analysis was performed
using SPSS (version 22; IBM SPSS) and Graphpad prism6.0
(Graphpad Software, San Diego, CA). P <0.05 was considered to
indicate statistical significance.
RESULTS

The Clinicopathological Characteristics
of Patients
In total, 134 patients were included in this study. In 100 patients,
the TBF was evaluated when patients received 50 Gy of
radiotherapy. In 34 patients, the TBF was determined when
patients received 70 Gy. Notably, most of these patients (except
T1,2N0) continued to receive adjuvant chemotherapy after 70 Gy.
There were 120 out of 134 patients in this study with known
metastatic lymph nodes. A total of 99 (73.88%) primary tumors
and 46 (34.33%) metastasis lymph nodes were categorized into
the CR group to radiotherapy, the remaining 35 (26.12%) and 74
(65.67%) were in the PR group (Figure 2). The radiotherapy
response of primary tumors was significantly better than
metastatic lymph nodes (P < 0.001). There was a significant
difference in primary tumor radiotherapy response between T1+2

and T3+4 (P = 0.003), I+II and III+IV (P = 0.018). The treatment
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response of metastatic lymph nodes was significantly different
between I+II and III+IV (P = 0.002). However, there was no
significant correlation between treatment outcome and the other
clinicopathological characteristics such as gender, age, pathology,
and therapy (Table 1).

We measured the SUVmax of primary tumors and metastasis
lymph nodes for 62 and 57 patients, respectively. The pre-
treatment SUVmax were 12.85 ± 4.15 and 11.24 ± 4.35 for
primary tumors and metastasis lymph nodes, respectively. The
mean TBF of primary tumors and metastatic lymph nodes pre-
treatment were 87.68 ± 22.36 mL/100g/min and 69.73 ± 14.73
mL/100g/min, respectively. There was no significant correlation
between the TBF values and SUVmax of primary tumors (r =
-0.008, P = 0.954) and metastasis lymph nodes (r = -0.061,
P = 0.652).

Associations of TBF With Radiotherapy
Response
The pre-treatment TBF of patients in the PR group was
significantly lower than that in the CR group, i.e., 76.56 ±
26.23 mL/100g/min vs. 89.43 ± 20.56 mL/100g/min in primary
tumors (P = 0.004), and 66.31 ± 13.48 mL/100g/min vs. 73.87 ±
14.23 mL/100g/min in metastatic lymph nodes (P = 0.004). The
mid- or post-treatment TBF of PR patients was significantly
higher than that in CR patients, i.e., 64.78 ± 18.39 mL/100g/min
vs. 55.79 ± 17.46 mL/100g/min in primary tumors (P = 0.011)
and metastatic lymph nodes 59.40 ± 12.25 mL/100g/min vs.
50.75 ± 11.92 mL/100g/min in metastatic lymph nodes (P <
0.01). The reduction rate of TBF between mid- or post-treatment
and pre-treatment was significantly lower in CR than those in PR
(-36.49 ± 18.27% vs. -11.80 ± 20.74% in primary tumors, and
-30.42 ± 13.17% vs. -9.95 ± 9.26% in metastatic lymph nodes)
(P < 0.001 and P <0.001, respectively) (Figure 3). However, the
SUVmax of primary tumors and metastatic lymph nodes in the
pre-treatment period was not significantly different between CR
and PR groups (12.71 ± 3.94 vs. 13.39 ± 5.04 in primary tumors,
and 10.53 ± 4.26 vs. 11.76 ± 4.41 in metastatic lymph nodes, with
P = 0.602 and P = 0.297, respectively).

Independent Predictors and Accuracy
Prediction of the Change of TBF
Multivariate logistic regression showed that the change of TBF
(HR = 1.072; P < 0.001), T-stage (T1+2 vs. T3+4: HR = 0.319; P =
0.032) and pathological types (keratinizing squamous vs. non-
keratinizing: HR = 15.619; P = 0.015) were independent
predictors of primary tumor response to radiotherapy
(Table 2). We also found that the change of TBF and clinical
stage was associated with radiotherapy response of metastatic
lymph nodes (HR = 1.231; P < 0.001. I+II vs. III+IV: HR = 0.084;
P = 0.009. Table 3). In addition, ROC curves were calculated to
further evaluate the effectiveness of TBF metrics in discerning CR
from PR to radiotherapy. The accuracy of predicting the
response for primary tumors and metastatic lymph nodes
using percentage change of TBF was 0.817 and 0.924,
respectively (P < 0.001, P < 0.001; Figure 4).
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FIGURE 2 | Fusion images of the ASL superimposed on T2WI acquired from patients with nasopharyngeal carcinoma accompanied by metastatic lymph nodes.
The fused image by T2WI and ASL of nasopharynx lesion and metastatic lymph node pre-treatment and post-70 Gy radiotherapy. (A–D) represent complete
response in nasopharynx lesions and metastatic lymph nodes, respectively. (E–H) represent partial response in nasopharynx lesions and metastatic lymph nodes,
respectively. (A, B) The pre-and post-treatment ASL of a 51-year-old man with a T2 non-keratinizing undifferentiated tumor. (C, D) The pre-and post-treatment ASL
of a 54-year-old woman with an N3 non-keratinizing undifferentiated tumor. (E, F) The pre-and post-treatment ASL of a 66-year-old woman with a T3 non-
keratinizing undifferentiated tumor. (G, H) The pre-and post-treatment ASL of a 57-year-old man with an N2 non-keratinizing differentiated tumor.
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DISCUSSION

In this study, we demonstrated that TBF is a useful metric to
distinguish complete response patients from partial response
patients. The conclusions from this work contribute to the
development of individualized treatment for patients. Although
the clinical use of the TBF parameter in head and neck
carcinoma has been recently reported (20), none of the
previous works studied NPC patients. To the best of our
knowledge, this is the first study that evaluates the predictive
accuracy of TBF calculated by pCASL in NPC patients.

Intensity-modulated radiotherapy (IMRT) can provide a good
coverage of target volume and reduce exposure to the adjacent
normal tissues, which improved the locoregional control rate to
80% - 90% in NPC (21). The low local control rate (73.88%) in
our study was due to immediate evaluation after radiotherapy. Some
lesions will gradually degrade within three months after radiotherapy
because of delayed effect. Our study demonstrated that T-stage is the
main influence factor for local control of primary tumors. In previous
studies (22), T-stage and primary tumor volume were proved to have
a significant impact on the prognosis of NPC patients. Au et al. (23)
studied 3328NPC patients treated with IMRT. They found that the 5-
year local control rate for T1-3 exceeded 90%, but the local control rate
of T4 was 71.6%. This is because T4 tumors are often close to adjacent
critical neurological structures, which compromises the dose of
radiation covering the tumor volume and therefore weakens local
control. Our findings are consistent with these previous studies.

Our results also demonstrated no direct correlation between
SUVmax derived from PET-CT and TBF calculated by ASL in
NPC. However, Bisdas et al. showed a positive correlation between
SUVmax and TBF (24). The possible explanation is that
neovascularity and angiogenesis have been known to develop with
proliferation of tumor cells in the early period, and the glucose uptake
of a tumor rises in parallel. Komar G previously concluded that there
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was no correlation between SUV and TBF value in HNSCC patients
(25), our study came to a similar conclusion. Fujima (26) showed
significant correlations between SUV and TBF in HNSCC by
different T-stage and tumor locations, i.e., positive correlation in the
early T-stage pharynx/oral carcinoma, negative correlation in the
advanced T-stage in both the pharynx/oral and sinonasal carcinoma,
and no correlation in the overall patient analysis. The conflicting
result may be due to several factors such as tumor size, tumor
proliferation activity, or the mismatch of angiogenesis and tumor
proliferation. Insufficient blood supply leads to relatively low TBF,
whereas an aggressive tumor itself demands a high glucose uptake in
anaerobic glycolysis. The uncoupling of blood supply and tumor
growth may result in low oxygenation of tumor tissue, i.e., tumor
hypoxia, which might lead to resistance to radiotherapy (26). Our
study showed no correlation between the SUVmax of primary
tumors or metastasis lymph nodes and radiation response. It is
possible that tumors with high SUVmax may contain more
hypoxic cells, which reduce radiotherapy sensitivity. Moreover,
necrosis and inflammatory tumors can raise SUVmax and lower
radiotherapy efficacy (27). Further analysis is required to investigate
and reveal tumor biological correlations.

The TBF obtained from ASL can assess the response of
radiotherapy in NPC patients by a noninvasive manner. We
compared the change of TBF and tumor response in primary
tumors and metastatic lymph nodes. We observed that the
accuracy of TBF for predicting the response of primary tumors or
metastatic lymph nodes was 0.817 (P < 0.001) and 0.924 (P < 0.001).
Although tumor response can be directly observed in MRI, it
detected the morphologic changes of tumors; and it failed to
provide functional information. TBF reflects tumor perfusion,
which is closely related to tumor growth. The timely change of
TBF can detect early treatment response and improve patient care
by tailoring treatment and the management of follow-up. Our study
explored that the change of TBF can be used as a valuable biomarker
TABLE 1 | Clinical characteristics of all patients and radiotherapy response.

Characteristic Primary tumor c2 P-value LNM c2 P-value

CR PR CR PR

Gender
Male 78 25 0.788 0.375 33 58 0.682 0.409
Female 21 10 13 16
Age (years)
≤50 48 20 0.776 0.379 21 39 0.564 0.453
>50 51 15 25 35
Pathological type
Keratinizing squamous 4 4 4.848 0.089 2 2 3.537 0.171
Non-keratinizing differentiated 21 3 13 11
Non-keratinizing undifferentiated 74 28 31 61
Tumor stage
T1+2 63 12 9.039 0.003 23 36 0.021 0.886
T3+4 36 23 23 38
Clinical stage
I+II 23 2 5.575 0.018 10 2 9.405 0.002
III+IV 76 33 36 72
Therapy
RT alone 6 1 0.084 0.772 1 2 0.01 1.00
Concurrent CRT 93 34 45 72
August 2021 | Vo
lume 11 | Article
CR, complete response; PR, partial complete; LNM, lymph node metastasis; RT, radiotherapy; CRT, chemo-radiotherapy.
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to predict the sensitivity of radiotherapy and suggested that the TBF
values or the change of TBF is positive corrected with survival time.
In general, the prognosis of patients with PR is worse than patients
with CR. Thus, distinguishing patients who will have a partial
response to current therapy from patients who will have a complete
response to therapy will help clinicians determine the optimal
therapy strategy for these patients. King’s study demonstrated that
the pre-treatment TBF calculated by a dynamic contrast-enhanced
(DCE) perfusion technique can estimate the prognosis of patients
and that lower pre-treatment TBF values showed the worse
prognosis (28). Fujima N reported TBF (121.4mL/min/100g)
reduction after treatment (24.9 mL/min/100 g) in head and neck
tumors; and the TBF reduction rate was remarkably lower in
Frontiers in Oncology | www.frontiersin.org 7193
complete response patients than without. Previous ASL-related
research mostly focused on the central nervous system and
clinical usage in tumor diagnosis, specialization, therapeutic effect
monitoring, and assessment of prognosis (29). Some other studies
concluded that perfusion images from DCE-MRI may support
diagnosis and estimating therapeutic outcome, distinguishing
tumor recurrence from therapeutic alteration, and predicting
prognosis in NPC (30, 31). Lin M reported that TBF obtained
from ASL showed good consistency with the parameters of DCE-
MRI. They also demonstrated that different perfusion areas in the
whole tumor showed a significant correlation coefficient between
ASL and DCE-MRI, and thus ASL may be able to provide a reliable
perfusion property without invasion and replace DCE-MRI in
A

B

D

E

FC

FIGURE 3 | Box plot analysis of TBF between CR and PR in 134 primary tumors and 120 metastatic lymph nodes. TBF of primary tumor (A) before treatment and
(B) after treatment; TBF of LNM (C) before treatment and (D) after treatment; (E) TBF change of primary tumor; (F) TBF change of LNM.
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NPC (32). Higher TBF causes abundant oxygen in tumors, which
improves the sensitivity of radiotherapy in NPC, the lower perfusion
in heterogeneous tumor areas or necrotic hypoxic lesions may lead
to resistance of radiotherapy (33). The large change of TBF with a
larger volume reduction may be caused by shrinking the
intratumoral arteriovenous shunt or decreasing the vascular
chemoradiotherapy. Furthermore, TBF obtained by ASL can be
carried out safely and repeatedly at any time of radiotherapy
without a contrast agent and radiation exposure. Monitoring of
local TBF change may be used to design chemoradiation de-
escalation trials to readjust treatment intensity, which is achieved
Frontiers in Oncology | www.frontiersin.org 8194
by FDG-PET (34). The timely evaluation of TBF change can
provide helpful information for guiding the choice of adjuvant
chemotherapy or earlier salvage surgery after radiotherapy. The
advanced diffusion parameter of functional MRI converts medical
images into quantitative perfusion predictors to provide prognostic
ability without increasing economic cost and invasion in NPC. This
is a promising area that requires further investigation.

There are several limitations in this study: First, the study sample
is a single-center dataset. Therefore, multi-center clinical
experiments and large sample sizes are needed for a greater
quantity and higher level of evidence to confirm the results of this
TABLE 2 | Clinicopathologic characteristics associated with radiotherapy response of primary tumors.

Variable Univariate Multivariate

HR (95%CI) P-value HR (95%CI) P-value

Gender
Male Reference
Female 0.673 (0.280-1.619) 0.377
Age (years)
≤50 Reference
>50 1.475 (0.678-3.209) 0.327
Pathological type
Keratinizing squamous Reference Reference
Non-keratinizing 3.958 (0.998-15.693) 0.050 15.619 (1.699-143.586) 0.015
Tumor stage
T1+2 Reference Reference
T3+4 0.298 (0.133-0.670) 0.003 0.319 (0.112-0.908) 0.032
Clinical stage
I+II Reference Reference
III+IV 0.200 (0.045-0.899) 0.036 0.308 (0.037-2.539) 0.274
Therapy
RT alone Reference
Concurrent CRT 0.456 (0.053-3.926) 0.475
% change of TBF (primary tumor) 1.067 (1.040-1.096) <0.001 1.702 (1.041-1.103) <0.001
August 2021 | Volume 11 | Article
TBF, tumor blood flow.
TABLE 3 | Clinicopathologic characteristics associated with radiotherapy response of metastatic lymph nodes.

