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Editorial on the Research Topic

Molecular Mechanisms and Treatment of MYCN-Driven Tumors

MYCN encodes a transcription factor that functions as an oncoprotein, similar to other MYC family
proteins, c-MYC and L-MYC. Since its discovery as an amplified gene homologous to c-MYC in
neuroblastoma, MYCN has been found to be amplified and overexpressed in various tumors and
promotes aggressiveness. In this special issue, we review the current understanding of the oncogenic
functions of MYCN and potential therapeutic strategies against MYCN-driven tumors.
MECHANISM OF MYCN DYSREGULATION AND DRUGS
TARGETING MYCN-DRIVEN TUMORS

The molecular mechanism of MYCN overexpression in tumors has been described in detail by R.
Liu et al. Gene amplification, transcription, translation, and protein stability are involved in MYCN
upregulation. It is also worth noting that the recently identified point mutation P44L inMYCN is an
activating mutation that enhances MYCN transcription and protein stability.

The review by Z. Liu et al. described the structure and function of MYCN in contrast to c-MYC. It
provides a detailed description of the latest findings, including the differences between MYCN and c-
MYC in global transcriptional regulation, the ubiquitination andmethylationmechanisms that regulate
MYCN stability, and the molecular mechanisms leading to synthetic lethality in MYCN-driven tumors,
includingmutations in ATRX. Inhibitors that target these molecular mechanisms ofMYCN expression,
downstream gene regulation, or synthetic lethality are discussed in terms of their efficacy in MYCN-
driven tumors. NCYM is an antisense gene ofMYCN and is always amplified together withMYCN. Its
gene product specifically stabilizes MYCN, but not c-MYC. The secondary structure of NCYM
identified by Matsuo et al. may be useful for designing NCYM/MYCN-targeting drugs in the future. In
addition, Takatori et al. showed thatNLRR1, a downstream gene ofMYCN, is also expressed inMYCN-
driven tumors, including adult cancers, and that a monoclonal antibody against NLRR1 in combination
with EGFR inhibitors may be an effective therapeutic strategy for these tumors. Consistent with this
idea, the detailed analysis by Pan et al. of protein-protein interaction networks identified an important
November 2021 | Volume 11 | Article 80344314
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role for EGFR in the MYCN network and pathway, and the
combination of drugs targeting MYCN or its downstream genes
with EGFR inhibitors may be a promising strategy in the future.
Raieli et al. comprehensively investigated the mechanisms of
MYCN-induced immunosuppression and showed that the
intensity of immunosuppression is associated with poor
prognosis in neuroblastoma. Furthermore, they showed that
BGA002, an anti-MYCN antigene peptide nucleic acid, enhances
NK cell sensitivity in MYCN-amplified neuroblastomas.
MECHANISM OF MYCN-DRIVEN
TUMORIGENESIS FROM AN
EMBRYOLOGICAL PERSPECTIVE

Otte et al. explained the MYCN-driven tumorigenesis in
neuroblastomas. In neuroblastoma, MYCN amplification is
observed at the time of diagnosis, and non-MYCN-amplified
tumors do not secondarily acquire MYCN amplification. In
other words, unlike gene amplification in other tumors, MYCN
amplification in neuroblastoma is a phenomenon that occurs early
in carcinogenesis. Neuroblastoma development is thought to be
caused by the inhibition of neural differentiation and promotion
of cell proliferation in the sympathoadrenal lineages. However,
recent studies revealed that overexpression of MYCN in mouse
sympathoadrenal progenitors promotes neuronal differentiation
without forming tumors in vivo and that MYCN is expressed
together with CIP2A in the neural plate destined to form the
central nervous system, but is excluded from the neighboring
neural crest stem cell domain. Therefore, MYCN may promote
neuroblastoma carcinogenesis at an earlier developmental stage
than during the migration and differentiation of neural crest cells.
Compared to previous models, mouse neuroblastoma developed
in recently established models resembles human neuroblastoma,
reflecting the gain or loss of copy number of chromosomes;
however, these mouse models used Th or Dbh promoters,
which overexpress MYCN relatively late in the neural crest
differentiation process. To identify the origin of MYCN-
amplified neuroblastoma, it will be necessary to investigate the
effect of MYCN overexpression at an early stage of development.
Explaining when and how MYCN gene amplification occurs
during early development is an important topic that remains to
be elucidated in neuroblastoma biology.

Borgenvik et al. discussed how MYCN-targeted drugs can be
applied in the treatment of brain tumors, comparing the findings
with those of neuroblastoma. In addition, the molecular
mechanisms of subtypes, overexpression, and tumor-
promoting potential of brain tumors, including the rare tumors
in which MYCN is involved, are described in detail. MYCN is
expressed in the hindbrain during development and is essential
for cerebellar development (Shrestha et al.). Abnormalities in
MYCN during cerebellar development cause medulloblastoma,
one of the most prevalent causes of brain tumors in children.
Consistent with the requirement of MYCN for the promotion of
cell proliferation of the cerebellar granule cell precursor by SHH
during development, MYCN is amplified and overexpressed in
Frontiers in Oncology | www.frontiersin.org 25
the SHH subtype of medulloblastoma and is involved in its
aggressiveness. Amplification is also observed in Group 4
medulloblastoma, but the relationship between the
physiological roles of MYCN in embryonic development and
the oncogenic functions of MYCN in Group 4 medulloblastoma
remains to be elucidated.

Metabolic reprogramming is an important mechanism for
MYCN-driven tumorigenesis, in addition to promoting cell
proliferation and inhibiting cell death. As seen in pluripotent
stem cells, a function of MYCN in metabolic reprogramming is
providing bio-macromolecules through the activation of the
glycolytic system accompanied by upregulated mitochondrial
metabolism that leads to high energy production (Otte et al.;
Yoshida). By introducing the functions of downstream genes of
MYCN (ASCT2 and GLDC) or factors that work in concert with
MYCN (ATF4 and MondoA), Yoshida explained the molecular
mechanism of this metabolic reprogramming, which cannot be
fully explained by the Warburg effect.

Another aspect of the stem cell-like characteristics ofMYCN-
amplified neuroblastoma is its ability to undergo symmetric
division via inhibition of asymmetric division (Izumi et al.).
MYCN promotes symmetric division by mutual regulation of the
reprogramming factors OCT4 and LIN28B. In addition, a
downstream gene, HMGA1, regulates cell fate determinants,
such as NUMB, and contributes to MYCN-induced symmetric
division. Because all these factors have been reported to be
associated with the aggressiveness of neuroblastomas, the
maintenance of symmetric division is one of the oncogenic
functions of MYCN that could be targeted by drugs in the future.
INDUCTION OF MYCN BY
ENVIRONMENTAL FACTORS AND
MYCN REGULATION BY MIRNAS

MYCN is highly expressed in hepatocellular carcinomas and
correlates with cancer stem cell markers and Wnt/b-catenin
signaling (Qin et al.). Indeed, it is expressed in a population of
liver cancer stem cells, and high MYCN expression levels are
associated with the recurrence of hepatocellular carcinoma.
Unlike neuroblastoma, MYCN amplification is only
approximately 2% in hepatocellular carcinomas, suggesting
that the expression of MYCN is induced by mechanisms other
than gene amplification. Hepatocellular carcinoma is not only
caused by hepatitis B or C virus infection, but also by obesity-
induced inflammation. Qin et al. proposed repair signaling and
stress adaptation signaling in response to inflammation as the
cause of MYCN induction in hepatocellular carcinomas. In
addition, disruption of miRNA-mediated repression of MYCN
expression, including miR-493, has attracted attention as a
molecular mechanism for the high expression of MYCN in
hepatocellular carcinoma. Discovery of the feedback
mechanism between the miR-17-92 cluster and MYCN and its
significance in neuroblastoma prognosis by Misiak et al. further
emphasizes the importance of post-translational regulation of
MYCN as a promising therapeutic target for these tumors.
November 2021 | Volume 11 | Article 803443
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This special issue focuses on the functions of MYCN and
therapeutic strategies for various cancer types. It is our hope that
readers will gain knowledge of cancer types outside their area of
expertise, which will be useful in the development of new
therapies. Elucidation of the physiological functions of MYCN,
especially in developmental processes and global transcription,
will also contribute to a comprehensive understanding of basic
biology, not restricted to molecular oncology.
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Cancer cells generate large amounts of lactate derived from glucose regardless of

the available oxygen level. Cancer cells finely control ATP synthesis by modulating the

uptake of substrates and the activity of enzymes involved in aerobic glycolysis (Warburg

effect), which enables them to adapt to the tumor microenvironment. However, increasing

evidence suggests that mitochondrial metabolism, including the tricarboxylic acid

(TCA) cycle, oxidative phosphorylation (OXPHOS), and glutaminolysis, is paradoxically

activated in MYCN-amplified malignancies. Unlike non-amplified cells, MYCN-amplified

cancer cells significantly promote OXPHOS-dependent ATP synthesis. Furthermore,

tumor cells are differentially dependent on fatty acid β-oxidation (FAO) according

to N-Myc status. Therefore, upregulation of FAO-associated enzymes is positively

correlated with both N-Myc expression level and poor clinical outcome. This review

explores therapeutic strategies targeting cancer stem-like cells for the treatment of

tumors associated with MYCN amplification.

Keywords: acyclic retinoid, amino acid transporter, cancer stem-like cells, fatty acid β-oxidation, glutaminolysis,

mitochondria, N-Myc, TCA cycle

INTRODUCTION

N-Myc contains a C-terminal basic region that can bind to DNA and a basic-helix-loop-helix-
leucine zipper domain that is responsible for the physical interaction with its counterpart MAX.
Myc/MAX heterodimers bind to the DNA sequence 5′-CACGTG-3′, which is termed the consensus
E-box (1, 2). N-Myc represses transglutaminase 2 (TG2) transcription in cooperation with specific
protein 1 (SP1) and the subsequent recruitment of histone deacetylase 1 (3); however, N-Myc also
directly induces the transcription of a specific subset of ATP-binding cassette (ABC) transporter
genes. These examples strongly suggest a double-edged sword role for N-Myc in transcriptional
regulation according to cell context and tumor microenvironment (4). The Myc family is essential
for normal development of the central nervous system (5), and the expression pattern of Myc
changes from N-Myc to c-Myc during differentiation to transit-amplifying progenitors (6).

N-Myc is overexpressed in malignant neoplasms of the nervous system, including
neuroblastoma, medulloblastoma, glioblastoma multiforme, retinoblastoma, and astrocytoma, as
well as in non-neuronal tumors, including hematologic malignancies, small cell lung cancer,
neuroendocrine prostate cancer, rhabdomyosarcoma, and Wilms tumors (7). N-Myc is expressed
in self-renewing and quiescent hematopoietic stem cells, and expression changes to c-Myc upon
differentiation to transit-amplifying progenitors (8). This finding suggests that N-Myc plays a role
in the activation of stem cell-like properties characterized by self-renewal potential. Consistently,
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enforced expression of N-Myc, but not c-Myc, in murine
bone marrow cells causes rapid development of acute myeloid
leukemia in vivo (9). This is supported by the effect of N-
Myc upregulation on driving the formation of a neuroendocrine
tumor type that differs from c-Myc-driven prostate cancer in
histology and response to androgen receptor (AR) signaling-
targeted therapies (10, 11). N-Myc suppresses AR signaling
and induces polycomb repressive complex 2 (PRC2) target
gene repression irrespective of phosphatase and tensin homolog
deleted on chromosome 10 (PTEN) status. N-Myc binds
to AR enhancers and forms a complex with AR in a
manner dependent on its interaction with enhancer of zeste
homolog 2 (EZH2). Furthermore, the catalytic activity of
EZH2 promotes N-Myc/AR/EZH2-PRC2 complex formation
(10). Thus, N-Myc might play a fundamental role in lineage
switching from an epithelial origin to a neuroendocrine
prostate carcinoma.

Despite its therapeutic potential, targeting N-Myc directly
using small molecules remains challenging. As of this writing,
there are very few reports demonstrating the efficacy of
any compound targeting the binding between N-Myc and
MAX, and effective small molecules capable of interfering
with the N-Myc/MAX heterodimer in vivo have not been
identified (7). Several indirect strategies to target N-Myc-driven
malignancy are currently being explored, such as impeding
MYCN transcription with inhibitors of bromodomain and
extraterminal (BET) proteins such as JQ1; targeting proteins
that increase N-Myc stability such as allosteric Aurora-A
inhibitors; and exploiting synthetic lethal interactions with agents
that deregulate N-Myc such as checkpoint kinase 1 (CHK1)
inhibitors (7, 12, 13). CHK1 is involved in DNA repair, which
is modulated by c-Myc-induced replicative stress (14). CHK1
transcription is markedly elevated in patients with MYCN-
amplified neuroblastomas (13). In addition, the MRN complex
is composed of RAD50, meiotic recombination 11 (also referred
to as MRE11), and NBS1 (also known as nibrin). MRN plays
a critical role in processing, sensing, and repairing the double-
strand breaks of DNA (15). Petroni and Giannini reported
that N-Myc-dependent proliferation of neuroprogenitor cells is
accompanied by DNA replication stress, which is attenuated
by the MRN complex, a direct transcriptional target of N-
Myc. MRN inhibition via mirin also results in the accumulation
of DNA damage response (DDR) markers and replication
stress-associated DNA foci in an N-Myc-dependent manner.
The functional inactivation of the MRN complex mediated by
mirin in N-Myc-expressing neural cells fails to induce CHK1

Abbreviations: ACR, acyclic retinoid; α-KG, α-ketoglutarate; AMPK, AMP-

activated protein kinase; AR, androgen receptor; BET, bromodomain and

extraterminal; CD44v, CD44 variant; CHK1, checkpoint kinase 1; CPT1C,

carnitine palmitoyltransferase 1; CSCs, cancer stem-like cells; EpCAM, epithelial

cell adhesion molecule; ER, endoplasmic reticulum; EZH2, zeste homolog 2;

FAO, fatty acid β-oxidation; GLDC, glycine decarboxylase; HCC, hepatocellular

carcinoma; LDH-A, lactate dehydrogenase A; MCT, monocarboxylate transporter;

mTOR, mammalian target of rapamycin; NASH, non-alcoholic steatohepatitis;

OXPHOS, oxidative phosphorylation; PRC2, polycomb repressive complex 2;

PTEN, phosphatase and tensin homolog deleted on chromosome 10; ROS, reactive

oxygen species; SCD1, stearoyl-CoA desaturase-1; TCA, tricarboxylic acid; UFA,

unsaturated fatty acid.

phosphorylation and S phase arrest, whereas it activates both
p53 and ATM to trigger apoptotic cell death (16). CCT244747,
which is a highly selective and orally active CHK1 inhibitor, has
shown therapeutic effects in an N-Myc-driven transgenic murine
model of neuroblastoma (17). Zirath et al. (18) demonstrated
that the compound 10058-F4, which is thought to disrupt
the interaction between c-MYCN-Myc and MAX, impairs

respiratory chain and FAO, resulting in apoptosis. A recent

study showed in vitro that 10058-F4 is effective against acute

promyelocytic leukemia and acute lymphoblastic leukemia with

c-Myc overexpression (19).

METABOLIC REPROGRAMMING
THROUGH THE REGULATION OF AMINO
ACID TRANSPORTERS BY N-MYC

Amino acid transporters contribute to metabolic reprogramming
and maintain cancer stem-like phenotypes. xCT (SLC7A11)
takes up cystine in exchange for glutamine, which is used
for the synthesis of reduced glutathione (GSH) (20, 21),
whereas ASCT2 (solute carrier family 1 member 5; SLC1A5)
simultaneously takes up glutamine (22, 23). The heterodimer
composed of LAT1 (SLC7A5) and CD98 heavy chain (SLC3A2)
is broadly and highly expressed in cancer cells and provides
essential amino acids characterized by leucine, thereby activating
the mammalian target of rapamycin (mTOR) complex1 (24).
Oncogenic c-Myc and hypoxia-induced factor 2α (HIF2α)
upregulate LAT1 in a coordinated manner, whereas miR-
126 suppresses LAT1 expression (25, 26). The leucine influx
mediated by LAT1 is associated with another amino acid
antiporter, ASCT2 (27). Pharmacological inhibition of ASCT2
suppresses LAT1-mediated leucine uptake, which leads to
mTOR signaling inactivation in malignancy (28). Glutamine
contributes to the synthesis of α-ketoglutarate (α-KG) via its
conversion to glutamate, thereby promoting the tricarboxylic
acid (TCA) cycle and the synthesis of nucleotides required for
cellular proliferation (27, 29). CD44 variant (CD44v)-positive
cancer stem-like cells (CSCs) express high levels of xCT and
ASCT2, which promote GSH synthesis from cysteine and α-
KG from glutamine, respectively (30). Because c-Myc regulates
amino acid transporters such as ASCT2 (23), c-Myc is likely
to induce metabolic reprogramming in CD44v-positive CSCs.
Collectively, metabolic reprogramming, which is orchestrated
by the increased expression and interplay of amino acid
transporters, results in glutamine addiction and protects CSCs
from redox stress.

Ren et al. (31) reported that MYCN-amplified neuroblastoma
cells prominently depend on ASCT2 to maintain sufficient
level of glutamine to activate TCA cycle. MYCN amplification
is present in ∼30–40% of high-grade neuroblastoma patients
and is a poor prognostic factor (32, 33). MYCN-amplified
neuroblastoma cells need an efficient machinery to meet the
metabolic demands to keep enough amount of glutamine,
which is a process which strictly relies on the interaction of
specific amino acid transporters. High expression levels of Myc
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are necessary to maintain the glutaminolytic phenotype and
addiction to glutamine as a bioenergetic substrate (23, 34–
36). Induction of key regulatory genes encoding glutamine
transporters, glutaminase, and lactate dehydrogenase A
(LDH-A) is important for glutaminolysis correlated with the
Myc-induced increase in glutamine uptake and glutaminase
flux. Glutamine addiction is associated with the activity of
Myc in redirecting glucose carbon utilization away from
mitochondria as a result of LDH-A activation (23, 35).
Consequently, Myc-transformed cells become dependent on
glutamine anapleurosis to maintain mitochondrial integrity and
TCA cycle function. Indeed, MYCN-amplified neuroblastoma
cells display addiction to glutamine metabolism (36). Ren
et al. (31) identified a well-conserved N-Myc binding site
in the ASCT2 promoter region. Although N-Myc and ATF4
cooperatively transactivate ASCT2, this amino acid transporter
is significantly upregulated in response to glucose and/or
glutamine deprivation and endoplasmic reticulum (ER)
stress (Figure 1).

MITOCHONDRIAL METABOLIC
REPROGRAMMING IN N-MYC-DRIVEN
CANCER CELLS

Alptekin et al. proposed an alternative therapeutic strategy
against MYCN-amplified neuroblastoma. These authors
demonstrated that upregulation of genes associated with
the serine-glycine-one-carbon (SGOC) metabolic pathway
underlies the excessive dependence on glycine decarboxylase
(GLDC) (38). N-Myc activates GLDC transcription and is
essential for maintaining high levels of GLDC expression
in MYCN-amplified neuroblastoma cells, suggesting that
GLDC and other SGOC pathway genes are cooperatively
upregulated (38). Xia et al. reported that the SGOC pathway
is inhibited by N-Myc-dependent metabolic vulnerability
(39). Genes encoding SGOC-associated enzymes including
PHGDH, PSAT1, PHSH, and SHMT are direct transcriptional
targets of ATF4. The SGOC pathway provides potential targets
for preventing therapeutic resistance in neuroblastoma (40).
Increasing evidence supports the pathophysiological significance
of GLDC upregulation (41, 42). Increased expression of GLDC
in CSCs from non-small-cell lung cancer is essential for their
proliferation and tumorigenic ability by driving glycolysis,
pyrimidine biosynthesis, and sarcosine production (41). In
addition, GLDC upregulation is essential for the viability
and growth of glioblastoma cells expressing high levels of
serine hydroxymethyltransferase 2, which changes serine into
glycine in mitochondria (42). GLDC contributes to metabolic
reprogramming exclusively in MYCN-amplified neuroblastoma
cells, as demonstrated by the effect of GLDC knockdown on
central carbonmetabolism pathways, including glycolysis and the
TCA cycle, as well as lipid synthesis. GLDC knockout decreases
the levels of glucose-6-phosphate, 3-phosphoglycerate, and
lactate (38), suggesting that GLDC drives aerobic glycolysis. In
addition, GLDC knockdown inhibits the glutamine-dependent
reductive carboxylation pathway (38). Glutaminolysis and the

reductive carboxylation pathway contribute to the synthesis
of acetyl-CoA for lipid synthesis in tumor cells (27, 43, 44).
Consistent with this finding, GLDC knockdown considerably
decreases levels of fatty acids (palmate and myristic acid) and
sterols (lanosterol and cholesterol) (38).

MYCN-amplified neuroblastoma cells exhibit enhanced
expression of genes and proteins involved in aerobic glycolysis
(Warburg effect), oxidative phosphorylation (OXPHOS),
detoxification of reactive oxygen species (ROS), and FAO
(45). In MYCN-amplified tumor cells, glycolytic enzymes
including hexokinase isoform 2 are upregulated, and enzymes
associated with the TCA cycle and the electron transport
chain, such as citrate synthase and isocitrate dehydrogenase
isoform 2, are expressed at high levels. Increased expression
of N-Myc-induced respiratory subunit genes is correlated
with adverse clinical outcome in patients with neuroblastoma
(45). A moderate increase in ROS in malignant neoplasms
modulates cancer cellular signaling via the oxidation of
cysteine. H2O2 inactivates PTEN, a widely-known tumor
suppressor, by oxidizing cysteine residues in the active site; this
results in the formation of a disulfide bond, which prevents
PTEN from inactivating the phosphatidylinositol-3-kinase
(PI3K) signaling pathway (46). Therefore, cancer cells finely
maintain ROS level within a narrow window which stimulates
cellular proliferation. Because most mitochondrial proteins
are overexpressed in MYCN-amplified neuroblastoma, and
OXPHOS results in the production of intracellular ROS in
mitochondria (47), the members of the peroxiredoxin ROS
scavenger system, such as peroxiredoxin 6, are upregulated
(45). Cancer cells tend to produce large amounts of lactate
from glucose, regardless of the available oxygen level, and
they activate glycolytic metabolism even before exposure to
hypoxic conditions (27, 48). However, neoplastic cells highly
depend on the TCA cycle and OXPHOS in mitochondria,
rather than on aerobic glycolysis in cytoplasm (27, 49). The
metabolic symbiosis between tumor cells and cancer-associated
fibroblasts (CAFs) needs the expression of different subtypes of
monocarboxylate transporter (MCT) by each cell population.
Epithelial tumor cells typically express MCT1, which promotes
the uptake of lactate generated and provided by MCT4-
expressing and caveolin1-negative CAFs (50, 51). Cancer cells
synthesize pyruvate from lactate, providing the TCA cycle and
subsequent OXPHOS with an intermediate metabolite. Oliynyk
et al. (45) demonstrated that MYCN-amplified neuroblastoma
cells depend on both aerobic glycolysis and the TCA cycle;
however, metabolic reprogramming driven by N-Myc may rely
mostly on mitochondrial metabolism. Furthermore, N-Myc
overexpression is related to the FAO process. Indeed, acyl-CoA
dehydrogenase is involved in regulating the first step of FAO
and is negatively correlated with clinical outcome of patients
with MYCN-amplified malignancy (45). Accordingly, the
FAO inhibitor etomoxir, which inhibits the rate-limiting FAO
enzyme carnitine palmitoyltransferase 1 (CPT1C), suppresses
the growth of xenograft tumors derived from MYCN-amplified
neuroblastoma (45). This finding suggests that neuroblastoma
cells are differentially susceptible to FAO inhibition according to
N-Myc expression.
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FIGURE 1 | N-Myc and ATF4 act together to upregulate ASCT2, thereby enhancing mitochondrial metabolism. In MYCN-amplified neuroblastoma, the N-Myc/MAX

heterodimer binds to the ASCT2 promoter region and aberrantly regulates its transcriptional level (7, 31). Endoplasmic reticulum (ER) stress induces ATF4 via protein

kinase-like ER kinase (PERK) and phosphorylated eukaryotic initiation factor 2α (p-EIF2α) (37). ATF4 activates amino acid and glucose metabolism, and promotes

protein translation to support increased biosynthetic activities. As such, ATF4 upregulates ASCT2 under ER stress conditions in N-Myc-overexpressing cancer cells.

ASCT2 upregulation thus promotes robust uptake of glutamine, which is converted into glutamate and subsequently α-ketoglutarate (α-KG), a substrate of the TCA

cycle.

LIPID METABOLIC REPROGRAMMING IN
N-MYC-DRIVEN TUMOR CELLS

High expression levels of CPT1C, a brain-specific metabolic
enzyme, in N-Myc-positive neuroblastoma cells suggest that
increased FAO might be an important metabolic feature in this
malignancy (52). While CPT1A and CPT1B exist on the cytosolic
surface of mitochondria, CPT1C is localized in endoplasmic
reticulum; CPT catalyzes the synthesis of acyl-carnitine from
acyl-CoA and promotes lipid conveyance through the membrane
of mitochondria (52, 53). The production of acyl-carnitine
represents a pivotal regulatory step before FAO because both
CPT1A and CPT1C are likely to be inhibited by malonyl-
CoA, a final metabolite of the FAO of acyl-CoA molecules.
Malonyl-CoA, a fatty acid precursor, simultaneously promotes
fatty acid biosynthesis and inhibits fatty acid catabolism, thereby
regulating the balance of intracellular fatty acids (18, 54).
MYCN-amplified neuroblastoma cells show high levels of CPT1C
expression, and inhibition of both CPT1C and peroxisomal
β-oxidation leads to lipid accumulation (18). Furthermore,
impairment of bromodomain-containing protein 4 (BRD4) due
to JQ1 significantly downregulates N-Myc in association with the
formation of lipid droplets (18). These findings strongly suggest
that N-Myc contributes to lipid metabolic reprogramming,
and N-Myc inhibition is responsible for lipid accumulation.
Treatment with 10058-F4, which inhibits the c-Myc/MAX
complex and theN-Myc/MAX interaction, downregulates several
enzymes directly involved in FAO as well as glycolysis and the

TCA cycle. High expression levels of FAO-associated enzymes are
correlated with robust N-Myc activity and poor clinical outcome
in patients with neuroblastoma (18).

Qin et al. (55) reported that signaling networks that
regulate ER stress, characterized by the endocannabinoid cancer
inhibition pathway, are regulated by stearoyl-CoA desaturase-
1 (SCD1) in hepatic tumor-initiating cells with high N-Myc
expression. SCD1 is a rate-limiting enzyme which contributes to
the synthesis ofmonounsaturated fatty acids. Deletion of the gene
encoding SCD1 increases the rate of FAO mediated by the AMP-
activated protein kinase (AMPK) pathway and the upregulation
of enzymes necessary for FAO (56). AMPK phosphorylation
significantly increases when the function of SCD1 is inhibited,
and this inhibition of SCD1 activity has favorable effects for
lipidmetabolism, such as attenuated lipogenesis and/or increased
FAO; these effects are partly attributed to an increase in AMPK
activation (57). Changes in AMPK phosphorylation caused by
SCD1 up and downregulation affect NAD+ levels following
changes in NAD+-dependent deacetylase sirtuin-1 activity and
epigenetic alterations characterized by histone H3 residue 9
acetylation and methylation status (56).

Deregulated N-Myc requires MondoA for lipid metabolic
reprogramming in Myc-driven tumors (58). MondoA is
associated with the outer membrane of mitochondria, where it
can sense both glycolytic intermediate metabolites characterized
by glucose 6-phosphate and mitochondrial metabolites necessary
for glutaminolysis (59, 60). Metabolites drive the nuclear
localization of MondoA, which activates the transcription
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FIGURE 2 | Metabolic reprogramming in N-Myc-positive hepatic cancer stem-like cells (CSCs) is a potential therapeutic target. (A) According to the Cancer Genome

Atlas data from the cBio Cancer Genomics Portal at Memorial Sloane Kettering Cancer Center (http://www.cbioportal.org/), ∼2.5% of hepatocellular carcinoma (HCC)

patients have MYCN amplification. (B) Primary HCC tissues include both EpCAM-positive and EpCAM/N-Myc double-positive hepatic CSCs (left). Treatment with

acyclic retinoid selectively eliminates N-Myc-positive CSCs (right) (64). (C) Glutamine metabolism as well as lipid metabolism with SCD1 and fatty acid synthase

(FASN) are activated in EpCAM/N-Myc-positive hepatic CSCs (64, 65).

of genes related to glucose metabolism (61). Depletion
of MondoA inhibits N-Myc-induced glutamine uptake,
glutaminolysis, and glutamine-derived lipid biosynthesis,
which is why apoptosis occurs in the absence of MondoA
(58). There is a collaboration network between the nutrient-
utilizing N-Myc and the nutrient-sensing MondoA, and the
orchestrated interaction between N-Myc and MondoA is
critical for amino acid transport, lipid metabolism, nucleotide
biosynthesis, and mitochondrial biogenesis. MondoA depletion
is responsible for the significant downregulation of fatty
acid synthase (FASN), stearoyl-CoA desaturase (SCD), and
sterol regulatory element- binding protein-1 (SREBP-1).
Metabolite set enrichment analysis indicates that N-Myc
activation broadly alters the cellular metabolic characteristics,
promotes fundamental changes in amino acid metabolism,
and results in an increased amount of precursors for de novo
lipid and purine biosynthesis (58). De novo lipogenesis in
N-Myc overexpressing cancer cells depends on MondoA,
which is required for N-Myc-induced expression of SREBP-
1, FASN, and SCD. The observation that oleate (C18:1)
can partially rescue the synthetic lethal effect of N-Myc
overexpressing cancer cells lacking N-Myc and MondoA
strongly suggests the pivotal role of lipogenesis. Inhibitors of
fatty acid synthesis are toxic to N-Myc overexpressing tumor
cells (58). Taken together, these findings indicate that metabolic
pathways downstream of N-Myc and MondoA, particularly

SREBP-1-dependent lypogenesis, are crucial for the survival of
N-Myc overexpressing carcinoma.

