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Salivary gland carcinomas (SGC) account for less than 5% of head and neck malignant neoplasms, further subcategorized in over 20 histological subtypes. For the most part, treatment for advanced disease is guided by morphology. SGC in general respond poorly to standard chemotherapy, with short durability and significant toxicity. More recently, next-generation sequencing provided significant input on the molecular characterization of each SGC subtype, not only improving diagnostic differentiation between morphologically similar tumor types, but also identifying novel driver pathways that determine tumor biology and may be amenable to targeted therapy. Amongst the most common histological subtype is adenoid cystic carcinoma, which often harbors a chromosome translocation resulting in a MYB-NFIB oncogene, with various degrees of Myb expression. In a smaller subset, NOTCH1 mutations occur, conferring a more aggressive disease and potential sensitivity to Notch inhibitors. Salivary duct carcinomas may overexpress Her-2 and androgen receptor, with promising clinical outcomes after exposure to targeted therapies approved for other indications. Secretory carcinoma, previously known as mammary analogue secretory carcinoma, is distinguished by an ETV6-NTRK3 fusion that can both help differentiate it from its morphologically similar acinar cell carcinoma and also make it susceptible to Trk inhibitors. In the present article, we discuss the molecular abnormalities, their impact on tumor biology, and therapeutic opportunities for the most common SGC subtypes and review published and ongoing clinical trials and future perspectives for this rare diseases.
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INTRODUCTION

Salivary gland carcinoma (SGC) is a rare tumor and represents ~6% of head and neck cancers (1). Malignant tumors of the salivary glands constitute a heterogeneous group of neoplasms that vary depending on the histology and their anatomical location. According to the 2017 WHO Classification, there are 24 malignant histological subtypes (2). The most prevalent are mucoepidermoid carcinoma (MEC), representing around a third of SGC cases, followed by adenoid cystic carcinoma (ACC), with 23.8% (3). The parotid gland is the most frequent site of salivary gland tumors, although only 25% of such lesions are malignant. SGC can also originate in the submandibular glands (40–45% of the tumors are malignant), sublingual glands (70–90% are malignant), and minor salivary glands (50% are malignant) (4).

Treatment for metastatic disease is still mostly based on chemotherapy, despite low response, and survival rates (5). Currently, encouraging progress in immunohistochemical and molecular alterations, such as the presence of an NTRK fusion, overexpression of Her-2 and androgen receptor, has been made to improve outcomes with targeted therapy.

The aim of this article is to review the main molecular and immunohistochemical characteristics of the most common histological subtypes of SGC, in addition to reviewing current data on biomarker-driven targeted therapy and genomic findings that may be potentially actionable in the future.



MUCOEPIDERMOID CARCINOMA

MEC is the most common SGC (6). In addition to clinical staging, the grade of the tumor is also a prognostic factor in MEC and may guide treatment decision (7). Despite its prevalence, it is one of the subtypes with the least breakthroughs achieved so far.

A unique t (8, 9) translocation, leading to the CRTC1/MAML2 fusion, is present in 56–82% of all MECs (10, 11). This fusion protein induces aberrant activation of the Notch signaling pathway, inducing cell proliferation and, therefore, tumor progression (12). Data on how this abnormality impacts tumor biology and prognosis are conflicting. While some series indicate that fusion-positive MECs were diagnosed at an earlier stage, with lower grade, and a better prognosis (8, 12, 13), other studies do not suggest a prognostic role for the translocation (10, 14). CRTC1-MAML2-positive cells were sensitive to epidermal growth factor receptor (EGFR) tyrosine kinase inhibition pre-clinically, suggesting a potential role for such drugs (15).

The most common genomic abnormalities described in a study of 48 MEC patients were as follows: CDKN2A (41.6%), TP53 (39.6%), CDKN2B (29.2%), BAP1 (20.8%), PIK3CA (20.8%), HRAS (10.4%), BRCA (10.5%) mutations, and ERBB2 amplifications (8.3%) (16). The latter, though infrequent, may be amenable to Her-2 targeted therapy (17). TP53 mutation is one of the most common genomic alterations in MEC and is associated with the transformation of low-grade into high-grade tumors (12). In high-grade MEC, EGFR is overexpressed in 72.7% and was associated with a more aggressive behavior (18).



SALIVARY DUCT CARCINOMA

Salivary duct carcinoma (SDC) is an aggressive subtype of SGC that microscopically resembles high-grade ductal carcinoma of the breast. They can develop as de novo disease or arise from a pleomorphic adenoma (carcinoma ex-pleomorphic adenoma) (19). The first line of treatment is currently based on platinum chemotherapy, with low response rates and of short duration (9). Biomarkers of interest have been found within this subtype, showing promising results with targeted therapy.

Androgen receptor (AR) and Her-2 receptors are frequently overexpressed in SDC. In a study of 177 patients with SDC, AR was expressed in 96% of cases (20). Her-2 overexpression can be found in one third to two thirds of cases, by immunohistochemistry and/or fluorescent in situ hybridization (FISH) (20, 21). These markers were not associated with disease biology and prognosis.

As in breast cancer, patients with SDC, and Her-2 overexpression derive benefit from anti-Her-2 therapy. In a phase II study, 57 patients with advanced SDC received docetaxel and trastuzumab, with an objective response rate (ORR) of 70.2%. The median progression-free survival (PFS) was 8.9 months and overall survival (OS) was 39.7 months (22).

The use of double Her-2 blockade with trastuzumab and pertuzumab was also evaluated in a basket study, which included five patients with advanced, refractory SDC, all with Her-2 amplification/overexpression. Trastuzumab and pertuzumab, without chemotherapy, yielded a partial response in four out of five patients with Her-2-positive SDC (ORR of 80%) (23).

Ado-trastuzumab emtansine (T-DM1) was also studied in another basket trial, where 10 patients with a median of two previous systemic treatments and HER-2 amplification by next-generation sequencing (NGS) had an ORR of 90%, half of which were complete metabolic responses. Median duration of response and PFS had not been reached with a median follow-up of 12 months (24). In this same study, the amplification of HER-2 by NGS correlated well with HER2/CEP17 ≥2 by FISH or IHC 3+ (24).

Treatment with androgen deprivation therapy (ADT) has been proposed after progression to platinum-based chemotherapy when AR is present. In a phase II study, 36 patients with metastatic or locally advanced unresectable SGC, being 34 SDCs, received combined androgen blockade with the luteinizing hormone-releasing hormone (LHRH) analog leuprorelin associated with bicalutamide, with an ORR of 41.7%. The median PFS was 8.8 months and median OS was 30.5 months. The treatment was well-tolerated, with a low rate of toxicity (25). ADT was also studied in the adjuvant setting in a retrospective study. Stage IVA/B, AR-positive SDC patients who underwent a complete tumor resection received bicalutamide, an LHRH analog or a combination of both. The treatment was associated with a statistically significant increase in the 3-year disease-free survival when compared to a control group (48.2 vs. 27.7%) (26). A randomized phase II study comparing the efficacy and safety of ADT with platinum-based chemotherapy as first-line therapy for patients with metastatic SDC and AR expression is ongoing (NCT01969578).

Enzalutamide, a more selective AR inhibitor, was given as monotherapy to patients with AR-positive SGC in a phase II trial (27). The majority (85%) of patients had SDC and 32.6% had prior AR-directed therapy. This study showed that 7 out of 46 patients (15%) had a partial response as best response, but only 4% (2/46) maintained the response until 8 weeks, thus failing to meet its primary endpoint. Therefore, we favor the administration of an antiandrogen agent in combination with an LHRH analog.

The experience of patients with prostate cancer can again be used in patients with SDC. Mechanisms of AR blockade resistance have been discovered in castration-resistant prostate cancer patients. The AR isoform splice variant 7 (AR-V7) results in a truncated receptor that lacks the binding site for androgen, activated even in the absence of ligands and stimulating tumor growth. Detection of AR-V7 in circulating tumor cells from patients with castrate-resistant metastatic prostate cancer was associated with worse PFS and OS in patients who received abiraterone or enzalutamide (28). In salivary duct carcinomas, the prevalence of AR-V7 is high, varying between 48 and 70% (29, 30). Interestingly, it is frequently detected in treatment-naive patients, as opposed to a mechanism of resistance to ADT as in prostate cancer. Therefore, its role in ADT sensitivity in SDC patients remains to be established, warranting further biomarker analysis in future trials. One case report of a patient with AR-positive SDC who expressed AR-V7 did not show response to second-line hormonal therapy with abiraterone (31).

Other potentially targetable pathways found in 28 SDC patients include TP53 (68%), HRAS (25%), PIK3CA (18%), NF1 (18%), PTEN (10%), BRAF (7%), and NOTCH1 (7%). In the same study, patients did not have common predictive biomarkers of response to immunotherapy: 82% were PD-L1 negative, 91% had a low tumor mutational burden, and no patients presented microsatellite instability (29). Tipifarnib, a potent inhibitor of farnesyltransferase, an enzyme required for downstream signaling in HRAS-mutated tumors, was evaluated in 12 patients with SGC, with 4 being SDC, none of whom achieved a response. A single patient with acinic cell carcinoma had a partial response lasting at least 14 months (32).



SECRETORY CARCINOMA

Secretory carcinoma (SC), formerly known as mammary analog secretory carcinoma (MASC), was first described by Skálóva et al. a decade ago (33). It shows morphological, genetic, and immunohistochemical similarities with breast secretory carcinoma (34). One of the main differential diagnoses is acinic cell carcinoma (AcCC), which typically contains a basophilic cytoplasm with periodic acid-Schiff-positive zymogen granules and a more diverse cytologic profile compared to SC (35). SC has several architectural patterns (microcystic, solid, tubular, and cribriform), an abundant and eosinophilic cytoplasm, uniform proliferation and positivity for vimetin, mammaglobin, and S-100 protein in immunohistochemistry (36). The presence of a chromosomal translocation, t(12, 15), between the ETV6 gene on chromosome 12 with NTRK3 on chromosome 15, generates the fusion product ETV6–NTRK3. It can be detected with a high specificity by reverse-transcriptase polymerase chain reaction (RT-PCR), NGS, or FISH, being the gold standard methods for the diagnosis of this subtype (33, 34). Nuclear pattern of pan-Trk immunohistochemistry staining has a good sensitivity to detect an ETV6–NTRK3 fusion, thus aiding in differentiating SC from AcCC. However, it may miss other less frequent ETV6-X fusions, only detected by FISH or RT-PCR (37).

SC is more commonly found in men (55%), with a mean age of 44 years and mostly arising in the parotid gland, followed by several head and neck locations, including the oral cavity, submandibular glands, soft palate, buccal mucosa, base of tongue, and lips (38). It usually presents with an indolent clinical course and a good prognosis (39). Though a few cases of SC with high-grade histology and aggressive behavior have been described in association with ETV6-MET and ETV6-RET fusions, it has not yet been possible to correlate these recently described fusions with an overall behavioral pattern and disease prognosis (40, 41).

An NTRK fusion provides an actionable target for this disease by the Trk inhibitors larotrectinib and entrectinib. The benefit of larotrectinib was demonstrated by a phase II study including 12 cases of SC, with an objective response in 10 cases and an ORR of 80% by investigator's assessment (42). Entrectinib's activity was demonstrated by an integrated analysis of three phase I and II clinical trials (ALKA-372-001, STARTRK-1, and STARTRK-2), with the presence of seven (13%) cases of SC, which demonstrated an objective response in six of the seven cases (86%) (43). Both drugs received a tissue-agnostic FDA approval for tumors harboring an NTRK fusion.

Mechanisms of acquired resistance to larotrectinib have been described with an on-target mutation in the drug-binding site (42, 44). Selitrectinib (LOXO-195), a second-generation Trk inhibitor, was designed to overcome the acquired resistance to the first-line treatment. A phase I/II trial is ongoing (NCT03215511) and has evaluated 29 patients so far, with an ORR of 34% (45).



ADENOCARCINOMA, NOT OTHERWISE SPECIFIED

Adenocarcinoma, not otherwise specified (NOS), presents as a particularly difficult diagnosis to establish. It is characterized by the presence of areas of glandular or ductal differentiation mixed with a variety of specific growth patterns (46). Therefore, it is an exclusion diagnosis. The literature is controversial regarding its incidence among SGCs, ranging from 5 to 25% (3, 47). They are highly malignant tumors, with an overall 15-year survival rate of 3%, associated with early development of distant metastases and limited treatment options (48). Since this entity can share some characteristics of other SGCs, it is important to test for actionable biomarkers, such as AR and HER-2. Despite at a lower prevalence, they may be present and predict responses to targeted therapy (26, 49).



IMMUNOTHERAPY IN NON-ADENOID CYSTIC CARCINOMA

SGCs seem particularly resistant to immune checkpoint inhibitors. However, they represent a rather heterogeneous group of diseases that may behave differently in regard to the immune system. Linxweiler et al. demonstrated a distinct behavioral pattern in the different subtypes of SGCs. SDC exhibited higher levels of immune infiltration, T-cell dysfunction, and higher mutational load, whereas ACC presented with an overall lower mutational burden and an immune-excluded environment (50). PD-L1 expression was found to be associated with inferior disease-free survival (51).

Clinically, the KEYNOTE-028 study, a phase Ib basket trial, treated 26 patients with PD-L1-positive SGC with pembrolizumab at 10 mg/kg every 2 weeks. The low rate of PD-L1 positivity (<30%) limited patient accrual in the screening phase. Patients had adenocarcinoma, NOS (38%), mucoepidermoid (12%), undifferentiated (8%), squamous cell (8%), and ACC (8%). Despite being a PD-L1-enriched cohort, the results were overall disappointing, with an ORR of 12%. There were only three partial responses (two in adenocarcinoma, NOS and one in a high-grade serous carcinoma). The median PFS was 4 months (95% CI: 2 to 5 months) and median OS was 13 months (95% CI: 6 months to not reached) (52).

Another programmed-death 1 (PD-1) inhibitor is being evaluated in an ongoing phase II trial (NISCAHN trial). The use of nivolumab in 52 non-ACC patients demonstrated a 6-month non-progression rate (NPR6M) in 7 patients (14%, 90% CI: 6.8–24.7), with 2 partial responses (3.8%) and 22 patients with stable disease (42.3%). The median PFS was only 1.8 months (95% CI: 1.7–3.5) (53).

The role of tumor mutation burden (TMB) is unclear in SGCs. The subgroup analysis by TMB from the KEYNOTE-158 trial led to the approval of pembrolizumab for patients with TMB >10 mut/Mb as an agnostic treatment. There were three patients with salivary histologies and high TMB, one of whom achieved a partial response (54).

The addition of vorinostat, a histone deacetylase (HDAC) inhibitor, to pembrolizumab was evaluated in a phase I/II trial with 25 SGC patients. The association yielded a partial response in 4 patients (16%) and stable disease in 14 (56%), with a median PFS of 6.9 months and a median OS of 14 months (55). The combination of nivolumab and ipilimumab is being evaluated in an ongoing phase II study (NCT02834013). A summary of all relevant trials in non-ACC histologies is displayed in Table 1, and ongoing studies are shown in Table 2. We acknowledge the challenge in treating advanced SGC and propose practical alternatives to chemotherapy based on biomarkers in daily practice, displayed in Figure 1.


Table 1. All available data about advanced non-ACC therapy.
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Table 2. Clinical ongoing trials in different types of non-ACC.
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[image: Figure 1]
FIGURE 1. Algorithm for biomarker testing and treatment options in non-adenoid cystic carcinomas.




ADENOID CYSTIC CARCINOMA

ACC is the second most common malignant salivary neoplasm, accounting for around one quarter of cases. It is more frequently diagnosed in females, affecting all age groups and often arising from the minor salivary glands (3, 67).

ACC usually has an indolent course, albeit difficult to eradicate due to its persistent nature and recurrent growth pattern, with predilection for perineural invasion. The literature demonstrates that 5-year disease-free survival in patients with ACC is only 30–40% (67). ACC commonly metastasizes to lungs, bones, and liver, with a median OS of 20–32 months in this setting (68).

While surgery, with or without postoperative radiotherapy, is the mainstay treatment for localized disease, systemic therapy is reserved to the metastatic or unresectable locally advanced setting, with poor response rates and no consensus about the proper timing to be initiated. In this section, we will review proliferation pathways, molecular insights, and the development of new targeted drugs for patients with advanced disease. Though several actionable pathways are under scrutiny, limited evidence can aid in clinical practice. We propose a practical approach for newly diagnosed advanced ACC and options for later lines of therapy in Figure 2. Ongoing clinical trials are displayed in Table 3 and a summary of the main ACC studies conducted to date are displayed in Table 4.


[image: Figure 2]
FIGURE 2. Algorithm for biomarker testing and treatment options in adenoid cystic carcinomas.



Table 3. Clinical ongoing trials in ACC.
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Table 4. Available data about advanced ACC therapy.
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CHEMOTHERAPY

Despite response rates of <30%, chemotherapy remains one of the most used treatments for this condition (85). The most consolidated regimen consists of cisplatin, doxorubicin and cyclophosphamide (CAP) (86). The best time to start treatment remains controversial, though it is commonly deferred until either symptomatic disease or a more accelerated growth pattern. Other cytotoxic agents have also been shown to be minimally active, such as mitoxantrone and vinorelbine, though other drugs such as paclitaxel should be avoided as single agents due to lack of proven efficacy (85).



MYB–NFIB PATHWAY

Myb, a nuclear transcription factor, is overexpressed in 60–80% of ACCs, usually correlated with a genetic translocation of the MYB gene to the transcription factor gene NFIB, resulting in the MYB-NFIB fusion, an important oncogene (t[6, 9]). This fusion has been postulated as the main driver of tumor proliferation in ACC (87, 88). The Myb protein has an N-terminal DNA-binding domain and a central transactivation domain that regulate genes involved in cell cycle control, such as NSR, MET, EGFR, IGF1R, and specifically IGF2 (89). The latter, by autocrine stimulation, controls the expression of the MYB-NFIB fusion in ACC cells, increasing proliferation and generating changes in the cell cycle and RNA processing (89–91). Other MYB-related fusions were described, however at lower frequencies than MYB-NIFB. Myb overexpression can also occur in the absence of detectable genetic alterations, implying that unknown pathways may be involved in its expression at the protein level (89).

Pre-clinical studies evaluated the role of targeted therapies, such as linsitinib (Igf1r inhibitor), gefitinib (EGFR inhibitor), and crizotinib (Alk and Met inhibitor) in vitro both as monotherapies and as a triplet regimen. Individually, none showed encouraging results, whereas a significant reduction of Myb expression was seen with the triplet regimen, suggesting a potential clinical benefit (92). In vivo studies are necessary to confirm activity in clinical practice with a tolerable toxicity profile, a major concern of combining these drugs.

More recently, the use of transretinoic acid (ATRA) showed interesting results in pre-clinical models. The drug reduced Myb binding in intensifying regions in MYB-translocated patient-derived xenograft models, thereby reducing the positive feedback for Myb overexpression cycle and thus reducing tumor proliferation (93). Two clinical trials are underway to address its role in treating patients with advanced ACC (NCT03999684; NCT04433169). Additionally, a study evaluating a Myb vaccine in combination with a novel anti-PD-1 is being conducted (NCT03287427).



NOTCH1, 2, 3

Notch are transmembrane proteins that bind to neighboring cells and activate a biochemical cascade that gives rise to the process of cell differentiation, in addition to acting in the process of lateral regulation, proliferation, and angiogenesis of cells through the MAPK pathways (87). Mutations in the NOTCH gene family, particularly NOTCH1, are present in around 20% of ACC patients and are potential oncogenic drivers. The presence of this mutation characterizes a population with more advanced disease, along with the presence of bone and liver metastases and worse outcomes compared to a wild-type population (94).

A phase I trial tested the efficacy of brontictuzumab (OMP-52M51), a humanized monoclonal antibody against the Notch1 protein in a basket trial for solid tumors. Twelve patients (25%) had a diagnosis of ACC, with two developing a partial response and three with stable disease as best response, with tolerable adverse events (81). Another phase Ib/II study is evaluating the role of amcasertib (BBI-553), a cancer stemness kinase inhibitor that impairs cancer stem cell survival, which is intimately related to deregulated Notch pathway activity (95). Preliminary results demonstrated a disease control rate of 86% and median overall survival of 28.3 months (82). AL101, a γ-secretase inhibitor, also works by inhibiting the Notch pathway during the cleavage process for Notch's protein action in the intracellular domain. A phase I basket trial revealed a partial response lasting 8 months in 1 of 2 patients with ACC accrued (83). The phase II trial ACCURACY (NCT03691207) for ACC patients bearing NOTCH activating mutations is ongoing. A trial with another Notch inhibitor, CB103, is also being conducted (NCT03422679).



IMMUNOTHERAPY IN ACC

The ACC cohort of the aforementioned KEYNOTE-028 represented only 8% of patients (N = 2), with none achieving a response. In terms of PFS and OS, results were poorer than with chemo or targeted therapy (52). Similarly, the combination of pembrolizumab in association with vorinostat was also disappointing in treatment of salivary gland tumors, including ACC, with low response rates (55). Nivolumab as a single agent was also evaluated in SGCs. In the ACC cohort, an ORR of 8.7% was observed (4/46 patients) (53). The combination of ipilimumab and nivolumab was initially thought to improve outcomes; however, only 2 out of 32 patients treated achieved a partial response, with a median PFS of 19.3 weeks in a prospective study (96). As previously stated, ACC appears to lack immune infiltration and harbors a lower mutation burden, being unlikely to benefit from immunotherapy (50).



EGFR PATHWAY

EGFR is commonly overexpressed in ACC, though its presence in normal salivary gland tissue precludes any conclusions in its role in cancer development. Mutations in genes related to the EGFR pathway, including EGFR, RAS family, PIK3CA, BRAF, and AKT1 are also present in ACC (97). Activating mutations in EGFR can be found in 10% of cases, though unlikely to be driver oncogenes in this setting (98). A phase I study tested gefitinib at 250 mg/day in 18 patients with ACC, and no responses were observed (60). Cetuximab was also evaluated in a single-arm, phase II study of EGFR-overexpressing patients, with disappointing results (59). Lapatinib has also been studied in patients who showed overexpression of EGFR and/or Her-2, again with unremarkable outcomes. Clinical benefit with stable disease was achieved in 36% of patients, with no objective responses (58).



PRMT-5

PRMT5 is an enzyme that methylates arginines in proteins important for tumor growth and development (99). The phase I basket trial METEOR-1 evaluated the role of GSK3326595, a potent and selective PRMT5 inhibitor. Of the selected patients, 14 (26%) had metastatic ACC. Clinical activity was observed in several tumor types, notably with partial responses observed in 3/14 ACC cases, with tolerable adverse events (79).



HISTONE DEACETYLATION

Epigenetic changes were found in most studies that carried out NGS. The acetylation of histone pathways, with mutations in chromatin remodeling genes, such as SMARCA2, CREBBP, and KDM6A, suggests aberrant epigenetic regulation in ACC oncogenesis (100). A pre-clinical study combining cisplatin and vorinostat found a remarkable efficacy in depleting CSCs and reducing tumor viability in all ACC primary cells (101). A phase II trial of vorinostat in ACC showed a partial response in 2/30 patients and stable disease in another 27 patients (80). However, a phase II trial combining vorinostat and pembrolizumab for recurrent or metastatic salivary gland cancer, as aforementioned, showed disappointing results, likely reflecting the immune-tolerant environment of ACC (55).



KIT/VEGFR

Other overexpressed potential target receptors in ACC are the vascular endothelial growth factor receptor (VEGFR) and fibroblast growth factor receptor 1 (FGFR1). These are well-established oncogenic pathways and can be inhibited by anti-VEGFR/FGFR drugs (102). Sorafenib, nintedanib, axitinib, regorafenib, dovitinib, and other multi-kinase inhibitors were tested and showed only a modest benefit, with few objective response rates (Table 4). Notably, lenvatinib was evaluated in a population with metastatic ACC, who had already received up to one line of chemotherapy. A total of 28 patients were enrolled in the study, and 11.5% showed a partial response (72). Additionally, 25 to 27% of patients with ACC had at least 20% reduction in target lesion size. The median PFS and OS were 9.1 and 27 months, respectively. Despite the encouraging results, 50% of the patients presented grade 3 toxicity and dose reductions were necessary in most of the study population. Similarly, Tchekmedyian et al. conducted another phase II study with lenvatinib, with a 15.6% ORR and a remarkable median PFS of 17.2 months (73). Axitinib is another multi-kinase inhibitor with interesting results in ACC, but with a lower ORR and median PFS (9.1% and 5.7 months, respectively) (70). More recently, the first randomized phase II trial of its kind showed a significant improvement in PFS with axitinib vs. observation (HR: 0.25; 95% CI: 0.14–0.42; P < 0.0001), but with no improvement in OS (HR: 0.6; 95% CI: 0.26–1.38; P = 0.23) (103). In this study, none of the 27 patients treated achieved a response, but all (100%) had stable disease. This rekindles the discussion of whether deferring treatment until a more symptomatic or aggressive course of disease remains acceptable. We favor the use of lenvatinib due to its numerical superiority in ORR and PFS compared to axitinib, but starting at a lower dose of 20 mg/day, with subsequent dose escalation if adequately tolerated.

Despite the high percentages (90%) of overexpression of c-Kit by IHC in ACC, targeted agents such as imatinib and dasatinib failed to show a meaningful activity in this disease (65, 75, 76, 104). The best response was stable disease in 50% of the patients treated with dasatinib (65). The disappointing outcomes likely result from the lack of an underlying gene amplification and/or a KIT activating mutation, such as seen in other malignancies (gastrointestinal stromal tumors and chronic myeloid leukemia).



177LU-PSMA

ACC cells can express prostate-specific membrane antigen (PSMA) in over 90% of cases, with significant uptake in PSMA-PET/CT (105). Such as in prostate cancer, this can be useful not only for staging and surveillance but also as an opportunity for PSMA-directed therapy. Lutetium-177 (177Lu)-PSMA is a radiolabeled small molecule that binds with high affinity to PSMA, enabling beta particle therapy targeted to metastatic castration-resistant prostate cancer, with promising results in this tumor type (106). A single case report so far has been reported in ACC, with a transient pain relief after one dose. However, the patient died within 6 weeks due to a highly refractory and advanced tumor (107). An ongoing clinical trial is prospectively evaluating the role of 177Lu-PSMA in advanced ACC (NCT04291300).



CONCLUSIONS

In conclusion, SGCs may be challenging to treat due to its several histological subtypes. Molecular diagnostics are able to aid in diagnosis and guide discovery for subtype-specific targeted therapy. Currently, significant efforts are being undertaken to improve outcomes for advanced disease with biomarker-driven research. Given the limited efficacy with chemotherapy, a more personalized approach is of utmost importance to move forward in the management of this infrequent entity.



AUTHOR CONTRIBUTIONS

LD, IS, FT, RF, and GS participated in the concept design, writing, review, and approval of the final manuscript. All authors contributed to the article and approved the submitted version.



REFERENCES

 1. Carvalho AL, Nishimoto IN, Califano JA, Kowalski LP. Trends in incidence and prognosis for head and neck cancer in the United States: a site-specific analysis of the SEER database. Int J Cancer. (2005) 114:806–16. doi: 10.1002/ijc.20740

 2. El-Naggar AK, Chan JKC, Grandis JR, Takata T, Slootweg PJ, et al. World Health Organization Classification of Tumours of Head and Neck. Lyon: IARC (2017).

 3. Jones AV, Craig GT, Speight PM, Franklin CD. The range and demographics of salivary gland tumours diagnosed in a UK population. Oral Oncol. (2008) 44:407–17. doi: 10.1016/j.oraloncology.2007.05.010

 4. Guzzo M, Locati LD, Prott FJ, Gatta G, McGurk M, Licitra L, et al. Major and minor salivary gland tumors. Crit Rev Oncol Hematol. (2010) 74:134–48. doi: 10.1016/j.critrevonc.2009.10.004

 5. Alfieri S, Granata R, Bergamini C, Resteghini C, Bossi P, Licitra LF, et al. Systemic therapy in metastatic salivary gland carcinomas: a pathology-driven paradigm? Oral Oncol. (2017) 66:58–63. doi: 10.1016/j.oraloncology.2016.12.016

 6. Coca-Pelaz A, Rodrigo JP, Triantafyllou A, Hunt JL, Rinaldo A, Strojan P, et al. Salivary mucoepidermoid carcinoma revisited. Eur Arch Otorhinolaryngol. (2015) 272:799–819. doi: 10.1007/s00405-014-3053-z

 7. Chen MM, Roman SA, Sosa JA, Judson BL. Histologic grade as prognostic indicator for mucoepidermoid carcinoma: a population-level analysis of 2400 patients. Head Neck. (2014) 36:158–63. doi: 10.1002/hed.23256

 8. Morita M, Murase T, Okumura Y, Ueda K, Sakamoto Y, Masaki A, et al. Clinicopathological significance of EGFR pathway gene mutations and CRTC1/3-MAML2 fusions in salivary gland mucoepidermoid carcinoma. Histopathology. (2020) 76:1013–22. doi: 10.1111/his.14100

 9. Nakano K, Sato Y, Sasaki T, Shimbashi W, Fukushima H, Yonekawa H, et al. Combination chemotherapy of carboplatin and paclitaxel for advanced/metastatic salivary gland carcinoma patients: differences in responses by different pathological diagnoses. Acta Otolaryngol. (2016) 136:948–51. doi: 10.3109/00016489.2016.1170876

 10. Saade RE, Bell D, Garcia J, Roberts D, Weber R. Role of CRTC1/MAML2 translocation in the prognosis and clinical outcomes of mucoepidermoid carcinoma. JAMA Otolaryngol Head Neck Surg. (2016) 142:234–40. doi: 10.1001/jamaoto.2015.3270

 11. Luk PP, Wykes J, Selinger CI, Ekmejian R, Tay J, Gao T, et al. Diagnostic and prognostic utility of mastermind-like 2 (MAML2) gene rearrangement detection by fluorescent in situ hybridization (FISH) in mucoepidermoid carcinoma of the salivary glands. Oral Surg Oral Med Oral Pathol Oral Radiol. (2016) 121:530–41. doi: 10.1016/j.oooo.2016.01.003

 12. Nachtsheim L, Arolt C, Dreyer T, Meyer MF, Brobeil A, Gamerdinger U, et al. Mucoepidermoidcarcinoma – importance in molecular pathology. Laryngo Rhino Otol. (2020) 99:144–8. doi: 10.1055/a-1083-6805

 13. Anzick SL, Chen WD, Park Y, Meltzer P, Bell D, El-Naggar AK, et al. Unfavorable prognosis of CRTC1- MAML2 positive mucoepidermoid tumors with CDKN2A deletions. Genes Chromosomes Cancer. (2010) 49:59–69. doi: 10.1002/gcc.20719

 14. Birkeland AC, Foltin SK, Michmerhuizen NL, Hoesli RC, Rosko AJ, Byrd S, et al. Correlation of Crtc1/3-Maml2 fusion status, grade and survival in mucoepidermoid carcinoma. Oral Oncol. (2017) 68:5–8. doi: 10.1016/j.oraloncology.2017.02.025

 15. Chen Z, Chen J, Gu Y, Hu C, Li JL, Lin S, et al. Aberrantly activated AREG–EGFR signaling is required for the growth and survival of CRTC1–MAML2 fusion-positive mucoepidermoid carcinoma cells. Oncogene. (2014) 33:3869–77. doi: 10.1038/onc.2013.348

 16. Wang K, McDermott JD, Schrock AB, Elvin JA, Gay L, Karam SD, et al. Comprehensive genomic profiling of salivary mucoepidermoid carcinomas reveals frequent BAP1, PIK3CA, and other actionable genomic alterations. Ann Oncol. (2017) 28:748–53. doi: 10.1093/annonc/mdw689

 17. De Block K, Vander Poorten V, Dormaar T, Nuyts S, Hauben E, Floris G, et al. Metastatic HER-2-positive salivary gland carcinoma treated with trastuzumab and a taxane: a series of six patients. Acta Clin Belg. (2016) 71:383–8. doi: 10.1080/17843286.2016.1173940

 18. Lujan B, Hakim S, Moyano S, Nadal A, Caballero M, Diaz A, et al. Activation of the EGFR/ERK pathway in high-grade mucoepidermoid carcinomas of the salivary glands. Br J Cancer. (2010) 103:510–6. doi: 10.1038/sj.bjc.6605788

 19. Simpson RH. Salivary duct carcinoma: new developments–morphological variants including pure in situ high grade lesions; proposed molecular classification. Head Neck Pathol. (2013) 7 (Suppl. 1):S48–58. doi: 10.1007/s12105-013-0456-x

 20. Boon E, Bel M, van Boxtel W, van der Graaf WTA, van RJJ, Eerenstein Es SEJ, et al. A clinicopathological study and prognostic factor analysis of 177 salivary duct carcinoma patients from the Netherlands. Int J Cancer. (2018) 143:758–66. doi: 10.1002/ijc.31353

 21. McHugh JB, Visscher DW, Barnes EL. Update on selected salivary gland neoplasms. Arch Pathol Lab Med. (2009) 133:1763–74. doi: 10.1043/1543-2165-133.11.1763

 22. Takahashi H, Tada Y, Saotome T, Akazawa K, Ojiri H, Fushimi C, et al. Phase II trial of trastuzumab and docetaxel in patients with human epidermal growth factor receptor 2-positive salivary duct carcinoma. J Clin Oncol. (2019) 37:125–34. doi: 10.1200/JCO.18.00545

 23. Hainsworth JD, Meric-Bernstam F, Swanton C, Hurwitz H, Spigel DR, Sweeney C, et al. Targeted therapy for advanced solid tumors on the basis of molecular profiles: results from MyPathway, an open-label, phase IIa multiple basket study. J Clin Oncol. (2018) 36:536–42. doi: 10.1200/JCO.2017.75.3780

 24. Li BT, Shen R, Offin M, Buonocore DJ, Myers ML, Venkatesh A, et al. Ado-trastuzumab emtansine in patients with HER2 amplified salivary gland cancers (SGCs): results from a phase II basket trial. J Clin Oncol. (2019) 37:6001. doi: 10.1200/JCO.2019.37.15_suppl.6001

 25. Fushimi C, Tada Y, Takahashi H, Nagao T, Ojiri H, Masubuchi T, et al. A prospective phase II study of combined androgen blockade in patients with androgen receptor-positive metastatic or locally advanced unresectable salivary gland carcinoma. Ann Oncol. (2018) 29:979–84. doi: 10.1093/annonc/mdx771

 26. Van Boxtel W, Locati LD, van Engen-van Grunsven ACH, Bergamini C, Jonker MA, Fiets E, et al. Adjuvant androgen deprivation therapy for poor-risk, androgen receptor-positive salivary duct carcinoma. Eur J Cancer. (2019) 110:62–70. doi: 10.1016/j.ejca.2018.12.035

 27. Ho AL, Foster NR, Zoroufy AJ, Worden FP, Price KA, Adkins D, et al. Alliance A091404: a phase II study of enzalutamide (NSC# 766085) for patients with androgen receptor-positive salivary cancers. J Clin Oncol. (2019) 37 (15 Suppl):6020. doi: 10.1200/JCO.2019.37.15_suppl.6020

 28. Armstrong AJ, Halabi S, Luo J, Nanus DM, Giannakakou P, Szmulewitz RZ, et al. Prospective multicenter validation of androgen receptor splice variant 7 and hormone therapy resistance in high-risk castration-resistant prostate cancer: the PROPHECY study. J Clin Oncol. (2019) 37:1120–9. doi: 10.1200/JCO.18.01731

 29. Gargano SM, Senarathne W, Feldman R, Florento E, Stafford P, Swensen J, et al. Novel therapeutic targets in salivary duct carcinoma uncovered by comprehensive molecular profiling. Cancer Med. (2019) 8:7322–9. doi: 10.1002/cam4.2602

 30. Yang RK, Zhao P, Lu C, Luo J, Hu R. Expression pattern of androgen receptor and AR-V7 in androgen deprivation therapy naive salivary duct carcinomas. Hum Pathol. (2018) 84:173–82. doi: 10.1016/j.humpath.2018.09.009

 31. Cappelletti V, Miodini P, Reduzzi C, Alfieri S, Daidone MG, Licitra L, et al. Tailoring treatment of salivary duct carcinoma by liquid biopsy: ARv7 expression in circulating tumor cells. Ann Oncol. (2018) 29:1598–600. doi: 10.1093/annonc/mdy141

 32. Ho AL, Hanna GJ, Scholz CR, Gualberto A, Park SH. Preliminary activity of tipifarnib in tumors of the head and neck, salivary gland and urothelial tract with HRAS mutations. J Clin Oncol. (2020) 38:6504. doi: 10.1200/JCO.2020.38.15_suppl.6504

 33. Skálová A, Vanecek T, Sima R, Laco J, Weinreb I, Perez-Ordonez B, et al. Mammary analogue secretory carcinoma of salivary glands, containing the ETV6-NTRK3 fusion gene: a hitherto undescribed salivary gland tumor entity. Am J Surg Pathol. (2010) 34:599–608. doi: 10.1097/PAS.0b013e3181d9efcc

 34. Balanzá R, Arrangoiz R, Cordera F, Muñoz M, Luque-de-León E, Moreno M, et al. Mammary analog secretory carcinoma of the parotid gland: a case report and literature review. Int J Surg Case Rep. (2015) 16:187–91. doi: 10.1016/j.ijscr.2015.09.031

 35. Parekh V, Stevens TM. Mammary analogue secretory carcinoma. Arch Pathol Lab Med. (2016) 140:997–1001. doi: 10.5858/arpa.2015-0075-RS

 36. Fehr A, Löning T, Stenman G. Mammary analogue secretory carcinoma of the salivary glands with ETV6-NTRK3 gene fusion. Am J Surg Pathol. (2011) 35:1600–2. doi: 10.1097/PAS.0b013e31822832c7

 37. Hung YP, Jo VY, Hornick JL. Immunohistochemistry with a pan-TRK antibody distinguishes secretory carcinoma of the salivary gland from acinic cell carcinoma. Histopathology. (2019) 75:54–62. doi: 10.1111/his.13845

 38. Sethi R, Kozin E, Remenschneider A, VanderLaan P, Faquin W, et al. Mammary analogue secretory carcinoma: update on a new diagnosis of salivary gland malignancy. Laryngoscope. (2014) 124:188–95. doi: 10.1002/lary.24254

 39. Montalvo N, Galarza D, Redrobán L. Secretory carcinoma of the parotid: making the correct diagnosis of a rare salivary gland carcinoma when molecular biology testing is not available. Case Rep Pathol. (2019) 2019:5103496. doi: 10.1155/2019/5103496

 40. Rooper LM, Karantanos T, Ning Y, Bishop JA, Gordon SW, Kang H. Salivary secretory carcinoma with a novel ETV6-MET fusion expanding the molecular spectrum of a recently described entity. Am J Surg Pathol. (2018) 42:1121–6. doi: 10.1097/PAS.0000000000001065

 41. Skalova A, Vanecek T, Martinek P, Weinreb I, Stevens TM, Simpson RHW, et al. Molecular profiling of mammary analog secretory carcinoma revealed a subset of tumors harboring a novel ETV6-RET translocation report of 10 cases. Am J Surg Pathol. (2018) 42:234–46. doi: 10.1097/PAS.0000000000000972

 42. Drilon A, Laetsch T, Kummar S, DuBois S, Lassen U, Demetri G, et al. Efficacy of larotrectinib in TRK fusion– positive cancers in adults and children. N Engl J Med. (2018) 378:731–9. doi: 10.1056/NEJMoa1714448

 43. Doebele R, Drilon A, Paz-Ares L, Siena S, Shaw A, Farago A, et al. Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: integrated analysis of three phase 1–2 trials. Lancet. (2020) 21:271–82. doi: 10.1016/s1470-2045(19)30691-6

 44. Hemming M, Nathenson M, Lin J, Shaolin M, Du Z, Malik K, et al. Response and mechanisms of resistance to larotrectinib and selitrectinib in metastatic undifferentiated sarcoma harboring oncogenic fusion of NTRK. JCO Precis Oncol. (2020) 4:79–90. doi: 10.1200/PO.19.00287

 45. Hyman D, Kummar S, Farago A, Geoerger B, Mau-Sorensen M, Taylor M, et al. CT-127 - phase I and expanded access experience of LOXO-195 (BAY 2731954), a selective next-generation TRK inhibitor (TRKi) [abstract]. In: Proceedings of the 10th Annual Meeting of the American Association for Cancer Research; 2019. Philadelphia, PA: AACR (2019). p. 127.

 46. Li J, Wang BY, Nelson M, Li L, Hu Y, Urken ML, et al. Salivary adenocarcinoma, not otherwise specified: a collection of orphans. Arch Pathol Lab Med. (2004) 128:1385–94. doi: 10.1043/1543-2165(2004)128<1385:SANOSA>2.0.CO;2

 47. Reinheimer A, Vieira DS, Cordeiro MM, Rivero ER. Retrospective study of 124 cases of salivary gland tumors and literature review. J Clin Exp Dent. (2019) 11:e1025–32. doi: 10.4317/jced.55685

 48. Psarris A, Koufopoulos N, Grivas A, Papatheodorou DC, Khaldi L. Tumor to tumor metastasis from adenocarcinoma not otherwise specified of the parotid gland to uterine leiomyoma: presentation of a unique case. Cureus. (2020) 12:e6789. doi: 10.7759/cureus.6789

 49. Wang K, Russell JS, McDermott JD, Elvin JA, Khaira D, Johnson A, et al. Profiling of 149 salivary duct carcinomas, carcinoma ex pleomorphic adenomas, and adenocarcinomas, not otherwise specified reveals actionable genomic alterations. Clin Cancer Res. (2016) 22:6061–8. doi: 10.1158/1078-0432.CCR-15-2568

 50. Linxweiler M, Kuo F, Katabi N, Lee M, Nadeem Z, Dalin MG, et al. The immune microenvironment and neoantigen landscape of aggressive salivary gland carcinomas differ by subtype. Clin Cancer Res. (2020) 26:2859–70. doi: 10.1158/1078-0432.CCR-19-3758

 51. Mukaigawa T, Hayashi R, Hashimoto K, Ugumori T, Hato N, Fujii S. Programmed death ligand-1 expression is associated with poor disease free survival in salivary gland carcinomas. J Surg Oncol. (2016) 114:36–43. doi: 10.1002/jso.24266

 52. Cohen RB, Delord JP, Doi T, Piha-Paul SA, Liu SV, Gilbert J, et al. Pembrolizumab for the treatment of advanced salivary gland carcinoma: findings of the phase 1b KEYNOTE-028 study. Am J Clin Oncol. (2018) 41:1083–8. doi: 10.1097/COC.0000000000000429

 53. Fayette J, Even C, Digue L, Geoffrois L, Rolland F, Cupissol D, et al. NISCAHN: a phase II, multicenter nonrandomized trial aiming at evaluating nivolumab (N) in two cohorts of patients (pts) with recurrent/metastatic (R/M) salivary gland carcinoma of the head and neck (SGCHN), on behalf of the unicancer head and neck group. J Clin Oncol. (2019) 37:6083. doi: 10.1200/JCO.2019.37.15_suppl.6083

 54. Marabelle A, Fakih MG, Lopez J, Shah M, Shapira-Frommer R, Nakagawa K, et al. 1192OAssociation of tumour mutational burden with outcomes in patients with select advanced solid tumours treated with pembrolizumab in KEYNOTE-158. Ann Oncol. (2019) 30:v477–8. doi: 10.1093/annonc/mdz253.018

 55. Rodriguez CP, Wu QV, Voutsinas JM, Fromm JP, Jiang X, Pillarisetty VG, et al. A phase II trial of pembrolizumab and vorinostat in recurrent metastatic head and neck squamous cell carcinomas and salivary gland cancer. Clin Cancer Res. (2020) 26:837–45. doi: 10.1158/1078-0432.CCR-19-2214

 56. Haddad R, Colevas AD, Krane JF, Cooper D, Glisson B, Amrein PC, et al. Herceptin in patients with advanced or metastatic salivary gland carcinomas. A phase II study. Oral Oncol. (2003) 39:724–7. doi: 10.1016/S1368-8375(03)00097-6

 57. Jhaveri KL, Wang XV, Makker V, Luoh SW, Mitchell EP, Zwiebel JA, et al. Ado-trastuzumab emtansine (T-DM1) in patients with HER2-amplified tumors excluding breast and gastric/gastroesophageal junction (GEJ) adenocarcinomas: results from the NCI-MATCH trial (EAY131) subprotocol Q. Ann Oncol. (2019) 30:1821–30. doi: 10.1093/annonc/mdz291

 58. Agulnik M, Cohen EW, Cohen RB, Chen EX, Vokes EE, Hotte SJ, et al. Phase II study of lapatinib in recurrent or metastatic epidermal growth factor receptor and/or erbB2 expressing adenoid cystic carcinoma and non adenoid cystic carcinoma malignant tumors of the salivary glands. J Clin Oncol. (2007) 25:3978–84. doi: 10.1200/JCO.2007.11.8612

 59. Locati LD, Bossi P, Perrone F, Potepan P, Crippa F, Mariani L, et al. Cetuximab in recurrent and/or metastatic salivary gland carcinomas: a phase II study. Oral Oncol. (2009) 45:574–8. doi: 10.1016/j.oraloncology.2008.07.010

 60. Jakob JA, Kies MS, Glisson BS, Kupferman ME, Liu DD, Lee JJ, et al. Phase II study of gefitinib in patients with advanced salivary gland cancers. Head Neck. (2015) 37:644–9. doi: 10.1002/hed.23647

 61. Locati LD, Cavalieri S, Bergamini CI, Resteghini CI, Alfieri S, Calareso G, et al. Phase II trial with axitinib in recurrent and/or metastatic salivary gland cancers of the upper aerodigestive tract. Head Neck. (2019) 41:3670–76. doi: 10.1002/hed.25891

 62. Locati LD, Perrone F, Cortelazzi B, Bergamini C, Bossi P, Civelli E, et al. A phase II study of sorafenib in recurrent and/or metastatic salivary gland carcinomas: translational analyses and clinical impact. Eur J Cancer. (2016) 69:158–65. doi: 10.1016/j.ejca.2016.09.022

 63. Guigay J, Fayette J, Even C, Cupissol D, Rolland F, Peyrade F, et al. PACSA: phase II study of pazopanib in patients with progressive recurrent or metastatic (R/M) salivary gland carcinoma (SGC). J Clin Oncol. (2016) 4:6086. doi: 10.1200/JCO.2016.34.15_suppl.6086

 64. Kim Y, Lee SJ, Lee JY, Lee SH, Sun JM, Park K, et al. Clinical trial of nintedanib in patients with recurrent or metastatic salivary gland cancer of the head and neck: a multicenter phase 2 study (Korean cancer study group HN14-01). Cancer. (2017) 123:1958–64. doi: 10.1002/cncr.30537

 65. Wong SJ, Karrison T, Hayes DN, Kies MS, Cullen KJ, Tanvetyanon T, et al. Phase II trial of dasatinib for recurrent or metastatic c-KIT expressing adenoid cystic carcinoma and for nonadenoid cystic malignant salivary tumors. Ann Oncol. (2016) 27:318–23. doi: 10.1093/annonc/mdv537

 66. Limaye SA, Posner MR, Krane JF, Fonfria M, Lorch JH, Dillon DA, et al. Trastuzumab for the treatment of salivary duct carcinoma. Oncologist. (2013) 18:294–300. doi: 10.1634/theoncologist.2012-0369

 67. Nascimento AG, Amaral Amaral ALP. Adenoid cystic carcinoma of salivary glands. A study of 61 cases with clinicopathologic correlation. Cancer. (1986) 57:312–19. doi: 10.1002/1097-0142(19860115)57:2<312::aid-cncr2820570220>3.0.co;2-a

 68. van der Wal JE, Becking AG, Snow GB, van der Waal I. Distant metastases of adenoid cystic carcinoma of the salivary glands and the value of diagnostic examinations during follow-up. Head Neck. (2002) 24:779–83. doi: 10.1002/hed.10126

 69. Thomson DJ, Silva P, Denton K, Bonington S, Mak SK, Swindell R, et al. Phase II trial of sorafenib in advanced salivary adenoid cystic carcinoma of the head and neck. Head Neck. (2015) 37:182–7. doi: 10.1002/hed.23577

 70. Ho AL, Dunn L, Sherman EJ, Fury MG, Baxi SS, Chandramohan R, et al. A phase II study of axitinib (AG-013736) in patients with incurable adenoid cystic carcinoma. Ann Oncol. (2016) 27:1902–8. doi: 10.1093/annonc/mdw287

 71. Ho AL, Sherman EJ, Baxi SS, Haque S, Ni A, Antonescu CR, et al. Phase II study of regorafenib in progressive, recurrent/metastatic adenoid cystic carcinoma. J Clin Oncol. (2016) 34:6–20. doi: 10.1200/JCO.2016.34.15_suppl.6096

 72. Locati LD, Galbiati D, Calareso G, Alfieri S, Singer S, Cavalieri S, et al. Patients with adenoid cystic carcinomas of the salivary glands treated with lenvatinib: activity and quality of life. Cancer. (2020) 126:1888–94. doi: 10.1002/cncr.32754

 73. Tchekmedyian V, Sherman EJ, Dunn L, Tran C, Baxi S, Katabi N, et al. A phase II study of lenvatinib in patients with progressive, recurrent/metastatic adenoid cystic carcinoma. J Clin Oncol. (2018) 36:6022. doi: 10.1200/JCO.2018.36.15_suppl.6022

 74. Dillon PM, Petroni GR, Horton BJ, Moskaluk CA, Fracasso PM, Douvas MG, et al. A phase II study of dovitinib in patients with recurrent or metastatic adenoid cystic carcinoma. Clin Cancer Res. (2017) 23:4138–45. doi: 10.1158/1078-0432.CCR-16-2942

 75. Hotte SJ, Winquist EW, Lamont E, MacKenzie M, Vokes E, Chen EX, et al. Imatinib mesylate in patients with adenoid cystic cancers of the salivary glands expressing c-kit: a princess margaret hospital phase II consortium study. J Clin Oncol. (2005) 23:585–90. doi: 10.1200/JCO.2005.06.125

 76. Guigay MJ, Bidault F, Temam S, Janot F, Raymond E, Faivre S. Antitumor activity of imatinib in progressive, highly expressing KIT adenoid cystic carcinoma of the salivary glands: a phase II study. J Clin Oncol. (2007) 25:6086. doi: 10.1200/jco.2007.25.18_suppl.6086

 77. Kim DW, Oh DY, Shin SH, Kang JH, Cho BC, Chung JS, et al. A multicenter phase II study of everolimus in patients with progressive unresectable adenoid cystic carcinoma. BMC Cancer. (2014) 14:795. doi: 10.1186/1471-2407-14-795

 78. Argiris A, Ghebremichael M, Burtness B, Axelrod RS, Deconti RC, Forastiere AA. A phase 2 trial of bortezomib followed by the addition of doxorubicin at progression in patients with recurrent or metastatic adenoid cystic carcinoma of the head and neck: a trial of the eastern cooperative oncology group (E1303). Cancer. (2011) 117:3374–82. doi: 10.1002/cncr.25852

 79. Siu LL, Rasco DW, Vinay SP, Romano PM, Menis J, Heinhuis KM, et al. Meteor-1: a phase I study of GSK3326595, a first-in-class proteins arginine methyltransferase 5 (PRMT5) inhibitor, in advanced solid tumors. Ann Oncol. (2019) 30:59–193. doi: 10.1093/annonc/mdz244

 80. Gonçalves PH, Heilbrun LK, Barrett MT, Kummar S, Hansen AR, Siu LL, et al. A phase 2 study of vorinostat in locally advanced, recurrent, or metastatic adenoid cystic carcinoma. Oncotarget. (2017) 8:32918–29. doi: 10.18632/oncotarget.16464

 81. Ferrarotto R, Eckhardt G, Patnaik A, LoRusso P, Faoro L, Heymach JV, et al. A phase I dose-escalation and dose-expansion study of brontictuzumab in subjects with selected solid tumors. Ann Oncol. (2018) 29:1561–8. doi: 10.1093/annonc/mdy171

 82. Cote GM, Edenfield WJ, Laurie SA, Chau NG, Becerra C, Spira AI, et al. A phase 1b/2 study of amcasertib, a first-in-class cancer stemness kinase inhibitor, in advanced adenoid cystic carcinoma. J Clin Oncol. (2017) 35:6036. doi: 10.1200/JCO.2017.35.15_suppl.6036

 83. El-Khoueiry AB, Desai J, Iyer SP, Gadgeel SM, Ramalingam SS, Horn L, et al. A phase I study of AL101, a pan-NOTCH inhibitor, in patients (pts) with locally advanced or metastatic solid tumors. J Clin Oncol. (2018) 36:2515. doi: 10.1200/JCO.2018.36.15_suppl.2515

 84. Even C, Lassen UN, Merchan JR, Torneau CL, Soria JC, Ferte C, et al. Notch pathway inhibition with LY3039478 in adenoid cystic carcinoma (ACC). J Clin Oncol. (2017) 35:6024. doi: 10.1200/JCO.2017.35.15_suppl.6024

 85. Laurie SA, Ho AL, Fury MG, Sherman E, Pfister DG. Systemic therapy in the management of metastatic or locally recurrent adenoid cystic carcinoma of the salivary glands: a systematic review. Lancet Oncol. (2011) 12:815–24. doi: 10.1016/S1470-2045(10)70245-X

 86. Licitra L, Cavina R, Grandi C, Palma SD, Guzzo M, Demicheli R, et al. Cisplatin, doxorubicin and cyclophosphamide in advanced salivary gland carcinoma. A phase II trial of 22 patients. Ann Oncol. (1996) 7:640–2. doi: 10.1093/oxfordjournals.annonc.a010684

 87. Allen S, Ho Ochoa A, Jayakumaran G, Zehir A, Mayor CV, Tepe J, et al. Genetic hallmarks of recurrent/metastatic adenoid cystic carcinoma. J Clin Invest. (2019) 129:4276–89. doi: 10.1172/JCI128227

 88. Xu LH, Zhao F, Yang WW, Chen CW, Du ZH, Fu M, et al. MYB promotes the growth and metastasis of salivary adenoid cystic carcinoma. Int J Oncol. (2019) 54:1579–90. doi: 10.3892/ijo.2019.4754

 89. Andersson MK, Åman P, Stenman G. IGF2/IGF1R signaling as a therapeutic target in MYB-positive adenoid cystic carcinomas and other fusion gene-driven tumors. Cells. (2019) 8:913. doi: 10.3390/cells8080913

 90. Wang Y, Zhang CY, Xia RH, Han J, Sun B, Sun SY, et al. The MYB/miR-130a/NDRG2 axis modulates tumor proliferation and metastatic potential in salivary adenoid cystic carcinoma. Cell Death Dis. (2018) 9:917. doi: 10.1038/s41419-018-0966-2

 91. Almeida-Pinto YD, Costa SFDS, de Andrade BAB, Altemani A, Vargas PA, Abreu LG, et al. t(6;9)(MYB-NFIB) in head and neck adenoid cystic carcinoma: a systematic review with meta-analysis. Oral Dis. (2019) 25:1277–82. doi: 10.1111/odi.12984

 92. Andersson MK, Afshari MK, Andrén Y, Wick MJ, Stenman G. Targeting the oncogenic transcriptional regulator MYB in adenoid cystic carcinoma by inhibition of IGF1R/AKT signaling. J Natl Cancer Inst. (2017) 109:djx017. doi: 10.1093/jnci/djx017

 93. Mandelbaum J, Shestopalov IA, Henderson RE, Chau NG, Knoechel B, Wick MG, et al. Zebrafish blastomere screen identifies retinoic acid suppression of MYB in adenoid cystic carcinoma. J Exp Med. (2018) 10:2673–85. doi: 10.1084/jem.20180939

 94. Ferrarotto R, Mitani Y, Diao L, Guijarro I, Wang J, Zweidler-McKay P, et al. Activating NOTCH1 mutations define a distinct subgroup of patients with adenoid cystic carcinoma who have poor prognosis, propensity to bone and liver metastasis, and potential responsiveness to notch1 inhibitors. J Clin Oncol. (2017) 35:352–60. doi: 10.1200/JCO.2016.67.5264

 95. Saygin C, Matei D, Majeti R, Reizes O, Lathia JD. Targeting cancer stemness in the clinic: from hype to hope. Cell Stem Cell. (2019) 24:25–40. doi: 10.1016/j.stem.2018.11.017

 96. Tchekmedyian V, Sherman EJ, Dunn L, Fetten JV, Michel LS, Kriplani A, et al. A phase II trial cohort of nivolumab plus ipilimumab in patients (Pts) with recurrent/metastatic adenoid cystic carcinoma (R/M ACC). J Clin Oncol. (2019) 37:6084. doi: 10.1200/JCO.2019.37.15_suppl.6084

 97. Saida K, Murase T, Ito M, Fujii K, Takino H, Masaki A, et al. Mutation analysis of the EGFR pathway genes, EGFR, RAS, PIK3CA, BRAF, and AKT1, in salivary gland adenoid cystic carcinoma. Oncotarget. (2018) 9:17043–55. doi: 10.18632/oncotarget.24818

 98. Williams MD, Roberts DB, Kies MS, Mao L, Weber RS, El-Naggar AK. Genetic and expression analysis of HER-2 and EGFR genes in salivary duct carcinoma: empirical and therapeutic significance. Clin Cancer Res. (2010) 16:2266–74. doi: 10.1158/1078-0432.CCR-09-0238

 99. Tada Y, Kokabu S, Sugiyama G, Nakatomi C, Aoki K, Fukushima H, et al. The novel IκB kinase β inhibitor IMD-0560 prevents bone invasion by oral squamous cell carcinoma. Oncotarget. (2014) 5:12317–30. doi: 10.18632/oncotarget.2640

 100. Stephens PJ, Davies HR, Mitani Y, Loo PV, Shlien A, Tarpey PS, et al. Whole exome sequencing of adenoid cystic carcinoma. J Clin Invest. (2013) 123:2965–8. doi: 10.1172/JCI67201

 101. Almeida LO, Guimarães DM, Martins MD, Martins MAT, Warner KA, Nör JE, et al. Unlocking the chromatin of adenoid cystic carcinomas using HDAC inhibitors sensitize cancer stem cells to cisplatin and induces tumor senescence. Stem Cell Res. (2017) 21:94–105. doi: 10.1016/j.scr.2017.04.003

 102. Lim JJ, Kang S, Lee MR, Pai HK, Yoon HJ, Lee JI, et al. Expression of vascular endothelial growth factor in salivary gland carcinomas and its relation to p53, Ki-67 and prognosis. J Oral Pathol Med. (2003) 32:552–61. doi: 10.1034/j.1600-0714.2003.00073.x-i1

 103. Keam B, Kang EJ, Ahn MJ, Ock CY, Lee KW, Kwon JH, et al. Randomized phase II study of axitinib vs. observation in patients with recurred or metastatic adenoid cystic carcinoma. J Clin Oncol. (2020) 38:6503. doi: 10.1200/JCO.2020.38.15_suppl.6503

 104. Pfeffer MR, Talmi Y, Catane R, Symon Z, Yosepovitch A, Levitt M. A phase II study of imatinib for advanced adenoid cystic carcinoma of head and neck salivary glands. Oral Oncol. (2007) 43:33–6. doi: 10.1016/j.oraloncology.2005.12.026

 105. van Boxtel W, Lütje S, van Engen-van Grunsven ICH, Verhaegh GW, Schalken JA, Jonker MA, et al. 68 Ga-PSMA-HBED-CC PET/CT imaging for adenoid cystic carcinoma and salivary duct carcinoma: a phase 2 imaging study. Theranostics. (2020) 10:2273–83. doi: 10.7150/thno.38501

 106. Hofman MS, Violet J, Hicks RJ, Ferdinandus J, Thang SP, Akhurst T, et al. [177Lu]-PSMA-617 radionuclide treatment in patients with metastatic castration-resistant prostate cancer (LuPSMA trial): a single-centre, single-arm, phase 2 study. Lancet Oncol. (2018) 19:825–33. doi: 10.1016/S1470-2045(18)30198-0

 107. Simsek DH, Kuyumcu S, Agaoglu FY, Unal SN. Radionuclide therapy with 177Lu-PSMA in a case of metastatic adenoid cystic carcinoma of the parotid. Clin Nucl Med. (2019) 44:764–6. doi: 10.1097/RLU.0000000000002645

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Di Villeneuve, Souza, Tolentino, Ferrarotto and Schvartsman. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.





MINI REVIEW

published: 25 January 2021

doi: 10.3389/fonc.2020.592202

[image: image2]


Perspectives on the Treatment of Advanced Thyroid Cancer: Approved Therapies, Resistance Mechanisms, and Future Directions


Ashleigh Porter and Deborah J. Wong *


Division of Hematology/Oncology, Department of Medicine, Los Angeles, CA, United States




Edited by:
 Erminia Massarelli, City of Hope National Medical Center, United States

Reviewed by: 
Rasha Abu Eid, University of Aberdeen, United Kingdom
 Vidisha Tuljapurkar, Tata Memorial Hospital, India

*Correspondence:
 Deborah J. Wong
 DEWONG@MEDNET.UCLA.EDU

Specialty section: 
 This article was submitted to Head and Neck Cancer, a section of the journal Frontiers in Oncology


Received: 06 August 2020

Accepted: 03 December 2020

Published: 25 January 2021

Citation:
Porter A and Wong DJ (2021) Perspectives on the Treatment of Advanced Thyroid Cancer: Approved Therapies, Resistance Mechanisms, and Future Directions. Front. Oncol. 10:592202. doi: 10.3389/fonc.2020.592202



For differentiated thyroid cancer (DTC), systemic therapy with radioactive iodine (RAI) is utilized for radiosensitive disease, while for radioiodine refractory (RAIR) disease, current standard of care is treatment with multikinase tyrosine kinase inhibitors (TKI). For BRAF-mutant DTC or anaplastic thyroid cancer (ATC), treatment with inhibitors targeting BRAF and MEK are important advances. RET-inhibitors for RET-mutated medullary thyroid cancer (MTC) recently have been FDA-approved for metastatic disease. Nevertheless, treatment of thyroid cancer resistant to current systemic therapies remains an important area of need. Resistance mechanisms are being elucidated, and novel therapies including combinations of BRAF and MEK inhibitors with RAI or other targeted therapies or TKIs combined with checkpoint inhibition are current areas of exploration.
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Introduction

The incidence of thyroid cancer (TC) in the United States is rapidly increasing, with over 52,000 new patients diagnosed and greater than 2,000 deaths recorded each year (1). Whether this is secondary to increased frequency of cross-sectional imaging, better sensitivity in various imaging modalities or a true increase in incidence has been questioned, but regardless, prognosis is generally exceptional, with the vast majority of patients surviving at least ten years, even in the setting of locally advanced or widespread disease. The clinical course can be quite variable between different patients and among the TC subtypes.

The three main subtypes of TC include DTC, MTC, and ATC. DTC comprises 85% of all thyroid cancers, with papillary thyroid cancer (PTC) the most common histologic subtype. MTC and ATC make up 2–8 and 1% of diagnoses, respectively, generally behave more aggressively than DTCs, and can often be less responsive to therapy. While 45% of patients with metastatic DTC are alive at ten years (2), only 20% of patients with MTC are living at 10 years. Though ATC is an epithelial-derived carcinoma and often arises from DTC, prognosis is significantly worse, with a median overall survival of 3–6 months (3).

TCs are generally successfully managed with a multimodal approach, incorporating surgical resection with thyroidectomy and lymph node dissection when disease only involves local structures, followed by ablation with RAI as adjuvant therapy for patients at high risk for recurrence, and thyroid hormone suppression long-term. RAI also is utilized in the setting of iodine sensitive recurrent and metastatic disease. The National Comprehensive Cancer Network (NCCN) guidelines recommend considering other systemic therapies for progressive, disseminated disease and/or symptomatic disease that is refractory to RAI. Cytotoxic chemotherapy such as adriamycin has limited utility for metastatic TC (4); in contrast, targeted agents are the mainstay of standard therapy, building on the knowledge that aberrant signaling of the MAPK and PI3K/Akt/mTOR pathways are responsible for tumorigenesis (5). Current options for systemic therapy involve the use of TKIs targeting these aforementioned pathways which are often both effective in controlling disease and have manageable toxicity. Inevitably, however, most TCs develop resistance. Mechanisms of resistance and strategies to overcome treatment resistance are areas of active investigation.



Pathogenesis of Thyroid Cancer

Like many other cancers, TC arises as a result of accumulation of multiple genetic mutations that cause abnormal cellular proliferation and prolonged survival of malignant cells. Virtually all TC pathogenesis centers around aberrant signaling involving the PI3K/Akt/mTOR and MAPK signaling pathways, which under normal circumstances, both help regulate cellular functions and survival (Figure 1).




Figure 1 | Molecular Pathogenesis of Thyroid Cancer. RAS/RAF/MEK and PI3K/AKT/mTOR pathways are key signaling pathways in thyroid cancer pathogenesis. Mutations in RAS (RASm) or BRAF result in constitutive activation of the MAPK pathway, causing downstream activation of the MAPK and PI3K pathways which promotes cell growth and tumorigenesis. Effective agents include multikinase inhibitors (cabozantinib, vandetanib, sorafenib and lenvatinib) which inhibit receptor tyrosine kinases (RTK) at the cell surface, selective RET inhibitors (selpercatinib and pralsetinib) which inhibit mutant RET RTK (RETm), BRAF V600E inhibitors (dabrafenib and trametinib) and the mTOR inhibitor everolimus. These small molecule inhibitors are used clinically for treatment of RAIR TC with the goal of arresting uncontrolled proliferation.



The PI3K/Akt/mTOR pathway is classically activated by induction of receptor tyrosine kinase (RTK) at the cell membrane. Activated intracellular PI3K phosphorylates and activates AKT. AKT then travels inside the nucleus to upregulate several oncogenes as well the mTOR pathway, triggering tumorigenesis (5, 6).

Similar to the PI3K/Akt/mTOR pathway, MAPK signaling is stimulated first by activation of a RTK. RTK then activates multiple other genes, including RAS, BRAF, MEK, and ERK. ERK ultimately enters the nucleus to promote tumorigenesis. Most commonly mutated genes in TC include those in the MAPK pathway—BRAF and RAS mutations as well as RET fusions—which in total account for approximately 80% of cases. Notably, activation of RET, a RTK which when constitutively activated either by mutation or fusion with another partner such as PTC1 or PTC3, is involved in the pathogenesis of 5–30% of PTCs, in the vast majority of familial MTC (96% of cases) as well as in sporadic MTC (25–50% of cases), and results in constitutive activation of the MAPK signaling pathway which promotes cell growth and tumorigenesis (6, 7). RET inhibition has been an important advance for treatment of MTC, while blockade with BRAF and MEK inhibitors are a mainstay of therapy for BRAF-mutated ATC and DTC. Mutations in RET, RAS, and BRAF tend to be mutually exclusive in PTC, underscoring the importance of constitutive activation of the MAPK pathway for TC (8).



Radioactive Iodine

Thyroid cells have the unique ability to uptake iodine from the blood. Consequently, for DTC which has retained this property, treatment with RAI, 131I, is a mainstay of therapy as adjuvant therapy, to address micrometastatic disease or as treatment for limited low burden metastatic disease (9). Over time, however, RAI becomes ineffective as many DTCs lose the ability to uptake iodine or as patients have received maximal lifetime doses of 131I. A joint statement from societies including the American Thyroid Association (ATA) lists clinical scenarios indicating RAIR disease, including (1) lack of 131I uptake on diagnostic 131I scan (2), no 131I uptake on a 131I scan performed several days after 131I therapy (3), selective 131I uptake in only some tumor foci (4), progression of metastatic DTC despite 131I uptake and (5) progression of metastatic DTC despite a cumulative 131I activity of 600mCi (9). Whether DTC can be resensitized to RAI is a subject of many research studies. As MTC and ATC do not uptake iodine, RAI is not an effective systemic therapy strategy for these subtypes.



Multikinase Inhibitors

The use of kinase inhibitors has proven to be an effective treatment option for metastatic TC given the activity of the PI3K/Akt/mTOR and MAPK signaling pathways in this disease. Current Food and Drug Administration (FDA) approvals for kinase inhibitors in thyroid cancer include vandetanib, cabozantinib, sorafenib, and lenvatinib, which have activity against many RTKs, including the vascular endothelial growth factor (VEGF) isoforms (Table 1).


Table 1 | Tyrosine Kinase Inhibitors with Activity for Thyroid Cancers.



Vandetanib, a multikinase inhibitor that targets epidermal growth factor (EGF), RET, VEGF2, and VEGF3 receptors, is FDA approved for use in MTC based on results of the ZETA trial (10) which compared the effects of vandetanib dosed at 300 milligrams (mg) daily to placebo in 331 patients with advanced and unresectable MTC. Patients treated with vandetanib had a longer progression free survival (PFS) (30.5 vs 19.3 months); hazard ratio (HR) 0.46; 95% confidence interval (CI) 0.31 to 0.69; P < 0.001). 44% of patients achieved partial response (PR).

Subsequently, cabozantinib was approved by the FDA for advanced, progressive or symptomatic MTC. Cabozantinib works specifically by inhibiting c-MET, RET, and VEGF2 receptors. Inhibition of c-MET has been hypothesized to portend longer responses and delayed development of resistance. The EXAM trial included 330 patients with advanced MTC with progressive disease for at least 14 months (11). Patients treated with 140 mg daily of cabozantinib had a median PFS of 11.2 months compared to 4 months for placebo (HR 0.28; 95% CI 0.19–0.30; P < 0.001). 28% of patients treated with cabozantinib achieved a PR with a median duration of response of 14.7 months. Although PFS was shorter than that reported for vandetanib, this was attributed to the variability in the respective patient populations of each trial. Patients in the ZETA trial had relatively indolent disease while the EXAM trial required progressive disease for enrollment. Furthermore, cabozantinib has promising activity as frontline therapy for RAIR as a phase II single arm study of 35 patients with RAIR-DTC demonstrated 54% PR and 43% stable disease, with an 80% clinical benefit rate at six months (18). Cabozantinib is currently being evaluated in the Phase III study COSMIC-311 for patients with DTC that has progressed on up to two prior VEGFR inhibitors (NCT03690388).

Sorafenib, an inhibitor of VEGF1-3, platelet derived growth factor (PDGF), fibroblast growth factor (FGF), KIT, and RET, is approved for RAIR DTC. Benefit of treatment is modest at best, with a PFS of 10.8 months (HR 0.59; 95% CI 0.45–0.76; P < 0.0001) and an overall response rate (ORR) of 12.2% with no benefit in overall survival (OS) (12).

The final TKI approved for use in advanced DTC is lenvatinib, which targets VEGF1-3, FGF1-4, PDGF, KIT, and RET and is the only kinase inhibitor that has shown survival benefit. Data from the SELECT trial revealed a PFS of 18.3 months for lenvatinib versus 3.6 months for placebo, an ORR of 64.8% and four documented complete responses. An OS benefit was demonstrated on subgroup analysis of patients older than 65 years of age (OS not reached vs. 18.4 months in placebo arm); however, the validity of this benefit remains unclear and has not been reproduced in other studies (13).



Braf Inhibition

There has been a significant amount of success in targeting BRAF driver mutations most notably in the treatment of melanoma, where approximately 50% of cases harbor activating BRAFV600E mutations. For DTC, about 40% of PTCs are BRAF-mutated (8), and 20–50% of ATCs harbor a BRAF V600 mutation. The safety and efficacy of the BRAF inhibitor dabrafenib combined with trametinib, an inhibitor of MEK1/2, in ATC were explored as part of the BRF117019 (NCT02034110) trial. 16 patients with BRAF V600E mutant ATC were enrolled in this phase II, open-label trial. At a median follow-up of 47 weeks, ORR was 69% (11 of 16; 95% CI, 41–89%), and seven patients had continued response to therapy at the time of follow-up. Median DOR, PFS, and OS were not reached. The most common AEs seen were fatigue (38%), pyrexia (37%), and nausea (35%) (14).These data led to the FDA approval of dabrafenib and trametinib for BRAFV600E mutated ATC.

BRAF inhibition with dabrafenib or vemurafenib is also effective for DTC. In a non-randomized, open-label phase II study of vemurafenib in 51 patients with BRAF V600E mutated PTC, 10 of 26 patients who were VEGFR TKI-naive had PRs (38.5%, 95% CI 20.2–59.4) and a majority had at least SD (57.5%). Median PFS was 18.2 months (95% CI, 15.5–29.3 months). Median OS was not reached. Among 25 patients who had previously received a VEGFR TKI, 27.3% of patients had achieved a PR with 63.6% of patients achieving SD. Median PFS was only 8.9 months in comparison and OS was 14.4 months (95% CI, 8.2 to 29.5 months) (15).

In a phase II, randomized study, patients with BRAFV600E mutated PTC were randomized to dabrafenib or dabrafenib with trametinib. Among the 26 patients who received dabrafenib monotherapy, 10 of 26 (38%) had RECIST defined PR, while nine of 27 in the combination arm had a radiographic PR. A total of 50% and 54% in monotherapy and combination, respectively, had at least 20% decrease in target lesions. Median PFS was 11.4 months for dabrafenib and 15.1 months for dabrafinib and trametinib (19).



Ret Inhibition

Selpercatinib, or LOXO-292, is an oral selective RET kinase inhibitor recently FDA-approved for RET mutated MTC and RET fusion-positive thyroid cancers. The phase I/II LIBRETTO-001 trial evaluated the safety and efficacy of selpercatinib in patients with RET-mutant MTC. Patients were treated with 160 mg of selpercatinib twice daily. Among 55 patients previously treated with TKIs including cabozantinib and vandetinib, ORR was 69% (95% CI; 55–81%). The median DOR was not reached at a median follow up of 14 months. Among 88 TKI naïve subjects, ORR was 73% (95% CI; 62–82%). Finally, in a cohort of patients with RET-fusion positive thyroid cancer, ORR was 62% (95% CI; 41–80%) with 16 patients with ongoing response and two PRs awaiting central confirmation. The most frequently reported adverse events were dry mouth (20), increased transaminases (25%), hypertension (24%), diarrhea (22%), fatigue (18%), and peripheral edema (15%). The discontinuation rate due to side effects was only 2% (16).

Pralsetinib, BLU-667, is a second potent RET-inhibitor with activity in RET-fusion positive MTC and lung cancer. Among 13 RET-fusion positive TC patients enrolled in ARROW, a phase I/II trial of pralsetinib for RET-mutated cancers, ORR was 91% and all patients had stable disease or better. For RET-mutated treatment naïve MTC patients, ORR was74%, while for previously treated patients, a 60% ORR was reported (17).



Mechanisms of Resistance and Treatment Strategies for TC

Patients with RAIR TC have a poor prognosis with a 10-year survival rate of only 10%. One mechanism underlying the development of RAIR thyroid cancer is impairment of the sodium-iodine symporter (NIS). NIS is a plasma membrane glycoprotein located on the basolateral surface of the thyroid follicular cells that mediates iodide transport into follicular cells. RAI enters TC cells via the NIS, and therefore, loss or downregulation of NIS through genetic alteration of the RTK/BRAF/MAPK/ERK and PI3K/AKT/mTOR pathways is thought to contribute to RAIR (5). Furthermore, constitutive activation of the MAPK pathway, and in particular, the presence of the BRAF activating mutation, alters genes involved in iodine metabolism, resulting in more aggressive tumorgenesis and thyroid cell de-differentiation. Consequently, BRAF V600E mutant TC have higher risk of relapse, poorer outcomes and are less likely to be responsive to RAI. Therefore, strategies to “re-sensitize” tumors to RAI utilizing BRAF and MEK inhibitors have been evaluated. 20 patients with RAIR TC were treated with MEK1/2 inhibitor selumetinib 75 mg twice daily (21). Following selumetinib treatment, RAI uptake increased in 12 of 20 patients. Eight of 12 patients were re-treated with RAI of which three achieved SD and five achieved PR. For BRAFV600E mutated PTC, dabrafenib treatment reinduced new RAI uptake in six of 10 patients, with two PRs and four SD at three months post RAI (22). This strategy has also been evaluated with vemurafenib in a pilot study of 12 BRAF mutated TC patients. Among the 10 evaluable patients, four demonstrated increased 123I uptake after four weeks of vemurafenib therapy. Treatment with 131I resulted in ongoing tumor control at 6 months. Of note, vemurafenib was discontinued two days after 131I treatment, raising the possibility of RAI treatment after MAPK inhibition as a strategy to allow for treatment breaks from TKIs, which can have significant toxicity (23).



Braf Resistance

Several mechanisms can confer primary or secondary resistance to BRAF inhibitors (24). Intrinsic resistance to BRAF inhibitors may result from inhibition of apoptosis via inhibiting the B-Cell CLL/Lymphoma 2 (BCL2) pathway. In vitro, TC cells harboring a copy number gain of myeloid cell leukemia 1 (MCL1) as well as a loss of (cyclin-dependent kinase inhibitor 2A (CDK2NA), components of the BCL2 pathway, are resistant to vemurafenib, and combining the BCL2 inhibitor obatoclax with vemurafenib improved sensitivity (25). Furthermore, concurrent mutations in BRAFV600E and PI3KCA can confer intrinsic resistance to BRAF inhibitors (26). To this end, combination treatment with MAPK inhibitors and inhibitors targeting PI3K/AKT/mTOR pathway such as everolimus may be an effective strategy.

Indeed, everolimus does have some clinical activity for TC. In a phase II clinical trial, 28 patients with locally advanced or metastatic RAIR DTC and seven patients with ATC were treated with everolimus 10 mg daily. The median follow-up duration was 38 months. Seventeen patients (65%) had SD; however, no PR or CR was observed. The response was quite durable: 58% had SD for greater than 24 weeks. Toxicity was generally mild and consistent with its known side effect profile (27). Additionally, in a case series of five patients with ATC treated with everolimus 10mg daily, mOS was 7.4 months. One patient had a durable response that lasted 27.9 months, and two others had SD for 3.7 and 5.9 months, respectively (28).

Acquired resistance to BRAF inhibitors may develop via secondary mutations in the MAPK pathway, such as acquisition of NRAS Q61K (29, 30), or KRAS G12V (30), similar to that seen with BRAFV600E melanoma. Whether addition or substitution of MEK inhibitors, novel MAPK inhibitors such as KRAS or ERK inhibitors would be of clinical utility are intriguing potential treatment options. For VEGFR inhibitors such as lenvatinib, sorafenib, cabozantinib, and vandetinib, upregulation of FGFR may mediate acquired resistance, and anti-FGFR agents may have application in this setting (31).



Combination Therapies

The utility of combining TKIs and immunotherapeutic agents is currently an area of active investigation. Several published case series in TC highlight the potential for combination targeted therapy with checkpoint inhibition to confer prolonged tumor control, even in patients who have progressed on prior targeted therapy (32, 33). Eight patients with metastatic ATC or DTC were treated with lenvatinib (24 mg/kg daily) in combination with pembrolizumab (200 mg every 3 weeks). Four patients achieved a PR and two achieved SD. One patient achieved a CR and one patient expired from PD. Notably, no significant grade 3 or 4 toxicities were observed with treatment (20). Among 30 patients with VEGFR-inhibitor naïve progressive DTC, 18 of 30 patients (62%) treated with lenvatinib and pembrolizumab had a PR, and 10 (35%) had SD (34). A separate cohort of this study is evaluating responses among patient who have progressed on lenvatinib (NCT02973997). For ATC, in a single institution study of 38 patients, the combination of atezolizumab with vemurafenib and cobimetinib for BRAF V600E mutant demonstrated an ORR of 59%, including one CR and 9 PR, and seven SD. An 81 and 70% 1- and 2-year survival, respectively, with median OS were not reached. For the ATC cohort with RAS or NF1 or NF2 alterations, patients were treated with cobimetinib and atezolimab with an ORR 17%, with 2 PR and four SD (35). Ongoing clinical trials for RAIR TC are listed in Table 2.


Table 2 | Ongoing Clinical trials for Radioactive Iodine Refractory Thyroid Cancer.





Conclusions

There are currently a number of therapies available for treatment of metastatic TC. Understanding the molecular mechanisms underlying pathogenesis of thyroid malignancies has allowed the development of a myriad of effective therapies targeting these underlying mechanisms. Most successful has been the use of TKIs which can portend improvement in PFS, and even OS, in the case of lenvatinib. Targeting BRAF mutations as well as inhibition of RET has led to further approvals for treatments in this space. Nonetheless, many patients develop resistance to these therapies, and therefore the focus on developing newer, more effective treatments has become even more pressing.
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Head and neck squamous cell carcinoma (HNSCC) is the sixth most incident cancer worldwide. More than half of HNSCC patients experience locoregional or distant relapse to treatment despite aggressive multimodal therapeutic approaches that include surgical resection, radiation therapy, and adjuvant chemotherapy. Before the arrival of immunotherapy, systemic chemotherapy was previously employed as the standard first-line protocol with an association of cisplatin or carboplatin plus 5-fluorouracil plus cetuximab (anti-EFGR antibody). Unfortunately, acquisition of therapy resistance is common in patients with HNSCC and often results in local and distant failure. Despite our better understanding of HNSCC biology, no other molecular-targeted agent has been approved for HNSCC. In this review, we outline the mechanisms of resistance to the therapeutic strategies currently used in HNSCC, discuss combination treatment strategies to overcome them, and summarize the therapeutic regimens that are presently being evaluated in early- and late-phase clinical trials.
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Introduction

Head and neck squamous cell carcinoma (HNSCC) is the sixth most incident cancer worldwide, responsible for more than 700,000 cases worldwide per year and around 350,000 deaths, making it a particularly fatal disease (1).