Variable Univariate Multivariate

HR (95%CI) P-value HR (95%CI) P-value

Gender
Male Reference
Female 1.428 (0.612-3.333) 0.410
Age (years)
≤50 Reference
>50 1.327 (0.634-2.775) 0.453
Pathological type
Keratinizing squamous Reference
Non-keratinizing 0.930 (0.149-5.785) 0.938
Tumor stage
T1+2 Reference
T3+4 0.729 (0.348-1.520) 0.402
Clinical stage
I+II Reference Reference
III+IV 0.100 (0.021-0.481) 0.004 0.084 (0.014-0.542) 0.009
Therapy
RT alone Reference
Concurrent CRT 1.250 (0.110-14.187) 0.857
% change of TBF (LNM) 1.223 (1.138-1.314) <0.001 1.231 (1.139-1.331) <0.001
TBF, tumor blood flow; LNM, lymph node metastasis.
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study. An external validation is needed to validate the effectiveness of
the findings. Second, because of the low spatial resolution of the TBF
map, we needed to fuse TBF images to T2WI or enhanced T1WI
MRI to distinguish anatomical details and outline the ROI.We tested
the mean TBF value from ASL by redrawing ROI and did not
evaluate the impact of inter-observer variations. Moreover, although
this study suggests that the TBF is a promising parameter for
evaluating the response of radiation therapy. We failed to find
another “gold standard” criterion, which could be used to perform
the ROC curves of RECIST; therefore, we could not compare if TBF
was as good as RECIST in evaluating the tumor response. Third,
different perfusion parameters may have a complex relationship with
each other. A significant correlation was confirmed between TBF
derived fromASL and parameters of DCE -MRI. Further studies are
needed to explore the combination of both perfusion parameters.
Frontiers in Oncology | www.frontiersin.org 9195
Fourth, the follow-up time of this study was limited, and no long-
term treatment response and overall survival have been investigated
yet. Future studies will extend the follow-up time and discuss in
detail the relationship between TBF and radiation prognosis. This
research project is still ongoing, and related data such as tumor-free
survival, overall survival, local control rate, relapse rate, and
metastasis rate are being followed up.
CONCLUSIONS

In conclusion, TBF of ASL is a promising metric in evaluating
tumor perfusion quantitatively and the change of TBF is a non-
invasive choice for accurately predicting response of
radiotherapy in NPC. Thus, this study suggests that when
patients undergo radiotherapy at 50 Gy, the change of TBF
might be a promising parameter which could evaluate the
effectiveness of the therapy strategy. This will help clinicians
modify the strategy in time and give rise to benefit to patients.
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FIGURE 4 | Receiver operating characteristic (ROC) curves depicting the
predicting capability of the change of TBF in 134 primary tumors and 120
metastatic lymph nodes. The area under the ROC curve was (A) 0.817 (95%
confidence interval: 0.737-0.897, P < 0.001) and (B) 0.924 (95% confidence
interval: 0.879-0.969, P < 0.001), respectively.
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Head and neck cancer (HNC) is among the ten leading malignancies worldwide, with India
solely contributing one-third of global oral cancer cases. The current focus of all cutting-
edge strategies against this global malignancy are directed towards the heterogeneous
tumor microenvironment that obstructs most treatment blueprints. Subsequent to the
portrayal of established information, the review details the application of single cell
technology, organoids and spheroid technology in relevance to head and neck cancer
and the tumor microenvironment acknowledging the resistance pattern of the
heterogeneous cell population in HNC. Bioinformatic tools are used for study of
differentially expressed genes and further omics data analysis. However, these tools
have several challenges and limitations when analyzing single-cell gene expression data
that are discussed briefly. The review further examines the omics of HNC, through
comprehensive analyses of genomics, transcriptomics, proteomics, metabolomics, and
epigenomics profiles. Patterns of alterations vary between patients, thus heterogeneity
and molecular alterations between patients have driven the clinical significance of
molecular targeted therapies. The analyses of potential molecular targets in HNC are
discussed with connotation to the alteration of key pathways in HNC followed by a
comprehensive study of protein kinases as novel drug targets including its ATPase and
additional binding pockets, non-catalytic domains and single residues. We herein review,
the therapeutic agents targeting the potential biomarkers in light of new molecular
targeted therapies. In the final analysis, this review suggests that the development of
improved target-specific personalized therapies can combat HNC’s global plight.

Keywords: head and neck (H&N) cancer, single cell analysis (SCA), organoid technology, 3D culture, omics
analyses, therapeutics of HNC
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INTRODUCTION

The origin of cancer is traced to the characteristic unresponsive
cellular behavior towards signals that regulate survival,
proliferation, differentiation, and eventual evasion of death (1).
The research into the biological mechanisms of cancer
progression has advanced our knowledge of disease biology,
and new developments in effective anti-tumor therapies have
generated a stream of possibilities and strategies to tackle a wide
range of cancer types. Despite these advances, head and neck
cancer (HNC) remains among the ten most common
malignancies worldwide with higher rankings in developing
countries (2). The HNCs are categorized by origin in the head,
neck, or the upper aero-digestive tract including oral cavity,
para-nasal sinuses, pharynx, larynx, cervical esophagus, thyroid,
associated lymph nodes, soft tissues, and bone (3). A broad
spectrum of tumors arising from different head and neck tissues
are designated as HNC, with >90% of malignancies being
squamous cel l carcinomas (SCC) and its variants .
Histopathologically, other tumor of the head and neck region
include adenocarcinomas, sarcomas, anaplastic carcinoma,
plasmacytoma, lymphomas, and malignant melanoma.

Approximately 75% of the cases of HNC worldwide can be
associated with its classical causative agents; heavy tobacco or
alcohol consumption (3, 4). Human papillomaviruses (HPV) are
also important causative agents for the development of
oropharyngeal tumor of the tonsils or the tongue basal area
(5). HPV positive tumors exhibit better prognosis and show little
correlation with tobacco and alcohol exposure unlike HPV
negative tumors (6). Likely, other unknown factors could also
play essential roles in tumorigenesis, tumor progression, and
metastasis of HNC, such as alteration in microbial diversity and
function, genetic polymorphisms in enzymes involved in alcohol
and tobacco metabolism (7, 8) or, genetic predisposition as is in
Li Fraumeni’s syndrome, Fanconi’s anemia and ataxia
telangiectasia (9).

Though several drugs are presently in clinical trials (10, 11),
most treatment strategies are hamstrung by limited patient
response and the complex tumor microenvironment.
Therefore, in-depth studies to elucidate the mechanism of
action of drugs, and the challenges that cripple their efficacy,
are necessary before devising new molecules with increased
efficacy. Till very recently, predicting clone genotypes from
tumor bulk sequencing of multiple samples was cardinal to the
delineation of tumor profiles. Since drug-resistant clones develop
throughout the tumor growth process, their presence often
precedes a drug treatment regimen strategy; enabling single
tumor cells to evade drug treatment camouflaged by their
divergent profiles. Single-cell analysis, spheroids, organoids
technology are emerging as solutions that can be exploited for
Abbreviations: ASCs, Adult Stem Cells; HNSCC, Head and Neck Squamous Cell
Carcinoma; ESCs, Embryonic Stem Cells; ECM, Extracellular Matrix; HNC, Head
and Neck Cancer; HPV, Human Papilloma Viruses; iPSCs, induced Pluripotent
Stem Cells; OSCC, Oral Squamous Cell Carcinoma; PDOs, Patient-
derived Organoids.
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effective treatment strategies by mapping individual genetic
profiles of heterogeneous tumor cells.
HETEROGENEITY: A CHALLENGE IN THE
TREATMENT OF HEAD AND NECK
CANCER AND ROAD TOWARDS
SOLUTIONS

Head and neck cancers, notorious for their heterogeneity and
relapsing nature require an improved understanding and
characterization in order to counter recurrence, resistance
and disparities in therapeutic responses. This heterogeneity
and anatomical diversity makes the treatment protocol a
virtual nightmare and also demands linking of phenotypic
assay data with clinical outcomes in order to optimize the
treatment and translate benefits to the patients (12). Though
the Cancer Genome Atlas has increased perception of inter-
tumoral heterogeneity across scores of patients, the knowledge of
intra-tumoral heterogeneity stays very rudimentary.

The conventional diagnostic techniques analyze the tumor
population as a whole and, as a result, derive an inference which
averages the effects of all different types of cells in the population.
Until recently, genotypes were predicted using tumor sequencing
from multiple and bulk samples (13). However, the average
targeting of cancer is grossly inadequate and strategies are
required to characterize individual cancer cells and
subsequently optimize treatment regimens. The development
of models that consider as well as provide the interactions with
ECM and cells of the microenvironment (like cancer-associated
fibroblasts (CAFs), myeloid derived suppressor cells (MDSCs)
and immune cells like Th1, Th2, Treg cells & cytotoxic T cells,
M1 &M2 macrophages, N1 & N2 neutrophils, natural killer cells
(NK cells), dendritic cells etc.) (14) becomes necessary. These
models necessarily require to mimic other in vivo conditions as
well, such as hypoxia which is said to be responsible for stemness
(15) and radio-resistance (16), both prominently seen in HNCs.

The single-cell analytical methods and spheroids/organoid
models are being found particularly useful in cancer biology and
clinical oncology. Aiming to improve the understanding of two
key areas, cancer research and, drug discovery, the latter provides
suitable models to reproduce the tumor microenvironment while
the former gives an accurate measure of cell properties and
minimizes adulteration or approximation associated with bulk
measurements. The conventional 2D cultures include growing
transformed cells derived from tissues in monolayer cultures.
Although characterized by easy maintenance and experimental
modifications, the extended survival of cancer cell lines in these
monolayer cultures allows for the development of undefined
mutations and the consequent loss of parental cells’ genetic
characteristics (17). Also, the cellular heterogeneity and tissue
architecture found in tissues or tumor of their origin is lacking in
2D cultures. On the other hand, organoid and spheroid cultures
can mimic or recapitulate the tumor microenvironment
signaling by partially permitting vital cell-cell contacts, cell
s ignaling, and cel l-ECM interactions. Their higher
August 2021 | Volume 11 | Article 676948
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physiological relevance, susceptibility to manipulation of niche
components, signaling pathways and genome editing, makes
them an important bridge between 2D culture and in vivo
animal models (Figure 1).

In view of the above, it is reasonable to hypothesize that the
organoid and single cell technologies have applicative potential
in HNC where identifying, understanding and, addressing the
tumor heterogeneity is the primary concern. These technologies
can be applied either independently or in combination to
discover novel biomarkers and specific molecular targets.
Subsequently, the information so retrieved can be supportive
of streamlining the drug development procedure (Figure 1). The
Frontiers in Oncology | www.frontiersin.org 3200
approaches used for single single-cell isolation vary from
targeting either their physical or biological characteristics
(Figure 2). The physical characteristics like electric charges,
density, size, and flexibility, are exploited by the microchip-
based capture platforms, membrane filtration, and density
gradient centrifugation. On the contrary, the cells’ biological
characteristics such as cell surface markers, size, granularity help
in single-cell isolation via affinity chromatography, fluorescence-
activated cell sorting (FACS), and magnetic–activated cell sorting
(MACS) methods (18). To characterize the heterogeneity in
tumor mass and microenvironment, single-cell separation and
culturing techniques are significant. These methods not only
A

B

FIGURE 1 | Comparison between two different cell culture systems initiated from the same source. (A) Cells isolated from various tumor sites are grown in 2D and
3D culture systems, and their trajectories are tabulated on the right and left side, respectively. Analysis of mutations in each organoid grown from a single cell may be
used to construct the phylogenetic tree. (B) When compared to PDXs or slice cultures, the 3D cultures are amenable for easier manipulation, identification of
heterogenous population, and high throughput screening (HTS).
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utilize the physical properties of cells but have added advantage
of being label-free techniques. Thus, single cell-sorting and omics
analysis techniques have become the backbone of current
investigations in the direction of personalized treatment in all
forms of cancer including HNC. The single-cell technologies
operate on the dual platforms of ‘single-cell separation’ and
‘single-cell analysis’. These technologies are certainly warranted
for detection and analysis of intra-tumor heterogeneity (ITH)
and decipher the mechanisms of tumor metastasis, investigate
omics alterations, and discover precise treatment strategies (19).

Several gene expression, metabolic and drug response based
studies have reiterated the importance of 3D culture, as it
mimicks in vivo cell environment in a better manner as
compared to 2D culture (Figure 3). A study by Shah et al.
characterized head and neck cancer organoids metabolically. The
cell metabolism was analyzed by measuring the intrinsic
fluorescence of NAD(P)H and FAD on a single cell level
before and after treatment. The redox ratios of the organoids
Frontiers in Oncology | www.frontiersin.org 4201
were measured in response to different drug treatments.
Therefore, the study suggested the use of organoids as a
complementary tool to perform rapid comparisons between
treated and non-treated samples, to observe metabolic response
to drugs and to characterize heterogeneity (20). Another study by
Tanaka et al. used CTOS (Cancer tissue originated spheroids)
method to establish HNC organoids. The study also
characterized marker expression profile in spheroids in
comparison to the original tumor cell, finally showing similar
marker expression of cancer stem cell to in vivo. Exposure to
drugs like cisplatin and docetaxel was able to accurately define
drug sensitivity in vivo (21). The Driehuis et al. provided a
standardized protocol for generation of HNC organoids using
patient tumor samples and their subsequent use in drug
screenings. This allowed comparison of differential drug
responses in different patients. The study also floats the idea
that organoids may potentially predict patient clinical responses
(22). The same group in a previous study primarily focused on
FIGURE 2 | Overview of single-cell isolation technologies. (A) Schematic of fluorescence-activated cell sorting; FACS employs two separate techniques, streamlining
the fluorescently labeled cells to pass through a micro-spectrophotometer one cell at a time, and a second to record the emission of the signal. The signals are
based on cell dimensions, coarseness, and fluorescence. The technique allows both qualitative and quantitative analysis of a cell population. After the initial sample
preparation, the cell suspension is passed in a monolayer in a manner that each cell is subjected to exposure by a laser which permits the fluorescent labels to be
identified by the instrument. The instrument applies a charge depending on the nature of the cell, which deflects a droplet containing the cell of interest from the
entire flow. This charged droplet is then collected by collection tubes. (B) Magnetic-activated cell sorting differs from FACS in the way that instead of fluorophore
tagged labels, this technique uses magnetic bead conjugated with antibodies, streptavidin, lectins, or enzymes. The cells are channelized under an applied magnetic
field that allows non-conjugated cells to pass freely. The magnetic bead conjugated cells are then eluted by turning the magnetic field off. Separation can be both
positive and negative. Positive separation employs a technique where the cells of interest are conjugated with the magnetic beads. (C) Laser capture micro-
dissection uses an inverted microscope, an infrared or ultraviolet laser, and an extraction system. After visual identification of the cell of interest, through a user-
defined pattern, the laser cuts the cell from the population. Various extraction methods are used, one of them being the laser activating an adhesive on a thin film
kept over the tissue, which in turn sticks to the cell of interest, and the cell can be removed by picking up the film. (D) Manual cell picking also employs an inverted
microscope, but instead of lasers, automated micropipettes are used for the cell extraction. MCP’s main advantage over LCM is that live cell cultures can be
isolated, in contrast to fixed cells in LCM and (E) A microfluidic device depends on the capture of single cells from the suspension so well diluted that the probability
of one cell going into one well is maximum. The microwell technique can accommodate single-cell imaging along with analysis. Automated devices streamline the
cells in a microflow and sort the cells according to specific properties like size, charge, or ligand affinity into different populations.
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using 3D models for testing in vitro targeted PDT
(photodynamic therapy). Since EGFR is primarily targeted in
PDT, its expression levels were compared in organoids to that of
cell lines used previously. The levels in organoids recapitulated
both tumor and normal patient samples. In fact, organoids from
tumor were found to be more sensitive to PDT than their
corresponding normal/wild type tissues. This suggests that the
therapy may prove more significant as it will leave surrounding
normal epithelia of tumor unaffected. Therefore, also
highlighting the use of EGFR as a major molecular target in
HNC which is already suggested by multiple studies (23).
Multiple studies have also reiterated that organoids are not
relevant only because they grow in 3D spatial arrangement
mimicking in vivo conditions but also because they capture
distinct behaviors of respective tumor they arise from (24).

Co-culture systems in the form of 3D organoid models are
gaining more attention recently and are being used for assessing
the anticancer effects. Within the tumor microenvironment, the
cell-cell interactions between Cancer associated fibroblast
(CAFs) and cancer cells contribute to carcinogenesis, via
Frontiers in Oncology | www.frontiersin.org 5202
tumor initiation, progression and metastasis (25). Similarly,
paracrine signaling between stromal and cancer cells is known
to mutually stimulate proliferation and induction of drug
resistance. Table 1 discusses some of the model systems used
in HNC related studies. Different models allow for
customizations relevant to parameters under investigation and
provide an edge over conventional techniques. For instance, to
elucidate monocyte action, they can be cultured along with HNC
cells (26–29). Similarly, fibroblasts and PBMCs can also be co-
cultured with HNC cells for EGFR based studies (30) and for
testing antibodies (31), respectively. Other studies have shown
the role of TAMs (Tumor associated macrophages) and HDFs
(Human Dermal Fibroblasts) in cancer stemness and invasion
respectively (32, 33). Differential drug response towards EGFR
targeting drugs is studied using CAFs (34). Different organoid
model systems of HNC were established to explore ERK1/2 and
Nanog signaling (35), HSV1 and HPV16 (36), invasiveness in
cancer (37), drug screening (38), and other characteristic
hallmarks (39). Hydrodynamic shuttling chip (HSC) is a
microfluidics platform through which single-cell squamous
FIGURE 3 | Characteristic features of 2D and organoid culture. Schematic representation showing cells grown in 2D monolayer culture and in 3D culture. An
organoid mimics the tumor microenvironment by forming different zones (viz. proliferating zone, quiescent viable zone, and necrotic core) and gradients, which gives
a realistic response compared to 2D monolayer cultures.
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carcinoma cells are separated and co-cultured with lymphatic
endothelial cells to observe the motility and cell-cell
communications (40).