THE NOVEL SIGNIFICANCE OF N-MYC IN
HEPATIC CANCER STEM CELLS

Qin et al. identified N-Myc as one of the hepatic CSC markers
in parallel with α-fetoprotein (AFP), epithelial cell adhesion
molecule (EpCAM), CD90, CD133, delta-like 1 homolog, and
glypican 3 (62–64), and N-Myc plays a pathological role in
recurrence of de novo hepatocellular carcinoma (HCC). N-
Myc is highly expressed in hepatic CSCs compared with non-
CSCs. Furthermore, MYCN amplification occurs in at most
2.5% of HCC patients (Figure 2A). In de novo HCC, there is a
positive correlation between the expression of N-Myc and that
of canonical Wnt signaling target molecules such as EpCAM
(64, 66), suggesting that N-Myc contributes to the stemness
of HCC in cooperation with Wnt/β-catenin signaling. There
is no correlation between the expression levels of c-Myc and
N-Myc in de novo HCC. Alterations of fatty acid metabolism
associated with metabolic reprogramming play a pivotal role in
facilitating carcinogenesis in the liver (67). HCC cells import
fatty acids and other lipids from the bloodstream; however,
HCC cells upregulate enzymes involved in the biosynthesis
of fatty acids, including SREBP-1-regulated genes including
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ATP citrate lyase (ACLY), acetyl-CoA carboxylase (ACC),
FAS, and SCD-1, leading to the de novo synthesis of fatty
acids (68). Lipid droplets are considered to be intracellular
spherical organelles which are surrounded by a phospholipid
single layer (69). The generation of lipid droplets is promoted
by hypoxia related to HIF1- and HIF2-mediated repression
of CPT1A, an essential enzyme involved in mitochondrial
FAO (70). In addition, lipid-modifying enzymes that convert
saturated fatty acid (SFA) to monounsaturated fatty acids
(MUFA) are responsible for carcinogenesis. This is partly because
the ratio of long chain n6-polyunsaturated fatty acids to n3-
polyunsaturated fatty acids is associated with a higher risk
of HCC development in non-alcoholic steatohepatitis (NASH)
model mice (71).

Qin et al. investigated the therapeutic effect of acyclic
retinoid (ACR), a synthetic retinoid X receptor α-ligand, against
hepatic CSCs expressing high levels of N-Myc. Hepatic CSCs
with high expression levels of both EpCAM and N-Myc are
more susceptible to ACR than non-CSCs negative for N-Myc
expression (64). In general, inhibition of retinoid signaling
in the liver is associated with the rapid progression of HCC
associated with ROS. Thus, retinoids play crucial roles in
mediating lipid metabolism in normal hepatic cells, and altered
retinoid-inducing signaling is related to the progression of
non-alcoholic fatty liver disease/NASH (NAFLD/NASH) (72).
Sp1 may promote the transcription of N-Myc in collaboration
with E2F, whereas ACR-induced nuclear translocation of
transglutaminase 2 inhibits N-Myc expression in association with
the inactivation of Sp1 (64, 73). ACR is a promising vitamin
A-like compound for the chemoprevention of HCC because
it selectively kills N-Myc-overexpressing CSCs (Figure 2B).
ACR has chemopreventive effects on HCC mediated by the
inhibition of the hyper-phosphorylation of retinoid receptors
and lipid metabolic reprogramming (74, 75). Indeed, lipid
metabolic reprogramming is required for the initiation step
of HCC tumorigenesis (64, 75). Because lipid biogenesis as
well as glutaminolysis are essential for the proliferation of
N-Myc-driven cancer cells (Figure 2C), inhibitors of fatty
acid synthesis show specific toxicity to malignancy with high
expression level of N-Myc (58, 76). The growth-suppressive
activity of ACR in HCC cells involves upregulation of
pyruvate dehydrogenase kinase 4, which decreases the flux

of glycolytic carbon into OXPHOS in mitochondria (75, 77).
This response switches the energy source from glucose to

fatty acids to maintain the stable ATP production. Although
synthetic inhibitors of unsaturated fatty acids (UFAs) such
as oleic acid are toxic to N-Myc-overexpressing cells, UFA
treatment partially rescues apoptosis induced by knockdown
of MondoA, a nutrient-sensing transcription factor (58).
Collectively, these findings indicate that disruption of N-Myc-
induced lipid metabolic reprogramming may be responsible
for the specific toxicity of ACR to hepatic CSCs (64,
65).

CONCLUSIONS AND PERSPECTIVES

N-Myc enables metabolic reprogramming of cancer cells, which
cannot be simply explained by constitutive aerobic glycolysis
(Warburg effect). However, MYCN-amplified cells depend on
the TCA cycle and OXPHOS as well as lipid metabolism,
rather than the Warburg effect. N-Myc upregulates ASCT2,
the amino acid transporter contributing to glutamine addiction.
MondoA, a nutrient-sensing transcription factor associated with
Myc signaling, plays an important role in maintaining N-Myc-
induced glutaminolysis and glutamine-derived lipid biosynthesis.
ACR, a leading compound of vitamin A, was recently shown
to specifically kill EpCAM-positive liver CSCs expressing high
levels of N-Myc. ACR holds much promise for preventing de
novo HCC recurrence. Such CSC population is enriched in
enzymes necessary for lipid desaturation including FADS1/2
and SCD1. Considering the complexity of mitochondrial
metabolism, further investigation is warranted to design
novel therapeutic strategies targeting metabolic reprogramming
triggered by N-Myc.
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Asymmetric cell division (ACD) is an important physiological event in the development of
various organisms and maintenance of tissue homeostasis. ACD produces two different
cells in a single cell division: a stem/progenitor cell and differentiated cell. Although the
balance between self-renewal and differentiation is precisely controlled, disruptions to
ACD and/or enhancements in the self-renewal division (symmetric cell division: SCD) of
stem cells resulted in the formation of tumors in Drosophila neuroblasts. ACD is now
regarded as one of the characteristics of human cancer stem cells, and is a driving force
for cancer cell heterogeneity. We recently reported that MYCN controls the balance
between SCD and ACD in human neuroblastoma cells. In this mini-review, we discuss
the mechanisms underlying MYCN-mediated cell division fate.

Keywords: MYCN, TRIM32, NCYM, ALDH18A1, asymmetric cell division, neuroblastoma

INTRODUCTION

Neuroblastoma is a common cancer in children and exhibits a broad clinical behavior (1–3).
Patients are classified into low-, intermediate-, and high-risk groups based on clinical and biological
characteristics (1–3). Minimal treatment may be sufficient for the low-risk group, whereas despite
intensive treatment, high-risk patients still present with a dismal outcome. The reasons for this
heterogeneity remained unclear until molecular, genetic, and biochemical analyses of tumors
provided insights into their different clinical behaviors. Among the many genetic and biochemical
features of neuroblastoma, amplification of the MYCN oncogene correlates with an aggressive
phenotype and poor prognosis (1–3). Approximately 20% of neuroblastomas show MYCN gene
amplification. Recent studies reported that MYCN not only exhibited oncogenic activity, but also
played a central role in normal neural stem and progenitor cell self-renewal (4–6).

Neuroblastoma originates from cells of the neural crest, which is a multipotent cell population
comprising the embryonic structure (7). The neural crest is composed of migrating cell populations
that give rise to diverse cell lineages, including Schwann cells, melanocytes, craniofacial cartilage
and bones, smooth muscle, peripheral and intestinal neurons, and glia. Thus, the neural crest acts

Abbreviations: ACD, asymmetric cell division; ALDH18A1, Aldehyde dehydrogenase family 18 member A1; ALK,
Anaplastic lymphoma kinase; AURKA, Aurora kinase A; Brat, brain tumor; CDK1, cyclin dependent kinase 1; C-TAD,
C-terminal transactivation domain; CTCF, CCCTC-binding factor; Fbxw7, F-box and WD repeat domain-containing 7;
GSK3β, glycogen synthase kinase 3β; HMGA1, high mobility group A1; MYCNOS, MYCN opposite strand; N-TAD,
N-terminal transactivation domain; NuMA, Nuclear mitotic apparatus; OCT4, Octamer-binding transcription factor 4; PI-
3K, Phosphoinositide 3-kinase; PLK1, Polo-like kinase 1; POUHD, POU transcription factor homeodomain; POUs, POU
transcription factor-specific domain; SCD, symmetric cell division; TRIM3, tripartite motif-containing 3; TRIM32, tripartite
motif-containing 32.
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as pluripotent stem cells that differentiate into mature peripheral
nerve tissue. The pluripotent neural crest is suspected to be
involved in the tumorigenesis of neuroblastoma due to the
abnormal expression of MYCN. Neuroblastoma cells are derived
from the pluripotent neural crest that has cancer stem cell-like
properties (8). Therefore, human neuroblastoma cultured cells
exhibit both proliferative and differentiating abilities, and possess
similar characteristics to cancer stem cells (9, 10).

Cancer stem cells are considered to undergo asymmetric cell
division (ACD), a physiological event resulting in tumor cell
heterogeneity (11, 12). ACD is a strategy that maintains the
correct number of self-renewing stem cells and differentiated
cells in a single division. Therefore, ACD balances the stem
cell pool with its progenitor pool. Recent studies revealed
that the misregulation of this balance between self-renewal
and differentiation by ACD led to the emergence of abnormal
stem cells, resulting in tumorigenesis in Drosophila neuroblast
populations (13). Therefore, cancer stem cells may use ACD
as a strategy to generate more cancer stem cells in addition
to many differentiated cancer cells. We herein investigated
the mechanisms underlying ACD using a series of human
neuroblastoma cultured cells as a model system (14–16).

MYCN

Asymmetric cell division studies were originally conducted using
model organisms, such as nematode embryos (17, 18), Drosophila
neuroblasts (13), and Drosophila germ stem cells (19). The
findings of these genetic studies revealed that the mechanism
of ACD is highly conserved. Previous studies demonstrated
the ACD of stem cells in muscle (20), skin (21), the gut
(22), mammary glands (23), the hematopoietic system (24), and
the developing mouse brain (25, 26). Comparisons of ACD
studies using these organisms and model systems revealed ACD
in neuroblastoma cells in an evolutionarily conserved manner
(14). The magnitude of MYCN gene expression influences the
regulation of cell division fate. The overexpression of MYCN
induces symmetric cell division (SCD) (self-renewal division),
and the decreased expression of MYCN causes ACD (14).
Furthermore, the transcriptional activity of MYCN is important
for inducing SCD in human neuroblastoma cells (14). Although
the specific transcriptional target(s) of MYCN currently remain
unclear, except the high mobility group A1 (HMGA1) oncogene,
several key molecular pathways involved in MYCN-mediated cell
division fate have been identified (Figure 1).

TRIM32

Tripartite motif-containing 32 (TRIM32) was identified
as an ACD inducer in human neuroblastoma cells (15).
Previous studies established TRIM32, an ortholog of Drosophila
melanogaster, Brat, which participates in ACD as a neural
determinant and inhibits Drosophila MYC (dMYC) function
in the neuroblasts of fly (27). In addition, mouse TRIM32 was
shown to exhibit ubiquitin ligase activity, and facilitated the

degradation of the c-MYC oncoprotein in neurogenesis (28).
However, the functions of TRIM32 in human cancers remain
largely unknown. We recently reported that TRIM32 promoted
the proteasomal degradation of MYCN at spindle poles during
cell division, while TRIM32 overexpression induced ACD in
human neuroblastoma cells (Figures 1, 2) (15). TRIM3, another
ortholog of D. melanogaster, Brat, is frequently deleted in human
glioblastoma (29). Moreover, TRIM3 has been shown to facilitate
the degradation of c-MYC and regulate ACD in human glioma
cells (29). Thus, TRIM32/TRIM3 may not only induce ACD, but
also function as a tumor suppressor in human tumors.

NCYM (MYCNOS)

NCYM (MYCNOS) is a de novo evolutionary cis-antisense gene
for MYCN that encodes a 109-amino acid small protein and
only exists in humans and chimpanzees (30). NCYM induces
the expression of not only MYCN, LIN28B, NANOG, and
SOX2, but also OCT4, a MYCN-mediated core reprogramming
factor (31). MYCN and OCT4 form a positive feedback loop
(Figure 1) (31). A previous study reported that NCYM promoted
malignant transformation and metastasis in NCYM/MYCN
double transgenic mice (30). These findings indicated that MYCN
cooperates with NCYM to promote the malignant transformation
of neuroblastoma and its stemness. NCYM was shown to
suppress the degradative activity of GSK3β against MYCN and
facilitated the induction of SCD, while the knockdown of NCYM
destabilized the MYCN protein and caused ACD (Figure 1)
(31). On the other hand, NCYM also functions as a non-coding
RNA and cooperates with CTCF to promote the progression
of neuroblastoma by facilitating the expression of MYCN (32).
Since the NCYM protein has some homology with the OCT4
protein (Figure 3), NCYM may function as a transcription factor
in addition to non-coding RNA.

ALDH18A1

Aldehyde dehydrogenase family 18 member A1 (ALDH18A1)
was originally identified as the key enzyme for the synthesis
of proline from glutamate, which catalyzes the coupled
phosphorylation and reduction conversion of glutamate to
β-pyrroline-5-carboxylate (P5C) and plays a critical role
in regulating glutamine metabolism (33). A recent study
revealed that ALDH18A1 formed a positive feedback loop with
MYCN and was involved in the malignant transformation of
neuroblastoma cells (Figure 1) (34). These findings demonstrated
that the overexpression of ALDH18A1 decreased the rate of
ACD and induced SCD, whereas the knockdown of ALDH18A1
increased the rate of ACD (34). Furthermore, molecular
docking was applied to screen ALDH18A1 inhibitors, and
the findings obtained showed that one compound, termed
YG1702, from the approximately >200,000 compounds tested
specifically inhibited the function of ALDH18A1 (34). Therefore,
YG1702 has potential as a therapeutic drug that induces ACD
and reduces the malignant transformation of MYCN-amplified
neuroblastoma cells.
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FIGURE 1 | Molecular pathways of MYCN-mediated cell division fate. MYCN protein stability depends on the interaction partners. The receptor type-tyrosine kinase,
ALK, activates downstream targets, such as PI-3K, and eventually activates AKT. Activated AKT stabilizes the MYCN protein by inhibiting GSK-3β. NCYM also
stabilizes MYCN for inhibition of the GSK3β-MYCN interaction. MYCN induces the expression of NCYM and HMGA1. OCT4 and MYCN or ALDH18A1 and MYCN
form a positive feedback loop for their transcriptional expression. HMGA1 inhibits the expression of NUMB and p53. On the other hand, LIN28B inhibits the
microRNA, let-7, and contributes to the stability of the MYCN and AURKA (Aurora-A) protein. AURKA and PLK1 also stabilize the MYCN protein to inhibit
Fbxw7-dependent MYCN ubiquitination. Thus, many oncogenic proteins contribute to the stability of MYCN. As a result, MYCN-dependent tumor cells display
symmetric cell division (SCD) and the degradation of MYCN causes asymmetric cell division (ACD).

FIGURE 2 | Molecular mechanism underlying TRIM32-mediated asymmetric cell division. During metaphase, TRIM32 is recruited to spindle poles (mitotic
centrosomes) by CDK1/cyclin B signaling. In parallel, MYCN accumulates at spindle poles through GSK-3β signaling. Thus, TRIM32 associates with MYCN at
spindle poles during metaphase. TRIM32 then facilitates the ubiquitination and degradation of MYCN by a proteasome complex at spindle poles. During anaphase,
TRIM32 asymmetrically localizes to the one of the daughter cells without the NuMA crescent.
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FIGURE 3 | The NCYM protein has weak homology with the OCT4 protein. (A) Amino acid comparisons between the NCYM and OCT4 proteins. Identities are 24%
and positives are 40%. (B) Molecular structure of the OCT4 protein. The OCT4 protein consists of four domains: the N-terminal transactivation domain (N-TAD),
C-terminal transactivation domain (C-TAD), POU transcription factor-specific domain (POUs), and POU transcription factor homeodomain (POUHD). OCT4 shares
weak homology with NCYM around the N-TAD and POUs domains.

HMGA1, NUMB, AND p53

The important transcriptional target of MYCN in neuroblastoma
is the high mobility group A1 (HMGA1) oncogene (35)
(Figure 1). The HMGA1 protein is an architectural chromatin
protein that is abundantly expressed during embryonic
development and in most cancer tissues, but is weakly expressed
or absent in normal adult tissues. It is important as an additional
potential mechanism by which MYCN may induce the SCD
of neuroblastoma stem cells. HMGA1 has been shown to
induce the SCD of cancer stem cells by negatively regulating
the expression of NUMB (36) or p53 (37) (Figure 1). NUMB
is a cell fate determinant, and its expression is the basis for
achieving the ACD of stem cells and its expression is either lost
or reduced in many tumors (38). In Drosophila neuroblasts,
NUMB mutations induce the formation of tumors (13). The
NUMB protein contributes to the stabilization of p53 by
suppressing the effects of HDM2, which is an E3-ubiquitin ligase
(39). The deletion of p53 in mammary stem cells was shown
to abolish NUMB asymmetry during cell division (23). These
findings indicate that p53 and NUMB work in concert with
ACD; however, the underlying mechanisms are not yet known in
neuroblastoma cells.

AURKA, PLK1, AND LIN28B

Mitotic kinases, such as Aurora kinase A (AURKA) and Polo-like
kinase 1 (PLK1), are reported to stabilize MYCN by inhibiting
the Fbxw7-mediated degradation of the MYCN protein (40–42)

and may promote SCD in MYCN-amplified neuroblastoma cells
(Figure 1). AURKA and PLK1 are up-regulated by MYCN and are
frequently overexpressed in MYCN-amplified neuroblastomas
(40, 43). On the other hand, AURKA and Polo (Drosophila
ortholog of PLK1) were shown to be necessary for asymmetric
protein localization during mitosis in model organisms, such
as a Drosophila external sensory organ (44), and functioned as
tumor suppressors in Drosophila neuroblasts (45, 46). Therefore,
AURKA- and PLK1-mediated cell division fates (ACD or SCD)
may be context-dependent.

The LIN28B gene encodes a developmentally regulated RNA
binding protein and is a key repressor of the let-7 family
of miRNAs, which act as potent tumor suppressors by post-
transcriptionally repressing multiple oncogenic targets, including
MYCN (Figure 1) (47). In neuroblastoma cells, LIN28B promotes
AURKA expression (48) and increases MYCN expression by
repressing let-7 miRNAs (47). Since LIN28B is involved in
SCD in Drosophila intestine stem cells (49) and Caenorhabditis
elegans embryos (50), it may control the cell division fate in
neuroblastoma cells in an evolutionarily conserved manner.

CONCLUDING REMARKS

Why do neuroblastoma cultured cells exhibit ACD? As discussed
above, many cultured neuroblastoma cells show the unique
characteristics of proliferation and differentiation capabilities (9,
10). Previous studies demonstrated that human neuroblastoma
cell lines may be classified into three distinct cellular phenotypes
with different differentiation potentials: the sympathoadrenal
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neuroblast type (N-type), substrate adherent type (S-type), and
intermediate type (I-type) (9, 10). Based on its morphological
and growth characteristics, the I-type was recognized as a
neuroblastoma stem cell by its unique differentiation and
malignant potentials (9, 10). In addition, neuroblastoma is a
typical childhood cancer that may arise at the fetal development
stage when a large number of stem cells exhibit ACD.

In this mini-review, we discussed a group of molecules that are
involved in ACD and SCD through the regulation of the MYCN
protein. Since the major function of MYCN is as a transcription
factor, further studies are needed to clarify whether HMGA1, a
target of MYCN, is involved in the cell division fate of human
neuroblastoma cells.

Since this mini-review mainly described the intrinsic factors of
ACD, further studies are needed on extrinsic factors including the
tumor microenvironment. The findings obtained may contribute
to direct applications for therapeutic strategies.

Therefore, human neuroblastoma cultured cells have potential
as a very useful model system for providing insights into the
mechanisms underlying ACD.
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MYCN Function in Neuroblastoma
Development
Jörg Otte*, Cecilia Dyberg, Adena Pepich and John Inge Johnsen

Childhood Cancer Research Unit, Department of Children’s and Women’s Health, Karolinska Institutet, Stockholm, Sweden

Dysregulated expression of the transcription factor MYCN is frequently detected in
nervous system tumors such as childhood neuroblastoma. Here, gene amplification of
MYCN is a single oncogenic driver inducing neoplastic transformation in neural crest-
derived cells. This abnormal MYCN expression is one of the strongest predictors of poor
prognosis. It is present at diagnosis and is never acquired during later tumorigenesis of
MYCN non-amplified neuroblastoma. This suggests that increased MYCN expression is
an early event in these cancers leading to a peculiar dysregulation of cells that results in
embryonal or cancer stem-like qualities, such as increased self-renewal, apoptotic
resistance, and metabolic flexibility.

Keywords: MYCN, neuroblastoma, childhood cancer, neural crest, cancer stem cell
INTRODUCTION

MYCN belongs to a small family of genes, which in addition to MYCN (or N-Myc) includes two
closely related genes, C-Myc and L-Myc. MYC proteins are master regulators of cell fate and part of a
network of interacting transcription factors. Together, these transcription factors regulate the
expression of multiple genes involved in cell-proliferation, growth, senescence, metabolism,
differentiation, and apoptosis (1). More specifically, MYC proteins bind to active promoters and
enhancers altering transcription mediated by all three RNA polymerases and affecting the
expression of more than 15% of all genes in a cell (2–4). Dysregulated expression of MYC genes
are frequently observed in cancers of different origin, implicating that MYC proteins have central
functions during carcinogenesis (2–4). Additionally, MYC proteins also affect the tumor
microenvironment; MYC protein was shown to regulate the interaction between tumor cells and
the host immune cells by controlling the synthesis of cytokines mediating communication between
tumor cells and myeloid cells (5–7).

Studies in mice showed that both Myc (C-myc) and Mycn (N-myc), but not Mycl (L-myc), are
fundamental for normal development as targeted deletions of these two genes in mice are embryonic
lethal at mid-gestation (8–12). While C-myc is expressed throughout the mouse embryo and at all
developmental stages analyzed; N-myc expression is restricted to hematopoietic stem cells and cells
within the developing nervous system (12–16). The restricted expression pattern of N-myc during
development may be mirrored in human tumors since cancers with a neural cell origin like
neuroblastoma, medulloblastoma, retinoblastoma, astrocytoma and glioblastoma, as well as,
hematological malignancies frequently overexpress MYCN. However, overexpression of MYCN
has also been reported in Wilms tumors, rhabdomyosarcomas, prostate, pancreatic and lung
cancers (17). The mechanisms for MYCN overexpression in tumors have several facets, ranging
from induced transcriptional activation ofMYCN, increased MYCN protein stabilization caused by
January 2021 | Volume 10 | Article 624079121
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dysregulated MYCN phosphorylation, and reduced proteasomal
degradation to MYCN gene amplification (17–19). Pediatric
cancers usually develop during a much shorter time-period
and with significantly fewer genetic abnormalities compared to
adult tumors. Some of these childhood tumors have embryonal
characteristics that are most probably initiated by aberrations in
genes and/or deregulated expression of genes causing retention
of cell immaturity and increased proliferation capacity (18). In mice
models, guided ectopic expression of N-myc to the developing
nervous system has been shown to be a potent oncogenic driver and
results in the development of medulloblastoma and neuroblastoma
(20–22).
MYCN IN NEUROBLASTOMA

Neuroblastoma is a cancer of the peripheral nervous system that
almost exclusively occurs during early childhood. Although
neuroblastoma is a relatively rare disease affecting 1 of 8,000 live
births, or 6%–10% of all childhood tumors, the disease still accounts
for 12%–15% of all cancer-related deaths in children. 40% of the
patients diagnosed with neuroblastoma are younger than 1 year and
themedian age for diagnosis is 17-18months whereas less than 5% of
the patients are older than 10 years establishing neuroblastoma as the
most common and deadly tumor of infancy (23). Clinically,
neuroblastoma is characterized with a heterogeneous disease
spectrum ranging from patients with widespread tumors that
spontaneously regress or differentiate without treatment to
treatment-resistant tumors with metastatic spread despite intensive
multimodal treatment approaches. This heterogeneity is mirrored in
overall patient survival; neuroblastoma patients with low- to
intermediate-risk disease have 85-90% survival rates, whereas 50%
of patients with high-risk neuroblastoma succumb to the disease.

The risk stratification of low-, intermediate- and high-risk
patients usually becomes evident through chromosomal analysis.
Low-risk neuroblastoma commonly displays whole chromosomal
gains with a hyperdiploid (near triploid or penta/hexaploid)
chromosomal landscape, whereas high-risk neuroblastoma
contains segmental chromosomal aberrations that affect only a
part of a given chromosome. The most common chromosomal
aberration related to poor prognosis in neuroblastoma is somatically
acquired segmental gain of 17q, hemizygous deletions of 1p and
11q, and MYCN gene amplification. In addition, genomic
rearrangements at chromosomal region 5p15.33, located proximal
of the telomerase reverse transcriptase gene (TERT) that results in
chromosomal changes, DNA methylation and enhanced TERT
expression have also been observed in high-risk neuroblastoma
samples. Gene amplification of MYCN was one of the earliest
genetic markers discovered in neuroblastoma and is still one of
the strongest predictors of poor prognosis. The prevalence of
MYCN amplification in neuroblastoma patients is 20%–30% and
the overall survival for these patients remains at less than 50% (23–
25). In high-risk neuroblastoma patients, if amplification ofMYCN
occurs it is always present at diagnosis. Patients with low-risk
disease lack MYCN gene amplification and never progress to
high-risk disease nor do they acquire extra copies of the MYCN
Frontiers in Oncology | www.frontiersin.org 222
gene (17, 23, 26). This indicates thatMYCN gene amplification is an
early and perhaps initiating event driving the development of a
high-risk neuroblastoma subgroup of tumors which is in contrast to
most other cancers where gene amplifications are considered to be
late events during tumorigenesis (17, 27).

Adult cancer is a multistep process that evolves over many years
caused by genomic instabilities giving rise to transformed cells that
have the capacity to develop into life-threatening malignant tumor
cells. Pediatric cancers, on the other hand, develop during a short
time-period and contain much fewer genomic aberrations and
mutations compared to adult cancers. This suggests that certain
pediatric cancers, including neuroblastoma, arise from cells with
embryonal features or from mature prenatal cells that through
external factors have acquired embryonal properties favoring
proliferation (18). Although MYCN gene amplification is detected
in approximately 50% of high-risk neuroblastoma cases and an
oncogenic driver for neuroblastoma, there exists no current
evidence describing when and how the amplification of the
MYCN gene is initiated. Neither is it known in detail how and in
which cell type the expression ofMYCN is initiated in order to drive
neuroblastoma tumorigenesis. Furthermore, it should be noted that
the 2p24 chromosomal amplicon observed in high-risk
neuroblastoma encodes other genes in addition to MYCN, such as
the anaplastic lymphoma kinase (ALK). ALK has also been shown
to drive neuroblastoma formation and to potentiate the oncogenic
activity of MYCN in neuroblastoma (28–30).
NEUROBLASTOMA IS A NEURAL CREST
DERIVED MALIGNANCY

Neuroblastoma derives from cells within the neural crest, a
transient structure consisting of multipotent progenitor cells
present during embryogenesis. The majority of the tumors are
located in the abdomen along the sympathetic chain and in the
adrenal gland medullary region (23, 27). The neural crest
develops between the neural plate and non-neural ectoderm, in
an area named the neural plate border, during gastrulation and
neurulation (Figure 1) (31). Neural crest cells undergo epithelial-
to-mesenchymal transition (EMT) during neurulation and
migrate extensively from the neuroepithelium to more distant
locations in the embryo where the cells differentiate into a wide
varietyof cell types for specificorgansystems including theperipheral
and enteric nervous systems, skin pigment, cardiovascular system
and craniofacial skeleton (32). Neural crest cell maturation,
migration, specification and differentiation are tightly controlled
processes guided by gene regulatory networks, consisting of various
transcription factors.These transcription factors becomesequentially
activatedby external factors likeBMPs,WntandFGF(33).The cell of
origin for neuroblastoma has yet to be determined, but the
combination of timing in disease onset and clinical presentation
suggest that neuroblastoma is derived from sympathoadrenal
progenitor cells within the neural crest that differentiate to
sympathetic ganglion cells and adrenal catecholamine-secreting
chromaffin cells.
January 2021 | Volume 10 | Article 624079

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Otte et al. MYCN Function in Neuroblastoma Development
Recent reports, based primarily on in vitro studies of
neuroblastoma cell lines, have demonstrated that neuroblastoma
consists of two phenotypically different subpopulations of cells,
called adrenergic and mesenchymal. These two subpopulations
show distinct networks of super enhancer-associated transcription
factors (34, 35). In vitro, these cell lineages can interconvert and
exhibit differences in sensitivity to chemotherapeutic drugs.
Interestingly, the mesenchymal population of cells seems to be
more drug resistant whichmay be important for the development of
drug resistance frequently observed in patients with high-risk
neuroblastoma (19, 34). The identity of a cell from the adrenergic
subtype is defined by key regulatory genes, such as PHOX2B,
HAND2, or GATA3, which are interconnected by reciprocal
regulation (35). This core regulatory circuitry can be reinforced
by MYCN amplification through a mechanism called “enhancer
invasion”. Enhancer invasion depends on combined enhancer co-
Frontiers in Oncology | www.frontiersin.org 323
occupation of individual gene enhancer/promoter regions by
MYCN and TWIST1 (36). Another regulatory loop involving
MYCN has recently been identified and depends on ASCL1
which is directly regulated by MYCN together with LMO1. In the
same study, it has been shown thatASCL1 is, itself, a part of the core
regulatory circuitry under the adrenergic identity and expression of
ASCL1 can induce differentiation arrest in neuroblastoma cells (37).