Squamous cell cancers of the oral cavity, the pharynx, and the larynx (the most frequent) are linked to smoking and alcohol consumption, and squamous cell carcinomas of the oropharynx are most commonly associated with human papilloma virus (HPV) infection, especially for young or nonsmoker patients. The incidence of the latter is rising, mostly among men (2). Cigarette- or alcohol-related and HPV-induced cancers are described by the 2017 World Health Organization (WHO) as two different clinical entities with different oncogenic pathways and prognostics (3). Other anatomical localizations of head and neck cancers include the sinus cavities and nasal fossae, which are rare and rather linked to professional and environmental exposures.

More than half of HNSCC patients experience locoregional or distant relapse despite aggressive multimodal therapeutic approaches that include surgical resection (often with neck dissection), radiation therapy (exclusive or postoperative), and adjuvant chemotherapy given as a radiosensitizer (4). After relapse, treatment options are often limited due to a high risk of complications (e.g., fistulas, dysphagia, spinal cord myelopathy) if surgery or reirradiation are attempted. If a salvage surgery (with R0 resection) or reirradiation is indeed deemed unfeasible, then systemic treatment options (detailed in this review) are proposed. Before the arrival of immunotherapy, systemic chemotherapy was employed as the standard first-line protocol with an association of cisplatin or carboplatin and 5-fluorouracil plus cetuximab (anti-EFGR antibody), known as the EXTREME protocol, which confers a dismal median overall survival (OS) of around 10 months (5).

In this review, we outline the mechanisms of resistance to the therapeutic strategies currently used in HNSCC, discuss combination treatment strategies to overcome them, and summarize the therapeutic regimens that are presently being evaluated in early- and late-phase clinical trials.



Mechanisms of Resistance to Chemotherapy

Chemotherapy is currently used as the therapeutic option for advanced HNSCC tumors (T3 or T4), concurrent to radiation, if surgical resection is deferred in the primary setting. For recurrent or metastatic disease and for cases in which first-line treatment with immunotherapy is not feasible, first-line systemic chemotherapy is advised with a protocol that includes cisplatin or carboplatin plus 5-fluorouracil and cetuximab (5, 6). Unfortunately, acquisition of chemotherapy resistance is common in patients with HNSCC and often results in local and distant failure.


Cancer Stem Cells and EMT

Epithelial-to-mesenchymal transition (EMT) is a reversible embryonic transdifferentiation program that allows partial or complete transition from an epithelial to a mesenchymal state (7). Although EMT was initially considered to be involved in invasion and metastatic spread, its key role in the initiation and development of primary tumors as well as in resistance to therapy is also demonstrated (8).

Nasopharyngeal carcinoma (NPC) is a highly invasive head–neck cancer derived from the nasopharyngeal epithelium. Preclinical studies in NPC cells demonstrate that resistance to radiotherapy and adjuvant cisplatin (DDP) chemotherapy is associated with morphological and molecular marker changes consistent with EMT. Mechanistically, depletion of NEDD4 in resistant cells leads to a partial reversion of the EMT phenotype, suggesting that NEDD4 promotes EMT features and chemoresistance of NPC in vitro (9). In a subsequent study, analysis of parental HNE1 and cisplatin-resistant HNE1/DDP NPC cells reveals that the upregulation of miR-139-5p expression inhibits proliferation, invasion, migration, and EMT. In these cells, miR-139-5p expression levels positively correlate with DDP-induced apoptosis, suggesting that miR-139-5p is associated with DDP resistance in human NPC by modulating the EMT (10).

More recently, it was demonstrated that epithelial mesenchymal crosstalk (EMC), which constitutes the interaction of the tumor stroma and associated fibroblasts with epithelial cancer cells, induces a hybrid epithelial–mesenchymal phenotype in HNSCC cells that is associated with chemotherapy resistance, via IL-6/STAT3 pathway activation (11). Interestingly, transcriptome analyses of HNSCC cell lines reveals that STAT1 and STAT3 activation enable aldo-keto reductase family 1 member C1 (AKR1C1)-induced resistance to cisplatin, which can be overcome by ruxolitinib treatment (12).

Cisplatin-resistant oral squamous cell carcinoma (OSCC) cells exhibit an enriched putative cancer stem–like signature with increased expression of CD44 and Oct-4 and enhanced sphere-forming ability, coupled with the acquisition of an EMT phenotype. This study also reveals that, irrespective of drug treatment, cell migration is significantly increased in cisplatin-resistant cell lines compared with drug-sensitive cells. In line with these observations, bioinformatic analysis of miRNA–mRNA networks in cisplatin-resistant OSCC cells reveals the upregulation of ATP-binding cassette (ABC) transporter genes, genes associated with inhibition of apoptosis (e.g., BIRC family) and cancer stem cell (CSC) marker CD44 (13).

A subpopulation of CSCs characterized by high levels of CD44v3 and aldehyde dehydrogenase-1 (ALDH1) expression has been identified in HNSCC-derived HSC-3 cells and HNSCC patient samples. In HSC-3 cells, it is shown that hyaluronan (HA) stimulates the interaction of CD44v3 with Oct-4-Sox2-Nanog, which results in the nuclear translocation of these three CSC transcription factors. Notably, it is demonstrated that Oct-4-Sox2-Nanog– dependent activation of miR-302 promotes the upregulation of the survival proteins cIAP-1, cIAP-2, and XIAP, leading to self-renewal and cisplatin resistance. In this context, transfection with an anti-miR-302 inhibitor is shown to downregulate the expression of these survival proteins and to abrogate the HA-CD44v3–mediated sphere formation and chemoresistance (14). It is noteworthy that the histone methyltransferase DOT1L is also upregulated by HA in CSCs isolated from HSC-3 cells and results in the overexpression of RhoGTPases and survival proteins involved in cell invasion and cisplatin resistance (15).

Inhibition of the aldehyde dehydrogenase 1 family member A1 (ALDH1A1) in cisplatin-resistant HNSCC cells results in downregulation of CSC markers that are diminished in migratory, self-renewal, and tumorigenic potential and resensitizes HNSCC cells to cisplatin. These observations are further validated in four ex vivo explants from HNSCC patients in which combined treatment of cisplatin and NCT-501, a theophylline-based inhibitor of ALDH1A1, results in a significant decrease in proliferating cells as compared with monotherapy (16). In a subsequent study, gene set enrichment analysis identified enhanced FGF2 expression in cisplatin-resistant ALDHhigh/CD44high HNSCC cells. Pharmacological inhibition of FGF signaling using BGJ398 preferentially targeted the ALDHhigh/CD44high subpopulation, suggesting that FGFR signaling plays a key role in in vitro stemness and in cisplatin resistance in HNSCC cells (17).

Of note, preclinical studies show that long noncoding RNA FOXD2-AS1 regulates therapeutic resistance in laryngeal squamous cell carcinoma (LSCC) by acting as an upstream activator of STAT3, which is essential to maintain cancer stemness. In LSCC patients, FOXD2-AS1 expression was predictive of poor prognosis in chemotherapy-resistant patients (18).

Overall, these studies show that the acquisition of CSC properties and the transition to a mesenchymal phenotype mediate chemotherapy resistance of HNSCC.



DNA Damage

Cisplatin triggers the formation of phosphorylated histone H2AX (γ H2AX)-positive foci at the site of DNA damage (19), dependent on ATR and via the activation of downstream CHEK1/2 (20). In HNSCC, as well as in other cancer types, altered DNA damage response signaling has been associated with resistance to chemotherapies (21).

Indeed, functional depletion of DDR effectors WDHD1, DSCC1, CSNK2B, POLR2I, and RAD54L in HNSCC cells treated with cisplatin results in decreased ATR serine/threonine kinase (ATR) phosphorylation and reduces cisplatin-induction of γ H2AX foci, suggesting that impaired DDR signaling is a driving mechanism of cisplatin resistance in HNSCC in vitro (21). Moreover, gene expression analysis of pretreatment biopsy specimens from 64 HNSCC patients treated with 5−FU/cisplatin identified that ERCC1 expression is a significant predictor of response to chemotherapy, further indicating that DNA repair is a pivotal mechanism implicated in response to chemotherapy in HNSCC (22).

At present, clinical trials are evaluating the efficacy of targeting DNA damage response in HNSCC. ATR acts as a DNA damage sensor, activating cell cycle checkpoint signaling upon DNA stress. Pharmacological inhibition of ATR using M6620 is currently being tested in combination with cisplatin and radiation therapy in the setting of locally advanced HNSCC (NCT02567422). Similarly, a modular, phase-I/Ib, open-label trial is ongoing to evaluate the efficacy of ceralasertib (AZD6738, ATR inhibitor) in combination with carboplatin (NCT02264678).

Along the same lines, because PARP is involved in DNA repair, inhibition of PARP may enhance the damaging effects of chemotherapy on tumor DNA. A phase-I/II study recently reported the safety and efficacy of veliparib, a PARP inhibitor, in combination with carboplatin-paclitaxel chemotherapy in patients with locoregionally advanced HNSCC (23). The WEE1 tyrosine kinase maintains genomic stability and regulates G2–M transition, particularly in p53-deficient tumors, protecting cells against replication stress and subsequent cell death. A phase-I clinical trial evaluating the triplet combination of AZD1775 (WEE1 inhibitor), cisplatin and docetaxel reported satisfactory results in terms of safety and tolerability as well as promising antitumor efficacy in patients with stage-III/IVB HNSCC (i.e., partial response in 5 patients and stable disease in 4 patients) (24).



Epigenetic Modifications

Resistance to cisplatin-based chemotherapy can be also modulated by epigenetic alterations. Indeed, hypermethylation of the promoter CpG islands of the neurofilament light polypeptide (NEFL) gene is associated with resistance to cisplatin-based chemotherapy in HNSCC cell lines. Functional analyses showed that NEFL interacts with tuberous sclerosis complex 1 (TSC1) at the protein level. Because TSC1 is a negative regulator of the mTOR pathway, it is suggested that NEFL downregulation results in functional activation of the mTOR pathway and, thus, cisplatin resistance. Interestingly, in this study, analysis of more than 50 HNSCC patient samples evidenced that NEFL promoter hypermethylation predicted diminished OS and disease-free survival in patients treated with cisplatin-based chemotherapy (25). A recent clinical trial evaluated the impact of mTOR pathway inhibition in HNSCC patients in the neoadjuvant setting. This study reports that rapamycin treatment was well tolerated, reduced mTOR signaling (i.e., phosphorylation of S6, AKT, and 4EBP) and tumor growth, and resulted in significant clinical responses in 4/16 of patients (1 complete response, 3 partial responses, and 12 stable disease) (26).

Histone modifiers are essential for chromatin dynamics and gene expression, and their dysregulated function may alter gene regulation in favor of oncogenic growth. Elevated expression of p21-activated kinase 2 (PAK2), a binding partner of the Rho GTPases that are implicated in chromatin remodeling, cell proliferation, and apoptosis, is correlated with chemoresistance and is associated with the poor clinical outcome of HNSCC patients. Mechanistically, PAK2 upregulates c-Myc expression, which, in turn, transcriptionally activates and induces pyruvate kinase M2 (PKM2) expression, resulting in reduced aerobic glycolysis, proliferation, and chemotherapeutic resistance of HNSCC cells (27).

Small noncoding RNAs are also key effectors of transcriptional gene silencing in HNSCC. Analysis of global miRNA expression in CD44-expressing HNSCC cells reveals that miR-629-3p expression promotes cell migration and inhibits apoptotic cell death upon cisplatin treatment. Of note, miR-629-3p-transfected cells display a significant enrichment of gene sets associated with drug metabolism and EMT. Interestingly, the role of miR-629-3p in conferring resistance to cisplatin was also observed in a xenograft model, and the expression of miR-629-3p was associated with decreased survival in HNSCC patients, potentially suggesting a physio-pathological role of miR-629-3p in resistance to cisplatin in HNSCC (28).

Enhanced expression of miR-96-5p is shown to promote cell migration but not cell proliferation, in p53-mutant HNSCC cell lines and to drive resistance to radiotherapy and cisplatin-based chemotherapy in vitro (29). Of note, this study identified PTEN, a negative regulator of the intracellular levels of phosphatidylinositol-3,4,5-trisphosphate as a direct target of miR-96-5p through the binding to its cognate site on the 3’UTR of PTEN. Interestingly, functional experiments performed in vitro shows that PTEN depletion recapitulates the biological effects of miR-96-5p overexpression in HNSCC cells as they were less prone to cisplatin-induced cell killing (29).

At present, a noninterventional clinical trial (NCT03953443) is evaluating the impact of expression and epigenetic silencing of microRNAs for predicting therapeutic response and prognosis of HPV-negative HNSCC.

Further knowledge on the epigenetic alterations that promote HNSCC chemoresistance can open the possibility for the development of therapeutic strategies that can be used as an adjuvant therapy associated with conventional chemotherapeutic drugs to enhance treatment effectiveness.



Evasion of apoptosis

The adaptive response to chemotherapy in HNSCC is modulated by changes in the expression of pro- or anti-apoptotic proteins and include defects in cellular responses caused by mutations of tumor suppressor gene TP53 (30, 31).

Survivin (BIRC5), a member of the inhibitor of apoptosis (IAP) gene family, is shown to be significantly upregulated in HNSCC primary tumors and cell lines and to be particularly highly expressed in HPV-negative patients who generally respond poorly to cisplatin treatment (32). Immunohistochemical and mutational analyses on HNSCC biopsies from patients displaying high levels of nuclear survivin (BIRC5) identified the presence of the somatic mutation c.278T>C (p.Phe93Ser). Functional characterization of this mutant by ectopic expression and microinjection experiments revealed that it attenuates the cytoprotective activity of survivin against chemoradiation-induced apoptosis. Therefore, genetic inactivation of survivin may promote an increased therapy response in cancer patients (33).

Interestingly, pharmacological inhibition of survivin using the small molecule YM155, either as a single agent or in combination with cisplatin, evidenced a significant dose-dependent decrease in cell proliferation and the reversion of cisplatin resistance in in vitro and in vivo models of HNSCC. Mechanistically, YM155 induced a rapid reduction of survivin in the cytoplasm, which is key for its antiapoptotic function (32). Thus, survivin inhibition might potentially be a novel strategy to enhance the effectiveness of chemotherapy in HNSCC.

The x-linked inhibitor of apoptosis (XIAP) is an E3 ubiquitin protein ligase that functions through binding to tumor necrosis factor receptor–associated factors TRAF1 and TRAF2 to inhibit apoptosis. Analysis of XIAP expression in tumor samples from 60 patients with advanced HNSCC, before and after chemotherapy, evidenced that XIAP is a predictor of cisplatin response and prognosis for patients with advanced HNSCC. Interestingly, preclinical experiments show that inhibiting XIAP expression with siRNA in XIAP-high HNSCC cells markedly increased their sensitivity to cisplatin treatment (30). Of note, the dual cIAP/XIAP antagonist ASTX660 significantly delays growth of both HPV- and HPV+ human tumor xenografts in combination with radiotherapy.

Resistance to the activity of TNF-related apoptosis inducing ligand (TRAIL), an effector of tumor cell–specific apoptosis, is associated with HPV positivity in HNSCC in vitro. HPV-positive HNSCC cell lines were sensitized to TRAIL-induced cell death by bortezomib-mediated proteasome inhibition via the activation of caspases 8, 9, and 3; increased membrane expression of TRAIL-R2; and G2/M arrest. Of note, XIAP depletion also augmented HPV-positive HNSCC cell death in response to TRAIL alone and in combination with bortezomib (34).



Tumor Microenvironment (TME)

HNSCC tumors are commonly associated with hypoxia, which is characterized by an acute or chronic decline in oxygen tension.

Activin receptor–like kinase (ALK)-1 represents a promising target for antiangiogenic therapy in solid tumors. activin receptor–like kinase-1 ligand trap (ALK1-Fc) is a chimeric protein consisting of the ALK1 extracellular domain fused to the Fc-part of an antibody. ALK1-Fc prevents the binding of BMP9 and BMP10 to the endothelial ALK1 receptor, which results in decreasing angiogenic responses (35). Therapeutic combination of ALK1-Fc with cisplatin is shown to inhibit tumor growth in HNSCC in vivo models more efficiently than chemotherapy alone. Treatment of mice with ALK1-Fc strongly decreased the microvascular density of tumors, increased the pericyte coverage of the remaining tumor vessels, and decreased the hypoxia within the tumor (36). Interestingly, results of an early-phase clinical trial show that the ALK1-Fc displayed promising antitumor activity in HNSCC patients with advanced refractory cancer (35).

Signaling via the SDF-1/CXCR4 axis, a chemokine-receptor pathway, is involved in cancer progression due to its roles in modulation of dendritic cells, enhanced matrix metalloproteinase activity, and the induction of TNF-alpha production and angiogenesis. Analysis of the expression of SDF-1 and CXCR4 in a cohort of 221 patients with locally advanced HNSCC evidenced that SDF-1 is associated with resistance to adjuvant radiotherapy concurrent with cisplatin-based chemotherapy (37). In this study, neither SDF-1 nor CXCR4 expression were associated with distant metastasis or with OS. The functional basis of these observations as well as the potential role of SDF-1/CXCR4 as a therapeutic target to overcome treatment resistance in HNSCC remains to be determined.

In preclinical models of OSCC, combination therapy of cisplatin and inhibitors of VEGFR (i.e., pazopanib and nintedanib) was more potent than treatment with chemotherapy alone (38). The efficacy and toxicity of docetaxel with or without vandetanib, an inhibitor of VEGFR, RET, and EGFR, was investigated in patients with advanced recurrent or metastatic HNSCC. This trial shows only a minor trend toward improved PFS for the combination arm (39). Of note, a current clinical trial is ongoing to evaluate the combination of atezolizumab (humanized IgG1 antibody against PD-L1) and bevacizumab (monoclonal antibody developed against VEGF) in patients with recurrent or metastatic HNSCC (ATHENA, NCT03818061).

The TME also constitutes a reservoir of cancer-associated fibroblasts (CAFs) which, in a close crosstalk with tumor cells, enhance the production of growth factors, cytokines, chemokines, and inflammatory mediators to promote tumor growth (40). CAFs are observed in both primary and metastatic HNSCC, and oral CAFs are reported to acquire rapid growth and increased proliferation and viability compared with normal oral fibroblasts (40). CAF-secreted paracrine factors increase HNSCC migration, invasion, and proliferation in vitro and promote tumor growth and metastases in vivo (i.e., orthotopic floor-of-the-mouth tumor model) (41).

CAFs are also known to mediate resistance to anticancer drugs in HNSCC. In HNSCC cell lines, culture with conditioned medium from a tumor cell/CAF coculture induced cisplatin resistance and increased their colony-formation capacity (11). Interestingly, exosomal miR-196a released by CAFs targets CDKN1B and ING5 and, thus, confers cisplatin resistance in vitro (42). Interestingly, in this context, high levels of plasma exosomal miR-196a are clinically correlated with poor OS and chemoresistance in HNSCC patients. In line with these observations, it is demonstrated that, in OSCC patients, CAFs secrete increased levels of midkine (a heparin-binding growth factor that promotes carcinogenesis and chemoresistance) and abrogated cisplatin-induced cell death (43). Finally, analysis of tumor specimens obtained from 60 OSCC patients who underwent surgery following 5-fluorouracil-based chemoradiotherapy revealed that higher numbers of CAFs and tumor-associated macrophages (TAMs) were significantly correlated with a poor prognosis, suggesting their potential as biomarkers for predicting the clinical response to 5-FU-based chemoradiotherapy (44).

Understanding how CAFs contribute to drug resistance, proliferation, invasion, and metastasis might open up new strategies for the diagnosis, prognosis, and therapy of HNSCC.




Mechanisms of Resistance to Cetuximab

Initially described in 1962 by Cohen (45, 46), the epidermal growth factor receptor (EGFR) is a transmembrane receptor with tyrosine kinase activity (47). Several ligands bind specifically EGFR (e.g., epidermal growth factor [EGF], tumor growth factor-alpha [TGF-alpha], and amphiregulin), and others (betacellulin, heparin-binding growth factor [HB-EGF], and epiregulin) bind to both EGFR and ErbB4 (48–50). Ligand binding induces the homo- or hetero-dimerization of EGFR, which is followed by the activation of downstream signaling, mainly via the RAS–RAF–MEK–ERK, the PI3K–AKT–mTOR, and the JAK–STAT cascades (51). These pathways are involved in the carcinogenesis and invasiveness of many cancer types (52).

Because EGFR is overexpressed in 80%–90% of HNSCC cases, tumors are often addicted to EGFR signaling for sustained survival and proliferation, and this overexpression is correlated with poor prognosis and treatment outcomes (53–55), therapies targeting EGFR have been widely evaluated for HNSCC (56–58): first, intravenous anti-EGFR antibodies that bind to the extracellular domain of the receptor causing its internalization to prevent its activation by other ligand–receptor interactions (59) while favoring antibody-dependent cell-mediated cytotoxicity (i.e., ADCC, which refers to the linking to innate and adaptive antitumor immune responses via NK cells and antigen-presenting cells that lead to EGFR-specific T cells) (60–63) and ii-oral EGFR tyrosine kinase inhibitors (TKI) binding to the intracellular domain of EGFR inhibiting its autophosphorylation (blocking of the ATP binding to the intracellular tyrosine kinase domain of EGFR) and downstream signaling (56, 64, 65).

Cetuximab (CTX), a monoclonal antibody targeting the EGFR extracellular domain, is to date the only targeted therapy that has demonstrated benefits in OS in combination with both radiotherapy for patients with locally advanced HNSCC (66) and chemotherapy (platinum, 5-FU, and CTX) as the first-line treatment of patients with recurrent and/or metastatic HNSCC (5, 67). Of note, CTX has never proven to be effective postoperatively (56, 58, 68).

Despite our better understanding of HNSCC biology (51, 69–71), no other molecular-targeted agent has been approved for HNSCC (12). Furthermore, CTX has shown limited efficacy in HNSCC with an overall response rate of 10%–20%, contrasting with the high rates of EGFR overexpression (51, 72). This underlines the existence of resistance mechanisms, remaining unresolved, but for which several hypotheses have been proposed (48, 56, 64, 67, 73–81) (4, 12, 21, 24, 29–37). The different type of resistance mechanisms to CTX could be defined as follows: alterations of the EGFR-ligand binding, alterations of the EGFR downstream signaling effectors, parallel/bypass pathway activation, alterations of proteins involved in classic cancer pathways, EMT, epigenetic alterations and establishment of an immunosuppressive TME (Figure 1). In this review and for each CTX resistance mechanism, we report preclinical (based on HNSCC cell lines/xenograft) and clinical evidence of CTX resistance as well as ongoing clinical trials of CTX-based combined therapies to overcome CTX resistance (Table 1).




Figure 1 | Molecular mechanisms contributing to Cetuximab resistance, in particular through alterations of the EGFR pathways, activation of bypass pathways and alterations of downstream signaling effectors. Red lines and arrows show mechanisms contributing to Cetuximab resistance, and green lines and arrows show mechanisms contributing to Cetuximab sensitivity. (CTX, Cetuximab; EGFR, Epidermal Growth Factor Receptor; RTK, Tyrosine Kinase Receptor; EMT, epithelial-mesenchymal-transition; uPAR, urokinase-type plasminogen activator receptor; STAT3, signal transducer and activator of transcription 3; PTPRS, Transmembrane Protein Tyrosine Phosphatase RPTPsigma; PTEN, phosphatase and tensin homolog; AURKA, Aurora Kinase A; AURKB, Aurora Kinase B).




Table 1 | Resistance mechanisms to chemotherapy (left), cetuximab (middle) and immunotherapy (right), described in head and neck squamous cell carcinoma.




Alterations in EGFR and Its ligands

Alterations of the antibody–receptor interactions can be induced by either alteration of the EGFR (82–92) or via competition with other EGFR ligands (87, 93–98).


EGFR Alterations

Several EGFR alterations have been reported in preclinical studies. First, loss of the EGFR phosphatase transmembrane protein tyrosine phosphatase RPTP sigma (PTPRS), which is known to directly interact, dephosphorylate, and inactivate EGFR (99), enhances EGFR-induced transformation and promotes EGFR/PI3K pathway activation, resulting in resistance to EGFR inhibition (88). Furthermore, constitutive activation of the EGFR, such as the EGFR variant III (EGFRvIII, activating mutation), results in activation of several downstream modulators (preferentially the PI3K pathway) and participates in increasing tumorigenicity and CTX resistance (92).

On the other hand, several CTX resistance mechanisms are based on the perturbation of CTX binding on EGFR. Indeed, contrary to the classic EGFR located on the plasma membrane, the nuclear EGFR (translocation mediated by the Src family kinases) cannot be targeted by CTX and, thus, functions as a transcription factor for several factors, inducing proliferation (cyclin D1, iNOS, B-myb, and aurora kinase A) (91). Moreover, the single nucleotide polymorphism encoding EGFRK521 (K-allele), which is expressed in >40% of HNSCC cases, has been shown to reduce stability of the EGFR and, thus, the affinity for CTX binding (85). Finally, the two concurrent, nonsynonymous missense G33S and N56K mutations in the extracellular domain of EGFR restrict adoption of a fully closed (tethered) and inactive EGFR conformation, thus, not permitting binding of CTX to the EGFR (82, 86).

Besides the preclinical evidence, clinical studies support some of the previously cited CTX-resistance mechanisms. Based on analysis of n=31 HNSCC (oral cavity) cases, Morris et al. find significant PTPRS loss or deletion in 32% of cases (88). They observed pathway activation (elevated levels of phospho-EGFR and phospho-AKT) in tumors with PTPRS deletion but not in tumors lacking PTPRS deletion. Smilek et al. show that a somatic EGFR mutation located in exon 19 may contribute to the limited clinical response to therapy with CTX plus radiotherapy (n=2/29 patients with advanced HNSCC) (86). Moreover, the high EGFRvIII expression, detected in 17%–42% of HNSCC tumors, was significantly and independently associated with shorter progression-free survival in patients with recurrent or metastatic HNSCC treated by CTX + Docetaxel (87, 92). For some authors, the role of this EGFR polymorphism in CTX resistance remains limited (100). The EGFR extracellular domain mutation G465R is reported to confer resistance to CTX by altering its binding to EGFR in a patient with a regional neck recurrence of an oral cavity HNSCC (83).

CTX-based combined therapy has been tested in the preclinical as well as clinical setting to overcome the previously cited resistance mechanisms. Dasatinib (BMS-354825), a tyrosine kinase inhibitor (TKI), limits the nuclear EGFR translocation (by blocking the Src family kinases), which leads to increased EGFR on the plasma membrane and restores sensitivity to CTX (90). Thus, Dasatinib is currently evaluated in combination with CTX in patients with recurrent HNSCC (NCT01488318, phase 2) (84) as well as in combination with CTX/cisplatin/RT (NCT00882583, phase 1). Interestingly, in the CTX + Dasatinib combination setting, patients with low serum IL6 have shown clinical benefit and improved OS (NCT01488318) (84).



Aberrant Expression of EGFR Ligands

The CTX-EGFR interactions are reduced in the context of competitive interaction with the overexpression of some ligands, such as TGF-α, TGF-β, EGF, HB-EGF, amphiregulin, and the aberrant HER3 ligand heregulin-expression (87, 93–98). Thus, this autocrine/paracrine growth factor production reduces CTX effectiveness in several HNSCC cell lines.

Indeed, based on the analysis of tumor biopsies from n=47 recurrent/metastatic HNSCC, the amphiregulin overexpression (representing 47% of cases) was a statistically significant prognostic factor of worse OS and progression-free survival (87). Yonesaka et al. report that n=2/28 HNSCC tumor samples that presented aberrant heregulin expression comparable to that of HNSCC CTX-resistant cell lines (FaDuCR cells) were resistant to CTX (94).

Interestingly, FaDuCR recovered the sensitivity to CTX in combination with Pertuzumab (anti-HER2 antibody) (94). Indeed, Pertuzumab prevents the binding of HER2 with its ligand (heregulin), avoiding the coupling of HER2/HER3, thus, resulting in the absence of the HER3-AKT pathway activation, which is responsible for inducing CTX resistance.




Alterations of EGFR Downstream Signaling Effectors

Activation of downstream signaling effectors, such as STAT3 (signal transducer and activator of transcription 3) (77, 84, 101–106), Src Kinases (64, 107, 108), RAS/MAPK pathways (86, 96, 109–115), and PI3K/Akt/mTOR pathway (102, 105, 116–127) could induce CTX resistance independently of the EGFR-ligand activation.


STAT3 Activation

STAT3, a member of the STAT family of transcription factors, is considered as an oncogene activated in several cancers, including HNSCC (128). Its activation could be driven by EGFR as well as in an independent EGFR way by another growth factor receptor, the Janus kinase 2 (JAK2) or by the Src kinase family. Furthermore, loss of the PTPRS tumor suppressor gene that dephosphorylates STAT3 may lead to permanent activation of STAT3. Several studies report that hyperactivation of STAT3 is implicated in CTX treatment resistance.

Indeed, several HNSCC cells lines that develop acquired resistance to CTX are characterized by increased total STAT3 expression (77). The role of STAT3 in HNSCC cell CTX that acquires resistance is supported by recovering increased sensitivity to CTX (greater antiproliferative effects and cytotoxicity) when STAT3 is knocked down (104) or by blocking JAK2–STAT3 signaling (using miR-204) (101). Moreover, analysis of n=22 samples from patients with HNSCC tumors that recurred following CTX treatment finds increased phosphorylated STAT3 (103).

Regarding CTX-based combinations, guggulsterone, a natural compound contained in the Commiphora mukul plant resin used in Indian ayurvedic medicine and considered as an anti-STAT3 agent, enhances the efficacy of CTX when combined with CTX (106). Moreover, the combination of CTX + JAK2 inhibitor (miR-204) inhibits STAT3 activation, resulting in inhibition of angiogenesis and promotion of in vivo CTX sensitivity (101). Given that STAT3 may be activated by the Src kinase family, Dasatinib (SRC inhibitor), which is tested in combination with CTX in phase-2 (84) and phase-1 clinical trials (NCT01488318 and NCT00882583, respectively), could provide some insight about the utility of the STAT3 inhibition in overcoming CTX resistance.



Activation of Src Kinases

Src family kinases are frequently overexpressed and/or activated in several cancers, including those arising in the head and neck (85). These nonreceptor protein tyrosine kinases play critical roles in signaling pathways, regulating cell division, motility, adhesion, angiogenesis, and survival (129). Thus, activation of Src kinases could be involved in proliferation/migration/invasion of cancer cells as well as in treatment resistance.

Based on gene expression profiles of CTX-resistant OSCC cells as well as of publicly available data sets, Uzawa et al. identify a 12-gene expression signature of CTX resistance, including the urokinase-type plasminogen activator receptor (uPAR) (107). They show that CTX resistance could be mediated by uPAR upregulation. Indeed, through the uPAR/integrin β1/Src/FAK signal circuit, the uPAR upregulation activates ERK1/2 phosphorylation to maintain cell proliferation/invasion resulting in CTX resistance in vitro and in vivo even in the absence of EGFR overexpression or acquired activating mutations. Src kinases could also induce CTX resistance by EGFR-ligand independent transactivation (cell-substratum adhesion), which phosphorylates ErbB3 to form a heterodimer complex, inducing proliferation via AKT (108).

Based on previous evidence, the CTX-based combination with the Src inhibitor-1 or resveratrol (uPAR inhibitor) are shown to overcome CTX resistance in vitro and in vivo (tumor growth suppression and uPAR downstream protein downregulation), respectively.



Activation of the RAS/MAPK Pathway

The family of mitogen-activated protein kinases (MAPK) are a family of serin-threonin kinases implicated in the regulation of the majority of physiological cellular processes, including proliferation, differentiation, and apoptosis in response to changes in the cellular environment (130). In particular, the Ras/Raf/MEK/ERK1/2 (extracellular signal-regulated protein kinases) cascade is the MAPK signaling cascade most frequently associated with carcinogenesis of several cancer types (131). Regarding HNSCC, this signaling cascade can be activated by several tyrosine kinase receptors, such as EGFR, as well as independently of them by alterations of the Ras/Raf oncogenes. This highlights the variety of CTX-resistance mechanisms involving this signaling cascade.

First, the MAPK signaling pathway activation related to the HNSCC CTX resistance could involve a RAS-activating mutation (G12V HRAS) (113). The restored sensitivity to CTX by silencing H-Ras in H-Ras mutant HNSCC cell lines reinforces this observation (132). However, activation of the RAS/MAPK pathway even in the absence of constitutive gene mutations could lead to CTX resistance (111). Indeed, overexpression the K-Ras, H-Ras, and N-Ras proteins (96) leads to CTX resistance. Furthermore, dysregulation of the regulating proteins of the RAS/MAPK pathway could also contribute to CTX resistance as supported by the low expression of DUSP5 and DUSP6 (negative regulators of ERK1/2) and upregulation of AURKB (100) and AURKA (114), which are key regulators in mitosis.

In the clinical setting, Braig et al. show that acquisition of RAS mutant clones (KRAS G12S, G13C; NRAS Q61K, NRAS A146P; HRAS G13R) correlates significantly with clinical resistance to CTX in a cohort of n=20 patients treated by CTX/platinum/5-fluorouracil treatment with monitoring of the circulating tumoral DNA (ctDNA) (110). The role of the KRAS p.Gly12Val mutation in CTX resistance previously found in vitro, is also demonstrated in only one patient carrying this mutation (among the n=29 studied) associated with an absence of response to treatment (86). Rampias et al. confirm that the HRAS mutation (n=7/50 patients with HNSCC) is associated with de novo resistance to CTX-based therapy (113). Overall, Bossi et al.’s observations (cohort of n=40 recurrent/metastatic HNSCC) are in accordance with others and show that overactivation of the RAS pathway leads to CTX/platinum resistance (111).

On the basis of their results, especially the interesting observation of the crosstalk between the RAS/RAF/MAPK and PI3K/AKT pathways, Rampias et al. tested the combination of CTX + a PI3K inhibitor (LY294002) in an H-Ras mutated cell line and found a marked reduction of their viability (113). Apigenin, an ERK 1/2 inhibitor, in combination with CTX resulted in a significant decrease of HNSCC CTX-resistant cell survival (112). Interestingly, the combination of CTX + tipifarnib (farnesyltransferase inhibitor) showed enhancement of the tipifarnib antitumor effect through concomitant ERK inhibition in vitro and in vivo (109). Finally, a combination of CTX with inhibition of the ERK upregulators, i.e., aurora kinase knockdown (siRNA) and inhibitor (the pan aurora kinase inhibitor R763), showed inhibition of proliferation and increased apoptosis in HNSCC cells lines (112, 114, 115).



PI3K/Akt/mTOR Pathway

The phosphatidylinositol-3-kinase (PI3K)/Akt and the mammalian target of rapamycin (mTOR) signaling pathways are involved in several physiological as well as pathological cellular processes, including proliferation, differentiation, survival, and motility (133). In HNSCC, PI3K/AKT/mTOR signaling is active in more than 90% of HNSCC as a result of EGFR activation, PI3K overexpression, phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PI3KCA) mutations/amplifications, and PTEN mutation (116, 134). Activated PI3K/AKT/mTOR signaling is related to radiotherapy and cytostatic drug resistance, likely through enhanced DNA-repair mechanisms.

Several genetic alterations causing PI3K/AKT/mTOR activation, such as activating mutations in the oncogene PI3KCA or inactivating mutations in the tumor suppressor protein PTEN, are driving CTX resistance in different HNSCC cell lines (125, 127). Indeed, Izumi et al. show that loss of PTEN conferred independence from EGFR activity and resistance to EGFR inhibition by CTX in terms of downstream signaling, proliferation, and tumor growth both in vitro and in in vivo xenograft models (119).

Moreover, Eze et al. recently reported the analysis of PTEN and PIK3CA expression in samples from patients with recurrent or metastatic HNSCC enrolled in two trials of cetuximab-based therapy (n=48 patients in the E5397 trial and n=37 in the NCI-8070 trial) (117). Patients with low PTEN expression had significantly worse survival.

Thus, CTX-based combined therapy has been realized using ATP-competitive PI3K inhibitors as well as mTOR inhibitors (Rapamycin and analogues). Regarding ATP-competitive PI3K inhibitors, the CTX combination with Buparlisib or BKM120 demonstrates the highest antiproliferative effect and inhibition of PI3K/protein kinase B, AKT/mTOR signaling pathways in vitro (122) and in vivo (121). The BYL719 (PI3Kα specific inhibitor), namely Alpelisib (123) and the Copanlisib (highly selective, pan-class I PI3K inhibitors) (120), are shown to improve CTX-induced tumor inhibition in HNSCC CTX-resistant cell lines and PDX. Interestingly, the combination of CTX plus the PKI-587 (PI3K/mTOR inhibitor), namely Gedatolisib, which restored sensitivity to CTX in resistant HNSCC cell lines and xenografts (124), is found to have a greater synergistic enhancement of the CTX effectiveness, especially in basal-like HNSCC cells with mutated CDKN2A (118). Regarding mTOR inhibitors, Rapamycin (Rad001) (126) and Temsirolimus (105) show improving CTX antiproliferative effects in xenografts.

Interestingly, combinations of CTX with PI3K/Akt/mTOR inhibitors are widely investigated in clinical trials. Regarding ATP-competitive PI3K inhibitors, there are several phase-1 and -2 trials enrolling patients with HNSCC to be treated by CTX + Buparlisib (BKM 120) (NCT01816984, phases 1 and 2), Alpelisib (BYL719) (NCT01602315, phases 1b and 2) (126), and Copanlisib (NCT02822482, phases 1b and 2, COPAN-ORL06, specifically for patients harboring a PI3KCA mutation/amplification and/or a PTEN loss). PX-866, a noncompetitive PI3K inhibitor, was also tested in combination with CTX (NCT01252628, phases 1 and 2). Analogues of the rapamycin, temsirolimus (NCT01256385, phase 2, MAESTRO HN) and everolimus (NCT01637194, phase 1; NCT01283334, phases 1 and 2) (57) have already brought some interesting results to overcome CTX resistance.




Bypass-Pathway Activation

Another resistance mechanism involves the abnormal activation of parallel signaling pathways to counteract the blockade of the EGFR signaling by CTX. Thus, cancer cell survival is ensured by increased expression/activation of alternative receptor tyrosine kinases (RTK) (50, 77, 79, 123, 135–150), ensuring the activation of several parallel pathways, including the VEGF pathway (72, 151–153).


Receptor Tyrosine Kinases

Among the growth-factor receptor family, RTK are transmembrane receptors implicated in several physiological as well as pathological (oncogenesis) processes (154). The binding ligand-extracellular domain induces receptor dimerization, activation of the intrinsic tyrosine-kinase activity of the RTK, and activation of downstream signaling cascades implicated in cell proliferation, differentiation, motility, survival, and cell–cell communication (155). Thus, activation of these RTKs is a mechanism of resistance to CTX during HNSCC treatment (50, 77, 79, 123, 135–150).

Indeed, the increased expression and activation of RTK, such as MET, AXL, HER2, HER3, and ROR2, are reported in several CTX-resistant cell lines (148) as well as in vivo (PDX). For example, MET/HGF (146) as well as AXL (123, 139, 148) overexpression and activation stimulate cell proliferation despite CTX treatment in vitro and in vivo, especially through MAPK downstream signaling. Recently, McDaniel et al. investigated the AXL-mediated CTX-resistance mechanisms in HNSCC and report that the tyrosine 821 of AXL mediates resistance to CTX by activation of c-ABL (oncoprotein) (156).

Other ErbB family members, ErbB2 (HER2) (102) and ErbB3 (HER3), could also be implicated in CTX resistance. Indeed, Yonesaka et al. report the persistence of ERK 1/2 signaling caused by the permanent activation of ErbB2 signaling (amplification of the receptor ErbB2 or upregulation of the ligand heregulin) induces CTX resistance in HNSCC cell lines (141). The restoration of CTX sensitivity through inhibition of ErbB2 or disruption of ErbB2/ErbB3 heterodimerization reinforce their observations. On the other hand, this heterodimerization also highlights the role of HER3 activation in resistance to CTX treatment of some HNSCC cell lines (135). The permanent activation of ErbB3/Akt signaling could be caused by an autocrine neuregulin expression (autocrine loop) as well as by aberrant HER3 ligand heregulin expression (94). Furthermore, increased activity of the IGF1R signaling pathways has been reported in several CTX-resistant HNSCC cell lines (136, 137, 143). IGF1R and HER3 activations with partial EGFR persistent activity are intertwined during CTX resistance as supported by the ability of a multitarget mAb mixture against EGFR, HER3, and IGF1R to overcome CTX resistance.

These preclinical observations are supported by clinical evidence. Indeed, in a retrospective cohort of n=57 patients with recurrent/metastatic HNSCC, patients who presented HGF/MET pathway overexpression and activation had worse prognoses (138). Moreover, Chung et al. report the case of a patient with recurrent HNSCC who presented an interesting response to AMG-479 (a monoclonal antibody against IGF-1R) after CTX resistance. Tumor sample analysis suggests the potential benefit of a combined therapy using AMG-479 plus CTX (142).

To overcome CTX-resistance, several combined therapies using RTK inhibitors have been tested. The BET inhibitor JQ1, which binds preferentially to the bromodomains of BRD4, abrogates the expression of the alternative RTK (HER3 and AXL), resulting in significantly delayed acquired resistance in two PDX models of HNSCC (148). Combined with CTX, MET inhibitor PHA-665752 is also shown to restore CTX sensitivity in vitro and in vivo, especially by decreasing akt and ERK1/2 phosphorylation (146, 147). Inhibition of the AXL receptor is explored by using imatinib (which targets c-Abl) in CTX-resistant HNSCC PDX (156). This led to complete tumor regression and a prolonged effect (no recurrence up to 3 months after cessation of treatment). Moreover, the Lida et al. experiment brings general support to the implication of several ErbB family members in CTX resistance. They find that the pan-HER mixture of six antibodies targeting EGFR, HER2, and HER3 decreases HER family receptors in acquired CTX-resistant HNSCC cells lines and overcomes CTX resistance in PDX (98). More precisely, a dual EGFR/HER2 inhibitor with CTX plus Afatinib shows significantly improved tumor volume reduction in CTX-resistant xenografts compared with either agent alone in monotherapy (140). ErbB3 inhibition has also been realized in vitro and in vivo using MM-121 (97, 113) as well as CDX-3379 (ErbB3-specific blocking antibody) (93). These combinations inhibit proliferation through inhibition of PI3K/Akt and ERK signaling pathways. When combined with CTX, the anti-IGF-IR antibody (IMC-A12) A12 provides important inhibitions of cell proliferation and migration in vitro and in vivo (regression of tongue cancer cell xenografts) (144). Although the rationale of dual VEGF and EGFR inhibition is proposed in several other cancers (157), Argiris et al. show that combined targeting of EGFR with CTX and VEGF with bevacizumab enhances growth inhibition both in vitro and in vivo (153).

Given that ErbB3 activation induced by heregulin is previously described as a CTX-resistance mechanism, the combination of Patritumab (U3-1287), an anti-HER3 monoclonal antibody, and CTX with platinum-based therapy was evaluated in a randomized, double-blind, phase-II study of first-line treatment of patients with recurrent or metastatic HNSCC (NCT02633800) (158). Although tolerable, the combination Patritumab + CTX + platinum was not superior to CTX + platinum. Based on the previous rationale as well as on a phase-I study (149), Deeken et al. evaluate the combination of lapatinib (which blocks both EGFR and ErbB2) plus CTX (NCT01184482) in patients with advanced solid malignant tumors, including HNSCC. Results were interesting with an overall response rate of 17% and a clinical benefit rate of 67%.

CDX-3379, an anti-ErbB3 monoclonal antibody, has been recently reported to inhibit tumor ErbB3 phosphorylation in HNSCC and induce measurable tumor regression and was well tolerated (93). Thus, a phase-2 clinical trial (NCT03254927) is ongoing and aims to determine the clinical benefit, safety, and tolerability of combining CDX-3379 and CTX in patients with advanced HNSCC who have previously received CTX and progressed.

IGF-1R inhibitors are also widely explored in combination with CTX for recurrent/metastatic HNSCC. Glisson et al. as well as Ferrarotto et al. report no improvement of progression-free survival and OS using the Cixutumumab + CTX compared with CTX alone (159, 160). The OSI-906, a dual kinase inhibitor of both IGF-1R and insulin receptor was evaluated in combination with CTX among patients with HNSCC (NCT01427205, phase 2), but results are not available. More recently, the combination of CTX plus the anti-IGF-1R antibody A12 (IMC-A12) was evaluated in the neoadjuvant setting for patients with HNSCC NCT00957853 (Phase 2).

Finally, VEGF inhibitors combined with CTX have been also investigated. Although some results are not available (NCT00906360, phase 1, CTX + Sunitinib), others are contradictory. Indeed, although some trials report that bevacizumab + cisplatin + CTX + intensity-modulated radiation therapy (IMRT) in locally advanced HNSCC is associated with favorable efficacy outcomes (NCT00968435, phase 2), Argiris et al. find that adding bevacizumab increases toxicity without apparent improvement in efficacy (NCT00703976, phase 2) (151). Thus, the potential clinical benefit of combined EGFR–VEGF targeting is not clearly established.



Other Signal Transducers

Several proteins involved in classic cancer pathways, such as proliferation, apoptosis, invasion, and metastasis, could be altered and implicated in CTX resistance during HNSCC treatment (64, 115, 161–165).

Among all somatic genomic alterations in HNSCC, the tumor suppressor gene TP53 is the most frequent (166), highlighting its importance in carcinogenesis and progression. Indeed, although the tumor suppressor protein p53 has a critical role in cell cycle arrest, apoptosis, and senescence, loss of its function is linked to disease progression and treatment response (64). Regarding CTX, comparative analysis of sensitive vs. CTX-resistant HNSCC cells reveals the central role of the loss of p53 in the development of acquired resistance to CTX (163).

The precise role of hypoxia in acquired resistance to cetuximab is not clearly established, and further studies are needed. Indeed, Boeckx et al. find that the sensitivity to CTX is not altered but increased in HNSCC cells exposed to prolonged hypoxia (164). On the other hand, Lu et al. report that HNSCC cells with acquired CTX resistance express a high level of the alpha subunit of the hypoxia-inducible factor-1 (HIF-1α) and are highly glycolytic (aerobic glycolysis, i.e., the Warburg effect). Furthermore, the experimental overexpression of HIF-1α confers resistance to CTX as well as abolishes CTX-mediated radiosensitization in HNSCC cells (161).

These preclinical observations have caused Lu et al. to explore the inhibition of hypoxia and its relationship with CTX efficacy. Downregulation of HIF-1α by siRNA or a small molecule inhibitor (1-methyl 1, 9 PA) enhances response of CTX-resistant HNSCC cells to CTX plus radiotherapy (161). Finally, Lu et al. confirm that CTX inhibits HNSCC cell proliferation through inhibition of glycolysis and that the combination of CTX + oxamate (inhibition of LDH-A, an enzyme catalyzing the conversion of pyruvate to lactate in anaerobic conditions) improves the therapeutic effect of CTX in cancer cells (162). As a continuation of their work on the role of hypoxia and glycolysis during HNSCC treatment, Lu et al. explore the role in CTX resistance of the mitochondrial enzyme pyruvate dehydrogenase kinase-1 (PDK1), known to allow the switching glucose metabolism toward aerobic glycolysis in cancer cells (165). They found that the combination of CTX plus PDK1 knockdown (siRNA) or with pharmacological inhibition of PDK1 with dichloroacetic acid (DCA) overcomes CTX-resistance in vitro and in vivo (xenografts) thanks to the overproduction of reactive oxygen species (ROS) and the subsequent apoptosis.




Epithelial-to-Mesenchymal Transition

The importance of EMT in human disease, especially in carcinogenesis, has been reviewed elsewhere (167). The EMT can be considered as a continuum of multiple and dynamic transitional states whereby cells exhibit epithelial, intermediate, and mesenchymal phenotypes. Regarding HNSCC, acquisition of an EMT phenotype (modulation of cell polarity and adhesion) by cancer cells is involved in disease progression as well as in CTX resistance (168–179).

Indeed, several authors report that HNSCC cells exhibiting a mesenchymal-like phenotype are resistant to CTX treatment in vitro and in vivo (xenografts) (174, 176, 177). Several potential mechanisms implicated in this EMT-induced CTX resistance are observed, such as (i) expression of lymphotoxin-b; (ii) methylation of EGFR that promotes the EGFR ligand-binding ability and dimerization (EGFR persistent activity) (169); (iii) secretion of CTX-containing extracellular vesicles, which lead to cancer cell protection (179); (iv) upregulation of EMT-related genes (133), especially by epigenetic regulation (170, 180); and (v) loss of the tumor suppressor gene SMAD4, which induces JNK and MAPK pathway activation (172, 173). Indeed, Ozawa et al. find that SMAD4 loss is associated with CTX resistance and poor survival in HPV-negative patients (cohort of n=130 newly diagnosed and n=43 patients with recurrent HNSCC) (172). Thus, Ozawa et al. tested the combination of CTX + JNK inhibitor (SP600125) or MAPK/MEK inhibitor (U0126) and show that it contributes to overcome CTX resistance in vitro.

Moreover, the development of CTX resistance could also be accompanied by increasing hedgehog pathway transcription factor expression in vitro (175). Thus, Keysar et al. tested the combination of CTX and IPI-926 (hedgehog pathway inhibitor) in four different PDX models. This combination forced tumor cells into an EGFR-dependent state and blocked tumor recurrences.



Epigenetic Modifications

Epigenetic alterations, including DNA methylation, histone modifications, chromatin remodeling, and noncoding RNAs, are frequently involved in head and neck carcinogenesis, tumor progression, and resistance to therapy (137), especially to CTX (75).

As previously described, Kagohara et al. report that genes associated with CTX resistance in HNSCC cell lines, including TFAP2A, which regulates growth factor receptors and EMT, are epigenetically regulated (170). Stein-O’Brien et al. show that FGFR1 demethylation is associated with CTX resistance and this type of epigenetic alteration might stabilize the resistant phenotype (171). Interestingly, Shimizu et al. recently reported that nicotine (one of the main tobacco components) contributes to CTX resistance in vitro as well as in vivo (xenografts) (181). Indeed, they show that nicotine induces, through the nicotinic acetylcholine receptor, both EGFR phosphorylation (and the subsequent Akt and mTOR downstream cascade activation) and nuclear translocation of the phosphorylated EGFR.



Establishment of an Immunosuppressive TME

In addition to all the previously cited intrinsic resistance mechanisms, there are also extrinsic resistance mechanisms, i.e., involving the TME (182). These mechanisms encompass, in fact, the cancer cell–TME crosstalk, contributing to CTX resistance (40, 75). In HNSCC, establishment of an immunosuppressive microenvironment is an important resistance mechanism to treatment, especially to CTX (6, 70, 183, 184) (Figure 2).




Figure 2 | Molecular mechanisms contributing to Cetuximab resistance through the establishment of an immunosuppressive TME. Red lines and arrows show mechanisms contributing to Cetuximab resistance, and green lines and arrows show mechanisms contributing to Cetuximab sensitivity. (EGFR, Epidermal Growth Factor Receptor; NK, Natural Killer; PD1, Programmed death 1; PDL1, Programmed Death Ligand 1; KIR, Killer Immunoglobulin-like Receptor; ADCC, Antibody-dependent cellular cytotoxicity; HLA-C, Human leukocyte antigen-C; TGF, transforming growth factor; Treg, regulatory T-cells; MDSC, Myeloid-derived suppressor cells).




Regulatory T Cells (Tregs) and Myeloid-Derived Suppressor Cells (MDSC) Proliferation

Proliferation of immunosuppressive cells, such T regs and MDSC, in response to CTX treatment is one of the key resistance mechanisms (185–188). Indeed, several coculture experiments show that CTX expands CTLA-4+FOXP3+ Tregs in part by inducing dendritic cell maturation. These Tregs lead to CTX resistance by suppressing the CTX-mediated ADCC (cytolytic functions of NK cells) (188). Based on the analysis of blood samples from CTX-treated patients with locally advanced/metastatic (stage III/IV) HNSCC (n=22 patients, NCT 00226239 and n=18, NCT 01218048), Jie et al. confirm their in vitro observations (188). Indeed, they find that CTX increased the frequency of intratumoral Tregs expressing the inhibitory checkpoint cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), which is known to inhibit T cell activation (6). Thus, Tregs suppress the CTX-mediated ADCC. Their presence is correlated with poor clinical outcomes in these cohorts. Based on these results, Jie et al. tested CTX in combination with ipilimumab, a monoclonal antibody that also induces NK cell–mediated ADCC. Ipilimumab treatment enhanced the CTX-mediated ADCC by eliminating Tregs (targeting CTLA-4), allowing effector T cell activation and restoration of the cytolytic functions of NK cells (n=6 HNSCC tumors) (188).

Furthermore, Shayan et al. hypothesized that the combination of CTX plus motolimod, a small-molecule TLR8 agonist that can activate monocytes, DCs, and NK cells (189), might enhance T cell stimulation and CTX effects (187). They find that the TLR8 stimulation through motolimod skewed monocytes toward an antitumor M1 phenotype and reversed MDSC suppression of T cell proliferation. These in vitro observations are confirmed in patients. Indeed, in a phase-Ib trial (NCT02124850) enrolling n=14 patients with previously untreated stage-III/IV HNSCC, Shayan et al. tested the combination of CTX plus motolimod (formerly VTX-2337) (187). The combination reversed MDSC-induced immunosuppression and improved antitumor immunity with increased circulating tumor antigen-specific T cells (EGFR specific) and increased the number and function of tumor-infiltrating CD8 T cells. These encouraging results are confirmed in another phase-Ib study (n=13 patients with recurrent/metastatic HNSCC, NCT01334177) demonstrating the significant increasing antitumor activity of this combination (increased plasma cytokines and activated circulating NK cells). To finish, the potential benefit of adding motolimod to the standard EXTREME regimen (CTX + platinum + fluorouracil) was evaluated in a phase-2 trial enrolling n=195 patients with recurrent/metastatic HNSCC (NCT01836029) (185). Ferris et al. find that the combination fails to prove a benefit for survival when considering the intent-to-treat population, but significant benefits are observed when considering only the selected subgroup of patients with HPV-positive tumors and injection site reactions.



T Cell Exhaustion/Impairment

HNSCCs are among the most immune-infiltrated cancers, and several mechanisms are implemented by tumor cells to escape to the host immune defense system (190, 191). The immune-modulatory effect of CTX treatment, in particular ADCC, might be inhibited by cancer cells through several mechanisms inducing T cell exhaustion/impairment and all CTX resistance (67, 97, 192–204). Indeed, to counteract the antitumor activity of CTX, tumor cells express TGF-β, which inhibits the expression of cytotoxic effector molecules in immune cells (Apo2L/TRAIL, CD95L/FasL, granzyme B, and IFN-γ) and suppresses their ability to induce cetuximab-mediated ADCC (97).

Moreover, in a cohort of n=18 patients with stage-III/IV HNSCC treated by CTX alone (NCT 01218048), Jie et al. find that the increased frequency of PD-1+ and TIM-3+ tumor-infiltrating lymphocytes (TILs) during CTX treatment inversely correlates with objective response (200). Besides PD-1 and TIM immune checkpoint (ICP) receptors, KIR, the ICP on NK cells that modulate their activation, is also indirectly implicated in CTX resistance. Indeed, Faden et al. report a statistically significant increase of missense mutations and loss of heterozygosity in HLA-C (the ligand for KIR) in patients not responding to CTX compared with responders (196).

In accordance with the previously cited in vitro observations, several CTX combinations have been tested in the preclinic as well as clinic setting.

For example, Bedi et al. explored the combined effect of CTX and TGF-β blocking in vivo (PDX). Although CTX alone forced the selection of resistant clones, i.e., TGF-β–overexpressing tumor cells, the combined treatment prevented it and induced complete tumor regression (97). In the same way, Faden et al. observed increased HNSCC cell killing when combining CTX and lirilumab, a monoclonal antibody that blocks NK inhibitory KIR signaling (196). Moreover, the upregulation of CD137 or 4-1BB (a member of the TNF-receptor superfamily, which is broadly induced and activated on several effective immune cells) was corelated to clinical response to neoadjuvant CTX (NCT01218048). Srivastava et al. tested the effect on several HNSCC cell lines of the combination CTX plus urelumab (BMS-663513, CD137-agonist monoclonal antibody) (201). This combination enhanced the CTX-mediated ADCC as supported by the increased NK-cell survival, DC maturation, and tumor antigen cross-presentation. Regarding other ICP inhibitory signals, Concha-Benavente et al. explored several HNSCC cell lines and found that the programmed death ligand-1 (PD-L1), which limits the function of activated T lymphocytes when they interact with the ICP receptor programmed death-1 (PD-1), is expressed by tumor cells in an EGFR- and JAK2/STAT1-dependent manner (159). Thus, they tested the combination of CTX and JAK2 inhibition. They found that JAK2 inhibition prevented tumor PD-L1 expression and that the combination enhanced the CTX NK-mediated killing via ADCC against PD-L1+ HNSCC cells.

The better comprehension of immune evasion mechanisms as well as of the immune-modulatory effect of CTX, i.e., CTX-mediated ADCC, brings evidence to support the evaluation of combined approaches with ICP inhibitors in both locally advanced and recurrent/metastatic HNSCC (6, 67, 192). Among the tested agents, inhibition of the PD-1/PD-L1 synapse is widely explored. The anti PD-1 Nivolumab, for which efficacy and safety prior to CTX in HNSCC has been recently reported (CheckMate 141) (205), is actually tested in combination with CTX in phase-1 and -2 trials for patients with recurrent/metastatic HNSCC (NCT03370276). Sacco et al. recently reported some preliminary results of the first trial evaluating the antitumor activity of anti-PD-1 Pembrolizumab combined with CTX in n=33 patients with platinum-refractory/ineligible, recurrent/metastatic HNSCC (NCT03082534, phase 2) (197). Results are promising with an observed 41% response rate. Regarding anti PD-L1, Durvalumab combined with CTX and radiotherapy is currently tested in a phase-I/II clinical trial (NCT03051906, DUCRO) (193). Based on previous safety studies (154, 163, 167), several clinical trials are testing the anti PD-L1 Avelumab in combination with CTX (NCT03494322, phase 2 EACH) (206) +/- radiotherapy (NCT02999087 phase 3 REACH) or Palbociclib (a selective CDK4/6 inhibitor) (NCT03498378 phase 1 and NCT02101034 phase 2) (195). Other interesting combinations involve the 4-1BB agonist Urelumab (NCT02110082) (201), the anti-CTLA-4 monoclonal antibody ipilimumab (NCT01935921, phase 1) (202) and Monalizumab (anti NKG2A receptors expressed on TIL-CD8+ and NK cells) (NCT02643550) (199).



Toll-Like Receptor 4 (TLR4) Pathway Activation

TLR4 is an innate immune receptor involved in defense against microbial agents by recognizing inflammation-associated microbial ligands (such as lipopolysaccharide) and promoting the activity of innate immune cells (207). TLR4 are also expressed by tumor cells, and the role of the TLR4 signaling pathway in the TME has been reviewed elsewhere (208). Unfortunately, by inducing immunosuppressive cytokines, apoptosis resistance, and EMT, the TLR4 signaling pathway can promote cancer cells’ immune escape in several cancer types (including lung, pancreas, and ovarian cancers, HNSCC) as well as resistance to therapy (paclitaxel in ovarian cancer) (209–212).

Indeed, Ju et al. recently reported that the crosstalk between the EGFR and TLR4 pathways could participate in CTX resistance in vitro and in vivo (xenograft) (213). They found that EGFR inhibition led to decreased MyD88 degradation, and thus, MyD88 could activate TLR4 (receptor homodimerization). TLR4 activation induced activation of NF-κB and MAPK signaling pathways, resulting in the release of proinflammatory cytokines (TNF-α, iNOS, COX2, PGE2, NO) favoring EGFR permanent activation as well as the release of anti-apoptosis proteins (Bcl-2, Bcl-xl) allowing tumor cell survival. Overall, the TLR4 signaling pathway leads to CTX-resistance. Thus, Ju et al. tested the combination of CTX and a TLR4 inhibitor (TAK242). They find that this combination overcomes acquired CTX resistance in vivo, in particular by decreasing the secretion of pro-inflammatory cytokines (TNF-α, PGE2, and NO) (175).



CAF Proliferation

Among the different components of the HNSCC TME, CAFs are among the most critical elements contributing to proliferation, invasion, and metastasis (214), in particular by altering the antitumor immune response (215, 216). Furthermore, CAFs have been shown to contribute to drug resistance in HNSCC (e.g., platinum and CTX) (42, 217–219).

Indeed, during CTX treatment, CAFs, especially those activated by TGF-β (218), participate in resistance by secreting immunosuppressive factors, such as IL-6, HGF, and metalloproteinases (219). Thus, co-inhibition of TGF-β and HNSCC cells by the combination of CTX + SIS3 (an inhibitor of the TGF-β pathway), delayed tumor progression and lowered tumor volume/weight (HNSCC PDX) (218). Johansson et al. also tested the combined effect of CTX + MMP inhibitor III (inhibiting MMP-1, -2, -3, -7, and -13), which significantly reduced the protective effect of CAFs (219).





Immunotherapy in HNSCC

HNSCC is among the most inflamed, immune-infiltrated cancers, especially with CD8+ TILs and NK cells (183). A high genetic instability and somatic mutation rate is often observed (220, 221) (about 180 somatic mutations per mega base), in either HPV positive or negative tumors (222, 223). Immunogenicity of HNSCC can result from the overexpressed but nonmutated native proteins that have escaped central tolerance, neo-antigens derived from mutated proteins (224), or HPV-induced viral antigens (e.g., oncogenic drivers E6 and E7) (225). The microenvironment can also vary in terms of intensity or constitution depending on carcinogens or localization (226).

Genetic and epigenetic alterations in cancer cells create a vast array of neoepitopes potentially recognizable by the immune system. However, a key feature of malignant cells is their ability to escape recognition by the immune system, and the dysregulation of immune checkpoints, such as PD-L1, in tumors appears to be a major immune-resistance mechanism affecting T cell response. It was, hence, shown that the reversal of the anergic state of T lymphocytes is possible via the blockade of coinhibitory signals (227), and research initially focused mainly on immune checkpoint inhibitors (ICI) of the PD-L1/PD-1 axis. These antibodies (Abs) have since completely transformed the treatment of R/M HNSCC.

The expression of PDL1 is positive in most cases, estimated at almost 60%–70% with a higher expression in HPV+ compared to HPV- tumors (228, 229). It results either from an immune-adaptive phenomenon induced by IFNγ or from intrinsic oncogenic events, such as the mutation/deletion of the PTEN suppressor gene or the deregulation of the AKT/mTOR, NF-kB and mitogen-activated protein kinase (MAPK) pathways (230). PD-1 binding with PD-L1/PD-L2 causes immunosuppression via reduced t cell receptor (TCR) signaling, reduced cytokine production, reduced target cell lysis, altered lymphocyte motility, and metabolic reprogramming (231).

After showing antitumor activity in multiple other tumor types, nivolumab was the first anti-PD-1 agent to improve OS in recurrent/metastatic (R/M) HNSCC progressing after a first-line platinum-based therapy in the Checkmate 141 trial with a 32% reduction in the risk of death (205, 232). OS was 7.7 months compared with 5.1 months with chemotherapy. Benefit was greater in ≥1% PD-L1 positive (PD-L1+) TPS (tumor cell membrane positivity for PD-L1 or tumor proportion score) patients with an OS of 8.2 versus 4.7 months. Pembrolizumab is the other agent to show efficacy in the second line in the Keynote 0-40 trial (233). Median OS was 8.4 vs 6.9 months with a hazard ratio (HR) of 0.80. Contrary to the Checkmate 141 essay, crossover was allowed. Subgroup analysis shows that, for PD-L1 TPS ≥ 50% patients, survival was significantly increased from 7.9 to 11.6 months with immunotherapy, whereas there was no difference for the PD-L1<50% population.

This same agent is the new standard of front-line therapy in R/M HNSCC following the results of the Keynote-048 trial comparing pembrolizumab alone or in combination with platinum-based and 5FU chemotherapy to the EXTREME standard of care protocol (cisplatin or carboplatin, 5-fluorouracile (5FU) and cetuximab) (234). Survival was significantly increased with pembrolizumab compared with the EXTREME regimen for PD-L1 ≥20 CPS (expression on both tumor cells and immune cells in the microenvironment or combined positive score) patients (14.7 vs. 11 months) and PD-L1 ≥1 CPS patients (12.3 vs. 10.4 months) but not in the total population (11.5 vs. 10.7 months). It is important to note that the experimental treatment was deleterious for some patients in the beginning with more deaths occurring in the first 6 months. Pembrolizumab added to chemotherapy significantly improved OS in the total population with safety comparable to the EXTREME arm (13 vs. 10.7 months). The median duration of response was impressive with pembrolizumab at 22.6 months (vs. 4.5 for EXTREME). Tolerance was also far better with immunotherapy. The FDA approved pembrolizumab for use in combination with platinum and fluorouracil for all patients and as a single agent for patients with a CPS ≥1. In Europe, the EMA approved the use of pembrolizumab alone or in combination for patients with a CPS ≥1. Unlike PD-L1, blockade of cytotoxic T-lymphocyte antigen 4 (CTLA4) as monotherapy has not proven beneficial in HNSCC.

Evidently, monotherapy with ICI seems to be a losing battle despite providing substantial clinical improvements over the previous standards of care. The majority of patients do not respond to treatment, and durable responses are observed only in a minority (generally less than one third) of patients.


Resistance to Immune Checkpoint Inhibitors

Resistance to ICI can be primary (never-responder patients) or secondary (acquired after a certain amount of time of response). It can also be classified as intrinsic to tumor cells (cancer cells directly induce immune resistance via various mechanisms) or extrinsic (other cells or factors mediate immune resistance).

HNSCC hijacks numerous cellular and molecular immunomodulatory pathways to evade recognition and eradication by the immune system. Mechanisms of immune evasion include direct T cell suppression with surface or soluble inhibitory factors, decreased immune stimulation, and the recruitment of immuno-suppressive cell populations (231). In this section, we review the different types of resistance reported in HNSCC and present some of the currently studied strategies to overcome them.



Intrinsic Resistance


Tumor Immunogenicity and Antigen Presentation

HNSCC is one of the cancers with the highest levels of tumor mutational burden (TMB), accompanying elevated neoantigen expression (220). These tumoral neoantigens that derive from nonsynonymous mutations drive (T lymphocytes) TL cytotoxic response against tumor cells. In that sense, a positive correlation between response and TMB was found in a recent meta-analysis (235). Constant interactions between immune and cancer cells can result in a selection of subclones lacking the expression of neoantigens, subsequently resulting in poor immunogenicity and decreasing efficacy of ICI (236). This could explain how some HNSCC tumors with high TMB are unresponsive to ICI.

Furthermore, deficiencies in antigen presentation can result in primary or acquired resistance to ICI as shown in multiple studies (237, 238). This includes downregulation of MHC class I (MHC-I) and loss of function (e.g., truncating mutations) of β2-microglobulin (238). HNSCC has been shown to alter neoantigen presentation and processing by altering key genes, such as signal transducer and activator of signal (STAT) 1 and other antigen processing machinery components (239, 240).

Combining ICI with radiation therapy is a promising strategy as radiotherapy leads to an increased rate of neoantigens and antigen presentation induced by DC activation, increased cytokine production, and tumor cell death, promoting a TIL phenotype (241, 242). Chemotherapy increases antigen release upon cell death and, thus, the priming of cytotoxic TL (243), and this was the rational in combining platinum-based chemotherapy with ICI in the Keynote-048 trial that resulted in added benefit (234).

Emerging novel therapies include oncolytic virus therapy and cancer vaccines with tumor peptides or DCs (244, 245). Their aim is to enhance antigen presentation and TL priming. Oncolytic viruses can also directly infect and induce lysis of tumor cells. Talimogene laherparepvec (TVEC), which is derived from herpes simplex virus type 1, is currently under evaluation in combination with pembrolizumab in the Keynote-137 trial in R/M HNSCC patients. Other novel therapeutics, such as toll-like receptor (TLR) agonists (NCT02521870) and adoptive cell therapy (NCT03247309), are also being evaluated in this same context.



Oncogenic Pathways

Aberrations in canonical oncogenic pathways can change the TME by altering cytokine production and immune cell composition. These include the MAPK (246), WNT/β-catenin (247), and PI3K pathways (248). The activation of the latter creates an immunosuppressive TME. Combined inhibition of PD-1 and PI3K in a preclinical model of HNSCC demonstrates a synergistic growth inhibitory effect and increased survival of mice by activating an immunostimulatory transcriptional program, enhancing T cell cytotoxicity and expression of proinflammatory cytokines (249).



Soluble Molecules

HNSCC cells can also avoid T cell rejection by secreting immunosuppressive exosomes containing transforming growth factor (TGF) β, PD-1, and CTLA4, which impair T and NK cell functions and upregulate Tregs (250). They can also produce and secrete protumoral cytokines, including TGF-β, interleukin (IL)-6, and IL-10 (251). Tumor cells can overexpress Indoleamine 2,3-dioxygenase 1 (IDO1), a rate-limiting enzyme that converts tryptophan to kynurenine, leading to an immune suppression through T cell apoptosis and loss of function. In a study of the immune microenvironment of HPV-negative OSCC from never-smoker and never-drinker (NSND) patients, it was suggested that blockade of IDO1 and PD-1/PD-L1 could insure a higher clinical benefit. However, a phase-III clinical trial evaluating Epacadostat, an IDO inhibitor, in combination with Pembrolizumab was halted after a similar trial in melanoma revealed no improvement compared with the control arm (252).




Extrinsic Resistance


Inhibitory Checkpoint Molecules

Overexpression of alternative immune checkpoints can be a source of adaptive resistance to ICI. These receptors serve to limit effector functions of the immune system to prevent autoimmunity in a normal state. Multiple inhibitory immune checkpoint receptors with different cell distributions and expression patterns have been described, including PD-L1, CTLA4, lymphocyte-activation gene 3 (LAG-3), T-cell immunoglobulin, mucin domain-3 protein (TIM-3), B and T lymphocyte attenuator (BTLA), V-domain immunoglobulin-containing suppressor of T cell activation (VISTA), and T cell immunoreceptor tyrosine-based inhibition motif domain (TIGIT) (253, 254).

PD-L1 status has been shown to be partially correlated with response to ICI in HNSCC, but complete responses have been observed in PD-L1-negative patients (232–234). CTLA4 is upregulated in HNSCC tumor cells and enriched on Treg TILs (255). These cells are a subset of CD4+ T cells with immunosuppressive effects through various humoral and cellular mechanisms, such as CTLA4-mediated suppression of antigen-presenting cells (256). LAG-3 is expressed on activated CD4+ and CD8+ T cells, NK cells, B cells, and DCs (257). It binds with major histocompatibility complex class II (MHCII) and is highly expressed on Tregs. It was shown that blockade of LAG-3 decreases the inhibitory function of these cells (257). TIM-3 is expressed on both T and NK cells and binds with galectin-9 (258). When specifically coexpressed with PD-1, TIM-3 is the signature of an exhausted T cell phenotype (259).

Because these alternate coinhibitory receptors induce T-cell exhaustion (231), they have been identified as a putative strategy to overcome resistance to PD-1 in previous and many ongoing studies. Based on these observations, two essays of ICI anti-PD1 and anti-CTLA4 combination in HNSCC have been reported to date (260). The CONDOR trial compared outcomes of patients who had low/negative PD-L1 (TPS<25%) tumors and had progressed after first-line platinum-containing therapy. Patients were treated with either durvalumab, an anti-PDL1 Ab, or tremelimumab, an anti-CTLA4 Ab, or the combination (260). Results were deceiving as there was no significant increase in response rate (RR) (7.8% vs. 9.2%), PFS (2 vs. 1.9 months) or OS (7.6 vs. 6 months) compared with durvalumab alone. One toxic death from acute respiratory failure was attributed to the combination regimen. The same combination failed to improve survival regardless of PD-L1 status in the EAGLE trial (261). Monotherapy with the anti-CTLA4 agent in CONDOR appeared clearly inefficient with a 1.6% RR, a 1.9 and 5.5 median PFS and OS, respectively (260). The authors hypothesize that the lack of efficacy of tremelimumab may be in part related to its mechanism of action, which, as an IgG2 Ab, does not cause lysis of regulatory T cells through ADCC, contrary to what is observed with ipilimumab, another anti-CTLA4 agent (262).

Inhibitors of other checkpoint molecules, such as TIM-3 and LAG-3, are still in earlier phases of development. For example, blockade of TIM-3, whose expression is synonymous to T cell exhaustion, is efficient in producing an antitumoral T cell response in a mouse model of HNSCC (263).

Inhibitory checkpoints can also be expressed on the surface of innate immune cells, such as NK cells. The inhibitory killer immunoglobulin-like receptor (KIR) 2DL-1, -2, -3 receptors, which partially control NK cell activation upon binding with their ligands, primarily human leukocyte antigen-C (HLA-C) molecules, can be targeted by Lirilumab, a fully human IgG4 monoclonal Ab. PD-1 blocking on T cells can induce the release of cytokines, such as IL-2, that enhance NK cell function, whereas blockade of KIR can result in the secretion of IFN-γ that may boost T cell–mediated antitumor responses (264). This rationale of NK–T cell crosstalk led to the testing of the combination in phase-1/2 trials (265).



Stimulatory Agonist Molecules

The balance between coinhibitory and costimulatory signals is what determines the state of the immune response. Costimulatory agonists include Ox40, 4-1BB, inducible T cell co-stimulator (ICOS), and CD40. Ox40 is expressed on the surface of T cells and promotes proliferation and IFN-y production. It is shown to be present in HNSCC, but expression of its ligand (Ox40L) is reduced, rendering this pathway ineffective (266). ICOS is expressed on the same cells, promoting a Th2 response [62], and 4-1BB, present on the surface of activated T cells, NK cells, and DCs, is shown to be downregulated in HNSCC patients (267).

Many promising ongoing trials are evaluating receptor agonists in order to reverse resistance to ICI and augment durable responses. For example, agonists of ICOS are being evaluated in combination with anti-PD-1, anti-CTLA-4, and chemotherapy in various tumors, including HNSCC (NCT03693612, NCT02904226). In addition, urelumab (an agonistic 4-1BB monoclonal antibody), is evaluated in combination with cetuximab (NCT02110082) in R/M HNSCC patients.



Immunosuppressive Cells

In addition to all the complex interactions between coinhibitory and costimulatory pathways, immunosuppressive cells can modulate the immune response and create a protumoral environment via multiple diverse mechanisms (268). Their recruitment to the TME is regulated by HNSCC cells. MDSCs, Tregs, and TAMs all modulate NK and T cell responses to various degrees.

MDSCs are an immature myeloid cell population that promotes HNSCC invasiveness, angiogenesis, and metastasis (269, 270) by secreting immunosuppressive enzymes, such as enzymes arginase 1 (Arg-1) and nitric oxide synthase (iNOS) (251). Their presence correlates with poor outcomes with ICI as shown in melanoma patients (271). Monoclonal Ab and small molecule inhibitors that inhibit MSDC functions are currently investigated in R/M HNSCC patients in various clinical trials.

Tregs facilitate self-tolerance through direct contact and inhibitory cytokines, such as IL-10 and TGF-β (272), they also play a key role in immune evasion in HNSCC. These cells preferentially express CCR4 (believed to have a major role in the recruitment of Tregs to the TME), which is being targeted with an anti-CCR4 monoclonal antibody, mogamulizumab, in different tumor types, including HNSCC.

TAMs, particularly M2 macrophages, enhance tumor angiogenesis, motility, growth, and immune evasion by secreting protumoral cytokines in the TME [69]. Their presence in HNSCC is associated with poor prognosis (273). Antibodies and small molecules that inhibit colony-stimulatory factor 1 receptor (CSF1R) binding with CSF1, which serves recruitment to the tumor of M2 TAMs, are currently underway in various advanced solid tumors, including HNSCC (NCT02526017).





Conclusions and Perspectives

Treatment of the majority of patients with HNSCC requires multimodality approaches. Currently, cetuximab is used in the clinical routine as a radiation sensitizer alone or in combination with chemotherapy for the treatment of patients with recurrent or metastatic disease. More recently, pembrolizumab was approved as a first-line therapy in patients who present with metastatic disease, and treatment with either pembrolizumab or nivolumab is used in the setting of cisplatin-refractory recurrent or metastatic HNSCC. Despite the encouraging results observed in some patients, tumor responses observed in most patients are only partial and are systematically followed by acquired resistance due the reactivation of oncogenic signaling, leading to tumor regrowth, as discussed in this review.

Most of the developments toward understanding HNSCC have fallen short of clinically meaningful discoveries, highlighting an urgent need for more effective therapies to improve treatment outcomes. The increasing knowledge on the genomic driver alterations in HNSCC enables their use as predictive markers of targeted therapy regimens, currently evaluated in clinical trials, which are shown to improve survival and tumor response in subgroups of patients (274, 275). For instance, late-phase clinical trials show that HRAS-mutant HNSCC patients (8% of HNSCC) treated with tipifarnib, a selective farnesyltransferase inhibitor, shows promising outcomes with an overall response rate (ORR) of 42.9% with a median duration of response of 14.7 months (275). The Akt/mTOR axis is activated in most HNSCC, particularly in surrounding normal mucosa, and is associated with recurrences. In this context, a phase-II trial (NCT01111058) shows significant improvement in 1-year PFS in patients with locally advanced HNSCC treated with everolimus (276). More recently, Xevinapant, an investigational inhibitor of apoptosis protein (IAP) blocker, showed prolonged OS when added to standard chemoradiotherapy for locally advanced head and neck squamous cell carcinoma. Based on these results, Xevinapant received breakthrough therapy status from the FDA for the first-line treatment of HNSCC in September 2020.

The molecular heterogeneity of HNSCC has hampered the identification of specific targets and, thus, the development of targeted therapies for this group of tumors (51). Indeed, much of the difficulty in studying and treating HNSCC lies in the fact that they are a heterogeneous group of cancers arising from distinct anatomic subsites that display distinct molecular features and are associated with diverse risk factors. However, these diseases are treated uniformly and with limited success.

Genome-wide expression profiling led to the identification of four robust molecular classes of HNSCC (277–279). In this classification, the “classical,” “basal,” and “mesenchymal” subtypes exhibit canonical genomic alterations, such as nuclear factor erythroid 2−related factor 2 (NFE2L2) mutations and high expression of genes in oxidative stress response pathways, high frequency of HRAS mutations, and upregulation of EMT-related genes, respectively (278, 279). Of note, multiple findings have led to increased interest in the mechanisms by which cancer cells undergoing EMT or oscillating within the EMT spectrum might contribute to immune escape through various routes. The “atypical” subtype contains a high proportion of HPV+ tumors, who themselves are very heterogenous and can be subclassified into HPV-KRT (HPV-keratinocyte differentiation and oxidative reduction process) or HPV-IMU (HPV-immune response and mesenchymal cell differentiation) tumors (69). These different subtypes of HNSCC may harbor different patterns of sensitivity to oncogenic-driven targeted therapy and radiotherapy (280, 281); however, the clinical implication of these subtypes is currently unknown.

More recently, based on the gene expression profiles of 1368 patients with SCC in the Cancer Genome Atlas (TCGA), Li B et al. (282) proposed six immune subtypes, including an immune-cold subtype, an immune-hot subtype, a subtype dominated by M2-polarized macrophages, and three other immune subtypes with more diverse immunologic features. Their association with response or resistance to immunotherapy is unclear.

Complementary strategies to assess the molecular programs that are specific to each histological subtype or anatomical location of HNSCC may benefit from comprehensive analyses of patient samples (283) to identify molecular vulnerabilities and, thus, enable rapid clinical deployment to guide therapeutic decisions. Furthermore, single-cell transcriptomics may help revealing intratumoral heterogeneity (ITH) (284, 285) with subtypes as well as identifying cell populations that drive drug resistance. Spatial transcriptomics might also be an informative approach to enable simultaneous capture of the distribution and localization of the different components of the TME and, thus, better understand its interaction in response to treatment. Finally, the establishment of relevant preclinical models of HNSCC (ref) that reflect the disease at the genetic, histological, and functional level may provide a tool to study the molecular modifiers of response to therapies currently used in the clinical routine or tested in clinical trials.