State of the art methods for culturing 3D cells are classified on
the basis of source materials used, 3D environment, kind of
scaffold and the types of cultures generated. Various methods
have evolved with date and used for 3D cell culturing are
scaffold-dependent methods (41) viz. hydrogel method (42),
agarose coating method (43); and scaffold-independent
methods (44) like hanging drop method, rotary cell culture
system, micropatterning, microfluidics (45), low-attachment
plates method (46), magnetic-cell leviation (47). Organoids
derived from single cells can generate enough biomass for
investigating tumor heterogeneity at the single cell level
(Figure 1). Patient-derived organoids (PDOs) are particularly
useful as models for specific diseases or infections, which
otherwise are difficult to generate or probe in animal models.

Despite many applications 3D cultures cannot mimic in vivo
growth factor, biomechanical forces etc. Thus, organoids, in spite
of their potential as near-physiological cell culture models, are
difficult to culture with unknown or unfamiliar niche or growth
factors, and necessitate high technical skill and elaborate
experimental set up in most cases. In addition to these, the
field of HNC still requires more comprehensive studies using
organoid technology as the literature available is less compared
to other cancers like breast, colon, prostate etc.

Both the above discussed technologies may be applied to
HNC, where understanding the heterogeneity is the major
concern. The technologies can be used individually or in a
combinatorial approach (48) to first identify biomarkers and
molecular targets specific to HNC and then to perform drug
screenings/assays which will help in validating novel therapeutic
agents and maximizing the success of a proposed therapeutic
regimen in the patients (Figure 1). These techniques despite
being very promising are limited by the lack of studies specific to
HNC i.e. the literature is scarce. The review aims to encourage
more such studies in the field of HNC research. This review also
encompasses the omics profiles of single cell and is compared
with bulk-cell analysis in HNC. We have discussed the single-cell
derived spheroid based therapeutic advances and emerging
Frontiers in Oncology | www.frontiersin.org 6203
targeted therapy that evolved due to omics studies. This review
provides a panorama of the target landscape for the development
of treatments of HNC. The gaps in the HNC treatment are being
identified and future strategies to fill those gaps are suggested.

Issues and Challenges in Bioinformatic
Analysis With Reference to HNC
The omics analysis with reference of single cells, spheroids and
organoids from HNC patient samples is a major challenge. One
of the primary objectives of any omics analysis is to find reliable
targets for therapeutic intervention. Such a task becomes possible
with the identification of cell-specific genes which need to
regulated specifically. Identification of biomarkers from a
transcriptomics data typically start with the computational
analysis of highly differentially expressed genes. This
computational analysis becomes possible through well-
established and benchmarked bioinformatics strategies, which
face specific challenges in the case of single cell data emerging
from HNSCC. Three issues require special attention viz. (i)much
subtler changes in expression levels in single cell populations
when compared to bulk expression data, (ii) sparsely collected
data with lots of missing values, and (iii) absence of largescale
relationships between single cell changes of expression and gene
sets such as pathways or ontology terms, frequently used in
interpreting bulk expression data outcomes.

To address the first of these issues (weak biomarker signal in
differential expression), many computational tools, dedicated to
the scRNA-seq data analysis have been developed (49, 50), which
have allowed for significant advances in investigating
heterogeneity and single-cell specific markers. A database of
tools employed for scRNA-seq analysis has been reported and
can be accessed viaURL http://www.scRNA-tools.org (51). Tools
like SCANPY (52) and Scatter (53) are some of the powerful
robust pipelines that are well-integrated for comprehensive
analysis (pre-processing and post-processing analysis) of
scRNA-seq data. Many of these tools and resources provide
expression data analysis of single cells, which takes into account
the subtle gene expression level changes.

The second bioinformatics analysis issue is that of sparseness
in the data sets. Poor coverage of expression values from each
TABLE 1 | Different 3D models of HNC.

S.No. 3D culture models Application

1 Malignant/benign HNC + Mucosa
monocytes

IL-6 secretion and prediction of prognosis
Mechanisms for monocyte activation
Tumor-associated macrophages are a source of monocyte chemotactic protein (MCP-1) in HNC tumors.

2 HNC cell line + fibroblasts Anti-EGFR monoclonal antibody
3 HNC cell line +PBMC Trifunctional bispecific antibody catumaxomab
4 HNC spheroids + tumor Associated

macrophages (TAMs)
CD44 signaling and mechanistic link of TAMs in cancer stemness

5 HNC OECM-1 cell line + human dermal
fibroblasts (HDFs)

Cancer cell invasion in collagen microenvironment

6 HNC spheroids + CAFs Differential drug response to cetuximab and mTOR inhibitor
7 HNC spheroids Role of ERK1/2-Nanog signaling in head and neck cancer stemness
8 Oral mucosal Organoids and HNC patient-

derived tumoroids
To study oral mucosal pathology by infecting with HSV1 and HPV16 and HNC patient-derived tumoroids utilized
for drug screening and personalized medicine.

9 HNC Multicellular tumor spheroid (MCTS) Drug screening
August 2021 | Volume 11 | Article 676948

http://www.scRNA-tools.org
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Jawa et al. Current Insights and Advancements in HNC
sample has two implications, (a) the very absence of the
expression values may lead to missing the biomarkers
altogether as only 10—20% values are reliably captured,
(b) these dropouts adversely impact a confident grouping of
cellular profiles into their subclasses as each transcript is
described by a different set of genes. Few genes are present in
one face while others are available in another. One of the
solutions that has been proposed by bioinformaticians to
address the sparseness of expression data in scRNA-seq is to
reconstruct or predict the missing gene expression values, a
process well-known as “imputation” in computer science.
Traditional computational methods of imputation in general
have dealt with a few or a small proportion of missing values in a
data set. This problem is, however far more acute in the single-
cell data due to much less information available to impute the
missing ones. Imputing a missing value often relies on adopting a
derived value from carefully selected similar samples. In single
cell analysis, groups of samples are not known a priori. Hence,
the question of identifying subclasses and imputing the missing
values becomes a cyclic problem. Early computational
techniques, developed for imputing gene expression values
have included ZIFA (Zero-Inflated Factor Analyst) (55) and
CIDR (clustering through imputation and dimensionality
reduction) (56). Recently, SAVER, MAGIC and scImpute
dedicated specifically to reconstructing a large number of
missing values or imputations, were developed (57–59) and
were successful in recovering the true expression of spike-ins
transcripts improving and data quality.

Beyond the algorithms and tools for scRNA-seq analysis by
addressing its sparseness, a number of data resources comprising
transcriptomic and genomic information are also available in the
public domain. The Table 2 has listed the Gene Expression
Omnibus (GEO) Dataset collection of transcriptome and
associated data from HNC. Also, TCGA HNC dataset, which
includes 527 cases, is a vast resource containing comprehensive
integrative datasets of SNV, CNV, methylation, and slide images
as well, complementing the transcriptome data. These datasets
can be accessed from the GDC Data Portal (https://portal.gdc.
cancer.gov/).

The discussion above is based on the review of works on the
issues of scRNA-seq analysis in general, which must anyway be
addressed in HNC samples as well. However, so far there is only
one published study that has specifically addressed the issue of
single cell transcriptomics in HNC (60), while another study
from the same group has comprehensively reviewed the
bioinformatic approaches and key findings derived from for
the single-cell technology-based study of cancer (61). These
twin papers suggest that the HNC computational analysis and
results can be broadly classified into three groups viz. (a) study of
cellular heterogeneity and gene expression analysis (b) study of
micro-environment of cancer cells and (c) process of invasion
and metastasis of cancer cells.

Among the insights gained from bioinformatics analysis of
HNC data sets at single cell levels, the foremost finding arguably
is reported by Qi et al. (61) in which it was shown that patient
outcomes under all treatment regimens are highly dependent on
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the intrinsic cellular heterogeneity. Intra-tumoral heterogeneity
and tumor nest architecture was largely recapitulated within
lymph node metastases. Specifically, it was observed that high
heterogeneity measured by mutant-allele tumor heterogeneity
(MATH) scores leads to poor patient outcomes, thereby
highlighting the need to understand the cell population
composition of HNSC cells to improve the patient survival
rates. Authors also found that malignant cells’ expression
patterns could not be distinguished from those of basal
tumors, suggesting that most tumors could be defined as a
single ‘malignant-basal’ cohort in OSCC. This contrasts with
the glioblastoma multiforme (GBM) tumor, in which the
malignant cells map to multiple different subtypes. These
findings suggest that HNC tumor consists of lower diversity in
malignant subtypes or because the subtypes have not been
confidently resolved at this stage. Another study was
performed to examine the change in tumor properties by
simulating single-cell events leading to macroscopic tumor
development. The model was able to successfully observe
adhesion-driven cell movements and nutrition dependent
heterogeneous tumor growth. Different treatment plans
strongly influenced the final tumor cell type composition. The
growth rate was observed to be significantly decreased when
metabolism in tumor cells was upregulated. The mutation rates
were adjusted, and low mutation rates cell types with higher
division rate and delayed cell death started dominating the
tumor. The models were also used to probe treatment
regimens. Shorter pulses of chemotherapy were observed to
have a better effect than a uniform application. The tumor size
was significantly reduced by a single strong radiotherapy pulse as
compared to multiple weaker pulses. The presence of tumor stem
cells was confirmed to impact treatment outcome by increasing
tumor size as well as heterogeneity. In view of the above results,
the single-cell simulations can be a source of information to
determine the heterogeneity and also predict treatment strategy
and outcomes. These proved to be highly useful in improving the
understanding of tumor development on a single-cell level but
also the differences/similarities from bulk tumor analysis (62).

Since, cellular heterogeneity is so critical to HNC
characterization and personalized treatment, researchers have
tried to establish general patterns of cellular heterogeneity so prior
therapeutics for each group can be developed. Bioinformatics work
has concluded that the non-malignant cells from HNC patients
could be grouped into eight main clusters by cell type viz. (a) T cells,
(b) B/plasma cells, (c) macrophages, (d) dendritic cells, (e) mast
cells, (f) endothelial cells, (g) fibroblasts, and (h) myocytes.
However, the computational analysis so far has found that these
non-malignant cells did not cluster as per their origin, when their
expression profiles are used for automatic grouping, suggesting that
the cell types and their expression states are consistent across tumor
when their expression profiles are used for automatic grouping. On
the other hand, malignant cells clustered well by the patient,
suggesting expression changes across patients are more diverse
than across cells of the same patient. In summary, malignant cells
carry patient identity. The origin of cell from the 08 groups was not
well encoded into the gene expression program. In the same context,
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another study by Yost et al. (63) on basal cell carcinoma using a
combination of scRNA-seq and TCR sequencing, have implicated
cancer-associated fibroblasts (CAFs) in tumorigenesis, tumor
survival, ECM remodeling, immune system suppression, and
tumor invasion system suppression, and tumor invasion. Another
study by Leung et al. (64) focused on single-cell DNA sequencing,
exome sequencing, and targeted deep-sequencing has investigated
clonal evolution during metastatic dissemination in two colorectal
patients. This study has highlighted that understanding the clonality
at a single-cell level in a tumor is essential to simultaneously
capturing and maintaining spatial information. Another study by
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Casasent et al. (65) has reported a method called Topographic
Single Cell Sequencing (TSCS), which utilizes a combination of
LCM (66) and single-cell DNA-sequencing to measure genomic
copy number profiles of single tumor cells in breast cancer patients.
This approach preserves single cells’ spatial context, which is critical
to the location-specific therapeutic targeting strategies. Although the
studies mentioned here are performed on cancers other than HNC,
they successfully present strategies to combat the challenges
associated with bioinformatics analysis.

Recently, a review published on the applications of single cell
RNA sequencing in the field of otolaryngology, self-analyzed the
TABLE 2 | List of GEO DataSets (expression profiling by array) related to HNC studies for data re- analysis.

S.No. Title Details Platform Series #Samples

1 DNA methyltransferase
inhibitor 5-aza-2’-
deoxycytidine effect on
oral cancer cell lines

Analysis of oral squamous cell carcinoma (OSCC) cell lines: OC3, SAS, SCC-15, and HSC3,
treated with 5-aza-2’- deoxycytidine (AzC), an inhibitor of DNA methyltransferase. Results
provide insight into potential tumor suppressor genes silenced by DNA hypermethylation in
OSCC.

GPL6883 GSE38823 16

2 Oral squamous cell
carcinoma- derived cell
lines

Analysis of oral squamous cell carcinoma (OSCC)-derived cell lines. OSCC is a lethal disease
with early death typically occurring as a result of local invasion and regional lymph node
metastases. Results provide insight into the molecular mechanisms underlying OSCC.

GPL96 GSE31853 11

3 Squamous cell
carcinoma of the tongue:
tumor and histologically
normal surgical margins

Analysis of oral carcinoma, histologically normal margins, and adjacent normal tissues from
patients with squamous cell carcinoma (OSCC) of the tongue (training set). Results provide
insight into molecular signature in histologically normal margins that are predictive of oral
carcinoma recurrence.

GPL10526 GSE31056 96

4 Head and neck
squamous cell
carcinoma

Analysis of paired normal tissues and tumor samples from patients with head and neck
squamous cell carcinoma (HNC). Results were used to assess the effectiveness of using a
combinatorial approach to analyze microarray data in identifying differentially expressed genes.

GPL8300 GSE6631 44

5 Bleomycin effect on
mutagen- sensitive
lymphoblastoid cell lines

Analysis of mutagen-sensitive lymphoblastoid cell lines after exposure to bleomycin. Mutagen-
sensitive cells exhibit a high number of bleomycin- induced chromatid breaks. Mutagen
sensitivity (MS) reflects an individual's susceptibility to sporadic cancers. Results identify genes
involved in MS.

GPL2902 GSE3598 28

6 Association between
gene expression profile
and tumor invasion in
OSCC

Microarray analysis of cells obtained with LCM from 16 patients and compared these results
with 4 control cell epithelium identified expression profiles differentially expressed between
normal and tissues.

GPL96 GSE3524 20

7 Head and neck
squamous carcinoma
harboring papillomavirus

Analysis of 8 head and neck squamous cell carcinoma (HNC) tumor positive for human
papillomavirus (HPV). 28 HNC HPV negative tumor examined. Between 15% and 35% of
HNCs harbor HPV DNA. Results provide insight into the effect of HPV in HNC.

GPL570 GSE3292 36

8 Gene expression profiles
of HPV - positive and -
Negative Head/Neck
Cervical cancers

Genome wide expression profiling of 84 HNCs, CCs and site-matched normal epithelial
samples. LCM was used to enrich samples for tumor derived versus normal epithelial
expression of a large subset of cell cycle genes was found to be upregulated in HPV+ HNC.

GPL570 GSE6791 84

9 450K analysis of 42
FFPE HPV+ and HPV-
HNSCC samples

Methylation analysis of 21 HPV+ and 21 HPV- samples was performed. GPL13534 GSE38266 42

10 Unique DNA methylation
signature in HPV -
positive Head and Neck
Squamous Cell
Carcinomas

Global and stratified pooled analysis of epigenome wide data was performed to identify tissue
specific components and common viral epigenetic targets. Analysis revealed a novel
epigenetic signature of HPV infection.

GPL13534 GSE95036 11

11 Gene expression profiling
of archival tongue
carcinoma and normal
tongue tissue.

Total RNA was isolated from formalin fixed paraffin embedded (FFPE) samples. The
expression data for 20818 genes was obtained using whole genome array.