Overexpression of Mycn in migrating neural crest cells of
chicken embryos increases the proportion of neurons at the cost
of other cells. Loss ofMycn in mouse embryos decreases the size of
the entire nervous system, including spinal, peripheral and cranial
ganglia and reduces the number of mature neurons in the spinal
ganglia (9). In the sympathetic ganglia, expression of C-myc is
considerably higher compared to N-myc. This indicates that N-myc
expression is induced in the sympathetic ganglia during gestation
and then switched off before birth (38). Interestingly, the expression
FIGURE 1 | N-MYC acts as a Cancer Stem Cell Factor in the Developing Neural Crest and Promotes Tumorigenesis in Neuroblastoma. Upper Panel: The neural
crest is a transient structure located in the neural plate border, an area between the neural plate and the non-neural ectoderm. From the neural crest, multipotent
progenitor cells delaminate, migrate through epithelial-to-mesenchymal-transition (EMT), and differentiate into versatile structures within the whole organism. Lower
Panel: While C-Myc is the main regulator in pluripotent cells of early embryonal development, MycN is highly expressed in the multipotent cells of the migratory and
post-migratory neural crest. During differentiation, MycN expression is downregulated and the sympathoadrenal precursor cells or progenitor cells mature into
different cell types of the autonomic neural cell lineage (see asterisk), such as sympathetic ganglion cells, chromaffin cells of the adrenal medulla or cells of the
peripheral nervous system. Even though there is strong evidence that MYCN gene amplification is an early and maybe initiating event, it has not been proven yet
when and how the amplification takes place. The aberrant expression of MYCN induces a unique cancer stem cell-like phenotype by enabling infinite self-renewal,
apoptotic resistance, and via metabolic reprogramming characterized by increased glycolysis together with an active oxidative phosphorylation. The establishing
neuroblastoma consists of heterogeneous cell populations.
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level of C-myc does not change afterN-myc downregulation. On the
other hand, downregulation of N-myc strongly upregulates the
expression of Phox2b, Mash1, Hand2, and Gata3 genes.
MYCN AS AN ONCOGENIC DRIVER IN
NEUROBLASTOMA

Despite that several molecular prognostic factors with oncogenic
potentials have been described in neuroblastoma, only activating
ALK mutations and MYCN overexpression were shown to be de
novo oncogenic drivers. This is seen when mutation or
overexpression of these molecules give rise to neuroblastoma
in genetically engineered animal models.

The ALK gene located on chromosome 2p23 encodes a
receptor tyrosine kinase that is normally expressed at high levels
in the nervous system and was originally identified as a fusion
protein in non-Hodgkin’s lymphoma. Zhu et al. generated
transgenic zebrafish models in which human MYCN, human
ALK or ALK harboring the F1174L activating mutation
(ALKF1174L) were placed under control of the dopamine b-
hydroxylase (dbh) promoter (30). F1174L mutation is one of the
most frequent activating somatic mutations in human cell lines
and neuroblastoma patients (39). Tumor penetrance and the rate
of tumor induction were much higher in zebrafish expressing both
MYCN and ALK compared to zebrafish expressing either MYCN
or ALK. Additionally, zebrafish expressing both MYCN and
ALKF1174L transgenes demonstrated increased tumor penetrance
compared to all other transgene combinations. The expression of
alk increased the effect of mycn by blocking apoptosis in MYCN-
overexpressing sympathoadrenal neuroblasts (30). ALKmutations
can be detected in all clinical stages while an association with a
poorer outcome can only be detected in intermediate- and high-
risk neuroblastoma. In 2%–3% of all cases, ALK can be further
activated by gene amplification leading to protein expression and
kinase activity. Interestingly, this is specific to neuroblastoma as it
has been described that ALK amplification does not result in
protein expression in non-small-cell lung cancer and is therefore
not involved in its pathogenesis but maybe only a passenger event
(40–42).

Targeted expression of Lin28b to sympathetic adrenergic lineage
cells gives rise to neuroblastoma. One mechanism of induced tumor
development indicates a Lin28B-mediated downregulation of Let-7
which results in high MYCN protein expression suggesting that
MYCN is the actual driver of oncogenesis (43). Others have
described let-7-independent pro-tumorigenic effects of LIN28B
e.g. via protein-protein interaction with the transcription factor
ZNF143 recruiting LIN28B to activate promoters of genes involved
in neuroblastoma progression (44, 45).

MYCN is highly expressed in the earlypost-migratoryneural crest
(Figure 1) and regulates ventralmigration and growth of cells within
the neural crest during normal murine sympathoadrenal
development. MYCN expression is gradually downregulated in
differentiating sympathetic neurons, which suggest that
sympathoadrenal maturation is independent of MYCN expression.
Frontiers in Oncology | www.frontiersin.org 424
The sympathoadrenal precursor cells maturate into neural or
chromaffin cells. Moreover, it has been proposed that the
preneoplastic lesions, which can develop into neuroblastoma, arise
in sympathoadrenal precursor cells not having received or reacted to
signals controlling the neuronal or chromaffin cell fate. Studies in
zebrafish demonstrated that ectopic expression of mycn in
sympathoadrenal precursor cells obstruct the development of
chromaffin cells causing the development of neuroblastoma. An
excess of precursor cells is produced during the transition to
sympathoadrenal cells, which during normal stages of maturation,
are submitted to controlled apoptosis caused by deficiency of local
neural growth factors. As MYCN is a master transcription factor
important for both proper cell proliferation and apoptosis, a
persistent expression of MYCN during the maturation stages of
sympathoadrenal precursors could result in inhibition of apoptotic
signaling andmaintained proliferation that ultimately could result in
the development of neuroblastoma (17).

In a genetically engineered neuroblastoma mouse model,
called Th-MYCN (22), accumulation of small, blue round cell
populations in the paravertebral ganglia are observed at
embryonic day 14 (46). This population of cells called
neuroblasts later develops into neuroblastoma observed in
100% of the Mycn homozygous mice from postnatal week 6.
Similar observations were shown in transgenic zebrafish with
neural crest cells expressing mycn. Furthermore, overexpression
of MYCN in primary neural crest cells isolated from an
embryonic neural tube explant developed tumors that were
highly similar to MYCN amplified neuroblastoma when the
cells were inoculated in mice (47). However, blocking
expression of Mycn in neural crest cells was recently shown to
induce perinatal lethality in mice which suggests that primary
neural crest cells are not the origin of MYCN amplified
neuroblastoma (48). This is in line with a study showing that
Mycn is expressed together with the phosphorylating-stabilizing
factor, CIP2A in regions of the neural plate and that Mycn
protein is excluded from the neural crest stem cell domain (49).
This indicates that high-risk subgroups of neuroblastoma may be
initiated before the emigration of neural crest cells and before
sympathoadrenal specification. The importance of MYC
expression in neuroblastoma is further emphasized by the fact
that neuroblastoma without MYCN gene amplification
frequently expressed high levels of C-MYC indicating that C-
MYC and N-MYC are mutually exclusive in neuroblastoma (50).
MYCN AS A STEM CELL FACTOR

The interrelation of neural crest development and neuroblastoma
tumorigenesis is one good example of how developmental biology
and cancer research fuel each other in their mutual discoveries. In
fact, it was the early analysis of teratocarcinomas that led to the
discovery of embryonic stem cells (ESC) (51). The theory of cancer
stem cells has elucidated the exploitation of embryonic pathways by
malignant cells, not only in pediatric tumors, but in most cancers.
More recent studies have further demonstrated that malignant as
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well as non-malignant tissues can possess unexpected plasticity
(52, 53).

The Nobel-prize awarded discovery of induced pluripotency
by Yamanaka in 2006 has opened a new chapter in regenerative
medicine and demonstrated a paradigm shift in our
understanding of cellular plasticity and lineage restriction (54).
By reprogramming fibroblasts to become induced pluripotent
stem cells (iPS) with activation of merely four transcription
factors (SOX2, OCT4, KLF4, and C-MYC), Yamanaka showed
that no definite cell state is truly irreversible. KLF4 and C-MYC
are well known oncogenes, indicating similarities in
reprogramming and tumorigenesis. The oncogenic potential of
iPS-derived cells is a major concern in today`s regenerative
medicine (55) and has led to a deeper analysis of C-MYC and
its tumorigenic potential during the process of reprogramming.
Other protocols for the generation of iPS cells without direct
MYC activation have been described, although they usually have
a lower reprogramming efficiency (56).

One important hallmark of all stem cells is their continuous
self-renewal which can be described as proliferation without
differentiation. By inhibiting the expression of cell lineage
specifiers while simultaneously inducing cell cycle progression,
MYC proteins fulfill a major function in establishing self-renewal
in ESCs, as well as in cancer stem cells (1, 57, 58).

During early embryogenesis in mice, C-myc and N-myc are
highly redundant and can compensate each other’s loss. Single
knock-outs have no effect on the self-renewal or pluripotency of
mouse ESCs, while N-myc can be substituted for C-myc during
reprogramming (10, 57, 59, 60). However, later during
development Myc expression becomes tissue specific and single
knock-outs of C-myc and N-myc become lethal during mid-
gestation (10, 12, 16, 26). Besides tissue specific expression, Myc
proteins are highly conserved in their structure and function
which has been proven in murine development by transgenic
mice expressing N-myc from the C-myc gene locus which
generated healthy and fertile offspring (61). These along with
other studies have shown that C-myc and N-myc fulfill similar
functions as stem cell factors, but tissue specific differences have
been described within their networks of protein interactions and
transcriptional regulation (62). Insights obtained mainly by the
analysis of C-myc as a pluripotency factor can, to a certain
degree, be transferred to N-myc’s role in stem cell research and
during oncogenesis.
MYCN AS AN APOPTOSIS REGULATOR

Oncogenic transformation and cellular reprogramming are
similar processes that are impeded by cell intrinsic barriers. A
critical mechanism is the induction of apoptosis or senescence
facilitated by p53, the most commonly mutated gene in the Pan-
Cancer cohort of The Cancer Genome Atlas (TCGA) (63).
Balance in p53 activity is essential for self-renewal of
undifferentiated cells and is tightly regulated at the mRNA-, as
well as at the protein-level (64). During reprogramming, p53 acts
as a roadblock. Thereby p53 inhibition increases reprogramming
Frontiers in Oncology | www.frontiersin.org 525
efficiency, but at the cost of increased oxidative stress, shortened
telomeres and higher risk of DNA damage (65). Results by Olsen
et al. have indicated that cultured primary mouse neural crest
cells with a heterozygous p53 deletion (p53+/-) allow more
permissive tumor induction by lentiviral MYCN transduction
than p53 wild type cells (47). In the vast majority of human
neuroblastoma, however, no p53 mutations are detectable at
diagnosis and tumor cells express nuclear protein as well as a
functional cytochrome c-caspase cascade (66–68). C-myc and N-
myc can both bind the p53 promoter and induce its expression
without eliciting apoptosis indicating additional anti-apoptotic
effects regulated by Myc (69, 70). Many players in this complex
network have been studied extensively constituting promising
candidates for future targeted therapies (71). The main
antagonist of p53 is Mdm2, an E3–ligase contributing to the
ubiquitination and the repression of p53. Mdm2 is directly
induced by N-myc but also regulates N-myc in a feedback-
manner (72, 73). In neuroblastoma, Mdm2 can acts as a tumor
promoting factor as seen in Mdm2 haploinsufficient (Mdm2+/-)
MYCN transgenic mice which show a decreased tumor
incidence, latency, and reduced tumor growth (74). The same
study described that Mdm2+/- tumors had a decreased level of
p19Arf (Cdkn2a), another tumor suppressor that is reciprocally
regulated by N-myc. p19Arf in turn can be inhibited by Twist-1
which is also a direct target of N-myc (75). The upregulation of
Twist-1 correlates with MYCN-amplification in neuroblastoma
indicating that apoptosis evading mechanisms are different in
MYCN amplified compared to non-amplified neuroblastoma
(76). A direct targeting of the MYCN gene using siRNA,
CRISPR/Cas9 crRNA molecules or specific alkylating agents
induced apoptosis in MYCN amplified cells but not in non-
amplified cells (77). These studies indicate that N-myc alone can
prevent apoptosis or senescence in neuroblastoma without
depending on mutations in additional tumor-promoting genes.
N-myc regulates the transcriptional network around p53 to
overcome these intrinsic barriers, similar to the artificial
activation of the pluripotency program in healthy somatic cells.
Why the incidence of initial p53 mutations in neuroblastoma is
only around 2% remains an open question, especially if the
selection pressure during early tumorigenesis preferentially
selects cells with an active p53 signaling (67). In early analysis
of heterozygous p53-deficient mice (tp53+/-), it was observed that
a high proportion of tumors retain the functional copy of p53
while only a minor fraction lost their wild-type allele. The
functional copy of p53 prevented chromosomal instability and
induced apoptosis after radiation therapy (78).

During the early onset of neuroblastoma, the cell of origin
depends on self-renewal to maintain tumor growth as a
homeostatic process. It is known from pluripotent cells that
increased cellular stress can disturb this homeostasis, inhibit self-
renewal and induce differentiation or senescence. P53 can
alleviate cellular stress by DNA damage control or by reducing
oxidative phosphorylation (65). Downstream effects of MYCN
might induce a transient reduction of p53 protein, e.g. during G1
cell cycle checkpoint phase. There is further evidence that micro
RNAs such as miR-380-5p contribute to this fine-tuned balance
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(79). Chemotherapy, however, disturbs this balanced activity of
p53 by inducing massive DNA damage forcing p53 wild-type
tumors to regress. Many high-risk neuroblastomas relapse as a
therapy-resistant metastatic disease with increased frequency of
mutations in P53-MDM2- p19Arf pathway (80).
MYCN CONFERS METABOLIC
PLASTICITY

During embryonic development, stem cells undergo rapid cell
duplications while passing through different cell states in a
continuously changing environment. Their metabolism is
challenged to provide a sufficient amount of energy, in the
form of ATP, but also to generate molecules for biosynthetic
demands such as DNA replication or cell growth. This versatile
flexibility is re-acquired by somatic cells during reprogramming
and is also shared by cancer cells (81).

Differentiated somatic cells usually generate energy by
metabolizing glucose to carbon dioxide. In the initial anaerobic
glycolytic step, glucose is oxidized to pyruvate which can be
converted into lactate. Alternatively, pyruvate can enter the
mitochondrial matrix where it is further catabolized to Acetyl-
CoA feeding the tricarboxylic acid (TCA) cycle. The TCA cycle
takes part in cellular redox reactions by providing reduced
oxidizing agents such as NADH and FADH as electron sources
for oxidative phosphorylation (OxPhos), which is the
mitochondrial direct ATP synthesis pathway when under an
aerobic state. While OxPhos produces vastly more ATP per
glucose molecule, ATP generation is faster during anaerobic
glycolysis (82, 83). The observation that cancer cells fulfill a
glycolytic switch, meaning they depend mostly on anaerobic
glycolysis despite a sufficient oxygen supply, is referred to as the
Warburg effect or aerobic glycolysis (82).

Otto Warburg stated in his article from1956, “On the Origin
of Cancer Cells”, that the “irreversible injury of respiration”
constitutes the first phase of cancer development (84). A deeper
understanding of the cellular metabolism has revealed that
cataplerosis, the use of partially oxidized metabolites from the
TCA cycle, is an important and eclectic source for versatile
anabolic processes (85). Thus, pyruvate and alpha-ketoglutarate,
key intermediates in the TCA cycle, are important building
blocks for non-essential amino acids and Acetyl-CoA is the
precursor molecule of fatty acid synthesis and histone
acetylation. Further, direct derivatives of glucose can be
incorporated into the pentose phosphate pathway providing
ribose for nucleotide synthesis (82, 85). Otto Warburg couldn’t
be aware that the incomplete oxidation of substrates constitutes
an advantage for the anabolic processes in cancer tissue despite a
less efficient ATP generation. The investigation of embryonic
stem cells and later of induced pluripotent stem cells has shown,
however, that dependency on glycolysis in pluripotent stem cells
and cancer cells is not a consequence, but a pre-requisite of
successful embryonal development and tumorigenesis (81).

ESCs can obtain different states of pluripotency, of which the
naïve state better reflects the ground state pluripotency of the inner
Frontiers in Oncology | www.frontiersin.org 626
cell mass from the preimplantation blastocyst than the primed
pluripotency state. While MYC proteins are crucial in order to
maintain pluripotency in both states, human naïve pluripotent cells
show a specific nuclear expression of MYCN associated with a
higher glycolytic flux (86). If the glycolytic enzyme hexokinase II is
pharmacologically inhibited by the pyruvate analog 3-
bromopyruvate, cultured ESCs switch from anaerobic glycolysis to
OxPhos and lose their pluripotency, even under pluripotency
promoting conditions indicating the functional role of the
glycolytic metabolism in pluripotency (87). Likewise, the
generation of iPS from somatic cells highly depend on functional
glycolysis as its inhibition reduces reprogramming efficiency while it
is supported by the stimulation of glycolytic activity (88). Several
studies have indicated that the metabolic restructuring during
reprogramming precedes the expression of pluripotency factors.
The expression of MYC in cancer cells or as a transduced factor
during reprogramming supports this switch by inducing hypoxia
inducible factor 1a (Hif1A) and its downstream targets pyruvate
dehydrogenase kinase and other glycolytic enzymes (88–91).
However, a study in MYC inducible cancer cell lines has shown
that highly proliferating MYC expressing cells require active
OxPhos together with increased glycolysis to drive their fast cell
cycle progression (92).

Similar results have been described in neuroblastoma, where
MYCN-amplified cells display a distinct metabolic structure
defined by high energy consumption and production compared
to MYCN non-amplified neuroblastoma cells (93, 94). In a
detailed metabolic analysis of MYCN-amplified neuroblastoma
cells, Oliynyk et al. showed that MYCN induction upregulates
glycolytic enzymes such as hexokinase-2 but that the dominant
effect was an increase in OxPhos induction (94). Interestingly,
MYCN activation not only increased the oxygen consumption
rate but also OxPhos response provoked by metabolic stress.
This indicates increased flexibility for regulating glycolysis or
mitochondrial respiration within MYCN expressing cells (94).

Beyond glucose, glutamine and fatty acids are important fuels
for mitochondria generating ATP and other macro-molecules.
MYCN enables neuroblastoma cells to oxidize fatty acids with a
higher capacity than in non-MYCN amplified cells. This feature
might become of clinical relevance as it has been shown that the
inhibition of b-oxidation induces differentiation in MYCN
expressing tumor spheroids and leads to a decreased tumor
growth in MYCN amplified cell lines when injected into nude
mice (94). Another metabolic hallmark of many cancers is
increase in glutaminolysis. Glutamine is a versatile nutrient
and its derivatives are involved in many anabolic processes
within the cell. Its carbon atoms can be fed into the TCA cycle
or can be utilized to generate amino or fatty acids. Glutamine
further provides nitrogen for amino acid production as well as
for nucleotide biosynthesis (95). Highly proliferating cancer cells
are often addicted to glutamine and studies have shown that
MYCN leads to an upregulation of glutaminolytic enzymes,
while also selectively inducing apoptosis in glutamine depleted
cells (96, 97). Although, a recent in vitro study found that MYCN
expression can enable tumor cells to synthesize glutamine from
glucose-derived alpha-ketoglutarate (94, 98). The ability to adapt
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to a low-glutamine environment is highly beneficial for
proliferating cancer cells in a poorly vascularized environment.
This has therapeutic implications as the glutamine metabolism is
currently studied as an anticancer target (95).

The above-mentioned studies have shown that the
metabolism of MYCN amplified cells is not only driven by the
strong proliferative stimulus but remains flexible to provide high
amounts of energy as well as bio-macromolecules for anabolic
processes. This metabolic structure of a regulated balance
between active OxPhos and glycolysis has also been described
during the first days of somatic reprogramming as well as in early
naïve ESCs being a prerequisite to successfully achieve
pluripotency (89, 99–101). Direct comparisons of MYCN
amplified versus non amplified cells have shown that MYCN is
one of the metabolic master regulators equipping cells with a
high versatility resembling mechanisms of self-renewing
stem cells.
SELF-RENEWAL IN MYCN NON-
AMPLIFIED HIGH-RISK
NEUROBLASTOMA

MYCN amplification drives tumorigenesis in neural crest cells by
maintaining or re-establishing embryonic features in these cells.
By conferring stem-like qualities such as infinite self-renewal,
apoptotic resistance or metabolic flexibility, MYCN contributes
to the life-threatening characteristics of high-risk neuroblastoma.
Even though, MYCN gene amplification accounts for 50% of all
high-risk neuroblastoma cases, the malignant MYCN non-
amplified neuroblastomas never gain secondary gene
amplifications during tumor progression or relapse, which is
an uncommon feature of oncogenes in adult cancers (17). High-
risk, MYCN single copy neuroblastomas often express MYC as
the oncogenic driver while MYCN is not expressed in these cells
(50). Usually, only one of these two MYC proteins can be
expressed in a tumor cell at a time, with MYC often
dominating over MYCN by repressing MYCN expression (50,
102). Coincidentally, higher MYCN expression in MYCN non-
amplified tumors was reported to be correlated with favorable
prognosis (50, 103). It must be mentioned that these tumor cells
never reach the MYCN mRNA expression level of MYCN
amplified tumors. Most MYC target genes are regulated in a
dose dependent manner and non-MYCN-amplified tumor cells
that artificially overexpress MYCN retain their ability of
neuronal differentiation (104, 105).

Inducing stemness without direct MYC overexpression has
been shown by reprogramming somatic cells without using
MYC. Interestingly, similar pathways that are used to avoid
MYC transduction in iPS generation are potentially involved in
the tumorigenesis of MYCN non-amplified neuroblastomas.

Lin28b, as one example, has been a part of the pluripotency
factors first used in reprogramming of human somatic cells that
did not depend on the enforced overexpression of MYC (106).
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It has always been suspected, however, that Lin28b expression
leads to an indirect activation of endogenous MYC proteins (56).

Another strategy involves the activation of the Wnt pathway,
a well described and highly conserved signaling cascade in
embryonal development, tissue stem cells and tumorigenesis.
Together with MYC proteins and other factors, Wnt signaling is
involved in the initial induction of neural crest cells, their
maintenance and later cell fate determination (33, 107). High-
risk MYCN non-amplified neuroblastoma often have an
increased Wnt activity which contributes to its high
aggressiveness by inducing c-MYC expression (108). A
reciprocal mechanism has been described for the Wnt-
inhibitor Dickkopf-3 (DKK3) which induces tumor cell
maturation and correlates with a favorable prognosis. In
MYCN amplified tumors, Dkk3 is often downregulated by
MYCN leading to an undifferentiated phenotype and higher
aggressiveness (109). With the help of strong Wnt signaling,
artificial c-MYC activation becomes dispensable when self-
renewal and pluripotency is re-induced in differentiated
somatic cells (110). Of the aforementioned mechanisms,
activation of endogenous MYC genes is most closely associated
with high risk in MYCN non-amplified neuroblastoma.
Comprehensive transcriptome analyses elucidates the
expression of MYC target genes and their embedded pathways,
which can be indicative for the clinical outcome, independent of
MYCN amplification (111). If the expression of MYC
downstream factors such as Hif or the Krüppel-like family of
transcription factors (Klf) is highly expressed, the oncogenic
activity of MYC becomes irrelevant (112).
PRECLINICAL IN VIVO MODELS OF
NEUROBLASTOMA

Weiss et al. have previously demonstrated that Mycn has the
potential to drive neuroblastoma in a transgenic model mouse
model, i.e. Th-MYCN mice, which carry, in their germline,
human MYCN cDNA under the control of the rat tyrosine-
hydroxylase promoter (22). Neuroblastoma growth in these Th-
MYCN mice begins with hyperplastic lesions in sympathetic
ganglia through the first few weeks after birth (58). Mice
containing MYCN transgene targeted to the neural crest cells
develop neuroblastoma with a phenotype very similar to the
human neuroblastoma (46).

Incorrect MycN expression shortly after birth in the
paravertebral ganglia caused neuroblast hyperplasia in Th-
MYCN mice. N-myc amplification existed at low levels in
perinatal neuroblast hyperplasia from both hemizygote and
homozygote mice. The level of N-myc in hyperplasias and
tumor tissue was highest at week 1 of age. A stepwise increase
of N-myc amplification was only seen in tumor formation of
hemizygote mice. The neuroblast hyperplasia in the ganglia from
Th-MYCN did not express differentiation markers, such as beta-
III-tubulin or tyrosine hydroxylase, differing from nearby
neuronal cells (46).
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Althoff et al. generated a transgenic mice, termed LSL-MYCN;
Dbh-iCre, with Cre-conditional induction of MYCN in Dbh-
expressing cells. These mice form tumors irrespective of strain
background with an incident of 75% (113).

In the Th-MYCN mouse model, tumor penetrance is only high
in a 129 x 1/SvJ strain background. Tumors in LSL-MYCN;Dbh-
iCre mice arise in superior cervical ganglion, celiac ganglion or the
adrenals covering all locations, in which human neuroblastomas
arise. They consist of small blue round cells harboring
neurosecretory vesicles. The cells express neuroblastoma specific
genes such as paired-Phox2b, Dbh, Th, and high levels of N-myc
compared to normal tissue. The level of differentiation and tumor
location resemble the human neuroblastoma more in the LSL-
MYCN;Dbh-iCRe than in the Th-MYCN model.

Hierarchical clustering shows that tumors from the Th-
MYCN mouse model and LSL-MYCN;Dbh-iCre mice are very
similar, both at miRNA and mRNA level. In tumors from LSL-
MYCN;Dbh-iCre mice a partial gain of murine chromosome 11
was observed, syntenic to human chromosome 17q. Therefore,
this model resembles more closely the genetic aberrations
observed in human neuroblastomas better than the Th-MYCN
model which lack any additional chromosomal aberrations.

Since neural crest cells are the suspected embryonic precursor
cell in neuroblastoma, Olsen et al., generated neuroblastoma
tumors through forced expression of Mycn in neural crest cells.
The tumors were phenotypically and molecularly similar to
human MYCN-amplified neuroblastoma. The neural crest
derived neuroblastomas acquired copy number gains and
losses that are similar to those observed in human MYCN-
amplified neuroblastoma. These copy number gains and losses
included 2p gain, 17q gain and loss of 1p36. To form tumors in
these experiments, they used p53 compromised neural crest cells
from the neural tube demonstrating high expression sox10, p75,
scl1, and low expression of Th and Phox2b. The embryonic cells
were transduced with MYCN-IRES-GFP retrovirus and
inoculated subcutaneously in mice. With 100% tumor
penetrance this proved to be a good, reliable and more rapid
method of making a neuroblastoma mouse model (47).

In another study, Alam et al. examined which cell types drive
neuroblastoma growth in the Th-MYCN transgenic mice model.
They showed that both primary tumors and hyperplasia are
comprised predominantly of highly proliferative Phox2B+

neuronal progenitors. N-myc stimulates the growth of these
progenitors by both promoting their proliferation and
preventing their differentiation. They also identified a small
population of undifferentiated Nestin+ cells in both primary
tumors and hyperplastic lesions. These cells may serve as
precursors of phox2b+ neuronal progenitors. Sympathetic neural
crest cells express the pro neural genesMash1 and Phox2B. Mash1
and Phox2b promote further neuronal differentiation by
upregulating, the levels of Hand2, Phox2A, and Gata3. These
transcription factors collaborate by inducing the expression of Th
and dopamine b-hydroxylase, enzymes essential in the
catecholamine biosynthesis. Phox2B+ in hyperplastic cells from
Th-MYCN sympathetic ganglia exhibited the morphology of
undifferentiated, small round cells and expressed no measurable
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levels of Th. Alam et al. suggests that Phox2b+ hyperplastic cells
are halted at the progenitor stage and that Phox2b+ neuronal
progenitors are the main cellular target of N-myc in driving
neuroblastoma expansion from hyperplasia to tumors. Most of
the tumor cells expressed Phox2b, and the majority of the Phox2b+

tumor cells expressed Ki67, but no measurable levels of Th (58).
Taken together N-myc not only blocks neural progenitors’

differentiation but also promotes the proliferation of Phox2B+

neuronal progenitors. This leads to marked increases of the
progenitor population in sympathetic ganglia and subsequently
the formation of hyperplastic lesions. Alam et al. also proposes
that nestin+ cells in sympathetic ganglia are possibly the cells of
origin for neuroblastoma in Th-MYCN mice (58).

The zebrafish model showed thatMYCN induced neuroblastoma
does not develop from the earliest cells populating the superior
cervical ganglia. Instead, tumors arise from neuroblasts that migrate
into the inter-renal gland later in development, after the kidney has
developed. The neuroblasts overexpressing N-myc fail to differentiate,
resulting in reduced numbers of chromaffin cells (30).

Neuroblastoma tumors from Th-MYCN mice are composed
of several cell populations, including Phox2b+Th-, Phox2b-Th+,
and Phox2b+Th+ cells. The varying degrees of differentiation in
these tumors indicate that the tumors are heterogeneous and
may show a molecular resemblance to embryonic stem cells.
Sphere forming neuroblastomas were mainly composed of
Mycn+ and phox2b+ cells (114).
PERSPECTIVES AND CONCLUSIONS

Here, we have emphasized the role ofMYCN as an oncogenic driver
in neuroblastoma. This is seen in part through MYCN’s ability to
initiate stem-like qualities in neural crest-derived cells. A process
that is reminiscent of the artificial induction of pluripotency in
somatic cells and depends on MYC protein activity. MYCN is
significantly involved in the induction of self-renewal by the
blockage of differentiation factors as well as by inducing
proliferation. While the strong pro-proliferative signal of artificial
MYCN overexpression usually leads to apoptosis, the apoptotic
machinery in MYCN amplified tumors is reorganized in a unique
way that allows them to resist apoptotic signals and maybe even
benefit from active p53 signaling.

Increased metabolic flexibility by neglecting the Warburg Effect
and retaining mitochondrial respiration, as well as, glutamine
independence further contributes to the malignancy of MYCN
amplified tumors and their often observed therapeutic resistance.