Overall, understanding the molecular vulnerabilities of HNSCC may contribute to identify and therapeutically target residual disease and prevent or delay the evolution of acquired resistance. Of note, acknowledging that drug resistance depends not only upon cancer cells but also upon the TME might enable the identification of potential drug targets to limit cancer cell adaptation to therapy.
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Preclinical data suggest that head and neck squamous cell carcinomas (HNSCC) may evade immune surveillance and induce immunosuppression. One mechanism of immune evasion involves the expression of programmed death ligand-1 (PD-L1) in tumor and immune cells, which is, to date, the only biomarker routinely used in clinical practice to select patients with advanced HNSCCs more likely to benefit from anti-PD-1 therapy. Nonetheless, PD-L1 expression alone incompletely captures the degree of sensitivity of HNSCCs to PD-1 inhibitors. Most patients exposed to anti-PD-1 antibodies do not respond to therapy, suggesting the existence of mechanisms of de novo resistance to immunotherapy. Furthermore, patients that initially respond to PD-1 inhibitors will eventually develop acquired resistance to immunotherapy through mechanisms that have not yet been completely elucidated. In this article, we will provide an overview of the immune landscape of HNSCCs. We will briefly describe the clinical activity of inhibitors of the PD-1/PD-L1 axis in this disease, as well as biomarkers of benefit from these agents that have been identified so far. We will review pre-clinical and clinical work in cancers in general, and in HNSCCs specifically, that have characterized the mechanisms of de novo and acquired resistance to immunotherapy. Lastly, we will provide insights into novel strategies under investigation to overcome resistance to immune checkpoint inhibitors.
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Introduction

In recent years, our understanding of the importance of the immune system and its interaction with tumor cells and tumor microenvironment has allowed us to explore an increasing number of immune modulation strategies for cancer therapies (1). The identification of so-called checkpoints in T-cell immunity—namely, the molecules programmed death-1 (PD-1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), as well as the development of function-blocking antibodies against these molecules, have paved the way towards our understanding of the relevance of the immune system against cancer and its manipulation.

Immunologic checkpoints are a complex homeostatic system of signaling pathways that mediate the activation or selective tolerance of the immune system towards target cells (2). These pathways serve to establish an effector response to non-self-antigens while preventing the induction of autoimmune activity. Tumor cells, including head and neck squamous cell carcinomas (HNSCCs), hijack these mechanisms of immunologic surveillance and control to create an immunosuppressive and protumor microenvironment. As a result, immunotherapy with PD-1 blockade has emerged as the latest standard-of-care treatment strategy developed for advanced HNSCCs.

In this article, we will provide an overview of the immune landscape of HNSCCs. We will briefly describe the clinical activity of inhibitors of the PD-1/PD-L1 axis in this disease, as well as biomarkers of benefit from these agents that have been identified so far. We will review pre-clinical and clinical work in cancers in general, and in HNSCCs specifically, that have characterized the mechanisms of de novo and acquired resistance to immunotherapy. Lastly, we will provide insights into novel strategies under investigation to overcome resistance to immune checkpoint inhibitors.



Head and Neck Squamous Cell Carcinomas and the Cancer Immunity Cycle

HNSCC can evade immune surveillance through several crosslinked mechanisms that have now been recognized as being central to the development and progression of upper aerodigestive tract malignancies (3). The most clinically relevant mechanism of immune evasion identified so far is the modulation of cytotoxic T lymphocyte (CTL) activity.

A dual signal is mandatory for activation of CTLs against tumor antigens: the recognition of major histocompatibility complex (MHC)-antigen by the T cell receptor, and the interaction of B7 in the antigen presenting cell with CD28 in the CTL (4). This process primarily occurs in the lymph nodes and is regulated by immune checkpoint molecules. CTLA-4 is mostly expressed in CTLs, as well as in regulatory T lymphocytes (T regs). Upon binding to CTLA-4, the B7 protein induces CTL inhibition, and may cause CTL exhaustion (5). CTLA-4 expression is also upregulated by the immunosuppressive molecule transforming growth factor-β (TGF-β) produced by tumors cells (6). T regs are also one of the most important sources of TGF-β, thus contributing to T cell exhaustion (7, 8).

At the tissue level, T cell cytotoxicity is modulated by PD-1 and its ligands. PD-1 is a transmembrane protein belonging to the CD28 receptor family, which is highly expressed on T and B lymphocytes. The most important ligands for PD-1 include PD-ligand 1 and 2 (PD-L1 and PD-L2). These ligands are mostly expressed on antigen presenting cells, endothelial cells, as well as in CTLs (9, 10). Tregs inhibit CTLs by PD-1-PD-L1 interaction, thus promoting immunosuppression (11, 12). Hyperexpression of PD-1 in CTLs may also contribute to the immunosuppressive status due to enhanced sensitivity to PD-L1 (13). Like many other cancers, HNSCCs express PD-L1 on tumor cells, generating an immunosuppressive state and contributing to tumor progression and metastasis, with a negative impact on prognosis (14–16). Depending on the assay, PD-L1 is detected in about 50–70% of HNSCCs, and expression in Human Papilloma Virus (HPV)-related HNSCC is higher than in unrelated tumors (16). Indeed, HPV-related HNSCC are especially dependent on PD-L1 expression. HPV (+) tumors are characterized by more lymphocyte infiltration, with higher expression of PD-1 on CTLs when compared to HPV (−) tumors (17). In fact, at least three types of immune response in HPV (+) HNSCC have been described, rendering our understanding of the tumor host immune interactions more complex than previously thought (18).

In addition to CTLA-4 and PD-1 axes-mediated mechanisms, tumor immune evasion involves other related processes (19), selectively and briefly described as follows, some of which may represent therapeutic targets: (i) Neoangiogenesis induced by tumor associated macrophages exacerbates hypoxia and lowers the microenvironment pH, leading to PD-L1 upregulation and impairment of CTLs proliferation and efficiency (20–22); (ii) Chemokines and molecules, such as vascular endothelial growth factor (VEGF), interleukin 10 (IL-10), prostaglandin E2 and TGF-β, produced by Tregs and myeloid-derived suppressor cells (MDSCs), as well endothelial cells, reduce the attraction of CTLs (23). On the other hand, release of CXCL8, CCL2, CXCL5, and CXCL12, CCL22, and CCL28 attracts Tregs (24); (iii) Arrest of clonal expansion of CTLs, mediated by tumor cell, dendritic cell, and MDSCs secretion of indolamine-2,3-oxygenase (IDO), which induces degradation of tryptophan, an indispensable molecule for CTLs growth and production of Granzyme B (25); (iv) Impaired expression of human lymphocyte antigen-I (HLA-I) and other molecules involved in the antigen presentation machinery, leading to reduced tumor antigen recognition, impaired immune response, and worse prognosis (26, 27). Genetic alterations identified by The Cancer Genomic Atlas Network (TCGA), such as mutations in KMTD2 and HLA-A, contribute to this immunosuppressive behavior (28). Even though the complete loss of HLA-I could lead to T cell recognition evasion, activation of natural killer (NK) cells could take place, illustrating the potential for targeting multiple immune pathways for cancer therapy (29, 30).



The Immune Landscape of Head and Neck Squamous Cell Carcinomas

Analyses of transcriptomics, genetic mutations, and copy number alterations in HNSCCs have revealed subtypes with common characteristics that may determine sensitivities to immunotherapies. Specifically, HPV (−) HNSCC may be subdivided into copy number high and low (28). Copy number low HPV (−) HNSCC, as well as HPV (+) HNSCC have been shown to have increased expression of immune signatures predictive of benefit from immune checkpoint inhibitors (31). Likewise, in a pan-TCGA analysis including HNSCC, lymphocyte infiltration correlated negatively with copy number variation segment burden, and positively with aneuploidy, loss of heterozygosity, homologous recombination deficiency, and tumor mutational burden (TMB) (32). In another pan-TCGA analysis, somatic copy number variation scores were positively correlated with mutations in driver genes involved in the DNA damage response pathway, as well as reduced cytotoxic immune infiltration—arm/chromosome somatic copy number variation scores were stronger predictors for decreased expression of immune signatures compared to focal copy number variation scores, including in HNSCCs with high TMB (33).

Recently, six immune subtypes across multiple tumor types were identified in an extensive pan-cancer TCGA immunogenomic analysis: wound healing, interferon-γ dominant, inflammatory, lymphocyte depleted, immunologically quiet, and TGF-β dominant. These tumors were characterized by differences in macrophage or lymphocyte signatures, Th1:Th2 cell ratio, intra-tumoral heterogeneity, copy number alterations, neoantigen load, cell proliferation, expression of immunomodulatory genes, and prognosis (34). The vast majority of squamous cell carcinomas were of the wound healing or interferon-γ dominant subtypes, with no significant differences in survival between these two groups. However, a more recent TCGA evaluation further stratified squamous cell carcinomas into six immune subtypes with distinct molecular characteristics and outcomes (35). The immune-cold subtype had the lowest level of T cell infiltration, the highest rate of aneuploidy, translating into worst survival. A subtype with M2-polarized macrophages, TGF-β signaling and reactive stroma also had a poor outcome compared to the other subtypes. The subgroup with the best survival rates was characterized by high CTLs and NK infiltration and elevated interferon-γ signature (35). In another study focusing specifically on HNSCCs, Chen et al. proposed three subgroups which were consistent with (albeit less granular than) the aforementioned analysis: immune active (enriched by proinflammatory M1 macrophage signature, with increased cytolytic activity and tumor infiltrating lymphocytes, and high incidence of HPV infection); immune exhausted (enriched by activated stroma and anti-inflammatory M2 macrophage signatures, with activation of the WNT/TGF-β signaling pathway activation and poor survival), and a non-immune class (36). In another TCGA comprehensive HNSCC immune landscape study, Mandal et al. demonstrated that both HPV (+) and HPV (−) HNSCCs were one of the most immune infiltrated tumors. However, most of the immune infiltrate was comprised of Tregs, which suppress immunological activities. NK population was also remarkably abundant in both subtypes of HNSCC (37). HPV-related HNSCC demonstrated the highest immune infiltration and increased cytolytic activity, which was counterbalanced by an increased Treg/CTLs ratio, whereas smoking related HNSCC had the lowest level of immune infiltration and interferon-γ signature. Patients with adaptative immune response cell infiltrates and mutations had improved survival when compared to those with innate immune response infiltrate and copy number alterations, suggesting a possible role for new immunotherapeutic approaches targeting Tregs and NK cells in improving efficacy of anti-PD-1 (37). Lastly, Cillo et al. assessed the transcriptional profiles of single cells from peripheral and intra-tumoral immune populations from patients with HPV (−) and HPV (+) HNSCCs and showed that helper CD4+ T cells and B cells were relatively divergent and CD8+ T cells and CD4+ regulatory T cells were relatively similar. They also identified a gene expression signature associated with CD4+ T follicular helper cells and longer progression-free survival (38).

The immune phenotype of HNSCC has also been characterized in terms of spatial distribution of tumor infiltrating lymphocytes. Troiano et al. classified tongue carcinomas into immune-inflamed (when lymphocytes were found next to tumor cells), immune-excluded (when lymphocytes were found in the stroma, outside the tumor), or immune-desert (absence of lymphocytes). Immune desert was the less frequent subgroup, but exhibited worse overall survival (39).

Taken together, these findings suggest a complex immune landscape, associated with (and possibly determined by) genomic alterations, with important implications to HNSCC prognosis. Interestingly, in one report, the transcriptomic variability of immunologic signatures seemed to be stable in both a spatially, and short-term, timely manner, minimizing the importance of tumor heterogeneity in selecting immunotherapeutic approaches, at least for untreated patients (40). The data provide rationale for development of PD-1 inhibitors for HNSCCs along with potential biomarkers of efficacy, and for development of combination immunotherapeutic approaches for management of patients harboring tumors with de novo and/or acquired resistance to such immunotherapies.



Standard Immunotherapies for Head and Neck Squamous Cell Carcinomas

The identification that lymphocytes could take part in the immune response in cancers (including HNSCCs) was identified several years ago (41), and evolved to the development of cancer immunotherapy, initially for melanomas, later extended to HNSCCs and other tumor types. Simplistically, the ultimate goal of immunotherapy is to relieve immunosuppression, and thus induce responses in tumor, without auto-immune adverse events (42, 43). To date, the anti-PD-1 antibodies nivolumab and pembrolizumab have been investigated in phase 3 studies and are the only immunotherapies approved by regulatory agencies worldwide for treatment of advanced HNSCCs.

In patients with recurrent or metastatic HNSCC that failed platinum-based chemotherapy enrolled in the Checkmate-141 study, nivolumab, when compared to the investigators’ choice single agent therapy, improved overall survival (OS) and overall response rate (ORR). Importantly, the rate of grade 3–4 adverse events was lower with nivolumab than chemotherapy (44). In the KEYNOTE-040 study with analogous design, pembrolizumab demonstrated similar benefits against investigators’ choice standard therapy, although statistical significance for the primary OS endpoint was not reached (45).

These encouraging results led to the development of pembrolizumab in the first-line setting for recurrent/metastatic disease. In the KEYNOTE-048 study, with a complex statistical design and assumptions, pembrolizumab either as monotherapy or in combination with cisplatin or carboplatin and 5-fluorouracil (5-FU) was compared to platinum plus 5-FU combined with cetuximab (EXTREME regimen) in patients that had failed curative-intent therapies including surgery and/or radiation therapy (46). Compared to the EXTREME regimen, pembrolizumab monotherapy improved OS in the PD-L1 combined positive score (CPS) ≥ 20 or CPS ≥ 1 populations. The safety profile was improved in the pembrolizumab arm. Data on the chemotherapy plus pembrolizumab cohort is discussed below [see PD-(L)1 inhibitors plus chemotherapy subsection]. These results led to the FDA-approval of pembrolizumab as first-line monotherapy in patients with recurrent or metastatic disease with PD-L1 CPS ≥1, and in combination with chemotherapy independently of PD-L1 expression (47). However, the European regulatory agency recommended the approval of first-line pembrolizumab (whether monotherapy or in combination with platinum and 5-FU) only in patients with PD-L1 expressing tumors (CPS of 1 or above) (48). Nonetheless, PD-L1 expression alone incompletely captured the degree of sensitivity of HNSCCs to PD-1 inhibitors. Most patients exposed to anti-PD-1 antibodies did not respond to therapy, suggesting the existence of mechanisms of de novo resistance to immunotherapy. Furthermore, most patients that initially respond to PD-1 inhibitors eventually develop acquired resistance to immunotherapy through mechanisms that have not yet been completely elucidated. These data illustrate the need to discover more accurate biomarkers of sensitivity to PD-1 axis blockade, as well as strategies to enhance activity of and/or overcome resistance to these drugs.



Predictive Factors for Immunotherapy Benefits

Both PD-L1 and PD-L2 expression have been reported in many tumor types (including HNSCCs) and were amongst the first candidate biomarkers of immunotherapy efficacy investigated across several trials (49–51). Several PD-L1 assays are available in oncology, and they seem to be highly interchangeable in HNSCC (52), specially for assays evaluating tumor cells by the antibodies SP263, 22C3, and 28-8 (53). Concordance between staining scores that involve immune cells, and/or other antibodies (e.g., SP142) are more modest (53, 54) and require more careful interpretation. In the pivotal phase 3 Checkmate-141 trial, OS and ORR were improved by nivolumab across the entire study population. However, the magnitude of benefit seemed higher in patients with PD-L1 expression in at least 1% of the tumor cells using the 28-8 assay. HPV (+) and HPV (−) cancers derived the same benefit from nivolumab. No interaction between HPV and PD-L1 status was observed in this clinical trial (44, 55). Pembrolizumab was first explored in advanced HNSCC in the multi-cohort phase Ib KEYNOTE-012 trial (56). Anti-PD-L1 22C3 and anti-PD-L2 3G2 antibodies were used for PD-L1 and PD-L2 immunohistochemical assays, respectively. Overall, a 4% complete response (CR) and 14% partial response (PR) rate was observed, and 60% of patients experienced reductions in target lesions. PD-L1 CPS (which takes into account PD-L1 expression in both tumor and immune cells) performed better than the tumor proportion score (TPS) in predicting response to pembrolizumab, emerging as the most reliable biomarker for pembrolizumab. PD-L2 and PD-L1 expression were correlated, and PD-L2 expression was also associated with higher ORR. Patients with co-expression of PD-L1 and PD-L2 had higher ORR compared to PD-L1 positive patients alone. However, a 9% ORR was found in patients without the expression of any biomarker, underscoring the limitations of these strategies in selecting patients for pembrolizumab therapy (56). Similar results were found in the single arm, phase 2 KEYNOTE-055 study (57). These data supported the incorporation of PD-L1 expression (assessed by CPS) into the statistical design of the first-line KEYNOTE-048 study, as previously described.

TMB has been postulated as a possible biomarker of immunotherapy efficacy in cancers. Presumably, high TMB increases the abundance of neo-antigens (or neo-epitopes) resulting from non-synonymous mutations on cancer cells, allowing immune recognition and specific CTLs activation (58–60). However, only a small number of missense mutations produce neo-antigens, and a smaller part of those neo-antigens ultimately are recognizable by CTLs (61, 62). As such, specific immunogenic mutations, rather than total mutational burden, may be associated with improved prognosis, as it leads to increased expression of CD8A and hyperexpression of PD-1 and CTLA-4 (61). Despite these limitations, TMB has been associated with improved outcomes in clinical trials. In KEYNOTE-012, using a cut off ≥ 102 mutations per exome, TMB was associated with improved ORR (63–65). In a series of 126 patients treated at the Dana Farber Cancer Institute, TMB was higher in former smokers compared to non-smokers and HPV (+) patients, as well as in responders. Among HPV (−) responders, NOTCH1 and SMARCA4 were more frequently mutated, and frameshift events in tumor suppressor genes occurred more frequently. T cell immunoglobulin mucin-3 (TIM-3)/lymphocyte activated gene-3 (LAG-3) co-expression with PD-1 was higher on T cells among non-responders, suggesting a possible mechanism of adaptive de novo immune resistance (66). Consistent with the KEYNOTE-012 and Dana Farber data, a post hoc analysis of the EAGLE study revealed that a blood TMB of 16 mutations/Mb was associated with improved OS in the second-line setting for the anti-PD-L1 durvalumab alone, or in combination with the anti-CTLA4 tremelimumab versus single agent chemotherapy (67). Of note, blood TMB seemed also to be prognostic in the EAGLE study, since median OS in the standard of care arm was 4.0 months for high TMB versus 8.6 months for low TMB, raising the question whether this biomarker could be associated with poor outcomes to chemotherapy alone (67).

Interferon-γ and its co-stimulatory chemokines are implicated in tumor innate immune sensing, leading to immediate CTLs recruitment into the tumor micro ambient, a key step for an effective immune response (68–70). Interferon-γ gene expression was associated with clinical response in several cancer types treated with pembrolizumab (71). Likewise, in the KEYNOTE-012 study, a 6-gene interferon-γ signature including IDO1, CXCL10, CXCL9, HLA-DRA, STAT1, IFN-γ gene expression was found to be associated with improved ORR or progression-free survival (65).

A major role of fecal microbiome in determining response to immunotherapy has been increasingly recognized in recent years (72). Several mechanisms have been implicated in the dynamic interaction between microbiome and immunologic response, including T-cell activation, influence on recognition pattern of antigens (73). Some specific bacterial genera have been identified as predictors of response and toxicity in fecal microbiota transplant (FMT) experiments in mice. Akkermansia muciniphila was associated with increased response to anti-PD-1 (74). A. muciniphila, and Enterococcus hirae was able to reverse resistance to immunotherapy in mice. The mechanism implicated in such effects were related to increase in CCR9, CXCR3, and promotion of CTLs infiltration (75). Studies in melanoma suggested that the presence of certain genera, like Bifidobacterium longum, Collinsella aerofaciens, Enterococcus faecius, Faecalibacterium spp and Ruminococcaceae spp were associated with increased response to immunotherapy, and Bacteriodales were more common among non-responders. Responders were more likely to harbor greater microbiome diversity than non-responders (76, 77). Recently, data from phase 3 randomized trials comparing anti-PD-1 to chemotherapy showed that the use of antibiotics impaired the OS of patients receiving anti-PD-1 without compromising survival in the control group, suggesting a major role of microbiota in the benefit of immunotherapy in HNSCC (78). Oral cavity microbiome has also been implicated in HNSCC carcinogenesis and progression. Usually, Fusobacteria are abundant in primary and metastatic tissues, whereas Streptococcus have limited homing (79). Smoking and alcohol consumption are major risk factors for both HNSCC and periodontal disease, and are key modifiers of oral microbiota (80, 81). Abundant F. periodonticum and S. mitis and P. pasteri paucity are associated with late stage oral cancer (82). Despite these promising data, oral microbiome was not associated with outcomes in the Checkmate 141 study (83). Evaluation of fecal specimens may better reflect patients’ microbiome, but have not been assessed in anti-PD-1 trials in HNSCCs.

Taken together, these data demonstrate that a robust biomarker of sensitivity to PD-1/PD-L1 blockade has yet to be developed. It is likely that multiple mechanisms of resistance to immunotherapies are in place, leading to low response rates to single agent PD-1 inhibitors in all HNSCC clinical trials performed to date. Few comprehensive upfront and re-biopsy studies for biomarker evaluation (especially upon disease progression) have been completed. As will be discussed below, such investigations would be essential for the rational design of strategies aiming at mitigating resistance to treatment.



Resistance to Immunotherapies

From a clinical perspective, resistance to immunotherapy may be divided into de novo or acquired. De novo (or primary) resistance may be defined as lack of benefit from upfront immunotherapy treatment, whereas acquired (or secondary) resistance is characterized by an initial period of benefit from immunotherapy followed by disease progression. Mechanistically, de novo and acquired resistance to immunotherapy may share common processes, including adaptive immune resistance (whereby the cancer is recognized by, but evades the immune system, by adapting to the immune attack). Additionally, acquired resistance to immunotherapy may emerge from adaptive resistance that occurs in a relatively homogenous fashion, and/or by selection of heterogenous clones over time that were already resistant to immunotherapy, even before treatment initiation (84).

Mechanisms of resistance to immunotherapy include tumor cell-intrinsic and tumor cell- extrinsic factors. Tumor cell-intrinsic resistance may stem from absence of antigenic proteins, absence of antigen presentation, genetic T cell exclusion, and/or insensitivity to CTLs. Tumor cell-extrinsic resistance may be a result of absence of CTLs, expression of inhibitory immune checkpoints, and/or presence of immunosuppressive cells (84–86). None of these mechanisms have been extensively studied in HNSCCs, limiting our understanding about the dynamic pressures on the immune system at play upon immunotherapy administration, and hindering our ability to rationally design combination and/or sequential approaches to mitigate resistance to PD-1 inhibitors. Knowledge gained from other cancers and pre-clinical work might prove to be relevant to HNSCC patients and is therefore described below.

Beta-2-microglobulin (B2M) has an important function on HLA class I transport to cell membrane, and inactivating mutations in B2M lead to loss of expression of HLA class I, impairing immune response (87, 88). This mechanism of resistance to anti-PD1 in metastatic melanoma has been detailed elsewhere (89). Other groups reported that B2M mutation in other clinical settings could also lead to acquired resistance to immunotherapy (90–92). Other causes of HLA class I loss of expression with intact B2M may also induce disease progression to anti-PD1 (90). Saloura et al. have demonstrated more diverse T-cell repertoire in HPV (+) versus (−) HNSCC, possibly due to impaired HLA class I expression induced by the virus (93). As such, strategies that could restore HLA class I expression could potentially be developed to augment immune response in this setting.

Release of IFN-γ by CTLs may induce PD-L1 and MHC class I expression in tumor cells through activation of the JAK-STAT pathway. Several mechanisms of tumor cell death derive from this pathway (94). Clinical evidence recognizes that mutations in JAK1 and JAK2 can be responsible for the progression of metastatic melanoma after initial response to anti-PD1 (89). It is unknown whether alterations in other molecules in the JAK-STAT pathway could be implicated in acquired resistance to immunotherapy, but their role in primary resistance has already been demonstrated (95).

The loss of mutations that preclude the expression of neoantigens recognized by the immune system through clonal selection, copy-number loss, or epigenetic mutation may lead to immune evasion and clinical progression (96). In a case series of four patients with non-small cell lung cancers, mutations encoding neoantigens were lost, and progressive disease occurred after initial response do anti-PD1 therapy (97) Clonal pressure has been implicated in immunoselection of tumor cells that respond to CTLs and adoptive cell transfer immunotherapy (98–100).

Phosphatase and tensin homolog on chromosome 10 (PTEN) inactivation and, consequently, phosphoinositide 3-kinase (PI3K) pathway activation is related to an immunosuppressive tumor microenvironment that may have implications in resistance to immunotherapy (101). A total of 55 isocitrate dehydrogenase 1 wild-type glioblastoma patients who received immunotherapy, including 13 long-term responders, were analyzed in one report, and PTEN mutations were identified in 23 out of 32 non-responders, but only in 3 responders (102). PTEN mutations were also associated with an immunosuppressive signature. Similar results were found in non-small cell lung cancer and melanoma patients, indicating a putative effect of PTEN-loss in acquired resistance to immunotherapy (103, 104). PTEN-loss may also be implicated in secondary resistance to immunotherapy in other distinct tumor types (105, 106). Patients with metastatic melanoma who initially responded to anti-PD-1 alone or in combination with anti-CTLA-4 and then progressed were analyzed, and PTEN-loss was identified in 5 cases in the post-progression biopsy out of 18 intact PTEN expression in pre-treatment biopsies (107). In surgically treated oral cavity squamous cell carcinomas, PTEN loss in tumor infiltrating immune cells has been associated with worse prognosis (108). Similarly to PTEN-loss, WNT-β-catenin promotes an immunosuppressive tumor microenvironment that may be responsible for secondary resistance to immunotherapy (106, 109).

Modulation of other immune checkpoints has been identified in patients with secondary resistance to immunotherapy, including, but not limited to, TIM-3, LAG3, and V-domain immunoglobulin suppressor of T cell activation (VISTA), glucocorticoid induced TNFR family related gene (GITR), and T cell immunoglobulin and immunossupressor tyrosine kinase-based inhibitory motif (TIGIT) (90, 107, 110).

TIM-3 is a member of TIM family expressed on CD4(+) Th1 but not Th2 lymphocytes (111). It is also expressed in tumor cells and other immune cells (112). TIM-3 and its ligands, such as galectin-9, may regulate several biological functions of tumor cells, including aggregation, adhesion and apoptosis (113, 114). The binding of TIM-3 to galectin-9 leads to promotion of apoptosis of Th1 cells, impairs function of CTLs and induces major expansion of MDSCs, suppressing immune response. In early stages of disease, TIM-3 may have an immunostimulatory effect favoring CTLs secretion of interferon-γ, but TIM-3 expression in Tregs in late-stage tumors favor the suppression of CTLs and are important to create an immunosuppressive environment. Anti-TIM-3 monoclonal antibody may suppress the inhibition of CTLs and improve antitumor response (115). TIM-3 expression has been implicated in nodal metastasis and recurrence in HNSCC (116). TIM-3 may be related to the exhaustion of CTLs and ineffective immune response in HNSCC, favoring metastatic behavior (117) In a HNSCC mouse model, anti-TIM-3 antibody induced activation of CTLs and suppressed MDSCs, inhibiting carcinogenesis and improving antitumor responses (116).

LAG3, also known as CD223, is mainly expressed in activated T cells and, to a lesser extent, NK cells, B cells and dendritic cells. LAG-3 reduces T cell proliferation and activation (118, 119). LAG-3 is also an effector of Tregs inhibitory function (120). Tumor-infiltrating lymphocytes co-expressing PD-1 and LAG-3 may be susceptible to inhibition, leading to immune scape of cancer cells (121). LAG-3 also binds to liver and lymph node sinusoidal endothelial cell C-type lectin (LSECtin) and inhibit the secretion of interferon-γ by CTLs, therefore inhibiting immune response (122). Fibrinogen-like protein 1 (FGL1) is a liver secreted protein which inhibits the activation of T cells (123, 124). FGL1 is upregulated in several human cancers and it is associated with impaired outcome and blocking of FGL1-LAG-3 interaction enhances T cell response and improves antitumor immunity (123, 124). In HNSCCs, LAG-3 overexpression is associated with worse prognosis, and LAG-3 blockade retarded tumor growth in a HNSCC mouse model (125).

VISTA is another checkpoint similar in function to PD-L1 and capable of suppressing T effector cells. VISTA is expressed on myeloid APCs and Tregs (126). VISTA enhances Treg maturation and suppresses T cell activation (127). V-set and immunoglobulin domain-containing 3 (VSIG3) interacts with VISTA on activated T cells, suppress T cell proliferation and induces the production of immunosuppressive cytokines and chemokines. Data from several tumor types support blocking of VSIG3/VISTA pathway as a promising immunotherapy strategy (128). In HNSCC patients, overall survival was reduced when VISTA expression was high simultaneously with low CD8+ infiltration (129).

GITR is expressed on the surface of CD25+CD4+ Tregs, CTLS and NK cells (130). Binding of GITR to its ligand GITRL may impair the attraction of Tregs, weaken their suppression activity and activate the MAPK (mitogen-activated protein kinase)/ERK pathway and NF-κB signaling, which ultimately induces T cell proliferation and pro-inflammatory cytokines (131–133).

TIGIT is expressed mainly in effector lymphocytes and NK cells (134). CD155 is highly expressed in tumor cells and has high affinity to TIGIT, and induces IL-10 secretion, reduces the secretion of pro-inflammatory cytokines and inhibits antitumor response (135). TIGIT shares the same ligands with CD226, which, in part, counterbalances the TIGIT immunosuppressive effect (136). In mouse models of HNSCCs, TIGIT blockade delayed tumor progression through mechanisms involving CD8+ CTLs activation and Tregs inhibition. PD-1/PD-L1 inhibition increased expression of TIGIT on Tregs (137).

Some mechanisms of resistance may be induced by previous treatment. For example, in the Checkmate-064 study, patients with metastatic melanomas were randomized to ipilimumab followed by nivolumab after 12 weeks or the opposite order, and the immune landscape was analyzed at baseline and at week 13. Some immunophenotypes were more prone to show responses to ipilimumab and progression to nivolumab, and vice versa. Ipilimumab and nivolumab induced different patterns or immune landscape change after 12 weeks, and such patterns were related to patient outcomes. Furthermore, the alterations induced by ipilimumab favored progression in the nivolumab-ipilimumab cohort, whereas the alterations induced by nivolumab favored response in the nivolumab-ipilimumab cohort (138). These findings explain the superior survival outcomes in the nivolumab-ipilimumab arm (139).



Discussion and Future Directions

There is an intricate interplay between the immune system, other components of the tumor microenvironment, and cancer cells that ultimately contribute to carcinogenesis and determine sensitivity and resistance to therapeutic strategies that have been developed so far to manage HNSCCs. The complexities of the microenvironment-cancer cell equilibrium outlined above in this review suggest that single-agent anti-PD-1/PD-L1 therapy would not be sufficient to promote long-term disease control. A natural evolution in the clinical development process of pharmacologic agents to treat HNSCCs would be the study of drug combinations, many of which have not been thoroughly investigated in pre-clinical systems specific to head and neck cancers but are already undergoing testing in human trials. This rapid pace of clinical investigations underscores a new model of information “cross pollination” from one cancer type to the next that, on the one hand, could reduce the likelihood of success of each individual study (given less robust rationale), but on the other hand may collectively result in identification of improved treatment options for patients with malignant diseases that were previously considered low priority for drug development, such as HNSCCs. Indeed, at the time of this writing, a search on clinicaltrials.gov using the terms “head and neck cancer” AND “nivolumab”, “pembrolizumab”, “durvalumab”, “atezolizumab”, “avelumab”, OR “cemiplimab” (i.e., PD-1/PD-L1 inhibitors already approved for at least one cancer type) resulted in 270 studies (Figure 1). Below, we briefly discuss all phase 3 drug combination trials identified, whether ongoing, completed or terminated.




Figure 1 | Clinical trials evaluating immunotherapy in HNSCC. (A) Completed, ongoing, or terminated HNSCC clinical trials involving pembrolizumab, nivolumab, durvalumab, atezolizumab, avelumab, or cemiplimab as single agents or in combination with drugs other than cytotoxic chemotherapy. (B). Most common co-targets (or mechanism of action, when appropriate – e.g. oncolytic virus) for anti-PD-1 or anti-PD-L1 combinations (C). A word cloud visual representation of PD-1 or PD-L1 inhibitors (in capital letters) and their co-targets (in small caps) under evaluation in combination studies. The font size is proportional to the number of studies employing the intervention.




Programmed Death Ligand-1 Inhibitors Plus Chemotherapy

Chemotherapy has been proposed as a combination strategy to enhance immunotherapy efficacy and bypass de novo and/or acquired resistance to PD-(L)1 inhibitors, through mechanisms that might involve increase of mutational load in cancer cells, depletion of suppressive regulatory T cells and myeloid-derived cells, normalization of neovasculature (thus facilitating T cell infiltration), upregulation of HLA class I expression and other components of antigen presentation machinery, induction of immunogenic cancer cell death (leading to neoantigen cross presentation), and modulation of cell signaling to increase sensitivity to interferon-gamma (140). In the KEYNOTE-048 phase 3 study, platinum, 5-FU plus pembrolizumab was compared to platinum, 5-FU plus cetuximab, and results demonstrated an improvement in overall survival for patients with PD-L1 expression CPS ≥ 20, CPS ≥ 1, or in the total population (regardless of PD-L1 expression) (46). Post-hoc analysis has demonstrated that efficacy improvement for the combination was primarily restricted to the PD-L1 positive group (141), raising the possibility that chemotherapy may not contribute to overcoming resistance to immunotherapy in patients without PD-L1 expression. A comparison between the pembrolizumab and chemotherapy plus pembrolizumab arms was not planned per trial design, and therefore it remains to be determined whether the long-term benefits from treatment in the pembrolizumab-containing arms can be attributed to the immunotherapy alone, or may be a result of a synergistic effect between chemotherapy and immunotherapy contributing to mitigation of resistance to treatment. Several chemotherapy plus immunotherapy trials are under way (Figure 1), combined or not with radiation therapy (see below).



Programmed Death Ligand-1 Inhibitors Plus Radiation Therapy

The tumor immune microenvironment is dynamic and has been shown to be depleted of CD8+ T cells and B lymphocytes in recurrent versus primary tumors, with immune suppressive features apparent after receipt of chemoradiation therapy (142). Clonal expansion of tumor-infiltrating T cells has been identified in patients with untreated, locoregionally advanced SCCHN (93). These observations increase the enthusiasm for incorporating immunotherapy for earlier stages of HNSCC, in which immune function seems to be better preserved, and for which radiation therapy-based strategies are often used as a standard of care. Adiotherapy-induced immunosuppression has been well characterized (143). In animal models, PD-L1 blockade combined with radiation therapy reverses T cell exhaustion and leads to oligoclonal T cell expansion (144), suggesting a possible role of PD-(L)1 inhibitors in contributing to disease control in this setting. Radiation therapy may also synergize with immune checkpoint inhibitors through other nonredundant pathways that enhance antitumor activity, reviewed elsewhere (143, 145). Results of the first randomized studies combining PD-(L)1 inhibitors with radiation therapy for locally advanced HNSCC have recently been presented. In the GORTEC 2015-01 PembroRad trial, pembrolizumab plus radiation therapy failed to improve locoregional control compared to cetuximab plus radiation therapy in patients unfit for platinum (146). Likewise, in the phase 3 JAVELIN Head and Neck 100 trial, addition of avelumab to cisplatin/radiation therapy did not improve progression-free or overall survival (147). In advanced disease, addition of stereotactic radiation therapy to nivolumab has also been evaluated as a strategy to induce abscopal effect in a randomized phase 2 trial. Unfortunately, there were no improvements in overall response rates of nonirradiated lesions (primary endpoint), progression-free or overall survival (148). Despite these early negative results, several studies continue to evaluate immunotherapy in the context of radiation therapy (Figure 1) and will eventually determine whether PD-(L)1 inhibitors and radiation therapy can be combined to effectively circumvent resistance to treatment.




Programmed Death Ligand-1 Plus Cytotoxic T-Lymphocyte-Associated Protein 4Inhibitors

CTLA-4 was the first modern immunotherapy strategy to be widely explored in oncology. CTLA-4 can bind to B7, precluding the interaction between B7 and the co-stimulatory molecule CD28 and limiting the proliferation of T cells and the release of interleukin-2 (149). Blocking of CTLA-4 may limit the inhibitory effect on CTLs favoring host immune response. Due to its limited efficacy in other tumor types than melanoma, including HNSCC, anti-CTLA-4 has been developed mostly in combination with other agents (150–155). More recently, building on the results of the phase 2 CONDOR study (154), durvalumab, alone or in combination with tremelimumab, were compared to investigator’s choice chemotherapy (cetuximab, taxane, methotrexate, or fluoropyrimidine) in the phase 3 EAGLE study involving patients with HNSCC whose disease failed platinum-based chemotherapy. Durvalumab alone or in combination did not meet the primary outcome of OS benefit. Duration of response and 2-year survival were improved in the durvalumab monotherapy arm, suggesting that this drug is active in HNSCCs (156). PD-L1 expression, as assessed by SP263 assay, did not impact on any of the efficacy results, but a small benefit was found in patients with high TMB (≥16mutations/Mb) (67, 156). Despite these disappointing results, durvalumab alone or in combination with tremelimumab was evaluated in the first line setting in comparison with the EXTREME regimen in the KESTREL trial (NCT02551159), and results are pending. Nivolumab has also been tested in combination with ipilimumab versus nivolumab alone in the Checkmate-714 trial, and although the data have not yet been formally reported, a press release dated April 25, 2019 has indicated that the study did not meet its primary endpoint. In Checkmate-651 nivolumab plus ipilimumab has been compared against the EXTREME regimen (NCT02741570). Recruitment has already been completed, and the main data for these trials are expected in the following months. Nivolumab plus ipilimumab is also under development in the setting of locally advanced, potentially curable disease (NCT03700905). Taken together, the strategy of targeting PD-(L)1 plus CTLA-4 has not yielded promising results so far in phase 2/3 trials (154, 156). Unless the recently completed studies (NCT02551159, NCT02741570) report superior outcomes in the near future, other immunotherapy-immunotherapy combinations may need to be explored, as discussed below.



Programmed Death-1 Plus Indolamine-2,3-Oxygenase Inhibitors

IDO is an enzyme that metabolizes tryptophan, limiting CTLs cytotoxicity. It is highly expressed in tumor-cells, macrophages and dendritic cells (157). Tryptophan depletion and its inhibitory metabolites has been implicated on how IDO is responsible for T cell anergy and suppression, as well as Treg activation and MDSCs infiltration (158, 159). IDO activity has been implicated on resistance to anti-PD-1 therapy (160, 161). Epacadostat, an IDO inhibitor, was evaluated in combination with pembrolizumab in advanced solid tumors, including HNSCCs. In phase I study ECHO-202/KEYNOTE-037, the ORR for this combination was 55%, including 13% complete responders. Two patients with refractory HNSCC were included, and one achieved a partial response and the other had stable disease with minor reduction in tumor burden (162). This study had a phase II part, including 36 additional HNSCC patients. The ORR was 30.5%, which was lower in patients with 3 or more lines of treatment (163). Nivolumab was also combined with epacadostat, with an ORR of 22.6% (164). Despite these results, its development as adjunctive therapy to anti-PD-1 in HNSCC (NCT03358472, NCT03342352) was halted due to the negative results of the combination IDO inhibitor and pembrolizumab in melanoma (165).



Programmed Death-1 Plus B7H3 Inhibitors

B7 constitutes a superfamily of inhibitory molecules in the cancer microenvironment was highly related to the immune evasion of cancer cells (4). B7-H3 (also known as CD276) is a newly identified member of the B7 family (166, 167), which is found in several human cancer cells and APCs. B7-H3 induces proliferation of both CD4+ and CD8+ T cells, enhances CTLs, and stimulates IFN-γ production in the presence of T cell receptor signaling (167). B7-H3 was later found to negatively regulate T cell function, affecting preferentially T helper type 1-mediated immune responses (168). Overexpression of B7-H3 was associated with larger tumor, advanced stage, and impaired survival in oral cancer patients (169). Retifanlimab, an anti-PD-1 antibody, and enoblituzumab, an anti-CD276, were evaluated in combination in multiple tumor types cohorts. In the anti-PD-1 naïve HNSCC cohort, 18 patients were treated, and ORR were 33.3%, with five partial responders and one complete responder (170). This led to the subsequent development of a phase II/III study (NCT04129320).



Programmed Death Ligand-1 Plus EGFR Inhibitors

As described in Table 1, a number of phase 2 studies have been completed targeting the PD-1/PD-L1 axis and EGFR in recurrent/metastatic disease. A randomized, phase 3 study is currently ongoing evaluating the role of avelumab added to concurrent cetuximab/radiation therapy in locally advanced HNSCCs. GORTEC-2017-01 is a two-cohort prospective clinical trial enrolling treatment naïve patients with resectable stage III-IVa HNSCC. Cisplatin-eligible patients will be randomized to radiation therapy plus cisplatin or radiation therapy plus cetuximab plus avelumab. Those who are unfit for cisplatin therapy will be randomized to radiation therapy plus cetuximab or radiation therapy plus cetuximab plus avelumab (NCT02999087).


Table 1 | Select Phase I and II drug combination clinical trials with PD-1/PD-L1 inhibitors.





Programmed Death-1 Inhibitor Plus Lenvatinib

As mentioned above, angiogenesis is closely related to immune response and may take part in the development of de novo or acquired resistance to immunotherapy. Lenvatinib is a multi-kinase inhibitor of vascular endothelial growth factor receptors 1–3, was combined with pembrolizumab in a phase Ib/II clinical trial. The ORR was 36.4% in 22 evaluated HNSCC patients (188). These results lead to the development of a placebo-controlled randomized phase 3 trial enrolling patients with HNSCC with no prior therapy for advanced or metastatic disease and CPS ≥ 1 to pembrolizumab plus Lenvatinib or pembrolizumab alone (NCT04199104).



Programmed Death-1 Inhibitor Plus Inducible Co-Stimulator of T Cells Agonist

The inducible co-stimulator of T cells (ICOS, or CD278) and its ligand (ICOSL) play important roles in memory and CTLs development and specific immune responses (189). ICOS and its pathway potentiates immunosuppression mediated by Tregs, but also induces antitumor responses when activated in CTLs (190, 191). Data on combination of anti-PD-1 with ICOS agonists are scarce, but synergy has been observed (192, 193). These data led to the rapid launching of a randomized phase 2 study evaluating the combination of ICOS agonists and anti-PD-1. Treatment naïve patients with advanced/metastatic HNSCC expressing PD-L1 (CPS ≥ 1) are randomized to receive pembrolizumab with GSK3359609 or placebo in the INDUCE-3 trial (NCT04128696). A second study will encompass HNSCC with or without PD-L1 expression. In this study, patients will be randomized to platinum-fluorouracil-pembrolizumab plus GSK3359609 or placebo (NCT04428333).

In addition to the aforementioned phase 3 studies, multiple phase 1/2 clinical trials with PD-1/PD-L1 inhibitors combined with a second drug targeting a variety of pathways are ongoing or have been completed (Table 1) (170–187). Studies for which data have been reported are summarized in Table 1. These clinical trials include patients that are immunotherapy-naïve (thus potentially addressing de novo resistance) and/or patients who have developed acquired resistance to anti-PD-1. While it is premature to elect a dominant combination strategy that will move forward to become a new standard of care, preliminary results for many of these studies are encouraging. Nonetheless, it is expected that resistance mechanisms will not be uniform in all patients, and biomarker-informed approaches will likely be needed to maximize the chances of achieving long-term successful outcomes, thus leading, in the future, to the development of precision immunotherapy for recurrent/metastatic HNSCCs, and ultimately earlier stage disease as well.
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Mutations of the proto-oncogene KRAS are the most frequent gain-of-function alterations found in cancer. KRAS is mutated in about 30% of all human tumors, but it could reach more than 90% in certain cancer types such as pancreatic adenocarcinoma. Although historically considered to be undruggable, a particular KRAS mutation, the G12C variant, has recently emerged as an actionable alteration especially in non-small cell lung cancer (NSCLC). KRASG12C and pan-KRAS inhibitors are being tested in clinical trials and have recently shown promising activity. Due to the difficulties in direct targeting of KRAS, other approaches are being explored. The inhibition of target upstream activators or downstream effectors of KRAS pathway has shown to be moderately effective given the evidence of emerging mechanisms of resistance. Various synthetic lethal partners of KRAS have recently being identified and the inhibition of some of those might prove to be successful in the future. The study of escape mechanisms to KRAS inhibition could support the utility of combination strategies in overcoming intrinsic and adaptive resistance and enhancing clinical benefit of KRASG12C inhibitors. Considering the role of the microenvironment in influencing tumor initiation and promotion, the immune tumor niche of KRAS mutant tumors has been deeply explored and characterized for its unique immunosuppressive skewing. However, a number of aspects remains to be fully understood, and modulating this tumor niche might revert the immunoresistance of KRAS mutant tumors. Synergistic associations of KRASG12C and immune checkpoint inhibitors are being tested.
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Introduction

Using an oversimplified description, cancer could be defined as a disease caused by the accumulation of alterations in genes coding for proteins involved in cell growth induction or control defined oncogenes or tumor suppressor genes, respectively. In the last half-century, the largest efforts made in the field of experimental targeted therapeutics have been mainly focusing towards the development of therapeutic agents capable of inhibiting oncogenes or restoring the function of tumor suppressor genes. The most important successes in cancer treatment have been, indeed, represented by experimental therapeutics able to effectively interfere with the product of some of the most relevant oncogenes in human cancers. In this regard, those human cancers for which the development of appropriate targeted therapeutics has been most frustrating are sustained in their proliferation by altered genes whose function is essential for the integration and the transduction of physiologic signals in normal cells.

KRAS has been the first oncogene identified in human cancer in 1982 (1). Mutations affecting members of the RAS family genes (KRAS, HRAS, NRAS) are the most frequent genetic alterations in human cancers accounting for about 27% of all tumors. KRAS mutations are involved in the pathogenesis of different epithelial cancer histotypes, including lung and colorectal cancer, but its role has been especially investigated in pancreatic ductal adenocarcinoma, which is considered the type of tumor mostly dependent on KRAS for its development, metastatic progression, and treatment resistance (2–5).

Because of its high incidence in different tumors and its role in cancer initiation and progression, many efforts have been made in finding effective treatments directly or indirectly targeting KRAS. However, due to the lack of accessible binding pockets and its complex downstream signaling, most of the efforts in targeting KRAS have failed, and mutated KRAS still remains an undruggable target.

Here, we describe and discuss the most recent efforts aimed to identify novel therapeutic approaches of mutated KRAS-driven tumors.



The RAS/MAPK Pathway

KRAS gene encodes for a small GTPase that in normal cells functions as a molecular switch between an active and an inactive state. In quiescent cells, KRAS is inactive and GDP-bound, while in cells receiving extracellular stimuli it is active and GTP-bound. KRAS in its active state leads to the activation of a number of different intracellular transduction signaling pathways, including MAPK and AKT pathways. The switching between inactive and active state is mediated by the guanine nucleotide exchange factors (GEFs) which allow GTP loading. Conversely, the inactive state is mediated by GTPase-activating proteins (GAPs) through GTP hydrolysis (6). GTP-bound RAS interacts and recruits RAF, promoting its accumulation at the plasma membrane and inducing its dimerization and activation of RAF kinases. Activated RAF phosphorylates MEK1 and MEK2 kinases, that consequently phosphorylate and activate ERK1 and ERK2 kinases. ERK1/2 translocate into the nucleus where they phosphorylate several transcription factors that regulate the expression of genes involved in proliferation and cancer progression. MAPK pathway is a linear cascade characterized by complex regulatory mechanisms and feedback loops controlling several kinases. The attempt of inhibiting MAPK pathway, in order to block proliferation signaling, generates cross-talk between different pathways and the activation of compensatory pathways such as the PI3K-AKT-mTORC1 signaling. Noteworthy, PI3K-AKT-mTORC1 pathway, unlike MAPK pathway, can also be activated independently from KRAS, by receptor tyrosine kinases (RTKs) or G-protein coupled receptors (GPCR) and integrin signaling (7).

KRAS mutated cancer cells carry mostly missense mutations causing single amino-acid substitutions in three hotspots, glycine12 (G12), glycine13 (G13), and glutamine61 (Q61). These mutations prevent GAPs from accessing GTP so that hydrolysis is blocked, resulting in a persistently activated GTP-bound state. KRAS activity becomes therefore independent from extracellular stimuli, resulting in overstimulation of downstream pathways and induction of signals for cell proliferation, migration, and metastasis (8). Interestingly, different KRAS mutations can reflect differences in signaling and oncogenic mechanisms, that can have a role in tailoring treatments. In an in vitro colorectal cancer study, phosphotyrosine proteomic profiles comparison between the two most frequent KRAS mutations, KRASG12D and KRASG13D, has been performed. KRASG12D mutation enhances membrane and adherens junction signaling, while KRASG13Dactivates signaling molecules such as MAPK kinases, non-receptor tyrosine kinases, and regulators of metabolic processes (9).



Direct Targeting of KRAS

KRAS mutations types and incidence vary among epithelial cancer histotypes. Whereas KRASG12C mutations are frequent in lung adenocarcinoma, they are rare in pancreatic ductal adenocarcinoma (PDAC). PDAC are enriched in KRASG12D, KRASG12V, and KRASG12R point mutations (10). These differences are crucial for the development of new potential therapeutic strategies.

Recently, encouraging results using direct KRASG12C inhibitors have been reported. KRAS mutation G12C is present in about 13% of lung cancer, 3% of colorectal cancer, and in a smaller percentage of other epithelial tumors (11). The mutant cysteine-12 is located next to a cryptic pocket (SWII) in GDP-KRAS. The proximity of this cryptic pocket (SWII) to cysteine-12 has driven the development of covalent inhibitors targeting SWII, getting an allosteric inhibition of cysteine-12. ARS-1620 was the first covalent inhibitor binding SWII pocket of KRASG12C-GDP complex developed (12). Starting from this pioneering milestone, many efforts have been made in order to improve potency, drug permeability, solubility, and oral bioavailability and create suitable drugs for clinical use. As a result of these efforts several drugs have been developed and tested in preclinical and clinical studies, including AMG 510 (or sotorasib) and MRTX849 (or adagrasib). Sotorasib was developed by Amgen. Improvements in drug potency have been achieved by taking advantage of an alternative orientation of His95, located in the switch II pocket. The alternative orientation creates a larger surface groove which guarantees an irreversible interaction between KRASG12C and its inhibitor. The almost complete inhibition of pERK observed upon sotorasib treatment confirmed its enhanced potency (13). Interestingly, while durable responses were obtained in immune-competent tumor-bearing murine models, this activity was not durable in immune-deficient models. Further studies demonstrated that sotorasib induces a pro-inflammatory microenvironment through the expression of chemokines, such as CXCL10 and CXCL11. These chemokines attract tumor-suppressive immune cells, including T cells, macrophages, and dendritic cells, leading to long-term anti-tumor T cells responses. This observation suggested that a more significant and prolonged tumor response could be induced by a combination therapy with immune checkpoint inhibitors (14).

The small molecule covalent inhibitor sotorasib is currently under active clinical development for the treatment of KRASG12C mutated tumors. Successful results have been recently reported in the phase 1 CodeBreaK100 trial, that investigated sotorasib in patients with advanced and pretreated solid tumors, mainly NSCLC and colorectal cancer, harboring a KRASG12C mutation (15). About one third of NSCLC patients responded to therapy. Disease control rate was remarkable in both NSCLC (88.1%) and colorectal cancer (73.8%). Median progression free survival was 6.3 months for NSCLC patients and 4.0 months for colorectal cancer patients. Some patients exhibited a rapid disease progression after an initial response, but a group of patients presented durable responses. The lower response rate in colorectal cancer patients (7.1%) suggests a different KRAS dependency across diverse tumor types harboring the same mutation. Sotorasib showed a good safety profile, with diarrhea, fatigue, and nausea as the most common adverse events, and no dose-limiting toxic effects have been observed. Combination treatments of sotorasib with immunotherapy are currently under clinical evaluation and invested of great expectations (NCT04303780, NCT04185883).

A different KRASG12C covalent inhibitor, named adagrasib, has been developed by Mirati Therapeutics Inc. Adagrasib also binds SWII pocket of GDP-KRAS, inhibiting KRAS pathway and inducing in turn a potent anti-tumor response, as demonstrated in different in vivo models. Nonetheless, resistance mechanisms emerged early through the activation of other pathways and activation of compensatory mechanisms, leading to transient or submaximal response to adagrasib. Indeed, high expression or activated mutations of RTKs can activate feedback mechanisms reactivating RAS and stimulating mTOR pathway. Similarly, the co-occurrence of alteration in genes involved in cell cycle regulation, such as CDKN2A and CDK4/6, can induce Rb phosphorylation and cell cycle transition. Based on these evidences, the combination of adagrasib with different drugs, such as EGFR, SHP2, and mTORC inhibitors have been tested in different in vivo murine models. The combination of adagrasib with afatinib, RMC-4550, and vistusertib respectively, obtained a stronger inhibition of ERK and S6 phosphorylation than did any single agent treatment with an improved anti-tumor activity. Moreover, the combination of adagrasib and palbociclib decreased Rb and E2F family target genes expression levels, reduced S6 phosphorylation level, and induced major tumor regression, especially in CDKN2A altered models (16). In the phase 1/2 multi-expansion cohort KRYSTAL-1 trial (NCT03785249), adagrasib has been evaluated in patients with advanced solid tumors harboring KRASG12C mutations, demonstrating an acceptable safety profile and promising clinical activity. In NSCLC patients previously treated with chemotherapy and anti-PD-1/PD-L1 therapy the disease control rate was 96% and objective response rate (ORR) was 45% (https://cm.eortc.org/cmPortal/Searchable/ENA2020/config/normal#!abstractdetails/0000902150). The only commonly reported (>2%) grade 3/4 adverse event was hyponatremia. Disease control was observed in 94% of colorectal patients. Confirmed partial responses (PRs) were observed in a patient with endometrial cancer and a patient with pancreatic cancer (https://cm.eortc.org/cmPortal/Searchable/ENA2020/config/normal#!abstractdetails/0000902140). The most commonly reported adverse events included diarrhea, nausea, fatigue, and vomiting. Other trials have been designed to evaluate the combination of adagrasib with other drugs, such as EGFR, SHP2, or PD1 inhibitors (KRISTAL-1, -2, -7). Among clinical trials conducted in patients with cancers harboring KRASG12C, ARS-3248/JNJ-74699157, LY3499446, and GDC-6036 are being investigated (NCT03114319, NCT04165031, NCT04449874).

PanKRAS inhibitors represent a different category of drugs that do not target a single KRAS isoform selectively but aim to inhibit a broader spectrum of targets. Among these molecules, we count BI 2852, which binds between switch I and switch II pocket and inhibits KRAS interactions with GEFs, GAPs, and its downstream effectors. BI 2852, indeed, effectively reduces pERK and pAKT levels, achieving antiproliferative effects on KRAS mutant cell lines. Because of the high conservation of the SI/II-pocket across RAS isoforms, this molecule can bind with similar affinity most of them (17). SOS1 inhibitors are also panKRAS inhibitors. These drugs, indeed, do not bind directly to KRAS but inhibit the interaction between KRAS: SOS1, preventing KRAS GTP loading and its switching in to the active state. The main representatives are BI 3406 and BI 1701963. BI 3406 has been proven to be active in in vitro and in vivo murine models, harboring KRAS G12 and G13 codon mutations, but not G12R mutation. SOS1 can be downregulated by ERK-mediated phosphorylation, representing an important negative feedback modulator of KRAS pathway. During treatment with MEK inhibitors, pERK levels reduction induces a decrease of SOS1 phosphorylation, resulting in RAS pathway activation. These observations suggest that inhibition at both levels represents a good strategy to efficiently block KRAS pathway and prevent escape. The combination treatment of SOS1 with MEK inhibitor achieved good results in vitro and in vivo murine models, with robust pathway inhibition and tumor regression (18). Based on these preliminary preclinical results, BI 1701963, the second representative of SOS1 inhibitors, is being tested, alone and in combination with MEK inhibitor trametinib, in a phase I clinical trial in cancer patients carrying pan-KRAS mutations (NCT04111458).

RAS direct targeting has also been investigated in several studies. The bacterial Ras/Rap1-specific endopeptidase (RRSP) represents a good candidate for RAS direct targeting therapy. RRSP induces a proteolytic cleavage of RAS proteins between residues Tyr-32- and Asp-33 in SWI pocket, this cleavage alters RAS SWI structure, blocking the interaction of RAS with GEFs and preventing the transition of RAS into the active state. It also prevents the interaction with RAF and the downstream signaling pathway (19). RRSP can disrupt both wild type and mutant RAS proteins (including KRAS, HRAS, and NRAS). This blockage allows the inhibition of signal transduction depending from various RAS mutations, overexpression of upstream receptor tyrosine kinases (RTKs), or amplification of wild-type RAS as it happens in head and neck squamous cell carcinoma, esophageal and gastric carcinoma, ovarian adenocarcinoma, and triple-negative breast cancer. To enable the migration of RRSP through the biological membrane, a chimeric toxin formed by RAS/Rap1 specific endopeptidase and the translocation machinery of diphtheria toxin has been developed. The use of this engineered chimeric toxin has achieved good results in vitro and in vivo murine models, especially in lung and colorectal tumor cell lines and in cells expressing high levels of HB EGF. In human cells HB EGF is highly represented and this could represent a limit for its clinical application, influencing the dose limiting toxicities (DLT). Further engineering steps could allow to overcome this possible limit, aiming to vehicle RRSP across tumoral membrane cells only and sparing normal human cells.



Indirect Targeting of KRAS Signaling

In the attempt of inhibiting KRAS signaling, different strategies intended to target upstream activators or downstream effectors of KRAS pathway have been developed (Figure 1). Because of the redundancy of the intracellular networks involved, the initial enthusiasm for the development of a single target therapy has been mitigated by evidence of emerging mechanisms of resistance. The combination of different drugs targeting different signal pathways could prevent or delay the development of resistance mechanisms, often, however, at cost of increased toxicities.




Figure 1 | KRAS signaling cascade. Inhibitors of KRAS and upstream and downstream mediators of KRAS are reported.




Inhibiting KRAS Processing and Activation

Different critical steps are necessary for KRAS activation: nucleotide exchange, localization, processing, effector binding. The blockage of each of them could prevent KRAS activation.

- Nucleotide exchange: The previously described pan-KRAS inhibitors should belong to this category despite their name, since their function is linked to SOS1 (GEF) binding and not KRAS directly. Nucleotide exchange is also favored by SHP2, across their binding to GRB2 and SOS1. Different SHP2 inhibitors, including TNO155 and RMC-4630, directed versus non-receptor protein tyrosine phosphatase, are being clinically evaluated in combination therapies in advanced solid tumors (20, 21).

- Processing: prenylation–proteolysis–methylation.

Many efforts have been made to inhibit RAS farnesylation, aiming to prevent its membrane localization. These efforts led to the development of tipifarnib, a small molecule farnesyl transferase inhibitor (22). However, tipifarnib has been evaluated in HRAS mutated cancers only, since KRAS is prenylated by geranylgeranyl transferase and does not need farnesylation for membrane localization. Unfortunately, a dual inhibition of both transferases did not inhibit KRAS prenylation in human patients (23).

- Localization: KRAS splices into KRAS 4A and KRAS 4B. KRAS4B needs a chaperone, PDE6d, to translocate to the membrane surface. Deltarasin, a PDE6d inhibitor, prevents PDE6d from binding to KRAS, causing accumulation of KRAS 4B onto endomembranes (24). It is not clear yet if the cellular effects are due to KRAS inhibition or to other PDE6d effectors inhibition.



Targeting Downstream Mediators of Intracellular Signaling

Activated KRAS induces RAF proteins phosphorylation and dimerization with consequent activation of their kinases. There are three isoforms of RAF, represented by BRAF, RAF1/CRAF, and ARAF. Numerous studies conducted on BRAF, which is the best characterized isoform, have led to the development of therapies targeting V600E mutation specifically. These targeted therapies are widely used in melanoma and recently have been approved for the treatment of BRAF mutated NSCLC. Unfortunately, the application of BRAF inhibitors vemurafenib, dabrafenib, and encorafenib has failed in KRAS driven tumors, because of the paradoxical activation of ERK1/2. BRAF inhibitors, indeed, bind to BRAF and induce the heterodimerization BRAF/RAF1. The binding of BRAF inhibitors to BRAF mediates an allosteric activation of RAF1, with consequent MEK/ERK activation (25). Novel panRAF inhibitors, known as paradox breakers, have been developed to overcome this effect. Among these panRAF inhibitors we count PLX8394, which seems to have higher affinity with BRAF homodimers and BRAF/RAF1 heterodimers (26, 27), and LY3009120, which blocks the kinase activity of RAF dimers (28). Despite the promising data seen in preclinical studies (29, 30), LY3009120 failed to demonstrate efficacy in early clinical trials as monotherapy. A phase I study conducted in patients affected by RAS or BRAF mutated advanced tumors reported as best response stable disease in 8 of 51 patients (15%) with no complete or partial response achieved (31). LXH254 and belvarafenib are panRAF inhibitors also in active clinical development. A phase I clinical trial with LXH254 alone and in combination with an anti PD1 antibody is ongoing (NCT02607813). Belvarafenib has been tested in a phase I study including patients affected by advanced solid tumors harboring RAS or BRAF mutations, demonstrating good safety profile and antitumor activity (32). A study exploring its use in combination with anti-MEK agents is ongoing (NCT03284502).

MEK inhibitors, such as selumetinib, have been tested in KRAS mutated NSCLC as single agents and in combination with chemotherapy, without showing any clinical benefit (33). The same results have been seen with trametinib (34) and pimasertinib (35) in pancreatic cancer. This failure has been attributed partially to vertical compensation mechanisms of upstream elements, such as RTKs, BRAF, or KRAS, that lead to ERK reactivation, or alternative compensatory mechanisms as the activation of PI3K-AKT-mTORC1 pathway.

ERK inhibitors, such as ulixertinib/BVD523 and LY3214996, have been tested in phase I clinical trials (NCT02608229, NCT02857270). Ulixertinib has recently moved to phase II clinical development. The frequent reactivation of ERK observed during treatment with MEK or BRAF inhibitors calls for a better characterization of ERK inhibitors. This class of inhibitors is being studied accurately, to evaluate their employment in vertical combination (2, 36). Other strategies have been tested to target simultaneously different molecules aiming to vertical combination (NCT01229150, NCT02230553, NCT02258607, NCT04185883, NCT04330664) (Table 1).


Table 1 | Clinical trials investigating combination treatments reported as “Drug 1” and “Drug 2” that target effectors of the same pathway (vertical combination). For each trial the study phase and the setting of patients is indicated.



The other pathway activated by KRAS is the PI3K-AKT-mTORC1 pathway, important for cellular proliferation, motility, and survival. Its persistent activation due to KRAS mutation contributes to cancer progression. Class I PI3K phosphorylates PIP2, which attracts AKT to plasma membrane and induces mTOR activation. Inhibition of PI3K pathway using AKT inhibitors failed in in vitro and in vivo trials, perhaps because of the activation of other signaling pathways. The compensatory mechanisms between the two pathways, MAPK and PI3K pathway, that emerge blocking one of them, led to the idea of blocking both pathways simultaneously. The combination of MEK inhibitors and AKT inhibitors showed promising results in pancreatic cancer in in vitro and in vivo studies (37). In a similar way, the combination of PI3K inhibitors with ERK inhibitors (38), MEK inhibitors (NCT01363232, NCT01337765, NCT01392521, NCT01390818) or RAF inhibitors are being tested with promising results in early clinical trials. However, at cost of higher toxicity associated to the double treatment (39).




Synthetic Lethal Partners of KRAS

Since direct inhibition of KRAS has been proven to be exceptionally challenging, one potential strategy to target tumors dependent upon this oncogene has been through the identification of its synthetic lethal partners. Synthetic lethal partners are genes that if mutated individually are compatible with viability, but the simultaneous perturbation of their expression or pharmacological inhibition of their products determines cell death (40). Synthetic lethality can be exploited in order to target tumor cells harboring undruggable mutations. An example of synthetic lethality is represented by the sensitivity of BRCA mutant cells to PARP inhibition (41). Synthetic lethal partners of KRAS could be downstream of its pathway or acting in parallel adaptative signaling. Targeting synthetic lethal partners should reduce the risk of adverse events because mutated cancer cells are more sensitive to this strategy compared to normal cells (42).

Among the different methods used to identify novel KRAS synthetic lethal partners, RNA interference has been the approach initially and more frequently applied (42). Unfortunately, evidence suggests that the reproducibility of this technology could be limited by the library quality and off target effects (43). More recently, CRISPR-Cas9 screening technology has been applied to loss-of-function genetic screening, enabling the complete knockout of target genes, that has been useful in identifying essential genes in KRAS mutant cancer cells (44). Results from different studies looking for synthetic lethal partners are scarcely overlapped and attempts to reproduce published KRAS synthetic lethal targets failed (45, 46). The novel CRISPR-Cas9 technology improves genetic perturbation but is not able alone to overcome limitations associated with different cellular and genetic contexts. Interestingly, a meta-analysis of published synthetic lethal screens highlighted that different studies’ results overlap at the pathway rather than at a gene level (47). Furthermore, these differences have been ascribed to changes in genetic context or cellular conditions.

Several studies have identified different putative KRAS synthetic lethal partners (Table 2). Inhibitors of the MAPK pathway showed greater sensitivity in KRAS mutated cancers compared to the wild-type ones (58). Probably because of their sole cytostatic effect, MEK inhibitors have proved no clinical efficacy as single agents in RAS mutant cancers (59). The combination of a MEK inhibitor with an inhibitor of the antiapoptotic BCL-XL led to increased apoptosis in many KRAS mutant cell lines from different histologies, and tumor regression in in vivo lung cancer mouse models (48). A phase 1b/2 trial is investigating the safety, pharmacokinetics, pharmacodynamics, and clinical activity of the combination of the MEK inhibitor trametinib and the BCL2-family inhibitor navitoclax (ABT-263) in patients with KRAS or NRAS mutated advanced solid tumors (NCT02079740). An interim analysis showed a good safety profile and initial signs of efficacy, in particular in gynecologic tumors. Evidence coming from other in vitro and in vivo studies demonstrated efficient induction of apoptosis in KRAS or BRAF mutant colorectal cancer cell lines treated with navitoclax in combination with the TORC1/2 inhibitor AZD8055 but not in the wild-type controls. Similar results were obtained in murine models (60). IGF1R and MEK inhibition resulted in growth inhibition of KRAS muted NSCLC cell lines and murine tumors (61). FGFR1 inhibition combined with the MEK inhibitor trametinib has shown to mediate cell death in KRAS-mutant lung cancer both in vitro and in vivo (49).


Table 2 | RAS synthetic lethal partners and KRAS mutant cell lines in which they have been identified. Synthetic lethal gene inhibition is reported if tested.



CDK4 has been proposed as synthetic lethal partner in KRAS mutant NSCLC. This synthetic lethal interaction was observed only in lung cancer, not in colon or pancreatic cancer, pointing to a different tissue specific dependency of KRAS signaling (50). Targeting AKT and the glutathione antioxidant pathway mimicking Nrf2 ablation inhibited pancreatic adenocarcinoma tumors ex vivo and in vivo (51). NF-κB pathway has a central role in KRAS mutated cancers (62, 63). RAL-GEF family is one of the effectors of KRAS and mediates the activation of NF-κB, contributing to oncogenesis (64). NF-κB inhibition in a mouse model of lung adenocarcinoma expressing KRASG12D and lacking p53 has been demonstrated to reduce tumor development (65).

Another putative synthetic lethal partner of oncogenic KRAS is represented by the IκB kinase (IKK)–related kinase Tank-binding kinase-1 (TBK1). TBK1 is activated by RalB, a small GTPase downstream of KRAS belonging to the Ral signaling pathway, and Sec5, a component of the exocyst (66). TBK1 regulates an autocrine CCL5 and IL-6 signaling, inducing carcinogenesis in KRAS mutated cancer (52). Furthermore, activated TBK1 promotes NF-κB signaling through BCL-XL and the c-Rel protooncogene. Inhibiting TBK1 induces cell death in KRAS driven NSCLC adenocarcinoma murine models.

The JAK-STAT signaling pathway has a recognized role in pancreatic cancer development. In KRAS driven pancreatic cancer models, inhibiting JAK1/2 and TBK1 with momelotinib showed preclinical efficacy in vitro and in vivo (52). Nevertheless, to date it has not exhibited signs of activity in human pancreatic cancer (67).

XPO1 has also been proposed as synthetic lethal partner of KRAS. XPO1, overexpressed in many types of human cancers, is an export receptor in charge of the nuclear-cytoplasmic transport of many proteins. XPO1 has been proposed as a therapeutic target in several tumors including KRAS-mutant lung cancer. The effect of XPO1 inhibition consists in the accumulation of nuclear IκBα and consequent suppression of NFκB activity. Studies conducted on KRAS-mutant NSCLC cells showed that inhibition of the nuclear export XPO1 leads to a synthetic lethal interaction with oncogenic KRAS (53).

TAK1 has been suggested as mutant KRAS synthetic lethal target in colon cancer (54). In APC/KRAS mutant cells, KRAS mediates TAK1 activation and enhances Wnt activity by stimulating BMP-7 secretion and BMP signaling. TAK1 inhibition prompted apoptosis in KRAS-dependent colon cancer cells. However, TAK1 dependency may not be restricted to colon cancer, and approaches in targeting TAK1 have shown activity in other KRAS dependent tumors as well (68–70).

The transcription factor YAP1 is sustained by TAK1 and mediates KRAS independent growth (71, 72). YAP1 has been shown to overcome KRAS blockade to prompt pancreatic cancer growth in murine models (55). Representing a central hub in resistance to RAF and MEK inhibition, targeting YAP1 could represent a combination therapy in KRAS mutated cancers (73).

Loss of the transcription factor Wilms tumor 1 (WT1) has been correlated with decreased proliferation and increased cell senescence in KRAS driven cancer cell lines (55). However, WT1 remains not druggable to date (74).

The transcription factor GATA2 has been identified as a synthetic lethal target in RAS pathway mutant NSCLC models. However, GATA2 itself remains undruggable (56).

Deficiency of the DNA repair machinery has been described in KRAS mutant cells (47). BRCA1 is a strong synthetic lethal partner of PARP inhibition. PARP inhibition has also been proposed as a putative effective strategy in KRAS mutant cells.

RAS signaling is a known mediator of epithelial-mesenchymal transition (EMT). Thus, EMT regulators could represent therapeutic targets in KRAS driven tumors (75). The SNAI2 gene encoding SNAIL, a transcription factor and regulator of EMT, has been identified as a KRAS synthetic lethal target in colorectal cancer cell lines (57).

Direct targeting of KRAS has been approached and the need for targeting synthetic lethal partners could be questioned. However, synthetic lethal partner inhibitors could be used in the future in combination with direct inhibition in order to overcome possible escape mechanisms.



Targeting Metabolic Reprogramming in KRAS Mutant Cancers

Studies conducted using murine pancreatic cancer models have shown that KRASG12D stimulates the expression of glucose transporter 1 (GLUT1) and glycolytic enzymes and conveys glucose intermediates into the hexosamine biosynthesis pathway (HBP) and non-oxidative pentose phosphate pathway (PPP). The inhibition of the HBP gene (Gfpt1) or non-oxidative PPP genes (Rpia or Rpe) suppresses the KRAS dependent tumor growth (76). It has been shown that an increase in glucose uptake through enhanced GLUT1 expression is dependent on KRAS and BRAF mutation in colorectal cancer cell lines and sustained their survival (77). Furthermore, glucose deprivation with a glycolysis inhibitor suppressed tumor growth. Mutated KRAS determines higher 18F-fluorodeoxyglucose accumulation possibly by upregulation of GLUT1 (78). A retrospective study reported a significantly higher 18F-fluorodeoxyglucose accumulation detected with positron emission tomography in KRAS mutant colorectal cancer patients compared with wild-type ones (79). High levels of vitamin C have been found to selectively kill colorectal cancer cells harboring KRAS or BRAF mutations. The increased uptake of the oxidized form of vitamin C through GLUT1 causes oxidative stress and cell death only in KRAS or BRAF mutant cells (80).

Cancer cells are characterized by increased anabolic metabolism, which requires the use of the amino acid glutamine. It has been demonstrated that oncogenic KRAS mediates the reprogramming of glutamine metabolism in pancreatic adenocarcinoma cells by modifying the transcription of metabolic enzymes in a noncanonical pathway of glutamine (81). However, the tissue of origin and the microenvironment can impact on metabolic features. For example, pancreatic cells do not depend on the branched-chain amino acid (BCAA) processing enzymes Bcat1 and Bcat2, which enables BCAAs to be utilized as a nitrogen source, contrary to NSCLC (82). In KRAS mutated colorectal cancer cells the pentose phosphate pathway has been demonstrated to be essential for the growth in aerobic conditions and glutamine conversion into α-ketoglutarate and alanine aminotransferase for KRAS induced anchorage-independent growth (83). In KRAS driven lung cancer mouse models mitochondrial metabolism and mitochondrial reactive oxygen species generation, which is allowed by glutamine conversion into α-ketoglutarate, are essential for KRAS induced tumorigenicity (83). Models obtaining the suppression of KRAS led to reveal potential KRAS independent escape mechanisms. In KRAS G12D mouse model of pancreatic cancer surviving cells responsible for tumor relapse rely on oxidative phosphorylation, making the combined inhibition of the KRAS pathway and mitochondrial respiration a possible therapeutic strategy (84).

Autophagy is a mechanism characterized by degradation of intracellular components. It is stimulated by oxidative stress, nutrient shortage, and protein damage through inhibition of the AMPK and mTOR pathways and the activation of the unfolded protein response system (85). Pancreatic adenocarcinoma tumors show raised autophagy, whose inhibition demonstrated to reduce tumor growth (86). However, the role of KRAS in autophagy remains controversial. In a study conducted in different cancer cell lines, KRAS mutation was not correlated with the dependance to autophagy (87). The use of hydroxychloroquine, that inhibits autophagy preventing lysosome acidification, failed to show therapeutic activity in pancreatic cancer patients (88). However, several studies are ongoing to investigate hydroxychloroquine in combination with chemotherapy in pancreatic cancer (NCT04524702, NCT04132505). The deficiency of atg7, an essential autophagy gene, in KRASG12D mutated NSCLC mouse models determined the accumulation of dysfunctional mitochondria and inhibited cancer growth (89).

RAS proteins have been demonstrated to enhance macropinocytosis, a process by which extracellular fluid and extracellular proteins are internalized through vesicles. Macropinocytosis inhibition with amiloride blocked the growth of KRAS mutated pancreatic cancer xenografts (90).

The metabolism of fatty acids has been correlated with KRAS mutation in NSCLC. It has been shown that KRAS regulates lipid homeostasis and Acyl-coenzyme A synthetase, an enzyme involved in fatty acid metabolism, essential for mutant KRAS lung cancer tumorigenesis in vivo (91). Furthermore, KRAS has been reported to promote lipogenesis through the induction of fatty acid synthase in lung cancer (92).

In KRAS/p53 mutant lung cancer mouse models the inhibition of HSP90 combined with rapamycin was shown to promote endoplasmic reticulum stress and mitochondrial damage and tumor regression (93).



Putative Escape Pathways to KRAS Inhibition

Although a clinically relevant strategy for effectively targeting KRAS in all of its mutated status seems still far to be developed, potential mechanisms of resistance for KRAS inhibition have been already explored in several preclinical models.

KRASG12C inhibitors bind specifically to inactive GDP-bound form of KRAS. Thus, the potency of KRASG12C inhibition is reduced by increased RTK activity, that promotes cycling of KRASG12C to its active GTP-bound form, hindering KRASG12C drug inhibition (94). Furthermore, the suppression of nucleotide exchange activity downstream of tyrosine kinases enhances KRASG12C inhibition, suggesting possible combination strategies.

By targeting KRASG12C with ARS-1620, the phosphorylation of multiple RTKs was augmented in different ways across diverse KRASG12C mutant models (95). Synergistic effects of RTK inhibitors combined with KRAS blockade may vary across different tumor cell types (96).

KRASG12C inhibitors induce growth inhibition mainly by targeting MAPK/ERK pathway. The redundancy of parallel growth factor signals can bypass KRAS blockade, underlying intrinsic resistance to KRASG12C inhibitors (96). However, combining this strategy with the inhibition of SHP2, a phosphatase that mediates signaling of different RTKs to KRAS, blocked the feedback reactivation and enhanced efficacy of KRASG12C inhibition in vitro and in vivo, also in models refractory to KRASG12C inhibition alone (16). This encouraging preclinical evidence led to move to an early-phase clinical trial investigating combination therapies aimed to simultaneously targeting KRASG12C and SHP2 (NCT04330664, NCT04185883). Another central node stimulated by RTK is represented by SOS1, a guanine nucleotide exchange factor activating KRAS (97). The SOS1 inhibitor BAY-293 can synergize with the KRASG12C inhibitor ARS-853 reducing cell proliferation (98).

Noteworthy, the scenario of KRAS mutated cancer is extremely heterogeneous and complex. The dependency on KRAS signaling varies across different KRAS mutant cancer types and could reflect the variability in the tumor response, representing a possible mechanism of intrinsic resistance (75, 99). KRASG12C colorectal cancer cells have been shown to have higher basal EGFR activity compared to NSCLC cells, leading to higher phospho-ERK rebound and thus resistance to KRASG12C blockade (100). This finding is consistent with clinical results, in which activity of sotorasib seems to be lower in colorectal cancer patients. Thus, combining KRASG12C inhibition with EGFR inhibition could represent an effective treatment strategy. Indeed, in KRAS mutant cancer cells KRASG12C inhibition with ARS-853 was increased by the combination with EGFR inhibitors (94).

Other adaptive resistance mechanisms for KRASG12C inhibition involved reactivation of MAPK pathway and failed PI3K–AKT pathway inactivation (96). The combination of the KRASG12C inhibitor ARS1620 with PI3K inhibition has demonstrated to be effective in vitro and in vivo in different models resistant to single-agent KRASG12C inhibitor. Also a strategy of blocking PI3K effectors, such as AKT and mTOR, together with KRASG12C, proved to be effective in preclinical studies (94, 101).

Activation of RTK signaling in KRASG12C mutant cancers could limit the KRASG12C therapeutic inhibition both by increasing regulation of GTPase activity and promoting KRAS independent ERK and mTOR/S6 pathway activation (16). The combination of the mTOR inhibitor vistusertib with the KRASG12C inhibitor MRTX849 also improved antitumor activity in vitro.

mTOR and IGF1R could also play a central role in KRAS inhibition resistance. The addition of mTOR and IGF1R to the KRASG12C inhibitor ARS1620 improved efficacy in KRASG12C mutant lung cancer in in vitro and in vivo mouse models.

Another mechanism proposed for the adaptive resistance to KRASG12C inhibitors is represented by feedback reactivation of wild-type RAS (95). In KRASG12C models, an adaptive RAS pathway reactivation after a rapid KRASG12C inhibition with ARS-1620 and AMG-510 is driven by activation of wild-type RAS (NRAS or HRAS) mediated by RTKs and is not inhibited by KRASG12C inhibitors.

In response to KRASG12C inhibitors, proliferation of cancer cells can be resumed through the production of new KRASG12C (102). The distribution of newly synthetized KRASG12C between the active and inactive state, which is the only conformation bound by KRASG12C inhibitors, modulated the divergent response. Cells producing new KRASG12C, which is converted to the active and drug insensitive state, are able to escape KRASG12C inhibition.

Another possible mechanism responsible for resistance to KRASG12C inhibitors is represented by the presence of additional KRAS genetic alterations that can potentiate nucleotide exchange or impair inherent GTPase activity (94). Furthermore, the resistance to KRASG12C inhibitors could be cause by the presence of a heterogeneous spectrum of KRAS mutations in the same patient (103).

Moreover, aurora kinase A (AURKA) was shown to promote drug inhibition escape by interacting with KRASG12C and c-Raf (102). In KRASG12C mutant cancer models a synergic effect was demonstrated with the KRASG12C inhibitor ARS-1620 and the AURKA inhibitor alisertib (102).

In an inducible KRASG12D pancreatic cancer mouse model, the amplification and overexpression of the transcriptional coactivator Yap1 has been demonstrated to be a potential KRAS independent bypass mechanism (55). In this study, indeed, after KRAS extinction and complete tumor regression in all mice, about two thirds of them relapsed. At least three possible resistance mechanisms have been identified. In about half of the relapsed tumors, a KRAS transgene amplification has been found, meaning that genomic alteration on target itself could bypass target blockade. Another possible mechanism leading to tumor relapse is represented by the compensatory activation of other key growth pathways. According to this, previous findings showed that expression of receptor tyrosine kinases bypasses the KRAS dependency (75). Furthermore, a novel mechanism of resistance to KRAS inhibition through a Yap1-mediated transcriptional program has been proposed. Although Yap1 is not sufficient for driving de novo pancreatic cancer development, it can drive tumor recurrence in inducible KRASG12D pancreatic cancer models (104).