GPL14951 GSE34105 78

12 Oral tongue cancer To identify novel potential prognostic markers, 20 patients were grouped into stage (early vs.
late) and nodal disease (node positive vs. node negative) subgroups and genes differentially
expressed in tumor vs. normal and between the subgroups were identified.

GPL8300 GSE13601 58

13 Gene expression Tumors with different HPV16 DNA and RNA (E6*I) status from 290 consecutively recruited
HNSCC patients was compared by gene expression profiling and targeted sequencing of 50
genes. The study confirmed that the HPV16 DNA+ RNA+ tumors are HPV-negative (DNA-)
HNSCC and have elevated expression of cell cycle genes and rare TP53 mutations.

GPL10558 GSE65858 270

Total 794
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single cell RNA seq data of HNC patients taken from the study
by Puram et al. The analysis gave following findings that were
relevant for clinicians 1) The scRNA-Seq data not only
distinguished the disease causing cells from native tissue but
also revealed the heterogeneity within diseased tissue samples.
2) Malignant cells from 10 HNC patients, when mixed, formed
patient specific clusters i.e. with the cells of their original native
tissue only. This suggested that clonal evolution is unique to each
patient, and therefore the treatment strategy needs to be
personalized. 3) Cells from the tumor microenvironment
(TME) were also profiled along with malignant cells. However,
these were not found to be clustering on patient-specific basis but
rather on a cell-type basis. These cells could thus represent
shared disease pathogenesis between all HNC patients that can
be targeted using a similar therapy. 4) Rare cell types like stem
cells, progenitor cells, CD4+ T-regulatory cells or exhausted T-
cells were also identified from TME. These helped in
understanding the disease maintenance, immune evasion and
decreased efficacy of immune therapies. 5) Most importantly, the
cell type specific biomarkers can be identified by investigating
gene expression in heterogenous cell clusters detected by scRNA-
Seq. For example, Puram et al. identified partial-EMT signature
detected in a subset of malignant cells which was also present in
existing bulk RNA-Seq tumor data. Such identifications can
enable clinicians to determine the risks of nodal dissections on
the basis of signatures indicating risk of metastasis. The
prognostic signatures predicting survival, metastasis,
chemoresistance can vary patient to patient. Such signatures
can also be identified as markers to monitor drug response,
emergence of resistance etc. before and after treatment. 6)
Looking for genetic targets of FDA-approved drugs or small
molecules in clusters of malignant sub-populations or TME cells
can help identifying new druggable targets. A new database
called Pharos describes 20,000 gene/protein targets and the
drugs molecules available which can be further repurposed for
use in HNC treatment (67).

Some bioinformatics studies have gone beyond biomarker
discovery and cellular heterogeneity. Few researchers have used
appropriate bioinformatics tools in creating and maintaining the
tumor ecosystem’s spatial organization. Researchers have found
that partial-EMT (P-EMT) cells were loosely arranged, and
positioned in between malignant cells and CAFs. The study
attributed the compactness of HNC tumor architecture to the
expression of CD63 (68). Studies by Ligorio et al. (69) and
Wagner et al. (70) in pancreatic and breast cancer respectively,
have highlighted the need to utilize single cell separation method
(SCS methods) with preserved spatial information, to gain
insights into the role of intercellular interactions.

Another study by Navin et al. elucidated the tumor evolution
process in breast cancer through sequencing of 100 single cells
and revealed 3 distinct clonal sub-populations that represent
sequential expansions. Contrasting to the gradual models of
tumor progression their data indicated that tumors grow by
punctuated clonal expansions. The study was performed on
breast cancer and its liver metastases (71). More such studies
on HNC will help in developing an understanding of the
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temporal progression of tumor heterogeneity. In response to
systemic therapy, the issue of recurrence of tumor and overall
temporal dynamics are other issues of transcription data analysis
that heavily rely on suitable computational strategies, which are
still under development.

Limitations of scRNA-Seq in
Clinical Medicine
The scRNA-Seq is a stride towards personalized medicine, but is
still daunted by several challenges. Lack of large cohorts of
scRNA-Seq data from human patient samples, high costs, user-
friendliness, and tissue preservation are some of the major issues.
The use of scRNA-Seq on individual patient tumors for drug
selection is now feasible but more studies are still needed to
establish personalized drug selection and drug repurposing using
scRNA-Seq results for improved patient outcomes.

The cost of scRNA-Seq varies based on the chosen
methodology, and hence depends on the cost of equipment,
reagents, and sequencing. The costs of isolation and sequencing
per cell have dropped significantly, but the throughput of
sequencing machines has also increased, so the cost per run
with more cells still remains high. Most of the platforms are
available only in science laboratories and require a large
investment and planning to procure for hospital use. In
addition to cost, analysis of scRNA-Seq data requires basic
bioinformatics knowledge and coding skills. Furthermore,
standardization of different pipelines is also required for
clinical use.

Tissue preservation is a major issue because of its fragility and
cell viability. Currently, the use of frozen tissue samples or
methanol fixed tissues for scRNA-Seq platforms is in its
infancy. However, a few other options to aid tissue
preservation are available and includes, temporary tissue
stabilization buffers that can preserve cells for sequencing for
48 hours.

Generally, single nucleus sequencing (sNuc-seq) usually
involves tissue disruption and cell lysis, carried out in cold
conditions, followed by centrifugation and separation of the
nuclei from the debris. It minimizes the skewing effect of
degraded mRNA or cell-stress response genes on the data. Cell
lysis in sNUC-Seq allows for potentially more efficient cell type
delineation that includes for even the most interdigitated cell
types. These advantages potentially make sNuc-Seq a better
alternative to SCRNA-Seq. strategy.
OMICS OF THE HEAD AND NECK
CANCER

Genomics of HNC
Single cell DNA (scDNA) sequencing is focused mainly on the
copy number variations (CNVs) and identification of single-
nucleotide variations (SNVs). These are the driving forces in
biological processes which cause genomic heterogeneity and thus
necessitate study of the cell at an individual level. The whole
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genome wide analysis of HNC identified mutations in many gene
families, but the most significant percentage of mutations were
observed in the NOTCH gene family (72–74), especially
NOTCH1. NOTCH and many other known oncogenes,
including cyclin E, MYC, and JUN are targets of FBXW7, a
ubiquitin ligase. FBXW7 is known to be mutated in 4.7% of
cancers of HNC (74). Apart from this, more than 60% of
mutations were observed in serine/phosphatidylinositol 3-
kinase (PI3K) pathway genes such as PTEN and PI3KCA (75,
76). In fact, this is the most commonly affected pathway in HNC,
and a more aggressive form of the disease can be attributed to
multiple mutations in this pathway (77). Approximately 8-23%
of HNCs possess mutation in PTEN that causes down-regulation
and constitutive activation of threonine-specific protein kinase
Akt and mammalian target of rapamycin (mTOR) (74, 78). It
increases the susceptibility of the oral epithelium to carcinogens.
The genome analysis in HPV positive HNSSC tumor showed
mutations in PI3KCA gene leading to an increase in mTOR
activity rather than Akt phosphorylation and hence helps
explains the better efficacy of dual inhibitors against PI3K/
mTOR (79). Interestingly, p53 was not found expressed in
HNC tumors with PTEN downregulation, implying the
exclusion of p53 gene mutation (80).

The Epidermal Growth Factor Receptor (EGFR), a receptor
tyrosine kinase (RTK) gene found upregulated in 80% of the
patients suffering with HNC. The EGFR on activation causes
cellular proliferation via either RAS/RAF/MAPK pathway, JAK/
STAT, or PI3K/AKT/mTOR axis. Its over-expression in many
HNSSC tumors is correlated to poor prognosis (81). In nearly
20% of HNC, oxidative stress genes are altered by mutation or
variation in copy number. NRF2 (encoded by the NFE2L2 locus)
is a transcription factor that activates a cellular antioxidant
response. It is overexpressed in 90% of the tumors leading to
poor prognosis (82). Elevated NRF2 levels are shown to cause
chemoresistance in a variety of cancer cell lines that is reversible
with siRNA inhibition of NRF2 (83). Several chromatin-related
genes in HNC viz, MLL2 (a histone methyltransferase), NSD1
(another histone methyltransferase), EP300 (a histone
acetyltransferase) and FAT1 were also found to be repeatedly
mutated in 19%, 10%, 7% and 23% of tumors respectively (84,
85). A recent study on HNSCC patients assessed the prognostic
value of altered immune gene expression using a cohort of 96
patients (86). The expression of 46 immune-related genes was
analyzed and, 4-1BB, IDO1, OX40L, GITR, FOXP3 were found
significantly overexpressed along with PD-1, TIGIT, and CTLA-
4. Almost half of the immune related genes had deregulated
mRNA levels. The study assessed that a combination of high
OX40-L and low PD-1 mRNA levels, high PDGFRB, and low
CD3E mRNA levels are associated with increased tumor
recurrence. While CD8A was observed to be associated with
poor prognosis, the increased expression of PD-1 was associated
with a good prognosis. These findings offer a therapeutic strategy
in the treatment of HNSCC through the application of a
combination of immune checkpoint inhibitors. Genetic
alterations due to tobacco and betel quid chewing were also
reported in oral cancer patients (87). These included i) single
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nucleotide polymorphism (SNPs) with non-synonymous type
variations such as in FAT1& 2, TP53, NOTCH2, Cadherin 3
(CDH3), and ATM; ii) synonymous type variations in
Adenomatous Polyposis Coli gene (APC) (a tumor suppressor
gene) and IL12B (cytokine gene). SNPs were also observed in
non-coding regions, located in or near EGFR, STAT5B, Cyclin
dependent kinase 5 (CDK5), and a protooncogene, MYCL1
(Figure 4). Sayans et al. (88) analyzed 528 tumors of HNSCC
subset in TCGA database and found 3491 deregulated genes. The
somatic copy number alteration analysis showed CDKN2A,
CDKN2B, PPFIA1, FADD, and ANO1 as the most altered
HNSCC genes. At the same time, genes with the most somatic
mutations were TP53, TTN, FAT1 and, MUC16. Another
relevant result from the study was the mutual exclusivity
pattern found between TP53 and PIK3CA mutations. The
difference in expression profiles between different studies i.e.,
the heterogeneity in the results could be attributed to the nature
of the cancer.

Transcriptomics of HNC
One of the recent applications of transcriptomics in cancer is the
study of the cellular heterogeneity in tumor towards better
understanding to achieve precision treatment. HPV positive
HNC is a vital cancer type and has been identified with different
gene expression patterns compared to HPV negative HNC.
Transcriptomic data analysis between HPV positive and
negative tumors provided important insights into the expression
profiles (76, 89).Activated receptor (RTKs)-RAS-PI3K pathways
and inactivated TP53 and CDKN2A in HPV-negative tumors were
observed. In HPV-positive tumors, PIK3CA, FGFR3, and E2F1
were found to be activated while TP53 and RB1 were inactivated
by viral oncoproteins E6 and E7 respectively. PI3K activation in
HNC is reported by either of these mechanisms, receptor- tyrosine
kinases, such as EGFR or mutation occurring in PI3K catalytic
subunit, p110a (encoded by PIK3CA gene). Mutations often target
one of two hotspot locations in the kinase or in helical domain,
thereby promoting constitutive signaling through the pathway
(90). Yu et al. (91) reported results from a network-based meta-
analysis, identifying the biological signatures of HNC in pathways
like integrin signaling, tight-junction regulation, antigen
presentation, chemokine signaling, leucocyte extravasation, and
vascular endothelial growth factor (VEGF) signaling.

Another transcriptomics study in HNC suggested the
upregulation of genes involved in digestion and remodeling of
the ECM, such as matrix metalloproteinases (MMP) 1-3, 9, 10,
13, urokinase plasminogen activator (uPA), Integrin alpha
(ITGA) 3 and ITGA5. Both neoplastic and stromal cells secrete
MMPs that digest certain components of the ECM (92) and
promote cell migration and metastases in early stages of
tumorigenesis (93, 94). Overexpression and activation of
MMPs is critical in cancer progression and the pro-MMP-9/
NGAL complex has been identified as a potential prognostic
marker (95). A related study on a cohort of 145 oral cancer
patients exhibited high levels of MMP2 in severe patients when
compared to non-severe oral cancer patients. High levels of
CD276 and low levels of CXCL10 and STAT1 were also
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observed to be associated with reduced overall survival. However,
when compared MMP2 appeared to be a superior and
independent prognostic marker (96).

The upregulation of interleukin (IL) 8, chemokine C-X-C ligand
1 (CXCL1), CD28, CD3D, CD4, IL-18, and IL-2 is observed in
chemotaxis and lymphocyte activation while downregulation of
MHC 1 &2 are hallmarks of invasive HNCs. Also, upregulation of
VEGF and interleukin-8 (IL-8) connoted tumor cell angiogenesis,
while EGFR, STAT-3, PI3K, and NOTCH upregulation influenced
signal transduction pathways (97).

One hundred forty-six novel miRNAs expressed in HNC have
been identified; but expression patterns among smokers and
non-smokers remained undistinguishable. The three novel
miRNAs significantly associated with HPV status, were
mapped to chromosome 12 between genes Keratin 6C
(KRT6C) and KRT6B (98).

Puram et al. have reclassified HNC into three malignant
subtypes: classical, basal-mesenchymal and atypical. Single-cell
transcriptomics from 18 HNC patients identified p-EMT as an
independent predictor of grade, metastasis and critical
pathological features (60). They performed the scRNA-seq
analysis by considering 6,000 single cells from eighteen HNC
patients containing five sets of matched primary tumor and
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lymph node metastases. The significant finding of the study was
to distinguish among non-malignant (3363) and malignant
(2215) cells on the basis of copy-number variations (CNVs)
and epithelial cells where stromal and immune cells were
excluded (60, 99, 100). Clinical and genomic meta-analysis of
multicohort HNSCC gene expression profile has clearly
demonstrated that HPV+ and HPV- HNSCCs are not only
derived from tissues of different anatomical regions, but also
present with different mutation profi les , molecular
characteristics, immune landscapes, and clinical prognosis. Cell
lines and primary cells of HNC have been explored at single-cell
transcriptomics (60, 101). The datasets have significantly
improved the identification of distinct cells which are highly
tumorigenic in nature in the HNC ecosystem. In the pool of cells,
including malignant and non-malignant type, intra-tumoral
variations at cell cycle, partial-EMT, proliferation, hypoxia-
related genes have been observed. In this context, scRNA-seq
is becoming a reliable technique for exploring HNC
heterogeneity both at the genetic and functional levels. All the
tumor influencing factors, such as circulating tumor cells
(CTCs), immune cells, cancer stem cells (CSCs), present
within, or in surroundings are investigated to gain clarity at a
single cell level.
FIGURE 4 | Genes altered in HNC at genomic and transcript levels. (A) Mutations in NOTCH gene pathway leads to cell growth and evasion of apoptosis, whereas
(B) in RTKs (VEGFR, EGFR, FGFR) lead to alterations through RAS/RAF/MAPK pathway or PI3K/AKT/mTOR axis, eventually leading to uncontrolled cell proliferation,
(C) in JAK/STAT pathway increase angiogenesis. (D) The integrins (ITGA 3 and ITGA 5), uPA, and MMP 1,2,3,9.10,13 are all involved in ECM digestion and
remodeling. (E) MHC I and MHC II expression is altered to evade recognition by immune cells. (F) Oxidative stress is increased due to mutations in genes like NRF2,
whereas (G) mutations in NSD1, MLL2, ATM are characteristic of genomic instability. HPV proteins E6 and E7 inhibit TP53 and RB1. All eventually leading to
uncontrolled cell proliferation and (H), multiple other genes are altered, producing significant effects.
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The scRNA-seq data may be used for understanding the drug
response, as well as, drug resistance in individual HNC patients.
The cetuximab-treated and untreated HNC cells yielded
heterogeneous expressions of TFAP2A and EMT during the
early stage of treatments, indicating onset of resistance. The
expression variation analysis (EVA) analysis of scRNA-seq data
suggests that cetuximab treatment increases cell heterogeneity,
leading to evolution of different clonal cells with differentially
activated pathways, thereby preventing EGFR inhibition (102).