The observation that MYCN non-amplified tumors never
gain extra copies of the MYCN gene during their development
supports the assumption that a high expression of MYCN in an
already established neuroblastoma overloads connected signaling
pathways, such as Wnt or HIF signaling.

The extensive and unique restructuring of cellular mechanisms
are further reflected by the incompatibility ofMYCN amplification
with other oncogenic events such as genomic rearrangements
affecting the TERT locus or mutations within the ATRX gene. Both
might be explained by the fact that the high MYCN expression
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already deregulates the affected pathways of telomere lengthening,
causing mitochondrial dysfunctions and replicative stress.
MYCN’s combined effects on DNA damage are incompatible in
neuroblastoma (115, 116).

The accumulated data demonstrates that high MYCN
expression can act as a single oncogenic driver in neuroblastoma
and the mechanisms for how MYCN induces neoplastic
transformation has been thoroughly described. However, we still
do not know how and at which stage during neural crest
development MYCN becomes amplified and which cells are
affected by sustained high expression of MYCN. The existing
animal models are excellent references for studying the
mechanisms of induction in tumorigenesis driven by MYCN.
Drawbacks of these animal models can be seen however during
normal development in which the N-myc expression is controlled
by the Dbh or Th promotor. Both are activated relatively late during
thematuration of cells within the neural crest andmay therefore not
fully reflect the initial neoplastic events in humans. Furthermore, for
patients with non-amplifiedMYCN neuroblastoma, high expression
of MYCN is not correlated with adverse outcomes, in fact the
opposite is observed. Instead, a trend correlating high MYCN
expression to improved outcomes was evident in these
neuroblastoma patients (103). Recent studies indicate that the
initial oncogenic event for the development of neuroblastoma
must occur early in the neural crest development and no studies
to date have identified the precise cell of origin for neuroblastoma.
Additionally, which developmental cues or molecular signals
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and mechanisms are inducing the somatic amplification of the
MYCN locus at chromosome 2p24.3? Is the gene amplification of
MYCN the initial genetic aberration in neuroblastoma? Is MYCN
amplification guided by other earlier genetic aberrations or is the
amplification of the chromosome 2p24.3 locus induced by random
genomic insults induced by untidy or downregulated DNA repair
mechanisms and/or external signals? These are questions that we
should address in order to fully understand the biology of MYCN
amplified neuroblastoma.
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Misregulation of MYC genes, causing MYC overexpression or protein stabilization, is
frequently found in malignant brain tumors highlighting their important roles as oncogenes.
Brain tumors in children are the most lethal of all pediatric malignancies and the most
common malignant primary adult brain tumor, glioblastoma, is still practically incurable.
MYCN is one of three MYC family members and is crucial for normal brain development. It
is associated with poor prognosis in many malignant pediatric brain tumor types and is
focally amplified in specific adult brain tumors. Targeting MYCN has proved to be
challenging due to its undruggable nature as a transcription factor and for its
importance in regulating developmental programs also in healthy cells. In this review,
we will discuss efforts made to circumvent the difficulty of targeting MYCN specifically by
using direct or indirect measures to treat MYCN-driven brain tumors. We will further
consider the mechanism of action of these measures and suggest which molecularly
defined brain tumor patients that might benefit from MYCN-directed precision therapies.
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INTRODUCTION

The development of massive sequencing efforts and molecular profiling of malignant brain cancer
biopsies from patients and the strive to characterize them better has transformed the diagnosis of
these tumors (1–5). The augmented conception that malignant brain tumors could no longer be
defined as a rather small selection of histologically defined entities but in fact comprise over a
hundred different molecular subgroups, suggest it is time for a change in how treatment could be
more specialized and tailored. The generation of more clinically relevant models recapitulating such
subgroups, including MYCN-driven brain cancers have helped improved our understanding how
these biologically distinct tumors can be efficiently targeted. Recent single-cell sequencing
technologies can help to further recognize the heterogeneity of the brain cancer (6, 7).
Altogether, this can improve therapies, risk-stratification schemes and reduce recurrences, which
are usually fatal for these types of tumors.

Here, we will describe the prevalence of MYCN alterations in malignant brain cancer in children
and adults. We will also portray current treatment regimens and patient outcomes and reflect on
how targeted treatments of MYCN would improve future therapies for the most common and
aggressive types of brain tumors. In order to develop such targeted strategies, we must first define
what we have learned from the biological properties and regulation of MYCN in normal and
malignant cells. We will specifically address what molecular information we can use from
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appropriate cell systems and animal models of brain cancer in
order to develop better MYCN-targeted treatments.

Brain cancer as compared to other tumors outside of the
central nervous system (CNS) present an obvious hallmark. They
reside in a partially protected compartment that implicates
difficulties and complications concerning drug delivery and
penetrance over the blood-brain barrier (BBB). The difference
in childhood and adult tumors is still evident as well as the fact
that treatment can affect normal brain development and can
cause severe long-term side effects. The translational transfer of
basic molecular findings from the bench into reliable, tailored
drugs for these patients to the bed-side is thus not always
straight-forward and requires careful selection and testing.
DIAGNOSIS AND MOLECULAR
PROFILING OF BRAIN TUMORS WITH
MYC FAMILY ACTIVATION

Brain and other CNS tumors are the most common solid tumors
in children and the most common cause of pediatric cancer
death. Gliomas are the most common brain tumors in children,
with the majority being low-grade gliomas (LGGs). The most
frequently diagnosed single histological type of tumor is pilocytic
astrocytoma, which accounts for 18% of primary brain tumors in
children ages 0–14 years (8). These tumors are clinically classified
as WHO grade I and are almost always associated with single
genetic alterations in the RAS/MAPK pathway (9, 10).

Meningiomas, pituitary tumors, and malignant gliomas are
among the most common primary adult brain tumors (11)
Primary brain tumor incidence is seven to eight times higher
in adults as compared to children in the United States (8). Here,
non-malignant brain tumors are overall more than twice as
common as malignant brain tumors. This review will focus on
the most common types of malignant primary brain tumors in
children and on primarily malignant gliomas in adults
(Figure 1).

High-Grade Gliomas in Children
Pediatric high-grade gliomas (pHGGs) account for approximately
17% of all pediatric CNS tumors (8). pHGGs are a histologically
heterogeneous group of tumors with the most frequent types being
anaplastic astrocytoma (WHO grade III) and glioblastoma (GBM)
(WHO grade IV). The outcome for pHGGs as a whole is poor with
5-year survival rate of 20% (12). In general, HGGs in children are
biologically distinct from their adult counterparts. Molecular
profiling of large cohorts of pHGG patients resulted in discovery
of several genetic and epigenetic subtypes (13). Important molecular
features of pHGGs include recurrent mutations in genes encoding
the histone variants H3.3 and H3.1 with the mutations K27M or
G34R/V defining distinct epigenetic subgroups. The last update
(2016) of the WHO classification of CNS tumors recognizes
established molecular variants of HGG including IDH-wildtype
and -mutant GBM, as well as H3.3/H3.1 K27-mutant diffuse
midline glioma, which were formerly known as diffuse intrinsic
pontine glioma (DIPG). The latter group is associated with the most
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dismal outcome with less than 10% of patients surviving beyond
2 years (14). The H3.3 G34 subtype pHGGs typically occur in
the cerebral hemisphere and upregulated MYCN expression has
been observed in this subgroup (15). Mutations in IDH1, which are
frequent in adult gliomas, are only found in a small proportion of
pHGGs (16). Among the remaining approximately 50% of tumors
that lack histone H3 and IDH1 mutations (H3/IDH1-WT) several
subgroups are emerging. One biologically very aggressive subtype is
characterized by enrichment of MYCN amplifications, whereas
other subgroups are enriched for amplification in receptor
tyrosine kinase genes PDGFRA or EGFR (17). Finally, a specific
malignant type of spinal ependymoma in older children and adults
with poor prognosis and a propensitiy to metastasize, has recently
been shown to contain MYCN amplifications (18).

High-Grade Gliomas in Adults
Due to its critical role in regulating cell cycle and metabolism, MYC
has been found overexpressed in GBM, with a tendency towards
correlation of astrocytic GBM grade with the level of both nuclear
and cytoplasmic MYC (19–21). In addition to increased
immunostaining, authors also demonstrated positive correlation
of astrocytoma grade with the number of MYC copies. MYCN
overexpression and amplification have also been frequently
associated with GBM (in about 40% of tumor samples) (22, 23).

IDH1 mutation is a known predictor of response to
temozolomide (24) and conveys sensitivity to metabolites of
alkylating agents. In a subset of IDH1 mutant GBM, Odia
et al. found a correlation with MYC expression (25), indicating
FIGURE 1 | Location of common brain tumors. Tumor entities with known MYC
involvement are highlighted in bold and their frequency across all age groups is
indicated.
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MYC status as an adverse prognostic factor for IDH-
mutant GBM.

In malignant glioma with primitive neuroectodermal
components (MG-PNET), a rare type of brain tumor that most
likely develops from already existing glioma, about half of the
patients demonstrate mutually exclusive MYC or MYCN
amplifications (26).

MYCN was early found to form extrachromosomal double
minutes in neuroblastoma (NB) (27). Recent sequencing
efforts show that both MYC and MYCN frequently
form extrachromosomal amplifications in GBM (28, 29).
Accumulation of such extrachromosomal DNA is essentially
connected to tumor evolution and is associated with overall
poor prognosis in cancer (30).

Embryonal Tumors in Children
CNS embryonal tumors, including medulloblastoma (MB) and
atypical teratoid/rhabdoid tumors (ATRT), account for 13.1% of
primary CNS tumors in children (8). Nearly two-thirds of
embryonal tumors are diagnosed as MB, which is the most
frequent malignant brain tumor of childhood. Integrative
genomic studies have shown that MB is not a single entity, but
rather a heterogeneous group with distinct clinical and biologic
features (6). Molecular subgrouping of MB into WNT, SHH,
Group 3 and Group 4 tumors, was integrated in the most recent
WHO classification and is currently used for risk stratification
replacing diagnosis and treatment of these entities by
histopathology. MYC amplifications are the most frequently
observed driver events in Group 3, whereas MYCN is
overexpressed or amplified in SHH subtype and some Group 4
MBs (3, 31). ATRTs are a variant of embryonal brain tumors
occurring predominantly in very young children. Despite sharing
the common genetic hallmark of mutations in SMARCB1, recent
studies have revealed three distinct subgroups (TYR, SHH,
MYC) based on methylation and gene expression data (32).
MYC overexpression is the marker of the ATRT-MYC subtype,
which is comprised of mostly supratentorial tumors.

Pineal Brain Tumors in Children
and Adults
Additionally, a MYC-subgroup has recently been identified in
pineoblastoma, a rare but quite frequently metastatic, pediatric
brain tumor of the pineal gland with modest overall survival
despite intensive therapy (33). Interestingly, while pineoblastoma
usually present with molecular profiles distinct from
medulloblastoma some embryonal tumors identified as
pineoblastoma in the pineal region were recently identified as
WNT-driven medulloblastomas using methylation profiling (34).
CURRENT TREATMENT OF
BRAIN TUMORS

There is no current international consensus on the treatment of
neither pediatric nor adult brain tumors. However, most patients
see surgical tumor resection, radiotherapy, and chemotherapy.
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Factors such as diagnosis, grade, location, tumor dissemination,
and age impact how each of these parts are implemented in the
treatment plan. Surgical removal of the tumor mass is always
included when it is possible to do so. Successful surgery depends
on how much of the tumor can be safely resected and is the
biggest prognostic factor for overall survival and deciding
subsequent radiotherapy and chemotherapeutic regimens.

Radiation therapy is often given as a high dose fractioned over
several occasions and directed at the primary tumor site. Patients
with spinal metastases receive radiation therapy to the entire
cranio-spinal axis. For adult brain tumors, radiotherapy is a
major part of standard treatment. In children, MB patients have
great benefits on survival from irradiation (35) and evidence
points to that conclusion also for ATRT tumors (36). Despite the
detrimental side effects radiation therapy has on young patients it
is rarely omitted from treatment unless the patient is younger
than 3–4 years. MB can be further stratified to identify high-risk
MYC/MYCN overexpressed tumors (37). Those patients that
would commonly receive a higher dose of radiotherapy (38).

The youngest patientswith high-grade brain tumors that are not
eligible for radiation and/or surgery are especially negatively
affected by the lack of efficient and safe chemotherapeutics.
Tumor treating fields is a low toxicity, non-invasive, non-
pharmacological treatment of both newly diagnosed and
recurrent GBM, used in combination with standard therapy. It is
electromagnetic fields administered through the skin of the scalp
and its arrangement is individualized to optimize effect at the tumor
site. As it is suggested to target primarily dividing cells during
mitosis and causesDNAdamage in cycling cells, normal cells in the
brain should be spared (39). Data also suggest that tumor treating
fields is both safe and feasible in pediatric patients (40).

Many chemotherapeutics have been used empirically for
decades despite showing substantial effects on prolonging
survival of brain tumor patients. On the other hand, targeted
therapies for primary brain tumors have of yet not lived up to the
expectations and some of these lead to treatment resistance in
recurrent tumors. Due to the inability of current treatment
options to cure or even extensively prolong survival of
patients, both adult and pediatric patients are often enrolled in
multinational clinical trials. Careful stratification of patients into
correct molecular subgroups and repeated biopsying (41) could
help improving the success rate of targeted therapies.

Immunotherapies in brain cancer is a rapidly emerging field.
Checkpoint inhibitors have been intensively tested but
unfortunately shown limited efficacy in glioblastoma patients
(42). It is evident that immunological responses need to be
increased in these patients in order to show better effects.
MYC is known to suppress checkpoint proteins PD-1 and
CD47 (43) and MYC inhibition is found to re-express these
proteins making these immunotherapies effective again (44).
Recent animal studies further suggest that p53 depletion is
suppressing major histocompatibility complex (MHC) class 1
presentation, which mediates T cell immune escape in MYC-
driven medulloblastoma (45).

Chimeric antigen receptor (CAR) T cell transfer is an
interesting option in pediatric brain tumor patients (46) as
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long as severe side effects of cytokine release can be carefully
managed and avoided. It is further known that delivery of CAR T
cell therapies into the cerebrospinal fluid compartment could
provide a better chance for this treatment to reach the tumors.
Such an approach has shown promising results when tested in
animals using PDX models of medulloblastoma (47) and many
clinical trials for children with brain tumors are currently
ongoing and under evaluation.

Finally, dendritic cells are important antigen-presenting cells that
express both MHC class 1 and 2 molecules and can stimulate
antitumor immune responses. Dendritic cell vaccines (48) are
currently tested in clinical trials for GBMs and has shown rather
promising results as theymay increase survival for these patients (49).
MYCN BIOLOGY AND REGULATION IN
NORMAL CELLS

The family of MYC proteins (c-MYC, MYCN, and MYCL) are
basic helix-loop-helix-zipper (bHLHZ) transcription factors,
tightly regulated by extracellular growth stimulatory signals
and an intricate intrinsic mechanism behind expression,
activation, and degradation of MYC proteins (Figure 2). The
MYC family of transcription factors binds Enhancer BOX (E-
BOX) sequences to promote or repress transcription of its
targets. This is enabled and coordinated when the MYC
protein heterodimerizes with MYC Associated Factor X
(MAX) and together bind to the E-BOX (50). Around 20,000
E-BOX sequences are found in the human genome why MYC is
often referred to as a transcriptional master regulator.

MYC and MYCN siblings are similar in structure, and can
often substitute each other’s functions (51). MYC proteins are
often redundant in cancer and showing mutually exclusive
expression patterns of MYC and MYCN in patient samples
(52, 53). Repression of target genes by MYC proteins involves
another co-factor, MYC interacting zinc finger 1 (MIZ1) that
tethers MYC-MAX into a ternary complex to promoter regions
of negative cell cycle regulators like CDKN1A or CDKN2B (54,
55). Still, there are important differences in how MYC members
interact with certain co-factors including MIZ1 (56) and regulate
signaling pathways, revealing an increased complexity in how to
target these factors using direct or indirect therapies. It is also
recognized that MYC proteins interact with chromatin
modifying co-factors in order to remodel chromatin structure
close to their binding sites (57).

The transcriptional output signature of MYC is highly
dependent on the cellular context. The different MYC family
members are very similar but MYCL and MYCN are distinctly
expressed in specific tissues (lung and neuronal tissue,
respectively) unlike c-MYC which is found expressed in most
tissues. MYCN is crucial for normal brain development (58, 59).

A proliferating cell would allow stabilization of the MYC
proteins while a quiescent cell quickly degrades the proteins
through the ubiquitin degradation pathway, dependent on the E3
ubiquitin ligase FBW7. Two phosphorylation sites play major roles
in the life cycle of MYC. These are serine 62 (S62) and threonine 58
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(T58) (60). Consecutive phosphorylation and dephosphorylation at
these sites govern the activity, stability, and degradation of the
protein (61). Several proteins related to mitogenic signaling are
associated with or directly phosphorylates MYCN at serine 62 to
stabilize the protein. Among those are mitogen-activated protein
kinases (ERKs) and cyclin-dependent kinases (CDKs), both
important for cell growth and proliferation (60, 61).
Phosphorylation of this residue causes a conformational change
from cis to trans which increases the affinity for DNA binding and
subsequent transcriptional activity of MYC. On the other hand, it
also makes it recognizable by glycogen synthase kinase 3 beta
(GSK3b), a kinase that will phosphorylate MYC at T58 (60).
Mutations at this site will lead to MYC protein stability and can
also cause MYCN-driven MB emphasizing the importance of this
key event in MYC regulation (62). This is the start of the MYC
degradation process and is followed by dephosphorylation of S62 by
protein phosphatase 2 (PP2A) that only bindsMYCwhen both sites
are phosphorylated (63). The E3 ubiquitin ligase F-box and WD
repeat domain-containing 7 (FBW7) recognizes phosphorylated
T58 and sentence MYC to proteasomal degradation (64). In
normal cells this is a well-functioning machinery tightly
controlled at all levels to avoid neoplastic development. The last
resort of safety checks is MYC’s ability to promote apoptosis when
expressed at high levels (65, 66). In cancer, however, it is often
overcome by mutations in proapoptotic pathways including p53.
This will allow uncontrolled effects of MYC overexpression and
activation leading to rapid proliferation and tumor formation.
DIRECT OR INDIRECT TARGETING OF
MYCN IN BRAIN TUMORS

Genetically Engineered Proof-of-Concept
Inhibition Models of MYCN
MYC proteins play an important role in oncogenesis and
progression of tumors and many reports have shown that
suppression of MYC or MYCN by genetic means results in
growth arrest, induction of apoptosis or senescence leading to
tumor regression. Knockdown of MYC even results in regression
of brain tumors driven by Trp53 and Pten loss in astrocytic
cells (67).

In an attempt to attenuate MYCN expression in NB, Galderisi
et al. (68) utilized antisense MYCN oligonucleotides, where they
demonstrated three-fold decrease in mRNA levels. Subsequently,
the reduction on MYCN led to either differentiation or
apoptosis, depending on the NB cell type. In another study,
von Bueren et al. (69) demonstrated reduced proliferation and
clonogenicity, and induced G1 arrest following siRNA-
mediated MYC downregulation in DAOY MB cells. Although
this may support the idea of tumor cells being addicted to
MYC/MYCN signaling, such strategy should be taken with
caution, as the authors (69) showed increased resistance to
apoptosis and ionizing radiation upon MYC suppression.

Inducible transgenic brain tumor models, where for example
tet-inducible promoter regulates a transgene, can be utilized to
turn on and off cancer genes. We have previously utilized this
January 2021 | Volume 10 | Article 626751
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strategy to first demonstrate the role of MYCN in Group 3 MB
development and subsequently showed that long-term
withdrawal of MYCN results in tumor regression and life-long
remission (70). These tumors likely show robust oncogene
addiction as short-term withdrawal of MYCN further showed
good efficacy regardless of additional p53 mutations (71).

Direct MYC/MYCN Inhibitors
A MYC dominant negative gene product, called Omomyc, has a
capacity to promote MYC-induced apoptosis (72). In ATRT,
Omomyc-mediated MYC suppression led to decreased cell
proliferation in vitro and in vivo, while at the same time
significantly prolonging animal survival (73). Similarly,
expression of Omomyc in well-established mouse model of
glioma (74) prevented tumor formation in vivo, reduced
proliferative and self-renewal capacity of glioma initiating cells,
Frontiers in Oncology | www.frontiersin.org 537
and lead to mitotic crisis in tumor cells (75). A purified peptide of
Omomyc shows further promise in vivo. This mini-protein
shows sufficient biodistribution to suppress tumor growth in
lung cancer models while avoiding toxicity in treated animals
(76). As described above, the MYC-MAX protein-protein
interaction is required for MYC binding to DNA and poses
as a great potential target in MYC and MYCN-driven cancers
(77). Recently a MYC-MAX complex inhibitor, MYCMI-6,
was described by Castell et al. (78) that not only decreases
proliferation and induces apoptosis, but it spares cells with
normal levels of MYC. MYCMI-6 is also described to target
MYCN-MAX interactions and shows great promise in vivo (78).
Another example of MYC-MAX inhibition is MYCi975, found in
a drug screen with rapid in vivo testing for drug efficacy in
prostate cancer (44). This drug affects both MYC-MAX protein
interaction as well as MYC protein stability and was successfully
FIGURE 2 | Drug Targets in MYCN Biology. Proteins that can be targeted pharmacologically and discussed in the current review are marked in color. Drugs with
preclinical data are denominated with group affiliation. A selected set of drugs that have reached the clinical stage (either approved or in clinical trials for the indicated
target) are named. CDK1/2, Cyclin dependent kinase 1/2; MAX, MYC-associated factor X; MIZ1, MYC-interacting zinc-finger protein 1; RNA pol II, RNA polymerase
II; BRD4, Bromodomain-containing protein 4; CYC T/K, Cyclin T/K; PROTACs, Proteolysis targeting chimeras; PI3K, Phosphoinositide 3-kinase; AURKB, Aurora
kinase B; FBW7, F-box and WD repeat domain-containing 7; Ub, Ubiquitin; AURKA, Aurora kinase A; mTORC2, Mammalian target of rapamycin complex 2;
mTORC1, Mammalian target of rapamycin complex 1; AKT, Protein kinase B; PP2A, Protein phosphatase 2; P, phosphorylation.
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used in combination with anti-PD1 therapy. MYCi975 is yet to
be tested in brain tumor models but decreased MYCN protein
levels in a neuroblastoma cell line (44).

The bottleneck for successful treatment of a brain tumor is to be
able to deliver a therapy that can circumvent various barriers and
efficiently reach the tumor cells in the brain (79, 80). Apart from the
normal BBB the brain tumor itself also creates a barrier referred to
as the blood-tumor barrier (BTB) that portrays features of non-
uniform permeability and active efflux of molecules/drugs that are
pumped out (81). It is not clear how well many direct MYC
inhibitors or MYC-MAX interaction inhibitors penetrate the
BBB/BTB and if they will provide efficacy in malignant brain
tumors. Different approaches allowing for more efficient brain
tumor delivery of such drugs exist (82). First, direct local delivery
of the drug by intrathecal or intraventricular delivery means could
be useful were osmotic pumps could provide long-term delivery of
drugs. Second, and especially if tumors are considered inoperable
(like e.g. DIPGs), convection enhanced delivery can be an option
where drugs are directly infused into the parenchyma to promote a
forced bulk convective flow into the tumors. Third, focused
ultrasound pulses that transiently open up the BBB/BTB could
precede delivery of a MYC/MYCN inhibitor. Here, low intensity
ultrasound is often combined with circulating microbubbles (made
up by lipids, albumin, or polymers) that vibrate in response to the
sound to create increased vessel permeability.

MYCN Transcriptional Machinery
MYC-MAX bind E-BOX sequences in promoters and enhancers as
discussed above and recruits the protein complexes needed for
transcription and proximal promoter pause release to start
elongation (83). In more detail, the acetylated lysine residues on
histone tails of open chromatin are bound by bromodomain
containing proteins (BRDs) and coactivators of the BET family.
The BET family of epigenetic readers consists of BRD2, BRD3,
BRD4, and BRDT of which BRD4 is the most studied and
understood (84). BRD4 binding recruits the P-TEFb complex
made up of CDK9 and binding partner cyclin T that
phosphorylates RNA Pol II to engage elongation by pause release
(85). Bromodomain and BET inhibitors are so called epigenetic
drugs and the BET inhibitors JQ1, described a decade ago by
Filippakopoulos et al. (86) and iBET by Nicodeme et al. (87), were
proof-of-principle drugs of MYC transcriptional inhibition. JQ1
shows good efficacy in multiple MYC cancers as well as MYCN
overexpressed CNS tumors such as MBs (88, 89) and NBs (90). JQ1
and iBET are pan-BRD inhibitors but as BRD4 is often the most
dominant BRD in cells these drugs preferentially inhibit BRD4 and
sequentially blocks MYC andMYCN dependent transcription. BET
inhibitors regularly but not always inhibit the transcription of the
MYC/N oncogene itself (91) by competitive binding to the acetyl
binding domains of the BET proteins. Though widely used in a
laboratory setting, JQ1 was found unfit for clinical applications due
to the very short half-life of the drug and numerous efforts have
been made to find improved alternative inhibitors of BET that are
currently investigated in several clinical trials (92, 93). BET inhibitor
resistance is another problem and as for many targeted therapies
intracellular re-routing and compensatory mechanisms are likely
Frontiers in Oncology | www.frontiersin.org 638
causes. Finding the mechanisms will help to choose the appropriate
drug combination to block any likely escape path for the cancer
cells. Targeted nanoparticle delivery of combined JQ1 and
temozolomide across the BBB to GBM cells in vivo prolonged
survival and lowered the systemic drug toxicity in mice (94).
However, as the authors discuss, the efficiency of delivery is
dependent on the specific surface markers on cancer cells and it
requires careful thought and investigation of the individual tumor to
design these ligand-targeted nanoparticles (94).

A new generation of BET inhibitors recently emerged,
specifically targeting only one of two bromodomains (BDs) on
the BRDs (95, 96) in contrast to pan-BRD inhibitors that have equal
affinity for both. iBET-BD1, and not iBET-BD2, was found to have
similar antiproliferative effects on cancer cell lines as a pan-BRD
inhibitor. Also, iBET-BD1 was enough to displace BRDs from
chromatin, even at MYC super enhancers in cancer cells (95). By
contrast, novel iBET-BD2 compounds still showed good efficacy in
MYC-driven pediatric tumors (96). These separate findings need to
be further investigated to understand how these inhibitors could be
used against MYCN-driven brain tumors.

Targeting the transcriptional machinery is not limited to BET
inhibition but there are more traditional strategies using kinase
inhibitors that would offer small molecule drugs able to penetrate
the BBB. Zotiraciclib is an inhibitor with effects against CDKs,
both cell cycle and transcriptional kinases (97) and was recently
given orphan drug status in combination with temozolomide for
treatment of GBM. Its effect is mainly through inhibition of
CDK9, the kinase domain of P-TEFb binding to BRD4 and
phosphorylating RNA polymerase II (98) making it principally
similar to the successful strategy of targeting MYCN through
BET inhibition.

Three-dimensional DNA structures called G-quadruplexes
can form in guanine rich regions and do so also in the MYC
promoter region. They are two or more secondary structures
between tetrads of guanine molecules bound by hydrogen bonds
(99). In the c-MYC promoter, stabilization of G-quadruplexes
using small molecule inhibitors decreases MYC gene
transcription (99–101). Several c-MYC G-quadruplex
stabilizers have emerged (102–107), but it is so far unknown if
these also target MYCN. However, similar to c-MYC, G-
quadruplex structures have been identified near the MYCN
promoter region (108). Enniatin B has been found to
specifically target MYCN G-quadruplexes (109), which is both
promising and discouraging as the more developed drugs
targeting c-MYC might be c-MYC specific. This would indicate
that MYCN-driven brain cancers have a long way to go in this
promising field.

A new strategy deployed for targeting proteins are Proteolysis
Targeted Chimeras (PROTACs). PROTACs are bifunctional three-
parted drugs with one of the units binding to the protein of interest
and one binding to the VHL domain of ubiquitin ligase protein E3.
These two units are tethered by a linker to put the E3 ligase in close
proximity to the targeted protein for ubiquitylation and subsequent
proteasomal degradation (110). The PROTAC compound MZ1
selectively targets BRD4 and fine tuning of this principle lead
another group to developed A1874, which is able to degrade
January 2021 | Volume 10 | Article 626751
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BRD4 and at the same time stabilize p53 by binding specifically to
the E3 ligase MDM2 (111, 112). To the best of our knowledge, the
ability of PROTACs to cross the BBB is not yet known.

Ribosome Biosynthesis
As MYCN plays an important role in protein synthesis, there has
been a growing number of discussions whether the biosynthesis of
ribosomes and thus protein synthesis can be exploited in targeting
MYC/MYCN dysregulated tumors. Two inhibitors, originally
identified as RNA pol I inhibitors, quarfloxin (113) and CX-5461
(114), blocked ribosome synthesis in human MYCN-amplified NB
cells, leading to reduction of MYCN protein levels (114). Authors
furthermore demonstrated the antitumor effect of CX-5461 in vivo
opening a new therapeutic avenue for MYCN-amplified tumors. To
our knowledge, indirect targeting of MYCN via RNA pol I
inhibition has not been evaluated, but given its promising efficacy
in NB (115), it is worth considering in the future.

Cell Cycle and MYCN Stability
Tumor cells proliferate rapidly and hijack cell cycle regulation
through mutation or deregulation of inherent vital cell cycle
promoting and/or safety mechanisms. MYC’s strong correlation
to cell proliferation is well known (116–118) and blocking the
cell cycle of rapidly dividing cancer cells is a reasonable strategy
deployed for treatment of cancer. CDK inhibitors such as
Palbociclib, targeting CDK4/6, have shown great success in
hormone receptor positive, HER2-negative metastatic breast
cancer and have reignited a previous interest in cell cycle
inhibition (119, 120). CDK4/6 inhibition can also be used
against MYCN-driven tumors to cause a G1 arrest and its
effect has been proven in both MB (88) and NB (121, 122).
The ability of CDK4/6 inhibitors to penetrate the BBB has been
under investigation. Of the three clinically approved CDK4/6
inhibitors palbociclib, ribociclib, and abemaciclib, it is
abemaciclib that shows most promise (33). Abemaciclib is now
in clinical trials for high-grade and recurrent brain tumors in
both children and adults (NCT02644460, NCT03220646).