Since increased cell proliferation and antiapoptotic signaling could represent a possible mechanism of resistance to KRASG12C inhibitors, their combination with chemotherapy, that inhibits cell proliferation, could boost responses and deter resistance. There are also evidences showing a synergistic effect of cell cycle inhibitors like palbociclib in combination with KRASG12C inhibitors (14). Indeed, genetic alterations in CDKN2A, CDK4, or CCND1 can be found in up to 20% of KRAS mutated NSCLC cancers (105).

Overall, these data support the utility of combination therapies in overcoming intrinsic and adaptive resistance and enhancing clinical benefit of KRASG12C inhibitors.



KRAS Reprogramming of Tumor Microenvironment and Potential Implication for Immunotherapeutic Approaches

The development and progression of tumors depend not only on oncogenic mutations but also on the interaction with the surrounding microenvironment, which creates a nurturing niche for cancer cells. KRAS mutant tumors are typically characterized by an immunosuppressive state (106). KRAS signaling induces in tumor cells the expression of immunomodulatory factors and inflammatory cytokines, with subsequent recruitment of neutrophils and myeloid-derived suppressor cells (MDSCs), creating an immunosuppressive tumor microenvironment. KRASG12D was shown to induce ELR CXC chemokines in human embryonic kidney cells (107). Large production of chemokines was observed also in KRAS mutant pancreatic cell lines (108). In murine lung cancer models KRASG12D demonstrated to stimulate CXCL1, 2, and 5, leading to neutrophils and macrophages infiltration (109). A tumor growth promoting role for CXCL2 and CXCL5 was also found in KRAS mutated pancreatic cancer cell lines (110).

The binding of CXCL3 with CXCR2 and the production of GM-CSF induce the accumulation of MDSCs. In colorectal cancer models KRASG12D has shown to downregulate the expression of interferon regulatory factor 2 (IRF2), which in turn suppresses CXCL3 expression, resulting in high expression of CXCL3 and promoting migration of myeloid-derived suppressor cells to the tumor microenvironment (111). Responsiveness to anti-PD-1 therapy was increased in colorectal cancers with higher IRF2 expression. The tumor microenvironment is populated by other myeloid cells, such as alternatively activated immune suppressive M2 macrophages, and lymphoid cells, including CD4+FoxP3+ T regulatory (Treg) cells, CD19+IL-10+ B regulatory (Breg) cells, and interleukin (IL)-17-producing T helper (Th)17 cells (112, 113).

IL-6 expression has been correlated with KRAS mutated signaling and seems to play a central role in shaping the immune milieu. In pancreatic cancer models IL-6 signaling was accompanied by an infiltration of myeloid cells and lymphocytes (114).

Upregulation of IL-10 transcription through MEK/ERK/AP-1 pathway was shown in KRAS mutant colorectal cancer cells and its secretion was required for the conversion of CD4+ T cell to CD4+FoxP3+ Treg cells (113). High IL-10 levels were associated with a worse prognosis in patients with KRAS mutated cancers (106).

The capacity of TGF-β in regulating the immune system and inhibiting inflammation is acknowledged since many years (115). Either RAS downstream MAPK and PI3K pathways seem to contribute to TGF-β production (116). In KRAS mutated colorectal cancer lines TGF-β secretion was required for Treg cell differentiation as mediated via the MEK/ERK/AP-1 pathway (117). In a lung cancer mouse model, it has been demonstrated that IL-10 and TGFβ secreted by KRAS mutated cancer cells, induce the conversion of CD4+ CD25- T-cells into FOXP3+/CTLA4+/CD122+ T regulatory cells (Tregs) (117). In immune-excluded colorectal cancer models the inhibition of TGF-β promoted anti-tumorigenic immune infiltration, restoring sensitivity to PD-L1/PD-1 blockade (118). Considering that pancreatic cancer is a poorly immunogenic, “cold” tumor, novel approaches targeting the microenvironment have been explored. Signals of activity using TGF-β-inhibitor galunisertib in combination with gemcitabine have been showed in advanced pancreatic cancer patients (119). Moreover, conventional therapy is able to shape the immune landscape in KRAS mutant tumors. It has been demonstrated that mutant KRAS pancreatic cancer cell lines treated with chemotherapy activate MAPK and NF-κB pathways, inducing the secretion of inflammatory cytokines able to enhance monocyte differentiation towards MDSCs and thus counteracting therapy response (120). Other mechanisms have also been proposed. High circulating IL-8 levels have been suggested to be a potential predictive biomarker of resistance to nanoliposomal irinotecan (nal-IRI) in gemcitabine-refractory patients with pancreatic cancer (121). Nal-IRI has been developed to exploit tumor-associated macrophages (TAMs) for accumulation and conversion into its active metabolite. IL-8 has shown an increased mobilization of immature CD11b+Gr-1+ myeloid cells, thus, it has been hypothesized that high IL-8 levels and low TAMs activity could be correlated with lack of nal-IRI activity (122).

Mutated KRAS has a central role in pancreatic cancer development and growth through regulation of T cell cytokines in the microenvironment, therefore shaping the metabolic cancer cell landscape (123). The presence of T cells in the microenvironment is of crucial importance considering their therapeutic potential with immune checkpoints inhibitors. TH1 cells are generally associated with response to immunotherapy and promote CD8+ T cell infiltration (124). TH2 cells prevent tumor rejection and promote tumor growth (125). In addition to promoting macrophage M2 polarization, IL-4, which is abundantly produced by TH2 cells, has been recently demonstrated to stimulate tumor cell proliferation through KRAS in pancreatic cancer. Mutant KRAS in cancer cells stimulates cytokine receptor expression such as such as IL4R, IL2Rγ, and IL13Rα1 that, in turn, facilitate the Jak1-Stat6-cMyc pathway activation by IL-4 and IL-13. cMyc, which is activated by Stat6, is required for metabolic reprogramming and drives glycolysis.

GM-CSF can exert both immune suppression and stimulation and the balance could be dependent on its levels (106). KRASG12D is responsible for GM-CSF transcription through MAPK and PI3K pathways in pancreatic cancer cells (126). The correlation between reduced overall survival and high levels of GM-CGF observed in pancreatic cancer patients is probably due to the ability of GM-CSF to cause MDSC differentiation and inhibition of T cell proliferation (120).

Although IL-10 and TGF-β can induce a shifting of macrophages towards the alternative activated immunosuppressive M2 state, a clear correlation between their secretion by KRAS mutated cancer and macrophage polarization has not been established (106). In pancreatic cancer both M1 and M2 macrophage phenotypes have been hypothesized to play an important role in tumor initiation and progression and growth (127). In advanced pancreatic cancer macrophages represent the most abundant immune cell population, playing mainly an immunosuppressive role (128). The correlation of macrophages with prognosis in lung cancer patients remains controversial (129). Mechanisms of macrophage recruitment in KRAS mutant lung cancer are not well defined, but it has been hypothesized a role for CXCR2 signaling (130).

Also, a crosstalk between cancer-associated fibroblasts (CAFs) and KRAS mutant cancer cells has been shown. In a KRASG12D mutant lung cancer and CT26 colon cancer mouse models, the depletion of fibroblast activation protein (FAP), expressed by CAFs, was demonstrated to inhibit tumor cell proliferation through accumulation of collagen and decrease of myofibroblast content and blood vessel density (131). In pancreatic cancer cells KRAS activates Hedgehog pathway, which is involved in the generation and maintenance of the typical dense tumor stroma (132). In a pancreatic cancer mouse model, mutant KRAS induced the expression of Sonic hedgehog, which in turn activated the transcription factor GLI1. GLI1 regulates IL-6 expression in fibroblasts by binding its promoter and IL-6/STAT3 axis is involved in pancreatic carcinogenesis (133).

Pancreatic stellate cells are essential in disease progression and are the most represented cell type of tumor stroma (134). TGF-β and many other factors secreted by pancreatic cancer cells contribute to the activation of stellate cells which, in turn, produce and release several other growth factors and cytokines (106). Pancreatic stellate cells and mutant KRAS cancer cells have a synergistic effect on the immune microenvironment.

The composition of the immune population and its crosstalk with KRAS altered tumor cells have a central role not only in determining tumor onset and progression but also in sensitivity to immunotherapeutic drugs (135). A study reported that oncogenic RAS signaling can upregulate PD-L1 expression on tumor cells through a mechanism of increased PD-L1 mRNA stability (136). Indeed, KRAS-induced MEK signaling promotes the inhibition of tristetetrapolin, a negative regulator of PD-1 expression. In human lung and colorectal tumors, RAS pathway activation has been correlated with elevated expression of PD-L1. It has been reported that PD-1 and PD-L1 expression is more frequent in KRAS mutated NSCLC (137). Some studies have already shown a clinical relevance of the combination of MEK inhibitors with immunotherapy (138, 139). An ongoing phase 1b/2 trial is testing the activity of the treatment with MEK inhibitor binimetinib in combination with nivolumab or nivolumab plus ipilimumab in pretreated patients with microsatellite stable metastatic colorectal cancer harboring a RAS mutation (NCT03271047).

Differently from other TKIs, novel KRASG12C inhibitors are specifically selective for the mutation variant of KRAS and should not have any effects on the immune cells directly. Thus, KRAS inhibition in cancer cells can shift the balance from an immunosuppressive state to a microenvironment favoring effective antitumor activity and can sensitize tumors to checkpoint inhibitor therapy.

The predictive role of KRAS status to immune checkpoint inhibitors in NSCLC is controversial. Although KRAS status has never been included as stratification factor in clinical trials with immune checkpoint inhibitors for NSCLC, a subgroup analysis of the CheckMate 057 trial revealed that patients with tumors harboring a KRAS mutation had a greater clinical benefit with nivolumab compared to docetaxel (140). A meta-analysis conducted on five prospective randomized trials has revealed that (141) KRAS mutation is associated with a better outcome in patients treated with PD-1/PD-L1 inhibitors in second-line setting (142). However, the study failed to prove that KRAS status is an independent predictive factor for treatment. The retrospective IMMUNOTARGET registry confirmed a greater benefit from immune checkpoint inhibitors in patients with KRAS mutated NSCLC compared to those with EGFR mutant tumors (143). Another retrospective study found similar activity of immunotherapeutic agents in KRAS mutated compared to KRAS wild-type lung cancer patients (141). The mutation variants KRASG12V, KRASG12D, and KRASG13C have been associated with higher tumor expression of PD-L1 compared with other variants in NSCLC.

Interestingly, some evidence supports the hypothesis that STK11/LKB1 co-mutation in KRAS mutated NSCLC could represent a negative predictive factor for immunotherapy (144). LKB1 loss is involved in the suppression of stimulator of interferon genes (STING), determining a decreased expression of type I interferon genes and chemokines that facilitate T-cell recruitment (145). STING activation has been associated with response to immunotherapy and is stimulated by chemotherapy (146). A subgroup of STK11 and p53 co-mutated NSCLC is characterized by high STING- and immune-related gene expression. KRAS mutated tumors with co-occurring CDKN2A/B mutations have a scarce immune infiltrate and low PD-L1 expression, resulting in resistance to anti-PD-1 therapies (147). Another group of KRAS mutant NSCLC presents p53 co-mutation and they also have high PD-L1 expression, high T-cell infiltration and, thus, enhanced response to immunotherapy. For the resistance to anti-PD-1 observed in this latter group, a mechanism involving STAT signaling has been proposed (148). In KRAS/p53 mutant murine lung cancer models neurotrophic receptor tyrosine kinase 1 (NTRK1) has been found to be upregulated after treatment with PD-1 inhibitors and to regulate JAK/STAT signaling, promoting PD-L1 expression and CD8+ T cell exhaustion in the microenvironment.

p21-activated kinase 4 (PAK4) is a serine/threonine kinase acting downstream of RAS signaling. PAK4 overexpression has been found in tumor biopsies of anti-PD-1 non-responders and was correlated with low T cell and dendritic cell infiltration across different cancer types, with a strong negative correlation in pancreatic cancer (https://doi.org/10.1038/s43018-019-0003-0). The genetic knockout of PAK4 augmented tumor infiltration by T cells and natural killer cells and pharmacological inhibition of PAK4 synergized with PD-1 blockade immunotherapy in melanoma mouse models, suggesting the possibility of enhancing the efficacy of immunotherapy also in KRAS mutant tumors.

Therefore, combining KRAS inhibition with immune checkpoint blockade has a strong biological rationale and could open the way to therapeutic options, reversing the innately immunoresistant phenotype of some RAS mutant cancers.

A recent study has suggested that the novel KRASG12C inhibitor sotorasib (AMG 510) can potentiate immune rejection when combined with anti-PD-1 immune checkpoint inhibitor (14). On one side, sotorasib promotes tumor regression by blocking growth and proliferation pathways, on the other side, it induces a change in the expression of immunomodulating factors in cancer cells, such as increased production of T-cell chemoattractants CXCL10 and CXCL11. The combination of sotorasib with anti-PD-1 determined complete regression in nine out of ten CT26 KRAS mutated colon carcinoma mice, which is one of the most immune-responsive mouse tumor models, and induced T cell memory. The immunological memory was demonstrated by the fact that the growth of isogenic KRAS G12D tumors in treated mice was impaired.

The phase 1b trial CodeBreakTM 101 testing the combination of sotorasib with anti-PD-1 is ongoing in patients with a KRASG12C advanced solid tumors (NCT04185883).

Further investigation about the synergistic association of KRASG12C and immune checkpoint blockade is warranted. It has to be explored if this combination will be effective only in tumors that are already moderately sensitive to immunotherapy or even in those intrinsically resistant to immune checkpoint inhibition.



Conclusions

Although KRAS is the most mutated oncogene in human cancer, it has considered to be undruggable because of its structural biology. Recently, exciting data of activity have been reported with KRASG12C inhibitors in early-phase clinical trials, raising a growing interest for KRAS inhibition, especially in lung cancer.

Different strategies are being explored in order to overcome resistance mechanisms and enhance the efficacy of KRAS inhibition, for example targeting synthetic lethal partners of KRAS. There is a hope that in the next future it will be achievable to block other mutation variants of KRAS other than G12C, making possible to exploit this approach also in other KRAS mutant tumors. Combinations of KRAS inhibitors and immune checkpoint inhibitors are being tested, since they showed a synergistic effect in a preclinical setting. Considering the immunosuppressive microenvironment characterizing KRAS mutant cancers, results from clinical trials utilizing this mechanism are anxiously awaited.

Many improvements have been made in targeting the oncogene KRAS, that was previously thought impossible to block, paving the way for a novel clinical field of research that will probably lead to new horizons in the future clinical practice.
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A low NM23-H1 expression in head and neck squamous cell carcinoma (HNSCC) was found to be associated with poor clinical outcome. Therefore, we investigated the role of NM23-H1 in the susceptibility of HNSCC cells to irradiation and its clinical significance. An in vitro study was also conducted to validate the results. Furthermore, we used immunohistochemistry to analyze NM23-H1 expression found in specimens of 50 HNSCC patients with cervical metastases receiving postoperative radiotherapy. Low tumor NM23-H1 expression was associated with locoregional recurrence of HNSCC (p=0.040; Hazard ratio=5.62) and poor clinical outcome (p=0.001; Hazard ratio=4.90). To confirm the effect of NM23-H1 on radiation-induced cytotoxicity, we generated several stable clones derived from a human HNSCC cell line (SAS) using knockdown and overexpression of NM23-H1. Knockdown of NM23-H1 decreased the radio-sensitivity of SAS cells, possibly associated with a decrease in the radiation-induced G2/M-phase accumulation and upregulation of cyclin B1. On the contrary, overexpression of NM23-H1 can reverse the aforementioned adverse results. Consequently, we suggest that NM23-H1 expression may be considered as a potential therapeutic treatment option for HNSCC patients.




Keywords: Head and neck squamous cell carcinoma, NM23-H1, metastasis, radiation, clinical outcome



Introduction

The prevalence of Head and neck cancers (HNC), mainly squamous cell carcinomas (HNSCC), are increasing worldwide (1). HNSCC patients’ prognosis hasn’t been able to improve due to early metastases and poor response to chemoradiotherapy. Most HNSCC patients with potentially removable tumors also have lymphatic metastases at the time of their diagnosis (2). At present, there are no useful biomarkers for treatment planning for HNSCC patients with metastases.

Low NM23-H1 expression is long known to be associated with therapeutic resistance and metastasis in some cancers (3–6). However, clinical observation on NM23-H1 expression in treatment outcome of various cancers had yielded inconsistent results (7–10). Metastatic cancer cells were considered as unstable cells originated from the primary tumor, which could derive from a low-NM23-H1-expression (11, 12). NM23-H1 expression may decrease slow overtime during the course of tumor development (13). The survival mechanism of spreading cells was the major contributor to therapeutic resistance of recurrent tumors (4). Therefore, restoring NM23-H1 expression might lead to better treatment outcome of residual cancer cells (13).

There were very few studies on the clinical significance of NM23-H1 expression in cancer patients with metastasis receiving postoperative radiation. In our previous study, we discovered a low NM23-H1 expression of HNSCCs was associated with lymphatic metastases. The metastatic colonies were noted to have a reduced protein level compared to their neighboring normal cells (11). To investigate the effect of NM23-H1 expression on remaining tumor receiving adjuvant therapy, we analyzed the correlation between NM23-H1 expression and clinical pathological factors in HNSCC patients with cervical metastases treated with postoperative radiotherapy. To verify the effect of NM23-H1 on irradiation-induced cytotoxicity in HNSCC cells, we generated stable clones derived from a human HNSCC SAS cell line by knockdown and overexpression of NM23-H1 (14). The aim of the present study was to evaluate the impact of NM23-H1 on radio-sensitivity of HNSCC cells.



Patients, Materials, and Methods


Patients and Surgical Specimens

The surgical specimens were collected from fifty HNSCC patients and their cervical metastases were treated by surgery and postoperative irradiation between 1984 and 1998. Patient’s age ranged between 30-88 years with a median of 50 years. Written informed consent was obtained from all patients and this study was approved by the Institutional Review Broad of Taipei Veterans General Hospital. The present workup and treatment include general physical examination, computed tomography (CT) scan of head and neck, intraoral soft tissue biopsy, chest radiography, abdominal sonography, and whole-body radioisotope bone scan. Same treatment plan was given to all patients including postoperative local irradiation. Cancer staging was defined by the multidisciplinary head and neck cancer tumor board based on the sixth edition of American Joint Commission on Cancer TNM system. During the surgery, tumor tissues and the normal tissues (the neighboring grossly disease-free mucosa of surgical margins) were collected and examined by the surgical pathologist. Postoperative radiotherapy was given to patients due to the presence of insecure or positive resection margins, multiple metastatic lymph nodes, extracapsular spread, and perineural invasion. Furthermore, tumor recurrence was confirmed by clinical examinations. The median follow-up period was 65.7 months with a range of 3-218 months. For final analysis, 24 out of 50 patients survived and were considered free of HNSCC. The cumulative survival rates at 1-, 3- and 5-year were 76%, 54%, and 51%, respectively.



Immunohistochemistry and Scoring

Expression of NM23-H1 in the pathologic tissues was observed and evaluated as previously described (2, 14).



Irradiation on SAS Cells

In the previous study, we generated a few stable clones derived from a human HNSCC SAS cell line by using knockdown and overexpression of NM23-H1 (14). SASshRNAnm23 (carrying nm23-H1 shRNA) and SASshRNA (carrying the pSuper plasmid) clones were obtained. Stable SAS clones expressing ectopically introduced HA-tagged NM23-H1 and harboring a control plasmid were also established and designated as SASnm23 and SAScontrol. By using the Western blot, NM23-H1 protein level found in the mock controls (SASshRNA and SAScontrol) were not different from the parental SAS cells, whereas NM23-H1 protein level of SASshRNAnm23 decreased by about 75% compared to the mock control (SASshRNA). Overexpression of the ectopically introduced HA-tagged NM23-H1 was noted (14).

SAS cells were plated in 6-cm dishes at a density of 2.0 × 105 cells/dish for 24 hours and cells were exposed to irradiation at different doses in a single fraction (sham RT, 1, 2 and 4 Gy). Six MeV of electron beam energy was delivered by a linear accelerator (Clinac® 1800, Varian Associates, Inc., CA; dose rate 2.4 Gy/min). For each fraction, full electron equilibrium was reached by using a parallel plate PR-60C ionization chamber (Capintel, Inc., Ramsey, NJ).



Colony Formation Assay of SAS Clones for Radiation Survival

Viable SAS cells were plated and allowed to grow in McCoy’s 5A medium containing 20% heat-inactivated FCS and 0.24% agarose at 37°C. After incubation of 10 to 14 days, the dishes were stained with 0.4% ≥ 50 cells were counted. The surviving fraction was presented as mean colonies/(cells inoculated × plating efficiency). The efficiency of control plating for SAS cells was approximately 60%. Survival curves were plotted using a linear-quadratic model. The sensitizer enhancement ratio (SER) was computed by using the required irradiation dose divided by the radiation dose needed for NM23-H1 over expression plus the irradiation dose needed to yield a surviving fraction of 37%.



Western Blot Analysis and Cell Cycle Analysis

After exposure to radiation, cells were analyzed according to methods reported previously (11).



Statistical Analysis

To examine the associations between NM23-H1 expression and each clinical- pathologic parameter, Chi-square (χ2) tests with Yates correction or Fisher’s exact test were performed. For prognostic analyses, Kaplan−Meier method was used to plot survival curves. Log-rank test was applied to examine the significant difference in survival between the patient groups. The collective effects of clinical-pathological factors were further analyzed by Cox proportional hazards model.

For in vitro studies, data were presented as the mean ± standard error in the three independent experiments. Differences between groups at each specific time frame were identified by one-way analysis of variance (ANOVA) or Wilcoxon-signed rank test. Statistical comparison between two independent variables was determined by two-way ANOVA followed by Dunnet’s test. This study used Statistical Package of Social Sciences (SPSS) software (SPSS Inc., Chicago, IL) for all statistical analyses. Probability P-values < 0.05 were considered statistically significant.




Results


Low NM23-H1 Expression in HNSCC Tumors Was Associated With Poor Prognosis of Patients Treated With Postoperative Radiation

In order to understand the role of NM23-H1 in prognosis of HNSCC patients with cervical metastases treated by surgery and postoperative irradiation, we inspected the NM23-H1 expression found in the specimens. By immunochemistry, NM23-H1 proteins were mostly localized in the cytoplasm while some were found in the nucleus (Supplementary Material). We focused mainly on nuclear expression of NM23-H1 in consideration of recent findings (15, 16). The interpretation of NM23-H1 expression was performed by two investigators (Wang YF and Chang CJ) unaware of the clinical data and kappa statistics revealed excellent agreement (kappa=0.79; p<0.001). In the discrepant cases, a final opinion was made based on two investigators’ consensus. The clinical significance of tumor NM23-H1 expression was assessed in comparison with clinical-pathologic features including age, primary tumor size, nodal involvement of neck, distant metastasis, and tumor recurrence (Table 1). The analysis showed more patients (17/31) with NM23-H1-negative tumors had locoregional recurrence compared to those (4/19) with NM23-H1-positive tumors (p=0.040). Eighty-six percent (12/14) patients with distant metastasis had NM23-H1-negative tumors while 53% (19/36) patients without distant metastasis had NM23-H1-negative tumors. Overall, patients with distant metastasis appeared to have a higher rate of NM23-H1-negative tumors compared to those without distant metastasis with a marginal significance of p=0.067.


Table 1 | Relationship between NM23-H1 expression in head and neck squamous cell carcinoma and clinicopathologic parameters of 50 patients with resectable cervical metastasis treated by postoperative radiation.



To confirm whether a low NM23-H1 level affects treatment outcome, we evaluated the prognostic relevance of NM23-H1 expression in HNSCC patients. When conducting univariate analyses using log-rank tests, patients with recurrence (p<0.001), distant metastasis (p<0.001) and negative NM23-H1 expression in primary tumors (p=0.001) were shown to have poorer survival. By immunohistochemistry, patients with NM23-H1-negative tumors appeared to have a less desirable outcome than those with NM23-H1-positive tumors (Figure 1). During multivariate analyses using a Cox proportional hazard model, distant metastasis (p=0.011) and tumor recurrence (p=0.012) remained as independent factors associated with patients’ prognosis. However, tumor NM23-H1 expression was found not significantly correlated with patients’ prognosis (Table 2).




Figure 1 | Overall survival curve of 50 patients with head and neck squamous cell carcinoma treated by postoperative radiation associated with NM23-H1 expression of primary tumors. Patients with NM23-H1-positive tumors had significantly longer survival time than those with NM23-H1-negative tumors (p < 0.01).




Table 2 | Survival analysis of 50 patients with head and neck squamous cell carcinoma with resectable cervical metastasis treated by postoperative radiation.





Knockdown of NM23-H1 Attenuated the Susceptibility of SAS Cells to Radiation

To clarify the role of NM23-H1 in radiosensitivity of SAS cells, cell viability was examined using colonogenic assays following irradiation. The survival fraction of NM23-H1-knockdown (SASshRNAnm23) cells seemed higher than that of the mock control (SASshRNA) at 2 Gy, 4 Gy and 6 Gy, indicating that knockdown of NM23-H1 attenuated radiosensitivity of SAS cells. Conversely, the survival fraction of NM23-overexpressing (SASnm23) cells was significantly lower than that of the mock control (SAScontrol) when they were treated with radiation doses at 2 Gy, 4 Gy and 6 Gy (Figure 2A). Overexpression of NM23-H1 slightly enhanced the radiation response of SAS cells with a maximal sensitizer enhancement ratio (SER) of 1.3, whereas knockdown of NM23-H1 attenuated the radiosensitivity with a SER of 0.7.




Figure 2 | Knockdown of NM23-H1 attenuated the susceptibility of SAS cells to irradiation and decreased the G2/M-phase cell accumulation. (A) Cell viability and radiation survival curves. (B) Cell cycle analysis. Data represent the mean ± standard error of three independent experiments. *p < 0.05 compared with mock controls; statistical significance was determined using the paired t-test.





Neither Knockdown Nor Overexpression of NM23-H1 Significantly Affects Radiation-Induced Apoptosis

To confirm the impact of NM23-H1 expression on radiation-induced apoptosis of SAS cells, we assessed the percentage of apoptotic cells by DNA fragmentation, TUNEL assays and annexin V-propidium iodide (PI) staining. Among SAS clones with different levels of NM23-H1 expression, no significant difference was found in the amount of apoptosis after irradiation (data not shown). Our findings suggested that classic apoptosis may not be the primary pathway of radiosensitization associated with NM23-H1 expression in SAS cells (17, 18).



Knockdown of NM23-H1 Decreased the Proportion of Radiation-Induced SAS Cell Accumulation at the G2/M Phase

SAS cells were treated with graded radiation doses (0, 1, and 2 Gy) and the cell cycle was analyzed by flow cytometry. Exposure to radiation caused an increase in the percentage of SAS cells at G2/M phase of the cell cycle (19). Knockdown of NM23-H1 diminished the proportion of SASshRNAnm23 cells in radiation-induced G2/M-phase arrest compared to the mock control (SASshRNA). In contrast, overexpression of NM23-H1 enhanced post-irradiation G2/M-phase accumulation of SASnm23 cells compared with the mock control (SAScontrol) (Figure 2B).



Knockdown of NM23-H1 Downregulated Cyclin E and A and Upregulated Cyclin B1 and D1

To convey the physiologic relevance of NM23-H1 proteins in SAS cells, we examined whether NM23-H1 is involved in modulating the expression of cyclin D1, E, A and B1. Prior to irradiation, knockdown of NM23-H1 downregulated cyclin E and cyclin A and slightly increased cyclin B1 and cyclin D1, compared to the mock controls. These findings supported the fact that NM23-H1 may involve in modulating cell cycle (Figure 3).




Figure 3 | Western blot of NM23-H1 and cyclin D1, E, A1, and B1 in the SAS head and neck squamous cell carcinoma clones. Knockdown of NM23-H1 downregulated cyclin E and A, and upregulated cyclin D1 and B1 in SASshRNAnm23 cells, compared with SASshRNA. SAS, parent SAS clone; SASshRNA, mock knockdown clone; SASshRNAnm23,NM23-H1 knockdown clone; SAScontrol, mock overexpression clone; SASnm23, NM23-H1 overexpression clone.



Following the exposure to irradiation, SAS cells displayed a slight increase in cyclin B1 levels compared to the controls without irradiation. However, we did not observe other significant effects of NM23-H1 expression on the protein levels of cyclin D1, E and A in response of SAS cells to irradiation (Figure 4).




Figure 4 | Western blot showing the effect of NM23-H1 expression on cyclin D1, E, A1, and B1 after SAS cells treated by irradiation. Following irradiation at graded doses of 0, 1 and 2 Gy, cells were collected, lysed, and analyzed by Western blot for SAS clones, including parental (SAS), mock knockdown (SASshRNA), NM23-H1 knockdown (SASshRNAnm23), mock overexpression (SAScontrol), and NM23-H1 overexpression (SASnm23) cells.






Discussion

The salient findings of this study showed low NM23-H1 expression in primary tumors was associated with locoregional recurrence in HNSCC patients with cervical metastases receiving surgery and radiotherapy. Cells with low NM23-H1 expression were less susceptive to irradiation compared to those with high NM23-H1 expression. We also found that irradiation can induce DNA damage and G2/M-phase arrest in SAS cells, eventually resulting in cell death. Knockdown of NM23-H1 reduced the radiosensitivity of SAS cells through diminished irradiation-induced G2/M-phase arrest, possibly due to the upregulation of cyclin B1.

We recently reported a low NM23-H1 expression could decrease cisplatin sensitivity of HNSCC cells (14). However, many HNSCC patients with cervical metastases only underwent post-operative radiation without cisplatin-based chemotherapy. To investigate whether NM23-H1 expression has an impact on radiosensitivity, we evaluated the relationship between NM23-H1 expression and the response to irradiation in HNSCC patients with cervical metastases. Clinical data demonstrated a low tumor NM23-H1 expression was associated with poor survival and locoregional recurrence of HNSCC in patients with cervical metastases receiving postoperative radiation. Our finding is consistent with a previous report on patients with laryngeal squamous cell carcinoma (20). To the best our knowledge, there were limited researches discussing the role of NM23-H1 in response to postoperative irradiation in HNSCC patients with cervical metastases (14, 20). Our study found a correlation between low NM23-H1 expression and locoregional recurrence of HNSCC. The underlying mechanism could be attributed to patients’ poor response to irradiation.

Both clinical data and in vitro studies supported our hypothesis that NM23-H1 should be considered as one of the important factors in evaluating the susceptibility of HNSCC cells to radiotherapy. Our findings were in agreement with other previous reports showing a higher NM23-H1 expression in tumor had a favorable response to radiotherapy in laryngeal and nasopharyngeal cancers (21, 22). However, some publications reported NM23-H1 expression of cancer cells did not have an influence on cell growth kinetics, but the knockdown of NM23-H1 can induce therapy resistance by promoting the survival mechanism (23). We postulated that the influence of NM23-H1 on radiation-induced cytotoxicity may be related to DNA damage of the cells or the regulation of cell cycle in our tested cell line.

Radiotherapy achieves its therapeutic effects by prompting apoptosis and non-apoptotic cell death (24). In our study on SAS cells, no early apoptotic DNA fragmentation was observed after irradiation, suggesting typical apoptosis may not be the primary pathway for radiation-induced death. Nevertheless, we are unable to eliminate the possibility that NM23-H1 could have a role in the caspase-independent apoptotic pathway, where DNA is damaged by single-strand nicks under certain circumstances (25). Furthermore, we noticed most SAS cells exhibited growth arrest following irradiation, and this finding was similar to previous studies conducted on other cancers (26–28).

The cells at the late S-phase seem relatively radioresistant and those found at the G2/M-phase appear to be sensitive to radiation (29). Without radiation exposure, there was no significant difference in cell cycle distribution among the SAS clones established by knockdown and overexpression of NM23-H1 (6). Therefore, we proposed that the effect of NM23-H1 expression on tumor growth was triggered by the radiation-induced DNA damage in SAS cells. Most anticancer treatments exert their cytotoxicity through the cell cycle arrest and cell death is usually the outcome. Irradiation could cause SAS cells to be accumulated at the G2/M-phase, and this phenomenon is similar to how SAS cells with normal p53 function regulating the cell cycle (30). It is documented from other studies that NM23-H1 positively regulates p53 activities, and thus NM23-H1 may involve in radiation-induced cell cycle arrest (31, 32). Knockdown of NM23-H1 usually resulted in less SAS cells arresting at the G2/M-phase after irradiation. It is possible that some NM23-H1-knockdown cells may recover from irradiation-induced damage and return to the cell cycle. During fractionated radiotherapy, the aforementioned mechanism may prevent survived cells from becoming radiosensitive to the next radiotherapy fraction.

Certain reports indicated NM23-H1 might modulate the cell cycle regulators (33, 34). Prior to irradiation, knockdown of NM23-H1 in SAS cells upregulated cyclin B1 and cyclin D1 compared with the mock controls. Some studies mentioned an elevated expression of cyclin B1 or D1 conferred radioresistance, while reduced expression enhanced radiosensitivity (35, 36). In NM23-H1-knockdown cells, increased cyclin B1 protein presumably facilitates cell cycle progression, resulting in better survival than the mock controls (37). It was evident that NM23-H1 inhibited the activity of STAT3 via a negative feedback, and the inhibition of STAT3 downregulated cyclin D1, resulting in subsequent antitumor effects (38, 39). However, we did not observe any significant effects of NM23-H1 expression on cyclin B1 and D1 in SAS cells after irradiation (Figure 4). We suggest the NM23-H1 effect on radiation-induced G2/M arrest may not be associated with the post-radiation cyclins expression. Additional studies are warranted to clarify the link between NM23-H1 and radiation-induced G2/M arrest and radiocytotoxicity.

Our study found that knockdown of NM23-H1 downregulated cyclin A in SAS cells and this was consistent with a decreased cyclin A level noted in the transgenic NM23-M-knockout hepatoma (4). NM23-H1-knockdown SAS cells with a low cyclin A level exhibited less susceptibility to radiation compared with the mock control. However, we didn’t observed any significant effect of NM23-H1 on cyclin A after exposure to radiation. In SAS cells without irradiation, knockdown of NM23-H1 significantly downregulated cyclin E. High cyclin E expression was associated with cell cycle arrest at the G0/G1-phase, influencing cells’ response to radiotherapy (40). However, downregulation of cyclin E in NM23-H1-knockdown cells did not significantly affect cell cycle distribution at the G1-phase. Therefore, it is reasonable to assume that cyclin E may not be involved in NM23-H1-mediated radiosensitivity in SAS cells.

NM23 proteins acted as a scaffold in signal transduction (41). Loss of NM23 may cause genomic instability, contributing to the progression of cancer stem cells (40, 42). Upregulation of NM23 was found in tumor of mice under cotreatment of Paclitaxel and electro-acupuncture (43). Our study results may be a cell line-specific scenario. Further work is needed to thoroughly investigate the functional role of NM23-H1 in DNA damage. Furthermore, our results should be validated in other human HNSCC cell lines.

We followed the REMARK guidelines (44) and checked all items as far as possible based on our available data. One limitation of this study is retrospective design, so some details are difficult to be presented according to REMARK recommendations. Therefore, more investigation is needed for further validation. However, we believed such concerns do not interfere with our results for the prognostic significance of NM23-H1 in HNSCC patients.

In summary, clinical data demonstrated low NM23-H1 expression of cancer cells was associated with locoregional recurrence and poor prognosis of HNSCC patients after postoperative radiation. In vitro study, knockdown of NM23-H1 expression lessened radiation-induced cytotoxicity, whereas overexpression of NM23-H1 enhanced radiosensitivity. Knockdown of NM23-H1 upregulated cyclin B1 and cyclin D1 in SAS cells compared with the mock control. Following the exposure to radiation, knockdown of NM23-H1 decreased G2/M-phase cell accumulation compared with the mock control. Overexpression of NM23-H1 increased post-irradiation G2/M-phase cell cycle arrest compared with the mock control. Our study suggested that downregulated NM23-H1 expression may reduce radiosensitivity through decreased radiation-induced G2/M-phase arrest. Further research is warranted to clarify the link between NM23-H1 and other cell cycle regulators in the response of HNSCC cells to irradiation. As for clinical relevance, enhancing tumor NM23-H1 expression may potentially be a therapeutic strategy to improve the effectiveness of postoperative radiotherapy for HNSCC patients with cervical metastases.
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While increased glycolysis has been identified as a cancer marker and attracted much attention in thyroid cancer (THCA), the prognostic role of it remains to be further elucidated. Here we aimed to determine a specific glycolysis-associated risk model to predict THCA patients' survival. We also explored the interaction between this signature and tumor immune microenvironment and performed drug screening to identify specific drugs targeting the glycolysis-associated signature. Six genes (CHST6, POM121C, PPFIA4, STC1, TGFBI, and FBP2) comprised the specific model, which was an independent prognostic indicator in THCA patients determined by univariate, LASSO and multivariate Cox regression analyses. The receiver operating characteristic (ROC) curve analysis confirmed the excellent clinical performance of the prognostic signature. According to the specific gene signature, patients were categorized into high- and low-risk subgroups. The high-risk group was characterized by decreased immune score and elevated tumor purity, as well as worser survival prognosis compared to the low-risk group. We also validated the expression of these genes in clinical samples and in-vitro experiments. Lastly, we identified potential drugs targeting the glycolysis-associated signature. The derived glycolysis-related signature is an independent prognostic biomarker for THCA patients and might be used as an efficacy of biomarker for drug-sensitivity prediction.

Keywords: tumor glycolysis, thyroid cancer, gene signature, TME, prognosis


INTRODUCTION

Thyroid cancer (THCA) is one of the most frequently diagnosed malignancies of the endocrine system worldwide, and this cancer incidence rate is still on the rise (1–3). The average annual incidence rate of THCA is more than 6%, which is the highest among all cancers (4). Although THCA is considered to be a curable disease after standard treatment, tumor recurrence, and distant metastasis result in unsatisfactory clinical results in a small proportion of patients. Thus, there is a real need to investigate novel and effective factors, which may predict THCA patient prognosis more accurately.

Warburg effect, also known as aerobic glycolysis, is a phenomenon whereby various types of cancer cells characterize by excessive conversion of glucose to lactate for their energy substrate regardless of oxygen levels (5). Growing evidence indicates that accelerated glycolysis in cancers influence the therapy outcome that most cancers show significant increases in glucose uptake when compared with adjacent normal tissue (6–8). Moreover, increased glycolysis has been reported to promote angiogenesis and invasive cancer growth (9). Lactate, produced by glycolytic tumor cells, plays crucial roles in the suppression of anticancer immune cells and then promotes the tumor recurrence following anticancer therapies (10). The high accumulation of lactate in tumor microenvironment (TME), which lowers extracellular pH to 6.0–6.5, blocks the function and proliferation rate of T cells (11). High concentrations of lactate in TME affects antitumor therapy, which leads to the suggestion that inhibiting glycolytic pathway, and therefore lactate production may provide an effective and potential strategy to enhance anticancer agents.

In our study, we established a glycolysis-related gene model, which may be a robust prognostic indicator for clinical use. In addition, by applying ESTIMATE algorithm, we gained insight into the interaction of glycolysis-related gene signature with TME. In-vivo and in-vitro experiments confirmed the influence of glycolysis-related gene on tumor growth. Finally, we discovered candidate compounds targeting the glycolysis-related gene signature through the publicly available drug sensitivity database.



MATERIALS AND METHODS


Data Collection

All RNA-seq expression profile and the clinical data for THCA patients were obtained from the Cancer Genome Atlas (TCGA) database. Our study meets TCGA's publication guidelines. Glycolysis-associated gene sets were downloaded from publicly available gene set databases-Molecular Signatures Database v7.0, namely three different gene sets (KEGG_GLYCOLYSIS_GLUCONEOGENESIS, HALLMARK_GLYCOLYSIS, and REACTOME_GLYCOLYSIS). These gene sets are presented in the Supplementary Table 1.



Construction of Glycolysis-Related Risk Model

We performed a univariate Cox regression analysis to consider the association between glycolysis-related gene expression level and THCA's over survival, and genes were identified significantly when the p < 0.05. After primary filtration, the least absolute shrinkage and selection operator (LASSO) logistic regression with ten-fold cross validation was conducted to reduce glycolysis-related genes for THCA patients by using R package “glmnet.” Finally, the glycolysis-related risk model was finally established by a multivariate Cox regression analysis to identify the prognostic value of specific gene signature as our study previously described (12). THCA patients were then divided into high- and low-risk groups through the median score as a cutoff. The Kaplan-Meier method was applied to evaluate the significant difference of overall survival using “survival” R package between high- and low-risk groups. The receiver operating characteristic (ROC) analysis was applied to estimate the sensitivity and specificity of the prediction model.



The cBioPortal Analysis

The cBioPortal for cancer genomics provides visualization features and analyzes multidimensional cancer genomics data (13). We used the THCA (TCGA, Firehouse Legacy) dataset for genetic mutations of glycolysis-related genes. The genomic profiles were determined as mutations, mRNA expression Z scores (RNA-seq v.2 RSEM), putative copy number alterations from GISTIC, and protein expression Z scores (RPPA).



Estimating Immune Microenvironment

To predict the proportion of immune score and tumor purity in the TME of each THCA patient, we applied the ESTIMATE algorithm to estimate the immune score in THCA patients from the TCGA cohort (14, 15). Based on the ESTIMATE score, tumor purity was acquired using a fitted formula as previous study described (15).



Independence of the Glycolysis-Related Gene Model From Other Clinical Features

In order to explore whether the prognostic signature was independent of other clinical variables, univariate, and multivariate Cox analyses were carried out.



Cell Culture

The Nyth-ori-3-1, BCPAP, and TPC-1 cell lines were obtained from Guangzhou JENNIO Biotech Technology (Guangzhou, China). Nyth-ori-3-1 and TPC-1 cells were cultured in RPMI 1640 (GIBCO, Invitrogen, Carlsbad CA, USA), supplemented with 10% fetal bovine serum (FBS) (GIBCO, Melbourne, Australia). BCPAP cells were cultured in Dulbecco's modified Eagle's medium (DMEM) (GIBCO) containing 10% FBS of Australia origin. All the cells were cultured at 37°C in 5% CO2.



RNA Isolation and Quantitative Real-Time PCR Analysis

Total RNA of Nyth-ori-3-1, TPC-1, and BCPAP cells was extracted utilizing Trizol method and 500 ng total RNA was reversely transcribed into cDNA with “PrimeScriptTM RT reagent Kit with gDNA Eraser” (Takara, Japan). Quantitative real time-PCR (qRT-PCR) was perform using “SYBR Green Premix PCR Master Mix” (Takara, Japan) according to the manufacturer protocols. We calculated the relative mRNA expression markers utilizing the Ct method (2−ΔΔCt) after being normalized to β-actin. All reactions were carried out independently and repeated three times each time. A primer sequence of the six genes was used and is presented in the Supplementary Table 2.



Immunohistochemistry

The tissue samples were obtained from THCA patients and nodular goiter patients after surgery in our hospital. In addition, the sections were created after the tissues were dehydrated and embedded. The Ethics Committee from our hospital approved all the procedures of our study. Formalin-fixed paraffin embedded (FFPE) sections were subjected to antigen retrieval using citrate buffer for 15 min at 100°C and incubated in anti-CHST6 (1:30 Lifespan), anti-FBP2 (1:50 Abcam), anti-PPFIA4 (1:300 Abcam), anti-TGFBI (1:100 Abcam), and anti-STC1 (1:300 Abcam) at 4°C overnight. The primary antibody was omitted for negative-control sections. Sections were washed and placed in a biotinylated secondary antibody. After washing, the biotinylated secondary antibody, avidin-biotin complex, and horseradish peroxidase were applied (all the reagents were made from MXB, CHINA). Peroxidase activity was visualized by using DAB staining, which were then counterstained with hematoxylin (16–18). The figures of Immunohistochemistry were captured using a Nikon-inverted research-grade microscope.

The expression localizations of the glycolysis-associated genes in THCA tissues are clarified in Supplementary Table 3. Then the expression levels of target proteins in tissue were examined by two independent pathologists blinded to the clinical characteristics of the patients according to proportion of cell staining (0 = 0%, 1 = ≤25%, 2 = 26–50%, 3 = 51–75%, 4 = >75% positive cells) and the staining intensity (0 = no staining, 1 = weak, 2 =moderate, 3 = strong). A final score was calculated by multiplying the above two scores (19, 20). Protein expression was considered high if the final score was >6 points and low if the final score was 6 points or less. The specific scores of immunohistochemistry are clarified in Supplementary Table 4.



Ethics Statement

Ethics approval for this project was obtained from the First Affiliated Hospital of Shantou University Medical College Ethics committee (No. B-2020-217).



Therapeutic Response Prediction

With the R package “pRRophetic,” the drug-response prediction was estimated based on the half maximal inhibitory concentration (IC50) of each THCA patient on the Genomics of Drug Sensitivity in Cancer (GDSC) website (21).




RESULTS


Identification of Glycolysis-Related Genes Significantly Correlated With Patients' Survival

A univariate Cox regression was used to explore the interaction of the glycolysis-related genes with the overall survival of THCA patients and determined 17 survival-related genes in THCA patients when the p < 0.05 (Figure 1A). Then, a LASSO-penalized Cox analysis was developed to narrow the genes, which were selected over 900 times a total of 1,000 repetitions (Figures 1B,C). As a consequence, 10 genes were identified. In addition, a stepwise multivariate Cox regression analysis was performed, and six glycolysis-related genes were finally selected to construct the prognostic gene signature (Figure 1D).


[image: Figure 1]
FIGURE 1. Identification of glycolysis-related genes significantly correlated with patients' survival. (A) The Univariate Cox analysis of glycolysis-related genes. (B) LASSO coefficient profiles of the glycolysis-related genes. (C) Plots of the cross-validation error rates. (D) Multivariate Cox analysis of glycolysis-related genes.




Construction of the Prognostic Glycolytic Gene Signature in TCGA

The risk score for predicting prognostic value was calculated using the formula: risk score = (0.0149 × TGFBI expression level) + (0.0517 × STC1 expression level) + (1.866 × PPFIA4 expression level) + (0.345 × POM121C expression level) + (0.542 × CHST6 expression level) + (2.672 × FBP2 expression level). We calculated the risk score for each THCA patient according to this formula and categorized the patients into high- or low-risk groups (Figures 2A–C). Kaplan-Meier analysis showed that high-risk patients had significantly worse overall survival than low-risk patients (p = 0.0007; Figure 2D). The prognostic capacity of the six-gene signature was assessed by calculating the area under the curve (AUC) of a time-dependent ROC curve (Figure 2E). The higher AUC demonstrated the better model performance for THCA-specific survival. The AUC of ROC analysis for the six-gene signature was 0.929, implying excellent performance for survival prediction.


[image: Figure 2]
FIGURE 2. Construction of the prognostic glycolytic gene signature in TCGA. (A) Heatmap of six-gene expression profiles between the high- and low-risk groups. (B) The distribution of the glycolysis-based risk score. (C) Vital statuses of patients between the high- and low-risk groups. (D) Kaplan-Meier survival curves of the relative overall survival of high- and low-risk patients. (E) ROC curve analysis.




Glycolysis-Related Gene Mutations and the Correlation With Gene Expression in THCA Patients

Genetic mutations of six genes were analyzed through cBioPortal online tool for THCA patients. Six genes were altered in 98 samples of 516 patients with THCA (19%) (Figure 3A). According to the relationship between the six-gene status and disease prognosis indicated that patients with these gene mutations showed poorer prognosis (Figure 3B), indicating that the glycolysis-related gene mutation may contribute to THCA progression. A Pearson correlation analysis was performed using gene expression data of six glycolysis-related genes collected from TCGA for THCA patients (Figure 3C). The results found out low correlations between each glycolysis-related gene, suggesting that these six genes were independent of each other.


[image: Figure 3]
FIGURE 3. Glycolysis-related gene mutations and the correlation with gene expression in THCA patients. (A) Mutations of six genes in patients with THCA. (B) Kaplan–Meier survival curve for THCA patients stratified by the six-gene mutations. (C) Pearson correlation of six genes.




Association Between Tumor Immune Microenvironment and Gene Signature-Based Subsets in THCA

We then explored the TME differences in high- and low-risk THCA patients. As a result, TME were significantly different in high- and low-risk THCA patients (Figure 4A). On the basis of the ESTIMATE algorithm, the immune score in low-risk group was higher than those in high-risk group (Figure 4B). In addition, we compared the tumor purity of the two groups, and found the opposite trend (Figure 4C). These results showed that the glycolysis-related genes had significantly and negatively correlations with immune microenvironment, and the poor prognosis of the high-risk group was partly due to the immunosuppressive microenvironment.


[image: Figure 4]
FIGURE 4. Association between tumor immune microenvironment and gene signature-based subsets in THCA. (A) Heatmap indicating the relationship of THCA subtypes with the expression of tumor immune microenvironment. (B) Immune score in THCA subtypes. (C) Tumor purity in THCA subtypes.




Associations Between the Glycolysis-Related Gene Signature and Clinical Properties

We then elucidated whether the glycolysis-related gene model was an independent marker compared to clinical properties. Univariate Cox regression analysis revealed the T stage, TNM stage, and risk score were significantly associated with THCA patient prognosis, and multivariate Cox regression analysis documented that the glycolysis-related gene signature showed a remarkable prognostic value when compared with other clinical properties (p < 0.001; Figure 5).


[image: Figure 5]
FIGURE 5. Univariate and multivariate Cox regression analyses between the glycolysis-related gene model and clinical features with overall survival.




Measurement of Glycolysis-Related Genes at mRNA and Protein Levels in Cell Lines and Clinical Samples

To further validate the results, qRT-PCR was applied to analysis the relative mRNA expressions of six glycolysis-related genes in THCA cells (BCPAP, TPC-1) and normal thyroid cells (Nyth-ori-3-1). The results showed that THCA cell lines exhibited relative higher mRNA levels of CHST6, FBP2, PPFIA4, POM121C, and TGFBI, but a lower mRNA level of STC1 than normal thyroid cells (Figures 6A–F). In addition, immunohistochemistry analysis was also conducted to determine CHST6, FBP2, PPFIA4, TGFBI, and STC1 protein expression levels in THCA patients. According to the immunostaining, we could observe the similar results (Figures 7A–E). CHST6, FBP2, PPFIA4, and TGFBI proteins were all upregulated in THCA tissues compared with nodular goiter tissues. On the other hand, the result of STC1 was opposite (Figure 7F). In order to verify the specific efficacy in predicting recurrence of these genes, we collected patients who were diagnosed with THCA in our hospital in 2011–2015 and did follow-up surveys until November in 2020 to know their prognosis. According to the results of the immunohistochemistry, we divided those patients into a low-risk group and high-risk group and analyzed the recurrence rates of patients with THCA. The result showed that the recurrence rate in the high-risk group was higher than that in the low-risk group, according to the classification of the expression of CHST6 (Figure 8). In addition, the relationship between CHST6 and clinicopathologic factors of THCA patients is clarified in Supplementary Table 5.


[image: Figure 6]
FIGURE 6. Measurement of glycolysis-related genes at mRNA levels in cell lines. Relative mRNA levels of (A) CHST6, (B) FBP2, (C) PPFIA4, (D) POM121C, (E) TGFBI, and (F) STC1 in thyroid cancer cells (BCPAP and TPC-1) and thyroid cells (Nyth-ori-3-1). *p < 0.05, **p < 0.01, and ***p < 0.001.
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FIGURE 7. Measurement of glycolysis-related genes at protein levels in clinical samples. Representative immunohistochemical staining images of (A) CHST6, (B) FBP2, (C) PPFIA4, (D) TGFBI, and (E) STC1 in human thyroid cancer sections (left line) and nodular goiter sections (right line). (F) Protein expression scores in human thyroid cancer sections and nodular goiter sections. *p < 0.05, **p < 0.01, and ***p < 0.001.
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FIGURE 8. Kaplan–Meier analysis of recurrence rate according to CHST6 expression level.




Analysis of GDSC Database Identifies Novel Candidate Compounds Targeting the Glycolysis-Related Gene Model

After characterizing the key features of six glycolysis-related genes, we also explore potential compounds that capable of targeting the pathways linked to glycolysis on the basis of IC50 available in the GDSC database for each TCGA sample. It was excited that 26 chemo compounds were selected with significant differences in the estimated IC50 between high- and low-risk groups, and that the high-risk group was more sensitive to all of these drugs (Figure 9 and Table 1). These findings further suggested that the heterogeneity of glycolysis activation in THCA patients was a better model for predicting the therapeutic response.


[image: Figure 9]
FIGURE 9. Analysis of GDSC database identifies novel candidate compounds targeting the glycolysis-related gene model.



Table 1. Screened drugs with selective sensitivity targeting glycolysis-associated signature.
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According to GDSC database analysis, five drugs (Crizotinib, Axitinib, Motesanib, PHA-665752, and PD173074) shared the RTK signaling pathway, four drugs (Pictilisib, AZD6482, AZD8055, and MK2206) shared the PI3K/MTOR signaling pathway, three drugs (PAC-1, Navitoclax, and TW37) shared the apoptosis regulation pathway, three drugs (BAY-61-3606, Imatinib, and LFM-A13) shared the kinases pathway, and two drugs (VX702 and Doramapimod) shared the JNK and p38 signaling. We also observed DMOG as a metabolism inhibitor, Linsitinib as an IGF1R signaling inhibitor, Rucaparib as a genome integrity inhibitor, Vorinostat as a chromatin histone acetylation inhibitor, CCT007093 as a cell cycle inhibitor, Elesclomol as a protein stability and degradation inhibitor, and Serdemetan as a p53 pathway inhibitor.




DISCUSSION

Recently, studies on immune evasion and energy metabolism have attracted people's attention, and the emerging hallmarks of cancer have been discovered (22–24). Unlike normal cells, cancer cells rely mainly on glycolysis for producing ATP energy, even when in the presence of adequate levels of oxygen (25). Many researchers also have explored the glucose metabolism features of THCA (26, 27). Thus, targeting the glycolytic pathway may have the promising future to provide an effective target for THCA therapy. Our study has identified glycolysis-related genes providing a new prognostic biomarker and therapeutic target for THCA patients. The AUC of ROC curve of this prediction model was 0.929, revealing this gene signature has an excellent effect in predicting survival. THCA patients were categorized into high- and low-risk groups through a glycolytic risk-prognosis model, and the overall survival rate of high-risk patients was worse. Clinical analysis also showed that THCA patients with the six-gene mutation have a poorer survival prognosis. In addition, qRT-PCR and immunohistochemistry were also applied to confirm the differential expressions of these glycolysis-related genes between THCA patients and non-tumor patients. We also found the recurrence rate in the high-risk group was higher than that in the low-risk group, according to the classification of the expression of CHST6. Those results indicated that these glycolysis-related genes might play crucial roles in determining the prognosis of cancer patients with THCA.

According to glycolysis-related signature, the clinician could establish individualized treatment for THCA patients. Additionally, experimental evidence indicated the accumulation of extracellular lactate produced by glycolytic cancer cells was related to the inhibition of anticancer immune cells. For instance, the high concentration of lactate in TME affected T cells' proliferation and function through disturbing their intracellular pH (28). Tumor-derived lactate was an important factor regulating dendritic cell phenotype in a TME and might be related to the tumor avoidance mechanism (29). Moreover, lactate, increased arginase I (ARG1) expression in macrophages, inhibited proliferation and activation of T-cell (30). Natural killer (NK) cells could also be inhibited by lactate, hence allowing for cancer progression (10). According to these reasons, we hypothesized that different groups of patients may have different immune responses. As consequence, we reported a significant negative correlation between glycolytic activity (high-risk group) and immune activity (quantified by immune score and tumor purity). Thus, we may further support the immunosuppressive role of glycolysis in patients with THCA, and suppress glycolysis to improve the immune status to increase the survival of patients with THCA.

We documented that the clinical TNM stage, T stage, and risk score indicated significant association with overall survival of THCA patients. What's more, we confirmed that the six-gene signature indicated an indispensable relationship with survival compared with other clinical characteristics. In standard clinical practice, the pathologic stage is considered to be an important prognostic determinant of THCA. However, there are some differences in clinical outcomes differ among patients at the same stage, demonstrating the present staging systems are inadequate for effective prognosis, and the biological heterogeneity of patients with THCA cannot be fully reflected. Thus, it is vital to obtain novel biomarkers to use as prognostic and therapeutic factors. To our knowledge, this is the first glycolysis-associated gene model confirmed in THCA. Our model provides a new method for the evaluation of THCA patients and guides prognostic prediction and treatment decisions.

Finally, according to the GDSC database, high-risk THCA patients were found to be more sensitive to 22 compounds compared with low-risk THCA patients. Twenty-two compounds revealed 13 mechanisms shared by the above compounds. Among the 22 compounds, Crizotinib, Axitinib, PD173074, Motesanib, and PHA-665752 shared the RTK signaling pathway. The RTK signaling stimulated the accumulation of cellular metabolites, thereby increasing lactate excretion, which led to T cell activity inhibition (31). Pictilisib, AZD6482, MK2206, and Serdemetan shared the PI3K/MTOR signaling pathway. The PI3K oncogene has been reported to stimulate glycolysis and promote cancer growth in a variety of human cancers (32–35). The mTOR, a downstream effector of PI3K/Akt signaling, had two forms and both were involved in the regulation of glycolysis (36, 37). We also explore other approaches that may eventually contribute to the implementation of targeted glycolysis therapy.

Our research provides a new perspective for the study of THCA immune microenvironment. However, as our study was retrospective, our study needed to be validated by further prospective studies. In addition, most public database data included in the analysis were from patients in developed countries but data from developing countries were lacking.

In conclusion, our study identifies a six-gene model related to glycolysis, which could independently predict THCA patient prognosis. In addition, in-vivo and in-vitro experiments reveal that expression of glycolysis-related genes are associated with tumor growth, which may be helpful to provide new therapeutic target for THCA patients in the future. Our study also identifies several specific drugs targeting glycolysis for individualized treatment.
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Chemotherapy resistance is a huge barrier for head and neck cancer (HNC) patients and therefore requires close attention to understand its underlay mechanisms for effective strategies. In this review, we first summarize the molecular mechanisms of chemotherapy resistance that occur during the treatment with cisplatin, 5-fluorouracil, and docetaxel/paclitaxel, including DNA/RNA damage repair, drug efflux, apoptosis inhibition, and epidermal growth factor receptor/focal adhesion kinase/nuclear factor-κB activation. Next, we describe the potential approaches to combining conventional therapies with previous cancer treatments such as immunotherapy, which may improve the treatment outcomes and prolong the survival of HNC patients. Overall, by parsing the reported molecular mechanisms of chemotherapy resistance within HNC patient’s tumors, we can improve the prediction of chemotherapeutic responsiveness, and reveal new therapeutic targets for the future.
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Introduction

The global incidence of head and neck cancers (HNCs) continued to rise from 6.55 to 10.91% in the 10 years from 2008 to 2018. In 2018, over 1.9 million individuals were diagnosed with HNC including 354,864 lip and oral cavity, 177,422 larynx, 129,079 nasopharynx (NPC), 92,887 oropharynx, and 80,608 hypopharynx tumors (1). More than 90% of HNCs are squamous cell carcinoma (HNSCC) that occur from the mucosal epithelial tissue of oral cavity, oropharynx, and larynx (2). The common treatments include surgery, radiotherapy, chemotherapy, and concurrent chemoradiotherapy according to the stage of the disease, anatomical site, and surgical accessibility. Approximately 30~40% of stage I or II HNC patients are curable and show improved survival rates after surgery or radiotherapy alone. However, over 60% of stage III or IV HNC patients require advanced therapeutic options (3). For instance, chemotherapy or chemoradiotherapy is considered a promising approach to controlling tumor growth and prolonging survival rates in portions of stages III and IV HNC patients (4, 5). In a comparison of radiotherapy alone and with concurrent chemoradiotherapy, a meta-analysis of 19,248 HNC patients indicated that the additional use of chemotherapy with radiotherapy showed an increase in 5-year absolute survival (8.9% for oral cavity, 8.1% for oropharynx, 5.4% for larynx, and 4% for hypopharynx tumors) in a part of stages III and IV HNC patients (5, 6).

The standard chemotherapy regimens for stage III or IV patients are cisplatin, 5-fluorouracil (5-FU), and docetaxel/paclitaxel (7–9). A combined strategy of docetaxel, cisplatin, and 5-FU (TPF) treatment in a total of 358 unresectable HNSCC patients show significantly improved progression-free (11.0 month in TPF and 8.2 months in PF) and OS (18.8 months in TPF and 14.5 months in PF) (7). Another combined strategy of paclitaxel, cisplatin, and 5-FU (PPF) treatment on 80 stage III and IV HNSCC patients showed the 88% overall response rate and the 44% overall survival (OS) rates (10). Moreover, a 2016 phase III study report of PPF treatment in a total of 382 locally stage III and IV HNSCC patients indicated that a higher complete response (CR, 33% in PPF and 14% in PF) rate and a longer OS rate (43 month in PPF and 37 month in PF) (9). It is now widely accepted that TPF (docetaxel, cisplatin, and fluorouracil) treatment is the standard induction chemotherapy regimen (7, 11) and it has become the new standard for induction chemotherapy in the locally advanced HNSCC since the TAX323/EORTC24971 and TAX324 studies were published in Europe and the USA, respectively (7, 8). This TPF treatment is also used in the recurrent or metastatic HNSCC, which showed an improved overall response rate up to 44%, a median time to progression of 7.5 months, and a median OS of 11 months (12). TPF treatment may confer survival and organ preservation benefits in a part of HNSCC patients when it is administered safely by several clinical teams, though there is no consensus on the survival benefit (11).

However, the overall situation is still not optimal. The number of deaths from HNC continues to rise globally, from 586,400 deaths in 2008 to 980,787 deaths in 2018 (1). Chemotherapy resistance results in poor treatment outcome in HNC patients, and the reasons of chemotherapy resistance are multifaceted. Thus, building up a framework for understanding molecular mechanisms of chemotherapy resistance is the essential way to explore new therapeutic strategies (13). In this review, we summarize the molecular mechanisms of chemotherapy resistance after chemotherapies, such as cisplatin, 5-FU, and docetaxel/paclitaxel. We also describe up-to-date clinical trials, such as combination therapy and chemo-immunotherapy. Overall, this review provides intelligible and valuable information to readers to understand chemotherapy resistance in HNCs for effective treatment strategies.



Chemotherapy Mechanisms


Cisplatin

The anti-tumor properties and contribution to clinics of the platinum-based drug, cisplatin, were discovered in the 1970s (14). Cisplatin is known to induce cytotoxicity to tumor cells through binding to DNA and impairing its repair mechanism. First, cisplatin can be transported into the cells through copper transporters and subsequently aquated due to low chloride concentrations in the cytosol (15). Aquated cisplatin induces DNA damage by binding to the guanine N7 position on either nuclear DNA or mitochondrial DNA. Finally, cisplatin-induced DNA damage leads to mitochondrial outer membrane permeabilization (MOMP). Bcl-2-associated X/Bcl interacting domain (BAX/BID) forms a pore to release mitochondrial protein cytochrome c into the cytoplasm. Released cytochrome c can activate the apoptotic protease-activating factor (Apaf)-1 apoptosome, which eventually results in the activation of caspases and induction of cell apoptosis. On the other hand, aquated cisplatin also binds to cytoplasmic molecules, including reduced glutathione (GSH) and metallothionein (MT), which results in the generation of reactive oxygen species (ROS) that also trigger MOMP and DNA damages (16) (Figure 1A).




Figure 1 | Chemotherapy mechanisms. (A) Cisplatin is transported into cells through copper transporters and is aquated in the cytosol. Aquated cisplatin induces DNA damage by binding to nuclear or mitochondrial DNA. On the other hand, aquated cisplatin also binds to cytoplasmic structures, including reduced glutathione (GSH) and metallothionein (MT), which results in the generation of reactive oxygen species (ROS) that trigger mitochondrial outer membrane permeabilization (MOMP). Both DNA damage and MOMP lead to cell death. (B) 5-Fluorouracil (5-FU) can be transported into cells by uracil transporters due to its uracil-like analog structure. Intracellular 5-FU is converted to three primary active metabolites which result in DNA/RNA damage: (i) fluorodeoxyuridine monophosphate (FdUMP) inhibits thymidylate synthase (TS); (ii) fluorodeoxyuridine triphosphate (FdUTP) is misincorporated into DNA; and (iii) fluorouridine triphosphate (FUTP) is incorporated into RNA. (C) Docetaxel/Paclitaxel can bind to microtubules which promotes tubulin assembly, suppresses microtubule dynamics and cell division, and ultimately results in cell death. These figures were created with BioRender.com.





5-FU

5-FU is an anti-metabolite drug and its anti-tumor properties were discovered in the 1950s, and it has been widely used to treat a range of cancers (17). 5-FU can be transported into the cells through similar transport mechanisms as uracil due to its uracil-like analog structure (18). Intracellular 5-FU is converted to three primary active metabolites: fluorodeoxyuridine monophosphate (FdUMP), fluorodeoxyuridine triphosphate (FdUTP), and fluorouridine triphosphate (FUTP). (i) FdUMP inhibits thymidylate synthase (TS) and results in dNTP imbalance which decreases levels of deoxythymidine triphosphate (dTTP) and increases levels of deoxyuridine triphosphate (dUTP) conversely (17, 19). (ii) FdUTP is misincorporated into DNA and increases the FdUTP/dTTP ratio, which results in DNA damage due to false nucleotide incorporation (17, 20). (iii) FUTP is incorporated into RNA, which results in disruption of RNA processing and function, including the processing of pre-ribosomal RNA, post-transcriptional modification of transfer RNA, and the splicing of pre-messenger RNA (17, 21–23) (Figure 1B).



Paclitaxel/Docetaxel

Paclitaxel is both anti-cytoskeletal and anti-neoplastic drugs that were discovered in the 1990s, and it was subsequently approved for clinical use to treat several types of cancer (24). Paclitaxel binds to the β-subunit of microtubules (25), promotes tubulin assembly, and suppresses microtubule dynamics, which results in inhibition of mitotic blockage, chromosome segregation, and cell division (24). First, paclitaxel stabilizes microtubules and prevents them from disassembly; then chromosomes are unable to proceed to metaphase, and thus this mitotic blockage limits cell division and triggers cell apoptosis (24, 26, 27). It is worth noting that paclitaxel can also suppress microtubule detachment from centrosomes and reduces the tension on kinetochores that damages the bipolar attachment of sister chromatids and the interaction between kinetochores and spindle microtubules (28, 29) (Figure 1C). As an analog of paclitaxel, docetaxel is also an inhibitor of microtubule depolymerization mechanically (Figure 1C). Docetaxel and paclitaxel share most parts of their structures and mechanisms of action but differ in some aspects. Structurally, docetaxel (C43H53NO14) differs from paclitaxel (C47H51NO14) in the 10-position on the baccatin ring and in the 3’-position of the lateral chain. Efficiently, docetaxel is approximately twice higher binding affinity to tubulin compared with paclitaxel. Clinically, the respective response rates of paclitaxel and docetaxel were 43% in 28 HNC patients and 44% in HNC 38 patients, suggesting both paclitaxel and docetaxel are active in HNC patients (30).




Chemotherapy Resistance

There are four main mechanisms that HNC cells acquire to avoid cell death following cisplatin (14, 16, 31, 32), 5-FU (33, 34), and paclitaxel/docetaxel treatments (35–37), including DNA/RNA damage repair, drug efflux, apoptosis inhibition, and epidermal growth factor receptor (EGFR)/focal adhesion kinase (FAK)/nuclear factor (NF)-κB activation. Below, we summarize these resistance mechanisms of chemotherapy regimens that occur in HNC cells and describe the most current reports available.


Cisplatin

DNA damage is repaired through four major mechanisms, including double-strand break repair (DSSR), mismatch repair (MMR), base excision repair (BER), and nucleotide excision repair (NER) (Figure 2A). NER is known as the primary strategy acquired by cancer cells to resist cisplatin-induced DNA damage. NER and its associated protein called the DNA excision repair protein ERCC1 were studied in several reports, and experimental evidence supports high EERC1 expression being associated with cisplatin resistance in HNSCC patients (38–40). For example, a previous study evaluated the effect of ERCC1 expression on the response to cisplatin in 57 patients with locally advanced unresectable HNSCC. Those HNSCC patients with high ERCC1 expression showed lower cisplatin treatment responses (50%, 13 out of 26 patients) and lower 2-year OS (44%), relative to those patients with low ERCC1 expression who showed higher responses (90.3%, 28 out of 31 patients) and better survival (74.2%) (39) (Table 1). Although a correlation between the ERCC1 expression level and cisplatin resistance was reported, the mechanism through which ERCC1 acts is not yet clarified and is still under investigation (Figure 2A).




Figure 2 | Chemotherapy resistances. Chemotherapy resistance is involved in (A) DNA/RNA damage, (B) drug efflux, (C) apoptosis inhibition, and (D) epidermal growth factor receptor (EGFR)/focal adhesion kinase (FAK)/nuclear factor (NF)-κB activation. These figures were created with BioRender.com.




Table 1 | Markers of chemotherapy resistance in head and neck cancers (HNCs).



Drug efflux enables cancer cells to resist cisplatin by reducing intracellular drug levels. The ATP-binding cassette (ABC) transporter superfamily is one of the platinum-drug efflux transporters, which are mediated by multidrug resistance (MDR) genes (56). Some ABC transporter proteins were previously reported, including MDR1, MDR protein 1 (MRP1), MPR2, MPR3, and MPR5 (14, 56). Furthermore, the copper transporter family is another type of platinum-drug influx/efflux transporter, such as high-affinity copper uptake protein 1 (CTR1, involved in cisplatin influx) and two P-type ATPases (ATP7A and ATP7B, involved in cisplatin efflux) (15, 57, 58). Clinical data from The Cancer Genome Atlas database were used to evaluate the effects of expression of different types of platinum-drug efflux transporters on the response to cisplatin in 317 HNSCC patients. This evaluation indicated that HNSCC patients with cisplatin resistance and low survival were associated with the high MDR1 and MRP1 expressions by their tumor biopsy, but were not associated with ATP7B and MRP2 expressions (41), which highlights the critical roles of MDR1 and MRP1 in cisplatin resistance (Figure 2B; Table 1). It is worth noting that both MDR1 and MRP1 are regulated by the activation of the Wnt/glycogen synthase kinase (GSK)-3β/β-catenin pathway (42, 59, 60). The Wnt signaling pathway is initiated by the binding of the Wnt ligand to a Frizzled receptor. The GSK-3β protein complex [which includes axin, disheveled (DVL), adenomatous polyposis coli (APC), and GSK-3β] activates β-catenin by phosphorylation. Activated β-catenin further cooperates with the T-cell factor (TCF) transcription factor, lymphoid enhancer-binding factor (LEF), and CREB-binding protein (CBP) to initiate MRD1 and MRP1 expressions in the nucleus (61). Some very recent studies on HNCs provided evidence to support the correlation between the activation of the Wnt/GSK-3β/β-catenin pathway and cisplatin resistance (42, 62, 63) (Figure 2B; Table 1). For example, Long Li et al. investigated the effect of β-catenin on cisplatin resistance by using HNSCC cell lines (SCC-15 and SCC-25) and evaluated the cisplatin susceptibility of SCC-15/SCC-25 cells with β-catenin gene knockdown. After β-catenin gene knockdown in SCC-15/SCC-25 cells, low β-catenin expressing SCC-15/SCC-25 cells were inoculated into BALB/c nude mice. The tumor growth analysis showed that low expression of β-catenin in SCC15/SCC-25 cells could increase cisplatin sensitivity and reduce tumor progression after cisplatin treatment (42) (Table 1). Taken together, the expression level of β-catenin is associated with cisplatin resistance.

Apoptosis inhibition is one of the acquired capabilities used by cancer cells to resist cisplatin. The inhibitor of apoptosis protein (IAP) can prevent activation of the apoptosis signaling pathway by blocking caspases (64, 65). As to the apoptosis signaling pathway, cisplatin-induced DNA damages first causes p53 upregulation in the nucleus. Those upregulated p53 proteins bind to the upstream promoter region of BAX and BID to initiate their gene expressions (66). The BAX and BID apoptotic proteins permeabilize the outer mitochondrial membrane, which results in the release of cytochrome c and the second mitochondrion-derived activator of caspases (SMAC) into the cytoplasm. In the cytosol, cytochrome c further interacts with apoptotic protease activating factor 1 (APAF1) to form apoptosomes. These apoptosomes transactivate caspase-9, caspase-3, and caspase-7, and consequently leads to intrinsic apoptosis (67, 68) (Figure 2C). Regarding apoptosis inhibition by IAPs, as recently reported, high expressions of cellular inhibitor of apoptosis protein 1 (c-IAP1), X-linked inhibitor of apoptosis protein (XIAP), and Apollon observed in HNSCC patients were associated with the low survival rates and cisplatin resistance (43–45, 69) (Figure 2C; Table 1). For example, approximately 20.83% (17 out of 60) advanced HNSCC patients showed high XIAP expression by their biopsies, which were associated with cisplatin resistance (p = 0.036) and poor clinical outcomes (p = 0.025) (44) (Table 1). Another study of 80 HNSCC patients indicated that 60% (48 out of 80) of those patients exhibited high expressions of Apollon protein and mRNA, which was correlated to a low OS rate (median survival time: 28 months, p < 0.001) (Table 1).

EGFR/FAK/NF-κB are critical signal pathways activated and used by cancer cells to resist cisplatin. In the FAK pathway, FAK can be activated by receptor tyrosine kinases (RTKs), integrins, and G-protein-coupled receptors (GPCRs) (70). Activated FAK involves three major signaling pathways: SRC/extracellular signal-regulated kinase (ERK)/external transcribed spacer region (ETS)-1 (71, 72), phosphatidylinositol 3-kinase (PI3K)/Akt/NF-κB (47), and p53 (73, 74). FAK can (i) induce MDR1-mediated drug efflux through SRC/ERK/ETS-1/β-catenin pathway (70–72, 74, 75); (ii) promote cell proliferation through PI3K/Akt/mTOR/NF-κB pathway (70); (iii) also directly suppresses p53-caused apoptosis (73, 76) (Figure 2D). In the EGFR pathway, there are two primary pathways activated, such as KRAS/methyl ethyl ketone (MEK)/ERK and PI3K/AKT/mTOR in HNC cells (77, 78) (Table 1). The EGFR can (i) induce MDR1 and/or MRP-mediated drug efflux through KRAS/MEK/ERK/ETS-1/β-catenin pathway (48, 79, 80); (ii) can also promote cell proliferation through PI3K/Akt/mTOR/NF-κB pathway (Figure 2D). A preclinical study indicated that cisplatin-resistant HNSCC cell lines (HONE1, HNE1, and CNE2) highly express BST2, and BST2 can prevent cell apoptosis via the NF-κB pathway. Moreover, high BST2 expression levels can serve as an indicator of cisplatin resistance and poor prognosis in a total of 117 locally advanced NPC patients (47) (Table 1). This report provides a new aspect of the cisplatin resistance mechanisms, but the landscape of BST2/NF-κB pathway requires further investigation.



5-FU

DNA/RNA damage repair by MMR and BER is one of the acquired capabilities used by cancer cells to resist 5-FU. As far as we know, BER-mediated DNA repair can remove modified or inappropriate bases by uracil-DNA glycosylase (UDG), cleavage the phosphodiester bond at the resulting AP site by an endonuclease, clean-up the 3’ or 5’ terminal end, replace the excised nucleotides by a polymerase, and seal the final DNA nick by a ligase. In 5-FU resistant cancer cells, after FdUTP is incorporated into DNA, the UDG can lyse the uracil-deoxyribose glycosyl bond of the dUTP and 5-FdUTP residues in DNA (81). MER-mediated DNA repair corrects replication errors between base and base mismatches and the polymerase slippage products at nucleotide repeat sequences, such as insertion and deletion loops (81) (Figure 2A).

Apoptosis inhibitions by c-IAP2 and Livin were found in two HNSCC studies (46, 49). One study evaluated the role of cIAP2 based on DNA microarray data using parental and 5-FU-resistant HNSCC cell line (SAS). Overexpression of cIAP2 contributes to 5-FU resistance and a poor prognosis in those 5-FU-resistant SAS cells (49). Another study evaluated the role of Livin in the susceptibility of HNSCC cell lines (SNU1041, PCI1, and PCI50) to 5-FU. Unlike c-IAP2, Livin preferentially binds to SMAC and then prevents SMAC from blocking XIAP-mediated inhibition of caspase-9 (64, 65). Livin gene-knockdown in those three HNSCC cell lines (SNU1041, PCI1, and PCI50) enhanced 5-FU-induced apoptosis (46) (Figure 2C; Table 1).



Paclitaxel/Docetaxel

Drug efflux plays a critical role in paclitaxel resistance. Several types of paclitaxel/docetaxel resistant HNC cells overexpress MDR1 and MRP5 (50, 51, 55), which rescues those cancer cells from paclitaxel/docetaxel induced cytotoxicity. Interestingly, both Hou et al. and Shi et al. pointed out that the axis of forkhead box protein M1 (FOXM1) and MDR1/MRP5 is a newly defined drug efflux mechanism in HNSCC cell lines (CNE1, CNE2, and EC109) (50, 51); however, the FOXM1/MPR5 or FOXM1/MDR1 axis has not yet been clarified in HNC cells. The potential molecular mechanism of FOXM1 was investigated in glioma stem cells. FOXM1, a downstream factor of the Wnt/β-catenin signaling pathway, supports β-catenin translocation to nuclei, combines TCF/LEF transcriptional factors, and thereby activates target genes (82) (Figure 2B), suggesting that FOXM1 may promote MRP5 expression through the Wnt/β-catenin signaling pathway.

Apoptosis inhibition is another strategy found in paclitaxel resistance. Liu et al. indicated that remodeling and spacing factor 1 (RSF1) inhibits cell apoptosis via promoting the NF-κB pathway. Activated NF-κB signaling triggers Survivin expression on HNSCC cell lines (CNE-2, 5-8F, and 6-10B) (52). Survivin can inhibit the active caspase-9, which blocks the apoptosis (53, 54, 83) (Figure 2C; Table 1), and also maintains the integrity of the mitotic spindle that suppresses aberrant mitosis from producing mitotic damage by paclitaxel (84). For example, approximately 72% (21 out of 29) HNSCC patients showed high survivin expression by in tumor biopsies, which were associated with p53 expression, paclitaxel resistance, and progression (53, 54). On the other hand, the docetaxel-resistant HNSCC cell line (DR-Hep2) increased the amount of mitochondrial DNA (mtDNA) and reduced the ROS generation. Although the mechanism remains unclear, Mizumachi et al. hypothesized that the mtDNA plays a critical role in docetaxel resistance through suppressing ROS generation from the mitochondrial respiratory chain (55).

Changes in microtubule assembly alter the sensitivity of cancer cells to paclitaxel due to mismatched binding of paclitaxel to β-tubulin isotypes. Common β-tubulin isotypes include βI, βII, βIII, βIVa, βIVb, βV, and βVI. In particular, it is widely accepted that increased levels of βIII-tubulin cause paclitaxel resistance by rendering microtubules less sensitive to its effects (85, 86). However, Nienstedt et al. found that over 90% of 445 HNSCC biopsies expressed TUBB3 (known as the βIII coding gene), with 69 of them (15.5%) with weak expression, 149 of them (33.5%) with moderate expression, and 188 of them (42.2%) with cancers. The TUBB3 expression level showed no significant correlation with clinical implications or treatment outcomes (87). Thus, the critical roles of β-tubulin isotypes in paclitaxel-resistant HNC patients need further investigation.

It is worth noting that multidrug cross-resistance mechanisms possibly occur on HNC cells. As previously reported, triple drugs (docetaxel, cisplatin, and 5−FU) −resistant HNSCC cell lines (Hep−2 and CAL−27) exhibited higher chemotherapy resistance, reduced apoptotic cell death, and an increased expression of MDR1, MRP2, ERCC1, CTR, Survivin, and TS (88), which suggests that multiple drug-resistant HNSCC cells can simultaneously have multidrug cross-resistance mechanisms, including DNA/RNA damage repair, drug efflux, and apoptosis inhibition.