A comprehensive multi-omics, single-cell analysis was
performed in HNC cell lines by Kagohara et al., to identify
responses to cetuximab, an anti-EGFR drug (102). It was
observed that hundreds of genes altered their expression
pattern as a response to the drug within 5 days of treatment.
scRNA seq analysis identified onset of resistance following
changes in various signaling pathways including regulation of
receptor tyrosine kinases by Transcription Factor AP-2
(TFAP2A) and epithelial-to-mesenchymal transition (EMT)
pathway. Different squamous cell carcinoma cell lines exhibited
cell type dependent differential expression of TFAP2A and
Vimentin (VIM) genes that corroborates inter cell line
heterogeneity. The available HNC data bases provide clinical
and genomic information on HNC cell systems (102–104). A
holistic HNdb database curates all major omics data and
literature on HNC-related genes (105). This database has laid
the foundation for identification of possible biomarkers and
development of HNC personalized medicine. It is interesting
to note that a few genes are common in genomics,
transcriptomics and scRNA-seq analysis of the HNC
(Figure 4). These finding have stemmed from the independent
studies. Therefore, it is imperative to perform integrated multi-
omics studies and visualize molecular linkages using systems
medicine for paving a way for personalized medicine.

The CSCs are responsible for failures of cancer therapeutics,
drug resistance, and tumor recurrence. The single-cell
transcriptomic data from salivary gland squamous cell
carcinoma reported luminal and basal epithelial cells, as well
as, small populations of CSCs. Overall, the study indicated that
the process of tumorigenesis followed ‘gain-of-function’ by b-
catenin and ‘loss-of–function’ by Bmpr1A mutations in basal
cells, EMT markers expression, and activated Wnt signaling in
CSCs of luminal cells (106).

Proteomics of HNC
In order to minimize variables arising from HNC intra-tumor
heterogeneity, analysis of differentially expressed proteins have
been strategized. Bhat et al. (107) identified 286 biomolecules,
having relevance in HNC. A few of these included i) insulin like
growth factor binding protein (IGFBP) ii) downstream signaling
components ERK, COX2, STAT, PFN2, EPCAM, SERPINH1,
MCM2, iii) genes involved in prolactin signaling iv) angiogenesis
v) DNA repair genes using integrated transcriptomics and
proteomics approach. It has been reported that the ERK,
COX2 and STAT1 proteins are important in progression and
development of chemo resistance in HNC. Hence, these may be
potential targets for effective therapy (108, 109). The saliva serves
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as a source for identification of bio-markers in cancer, and its
proteomic analysis is considered to be a promising tool for HNC
diagnosis; for example, over-expression of PLUNC and zinc-
alpha-2-glycoprotein (110). To better understand the process of
tumor progression and to make detection of cancer with
precision, a technical triad of laser microdissection, protein
chip technology and immunohistochemistry have been
employed to identify the tumor relevant biomarkers. This
study encompasses the protein profiling of calgranulin A and
calgranulin B which are implicated in cancer pathology. Thus,
such combinatorial approaches open up the possibility towards
accurate prediction of metastasizing ability of a cell population
(111, 112).

The proteins like Hsp90, VIM and keratin are already
established bio-markers and drug targets while prelamin-A/C
and PGAM1, have been recently suggested as potential markers
(113). Bohnenberger et al. (114) identified distinct proteomic
profiles between lung metastasis of HNC (metHNC) and
squamous cell lung carcinoma (SQCLC). On classifying 51
squamous cell lung tumors, as either primary SQCLC or
metHNC using proteomic approaches, 518 proteins with
significantly different expression levels in HNC and SQCLC
were identified. These proteins belonged to pathways involved
in (i) vesicle transport, (ii) glycosylation, or (iii) RNA-processing.
The FAM83H expression generally upregulated in cancers, was
correlated to poor prognosis in HNC as well (115). The
locoregional recurrence after chemotherapy (platinum-based
concurrent chemoradiation) frequently occurs in HNC
patients. It was observed that the intra-tumoral heterogeneity
is linked to clonal evolution, and it is actually responsible for
cisdiamminedichloridoplatinum (II) (CDDP) resistance in HNC
(115). Niehr and co-workers (116) have applied targeted next-
generation sequencing, fluorescence in situ hybridization,
microarray-based transcriptome, and mass spectrometry-based
phosphor-proteome analysis to elucidate the molecular basis of
CDDP resistance. This resistance was observed to be associated
with aneuploidy of chromosome 17, increased TP53 copy-
number, overexpression of the gain-of-function (GOF) mutant
variant p53R248L and increased activity of the PI3K–AKT–
mTOR pathway, which were also considered as molecular
targets for treatment optimization (116). Furthermore, label-
free profiling of proteins in oral cancer has been performed by
relative quantitation and employing nano-UPLC-Q-TOF ion
mobility mass spectrometry hence, enabling rapid and
simultaneous identification of multiple cancer biomarkers
(117). This approach appears to have promising implications
on tumor diagnosis. Single cell proteomics approach has
encouraged system-wide protein profiling, direct assessment of
immune cell health and tumor–immune interactions. This
further helped augmenting evaluation of immunotherapy
(118). Moreover, profiling of every single individual cell
appears to indicate its role in tumor progression and molecular
basis of the disease (119). The p53 tumor suppressor proteins
have been counted in single colorectal cancer cells with 88%
accuracy using the MAC chip (microfluidic antibody capture)
(120). However, MAC chip utility in HNC is yet to be
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established. Multiplexing of protein markers at single-cell level
using immunofluorescence methods have also been applied.
However, single cell proteomics methods are in developing
state and the proteome coverage is smaller in comparison to
single-cell transcriptomics. In the context of precision medicine,
integrating the protein based prognostic biomarkers is emerging
as a supporting strategy for the treatment of cancer patients.

Most head and neck cancers expressing elevated levels of
desmoglein 3 (DSG3) metastasize to the neck lymph nodes. The
IHC and H&E reports may not always detect DSG3 during the
initial metastasis process when metastatic lesions are less than
2mm in size. The use of sensitive methods like RT-PCR, scRNA-
seq, and next-generation sequencing (NGS) is costlier and time
consuming. Measuring the protein expression of tumor
metastasis marker during the earlier phase of cell growth at the
single-cell level for therapeutics provides additional advantages.
The 3D printed microfluidics immune-array has a 10,000-fold
higher sensitivity, which is superior to ELISA. This does not even
requires any sorting experiments prior detection of proteins from
a single cell. Not only it detects DSG-3, VEGF-A, and VEGF-C at
lower concentrations, but its automated operations also provide
results at a fast pace and lower cost. In addition to delivering
information about HNC, it also quickly reproduces the results
with minimal errors (121).

Metabolomics of HNC
A comprehensive analysis of metabolites or metabolomic study is
cardinal to cancer pathology as metabolome is a summary
manifestation of all the other upstream omic profiles (122).

In a tissue metabolite profiling of HNC, 41 out of 109
metabolites screened were observed to be higher in tumorous
versus non-tumorous tissues, while 15 appeared lower. Serum
levels of glycolytic pathway metabolites increased (glucose,
fructose, tagatose etc.), while that of several amino acids for
example, lysine decreased significantly. Conversely, in tissue
samples the glycolytic pathway metabolites decreased, and
amino acids (valine, phenylalanine, threonine etc.) increased in
tumorous versus non-tumorous tissues (122). Since, cancer cells
depend more on aerobic glycolysis rather than oxidative
phosphorylation for energy, and also use glutamine as major
source of energy, they deplete glucose in hypo-vascular
microenvironment. Also, amino acid levels are higher due to
degradation of ECM in tumors. Another study showed the
increased levels of polyamines in saliva of oral cancer patients
in comparison to that of other cancer types. The choline to
creatinine ratio revealed oral cancer specific elevation. In
addition to this, 28 metabolites that accurately differentiate oral
cancers from control samples were also identified. However, oral
cancer may have higher impact on the metabolite composition of
saliva in comparison to other cancers simply because of its
location. Therefore, to confirm this a concurrent and
comparative metabolic profile from saliva, blood and cancer
tissue is warranted to confirm the oral cancer specific role of
choline-creatinine ratio (123). Additional conformation was
derived from another serum based study of 25 metabolites, of
which 7 metabolites (leucine, isoleucine, taurine, valine, choline,
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tryptophan and cadaverine) were manifested in both the studies.
Altered levels of urea and 3-hydroxybutyric acid were also
reported for the first time in the later study (124).

A study by Wei (125), identified a signature panel of salivary
metabolites (phenylalanine, valine, g-aminobutyric acid, n-
eicosanoic acid and lactic acid) whose levels were significantly
altered in oral squamous cell carcinomas (OSCC). Hence these
could potentially be used as biomarkers to distinguish between
healthy and disease physiologies (125). While increase in lactic
acid is simply explained by Warburg effect in glycolysis, valine
and other amino acids are found significantly to be decreased
presumably due to increased metabolic utilization. Increased
ketone bodies, abnormal lipolysis, TCA cycle and amino acid
metabolism have been reported in blood serum from OSCC
patients (126). Patients with disease relapse exhibited increase in
glucose, ribose, fructose, and tagatose with decrease in lysine,
hippurate, trans-4-hydroxy-L-proline, and 4-hydroxymandelate
in serum samples. A GC-MS based serum screening of OSCC
revealed differences in 38 metabolites at pre-operative levels in
comparison to healthy individuals. Furthermore, a comparison
of pre-operative and post-operative metabolite profiles yielded
significant differences in 32 metabolites. Seven potential
biomarker candidates were found, i glyceric acid, lauric acid,
N-acetyl-L-aspartic acid, ornithine, heptadecanoate, serine and
asparagines. The sensitivity and specificity of biomarker pairs
were assessed as 94.4% and 82.8% for ornithine+asparagine,
88.8% and 85.7% ornithine+glyceric acid, 88.8% and 97.1%
ornithine+N-acetyl-L-aspartic acid, and 88.8% and 82.8% for
ornithine+serine; endorsing their potential in early detection and
stage identification in OSCC (127). An increase in choline
compounds in OSCC implies its significant role in cancer
feedback cell signaling. These increased choline levels renders
it as a potential biomarker for cancer cell proliferation, survival
and malignancy (128). Decreased levels of PUFA and creatine,
and increased levels of amino acids and glutathione, were also
observed in a study in tissues through proton high-resolution
magic angle spinning magnetic resonance (HR-MAS MR) (129).

The significant data on HNC metabolomics, is hindered by
differences in detection and analytical methods. In addition, the
inherent heterogeneity in HNC has obstructed the identification
of an accurate biomarker for its early detection (130). Studies
based on single cell analysis have shown significant differences
from average pattern in bulk samples. Most metabolic changes in
single malignant cells are not captured through bulk
measurements as they tend to underestimate the highly
complicated cellular composition of bulk samples. Though
there is a universal upregulation of metabolic pathways, the
over-expressions of certain genes (for example, OXPHOS i.e.
oxidative phosphorylation pathway genes) are evidenced only at
single cell level. Their absence at the bulk level is credited to the
probable fallout of bulk measurements, enmeshed in the
complexity of tumor composition. Differential expression from
bulk level is also observed in genes involved in Vitamin b6
metabolism, lysine degradation, synthesis of aromatic amino
acids, drug metabolism through cytochrome P450, degradation
of fatty acids, oxidative phosphorylation, TCA cycle etc.
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However, where the expression at single cell and bulk level is
different in purine metabolism, it was found similar in
pyrimidine metabolism. Twenty-four out of fifty-six pathways
show similar patterns of up-regulation or downregulation upon
comparison between single malignant cells and bulk tumors,
while 25 pathways that were reported downregulated through
bulk tumor analysis were found upregulated on single cell level
(131). Figure 5 represents the major metabolic pathways
upregulated in single cell and bulk tumor analyses. The inter-
section in the Venn is indicative of pathways similarly
upregulated or downregulated in both. The major cause of
heterogeneity is the variations in mitochondrial metabolic
activity (TCA cycle and Oxidative phosphorylation). Also, the
metabolic features of immune and stromal cell sub-types were
found distinct when the mean expression level of genes within
these pathways were compared. Therefore, more single cell-
based studies are required to not only gain better insights but
also eliminate existing discrepancies, and to help identify
different metabolic phenotypes in cell sub-populations.

Epigenomics of HNC
Notably, intra tumor heterogeneity is the most significant hurdle
in developing effective anticancer drugs, as targeted drugs and
chemotherapy are effective until the development of drug
resistance (133, 134). Tools like single-cell pharmacokinetic
imaging have emerged as a powerful means to elucidate the
mechanism of drug resistance in the tumor that may help
overcoming the resistance (135). Characterization of cancer
heterogeneity in epigenomic sub-populations appears to be
relevant as cancer evolution, drug sensitivity, etc. are
necessarily impacted by epigenetic alterations. This can be
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achieved using single-cell technology but is viable only at an
early stage of cancer. In this context the degree of single cell
chromatin accessibility also constitutes a significant
challenge (136).

The epigenetic modifications are known to control
programmed developmental changes and the ability of the
genome to register, signal and perpetuate environmental cues
(132). In order to sustain the inheritance of gene expression and
biological functions, epigenetic mechanisms are linked to the
transmission of cell lineage and phenotype from progenitor to
progeny. These modifications are now known to be transmitted
to the progeny cells with the epigenetic marks or genome
bookmarking by transcription factors and other gene
regulatory proteins (137, 138). The deviation from the
transmission of normal epigenetic marking is suggested to be
relevant not only in cell differentiation but also in the onset of
several diseases, including cancer. In this context, some other
vital chemical modifications altering chromatin states and
subsequent gene expression patterns include DNA
methylation, histone modifications, small non-coding RNAs,
and chromatin remodeling factors. This is currently a subject
of intensive study.