Three decades ago, CDK2 was in the spotlight for promising
drug targets. The interest was dampened when it was shown that
CDK2 inhibition was not sufficient to stop proliferation of cancer
cells and none of the interphase CDKs are necessary for cell cycle
progression as CDK1 was enough to do their job (123, 124). As
inhibitor specificity has improved and more is known about
CDK2 biology the interest in targeting this kinase has sprouted
anew. In addition to CDK2s role in cell cycle commitment it is
also one of several kinases that phosphorylates MYC proteins on
S62 (125). A few CDK2 inhibitors are currently in clinical trials,
however none of these are CDK2 specific. Hence, other CDKs or
even classes of proteins could also be involved in their effects.
Milciclib is a highly selective CDK2 inhibitor that also has affinity
for CDK7/4/5 and tropomyosin receptor kinase A (TrKA) (126).
It has been quite successful in clinical trials and is now on Phase
II for thymic carcinoma (NCT01011439). The dual role of CDK2
in MYCN-driven brain tumors was shown to successfully target
MYCN-driven MB in 2018. Combining milciclib with JQ1 did
indeed prolong survival of MYCN-driven MB bearing mice (88).
Frontiers in Oncology | www.frontiersin.org 739
CDK2 was not found to be amplified or overexpressed in the
MYCN-driven MB model GTML emphasizing the potential of
inhibiting MYCN driven brain tumors with this strategy even at
normal levels of CDK2. Also, the aforementioned CDK9
inhibitor zotiraciclib has affinity and inhibitory effects on
CDK2. Both milciclib and zotiraciclib penetrates the BBB
making them highly interesting to study further in MYCN-
driven brain tumors, perhaps even in combination.

Aurora Kinases
A family of serine/threonine kinases, named Aurora, plays an
important role in regulation of key steps in cell division. They are
involved in organization of centrosomes, condensation of
chromatin, chromosome attachment to microtubules, and
establishment of metaphase plate (127). Aurora kinase A
(encoded by AURKA) is aberrantly expressed in many cancers
(128), including GBM (129–132), making it a plausible candidate
for a targeted GBM therapy. Expression of both AURKA and
AURKB (Aurora kinase B) is tightly regulated by MYC
transcription factor (133). Moreover, Aurora kinases A and B
directly phosphorylate MYC to promote its stabilization and
increase its transcriptional activity (134, 135). In pediatric NB and
MB, transcription factor MYCN binds Aurora kinase A, thus
attenuating G2/M arrest and stabilizing MYCN protein (136), and
conversely inhibition of Aurora kinase A promotes MYCN
degradation and cell death (71, 137, 138). These findings highlight
the importance of Aurora kinases as druggable targets, particularly
in tumors which are driven by aberrant MYC/MYCN signaling. In
this section of the review, we will further explore therapeutic
potential of Aurora kinase inhibitors in brain tumor therapy.

Alisertib is a second generation, ATP competitive Aurora
kinase A inhibitor, which inhibits autophosphorylation at T288.
Combined Alisertib and BRD4 inhibition results in synergistic
decrease of viability in high-risk, MYCN amplified NB cells
(139). Alisertib shows also an advantage in pediatric GBM,
where in vitro effects were observed in a number of patient-
derived cells and in vivo, by prolonging mouse survival (140).
However, emergence of AURKA negative and CD133 positive
cells results in relapse in vivo, which suggests a need of dual
inhibition to overcome resistance. We have previously showed
that AURKA inhibition together with BRD4 inhibition
successfully inhibits a number of patient-derived GBM cells
(141). Interestingly, GBM cells that were most sensitive to
AURKA inhibition were those with high level of MYCN
expression, although we must emphasize that the combined
AURKA and BRD4 inhibition shows strong synergistic
antitumor activity in all evaluated GBM cells, irrespective of
MYCN levels (141).

Alisertib inhibition in a MYCN-driven model of group 3 MB
(70) disrupts AURKA-MYCN complex and inhibits cell viability
both in vitro and in vivo (71, 142). The inhibition of tumor
growth was exercised through nearly completed reduction of
MYCN protein expression, cell cycle arrest in G2/M phase, but
not apoptosis, which is indicative of AURKA inhibition.

Aurora kinase A, among other functions, regulates MYC/
MYCN protein stability. Unlike many inhibitors that target
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Aurora A activity, Gustafson et al. (138) developed a
conformation-specific compound CD532 that binds to Aurora
A, destabilizes MYC/MYCN and targets them for proteasomal
degradation. Although developed in MYCN-amplified
neuroblastoma models, this compound shows promising effects
on cell cycle and MYC/MYCN stability.

Upstream Regulation of MYCN via PI3K
and mTOR
Phosphoinositide 3-kinases (PI3K) regulates MYCN stability
through AKT and GSK3b in cerebellar neuron precursors (143,
144), which suggests that MYCN effects can be counteracted by
inhibiting upstream MYCN signaling. Indeed, authors (143)
demonstrated a substantial loss of wild-type MYCN upon
PI3K inhibitor wortmannin, while mutant MYCNT50A and
MYCNS54A levels remained unchanged. Similarly, in MYCN-
driven models of NB, Cage et al. (145) showed ablation of MYCN
following the treatments with two different PI3K inhibitors PIK-
75 and PW-12. Furthermore, in mouse allografts of SHH MB
authors (145) demonstrated uniform absence of MYCN, reduced
proliferation and vascularity, as well as increase of apoptosis
following in vivo treatment with PW-12, altogether resulting in a
significant, more than five-fold decrease in tumor volume.

MYCN is indirectly regulated by upstream signaling mediated
through e.g. mammalian target of rapamycin complexes
Frontiers in Oncology | www.frontiersin.org 840
(mTORC), which regulates cell growth and protein synthesis
(as reviewed in (146). Over the past decade several mTOR
inhibitors have been developed and proven successful in many
different cancer models [as reviewed in (147)]. First generation
mTOR inhibitors rapamycin and its ester analogue CCI-779
(Temsirolimus) not only inhibited growth and induced cell death
in several MYCN-amplified NB cells, but also significantly
reduced MYCN protein levels (148). Similarly, another group
identified dual PI3K/mTOR inhibitor, NVP-BEZ235
(Dactolisib), to specifically destabilize MYCN proteins in
MYCN-dependent tumors (149). More recently, our group has
proved that many of such second generation mTOR inhibitors
are indeed successful in inhibiting MYCN-amplified SHH MB
tumor models both in vitro and in vivo (52). RapaLink-1, a
bivalent third generation mTOR inhibitor, which combines
rapamycin with INK128 (Sapanisertib) by an inert chemical
linker, has also shown great efficacy in MYCN-driven brain
tumor models (150). Several mTOR inhibitors have already
been approved or are currently undergoing clinical trials (151),
making mTOR inhibition a very promising therapeutic avenue
for MYCN-deregulated brain tumors. Especially for SHH-
dependent medulloblastoma where more direct SHH pathway
drugs, including SMO inhibitors, are shown to induce severe side
effects in young children or infants (152). For instance, mTOR
inhibitors, such as everolimus, are well tolerated in children
TABLE 1 | Drugs and compounds for targeting of MYCN signaling.

Inhibitor Tumor type Target Phase Reference

Direct MYC/MYCN inhibitors
Omomyc Glioma, ATRT MYC proteins Preclinical (1–5)
MYCMI-6 Various cancers, NB MYC proteins Preclinical (6)

Inhibitors of MYCN transcriptional machinery
JQ1
I-BET

Various cancers, MB, and NB BRD4 Preclinical (7–10)
(11)

Zotiraciclib GBM CDK9 Clinical orphan drug (12)
Enniatin B N/A MYCN Biochemical (13)
MZ1 N/A BRD4 Biochemical (14)
A1874 Colon cancer, lung cancer, osteosarcoma BRD4 Preclinical (15)

Cell cycle related inhibitors targeting MYCN
Palbociclib MB, NB CDK4/6 Preclinical (9, 16, 17)
Abemaciclib DIPG, brain tumor (NOS), NB, ATRT CDK4/6 Clinical trial (19), NCT02644460, NCT03220646
Milciclib MB CDK2 Preclinical (9)

Thymic carcinoma Clinical trial NCT01011439
Alisertib GBM, MB, NB Aurora A Preclinical (20–23)

High-risk AML Clinical trial NCT02560025

PI3K/AKT/mTOR inhibitors targeting MYCN
PIK-75, PW-12 MB PI3K Preclinical (24)
Rapamycin NB mTORC1 Preclinical (25)
Temsirolimus NB mTORC1 Preclinical (25)

CNS tumors Clinical trial NCT00003712
NVP-BEZ235 MYCN-dependent tumors mTORC1/2, PI3K Preclinical (26)

Breast cancer Clinical trial NCT00620594
Everolimus Breast cancer mTORC1 Clinical trial NCT01783444

Pediatric epilepsy Approved (27)
Sapanisertib MB mTORC1/2, PI3K Preclinical (28)

Ribosome biosynthesis inhibitors targeting MYCN
Quarfloxin, CX-5461 MYCN-driven NB RNA Polymerase I Preclinical (29)
January
A list of a selection of drugs or compounds identified as potential direct or indirect targets of MYC/MYCN-driven CNS/PNS tumors. Compounds in the clinical development for another
tumor type (and not for brain tumors/CNS tumors) are mentioned in cases where they showed promising results in preclinical CNS tumor models.
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treated for epilepsy (153), which is in line with findings of Wu et al.,
where young mice treated with the BBB penetrable mTOR
inhibitor, Sapanisertib showed no toxicity against cerebellar
development (154). In Table 1, we present a list of selected
potential drugs for MYC/MYCN targeted therapy discussed in
this paper where the progress of these in preclinical and clinical
research is summarized.

The OCT4/mTOR Malignancy Axis
mTOR is known to promote octamer-binding transcription
factor 4 (OCT4) levels in embryonic stem cells (155). In
MYCN-driven human brain tumor models generated from
primary embryonic or induced pluripotent stem cell (iPSC)-
derived neural stem cells we could show a significant correlation
of mTOR pathway activation and OCT4 levels (52). When we
overexpressed OCT4 we further found increased mRNA levels of
4EBP1 gene (EIF4EBP1) as well as elevated phosphorylation
of 4EBP1 that marks mTOR pathway activity downstream of
mTORC1. The OCT4/mTOR axis correlated with poor
prognosis in SHH MB patients and OCT4-overexpression
increased the malignancy of these pediatric brain tumors
(Figure 3).

OCT4 has previously been shown to increase metastasis and
malignancy in MB cell lines (156) and malignancy in GBM
where AKT is activating OCT4 (157). OCT4 phosphorylation at
T235 by AKT is increasing OCT4 stability and correlate with
apoptotic resistance and tumor malignancy (158).

OCT4 has an important regulatory role in MYCN-amplified
tumors (Figure 3). In MYCN-driven NB OCT4 was found to
induce increased levels of MYCN by increasing the levels of its cis-
antisense gene NCYM (159). Subsequently, NCYM is stabilizing
MYCN by inhibiting GSK3b to protect MYCN from proteasomal
degradation (160). In this auto-regulatory loop MYCN can again
induce OCT4 and other stem-cell related genes. NCYM correlates
with OCT4 levels and with poor prognosis in MYCN-amplified
tumors. Various inhibitors of mTOR and/or PI3K/AKT can
suppress the OCT4/mTOR axis in malignant brain tumors (52).

At another dimension which might be of importance for
treatment resistance in MYCN-driven cancer, involves OCT4
phosphorylation at S111 via MAPKAP2 that can promote MYC
expression (Figure 3). This might help identifying a therapy-
resistance mechanism in MYCN-driven NB, providing an escape
route driven by OCT4-activated MYC (161) in recurrent tumors.
SUMMARY AND DISCUSSION

MYC family members are found overexpressed in more than half
of all cancers highlighting its role as one of the most important
oncogenes. MYC proteins are involved in brain tumor initiation,
maintenance and progression in both children and adults.
MYCN has an important role also in normal brain
development. It is known that misregulation of its expression
occurs during early development in childhood neoplasms and
that MYCN is likely activated during progression in adult brain
tumors. While several ways of targeting MYCN is approaching
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and show promise, there are still many obstacles regarding
delivery of direct and indirect ways to target this transcription
factor. Better ways and tools to deliver MYCN-targeting drugs
that penetrates the BBB is needed using e.g. chemical
modifications of substances, nano-particles as drug carriers, or
ultrasound technology for temporal opening of the BBB to
mediate efficiently high concentrations of the MYCN drug at
the tumor site.

While many drugs target cMYC it is important to investigate
if they are also relevant for MYCN-driven tumors or if they can
be modified to target MYCN specifically to avoid unnecessary
side effects. Therefore, it is of utter importance that published
data on cMYC targeting also get tested in relevant MYCN-driven
cancer cell and mouse models. Appropriate animal brain tumor
models should not only be used to test and determine efficacy of
novel drugs but will also be valuable in observing tolerability and
evident toxicities of the tested compound in the preclinical
evaluation. These animal models are useful tools for early
detection of side effects from drugs on the normal growth of
animals and on their proper brain development or consideration
of future use in infant and pediatric brain tumor patients.
FIGURE 3 | Targeting of MYCN-dependency via the OCT4/mTOR Axis.
MYCN transcriptionally regulates OCT4 and promotes increased OCT4 levels
that correlate with poor prognosis in various brain tumor entities. OCT4 has
been found to form a positive regulatory loop that induces increased protein
stability of MYCN by increasing the levels of its cis-antisense gene NCYM. In
parallel, mTOR/PI3K/AKT promotes OCT4 levels in both normal and
malignant cells. Here AKT is known to activate OCT4 by phosphorylation
leading to OCT4-dependent upregulation of 4EBP1 and cMYC but also to a
positive loop that again promotes AKT expression. We propose a strategy
where targeting of OCT4 using various mTOR/PI3K inhibitors could regulate
MYCN and suppress MYCN-dependent brain cancer. A few selected
inhibitors tested in the brain tumor papers discussed in the review are
highlighted.
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As many before have suggested, combination treatments are
most likely the best way to circumvent acquired drug resistance.
Understanding the mechanisms behind both the drug effect and
future resistance will help deciding efficient drug combinations.
On this topic, one should also consider that we could shorten the
bench to bedside time frame by including relevant standard
treatments in preclinical testing of potential MYCN drugs. In
vivo testing of MYCN drugs for brain tumors should include
irradiation and chemotherapy similar to what is used in the clinic
to get solid data with a better chance to succeed in affected
patients. By simply getting a drug into clinical trials it could
benefit specific patients. We stay optimistic and believe that any
of these measures will help providing better responses and
hopefully even a cure for these devastating malignancies.
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52. Čančer M, Hutter S, Holmberg KO, Rosén G, Sundström A, Tailor J, et al.
Humanized Stem Cell Models of Pediatric Medulloblastoma Reveal an Oct4/
mTOR Axis that Promotes Malignancy. Cell Stem Cell (2019) 25(6):855–
70.e11. doi: 10.1016/j.stem.2019.10.005

53. Westermann F, Muth D, Benner A, Bauer T, Henrich KO, Oberthuer A, et al.
Distinct transcriptional MYCN/c-MYC activities are associated with
spontaneous regression or malignant progression in neuroblastomas.
Genome Biol (2008) 9(10):R150. doi: 10.1186/gb-2008-9-10-r150

54. Seoane J, Pouponnot C, Staller P, Schader M, Eilers M, Massagué J. TGFbeta
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123. Santamarıá D, Barrière C, Cerqueira A, Hunt S, Tardy C, Newton K, et al.
Cdk1 is sufficient to drive the mammalian cell cycle. Nature (2007) 448
(7155):811–5. doi: 10.1038/nature06046

124. Tetsu O, McCormick F. Proliferation of cancer cells despite CDK2
inhibition. Cancer Cell (2003) 3(3):233–45. doi: 10.1016/S1535-6108(03)
00053-9

125. Hydbring P, Bahram F, Su Y, Tronnersjö S, Högstrand K, von der Lehr N,
et al. Phosphorylation by Cdk2 is required for Myc to repress Ras-induced
senescence in cotransformation. Proc Natl Acad Sci USA (2010) 107(1):58–
63. doi: 10.1073/pnas.0900121106

126. Brasca MG, Amboldi N, Ballinari D, Cameron A, Casale E, Cervi G, et al.
Identification of N,1,4,4-tetramethyl-8-{[4-(4-methylpiperazin-1-yl)phenyl]
amino}-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxamide (PHA-
848125), a potent, orally available cyclin dependent kinase inhibitor. J Med
Chem (2009) 52(16):5152–63. doi: 10.1021/jm9006559

127. Carmena M, Earnshaw WC. The cellular geography of aurora kinases. Nat
Rev Mol Cell Biol (2003) 4(11):842–54. doi: 10.1038/nrm1245

128. Bischoff JR, Anderson L, Zhu Y, Mossie K, Ng L, Souza B, et al. A homologue
of Drosophila aurora kinase is oncogenic and amplified in human colorectal
cancers. EMBO J (1998) 17(11):3052–65. doi: 10.1093/emboj/17.11.3052

129. Lehman NL, O’Donnell JP, Whiteley LJ, Stapp RT, Lehman TD, Roszka KM,
et al. Aurora A is differentially expressed in gliomas, is associated with
patient survival in glioblastoma and is a potential chemotherapeutic target in
gliomas. Cell Cycle (2012) 11(3):489–502. doi: 10.4161/cc.11.3.18996

130. Loh J-K, Lieu A-S, Chou C-H, Lin F-Y, Wu C-H, Howng S-L, et al.
Differential expression of centrosomal proteins at different stages of
human glioma. BMC Cancer (2010) 10:268–. doi: 10.1186/1471-2407-10-268

131. Samaras V, Stamatelli A, Samaras E, Arnaoutoglou C, Arnaoutoglou M,
Stergiou I, et al. Comparative immunohistochemical analysis of aurora-A
and aurora-B expression in human glioblastomas. Associations with
proliferative activity and clinicopathological features. Pathol Res Pract
(2009) 205(11):765–73. doi: 10.1016/j.prp.2009.06.011

132. Barton VN, Foreman NK, Donson AM, Birks DK, Handler MH, Vibhakar R.
Aurora kinase A as a rational target for therapy in glioblastoma. J Neurosurg
Pediatr (2010) 6(1):98. doi: 10.3171/2010.3.PEDS10120

133. den Hollander J, Rimpi S, Doherty JR, Rudelius M, Buck A, Hoellein A, et al.
Aurora kinases A and B are up-regulated by Myc and are essential for
maintenance of the malignant state. Blood (2010) 116(9):1498–505. doi:
10.1182/blood-2009-11-251074

134. Dauch D, Rudalska R, Cossa G, Nault J-C, Kang T-W, Wuestefeld T, et al. A
MYC–aurora kinase A protein complex represents an actionable drug target in
p53-altered liver cancer. Nat Med (2016) 22(7):744–53. doi: 10.1038/nm.4107

135. Jiang J, Wang J, Yue M, Cai X, Wang T, Wu C, et al. Direct Phosphorylation
and Stabilization of MYC by Aurora B Kinase Promote T-cell
Leukemogenesis. Cancer Cell (2020) 37(2):200–15.e5. doi: 10.1016/
j.ccell.2020.01.001

136. Otto T, Horn S, Brockmann M, Eilers U, Schuttrumpf L, Popov N, et al.
Stabilization of N-Myc is a critical function of Aurora A in human
neuroblastoma. Cancer Cell (2009) 15(1):67–78. doi: 10.1016/j.ccr.2008.12.005

137. Brockmann M, Poon E, Berry T, Carstensen A, Deubzer HE, Rycak L, et al.
Small molecule inhibitors of aurora-a induce proteasomal degradation of N-
myc in childhood neuroblastoma. Cancer Cell (2013) 24(1):75–89. doi:
10.1016/j.ccr.2013.05.005

138. Gustafson WC, Meyerowitz JG, Nekritz EA, Chen J, Benes C, Charron E,
et al. Drugging MYCN through an allosteric transition in Aurora kinase A.
Cancer Cell (2014) 26(3):414–27. doi: 10.1016/j.ccr.2014.07.015

139. Felgenhauer J, Tomino L, Selich-Anderson J, Bopp E, Shah N. Dual BRD4
and AURKA Inhibition Is Synergistic against MYCN-Amplified and
Nonamplified Neuroblastoma. Neoplasia (2018) 20(10):965–74. doi:
10.1016/j.neo.2018.08.002
January 2021 | Volume 10 | Article 626751

https://doi.org/10.1038/s41467-018-06315-w
https://doi.org/10.1038/s41467-018-06315-w
https://doi.org/10.1021/acs.bioconjchem.8b00338
https://doi.org/10.1021/acs.bioconjchem.8b00338
https://doi.org/10.1021/bi100509s
https://doi.org/10.1093/nar/gkr612
https://doi.org/10.1021/acs.jmedchem.7b01697
https://doi.org/10.1016/j.bbagen.2013.08.028
https://doi.org/10.1016/j.bbagen.2013.08.028
https://doi.org/10.1002/rcm.7101
https://doi.org/10.1002/anie.201507978
https://doi.org/10.1158/0008-5472.CAN-18-2918
https://doi.org/10.1021/acschembio.5b00216
https://doi.org/10.1158/0008-5472.CAN-09-1304
https://doi.org/10.1016/j.ccr.2012.05.019
https://doi.org/10.1016/j.ccr.2012.05.019
https://doi.org/10.1038/s41388-018-0611-7
https://doi.org/10.1038/s41388-018-0611-7
https://doi.org/10.1016/0092-8674(83)90092-2
https://doi.org/10.1073/pnas.83.11.3982
https://doi.org/10.1073/pnas.83.11.3982
https://doi.org/10.1016/s1470-2045(14)71159-3
https://doi.org/10.1056/NEJMoa1505270
https://doi.org/10.1158/1078-0432.CCR-16-1131
https://doi.org/10.1158/1078-0432.CCR-16-1131
https://doi.org/10.1158/1078-0432.CCR-13-1675
https://doi.org/10.1158/1078-0432.CCR-13-1675
https://doi.org/10.1038/nature06046
https://doi.org/10.1016/S1535-6108(03)00053-9
https://doi.org/10.1016/S1535-6108(03)00053-9
https://doi.org/10.1073/pnas.0900121106
https://doi.org/10.1021/jm9006559
https://doi.org/10.1038/nrm1245
https://doi.org/10.1093/emboj/17.11.3052
https://doi.org/10.4161/cc.11.3.18996
https://doi.org/10.1186/1471-2407-10-268
https://doi.org/10.1016/j.prp.2009.06.011
https://doi.org/10.3171/2010.3.PEDS10120
https://doi.org/10.1182/blood-2009-11-251074
https://doi.org/10.1038/nm.4107
https://doi.org/10.1016/j.ccell.2020.01.001
https://doi.org/10.1016/j.ccell.2020.01.001
https://doi.org/10.1016/j.ccr.2008.12.005
https://doi.org/10.1016/j.ccr.2013.05.005
https://doi.org/10.1016/j.ccr.2014.07.015
https://doi.org/10.1016/j.neo.2018.08.002
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Borgenvik et al. Targeting MYCN in Brain Tumors
140. KogisoM, Qi L, Braun FK, Injac SG, Zhang L, Du Y, et al. Concurrent Inhibition
of Neurosphere and Monolayer Cells of Pediatric Glioblastoma by Aurora A
InhibitorMLN8237 Predicted Survival Extension in PDOXModels. Clin Cancer
Res (2018) 24(9):2159–70. doi: 10.1158/1078-0432.CCR-17-2256
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MYCN, a member of MYC proto-oncogene family, encodes a basic helix-loop-helix
transcription factor N-MYC. Abnormal expression of N-MYC is correlated with high-risk
cancers and poor prognosis. Initially identified as an amplified oncogene in neuroblastoma
in 1983, the oncogenic effect of N-MYC is expanded to multiple neuronal and nonneuronal
tumors. Direct targeting N-MYC remains challenge due to its “undruggable” features.
Therefore, alternative therapeutic approaches for targeting MYCN-driven tumors have
been focused on the disruption of transcription, translation, protein stability as well as
synthetic lethality of MYCN. In this review, we summarize the latest advances in
understanding the molecular mechanisms of MYCN dysregulation in cancers.

Keywords: MYCN, cancer, gene amplification, G-quadruplex, NCYM, super enhancer, synthetic lethality
INTRODUCTION

N-MYC is a transcription factor of the MYC oncogene family. This gene family of humans consists
of three members, namely, MYCC, MYCN, MYCL, which encodes C-MYC, N-MYC, and L-MYC
protein respectively (“MYC” was used to indicate all three genes in this review). The first identified
MYC gene was MYCC as a homolog of an avian retroviral gene v-myc, then MYCN in
neuroblastoma and MYCL in lung cancer (1–3). These proteins show similar structure with the
highest homology in five short stretches called MYC boxes 1 to 4 at the N terminus and in the basic
helix-loop-helix-leucine-zipper (bHLH-LZ) domain at the C terminus (Figure 1A) (6–9). The
former enables MYC to interact with different effector proteins including TRRAP and P400 which
mediate chromatin remodeling and modification (10, 11), the latter allows MYC to form a
heterodimer with partner proteins that also contain a bHLH-LZ domain, such as MAX. MYC/
MAX heterodimer bind to the target motif called E-box with the consensus sequence of CAC(G/A)
TG to regulate the expression of targeted genes (Figure 1B). In addition, MYC can also bind to
targeted sequences that show deviation from or no similarity to the E-box, suggesting the
association of MYC to chromatin can be instructed by other factors (12, 13). For example, MYC
can invade promoter regions of active genes and cause global transcriptional amplification (Figure
1C) (4, 14, 15). The two different action modes of MYC seem conflicting, i.e., gene-specific
regulation model versus global gene activation model. The third model, gene-specific affinity model,
in which the affinity of promoters for MYC is different and relies on the MYC levels and the
interaction of MYC with core promoter-binding factors, such as WDR5 (Figure 1D), has been
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proposed to reconcile the action modes of MYC (5, 16). MYC
proteins affect transcription of a large number of genes and thus
regulate fundamental cellular processes, including proliferation,
metabolism, apoptosis, differentiation, and immune surveillance
(17–21).