Chemotherapy Resistance in Head and Neck Cancer Stem Cells

A rare subset of cells with stem cell features known as cancer stem cells (CSCs) have been demonstrated to highly tumorigenic, metastatic, and therapeutic resistance in both chemotherapy and radiotherapy (89). In HNC biopsies, a subpopulation of cells identified as CSC with high expression of stemness-related markers CD44 and BMI-1 (90). The CSC-related carcinogenesis and therapeutic resistance require us to rethink how to re-evaluate the efficacy of cancer therapies with regard to CSC (91). The isolated sphere-forming CSC from primary HNCs exhibited stemness markers CK5, OCT4, SOX2, and Nestin. HNC CSCs showed chemotherapy resistance to cisplatin, 5-FU, paclitaxel, and docetaxel due to their increased expression levels of ABC transporters (92). Interestingly, the Wnt/β-catenin signaling contributes to abnormal ABC transporter-mediated drug efflux property in HNC CSCs. Moreover, the Wnt/β-catenin signaling also maintains the self-renew capacity and promotes the expression of stemness-associated genes SOX2, OCT4, CD44 in HNC CSCs (93). It is worth noting that targeting the Wnt/β-catenin signaling pathway in HNC CSCs has been reported as a promising strategy to reduce tumorigenicity, suppress drug efflux, induce cancer cell apoptosis, and increase sensitivity to chemotherapy (94).



Strategies to Overcome Resistance and Improve Therapeutic Effects


DNA/RNA Damage Repair

DNA repair inhibitors can be used in combination with cisplatin. It is possible to inhibit different DNA repair pathways by blocking several targets, such as blocking ERCC1-XPF on the NER process by E-X PPI2 or E-X AS7 (95, 96). ERCC1–XPF is a structure-specific endonuclease that is required for repairing DNA damages caused by cisplatin. Two candidate inhibitors of ERCC1-XPF (E-X PPI2 and E-X AS7) reduced the ERCC1-XPF expression level, suppressed the NER process, and sensitized melanoma to cisplatin treatment (96) (Figure 3A). Although no reference describes the use of ERCC1-XPF inhibitors in HNCs so far, the previous references on other cancers suggest the possible use of DNA repair inhibitors in combination with cisplatin for HNCs.




Figure 3 | Strategies to overcome resistance and improve therapeutic effects. These involve (A) DNA/RNA damage, (B) drug efflux, (C) apoptosis inhibition, (D) epidermal growth factor receptor (EGFR)/focal adhesion kinase (FAK)/nuclear factor (NF)-κB activation, and (E) immunosuppression. These figures were created with BioRender.com.





Drug Efflux

Wnt/β-catenin signaling inhibitors were examined in clinical trials. WNT974 was used as a Wnt/β-catenin inhibitor in a phase II trial of HNSCC patients (NCT02649530). These HNSCC patients received 10 mg of WNT974 daily for a month, and those patients showed tumor regression and improved disease-free survival (DFS) and OS rates with a tolerable toxicity profile. Combined treatment with cisplatin and WNT974 can be expected (97, 98) (Figure 3B).



Apoptosis Inhibition

High expressions of IAPs by HNC cells can rescue them from cell apoptosis (64, 65). Targeting IAPs in cancer has become a new strategy to re-sensitize cancer cells to chemotherapies (99, 100). Birinapant is one of the IAP inhibitors in combination with carboplatin (a platinum analog of cisplatin) that can suppress cIAP1/2 expressions and improved the treatment outcomes of carboplatin in several different cancer cell lines, including ovarian cancer cell lines (S1-GODL, S8-GODL, S9-GODL, and Ovcar-3), lung cancer cell lines (A549, H226, and H460), cervical carcinoma cell lines (CaSki, HeLa, and SiHa), urinary bladder carcinoma cell line (5637, J82, and HT1197), colon cancer cell lines (DLD1, Colo205, and SW620), and HNSCC cell lines (PCI-1, PCI-9, PCI-13, PCI-52, and PCI-68) (101, 102) (Figure 3C, Table 2). Moreover, another IAP inhibitor, DEBIO1143 promotes apoptosis of cancer cells by mimicking the structure and activity of SMAC, which can block the XIAP and reactivate the caspase-9. A previous study on ovarian cancer cells suggests the possible use of DEBIO1143 combined with carboplatin to reverse carboplatin resistance and trigger cancer cell apoptosis (103). There is an ongoing phase II double-blind and randomized trial of combination treatment with DEBIO1143 and high-dose cisplatin chemoradiotherapy in high-risk locoregionally advanced HNSCC patients (104) (Figure 3C, Table 2).


Table 2 | Summary of chemotherapy resistance in head and neck cancers (HNCs).





EGFR/FAK/NF-κB Activation

Cetuximab is a monoclonal immunoglobulin G1 (IgG1) antibody that blocks the EGFR (105). The HNSCC patients with high EGFR expression are associated with chemotherapy resistance and poor treatment outcomes (48, 106). According to a phase III randomized trial of 117 recurrent/metastatic HNSCC patients, combined treatment with cetuximab and cisplatin improved the response rate from 10 to 26% and prolonged PFS from 2.7 to 4.2 months compared to cisplatin alone (107). Moreover, additional use of cetuximab with platinum/5-FU-based chemotherapy of 220 untreated recurrent or metastatic HNSCC patients significantly prolonged OS from 7.4 to 10.1 months in the group of patients who received chemotherapy plus cetuximab (108). Results of combined treatment with cetuximab and platinum/5-FU chemotherapy suggested that blocking the EGFR pathway by cetuximab is a potential way to improve the therapeutic effects of chemotherapy (Figure 3D, Table 2).

Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) mediate tumor angiogenesis, which is associated with tumor progression and metastasis. Approximately 60~67% of NPC patients showed higher VEGF/VEGFR expressions and exhibited lower OS (109). The multi-kinase inhibitor, sorafenib, can block the autophosphorylation of several receptor tyrosine kinases (RTKs) such as the VEGFR and platelet-derived growth factor receptor (PDGFR) (110). In a phase II study, the combination of sorafenib, cisplatin, and 5-FU improved the objective response rate to 77.8% and prolonged the progression-free survival to 7.2 months in 54 recurrent or metastatic NPC patients (111) (Figure 3D, Table 2).

Bevacizumab is an antibody against the VEGF approved by the US Food and Drug Administration (FDA) for combined treatment with chemotherapy of lung cancer in 2006, recurrent ovarian cancer in 2016, and non-squamous non-small cell lung cancer in 2018 (112). So far, bevacizumab has been combined with chemotherapy in several clinical trials of other types of cancers, including HNCs (Figure 3D, Table 2). In a phase II study, combined treatment with intensity‐modulated radiation therapy (IMRT), cisplatin, and bevacizumab on 42 previously untreated stages III and IV advanced HNSCC patients improved their 2-year PFS rate to 75.9% (113). In another phase II study, combined treatment with radiotherapy, docetaxel, and bevacizumab on 30 previously untreated locally advanced HNSCC patients prolonged their 3-year PFS rate to 61.7% (114) (Figure 3D, Table 2).

Defactinib (also known as VS-6063) is an inhibitor of FAK (115), a primary downstream signal transducer of the VEGFR (116) (Figure 3D, Table 2). There are no clinical trials using defactinib on HNC patients, but there are on other types of cancers. Combined treatment with docetaxel and defactinib reduced the cell viability of docetaxel-resistant prostate cancer cells, suggesting that a combination of defactinib and docetaxel represents a strategy to overcome docetaxel-resistant prostate cancer (117). However, additional use of defactinib on 344 malignant pleural mesothelioma (MPM) patients who received first-line chemotherapy did not improve PFS, suggesting that the use of defactinib with chemotherapy requires further consideration (118) (Figure 3D, Table 2).



Immunosuppression

Treatment of HNC cells with cisplatin or 5-FU upregulates the expression of programmed cell death ligand 1 (PD-L1) via the NF-κB pathway. PD-L1-expressing cancer cells can suppress cytotoxic activity and proliferation of CD8+ T cells by a PD-L1/programmed cell death (PD)-1 interaction (119–121). A preclinical trial revealed that the concurrent use of cisplatin and either an anti-PD-1 or anti-PD-L1 antibody suppressed tumor growth and prolonged survival in the HNC mouse model. This combined treatment did not produce side effects of decreasing the function of and the number of immune cells or increasing cisplatin-induced toxicities (121) (Figure 3E, Table 2). On the other hand, a clinical trial of recurrent or metastatic HNSCC patients revealed that nivolumab (an anti-PD-1 antibody approved by the US FDA) improved OS from 5.1 to 7.5 months, and 6-month PFS from 9.9 to 19.7%, and the response rate from 5.8 to 13.3% in these patients who had been pretreated with cisplatin (122). Two years of a follow-up study of the same trial revealed that these recurrent or metastatic HNSCC patients who had received both nivolumab and cisplatin showed higher 24-month OS (16.9%) compared to patients who received only cisplatin (6.0%) (123) (Figure 3E, Table 2). Another clinical trial of recurrent or metastatic HNSCC patients showed that pembrolizumab combined with platinum and 5FU is an appropriate first line treatment that improved OS up to 13.0 months (124). Thus, the concurrent treatment of immune checkpoint inhibitors and chemotherapy could be considered a promising strategy for PDL1 highly expressed HNC patients.



Limitations and Moving Forward

Unfortunately, the combined treatment approaches with chemotherapy and an inhibitor of DNA/RNA damage repair (such as an ERCC1 inhibitor, ERCC1-XPF) or drug efflux (such as a Wnt/β-catenin inhibitor, WNT974) are still under investigation, and none of them had clinical trials for HNSCC patients in the past (96, 98). Currently, there are two types of combined treatment with IAP inhibitor with platinum-based chemotherapy (birinapant and carboplatin; DEBIO1143 and cisplatin) reported (102, 104). Owing to high cIAP1 and XIAP expressions on cisplatin-resistant HNSCC patients, blocking cIAP1 or XIAP could be a possible strategy to improve cisplatin treatments. The birinapant inhibits cIAP1/2 to reactivate caspase-8, and the DEBIO1143 suppresses XIAP to reactivate caspase-9 both facilitates cancer cell apoptosis, which results in synergistic anti-tumor effects in combination with cisplatin (or carboplatin). On the other hand, due to high EGFR and VEGFR expressions on HNSCC patients with chemotherapy resistance and poor prognosis, there are multiple combined treatment trials with EGF/EGFR or VEGF/VEGFR axis inhibitor and chemotherapy reported, including cetuximab and cisplatin (107); cetuximab and platinum/5-FU (108); sorafenib and ciplatin/5-FU (111); bevacizumab and cisplatin/IMRT (113); bevacizumab and docetaxel/RT (114). Blocking EGF/EGFR or VEGF/VEGFR axis can suppress downstream FAK and PI3K signal pathways, which hampers MDR1-mediated drug efflux and p53-caused cell apoptosis. Blocking EGF/EGFR or VEGF/VEGFR axis could be the reason why these combinations increased the chemotherapy treatment’s effectiveness; however, these combinations’ mechanisms should be clarified in more detail and demonstrated the preclinical/in vitro findings in clinical aspects. Moreover, it is concerned that the expression level of EGFR and VEGF/VEGFR could impact the therapeutic effects of these combinations because only part of HNSCC patients showed high EGFR and VEGF/VEGFR expressions (109). Thus, an evaluation for these expression levels before considering combination treatment is required. Furthermore, it is worth noting that immune checkpoint inhibitors plus chemotherapy have become a promising strategy. Chemotherapeutic agents induce immunogenic cell death (ICD), which facilitates antigen cross-presentation and cytotoxic T cell generation. Immune checkpoint inhibitors can further rescue cytotoxic T cells from cancer cells and reinvigorate cytotoxic T cell function. The beneficial combination between chemotherapy and immune checkpoint inhibitors has recently been demonstrated as a first-line treatment of recurrent HNSCC patients (124).




Conclusions

Chemotherapy resistance largely influences the therapeutic efficacy and results in poor prognoses in HNC patients. This review summarizes and updates the mechanisms underlying chemotherapy resistance on HNCs. Four primary resistance mechanisms, including DNA/RNA damage repair, drug efflux, apoptosis inhibition, and EGFR/FAK/NF-κB activation after cisplatin, 5-FU, and paclitaxel/docetaxel treatments, have been described. The corresponding strategies to those four mechanisms are listed, which can be translated into developing innovative cancer therapeutics to overcome chemotherapy resistance in HNC patients.
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Treatment of head and neck cancers requires multidisciplinary collaboration to reduce morbidity and mortality associated with the tumor burden, as well as to preserve function of organs and structures. With the use of various new targeted therapies come new adverse events including dermatologic toxicities, which may consist of xerosis, nail and hair changes, morbilliform or papulopustular rashes, to more severe eruptions such as Stevens–Johnson syndrome. We describe the dermatologic toxicities and corresponding grades of severity and associated pathophysiology resulting from seven therapeutics used to treat head and neck cancers: cetuximab, trastuzumab, pembrolizumab, nivolumab, lentatinib, larotrectinib, and entrectinib. Being familiar with these dermatologic toxicities allows clinicians to provide comprehensive counseling for patients, encourage preventative measures, and to know when it is appropriate to hold therapy or permanently stop treatment.
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Introduction

Head and neck (H&N) cancers are those that primarily affect the lip, oral cavity, pharynx, larynx, and paranasal sinuses (1). The incidence of these cancers is rising, with over 60,000 new cases reported each year in the United States. Major risk factors for developing H&N cancers include heavy tobacco and alcohol use, as well as human papillomavirus (HPV) infection (2). Treatment requires multidisciplinary collaboration to reduce morbidity and mortality associated with the tumor burden, as well as to preserve function of organs and structures. With the use of various new targeted therapies come new adverse events including dermatologic toxicities which may range from a limited morbiliform rash to diffuse bullous eruptions and more severe manifestations. These dermatologic toxicities can greatly impact a patient’s quality of life so clinicians must be familiar with these toxicities, know how to manage them, and recognize when it is necessary to hold or permanently stop the targeted therapies. In this review we aim to describe the dermatologic toxicities and corresponding treatments associated with the following H&N cancer therapeutics: cetuximab, trastuzumab, pembrolizumab, nivolumab, lentatinib, larotrectinib, and entrectinib. We will cover common skin reaction patterns resulting from targeted therapies and immunotherapies and then will review each of these seven therapeutics independently.



Common Drug Induced Skin Reaction Patterns

Common dermatologic toxicities that arise in the treatment of head and neck cancers include papulopustular eruptions, paronychia and other nail changes, mucositis, xerosis, and bullous eruptions. Descriptions, corresponding inciting drugs, and severity staging are found in Table 1. Severity staging is defined by the Common Terminology Criteria for Adverse event guidelines (22). Papulopustular reactions are pruritic eruptions consisting of papules and pustules along the head, neck, trunk, and upper extremities. Historically, these papulopustular eruptions have been closely associated with EGFR/HER1 inhibition (15). These lesions occur in a seborrheic dermatitis-like pattern on the scalp, face, and chest and are often pruritic which is not common in other acneiform eruptions (15). It is important to note that papulopustular eruptions in these patients are not acne; the skin is devoid of comedones with this rash (23). Oral mucositis is a painful inflammation of the mucosa of the oral cavity which may decrease a patient’s quality of life by making it difficult to eat and speak. Xerosis is more widespread and can even affect vaginal and perineal tissues. Xerotic skin facilitates eczematous dermatitis, and many patients experience eczematous patches and plaques on palmoplantar surfaces that can lead to painful fissuring of fingertips (15). Palmar-plantar erythrodysesthesia syndrome (PPES), or hand foot syndrome, is frequently associated with oncologic treatments and is comprised of dysesthesia, erythema, edema, and possible desquamation and blisters along the fingers and toes (24).


Table 1 | Dermatologic skin reaction patterns resulting from targeted therapies and immunotherapies for head and neck cancers.





Targeted Therapy and Immunotherapy


Cetuximab

Cetuximab is an epidermal growth factor (EGFR) inhibitor approved for the treatment of H&N cancers. Over half of patients with squamous cell carcinoma (SCC) will require a combination therapy due to advanced disease at diagnosis (1). Currently, the preferred standard of care is high-dose cisplatin with concurrent radiotherapy (1). For patients that are not candidates for cisplatin therapy, cetuximab combined with radiotherapy is the preferred regimen (1). In cases of non-pharyngeal SCCs that are recurrent, metastatic, or unresectable, the recommended treatment is a combination of cisplatin, cetuximab, and 5-fluorouracil. Patients with this specific H&N cancer that are deemed medically unfit for the chemotherapy agents in this combination therapy may receive treatment with single agent cetuximab (1). To date, cetuximab combined with radiotherapy is shown to be superior to radiotherapy use alone in stages III–IVB SCCHN. There are no randomized controlled trials that demonstrate with statistical significance that cetuximab and radiotherapy combination is superior to chemotherapy agents, specifically cisplatin and radiotherapy (25). Yet, it is recommended that treatment plans are patient-specific and developed in collaboration with other specialties, like radiation oncology, surgery, and supportive medicine to administer medication safely with respect to prognosis, feasibility, and patient characteristics (1).

Squamous cell histology dominates the cellular lineage in H&N cancers, and epidermal growth factor (EGFR) is almost always expressed in squamous cell carcinoma of the H&N (SCCHN) (2). EGFRs represent a diverse set of ligands of the receptor tyrosine kinases (RTKs) that transduce extracellular signals through intracellular activation to exact the specific functions of growth factors (26). Overexpression of EGFR leads to gene amplification, aberrant cellular proliferation, and is one of the mechanisms identified in human malignancies which have sparked massive effort in the development of targeted therapies for anti-cancer properties. Cetuximab is one such therapy aimed at inhibiting EGFR function via competitive binding of the receptor’s extracellular domain. It is a chimeric monoclonal antibody of immunoglobulin G1 class and exhibits more affinity for EGFR than endogenous ligands, making cetuximab effective at binding to the target (2).

Cetuximab has been reported to cause a variety of skin reactions (15). The human skin, specifically epidermal keratinocytes and pilosebaceous units, are replete with EGFR ligands (27). Hence, inhibition of EGFRs by both small-molecule EGFR inhibitors and anti-EGFR antibodies exerts inflammatory and toxic effects on the skin. Blocking the domain function of EGFR leads to inhibition of DNA synthesis and transcriptive functions, which in turn increases the terminal keratinization (17). The resulting thinned epidermis impairs the protective function of the skin (17). EGFR or ERK inhibition also leads to aggravation of the skin inflammatory response with upregulated chemokine expression as evidenced by tissue samples displaying dermal infiltration by T cells and macrophages (27). These repeatedly discovered inflammatory patterns lead to skin toxicities related to alteration of EGFR and not off-target effects of inhibitors (23).

Adverse cutaneous reactions with use of cetuximab for the treatment of SCCHN occur in greater than 80% of patients (15). Hair and nails can also be affected in about 10–20% of patients. Common reactions related to skin, hair, and nails are described as papulopustular rash, pruritus, xerosis, paronychia, hair abnormalities, and mucositis (15). Papulopustular eruptions are the most common cutaneous reaction with cetuximab use, affecting 60–80% of patients (15). Most patients will have a mild to moderate reaction, with less than 20% of patients experiencing a severe reaction. Typically, these erythematous, papular, and pustular lesions manifest within one to three weeks of starting cetuximab, often peaking and worsening around week five.

Xerosis is present in about 35% of patients treated with cetuximab and causes eczematous patches and plaques on palmoplantar surfaces that can lead to painful fissuring of fingertips (15). One study found that within six weeks of initiation of treatment with an EGFR inhibitor, patients developed exsiccation and exfoliation, leading to complaints of pruritus (28). Specifically, the study found that horny layer moisture content of the stratum corneum decreased significantly and seemed to be more exaggerated in the upper extremities (28). Nail and hair changes are rare adverse events and typically develop after several weeks up to several months of cetuximab use (15). Nail toxicity can encompass a variety of physical changes, such as pitting, discoloration, onycholysis and lead to the development of acute paronychia (Table 1). Hair changes include the hair becoming curly or wavy, brittle or fine texture, and alopecia of the scalp or beard (23). Eyelashes can also grow out long and rigid, causing pain and keratitis if growing inward (23). There are few preventative methods that prove to be efficacious at avoiding these hair and nail changes, but it is recommended that patients trim eyelashes regularly and perform daily antiseptic soaks for nails. In general, there is a lack of rigorous clinical trials aimed at assessing and identifying prophylactic measures to avoid the development of cutaneous side effects of EGFR inhibitors.



Trastuzumab

Trastuzumab is approved for treatment of adjuvant breast cancer and metastatic breast and gastric cancers that are positive for human epidermal growth factor receptor 2 (HER2). Trastuzumab therapy has also been explored to treat various other malignancies where HER2 is overexpressed such as cutaneous and head and neck squamous cell carcinomas (SCCs) as well as cervical adenocarcinomas (29, 30). Trastuzumab is a monoclonal antibody engineered to target HER2 receptors. HER2 receptors are traditionally found in low levels in the epithelial cells of a variety of tissues (31). However, HER2 in HER2+ breast, GI, and various other cancers, have been shown to be amplified making HER2 an attractive anti-cancer target (29, 32, 33). HER2 plays a significant role in cell proliferation signaling pathways, and therefore alterations in HER2 expression have been linked to cancer’s hallmark trait of relentless and uncontrolled growth (31, 34).

Although the precise mechanism of action of trastuzumab is not fully understood, it is believed to block intracellular signaling pathways. When blocked, apoptosis and a slowing of cell proliferation are observed. This blocking prevents the activation of HER2 by its proper activators, promotes antibody-dependent cellular cytotoxicity through natural killer cells, and helps prevent HER2 shedding (35–37).

HER1 receptors are expressed in the skin in keratinocytes in the basal layer. Thus, HER1 inhibitors disrupt these cells’ development resulting in stratum corneum such as follicular infundibulum. In addition, the inhibitor promotes chemokine expression leading to apoptosis of keratinocytes (38). These numerous changes result in hyperkeratosis, follicular plugging, and inflammation which then manifest as a papulopustular rash which is a common and well-established side effect of HER1/EGFR inhibitor treatments as it is reported to occur at some point during therapy in 60–90% of treated patients (38). HER2 has been also detected in keratinocytes in the upper spinous layers and both HER1 and HER2 heterodimers are found in keratinocytes albeit at very low levels. Thus, it is hypothesized that trastuzumab by inhibiting HER2 in the skin causes papulopustular eruptions via HER2 homodimer inhibition or HER1–HER2 heterodimer inhibition.

Rare cutaneous adverse reactions to trastuzumab have been noted to occur. In one woman who received monotherapy with trastuzumab, tufted hair folliculitis was observed (39). Also, albeit uncommon, rash associated with a serious infusion reaction was noted in less than 0.3% of patients. Mild to moderate infusion reactions were found to be more common with the combination of trastuzumab and chemotherapy compared with chemotherapy alone (40). Another uncommon adverse event is carotenoderma, also referred to as carotenosis cutis, and aurantiasis cutis refers to the manifestation of yellow-orange skin coloration resulting from carotenemia (41). There have also been reported cases of trastuzumab induced dermatomyositis, a complement-mediated idiopathic inflammatory myopathy manifested by skin changes and proximal muscle weakness (42).



Pembrolizumab and Nivolumab

Pembrolizumb is a humanized IgG4 monoclonal antibody serving as an immune checkpoint inhibitor by targeting the programmed cell death 1 (PD-1) receptor on activated T cells. When PD-1 is engaged by a ligand, PD-1 inhibits the kinase signaling pathways that usually leads to T-cell activation through phosphatase activity (43). In a phase 3 open label trial (KEYNOTE-048) comparing pembrolizumab alone, pembrolizumab with platinum and 5-fluorouracil, and EXTREME therapy (cetuximab, platinum, and 5-fluorouracil), pembrolizumab was determined to be an appropriate first line treatment for recurrent or metastatic head and neck squamous cell carcinoma (HNSCC) with platinum and 5-fluorouracil or as monotherapy for patients with PD-L1 positive tumors (44, 45). Nivolumab is another humanized IgG4 monoclonal antibody which targets the PD-1 receptor. In 2016, two months after pembrolizumab was approved for the treatment of HNSCC, the Food and Drug administration (FDA) approved nivolumab for treating platinum refractory HNSCC after the results from the CheckMate 141 phase III clinical trial showed a median overall survival of 7.5 months in the nivolumab group versus 5.1 months in the group with standard single-agent systemic therapy (methotrexate, docetaxel, or cetuximab) (46, 47).

Cutaneous reactions are common with anti-PD-1 therapy with about half of all patients developing some kind of cutaneous toxicity (48). The most common dermatologic adverse events (dAEs) that arise after treatment with pembrolizumab and nivolumab include pruritus, morbilliform eruptions, and lichenoid eruptions (10, 49). Less common dAEs include vitiligo, bullous pemphigoid, psoriasis; even more rare yet highly morbid dAEs include Stevens–Johnsons syndrome (SJS), Toxic Epidermal Necrolysis (TEN), and drug reaction with eosinophilia and systemic symptoms (DRESS) (49).

Pruritic morbilliform eruptions are non-specific findings seen as a result of many medications, and their diagnosis relies on a thorough history of all medications and timing of the resulting skin eruptions to identify the culprit drug. PD-1 inhibitor induced morbilliform eruptions typically present three to six weeks after initial dose with erythematous macules and papules coalescing into plaques, primarily over the trunk (10, 50). Lichenoid drug eruptions present typically on the torso as red to violaceous papules and plaques or flat topped papules and erosions along the oral mucosa about 12 weeks after initial dose, with a range of 1–266 days (51). Incidence rates for morbilliform and lichenoid eruptions after PD-1 therapy are very similar and have been seen to arise in about one fifth of patients who receive anti-PD-1 therapy (51, 52). Lichenoid drug eruptions are diagnosed based on exam findings, histology that reveals a dense, band-like lymphocytic infiltrate in the dermis, and a thorough history of medication (11, 53).

Vitiligo is an autoimmune skin disorder presenting with localized or generalized hypopigmented patches from the loss of melanocytes in the epidermis. In 2020, analysis of the World Health Organization pharmacovigilance database showed an association between vitiligo and pembrolizumab with a reporting odds ratio (ROR) of 116.9 (95%CI 94.8, 144.3) and between vitiligo and nivolumab (ROR 22.6, 95% CI 15.8, 32.4) (54). The occurrence of vitiligo typically occurs several months after initiation of PD-1 inhibition (50). The development of vitiligo in melanoma patients treated with PD-1 inhibition is well documented, but only few case reports have shown this association in patients with solid tumors treated with PD-1 inhibition (55, 56). Furthermore, the first case of pembrolizumab induced vitiligo in a patient being treated for HNSCC was reported in 2019. The author describes a 32-year-old man with stage IVA T2N2M0 squamous cell cancer of the tonsil and achieved complete remission with docetaxel, carboplatin, 5FU, and radiation but relapsed two years later and was treated with pembrolizumab after IHC of the biopsy demonstrated 90% PD-L1 expression (55). Five months after stopping pembrolizumab, he developed a few hypopigmented patches on his face that were biopsy proven to be consistent with vitiligo. The mechanism behind PD-1 inhibitor associated vitiligo is likely due to aberrant recognition of antigens in the dermis and epidermis by reactivated CD4+/CD8+ T cells, thereby leading to a potent inflammatory process (55). In most cases, the PD-1 inhibitor was continued despite the occurrence of vitiligo. Treatment recommendations for cosmetic reasons includes topical corticosteroids, strict sun protection, and phototherapy if disease extent is diffuse (57–59).

Bullous pemphigoid (BP) typically arises weeks to months after initiation of anti-PD-1 and anti-PD-LI therapy (49). PD-1 inhibitor induced BP is a rare but well established association with an estimated incidence of 1–2% according to two retrospective reviews at single institutions (48, 60–62). An analysis of the FDA Adverse Event Reporting System found a proportional reporting ratio of 5.87 for nivolumab and 6.36 for pembrolizumab used across many cancers, showing that this association is more common with pembrolizumab (63). Unlike the non-specific morbilliform and lichenoid drug eruptions, the diagnosis of BP can easily be made with direct and indirect immunofluorescence assays, quantification of circulating autoantibodies against BP180 and/or BP230, and physical exam findings. The pathophysiology of the development of BP may be due to the recognition of common antigens BP180 and BP230 shared between cutaneous basement membrane and tumor cells (64). Additionally, PD-1 inhibition can activate B cells and inhibit immunosuppressive B regulatory cells, thereby unmasking BP (65). Patients that develop BP after PD-1 inhibition may already have antibodies against BP180 and BP230, which is why pembrolizumab and nivolumab may unmask BP by further activating these B cells and unleashing the existing antibodies. Unlike other types of drug-induced BP, PD-1 inhibitor induced BP may even persist up to one year after cessation of immunotherapy likely due to sustained immune activation associated with anti-PD-1 therapy and may require maintenance therapy.

Psoriasis clinically presents with well-demarcated, scaly erythematous patches and plaques on the trunk and extremities, typically developing days to months after initiation of PD-1 inhibitors and has been seen in patients with and without a previous history of psoriasis (66). Exacerbation of psoriasis in patients with an established history of psoriasis tend to flare within a few days of immunotherapy, and de novo tends to appear months after initiation (67). The prevalence and incidence rates of psoriasis with anti-PD1 inhibitors are lacking but a literature review in 2018 revealed 35 reported cases, and it is clear that de novo is less common than flaring of established disease (48, 68). The pathogenesis of PD-1 inhibition induced psoriasis is due to the upregulation of pro-inflammatory Th-1/Th-17 pathways with elevated levels of interferon-gamma, tumor necrosis factor-alpha, and interleukins 2,6,17 (69). Since psoriasis is an autoimmune disease mediated by Th17, the upregulation of Th17 as a result of PD-1 inhibition is a likely culprit behind this dAE (68). Generally, patients with limited disease can tolerate continued immunotherapy (with prolonged intervals if needed) along with standard treatment for psoriasis including topical steroids, and topical vitamin D analogs (68, 70, 71). If psoriasis is recalcitrant or is affecting the patient’s quality of life, providers may consider cessation of immunotherapy and starting oral prednisone, acitretin, or phototherapy (67, 72).

Less common cutaneous toxicities include granulomatous reactions, erythema multiforme, SJS/TEN, and DRESS (59). SJS/TEN may present initially with a non-specific morbilliform eruption, later developing targetoid lesions, mucosal ulcerations and full thickness epidermal sloughing. This dAE can manifest weeks to months after the initial dose of a PD-1 inhibitor (49). Morbidity is high, and case reports have shown that stopping the medication does not greatly ameliorate symptoms. Treatment includes immediate cessation of inciting drug, close monitoring, and interventions such as prednisone 1–2 mg/kg/day, intravenous immunoglobulin, and cyclosporine (9, 73). A randomized controlled trial comparing the use of an etanercept and corticosteroids for cytotoxic T-lymphocyte mediated severe cutaneous adverse reactions showed decreased mortality and shorter skin healing time in the etanercept group (74).

In sum, PD-1 inhibitors cause a wide-range of dermatologic toxicities. Interestingly, some of these dAEs such as spongiotic dermatitis, vilitigo, and bullous pemphigoid arising after treatment with pembrolizumab have been associated with improved tumor response and survival outcomes, albeit in various cancers including melanoma, lung cancer, merkel cell carcinoma, and non-melanoma skin cancer (75, 76). Therefore, the presence of these toxicities may be a sign that the drug is working against the cancer as well, and providers may reassure patients by sharing this association and managing their symptoms as mentioned above.



Afatinib

Afatinib is an orally administered irreversible tyrosine kinase inhibitor which halts adenosine triphosphate (ATP) binding to the intracellular domain of the epidermal growth factor (EGFR) receptor and blocks downstream signaling (77, 78). Afatinib has been found to be a promising therapeutic for the treatment of HNSCC since >80% of patients with HNSCC overexpress EGFR (79, 80). In a randomized phase III trial, 322 patients with recurrent or metastatic HNSCC were randomized to receive afatinib, and 161 patients received methotrexate. The group that received afatinib had longer progression free survival (2.9 vs. 1.7 months in the methotrexate group), improved quality of life, and was overall well tolerated. Notably, 215 (67%) of patients that received afatinib had grade 3 or higher adverse events, and the most common toxicities included rash and diarrhea. The term rash in this study encompassed a variety of conditions including but not limited to acne, dermatitis, dermatitis acneiform, erythema, folliculitis, and morbilliform rash. Furthermore, analysis of seven phase II/III studies using afatinib at a starting dose of 50 mg daily for 998 patients with various solid tumors found that 82% of patients experienced rash/acne (81). These morbilliform or acneiform eruptions are non-specific and make diagnosis and treatment difficult since oncology patients are frequently on various concomitant drugs that may be the culprit. Therefore, it is important to educate patients about this potential side effect so that it may be recognized and managed early.

Specifically the dermatologic toxicities seen with afatinib most commonly consist of a papulopustular rash, which typically arises two weeks after the initiation of therapy (82). Other dermatologic toxicities include paronychia, xerosis, pruritus, and cheilitis (3, 83). The pathophysiology of EGFRI-associated dermatologic toxicities is likely multidimensional. First, EGFR is essential for normal skin development since it is present on epidermal keratinocytes, sebaceous glands, and on the epithelium of hair follicles so EGFR inhibition leads to disruption in proliferation (84). Secondly, tyrosine kinase inhibitors may recruit additional inflammatory cells via secretion of chemokines that cause leukocyte chemotaxis and infiltration of follicles, leading to inflammation (4, 38).



Lenvatinib

Lenvatinib is an oral tyrosine kinase inhibitor that blocks various receptors including vascular endothelial growth factor (VEGF) receptors 1–3, fibroblast growth factor (FGF) receptors 1–4, platelet derived growth factor (PDGF) receptor-α, RET, and KIT proto-oncogenes (85, 86). This drug is FDA approved for radioactive-iodine refractory thyroid cancers after results from a phase 3 multi-center study randomized patients to lenvatinib or placebo and found that those that received lenvatinib had significantly improved progression free survival (18.3 versus 3.6 months in placebo group) (87). However, 97% of the 261 patients in the lenvatinib arm experienced an adverse event of any grade, with 76% of patients experiencing Grade ≥3 adverse events compared to 10% in the placebo arm. Dermatologic toxicities resulting from lenvatinib include stomatitis in 20–36% of patients in clinical trials (87, 88), PPES in 32–75%, more commonly in patients of Japanese background (87, 89, 90), rash in 16% (87), and alopecia in 11% (87). These toxicities are a known class effect of VEGF inhibitors.



Larotrectinib

Larotrectinib is approved by the FDA in November 2018 for the treatment of adult and pediatric patients with solid tumors that have a neuotrophic receptor tyrosine kinase (NTRK) gene fusion without known acquired resistance mutation, metastatic disease. Or in cases when surgical resection may result in severe morbidity (91). NTRK genes (NTRK1, NTRK2, NTRK3) code for tropomyosin receptor kinase (TRK) proteins (TRKA, TRKB, TRKC). The TRK proteins are mainly expressed on neural cells and later may fuse with other proteins, thereby leading to constitutively active downstream signaling (92). Larotrectinib blocks this fusion protein and prevents the downstream signaling, effectively blocking tumor progression in cancers with this fusion protein. Approval was based on data from three multicenter, open-label, single-arm clinical trials: LOXO-TRK-14001 (NCT02122913), SCOUT (NCT02637687), and NAVIGATE (NCT02576431) (92). Patients had various solid tumor types including 12 with salivary gland tumors and five with thyroid tumors. Analysis of the first 55 patients enrolled showed a 75% overall response rate by independent review (92). NTRK gene fusion mutations have been identified in 2.4–25.9% of thyroid cancer (93, 94) and only in less than 1% of head and neck squamous cell carcinoma (94). Therefore, larotrectinib is not the drug of choice for most head and neck cancers since not all tumors will have this targetable fusion protein.

Dermatologic toxicities associated with larotrectinib and other NRTK blockers are not well documented. The most common adverse events associated with larotrectinib in the trials that led to FDA approval include liver transaminsase elevations, anemia, fatigue, nausea, dizziness, and diarrhea (92, 95). The authors only reported adverse events that occurred in at least 15% of patients, so it is possible that cutaneous toxicities arose but were not reported since they were very rare. Based on the mechanism of action of larotrectinib blocking tyrosine kinase downstream signaling, it is possible that it may cause rash, pruritus, and painful skin-dermatologic side effects with entrectinib, another drug that works by inhibiting TRK (96). There are several open clinical trials assessing the long-term efficacy and tolerability of larotrectinib.



Entrectinib

Entrectinib is an orally administered inhibitor of TRKA, TRKB, TRKC, ROS1, and ALK with the ability of crossing the blood–brain barrier (97). It was approved by the FDA in August 2019 after review of the findings of three ongoing, phase 1 or 2 clinical trials (ALKA-372-001, STARTRK-1, and STARTRK-2) (96). An analysis of these three pivotal trials included 54 patients with advanced or metastatic solid tumors with any NRTK gene fusion (seven had mammary analog secretory carcinoma, and five had thyroid cancer) and found efficacy (96). In the overall safety evaluable population (n = 355) across all three studies which included patients of any tumor type and gene rearrangement, dermatologic toxicities included rash (6%), pain of the skin (4%), and pruritus (5%) primarily of grades 1–2 (96). The pathophysiology of these cutaneous toxicities may be from the inhibition of TRKA receptors on human keratinocytes, thereby inhibiting phosphorylation and leading to reduced keratinocyte proliferation (98, 99). These toxicities can be treated similar to the pruritus and morbiliform eruptions seen with other immunotherapy and molecularly targeted therapies, and entrectinib can be safely continued (96).




Treatments for the Dermatologic Toxicities Associated With Targeted Therapy and Immunotherapy for Head and Neck Cancers

Treatments for the common skin reaction patterns are described in Table 1. In general, papulopustular and morbilliform eruptions are the most common reaction patterns incited by drugs. It is generally safe to continue targeted therapy or immunotherapy for Grades 1–2 reactions (Table 1) but recommend holding Grade 3 and beyond. Although patients and providers may be concerned by the appearance of a rash covering up to 30% BSA, we recommend using CTCAE guidelines to determine severity and appropriate treatment and not halting immunotherapy immediately. For all patients starting a new therapy, we recommend providers do a thorough preliminary skin exam and explain common dermatologic toxicities along with warning symptoms such as significant BSA involvement, severe pain, or inability to perform activities of daily living. Proactive interventions should also be clearly communicated to patients prior to therapy. Recommended discussion points include education on avoiding tight clothing, exposure to sunlight without photoprotection, products that cause dry skin, depilatory wax and plucking, and alcohol-based cleansers and cosmetics (15).



Conclusion

The treatment of H&N cancers has been revolutionized by the development of targeted therapies and immunotherapies. Patients with cancers that were unresponsive to traditional chemotherapies now have more targeted treatment options which overall have a better side effect profile; however, patients may be more prone to certain dermatologic toxicities. Cetuximab, trastuzumab, and afatinib commonly lead to papulopustular eruptions, xerosis, and hair and nail changes. Pembrolizumab and nivolumab can have a wide range of dermatologic findings including pruritus, morbiliform eruptions, vitiligo, bullous pemphigoid, and more. Lenvatinib, a VEGF inhibitor, may lead to stomatitis, PPES, and other side effects commonly seen in this drug class. Finally, larotrectinib and entrectinib tend to have limited non-specific cutaneous adverse events but as other immunotherapies, patients on these treatments should be closely monitored. Appropriate characterization and staging of these dermatologic toxicities can lead to better outcomes and improved patient quality of life by allowing patients to stay on the targeted therapy if the dermatologic toxicities are adequately managed. Most papulopustular and morbilliform eruptions up to Grade 3 may be treated with supportive care and the targeted therapy can be safely continued; however, more severe reactions may require temporary or permanent cessation of therapy. We recommend conducting a thorough skin exam and providing patient education on common cutaneous toxicities prior to initiation of any new therapy so that patients know what to monitor for and report to their clinicians. Additionally, patients may be counseled on proactive measures such as wearing loose clothing, applying moisturizing emollients, and using sunscreen to optimize skin health. In conclusion, patients on targeted therapy and immunotherapy may experience unique dermatologic toxicities that can be appropriately managed in order to continue their life-saving therapies.
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Radiation therapy remains at the center of head and neck cancer treatment. With improvements in treatment delivery, radiation therapy has become an affective ablative modality for head and neck cancers. Immune checkpoint inhibitors are now also playing a more active role both in the locally advanced and metastatic setting. With improved systemic options, local noninvasive modalities including radiation therapy are playing a critical role in overcoming resistance in head and neck cancer. The aim of this review is to describe the role of radiation therapy in modulating the tumor microenvironment and how radiation dose, fractionation and treatment field can impact the immune system and potentially effect outcomes when combined with immunotherapy. The review will encompass several common scenarios where radiation is used to improve outcomes and overcome potential resistance that may develop with immunotherapy in head and neck squamous cell carcinoma (HNSCC), including upfront locally advanced disease receiving definitive radiation and recurrent disease undergoing re-irradiation. Lastly, we will review the potential toxicities of combined therapy and future directions of their role in the management of HNSCC.
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Introduction

Head and neck cancer is the sixth most common cancer worldwide, resulting in over 350,000 deaths per year (1). Many patients with head and neck cancer present with locally advanced disease, and radiation therapy is a mainstay of treatment for these patients, often supplemented with additional therapies including chemotherapy, surgical resection, or immunotherapy for more advanced disease (2). Radiation therapy is preferred for localized disease and is used for curative intent for a large proportion of non-oral cavity head and neck cases. Conventional radiation treatment in 2-2.25 Gy per fraction to a total of 70 Gy is the current standard for the majority of cases (3–7). In addition, retrospective data has shown that radiotherapy treatment of the primary tumor in patients with tumor recurrence and limited metastases may prolong disease-free survival (8).

Stereotactic body radiation therapy (SBRT) or stereotactic ablative radiation therapy (SABR) is another radiation modality used in select situations in the treatment of head and neck cancer. It is particularly useful for patients with recurrent head and neck tumors who have had previous radiation therapy. This is due to the smaller and more precise field of radiation applied in SBRT, leading to lower radiotoxicity and a better ability to spare normal tissue. In addition, SBRT delivers high, ablative doses of radiation therapy typically in 5 or less fractions (9). SBRT has been shown to be useful in prolonging survival while maintaining quality of life in elderly patients with unresectable head and neck tumors (10–12). SBRT has also been shown to be safe with minimal toxicity for head and neck cancer patients who are poor candidates for larger field, conventionally fractionated reirradiation (13). Overall, SBRT is a useful and safe treatment option for patients with primary, metastatic, and recurrent head and neck cancers squamous cell cancers (HNSCC) (10).

The immunological effects of radiation were first described initially in the 1970s and now there have been a vast amount of published literature describing how radiotherapy modulates the immune system. Recently, due to the advent of immune checkpoint inhibitors that have shown promising success in treating certain types of cancers, there has been mounting interest towards how radiation therapy and immunotherapy drugs can be used for a synergistic effect in treating patients. Especially in the treatment of HNSCC, the combination of immunotherapy and radiation therapy is a novel approach, therefore, there is a lack of data describing patient outcomes and toxicities.

The aim of this review is first to describe the role of radiation therapy in modulating the tumor microenvironment. Then, we will discuss how radiation therapy dose, fractionation, and target can affect the immune system and how that translates to treatment outcomes. Next, we will discuss the published data as well as ongoing studies that combine radiation therapy and immunotherapy in the treatment of HNSCC in different contexts such as: upfront definitive, re-irradiation, oligometastatic and oligoprogression. Lastly, we will review the potential toxicities of combined therapy and future directions of their role in the management of HNSCC.



Methods

An extensive analysis of the current medical literature from peer-reviewed journals was conducted from January 1, 2008 to March 1, 2020 using the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines to systematically search the PubMed (Medline) database to retrieve a comprehensive set of relevant articles. The search strategy was developed based on National Library of Medicine® Medical Subject Headings (MeSH®) with addition of subject-specific keywords. The bibliographies of full articles were reviewed to include studies which were potentially relevant. The literature was reviewed for quality of study design, cohort size, selection bias, evaluation of participants in relation to time from exposure, and methods of assessments. A well-established methodology (modified Delphi) was used by the expert panel to rate the appropriate use of procedures (14).


Immunological Effects of Radiation


Immune System Activation

Beyond the direct effects of radiation therapy causing tumor cell death via DNA damage, radiation therapy has various other effects on the immune system. These include activating immune responses that lead to indirect tumor cell death via upregulated expression of major histocompatibility complex (MHC) class I and increased innate immune ligand expression. MHC class I molecules present endogenous peptides to cytotoxic T lymphocytes (CTL), allowing T cells to examine the peptide and induce apoptosis if the presented peptide is foreign (2, 3, 15–24). Tumor cells evade the immune system by downregulating MHC class I, so the upregulation of MHC class I by radiotherapy can cause increased cancer cell death (15, 16). Reits et al. found that MHC class I expression increased in a dose-dependent manner in two phases due to radiotherapy. The first phase was radiotherapy-produced free radicals tagging proteins for rapid degradation. The second phase was caused by mTOR kinase activation, leading to increased protein synthesis. When tumor cells were irradiated with 25 Gy, MHC class I molecules remained saturated with peptide for more than 24 hours (15, 16).

Furthermore, radiation therapy increases presentation of FAS and tumor antigens, leading to increased immune-mediated apoptosis of tumor cells. When FAS engages with its ligand, FAS-L, the apoptotic pathway is induced and caspases are activated, leading to cell death (19, 20, 25, 26). Garnett et al. showed how 91% of tumor cell lines upregulated surface molecules, including FAS, ICAM-1, CEA, MUC-1, and MHC-1 after low-dose irradiation. In addition, they showed that 6 out of 10 cell lines that expressed FAS underwent enhanced cell lysis. Furthermore, Garnett et al. observed enhanced killing of cancer cell lines by cytotoxic T lymphocytes (CTLs), even if FAS was not expressed or nonfunctional after irradiation. The apoptosis may have been due to upregulation of other molecules, such as ICAM, or increased presentation of tumor antigens by MHC class I, as discussed previously. Additionally, even nonlethal doses of radiation therapy were enough to activate the immune system, suggesting that a combination of radiation therapy and immunotherapy may be helpful even in cancers where radiation therapy is not the standard of care (16, 19). Several studies have demonstrated these effects and more between radiation therapy and the immune system (2, 3, 18–26).



Immune System Suppression

Radiation can be a double-edged sword in its impact on the immune system, leading to the suppression of the immune system via increased expression of regulatory T cells and upregulation of programmed death-ligand 1 (PD-L1) on tumor cells (2, 3, 18, 20, 24). PD-L1 overexpression by tumor cells in turn, can result in immune evasion and is overexpressed in over 50-60% of HNSCC (27). Studies have shown that regulatory T cells are more resistant to radiation than other types of T cells and may be due toan increased regulatory T cell population following radiotherapy (3, 24, 28). Regulatory T cells are hypothesized to be recruited to a tumor microenvironment in order to maintain immune homeostasis by immunosuppressive effects (3). Preclinical mouse studies done by Oweida et al. have shown significant tumor eradication in mice treated with anti-CD25 and radiation therapy when compared to mice treated with anti-CTLA4 and radiation therapy. Radiation and anti-CD25 therapy lead to tumor eradication in 57.1% of mice and improved overall survival (OS). However, tumor eradication was only achieved in mice with low levels of regulatory T cells. Therefore, head and neck cancers highly enriched with regulatory T cells are resistant to radiotherapy, even with the use of anti-PD-L1 or anti-CTLA-4 drugs. To further prove this point, the tumor was eradicated when the regulatory T cells population was depleted in combination with radiotherapy (29, 30). The combination of radiotherapy with regulatory T cell depletion is a synergistic technique that can be used to combine two antitumor modalities that are weaker on their own (3).

In addition to the suppression of the immune system via regulatory T cells, fractionated radiotherapy causes increased tumor cell expression of PD-L1 through production of IFN-γ (31). Normally, PD-L1 is constitutively expressed in healthy cells to prevent unnecessary killing via CTLs but is exploited by tumor cells to evade immune-mediated killing (2). Dovedi et al. demonstrated increased PD-L1 expression in irradiated mouse models and sequentially, an increase in tumor response to radiotherapy when also treated with a monoclonal antibody targeted against PD-1 or PD-L1. Their data shows that the combination of anti-PD-1 or anti-PD-L1 antibodies with radiotherapy can reduce tumor burden and improve survival. In addition, mice treated with monoclonal antibodies against PD-L1 and radiotherapy demonstrated significant protective tumor antigen-specific memory T-cell responses. However, treatment with anti-PD-L1 monoclonal antibodies 7 days after irradiation is completely ineffective at increasing OS when compared to only radiation therapy (31). Therefore, the timing of these two treatments must be considered for optimal tumor regression. Several other studies and clinical trials have expanded on and shown the significant anti-tumor effects of radiotherapy combined with PD-L1 inhibitors or regulatory T cell depletion (32–38).




Radiation Delivery


Dose and Fractionation

Conventional radiation therapy, where low dose fractionated radiation therapy is delivered, was historically used as the standard of care in treating cancer patients. However, advances in technology have introduced the use of high ablative doses of radiation in lower number of fractions. To date, some randomized controlled trials, especially in treating patients with non-small cell lung cancer (NSCLC), have found similar outcomes in patients who are treated with SBRT when compared to conventional RT while others have even detected an improvement in survival outcomes (39, 40). Not only has SBRT quickly become a widely used option due to its improvement in survival, but also due to its favorable toxicity profile (41–44). However, its role when combined with immunotherapy is less known.

A growing body of literature suggests that improvement in survival outcomes may be attributed to dose and fractionation dependent effects on the immune system. Recent studies have demonstrated a link between radiation therapy induced lymphopenia and survival outcomes in certain cancers such as NSCLC, glioblastomas and pancreatic cancer, and lymphocyte-sparing effects have been described in patients who receive SBRT when compared to conventional RT (45–48). This raises questions of whether fractionation and dose of radiation contributes to its immunological effects through sparing immune cells which can potentially not only improve control at the primary tumor site but also at distant metastatic sites.

Preclinical data suggest that the dose of radiation delivered may have an impact on its subsequent immunological effects. Lee et al. demonstrated in a B16 melanoma mouse model that 20 Gy in 1 fraction compared to 20 Gy in 4 fractions showed considerable delay in all of the mice and complete tumor regression in 35% of the mice who received 20 Gy, but complete tumor regression in 0% of the mice who received 5 Gy x 4 (49). They hypothesized that the single fractionation leads to improvement in outcomes possibly because the fractionated RT continuously kills circulating T cells over time. Also they noted that repair of damage and proliferation between low-dose fractions could account for worse outcomes. Overall, these findings suggest conventional RT may lead to inferior RT-initiated antitumor immunity when compared to higher ablative RT doses in fewer fractions, resulting in an early relapse of tumor growth or recurrence at both local and distant sites. Although a single dose of ablative radiation is not used for curative intent, there have been impressive results described for local tumor control with high-dose single-fraction radiotherapy in palliative settings, implicating alternative mechanisms beyond the direct killing of tumor cells (50).

Conversely, Schaue et al. found that B16-OVA mice treated with doses delivered in 2, 3 or 5 fractions had better tumor responses when compared to a single fraction dose (51). They hypothesized that these findings could be due to fractionated radiation enabling the development of immunity, which is a larger factor in determining outcomes when compared to sub-lethal damage repair between treatment fractions as described by Lee et al. However, their findings partially supported Lee et al. since they also found that immune tolerance was not induced by a single dose of 5 Gy or less, which suggest that higher doses of radiation are superior to the lower doses used in conventional RT (1.5-2 Gy). Although results from Schaue et al. support that tumor immunity is improved with fractionation, it still suggests that higher doses are needed to derive an immunological benefit.

Another preclinical study by Tsai et al. found opposing results when comparing gene expression after a 10 Gy dose delivered as a single fraction vs 2 Gy x 5 fractions in human tumor cell lines. They found that survival after multifractionated RT was about 10 times higher than with the single dose (52). Interestingly, they found that fractionating radiation leads to selective induction of INF-related genes, which have been implicated in inflammatory and possibly radiation resistance through further induction of signal transducer and activator of transcription 1 (STAT1) (53, 54). Specifically in head and neck cancer, increased STAT1 expression have been shown to lead to radioresistance. Drugs such as fludarabine inhibit cytokine-induced activation of STAT1 and have been reported to enhance radiosensitivity of tumor cells in head and neck cancer (55). Interestingly, Khodarev et al. found that in head and neck tumor cells, STAT1, which is an upstream mediator of INF-signaling, was protective from ionizing radiation-mediated death (53). Dewan et al. also found that when combined with CTLA-4 inhibition, fractionated dosing resulted in improved control of the primary tumor when compared with single-dose RT (56). These mixed pre-clinical results suggest multiple complex variables other than dose fractionation contribute to the immunological effects of radiation therapy.

Lastly, another fractionation alternative may be hypofractionated treatment typically given in the range of 15 to 20 fractions. Further work in the arena of combined immunotherapy and hypofractionated RT for head and neck cancer is needed.



Field Size and Elective Nodal Coverage (ENI)

Not only does SBRT utilize a higher dose per fraction, which may be associated with improved outcomes in patients with oligometastasis through various immunological effects as noted above, but also offers decreased toxicity and immunosuppression through a high degree of dose conformity when compared to conventional radiation therapy which normally encompasses larger areas. Decreased margins in SBRT when compared to conventionally fractionated radiation therapy theoretically decrease radiation to healthy tissue, which could blunt destruction of lymphocytes that are necessary to illicit an anti-tumor response.

Oftentimes, treatment fields include the primary tumor as well as clinically uninvolved draining lymph node regions that are at high risk for micrometastases to prevent local recurrence. Elective nodal irradiation is currently the standard of care for the majority of head and neck cancers based on the high rate of spread to regional lymph nodes. However some studies in other tumor types suggest that large field nodal radiation may not add significant improvement in cancer outcomes. For example, in several randomized trials and large dataset analyses, survival outcomes of whole-pelvic vs prostate-only radiation therapy for high risk prostate cancer were no difference (57–59). Rwigema et al. showed that in patients with early-stage NSCLC, prophylactic RT to the mediastinum did not improve outcomes (60). Not only have the studies above found a lack of improvement in survival outcomes, but also, Marciscano et al. has found that ENI actually adversely affected survival outcomes when combined with immune checkpoint blockades due to altering adaptive immune responses such as chemokine expression and CD8+ T-cell trafficking (61).

The question of the use of ENI has come into a new light, specifically in respects to its effect on the immune system, as multiple studies have described the negative effects of treating draining lymph nodes on the efficacy of immunological responses. Studies have reported that radiation therapy to the local tumor elicits different immunomodulatory effects that lead to immune mediated tumor-specific responses. Lugade et al. showed that radiation increases IFN-γ–producing antitumor immune cells and Apetoh et al. demonstrated that T cells in radiation therapy decrease tumor growth by comparing T-cell deficient mice models and wild-type mice, while Lee et al. showed that CD8+ T cells in radiation therapy resulted in tumor growth inhibition (49, 62, 63). Taken together, CD8+ T cells, IFN-γ–producing antitumor cells, and T-cell proliferation in the tumor draining lymph node (DLN), lead to tumor-specific responses. Similarly, Takeshima et al. demonstrated in their animal models that tumor DLN were required for inducing tumor-specific CTL and found that CTL were significantly decreased by radiating the DLN, which lead to significantly worse survival outcomes (64). These findings were observed in lymph node deficient mouse models, and tumor-specific CTLs are indispensable in creating tumor specific CD8+T cell responses (65, 66). Sharabi et al. showed that locally directed radiation therapy increases the activation and proliferation of an antigen-specific antitumor T-cell population in the DLN, which proposes the question that SBRT may lead to improved outcomes when compared to conventional RT by sparing destruction of T-cells in the DLN (33).

The pre-clinical findings above suggest that omitting ENI may assist immunological responses that can potentially be further enhanced by the use of immune checkpoint blockades. However, although several clinical studies mentioned above fail to demonstrate the benefits of ENI in certain cancers, the treatment of DLN specifically in head and neck cancer warrants additional investigation due to the extensive and complex lymphatic drainage in the area. Currently, the standard for upfront locally advanced head and neck cancer is to cover elective lymph nodes whereas it is not recommended in the setting of re-irradiation.




Radiation Combined with Immunotherapy


Mechanisms

Treatment of HNSCC typically involves a multidisciplinary approach composed of surgery, radiation therapy, and chemotherapy. Patients with localized disease are generally managed with either radiation therapy or surgery, but patients with more advanced cancers are managed with multimodality approaches. Despite the use of multimodality treatment, outcomes and prognosis for metastatic head and neck cancer remain poor. There has been a growing number of studies using immune checkpoint inhibitors in recurrent or metastatic head and neck cancer and the results of the first clinical trials using PD-1/PD-L1 drugs have shown a survival benefit along with a favorable toxicity profile when compared to standard treatments (67–71). The improved treatment responses and clinical outcomes in these studies shed light on the importance of not only understanding the mechanism of immune checkpoint inhibitors but also of their interaction with other treatment modalities.

Radiation therapy induces apoptosis, necrosis, and senescence of tumor cells through inducing DNA damage by directly causing breaks in the DNA strands, or indirectly by reactive oxygen and nitrogen species (72). The advantage of delivering a conformal dose to the tumor while minimizing systemic toxicity and sparing neighboring healthy tissue makes radiation therapy an attractive choice for multimodality treatments. In addition to DNA damage, preclinical studies substantiate that radiation can induce tumor-specific immunity and contribute to immunogenic cell death (73). Now, several robust preclinical studies support the synergistic effects of systemic immunotherapy and radiation therapy. Reits et al. found that when radiation was combined with adoptive CTL therapy in an MC38 colon cancer model, tumor growth inhibition was significant increased when compared to either modality alone (15). Furthermore, Zhang et al. found that in mouse models, radiation therapy alone was insufficient to eradicate the cancer, but when radiation of the MC57 tumors were followed by CTL transfer, the tumor was eradicated (74).

In addition to these preclinical studies, Demaria et al. used 4T1 mouse models to determine if immune checkpoint blockade can act synergistically with radiation therapy to delay tumor growth. They found that the combination of radiation therapy and a CTLA-4 antibody improved OS and antitumor activity. Radiation therapy alone only slowed primary tumor growth and anti-CTLA-4 therapy alone did not improve survival outcomes or delay tumor growth. Furthermore the control of distant metastases observed in mice who received the combination therapy was immune-mediated and dependent on CD8+ T cells (75). Additionally, other preclinical studies have proposed mechanisms that could possibly account for the synergistic affect seen in radiation therapy and immunotherapy. Ruocco et al. found that in the 4T1 model, MCH-1 dependent arrest was restored after treatment with radiation therapy and a CTLA-4 blocking antibody, which allowed improved antitumor activity through the interaction of tumor-infiltrating lymphocytes and tumor cells (76). Additionally, Belcaid et al. found that in an orthotopic mice models of glioma treated with triple therapy including 4-1BB activation, CTLA-4 blockade, and radiation therapy these mice had increased survival, and a higher density of CD8+ and CD4+ cells. When mice had depletion of CD4+ T cells, the antitumor efficacy of triple therapy was abrogated, highlighting the importance of CD4+ T cells in the synergistic effect, and this was independent of the sequence of the treatments delivered (77).

Preclinical work has also included studies on PD-1 inhibition with radiation therapy. Verbrugge et al. observed that PD-1 is an indispensable signal in mediating the antitumor response of radiation therapy in a triple-negative breast cancer model. They found that all mice were cured when a PD-1 antibody was combined with single or low-dose fractionated radiation therapy and that CD8+ T cells were essential for this curative response. In a CT26 murine colon cancer cell line, Dovedi et al. found that 10 Gy delivered in 5 fractions concurrently delivered with anti-PD-L1 therapy improved OS (31). Unlike the findings by Belcaid et al, the improvement in OS in these CT26 models was dependent on the sequence of treatment delivered and was only seen when anti-PD-L1 therapy was given concurrently with radiation therapy (31). Mechanisms have been proposed to explain this synergistic effect between radiation therapy and anti-PD-L1 therapy as well. Deng et al. demonstrated that radiation causes an up-regulation in PD-L1 in the tumor microenvironment, so the addition of a PD-L1 blockade to radiation causes an activation of cytotoxic T cells (32). Additionally, Sharabi et al. suggests that radiation with anti-PD-1 therapy incudes an antigen-specific immune response as discussed above (20).

Thus as a result of these robust preclinical studies detailing synergistic effect between radiation therapy and immunotherapy, many ongoing clinical trials are investigating the use of radiation with immunotherapy. However, the optimal sequence of treatment delivery, the radiation dosing and fractionating, and patient selection to best illicit this synergistic effect in head and neck cancer remains unknown. Current published data is limited, but this will likely increase due to the high number of ongoing clinical studies.



Upfront Definitive Radiation Therapy

Published data is sparse and many trials are still actively accruing patients (Table 1); however, the phase III JAVELIN 100 trial, which is a randomized, double-blind, international multicenter trial, comparing avelumab plus chemoradiation versus standard of care chemoradiation in patients with locally advanced HNSCC has been terminated after a planned interim analysis. The trial aimed to demonstrate that the combination of avelumab with standard chemoradiation offers superior progression-free survival (PFS) when compared to chemoradiation alone in the treatment of patients with high-risk, locally advanced HNSCC. At the interim analysis, they concluded that the study is unlikely to show a statistically significant improvement in their primary endpoint of PFS. So far, the phase III JAVELIN Ovarian PARP 100 trial and the JAVELIN 100 trial for HNSCC has been terminated, but the JAVELIN Merkel 200 trial is still active, as it shows durable responses and meaningful survival outcomes in patients with Merkel cell carcinoma at 2 years (78).


Table 1 | Select Ongoing Trials/Awaiting Results.



The NRG recently completed the HN003 trial, which was a phase I study in patients with HPV negative, stage III-IV HNSCC where pembolizumab is administered concurrently with postoperative radiation therapy and weekly cisplatin. This study aims to compare outcomes of these patients to the current standard of care with the primary outcome being dose-limiting toxicities up to 4 weeks posttreatment (79). Secondary outcomes include change in expression of peripheral immune inflammatory biomarkers, levels of PD-L1, and survival and disease control outcomes at 1 year. This trial is currently undergoing scheduled interim analysis. Another NRG trial, HN005, is a randomized phase II/III trial that studies the outcomes of patients who are given a reduced dose of radiation therapy with nivolumab compared to standard dose of radiation therapy plus cisplatin in treating patients with HPV positive early stage oropharyngeal cancer. Patients will either be given intensity modulated radiation therapy (IMRT) over 6 fractions per week and receive cisplatin, versus reduced dose IMRT over 5 fractions per week with cisplatin, versus nivolumab plus reduced dose IMRT over 6 fractions per week. These trials aim to explore the use of up front immunotherapy in patients with HNSCC and will be important in determining the role of these checkpoint inhibitors in treating HNSCC.

A number of studies are ongoing in this area to identify novel immune checkpoint inhibitors to be delivered concurrently with radiation therapy (80). Currently the only targetable agent combined with radiation treatment in definitive head and neck cancer is cetuximab, an epidermal growth factor inhibitor (EGFR), which showed improved survival outcomes when compared to radiation alone (81). However recent randomized data for HPV positive patients suggest inferior outcomes when compared to cisplatin (82, 83).



Re-Irradiation

Patients with head and neck squamous cell carcinoma who recur after definitive therapy have limited treatment options; specifically those who fail platinum-based chemotherapy have a survival of less than 6 months (84). Options include: surgery, but this may be precluded by the extent of the recurrence; chemotherapy, which has a poor prognosis; and re-irradiation depending on the previously treated field and the site of recurrence. For example, for patients with metastatic HNSCC or recurrent disease that is unable to be treated with a curative intent, the current standard of treatment pembrolizumab with or without chemotherapy (85).

With the recent successes in immunotherapy for the treatment of other cancers, and promising outcomes for the use of radiation therapy and immunotherapy upfront in HNSCC, now several ongoing studies seek to elucidate the outcome of immunotherapy combined with re-irradiation in patients with recurrent disease (86). The KEYNOTE-012 trial was the first trial to show efficacy of immune checkpoint inhibitors in HNSCC. This was a multicohort phase Ib study to evaluate not only the efficacy by the safety of pembrolizumab in patients with advanced solid tumors, including patients with recurrent and metastatic HNSCC. This cohort of patients was initially divided into 60 patients with PD-L1 positive tumors (≥1% PD-L1 expression). Patients received pembrolizumab 10 mg/kg IV every 2 weeks and the objective response rate (ORR) was 18% in all patients, 25% in HPV positive patients and 4% in HPV negative patients. 17% of these patients had grade 3-4 drug-related adverse events, and 45% of patients experience a serious adverse event. There were no drug-related deaths. The duration of response was about 53 weeks and OS was 13 months (67). The expansion cohort enrolled an additional 132 patients with recurrent/metastatic HNSCC regardless of PD-L1 expression status. Pembrolizumab was given once every 3 weeks instead of 2 weeks, and the ORR in this patient population was found to be 18% in all patients, 32% in HPV positive patients and 14% in HPV negative patients. PD-L1 status was predictive of ORR (22% for PD-L1 positive vs 4% in PD-L1 negative patients) (68). In the pooled analysis of the initial and expanded cohort, 17% of patients achieved stable disease, median OS was 8.5 months, and the 6-month PFS rate was 24.9% (87). Overall, Keynote-012 concluded that pembrolizumab was well tolerated with good clinical outcomes, and should be strongly considered in patients with recurrent/metastatic HNSCC. Based on the results found in this trial, pembrolizumab was approved by the US Food and Drug Administration (FDA) in the treatment of recurrent and metastatic HNSCC in 2016. Currently we are awaiting the results of Keynote-040, which is a recent ongoing phase III trial that has reached accrual. 466 patients with recurrent/metastatic HNSCC were enrolled and patients were randomized to treatment with either pembrolizumab vs methotrexate, cetuximab or docetaxel.

Checkmate-141 is a randomized phase III trial with 361 patients with recurrent HNSCC who progressed after platinum-based chemotherapy. This study aimed to evaluate whether nivolumab improves OS when compared another therapy of the investigator’s choice (including either docetaxel, methotrexate, or cetuximab). They found that nivolumab significant improved OS when compared to other therapies (7.5 months vs. 5.1 months, respectively), and the 1 year OS rate was greatly improved in patients treated with nivolumab versus standard therapy (36.0% versus 16.6%, respectively). There was a 30% reduction in risk of death for patients treated with nivolumab. Interestingly, regardless of PD-L1 expression or p16 status, OS was improved in patients treated with nivolumab when compared to patients treated with standard therapy, although patients with PD-L1 positive or HPV-positive status benefited the most. Overall response rate was 17% in PD-L1 positive patients, 12.3% in PD-L1 negative patients, and 15.9% in patients with p16 positive disease versus 8.0% in patients with p16 negative disease. Drug related adverse events were significantly lower in the nivolumab group (59.3%) versus the standard care group (77.5%). This trial concluded that nivolumab had a lower incidence of drug related adverse events and improved OS when compared to the standard therapy (70).

The KEYSTROKE trial hopes to explore the synergistic effects of re-irradiation with PD-1/PD-L1 inhibitors and clinical outcomes of patients treated with SBRT plus anti-PD-1 therapy versus SBRT alone. Patients eligible for the KEYSTROKE trial must have pathologically confirmed diagnosis of locoregional recurrent or unresectable new primary HNSCC, must have had prior radiation therapy to the head and neck to a minimum of 30 Gy with overlap of at least 25% of the current planned tumor volume (PTV) with the previously treated area, and the disease must be limited to a single site or adjacent sites that can be treated in a single contiguous target volume for which the gross tumor volume (GTV) must be <7.5 cm (86). Patients will be randomized to receive pembrolizumab plus SBRT versus SBRT alone. Additionally, the REPORT trial is aiming to study the outcomes of patients with recurrent HNSCC who have had prior radiotherapy and will randomize patients with receive with nivolumab alone or nivolumab plus radiation therapy delivered to a total dose of 60 Gy in 1.5 Gy fractions BID for 4 weeks (88). Similarly, a phase II trial currently accruing patients will randomize patients to reirradiation only of 1.2 Gy BID for 5 weeks versus pembrolizumab in addition to reirradiation in patients with locoregional inoperable recurrent HNSCC or second primary HNSCC (Table 1) (89).




Potential Toxicities

There is a paucity of published clinical data as noted above regarding the efficacy and survival outcomes in patients with HNSCC treated with immunotherapy and radiation therapy. There is more available data however, regarding the safety profile and potential toxicities of combining immunotherapy and radiation therapy. The GORTEC 2015-01 phase II trial accrued 133 patients with inoperable stage III-IVb HNSCC who were unable to tolerate cisplatin and randomized them to receive either cetuximab with RT or pembrolizumab and RT. Although the efficacy results are still pending, they found that the tolerance of pembrolizumab plus radiation was better when compared to cetuximab plus radiation (90). However, they found that treatment-related mortality was slightly higher in both arms when compared to previous GORTEC studies, which may be confounded by differing baseline characteristics, as these the inclusion criteria of this study included patients who cannot tolerate cisplatin, which could be a surrogate for poorer baseline function.

Wise-Draper et a. recently reported the preliminary safety data of the ongoing phase II trial (NCT02641093) which enrolled patients with locally advanced resectable HNSCC. These patients received one dose of pembrolizumab followed by surgery and all patients received either adjuvant concurrent pembrolizumab plus radiation therapy versus pembrolizumab plus cisplatin plus radiation therapy in patients with high risk features. At the interim analysis, no grade 4 toxicities or dose limiting toxicities were observed (91).

Furthermore, the safety of pembrolizumab with chemoradiation in locally advanced HNSCC was reported by Powell et al. who showed that all patients completed radiation therapy without delay, while 3 patients of 27 discontinued immunotherapy due to grade 2 peripheral neuropathy, grade 1 Lhermitte syndrome, or grade 3 elevation in liver enzymes (92). In RTOG 3504 trial, patients with intermediate risk HNSCC were treated with nivolumab in addition to chemoradiation. At the time of the interim analysis, 3 of the 17 patients discontinued cisplatin, 3 patients discontinued nivolumab for known side-effects of the drug, and only one grade 4 adverse event of elevated amylase was seen but resolved (93). These trials above support the safety of combined immunotherapy with radiation therapy. In the oligometastatic setting, combination of radiation therapy with immunotherapy does not appear to have increased rates of immune-related adverse events or significantly effect quality of life (94, 95).

So far, in HNSCC and in other disease sites, immunotherapy plus radiation therapy exhibits a favorable toxicity profile and is well tolerated. Specifically, the safety of SBRT combined with immunotherapy in metastatic HNSCC was studied in a phase II trial where patients either received nivolumab alone or nivolumab with SBRT, which was delivered as 9 Gy x 3 fractions. They found that the rates of grade 3 or greater toxicities were low in both arms (96). Overall, these studies support that immunotherapy combined with radiation therapy is well-tolerated in HNSCC patients (Table 2).


Table 2 | Select Preclinical and Clinical Data Summary.






Conclusion

Radiation therapy remains at the center of head and neck cancer treatment. With improvements in treatment delivery, radiation therapy has become an effective ablative modality for head and neck cancers. Further, radiation appears to play a large role in activating immune responses and may be the spark needed to improve the efficacy of novel immune checkpoint inhibitors coming down the pipeline. With improved systemic therapies, local noninvasive modalities such as radiation are critical in overcoming resistance in head and neck cancer. Data from ongoing trials and future studies are needed to better understand the mechanism of radiation and immune checkpoint inhibitors, how best to sequence the therapies, what dose of radiation is most optimal, and what areas should be targeted. As data further matures in head and neck cancer research, it will become even more critical that these patients are discussed and treated in a multidisciplinary fashion.
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Radiomics is an emerging field in radiology that utilizes advanced statistical data characterizing algorithms to evaluate medical imaging and objectively quantify characteristics of a given disease. Due to morphologic heterogeneity and genetic variation intrinsic to neoplasms, radiomics have the potential to provide a unique insight into the underlying tumor and tumor microenvironment. Radiomics has been gaining popularity due to potential applications in disease quantification, predictive modeling, treatment planning, and response assessment – paving way for the advancement of personalized medicine. However, producing a reliable radiomic model requires careful evaluation and construction to be translated into clinical practices that have varying software and/or medical equipment. We aim to review the diagnostic utility of radiomics in otorhinolaryngology, including both cancers of the head and neck as well as the thyroid.




Keywords: radiomics, head and neck cancer, thyroid cancer, imaging biomakers, immunotherapy resistance



Introduction

Head and neck cancer (HNC) malignancies include cancers within the upper aerodigestive tract – anatomically including cancers of the mucosal linings of the sinuses and air pathways from the thoracic inlet up to the skull base (1). This group of malignancies is the seventh most common cancer worldwide and the ninth most common cancer within the United States (1). Considering the various anatomical regions pertaining to HNC, cutaneous neoplasms of the head and neck (e.g. melanoma, cutaneous squamous cell carcinomas, basal cell carcinomas, etc.) are not discussed in this article. Instead, malignant neoplasms of the thyroid often present with similar clinical symptoms as head and neck cancers, and both are often managed initially by otorhinolaryngologists. The goal of this review is to illustrate the diagnostic utility the field of radiomics can offer in differentiating pathology at the nascent setting of presentation.

Radiomics - “radi” deriving from the science of radiology and “-omics” to indicate mapping of the human genome (2–4) - is a rapidly evolving field that aims to provide non-invasive ability to comprehensively characterize tissues and organs from features extracted from standard-of-care medical imaging (5), including techniques such as computed tomography (CT), positron emission tomography (PET), magnetic resonance imaging (MRI), and so on. It is important to further explore the implications and significance of the clinical knowledge deduced from radiological imaging to potentiate developing a radiomic pipeline that allows for improving diagnosis development and clinical decision making when treating cancer.

Technological advancements in computer hardware and artificial intelligence enable an integrative analysis of clinical, radiomic, and bio-genomic data for cancer discovery (6–9). In the case of radiomics, vast numbers of quantitative features can be derived from multi-modal medical images using computational methods (3, 10). Phenotypes represented using radiomic features may have prognostic and diagnostic value, and potentially improve clinical decision support in cancer treatment (6, 11, 12).

Radiomics can be performed using multimodal (CT, PET, MRI, and ultrasound) and/or multiparametric (multiple MRI sequences, e.g., diffusion MRI, perfusion MRI techniques (7–9, 13–15). In a typical radiomic workflow (Figure 1), we first perform image registration and pre-processing, then image segmentation and annotation. Next, radiomic features are calculated using computational methods. A variety of tools are available to streamline the process (16–24). Radiomic features are mostly sub-visual and can be coarsely grouped into intensity, shape, and texture. In addition, before calculating the radiomic values, we can apply spatial filters such as wavelets and Laplacian of Gaussian filters to extract a variety of derivative and spatial-frequency information.




Figure 1 | Typical radiomic workflow.



The radiomic features are then integrated with other data sources for prognostic (7–9, 25–39), treatment response (40–42), histopathological (43–48), or radiogenomic (11, 49–51) analyses using statistical or machine learning modeling techniques.



Head and Neck Cancer

Oncologic disease developing in the mucosal surfaces of anatomic subsites, such as the nasopharynx, oropharynx, hypopharynx, oral cavity, larynx, paranasal sinuses, and salivary glands are considered HNC (Figure 2) (52, 53). The International Classification of Diseases, Tenth Revision (ICD-10) reports that oral and pharyngeal cancer accounts for approximately 2.3% of cancers within the United States. Oral and pharyngeal cancer has a five-year survival of 27.8% and is internationally considered to be the sixth most common cancer (54, 55). Risks of developing this disease are commonly associated with the consumption of tobacco and alcoholic products. Therefore, 74% of the general population that practice tobacco and alcohol consumption have a greater risk of developing oral and pharyngeal cancer, with an estimated 80% of that population being male and 61% being female (54).




Figure 2 | Anatomy of ear, nose, and throat, sagittal view.



Research has also indicated an etiological association of head and neck cancer to viruses (56). The human papillomavirus (HPV), a virus known to cause common conditions such as warts, has developed a reputation for its association with cervical and oropharyngeal cancers (53). Therefore, when diagnosing HNC, patients will often be screened for HPV infection as a potential cause of disease. There are over 170 different types of HPV’s, categorized by the virus’s characteristics such as location (mucosal or cutaneous anatomical sites), response to an external stimulus, and its risk for malignancy. The mucosal subgroup of HPV is primarily associated with HNC as this subgroup contains over 40 subtypes that are considered to be sexually transmitted diseases (STD) and predominantly infect the reproductive and respiratory tracts (53).

Additional etiological associations to HNC include the Epstein-Barr virus (EBV), which is often associated with many different types of human cancers, including those of lymphoid and epithelial cells (57). Considered one of the most common human viruses, EBV infection typically spreads undetected and can reside within the host over a span of ages in which infection is dependent on several factors such as genetic predisposition, diet, living conditions, hygiene, and sexual behavior (53, 58). To further validate the commonality of EBV infection, statistics show by adulthood approximately 90-95% of the population will sustain a permanent, asymptomatic infection of EBV (53, 57). As a member of the Herpesviridae family, alternatively known as human herpesvirus type 4 (HHV4) (58), post-primary infection of EBV is permanent and can subsequently result in the virus shedding into genital and salivary secretions that increase the risk of carcinogenesis into HNSSC.

Currently, radiomics can predict some tumoral characteristics linked to patient survival in HNC (Table 1). In a study performed by Mukherjee et.al., radiomic features were analyzed via CT imaging to non-invasively predict the histopathological features of HNSCC. This study was performed retrospectively, utilizing CT images and data from clinically diagnosed patients with HNSCC. An institutional test cohort (n = 71) and an HNSCC training cohort derived from The Cancer Genome Atlus (TCGA) (n = 113) were analyzed within this study (43). A machine learning model, trained with 2,131 extracted radiomic features that were utilized to predict tumor histopathological characteristics, was applied to the training and test cohort. These features included intensity, size and shape, texture, and filters (43). The cancer characteristics investigated related to these features were tumor grade, perineural invasion, lymphovascular invasion, extracapsular spread, and HPV status (p16 expression) (43). For dimensionality reduction and classification of these features, principal component analysis, and regularized regression was applied, respectively (43). Results from this study indicated that the radiomic model produced by Mukherjee et al. showed strong-to-moderate power in predictive prognosis for patients diagnosed with HNSCC, which was further validated in an external institutional testing cohort. In other words, this study concluded that radiomic CT models have significant value in predicting features typically indicating pathological assessment of HNSCC (43). Many of these pathologic features are specific to the individual regions of the head and neck and will therefore be reviewed by region (Figure 2).


Table 1 | Summary of radiomic applications in head and neck.




Nasopharynx

Typically viewed as an endemic within the southern Chinese population, undifferentiated nasopharyngeal carcinoma (NPC) has the strongest association with EBV infection (57, 58). The World Health Organization (WHO) has characterized NPC into two primary histological types: keratinizing squamous cell carcinoma (Type I) and non-keratinizing squamous cell carcinoma (Type II and III). The undifferentiated histological subtype of NPC, such as Type II and III, has the closest association with EBV infection, which particularly affects regions such as Hong Kong, southern regions of China, and Southeast Asia (58). Additional risks include are genetic predisposition and dietary factors. It is important to note that although EBV infection is discovered in nearly all undifferentiated NPC cases, EBV is not detected in other head and neck cancers, excluding salivary gland tumors (58).


Exploring the application of Radiomics to Nasopharyngeal Cancer

In a study performed by Zhang et. al., multiparametric magnetic resonance imaging (MRI)-based radiomics was utilized as a prognostic factor in patients with advanced NPC. For this study, 118 advanced NPC patients were enrolled to determine the training cohort (n = 88) and the validation cohort (n = 30). A total of 970 radiomic features were extracted from two parameters: T2-weighted (T2-w) and contrast-enhanced T1-weighted (CET1-w) MRI images. Application of LASSO regression was utilized to select features for progression-free survival (PFS) nomograms and the association between radiomic features and clinical data was evaluated via heatmaps (37). The results indicated that there are significant associations between the radiomic features and PFS. For example, radiomic signatures derived from joint CET1-w and T2-w images displayed improved prognostic performance when compared to signatures derived from the CET1-w and T2-w parameters separately. These findings were confirmed in the validation cohort, suggesting the application of radiomics utilizing multiparametric MRI-based radiomics provided improved prognosis in advanced NPC. Nonetheless, there is a need to research features that can be utilized in radiomic application to profile these types of advanced NPC tumors. Producing these findings will allow for treatment advancement and precise clinical risk stratification (20).



Exploring the application of Radiomics to the Epstein-Barr Virus in Head and Neck Cancer

EBV in relation to HNSSC has the strongest association with nasopharyngeal carcinoma (NPC). In a study performed by Yang K. et. al., the study aimed to develop and validate a nomogram that incorporated clinical data, gross tumor volume of the nasopharynx (GTVnx) and lymph nodes (GTVnd) radiomic signatures, and multiparametric based therapeutic dose-volume histogram (DVH) signatures by Least Absolute Shrinkage and Selection Operator (LASSO) to predict progression-free survival (PFS) in patients diagnosed with locoregionally advanced NPC. The study concluded that the developed multidimensional nomogram incorporating radiomic signatures of lymph nodes, planning scores, and tumor-node-metastasis stage showed efficient predictive accuracy in determining PFS. However, incorporating pre-treatment plasma EBV-DNA status improved the predictive accuracy of the nomogram model. This implication was investigated via a sub-group analysis of EBV-DNA (59). This data was confirmed by the study’s validation cohort, and as a result, indicated that consideration of pre-treatment EBV-DNA was a useful prognostic biomarker in NPC (59). Therefore, there is potential improvement in NPC screening when considering radiomics and EBV-status.