Methylation
Both, DNA and chromatin-associated proteins are modified to
modulate DNA accessibility and chromatin structure (139).
Methyltransferases like DNMT3A and DNMT3B are generally
altered in malignancies (140). Abnormal expression of genes in
many cancers is attributed to promoter-specific hyper-
methylation for gene suppression, and genome-wide hypo-
methylation (particularly in repetitive DNA) leading to gene
FIGURE 5 | A study by Xiao et al. shows that major metabolic pathways found up-regulated in single cell analysis were found downregulated in bulk-tumor analyses
and vice-versa. Twenty-four pathways showed similar up-regulation/down-regulation patterns in both as represented by the intersection in Venn (132).
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upregulation (141, 142). DNA methylation is reported to affect
most HNC genes involved in classical oncogenic pathways, cell
cycle regulation (143–146), DNA repair (147, 148), Wnt
signaling (149, 150), transmembrane proteins (151), tumor
suppressors (152, 153), etc. (Table 3). A recent gene
comprehensive bioinformatics analysis using microarray data
of DNA methylation and gene expression identified 27
aberrantly methylated genes with altered expression levels.
FAM135B among them was hypomethylated and hence highly
expressed. Multivariate cox proportional hazards analysis
indicated that FAM135B could be a favorable independent
prognostic biomarker for the overall survival of HNC patients
(154). The primary risk factors like tobacco and alcohol use,
human papillomavirus and Epstein-Barr virus infection can
cause genetic and epigenetic alterations leading to the
pathogenesis of HNC. Costa et al. (155) used TCGA data to
identify distinct genetic and epigenetic particularities between
HPV+ and HPV- HNSCC. The study primarily focused on gene
promoter methylation patterns and was able to identify three
different co-expression modules associated with HPV status. The
genes were not only differentially expressed in HPV+ and HPV-
cancers but also varied significantly between different stages of
cancer. This indicated modulation of specific gene expression at
different levels during cancer progression. However, a general
pattern of expression (over or under) was observed throughout
the stages (I-IV). Also, epigenetic modifications appeared pivotal
for HPV infection as the association between methylation and
gene expression was more potent in HPV+ cancers. TP53,
CDKN2A, and FAT1 appeared to be significantly mutated in
HPV- cancers compared to the HPV+ ones. CCNA1, PITX2,
GJB6 , and FLRT3 were found under-expressed and
hypermethylated in HPV+ cancers while SYCP2 was observed
to be overexpressed in HPV+ oropharyngeal cancers. However,
contrary to some reports, no association between PIK3CA and
HPV+ cancers was observed in this study.
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The putative role of gene promoter methylations or other
epigenetic modifications provides favorable options for relevant
therapeutic interventions. A study published in 2018
demonstrated an increased efficacy of immune therapy when
combined with epigenetic therapy. The sensitivities of immune
agents pembrolizumab and nivolumab were reported to be
enhanced in a pre-clinical HNC model when combined with
epigenetic drugs 5-azacytidine (DNA methyltransferase
inhibitor) and romidepsin (histone deacetylase inhibitor) (156).
Cancer specific DNA methylation patterns are effective early
detection tools based on biomarkers generated from blood or
epithelial cells shed in the lumen. The methylation status of 5
neuropeptide gene promoters (SST, TAC1, HCRT, NPY, and
GAL) are also reported to be prospective alternative prognostic
markers. For example, the methylation of TAC1, HCRT and GAL
are indicative of poor survival in oral, laryngeal, and
oropharyngeal cancers, respectively (157). The available
information on methylated gene promoters is limited to a data
subset, and the CpG island methylator phenotype (CIMP) is still
under-investigated in HNC (158). Promoter hypermethylation
has been observed in oropharyngeal cancers with HPV infection.
A study by Esposti et al. (159), performed an epigenome-wide
analysis using Illumina human methylation bead array data to
identify differentially methylated CpGs associated with HPV
infections. Five CpGs capable of predicting HPV status and
survival were found in hypomethylated regions independent of
anatomical site. This may help bypassing the issues associated
with heterogeneity, arising due to different anatomies of HNSCC.
It was observed that HPV has a genome-wide effect on the
methylome that is independent of other risk factors. On the basis
of DNAmethylation patterns in 528 samples, 5 sub-clusters were
identified. Of these pertained to HPV- cancers. Although 60% of
differentially methylated genes were hypomethylated, the study
also identified hypermethylation in genes CDH18 and CTNND2
that were found to be associated with HPV status. Promoter
TABLE 3 | The names and functions of genes modified epigenetically through methylation in HNC and their effects on development and prognosis of HNC.

S.
No

Major classes of
genes

Member Function of genes Epigenetic changes

1 Cell cycle regulation p16 Inhibit CDK4 & CDK6 Hyper-methylation in promoter region leads to CDKN2A inactivation, frequent in HNC, de-
regulation in cell cycle

p15 Inhibit CDK Promoter hyper-methylation in histologically normal epithelium of chronic smokers and
drinkers

TP53 Tumor suppressor G to T transversions, patterns, differ between smokers and non-smokers
CHFR Early G2/M checkpoint. Aberrant methylation, a potential biomarker

2 DNA repair DAP-K p53 dependent apoptosis Hyper-methylation, a biomarker for early detection and prognosis
RASSF1A Pro-apoptotic, negative RAS

effector
Inactivated TSG, promotes the development of cancer

3 Wnt signaling ECAD Formation of adherence
junctions

Promoter hyper-methylation, loss of E-cadherin

WIF 1 Secreted Wnt antagonist Frequent methylation in OSCC, correlated with shorter survival of OSCC patients, possible
prognosis marker

4 Transmembrane
proteins

Cox-2 Prostaglandin synthesis Increased expression, inverse relationship with E-cadherin

5 Tumor suppressor DCC Pro-apoptotic Hyper-methylation in the promoter region in 75% of primary HNC
KIF1A Motor protein Methylation of promoters is frequent in HNC, observed in 38% of salivary rinses
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hypermethylation was also observed in ZNF733. The study not
only highlighted hypomethylation of 60% genes for the first time
but also suggested more pronounced effect of hypomethylation
on gene expression than the hypermethylation. In addition,
hypomethylation of many cMyc target genes was observed, and
CpG island shore of SYCP2 was found to be associated with
increased gene expression. This observed role of SYCP2 with
another previously reported study (155). The 5 CpGs proposed
as an epigenetic signature to identify HPV+ cases encompassed 3
genetic loci (B3GALT6-SDF4, SYCP2-FAM127B HTLF-HLTF-
AS1). This predicted signature was able to integrate different
epigenetic alterations and multiple exposure levels and hence this
signature appeared as a better predictor of survival.

A study by Talukdar et al. (160) performed genome-wide
DNA methylation profiling for esophageal squamous cell
carcinoma (ESCC) using samples from 9 high incidence
countries of Asia, Africa and South America. In the discovery
phase, 108 tumors and 51 normal adjacent tissue while in
replication phase 132 tumors and 36 normal tissues were
analyzed. The study identified 6,796 differentially methylated
positions and 866 differently methylated regions. Pathways
important for cancer development like WNT and hippo
signaling, cell communication pathways etc. were found
enriched. PAX9, SIM2, THSD4 were identified as top genes
with crucial DNA methylation events, and were observed to be
downregulated in tumors. Among all differentially methylated
regions, 88% were found differentially expressed between normal
and tumor tissues. The study also reported THSD4, PHYHD1,
GPT, KCNJ15, and TP53AIP1 for the first time in ESCC.
However, there is ample scope for more such studies in
HNSCC to identify non-random tumor specific methylation
events to provide attractive avenues for biomarker
development and therapeutic intervention.

Post-Translational Covalent Histone Modifications
Histone modifications such as acetylation, methylation, and
ubiquitination of lysines, serine, threonine phosphorylation,
etc., modify the accessibility of DNA for transcription factors
and associated machinery. On comparing OSCC with healthy
tissues, altered levels of histones H3K4me2 and me3 were
observed (161). The significance of post-translational histone
modifications can be understood by understanding their role in
the development of chemoresistance which is also observed to be
mediated by NFƘB. Studies have shown that chemo-resistant
HNC cells have increased deacetylation of histones, that leads to
chromatin compaction and further to impaired DNA damage
repair. Subsequently, increased accumulation of histone gH2AX
through serine phosphorylation, increases genomic instability.
This implies chemoresistance may be prevented by HDAC
inhibitors (162).

SENP5, a desumoylating enzyme, is overexpressed in OSCC
and is related to poor prognosis (143). Likewise, lysine-specific
demethylase 1 (LSD1) expression is upregulated in HNC, leading
to increased growth and metastasis. Therefore, pharmacological
attenuation of LSD1 should inhibit growth specific target genes
and signaling pathways (161). Therefore, it is reasonable to
speculate that epigenetic regulators and histone modulators
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might be alternative targets for the development of effective
drugs for HNC.

Non-Coding RNAs
Non-coding RNAs do not code for proteins like RNA, but have
enzymatic, regulatory, and structural functions (143). It is now
known that microRNAs regulate cellular processes like
proliferation, differentiation, and apoptosis via altered signaling
in malignancies. Levels of miR-21, miR-16, and miR-30a-5p have
been reported to be increased in HNC. Likewise, miR-205 and
let-7a were also reported increased in both benign and malignant
squamous epithelia (163). Conceivably, microRNAs act both as
tumor suppressors or oncogenes. Epigenetic silencing of tumor
suppressor mRNAs by CpG island hypermethylation is now
emerging as a hallmark for human tumors. Hypermethylation in
miR-148a, miR-34b/c and miR-9 was observed to be associated
with downregulation of CMYC, E2F3, CDK6 etc. (164).

A long non-coding RNA LINC00312 is significantly down-
regulated in nasopharyngeal carcinoma. Since it inhibits the
progression of the G1 to S phase, its reduced expression leads
to tumor progression (165). HOX antisense intergenic RNA
(HOTAIR) influences progression, metastasis and drug
resistance in many cancer types. It is a prime candidate for a
therapeutic target in cancer, as tumor cells contain significantly
increased levels of HOTAIR, and its inhibition induces their
apoptosis (166). The emerging understanding of HNC
epigenetics is expected to benefit in understanding the
prognosis and susceptibility of cancer to different therapies in
isolation or their combinations.

The levels of complexity in epigenetic modifications have
impeded their translation into instruments of cancer prognosis
and therapeutics. Also, the bulk methodologies fail to capture the
cellular diversity and tumor heterogeneity. Epigenome
sequencing on single cell level can identify epigenetic and
chromatin marks in single cells. A recent single cell based
study identified the role of miR-142-3p in repressing CLIC4.
CLIC4 was found expressed more in tumor associated fibroblasts
and endothelial cells as compared to tumor epithelial cells. The
discrete patterns of localization and inverse co-relation of
expression in both indicates the ambiguity related to bulk
measurements (167). Development of advanced techniques like
i) single cell genome-wide bisulphite sequencing (scBS-seq),
ii) single cell chromatin integration labelling followed by
sequencing (scCHIL-seq), and iii) single cell sequencing for
transposable accessible chromatin (scATAC-seq) might
provide insight into contribution of epigenomics in cellular
heterogeneity. While these technologies uncover many aspects
of cancer biology, further studies for HNC are still awaited. The
applications of advanced techniques remains limited due to
challenges in the unbiased amplification of a small amount of
genetic material from a single cell (61). Table 4 summarizes all
the major biomarkers identified at bulk and single cell level.
However, only limited studies are performed at single cell level,
and therefore literature available is still limited. Therefore,
reiterating the necessity of more studies at single-cell level to
help remove discrepancies and facilitate accurate identification
of biomarkers.
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TABLE 4 | Major biomarkers identified using different forms of omics profiling in head and neck cancer at single-cell level and bulk tumor level.

OMIC PROFILING GENE/PROTEIN SINGLE CELL ANALYSIS/BULK-TUMOR ANALYSIS

Genomics NOTCH Bulk tumor analysis
FBXW7
PI3KCA
Akt
mTOR
EGFR
FGFR
VEGFR
NRF2
MLL2
NSD1
EP300
FAT1
TP53
CDKN2A/2B
PPFIA1
FADD
ANO1

Transcriptomics TP53 Bulk tumor analysis
CDKN2A
E2F1
RB1
p110a
MMP
uPA
ITGA3/ITGA5
IL-8/IL-18/IL-2
CXCL1
CD4/CD28
MHC-1/2
KRT6C/KRT6B

VIM Single cell based analysis
TFP2A

Proteomics IGFBP Bulk tumor analysis
ERK
COX2
STAT
PFN2
EPCAM
MCM2
SEPINNH1

PLUNC Saliva and serum
Zinc-alpha-2-glycoprotein

Calgranulin A/B Bulk tumor analysis
Hsp90
VIM
Keratin
Pre-lamin A/C
PGAM-1

Epigenomics DNMT3A/3B Bulk tumor analysis
FAM135B
SENP5
HDAC
LINC00312
H3K4me2/me3
GH2AX
LSD1
miR-21/16/30a-5p
HOTAIR
TP53/TP53AIP1

(Continued)
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SINGLE CELL DERIVED SPHEROIDS FOR
DRUG ASSESSMENT/DEVELOPMENT

The current strategies for drug assessment and development
involves the use of in vitro 2D techniques and animal models
that are not only challenging in terms of genetic alteration and
cellular heterogeneity but also are expensive approaches. The
limitations of the 2D cultures are already discussed in
Heterogeneity: A Challenge in the Treatment of Head and Neck
Cancer and Road Towards Solutions. Single-cell and spheroid
technology is an evolving science in HNSCC treatment, its
therapeutic application comes in to play when selecting a chemical
or biological agent. The gene expression patterns could be studied by
using RNA sequencing from single cell derived spheroid, which can
then be used to determine the most appropriate course of treatment
on patient to patient basis. The data from recent melanoma studies
suggests the presence of unique malignant cell signatures that are
able to define the response to immune checkpoint inhibition (ICI),
which is usually highly variable and difficult to predict, this could be a
provocative possibility if extended to HNSCC (168). In other study
an integrated analysis of cancer cells has been shown in HNSCC,
where transcriptomes of ~6,000 single cells were profiled from 18
HNSCC patients to provide knowledge of the HNSCC ecosystem
and define stromal interactions and a p-EMT process associated with
metastasis, providing a detailed, molecularly-based predictor of
adverse biologic features that drives clinical decision-making. Here,
computational approach for inferring malignant cell-specific profiles
from bulk expression data was used to refine HNSCC sub-types and
provide a general scheme to extract information from other cancer
datasets (60). Such study proves to be stepping stones in enhancing
the understanding of intra-tumoral expression heterogeneity in
epithelial tumors and might be able to guide future diagnostic
strategies and treatment algorithms. Since even same type of
tumor shows different response to the same therapy because of
Frontiers in Oncology | www.frontiersin.org 18215
resistance and heterogeneity, it is important to identify the response
of a tumor to any anti-cancer drug. The scRNA seq is powerful tool
to investigate varying modes of chemoresistance in tumor cells
derived from oral squamous cell carcinoma patients (OSCC). The
cells isolated from the HNC patients undergoing cisplatin treatment
were studied for drug resistance pattern, ITH, tumorogenic
properties, and metastasis. Epithelial (ECAD+/VIM−) to
mesenchymal (ECAD+/VIM+) transitions were identified in
tumor and patient-derived cell lines. Also, it was determined that
resistant cells can acquire metastatic characteristics and vice versa.
The study highlights the predictive power of OSC7C patient derived
primary cell line and scRNA-seq technology in revealing not only the
course of tumor evolution in the clinic, but also in predicting
mechanistic insight that can be exploited to design the next
generation therapeutic strategies (169).

In another study, stem cell enriched 3D spheroid model was
generated from cells taken from fresh tumor biopsies with
different techniques such as hanging Drop (HD) and ultralow
attachment (ULA) assays. The goal was to determine the ideal
therapy regimen and identify mutation status specific to patients
and therapy targets (170). In their approach, firstly the radiation
treatment (2 Gy) plus cisplatin (2.5/5/10 mM) was given while in
2nd approach chemotherapeutics alone were given. The study
observed spheroids generated fromULA to be more reproducible
and reliable than HD method. The spheroid model was found to
be much better method for the study of drug effectiveness and
mechanism behind drug resistance. But how the spheroids are
developed are also important factor in drug screening and
development. The two important spheroid growing techniques
are culture free floating spheres (171) and multicellular tumor
spheroid (MCTS) (172) which was earlier used for screening of
several anti-cancer compounds. Both techniques have their own
limitations. Thus, to screen the active compounds targeting
cancer stem cells (CSC), stem cell-enriched spheroid model
TABLE 4 | Continued

OMIC PROFILING GENE/PROTEIN SINGLE CELL ANALYSIS/BULK-TUMOR ANALYSIS

CDKN2A
FAT1
CCNA1
PITX2
GJB6
FLRT3
SYCP2
CDH18
CTNND2
ZNF733
B3GALT6-
SDF4
HTLF/HLTF-AS1
PAX9,
GPT,
SIM2
THSD4
PHYHD1
KCNJ15

CLIC4 Single cell analysis
miR-142-3p
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(SCESM) were generated using FaDu cells exploiting selective
properties of both the techniques by Gorican et al. (173).
Treatment of SCESM spheroid with all-trans retinoic acid
(ATRA), a differentiating agent also used in HNSCC therapy
reduced the stem cell marker expression, thus confirms the
sensitivity and specificity of the spheroid.

In a study by Melissaridou et al. (174), cisplatin (1, 2 and 4 mg/
ml) and cetuximab (60, 90 and 120 nM) treatment response were
investigated on 3D tumor spheroids and 2D monolayers cells using
a MTS-based assay. The cells cultured on 3D were found to be less
sensitive to cisplatin compared to cells in 2D. The 3D spheroids
were checked for the expression of three cancer stem cell (CSC)
markers viz. CD44, SOX2 and NANOG and six EMT-associated
genes (CDH1, CDH2, VIM, FN1, TWIST, FOXC2). A higher
expression of CSC marker, CDH1 in 3D cultures was observed.
EMT profile in HNSCC has been linked to drug resistance (175),
however no evident pattern was observed in the study depicting
towards other co-factors causing drug resistance.