With evolutionarily conserved domains, the three MYC
proteins share certain extent of functional redundancy. For
instance, when N-MYC is expressed from the MYCC locus, it
can rescue development, cellular growth, and differentiation in
MYCC deficient mice (22). On the other hand, C-MYC, N-MYC,
and L-MYC have their own unique features. Enhanced
expression of different MYC paralogs induces tumors with
different biological characteristics in medulloblastoma (23, 24),
prostate cancer (25), and lung cancer (26). Furthermore, the
amplification ofMYC genes is mutually exclusive, and the switch
of gene expression among the members is associated with cell
lineage shift, tumor progression, and treatment resistance (27,
28). Different collaborative proteins of MYC paralogs help to
demarcate a unique subset of responsive genes, which could
partially explain the distinct biological functions among MYC
members. For example, N-MYC interacts with TWIST1 at
enhancers to activate developmental genes important to
neuroblastoma tumorigenesis, while TCF3 (E2A) is selectively
required for progression of C-MYC driven myeloma (15). In this
mini-review, we focus on N-MYC-driven tumors. Since
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discovered in 1983 in neuroblastoma (1, 3), the oncogenic
effect of N-MYC has been demonstrated both in various
neuronal [e.g., glioblastoma (29), medulloblastoma (30),
astrocytoma (31)], and nonneuronal [e.g., prostate cancers
(32), breast cancers (33), hematologic malignancies (34),
pancreatic tumors (35), Wilms tumors (36), hepatocellular
carcinoma (37), rhabdomyosarcoma (38), ovarian cancers (39)]
tumors. Specifically, this mini-review summarizes the latest
advances in the regulation network of N-MYC expression
(Figure 2) and the related therapeutic targets for MYCN-
driven tumors.
MOLECULAR MECHANISMS OF MYCN
DYSREGULATION AND THE
THERAPEUTIC TARGETS

The tissue specificity and strength of MYC gene expression are
under tight control in normal circumstances. Studies of mice
show that the expression of MYCN is high during early
developmental stages and in specific tissues including
forebrain, hindbrain, and kidney of newborn mice, while
MYCC is broadly expressed throughout the tissues and the
developmental stages analyzed. Clinical observation of MYCN
A

B

D

C

FIGURE 1 | Models of transcriptional regulation of target genes by MYC proteins. (A) Schematic diagram of N-MYC protein structure. Five highly conserved
stretched called MYC boxes 1 to 4 (MB) and the basic helix-loop-helix-leucine-zipper (bHLH-LZ) domain at the C terminus are shown. The recurrent somatic
mutation P44L and the putative N-MYC phosphodegron are shown in cyanine and yellow respectively. (B) Gene-specific regulation model: MYC/Max dimer binds
and regulates a subset of genes with E-boxes in their promoters. (C) Global gene activation model: MYC accumulates in the promoter regions of active genes
independent of E-box and leads to transcriptional amplification in cancer cells with high level of MYC proteins (4). (D) Gene-specific affinity model: high-affinity
binding sites, such as those with E-boxes and WDR5 (WD-repeat protein 5) binding, are already fully occupied by MYC at physiological MYC protein level (medium
level) in proliferating cells; low-affinity (low aff.) binding sites can be occupied by MYC at oncogenic MYC protein level (high level) in cancer cells (5).
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amplification in human neuroblastoma firstly pointed out the
potential association betweenMYCN gene and tumorigenesis (1,
3). Although amplified DNAs encompassing MYCN are more
than 100 kb and can include adjacent co-amplified genes,MYCN
has emerged as the only consistently amplified gene (40). Using
transgenic animal models, multiple studies establish that N-
MYC overexpression is a driver of cancers. For example,
targeted expression of human N-MYC causes neuroblastoma
in transgenic mice and zebrafish (41, 42). Neuroblastomas with
Frontiers in Oncology | www.frontiersin.org 349
enhanced expression of N-MYC without MYCN amplification
are known to be similarly high-risk and poor prognosis (43).
Recent studies show that high N-MYC protein and RNA levels
could be better biomarkers than MYCN gene amplification in
predicting the prognosis of neuroblastoma patients (44, 45),
underscoring the importance of aberrant expression of N-MYC
in tumor progression. Here, we discuss mechanisms of MYCN
dysregulation at DNA, mRNA and protein levels, and
corresponding therapeutic targets.
FIGURE 2 | The expression of MYCN is activated or repressed at DNA, mRNA and protein levels by different factors, including secondary DNA structure,
enhancers, transcription factors, miRNAs, ubiquitination-dependent proteasome degradation machinery and its cis-antisense gene NCYM. Filled red and brown
boxes indicate translated regions of MYCN and NCYM respectively, while the blank counterparts represent untranslated regions. CRC core regulatory circuitry,
CDK9 cyclin-dependent kinase 9, CDK7 cyclin-dependent kinase 7, BRD4 bromodomain-containing 4, PLAGL2 pleiomorphic adenoma gene-like 2, SP1 specific
protein 1, GSK3b glycogen synthase kinase 3b, PI3K phosphoinositide 3-kinase, FBXW7 F-box and WD repeat domain-containing 7, PP2A protein phosphatase 2A,
PLK1 polo-like kinase 1, USP7 ubiquitin-specific protease 7, MDM2 murine double minute 2.
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GENE AMPLIFICATION OF MYCN

Gene amplification is a frequent mechanism that can cause
proto-oncogene overexpression. It is a process that involves
unscheduled DNA replication, recombination and/or
formation of extrachromosomal DNA, leading to a selective
increase of gene copy number up to several hundred (40). The
occurrence of proto-oncogene amplification can be detected by
the presence of “double minutes” or “homogeneously staining
chromosomal regions”.MYCN was the first discovered paradigm
of proto-oncogene amplification and is an important bio-marker
to stratify clinical risk. It was initially detected in about 20% to
25% of neuroblastoma, then at a much lower incidence in small
cell lung cancer, retinoblastoma, hepatocellular carcinoma,
malignant gliomas, and peripheral neuroectodermal tumors
(46, 47). Amplification of MYCN has been recognized as a
consequence of genomic instability and occurs sporadically
(48). Overexpression of N-MYC initiates tumorigenesis by
preventing the normal physiological process of neural crest cell
death in TH-MYCN transgenic mice in which human MYCN is
under the control of a tyrosine hydroxylase (TH) promoter, and
the formation of neuroblastoma involves further changes of the
persisting embryonal neural crest cells, including MYCN
amplification (49). In addition, MYCN amplification is
associated with advanced neuroblastomas, suggesting that the
amplification is a late event during the tumorigenesis (49–51)

Although multiple replication-based mechanisms, such as
double rolling-circle replication, have been proposed to explain
gene amplification, the important factors that induce and
regulate MYCN amplification remain to be completely
investigated (52–55). Proto-oncoprotein c-MYB transcription
factor is implicated in the regulation of cell growth and
proliferation of neuroblastoma (56). The functional ortholog of
Drosophila melanogaster, Dm-Myb, is directly implicated in the
site-specific DNA replication, leading to amplification of the
chromosomal loci with the chorion gene cluster (57). Aygun and
Altungoz showed that c-MYB is involved in the control of
MYCN amplification in MYCN-amplified neuroblastoma cell
lines (58). Specifically, the MYCN gene dosage is increased
upon knockdown of c-MYB expression, which may be
associated with the elevated expression of geminin protein that
causes a shift from genomic DNA replication to MYCN
amplification (58–60). Recent sequencing studies indicate that
the structure of extrachromosomalMYCN amplicons are shaped
by enhancer sequences (61, 62). Specifically, Helmsauer et al.
reported two distinct classes of extrachromosomal circular
MYCN amplicons: the first class co-amplifies a local core
regulatory circuitry (CRC)-driven enhancer; the second class
shows a complex chimeric structure with a distal CRC-driven
enhancer instead of the local enhancer (Figure 2) (61). Long
inverted repeats and microhomology are significantly associated
with boundary regions of the MYCN amplicon units, and thus
might also be involved in the initiation or regulation of MYCN
amplification (55, 58). Elucidating the mechanisms of MYCN
amplification may bring about new therapeutic strategies
targeting MYCN amplification to treat MYCN-driven tumors.
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Although the amplified genes tend to overexpress, gene
amplification not necessarily leads to high level of gene
expression. In fact, there is inconsistency between MYCN
gene dosage, mRNA and protein levels, and clinical outcomes
(44, 63). For example, low DNA dosage but high RNA level is
detected in some neuroblastoma samples, while high DNA dosage
but low RNA level in some other samples (45). AdditionalMYCN
gene copies may also suppress their own expression (58).
Genome-wide analysis in humans and some model organisms
revealed that genes in copy number variation regions are expressed
at lower and more variable levels than genes mapped elsewhere
(64). Alternatively, as in plants, repeated genes may suffer from
homology-dependent gene silencing that involves DNA
methylation or histone modification (65, 66). Consistently, only
a weak positive correlation of MYCN expression with copy
number is detected in Wilms tumor, while a strong negative
correlation of MYCN expression with DNA methylation level at
specific loci is observed (67). Importantly, transcriptional and
posttranscriptional regulation determines the final level of N-
MYC protein in both MYCN amplified and non-amplified
tumors. For instance, enhancer hijacking that repositions a
super enhancer close to the affected genes through chromosomal
translocation accounts for the high level of C-MYC or N-MYC
expression in some neuroblastoma cells without MYCC
amplification or without a high MYCN copy number,
respectively (68, 69).
REGULATION OF MYCN TRANSCRIPTION

Super Enhancer and Transcription Factors
A general feature ofMYC genes is their transcriptional regulation
by upstream super enhancers (SEs) (70). SE regions are occupied
by abundant transcription factors, cofactors, and chromatin
regulators, thereby promoting transcription of MYC genes
(71). Specifically, H3K27 acetylation (H3K27ac), a marker of
active enhancers and promoters, is enriched in the SE regions
and recognized by BRD4 of bromodomain and extra-terminal
domain (BET) protein family that recruits positive transcription
elongation factor b (P-TEFb) to the promoters to phosphorylate
RNA polymerase II, and thus facilitates transcriptional initiation,
pause release and elongation (72–74). BET inhibitors, such as
JQ1 and OTX015, can displace the BRD4 oncoprotein from
chromatin (75), which potently repressesMYCN transcription in
neuroblastoma cell lines and effectively reduces neuroblastoma
cell viability in vitro and in vivo (76, 77). It has been reported that
the toxic effects of BET inhibitors depend on p53 (78). The
combination of MDM2 (an E3-ubiquitin ligase involved in
proteasomal degradation of p53) inhibitor (CGM097) and
OTX015 results in p53 activation and decreased expression of
MYC proteins, which synergistically promotes neuroblastoma
cell death (79). A recent study shows that triple-negative breast
cancer (TNBC) cells with high expression of MYCN are also
sensitive to BET inhibitors (80). Furthermore, combined BET
and MEK inhibition synergistically represses the growth of
MYCN-expressing patient-derived xenograft TNBC tumors (80).
February 2021 | Volume 10 | Article 625332

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Liu et al. Mechanisms of N-MYC Dysregulation
Besides BET proteins, transcriptional cyclin-dependent kinases
(CDKs) are recruited to SEs, especially CDK7, a catalytic subunit of
the transcription factor IIH complex (TFIIH), and CDK9, a kinase
subunit of P-TEFb (81, 82). These CDKs regulate the transcriptional
cycle of RNA polymerase II via phosphorylating the C-terminal
domain of the polymerase, which enhances expression of SE-
associated oncogenes, such as MYCN (83–85). A covalent
inhibitor of CDK7, THZ1, selectively targets MYCN-amplified
neuroblastoma cells, leading to global suppression of MYCN-
dependent transcriptional amplification and sustained growth
inhibition of tumors in a mouse model of neuroblastoma (85).
CYC065 (fadraciclib), a clinical inhibitor of CDK9 and CDK2 (a
major regulator of apoptotic cell death), selectively targets MYCN-
amplified neuroblastoma through a loss ofMYCN transcription and
growth arrest, followed by sensitizing cells for apoptosis as a result of
CDK2 inhibition (86). Furthermore, the combined use of CYC065
with temozolomide (a reference therapy for relapsed
neuroblastoma), leads to long-term repression of neuroblastoma
growth in vivo (86).

Recent studies reveal that several super-enhancer harboring
transcription factors including HAND2, ISL1, PHOX2B, GATA3,
and TBX2 constitute a CRC that is essential for the MYCN
expression and the survival of MYCN-amplified neuroblastoma
cells (61, 87). BRD4 and CDK7 inhibitors synergistically repress
the expression of all the CRC transcription factors and N-MYC,
which inhibits neuroblastoma cell growth (87). Knockdown of each
CRC transcription factors also suppresses the expression ofMYCN
(87). Interestingly, the CRC-driven enhancers (local or distal) are
associated with extrachromosomal circular MYCN amplicons
(Figure 2) (61), underscoring the role of the CRC transcription
factors in the regulation of MYCN expression.

Other transcription factors, such as specific protein 1 (SP1) (88),
E2F (89), and pleiomorphic adenoma gene-like 2 (PLAGL2) (90),
participate in the regulation of MYCN expression. The three
transcription factors directly bind to the cognate binding sites in
theMYCN promoter, contributing to MYCN activation. Moreover,
N-MYC regulates PLAGL2 transcription through five N-MYC-
binding E-boxes in the PLAGL2 promoter region, forming a
positively regulatory loop between the two transcription factors,
which is crucial for expression of each other in neuroblastoma
tumors (90). Lipid desaturation-associated endoplasmic reticulum
(ER) stress inhibits MYCN expression via upregulating the
transcriptional repressor ATF3 in hepatocellular carcinoma cells
(91). Since these transcription factors including SP1, E2F2, and
PLAGL2 are involved in the regulation of MYCN expression, they
mediate the effects of metabolic change and pharmacological
treatment on MYCN expression and MYCN-driven tumors (92).
Aldehyde dehydrogenase family 18 member A1 (ALDH18A1) is a
key enzyme for the synthesis of proline from glutamate and plays
important role in the proliferation, self-renewal, and tumorigenicity
of neuroblastoma cells (93). ALDH18A1 promotes the transcription
of MYCN via the miR-29b/SP1 regulatory loop. ALDH18A1-
specific inhibitor, YG1702, inhibits MYCN expression and
attenuates the growth of human neuroblastoma (93). All-trans
retinoic acids have been used for neuroblastoma therapy for
decades by inhibiting the expression of MYCN and inducing the
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neuronal differentiation of neuroblastoma cells (94–96). Loss of E2F
binding or suppression of PLAGL2 expression mediates the
negative regulation of MYCN expression by retinoic acid (89, 90).
Acyclic retinoid dampens MYCN gene expression and suppresses
cell proliferation ofMYCN-overexpressed hepatocellular carcinoma
cells, at least in part by ER stress-induced ATF3 signaling
pathway (91).

G-Quadruplex
Another feature of MYC genes is their transcriptional regulation
by non-B DNA structures including single-stranded bubbles,
Z-DNA, and G-quadruplexes (97). G-quadruplexes are four-
stranded DNA secondary structures and consist of stacked G-
quartets that formed by the assembly of four Hoogsteen
hydrogen-bonded guanines in guanine-rich regions of DNA. A
G-quadruplex forming sequence lies in the promoter of MYCC
gene (98) and in intron 1 of MYCN gene (99) respectively. This
sequence exists in equilibrium between transcriptionally active
forms (double helical and single stranded) and a silenced form
(G-quadruplex), which controls up to 90% of MYCC
transcription (100). Thus, targeting MYC expression through
G-quadruplex stabilization becomes an attractive candidate for
the treatment of MYC-driven tumors. Cationic porphyrin
TMPyP4 is a small molecule able to stabilize G-quadruplex
structure and efficiently repress MYCC transcription, which
establishes the principle that MYC transcription can be
controlled by ligand-mediated G-quadruplex stabilization (98).
A cell penetrating thiazole peptide, TH3, shows improved
targeting specificity to MYCC G-quadruplex over other tested
G-quadruplexes (100). This peptide down-regulates MYCC
expression in cancer cells and reduces proliferative activities by
inducing S phase cell cycle arrest and apoptosis (100). Nucleolin
is a protein involved in the folding the G-quadruplex (101).
Quarfloxin (CX-3543), a fluoroquinolone-based antitumor
agent, can inhibit MYCC expression by redistribution of
nucleolin from the nucleolus to the nucleoplasm to bind to
MYCC G-quadruplex (102). Treating neuroblastoma cells with
quarfloxin represses N-MYC expression and causes G2-cell cycle
arrest and apoptosis (103). The most profound anti-tumor effects
of quarfloxin are associated with MYCN amplification (103),
implying the above drugs that target MYCC G-quadruplex can
also be used to target MYCN G-quadruplex for treatment of
MYCN-driven tumors.
POSTTRANSCRIPTIONAL REGULATION
OF MYCN MRNA

Along with transcription factors, noncoding RNAs including long
noncoding RNA (lncRNAs) and microRNAs (miRNAs) are
involved in the regulatory network of MYCN expression. miR-
506-3p is a potent differentiation inducer and a strong repressor of
MYCN expression in neuroblastoma cells by targeting PLAGL2
transcription factor (90, 104). miR-204 directly binds MYCN
mRNA, represses MYCN expression, and inhibits a subnetwork of
oncogenes that strongly correlate with MYCN-amplified
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neuroblastoma and poor patient outcome (105). miR-193b targets
several important oncogenes including MYCN and is expressed at
low levels in neuroblastoma cell lines (106). MYCN mRNA is a
direct target of miR-520c-3p in cholangiocarcinoma, and
transcription factor SP1-induced lncRNA HOXD-AS1 enhances
MYCN expression through competitively binding to miR-520c-3p,
which associates with lymph node invasion, advanced TNM stage
and poor prognosis (107). A miRNA network, consisting of miR-
29b, miR-29a, and miR-193b, mediates posttranscriptional
regulation of the MYCN expression by ALDH18A1 (93, 108).
miRNA let-7 is a strong negative regulator of MYCN expression
and can inhibit proliferation and clonogenic growth of MYCN-
amplified neuroblastoma cells (108). LIN28B, an RNA-binding
protein and a suppressor of microRNA biogenesis, selectively
blocks the biogenesis of let-7 miRNA, consequently leading to
increased MYCN expression in neuroblastoma cells (109). These
results indicate that MYCN is targeted by several miRNAs.
Increased expression of these miRNAs inhibits cell proliferation
and tumorigenesis (105). Furthermore, miR-506-3p has been
reported to mediate the antitumor effect of retinoic acid in
neuroblastoma cells (90). These results underscore the potential of
miRNA-based anticancer therapy. Interestingly, the E3-ubiquitin
ligase MDM2 increases theMYCN mRNA stability and translation
by binding to AU-rich elements of the 3′ UTR of MYCN mRNA
through its C-terminal RING domain (110). RNAi-mediated
knockdown of MDM2 leads to remarkable suppression of
neuroblastoma cell growth and induction of cell death through a
p53-independent pathway (110).
REGULATION OF MYCN TRANSLATION

Efficient translation guarantees the oncogenic level of N-MYC
protein. N-MYC has been shown to promote the expression of
many genes involved in ribosome biogenesis and protein synthesis
(111), suggesting N-MYC contributes to its own overexpression by
enhancing the capacity of translation. The N-MYC protein level is
decreased as a result of ribosome biogenesis inhibition (103).
Mammalian target of rapamycin (mTOR) is a serine/threonine
protein kinase that controls initiation of protein translation (112).
mTOR directly phosphorylates and inactivates eukaryotic
translation initiation factor 4E (eIF4E)-binding protein 1 (4E-
BP1), which leads to activation of eIF4E and thus promotes cap-
dependent translation of mRNAs including MYC family (112).
Pharmacological inhibition of the AKT/mTOR pathway reduces N-
MYC level and exhibits therapeutic efficacy in MYCN-amplified
neuroblastoma (113, 114).
REGULATION OF N-MYC STABILITY

After translation, the stability and activity of N-MYC protein are
tightly controlled by ubiquitination-dependent proteasome
degradation that is a brake in the MYCN-driven cancers. The
degradation of the N-MYC proto-oncoprotein in neural stem/
progenitor cells is required for the arrest of proliferation and the
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start of differentiation. Two E3 ubiquitin ligases FBXW7 and
HUWE1 ubiquitinate N-MYC through Lys 48-mediated linkages
and target it for destruction by the proteasome (115, 116). The
recognition of N-MYC by FBXW7 involves several sequential
reactions, i.e., phosphorylation on Ser62 by CDK1 (117),
phosphorylation on Thr58 by glycogen synthase kinase 3b
(GSK3b), dephosphorylation of Ser62 by protein phosphatase
2A (PP2A) (118), which facilitates the Thr58 phosphorylated N-
MYC binding with FBXW7 (116).

Dysregulation of the degradation process will cause the
accumulation of N-MYC protein to the oncogenic level.
Aurora-A, a member of the Aurora kinase family, is identified
in an shRNA screen of genes that are highly expressed inMYCN-
amplified neuroblastoma cells and contributes to the
stabilization of N-MYC (119). Mechanistically, the catalytic
domain of Aurora-A interacts directly with N-MYC through
binding sites that flank either side of MYC box 1 which contains
the phosphodegron (Thr58) recognized by FBXW7, thereby
preventing the binding of FBXW7 with N-MYC substrate
(120). Furthermore, the expression of Aurora-A is increased in
theMYCN-amplified neuroblastoma, suggesting a potential feed-
forward loop that improves the stability of both proteins (121).
Two Aurora-A kinase activity inhibitors, MLN8054 and
MLN8237, disrupt the Aurora-A/N-MYC complex and
promote FBXW7-mediated degradation of N-MYC, which
correlates with tumor regression and prolonged survival in a
mouse model of MYCN-driven neuroblastoma (122, 123).
MLN8237 destabilizes N-MYC and synergizes with BCL2/
BCLxL inhibitor (venetoclax or navitoclax) to kill MYCN-
amplified tumor cells including neuroblastoma and
rhabdomyosarcoma (124, 125). Since the degradation of N-
MYC is regulated in part by a kinase-independent function of
Aurora-A, CD532, a conformation-disrupting inhibitor of
Aurora-A, acts as a more potent N-MYC inhibitor than the
kinase activity inhibitor MLN8237 in neuroblastoma (126).

Polo-like kinase 1 (PLK1), a serine/threonine kinase that
promotes G2/M-phase transformation, has an elevated
expression level in high-risk neuroblastoma and is associated
with poor prognosis of patients (127). PLK1 interacts with and
phosphorylates FBXW7, promoting auto polyubiquitination and
proteasomal degradation of FBXW7, which counteracts FBXW7-
mediated degradation of N-MYC (128). In turn, stabilized N-
MYC directly enhances the transcription of PLK1, forming a
positive feedforward regulatory loop that reinforces the progress
ofMYCN-driven cancers. Inhibitors of PLK1, such as BI6727 and
BI2356, preferentially trigger apoptosis of MYCN-amplified
neuroblastoma and small cell lung cancer, and this therapeutic
efficacy is synergistically enhanced by combined use with
antagonists of anti-apoptotic B cell lymphoma 2 (BCL2) (128).
UME103 and 9b, two novel dual PLK1 and BRD4 inhibitors,
show better antitumor activity by inhibiting the transcription of
MYCN gene and promoting the degradation of N-MYC protein
(129, 130).

Ubiquitin-specific protease 7 (USP7) regulates the stability
and activity of N-MYC in neuroblastoma (131). USP7 directly
binds to N-MYC, deubiquitinates it, which preventing
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degradation of N-MYC by the 26S proteasome. The expression
of USP7 is enhanced in patients of neuroblastoma with poorer
prognosis. A small molecular inhibitor of USP’s deubiquitinase
activity, P22077, destabilizes N-MYC, thereby markedly
repress ing the growth of MYCN-ampl ified human
neuroblastoma cell lines in xenograft mouse models (131).
Novel, selective inhibitors of USP7, USP7-055, and USP7-797,
have been developed recently for tumor therapy including
MYCN-amplified neuroblastoma (132).
NCYM, A CIS-ANTISENSE GENE OF
MYCN

An interesting feature of MYCN gene is its cis-antisense transcript
calledNCYM. NCYMwas initially recognized as a large non-coding
RNA (133, 134), while recent studies indicate it encodes a de novo
evolved protein that promotes tumor progression (135). The
transcription of NCYM begins from intron 1 of the MYCN gene
in the opposite direction to that of theMYCN, ultimately generating
NCYM protein with 109 amino acids (Figure 2) (135). As a cis-
antisense gene of MYCN, NCYM is always co-amplified with
MYCN (136). Both coding and noncoding transcripts of NCYM
contribute to higher N-MYC expression. NCYM stabilizes N-MYC
protein by inhibiting the activity of GSK3b, thereby preventing
phosphodegron-mediated N-MYC degradation (135). Noncoding
transcript variants of NCYM may reinforce MYCN translation via
expelling exon 1b through alternative splicing or promoter shift
(136). MYCN stimulates transcription of both NCYM and MYCN,
forming a positive regulatory loop and leading to high expression of
both genes (137).

NVP-BEZ235, a dual inhibitor of both phosphoinositide 3-
kinase (PI3K) and mTOR, promotes the degradation of N-MYC
by GSK3b activation and effectively decreases tumor burden in
the MYCN transgenic mouse. In contrast, NVP-BEZ235 cannot
prolong the survival of the MYCN/NCYM double transgenic
mice (135). This might be related to the N-MYC-independent
functions of NCYM, e.g., NCYM-mediated inhibition of GSK3b
also lead to the stabilization of b-catenin, which promotes
bladder cancer progression (138); NCYM promotes generation
of MYC-nicks, cytoplasmic cleavage products of N-MYC and C-
MYC, which inhibits apoptosis and enhances cancer cell
migration (139). TAp63, an isoform of p63 protein and a p53
family protein, suppresses MYCN/NCYM bidirectional
transcription, repressing neuroblastoma growth (140). Thus,
the implication of NCYM gene in MYCN-driven tumors
increases complexity and contributes to treatment resistance.
SOMATIC MUTATION OF MYCN

In addition to deregulated expression of N-MYC due to gene
amplification or dysregulation at mRNA and protein levels, a
recurrent somatic mutation, proline 44 to leucine (P44L) (Figure
1A), is identified in various tumors (141), including, glioma
(142), neoplastic cysts of the pancreas (143), medulloblastoma
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(144), neuroblastoma (145), Wilms tumor (67), skin basal cell
carcinoma (146), T-lineage acute lymphoblastic leukemia (147),
NUT midline carcinoma (148), Ovarian mesonephric-like
adenocarcinoma (149). Notably, P44L mutation of N-MYC has
occurred in 1.7% of high-risk neuroblastoma without MYCN
amplification (145). Since the frequent occurrence of P44L
switch in different cancers, this mutation has long been
assumed as an activating one, but it has not been functionally
or biochemically characterized until recently (28). KE
Mengwasser compared the function of P44L mutant with the
wild type N-MYC in terms of promoting proliferation, and they
found that P44L N-MYC mutant displayed 2- and 4.5-fold
higher log2-fold-change in pancreas cells and breast cells,
respectively (150). Similarly, Liu et al. observed a modest but
significantly shorter latency for the induction of highly penetrant
T-lineage leukemia in P44L N-MYC expressing cells than that of
wild-type N-MYC expressing cells (147). These evidences solidly
confirm that P44L N-MYC is indeed an activating mutation.

Mechanistically, as P44L mutation site locates adjacent to the
conserved phosphor-degron sites recognized by E3 ubiquitin ligases
FBXW7 and HUWE1 (Figure 1A), a hypothesis was proposed in
which P44L mutation could perturb the interaction between these
ligases and N-MYC substrate, therefore, prevented N-MYC
degradation and enhanced oncogenicity (147). Consistently, Liu
et al. show that the degradation of the N-MYC protein is
significantly delayed in the P44L mutated type than that of the
wild type after the cells are treated with cycloheximide to block
protein translation (147). However, Bonilla et al. display that the
interacting with FBXW7 is not affected by the P44L mutation,
instead, the autoubiquitination of FBXW7 is increased in the
presence of P44L mutation, suggesting a different mechanism for
the enhanced stability of P44L N-MYC (146). Furthermore, the
P44L mutation is associated with increased mRNA levels ofMYCN
in neuroblastoma (145). A previous study shows that MYCN can be
directly recruited to the intron1 region of its own gene which
contains two putative E-box sites and thus promotes its own
transcription in neuroblastoma cells (151). Considering this
positive auto-regulatory loop, it is possible that P44L mutation
enhances MYCN mRNA level through the auto-activating
mechanism with the more stable form of N-MYC protein.
SYNTHETIC LETHAL INTERACTION WITH
DEREGULATED MYCN

The concept of synthetic lethality means targeting specific targets
including proteins and metabolites that are essential for the
viability of tumor cells with specific physiology, such as N-
MYC overexpression. This strategy can kill cancer cells only
while spares normal counterpart. For instance, checkpoint kinase
1 (CHK1) is a key player in the DNA damage checkpoint control,
and inhibition of CHK1 sensitizes cells to additional genomic
instability (152). Overexpression of N-MYC causes replication
stress and DNA damage by the ectopic replication-fork firing,
which results in remarkably higher sensitivity of N-MYC
overexpressing tumors to CHK1 inhibition, and thereby CKH1
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inhibition is synthetic lethal with N-MYC overexpression (153,
154). Similarly, we demonstrate that N-MYC sensitizes
neuroblastoma cells to apoptosis induced by various death
ligand or DNA-damaging drugs (155, 156). These results
indicate targeting DNA repair system or drugs causing DNA
damage could be synthetic lethal in MYCN-driven tumors.
Recent studies reveal various strategies based on N-MYC-
mediated synthetic lethality, including glutaminase inhibition
or glutamine deprivation (157), BCL2 inhibition (125),
eliminating SKP2 complexes (158), kinesin spindle protein
(KSP) inhibition (159), G9a inhibition (160), poly (ADP-
ribose) polymerase (PARP) inhibition (161, 162).
CONCLUSION AND PERSPECTIVES

Here we describe the regulatory network of MYCN expression
(Figure 2). Multiple mechanisms can cause abnormal level of N-
MYC, including gene amplification, enhanced transcription,
translation and protein stability. Various therapeutic targets
have been found to address N-MYC overexpression based on
knowledge of these regulatory mechanisms. However, strategies
that globally inhibiting gene expression (such as inhibiting
CDK7 and BDR4) has not yet convincingly demonstrated that
these inhibitors specifically target tumors with high N-MYC
level, nor have these inhibitors reached advanced stages in
clinical trials (16). Although directly and specifically targeting
N-MYC has not yet been available, promise remains in
developing new approaches to effectively treat MYCN-driven
Frontiers in Oncology | www.frontiersin.org 854
tumors. For examples, short interfering RNA (siRNA)-mediated
silence ofMYCN induces neurogenesis and inhibits proliferation
in neuroblastoma models resistant to retinoic acid (163). Clinical
applications of siRNA are developing and the first siRNA-based
drug Patisiran (Onpattro) was approved for clinical use to treat
transthyretin amyloidosis by the U.S. Food and Drug
Administration (FDA) in 2018 (164). In addition, Yoda et al.
identify a pyrrole-imidazole polyamide, MYCN-A3, able to
directly target MYCN amplicons, which specifically reduces
copy number and suppresses gene expression of MYCN (165).
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101. González V, Guo K, Hurley L, Sun D. Identification and characterization of
nucleolin as a c-myc G-quadruplex-binding protein. J Biol Chem (2009)
284:23622–35. doi: 10.1074/jbc.M109.018028

102. Brooks TA, Hurley LH. Targeting MYC expression through G-quadruplexes.
Genes Cancer (2010) 1:641–9. doi: 10.1177/1947601910377493
February 2021 | Volume 10 | Article 625332

https://doi.org/10.1200/JCO.2000.18.21.3604
https://doi.org/10.1093/hmg/ddp011
https://doi.org/10.1093/hmg/ddp011
https://doi.org/10.1038/nrg2719
https://doi.org/10.1016/S0959-437X(00)00065-4
https://doi.org/10.18632/oncotarget.3377
https://doi.org/10.1101/2020.07.23.218834
https://doi.org/10.1158/2159-8290.CD-17-0993
https://doi.org/10.1016/j.cell.2013.03.036
https://doi.org/10.1016/j.cell.2013.09.053
https://doi.org/10.1038/sj.emboj.7600516
https://doi.org/10.1101/gad.1235904
https://doi.org/10.1128/MCB.01020-07
https://doi.org/10.1038/nature09504
https://doi.org/10.1158/1078-0432.CCR-15-1449
https://doi.org/10.1158/2159-8290.CD-12-0418
https://doi.org/10.2174/1871520620666200424123834
https://doi.org/10.2174/1871520620666200424123834
https://doi.org/10.1002/cam4.3407
https://doi.org/10.1126/scitranslmed.aaw8275
https://doi.org/10.1038/374283a0
https://doi.org/10.1074/jbc.273.22.13855
https://doi.org/10.1242/jcs.02718
https://doi.org/10.1038/nsmb.2399
https://doi.org/10.1038/nsmb.2399
https://doi.org/10.1016/j.cell.2014.10.024
https://doi.org/10.1172/JCI134132
https://doi.org/10.1038/s41588-018-0191-z
https://doi.org/10.1016/S1096-7192(03)00133-1
https://doi.org/10.1074/jbc.M207596200
https://doi.org/10.1074/jbc.M207596200
https://doi.org/10.1186/s13046-020-1531-2
https://doi.org/10.1038/s41419-020-2257-y
https://doi.org/10.1038/s41389-020-0200-9
https://doi.org/10.1126/scitranslmed.aax8694
https://doi.org/10.1126/scitranslmed.aax8694
https://doi.org/10.1038/313404a0
https://doi.org/10.1200/JCO.2007.13.8925
https://doi.org/10.1158/1078-0432.CCR-12-2225
https://doi.org/10.1177/1947601910377492
https://doi.org/10.1073/pnas.182256799
https://doi.org/10.1021/ja208483v
https://doi.org/10.1093/nar/gky385
https://doi.org/10.1093/nar/gky385
https://doi.org/10.1074/jbc.M109.018028
https://doi.org/10.1177/1947601910377493
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Liu et al. Mechanisms of N-MYC Dysregulation
103. Hald Ø.H., Olsen L, Gallo-Oller G, Elfman LHM, Løkke C, Kogner P, et al.
Inhibitors of ribosome biogenesis repress the growth of MYCN-amplified
neuroblastoma. Oncogene (2019) 38:2800–13. doi: 10.1038/s41388-018-0611-7