Oropharynx

Oropharyngeal cancer (OPC) is one of the most frequent HNC, with squamous cell carcinoma (SCC) accounting for approximately 90% of diagnosed cases (60). The oropharynx is a region in the pharynx located behind the oral cavity, including structures such as the soft palate and tonsils. This cancer has a 5-year-survival rate of approximately 50% (60). The high mortality rate is not always due to the malignancy or intensity of the tumor, but simply due to late detection (60). OPC tumors rarely present symptoms that seem concerning upon initial screening. For example, symptoms typically include a sore throat or difficulty swallowing (60). Therefore, the tumor is usually detected late with little to no time to treat the disease, resulting in low survival rates and death shortly after diagnosis. OPC can also be characterized by its aggressive tumors, with a 70% prevalence of cervical metastases and the ability to disseminate quickly (60). Risk factors for oropharyngeal cancer include a history of smoking cigarettes and the presence of an HPV infection (61).

The association between HPV status and HNSCC involves distinct tumor morphology, younger patient’s age when presented, and positive response to radiotherapy treatment. HPV-positive status is a significant prognostic feature regarding favorable outcomes and overall survival in patients diagnosed with oropharyngeal squamous cell carcinoma (OPSCC) (5). This is because HPV-positivity is considered a strong, independent prognostic feature when diagnosing OPSCC. HPV status of the tumor is determined by analyzing p16 positivity using immunohistochemistry. The cyclin-dependent kinase inhibitor p16 is a tumor suppressor gene that is often overexpressed in HPV mediated cancers and leads to an overall better course of disease (62).

In a study performed by Leijenaar et. al., the study examined that HPV-positive OPSCC is biologically and clinically different than HPV-negative cases. The study then approached understanding these significant differences through radiomics to evaluate the HPV status of OPSCC (63). The study included four independent cohorts that encompassed a total of 778 patients diagnosed with OPSCC. Of the 778 cases, the data was randomly assigned for the radiomic model training (n = 628) and validation (n = 150) cohorts. From pre-treatment CT imaging, 902 radiomic features were extracted from gross tumor volume. Currently, there are no MRI-based radiomic reports available regarding radiomic signature prediction of HPV status.


Exploring the Application of Radiomics to Oropharyngeal Cancer

Application of radiomics has been practiced within this field of disease and poses as a promising tool to noninvasively characterize tumor phenotypes (32, 64). In a study conducted by Bagher-Ebadian et.al., a radiomic analysis of primary tumors extracted from pre-treatment contrast-enhanced computed tomography (CE-CT) images was performed on patients diagnosed with OPC (64). Within this study, Bagher-Ebadian et al. utilized radiomics to identify distinct features that construct optimal characterization and prediction of HPV affecting OPC. Amongst the 172 radiomic features that were examined, only 12 radiomic features were significantly different between HPV-positive and HPV-negative patients. Results from this study indicate that gross tumor volumes (GTV) for HPV-positive patients display higher intensity, smaller lesion size, greater sphericity, and higher patient intensity-variation/heterogeneity on CE-CT imaging (64). These results suggest that radiomic features of HPV status in OPC patients are associated with spatial arrangement and morphological appearance via CE-CT imaging.

Furthermore, in a retrospective study performed by Bogowicz et al. CT radiomics was utilized to predict local tumor control (LC) after chemoradiation therapy of HNSCC, as well as examining the effects of HPV infection on tumor radiomics. A training cohort (n = 93) and a validation cohort (n = 56) were approved to be included in this study. 317 CT-radiomic features were calculated within the primary tumor region, including features based on shape, intensity, texture, and wavelet transformation (32). Results from this study indicated that 3 features were significantly associated with LC, indicating that tumors with a heterogeneous CT density were at risk for decreased LC (32). As a result, this study concluded that quantified CT radiomics examining the heterogeneity of HNSCC tumor density is associated with LC after chemoradiation therapy and HPV status (32). Utilizing this radiomic information from studies such as Bagher-Ebadian et al. and Bogowicz et al. will allow for clinicians to further optimize oral screening for OPC and HNSCC, therefore optimizing patient diagnosis and clinical decision making in treatment planning.




Hypopharynx

Hypopharyngeal cancer has the worst prognosis of all HNC with a 5-year-survival of only 25% to 41% (65–67). It is uncommon, with 2,500 new cases arising annually within the United States (68). The hypopharynx can be divided into three distinct regions to better distinguish the localized cancer cells: pyriform sinus, postcricoid region, and the posterior wall (68). The pyriform sinus is where most squamous cell carcinomas occur, with 70% of cases arising within this region. The postcricoid region accounts for approximately 20% of cases and the posterior wall accounts for approximately 10% of cases (69). Because typical presentation is usually recognized by the growth of a neck mass or dysphonia, newly diagnosed patients are often presented at Stage III or IV of disease, contributing to this disease history of poor prognosis (68). Hypopharyngeal cancer typically affects individuals ranging between the ages of 50 to 60 years, occurring more often in men than women. Superior localization of the cancer cells is mostly associated with heavy drinking and smoking. Nutritional deficiencies account for the postcricoid, the inferior part of the hypopharynx, being affected (68). Hypopharyngeal tumors are classified as highly aggressive due to their ability to metastasize early and infiltrate an abundant submucosal lymphatic network, sometimes even skipping metastasis and reappearing in various locations distinct from the primary site. Therefore, it is very common for multiple primary tumors to resurface (68). Treatment of hypopharyngeal cancer is often controversial due to the desire for organ preservation (65, 67). Early detection of this carcinoma may only require radiotherapy, but treatment for later stages of the disease is more complicated. Due to the complications of late-stage disease, the standard treatment is surgical resection and is sometimes paired with postoperative chemoradiation therapy with or without immunotherapy (69).


Exploring the Application of Radiomics to Hypopharyngeal Cancer

Since early detection of this disease may only require treatment via radiotherapy, identifying significant markers that indicate the carcinogenesis of hypopharyngeal cancers into a non-invasive radiomic pipeline could potentially improve prognosis. Utilizing radiomics may allow clinicians to assess the progression of the disease earlier, and, therefore, to construct a patient-specific treatment plan that optimizes treatment response and reduces unnecessary high-risk intervention. Fortunately, studies have shown that early detection of the tumor can be found using radiomics. Liao et al. conducted a study including a total of 80 OPC and hypopharyngeal cancer PET images were analyzed using radiomics to distinctively select imaging features indicative of the diseases. These imaging features were then correlated with prognostic diagnosis, cancer stage detection, and prediction of effective treatment. All cases included in the study had been treated with chemoradiation therapy (70). This study found that 16 image features were significantly different between early and late stages within the several metabolic tumor volumes (MVT). The image features include surface area, surface to volume ratio, compactness, spherical disproportion, TGV, energy, contrast, local homogeneity, dissimilarity, variance, inverse variance, inverse difference moment, inverse difference, RLNU, and RPC. These features successfully differentiated early from late stages of OPC and hypopharyngeal cancer. As a result, these findings assisted in evaluating prognosis and specific treatment response for the patient (70). 5 and 2 features had an area under curve (AUC) in receiver operating characteristic (ROC) greater than 0.7, indicating a promising predictor. The studied imaging features resulted to prove to be essential indicators in tumor differentiation, staging, overall survival (OS), relapse, and treatment efficacy (70).

Additionally, a study conducted by Mo et al. established a radiomics-based model to classify early versus late detection and metastatic disease in patients with hypopharyngeal cancer. 113 patients diagnosed with this carcinoma were treated with chemoradiotherapy and divided into two cohorts, a training cohort (n = 80) and a validation cohort (n = 33) (71). The radiomics model utilized the concordance index (C-index) to predict prognostic factors, resulting in C-indices of 0.804 with a 95% confidence interval (CI) of 0.688-0.920 and 0.756 with a 95% CI between 0.605-0.907. Furthermore, the log-rank test and a nomogram were used in risk prediction of the model to assess disease progression. The significant results were p=0.00016 and p=0.00063, demonstrating an effective classification of patients into high and low-risk categories (71). Overall, the radiomics model in this study suggests being effective in predicting the risk of progression for hypopharyngeal cancer along with chemoradiotherapy (71).




Larynx

Laryngeal squamous cell carcinoma (LSCC) consists of 30-50% of all neoplasms in the head and neck (15). Treatment surrounding this disease is difficult due to considerable amounts of variability concerning the region’s anatomy, its surrounding structures, variable appearance of primary and recurrent tumors, significant anatomic changes resulting from tumor response, and high intratumoral heterogeneity (15). Standard-of-care treatment towards LSCC prioritizes organ-preserving strategies, although treatment options may be limited for more aggressive diseases. Although these strategies focus primarily on limiting the functional complications that are associated with complete surgical removal of the larynx, the most appropriate therapy for patients with advanced LSCC is a total laryngectomy (72). Conducting a surgical plan for treatment relies heavily on tumor T categories defined by the National Comprehensive Cancer Network (NCCN) Guidelines (72).

However, relapse occurrence resulting from these organ-preserving treatment approaches remains high, with recurrence at 5-years approximately 30-40%, despite overall improvement in radiotherapy and systemic techniques (15). Exploring the radiomic study of one of the most anatomically complex structures within the head and neck region can provide additional comprehensive information and characterization of intra-tumor heterogeneity.


Exploring the Application of Radiomics to Laryngeal Squamous Cell Carcinoma

Surgical options for patients diagnosed with LSCC heavily depend on preoperative T category classification, specifically between T3 and T4 categories. This is because the distinction between T3 and T4 categories for LSCC relies on the destruction degree of the extralaryngeal spread and/or outer cortex of thyroid cartilage (72). However, determining the T category pre-operatively has its clinical challenges due to variable clinical deductions between imaging modalities. Commonly used imaging techniques include CT and MRI, both techniques harboring individual benefits and limitations (72). Therefore, a T category prediction radiomics (TCPR) model that combines radiomic signature and T category distinction could be beneficial in establishing optimal surgical outcomes. A study conducted by Wang et al. was done to further validate the precise prediction of T categories using a radiomic nomogram and the TCPR model to assess appropriate treatment management for each individual case. This study included a total of 211 patients with LSCC who had total laryngectomies separated into two cohorts. The training cohort (n=150) and the validation cohort (n=61) yielded results that demonstrate great capabilities of the TCPR model in predicting the preoperative T categories per patient. The T category resulting from the study has an AUC of 0.775 (95% CI: 0.667–0.883). The radiomic signature resulted in a higher AUC, with AUC 0.862 (95% CI: 0.772–0.952). Finally, the nomogram incorporating the radiomic signature as well as the T category, the TCPR model, resulted in an AUC of 0.892 (95% CI: 0.811–0.974). These results show that the predictive performance of the T category improves with the application of the TCPR model (72).

Moreover, in a study conducted by Chen et al., radiomic analysis of laryngectomy CT imaging of 136 patients with LSCC was performed to assess the prognostic value of radiomics derived from CT. All patients were divided into the training cohort (n = 96) and the validation cohort (n = 40). A method was designed to establish a radiomics signature from the CT texture features and a radiomics nomogram to predict overall survival (OS) (73). The validation of the nomogram was done by a calibration curve, C-index, and decision curve. The results revealed the radiomics signature to have C-indices of 0.782 (95%CI: 0.656–0.909) and 0.752 (95%CI, 0.614–0.891). The radiomics nomogram had outdone the cancer staging capability with a C-index of 0.817 vs. 0.682; P = 0.009 in the training cohort and a C-index of 0.913 vs. 0.699; P = 0.019 in the validation cohort (73). The radiomics nomogram has had a significant difference in its discrimination capability when compared to other cancer staging techniques. The calibration and decision curves have been shown to have an accurate prediction for OS as well. This study has successfully utilized radiomics in a way that predicts OS for LSCC, is critical in constructing a personalized treatment plan for each individual patient (73).

In another study conducted by Ulrich et al., radiomic feature analysis from various 18F-fluorothymidine positron emission tomography (FLT-PET) was done to evaluate the prediction of treatment response in patients with HNC. Thirty patients in the late stages of OPC and LSCC who underwent chemoradiation therapy and FLT-PET imaging before surgery were included in the study. 377 radiomic features of FLT uptake were extracted, 9 of which were indicated as significant (28). Within the 30 HNC cases, the study concluded that cases presenting smaller, homogeneous lesions at baseline resulted in a better prognosis. Furthermore, features extracted from the entire lesions had a higher C-index than primary tumor features for the majority of the 9 significant features. Overall, this study has shown that for future studies integrating FLT-PET in predicting prognostic outcome, radiomic features incorporating lesion shape, size, and texture features should be considered to ensure an improved understanding of the disease (28).

Additionally, the increasing application of radiomics to LSCC has demonstrated efficacy in predicting inferior local control and laryngectomy free survival (LFS). A study done by Agarwal et al. explores if pre-treatment CT imaging features of the LSCC can predict long-term local control and LFS. This study analyzed 60 imaging texture features of patients undergoing chemoradiation (CTRT), which were further evaluated with a texture analysis software (74). The data consisted of entropy, kurtosis, skewness, standard deviation, mean intensity, and so on. After a median follow-up of about 24 months, it was found that 39 patients were locally controlled and 10 had been treated with laryngectomy (74). Medium filtered-texture feature that had poor LFS were entropy ≥4.54, (p = 0.006), kurtosis ≥4.18; p = 0.019, skewness ≤−0.59, p = 0.001, and standard deviation ≥43.18; p = 0.009). The inferior local control was associated with medium filtered texture features with entropy ≥4.54; p 0.01 and skewness ≤ – 0.12; p = 0.02. The analysis of the study has shown medium texture entropy to be a predictor for local control and LFS (p = 0.001 & p < 0.001). This advancement is undoubtedly efficient in developing prognostic factors for LSCC and predicting treatment response (74).




Salivary Glands

Salivary gland cancer (SGC) is rare, compromising less than 1% of all cancers in the United States. This type of cancer is prevalent in the older population, mostly affecting individuals between the ages of 50 and 60 (75). The 5-year survival rate of SGC is approximately 7% (76). Residing within the facial region, three major glands are used to classify different types of areas of SGC – the parotid, sublingual, and submandibular glands. Generally, about 80%, 11%, and less than 1% of SGC cases are found within the parotid gland, submandibular gland, and sublingual gland, respectively. Regarding the frequency of malignancy, 20%, 45%, and up to 81% of parotid tumors, submandibular gland tumors, 81% of sublingual gland tumors are malignant, respectively (77). Although there are effective treatments for SGC, successful treatment for sublingual gland cancer is unknown due to lack of clinical trials and the rarity of diagnosis (78). Standard of care treatment typically involves regional surgical resection of the parotid gland, otherwise known as a superficial parotidectomy (77). Although more difficult to treat, cases of malignancy typically require a total parotidectomy. However, this procedure is considered high risk as it involves contact with critical facial nerves that may result in facial paralysis, in more severe cases (77).



Parotid Gland

Parotid tumors are the most common type of SGC, with the parotid gland accounting for approximately 25% of human saliva. It is the largest salivary gland and resides within the parotid space amongst the external carotid artery, retromandibular vein, and the intraparotid lymph nodes. In some cases, an accessory parotid gland is present on the surface of the masseter muscle (77). The majority of parotid tumors are discovered as benign, though some lesions can be malignant (79). The different cancer subtypes of SGC that can occur in the parotid gland include pleomorphic adenoma, Warthin’s Tumor (War-T), parotid carcinoma (PCa), and Kimura’s Disease (KD) (80). The most common of the subtypes is pleomorphic adenoma. Pleomorphic adenoma composes of epithelial cells along with myoepithelial cells, which are commonly referred to as benign mixed tumors (BMT) (81). Factors that may cause carcinogenesis of pleomorphic adenoma include irradiation, dehydration, and tobacco use (81).


Exploring the Application of Radiomics to Parotid Tumors

Regarding parotid tumors, one study implored radiomics to improve diagnostic efficacy and, therefore, treatment options. To improve differentiation of a benign lymphoepithelial lesion (BLEL) and a malignant mucosa-associated lymphoid tissue lymphoma (MALToma) in the parotid gland, Y.-M. Zheng et al. developed a CT-based radiomics nomogram that integrated the radiomics signature alongside clinical data such as demographics (82). This integrated model was trained (n=70) and validated (n=31) on a total of 101 patients with BLEL or MALToma (82). In developing this model, 851 radiomics features extracted from CT images were narrowed down to 7 features by removing features with poor inter- and intra-observer agreement between radiologists, including features that showed significant differences between BLEL and MALToma (p < 0.000 to 0.050) and applying LASSO regression (82). After performing a multiple logistic regression analysis, statistically significant clinical factors of age (p = 0.0036) and maximum diameter (p = 0.019) were integrated with the radiomics signature resulting from the 7 radiomic features to produce a CT-based radiomics nomogram that showed a statistically significant difference between BLEL and MALToma (82).




Submandibular Gland

The submandibular gland is the second largest salivary gland. This gland accounts for 70% of human saliva and is located underneath the jawbone (79). Despite the rarity of tumors in the submandibular gland compared to the parotid gland, the probability of malignancy in the submandibular gland is approximately 43% and results in a poorer prognosis (83). Due to rarity and high rates of malignancy, there is a lack of knowledge pertaining to treating submandibular gland tumors (83). There are no definitive treatments for submandibular tumors, but there are numerous ways that have been proven to be successful – all involving high-risk surgery. A common procedure that is performed is submandibular sialoadenectomy, which is to surgically remove the submandibular gland in its entirety (84). The efficacy of radiotherapy in targeting these mass neoplasms is not well known with this type of cancer and is still being evaluated. Chemotherapy in general is not shown to be successful in treating submandibular gland tumors but is sometimes used for treatment if the tumor progressively spreads within the gland (83).


Exploring the Application of Radiomics to Submandibular Tumors

In general, there remains uncertainty due to a lack of knowledge for treatment of these diseases, demonstrating the necessity of exploratory measures. Radiomic application to diseases such as submandibular gland cancer illuminates characteristics that can be extracted into operational data. This data can then be utilized to improve detection and lead the course of treatment when managing this disease.




Sublingual Gland

Sublingual salivary gland tumors are the rarest tumors found in SGC. The sublingual gland is the smallest of the three major glands, residing just below the floor of the mouth and is positioned under the tongue, producing 5% of human saliva (79). Sublingual salivary gland tumors typically affect individuals between 50 to 60 years old and are not specific to gender (85). Sublingual gland tumors are typically malignant, boasting an 81% probability of malignancy associated with this disease type. Adenoid cystic carcinoma and mucoepidermoid carcinoma are the most common neoplasms found in the sublingual gland. Prognosis for adenocarcinoma of the sublingual gland relies on the histology of the specific tumor. This tumor is commonly misinterpreted as minor salivary gland tumors or other malignant lesions within the mouth due to its compact mass (85). Patients normally present no symptoms, making the tumor difficult to identify and accurately diagnose. When evaluating the tumor, it is important to distinguish if it lies in the sublingual gland or any of the minor salivary glands. This cannot be done solely based on location on anatomy, but from a collection of imaging, surgical, and clinical data to ensure accurate diagnosis (85).


Exploring the Application of Radiomics to Sublingual Gland Tumors

Due to the rare nature of sublingual glands, specific suggestions for treatment have not been developed, the lack of radiomic studies. However, proper diagnosing of malignant sublingual glands from other types of malignancies has been a challenge (85). Although advances in diagnostic imaging technology have helped with more effective identification, malignant sublingual glands vary in degrees of malignancy and lead to difficulties in not only diagnosis but also management and treatment (85). Radiomics has the potential to improve the initial evaluation of malignant gland tumors since there is a recurrence rate of 50% for these tumors (85).




Radiomic Application to Advanced Head and Neck Cancer

The management of metastatic and locally advanced head and neck cancer has changed dramatically in the last several years. Keynote 048 was a landmark trial that resulted in FDA approval for the use of immunotherapy either alone or in combination with platinum-based chemotherapy as a first line treatment (78). Specifically, this trial evaluated the efficacy of pembrolizumab, an immune checkpoint inhibitor that allows cytotoxic T cells to recognize programmed death ligand 1 (PDL-1) overexpressed by tumor cells, resulting in their destruction (78). In general, PDL-1 expression by the tumor is evaluated by immunohistochemistry and serves as both a prognostic indicator and as a variable in the decision-making process when selecting an appropriate immunotherapy regiment. The application of radiomics has further potential of evaluating the predictive power of PDL-1 expression, and overall patient outcomes.

While the radiomics of PDL-1 expression has been studied in other tumors such as non-small cell lung cancer, data on radiomic PDL-1 expression in head and neck cancer is lacking (86). One pilot study by Chen et al. was able to predict PDL-1 expression through FDG PET (87). This was accomplished by dichotomizing other biomarkers such as HPV status (p16 positivity) and Ki-67 expression. Textural features were also used to predict PDL-1 expression. For example, gray-level nonuniformity for run (GLNUr), run percentage (RP), and short-zone low gray-level emphasis (SZLGE) were inversely proportional with PDL-1 expression. While it is promising to see evidence of the predictive power of PDL-1 expression afforded by radiomics, this study is limited by its small cohort size. Further studies are needed to reproduce results and optimize the parameters relevant to head and neck cancer.




Thyroid Cancers

Defined as a malignancy of the thyroid gland by the International Classification of Diseases, Tenth Revision (ICD-10), thyroid cancer accounts for 3.8% of all cancers in the United States and has a five-year survival of 98.3 (88). Thyroid cancers include 3 main types: differentiated thyroid cancer (DTC), anaplastic thyroid cancer (ATC), and medullary thyroid cancers (MTC) (89). Included in DTC, which accounts for over 90% of all thyroid cancers, are papillary thyroid cancer (PTC), follicular thyroid cancer, Hurthle cell, and poorly differentiated thyroid cancer (PDTC) (89). ATC accounts for less than 2% of call thyroid cancers, and MTC accounts for about 1%-2% of all thyroid cancers in the United States. Both DTC and MTC generally have good prognoses, with a 10-year survival rate of 80–95% for PTC, 70–95% for follicular thyroid cancer, and 96% for MTC (90, 91). However, ATC does not share such numbers, as it has a 5-year survival rate of 0-10%. Due to its rare and highly aggressive nature, ATC requires a multidisciplinary team approach with different treatment options of surgery, chemotherapy, or tracheotomy (89). Surgical resection is the standard of care treatment option for DTC and MTC (89).


Radiomic Application to Thyroid Cancers

There is a need for establishing a non-invasive assessment technique that allows for the mapping of thyroid tumors in their entirety. It is important to expand the knowledge of radiomics and explore its implication to various disease types to improve clinical diagnosis and patient’s quality of life. According to a study performed by Liang et. al., application of radiomics showed good performance and potentially outperformed ACR TI-RADS (American College of Radiology, Thyroid Imaging, Reporting, and Data System) scoring when predicting the malignancy of thyroid nodules (92). The objective of this study was to produce a radiomic score utilizing US imaging to predict the probability of malignancy in thyroid nodules when compared to the ACR TI-RADS criteria. To do so, pathologically proven thyroid nodules were enrolled to produce a training cohort (one hospital, n=137) and a validation cohort (separate hospital, n=95). The radiomic score was developed utilizing the training cohort. US images were reviewed by two junior and one senior radiologist and scored the nodules based on the 2017 ACR TI-RADS scoring criteria (92). Results from this study indicated that the radiomic score had good discrimination, with an AUC of 0.921 in the training cohort and 0.931 in the validation cohort. This result suggests that the radiomic score was significantly more accurate than the ACR scores when scoring suspicious thyroid nodules (Table 2). As a result, a decision curve analysis showed that the radiomics score model potentially added more benefits than using the ACR TI-RADS scoring criteria (92).


Table 2 | Summary of radiomic applications in thyroid cancer.





Papillary Thyroid Cancer

Papillary thyroid cancer (PTC) is the most diagnosed thyroid cancer, accounting for approximately 80% of well-differentiated thyroid cancers. Although PTC typically has favorable outcomes and a mortality rate of 1.2% at 20 years, patients with recurrent disease have poorer outcomes. Approximately 10% to 15% of PTC cases recur, resulting in 35% of these patients ultimately dying from this cancer. This is because recurrent PTC patients present aggressive features such as extrathyroidal extension (ETE), aggressive pathological cell subtypes, the extent lymph node involvement, resistance to therapeutic treatments, and distant metastasis (93). To assess these aggressive features, clinicians use a variety of techniques such as ultrasound and ultrasound-guided fine-needle aspiration to develop a diagnosis. An additional imaging modality that is often utilized is MRI. This allows for superior contrast of the soft tissues when examining the thyroid region, affording assessment of aggressive features such as ETE and neck nodal metastasis (93, 94). Although these imaging modalities are standard-of-care practices, both harbor limitations in accuracy and therefore inhibit optimal clinical assessment of the disease.


Exploring the Application of Radiomics to Papillary Thyroid Cancer

In a retrospective study conducted by Park et. al., the association between a radiomic signature of conventional ultrasound (US) images and disease-free survival in PTC was investigated. The history of this disease type shows that PTC is considered a “good cancer” with regards to its treatability and relatively favorable survival rate (25). However, there is a small amount of PTC cases that show clinically aggressive behavior that results in 9% to 13% of patients experiencing recurrence and 1% to 5% of patients ultimately dying from thyroid cancer. Considering this information, patients diagnosed with aggressive PTC would greatly benefit from radiomic application with a preoperative risk stratification tool that assists in assessing treatment plans and follow-up procedures (25).




Follicular Thyroid Cancer

Follicular thyroid cancer (FTC) is known as the second most common differentiated thyroid cancer, accounting for 10% to 15% of all cases. When considering age and gender, this disease subtype typically affects women 50 to 60 years old. FTC presents more aggressively in comparison to PTC, as this disease typically invades blood vessels and is capable of metastasizing via hematogenous dissemination. Knowing this information, FTC is associated with a poorer prognosis in comparison to PTC, as FTC patients often present with more advanced staging of disease due to vascular invasion (95). Long-term survival rates in patients diagnosed with metastatic FTC range between 31% to 43%, taking into consideration the patient’s age at the time of diagnosis, tumor size, capsular invasion, gender, and evidence of metastases (96). FTC is typically classified into two categories: minimally invasive or widely invasive.


Exploring the Application of Radiomics to Follicular Thyroid Cancer

In a study conducted by Kwon et. al, radiomics was utilized to evaluate distant metastasis of FTC on gray-scale US images. This retrospective study included 35 cases of FTC with distant metastases and 134 cases of FTC without distant metastasis (97). A total of 60 radiomic features were extracted, deriving from the first order, shape, gray-level co-occurrence matrix, and gray-level size zone matrix features utilizing US imaging techniques. Results from this study indicated that the support vector machine (SVM) classifier had an AUC of 0.90 on average on the test folds (97). Radiomic signature (p<0.01) and widely invasive histologies (p = 0.003) proved to be significant when associated with distant metastasis on multivariate analysis (97). From multivariate analysis, the SVM classifier indicated an AUC of 0.93. As a result, this study indicated that utilizing radiomic signatures from thyroid US can be an independent biomarker in order to non-invasively predict the probability of distant metastasis of FTC (97). However, this study does harbor limitations. It primarily lacks external validation, as the study was performed at a single institution. Additionally, FTC with distant metastasis is considered rare, naturally limiting the study. As a result, it is necessary to further validate radiomic application amongst different variables in FTC in order to successfully translate radiomics to FTC diagnosis.




Medullary Thyroid Cancer

Medullary thyroid carcinoma (MTC) derives from the calcitonin-secreting parafollicular C cells of the thyroid, accounting for up to 1% to 3% of all malignant thyroid cancer cases (98–100). Two forms of MTC currently exist: sporadic and hereditary. The hereditary form of MTC is expressed in an autosomal dominant fashion caused by a mutation of the receptor tyrosine kinase (RET) proto-oncogene (99). This mutation causes hereditary MTC to be associated with diseases such as multiple endocrine neoplasia 2 (MEN 2) syndrome (98, 99). This subtype of hereditary MTC can be further characterized as MEN2A and MEN2B. MEN2A presents in approximately 80% of inherited MTC cases, showing symptoms such as multifocal and bilateral MTC, pheochromocytoma, and primary hyperthyroidism (99). MEN2B presents in approximately 5% of inherited MTC cases and is associated with pheochromocytoma, multiple mucosal neuroma, and Marfan syndrome (98, 100). An additional subtype of MTC is known as familial MTC (FMTC) and is diagnosed in patients that have a family history of MTC which have at least four family members diagnosed with MTC with no history of pheochromocytoma or primary hyperthyroidism (98, 99). MTC often presents as a poor prognosis with early lymph node metastasis, aggressive invasiveness of key surrounding organs, and failure to respond to radiation therapy and/or chemotherapy. As a result, early detection and preventative surgery is often the standard-of-care treatment plan regarding MTC (98).


Exploring the Application of Radiomics to Medullary Thyroid Cancer

Regarding medullary thyroid cancers, there is great potential for radiomics to be utilized here. One study shows promise in improving prognosis by exploring radiomic features involved with PET images of advanced medullary thyroid cancer (101). Lapa et al. assessed tumor heterogeneity by investigating the association between textural parameters on somatostatin receptor PET (SSTR-PET) and treatment response to peptide receptor radionuclide therapy (PRRT) on 4 medullary thyroid cancer patients and 8 radioiodine-refractory differentiated thyroid cancer patients (101). They found that several textural parameters showed a significant capability to assess PFS, with “grey level non uniformity” ranking with the highest AUC (0.93) in ROC curve analysis and “contrast” with the ranking second highest AUC (0.89) (101). Further assessment of other radiomics features might assist in considering PRRT as a treatment option for patients.




Anaplastic Thyroid Cancer

Anaplastic thyroid cancer (ATC) is the rarest and most aggressive of the thyroid cancer subtypes, accounting for 1% to 2% of all thyroid malignancies. Although incidence is rare, diagnosis of this subtype results in over 50% of deaths from thyroid cancer with a median survival of only six months (102). Amongst all malignancies, ATC is a highly aggressive disease with one of the worst prognoses due to its resistance to standard therapies and management difficulties (102). ATC has been known to arise in two forms: de novo or by dedifferentiation from a well-differentiated thyroid cancer such as PTC (103). Standard-of-care treatment is typically surgical resection of the cancerous lesion, followed by adjuvant radiotherapy and/or chemotherapy (104).


Exploring the Application of Radiomics Anaplastic Thyroid Cancer

Due to anaplastic thyroid cancer’s aggressive nature and poor prognosis, there is a major lack of radiomic studies on it. However, utilizing radiomics can help predict resistance to an FDA approved therapy for ATC – trametinib (105). Trametinib is a highly potent, efficacious, yet toxic, treatment option for ATC, so modifying the dose is desirable (105). In a study conducted by Pratt et. al., a radiolabeled version of trametinib, 124I-trametinib was developed to potentially assess therapeutic index and personalize individual doses for patients (105).




Parathyroid Cancer

Parathyroid carcinoma (PC) is a less common cancer, diagnosed in <1% of cases within primary hyperparathyroidism (PHPT). Although this disease is generally seen as sporadic, it may appear in familial PHPT, specifically within hyperparathyroidism-jaw tumor syndrome (HPT-JT). Extremely rare cases of PC may arise from multiple endocrine neoplasia type I (MEN1) (106). It is difficult to diagnose PC preoperatively because this disease type has a lack of specific biochemical and clinical features (106). As a result, this disease is typically diagnosed postoperatively when the disease is being examined histologically and/or when the disease recurs (106).


Exploring the Application of Radiomics to Parathyroid Cancer

Although there are no studies on the application of radiomics to parathyroid cancer, there is a need for clinicians to be able to differentiate between parathyroid adenoma (benign) and parathyroid carcinoma because of the lack of specific biochemical and clinical features (106). CT and MRI can both help accurately localize the primary tumor, so the use of radiomics shows great promise in the parathyroid glands in PC (106).





Discussion/Conclusion

Machine learning and deep learning models have been widely used for medical imaging research (6, 107). Although having impressive predictive performance, these models are often difficult to interpret. Additionally, there may be hidden bias in the model leading to potential ethical issues (108, 109). Interpretability of predictive models has become one of the key factors driving their adoption in clinical decision support environment. To ease the tension between the model prediction accuracy and interpretability, various approaches have been proposed to generate intuitive interpretations of predictive models (110–113).

Radiomic studies are often exploratory in nature. They are normally single institutional with limited cohort size. The associated imaging data are typically acquired from just one or a few scanners from a single site. To deploy radiomic predictive models at scale and possibly across institutions, we need to address issues of potential data variability caused by scanners from different vendors (114), and whether the models are still predictive when they are applied to a different cohort from an external site with similar disease types In summary, being able to standardize image data acquisition and quality control using phantoms, various calibration techniques, having large cohorts from multiple locations for model training, and validation will provide more confidence for deployment in clinical settings.

The application of radiomics to HNC and thyroid cancers is an advancement that allows for a deeper interpretation of a patient’s digital medical imaging data beyond visual assessment. Utilizing this practice, especially in cancer domains that lack radiomic studies such as anaplastic thyroid cancer and parathyroid cancers, will allow for more personalized and patient-specific cancer treatment. By gathering additional statistical data and conducting subsequent analysis, clinical decision making is improved and therefore affects patient outcomes Court, Fave (115).
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Abnormal metabolism serves a critical role in glioblastoma (GBM). Biochanin A (BCA), a flavonoid phenolic compound found in edible and herbal plants, has antioxidative and antitumor activities. However, it remains unclear whether BCA has an effect on energy metabolism. The aim of the present study was to evaluate the anticancer effects and molecular mechanism of the effect of BCA on energy metabolism. We observed that BCA inhibited the growth of U251 cells by the mitochondria-mediated intrinsic apoptotic pathway. BCA treatment reduced metabolic function, repressed mitochondrial membrane potential, and increased the production of reactive oxygen species (ROS) in GBM. In addition, we found that BCA decreased aerobic glycolysis by inactivation of the AKT/mTOR pathway. Taken together, the results demonstrate that treatment with BCA inhibited the proliferation of GBM by regulating metabolic reprogramming.




Keywords: biochanin A, glioblastoma, energy metabolism, reactive oxygen species, proliferation



Introduction

Glioblastoma multiforme (GBM) is the most common type of malignant primary brain tumor, with a median survival of only 14.6 months and 5-year survival of less than 5.5% (1). The standard treatment for GBM patients includes maximal safe neurosurgical resection and temozolomide (TMZ) chemotherapy with concomitant radiotherapy, followed by cycles of adjuvant TMZ (2). New non-toxic treatment strategies have become a research hotspot because the current treatment strategies are usually accompanied by serious side effects. Studies have shown that some small molecule drugs have therapeutic promise for a variety of cancers, including GBM through perturbation of cell death programs, lethal autophagy, metabolic reprogramming (3), and improvement of chemotherapy sensitivity (4). For example, plant-derived compounds ARTA and BETA displayed a significant cytotoxic impact on glioma cell migration (5); The 5,4’-dihydroxy-6,7,8,3’-tetramethoxyflavone compound (AB2) inhibits the growth of lung cancer cells by attenuation of mitochondrial membrane potential and activation of caspase-3 activity (4). However, the molecular mechanism of the occurrence and development of GBM is still poorly understood, and there are great advantages to address malignant disease phenotypes through the use of small molecule drugs.

Reactive oxygen species (ROS), a type of cellular metabolite, have important roles in biochemical functions (6). Excessive ROS promote DNA damage and trigger mitochondrial apoptosis (7). Due to the rapid growth of malignant tumors, there is not enough nutrition to satisfy tumor cells. Mitochondria produce ATP as energy required for conducting physiological processes, which can improve energy for tumor cells by dynamically regulating the fusion and division of mitochondrial morphology (8). Mitochondrial division and fusion are regulated by mitochondrial fusion proteins (MfN1, Mfn2, and OPA1) and mitochondrial division proteins (DRP1 and FIS1) (9). Glycolysis is a common feature of tumor cell metabolism (10). Even if there is an adequate oxygen supply, the malignant tumor also needs to get more energy via the glycolysis pathway, which is a phenomenon known as the “Warburg effect” (11). Meanwhile, mitochondria are involved in the regulation of metabolism and cell death and play an important role in tumor progression (12). Metabolic reprogramming of cancer cells plays an important role in maintaining the growth and proliferation of tumor cells (13–15). Recently, the metabolism of cancer cells has been considered a therapeutic hotspot for dietary and pharmacological interventions. The development of anti-tumor drugs with glycolysis inhibition and mitochondrial injury has important clinical significance for the prevention and treatment of glioma.

Biochanin A (BCA) is a methoxy isoflavone, which derives from the germinated germ part of chickpea, the heartwood of twining rosewood, single-leaf red bean, whole red clover, underground clover seedlings, soybean, alfalfa, peanut, and other legumes (16). BCA possesses a variety of biological activities, including antifibrotic (17), antioxidation (18), anti-inflammation (19), neuroprotection (20), the prevention of articular cartilage degeneration (21), and anticancer effects.

Increasing evidence suggested that natural products played a promising role in the development of novel chemotherapeutics for the treatment of cancers (22, 23). The previous study has reported the anti-proliferative effect of BCA by regulating various molecular mechanisms, such as the induction of apoptosis, cell cycle arrest, and suppression of ERK/AKT signaling (24, 25). BCA selectively sensitized cancer cells to apoptosis through inhibited cyclin D1 and arrested the cell cycle in G0/G1 phase (24). Moreover, BCA also regulated migration and invasion by suppressing the VEGF/VEGFR2 signaling pathway (26).

In this study, we evaluated the anticancer effects and molecular mechanisms of BCA in GBM. Considering the important role of energy metabolism in GBM cells, we further explored the mitochondrial oxidative phosphorylation and glycolysis in GBM cells. Additionally, we established the effect of BCA on intracellular ROS and mitochondrial division in GBM cells. Furthermore, we investigated the BCA anti-GBM activity in subcutaneous neoplasia in nude mice.



Materials and Methods


Reagents

BCA was purchased from Selleck Chemicals (Shanghai, China). Cell Counting Kit-8 (CCK-8) was obtained from Dojindo Molecular Technologies (Kumamoto, Japan). PE Annexin V apoptosis detection commercial kit was purchased from BD biosciences (Shanghai, China). Reactive Oxygen Species (ROS) Assay Kit was purchased from Beyotime Biotechnology (Shanghai, China). Cell-Light EdU Apollo567 In Vitro Kit was purchased from Guangzhou Ruibo Biotechnology Co. LTD (Guangzhou, China). Bax, Bcl-2, ND1, SHDB, UQCRC2, MTCO2, ATP5A, MFN2, GLUT1, HK2, PMK2, LDH, HIF-1a, and Drp1 antibodies were obtained from proteintech (Wuhan, China). AKT, p-AKT, mTOR, and p-mTOR antibodies were obtained from Cell Signaling Technology. LC3B, Beclin-1, P62, and GAPDH were obtained from Abcam (Cambridge, UK).



Cell Culture

U251 cells were cultured in DMEM complete medium with high glucose and placed in an incubator at 37°C with 5% CO2. When the cell density is about 70–80%, a drug intervention is carried out.



Cell Proliferation

U251 cells were inoculated in 96-well plates and treated with BCA for 48h and 72 h. Each well is added 10 μl of CCK8, incubated for 2 hours at 37°C incubator, and then detected absorbance with a microplate reader. U251 cells were seeded in 96-well plates, each well is added 100 μl of 50 uM Edu solution, incubated for 2 hours at 37°C incubator, and then 4% Paraformaldehyde fixation. After washing with PBS three times, each well is added to a 100 μl 1X Hoechst33342 solution, incubated at 37°C in the dark for 30 min, and is then observed and analyzed under a fluorescence microscope.



Apoptosis Analysis

The percentage of apoptotic cells was tested by Annexin V-PE/FITC (BD, Biosciences). U251 cells were treated with 0, 50, and 100 μmol/L BCA for 48 h. Then, U251 cells (1 × 106) were collected, after which 5 µl of PE Annexin V and 5 µl of 7-AAD were added. The cells were gently vortexed at room temperature and incubated for 15 minutes in the dark and the suspension was analyzed by flow cytometry (BD FACSCanto™ low cytometry, USA).



Wound Healing Assay

BCA-treated U251 cells were inoculated into a 6-well plate. When the cells reached a confluence of 70–80%, cells were gently and slowly scratched with a new 200 ml pipette tip. The relative distance of the cells migrating was monitored and measured using a bright-field microscope at 0, 12, and 24 h. The experiments were repeated three times.



Transwell Assay

Transwell chambers membrane was pre-coated with diluted Matrigel (1:8 BD biosciences). About 1×106 cells in 100 μl serum-free medium were added into the top chambers, and 600μl of DMEM with 10% FBS was added to the lower transwell compartment. The cells on the chambers were fixed with 4% paraformaldehyde and stained with 0.1% crystal violet. Photos of the cells were taken using a bright-field microscope. Cell invasion assay was performed as above except used the cell culture inserts coated with Matrigel (BD Biosciences).



Western Blot

U251 was harvested after being treated with drugs. After centrifuged, total protein was extracted with RIPA buffer, and concentration was examined via BCA protein analysis kit (Solarbio, PC0020). Then the samples were separated by SDS-PAGE, and transferred onto polyvinylidene fluoride (PVDF) membranes. The membranes were incubated with primary antibodies overnight at 4°C, and incubated with appropriate peroxidase-conjugated secondary antibodies for 1.5 h at room temperature, and then visualized by enhanced chemiluminescence with imageQuant LAS 500 system.



Measurement of Oxygen Consumption Rate (OCR) and Extracellular Acidification Rate (ECAR)

For the oxygen consumption rate (OCR) measurement, U251 cells were seeded in the seahorse cell plate 20000/well and incubated overnight. Before an examination, the media were changed into 500 μl assay media (pH 7.4), which consisted of 10 mM glucose, 1 mM pyruvate, and 2 mM glutamine in XF Base Medium. Inhibitors of electron transport chain (ETC) complexes were added into different ports of the seahorse cartridge, including Oligomycin A (oligo, 1 μM), Carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone (FCCP, 1 μM), antimycin A (AA, 0.5 μM), rotenone (rot, 0.5 mM), then the OCR value was measured with the XF24 Seahorse Biosciences Extracellular Flux Analyzer (Seahorse Bioscience, 102238-100). Five replicates were repeated in each experimental group for analysis.



ROS Measurements

To evaluate intracellular ROS level, U251 cells were incubated using 10 μM DCFH-DA (Solarbio, CA1410) for 20 min at 37°C after BCA treatment, then washed with serum-free medium three times and imaged under Olympus fluorescence microscope (BX53). Meanwhile, the cell was digested with trypsin and resuspended. The ROS level was analyzed by flow cytometry (BD FACSCanto™ low cytometry, USA).



Mitochondrial Morphology

To observe mitochondrial morphology, the U251 cells were crawled and treated with BCA for 48 hours, stained with 10 nM MitoTracker at 37°C for 30min, fixed with 4% paraformaldehyde, and then observed and analyzed under a fluorescence microscope.



Transmission Electron Microscopy

U251 cells were treated with BCA for 48 hours. Cells collected by trypsinization were fixed with 2.5% glutaraldehyde, followed by 1%OsO4. After dehydration, thin sections were stained with uranyl acetate and observed under a transmission electron microscope (JEM-1230, JEOL, Japan).



Animals Experiments

Male BALB/c nude mice aged 4 weeks were purchased from Beijing Charles River and bred under SPF conditions. A total of 1×106 U251 cells were dissolved in 0.1 mL medium to make cell suspension, and each nude mouse was injected into the right middle and posterior axilla. BALA/c nude mice were randomly divided into two groups (five mice per group), the control group (PBS 100 µL) and the BCA group (BCA 50mg/kg 100 µL). When the size of the subcutaneous tumor is 5×5 mm, the drug is intraperitoneally administered once a day for 2 weeks. The tumors were weighed, and volumes were counted using the equation V= (ab2)/2 (a: the longest axis (mm), b: the shortest axis (mm)).



Histology and Immunohistochemistry Analysis

At 30 days after tumor inoculation, all animals were sacrificed, and their subcutaneous tumors were excised, fixed in 4% paraformaldehyde, and embedded in paraffin. Sections that were 5 μm thick were stained with hematoxylin & eosin (HE) and immunohistochemical staining.



Statistical Analysis

The data were analyzed using SPSS22.0 software. All the figures were performed using GraphPad Prism software. The Student’s t-test and One-way Analyses of Variance (ANOVA) with a Tukey’s post-hoc test were used to assess group differences. Error bars represent the standard error of the mean (SEM). A P value < 0.05 was considered to be statistically significant.




Results


BCA Inhibited GBM Cells Growth, Migration, and Invasion

To evaluate the cytotoxic effect of BCA, U251 cells were seed in 96-well plates and treated with different concentrations of BCA for 24, 48, and 72 h. Cell viability decreased in a concentration-dependent manner after treatment with BCA by CCK8 assay (Figure 1A). In addition, the Edu assay was performed to determine the effect of BCA on glioma cell proliferation. BCA treatment significantly increased the percentage of Edu-positive cells compared with the control (Figure 1B). Taken together, these data indicated that BCA inhibited the growth of U251 in a concentration-dependent manner. Furthermore, we further explored whether BCA has an effect on cell invasion and migration in U251 cells. U251 were cultured and then co-incubated with different doses (0, 50, and 100 μM) of BCA for various time intervals (0, 12, and 24 h). Wound healing assay showed that after treatment of BCA for 12 and 24 h significantly decreased cell migration rates in U251 cells (Figures 1C, E). We also examined cell migration and invasion capacity using a transwell chambers system after the indicated cell lines were treated with different doses (0, 50, and 100 μM) of BCA (Figures 1D, F, G). Migration and invasion rates of U251 significantly decreased after BCA treatment, which is consistent with the cell wound healing assay. These results showed that BCA inhibits U251 migration and invasion in vitro.




Figure 1 | BCA inhibited the proliferation, migration, and invasion of U251 cells. (A) U251 cells were treated with various concentrations of BCA for 24, 48, and 72 h. Cell proliferation was measured by CCK8 assay. (B) Cellular proliferation was measured via an Edu assay. (C) Wound healing assay shows the migrated cells at 0, 12, and 24 h after treatment with BCA (0, 50, and 100 μM). (D) After treatment, the transwell assay showed that the migration and invasion cells at 24 h. (E) Quantification of the wound healing rate in A after treatment with BCA. (F, G) Quantification of the migration and invasion cells. (∗) p < 0.05 and (∗∗) p < 0.01 for Student’s t test.





BCA Increased ROS Generation and Decreased Mitochondrial Membrane Potential

As oxidative stress plays an important role in inducing apoptosis of tumor cells, we then verified whether the ROS levels were related to BCA treatment in U251. Compared with control cells, the ROS level increased significantly in BCA treatment groups (Figures 2A, B, D). In the mitochondrial oxidative respiratory chain, the complex can pump hydrogen ions from the mitochondrial matrix into the mitochondrial space, thus forming an electric potential difference between the mitochondrial membrane space and the mitochondrial matrix. The complex V can use the electric potential to help itself to synthesize ATP. Therefore, the mitochondrial potential difference indirectly reflects the mitochondrial ability to synthesize ATP. The green fluorescence increases significantly after treatment of BCA, which means the mitochondrial potential was inhibited (Figures 2C, E). Taken together, these data indicated that BCA treatment triggers mitochondrial dysfunction in U251.




Figure 2 | BCA induces apoptosis of U251 by increasing ROS levels and decreasing the mitochondrial membrane potential. (A) U251 was incubated with 0, 50 and 100 μM BCA for 48 h, The ROS level were observed under a fluorescence microscope after DCF-DA staining; (B) Quantification of relative fluorescence intensity in A; (C) U251 cells were incubated with 0, 50 and 100 μM BCA for 48 h, mitochondrial membrane potential was observed after JC-1 staining. (D) U251 cells were incubated with 0, 50 and 100 μM BCA for 48 h, then subjected to flow cytometric analysis of ROS levels after DCF-DA staining; (F) Quantification of the green and red fluorescence intensity rate in C. (F) The level of cell apoptosis was detected by flow cytometry. (G) The percentage of cell apoptosis ratio in A. (H) Expression levels of apoptotic related proteins (Bax, Bcl-2, cytochrome c, pro-caspase 3) at different concentrations of BCA. Data are expressed as mean ± SD. *P < 0.05, **P < 0.01, ***p < 0.001. versus control.





Mitochondrial Apoptosis Is Activated by BCA in Human U251

Some small molecule compounds play antitumor effects mainly by inducing cell apoptosis. To verify whether BCA inhibited proliferation in an apoptosis-related manner. Annexin V and PE double staining assay was used to identify the apoptosis of the U251 cells after BCA treatment 48 h. BCA application increased the percentages of apoptosis, compared to the control group (Figures 2F, G). To further detect molecular markers related to apoptosis, expression of apoptosis-related proteins was determined in U251 cells following BCA treatment. Application of BCA induces the expression of Bax and a decrease in the level of cytochrome c, pro-caspase 3, and Bcl-2 (Figure 2H). Thus, these findings show that cytotoxic effects of BCA on U251 cells were partly caused by activation of the mitochondria-mediated intrinsic apoptotic pathway.



BCA Increased Mitochondrial Fission and Decreased Mitochondrial Oxidative Phosphorylation

The morphology of mitochondria plays an important role in regulating cell metabolism. So, we examined whether BCA intervention affects mitochondrial morphology and function by using MitoTracker staining. The number of mitochondria is large and filamentous morphology with tight cristae in the control group (Figure 3E). However, after BCA treatment, the mitochondria became smaller, punctate, and significantly shortened in length. Meanwhile, the electron microscope results showed that the mitochondrial morphology became smaller and vacuolated after BCA treatment (Figure 3G). To gain insight into the mechanism by which BCA regulates mitochondrial dynamics, we examined the expression of mitochondrial dynamics-related proteins, including MFN1, MFN2, and Drp1. After treatment of BCA, the western blotting results show that mitochondrial fusion protein MFN1 and MFN2 expression significantly decrease and division protein Drp1 expression significantly increase (Figure 3F). Fragmented mitochondria cause the dysfunction of mitochondrial metabolism. Next, we assessed mitochondrial function in cells using a Seahorse Extracellular Flux XF24 Analyzer. We observed in the oxygen consumption rate curves, both the basal and maximal mitochondrial respiratory capacities decreased in the BCA treatment group compared with the control group (Figures 3A–C). ATP production was also reduced in the BCA treatment group. Furthermore, we found that BCA treatment reduced the expression of ND1, SDHB, and ATP5A (Figure 3D). Together, these results showed that BCA might promote intracellular ROS and mitochondrial division and restrain oxidative phosphorylation of mitochondria in U251 cells.




Figure 3 | BCA increases mitochondrial fission and decreases mitochondrial oxidative phosphorylation. (A) Mitochondrial stress test to detect mitochondrial energy metabolism and respiratory functions in BCA (0, 50, 100 uM) group; (B) Quantification of the mitochondrial maximal respiration in A; (C) Quantification of the mitochondrial ATP production in A; (D) Western blot analysis the relative proteins of Mitochondrial respiratory chain (ND1, SDHB, UQCRC2, MTCO2, ATP5A, and GAPDH). (E) Mitochondria morphology was observed by mito-Tracker staining; (F) Western blot analysis of the relative proteins of mitochondrial fusion division (MFN1, MFN2, and Drp1); (G) The morphology of mitochondria was observed by transmission electron microscope in control and BCA group. *P < 0.05, **P < 0.01 versus control.





BCA Decreased the Glycolytic Capacity of U251 Cells

The Warburg effect, characterized by abnormal metabolic phenomena that enhance glycolysis and reduces oxidative phosphorylation, induces significant differences between cancer cells and normal cells and affects tumor progression (27). Thus, after treatment of BCA, the capacity of glycolysis of U251 cells was examined using Seahorse XF24 extracellular flux analyzer. The capacity of glycolysis was significantly decreased in BCA treatment cells (Figures 4A–C). Some studies have shown that the AKT/mTOR/HIF-1α pathway played a vital role in glycolysis (14, 28, 29). A previous study has demonstrated that BCA can inhibit the activity of the PI3K/AKT signaling in U251cells (30). Our results also showed that the phosphorylation of both AKT and mTOR as well as the expression of HIF-1α were significantly decreased in U251 cells with BCA treatment. By testing relative protein glucose metabolism pathways, we found that BCA treatment reduced the expression of Glut-1, HK2, and LDHA (Figure 4D). Together, these results clearly indicated that BCA might decrease glycolysis inU251 cells by inhibiting the Akt/mTOR/HIF-1α signaling pathway.




Figure 4 | BCA decreases the Glycolytic Capacity of U251 cells. (A) Glycolytic stress test to detect glycolytic activities in BCA (0, 50, 100 uM) group; (B) Quantification of the glycolytic capacity in A; (C) Quantification of the glycolytic reserve in A; (D) Western blot analysis of relative proteins of Glycolytic (AKT, p-AKT, mTOR, p-mTOR, HIF-1a, GLUT1, PKM2, HK2, and LDHA). *P < 0.05, **P < 0.01 versus control.





BCA Can Suppress Tumor Growth in Nude Mice

The xenograft nude mouse model of U251 was established, which was used to evaluate the anti-tumor effect of BCA in vivo. We found that the tumor volume and quality of the BCA group were markedly inhibited by intraperitoneal injection of BCA (Figures 5A–C). Immunohistochemical (IHC) staining was performed to detect the expression of Ki67. The expression of Ki67 was significantly decreased in the BCA treatment group (Figures 5D, E). Meanwhile, H&E staining (Figure 5D) showed looser tumor tissue of mice with BCA treatment. Taken together, our results suggested that BCA inhibited tumor growth in vivo.




Figure 5 | BCA inhibits tumor growth in nude mice. (A) The tumor of control and BCA treatment group. (B) Tumor volumes of the control and BCA treatment group were measured and calculated every 3 days. (C) The tumor weight was measured in the control and BCA treatment groups. *P < 0.05, **P < 0.01 compared with control group. (D) H&E stained tumor xenograft tissues in control and BCA treatment and immunohistochemistry was used to detect the expression of Ki-67 in tumor xenograft tissues. (E). Quantification of Ki-67 positive rate in the different treatment groups. *p < 0.05 vs. control group.






Discussion

The Bcl-2 protein family contains two subclasses of proteins: one is: apoptosis-inhibiting proteins (such as Bcl-2, Bcl-Xl, and Bcl-Xy); the other is apoptosis-promoting proteins (such as Bax, Bix, and Bad, etc.). This present study demonstrated that BCA treatment increased the level of Bax and decreased the expression of Bcl-2, resulting in apoptosis induction. The activation bcl-2/bax ratio, cytochrome C release, and Cleaved-Caspase 3 is involved in the mitochondria-mediated intrinsic pathway in apoptosis (31). Flow cytometry experiments confirmed that the apoptosis rate of glioma cells increased markedly after BCA treatment. We further verified that the BCA inhibited the migration and invasion in U251cells by wound healing and transwell chamber assays.

The Warburg effect theory believes that even in the case of sufficient oxygen, tumor cells usually exhibit energy metabolism based on glycolysis (11). Metabolic changes caused by mitochondrial dysfunction, hypoxia, and carcinogenic signals make malignant tumor cells have better proliferation activity and production capacity in microenvironments such as hypoxia (27). In addition, the acidic tumor microenvironment associated with lactic acid accumulation due to increased glycolysis provides a tissue environment for the selection of cancer cells with high viability and malignant behavior (32). These changes in tumor biology and microenvironment pose great challenges for cancer treatment. The glucose uptake capacity of many tumor tissues is higher than that of neighboring normal tissues (33). Therefore, regulating tumor cell glycolysis and inhibiting the mitochondrial respiratory chain has become an important way to fight tumors. Blocking energy metabolism pathways may affect cell cycle activity, thus inhibiting cell proliferation, and promoting its apoptosis (34, 35). In order to further verify the relationship between energy metabolism and cell proliferation and apoptosis, the effect of BCA on energy metabolism of U251 cells was investigated by detecting glycolysis rate and mitochondrial pressure. The results showed that BCA could inhibit the glycolysis rate and the potential respiration capacity of mitochondria in U251 cells.

Previous research had reported that mitochondrial fusion enhanced oxidative metabolism, ATP production, and down-regulated ROS. The mitochondrial division increases glucose uptake and ROS level and weakens oxidative phosphorylation after exposure to chemotherapy and/or radiation therapy (36, 37). Besides, with the oxidative damage of cancer cells, an insufficient energy supply, intracellular calcium overload, and activation of apoptosis signals often lead to mitochondrial damage (38). Promotion of mitochondrial fission will be possible as a key method to prevent cancer progression. Consistent with previous research, our study found that the application of BCA triggered division, which also inhibited the survival rate of U251 cells in vitro.

We observed that mitochondrial ATP production and membrane potential decreased, ROS production increased, triggering mitochondrial apoptosis. Thereby, from a therapeutic perspective, BCA can active the mitochondrial division and is critical for anticancer drug development. AKT is a serine/threonine kinase that phosphorylates (activation or inactivation) downstream targets and plays an important role in cancer growth and metabolism (39). Some studies have shown that Akt activity is associated with the promotion of the Warburg effect. The PI3K/AKT/mTOR signaling pathway has been shown to be associated with the upregulation of HIF-1α (40). It can upregulate the transcription of glucose transporters and almost all glycolytic enzymes, such as hexokinase 2 (HK2), Pyruvate kinase isozyme type M2 (PKM2), and lactate deoxygenase (LDH) (41). The present study shows that BCA treatment obviously inhibits the expression of p-Akt and p-mTOR in glioma cells by Western blot detecting. Meanwhile, downstream molecules of the HIF-1a level of Glut-1, HK2, and LDHA were significantly decreased. These findings indicated that BCA-induced reduced Akt activity plays a vital role in inhibiting the levels of some glycolytic enzymes (Glut-1, HK2, and LDHA) and leads to reduced aerobic glycolysis in glioma cells.

In conclusion, we have demonstrated in this study the strong anti-tumor activity of BCA both in vitro and in vivo by increasing intracellular ROS and mitochondrial division and inhibiting aerobic glycolysis in glioma cells. In addition, BCA treatment significantly inhibits the Warburg effect in U251 human glioma cells by regulating HIF-1a expression through the inactivation of the AKT/mTOR pathway (Figure 6). Taken together, these findings suggest that BCA may provide significant benefit in the treatment of glioma by metabolic reprogramming.




Figure 6 | Schematic of the proposed mechanism of BCA inhibits glioblastoma proliferation by inducing metabolic reprogramming.
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Background

Cancer metastasis and recurrence after radiotherapy are the significant causes of poor prognosis in head-neck cancer (HNC). Clinically, it is commonly found that patients with either condition may accompany the outcome of the other. We hypothesized that HNC cells might exhibit a cross-phenotypic attribute between cell invasion and radioresistance. To discover effective biomarkers for the intervention of aggressive cancer at one time, the potential molecules that interplay between these two phenotypes were investigated.



Materials and Methods

Three isogenic HNC cell sublines with high invasion or radioresistance properties were established. Transcriptomic and bioinformatic methods were used to globally assess the phenotypic-specific genes, functional pathways, and co-regulatory hub molecules. The associations of gene expressions with patient survival were analyzed by Kaplan-Meier plotter, a web-based tool, using the HNSCC dataset (n=500). The molecular and cellular techniques, including RT-qPCR, flow cytometry, cell invasion assay, and clonogenic survival assay, were applied.



Results

The phenotypic crosstalk between cell invasion and radioresistance was validated, as shown by the existence of mutual properties in each HNC subline. A total of 695 genes was identified in associations with these two phenotypes, including 349 upregulated and 346 downregulated in HNC cells. The focal adhesion mechanism showed the most significant pathway to co-regulate these functions. In the analysis of 20 up-regulatory genes, a general portrait of correlative expression was found between these phenotypic cells (r=0.513, p=0.021), and nine molecules exhibited significant associations with poor prognosis in HNC patients (HR>1, p<0.050). Three hub genes were identified (ITGA6, TGFB1, and NDRG1) that represented a signature of interplayed molecules contributing to cell invasion, radioresistance and leading to poor prognosis. The ITGA6 was demonstrated as a prominent biomarker. The expression of ITGA6 correlated with the levels of several extracellular and apoptotic/anti-apoptotic molecules. Functionally, silencing ITGA6 suppressed cell migration, invasion, and attenuated radioresistance in HNC cells.



Conclusions

A panel of interplay molecules was identified that contribute to cell invasion and radioresistance, leading to poor prognosis. These panel molecules, such as ITGA6, may serve as predictive markers of radioresistance, prognostic markers of metastasis, and molecular therapeutic targets for refractory HNC.





Keywords: head-neck cancer, radioresistance, cell invasion, prognosis, signaling pathway, ITGA6 molecule



Introduction

Head and neck cancer (HNC), including the oral cavity and oropharynx squamous cell carcinomas, is one of the ten leading cancers worldwide (1–3). This cancer usually occurs in the middle age male, at the high peak of life responsibility; it has a tremendous impact on family and society. The head and neck area is rich with lymphatic tissue; therefore, the bulky invasive tumors or lymph node metastases are often found in HNC (4, 5). In this context, gene products supporting invasion may be novel targets for manipulating the cancer behavior with consequences on treatment outcome. Several experimental approaches have been used to identify invasion-related genes in HNC, including comparing two sets of samples with different invasion capabilities (6) or comparing cancer cell lines with normal keratinocytes (7). However, a significant disadvantage of these approaches lies in the heterogeneity between samples. To reduce heterogeneity and obtain specific data on the gene expressions related to cancer invasiveness, we previously established several isogenic cancer cell sublines with highly invasive features derived from HNC cell lines (8, 9). The cDNA microarrays were performed to compare the differential transcriptome profile between invasive sublines and the parental cells. Heretical clustering analysis revealed 461 genes associated with cancer invasion, including 210 up-regulated and 251 down-regulated genes in the invasion sublines.

Radiation therapy is an indispensable part of the treatment of HNC. The identification of radioresistant molecules for further applications should contribute to a great improvement in treatment outcomes. Previously, microarrays have been used to compare gene expression profiles between parental and radiation-treated cancer cell lines in few cancers (10, 11). However, these cells were examined after a few hours or days of irradiation. The results of these gene alterations thus may represent the radiation response or induction molecules. To obtain a more thorough profile of molecules that may represent the intrinsic factor of radioresistance in HNC, we previously established several isogenic radioresistant sublines derived from HNC cancer cell lines (12, 13). The cDNA microarray database was established by comparing the gene expression profiles between radioresistant sublines and the parental cells. The heretical clustering analysis revealed 255 genes associated with radioresistance, including 155 up-regulated and 100 down-regulated in the radioresistant cells.

Clinically, the worse prognosis of HNC patients was often resulted from cancer metastasis or therapeutic resistance. Interesting, highly invasive cancers with nodal metastasis often accompany poor radiotherapeutic response (14, 15). Similarly, recurrent HNC patients with radioresistant cancers often have a higher metastasis rate (16, 17). From these clinical insights, we hypothesized that HNC cells might exhibit a cross-phenotypic attribute between cell invasion and radioresistance. We, therefore, employed the invasion- and radioresistant sublines as study models to examine the potential cross-regulatory mechanism. We determined a molecular panel and core pathways that may participate in the interplay of these two phenotypes through integrative analysis of the transcriptomic datasets. We further assessed the prognostic significance of these cross-regulatory molecules in HNC patients and concluded a panel of molecules facilitating worse survival. The cellular and molecular examinations demonstrated a hub gene, ITGA6, that played prominent roles in cellular invasion and radioresistance, leading to refractory cancer. Our study provides prognostic information, which may be further applied as molecular biomarkers and therapeutic targets for the treatment of refractory HNC.



Materials and Methods


Cell Lines and the Isogenic Sublines With Highly Invasive or Radioresistant Phenotypes

The HNC cell lines, OECM1, Detroit, Fadu and SAS were used in this study (8, 9). These cells were grown in MEM or RPMI 1640 medium supplemented with 10% fetal bovine serum. For establishment of highly invasive sublines, the Matrigel-invasion protocol was employed, and the selection cells were designed as the specific sublines (OECM-Inv, Detroit-Inv, Fadu-Inv) (8, 9). For establishment of radioresistant sublines, the serial irradiation method was used, and the survival cells were designated as RR sublines (OECM1-RR, FaDu-RR, Detroit-RR) (12, 13).



Transcriptomic Profiling and Functional Pathways Associated With Cell Invasion and Radioresistance

The differential transcriptomes between HNC parental cells and the specific cell sublines were examined by using Affymetrix cDNA microarray (GeneChip Human Genome HG-U133A). The differentially expressed gene (DEG) was selected via ANOVA analytical method based on the criteria of average fold-change > 1.5 and P-value < 0.05 between parental and the subline cells. Hierarchical cluster analysis was applied to assess the similarity between sample groups. To determine the functional pathways associated with radioresistance and cell invasion, the DEGs identified in the microarrays were analyzed by using computational methods, the DAVID and the KEGG bioinformatic tools (https://david.ncifcrf.gov/) (13). Pathway enrichment analysis was applied to identify molecular pathways according to the KEGG database. Significantly enriched functional terms (adjusted p-values <0.05) for up- or down-regulated genes were reported.



Clinical Assessment of Prognostic Significance in HNC Patients

The KM-Plotter online tool (http://kmplot.com/analysis) was also used to assess the prognostic significance of the cross-regulatory genes in HNC patients. The cohort of the TCGA-HNSC dataset was analyzed. This dataset contained 500 patients with head and neck squamous cell carcinoma and with prognostic information (18). High- and low-risk groups were classified using an optimization algorithm according to each gene expression level. The Kaplan-Meier analysis was performed to evaluate overall survival, and the log-rank test was used to calculate hazard ratios (HRs) and their 95% confidence intervals (CIs).



Evaluation of the Differential Expression Genes by RT-qPCR Method

The differentially expressed levels of the genes between HNC parental cell lines, the RR sublines, and the Invasion sublines were evaluated using RT-qPCR method (9, 19). Briefly, the cDNA synthesis and qPCR were performed using the MiniOpticon™ real-time PCR detection system and SYBR Green Supermix reagents. Total of 20 genes were examined. The primers used in this study were listed in Supplementary Table S3.



Construction of sh-ITGA6 Plasmid and Cellular Transfection

Construction of the short hairpin (sh)-ITGA6 plasmid, and the following transfection experiments were performed similarly as previously described (8, 20). The sense and antisense hairpin nucleotides complementary to ITGA6 mRNA were also generated and cloned into the pLKO.1 vector plasmid. The sequence for sh-ITGA6 is 5’-ATT- AAT- CTG- AAG- TTA- GAA- CA- CCT- TCT- TCT-AAC-TTC- AGA- TTA- AT-3’. The plasmids were transfected into cells using Lipofectamine 2000 reagent with Opti-MEM medium (Invitrogen, USA) according to the manufacturer’s instructions. After transfection, the Opti-MEM medium were replaced with fresh complete medium. Cellular clones that were stably transfected with sh-ITGA6 plasmid were selected using the neomycin antibiotic G418.



Determination of Radiosensitivity by Clonogenic Survival Assay

Radiosensitivity was determined by clonogenic survival assay as previously described (12, 20). Briefly, cells were seeded into a 6-well cell culture plate for 8 hours. The cells were exposed to various dose of radiation (0 to 6 Gy) and then continuously cultured for 7-14 days to allow cell colony formation. The survival fraction was calculated as the number of colonies divided by the number of seeded cells times the plating efficiency.



Determination of Cell Migration and Invasion Abilities

The cell migration ability was determined by using the in vitro wound-healing assay (8, 9). Briefly, cells were seeded in an ibidi® culture insert (Applied BioPhysics, Inc. NY) on top of a 6-well plate. After 8 hr of incubation, the culture insert was detached to form a cell-free gap in a monolayer of cells. After changing to culture medium with 1% FCS, the cell migration status toward the gap area were photographed with a specific period time point. The cell invasion ability was evaluated by using the BioCoat Matrigel (Becton Dickinson Biosciences, Bedford, MA) and Millicell invasion chamber (Millipore Corporation, Bedford, MA) (8, 9). The Matrigel were fist coated onto the membrane of the Millicell upper chamber with a pore size of 8 μm in a 24-well plate. Cells in 1% FBS medium were seeded into the upper chamber. The lower chamber will contain 10% FBS in medium to trap invading cells. After a specific time point, the cells invading to the reverse side of the membrane were fixed, stained, and photographed.



Evaluation of Cell Cycle Status by Flow Cytometry

The cell cycle status was determined by flow cytometry analysis, similarly as previously described (9, 19). Briefly, the cells were first synchronized to G0 phase by replacing the culture medium with serum-free medium. After 24 hr, cells in the exponential phase were collected and fixed with ice-cold 70% ethyl alcohol in PBS. Cells were then permeabilization with Triton X-100 solution, stained with propidium iodide solution, and analyzed by a FACScan flow cytometry (Becton Dickinson). The distribution of cell cycle phases was determined using Cell Quest Pro and ModiFit software.



Measurement of Cellular Reactive Oxygen Species (ROS) Level

Intracellular ROS level were measured by the H2DCF-DA oxidation method (Invitrogen, Carlsbad, CA, USA) similarly as previously described (12, 20). Briefly, cells were grown on coverslip plates in HEPES buffer supplemented with H2DCF-DA reagent. The H2DCF-DA is a cell-permeable probe that is oxidized by intracellular ROS to generate fluorescent DCF. The green fluorescence of DCF was monitored by flow cytometric analysis (FACSCalibur, BD Biosciences, Franklin Lakes, NJ, USA).



Statistical Analysis

The two-tailed unpaired Student’s t-test was used for the comparison of two variables between the means. All statistical analyses were conducted using a significance level of P < 0.05.




Results


Phenotypic Cross-Talk Between Cell Invasion and Radioresistance in HNC

Previously, we have established several high invasion sublines and radioresistance sublines derived from HNC cancer cell lines (8, 9, 12, 13). In this study, we determined whether these two phenotypes may possess a phenotypic cross-regulatory attribute. The cell invasion and radiosensitivity were determined by Matrigel invasion and clonogenic survival methods. First, we assessed the invasion ability in HNC parental cells and the radioresistant sublines (OEC-RR, Det-RR, and Fadu-RR) after confirming higher radioresistance in the RR cells. As shown in Figure 1A, the RR sublines possessed higher invasion ability than their parental cells, with the 2.1- to 2.9-fold increase in three RR sublines. We next examined the radiosensitivity in parental cells and the invasion sublines (OEC-Inv, Det-Inv, Fadu-Inv). As shown in Figure 1B, these invasion sublines exhibited higher resistance to irradiation by increasing 1.3- to 1.8-fold in these invasive sublines compared to the parental cells.




Figure 1 | Phenotypic cross-talk between cell invasion and radioresistance in HNC. (A) Radioresistant sublines exhibited higher cell invasion ability compared to the parental cells, as determined by Matrigel invasion assay. Total of 3 HNC parental cell lines (OECM1, Detroit, and Fadu) and their radioresistance sublines (RR sublines) were examined. The numbers of cells that had invaded through the Matrigel to the reverse side were stained, photographed and quantified. (B) The invasion sublines showed statistically more resistant to irradiation compared to their parental cells, as determined by clonogenic survival assay. Total of 3 HNC parental cell lines (OECM1, Detroit, and Fadu) and their invasion sublines were examined. The colony survival fractions were determined after the cells were irradiated with 2 or 4 Gy. The experiments were performed for three times, and the similar results were obtained. The error bars shown in the relevant figures indicated the standard deviation of the three independent experiments. (*p < 0.05, **p < 0.01, ***p < 0.001, t-test). (C) Both Invasion and radioresistant sublines enrich cells at G1/S phase in response to irradiation. The OECM1 parental cell, the RR subline or the invasion subline were examined. Cells were then synchronized to the G0 phase by replacing the culture medium with serum-free medium. The cells were treated with a single dose of 6 Gy of irradiation and continuously cultured for 24 hours. In each sample, cell cycle distribution was determined by flow cytometry analysis.



It has been reported that the cell cycle lying at the G1/S phase was more resistant to irradiation while G2/M is more sensitive (12, 21). We examined whether the RR- and invasion sublines may have the favorable cellular phase of G1/S in common when responsive to irradiation. The flow cytometry was performed to analyze the distribution of cell cycle status after 24 hr of radiation treatment. The results were shown in Figure 1C. Without irradiation, the cellular fractions at the G1/S phase were at a similar level as in parental cells, the RR sublines, or the invasion sublines (73%, 82%, and 79%, respectively). Upon irradiation, cells were transited from G1/S to the G2/M phase in general. However, the RR and invasion sublines exhibited more reluctance to this transition, as shown by higher G1/S fraction than the parental cells (15%, 67%, and 48%, respectively). The ratio of cellular fraction in G1/S verse G2/M increased approximately 3- and 2-folds respectively in the RR and invasion sublines. Thus, the RR and invasion sublines possessed a similar characteristic that being less sensitive to irradiation. These results suggested that HNC cells exhibited an attribute of phenotypic cross-talk between cell invasion and radioresistance.



Functional Pathways in Cross-Regulation of Cell Invasion and Radioresistance in HNC

The functional pathways that may crossly regulate cell invasion and radioresistance were investigated. We integrated the transcriptomic datasets of the DEG profiles from three HNC cell lines and their respective sublines to obtain more comprehensive information. Figure 2A showed the conceptional design of this analytical strategy. We applied the bioinformatics software to identify common hub genes between multiple cell lines to comprise heterogeneous cancers. After combinational analysis of these datasets, there were only 21 genes differentially expressed in both phenotypes of the three HNC cell lines (Supplementary Table S1). The limited number of molecules may be due to intrinsic heterogeneity of genetic background within multiple cell lines. The DEGs in either phenotype of these three sublines were recruited to increase the dataset of potential cross-regulatory genes. A total of 695 genes were obtained, with 349 up-regulated and 346 down-regulated compared to the parental cells.




Figure 2 | Transcriptomic profile and molecular pathways associated with cross-regulating function on cell invasion and radioresistance. (A) Conceptional design of the analytical strategy to investigate cross-regulatory genes for cell invasion and radioresistance. The profiles of differentially expressed genes (DEGs) were established after comparison of the transcriptomic datasets from three HNC cell lines (OECM1, Detroid, Fadu) and their sublines. (B) A list of the top 10 significant molecular pathways determined by DAVID enrichment analysis of the 349 up-regulatory genes. (C) A list of the top 10 significant molecular pathways determined by DAVID enrichment analysis of the 346 down-regulatory genes. Bar chart representing the classification of KEGG network. The enriched significance (p-value) values were negative base-2 log-transformed.



The up-regulated (349) or down-regulated (346) genes were imported to the KEGG suite for molecular network analysis. The top 10 pathways with either up or down-regulation were shown in Figures 2B, C. In the up-regulatory pathways, these molecules were enriched related to oncogenic function in general. The cell motility mechanism was most significant, as the regulation of focal adhesion, the association with extracellular matrix (ECM)-receptor interaction, and actin cytoskeleton regulation. The other molecular mechanisms participating in oncogenic signaling pathways were also apparent, as the PI3K-Akt, the Rap1 signaling, and the MAPK signaling (Figure 2B). In the down-regulatory pathways, these molecules were enriched most related to infectious diseases or immune/stress responses (Figure 2C). These included the conditions of legionellosis, the signaling pathways of TNF-regulatory, NF-kB, or NOD-like signaling. In all, these results indicate that the functional process participating in the interplay of cell invasion and radioresistance involves a wide range of molecular mechanisms, which may be required to maintain homeostasis in HNC cells. Note that focal adhesion regulation showed at the top-ranking among all pathways (P= 8.29E-27), indicating this mechanism’s prominence in the cross-regulatory function of cell invasion and radioresistance.



Panel Molecules Correlative Up-Regulation in the Invasion and Radioresistant Cells

We next parallelly investigated the gene expression levels in both sublines and their parental cells of the two HNC cell lines to validate the potential molecules that may crossly regulate cell invasion and radioresistance. A total of 20 genes were selected and subjected to RT-qPCR examination. These genes included the 16 up-regulations in the transcriptomic study’s phenotypes and the four related to the focal adhesion functional pathway. Figure 3A showed examples of the results, and Supplementary Table S2 summarized all the data. Although various levels in differential cell sublines, many genes were elevated in both invasion and RR cells, including ITGA6, TGFB1, NDRG1, and IL6. The over-expression levels in these two phenotypic cells were plotted for each gene to assess a typical set of hub genes that may co-regulate cell invasion and radioresistance. We averaged the gene expression levels in two HNC cell lines to comprise heterogeneity between different cell lines. As shown in Figure 3B, these genes were correlatively expressed in the invasion and RR sublines (r=0.5128, p=0.0208). These results suggested a panel of genes that contribute to both phenotypes.




Figure 3 | Panel molecules correlative up-regulation in the invasion and radioresistant cells. (A) Relative levels of gene expressions among the parental (Pt) cells, radioresistant (RR) subline, and invasion (Inv) subline of the OECM1 and Detroit cell lines, by using RT-qPCR method. The expression levels are shown by bars. (B) Correlative expressions of 20 genes between RR subline and Inv subline of HNC cells. For each gene, the average level of the fold changes compared to the parental cells from two cell lines (OECM1 and Detroit) was used.





Molecular Interplays Between Cell Invasion and Radioresistance That Led to Poor Prognosis in HNC Patients

From the insight of the clinical findings that cancer patients with metastasis or therapeutic resistance often led to poor prognosis, we examined the potential significance of the 20 co-regulatory molecules on HNC patients’ prognostic effects. We applied the KM-Plotter suit to analyze the association of gene expression levels and patients’ survival using the TCGA-HNSC cohort (n=500) (18). The patient characteristics of this cohort were summarized in Supplementary Table S4. Figure 4A showed few examples of the highly significant results. For each gene, the hazard ratio (HR) and P-value of the prognostic association were summarized in Supplementary Table S2 and Figure 4B. As shown, many molecules exhibited good prediction power to worse prognosis, including ITGA6 (P=2.8E-05), ITGB1 (P=2.1E-04), IL6 (P=0.0029), and LAMC2 (P=0.0031), UBEL3 (P=0.0042), and NDRG1 (P=0.034).




Figure 4 | Molecular interplays between cell invasion and radioresistance that led to poor prognosis in HNC patients. (A) Prognostic significance of represent genes in HNC patients, as determined by Kaplan-Meier Plotter online tool using the head-neck squamous cell carcinoma dataset (n = 500). (B) The overall view of the prognostic vales of 20 genes as shown by the Hazard ratio with 95% confidence interval (CI), as determined by Kaplan-Meier Plotter using head-neck squamous cell carcinoma dataset (n = 500). (C) The overall view of 20 gene over-expressions (x-axis) in the invasion sublines and the prognostic significance (y-axis) in HNC patients of each gene. Value further to the right are signified higher levels of over-expression, and those toward to the top represent more significance with poor prognosis. (D) The overall view of 20 gene over-expressions (x-axis) in the radioresistant sublines and the prognostic significance (y-axis) in HNC patients of each gene. Value further to the right are signified higher levels of over-expression, and those toward to the top represent more significance with poor prognosis. (E) The diagram showing the overall and overlap genes that were over-expressed in the invasion subline, in the radioresistant subline, and associated with poor prognosis in HNC patients. Note that three molecules, ITGA6, TGFB1, and NDRG1, were recruited in these three parameters. (F, G) Relative levels of the gene expressions between oral mucosa specimens from healthy individuals (Normal) and oral cancer tissues from HNC patients (Cancer). The gene expression data, including ITGA6, TGFB1, and NDRG1 was retrieved from GEO Dataset GSE25099 (F) and TCGA-HNSC dataset (G). (***p<0.001, *p<0.05, t-test).



To determine the association of clinical prognosis and gene expressions in the phenotypes of cell invasion or radioresistance, Figures 4C, D were plotted to show the associations of each gene. Although various clinically relevant genes were found between these two panels, several common molecules were found. Figure 4E summarized the molecules that were 2-fold over-expressed in the invasion or radioresistant cells and related to poor prognosis in HNC patients (P<0.05, HR>1.0). As shown, three molecules were distinguished out, as ITGA6, TGFB1, and NDRG1. These results represented a signature of functionally interplayed molecules between cell invasion and radioresistance and led to poor prognosis in HNC patients.

To further assess these three genes’ carcinogenic effect, we also examined the differential expression levels of these molecules between normal and tumor tissues using two microarray datasets, the GSE25099 and TCGA-HNSC (18, 22). The GSE25099 dataset contains a transcriptomic profile of 57 carcinoma tissues from oral cancer patients and 22 normal oral mucosa tissues from healthy individuals. The TCGA-HNSC dataset comprised 519 patients with head-neck squamous cell carcinoma and 44 normal tissues. Figures 4F, G showed the results. As shown, all these molecules were significantly over-expressed in the cancer patients in both assay cohorts. These results suggest that the molecules ITGA6, TGFB1, and NDRG1 contribute to cancer aggressiveness and participate in the malignant transformation from normal cells.