Organoids developed by Driehuis et al. offered wide range of
applications, which includes drugs screening of conventional drugs
such as cisplatin, docetaxel, and fluorouracil or experimental
targeted agents as well as predicting drug response of individual
HNSCC patients. The study established starting point where
chemo/RT response from multiple organoids generated from
tumor biopsies of same patient can be directly compared to
patient’s clinical response. Thus, establishment of an organoid
model can lead to important advances in HNSCC diagnostics and
treatment (36). In another study single-cell RNA sequencing was
used in advanced melanoma to analyze sub-populations of T-cells.
This study found significantly higher expression of TCF7 in
treatment responders versus non-responders suggesting that the
transcription factor TCF7 was among the chief markers predictive
of a good clinical response (61, 176). As per the current scenario
there is no similar multi-omics study, performed for HNSCC
patients. Such studies could guide in analyzing changes in intra-
tumoral heterogeneity with exogenous agents such as various forms
of chemotherapy (e.g. cisplatin), biologic therapies (e.g. cetuximab),
radiation, and ICI and could also help in patient selection for
systemic chemotherapy or immunotherapy (61). From target
identification to hit identification, single-cell spheroid has made
its way as a new and emerging technique having significance at
various levels in drug discovery. Although advancements in single-
cell and spheroid technology are relatively encouraging, nonetheless
there are no reports till date exemplifying validation and application
of these technologies in clinical setups. Not much data is available
on clinical application with patient-derived single cell spheroids and
organoid in HNC. Hence, implementation and therapeutic
application for the treatment of HNC in clinical routine is awaited.
POTENTIAL MOLECULAR TARGETS IN
HEAD AND NECK CANCER

In cancer treatment, selection of therapy, drug administration,
and dosing is a complex process varying on a case-to-case basis.
The current treatment regimen used for HNC treatment aims at
preserving organ and function, unlike the past treatment
Frontiers in Oncology | www.frontiersin.org 19216
strategies. Though many targets are now being explored under
different experimental set-ups for HNC treatment, the available
drugs are against a minimal number of targets. In the past decade,
several genetic mutation studies have identified specific essential
genes that are mutated in the key biological pathways (Table 5)
and could be potential targets for future drug development in
HNC. The potential drug targets can be identified using integrated
omics and mutational analysis to identify alterations in genes and
pathways specific to HNC. Several mutational studies report most
cancer-causing mutations in tumor suppressor genes instead of
oncogenes (73, 90). Recently the targeted therapy (Precision
Medicines) and gene therapy approaches have received a lot of
interest from researchers. The targeted therapy approach takes
advantage of differences between normal cells and cancer cells,
interfering with specific “molecular targets” and blocking the
growth and spread. The best known targeted therapies are
Epidermal growth factor receptor (EGFR), monoclonal
antibodies (cetuximab, panitumumab, zalutumumab, and
nimotuzumab), checkpoint inhibitors (pembrolizumab and
nivolumab), EGFR tyrosine kinase inhibitors (gefitinib, erlotinib,
lapatinib, afatinib, and dacomitinib), vascular endothelial growth
factor (VEGF) inhibitor (bevacizumab) or vascular endothelial
growth factor receptor (VEGFR) inhibitors (sorafenib, sunitinib
and vandetanib) and inhibitors of phosphatidylinositol 3-kinase/
serine/threonine-specific protein kinase/mammalian target of
rapamycin against HNC. On the other hand, gene therapy is an
efficient anti-tumor treatment that uses genes to treat or prevent
disease, and is rapidly evolving in cancer therapy (177). The in-
depth transcriptomics and genomics studies could further
determine the essential genes that could be considered for gene
therapy in HNC treatment. The adenovirus vector carrying the
p53 tumor-suppressor gene is one of the product for gene therapy
approved in China for HNC treatment since 2003 (178). DNA
damage response (DDR) pathway is another potential target for
anticancer therapy. During the progression, most cancers lose one
or more DDR pathways leading to greater genetic instability and
increased dependence on other pathways. Targeting different
proteins involved in the DDR pathway has shown efficacy in
treating cancer.

Protein Kinases as a Drug Target in HNC
Protein kinases are involved in cancer metabolism and have been
the second most important drug targets in the pharmaceutical
industry after G-protein-coupled receptors. The crystal
structures of kinase-inhibitor complexes of different families
have been determined, these include (i) receptor tyrosine
kinase (EGFR, HER2), vascular endothelial growth factor
receptor (VEGFR), JAK2, JAK3, Syk, ZAP-70, Tie2, EGFR, V-
EGFR, FGFR) (ii) non-receptor tyrosine kinase (Bcr-Abl)
NOTCH1, Janus kinase (JAK) (iii) serine-Threonine kinase
(Clk, Dyrk, Chk1, IKK2, CDK1, CDK2, PLK, JNK3, GSK3,
mTOR, p38 MAPK, PKB) (iii) Rho-kinase (iv) Cyclin-
dependent kinases (179). In these structures, active and
inactive state of the protein kinases, ATPase pocket, point
mutations, catalytic and non-catalytic domains of the kinases
have been used as targets by kinase inhibitors and provided the
mechanism of inhibition. A well-documented crystallographic
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analysis of the cAbl kinase domain with Gleevec inhibitor
revealed locking of the protein kinase’s inactive conformation
(180). The conformational flexibility and stability of protein
kinases are central to their inhibition and subsequent drug
designing strategies. IIdentifying the diagnostic significance of
p38 isoforms in HNC and the subsequent design of specific
peptide inhibitors against p38a MAPK aims to contribute to
anti-kinase drug development, and the expanding expertise offers
optimistic prospects for future cancer treatment.

ATPase Pocket of Protein Kinase as a Drug Target
The ATPase pockets of the protein kinases are quite conserved
and offer an attractive target for drug design. It is important to
understand whether a unique combination of specific amino
acids or only a few conserved residues in ATPase site are
involved in ATPase binding mechanism present in various
protein kinases. The structures of protein kinase-A in complex
with Fasudil and a more potent Rho-kinase inhibitor H-1152P
were determined (182). The structural analysis shows the
characteristic binding site within the ATP site, though the
difference is of only two methyl groups between both
the complexes.

Additional Binding Pockets of Protein Kinase as a
Drug Target
An additional hydrophobic pocket close to the ATPase pocket in
the protein kinase structure plays a crucial role in the inhibition
mechanism. In p38 and C-Abl structures, a small threonine
(Thr) residue lies as a gatekeeper and it interact with designed
inhibitors to block ATP entry in the kinase domain. In the crystal
structure of CDK2 with roscovitine (183), the isopropyl group of
inhibitor interacts with gatekeeper Thr residue. In EGFR-tarceva
crystal structure (184) the tarceva binds similar to aniline-
quianzolines binding to CDK2 and p38 kinases (185), and
acetyl moiety interacts with gatekeeper Thr residue. This
pocket is similar to as observed in Gleevec-6-methyl group
bound to C-Abl kinase.

Non-Catalytic Domain of Protein Kinase
as a Drug Target
In protein kinase structures, non-catalytic domains have been
observed, which play key role in kinase activity. The crystal
Frontiers in Oncology | www.frontiersin.org 20217
structure of HER2 receptor in complex with herceptin Fab (186)
shows that Fab binds at a specific site at the C-terminal of
domain IV, which is involved in binding to other domains in
closed conformation of HER1 and HER3 receptors. The
Herceptin Fab binding to this pocket (close to the membrane)
will engage the HER2 receptor with endocytosis machinery and
inhibit the receptor signaling. In combination with radiotherapy,
other EGFR antibodies IMC-C225 (cetuximab, Erbitux),
Thermacin h-R3 (Cimaher) based on the given principle are
getting quite successful in treating HNC cancer.

Single Residue in Protein Kinase as a Drug Target
Single residue in active sites of protein kinase plays a key role in
inhibitor mechanism and can be used as a drug target. The
BIRB796 (diarylurea) inhibitor binds to a specific sub-site in
ATPase pocket of p38 kinase structure, incompatible for ATP
binding (187). This BIRB796 inhibitor binds to Phe residue in
the conserved DFGmotif buried in a hydrophobic pocket located
between two lobes of p38 kinase. In another case, from the
structure of the complex between SU5402 and FGFR1 tyrosine
kinase (188) the inhibitory binding modes of the indole-2-one
family of anti-angiogenesis molecules (SU5416, SU668, SU1248)
were identified. The methyl pyrrole ring attached to C3 in these
inhibitors stabilized by an intra-molecular hydrogen bond
between pyrrole nitrogen and the O2 atom of the oxindole
ring. In SU5402-FGFR1 complex structure, a hydrogen bond
between carboxyl group of SU5402 and the side chain of Asn568
of FGFR1 is important for inhibition.

Despite various encouraging results by kinase inhibitors, the
critical challenges are drug resistance that mostly occurs through
acquired resistance after initial treatment, toxicity, and
compromised efficacy at the clinical level (189). In the clinical
assessment, the key challenges are to develop efficient
combinations of treatment after recognizing the kinase targets
for particular cancer.

G Protein-Coupled Receptors (GPCRs) as
a Drug Target
G protein-coupled receptors (GPCRs) are involved in signaling
pathways and can elicit both cytostatic and cytotoxic effects. Four
of the GPCRs, (i) galanin receptor type 1 (GALR1) (ii) GALR2,
(iii) tachykinin receptor type 1 (TACR1), and (iv) somatostatin
TABLE 5 | Alterations in key pathways in head and neck squamous cell cancer.

S. No. Alterations of Pathway Genes Involved % Frequency of Mutations

1 Mitogenic EGFR 3
PIK3CA 20
HRAS 3
PTEN 2

2 Cell Cycle CDKN2A 15
Cyclin D 1(CCND1) 0
Retinoblastoma (RB1) 3

3 NOTCH Signaling F-Box and WD Repeat Domain Containing 7, E3 Ubiqutin Ligase (FBXW7) 5
NOTCH1 19
TP63 2

4 Oxidative Stress Response gene KEAP1 4
Cullin -3 (CUL3) 4
NFE2L2 6
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receptor type 1 (SST1) are the most studied and promising
therapeutic target in a wide variety of cancer. GALR1 & 2 both
inhibit cell proliferation and apoptosis of HNC cells. GALR1 act
through ERK1/2-mediated activation of cell cycle control
proteins such as p27, p57, and suppression of cyclin D1
protein. In p53 mutant HNC cells, GALR2 was found to have
anti-proliferative and pro-apoptotic effects (190). The significant
reduced disease-free survival and a higher recurrence rate is
associated with hypermethylation of GALR1, GALR2, TACR1,
and SST1. Methylation of GAL, TAC, and SST and its
investigation as potential prognostic markers in HNC has
already been discussed in Epigenomics of HNC.
THERAPEUTIC AGENTS TARGETING
POTENTIAL BIOMARKER IN HNC
PATIENTS

The primary treatment of HNC patients includes surgery,
radiotherapy, and chemotherapy. However, a high recurrence
rate, resistance to radiotherapy, and reduced life quality are major
issues. Surgery and radiotherapy are the key treatments for early-
stage tumors. However, therapeutic interventions are completely
based on accessibility to the tumor, i.e., the tumor location, and not
on the specific biology of the tumor. An increased understanding of
cancer biology has led to the discovery of biomarkers, which can be
efficaciously targeted to improve patient outcomes. Patients
experiencing recurrence unable to be treated with surgery or
radiotherapy, having limited overall median survival of one year,
have shown better response to immune check point inhibitors
targeting programmed cell death in HNC. Now clinicians need to
determine that how targeted therapy can be best included/combined
with immunotherapy. Clinical trials evaluating the combination of
molecular targeted therapy with immunotherapy are emerging
regularly. The results of such clinical trials will suggest us whether
molecular targeted therapy and immunotherapy benefit different
patients with different molecular alterations or can be used in
combinations (191) (Tables 6 and 7).

The standard systemic treatment regimens for HNC include a
combination of different drugs. However, overall survival rates
are still very low, and due to the use of combinations of several
drugs, the upper limit of toxicity seems to have been reached,
causing the death of patients (192).

Targeted Chemotherapy
The chemotherapeutic agents such as, afatinib, poziotinib,
vandetanib, nintedanib, gefitnib, erlotinib, lapatinib,
dacomitinib, alpelisib, PX-866 are the multitargeted inhibitors
of protein kinases that regulate Ras/Raf/MEK/ERK/PI3K
signaling pathways (193). The immunotherapeutic approaches
such as specific antibodies targeting tumor, cytokines, cancer
vaccines, and immune-modulating agents are other cancer
treatment strategies, discussed below and in Tables 6 and 7.

A continuous flow of new molecules, explicitly targeting the
upcoming biomarkers, is required as few of the promising agents
have failed to show desired results in clinical trials. These include
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inhibitors of PI3K and mTOR pathways, e.g., px-866, an
inhibitor of PI3K that binds to ATP catalytic site (194).
Another antiproliferative and immunosuppressive drug
sirolimus (extracted from streptomyces bacteria) demonstrated
critical challenges in the form of poor bioavailability and long
half-life in patients leading to frequent monitoring of the drug
(195). Thus, substituting the drug with its better analogs with
improved pharmacokinetic properties seems desirable.

A study by our group on the effects of a combination of two
drugs against HNC showed that a combination of resveratrol and
quercetin improved cytotoxicity and altered gene expression in
oral cancer cells (196). The above combination of drugs was
found to modify the epigenetic markers by downregulating
histone deacetylases such as HDAC1, HDAC3, and HDAC8.

The cetuximab is an approved targeted therapeutic against
HNC. It is accredited for first-line use with platinum-based
chemotherapy: the chemotherapy plus cetuximab appreciably
extended basic survival compared to chemotherapy alone.
Significant improvements were visible within the progression-
free survival and goal response prices. In a retrospective analysis
of the trial, the enhancements observed with cetuximab were
regarded on par with tumors being HPV positive against tumor
being HPV negative (197). The single-cell analysis following
treatment with cetuximab to different squamous carcinoma cell
lines identified a heterogeneous cell population (198). Resistance
to cetuximab appeared to be cell-type-specific which was
attributed to altered gene expression of TFAP2A and EMT.
However, resistance to cetuximab was found to be very
common in HNC. Various evading mechanisms such as
mutations in receptors may act in accordance to restore
original oncogene dependence. A gain in copy number of
target genes is another factor that counteracts the action of
inhibitors. It has been found that altered copy number by
amplification of chromosome 7p11.2 which encompasses
EGFR gene, causes various cases of changes in EGFR
activation in HNC (199). Gillison et al. (200) observed that
with HPV-positive oropharyngeal squamous cell carcinoma
(OPSCC) patients, cetuximab and radiotherapy demonstrated
an inferior overall survival when compared with radiotherapy
plus cisplatin.

The cisplatin plus fluorouracil treatments were given to 657
patients in the SPECTRUM phase III trial, with or without
panitumumab, another monoclonal antibody targeting the
EGFR receptor (201). A statistically non-significant trend
indicated increased overall survival with the addition of
panitumumab. As with the EXTREME trial using cetuximab,
there was slightly more toxicity in the panitumumab arm than in
the control arm. In the phase II trial (202) however, a
comparison was made to identify the efficacy of panitumumab
plus radiotherapy with chemoradiotherapy groups in locally
advanced HNC patients. In the combined study, the efficacy of
panitumumab was found to be inferior to cisplatin. It cannot be
considered as its substitute for the treatment of unresected stage
III–IVb HNC.

Larotrectinib is another type of targeted therapy that does not
target specific cancer types but focuses on specific genetic
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TABLE 6 | A List of Therapeutic agents and Their Mechanism of Action against HNC.

S.
No.

Therapeutic
agents

Clinical
Phase

Mechanisms of Action

1 Cisplatin FDA
Approved

Interferes with DNA replication, kills carcinogenic cells. It acts through ERBB signaling pathways

2 Methotrexate FDA
Approved

Inhibits folic acid reductase, leading to inhibition of DNA synthesis and replication. It acts via interaction with enzymes of folate
pathway.