104. Zhao Z, Ma X, Shelton SD, Sung DC, Li M, Hernandez D, et al. A combined
gene expression and functional study reveals the crosstalk between N-Myc
and differentiation-inducing microRNAs in neuroblastoma cells. Oncotarget
(2016) 7:79372–87. doi: 10.18632/oncotarget.12676

105. Ooi CY, Carter DR, Liu B, Mayoh C, Beckers A, Lalwani A, et al. Network
modeling of microRNA–mRNA interactions in neuroblastoma
tumorigenesis identifies miR-204 as a direct inhibitor of MYCN. Cancer
Res (2018) 78:3122–34. doi: 10.1158/0008-5472.CAN-17-3034

106. Roth SA, Hald Ø.H., Fuchs S, Løkke C, Mikkola I, Flægstad T, et al. MicroRNA-
193b-3p represses neuroblastoma cell growth via downregulation of Cyclin D1,
MCL-1 and MYCN. Oncotarget (2018) 9:18160–79. doi: 10.18632/
oncotarget.24793

107. Li J, Jiang X, Li Z, Huang L, Ji D, Yu L, et al. SP1-induced HOXD-AS1
promotes malignant progression of cholangiocarcinoma by regulating miR-
520c-3p/MYCN. Aging (Albany NY) (2020) 12:16304–25. doi: 10.18632/
aging.103660

108. Buechner J, Tømte E, Haug BH, Henriksen JR, Løkke C, Flægstad T, et al.
Tumour-suppressor microRNAs let-7 and mir-101 target the proto-
oncogene MYCN and inhibit cell proliferation in MYCN-amplified
neuroblastoma. Br J Cancer (2011) 105:296–303. doi: 10.1038/bjc.2011.220

109. Molenaar JJ, Domingo-Fernández R, Ebus ME, Lindner S, Koster J, Drabek
K, et al. LIN28B induces neuroblastoma and enhances MYCN levels via let-7
suppression. Nat Genet (2012) 44:1199–206. doi: 10.1038/ng.2436

110. Gu L, Zhang H, He J, Li J, Huang M, Zhou M. MDM2 regulates MYCN
mRNA stabilization and translation in human neuroblastoma cells.
Oncogene (2012) 31:1342–53. doi: 10.1038/onc.2011.343

111. Boon K, Caron HN, van Asperen R, Valentijn L, Hermus M-C, van Sluis P,
et al. N-myc enhances the expression of a large set of genes functioning in
ribosome biogenesis and protein synthesis. EMBO J (2001) 20:1383–93. doi:
10.1093/emboj/20.6.1383

112. Bjornsti M-A, Houghton PJ. The TOR pathway: a target for cancer therapy.
Nat Rev Cancer (2004) 4:335–48. doi: 10.1038/nrc1362

113. Chen H, Liu H, Qing G. Targeting oncogenic Myc as a strategy for cancer
treatment. Signal Transduct Target Ther (2018) 3:5. doi: 10.1038/s41392-
018-0008-7

114. Dong Y, Gong W, Hua Z, Chen B, Zhao G, Liu Z, et al. Combination of
rapamycin and MK-2206 induced cell death via autophagy and necroptosis
in MYCN-amplified neuroblastoma cell lines. Front Pharmacol (2020)
11:31–1. doi: 10.3389/fphar.2020.00031

115. Zhao X, Heng JI-T, Guardavaccaro D, Jiang R, Pagano M, Guillemot F, et al.
The HECT-domain ubiquitin ligase Huwe1 controls neural differentiation
and proliferation by destabilizing the N-Myc oncoprotein. Nat Cell Biol
(2008) 10:643–53. doi: 10.1038/ncb1727

116. Welcker M, Orian A, Jin J, Grim JA, Harper JW, Eisenman RN, et al. The
Fbw7 tumor suppressor regulates glycogen synthase kinase 3
phosphorylation-dependent c-Myc protein degradation. Proc Natl Acad Sci
(2004) 101:9085–90. doi: 10.1073/pnas.0402770101

117. Sjostrom SK, Finn G, Hahn WC, Rowitch DH, Kenney AM. The Cdk1
complex plays a prime role in regulating N-Myc phosphorylation and
turnover in neural precursors. Dev Cell (2005) 9:327–38. doi: 10.1016/
j.devcel.2005.07.014

118. Yeh E, Cunningham M, Arnold H, Chasse D, Monteith T, Ivaldi G, et al. A
signalling pathway controlling c-Myc degradation that impacts oncogenic
transformation of human cells. Nat Cell Biol (2004) 6:308–18. doi: 10.1038/
ncb1110

119. Otto T, Horn S, Brockmann M, Eilers U, Schüttrumpf L, Popov N, et al.
Stabilization of N-Myc is a critical function of Aurora A in human
neuroblastoma. Cancer Cell (2009) 15:67–78. doi: 10.1016/j.ccr.2008.12.005

120. Richards MW, Burgess SG, Poon E, Carstensen A, Eilers M, Chesler L, et al.
Structural basis of N-Myc binding by Aurora-A and its destabilization by
kinase inhibitors. Proc Natl Acad Sci (2016) 113:13726–31. doi: 10.1073/
pnas.1610626113

121. Shang X, Burlingame SM, Okcu MF, Ge N, Russell HV, Egler RA, et al.
Aurora A is a negative prognostic factor and a new therapeutic target in
Frontiers in Oncology | www.frontiersin.org 1157
human neuroblastoma. Mol Cancer Ther (2009) 8:2461–9. doi: 10.1158/
1535-7163.MCT-08-0857

122. Brockmann M, Poon E, Berry T, Carstensen A, Deubzer HE, Rycak L, et al.
Small molecule inhibitors of Aurora-A induce proteasomal degradation of
N-Myc in childhood neuroblastoma. Cancer Cell (2013) 24:75–89. doi:
10.1016/j.ccr.2013.05.005

123. Manfredi MG, Ecsedy JA, Meetze KA, Balani SK, Burenkova O, Chen W,
et al. Antitumor activity of MLN8054, an orally active small-molecule
inhibitor of Aurora A kinase. Proc Natl Acad Sci (2007) 104:4106–11. doi:
10.1073/pnas.0608798104

124. Ommer J, Selfe JL, Wachtel M, O’Brien EM, Laubscher D, Roemmele M,
et al. Aurora A kinase inhibition destabilizes PAX3-FOXO1 and MYCN and
synergizes with navitoclax to induce rhabdomyosarcoma cell death. Cancer
Res (2020) 80:832–42. doi: 10.1158/0008-5472.CAN-19-1479

125. Ham J, Costa C, Sano R, Lochmann TL, Sennott EM, Patel NU, et al.
Exploitation of the apoptosis-primed state of MYCN-amplified
neuroblastoma to develop a potent and specific targeted therapy
combination. Cancer Cell (2016) 29:159–72. doi: 10.1016/j.ccell.2016.01.002

126. Gustafson WC, Meyerowitz JG, Nekritz EA, Chen J, Benes C, Charron E,
et al. Drugging MYCN through an allosteric transition in Aurora kinase A.
Cancer Cell (2014) 26:414–27. doi: 10.1016/j.ccr.2014.07.015

127. Pajtler KW, Sadowski N, Ackermann S, Althoff K, Schoenbeck K, Batzke K,
et al. The GSK461364 PLK1 inhibitor exhibits strong antitumoral activity in
preclinical neuroblastoma models. Oncotarget (2017) 8:6730–41. doi:
10.18632/oncotarget.14268

128. Xiao D, Yue M, Su H, Ren P, Jiang J, Li F, et al. Polo-like kinase-1 regulates
Myc stabilization and activates a feedforward circuit promoting tumor cell
survival. Mol Cell (2016) 64:493–506. doi: 10.1016/j.molcel.2016.09.016

129. Timme N, Han Y, Liu S, Yosief HO, Garcia HD, Bei Y, et al. Small-molecule
dual PLK1 and BRD4 inhibitors are active against preclinical models of
pediatric solid tumors. Trans Oncol (2020) 13:221–32. doi: 10.1016/
j.tranon.2019.09.013

130. Wang N-Y, Xu Y, Xiao K-J, Zuo W-Q, Zhu Y-X, Hu R, et al. Design,
synthesis, and biological evaluation of 4,5-dihydro-1,2,4 triazolo 4,3-f
pteridine derivatives as novel dual-PLK1/BRD4 inhibitors. Eur J Med
Chem (2020) 191:112152. doi: 10.1016/j.ejmech.2020.112152

131. Tavana O, Li D, Dai C, Lopez G, Banerjee D, Kon N, et al. HAUSP
deubiquitinates and stabilizes N-Myc in neuroblastoma. Nat Med (2016)
22:1180–6. doi: 10.1038/nm.4180

132. Ohol YM, Sun MT, Cutler G, Leger PR, Hu DX, Biannic B, et al. Novel,
selective inhibitors of USP7 uncover multiple mechanisms of antitumor
activity in vitro and in vivo. Mol Cancer Ther (2020) 19:1970–80. doi:
10.1158/1535-7163.MCT-20-0184

133. Armstrong B, Krystal G. Isolation and characterization of complementary
DNA for N-cym, a gene encoded by the DNA strand opposite to N-myc. Cell
Growth Differ (1992) 3:385–90. doi: 10.1103/PhysRevE.73.031911

134. Krystal GW, Armstrong BC, Battey JF. N-myc mRNA forms an RNA-RNA
duplex with endogenous antisense transcripts.Mol Cell Biol (1990) 10:4180–
91. doi: 10.1128/MCB.10.8.4180

135. Suenaga Y, Islam SMR, Alagu J, Kaneko Y, Kato M, Tanaka Y, et al. NCYM, a
cis-antisense gene of MYCN, encodes a de novo evolved protein that inhibits
GSK3b resulting in the stabilization of MYCN in human neuroblastomas.
PloS Genet (2014) 10:e1003996. doi: 10.1371/journal.pgen.1003996

136. Suenaga Y, Nakatani K, Nakagawara A. De novo evolved gene product NCYM in
the pathogenesis and clinical outcome of human neuroblastomas and other
cancers. Jpn J Clin Oncol (2020) 50:839–46. doi: 10.1093/jjco/hyaa097

137. Kaneko Y, Suenaga Y, Islam SMR, Matsumoto D, Nakamura Y, Ohira M,
et al. Functional interplay between MYCN, NCYM, and OCT4 promotes
aggressiveness of human neuroblastomas. Cancer Sci (2015) 106:840–7. doi:
10.1111/cas.12677

138. Zhu X, Li Y, Zhao S, Zhao S. LSINCT5 activates Wnt/b-catenin signaling by
interacting with NCYM to promote bladder cancer progression. Biochem
Biophys Res Commun (2018) 502:299–306. doi: 10.1016/j.bbrc.2018.05.076

139. Shoji W, Suenaga Y, Kaneko Y, Islam SMR, Alagu J, Yokoi S, et al. NCYM
promotes calpain-mediated Myc-nick production in human MYCN-
amplified neuroblastoma cells. Biochem Biophys Res Commun (2015)
461:501–6. doi: 10.1016/j.bbrc.2015.04.050
February 2021 | Volume 10 | Article 625332

https://doi.org/10.1038/s41388-018-0611-7
https://doi.org/10.18632/oncotarget.12676
https://doi.org/10.1158/0008-5472.CAN-17-3034
https://doi.org/10.18632/oncotarget.24793
https://doi.org/10.18632/oncotarget.24793
https://doi.org/10.18632/aging.103660
https://doi.org/10.18632/aging.103660
https://doi.org/10.1038/bjc.2011.220
https://doi.org/10.1038/ng.2436
https://doi.org/10.1038/onc.2011.343
https://doi.org/10.1093/emboj/20.6.1383
https://doi.org/10.1038/nrc1362
https://doi.org/10.1038/s41392-018-0008-7
https://doi.org/10.1038/s41392-018-0008-7
https://doi.org/10.3389/fphar.2020.00031
https://doi.org/10.1038/ncb1727
https://doi.org/10.1073/pnas.0402770101
https://doi.org/10.1016/j.devcel.2005.07.014
https://doi.org/10.1016/j.devcel.2005.07.014
https://doi.org/10.1038/ncb1110
https://doi.org/10.1038/ncb1110
https://doi.org/10.1016/j.ccr.2008.12.005
https://doi.org/10.1073/pnas.1610626113
https://doi.org/10.1073/pnas.1610626113
https://doi.org/10.1158/1535-7163.MCT-08-0857
https://doi.org/10.1158/1535-7163.MCT-08-0857
https://doi.org/10.1016/j.ccr.2013.05.005
https://doi.org/10.1073/pnas.0608798104
https://doi.org/10.1158/0008-5472.CAN-19-1479
https://doi.org/10.1016/j.ccell.2016.01.002
https://doi.org/10.1016/j.ccr.2014.07.015
https://doi.org/10.18632/oncotarget.14268
https://doi.org/10.1016/j.molcel.2016.09.016
https://doi.org/10.1016/j.tranon.2019.09.013
https://doi.org/10.1016/j.tranon.2019.09.013
https://doi.org/10.1016/j.ejmech.2020.112152
https://doi.org/10.1038/nm.4180
https://doi.org/10.1158/1535-7163.MCT-20-0184
https://doi.org/10.1103/PhysRevE.73.031911
https://doi.org/10.1128/MCB.10.8.4180
https://doi.org/10.1371/journal.pgen.1003996
https://doi.org/10.1093/jjco/hyaa097
https://doi.org/10.1111/cas.12677
https://doi.org/10.1016/j.bbrc.2018.05.076
https://doi.org/10.1016/j.bbrc.2015.04.050
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Liu et al. Mechanisms of N-MYC Dysregulation
140. Suenaga Y, Yamamoto M, Sakuma T, Sasada M, Fukai F, Ohira M, et al.
TAp63 represses transcription of MYCN/NCYM gene and its high levels of
expression are associated with favorable outcome in neuroblastoma. Biochem
Biophys Res Commun (2019) 518:311–8. doi: 10.1016/j.bbrc.2019.08.052

141. Forbes SA, Bindal N, Bamford S, Cole C, Kok CY, Beare D, et al. COSMIC:
mining complete cancer genomes in the Catalogue of Somatic Mutations in
Cancer. Nucleic Acids Res (2010) 39:D945–50. doi: 10.1093/nar/gkq929

142. McLendon R, FriedmanA, Bigner D, VanMeir EG, Brat DJ,Mastrogianakis GM,
et al. Comprehensive genomic characterization defines human glioblastoma
genes and core pathways. Nature (2008) 455:1061–8. doi: 10.1038/nature07385

143. Wu J, Jiao Y, Dal Molin M, Maitra A, de Wilde RF, Wood LD, et al. Whole-
exome sequencing of neoplastic cysts of the pancreas reveals recurrent
mutations in components of ubiquitin-dependent pathways. Proc Natl
Acad Sci (2011) 108:21188–93. doi: 10.1073/pnas.1118046108

144. Jones DTW, Jäger N, Kool M, Zichner T, Hutter B, Sultan M, et al. Dissecting
the genomic complexity underlying medulloblastoma. Nature (2012)
488:100–5. doi: 10.1038/nature11284

145. Pugh TJ, Morozova O, Attiyeh EF, Asgharzadeh S, Wei JS, Auclair D, et al.
The genetic landscape of high-risk neuroblastoma. Nat Genet (2013) 45:279–
84. doi: 10.1038/ng.2529

146. Bonilla X, Parmentier L, King B, Bezrukov F, Kaya G, Zoete V, et al. Genomic
analysis identifies new drivers and progression pathways in skin basal cell
carcinoma. Nat Genet (2016) 48:398–406. doi: 10.1038/ng.3525

147. Liu Y, Easton J, Shao Y, Maciaszek J, Wang Z, Wilkinson MR, et al. The
genomic landscape of pediatric and young adult T-lineage acute
lymphoblastic leukemia. Nat Genet (2017) 49:1211–8. doi: 10.1038/ng.3909

148. Liao S, Maertens O, Cichowski K, Elledge SJ. Genetic modifiers of the BRD4-NUT
dependency of NUT midline carcinoma uncovers a synergism between BETis and
CDK4/6is. Genes Dev (2018) 32:1188–200. doi: 10.1101/gad.315648.118
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The deregulation of the MYC family of oncogenes, including c-MYC, MYCN and MYCL
occurs in many types of cancers, and is frequently associated with a poor prognosis. The
majority of functional studies have focused on c-MYC due to its broad expression profile in
human cancers. The existence of highly conserved functional domains between MYCN
and c-MYC suggests that MYCN participates in similar activities. MYC encodes a basic
helix-loop-helix-leucine zipper (bHLH-LZ) transcription factor (TF) whose central
oncogenic role in many human cancers makes it a highly desirable therapeutic target.
Historically, as a TF, MYC has been regarded as “undruggable”. Thus, recent efforts focus
on investigating methods to indirectly target MYC to achieve anti-tumor effects. This
review will primarily summarize the recent progress in understanding the function of
MYCN. It will explore efforts at targetingMYCN, including strategies aimed at suppression
ofMYCN transcription, destabilization of MYCN protein, inhibition ofMYCN transcriptional
activity, repression of MYCN targets and utilization of MYCN overexpression dependent
synthetic lethality.

Keywords: MYCN, Super-enhancer (SE), cofactor, cancer, pediatric cancer, MYC, transcription factor
INTRODUCTION

MYCN is a member of the MYC family of oncogenes, which also includes c-MYC and MYCL (1).
MYCN was first reported in 1983 as an amplified gene homologous to v-myc in human
neuroblastoma (2, 3). Like c-MYC, the MYCN gene encodes a basic helix-loop-helix-leucine
zipper (bHLH-LZ) protein named N-Myc or MYCN. MYCN and c-MYC exhibit high-structural
homology, including highly conserved Myc boxes (MB) and a BR-HLH-LZ motif (1, 4, 5). Both
MYCN and c-MYC heterodimerize with MAX to bind to an enhancer-box (E-box) sequence with a
consensus CAC(C/A)TG motif to regulate gene transcription (1, 4–6). MYCN and c-MYC differ in
their expression patterns and regulation. While c-MYC is ubiquitously and highly expressed in most
rapidly proliferating cells throughout development and in adult tissues, MYCN is preferentially
expressed in neural tissues including the forebrain and hindbrain, as well as pre-B cells, cells in the
intestine, heart and kidney during embryogenesis (5, 7). Tissue-specific conditional deletions
demonstrated that c-MYC is necessary for the development and growth of specific hematopoietic
cell lineages, crypt progenitor cells in the intestine and many other types of cells where c-MYC is
expressed (8). MYCN but not c-MYC is essential during neurogenesis for the rapid expansion of
progenitor cells and the inhibition of neuronal differentiation (9). Importantly, investigations at a
February 2021 | Volume 10 | Article 623679159
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gross level indicate thatMycn can substitute for c-Myc in murine
development (10). For example, transgenic expression of Mycn
from the c-Myc locus (c-MycN/N) rescues the embryonic lethality
associated with the loss of c-Myc. Unlike c-Myc gene that is
expressed throughout lymphocyte development, Mycn is only
expressed in the precursor stage lymphocyte of development (10,
11), but Mycn can replace all c-Myc functions required for
lymphocyte development in the c-MycN/N mice (10). However,
subtle differences between c-MycN/N and normal mice were
observed, such as the observation of periodic skeletal muscle
dystrophy in some newborn c-MycN/N mice (10). This indicates a
general functional similarity between these TFs in regulating
certain lineages of murine cell growth and differentiation during
embryogenesis and late development.

As TFs, bothMYCN and c-MYC directly regulate transcription
of genes that are involved in the control of cell growth, the cell
cycle, proliferation, survival, apoptosis, pluripotency, self-renewal,
DNA replication, RNA biology, metabolism, metastasis,
angiogenesis and immune surveillance to play an oncogenic role
(5, 12). Most studies indicate that MYC regulates differential gene
transcription in the majority of cell types and model systems (4,
12–14). However, instead of regulating differential gene
transcription, it has been shown that in B cells, the high levels of
c-MYC expression results in a global increase in mRNA levels
during the mitogenic stimulation of early B cells (15). Similarly,
the expression of high levels of c-MYC in tumor cells leads to an
increase in total levels of transcripts in each cell (16). These studies
conclude that high levels of c-MYC amplify transcriptional output
(15, 16). Further studies and analyses of existing data reveal that
MYC dependent changes in global RNA levels may occur only
when the cells are cultured under special conditions and/or after
prolonged MYC activation. It is possible that a feedback effect
from MYC-induced physiological and metabolic changes
contributes to a global RNA amplification (4, 12, 13). MYCN
interacts with Transcription Factor IIIC complex (TFIIIC), DNA
topoisomerase II alpha (TOP2A) and the cohesion complex
component RAD21, but in S phase, Aurora-A kinase displaces
these interactors from MYCN to block MYCN-dependent
promoter release of RNA polymerase II to suppress MYCN-
dependent gene transcription (17). MYCN recruits BRCA1 to
promoter-proximal regions, stabilizing mRNA de-capping
complexes. This enables MYCN to suppress R-loop formation in
promoter-proximal regions and prevent MYCN-dependent
accumulation of stalled RNAPII, thus, enhancing MYCN
transcriptional activation (18). The discovery of this non-
canonical transcriptional function of MYCN may explain the
discrepancy between universal binding and the small effects on
relative and/or absolute mRNA levels of most genes that are
bound by the MYC proteins (4, 18).

This review discusses MYCN genetic alterations in different
types of cancers, the structure and transcriptional function of
MYCN and the strategies used to target MYCN indirectly.

MYCN Is an Oncogenic Driver in Many
Types of Cancers
Deregulation ofMYCN occurs in both pediatric cancers and adult
cancers. MYCN amplification has been found in pediatric cancers
Frontiers in Oncology | www.frontiersin.org 260
including neuroblastoma, rhabdomyosarcoma, medulloblastoma,
Wilms tumor and retinoblastoma. Amplification of the MYCN
oncogene is present in 18–20% of all neuroblastomas (40% of
high-risk neuroblastomas) and is an adverse prognostic factor
(19–23). In alveolar rhabdomyosarcoma, amplification of MYCN
is present in 25% of cases and overexpression ofMYCN occurs in
55% of cases (24, 25). Amplification of MYCN is observed in 5–
10% of medulloblastomas and is associated with poor prognosis
(26–28). Copy number gains that include the MYCN locus are
detected in 12.7% ofWilms tumors and 30.4% of diffuse anaplastic
Wilms tumors, andMYCN gain is associated with poorer relapse-
free and overall survival (29). In retinoblastomas, MYCN
amplification is present in <5% of patients, and MYCN gain is
associated with poor prognosis (30, 31). In adult cancers,
amplification of MYCN is present in 40% of neuroendocrine
prostate cancers and 5% of prostate adenocarcinomas (32), 15%-
20% of small-cell lung cancers (33, 34) and 17.5% of basal cell
carcinomas (35). Overexpression of MYCN is present in a subset
of T-cell acute lymphoblastic leukemias (36), glioblastoma
multiforme (37, 38) and breast cancer (39). Importantly, the
amplification or overexpression of MYCN in the majority of
these adult cancers is found to be associated with a poor prognosis.

To investigate whetherMYCN functions as an oncogenic driver,
genetically engineeredmousemodels (GEMM) have been generated
to expressMYCN in specific cell lineages. The transgenic expression
ofMYCN in the neural crest lineage of mice or zebrafish alone, or in
combination with LMO1 or activated ALK gives rise to
neuroblastomas (40–44). The transgenic expression of MYCN in
murine luminal prostate epithelial cells in combination with Pten
knockout results in a GEMM model with neuroendocrine prostate
cancer formation (45). Mice transplanted with bone marrow
expressing MYCN developed clonal and transplantable acute
myeloid leukemias (46). When neural stem cells (NSCs) from
different brain regions are transduced with a protein stabilizing
MYCN(T58A) mutation and transplanted into their homotypic
regions they give rise to distinct tumors. The transplantation of
forbrain MYCN(T58A) NSCs gives rise to gliomas (47), while
cerebellum and brain stem MYCN(T58A) NSCs transplants give
rise to medulloblastoma and primitive neuroectodermal tumors
(47). The enforced expression of MYCN in primary cerebellar
granule neuron precursors isolated from Ink4c(-/-), p53(-/-) mice
also results in medulloblastomas when transplanted into the brains
of immunocompromised mice (48). These studies demonstrate that
MYCN functions as an oncogene and is capable of driving tumor
formation in cells with different lineage specific genetic programs to
give rise to distinct tumor types. Thus, the inhibition ofMYCN will
be an important anti-tumor therapeutic strategy in many different
human cancers with aberrantly over-expressed MYCN.

MYCN Structure: Critical Regions That
Mediate Protein-Protein Interaction and
Transcriptional Activity
MYCN is composed of 464 amino acids (AA) with several
functional domains (Figure 1) derived from sequence homology
to known c-MYC protein functional domains (NCBI reference
number of MYCN, NP_001280157.1 verse c-MYC, CAA25015.2)
and mutagenesis analyses (1, 6). The N-terminal transcriptional
February 2021 | Volume 10 | Article 623679
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regulation domain contains two highly conserved regions known
as Myc Homology Box (MB), MBI and MBII. The central region
contains 3 more MBs with a nuclear localization signal that
overlaps MBIV. The C-terminal basic region (BR) is involved in
DNA binding while the HLH-LZ heterodimerizes with Max (1).
Many critical proteins regulating various biological processes do
not have unique structures, but contain intrinsically disordered
regions (IDRs), making this structural region extremely dynamic
(49, 50). IDRs are involved in modulation of the specificity or
affinity of protein binding interactions (49, 50). The IDRs in a
protein can undergo characteristic disorder-to-order transitions
upon interactions with specific binding partners and/or through
post-translational modifications (49). Using a protein intrinsic
disorder region prediction tool PONDR (http://www.pondr.com/)
(51) to analyze MYCN, we find that the majority of MYCN
residues tend to form broad disordered regions (Figure 1), which
indicates that MYCN has the potential to bind to many different
partners. Moreover, the intrinsically disordered character of
MYCN suggests that using it as a direct drug target would be
challenging due to its structural flexibility.

Critical regions within MYC/MYCN proteins have been
implicated in regulating protein stability. Residues Ser62 (S62)
and Thr58 (T58) within MBI are critical phosphorylation sites for
MYC/MYCN protein stability during cell cycle progression. As
Frontiers in Oncology | www.frontiersin.org 361
growth factors stimulate cell progression through the cell cycle,
protein stability is tightly regulated. Phosphorylation at S62 of
MYCN protein is mediated via CDK1, which stabilizes MYCN
and primes T58 for phosphorylation by GSK3b. GSK3b is repressed
by phosphatidylinositol 3-kinase (PI3K) and AKT kinase signaling
(52–57). Dephosphorylation of MYC-S62 via protein phosphatase
2A (PP2A) enables E3 ligase FBXW7 binding to phosphorylated
MYC-T58, targeting it for ubiquitination and subsequent
degradation by the proteasome (58, 59). The regulation of MYCN
protein stability is cell-cycle dependent. In normal neuronal
progenitors, CDK1 phosphorylates MYCN protein at S62 in G1-
phase. As cells enter M-phase, signaling by growth factors declines
leading to activation of GSK3b enabling phosphorylation of MYCN
(T58) which leads to its degradation (52). Two additional ubiquitin
ligases, TRIM32 and HUWE1, are involved in regulation of MYCN
degradation. During late M-phase, the ubiquitin ligase TRIM32 is
bound to the mitotic spindle pole apparatus in conjunction with
MYCN, contributing to its ubiquitination and degradation (60).
HUWE1, a HECT-domain E3 ubiquitin ligase, binds to MYCN
and primes it for MYCN-K48-linked polyubiquitination and
proteasomal-mediated degradation (61, 62).

MYCN protein degradation is antagonized through interactions
with different proteins at distinct MYCN regions (Figure 1). Aurora
A kinase (AURKA) associates with the mitotic spindle poles and
FIGURE 1 | Structure and functional domains of MYCN. Three predictors of the intrinsically disordered region prediction tool PONDR are used to identify intrinsically
disordered regions of MYCN (top section). Functional domains of MYCN defined by comparing c-MYC and mutagenesis assay (middle section). Examples of known
MYCN protein partners and the regions of MYCN that contributed to the interaction (bottom section). Notes: Color boxes on the MYCN protein diagram: brown box,
Myc homology Box (MB) I-IV; yellow box, Basic Region (BR); green box, Helix-Loop-Helix-Leucine Zipper (HLH-LZ); red box, nuclear localization signal (NLS). Gray
shade box on the disorder score graph and MYCN protein diagram, regions of MYCN with relatively low disorder score. AA: amino acid.
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interacts with the N-terminus of MYCN in cells over-expressing
MYCN and in this way interferes with FBXW7-mediated
degradation leading to MYCN stabilization (17, 56, 63). The
ubiquitin-specific protease HAUSP binds to a partially
overlapping region of MBIII and MBIV in MYCN, but not c-
MYC (Figure 1), to specifically deubiquitinate MYCN, which
results in MYCN protein stabilization (64). The proliferation-
associated 2AG4 protein (PA2G4) directly binds to and stabilizes
MYCN by protecting it from ubiquitin-mediated proteasomal
degradation (65). Co-immunoprecipitation results show that a
MYCN deletion mutant (AA82–254) binds strongly to PA2G4,
and further studies show that a 14 AA MYCN oligopeptide
(AA246–259) sequence contributes to this protein-protein
interaction (65). Additionally, MYCN has been found to be
methylated at R160, R238 and R242; protein arginine
methyltransferase 5 (PRMT5) physically interacts with MYCN
and increases MYCN protein stability, possibly by methylating
MYCN at R242 (66). The identification of different signaling
pathways and proteins regulating MYCN protein stability
provides additional modes for indirect targeting of MYCN.