ITGA6 Promoted Cell Invasion via Regulating the Integrity of Extracellular Matrix (ECM)

ITGA6 showed at the authoritative place of cellular molecules in the aggressive phenotypes and worse clinical presentations; this molecule was selected for further mechanistic investigation. ITGA6 (Integrin alpha-6) is a heterodimeric component of the integrin receptor protein in epithelial cells, plays a critical role in maintaining the mechanical integrity of cell membrane for tissue architecture (23, 24). The cellular functions of ITGA6 related to cell invasion and radiosensitivity were assessed using shRNA stably knockdown experiments. The effects of cell migration and invasion were evaluated by in vitro wound healing and Matrigel invasion assays. As shown in Figure 5A, silencing ITGA6 resulted in a slower migration toward the gap area in two HNC cell lines by decreasing approximately to 40% and 60% in OECM1 and SAS cells at 24 hr. More apparently, ITGA6-silencing reduced cell invasion, with down to 10% and 8% in OECM1 and SAS cells (Figure 5B). These results suggested that ITGA6 functioned in promoting cell migration and invasion; silencing this molecule may inhibit cancer metastasis.




Figure 5 | ITGA6 promoted cell motility via regulating the integrity of extracellular matrix (ECM). (A) ITGA6 silencing decreased cell migration. After transfection of ITGA6-shRNA plasmids, the HNC cells (OECM1, SAS) were subjected to in vitro wound healing assay. Cell migration toward the gap was observed, photographed, and quantified at the indicated times. (B) ITGA6 silencing attenuated cell invasion. After transfection of ITGA6-shRNA plasmids, the HNC cells (OECM1, SAS) were subjected to Matrigel invasion assay. The cells that invaded through the Matrigel-coated membranes to the reverse side were stained, photographed, and quantified. (C) Significant increases of ECM-associated gene expressions in the oral cancer tissues from HNC patients (Cancer) compared to the oral mucosa specimens from healthy individuals (Normal). The gene expression data, including ITGB4, LAMC2, FSCN1, and PXN, was retrieved from GEO Datasets GSE25099. (D) Correlative expressions between ITGA6 and ECM associated molecules ITGB4, LAMC2, FSCN1, and PXN, in the oral cancer tissues from HNC patients. The gene expression data was retrieved from GEO Datasets GSE25099. (**p < 0.01, ***P < 0.001, t-test).



To examine whether ITGA6 function may relate to molecular presentation in clinical cancers, we further examined the association of ITGA6 expression level and motility-related molecules using an HNC microarray dataset GSE25099 (22). Several extracellular matrix (ECM) molecules were determined, including ITGB4, LAMC2, FSCN1, and PXN. The expression levels of these molecules were shown in Figure 5C. As shown, all these genes were significantly over-expressed in the cancer tissues compared to the normal tissues from healthy individuals (P<0.001 in all molecules). Furthermore, in the cancer tissues, these genes were all statistically correlated with the expression of ITGA6 (Figure 5D). These results suggest that ITGA6 promoted cell invasion via regulation of ECM integrity in HNC.



ITGA6 Facilitated Radioresistance Through Regulation of the Apoptotic Related Mechanism

The potential effect of ITGA6 on radiosensitivity was determined by clonogenic survival assay. As shown in Figure 6A, ITGA6-silencing reduced radioresistance by decreasing colony survival to 42% and 61%, respectively, at 6 Gy in OECM1 and 4 Gy in SAS cells. It is well established that ionizing radiation can induce ROS in the cell resulting in apoptosis (20). We further determined whether ITGA6 contributing to radioresistance may relate to ROS regulation. The intracellular ROS was measured using the H2DCF-DA oxidation method, and the green fluorescence DCF product was analyzed by flow cytometry (20). Results were shown in Figure 6B. Without irradiation, ITGA6-silencing had minimal effect on intracellular ROS level. Irradiation significantly induced ROS production in either vector- or sh-ITGA6 transfected cells. However, the ITGA6-silencing cells increased more considerably than the controls, by 1.7- and 1.3-fold higher in the OECM1 and SAS cell lines. These results suggested that ITGA6 contributed to radioresistance via inhibition of the ROS generation pathway. Silencing ITGA6 may reverse radioresistance by sensitizing cancer cells to radiotherapy.




Figure 6 | ITGA6 facilitated radioresistance through regulation of the apoptotic related mechanism. (A) ITGA6 silencing increased radiosensitivity. After transfection of ITGA6-shRNA plasmids, the HNC cells (OECM1, SAS) were subjected to clonogenic survival assay. The colony survival fractions were determined after the cells were irradiated with various doses (0 to 6 Gy). (B) ITGA6 silencing increased ROS production in HNC cells. After transfection ITGA6-shRNA plasmids, the HNC cells (OECM1, SAS) were subjected to irradiation. The ROS level was determined using H2DCF-DA oxidation method and analyzed by flow cytometry. (C) Significantly higher expressions of survival related genes (BIRC5, MCL1, XIAP) and lower expression of apoptotic gene (CAS9) in the oral cancer tissues from HNC patients (Cancer) compared to the oral mucosa specimens from healthy individuals (Normal). The gene expression data was retrieved from GEO Datasets GSE25099. (***p < 0.001, **p < 0.01, *p < 0.05, t-test). (D) Correlative expressions between ITGA6 and survival or apoptotic associated molecules BIRC5, MCL1, XIAP, and CAS9, in the oral cancer tissues from HNC patients. The gene expression data was retrieved from GEO Datasets GSE25099.



We also assessed the potential association of ITGA6 with the clinical presentation of survival-related molecules using a microarray dataset GSE25099 (22). These molecules included BIRC5, MCL1, XIAP, and apoptotic gene CAS9. The expression levels of these molecules were shown in Figure 6C. As shown, these survival genes (BIRC5, MCL1, XIAP) were significantly increased expressions in the cancer tissues, while the apoptotic gene (CAS9) was reduced compared to the normal tissues from healthy individuals. Furthermore, in the cancer tissues, these genes were all statistically correlated with the expression of ITGA6 (Figure 6D). These results suggest that ITGA6 facilitated radioresistance by reducing cellular ROS level leading to anti-apoptotic or survival advantage in HNC.




Discussion

Cancer metastasis and recurrence after radiotherapy are the major causes of treatment failure in HNC. It is commonly found that patients with either condition may accompany the outcome of the other. In this study, we revealed the molecular interplays of cell invasion and radioresistance in HNC, aiming to discover effective biomarkers for the intervention of aggressive cancer at one time. Our works presented in this study can be highlighted by few points (Figure 7). (1) The phenotypic crosstalk between cell invasion and radioresistance was confirmed in HNC cells. (2) The functional pathways co-regulate between these two phenotypes were established. The focal adhesion was revealed to play a significant role in contributing to these attributes. (3) The molecular interplays between cell invasion and radioresistance were identified, as ITGA6, TGFB1, and NDRG1, further leading to poor prognosis in HNC. (4) ITGA6 was demonstrated to play an imperative role in these aggressive cancer phenotypes. It may occur through modulation of ECM or anti-apoptotic mechanism to achieve cell invasion and radioresistance. Silencing this molecule suppressed cell migration, invasion, and attenuated radioresistance; this molecule may be used as a molecular target for refractory HNC treatment. In the future, further validation studies with protein expression levels in clinical subjects are highly recommended to confirm these results.




Figure 7 | A model of molecular crosstalk between cell invasion and radioresistance in HNC.



In this study, several functional pathways were identified cross-regulating cell invasion and radioresistance in HNC. Interesting, the functional mechanisms related to motility comprised the most, as focal adhesion, proteoglycans in cancer, ECM-receptor interaction, and actin cytoskeleton regulation (Figure 2B). Although these motility-related mechanisms were well accepted to regulate cell invasion, they were noted to modulate radioresistance in the present study. The integrity of ECM and focal adhesion mechanism were important in response to radiation stress for cellular survival. Three signaling pathways were identified for the network molecules to critically co-regulate these two phenotypes, PI3-AKT, Rap1, and MAPK (Figure 2B). PI3K-Akt is an intracellular signaling pathway that mediator of several membrane-bound receptor tyrosine kinases (25). In response to extracellular stimuli, its activation may induce downstream oncogenic pathways to promote cancer aggressiveness. Consistent with our findings, this pathway has been reported to participate in cell invasion, cell proliferation, and therapeutic resistance (26, 27). The MAPK family proteins include three major signaling molecules, ERK, p38 kinase, and JNK, that transduce extracellular signaling into nuclei following turn-on gene expression (28). Since MAPK may induce multiple downstream signals, it regulates a wide range of cellular functions, including cell proliferation, differentiation, apoptosis, and stress response (28, 29). Our finding of MAPK signaling pathway in co-regulation of two aggressive cancer phenotypes agreed with these reports. The Rap1 protein is a small GTPase protein belonging to the RAS oncogene family. It acts as molecular switches between an inactive GDP-bound and an active GTP-bound conformation to turn on signal transduction (30). Rap1 is important for molecular junction and cell adhesion, which is significantly associated with cell invasion and cancer metastasis (30, 31). Furthermore, the Ras family has also been reported regulating cell proliferation and survival (30, 31). This growth supportive function may explain the radioresistant mechanism of the Rap1 pathway noted in this study. Thus, activation of these pathways may contribute to a more aggressive cancer, which is correlated with our findings related to cell invasion and radioresistant phenotypes of HNC.

In searching panel molecules co-regulating cell invasion and radioresistance and contributing to poor prognosis in HNC, three molecules were prominent, as ITGA6, TGFB1, and NDRG1 (Figure 4E). NDRG1 is a multifunctional protein that participates in several cellular processes, including cellular differentiation, stress response, and apoptosis (32, 33). Reports of NDRG1 in modulating tumor development are inconsistent. NDRG1 may act as an oncogene, for it has been reported to be overexpressed in many types of cancers, including bladder, liver, lung, and colorectal cancers (34–37). The oncogenic function of NDRG1 includes promoting cellular motility, tumorigenesis, and therapeutic resistance (36–41). Paradoxically, NDRG1 is also a putative tumor suppressor since it has been found downregulated in several types of cancers, such as prostate, pancreatic, and endometrial cancers (42–44). The reported tumor-suppressive functions were on the suppression of cell growth and motility (43–45). The opposite effects of NDRG1 in modulating malignancy may depend on the cells under certain conditions or the specific types of tissues. In the present study, we found that NDRG1 was upregulated in the invasive and radioresistant sublines (Figure 3), over-expressed in the cancer tissues (Figure 4F), and associated with poor prognosis in HNC patients (Figure 4A). Our results, in agreement with the oncogenic reports, suggested that this molecule modulates multiple malignant functions in HNC.

TGFB1 is a polypeptide member of the transforming growth factor-beta (TGFB) superfamily, a cytokine that predominantly exists in the tumor microenvironment (46). This molecule is mostly considered an oncogene because it was overexpressed in several cancers and associated with a poor prognosis (47–49). Mechanically, TGFB1 was presumably modulating malignant function via suppression of immunosurveillance (50). Recently, this molecule has been reported contributing to malignancy via induction of cellular motility through multiple mechanisms. These include the activation of epithelial-mesenchymal transition (51), modulating focal adhesion structure via interacting with laminin family molecules (52) or interacting with tyrosine kinase receptor to induce oncogenic signaling (53). Consistently with these reports, we found that TGFB1 was markedly upregulated in the invasive sublines (Figure 3), overexpressed in the cancer tissues (Figure 4F), and associated with poor prognosis in HNC patients (Figure 4A). We further noted that TGFB1 facilitated radioresistant in HNC cells, and which was not previously reported in our knowledge (Figure 3). Thus, our results supported previous findings and provided a novel functional mechanism of TGFB1 in cancer aggressiveness. Science ITGB1 is a secretory protein; this molecule may be used as a circulating tumor marker for prognostic application.

ITGA6 (Integrin alpha-6), also named VLA-6 and CD49f, encodes a member of the integrin alpha-6 subunit protein (23, 24). Integrins are heterodimeric receptors that comprise paired α and β subunits. There are 18 α and 8 β subunits in the human genome that combine to provide 24 integrin receptors, each with its specificity for selected extracellular matrix (24). Integrin α6β4 is a cellular adhesion molecule that binds to its ligand laminins in epithelial cells and plays a critical structural role in the hemidesmosome (24, 54). Although integrin’s primary function is to maintain cell membranes’ mechanical integrity to maintain tissue architecture, recent studies have shown many more biological roles than what was initially thought. Through interaction with ligand laminin or cell-surface receptor protein, integrin may induce several downstream signal pathways, including FAK, EGFR, and AKT oncogenic mechanisms (54–56). Clinically, ITGA6 has been reported altered expression in several cancers. Over-expression of this molecule was found in several types of cancers, and this up-regulation was associated with poor prognosis (56, 57). Mechanistically, this molecule has been reported to participate in several malignant functions, including cell proliferation, cell motility, and drug resistance (58–60). All these reports were consistent with our findings in HNC. We showed that a high level of ITGA6 was overexpressed in cancer tissues (Figure 4F) and associated with a worse prognosis in HNC patients (Figure 4A). Although ITGA6 was expected to promote cell invasion, we also revealed its function in facilitating radioresistance (Figure 6A). This result was supported by the previous finding in breast cancer that ITGA6 plays a critical role in radioresistance via regulating Akt/Erk signaling pathway (61). We also showed that this function could be achieved via modulation of intracellular ROS levels (Figure 6B) and leading to anti-apoptotic advantage (Figure 6D). At the molecular level, we demonstrated that ITGA6 facilitated radioresistance via regulating the apoptotic-related mechanism. This finding was shown by the correlative expressions of ITGA6 with a panel of survival genes, including BIRC5, MCL1, XIAP (Figure 6D). Note that BIRC5 has been reported regulating radioresistance and metastasis (62, 63), thus further supporting our finding of this molecule on the cross regulatory function in these two phenotypes. Silencing this molecule reversed malignant presentation significantly, as attenuation of invasion ability (Figure 5) and induction of radio-sensitization in HNC (Figure 6). Thus, ITGA6 may serve as a predictive marker of radioresistance, a prognostic marker of metastasis, and a molecular target for developing a therapeutic modality for the treatment of refractory cancers.

In conclusion, the poor prognosis of HNC patients was often resulted from cancer metastasis or therapeutic resistance. In this study, we have employed a systemic approach by elucidation of the molecular interplays between cell invasion and radioresistance, aiming to identify prominent molecules contributing to the prognosis of HNC. We revealed phenotypic crosstalk between cell invasion and radioresistance, determined the functional pathways (such as focal adhesion) co-regulating these two phenotypes, and identified a panel of interplay molecules leading to poor prognosis (ITGA6, TGFB1, and NDRG1). A hub molecule ITGA6 was demonstrated to play an imperative role contributing to the aggressive phenotypes. Silencing this molecule suppressed cell migration, invasion, and attenuated radioresistance. These panel molecules, such as ITGA6, may serve as prognostic markers of metastasis, predictive markers of radioresistance, and molecular therapeutic targets to treat refractory HNC.
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A subset of head and neck cancers arising in the oropharynx and the nasopharynx are associated with human papillomavirus or Epstein–Barr virus. Unfortunately, limited treatment options exist once patients develop recurrent or metastatic disease in these cancers. Interest has risen in utilizing novel strategies including combination immune checkpoint inhibitors, vaccines, and adoptive cellular therapy, to improve treatment response and outcomes. Several ongoing studies are investigating the potential to overcome resistance to standard of care chemoradiation therapy with monotherapy or combination immunotherapy strategies in these viral-associated head and neck cancers.
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Introduction

Head and neck cancers (HNC) are a heterogenous group of malignancies. Historically, the risk factors for developing HNC were tobacco, betel nut, and alcohol consumption. With emerging data, chronic viral infections such has human papillomavirus (HPV) and Epstein–Barr virus (EBV) have also been associated with the development of cancer. Generally, HPV-negative HNCs are found in older individuals with a history of tobacco and alcohol use. On the other hand, HPV-positive HNCs, which develop in the oropharynx, are seen in much younger patients with associated risk factors such as sexual behavior and marijuana use. EBV-associated HNCs, which develop in the nasopharynx, are also found in younger patients often in endemic areas and are associated with risk factors such as high consumption of salt-cured foods and tobacco use. We will focus on HPV and EBV in the development of oropharyngeal squamous cell carcinoma (OPSCC) and nasopharyngeal cancer (NPC), respectively.

HPV has been implicated in cervical, oropharynx, anal, and penile cancers (1). HPV is transmitted through skin-to-skin or skin-to-mucosa contact, typically through sexual transmission. The causative link with HPV and OPC was first described in 2000 (2). The number of reported cases has risen over the past 20 years; it is presumed up to 70–80% of all OPSCC in North America and Europe are now HPV-related (3, 4). Although there are approximately 200 different HPV strains, HPV-16 makes up more than 90% of HPV-induced OPSCC (5, 6). IHC p16 staining is a surrogate marker for HPV however, ISH (In-situ hybridization) or PCR (polymerase chain reaction) is the gold standard for testing and can be used for confirmatory testing. Patients diagnosed with HPV-related OPSCC are considerably younger with a biphasic distribution which peaks at 30 to 55 years of age (4–6). Up to 10–25% of these patients will recur or develop metastatic disease following definitive treatment depending on tumor biology and clinical risk factors (7).

EBV has been implicated in multiple malignancies including NPC, gastric carcinoma, and lymphoma. EBV is transmitted through bodily fluids, especially saliva, as well as sexual transmission. In developed countries, NPC has been associated with smoking history; however, it is endemic in areas of China and Africa (8). EBV-encoded RNA (EBER) ISH determines if NPC is of EBV etiology. In high incidence areas, risks may be multifactorial including EBV, tobacco, diets high in preservatives and genetic predisposition (9). Patients in high risk populations to develop EBV-related NPC are generally diagnosed at 50–59 years of age (10). Approximately, 10–45% of treated NPC patients will recur. Since the landmark trial of chemoradiation followed by consolidative chemotherapy (11), there have been few new options for both curative intent and palliative treatments of NPC.

Most people who become infected with a virus clear the infection and develop no sequelae. Few become chronically infected with high risk HPV strains or EBV and those individuals may subsequently develop cancer. Immune dysfunction is implicated in development and progression of all head and neck malignancies and, given the bodies expected immune response to viral infection, this may be especially true for viral-mediated OPSCC (12). Immune therapy has emerged as a treatment to overcome dysfunction in the definitive and palliative settings for HPV- and EBV-mediated OPSCC and NPC, respectively.



The Immune System

There are two types of immunity, innate and adaptive. The innate system is primitive, nonspecific and responds rapidly utilizing barriers that already exist in the body, examples of these are skin or cough. Cellular components of the innate system include phagocytic cells (e.g., macrophages, dendritic cells, and neutrophils) and Natural Killer (NK) cells which induce apoptosis. The adaptive immune system is acquired and involves the use of self-proteins to recognize foreign materials. Additionally, it has ability to develop memory through use of B and T lymphocytes for humoral and cell-mediated immunity. It is the adaptive system of immunity that is predominately targeted to develop immune therapies. This has been a successful approach that is furthest along in development for patients with leukemia/lymphoma, melanoma and lung cancers who have progressed on other therapies.

The tumor microenvironment (TME) consists of various components including tumor cells, endothelial cells, and immune cells such as lymphocytes, macrophages, and cytokines. In the TME, tumor cells gain control of signaling pathways using components of the TME to evade detection by the immune environment as well as promote tumor growth and metastasis. Immune dysfunction plays a role in development and progression of HNC. Specifically, T cytotoxic cells are responsible for cancer immune surveillance. Disruption of T cell response to tumor by immunosuppression in the TME or by cancer evasion mechanisms may play a role in progression of cancer (12). In viral-associated HNCs, the immune system is responsible for detecting the virus, but these viruses employ immune evasion strategies to escape detection and allow tumorigenesis. This makes the immune system a perfect target to exploit for treatment.

Potential targets of the immune system include, cytokine therapies, antibody-dependent cellular cytotoxicity (ADCC), checkpoint inhibition, vaccination, and cellular adoptive therapies. In HNC, the use of cetuximab has shown activity, which inhibits EGFR signaling and ADCC is believed to be a critical component of its response (13–15). Checkpoint inhibitor immunotherapy is an accepted paradigm for treatment in lung cancer, melanoma, and microsatellite instability (MSI)-high colorectal cancer (16–18). More recently, checkpoint inhibitors have shown promise in HNC with or without chemotherapy for treatment of metastatic disease (19). To leverage more durable response to immunotherapy in solid tumor malignancies, ongoing trials are investigating new immune checkpoint inhibitors, immunotherapy combination regimens including addition of cytokines, other checkpoint inhibitors, oncolytic virus, vaccines (VERSATILE-002 announced at the ESMO 2020 Annual Meeting), or cellular therapies such as chimeric antigen receptor therapy (CAR T) to program death ligand-1 (PD-L1) blockade.



OPSCC, HPV-Induced

OPSCC is a subset of HNC originating in the base of tongue or tonsils which can be caused by chronic HPV infection. HPV, a prevalent viral infection, is a DNA oncovirus with numerous subtypes that have been implicated in tumorigenesis of several primary sites including the oropharynx and cervix (HPV 16 and 18). The FDA approved a HPV vaccine series targeted as a preventative measure against HPV-associated cancers (20). Majority of people exposed to HPV will not develop cancer; however, in some cases, viral HPV DNA oncogenes for E6 and E7 will integrate into the DNA of the host cell and ultimately lead to degradation and loss of p53 and RB tumor suppressor genes (21). This dysregulation of p53 and RB leads to cancer cell immortalization and uncontrolled cell proliferation. During its life cycle, HPV minimizes antigen production in order to evade recognition by the host immune system (Figure 1) (22). As well, oncoproteins E6 and E7 bind to immune regulator proteins to reduce and block immune responses, thus achieving immune evasion for the virus as well as the tumor, which may create a challenge when incorporating immunotherapy in treating HPV-positive OPSCC.




Figure 1 | Mechanisms of immune evasion by HPV and EBV: decreased antigen production and establishment of viral latency. Adapted from “Viral Carcinogenesis”, by BioRender.com (2021). Retrieved from https://app.biorender.com/biorender-templates.



The incidence of HPV-associated OPSCC has risen over the past several decades while HPV-negative OPSCC has steadily declined (6). It has been previously reported that HPV-positive OPSCC is associated with better survival and overall prognosis compared to its HPV-negative counterpart due to their different etiologies (23–26). However, clinicians have found no difference in rates of development of distant metastases between HPV and non-HPV OPSCC (27). Treatment of early stage or locally advanced OPSCC generally incorporates a multi-modality approach while recurrent or metastatic OPSCC is treated with systemic therapy.


Treatment for Locally Advanced HNC

Patients with locally advanced HNC, independent of HPV status, have been treated with multimodality treatments, often including some combination of surgery, radiation, and/or concurrent chemoradiotherapy. In HPV-mediated disease, there has been a paradigm shift to reduce long-term toxicity by de-escalating treatment recommendations. To date, the significance of immunotherapy has been realized in patients with metastatic HPV-mediated OPSCC and interest has risen in exploring its use in de-escalation strategies for definitive treatment. To date, there is little data in this indication with immune therapy. Recently, the Radiation Therapy Oncology Group (RTOG 1016) explored HPV-positive OPSCC patient outcomes and concluded that concurrent chemoradiation therapy with systemic treatment of cisplatin demonstrated superior 5-year overall survival (OS) and progression-free survival (PFS) compared to cetuximab (28). The phase III De-ESCALaTE trial confirmed these findings (29).

Most studies incorporating immune therapy with HNC have included all primary sites, including OPSCC irrespective of HPV status. Additionally, the use of response rates as primary endpoint has generated a lot of thought-provoking data. Some of these data are encouraging as response rates are high; however, OS and distant failure rates are also of concern. While patients with HPV-induced OPSCC conventionally have better survival, approximately 10–25% of patients will develop disease recurrence (30). HPV-positive patients also develop distant metastasis approximately 2–3 years later than non-HPV OPSCC patients (31). Given there may be an immune defect in these patients, it is unclear if immune therapies in the definitive indication will be sufficient, but there are ongoing trials.


Clinical Trials of Checkpoint Inhibitors in Locally Advanced HNC


Locally Advanced HNSCC, Unselected Population

Historically, patients with early or locally advanced disease have been treated with curative intent. Curative intent treatments may include surgery, radiation, and combined chemoradiation. Several clinical trials are currently underway in locally advanced HNSCC (Table 1). In the neoadjuvant/adjuvant setting, there are preliminary data available for two trials. Preliminary results from an ongoing phase II trial (NCT02296684) of neoadjuvant and adjuvant treatment with pembrolizumab in surgically resectable HNSCC patients showed safety, tolerability, and response to treatment although further investigation is necessary (32). Preliminary results for the IMCISION trial for 32 advanced HNSCC patients treated with neoadjuvant nivolumab monotherapy or in combination with ipilimumab (33) demonstrated 31% (9/29) near complete pathological response (≥90% pathological response) and 31% of patients 20–89% pathological response in the primary tumor specimen at resection (33). A trial combined definitive concurrent chemoradiation therapy with pembrolizumab (six doses every 3 weeks) in locally advanced HNSCC patients with high risk features of high T stage and/or nodal disease (NCT02641093). Roughly 47% (9/19) patients demonstrated a pathological response which was correlated with increased immune cell infiltration into the tumor (34).


Table 1 | Ongoing clinical trials investigating novel immunotherapy drugs or combinations in locally advanced HNC and HPV-positive OPSCC.





Locally Advanced HNSCC With HPV Subset Analysis

A phase Ib trial of pembrolizumab in combination with concurrent cisplatin-based chemoradiation therapy (NCT02586207) enrolled 59 locally advanced HNSCC patients (35). In the HPV-positive cohort (N = 34), 85.3% of patients achieved a complete response. The study demonstrated safety and tolerability of standard multi-modality treatment involving pembrolizumab as the results are similar to the expected level of response with conventional platinum-based chemoradiotherapy.



Locally Advanced HPV-Positive OPSCC

In viral-associated cancers such as OPSCC, CheckMate 358 examined the efficacy of nivolumab in the neoadjuvant setting and presented promising results at ESMO (NCT02488759). In the cohort of OPSCC patients enrolled in the trial, tumor reduction was seen in approximately 48% of evaluable patients (11/23, (5/10 HPV+, 6/13 HPV−)) prior to surgery (36). Final results from the CIAO (Checkpoint Inhibitors Assessment in Oropharynx Carcinoma) trial was recently published (37). Locally advanced OPSCC patients (N = 28), 24 (86%) were HPV+, were randomized 1:1 to receive durvalumab alone or combination with anti-CTLA-4 monoclonal antibody tremelimumab prior to surgery. The primary objective was to determine the impact of immunotherapy pre-treatment on CD8+ tumor infiltrating lymphocyte (TIL) count in tumor specimen. The overall response rate (ORR) was 43% in both treatment groups and 29% of patients showed a major pathologic response after treatment. The study concluded that although combination durvalumab and tremelimumab did not increase CD8+ TIL cells compared to monotherapy durvalumab, there is clinical rationale to continue investigating immunotherapy in the neoadjuvant setting. There are several recruiting clinical trials examining more combination immunotherapy strategies in early stage or locally advanced HNC and HPV-driven OPSCC in the neoadjuvant, concurrent, and adjuvant setting (38, 39) (Refer to Table 1).





Treatment for Recurrent and Metastatic HNC

The first FDA approved immune therapy in HNC was single agent cetuximab. Cetuximab as a single agent has a 12.6% objective response rate and median survival of 5.9 months in patients who failed platinum-based therapy (13). With the addition of cetuximab to platinum-based therapy (EXTREME Trial), the median OS improved from 7.4 to 10.1 months (14). The EXTREME trial did establish a new standard of care; however, the survival remained poor (12).


Checkpoint Inhibitors in Metastatic HNC

KEYNOTE-012 trial demonstrated the efficacy of immune checkpoint inhibitors in HNC (19). The ORR was 21% and median OS was 13 months in HNC patients who had failed prior platinum therapy and who had PD-L1 combined positivity score (CPS) of 1% or greater. These findings were confirmed in the expansion cohort using fixed 3-week dosing (40). The degree of PD-L1 expression was noted to be strongly predictive of overall response, PFS and OS. The ORR was 22% and 4% for PD-L1 positive and negative patients, respectively. Additionally, HPV-positive HNC had a higher ORR of 32% compared to HPV-negative patients at 14% when treated with pembrolizumab.

Checkmate-141 trial was a similar checkpoint inhibitor trial which was ongoing at the same time as KEYNOTE-012 (41). Checkmate-141 also evaluated recurrent/metastatic HNC patients who had failed prior platinum therapy. These trials demonstrated similar findings although, cross-trial comparisons need to be interpreted with caution. The Checkmate-141 trial compared nivolumab to standard second line therapies and demonstrated that nivolumab nearly doubled 1-year OS from 16.6% with standard therapies vs 36% with nivolumab; ORR and OS were 16.6%, 5.1 months versus 36%, 7.5 months for standard therapy versus nivolumab, respectively. Additionally, exploratory analysis from the trial suggested that HPV-associated disease appeared to benefit most with response rates of 8% in HPV-negative and 15.9% in HPV-positive patients. This is interesting with both KEYNOTE and Checkmate studies suggesting HPV-positive patients have greater improvement with checkpoint inhibition then non-HPV-mediated HNC. Although this is provocative data, more work needs to be done using HPV ISH or PCR as a marker opposed to p16 used in these studies given recent data (42).

KEYNOTE-048, a phase III trial, demonstrated efficacy of pembrolizumab monotherapy or combination treatment in patients with recurrent or metastatic HNC (43). This trial revolutionized first line treatment of recurrent or metastatic HNC which was previously limited to chemotherapy and cetuximab. In the trial, patients (N = 882) were randomized to receive pembrolizumab monotherapy (N = 301), pembrolizumab and chemotherapy combination (N = 281), or cetuximab and chemotherapy combination treatment (N = 300). PD-L1 expression via CPS was tested and patients were stratified into groups based on CPS. The primary endpoint of median OS demonstrated significant superiority in the pembrolizumab monotherapy group compared to cetuximab and chemotherapy group in patients who exhibited a CPS of 20% or more (14.9 months vs 10.7 months, p = 0.0007) and patients who exhibited a CPS of 1% or more (12.3 months vs 10.3 months, p = 0.0086). In the overall trial population, pembrolizumab and chemotherapy combination treatment demonstrated significant improved OS compared to cetuximab and chemotherapy (13.0 months vs 10.7 months, p = 0.0034). In the subgroup of patients with CPS of 20% or more, CPS of 1% or more, and in the total patient population treated with pembrolizumab and chemotherapy, the ORR was 43%, 36%, and 36% respectively. Although pembrolizumab alone or in combination with chemotherapy did not show improved PFS in any subgroup analysis, the OS results were significant enough to transform first line standard-of-care practice in recurrent or metastatic HNSCC.



Ongoing Trials and Development in HNC


Checkpoint Inhibitors

Immunotherapy is being exploited in clinical studies of HNC and OPSCC in the recurrent or metastatic setting. Currently in recurrent and/or metastatic HNC, there are approved antibody treatments targeting PD-1 (pembrolizumab and nivolumab) (44). However, since only a small cohort of patients respond to immune checkpoint inhibitors, other strategies are under investigation to increase efficacy and response to immunotherapy.

Clinical trials on novel combination regimens with other immune checkpoint inhibitors or chemotherapy agents are currently under examination in HNC and OPSCC. Recently, the phase III EAGLE study failed to demonstrate superior OS with durvalumab monotherapy or in combination with tremelimumab compared to standard-of-care in recurrent or metastatic HNSCC patients (45). Results from a phase II trial of combination pembrolizumab and a histone deacytelase (HDAC) inhibitor, vorinostat, were recently published (46). In the recurrent or metastatic HNC arm, 25 patients were reenrolled to receive both drugs, of which the majority achieved either a partial response (32%) or stable disease (20%). The median OS was 12.6 months and the median PFS was 4.5 months, ultimately suggesting clinical activity in HNC patients however, further study is needed.

In patients with HPV-positive tumors, M7824, a bifunctional fusion protein that targets both PD-L1 and transforming growth factor-β (TGF-β) is currently under investigation. TGF-β has been previously reported to be upregulated in HPV-associated cancers (47), and thus dual targeting of PD-L1 and TGF-β should ideally produce a more durable response. Results from a phase I clinical trial investigating M7824 found an ORR of 37.5% in HPV-associated cancers (48) and it is under continued evaluation in a phase II trial (NCT03427411).



Vaccines

Over the past several years, scientists began to study the feasibility of combining immune checkpoint inhibitors with vaccines as a way to augment therapeutic responses. The MASTERKEY-232 phase Ib study enrolled recurrent or metastatic HNSCC patients (N = 36) to undergo treatment with pembrolizumab and talimogene laherparepvec (T-VEC), a genetically modified oncolytic viral therapy originally manufactured to treat melanoma (49). The objectives were to understand any dose-limiting toxicities, examine the safety of the combination, as well as OS and PFS. Confirmed partial responses were observed in 13.9% of patients (N = 5), and the median OS and PFS was 5.8 months and 3.0 months, respectively. The trial failed to demonstrate superior efficacy in this novel combination compared to monotherapy pembrolizumab, thus follow-up studies were discontinued. Another clinical trial combined nivolumab with an HPV-16 vaccine (ISA101) to increase therapeutic response in HPV-positive solid tumor malignancies (50). With 24 patients enrolled in the trial, the ORR was 33% and the median duration of response was 10.3 months. Median OS was 17.5 months and the median PFS was 2.7 months. Overall, this study demonstrated clinical benefit in the addition of a vaccine to immunotherapy although further studies are warranted. Currently, there is an ongoing phase II trial of anti-PD-1 monoclonal antibody cemiplimab alone or in combination with cancer vaccine ISA101b targeted at oncogenic E6 and E7 antigens from HPV-16 (NCT03669718). Another ongoing phase I/II trial is utilizing modified viruses, HB-201 and HB-202, as single vector/two-vector therapies engineered to recognize antigens specific to HPV-16 (NCT04180215).

Le Tourneau et al. presented interim results of their phase Ib/II trial investigating TG4001, a HPV vaccine targeting E6 and E7, in combination with avelumab, an anti-PD-L1 monoclonal antibody, in HPV-16 positive recurrent or metastatic solid tumors (NCT03260023) (51). The results showed increased CD8+ T cell infiltration as well as detectable vaccine responses against E6 and E7. Aggarwal et al. reported the results of a phase Ib/II study in HPV-associated recurrent or metastatic HNSCC treated with HPV DNA vaccine MEDI0457 and durvalumab (NCT03162224) (52). The trial reported an ORR of 22.2% with three each confirmed complete and partial responses. The authors also noted increased levels of peripheral HPV-specific T cells and CD8+ T cells in their treated patients. Another phase I/II trial is investigating M7824, the anti-PD-L1/TGF-β fusion protein, in combination with HPV-16 cancer vaccine PDS0101 and immunocytokine NHS-IL12 in metastatic/refractory HPV-associated solid tumor malignancies (NCT04287868). M7824 is also under examination in another phase I/II trial in combination with PRGN-2009, a novel gorilla adenovirus GAd HPV vaccine with agonist epitopes of E6 and E7 (NCT04432597), based on previously reported data that demonstrated preclinical efficacy and increased immune response in mouse models (53). VERSATILE-002, a phase II trial, is studying the PDS0101 vaccine and pembrolizumab combination in recurrent/metastatic HPV-positive HNC.



Adoptive Cell Therapies

In addition to vaccines, several clinical trials have been initiated to study treatment strategies using adoptive T cell therapy against HPV-associated cancers. A phase I/II trial enrolled patients with HPV-positive tumors (N = 12) to undergo treatment with genetically engineered T cells with receptors targeting HPV-16 E6-expressing tumor cells as well as cyclophosphamide, fludarabine, and aldesleukin (NCT02280811) (54). Post-treatment results demonstrated anti-tumor response and decrease in tumor size, highlighting a role for adoptive T cell therapy in treating HPV-associated cancers. To that same effect, a phase I/II trial is currently recruiting patients to determine the dose and efficacy of engineered T cells targeting tumors cells with E7 protein (NCT02858310). Another phase II trial mimicked the study design of the previous trials with TILS treatment in combination with cyclophosphamide, fludarabine, and aldesleukin in HPV-associated cancers (NCT01585428). The trial showed an association between clinical response and HPV reactivity of the modified T cells as well as their presence in the peripheral blood (55). Potential biomarkers may predict response to novel therapeutics that utilize the patient’s cells will be important when utilizing this treatment method.






Nasopharyngeal Carcinoma, EBV-Positive

NPC is a rare epithelial cancer type of the nasal cavity occurring most commonly in Southeastern Asia, China, Hong Kong, and Taiwan (8). It is characterized as an aggressive, locoregional disease that primarily affects males of Asian descent. Globally, there are approximately 129,079 new cases of NPC and 72,987 deaths from NPC annually, with a high incidence rate in males (3:1) (3, 56). Although early stage disease portends great 5-year survival rates of greater than 80%, stage IV metastatic disease is associated with poor survival rates of less than 25% (57, 58). NPC has been demonstrated to be highly sensitive to radiation therapy and chemotherapy, although resistance to therapy frequently occurs and patients with relapsed or metastatic disease inevitably recur with limited options for treatment (59–61).


Treatment for Locally Advanced EBV+ NPC

EBV is an oncogenic, human-tropic γ-herpesvirus that infects >90% of the global population, mainly infecting epithelial and B-cells (62–64). After primary infection occurs, EBV establishes life-long residency in its host through establishment of latency in infected cells, although under different stimuli the virus can become reactivated and undergo lytic replication to result in the production of new virions (65). Similar to HPV, EBV miRNAs minimize antigen production in order to evade recognition by the immune system of the host, thus allowing for immune evasion and EBV latency in the host cells (Figure 1) (66). Over time, these EBV-affected cells can result in the development of various cancers. Both viral life stages have been associated with the development of several malignancies of lymphoid and epithelial cell origin including Burkitt’s lymphoma and Hodgkin lymphoma (65, 67). Of these malignancies, NPC holds the strongest association to EBV, with most NPC cases being EBV-positive (EBV+) (8, 62). The association between EBV and NPC was initially reported in 1973. Of the 129,000 cases of NPC globally diagnosed each year, ~97% are EBV+, with those occurring in high and intermediate incidence areas being 100% EBV+ and those in low incidence areas being 80% EBV+ (62, 68). Of the ~72,000 annual deaths attributed to NPC, ~97% are associated with EBV (68).

Treatment of locally advanced NPC typically involves multimodality therapy with concurrent chemoradiation treatment using platinum-based agents. Post-treatment plasma EBV levels have become a prognostic indicator of response and clinical outcomes in NPC (69, 70). To date, there are no licensed EBV-targeted strategies against EBV+ NPC.

Interest initially arose in utilizing individual patient’s immune cells to attack EBV-mediated cancers in order to leverage durable responses to this aggressive cancer. Ongoing clinical trials are exploring immunotherapy approaches using autologous and allogeneic EBV-specific T cells against NPC with promising interim results (71, 72).



Treatment for Metastatic/Recurrent NPC

Unfortunately, recurrent or metastatic NPC is associated with poor outcomes and a median OS of 20 months (73). Standard-of-care treatment of recurrent/metastatic NPC involves platinum-based doublet chemotherapy. A milestone phase III clinical trial investigated the efficacy of platinum-based doublet chemotherapy treatment with cisplatin/gemcitabine or cisplatin/5-fluorouracil (5-FU) (74). 362 recurrent/metastatic NPC patients were randomized 1:1 to receive either combination. The ORR was 64% in the cisplatin/gemcitabine group versus 42% in the cisplatin/5-FU while median PFS was 7.0 months (cisplatin/gemcitabine) versus 5.6 months (cisplatin/5FU) (p <0.0001). This trial demonstrated statistically superior PFS with cisplatin/gemcitabine treatment, establishing the combination as standard first-line treatment for recurrent/metastatic NPC.

Although EBV-associated NPC results from EBV latency in the host cells due to immune evasion mechanisms by EBV, studies have been initiated to examine the potential of incorporating immunotherapy in NPC. Delord et al. presented the results from the NPC cohort in CheckMate 358, a phase I/II study evaluating nivolumab in virus-associated tumors (75). 24 patients with recurrent/metastatic NPC were enrolled, of which 88% were EBV positive tumors. The ORR was 20.8%, however the ORR was higher in patients that did not receive prior therapy in the metastatic setting (N = 5). With a median follow-up of 26 weeks, median PFS was 2.4 months while median OS was not reached. Another multicenter study (NCI-9742) examined the clinical efficacy of nivolumab in recurrent and metastatic NPC (76). Of the 44 patients that were enrolled in the trial, nine patients (20%) received nivolumab for over 12 months. The ORR was 20.5% (N = 9), the median PFS was 2.8 months, and the median OS was 17.1 months. The trial also examined the possible correlations of PD-L1 expression, human leukocyte antigens A and B expression, or EBV virus DNA levels with ORR and OS. They found that patients with greater than 1% PD-L1 expression were more likely to respond to nivolumab compared to PD-L1-negative NPC while EBV virus DNA levels had no impact. Interestingly, tumors that lacked human leukocyte antigens A and/or B expression were correlated with superior PFS versus tumors that expressed both antigens (30.9% versus 5.6%, p = 0.1). Overall, these trials demonstrated promising clinical results in treating this aggressive disease with nivolumab.

Keynote-028, phase Ib trial, evaluated the safety and efficacy of pembrolizumab 10 mg/kg every two weeks in PD-L1 positive (>1% expression) recurrent or metastatic NPC (77). With a median follow-up period of 20 months, the ORR was 25.9% of the 27 patients that were enrolled in the trial. By investigator review, the median PFS was 6.5 months and the median OS was 16.5 months. Although majority of patients were heavily pre-treated, pembrolizumab showed good safety profile and favorable anti-tumor activity in NPC patients with PD-L1 expression.



Ongoing Trials and Development in NPC


Checkpoint Inhibitors in Locally Advanced NPC

Trials are underway to investigate the role of immune checkpoint inhibitors in the locally advanced setting given the encouraging results from metastatic/recurrent NPC trials. Lim et al. recently presented interim results from their phase II trial of nivolumab and ipilimumab in EBV+ locally advanced NPC (NCT03097939) (78). Eligible patients had EBV+ NPC, measurable blood EBV DNA levels, and a history of only one line of treatment. Of the 26 evaluable patients at the time of the presentation, the median duration of response was 5.9 months. The median PFS was 5.3 months with a median follow-up period of 10.6 months. Interestingly, they noted a difference in median PFS of EBV-low versus EBV-high patients (6.8 months versus 2.7 months, respectively). Overall, Lim at al. revealed encouraging preliminary results in combination PD-1 and CTLA-4 blockade in NPC patients. There are several ongoing trials evaluating monotherapy and combination immunotherapy strategies in locally advanced NPC, see Table 2.


Table 2 | Ongoing clinical trials investigating monotherapy and combination immunotherapy strategies in locally advanced, recurrent, or metastatic NPC.





Checkpoint Inhibitors in Recurrent/Metastatic NPC

In the recurrent/metastatic setting, camrelizumab is also under investigation in combination with cisplatin and gemcitabine in a phase III clinical trial (NCT03707509). Prior results were published from two phase I trials where previously treated recurrent or metastatic NPC patients received camrelizumab monotherapy while treatment naïve patients received six cycles of camrelizumab, cisplatin, and gemcitabine with adjuvant maintenance camrelizumab (80). In the camrelizumab monotherapy trial versus the camrelizumab combination trial, the ORR was 34% versus 91%, demonstrated promising clinical activity. Interim results from a phase II trial of patients randomized to receive spartalizumab (PDR001), a humanized anti-PD-1 IgG4 mAb, or chemotherapy (NCT02605967) were recently presented (81). The trial did not reach its primary endpoint of PFS (median PFS of 1.9 months in the spartalizumab arm versus 6.6 months in the chemotherapy arm). However, the duration of response at 12 months in patients responding in the spartalizumab group was 61.0%. While spartalizumab monotherapy did not improve PFS compared to chemotherapy regimens, a subset of patients could potentially benefit with durable response to the monotherapy treatment.

Keynote-122, an active phase II study of pembrolizumab versus chemotherapy (capecitabine, gemcitabine, or docetaxel) in platinum-pretreated recurrent or metastatic NPC (NCT02611960) (82), was initiated due to results from the phase IB Keynote-028 reporting an ORR of 25.9% as well as promising median PFS/OS in heavily pre-treated NPC patients treated with pembrolizumab (77). A phase III trial of tislelizumab, a humanized monoclonal antibody against PD-1, with cisplatin and gemcitabine versus chemotherapy alone is currently underway (NCT03924986) after preliminary results from the phase II trial showed 80% of patients (N = 9 out of 15) achieving a partial response or stable disease with monotherapy tislelizumab treatment (83). Results from a trial examining an EBV-specific immunotherapy drug (NCT00834093) demonstrated a poor ORR, a median PFS of 2.2 months, and a median OS of 16.7 months (84). Please refer to Table 2 for a list of ongoing trials recruiting metastatic/recurrent NPC patients to investigate the role of novel monotherapy and combination immunotherapy drugs.



Vaccine Therapy in NPC

EBV+ NPC cancers express a select set of latent EBV antigens, which offers an excellent opportunity for targeted therapeutics (85–87). NPC is characterized by the expression of the latent antigen EBNA1, responsible for maintenance of the viral genome in infected cells, and the latent antigen LMP2, which supports proliferation, survival and migration of infected cells (67, 88–90). Currently, these two antigens are being tested together as components of a therapeutic vaccine candidate in phase I/II clinical trials against EBV+ NPC, and have been shown to be immunogenic and able to elicit EBV-specific CD4+ and CD8+ T-cell responses (91, 92).



Adoptive Cellular Therapy in NPC

The ability to target EBV as a therapeutic option represents an important milestone, especially in light of limited treatment strategies available for recurrent/metastatic EBV+ NPC. Adoptive cellular therapy utilizes individual patient’s immune cells to attacked EBV-mediated cancers including NPC. VANCE, a phase III trial is currently underway investigating carboplatin and gemcitabine doublet chemotherapy with infusions of autologous EBV-specific cytotoxic T cells in advanced NPC (NCT02578641). This trial was initiated based on the phase II trial results which demonstrated superior survival outcomes with 2-year OS at 62.9%, a median PFS of 7.6 months, and a median OS of 29.9 months in 35 recurrent/metastatic NPC patients who received the combination therapy (93). They also found that high EBV-DNA levels were correlated with high tumor burden and poor prognosis. An ongoing phase Ib/2 trial (NCT03769467) is assessing the tolerability and anti-tumor activity of combination tabelecleucel, an allogeneic T-cell immunotherapy, and pembrolizumab in platinum-treated recurrent/metastatic EBV+ NPC (94). The primary objective of the phase Ib portion is to identify the maximum tolerated dose and any dose-limiting toxicities while the phase II portion’s aims are safety and ORR. Additional trials are currently recruiting patients to investigate other adoptive T cell therapies in recurrent/metastatic NPC (Table 2).





Conclusions

There has been vast work in employing the immune system in HNSCC. Most immune therapy clinical trials include a very heterogenous population of HNSCC patients and may only stratify OPSCC and NPC based on viral etiology resulting in small subgroups hence, direct comparisons of viral and non-viral-related HNSCC are difficult to compare statistically. Given the implications of immune dysfunction in viral-associated malignancies, treatment targeting the immune system is a reasonable option for clinical success but may be challenging. Most clinical work with immune therapy has been done in the metastatic setting with some encouraging results. There are subsets of patients who respond very well while others have no response at all. Lack of response is likely multifactorial and may be due to the difficulty in leveraging the immune system in viral-associated HNCs that employ various mechanisms of immune evasion. There are many levels of investigation which need attention to ensure success with these strategies including the identification of: who is most likely to respond, the confounding factors of non-responsiveness, which immune and non-immune targets should be addressed, and which strategies alone or together have a higher likelihood of eradicating the cancer. Further work is needed to identify the line of therapy which is most conducive for immune therapies. Many of these immune targeted strategies are currently under evaluation in earlier settings and including, curative intent treatments of virally induced OPSCC and NPC. We believe immune resistance is multifactorial and the biological properties of this disease need to be further delineated to better understand mechanisms of immune resistance. Future directions involve combination regimens including doublet immune checkpoint inhibitors, immune checkpoint inhibitors and vaccines, as well as adoptive cellular therapy.
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Purpose

The aim of this study was to evaluate tumor blood flow (TBF) as a predictor of radiotherapy response for nasopharyngeal carcinoma (NPC).



Materials and Method

A total of 134 patients were divided into two groups, the complete response (CR) group and the partial response (PR) group based on RECIST 1.1 recommendations. The statistical difference was evaluated for pre- and mid- or post-treatment TBF and changes of TBF for tumors and metastatic lymph nodes between CR and PR, respectively. The receiver operation characteristic (ROC) curve was utilized to evaluate the accuracy of TBF in predicting the response of radiation therapy. The association between TBF and SUVmax was also investigated.



Results

The reduction of TBF in CR was significantly lower than that in PR for primary tumors (P <0.001) and metastatic lymph nodes (P <0.001). The multivariate logistic regression analysis indicated that the reduction of TBF is an independent predictor of the response of radiation therapy for primary tumors (P <0.001) and metastatic lymph nodes (P <0.001). The accuracy of TBF reduction in predicting the response of radiation therapy was 0.817 in primary tumors and 0.924 in metastatic lymph nodes, respectively. No significant correlation was observed between the TBF values and SUVmax of primary tumors (r = -0.008, P = 0.954) and metastasis lymph nodes (r = -0.061, P = 0.652).



Conclusion

This study suggests that the reduction of TBF is a promising parameter for evaluating the response of radiation therapy.





Keywords: tumor blood flow, radiotherapy, nasopharyngeal carcinoma, predictor, response



Introduction

Nasopharyngeal carcinoma (NPC) is one of the distinctly distributional cancers and is geographically prevalent in southeast Asia and southern China (1). It is well known that Epstein-Barr virus (EBV) infection, host genetics, and environmental factors contribute to the occurrence of NPC, and EBV DNA testing is used to detect, prognose, and assess tumor response earlier (2, 3). The pre-treatment EBV DNA load was correlated positively with progression of NPC after curative treatment, plasma EBV DNA immediately post treatment had the potential as a quantitative biomarker of tumor response assessment to guide the use of aggressive adjuvant chemotherapy (4). There is no abundant assay with robust analytical characteristics for clinical utility to inform treatment management. Based on monitoring treatment response, it is therefore essential to extract reliable prediction factors that could divide patients into low- or high-risk groups. The low-risk group may avoid ineffective therapies and prevent unnecessary adverse effects, while the high-risk group may benefit from aggressive therapies.

A reliable and accurate predictor of early response can improve patient care by tailoring treatment and optimizing follow-up plans. The Response Evaluation Criteria in Solid Tumors (RECIST 1.1) criteria is usually recommended to assess the morphologic changes of the tumor with computed tomography (CT) or magnetic resonance imaging (MRI) (5). Fujima reported that anatomic imaging changes had several limitations in predicting treatment response (6) and were not sufficient for detecting the intratumoral heterogeneity. 18F-Fluorodeoxyglucose positron emission tomography (18F-FDG PET) is another technique used to evaluate the recurrence, metastasis, or prognosis of NPC, by several semi-quantitative parameters, such as standardized uptake value (SUV), volumetric parameters: metabolic tumor volume (MTV), and total lesion glycolysis (TLG) (7). However, PET-CT has low spatial resolution and a high false-positive rate, so these parameters cannot insufficiency predict treatment response to radiotherapy (8). Shi et al. compared 18F-FLT and 18F-FDG PET/CT in monitoring and predicting tumor regression of NPC; parameters of FDG PET were more strongly correlated to treatment response than those of FLT PET (9). Hanamoto et al. explored whether pre-treatment metabolic tumor volume (MTV) and total lesion glycolysis (TLG) of PET-CT can predict the local response of laryngohypopharyngeal cancer by chemoradiotherapy (10). Xie et al. showed that SUVmax of PET-CT may be a valuable tool to predict prognosis in locally advanced NPC (11). Liu et al. suggested that the Hopkins criteria was a reliable predictive and prognostic indicator in post-treatment assessment, the addition of EBV DNA and PET/CT did not improve evaluative accuracy of therapy response (12).

Functional MRI may predict response and allow for the modification of a treatment schedule before or early in the course of treatment. Liu et al. explored whether quantitative image parameters based on contrast-enhanced MRI served as new predictive tools for NPC response to chemoradiotherapy (13). Huang et al. demonstrated that Kmean-post values were the most powerful predictor for the early treatment evaluation of NPC in the investigation of DKI and DWI (14). Tumor blood flow (TBF) can be used to determine the tumor perfusion. Previous studies suggested that TBF might lead to tumor cells becoming resistant to treatment; and several factors, such as tumor vascularity, permeability, and oxygenation, are involved in this effect of TBF (15). However, TBF is usually obtained by contrast-enhanced MRI, which may increase the risk of allergy and nephrogenic systemic fibrosis. Recently, it was reported that TBF can be achieved by the noninvasive arterial spin labeling (ASL) MRI technique without contrast agents (16). Wu et al. compared the TBF obtained from ASL-MRI and dynamic contrast-enhanced (DCE)-MRI and observed that both test methods were highly consistent (17). In this study, we explored the feasibility of TBF with ASL-MRI in quantitatively evaluating the tumor response of NPC.



Materials and Methods


Patients

The retrospective study protocol was approved (No. 201807036) by our clinical research ethic committee at the Cancer Institute & Hospital, ** Academy of Medical Sciences. From September 2018 to December 2019, 134 newly diagnosed nasopharyngeal carcinoma (NPC) patients were enrolled in our study and classified as stage I (n=5), II (n=20), III (n=75), and IV (n=34) patients according to the 8th edition of the American Joint Committee on Cancer staging manual with the following inclusion criteria: (1) Age > 18 years old, ECOG ≤ 2; (2) a clear pathological diagnosis; (3) without distant metastasis; and (4) without any anti-tumor treatment before the MR examination. The exclusion criteria was: (1) Cases of previous or concurrent malignancy; (2) cases with contraindication of MRI examination, such as individuals with pacemakers, non-detachable metal objects, or claustrophobic disorder; and (3) patients without complete treatment. All the patients received definitive radiotherapy and platinum-based concurrent chemoradiotherapy. The details of standard treatment were as follows: dosing lists of cisplatin were 40 mg/m² per week or 80–100 mg/m² every 3 weeks, which is commonly acceptable as the first choice with concurrent radiation therapy. The curative radiation dose needs to reach a total of 66-70 Gy in 33-35 fractions. Two MRI examinations including ASL were obtained from each patient as follows: (1) pre-treatment, 0-5 days between the first MRI examination and the start of treatment; (2) mid-treatment, 0-1 days after receiving 50 Gy radiotherapy or post-treatment, 0-3 days from the end of radiotherapy. Owing to high costs and unavailability of medical insurance reimbursement, 18F-FDG PET/CT scans were only acquired from 62 patients before radiotherapy who needed to identify suspicious lesions or exclude distant metastases. Besides, fasting blood glucose concentration had to be under the level of 10.0 mmol/L for the PET/CT scan in patients with diabetes.



MR Imaging Protocol

MR images were acquired using a 3.0 T positioning MR system (Discovery MR750, GE Medical Systems, Milwaukee, Wisconsin, USA) with a 6-channel neurovascular coil. The following sequences were employed: the axial T1WI (fast spin echo, FSE, TR= 670 ms, TE= 13.63 ms); the arterial spin labeling sequence, which is a 3D fast spin echo (FSE) spiral-based pseudo-continuous pCASL sequence (NEX= 3, bandwidth= 62.50 kHz, thickness= 3 mm, slice gap= 0 mm, FOV= 26 cm, TE= 11.4 ms, PLD 2025 ms [2.0 s]: TR/TA= 5481 ms/318 s); the axial T2WI with periodically rotated overlapping ParallEL lines with enhanced reconstruction (Propeller) (Fast Recovery FSE, TR= 7059 ms, TE= 75 ms, NEX= 1.8, bandwidth= 83.33 kHz, thickness= 3 mm, slice gap= 0 mm, FOV = 28 cm, matrix = 384, TA = 419 s), which are non-enhanced series. In addition, a contrast-enhanced scan based the axial T1WI was also accomplished by using 3D liver acquisition with volume acceleration-flexible (LAVA-Flex) with Gadolinium -DTPA -BMA (Ominscan, GE lifeScience, China) (dose 0.2 ml/kg and rate of 2.0 ml/s. The parameters were TR= 6.8 ms, TE= 2.86 ms, NEX= 1, bandwidth= 142.86 kHz, thickness= 3 mm, slice gap= 0mm, FOV= 34 cm, matrix= 296× 296, TA= 64 sec). The scan range included nasopharyngeal tumor and neck lymph node regions. In order to minimize motions during scanning, a head, neck, and shoulder thermoplastic mask was used and patients were trained to avoid moving their tongues, swallowing, or speaking as best as they could.

Data analysis was achieved on Advantage Workstation (GE Healthcare, Milwaukee, WI, USA). The following equation was used to calculate the TBF values (18):

	

where BF is blood flow, λ represents the blood partition coefficient in ml/g, SI control and SI label are the time averaged signal intensities of the control and label images, respectively, and PLD is the post-labeling delay time. T1, blood is the longitudinal relaxation time of blood in seconds, α is the labeling efficiency for pCASL, SIPD is the signal intensity of a proton density-weighted image, and τ is the pCASL label duration. 6000 is a customary element, which changes the unit from ml/g/s to a commonly used unit, i.e., mL/100g/min.



18F-FDG PET Imaging Analysis

All patients needed to fast for at least 8 h and measure their blood glucose level before scanning. 18F-FDG PET/CT scans were performed 60 min after an injection of 5.55–7.40 MBq/kg of 18F-FDG (GE Discovery LS PET/CT). CT images were acquired on the same scanner. The PET scans were reconstructed with the CT-based attenuation correction using the ordered subset expectation maximization (OSEM) algorithm. The standard uptake value (SUV) in the region of interest (ROI) was calculated using the tissue concentration of 18F-FDG measured by PET/the injected FDG dose/body weight. The FDG uptake in primary tumors and metastasis lymph nodes using the maximum SUV (SUVmax) were calculated using semiquantitative analysis. If the tumor extended beyond two slices, the highest SUV value of all tumor ROIs was defined as the SUVmax.



Tumor ROI Delineation and Evaluation

The primary tumors and metastasis lymph nodes were delineated by a board-certified head and neck tumor radiologist with 10 years experience. Firstly, we delineated the polygonal ROIs along the tumor boundary for both primary tumors and all metastasis lymph nodes on axial T2WI. The skull base bone was excluded. Bone lesions are unmeasurable, while the peripheral soft tissue components can be evaluated by CT or MRI in RECIST 1.1. The diagnostic criteria for metastatic lymph nodes (LNs) were: retropharyngeal LNs > 5 mm or cervical LNs > 10 mm in shortest diameter; three or more contiguous and confluent LNs, each with shortest diameter of 8–10 mm; LNs of any size with central necrosis or a contrast-enhanced rim; LNs of any size with extracapsular extension LNs of any size with overt FDG uptake on the FDG-PET scan; non-metastatic lymph nodes were without the above features. Secondly, the axial T2WI and TBF maps derived from ASL of the same level were rigidly registered and the ROIs were propagated to the corresponding TBF map (Figure 1). The cystic necrosis and vessel signal void were excluded from the TBF measurement to avoid inaccurate perfusion information in the ROIs. If the ROIs were expanded for two or more slices on the TBF maps, the mean TBF values of primary tumors and all metastasis lymph nodes were calculated in each patient. The reduction rate of TBF pre- and mid- or post-treatment was calculated and evaluated for each ROI. It was calculated as follows: percentage change of TBF = (mid- or post-treatment TBF - pre-treatment TBF)/(pre-treatment TBF) × 100%.




Figure 1 | Representative examples of nasopharyngeal tumor region of interest (ROI) on different images. (A) ROI on the axial T2WI. (B) The ROI on the corresponding TBF map, which demonstrated higher perfusion compared with the surrounding tissue. (C) The same ROI on T2WI and ASL fusion images. The images of (A–C) were obtained from the pre-treatment MRI of a 66-year-old woman with a T3 non-keratinizing undifferentiated tumor.



In addition, the tumor volume (TV) was measured on contoured ROIs using the Varian Eclipse Treatment System (version 15.5, Varian Medical System, Palo Alto, CA, USA). If tumors enlarged beyond two slices, the total of the TV was calculated for all slices (19). The evaluation time of tumor response was early post-treatment, 0-3 days from the end of radiotherapy. According to the Response Evaluation Criteria in Solid Tumors criteria, by their TV changes between pre-treatment and early post-treatment MRI examinations, 134 patients were classified into two groups: the complete response (CR) group was defined as the disappearance of all tumor lesions, the partial response (PR) group was defined as a percentage reduction of TV ≥ 30%.



Statistical Analysis

The associations between response of radiotherapy and clinicopathologic characteristics were assessed by the chi-square test. The statistical difference between pre- and post-treatment TBF, and the change of TBF between CR and PR groups were evaluated with non-paired t-test. Univariate and multivariate logistic regression models were utilized to analyze those parameters to determine whether they have independent predictive value for treatment response. In order to perform multivariate logistic regression, the variables, which were statistically significant in univariate logistic regression, were analyzed. The detected predictive values were also assessed using receiver operating characteristic (ROC) curves and area under the curve (AUC). All statistical analysis was performed using SPSS (version 22; IBM SPSS) and Graphpad prism6.0 (Graphpad Software, San Diego, CA). P <0.05 was considered to indicate statistical significance.




Results


The Clinicopathological Characteristics of Patients

In total, 134 patients were included in this study. In 100 patients, the TBF was evaluated when patients received 50 Gy of radiotherapy. In 34 patients, the TBF was determined when patients received 70 Gy. Notably, most of these patients (except T1,2N0) continued to receive adjuvant chemotherapy after 70 Gy. There were 120 out of 134 patients in this study with known metastatic lymph nodes. A total of 99 (73.88%) primary tumors and 46 (34.33%) metastasis lymph nodes were categorized into the CR group to radiotherapy, the remaining 35 (26.12%) and 74 (65.67%) were in the PR group (Figure 2). The radiotherapy response of primary tumors was significantly better than metastatic lymph nodes (P < 0.001). There was a significant difference in primary tumor radiotherapy response between T1+2 and T3+4 (P = 0.003), I+II and III+IV (P = 0.018). The treatment response of metastatic lymph nodes was significantly different between I+II and III+IV (P = 0.002). However, there was no significant correlation between treatment outcome and the other clinicopathological characteristics such as gender, age, pathology, and therapy (Table 1).




Figure 2 | Fusion images of the ASL superimposed on T2WI acquired from patients with nasopharyngeal carcinoma accompanied by metastatic lymph nodes. The fused image by T2WI and ASL of nasopharynx lesion and metastatic lymph node pre-treatment and post-70 Gy radiotherapy. (A–D) represent complete response in nasopharynx lesions and metastatic lymph nodes, respectively. (E–H) represent partial response in nasopharynx lesions and metastatic lymph nodes, respectively. (A, B) The pre-and post-treatment ASL of a 51-year-old man with a T2 non-keratinizing undifferentiated tumor. (C, D) The pre-and post-treatment ASL of a 54-year-old woman with an N3 non-keratinizing undifferentiated tumor. (E, F) The pre-and post-treatment ASL of a 66-year-old woman with a T3 non-keratinizing undifferentiated tumor. (G, H) The pre-and post-treatment ASL of a 57-year-old man with an N2 non-keratinizing differentiated tumor.




Table 1 | Clinical characteristics of all patients and radiotherapy response.



We measured the SUVmax of primary tumors and metastasis lymph nodes for 62 and 57 patients, respectively. The pre-treatment SUVmax were 12.85 ± 4.15 and 11.24 ± 4.35 for primary tumors and metastasis lymph nodes, respectively. The mean TBF of primary tumors and metastatic lymph nodes pre-treatment were 87.68 ± 22.36 mL/100g/min and 69.73 ± 14.73 mL/100g/min, respectively. There was no significant correlation between the TBF values and SUVmax of primary tumors (r = -0.008, P = 0.954) and metastasis lymph nodes (r = -0.061, P = 0.652).



Associations of TBF With Radiotherapy Response

The pre-treatment TBF of patients in the PR group was significantly lower than that in the CR group, i.e., 76.56 ± 26.23 mL/100g/min vs. 89.43 ± 20.56 mL/100g/min in primary tumors (P = 0.004), and 66.31 ± 13.48 mL/100g/min vs. 73.87 ± 14.23 mL/100g/min in metastatic lymph nodes (P = 0.004). The mid- or post-treatment TBF of PR patients was significantly higher than that in CR patients, i.e., 64.78 ± 18.39 mL/100g/min vs. 55.79 ± 17.46 mL/100g/min in primary tumors (P = 0.011) and metastatic lymph nodes 59.40 ± 12.25 mL/100g/min vs. 50.75 ± 11.92 mL/100g/min in metastatic lymph nodes (P < 0.01). The reduction rate of TBF between mid- or post-treatment and pre-treatment was significantly lower in CR than those in PR (-36.49 ± 18.27% vs. -11.80 ± 20.74% in primary tumors, and -30.42 ± 13.17% vs. -9.95 ± 9.26% in metastatic lymph nodes) (P < 0.001 and P <0.001, respectively) (Figure 3). However, the SUVmax of primary tumors and metastatic lymph nodes in the pre-treatment period was not significantly different between CR and PR groups (12.71 ± 3.94 vs. 13.39 ± 5.04 in primary tumors, and 10.53 ± 4.26 vs. 11.76 ± 4.41 in metastatic lymph nodes, with P = 0.602 and P = 0.297, respectively).




Figure 3 | Box plot analysis of TBF between CR and PR in 134 primary tumors and 120 metastatic lymph nodes. TBF of primary tumor (A) before treatment and (B) after treatment; TBF of LNM (C) before treatment and (D) after treatment; (E) TBF change of primary tumor; (F) TBF change of LNM.





Independent Predictors and Accuracy Prediction of the Change of TBF

Multivariate logistic regression showed that the change of TBF (HR = 1.072; P < 0.001), T-stage (T1+2 vs. T3+4: HR = 0.319; P = 0.032) and pathological types (keratinizing squamous vs. non-keratinizing: HR = 15.619; P = 0.015) were independent predictors of primary tumor response to radiotherapy (Table 2). We also found that the change of TBF and clinical stage was associated with radiotherapy response of metastatic lymph nodes (HR = 1.231; P < 0.001. I+II vs. III+IV: HR = 0.084; P = 0.009. Table 3). In addition, ROC curves were calculated to further evaluate the effectiveness of TBF metrics in discerning CR from PR to radiotherapy. The accuracy of predicting the response for primary tumors and metastatic lymph nodes using percentage change of TBF was 0.817 and 0.924, respectively (P < 0.001, P < 0.001; Figure 4).


Table 2 | Clinicopathologic characteristics associated with radiotherapy response of primary tumors.




Table 3 | Clinicopathologic characteristics associated with radiotherapy response of metastatic lymph nodes.






Figure 4 | Receiver operating characteristic (ROC) curves depicting the predicting capability of the change of TBF in 134 primary tumors and 120 metastatic lymph nodes. The area under the ROC curve was (A) 0.817 (95% confidence interval: 0.737-0.897, P < 0.001) and (B) 0.924 (95% confidence interval: 0.879-0.969, P < 0.001), respectively.






Discussion

In this study, we demonstrated that TBF is a useful metric to distinguish complete response patients from partial response patients. The conclusions from this work contribute to the development of individualized treatment for patients. Although the clinical use of the TBF parameter in head and neck carcinoma has been recently reported (20), none of the previous works studied NPC patients. To the best of our knowledge, this is the first study that evaluates the predictive accuracy of TBF calculated by pCASL in NPC patients.

Intensity-modulated radiotherapy (IMRT) can provide a good coverage of target volume and reduce exposure to the adjacent normal tissues, which improved the locoregional control rate to 80% - 90% in NPC (21). The low local control rate (73.88%) in our study was due to immediate evaluation after radiotherapy. Some lesions will gradually degrade within three months after radiotherapy because of delayed effect. Our study demonstrated that T-stage is the main influence factor for local control of primary tumors. In previous studies (22), T-stage and primary tumor volume were proved to have a significant impact on the prognosis of NPC patients. Au et al. (23) studied 3328 NPC patients treated with IMRT. They found that the 5-year local control rate for T1-3 exceeded 90%, but the local control rate of T4 was 71.6%. This is because T4 tumors are often close to adjacent critical neurological structures, which compromises the dose of radiation covering the tumor volume and therefore weakens local control. Our findings are consistent with these previous studies.

Our results also demonstrated no direct correlation between SUVmax derived from PET-CT and TBF calculated by ASL in NPC. However, Bisdas et al. showed a positive correlation between SUVmax and TBF (24). The possible explanation is that neovascularity and angiogenesis have been known to develop with proliferation of tumor cells in the early period, and the glucose uptake of a tumor rises in parallel. Komar G previously concluded that there was no correlation between SUV and TBF value in HNSCC patients (25), our study came to a similar conclusion. Fujima (26) showed significant correlations between SUV and TBF in HNSCC by different T-stage and tumor locations, i.e., positive correlation in the early T-stage pharynx/oral carcinoma, negative correlation in the advanced T-stage in both the pharynx/oral and sinonasal carcinoma, and no correlation in the overall patient analysis. The conflicting result may be due to several factors such as tumor size, tumor proliferation activity, or the mismatch of angiogenesis and tumor proliferation. Insufficient blood supply leads to relatively low TBF, whereas an aggressive tumor itself demands a high glucose uptake in anaerobic glycolysis. The uncoupling of blood supply and tumor growth may result in low oxygenation of tumor tissue, i.e., tumor hypoxia, which might lead to resistance to radiotherapy (26). Our study showed no correlation between the SUVmax of primary tumors or metastasis lymph nodes and radiation response. It is possible that tumors with high SUVmax may contain more hypoxic cells, which reduce radiotherapy sensitivity. Moreover, necrosis and inflammatory tumors can raise SUVmax and lower radiotherapy efficacy (27). Further analysis is required to investigate and reveal tumor biological correlations.

The TBF obtained from ASL can assess the response of radiotherapy in NPC patients by a noninvasive manner. We compared the change of TBF and tumor response in primary tumors and metastatic lymph nodes. We observed that the accuracy of TBF for predicting the response of primary tumors or metastatic lymph nodes was 0.817 (P < 0.001) and 0.924 (P < 0.001). Although tumor response can be directly observed in MRI, it detected the morphologic changes of tumors; and it failed to provide functional information. TBF reflects tumor perfusion, which is closely related to tumor growth. The timely change of TBF can detect early treatment response and improve patient care by tailoring treatment and the management of follow-up. Our study explored that the change of TBF can be used as a valuable biomarker to predict the sensitivity of radiotherapy and suggested that the TBF values or the change of TBF is positive corrected with survival time. In general, the prognosis of patients with PR is worse than patients with CR. Thus, distinguishing patients who will have a partial response to current therapy from patients who will have a complete response to therapy will help clinicians determine the optimal therapy strategy for these patients. King’s study demonstrated that the pre-treatment TBF calculated by a dynamic contrast-enhanced (DCE) perfusion technique can estimate the prognosis of patients and that lower pre-treatment TBF values showed the worse prognosis (28). Fujima N reported TBF (121.4mL/min/100g) reduction after treatment (24.9 mL/min/100 g) in head and neck tumors; and the TBF reduction rate was remarkably lower in complete response patients than without. Previous ASL-related research mostly focused on the central nervous system and clinical usage in tumor diagnosis, specialization, therapeutic effect monitoring, and assessment of prognosis (29). Some other studies concluded that perfusion images from DCE-MRI may support diagnosis and estimating therapeutic outcome, distinguishing tumor recurrence from therapeutic alteration, and predicting prognosis in NPC (30, 31). Lin M reported that TBF obtained from ASL showed good consistency with the parameters of DCE-MRI. They also demonstrated that different perfusion areas in the whole tumor showed a significant correlation coefficient between ASL and DCE-MRI, and thus ASL may be able to provide a reliable perfusion property without invasion and replace DCE-MRI in NPC (32). Higher TBF causes abundant oxygen in tumors, which improves the sensitivity of radiotherapy in NPC, the lower perfusion in heterogeneous tumor areas or necrotic hypoxic lesions may lead to resistance of radiotherapy (33). The large change of TBF with a larger volume reduction may be caused by shrinking the intratumoral arteriovenous shunt or decreasing the vascular chemoradiotherapy. Furthermore, TBF obtained by ASL can be carried out safely and repeatedly at any time of radiotherapy without a contrast agent and radiation exposure. Monitoring of local TBF change may be used to design chemoradiation de-escalation trials to readjust treatment intensity, which is achieved by FDG-PET (34). The timely evaluation of TBF change can provide helpful information for guiding the choice of adjuvant chemotherapy or earlier salvage surgery after radiotherapy. The advanced diffusion parameter of functional MRI converts medical images into quantitative perfusion predictors to provide prognostic ability without increasing economic cost and invasion in NPC. This is a promising area that requires further investigation.

There are several limitations in this study: First, the study sample is a single-center dataset. Therefore, multi-center clinical experiments and large sample sizes are needed for a greater quantity and higher level of evidence to confirm the results of this study. An external validation is needed to validate the effectiveness of the findings. Second, because of the low spatial resolution of the TBF map, we needed to fuse TBF images to T2WI or enhanced T1WI MRI to distinguish anatomical details and outline the ROI. We tested the mean TBF value from ASL by redrawing ROI and did not evaluate the impact of inter-observer variations. Moreover, although this study suggests that the TBF is a promising parameter for evaluating the response of radiation therapy. We failed to find another “gold standard” criterion, which could be used to perform the ROC curves of RECIST; therefore, we could not compare if TBF was as good as RECIST in evaluating the tumor response. Third, different perfusion parameters may have a complex relationship with each other. A significant correlation was confirmed between TBF derived from ASL and parameters of DCE - MRI. Further studies are needed to explore the combination of both perfusion parameters. Fourth, the follow-up time of this study was limited, and no long-term treatment response and overall survival have been investigated yet. Future studies will extend the follow-up time and discuss in detail the relationship between TBF and radiation prognosis. This research project is still ongoing, and related data such as tumor-free survival, overall survival, local control rate, relapse rate, and metastasis rate are being followed up.



Conclusions

In conclusion, TBF of ASL is a promising metric in evaluating tumor perfusion quantitatively and the change of TBF is a non-invasive choice for accurately predicting response of radiotherapy in NPC. Thus, this study suggests that when patients undergo radiotherapy at 50 Gy, the change of TBF might be a promising parameter which could evaluate the effectiveness of the therapy strategy. This will help clinicians modify the strategy in time and give rise to benefit to patients.
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Head and neck cancer (HNC) is among the ten leading malignancies worldwide, with India solely contributing one-third of global oral cancer cases. The current focus of all cutting-edge strategies against this global malignancy are directed towards the heterogeneous tumor microenvironment that obstructs most treatment blueprints. Subsequent to the portrayal of established information, the review details the application of single cell technology, organoids and spheroid technology in relevance to head and neck cancer and the tumor microenvironment acknowledging the resistance pattern of the heterogeneous cell population in HNC. Bioinformatic tools are used for study of differentially expressed genes and further omics data analysis. However, these tools have several challenges and limitations when analyzing single-cell gene expression data that are discussed briefly. The review further examines the omics of HNC, through comprehensive analyses of genomics, transcriptomics, proteomics, metabolomics, and epigenomics profiles. Patterns of alterations vary between patients, thus heterogeneity and molecular alterations between patients have driven the clinical significance of molecular targeted therapies. The analyses of potential molecular targets in HNC are discussed with connotation to the alteration of key pathways in HNC followed by a comprehensive study of protein kinases as novel drug targets including its ATPase and additional binding pockets, non-catalytic domains and single residues. We herein review, the therapeutic agents targeting the potential biomarkers in light of new molecular targeted therapies. In the final analysis, this review suggests that the development of improved target-specific personalized therapies can combat HNC’s global plight.




Keywords: head and neck (H&N) cancer, single cell analysis (SCA), organoid technology, 3D culture, omics analyses, therapeutics of HNC



Introduction

The origin of cancer is traced to the characteristic unresponsive cellular behavior towards signals that regulate survival, proliferation, differentiation, and eventual evasion of death (1). The research into the biological mechanisms of cancer progression has advanced our knowledge of disease biology, and new developments in effective anti-tumor therapies have generated a stream of possibilities and strategies to tackle a wide range of cancer types. Despite these advances, head and neck cancer (HNC) remains among the ten most common malignancies worldwide with higher rankings in developing countries (2). The HNCs are categorized by origin in the head, neck, or the upper aero-digestive tract including oral cavity, para-nasal sinuses, pharynx, larynx, cervical esophagus, thyroid, associated lymph nodes, soft tissues, and bone (3). A broad spectrum of tumors arising from different head and neck tissues are designated as HNC, with >90% of malignancies being squamous cell carcinomas (SCC) and its variants. Histopathologically, other tumor of the head and neck region include adenocarcinomas, sarcomas, anaplastic carcinoma, plasmacytoma, lymphomas, and malignant melanoma.

Approximately 75% of the cases of HNC worldwide can be associated with its classical causative agents; heavy tobacco or alcohol consumption (3, 4). Human papillomaviruses (HPV) are also important causative agents for the development of oropharyngeal tumor of the tonsils or the tongue basal area (5). HPV positive tumors exhibit better prognosis and show little correlation with tobacco and alcohol exposure unlike HPV negative tumors (6). Likely, other unknown factors could also play essential roles in tumorigenesis, tumor progression, and metastasis of HNC, such as alteration in microbial diversity and function, genetic polymorphisms in enzymes involved in alcohol and tobacco metabolism (7, 8) or, genetic predisposition as is in Li Fraumeni’s syndrome, Fanconi’s anemia and ataxia telangiectasia (9).

Though several drugs are presently in clinical trials (10, 11), most treatment strategies are hamstrung by limited patient response and the complex tumor microenvironment. Therefore, in-depth studies to elucidate the mechanism of action of drugs, and the challenges that cripple their efficacy, are necessary before devising new molecules with increased efficacy. Till very recently, predicting clone genotypes from tumor bulk sequencing of multiple samples was cardinal to the delineation of tumor profiles. Since drug-resistant clones develop throughout the tumor growth process, their presence often precedes a drug treatment regimen strategy; enabling single tumor cells to evade drug treatment camouflaged by their divergent profiles. Single-cell analysis, spheroids, organoids technology are emerging as solutions that can be exploited for effective treatment strategies by mapping individual genetic profiles of heterogeneous tumor cells.



Heterogeneity: A Challenge in the Treatment of Head and Neck Cancer and Road Towards Solutions

Head and neck cancers, notorious for their heterogeneity and relapsing nature require an improved understanding and characterization in order to counter recurrence, resistance and disparities in therapeutic responses. This heterogeneity and anatomical diversity makes the treatment protocol a virtual nightmare and also demands linking of phenotypic assay data with clinical outcomes in order to optimize the treatment and translate benefits to the patients (12). Though the Cancer Genome Atlas has increased perception of inter-tumoral heterogeneity across scores of patients, the knowledge of intra-tumoral heterogeneity stays very rudimentary.

The conventional diagnostic techniques analyze the tumor population as a whole and, as a result, derive an inference which averages the effects of all different types of cells in the population. Until recently, genotypes were predicted using tumor sequencing from multiple and bulk samples (13). However, the average targeting of cancer is grossly inadequate and strategies are required to characterize individual cancer cells and subsequently optimize treatment regimens. The development of models that consider as well as provide the interactions with ECM and cells of the microenvironment (like cancer-associated fibroblasts (CAFs), myeloid derived suppressor cells (MDSCs) and immune cells like Th1, Th2, Treg cells & cytotoxic T cells, M1 & M2 macrophages, N1 & N2 neutrophils, natural killer cells (NK cells), dendritic cells etc.) (14) becomes necessary. These models necessarily require to mimic other in vivo conditions as well, such as hypoxia which is said to be responsible for stemness (15) and radio-resistance (16), both prominently seen in HNCs.

The single-cell analytical methods and spheroids/organoid models are being found particularly useful in cancer biology and clinical oncology. Aiming to improve the understanding of two key areas, cancer research and, drug discovery, the latter provides suitable models to reproduce the tumor microenvironment while the former gives an accurate measure of cell properties and minimizes adulteration or approximation associated with bulk measurements. The conventional 2D cultures include growing transformed cells derived from tissues in monolayer cultures. Although characterized by easy maintenance and experimental modifications, the extended survival of cancer cell lines in these monolayer cultures allows for the development of undefined mutations and the consequent loss of parental cells’ genetic characteristics (17). Also, the cellular heterogeneity and tissue architecture found in tissues or tumor of their origin is lacking in 2D cultures. On the other hand, organoid and spheroid cultures can mimic or recapitulate the tumor microenvironment signaling by partially permitting vital cell-cell contacts, cell signaling, and cell-ECM interactions. Their higher physiological relevance, susceptibility to manipulation of niche components, signaling pathways and genome editing, makes them an important bridge between 2D culture and in vivo animal models (Figure 1).




Figure 1 | Comparison between two different cell culture systems initiated from the same source. (A) Cells isolated from various tumor sites are grown in 2D and 3D culture systems, and their trajectories are tabulated on the right and left side, respectively. Analysis of mutations in each organoid grown from a single cell may be used to construct the phylogenetic tree. (B) When compared to PDXs or slice cultures, the 3D cultures are amenable for easier manipulation, identification of heterogenous population, and high throughput screening (HTS).