3 5-fluorouracil FDA
Approved

Thymidylate synthase inhibitor. Inhibits deoxythymidine mono-phosphate (dTMP) production. dTMP is essential for DNA replication
and repair and therefore its depletion causes cytotoxicity

4 Bleomycin FDA
Approved

DNA inhibition by induction of DNA strand breaks

5 Docetaxel FDA
Approved

Interferes with the normal function of microtubule growth by hyper-stabilizing their structure. It activates JNK signaling pathway and
inhibits Hypoxia-inducible factor (HIF-a) and cancerous cell death under hypoxic conditions.

6 Pembrolizumab FDA
Approved

Targets programmed cell death protein (PD-1). PD-1, a member of the B7/CD28 family of co-stimulatory receptors, regulates the
activation of T-cell.

7 Nivolumab FDA
Approved

Anti-PD-1 monoclonal antibody. It acts via inhibition of T cell proliferation and cytokine production

8 Cetuximab FDA
Approved

9 Zalutumumab Phase III EGFR antagonist
10 Panitumumab Phase III
11 Pimotuzumab Phase III
12 AV-203 Phase I
13 Afatinib Phase I Tyrosine Kinase Inhibitor (TKI). It targets the EGFR, HER2, and HER4
14 Poziotinib Phase II
15 Vandetanib Phase II Multitarget TKI. Targets EGFR and VEGFR
16 Nintedanib Phase II It targets VEGFR1–3, Platelet-derived growth factor receptor (PDGFR), and Fibroblast Growth factor receptor (FGFR1–2)
17 Gefitnib Phase III Selective, reversible inhibitor of EGFR tyrosine kinase domain
18 Erlotinib Phase III Inhibits the intracellular phosphorylation of tyrosine kinase of the EGFR
19 Lapatinib Phase III Inhibitor of the intracellular tyrosine kinase domains of both epidermal growth factor receptor and human epidermal growth factor

receptor type 2
20 Dacomitinib Phase II Irreversible, potent inhibitor of HER1/EGFR, HER2, and HER4 tyrosine kinase.
21 EGFR

antisense DNA
Phase II Antisense DNA

22 Foretinib Phase II Target multiple RTKs
23 Figitumumab Phase II Human IgG2 mAb act against Insulin-like growth factor type I receptor (IGF-1R) pathway
24 Sunitinib Phase II Multi-target tyrosine kinase inhibitor
25 Sfatinib Phase III Potent, selective, and irreversible ErbB family blocker
26 Bevacizumab Phase III Anti –VEGF mab. It blocks the binding of circulating VEGF to its receptor.
27 SCH-58500 Phase III
28 Advexin Phase III p53 stimulants (Recombinant adenovirus that encodes for gene human tumor-suppressor p53)
29 H-101 Phase III
30 Gendicine Phase II
31 ONYX-015 Phase III
32 Sorafenib Phase II Inhibit multiple intracellular and cell surface kinases in the Ras/Raf/MEK/ERK signaling pathways. The drug inhibits Raf-1, B-Raf, and

kinase activity, PDGFR-b, VEGFR 2, hepatocyte factor receptor (c-KIT), and other proteins to inhibit tumor angiogenesis.
33 Dasatinib Phase II Inhibit multiple kinases
34 Buparlisib Phase II Inhibitor of PI3K signaling pathway (P13K inhibitor)
35 Alpelisib

(BYL719)
Phase II P110a inhibitor.

36 PX-866 Phase II Inhibitor of PI3K pathway that binds to ATP catalytic site.
37 Copanlisib Phase II Inhibitor of class I PI3K (preferential activity against PI3Ka and PI3Kd)
38 Temsirolimus Phase II
39 Everolimus Phase II mTOR kinase Inhibitor
40 Sirolimus Phase I
41 Gedatolisib Phase I class I PI3K and mTOR dual inhibitor
42 Ficlatuzumab Phase II Hepatocyte growth factor inhibitor
43 IRX-2 Phase II multi cytokine stimulant that enhances the immune response. Akt/PI3K pathway is the prominent downstream target
44 INO-3112 Phase II It is a combination of two previously developed DNA vaccines, VGX-3100 and INO-9012. It acts as an Immunostimulant.
45 MEDI4736 Phase II Human IgG1 mAb that binds to Programmed cell death ligand 1(PD-L1) and blocks its binding to PD-1
46 Durvalumab Phase III mAb that targets PD-L1
47 MAGE-A3 Phase I Peptide epitope vaccine. It elicits spontaneous cellular or humoral immune response.
48 MAGE-A3

HPV16 Vaccine
Phase I Peptide epitope vaccine

49 DC vaccine Phase I Immunostimulant

(Continued)
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changes in neurotrophic tropomyosin receptor kinase (NTRK)
genes. This uncommon genetic change was found in head and
neck cancer. NTRK is observed to be highly expressed in
aggressive cancer and is used as a predictive biomarker and
drug target (203). This FDA- approved TRK inhibitor is used for
tumor-agnostic treatment after pembrolizumab (204).

Gene therapy is another targeted approach used to treat a variety
of cancers, including head and neck cancer. The p53, a tumor
suppressor gene, is mutated in over 50% of all types of cancers in
humans. It plays a critical role in suppressing malignancy. Thus,
restoration of functional wild-type p53 gene appears as a promising
strategy for cancer treatment. The commonly used p53 stimulants
are advexin, gendicine, ONYX-015, and H-101 (205).

Monoclonal Antibodies as Targeting Agent
Monoclonal antibodies play a major role in the treatment of
HNSCC. Monoclonal antibodies, such as antibody-drug conjugate
to cytotoxic agents (206), are used to target particular cell surface
proteins conferring tumor specificity by identifying selective targets.
Clinically useful agents that target cell surface proteins in HNC such
as AVID100 for EGFR; BAY1129980 for C4.4a; IMMU-132 target
for TROP-2 antigen, and tisotumab vedotin are being developed
and investigated (207–210).

The other approved targeted antibodies have been developed
against specific targets such as CTLA-4 and programmed cell death
protein 1(PD-1) that can stimulate co-stimulatory signals. The later
one includes the agonistic mAb against OX-40 such as tavolimab
and CD137 (urelumab, utomilumab) (211) or toll-like receptor 8
(TLR-8) agonist (motolimod) that mimics the viral ssRNA, the
natural ligand of TLR8 and enhances immune response (212). The
motolimod plus cetuximab plus was found to be safe in a phase I
trial metastatic HNC patients (https://clinicaltrials.gov/ct2/show/
NCT04272333) (213). The mAbs, pembrolizumab, and
nivolumab are the approved PD-1 inhibitors. These have shown
lasting responses in many cancers and were rapidly expanded for
use in HNC treatments (214).

Another mAb that targets the EGFR domain, prevents a
change in its conformation required for its activation. A
randomized phase III trial with zalutumumab has failed to meet
its endpoint of improved overall survival or no disease-specific
survival and thus was suspended for further development (215).
Other antibodies that targets different pathways/receptors and are
under evaluation in head and neck cancer clinical trials. These
include DLL/Notch pathway, FGF/FGF-R, HER2, TROP2 protein
and VEGF/VEGF-R pathway and are discussed underneath.

Angiogenesis is important process in tumor growth and
metastasis. The first-in-class anti-angiogenic mAb directed
Frontiers in Oncology | www.frontiersin.org 23220
against ligand is bevacizumab that targets VEGF. Bevacizumab,
has shown some evidence of activity combined with platinum-
based chemotherapy. However, bevacizumab does not have a
role in managing advanced or metastatic HNC outside of a
cl inical trial sett ing. Combining bevacizumab with
chemotherapy in the first line of treatment of advanced
metastatic HNC showed enhanced response rate and increased
toxicity. In the E1305 trial, 403 patients without prior systemic
therapy for advanced HNC were randomly assigned to platinum-
based chemotherapy with or without bevacizumab (216). Thus,
cisplatin with either fluorouracil or docetaxel or carboplatin with
either fluorouracil or docetaxel were used. The primary endpoint
was overall improved survival.

There has been substantial progress in the development of
mAbs targeting FGFR pathway. Trastuzumab, a mAb targeting
HER2, binds to domain IV of HER2 and blocks the homo-
dimerization. In a phase II clinical trial study the effectiveness of
trastuzumab on patients with advanced/metastatic salivary gland
cancer was conducted, however no result is posted till date
(NCT00004163) (217) (Table 6).

The transmembrane glycoprotein Trop2 is involved in several
cell signaling pathways and is upregulated in a variety of cancers,
including HNC. The overexpression of Trop-2 is associated with
poor disease-free and overall survival in several solid tumors.
IMMU-132 (hRS7-SN38 or Sacituzumab govitecan) is an
Antibody Drug Conjugate (ADC) that target Trop-2. It
consists of an antibody, hRS7 linked to SN38. SN38 is the
active metabolite of irinotecan. The preclinical data
demonstrated 136-fold more SN-38 delivery by IMMU-132 to
a xenograft mouse model than irinotecan with lower toxicity,
including lesser cases of severe diarrhea than irinotecan alone.
IMMU-132 is under phase I/II clinical trials for evaluation of the
safety and efficacy in patients of HNC (NCT03964727 &
NCT01631552) (218–220). Table 7 enlists clinical trials with
combination of small molecules along with immunogens.

Small Molecules as Targeting Agents
Small molecules have emerged as an important class of targeting
agents that target multiple TK. The well-known molecular
targets which have shown promising results are EGFR, EGFR
TK and VEGF/VEGFR inhibitors and protein kinases or PI3K.

Gefitinib and erlotinib are the most common EGFR TKIs that
are being used in clinical studies (phase II) for treatment of
HNSCC. Lapatinib is another TKI that targets ErbB1/ErB2. The
phase II study of lapatinib plus chemoradiotherapy in HNSCC
has showed beneficial effect in HPV negative tumors (221). The
lapatinib plus capecitabine combination has demonstrated best
TABLE 6 | Continued

S.
No.

Therapeutic
agents

Clinical
Phase

Mechanisms of Action

50 Tavolimab Phase I IgG1 agonist antibody targeted against OX40 (a member of Tumor necrosis factor receptor family)
51 Urelumab Phase I Human IgG4 mAb that targets CD137 receptor
52 Utomilumab Phase I Humanized IgG2 mAb.Engages the immune costimulatory molecule 4-1BB/CD137
53 Ipilimumab Phase I Human mAb. It Blocks the interaction of cytotoxic T –lymphocyte antigen (CTLA-4) with its ligands (CD80/CD86)
54 Tremelimumab Phase I An IgG2 Ab. Involved in Immune activation by blocking the CTLA-4 negative costimulatory receptor.
55 Motolimod Phase I TLR-8 agonist that stimulates antigen-presenting cells that express TLR-8
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activity in the metastatic/recurrent HNSCC. Afatinib is an
irreversible TKI that blocks the signaling originating from
ErbB family. It is also used in other cancers with high EGFR
mutations. In the stage III & IVa HNSCC, it is evaluated as
adjuvant following radiotherapy (222).

Sorafenib, sunitinib and vandetanib are small molecules that
targets VEGF (223). Sorafenib also act as radiosensitizer of HNSCC
cells (224). Other VEGF inhibitors in clinical trials for treating
HNSCC are linifanib, axitinib, pazopanib and nilotinib (225).

Several studies in vitro and in vivo demonstrated that
temsirolimus, an mTOR inhibitor, inhibits proliferation of
HNC. A study with HNSCC cell lines demonstrated beneficial
effect of mTOR inhibitors plus cetuximab in the treatment of
tumor with low EGFR expression or those that acquired
resistance due to cetuximab/cisplatin (226). However, in other
studies, temsirolimus failed to demonstrate significant changes in
patients with advanced malignancies due to toxicity and
subsequent death of patients. Everolimus, another mTOR
inhibitor demonstrated antitumor effect in phase II clinical
trial in patients with advanced HNSCC (NCT01111058) (227).
The other small molecules that targets BCR-Abl kinase and are
under clinical trial for treatment of HNSCC include imatinib,
dasatinib, nilotinib, ponatinib inhibitors (193).

Although for the last several years, a large number of small
molecules are being scrutinized against HNC (Table 6) with
diverse heterocyclic structures, still a preferred specific and
effective pharmacophore is yet to be assigned by drug
development scientists. Current treatment is still associated
with significant toxicities and includes chemotherapy mainly
with platinum compounds, radiation, surgery, and a few targeted
treatments. The scarcity of highly efficient drugs prompts
researchers to identify novel targets for single-agent or for
combined therapy.
CONCLUSION AND FUTURE
PERSPECTIVES OF HNC THERAPY

The major hindrance in the treatment of head and neck cancers
comes with the associated heterogeneity. Organoid and single-
cell technologies hold great potential in clinical translational
Frontiers in Oncology | www.frontiersin.org 24221
research as they not only get the measure of this heterogeneity
but also provide a means to encounter the problems it stems. The
organoid technology has expanded to embrace genetic
manipulation, various omics, drug-screening analyses, and
diverse co-culture systems. In fact, multiple studies have shown
similarities in patient responses and in vitro organoid studies.
Single-cell technology, on the other hand, promises to identify
and characterize alterations in sub-clone profiles. Given the rapid
technology development in the field despite the remaining
challenges, the combinatorial approach, including both these
technologies, remains novel, innovative, and assuring in cancer
treatment. The suitable assays for clinical implementation can be
developed. Treating the model system with anti-cancer drugs
may help distinguish responders from non-responders and
hence, help find the right drug for the right patients potentially
be leading to significant developments in the field of precision
medicine. Multi-omics studies have shifted the focus on cancer
driven perturbations at the whole cellular level. This helps
identify molecular subtypes of the tumor, molecular signatures,
and cellular responses at the clinic-pathological level based on a
gene-protein expression. The multi-tiered approaches using the
genomes, transcriptomes, and methylomes from carcinomas
have aided our understanding of disease progression. However,
integrating all the multi-omics data is crucial in identifying
predictive signatures, i.e. integrating all molecular data and
determining a minimal gene signature that distinguishes a
tumor group. Patterns of alterations vary between patients as a
result; it becomes essential to identify patient subsets with
differential prognosis or the ones responding to different
treatments (targeting therapies). The significant challenge still
is the low availability of patient-derived models specific to head
and neck cancers, the variability and diversity in treatment
tested, and the absence of a standardized set of protocols to be
followed. The clinical parameters tested vary inter-studies, and
the quality needs to be ensured, primarily for drug screening
assays. Also, the data available is limited mainly to Caucasian
populations, while ironically, HNC constitutes 30-40% of total
cancer cases in India. It reiterates the need for multi-omics based
studies using organoid technology and single-cell analysis to
identify unique biomarkers, drug targets, and signatures specific
to Indian populations. The review aims to act as a compendium
TABLE 7 | Clinical trials of the combination of small molecules with immunogens against HNC.

Clinical trial number
(NCT)

Therapeutic agent Clinical Trial
Phase

NCT02551159 Durvalumab (MEDI4736) ± tremelimumab vs standard of care (SOC) EXTREME regimen (cetuximab + cisplatin/
carboplatin + fluoruracil)

III

NCT02369874 Durvalumab (MEDI4736) ± tremelimumab vs standard of care III
NCT02741570 Nivolumab + ipilimumab vs SOC EXTREME regimen III
NCT02952586 Avelumab+ cisplatin/RT vs cisplatin/RT alone III
NCT03040999 Pembrolizumab + chemo/RT vs chemo/RT alone III
NCT0276459 Cisplatin/RT± nivolumab III
NCT02641093 Adjuvant cisplatin/pembrolizumab/RT II
NCT02777385 Concurrent vs sequential pembrolizumab combined with cisplatin/IMRT II
NCT02892201 Pembrolizumab II
NCT03085719 Pembrolizumab with high vs high and low dose RT II
NCT02823574 Nivolumab+ ipilimumab vs Nivolumab+ ipilimumab placebo II
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on the above technical advancements and their potential to
identify biomarkers and test drug regimens.
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