In view of the above, it is reasonable to hypothesize that the organoid and single cell technologies have applicative potential in HNC where identifying, understanding and, addressing the tumor heterogeneity is the primary concern. These technologies can be applied either independently or in combination to discover novel biomarkers and specific molecular targets. Subsequently, the information so retrieved can be supportive of streamlining the drug development procedure (Figure 1). The approaches used for single single-cell isolation vary from targeting either their physical or biological characteristics (Figure 2). The physical characteristics like electric charges, density, size, and flexibility, are exploited by the microchip-based capture platforms, membrane filtration, and density gradient centrifugation. On the contrary, the cells’ biological characteristics such as cell surface markers, size, granularity help in single-cell isolation via affinity chromatography, fluorescence-activated cell sorting (FACS), and magnetic–activated cell sorting (MACS) methods (18). To characterize the heterogeneity in tumor mass and microenvironment, single-cell separation and culturing techniques are significant. These methods not only utilize the physical properties of cells but have added advantage of being label-free techniques. Thus, single cell-sorting and omics analysis techniques have become the backbone of current investigations in the direction of personalized treatment in all forms of cancer including HNC. The single-cell technologies operate on the dual platforms of ‘single-cell separation’ and ‘single-cell analysis’. These technologies are certainly warranted for detection and analysis of intra-tumor heterogeneity (ITH) and decipher the mechanisms of tumor metastasis, investigate omics alterations, and discover precise treatment strategies (19).




Figure 2 | Overview of single-cell isolation technologies. (A) Schematic of fluorescence-activated cell sorting; FACS employs two separate techniques, streamlining the fluorescently labeled cells to pass through a micro-spectrophotometer one cell at a time, and a second to record the emission of the signal. The signals are based on cell dimensions, coarseness, and fluorescence. The technique allows both qualitative and quantitative analysis of a cell population. After the initial sample preparation, the cell suspension is passed in a monolayer in a manner that each cell is subjected to exposure by a laser which permits the fluorescent labels to be identified by the instrument. The instrument applies a charge depending on the nature of the cell, which deflects a droplet containing the cell of interest from the entire flow. This charged droplet is then collected by collection tubes. (B) Magnetic-activated cell sorting differs from FACS in the way that instead of fluorophore tagged labels, this technique uses magnetic bead conjugated with antibodies, streptavidin, lectins, or enzymes. The cells are channelized under an applied magnetic field that allows non-conjugated cells to pass freely. The magnetic bead conjugated cells are then eluted by turning the magnetic field off. Separation can be both positive and negative. Positive separation employs a technique where the cells of interest are conjugated with the magnetic beads. (C) Laser capture micro-dissection uses an inverted microscope, an infrared or ultraviolet laser, and an extraction system. After visual identification of the cell of interest, through a user-defined pattern, the laser cuts the cell from the population. Various extraction methods are used, one of them being the laser activating an adhesive on a thin film kept over the tissue, which in turn sticks to the cell of interest, and the cell can be removed by picking up the film. (D) Manual cell picking also employs an inverted microscope, but instead of lasers, automated micropipettes are used for the cell extraction. MCP’s main advantage over LCM is that live cell cultures can be isolated, in contrast to fixed cells in LCM and (E) A microfluidic device depends on the capture of single cells from the suspension so well diluted that the probability of one cell going into one well is maximum. The microwell technique can accommodate single-cell imaging along with analysis. Automated devices streamline the cells in a microflow and sort the cells according to specific properties like size, charge, or ligand affinity into different populations.



Several gene expression, metabolic and drug response based studies have reiterated the importance of 3D culture, as it mimicks in vivo cell environment in a better manner as compared to 2D culture (Figure 3). A  study by Shah et al. characterized head and neck cancer organoids metabolically. The cell metabolism was analyzed by measuring the intrinsic fluorescence of NAD(P)H and FAD on a single cell level before and after treatment. The redox ratios of the organoids were measured in response to different drug treatments. Therefore, the study suggested the use of organoids as a complementary tool to perform rapid comparisons between treated and non-treated samples, to observe metabolic response to drugs and to characterize heterogeneity (20). Another study by Tanaka et al. used CTOS (Cancer tissue originated spheroids) method to establish HNC organoids. The study also characterized marker expression profile in spheroids in comparison to the original tumor cell, finally showing similar marker expression of cancer stem cell to in vivo. Exposure to drugs like cisplatin and docetaxel was able to accurately define drug sensitivity in vivo (21). The Driehuis et al. provided a standardized protocol for generation of HNC organoids using patient tumor samples and their subsequent use in drug screenings. This allowed comparison of differential drug responses in different patients. The study also floats the idea that organoids may potentially predict patient clinical responses (22). The same group in a previous study primarily focused on using 3D models for testing in vitro targeted PDT (photodynamic therapy). Since EGFR is primarily targeted in PDT, its expression levels were compared in organoids to that of cell lines used previously. The levels in organoids recapitulated both tumor and normal patient samples. In fact, organoids from tumor were found to be more sensitive to PDT than their corresponding normal/wild type tissues. This suggests that the therapy may prove more significant as it will leave surrounding normal epithelia of tumor unaffected. Therefore, also highlighting the use of EGFR as a major molecular target in HNC which is already suggested by multiple studies (23). Multiple studies have also reiterated that organoids are not relevant only because they grow in 3D spatial arrangement mimicking in vivo conditions but also because they capture distinct behaviors of respective tumor they arise from (24).




Figure 3 | Characteristic features of 2D and organoid culture. Schematic representation showing cells grown in 2D monolayer culture and in 3D culture. An organoid mimics the tumor microenvironment by forming different zones (viz. proliferating zone, quiescent viable zone, and necrotic core) and gradients, which gives a realistic response compared to 2D monolayer cultures.



Co-culture systems in the form of 3D organoid models are gaining more attention recently and are being used for assessing the anticancer effects. Within the tumor microenvironment, the cell-cell interactions between Cancer associated fibroblast (CAFs) and cancer cells contribute to carcinogenesis, via tumor initiation, progression and metastasis (25). Similarly, paracrine signaling between stromal and cancer cells is known to mutually stimulate proliferation and induction of drug resistance. Table 1 discusses some of the model systems used in HNC related studies. Different models allow for customizations relevant to parameters under investigation and provide an edge over conventional techniques. For instance, to elucidate monocyte action, they can be cultured along with HNC cells (26–29). Similarly, fibroblasts and PBMCs can also be co-cultured with HNC cells for EGFR based studies (30) and for testing antibodies (31), respectively. Other studies have shown the role of TAMs (Tumor associated macrophages) and HDFs (Human Dermal Fibroblasts) in cancer stemness and invasion respectively (32, 33). Differential drug response towards EGFR targeting drugs is studied using CAFs (34). Different organoid model systems of HNC were established to explore ERK1/2 and Nanog signaling (35), HSV1 and HPV16 (36), invasiveness in cancer (37), drug screening (38), and other characteristic hallmarks (39). Hydrodynamic shuttling chip (HSC) is a microfluidics platform through which single-cell squamous carcinoma cells are separated and co-cultured with lymphatic endothelial cells to observe the motility and cell-cell communications (40).


Table 1 | Different 3D models of HNC.



State of the art methods for culturing 3D cells are classified on the basis of source materials used, 3D environment, kind of scaffold and the types of cultures generated. Various methods have evolved with date and used for 3D cell culturing are scaffold-dependent methods (41) viz. hydrogel method (42), agarose coating method (43); and scaffold-independent methods (44) like hanging drop method, rotary cell culture system, micropatterning, microfluidics (45), low-attachment plates method (46), magnetic-cell leviation (47). Organoids derived from single cells can generate enough biomass for investigating tumor heterogeneity at the single cell level (Figure 1). Patient-derived organoids (PDOs) are particularly useful as models for specific diseases or infections, which otherwise are difficult to generate or probe in animal models.

Despite many applications 3D cultures cannot mimic in vivo growth factor, biomechanical forces etc. Thus, organoids, in spite of their potential as near-physiological cell culture models, are difficult to culture with unknown or unfamiliar niche or growth factors, and necessitate high technical skill and elaborate experimental set up in most cases. In addition to these, the field of HNC still requires more comprehensive studies using organoid technology as the literature available is less compared to other cancers like breast, colon, prostate etc.

Both the above discussed technologies may be applied to HNC, where understanding the heterogeneity is the major concern. The technologies can be used individually or in a combinatorial approach (48) to first identify biomarkers and molecular targets specific to HNC and then to perform drug screenings/assays which will help in validating novel therapeutic agents and maximizing the success of a proposed therapeutic regimen in the patients (Figure 1). These techniques despite being very promising are limited by the lack of studies specific to HNC i.e.  the literature is scarce. The review aims to encourage more such studies in the field of HNC research. This review also encompasses the omics profiles of single cell and is compared with bulk-cell analysis in HNC. We have discussed the single-cell derived spheroid based therapeutic advances and emerging targeted therapy that evolved due to omics studies. This review provides a panorama of the target landscape for the development of treatments of HNC. The gaps in the HNC treatment are being identified and future strategies to fill those gaps are suggested.


Issues and Challenges in Bioinformatic Analysis With Reference to HNC

The omics analysis with reference of single cells, spheroids and organoids from HNC patient samples is a major challenge. One of the primary objectives of any omics analysis is to find reliable targets for therapeutic intervention. Such a task becomes possible with the identification of cell-specific genes which need to regulated specifically. Identification of biomarkers from a transcriptomics data typically start with the computational analysis of highly differentially expressed genes. This computational analysis becomes possible through well-established and benchmarked bioinformatics strategies, which face specific challenges in the case of single cell data emerging from HNSCC. Three issues require special attention viz. (i) much subtler changes in expression levels in single cell populations when compared to bulk expression data, (ii) sparsely collected data with lots of missing values, and (iii) absence of largescale relationships between single cell changes of expression and gene sets such as pathways or ontology terms, frequently used in interpreting bulk expression data outcomes.

To address the first of these issues (weak biomarker signal in differential expression), many computational tools, dedicated to the scRNA-seq data analysis have been developed (49, 50), which have allowed for significant advances in investigating heterogeneity and single-cell specific markers. A database of tools employed for scRNA-seq analysis has been reported and can be accessed via URL http://www.scRNA-tools.org (51). Tools like SCANPY (52) and Scatter (53) are some of the powerful robust pipelines that are well-integrated for comprehensive analysis (pre-processing and post-processing analysis) of scRNA-seq data. Many of these tools and resources provide expression data analysis of single cells, which takes into account the subtle gene expression level changes.

The second bioinformatics analysis issue is that of sparseness in the data sets. Poor coverage of expression values from each sample has two implications,  (a) the very absence of the expression values may lead to missing the biomarkers altogether as only 10—20% values are reliably captured, (b) these dropouts adversely impact a confident grouping of cellular profiles into their subclasses as each transcript is described by a different set of genes. Few genes are present in one face while others are available in another. One of the solutions that has been proposed by bioinformaticians to address the sparseness of expression data in scRNA-seq is to reconstruct or predict the missing gene expression values, a process well-known as “imputation” in computer science. Traditional computational methods of imputation in general have dealt with a few or a small proportion of missing values in a data set. This problem is, however far more acute in the single-cell data due to much less information available to impute the missing ones. Imputing a missing value often relies on adopting a derived value from carefully selected similar samples. In single cell analysis, groups of samples are not known a priori. Hence, the question of identifying subclasses and imputing the missing values becomes a cyclic problem. Early computational techniques, developed for imputing gene expression values have included ZIFA (Zero-Inflated Factor Analyst) (55) and CIDR (clustering through imputation and dimensionality reduction) (56). Recently, SAVER, MAGIC and scImpute dedicated specifically to reconstructing a large number of missing values or imputations, were developed (57–59) and were successful in recovering the true expression of spike-ins transcripts improving and data quality.

Beyond the algorithms and tools for scRNA-seq analysis by addressing its sparseness, a number of data resources comprising transcriptomic and genomic information are also available in the public domain. The Table 2 has listed the Gene Expression Omnibus (GEO) Dataset collection of transcriptome and associated data from HNC. Also, TCGA HNC dataset, which includes 527 cases, is a vast resource containing comprehensive integrative datasets of SNV, CNV, methylation, and slide images as well, complementing the transcriptome data. These datasets can be accessed from the GDC Data Portal (https://portal.gdc.cancer.gov/).


Table 2 | List of GEO DataSets (expression profiling by array) related to HNC studies for data re- analysis.



The discussion above is based on the review of works on the issues of scRNA-seq analysis in general, which must anyway be addressed in HNC samples as well. However, so far there is only one published study that has specifically addressed the issue of single cell transcriptomics in HNC (60), while another study from the same group has comprehensively reviewed the bioinformatic approaches and key findings derived from for the single-cell technology-based study of cancer (61). These twin papers suggest that the HNC computational analysis and results can be broadly classified into three groups viz. (a) study of cellular heterogeneity and gene expression analysis (b) study of micro-environment of cancer cells and (c) process of invasion and metastasis of cancer cells.

Among the insights gained from bioinformatics analysis of HNC data sets at single cell levels, the foremost finding arguably is reported by Qi et al. (61) in which it was shown that patient outcomes under all treatment regimens are highly dependent on the intrinsic cellular heterogeneity. Intra-tumoral heterogeneity and tumor nest architecture was largely recapitulated within lymph node metastases. Specifically, it was observed that high heterogeneity measured by mutant-allele tumor heterogeneity (MATH) scores leads to poor patient outcomes, thereby highlighting the need to understand the cell population composition of HNSC cells to improve the patient survival rates. Authors also found that malignant cells’ expression patterns could not be distinguished from those of basal tumors, suggesting that most tumors could be defined as a single ‘malignant-basal’ cohort in OSCC. This contrasts with the glioblastoma multiforme (GBM) tumor, in which the malignant cells map to multiple different subtypes. These findings suggest that HNC tumor consists of lower diversity in malignant subtypes or because the subtypes have not been confidently resolved at this stage. Another study was performed to examine the change in tumor properties by simulating single-cell events leading to macroscopic tumor development. The model was able to successfully observe adhesion-driven cell movements and nutrition dependent heterogeneous tumor growth. Different treatment plans strongly influenced the final tumor cell type composition. The growth rate was observed to be significantly decreased when metabolism in tumor cells was upregulated. The mutation rates were adjusted, and low mutation rates cell types with higher division rate and delayed cell death started dominating the tumor. The models were also used to probe treatment regimens. Shorter pulses of chemotherapy were observed to have a better effect than a uniform application. The tumor size was significantly reduced by a single strong radiotherapy pulse as compared to multiple weaker pulses. The presence of tumor stem cells was confirmed to impact treatment outcome by increasing tumor size as well as heterogeneity. In view of the above results, the single-cell simulations can be a source of information to determine the heterogeneity and also predict treatment strategy and outcomes. These proved to be highly useful in improving the understanding of tumor development on a single-cell level but also the differences/similarities from bulk tumor analysis (62).

Since, cellular heterogeneity is so critical to HNC characterization and personalized treatment, researchers have tried to establish general patterns of cellular heterogeneity so prior therapeutics for each group can be developed. Bioinformatics work has concluded that the non-malignant cells from HNC patients could be grouped into eight main clusters by cell type viz. (a) T cells, (b) B/plasma cells, (c) macrophages, (d) dendritic cells, (e) mast cells, (f) endothelial cells, (g) fibroblasts, and (h) myocytes. However, the computational analysis so far has found that these non-malignant cells did not cluster as per their origin, when their expression profiles are used for automatic grouping, suggesting that the cell types and their expression states are consistent across tumor when their expression profiles are used for automatic grouping. On the other hand, malignant cells clustered well by the patient, suggesting expression changes across patients are more diverse than across cells of the same patient. In summary, malignant cells carry patient identity. The origin of cell from the 08 groups was not well encoded into the gene expression program. In the same context, another study by Yost et al. (63) on basal cell carcinoma using a combination of scRNA-seq and TCR sequencing, have implicated cancer-associated fibroblasts (CAFs) in tumorigenesis, tumor survival, ECM remodeling, immune system suppression, and tumor invasion system suppression, and tumor invasion. Another study by Leung et al. (64) focused on single-cell DNA sequencing, exome sequencing, and targeted deep-sequencing has investigated clonal evolution during metastatic dissemination in two colorectal patients. This study has highlighted that understanding the clonality at a single-cell level in a tumor is essential to simultaneously capturing and maintaining spatial information. Another study by Casasent et al. (65) has reported a method called Topographic Single Cell Sequencing (TSCS), which utilizes a combination of LCM (66) and single-cell DNA-sequencing to measure genomic copy number profiles of single tumor cells in breast cancer patients. This approach preserves single cells’ spatial context, which is critical to the location-specific therapeutic targeting strategies. Although the studies mentioned here are performed on cancers other than HNC, they successfully present strategies to combat the challenges associated with bioinformatics analysis.

Recently, a review published on the applications of single cell RNA sequencing in the field of otolaryngology, self-analyzed the single cell RNA seq data of HNC patients taken from the study by Puram et al. The analysis gave following findings that were relevant for clinicians 1) The scRNA-Seq data not only distinguished the disease causing cells from native tissue but also revealed the heterogeneity within diseased tissue samples. 2) Malignant cells from 10 HNC patients, when mixed, formed patient specific clusters i.e. with the cells of their original native tissue only. This suggested that clonal evolution is unique to each patient, and therefore the treatment strategy needs to be personalized. 3) Cells from the tumor microenvironment (TME) were also profiled along with malignant cells. However, these were not found to be clustering on patient-specific basis but rather on a cell-type basis. These cells could thus represent shared disease pathogenesis between all HNC patients that can be targeted using a similar therapy. 4) Rare cell types like stem cells, progenitor cells, CD4+ T-regulatory cells or exhausted T-cells were also identified from TME. These helped in understanding the disease maintenance, immune evasion and decreased efficacy of immune therapies. 5) Most importantly, the cell type specific biomarkers can be identified by investigating gene expression in heterogenous cell clusters detected by scRNA-Seq. For example, Puram et al. identified partial-EMT signature detected in a subset of malignant cells which was also present in existing bulk RNA-Seq tumor data. Such identifications can enable clinicians to determine the risks of nodal dissections on the basis of signatures indicating risk of metastasis. The prognostic signatures predicting survival, metastasis, chemoresistance can vary patient to patient. Such signatures can also be identified as markers to monitor drug response, emergence of resistance etc. before and after treatment. 6) Looking for genetic targets of FDA-approved drugs or small molecules in clusters of malignant sub-populations or TME cells can help identifying new druggable targets. A new database called Pharos describes 20,000 gene/protein targets and the drugs molecules available which can be further repurposed for use in HNC treatment (67).

Some bioinformatics studies have gone beyond biomarker discovery and cellular heterogeneity. Few researchers have used appropriate bioinformatics tools in creating and maintaining the tumor ecosystem’s spatial organization. Researchers have found that partial-EMT (P-EMT) cells were loosely arranged, and positioned in between malignant cells and CAFs. The study attributed the compactness of HNC tumor architecture to the expression of CD63 (68). Studies by Ligorio et al. (69) and Wagner et al. (70) in pancreatic and breast cancer respectively, have highlighted the need to utilize single cell separation method (SCS methods) with preserved spatial information, to gain insights into the role of intercellular interactions.

Another study by Navin et al. elucidated the tumor evolution process in breast cancer through sequencing of 100 single cells and revealed 3 distinct clonal sub-populations that represent sequential expansions. Contrasting to the gradual models of tumor progression their data indicated that tumors grow by punctuated clonal expansions. The study was performed on breast cancer and its liver metastases (71). More such studies on HNC will help in developing an understanding of the temporal progression of tumor heterogeneity. In response to systemic therapy, the issue of recurrence of tumor and overall temporal dynamics are other issues of transcription data analysis that heavily rely on suitable computational strategies, which are still under development.



Limitations of scRNA-Seq in Clinical Medicine

The scRNA-Seq is a stride towards personalized medicine, but is still daunted by several challenges. Lack of large cohorts of scRNA-Seq data from human patient samples, high costs, user-friendliness, and tissue preservation are some of the major issues. The use of scRNA-Seq on individual patient tumors for drug selection is now feasible but more studies are still needed to establish personalized drug selection and drug repurposing using scRNA-Seq results for improved patient outcomes.

The cost of scRNA-Seq varies based on the chosen methodology, and hence depends on the cost of equipment, reagents, and sequencing. The costs of isolation and sequencing per cell have dropped significantly, but the throughput of sequencing machines has also increased, so the cost per run with more cells still remains high. Most of the platforms are available only in science laboratories and require a large investment and planning to procure for hospital use. In addition to cost, analysis of scRNA-Seq data requires basic bioinformatics knowledge and coding skills. Furthermore, standardization of different pipelines is also required for clinical use.

Tissue preservation is a major issue because of its fragility and cell viability. Currently, the use of frozen tissue samples or methanol fixed tissues for scRNA-Seq platforms is in its infancy. However, a few other options to aid tissue preservation are available and includes, temporary tissue stabilization buffers that can preserve cells for sequencing for 48 hours.

Generally, single nucleus sequencing (sNuc-seq) usually involves tissue disruption and cell lysis, carried out in cold conditions, followed by centrifugation and separation of the nuclei from the debris. It minimizes the skewing effect of degraded mRNA or cell-stress response genes on the data. Cell lysis in sNUC-Seq allows for potentially more efficient cell type delineation that includes for even the most interdigitated cell types. These advantages potentially make sNuc-Seq a better alternative to SCRNA-Seq. strategy.




Omics of the Head and Neck Cancer


Genomics of HNC

Single cell DNA (scDNA) sequencing is focused mainly on the copy number variations (CNVs) and identification of single-nucleotide variations (SNVs). These are the driving forces in biological processes which cause genomic heterogeneity and thus necessitate study of the cell at an individual level. The whole genome wide analysis of HNC identified mutations in many gene families, but the most significant percentage of mutations were observed in the NOTCH gene family (72–74), especially NOTCH1. NOTCH and many other known oncogenes, including cyclin E, MYC, and JUN are targets of FBXW7, a ubiquitin ligase. FBXW7 is known to be mutated in 4.7% of cancers of HNC (74). Apart from this, more than 60% of mutations were observed in serine/phosphatidylinositol 3-kinase (PI3K) pathway genes such as PTEN and PI3KCA (75, 76). In fact, this is the most commonly affected pathway in HNC, and a more aggressive form of the disease can be attributed to multiple mutations in this pathway (77). Approximately 8-23% of HNCs possess mutation in PTEN that causes down-regulation and constitutive activation of threonine-specific protein kinase Akt and mammalian target of rapamycin (mTOR) (74, 78). It increases the susceptibility of the oral epithelium to carcinogens. The genome analysis in HPV positive HNSSC tumor showed mutations in PI3KCA gene leading to an increase in mTOR activity rather than Akt phosphorylation and hence helps explains the better efficacy of dual inhibitors against PI3K/mTOR (79). Interestingly, p53 was not found expressed in HNC tumors with PTEN downregulation, implying the exclusion of p53 gene mutation (80).

The Epidermal Growth Factor Receptor (EGFR), a receptor tyrosine kinase (RTK) gene found upregulated in 80% of the patients suffering with HNC. The EGFR on activation causes cellular proliferation via either RAS/RAF/MAPK pathway, JAK/STAT, or PI3K/AKT/mTOR axis. Its over-expression in many HNSSC tumors is correlated to poor prognosis (81). In nearly 20% of HNC, oxidative stress genes are altered by mutation or variation in copy number. NRF2 (encoded by the NFE2L2 locus) is a transcription factor that activates a cellular antioxidant response. It is overexpressed in 90% of the tumors leading to poor prognosis (82). Elevated NRF2 levels are shown to cause chemoresistance in a variety of cancer cell lines that is reversible with siRNA inhibition of NRF2 (83). Several chromatin-related genes in HNC viz, MLL2 (a histone methyltransferase), NSD1 (another histone methyltransferase), EP300 (a histone acetyltransferase) and FAT1 were also found to be repeatedly mutated in 19%, 10%, 7% and 23% of tumors respectively (84, 85). A recent study on HNSCC patients assessed the prognostic value of altered immune gene expression using a cohort of 96 patients (86). The expression of 46 immune-related genes was analyzed and, 4-1BB, IDO1, OX40L, GITR, FOXP3 were found significantly overexpressed along with PD-1, TIGIT, and CTLA-4. Almost half of the immune related genes had deregulated mRNA levels. The study assessed that a combination of high OX40-L and low PD-1 mRNA levels, high PDGFRB, and low CD3E mRNA levels are associated with increased tumor recurrence. While CD8A was observed to be associated with poor prognosis, the increased expression of PD-1 was associated with a good prognosis. These findings offer a therapeutic strategy in the treatment of HNSCC through the application of a combination of immune checkpoint inhibitors. Genetic alterations due to tobacco and betel quid chewing were also reported in oral cancer patients (87). These included i) single nucleotide polymorphism (SNPs) with non-synonymous type variations such as in FAT1& 2, TP53, NOTCH2, Cadherin 3 (CDH3), and ATM; ii) synonymous type variations in Adenomatous Polyposis Coli gene (APC) (a tumor suppressor gene) and IL12B (cytokine gene). SNPs were also observed in non-coding regions, located in or near EGFR, STAT5B, Cyclin dependent kinase 5 (CDK5), and a protooncogene, MYCL1 (Figure 4). Sayans et al. (88) analyzed 528 tumors of HNSCC subset in TCGA database and found 3491 deregulated genes. The somatic copy number alteration analysis showed CDKN2A, CDKN2B, PPFIA1, FADD, and ANO1 as the most altered HNSCC genes. At the same time, genes with the most somatic mutations were TP53, TTN, FAT1 and, MUC16. Another relevant result from the study was the mutual exclusivity pattern found between TP53 and PIK3CA mutations. The difference in expression profiles between different studies i.e., the heterogeneity in the results could be attributed to the nature of the cancer.




Figure 4 | Genes altered in HNC at genomic and transcript levels. (A) Mutations in NOTCH gene pathway leads to cell growth and evasion of apoptosis, whereas (B) in RTKs (VEGFR, EGFR, FGFR) lead to alterations through RAS/RAF/MAPK pathway or PI3K/AKT/mTOR axis, eventually leading to uncontrolled cell proliferation, (C) in JAK/STAT pathway increase angiogenesis. (D) The integrins (ITGA 3 and ITGA 5), uPA, and MMP 1,2,3,9.10,13 are all involved in ECM digestion and remodeling. (E) MHC I and MHC II expression is altered to evade recognition by immune cells. (F) Oxidative stress is increased due to mutations in genes like NRF2, whereas (G) mutations in NSD1, MLL2, ATM are characteristic of genomic instability. HPV proteins E6 and E7 inhibit TP53 and RB1. All eventually leading to uncontrolled cell proliferation and (H), multiple other genes are altered, producing significant effects.





Transcriptomics of HNC

One of the recent applications of transcriptomics in cancer is the study of the cellular heterogeneity in tumor towards better understanding to achieve precision treatment. HPV positive HNC is a vital cancer type and has been identified with different gene expression patterns compared to HPV negative HNC. Transcriptomic data analysis between HPV positive and negative tumors provided important insights into the expression profiles (76, 89).Activated receptor (RTKs)-RAS-PI3K pathways and inactivated TP53 and CDKN2A in HPV-negative tumors were observed. In HPV-positive tumors, PIK3CA, FGFR3, and E2F1 were found to be activated while TP53 and RB1 were inactivated by viral oncoproteins E6 and E7 respectively. PI3K activation in HNC is reported by either of these mechanisms, receptor- tyrosine kinases, such as EGFR or mutation occurring in PI3K catalytic subunit, p110α (encoded by PIK3CA gene). Mutations often target one of two hotspot locations in the kinase or in helical domain, thereby promoting constitutive signaling through the pathway (90). Yu et al. (91) reported results from a network-based meta-analysis, identifying the biological signatures of HNC in pathways like integrin signaling, tight-junction regulation, antigen presentation, chemokine signaling, leucocyte extravasation, and vascular endothelial growth factor (VEGF) signaling.

Another transcriptomics study in HNC suggested the upregulation of genes involved in digestion and remodeling of the ECM, such as matrix metalloproteinases (MMP) 1-3, 9, 10, 13, urokinase plasminogen activator (uPA), Integrin alpha (ITGA) 3 and ITGA5. Both neoplastic and stromal cells secrete MMPs that digest certain components of the ECM (92) and promote cell migration and metastases in early stages of tumorigenesis (93, 94). Overexpression and activation of MMPs is critical in cancer progression and the pro-MMP-9/NGAL complex has been identified as a potential prognostic marker (95). A related study on a cohort of 145 oral cancer patients exhibited high levels of MMP2 in severe patients when compared to non-severe oral cancer patients. High levels of CD276 and low levels of CXCL10 and STAT1 were also observed to be associated with reduced overall survival. However, when compared MMP2 appeared to be a superior and independent prognostic marker (96).

The upregulation of interleukin (IL) 8, chemokine C-X-C ligand 1 (CXCL1), CD28, CD3D, CD4, IL-18, and IL-2 is observed in chemotaxis and lymphocyte activation while downregulation of MHC 1 &2 are hallmarks of invasive HNCs. Also, upregulation of VEGF and interleukin-8 (IL-8) connoted tumor cell angiogenesis, while EGFR, STAT-3, PI3K, and NOTCH upregulation influenced signal transduction pathways (97).

One hundred forty-six novel miRNAs expressed in HNC have been identified; but expression patterns among smokers and non-smokers remained undistinguishable. The three novel miRNAs significantly associated with HPV status, were mapped to chromosome 12 between genes Keratin 6C (KRT6C) and KRT6B (98).

Puram et al. have reclassified HNC into three malignant subtypes: classical, basal-mesenchymal and atypical. Single-cell transcriptomics from 18 HNC patients identified p-EMT as an independent predictor of grade, metastasis and critical pathological features (60). They performed the scRNA-seq analysis by considering 6,000 single cells from eighteen HNC patients containing five sets of matched primary tumor and lymph node metastases. The significant finding of the study was to distinguish among non-malignant (3363) and malignant (2215) cells on the basis of copy-number variations (CNVs) and epithelial cells where stromal and immune cells were excluded (60, 99, 100). Clinical and genomic meta-analysis of multicohort HNSCC gene expression profile has clearly demonstrated that HPV+ and HPV- HNSCCs are not only derived from tissues of different anatomical regions, but also present with different mutation profiles, molecular characteristics, immune landscapes, and clinical prognosis. Cell lines and primary cells of HNC have been explored at single-cell transcriptomics (60, 101). The datasets have significantly improved the identification of distinct cells which are highly tumorigenic in nature in the HNC ecosystem. In the pool of cells, including malignant and non-malignant type, intra-tumoral variations at cell cycle, partial-EMT, proliferation, hypoxia-related genes have been observed. In this context, scRNA-seq is becoming a reliable technique for exploring HNC heterogeneity both at the genetic and functional levels. All the tumor influencing factors, such as circulating tumor cells (CTCs), immune cells, cancer stem cells (CSCs), present within, or in surroundings are investigated to gain clarity at a single cell level.

The scRNA-seq data may be used for understanding the drug response, as well as, drug resistance in individual HNC patients. The cetuximab-treated and untreated HNC cells yielded heterogeneous expressions of TFAP2A and EMT during the early stage of treatments, indicating onset of resistance. The expression variation analysis (EVA) analysis of scRNA-seq data suggests that cetuximab treatment increases cell heterogeneity, leading to evolution of different clonal cells with differentially activated pathways, thereby preventing EGFR inhibition (102).

A comprehensive multi-omics, single-cell analysis was performed in HNC cell lines by Kagohara et al., to identify responses to cetuximab, an anti-EGFR drug (102). It was observed that hundreds of genes altered their expression pattern as a response to the drug within 5 days of treatment. scRNA seq analysis identified onset of resistance following changes in various signaling pathways including regulation of receptor tyrosine kinases by Transcription Factor AP-2 (TFAP2A) and epithelial-to-mesenchymal transition (EMT) pathway. Different squamous cell carcinoma cell lines exhibited cell type dependent differential expression of TFAP2A and Vimentin (VIM) genes that corroborates inter cell line heterogeneity. The available HNC data bases provide clinical and genomic information on HNC cell systems (102–104). A holistic HNdb database curates all major omics data and literature on HNC-related genes (105). This database has laid the foundation for identification of possible biomarkers and development of HNC personalized medicine. It is interesting to note that a few genes are common in genomics, transcriptomics and scRNA-seq analysis of the HNC (Figure 4). These finding have stemmed from the independent studies. Therefore, it is imperative to perform integrated multi-omics studies and visualize molecular linkages using systems medicine for paving a way for personalized medicine.

The CSCs are responsible for failures of cancer therapeutics, drug resistance, and tumor recurrence. The single-cell transcriptomic data from salivary gland squamous cell carcinoma reported luminal and basal epithelial cells, as well as, small populations of CSCs. Overall, the study indicated that the process of tumorigenesis followed ‘gain-of-function’ by β-catenin and ‘loss-of–function’ by Bmpr1A mutations in basal cells, EMT markers expression, and activated Wnt signaling in CSCs of luminal cells (106).



Proteomics of HNC

In order to minimize variables arising from HNC intra-tumor heterogeneity, analysis of differentially expressed proteins have been strategized. Bhat et al. (107) identified 286 biomolecules, having relevance in HNC. A few of these included i) insulin like growth factor binding protein (IGFBP) ii) downstream signaling components ERK, COX2, STAT, PFN2, EPCAM, SERPINH1, MCM2, iii) genes involved in prolactin signaling iv) angiogenesis v) DNA repair genes using integrated transcriptomics and proteomics approach. It has been reported that the ERK, COX2 and STAT1 proteins are important in progression and development of chemo resistance in HNC. Hence, these may be potential targets for effective therapy (108, 109). The saliva serves as a source for identification of bio-markers in cancer, and its proteomic analysis is considered to be a promising tool for HNC diagnosis; for example, over-expression of PLUNC and zinc-alpha-2-glycoprotein (110). To better understand the process of tumor progression and to make detection of cancer with precision, a technical triad of laser microdissection, protein chip technology and immunohistochemistry have been employed to identify the tumor relevant biomarkers. This study encompasses the protein profiling of calgranulin A and calgranulin B which are implicated in cancer pathology. Thus, such combinatorial approaches open up the possibility towards accurate prediction of metastasizing ability of a cell population (111, 112).

The proteins like Hsp90, VIM and keratin are already established bio-markers and drug targets while prelamin-A/C and PGAM1, have been recently suggested as potential markers (113). Bohnenberger et al. (114) identified distinct proteomic profiles between lung metastasis of HNC (metHNC) and squamous cell lung carcinoma (SQCLC). On classifying 51 squamous cell lung tumors, as either primary SQCLC or metHNC using proteomic approaches, 518 proteins with significantly different expression levels in HNC and SQCLC were identified. These proteins belonged to pathways involved in (i) vesicle transport, (ii) glycosylation, or (iii) RNA-processing. The FAM83H expression generally upregulated in cancers, was correlated to poor prognosis in HNC as well (115). The locoregional recurrence after chemotherapy (platinum-based concurrent chemoradiation) frequently occurs in HNC patients. It was observed that the intra-tumoral heterogeneity is linked to clonal evolution, and it is actually responsible for cisdiamminedichloridoplatinum (II) (CDDP) resistance in HNC (115). Niehr and co-workers (116) have applied targeted next-generation sequencing, fluorescence in situ hybridization, microarray-based transcriptome, and mass spectrometry-based phosphor-proteome analysis to elucidate the molecular basis of CDDP resistance. This resistance was observed to be associated with aneuploidy of chromosome 17, increased TP53 copy-number, overexpression of the gain-of-function (GOF) mutant variant p53R248L and increased activity of the PI3K–AKT–mTOR pathway, which were also considered as molecular targets for treatment optimization (116). Furthermore, label-free profiling of proteins in oral cancer has been performed by relative quantitation and employing nano-UPLC-Q-TOF ion mobility mass spectrometry hence, enabling rapid and simultaneous identification of multiple cancer biomarkers (117). This approach appears to have promising implications on tumor diagnosis. Single cell proteomics approach has encouraged system-wide protein profiling, direct assessment of immune cell health and tumor–immune interactions. This further helped augmenting evaluation of immunotherapy (118). Moreover, profiling of every single individual cell appears to indicate its role in tumor progression and molecular basis of the disease (119). The p53 tumor suppressor proteins have been counted in single colorectal cancer cells with 88% accuracy using the MAC chip (microfluidic antibody capture) (120). However, MAC chip utility in HNC is yet to be established. Multiplexing of protein markers at single-cell level using immunofluorescence methods have also been applied. However, single cell proteomics methods are in developing state and the proteome coverage is smaller in comparison to single-cell transcriptomics. In the context of precision medicine, integrating the protein based prognostic biomarkers is emerging as a supporting strategy for the treatment of cancer patients.

Most head and neck cancers expressing elevated levels of desmoglein 3 (DSG3) metastasize to the neck lymph nodes. The IHC and H&E reports may not always detect DSG3 during the initial metastasis process when metastatic lesions are less than 2mm in size. The use of sensitive methods like RT-PCR, scRNA-seq, and next-generation sequencing (NGS) is costlier and time consuming. Measuring the protein expression of tumor metastasis marker during the earlier phase of cell growth at the single-cell level for therapeutics provides additional advantages. The 3D printed microfluidics immune-array has a 10,000-fold higher sensitivity, which is superior to ELISA. This does not even requires any sorting experiments prior detection of proteins from a single cell. Not only it detects DSG-3, VEGF-A, and VEGF-C at lower concentrations, but its automated operations also provide results at a fast pace and lower cost. In addition to delivering information about HNC, it also quickly reproduces the results with minimal errors (121).



Metabolomics of HNC

A comprehensive analysis of metabolites or metabolomic study is cardinal to cancer pathology as metabolome is a summary manifestation of all the other upstream omic profiles (122).

In a tissue metabolite profiling of HNC, 41 out of 109 metabolites screened were observed to be higher in tumorous versus non-tumorous tissues, while 15 appeared lower. Serum levels of glycolytic pathway metabolites increased (glucose, fructose, tagatose etc.), while that of several amino acids for example, lysine decreased significantly. Conversely, in tissue samples the glycolytic pathway metabolites decreased, and amino acids (valine, phenylalanine, threonine etc.) increased in tumorous versus non-tumorous tissues (122). Since, cancer cells depend more on aerobic glycolysis rather than oxidative phosphorylation for energy, and also use glutamine as major source of energy, they deplete glucose in hypo-vascular microenvironment. Also, amino acid levels are higher due to degradation of ECM in tumors. Another study showed the increased levels of polyamines in saliva of oral cancer patients in comparison to that of other cancer types. The choline to creatinine ratio revealed oral cancer specific elevation. In addition to this, 28 metabolites that accurately differentiate oral cancers from control samples were also identified. However, oral cancer may have higher impact on the metabolite composition of saliva in comparison to other cancers simply because of its location. Therefore, to confirm this a concurrent and comparative metabolic profile from saliva, blood and cancer tissue is warranted to confirm the oral cancer specific role of choline-creatinine ratio (123). Additional conformation was derived from another serum based study of 25 metabolites, of which 7 metabolites (leucine, isoleucine, taurine, valine, choline, tryptophan and cadaverine) were manifested in both the studies. Altered levels of urea and 3-hydroxybutyric acid were also reported for the first time in the later study (124).

A study by Wei (125), identified a signature panel of salivary metabolites (phenylalanine, valine, γ-aminobutyric acid, n-eicosanoic acid and lactic acid) whose levels were significantly altered in oral squamous cell carcinomas (OSCC). Hence these could potentially be used as biomarkers to distinguish between healthy and disease physiologies (125). While increase in lactic acid is simply explained by Warburg effect in glycolysis, valine and other amino acids are found significantly to be decreased presumably due to increased metabolic utilization. Increased ketone bodies, abnormal lipolysis, TCA cycle and amino acid metabolism have been reported in blood serum from OSCC patients (126). Patients with disease relapse exhibited increase in glucose, ribose, fructose, and tagatose with decrease in lysine, hippurate, trans-4-hydroxy-L-proline, and 4-hydroxymandelate in serum samples. A GC-MS based serum screening of OSCC revealed differences in 38 metabolites at pre-operative levels in comparison to healthy individuals. Furthermore, a comparison of pre-operative and post-operative metabolite profiles yielded significant differences in 32 metabolites. Seven potential biomarker candidates were found, i glyceric acid, lauric acid, N-acetyl-L-aspartic acid, ornithine, heptadecanoate, serine and asparagines. The sensitivity and specificity of biomarker pairs were assessed as 94.4% and 82.8% for ornithine+asparagine, 88.8% and 85.7% ornithine+glyceric acid, 88.8% and 97.1% ornithine+N-acetyl-L-aspartic acid, and 88.8% and 82.8% for ornithine+serine; endorsing their potential in early detection and stage identification in OSCC (127). An increase in choline compounds in OSCC implies its significant role in cancer feedback cell signaling. These increased choline levels renders it as a potential biomarker for cancer cell proliferation, survival and malignancy (128). Decreased levels of PUFA and creatine, and increased levels of amino acids and glutathione, were also observed in a study in tissues through proton high-resolution magic angle spinning magnetic resonance (HR-MAS MR) (129).

The significant data on HNC metabolomics, is hindered by differences in detection and analytical methods. In addition, the inherent heterogeneity in HNC has obstructed the identification of an accurate biomarker for its early detection (130). Studies based on single cell analysis have shown significant differences from average pattern in bulk samples. Most metabolic changes in single malignant cells are not captured through bulk measurements as they tend to underestimate the highly complicated cellular composition of bulk samples. Though there is a universal upregulation of metabolic pathways, the over-expressions of certain genes (for example, OXPHOS i.e. oxidative phosphorylation pathway genes) are evidenced only at single cell level. Their absence at the bulk level is credited to the probable fallout of bulk measurements, enmeshed in the complexity of tumor composition. Differential expression from bulk level is also observed in genes involved in Vitamin b6 metabolism, lysine degradation, synthesis of aromatic amino acids, drug metabolism through cytochrome P450, degradation of fatty acids, oxidative phosphorylation, TCA cycle etc. However, where the expression at single cell and bulk level is different in purine metabolism, it was found similar in pyrimidine metabolism. Twenty-four out of fifty-six pathways show similar patterns of up-regulation or downregulation upon comparison between single malignant cells and bulk tumors, while 25 pathways that were reported downregulated through bulk tumor analysis were found upregulated on single cell level (131). Figure 5 represents the major metabolic pathways upregulated in single cell and bulk tumor analyses. The inter-section in the Venn is indicative of pathways similarly upregulated or downregulated in both. The major cause of heterogeneity is the variations in mitochondrial metabolic activity (TCA cycle and Oxidative phosphorylation). Also, the metabolic features of immune and stromal cell sub-types were found distinct when the mean expression level of genes within these pathways were compared. Therefore, more single cell-based studies are required to not only gain better insights but also eliminate existing discrepancies, and to help identify different metabolic phenotypes in cell sub-populations.




Figure 5 | A study by Xiao et al. shows that major metabolic pathways found up-regulated in single cell analysis were found downregulated in bulk-tumor analyses and vice-versa. Twenty-four pathways showed similar up-regulation/down-regulation patterns in both as represented by the intersection in Venn (132).





Epigenomics of HNC

Notably, intra tumor heterogeneity is the most significant hurdle in developing effective anticancer drugs, as targeted drugs and chemotherapy are effective until the development of drug resistance (133, 134). Tools like single-cell pharmacokinetic imaging have emerged as a powerful means to elucidate the mechanism of drug resistance in the tumor that may help overcoming the resistance (135). Characterization of cancer heterogeneity in epigenomic sub-populations appears to be relevant as cancer evolution, drug sensitivity, etc. are necessarily impacted by epigenetic alterations. This can be achieved using single-cell technology but is viable only at an early stage of cancer. In this context the degree of single cell chromatin accessibility also constitutes a significant challenge (136).

The epigenetic modifications are known to control programmed developmental changes and the ability of the genome to register, signal and perpetuate environmental cues (132). In order to sustain the inheritance of gene expression and biological functions, epigenetic mechanisms are linked to the transmission of cell lineage and phenotype from progenitor to progeny. These modifications are now known to be transmitted to the progeny cells with the epigenetic marks or genome bookmarking by transcription factors and other gene regulatory proteins (137, 138). The deviation from the transmission of normal epigenetic marking is suggested to be relevant not only in cell differentiation but also in the onset of several diseases, including cancer. In this context, some other vital chemical modifications altering chromatin states and subsequent gene expression patterns include DNA methylation, histone modifications, small non-coding RNAs, and chromatin remodeling factors. This is currently a subject of intensive study.


Methylation

Both, DNA and chromatin-associated proteins are modified to modulate DNA accessibility and chromatin structure (139). Methyltransferases like DNMT3A and DNMT3B are generally altered in malignancies (140). Abnormal expression of genes in many cancers is attributed to promoter-specific hyper-methylation for gene suppression, and genome-wide hypo-methylation (particularly in repetitive DNA) leading to gene upregulation (141, 142). DNA methylation is reported to affect most HNC genes involved in classical oncogenic pathways, cell cycle regulation (143–146), DNA repair (147, 148), Wnt signaling (149, 150), transmembrane proteins (151), tumor suppressors (152, 153), etc. (Table 3). A recent gene comprehensive bioinformatics analysis using microarray data of DNA methylation and gene expression identified 27 aberrantly methylated genes with altered expression levels. FAM135B among them was hypomethylated and hence highly expressed. Multivariate cox proportional hazards analysis indicated that FAM135B could be a favorable independent prognostic biomarker for the overall survival of HNC patients (154). The primary risk factors like tobacco and alcohol use, human papillomavirus and Epstein-Barr virus infection can cause genetic and epigenetic alterations leading to the pathogenesis of HNC. Costa et al. (155) used TCGA data to identify distinct genetic and epigenetic particularities between HPV+ and HPV- HNSCC. The study primarily focused on gene promoter methylation patterns and was able to identify three different co-expression modules associated with HPV status. The genes were not only differentially expressed in HPV+ and HPV- cancers but also varied significantly between different stages of cancer. This indicated modulation of specific gene expression at different levels during cancer progression. However, a general pattern of expression (over or under) was observed throughout the stages (I-IV). Also, epigenetic modifications appeared pivotal for HPV infection as the association between methylation and gene expression was more potent in HPV+ cancers. TP53, CDKN2A, and FAT1 appeared to be significantly mutated in HPV- cancers compared to the HPV+ ones. CCNA1, PITX2, GJB6, and FLRT3 were found under-expressed and hypermethylated in HPV+ cancers while SYCP2 was observed to be overexpressed in HPV+ oropharyngeal cancers. However, contrary to some reports, no association between PIK3CA and HPV+ cancers was observed in this study.


Table 3 | The names and functions of genes modified epigenetically through methylation in HNC and their effects on development and prognosis of HNC.



The putative role of gene promoter methylations or other epigenetic modifications provides favorable options for relevant therapeutic interventions. A study published in 2018 demonstrated an increased efficacy of immune therapy when combined with epigenetic therapy. The sensitivities of immune agents pembrolizumab and nivolumab were reported to be enhanced in a pre-clinical HNC model when combined with epigenetic drugs 5-azacytidine (DNA methyltransferase inhibitor) and romidepsin (histone deacetylase inhibitor) (156). Cancer specific DNA methylation patterns are effective early detection tools based on biomarkers generated from blood or epithelial cells shed in the lumen. The methylation status of 5 neuropeptide gene promoters (SST, TAC1, HCRT, NPY, and GAL) are also reported to be prospective alternative prognostic markers. For example, the methylation of TAC1, HCRT and GAL are indicative of poor survival in oral, laryngeal, and oropharyngeal cancers, respectively (157). The available information on methylated gene promoters is limited to a data subset, and the CpG island methylator phenotype (CIMP) is still under-investigated in HNC (158). Promoter hypermethylation has been observed in oropharyngeal cancers with HPV infection. A study by Esposti et al. (159), performed an epigenome-wide analysis using Illumina human methylation bead array data to identify differentially methylated CpGs associated with HPV infections. Five CpGs capable of predicting HPV status and survival were found in hypomethylated regions independent of anatomical site. This may help bypassing the issues associated with heterogeneity, arising due to different anatomies of HNSCC. It was observed that HPV has a genome-wide effect on the methylome that is independent of other risk factors. On the basis of DNA methylation patterns in 528 samples, 5 sub-clusters were identified. Of these pertained to HPV- cancers. Although 60% of differentially methylated genes were hypomethylated, the study also identified hypermethylation in genes CDH18 and CTNND2 that were found to be associated with HPV status. Promoter hypermethylation was also observed in ZNF733. The study not only highlighted hypomethylation of 60% genes for the first time but also suggested more pronounced effect of hypomethylation on gene expression than the hypermethylation. In addition, hypomethylation of many cMyc target genes was observed, and CpG island shore of SYCP2 was found to be associated with increased gene expression. This observed role of SYCP2 with another previously reported study (155). The 5 CpGs proposed as an epigenetic signature to identify HPV+ cases encompassed 3 genetic loci (B3GALT6-SDF4, SYCP2-FAM127B HTLF-HLTF-AS1). This predicted signature was able to integrate different epigenetic alterations and multiple exposure levels and hence this signature appeared as a better predictor of survival.

A study by Talukdar et al. (160) performed genome-wide DNA methylation profiling for esophageal squamous cell carcinoma (ESCC) using samples from 9 high incidence countries of Asia, Africa and South America. In the discovery phase, 108 tumors and 51 normal adjacent tissue while in replication phase 132 tumors and 36 normal tissues were analyzed. The study identified 6,796 differentially methylated positions and 866 differently methylated regions. Pathways important for cancer development like WNT and hippo signaling, cell communication pathways etc. were found enriched. PAX9, SIM2, THSD4 were identified as top genes with crucial DNA methylation events, and were observed to be downregulated in tumors. Among all differentially methylated regions, 88% were found differentially expressed between normal and tumor tissues. The study also reported THSD4, PHYHD1, GPT, KCNJ15, and TP53AIP1 for the first time in ESCC. However, there is ample scope for more such studies in HNSCC to identify non-random tumor specific methylation events to provide attractive avenues for biomarker development and therapeutic intervention.



Post-Translational Covalent Histone Modifications

Histone modifications such as acetylation, methylation, and ubiquitination of lysines, serine, threonine phosphorylation, etc., modify the accessibility of DNA for transcription factors and associated machinery. On comparing OSCC with healthy tissues, altered levels of histones H3K4me2 and me3 were observed (161). The significance of post-translational histone modifications can be understood by understanding their role in the development of chemoresistance which is also observed to be mediated by NFƘB. Studies have shown that chemo-resistant HNC cells have increased deacetylation of histones, that leads to chromatin compaction and further to impaired DNA damage repair. Subsequently, increased accumulation of histone γH2AX through serine phosphorylation, increases genomic instability. This implies chemoresistance may be prevented by HDAC inhibitors (162).

SENP5, a desumoylating enzyme, is overexpressed in OSCC and is related to poor prognosis (143). Likewise, lysine-specific demethylase 1 (LSD1) expression is upregulated in HNC, leading to increased growth and metastasis. Therefore, pharmacological attenuation of LSD1 should inhibit growth specific target genes and signaling pathways (161). Therefore, it is reasonable to speculate that epigenetic regulators and histone modulators might be alternative targets for the development of effective drugs for HNC.



Non-Coding RNAs

Non-coding RNAs do not code for proteins like RNA, but have enzymatic, regulatory, and structural functions (143). It is now known that microRNAs regulate cellular processes like proliferation, differentiation, and apoptosis via altered signaling in malignancies. Levels of miR-21, miR-16, and miR-30a-5p have been reported to be increased in HNC. Likewise, miR-205 and let-7a were also reported increased in both benign and malignant squamous epithelia (163). Conceivably, microRNAs act both as tumor suppressors or oncogenes. Epigenetic silencing of tumor suppressor mRNAs by CpG island hypermethylation is now emerging as a hallmark for human tumors. Hypermethylation in miR-148a, miR-34b/c and miR-9 was observed to be associated with downregulation of CMYC, E2F3, CDK6 etc. (164).

A long non-coding RNA LINC00312 is significantly down-regulated in nasopharyngeal carcinoma. Since it inhibits the progression of the G1 to S phase, its reduced expression leads to tumor progression (165). HOX antisense intergenic RNA (HOTAIR) influences progression, metastasis and drug resistance in many cancer types. It is a prime candidate for a therapeutic target in cancer, as tumor cells contain significantly increased levels of HOTAIR, and its inhibition induces their apoptosis (166). The emerging understanding of HNC epigenetics is expected to benefit in understanding the prognosis and susceptibility of cancer to different therapies in isolation or their combinations.

The levels of complexity in epigenetic modifications have impeded their translation into instruments of cancer prognosis and therapeutics. Also, the bulk methodologies fail to capture the cellular diversity and tumor heterogeneity. Epigenome sequencing on single cell level can identify epigenetic and chromatin marks in single cells. A recent single cell based study identified the role of miR-142-3p in repressing CLIC4. CLIC4 was found expressed more in tumor associated fibroblasts and endothelial cells as compared to tumor epithelial cells. The discrete patterns of localization and inverse co-relation of expression in both indicates the ambiguity related to bulk measurements (167). Development of advanced techniques like i) single cell genome-wide bisulphite sequencing (scBS-seq), ii) single cell chromatin integration labelling followed by sequencing (scCHIL-seq), and iii) single cell sequencing for transposable accessible chromatin (scATAC-seq) might provide insight into contribution of epigenomics in cellular heterogeneity. While these technologies uncover many aspects of cancer biology, further studies for HNC are still awaited. The applications of advanced techniques remains limited due to challenges in the unbiased amplification of a small amount of genetic material from a single cell (61). Table 4 summarizes all the major biomarkers identified at bulk and single cell level. However, only limited studies are performed at single cell level, and therefore literature available is still limited. Therefore, reiterating the necessity of more studies at single-cell level to help remove discrepancies and facilitate accurate identification of biomarkers.


Table 4 | Major biomarkers identified using different forms of omics profiling in head and neck cancer at single-cell level and bulk tumor level.








Single Cell Derived Spheroids for Drug Assessment/Development

The current strategies for drug assessment and development involves the use of in vitro 2D techniques and animal models that are not only challenging in terms of genetic alteration and cellular heterogeneity but also are expensive approaches. The limitations of the 2D cultures are already discussed in Heterogeneity: A Challenge in the Treatment of Head and Neck Cancer and Road Towards Solutions. Single-cell and spheroid technology is an evolving science in HNSCC treatment, its therapeutic application comes in to play when selecting a chemical or biological agent. The gene expression patterns could be studied by using RNA sequencing from single cell derived spheroid, which can then be used to determine the most appropriate course of treatment on patient to patient basis. The data from recent melanoma studies suggests the presence of unique malignant cell signatures that are able to define the response to immune checkpoint inhibition (ICI), which is usually highly variable and difficult to predict, this could be a provocative possibility if extended to HNSCC (168). In other study an integrated analysis of cancer cells has been shown in HNSCC, where transcriptomes of ~6,000 single cells were profiled from 18 HNSCC patients to provide knowledge of the HNSCC ecosystem and define stromal interactions and a p-EMT process associated with metastasis, providing a detailed, molecularly-based predictor of adverse biologic features that drives clinical decision-making. Here, computational approach for inferring malignant cell-specific profiles from bulk expression data was used to refine HNSCC sub-types and provide a general scheme to extract information from other cancer datasets (60). Such study proves to be stepping stones in enhancing the understanding of intra-tumoral expression heterogeneity in epithelial tumors and might be able to guide future diagnostic strategies and treatment algorithms. Since even same type of tumor shows different response to the same therapy because of resistance and heterogeneity, it is important to identify the response of a tumor to any anti-cancer drug. The scRNA seq is powerful tool to investigate varying modes of chemoresistance in tumor cells derived from oral squamous cell carcinoma patients (OSCC). The cells isolated from the HNC patients undergoing cisplatin treatment were studied for drug resistance pattern, ITH, tumorogenic properties, and metastasis. Epithelial (ECAD+/VIM−) to mesenchymal (ECAD+/VIM+) transitions were identified in tumor and patient-derived cell lines. Also, it was determined that resistant cells can acquire metastatic characteristics and vice versa. The study highlights the predictive power of OSC7C patient derived primary cell line and scRNA-seq technology in revealing not only the course of tumor evolution in the clinic, but also in predicting mechanistic insight that can be exploited to design the next generation therapeutic strategies (169).

In another study, stem cell enriched 3D spheroid model was generated from cells taken from fresh tumor biopsies with different techniques such as hanging Drop (HD) and ultralow attachment (ULA) assays. The goal was to determine the ideal therapy regimen and identify mutation status specific to patients and therapy targets (170). In their approach, firstly the radiation treatment (2 Gy) plus cisplatin (2.5/5/10 μM) was given while in 2nd approach chemotherapeutics alone were given. The study observed spheroids generated from ULA to be more reproducible and reliable than HD method. The spheroid model was found to be much better method for the study of drug effectiveness and mechanism behind drug resistance. But how the spheroids are developed are also important factor in drug screening and development. The two important spheroid growing techniques are culture free floating spheres (171) and multicellular tumor spheroid (MCTS) (172) which was earlier used for screening of several anti-cancer compounds. Both techniques have their own limitations. Thus, to screen the active compounds targeting cancer stem cells (CSC), stem cell-enriched spheroid model (SCESM) were generated using FaDu cells exploiting selective properties of both the techniques by Gorican et al. (173). Treatment of SCESM spheroid with all-trans retinoic acid (ATRA), a differentiating agent also used in HNSCC therapy reduced the stem cell marker expression, thus confirms the sensitivity and specificity of the spheroid.

In a study by Melissaridou et al. (174), cisplatin (1, 2 and 4 μg/ml) and cetuximab (60, 90 and 120 nM) treatment response were investigated on 3D tumor spheroids and 2D monolayers cells using a MTS-based assay. The cells cultured on 3D were found to be less sensitive to cisplatin compared to cells in 2D. The 3D spheroids were checked for the expression of three cancer stem cell (CSC) markers viz. CD44, SOX2 and NANOG and six EMT-associated genes (CDH1, CDH2, VIM, FN1, TWIST, FOXC2). A higher expression of CSC marker, CDH1 in 3D cultures was observed. EMT profile in HNSCC has been linked to drug resistance (175), however no evident pattern was observed in the study depicting towards other co-factors causing drug resistance.

Organoids developed by Driehuis et al. offered wide range of applications, which includes drugs screening of conventional drugs such as cisplatin, docetaxel, and fluorouracil or experimental targeted agents as well as predicting drug response of individual HNSCC patients. The study established starting point where chemo/RT response from multiple organoids generated from tumor biopsies of same patient can be directly compared to patient’s clinical response. Thus, establishment of an organoid model can lead to important advances in HNSCC diagnostics and treatment (36). In another study single-cell RNA sequencing was used in advanced melanoma to analyze sub-populations of T-cells. This study found significantly higher expression of TCF7 in treatment responders versus non-responders suggesting that the transcription factor TCF7 was among the chief markers predictive of a good clinical response (61, 176). As per the current scenario there is no similar multi-omics study, performed for HNSCC patients. Such studies could guide in analyzing changes in intra-tumoral heterogeneity with exogenous agents such as various forms of chemotherapy (e.g. cisplatin), biologic therapies (e.g. cetuximab), radiation, and ICI and could also help in patient selection for systemic chemotherapy or immunotherapy (61). From target identification to hit identification, single-cell spheroid has made its way as a new and emerging technique having significance at various levels in drug discovery. Although advancements in single-cell and spheroid technology are relatively encouraging, nonetheless there are no reports till date exemplifying validation and application of these technologies in clinical setups. Not much data is available on clinical application with patient-derived single cell spheroids and organoid in HNC. Hence, implementation and therapeutic application for the treatment of HNC in clinical routine is awaited.



Potential Molecular Targets in Head and Neck Cancer

In cancer treatment, selection of therapy, drug administration, and dosing is a complex process varying on a case-to-case basis. The current treatment regimen used for HNC treatment aims at preserving organ and function, unlike the past treatment strategies. Though many targets are now being explored under different experimental set-ups for HNC treatment, the available drugs are against a minimal number of targets. In the past decade, several genetic mutation studies have identified specific essential genes that are mutated in the key biological pathways (Table 5) and could be potential targets for future drug development in HNC. The potential drug targets can be identified using integrated omics and mutational analysis to identify alterations in genes and pathways specific to HNC. Several mutational studies report most cancer-causing mutations in tumor suppressor genes instead of oncogenes (73, 90). Recently the targeted therapy (Precision Medicines) and gene therapy approaches have received a lot of interest from researchers. The targeted therapy approach takes advantage of differences between normal cells and cancer cells, interfering with specific “molecular targets” and blocking the growth and spread. The best known targeted therapies are Epidermal growth factor receptor (EGFR), monoclonal antibodies (cetuximab, panitumumab, zalutumumab, and nimotuzumab), checkpoint inhibitors (pembrolizumab and nivolumab), EGFR tyrosine kinase inhibitors (gefitinib, erlotinib, lapatinib, afatinib, and dacomitinib), vascular endothelial growth factor (VEGF) inhibitor (bevacizumab) or vascular endothelial growth factor receptor (VEGFR) inhibitors (sorafenib, sunitinib and vandetanib) and inhibitors of phosphatidylinositol 3-kinase/serine/threonine-specific protein kinase/mammalian target of rapamycin against HNC. On the other hand, gene therapy is an efficient anti-tumor treatment that uses genes to treat or prevent disease, and is rapidly evolving in cancer therapy (177). The in-depth transcriptomics and genomics studies could further determine the essential genes that could be considered for gene therapy in HNC treatment. The adenovirus vector carrying the p53 tumor-suppressor gene is one of the product for gene therapy approved in China for HNC treatment since 2003 (178). DNA damage response (DDR) pathway is another potential target for anticancer therapy. During the progression, most cancers lose one or more DDR pathways leading to greater genetic instability and increased dependence on other pathways. Targeting different proteins involved in the DDR pathway has shown efficacy in treating cancer.


Table 5 | Alterations in key pathways in head and neck squamous cell cancer.




Protein Kinases as a Drug Target in HNC

Protein kinases are involved in cancer metabolism and have been the second most important drug targets in the pharmaceutical industry after G-protein-coupled receptors. The crystal structures of kinase-inhibitor complexes of different families have been determined, these include (i) receptor tyrosine kinase (EGFR, HER2), vascular endothelial growth factor receptor (VEGFR), JAK2, JAK3, Syk, ZAP-70, Tie2, EGFR, V-EGFR, FGFR) (ii) non-receptor tyrosine kinase (Bcr-Abl) NOTCH1, Janus kinase (JAK) (iii) serine-Threonine kinase (Clk, Dyrk, Chk1, IKK2, CDK1, CDK2, PLK, JNK3, GSK3, mTOR, p38 MAPK, PKB) (iii) Rho-kinase (iv) Cyclin-dependent kinases (179). In these structures, active and inactive state of the protein kinases, ATPase pocket, point mutations, catalytic and non-catalytic domains of the kinases have been used as targets by kinase inhibitors and provided the mechanism of inhibition. A well-documented crystallographic analysis of the cAbl kinase domain with Gleevec inhibitor revealed locking of the protein kinase’s inactive conformation (180). The conformational flexibility and stability of protein kinases are central to their inhibition and subsequent drug designing strategies. IIdentifying the diagnostic significance of p38 isoforms in HNC and the subsequent design of specific peptide inhibitors against p38a MAPK aims to contribute to anti-kinase drug development, and the expanding expertise offers optimistic prospects for future cancer treatment.


ATPase Pocket of Protein Kinase as a Drug Target

The ATPase pockets of the protein kinases are quite conserved and offer an attractive target for drug design. It is important to understand whether a unique combination of specific amino acids or only a few conserved residues in ATPase site are involved in ATPase binding mechanism present in various protein kinases. The structures of protein kinase-A in complex with Fasudil and a more potent Rho-kinase inhibitor H-1152P were determined (182). The structural analysis shows the characteristic binding site within the ATP site, though the difference is of only two methyl groups between both the complexes.



Additional Binding Pockets of Protein Kinase as a Drug Target

An additional hydrophobic pocket close to the ATPase pocket in the protein kinase structure plays a crucial role in the inhibition mechanism. In p38 and C-Abl structures, a small threonine (Thr) residue lies as a gatekeeper and it interact with designed inhibitors to block ATP entry in the kinase domain. In the crystal structure of CDK2 with roscovitine (183), the isopropyl group of inhibitor interacts with gatekeeper Thr residue. In EGFR-tarceva crystal structure (184) the tarceva binds similar to aniline-quianzolines binding to CDK2 and p38 kinases (185), and acetyl moiety interacts with gatekeeper Thr residue. This pocket is similar to as observed in Gleevec-6-methyl group bound to C-Abl kinase.



Non-Catalytic Domain of Protein Kinase as a Drug Target

In protein kinase structures, non-catalytic domains have been observed, which play key role in kinase activity. The crystal structure of HER2 receptor in complex with herceptin Fab (186) shows that Fab binds at a specific site at the C-terminal of domain IV, which is involved in binding to other domains in closed conformation of HER1 and HER3 receptors. The Herceptin Fab binding to this pocket (close to the membrane) will engage the HER2 receptor with endocytosis machinery and inhibit the receptor signaling. In combination with radiotherapy, other EGFR antibodies IMC-C225 (cetuximab, Erbitux), Thermacin h-R3 (Cimaher) based on the given principle are getting quite successful in treating HNC cancer.



Single Residue in Protein Kinase as a Drug Target

Single residue in active sites of protein kinase plays a key role in inhibitor mechanism and can be used as a drug target. The BIRB796 (diarylurea) inhibitor binds to a specific sub-site in ATPase pocket of p38 kinase structure, incompatible for ATP binding (187). This BIRB796 inhibitor binds to Phe residue in the conserved DFG motif buried in a hydrophobic pocket located between two lobes of p38 kinase. In another case, from the structure of the complex between SU5402 and FGFR1 tyrosine kinase (188) the inhibitory binding modes of the indole-2-one family of anti-angiogenesis molecules (SU5416, SU668, SU1248) were identified. The methyl pyrrole ring attached to C3 in these inhibitors stabilized by an intra-molecular hydrogen bond between pyrrole nitrogen and the O2 atom of the oxindole ring. In SU5402-FGFR1 complex structure, a hydrogen bond between carboxyl group of SU5402 and the side chain of Asn568 of FGFR1 is important for inhibition.

Despite various encouraging results by kinase inhibitors, the critical challenges are drug resistance that mostly occurs through acquired resistance after initial treatment, toxicity, and compromised efficacy at the clinical level (189). In the clinical assessment, the key challenges are to develop efficient combinations of treatment after recognizing the kinase targets for particular cancer.




G Protein-Coupled Receptors (GPCRs) as a Drug Target

G protein-coupled receptors (GPCRs) are involved in signaling pathways and can elicit both cytostatic and cytotoxic effects. Four of the GPCRs, (i) galanin receptor type 1 (GALR1) (ii) GALR2, (iii) tachykinin receptor type 1 (TACR1), and (iv) somatostatin receptor type 1 (SST1) are the most studied and promising therapeutic target in a wide variety of cancer. GALR1 & 2 both inhibit cell proliferation and apoptosis of HNC cells. GALR1 act through ERK1/2-mediated activation of cell cycle control proteins such as p27, p57, and suppression of cyclin D1 protein. In p53 mutant HNC cells, GALR2 was found to have anti-proliferative and pro-apoptotic effects (190). The significant reduced disease-free survival and a higher recurrence rate is associated with hypermethylation of GALR1, GALR2, TACR1, and SST1. Methylation of GAL, TAC, and SST and its investigation as potential prognostic markers in HNC has already been discussed in Epigenomics of HNC.




Therapeutic Agents Targeting Potential Biomarker in HNC Patients

The primary treatment of HNC patients includes surgery, radiotherapy, and chemotherapy. However, a high recurrence rate, resistance to radiotherapy, and reduced life quality are major issues. Surgery and radiotherapy are the key treatments for early-stage tumors. However, therapeutic interventions are completely based on accessibility to the tumor, i.e., the tumor location, and not on the specific biology of the tumor. An increased understanding of cancer biology has led to the discovery of biomarkers, which can be efficaciously targeted to improve patient outcomes. Patients experiencing recurrence unable to be treated with surgery or radiotherapy, having limited overall median survival of one year, have shown better response to immune check point inhibitors targeting programmed cell death in HNC. Now clinicians need to determine that how targeted therapy can be best included/combined with immunotherapy. Clinical trials evaluating the combination of molecular targeted therapy with immunotherapy are emerging regularly. The results of such clinical trials will suggest us whether molecular targeted therapy and immunotherapy benefit different patients with different molecular alterations or can be used in combinations (191) (Tables 6 and 7)


Table 6 | A List of Therapeutic agents and Their Mechanism of Action against HNC.




The standard systemic treatment regimens for HNC include a combination of different drugs. However, overall survival rates are still very low, and due to the use of combinations of several drugs, the upper limit of toxicity seems to have been reached, causing the death of patients (192).


Targeted Chemotherapy

The chemotherapeutic agents such as, afatinib, poziotinib, vandetanib, nintedanib, gefitnib, erlotinib, lapatinib, dacomitinib, alpelisib, PX-866 are the multitargeted inhibitors of protein kinases that regulate Ras/Raf/MEK/ERK/PI3K signaling pathways (193). The immunotherapeutic approaches such as specific antibodies targeting tumor, cytokines, cancer vaccines, and immune-modulating agents are other cancer treatment strategies, discussed below and in Tables 6 and 7.

A continuous flow of new molecules, explicitly targeting the upcoming biomarkers, is required as few of the promising agents have failed to show desired results in clinical trials. These include inhibitors of PI3K and mTOR pathways, e.g., px-866, an inhibitor of PI3K that binds to ATP catalytic site (194). Another antiproliferative and immunosuppressive drug sirolimus (extracted from streptomyces bacteria) demonstrated critical challenges in the form of poor bioavailability and long half-life in patients leading to frequent monitoring of the drug (195). Thus, substituting the drug with its better analogs with improved pharmacokinetic properties seems desirable.

A study by our group on the effects of a combination of two drugs against HNC showed that a combination of resveratrol and quercetin improved cytotoxicity and altered gene expression in oral cancer cells (196). The above combination of drugs was found to modify the epigenetic markers by downregulating histone deacetylases such as HDAC1, HDAC3, and HDAC8.

The cetuximab is an approved targeted therapeutic against HNC. It is accredited for first-line use with platinum-based chemotherapy: the chemotherapy plus cetuximab appreciably extended basic survival compared to chemotherapy alone. Significant improvements were visible within the progression-free survival and goal response prices. In a retrospective analysis of the trial, the enhancements observed with cetuximab were regarded on par with tumors being HPV positive against tumor being HPV negative (197). The single-cell analysis following treatment with cetuximab to different squamous carcinoma cell lines identified a heterogeneous cell population (198). Resistance to cetuximab appeared to be cell-type-specific which was attributed to altered gene expression of TFAP2A and EMT. However, resistance to cetuximab was found to be very common in HNC. Various evading mechanisms such as mutations in receptors may act in accordance to restore original oncogene dependence. A gain in copy number of target genes is another factor that counteracts the action of inhibitors. It has been found that altered copy number by amplification of chromosome 7p11.2 which encompasses EGFR gene, causes various cases of changes in EGFR activation in HNC (199). Gillison et al. (200) observed that with HPV-positive oropharyngeal squamous cell carcinoma (OPSCC) patients, cetuximab and radiotherapy demonstrated an inferior overall survival when compared with radiotherapy plus cisplatin.

The cisplatin plus fluorouracil treatments were given to 657 patients in the SPECTRUM phase III trial, with or without panitumumab, another monoclonal antibody targeting the EGFR receptor (201). A statistically non-significant trend indicated increased overall survival with the addition of panitumumab. As with the EXTREME trial using cetuximab, there was slightly more toxicity in the panitumumab arm than in the control arm. In the phase II trial (202) however, a comparison was made to identify the efficacy of panitumumab plus radiotherapy with chemoradiotherapy groups in locally advanced HNC patients. In the combined study, the efficacy of panitumumab was found to be inferior to cisplatin. It cannot be considered as its substitute for the treatment of unresected stage III–IVb HNC.

Larotrectinib is another type of targeted therapy that does not target specific cancer types but focuses on specific genetic changes in neurotrophic tropomyosin receptor kinase (NTRK) genes. This uncommon genetic change was found in head and neck cancer. NTRK is observed to be highly expressed in aggressive cancer and is used as a predictive biomarker and drug target (203). This FDA- approved TRK inhibitor is used for tumor-agnostic treatment after pembrolizumab (204).

Gene therapy is another targeted approach used to treat a variety of cancers, including head and neck cancer. The p53, a tumor suppressor gene, is mutated in over 50% of all types of cancers in humans. It plays a critical role in suppressing malignancy. Thus, restoration of functional wild-type p53 gene appears as a promising strategy for cancer treatment. The commonly used p53 stimulants are advexin, gendicine, ONYX-015, and H-101 (205).



Monoclonal Antibodies as Targeting Agent

Monoclonal antibodies play a major role in the treatment of HNSCC. Monoclonal antibodies, such as antibody-drug conjugate to cytotoxic agents (206), are used to target particular cell surface proteins conferring tumor specificity by identifying selective targets. Clinically useful agents that target cell surface proteins in HNC such as AVID100 for EGFR; BAY1129980 for C4.4a; IMMU-132 target for TROP-2 antigen, and tisotumab vedotin are being developed and investigated (207–210).

The other approved targeted antibodies have been developed against specific targets such as CTLA-4 and programmed cell death protein 1(PD-1) that can stimulate co-stimulatory signals. The later one includes the agonistic mAb against OX-40 such as tavolimab and CD137 (urelumab, utomilumab) (211) or toll-like receptor 8 (TLR-8) agonist (motolimod) that mimics the viral ssRNA, the natural ligand of TLR8 and enhances immune response (212). The motolimod plus cetuximab plus was found to be safe in a phase I trial metastatic HNC patients (https://clinicaltrials.gov/ct2/show/NCT04272333) (213). The mAbs, pembrolizumab, and nivolumab are the approved PD-1 inhibitors. These have shown lasting responses in many cancers and were rapidly expanded for use in HNC treatments (214).

Another mAb that targets the EGFR domain, prevents a change in its conformation required for its activation. A randomized phase III trial with zalutumumab has failed to meet its endpoint of improved overall survival or no disease-specific survival and thus was suspended for further development (215). Other antibodies that targets different pathways/receptors and are under evaluation in head and neck cancer clinical trials. These include DLL/Notch pathway, FGF/FGF-R, HER2, TROP2 protein and VEGF/VEGF-R pathway and are discussed underneath.

Angiogenesis is important process in tumor growth and metastasis. The first-in-class anti-angiogenic mAb directed against ligand is bevacizumab that targets VEGF. Bevacizumab, has shown some evidence of activity combined with platinum-based chemotherapy. However, bevacizumab does not have a role in managing advanced or metastatic HNC outside of a clinical trial setting. Combining bevacizumab with chemotherapy in the first line of treatment of advanced metastatic HNC showed enhanced response rate and increased toxicity. In the E1305 trial, 403 patients without prior systemic therapy for advanced HNC were randomly assigned to platinum-based chemotherapy with or without bevacizumab (216). Thus, cisplatin with either fluorouracil or docetaxel or carboplatin with either fluorouracil or docetaxel were used. The primary endpoint was overall improved survival.

There has been substantial progress in the development of mAbs targeting FGFR pathway. Trastuzumab, a mAb targeting HER2, binds to domain IV of HER2 and blocks the homo-dimerization. In a phase II clinical trial study the effectiveness of trastuzumab on patients with advanced/metastatic salivary gland cancer was conducted, however no result is posted till date (NCT00004163) (217) (Table 6)

The transmembrane glycoprotein Trop2 is involved in several cell signaling pathways and is upregulated in a variety of cancers, including HNC. The overexpression of Trop-2 is associated with poor disease-free and overall survival in several solid tumors. IMMU-132 (hRS7-SN38 or Sacituzumab govitecan) is an Antibody Drug Conjugate (ADC) that target Trop-2. It consists of an antibody, hRS7 linked to SN38. SN38 is the active metabolite of irinotecan. The preclinical data demonstrated 136-fold more SN-38 delivery by IMMU-132 to a xenograft mouse model than irinotecan with lower toxicity, including lesser cases of severe diarrhea than irinotecan alone. IMMU-132 is under phase I/II clinical trials for evaluation of the safety and efficacy in patients of HNC (NCT03964727 & NCT01631552) (218–220). Table 7 enlists clinical trials with combination of small molecules along with immunogens.


Table 7 | Clinical trials of the combination of small molecules with immunogens against HNC.





Small Molecules as Targeting Agents

Small molecules have emerged as an important class of targeting agents that target multiple TK. The well-known molecular targets which have shown promising results are EGFR, EGFR TK and VEGF/VEGFR inhibitors and protein kinases or PI3K.

Gefitinib and erlotinib are the most common EGFR TKIs that are being used in clinical studies (phase II) for treatment of HNSCC. Lapatinib is another TKI that targets ErbB1/ErB2. The phase II study of lapatinib plus chemoradiotherapy in HNSCC has showed beneficial effect in HPV negative tumors (221). The lapatinib plus capecitabine combination has demonstrated best activity in the metastatic/recurrent HNSCC. Afatinib is an irreversible TKI that blocks the signaling originating from ErbB family. It is also used in other cancers with high EGFR mutations. In the stage III & IVa HNSCC, it is evaluated as adjuvant following radiotherapy (222).

Sorafenib, sunitinib and vandetanib are small molecules that targets VEGF (223). Sorafenib also act as radiosensitizer of HNSCC cells (224). Other VEGF inhibitors in clinical trials for treating HNSCC are linifanib, axitinib, pazopanib and nilotinib (225).

Several studies in vitro and in vivo demonstrated that temsirolimus, an mTOR inhibitor, inhibits proliferation of HNC. A study with HNSCC cell lines demonstrated beneficial effect of mTOR inhibitors plus cetuximab in the treatment of tumor with low EGFR expression or those that acquired resistance due to cetuximab/cisplatin (226). However, in other studies, temsirolimus failed to demonstrate significant changes in patients with advanced malignancies due to toxicity and subsequent death of patients. Everolimus, another mTOR inhibitor demonstrated antitumor effect in phase II clinical trial in patients with advanced HNSCC (NCT01111058) (227). The other small molecules that targets BCR-Abl kinase and are under clinical trial for treatment of HNSCC include imatinib, dasatinib, nilotinib, ponatinib inhibitors (193).

Although for the last several years, a large number of small molecules are being scrutinized against HNC (Table 6) with diverse heterocyclic structures, still a preferred specific and effective pharmacophore is yet to be assigned by drug development scientists. Current treatment is still associated with significant toxicities and includes chemotherapy mainly with platinum compounds, radiation, surgery, and a few targeted treatments. The scarcity of highly efficient drugs prompts researchers to identify novel targets for single-agent or for combined therapy.




Conclusion and Future Perspectives of HNC Therapy

The major hindrance in the treatment of head and neck cancers comes with the associated heterogeneity. Organoid and single-cell technologies hold great potential in clinical translational research as they not only get the measure of this heterogeneity but also provide a means to encounter the problems it stems. The organoid technology has expanded to embrace genetic manipulation, various omics, drug-screening analyses, and diverse co-culture systems. In fact, multiple studies have shown similarities in patient responses and in vitro organoid studies. Single-cell technology, on the other hand, promises to identify and characterize alterations in sub-clone profiles. Given the rapid technology development in the field despite the remaining challenges, the combinatorial approach, including both these technologies, remains novel, innovative, and assuring in cancer treatment. The suitable assays for clinical implementation can be developed. Treating the model system with anti-cancer drugs may help distinguish responders from non-responders and hence, help find the right drug for the right patients potentially be leading to significant developments in the field of precision medicine. Multi-omics studies have shifted the focus on cancer driven perturbations at the whole cellular level. This helps identify molecular subtypes of the tumor, molecular signatures, and cellular responses at the clinic-pathological level based on a gene-protein expression. The multi-tiered approaches using the genomes, transcriptomes, and methylomes from carcinomas have aided our understanding of disease progression. However, integrating all the multi-omics data is crucial in identifying predictive signatures, i.e. integrating all molecular data and determining a minimal gene signature that distinguishes a tumor group. Patterns of alterations vary between patients as a result; it becomes essential to identify patient subsets with differential prognosis or the ones responding to different treatments (targeting therapies). The significant challenge still is the low availability of patient-derived models specific to head and neck cancers, the variability and diversity in treatment tested, and the absence of a standardized set of protocols to be followed. The clinical parameters tested vary inter-studies, and the quality needs to be ensured, primarily for drug screening assays. Also, the data available is limited mainly to Caucasian populations, while ironically, HNC constitutes 30-40% of total cancer cases in India. It reiterates the need for multi-omics based studies using organoid technology and single-cell analysis to identify unique biomarkers, drug targets, and signatures specific to Indian populations. The review aims to act as a compendium on the above technical advancements and their potential to identify biomarkers and test drug regimens.
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