TFs, co-repressors and co-activators interact with different
regions of MYCN (Figure 1), enabling MYCN to activate or
repress gene transcription. MYC family proteins directly interact
with MAX through HLH-LZ to form a heterodimer and activate
transcription by binding to E-box elements (1, 6). Activation
involves the recruitment of multiple coactivators and protein
complexes to E-box elements. The TIP60 acetyltransferase
complex and the histone acetyltransferase GCN5 are bound to
MYC indirectly through the TRRAP adaptor protein that
interacts with MBII of the MYC protein (67–70). Two other
proteins, TIP48 and TIP49, found in the TIP60 complex, are
involved in chromatin remodeling and bind to the N-terminus of
MYCN (67). Recent studies show that target gene recognition by
c-MYC and MYCN depends on its interaction with the histone
H3-K4-methyl-associated protein WDR5 and their interaction is
mediated through the MBIIIb region of c-MYC (71, 72). MYCN
interacts with the H3K9me3/me2 demethylase KDM4B through
the region between AA96-300 and when overexpressed MYCN
recruits KDM4B to E-box regions to decrease H3K9me3 levels
(73). Thus, MYCN may also activate gene transcription by
relieving transcriptional repression. Moreover, MYCN AA1-
137 also interacts with TFIIIC and RAD21 to regulate the
pause release of RNA Polymerase II (17). BRCA1 interacts
with MYCN and enables MYCN to suppress R-loop formation
in promoter-proximal regions, thus enhancing transcription
(18). When MYCN functions as a transcriptional repressor, it
interacts with SP1 and MIZ1 to repress gene transcription (74–
77). The region between MYCN AA82-136 that includes the
MBII domain specifically interacts with SP1 in pull down
experiments, whereas MYCN AA400-464 that includes the
HLH-LZ domain interacts with MIZ1 (74). These MYCN/SP1/
MIZ1 interactions repress gene transcription by recruiting
HDAC1 (74). MYCN, via MBIII, associates with EZH2, a
methyltransferase and member of the polycomb repressor
complex 2, to suppress gene transcription (78). Similarly,
MYCN physically binds lysine-specific histone demethylase 1A
Frontiers in Oncology | www.frontiersin.org 462
(KDM1A/LSD1) through MBIII to repress gene transcription
(79). The above studies show how MYCN interacts with the
epigenome to regulate gene transcription.

Targeting MYCN Transcription
Many mechanisms have been identified to be involved in the
transcriptional regulation of MYCN (Figure 2). Soon after the
discovery of theMYCN gene, it was found that retinoic acid (RA)
treatment of NB cells resulted in a down-regulation of
MYCN expression at the mRNA level, and this preceded cell
cycle arrest and implementation of a differentiation program
(80). This indicated that MYCN down-regulation, at least
partially, contributes to the biological effect of RA on NB cells.
A classic RA response element (RARE) was not implicated in RA
regulation of MYCN transcription, as studies showed that RA
exerts its effects across multiple regulatory regions within the
MYCN promoter, distally or even on different chromosomes
(81). Retinoid repression of MYCN transcription was a major
motivation for the inclusion of 13 cis-retinoic acid during the
consolidation phase of treatment for high-risk neuroblastomas
(82). Retinoid regulation of MYCN represents one of the first
strategies developed to target MYCN gene transcription and
provides an example of indirect targeting of MYCN.

Gene transcription is mediated by cis-regulatory elements such
as enhancers and promoters. Enhancers are distal regulatory
elements in the genome that play an important role in driving
cell-type-specific gene expression and are frequently mis-regulated
in cancer (83, 84). Super-enhancers (SEs) are composed of a
cluster of enhancers that are central to the maintenance of cell
identity in normal development and disease (85). SEs were found
to be associated with various oncogenic molecules including both
c-MYC and MYCN; this makes them putative therapeutic targets
for cancer therapy (86–89). Histone deacetylases (HDACs) have
an important function in regulating both DNA packaging in
chromatin and gene transcription. Treatment of NB cells with
HDAC inhibitors such as MS-275, BL1521 or SAHA resulted in a
decrease in MYCN mRNA levels accompanied by cell apoptosis
(90–92). Although not directly demonstrated, recent studies have
shown that HDAC inhibition results in enhancer remodeling and
suppression of oncogenic SEs possibly through disruption of
normal chromatin-looping and TFs depletion on the SEs (93,
94). This may be involved in the HDAC inhibitor mediated
repression of MYCN transcription (Figure 2).

MYC-driven tumors are especially sensitive to inhibition of BET
bromodomain containing proteins (BRD1–4) (95). BRD4 belongs
to family of proteins that contain variable numbers of
bromodomains and a central ET domain and function as
chromatin “readers” by binding to acetylated lysine residues
(Figure 2). BRD4 has also been implicated in regulating RNA-
PolII transcriptional activity (96). BET inhibitors downregulate c-
MYC transcription, suppress MYC-dependent target genes and
inhibit myeloma cell proliferation (95). An unbiased screen of 673
genetically characterized tumor-derived cell lines shows that
neuroblastoma cell lines with MYCN amplification are more
sensitive to JQ1 treatment compared to MYCN-wild-type tumors.
BRD4 knock-down phenocopied these effects, indicating that BRD4
February 2021 | Volume 10 | Article 623679
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functions as a transcriptional regulator ofMYCN. Importantly, BET
bromodomain-mediated inhibition of MYCN suppresses
neuroblastoma growth both in vitro and in vivo (97). Similarly,
OTX015 (Oncoethix), a small molecule that prevents BRD2/3/4
from binding to acetylated histones, also represses MYCN
transcription. This study showed that BRD4 binds to super-
enhancers (SEs) and MYCN target genes, while OTX015
treatment disrupts BRD4 binding and transcription of MYCN as
well as its target genes (98), which is consistent with the finding that
bromodomain inhibitor treatment selectively inhibits oncogenes by
Frontiers in Oncology | www.frontiersin.org 563
disrupting their SEs (99). Importantly, bromodomain and extra-
terminal domain inhibitor (BETi), GSK525762, is under phase I
clinical trial for solid tumors including NB (100). In addition to
MYC, many tumor-associated genes such as RUNX1, FOSL2, BCL3
and ID2 are driven by SEs in diverse tumor types (99). However, SEs
drive many cell identity genes essential for normal cell development,
such as Oct4, Sox2 and Nanog in embryonic stem cells (101), so as
with many cytotoxic agents a therapeutic window is needed when
using BETi for the treatment of cancer patients to minimize side
effects. Recent studies showed that the combination of a
FIGURE 2 | Transcriptional regulation of MYCN. The schematic illustrates the presumed looping between the super-enhancer (SE) and the promoter of MYCN
gene. In cancer cells, MYCN is driven by SEs that are marked by stretches of acetylated lysine 27 of histone 3 (H3K27Ac). BRD4 is a chromatin ‘reader’ that
binds to acetylated lysine residues (AcK) and activates MYCN transcription. CDK7 is a TFIIH subunit that phosphorylates the carboxy-terminal domain of RNA
Pol II (RNAPII) to initiate MYCN gene transcription. CDK9 is a pTEFb subunit that phosphorylates the carboxy-terminal domain of RNAPII to regulate MYCN
transcriptional elongation. The enrichment or activation of these components of the transcriptional machinery in cancer cells results in aberrantly elevated
transcription of MYCN (top panel). The treatment of cells with HDAC inhibitors (HDACi) inactivates MYCN SEs possibly through disrupting normal looping and
depleting transcription factors (TFs) that bind to the SEs; BRD4 inhibitors (BRD4i) impact the ‘reader’ function of BRD4 to inactivate MYCN gene transcription;
CDK7 inhibitors (CDK7i) and CDK9 inhibitors (CDK9i) treatment impedes the phosphorylation of RNAPII to inhibit MYCN gene transcription initiation and
elongation; RA treatment inactivates MYCN transcription in a RA response element independent manner (bottom panel). Notes: circled ‘Ac’ represents
H3K27Ac; circled ‘p’ represents phosphate at the RNAPII tail.
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bromodomain inhibitor with a CDK7 inhibitor, an AURKA
inhibitor or an HDAC inhibitor is significantly more effective in
suppressing MYCN-driven NB tumor growth than either drug
alone (88, 102, 103). This highlights the importance of
combinatorial therapeutic approaches for cancer treatment.

To regulate gene transcription, the RNA polymerase II
(RNAPII) transcription initiation apparatus needs to be recruited
to promoters by specific DNA binding transcription factors.
Promoter-proximal pausing of RNAPII is a post-initiation
regulatory event, and c-Myc plays a key role in release of Pol II at
many actively transcribed genes in ES cells (104). Cyclin-dependent
kinases (CDKs) are important in regulating the transcription cycle
of RNAPII. The TFIIH subunit CDK7 and the pTEFb subunit
CDK9 phosphorylate the carboxy-terminal domain of RNAPII,
facilitating efficient transcriptional initiation, pause release and
elongation. This suggests that the inhibition of these CDKs would
be expected to block MYC-driven transcriptional amplification.
Indeed, THZ1, a covalent inhibitor of CDK7, was found to
selectively target MYCN-amplified NB cells, leading to global
repression of MYCN-dependent transcriptional amplification and
reductions in expression of SE-associated oncogenic drivers
including MYCN itself and suppression of NB tumor xenograft
growth (87). CYC065, an inhibitor of CDK9 and CDK2, was found
to selectively target MYCN-amplified NB cells by leading to a
selective loss of nascent MYCN transcription (105). These studies
indicate that the inhibition of CDK7 or CDK9 can be exploited to
disrupt aberrantMYCN-driven transcription and to repressMYCN
gene transcription as a therapeutic for MYCN-driven cancers
(Figure 2).

DNA G-quadruplexes (G4s) are noncanonical DNA structures
that are formed by guanine-rich DNA sequences. They often occur
in the promoter regions of oncogenes and regulate their expression
(106–108). An early study identified a specific G4 structure formed
in the c-MYC promoter region. Although a cationic porphyrin
TmPyP4, which binds non-selectively to G4s in vitro was able to
inhibit the transcription of c-MYC (108), a recent study identified
a small molecule DC-34 that more specifically binds to the c-MYC
G4 in vitro. In a G4-dependent mechanism, DC-34 plays a more
potent and selective role in downregulating MYC gene
transcription compared to other G4 containing oncogenes in
leukemia cells. Moreover, the treatment of cancer cells with DC-
34 results in a G0-G1 arrest and a reduction of cell viability (106).
Although not yet reported, the identification and targeting of G4s
within the MYCN promoter and regulatory regions would be
another approach to inhibit MYCN gene transcription.

Many TFs have been validated as oncogenes in human
cancers and their dysregulated transcriptional programs result
in a high dependency of cancer cells on these gene expression
regulators (109). Importantly, RA, inhibitors of HDACs, BET
bromodomain containing proteins, CDK7, CDK9 and small
molecules that bind to G4s have been demonstrated to be
effective for the treatment of many types of cancers by
targeting their dysregulated transcriptional programs (109,
110). Thus, targeting MYCN at branch points involved in its
oncogenic regulation of transcription (Figure 2) is an important
therapeutic approach for MYCN-driven cancers.
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Targeting MYCN Protein Stability
MYCN is a short-lived protein whose stability is tightly
regulated by different signaling pathways that target it for
ubiquitin-mediated degradation by the proteasome (52, 55,
111) (Figure 3). A major signaling pathway affecting MYCN
protein stability occurs upon activation of PI3K. PI3K activates
Akt which phosphorylates GSK3ß, suppressing GSK3ß kinase
activity. This results in decreased phosphorylation of MYCN-
T58 which is critical for targeted degradation by the proteasome
(55) (Figure 3). As expected, inhibitors of PI3K destabilize the
MYCN protein and suppress tumor growth in the TH-MYCN
GEMM NB model (53, 112). In NB cells, AURKA interacts with
MYCN by interfering with the FBXW7 subunit of the ubiquitin
protein ligase complex to impede MYCN ubiquitination and
subsequent degradation (56) (Figure 3). Treatment with
AURKA inhibitors decreases MYCN protein levels resulting in
suppression of NB tumor growth, making AURKA a suitable
target for MYCN-driven cancers (32, 113–117). Due to the
promising preclinical results, the oral AURKA inhibitor
MLN8237 is under clinical evaluation for multiple cancers
including relapsed NB (118). PLK1 is a serine/threonine
kinase formally known as the polo-like kinase. The PLK1
inhibitor BI 2356 exhibits strong antitumor activity in NB
cells in vitro and in vivo (119). PLK1 does not directly bind to
the MYCN protein. Rather, it increases MYCN protein stability
by destabilizing the FBXW7 ubiquitin ligase complex to
counteract FBXW7-mediated degradation of MYCN (120)
(Figure 3). Importantly, MYCN-amplified tumor cells in
neuroblastoma and small cell lung cancer are more sensitive
to treatment with PLK1 inhibitors than tumors with normal
MYCN copy number, indicating that PLK1 inhibitors are
potential therapeutics for MYCN-overexpressing cancers (120).

Components of the proteasome targeting and degrading system
contribute to MYCN protein regulation. The ubiquitin-specific
peptidase HAUSP (also known as USP7) binds to and
deubiquitinates MYCN leading to its stabilization (64) (Figure 3).
HAUSP is highly expressed in tumors from NB patients with poor
prognoses. Silencing of HAUSP expression in NB cells destabilizes
MYCN and results in an inhibition of MYCN mediated functions.
Importantly, the HAUSP inhibitor P22077 markedly suppresses the
growth of MYCN-amplified human neuroblastoma cell lines in
xenograft mouse models (64).

Although first identified as an RNA binding protein, the
proliferation associated 2G4 protein, PA2G4, directly binds
and stabilizes MYCN by protecting MYCN from proteasomal
degradation (65). When PA2G4 is silenced in NB cells using
siRNAs or a small molecule inhibitor WS6, MYCN protein levels
are markedly reduced (65). WS6 treatment of NB cell lines
completely blocked PA2G4-MYCN protein binding, and this
competitive chemical inhibition results in a delay of
tumorigenesis in the TH-MYCN NB mouse model (65).

Protein methylation is a post-translational modification
recently identified to regulate protein stability. The protein
arginine methyltransferase 5 (PRMT5) interacts with both MYC
and MYCN proteins (66, 121). Silencing of PRMT5 in MYCN‐
overexpressing NB cells or MYC-driven medulloblastoma cells
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leads to a decrease in MYCN and MYC protein levels and cell
growth inhibition (66, 121). Tandem mass spectrometry analysis
of immunoprecipitated MYCN protein in NB cells reveals several
potential sites of arginine dimethylation on MYCN protein,
suggesting that MYCN may be methylated by PRMT5 as a
protection from proteasomal degradation (66). Treatment with
the PRMT5 inhibitor EPZ015666 results in a decrease of MYC
protein levels and medulloblastoma cell growth, which suggests
that PRMT5 inhibitors are potential therapeutics for MYC- and
MYCN-driven cancers.

Targeting MYCN Cofactors/Coregulators
We have described critical regions that are needed for MYCN
interactions with its cofactors/coregulators in the previous section
and in Figure 1. As a TF, MYCN cooperates with other TFs to
bind to DNA and recruit cofactors/coregulators to activate or
repress gene transcription, making these protein partners
potential targets to disrupt the transcriptional activity of MYCN
(Figure 4). The enzymatic activity of many co-regulators makes
them attractive drug targets.

The first identified mechanism through which MYCN
functions as a TF is via heterodimerization with MAX. MYC-
MAX complexes recognize E-box DNA sequences, and binding
of the heterodimer to gene promoters activates transcription
of downstream MYCN-related genes. Small-molecule inhibitors
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of MYC-MAX dimerization illustrate the importance of
dimerization to MYC function (Figure 4). For instance, the
peptidomimetic compound IIA4B20 exerts a strong inhibitory
effect on MYC-MAX dimerization and DNA binding to
functionally inhibit MYC-induced fibroblast transformation
(122). The compound 10058-F4 binds to AA402-409 of MYC,
which disrupts MYC-MAX dimerization of either c-MYC or
MYCN. The treatment ofMYCN-amplified NB cells with 10058-
F4 leads to neural differentiation (123–125). Another known
inhibitor of MYC-MAX dimerization is OmoMYC, a c-MYC
derived mutant bHLH-LZ domain protein generated by
substituting four amino acids within the c-MYC leucine zipper.
When overexpressed, OmoMYC competes with MAX for
binding to either c-MYC or MYCN and prevents MYC/MYCN
proteins from binding to E-boxes and activating transcription
(126, 127). The recently discovered MYC inhibitor 361
(MYCi361) binds to the HLH region of the MYC protein
(AA366-378), disrupts MYC/MAX heterodimerization,
enhances degradation of both MYC and MYCN, and
suppresses MYC-dependent tumor cell growth in vitro and in
vivo (128). The asymmetric polycyclic lactam, KI-MS2-008
stabilizes MAX homodimers, resulting in decreased MYC
protein levels (129). Treatment of cancer cells with
KI-MS2-008 suppresses MYC-dependent tumor growth in vivo.
This is another example whereby altering the ability of MAX
FIGURE 3 | The regulation of MYCN protein stability. CDK1 phosphorylates MYCN at serine 62 (S62) to stabilize MYCN and prime threonine 58 (T58) for
phosphorylation via GSK3b. AKT phosphorylates GSK3ß inactivating its kinase. After dephosphorylation of S62 possibly through PIN1/PP2A, MYCN is poly-
ubiquitinated by the ubiquitin ligase FBXW7 and undergoes proteolytic degradation via the proteasome. AURKA binds to and stabilizes phosphorylated and poly-
ubiquitinated MYCN to protect MYCN from degradation. PLK1 destabilizes FBXW7 to counteract FBXW7-mediated degradation of MYCN. The ubiquitin-specific
protease HAUSP deubiquitinates MYCN to stabilize it. Thus, the treatment of cells with PI3K, AURKA, PLK1 or HAUSP inhibitors (PI3Ki, AURKAi, PLKi or HAUSPi)
leads MYCN proteasomal degradation. Notes: circled ‘p’ represents phosphate; circled ‘Ub’ represents ubiquitin.
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to dimerize with MYC functionally targets MYC (129). It will
be interesting to evaluate whether either of these approaches
affects MAX/MYCN interactions to inhibit the growth of
MYCN-driven cancers.

MYCN has been shown to recruit several druggable cofactors
with methylase and demethylase activity to regulate gene
transcription, and cofactor inhibition provides a way to
indirectly target MYCN (Figure 4). The histone H3K4
methyltransferase complex subunit WDR5 forms a protein
complex with MYCN at the MDM2 promoter that results in
histone H3K4 trimethylation and activation of MDM2
transcription (72). Treatment of NB cells with the WDR5
antagonist OICR9429 reduces MYCN/WDR5 complex
formation and the expression of MYCN target genes, resulting
in the inhibition of cell growth (72). When MYCN is
overexpressed, it interacts with the H3K9me3/me2 demethylase
KDM4B and recruits KDM4B to E-box containing regions to
decrease H3K9me3 levels (73). Functional studies demonstrate
that KDM4B acts as a MYCN co-activator to regulate MYCN
signature genes. Knockdown of KDM4B decreases NB cell
proliferation in vitro and NB xenograft growth in vivo, which
provides proof-of-concept for the potential therapeutic efficacy
of inhibiting KDM4B to target oncogenic MYCN signaling
in cancers (73). MYCN has also been found to recruit
co-repressors to suppress gene transcription. MYCN associates
with EZH2, a methyltransferase and a member of the polycomb
repressor complex 2 (PRC2) to repress the NB tumor suppressor
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gene CLU through a bivalent modification of the chromatin at
the CLU promoter (78). The prevalence of this activity has not
been evaluated. In MYCN-amplified tumors, MYCN increases
levels of EZH2 and components of the PRC2 complex leading to
increased activity of PRC2-mediated transcriptional repression
primarily of differentiation associated genes. Genomic or
pharmacologic inhibition of EZH2 suppresses NB growth in
vitro and in vivo (130–132). MYCN also binds the lysine-specific
histone demethylase 1A (KDM1A/LSD1) to repress gene
transcription. LSD1 co-localizes with MYCN on promoter
regions of CLU and CDKN1A, and the treatment with an
LSD1 inhibitor restores the expression of these genes and
suppresses NB cell growth (79). c-MYC interacts with histone
methyltransferase EHMT2 to repress gene transcription, and
knockdown of EHMT2 results in decreased tumor volume (133).
EHMT2 is essential in NB cells and inhibition of EHMT2 using
BIX-01294 decreased proliferation of NB cells and induced
apoptosis (132, 134).

Acetylation and deacetylation of histones are key regulatory
features of gene transcription and are potential targets that
regulate MYCN transcriptional activity. MYCN recruits many
HDACs (HDAC1, HDAC2 and HDAC5) to repress gene
transcription (74, 135, 136). The histone acetyltransferase,
GCN5, binds to MYC and MYCN proteins (67–69). In vitro
luciferase assays show that MYC recruits GCN5 to activate gene
transcription (70); however, few GCN5 specific inhibitors are
available and have limited testing in NB cells (137).
FIGURE 4 | Targeting MYCN transcriptional activity. MYCN heterodimerizes with MAX to bind to the cis-genomic elements in DNA. MYCN interacts with cofactors
WDR5 and KDM4B to activate gene transcription, while interacts with LSD1, EZH2 and HADCs to repress gene transcription through affecting chromatin status.
Inhibitors such as 10058-F4, OmoMYC and MYCi361 disrupt the dimerization between MYCN and MAX to inhibit the DNA binding of MYCN. The treatment of cells
with MYCN cofactor inhibitors (WDR5i, KDM4Bi, LSD1i, EZH2i or HDACi) inactivates MYCN transcriptional activity through regional epigenetic modification and/or
opening or closing chromatin.
February 2021 | Volume 10 | Article 623679

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Liu et al. Targeting MYCN in Cancers
Targeting MYCN Downstream Targets
As a TF, MYCN regulates many target genes but the critical ones
that mediate MYCN tumor initiating functions are not clear.
One of the MYCN downstream targets that is under clinical
evaluation is ornithine decarboxylase 1 (ODC1), the rate-limiting
enzyme involved in polyamine synthesis (138, 139). In
neuroblastoma, the expression levels of MYCN are strongly
correlated with those of ODC1, and high levels of ODC1 driven
by MYCN amplification and overexpression are strongly
associated with poor clinical outcome in NB patients (138).
Treatment of TH-MYCN transgenic mice with the ODC
inhibitor a-difluoromethylornithine (DFMO) prevents
oncogenesis in hemizygous mice, while delaying tumor
development in homozygous mice. Transient Odc ablation in
hemizygous TH-MYCN mice permanently prevented tumor
onset. This work indicates that ODC mediates an oncogenic
function of MYCN that is important in tumor initiation and
demonstrates the therapeutic potential of polyamine depletion
strategies in NB (138, 139). A recent Phase II study of single
agent DFMO as maintenance therapy in NB showed increased
survival compared to historical controls for high-risk NB
patients (140, 141).

The FACT (facilitates chromatin transcription) complex is
another potential MYCN downstream target that is druggable.
FACT facilitates transcriptional elongation on chromatin
templates by binding and displacing the H2A/H2B dimer from
nucleosomes, a process that is believed to be required for RNA
polymerase II to pass through a nucleosomal barrier (142). MYC
is confirmed to interact with a component of the FACT
complex, the transcription elongation factor SSRP1 (4). SiRNA
knockdown experiments demonstrate that expression of
FACT and MYCN is controlled in a forward feedback loop,
which drives MYCN transcription and protein stability (143).
Inhibition of FACT using the small molecule curaxin compound
CBL0137 results in a decrease of MYCN and SSRP1 expression,
as well as a markedly reduced NB tumor initiation and
progression in the TH-MYCN mice especially when combined
with standard chemotherapy (143).

Targeting MYCN Synthetic Lethal
Approach
Synthetic dosage lethality (SDL) is a genetic interaction in which
the alteration of one gene, combined with the reduction in
function of a second gene, results in lethality (144). SDL is an
attractive therapy for cancer because inhibition of such a gene
will only induce cell death in cells carrying the specific gene
alteration. MYCN activates both proliferative and apoptotic
cellular responses. Whether it promotes a net proliferative
response is dependent on cooperating apoptotic factors such as
the antiapoptotic protein BCL2 (145, 146). It has been
demonstrated that MYCN-amplified neuroblastoma cells are
highly sensitive to BCL2 inhibitors ABT-263 (navitoclax) and
ABT-199 (venetoclax) (147). When screening for enhancers of
ABT-199 sensitivity in MYCN-amplified NB, researchers found
that the Aurora Kinase A inhibitor (alisertib) cooperates with
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ABT-199 to induce widespread apoptosis. This drug
combination was more effective in killing MYCN-amplified NB
cells in vitro and in vivo than either compound alone (147).
Moreover, in MYCN-amplified NB, Polo-Like Kinase 1 (PLK1)
and MYCN create a positive, feedforward activation loop
essential for maintaining their high levels of expression (120).
BCL2 antagonists have been shown to synergize with inhibitors
of PLK1, such as BI6727 or BI2356 and may be an effective drug
combination for NB over-expressing MYCN (120).

One of the mechanisms through which MYCN exerts its
tumorigenic effect in NB is to activate transcription of genes
involved in proliferation, including checkpoint kinase 1 (CHK1),
an important regulator of the G1/S and G2/M checkpoints. This
mechanism may contribute to the ability ofMYCN-amplified NB
tumors to become refractory to standard chemotherapy (148).
Conversely, tumor cells lacking DNA damage checkpoints
during tumorigenesis or during cytotoxic therapy are highly
sensitive to additional genomic instability (149). MYCN
induces replication stresses and DNA damage through
excessive replication-fork firing. MYCN-overexpressing tumors
are more sensitive to CHK1 inhibition (150, 151). Another
cell cycle related synthetic lethality protein identified in
MYCN-amplified NB is cyclin-dependent kinase 2 (CDK2)
(152). Knockdown of CDK2 or treatment with the CDK2
inhibitor roscovitine induces apoptosis in MYCN-amplified
neuroblastoma cell lines but not in those with MYCN single
copy. Thus, inhibition of CDK2 is synthetically lethal to NB cells
with overexpressed MYCN (152).

NB arising in adolescents and young adults is frequently
associated with loss of function mutations in the alpha
thalassemia X-linked (ATRX) gene (153, 154). Interestingly,
ATRX mutations and MYCN amplification have never been
observed in the same NB tumor, suggesting a potential synthetic
lethal condition (153, 154). Doxycycline-induced overexpression
ofMYCN in ATRX-mutant NB cell lines showed a marked loss of
tumor cells. Moreover, in the LSL-MYCN GEM of NB tumors
failed to develop when LSL-MYCN : Dbh-iCre NB mice were
crossed with ATRXflox mice demonstrating synthetic lethality
between mutant ATRX and high levels of MYCN (154). This is
an example of rare synthetic lethality between an inactivated
tumor suppressor and an activated oncogene. MYCN has been
shown to play an apoptotic role in cancer cells under certain
circumstances (155). Thus, it is possible that under the stress of
DNA replication, when ATRX is inactivated, high levels ofMYCN
induce an apoptotic cellular response. Therefore, ATRX targeting
may be a therapeutic approach in MYCN-amplified NB tumors.
Alternative strategies that increase MYCN protein levels may lead
to an SDL situation in ATRX-mutant NB cells. Increasing MYCN
levels may be achieved by interfering with critical components in
the MYCN protein degradation pathway, such as HUWE1.
HUWE1 ubiquitinates and directs MYCN degradation to the
proteasome (61). Knockdown of the HUWE1 gene impedes
MYCN degradation and increases MYCN protein levels in NB
cells (61). HUWE1 inhibitors such as BI8622 and BI8626 have
been generated, but not tested in this situation.
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Complementing experimental approaches to the identification
of SDL in tumor cells, a recent computational approach utilized
accumulating tumor genomic data to identify candidate SDL
networks in various cancers (156). Synthetic lethality or ‘oncogene
addiction’ offers an attractive therapeutic strategy forMYCN-driven
cancers. Both bioinformatic analysis and high throughput drug
screening can be used to identify novel-druggable synthetic lethal
genes to which MYCN expressing cells are ‘addicted’.

Prospect of Directly Targeting MYCN
Once considered undruggable, recent advances in chemistry
and chemical genomics have begun to directly target
transcription factors. Covalent reaction with their protein
targets through cysteine residues is a known mechanism for
many covalent drugs (157). A recent in vitro study that screened
a library of cysteine-reactive covalent ligands, consisting of
acrylamides and chloroacetamides, identified EN4. EN4
directly and covalently modifies the pure full-length c-MYC
protein at cystine 171 (C171) of its intrinsically disordered
region (158). In cells EN4 targets MYC interfering with MYC
transcriptional activity. This reactive C171 on c-MYC is not
conserved in MYCN. However, a similar screening approach
could be used to identify small molecules that target cysteine
residues in MYCN.

Proteolysis targeting chimeras (PROTACs) induced protein
degradation is a recently developed therapeutic strategy,
especially for undruggable targets (159). PROTACs are
composed of three chemical elements: 1) a ligand binding to a
target protein, 2) a ligand binding to E3 ubiquitin ligase, and 3) a
linker for conjugating these two ligands (159). The small
molecules 10058-F4, 7954-0035-G5, 10074-G5, JKY-2-169,
MYCi361 and MYCi975 have been shown to bind to the HLH
domain of MYC protein with some binding to MYCN protein as
well (125, 128, 160). It may be possible to use these small
molecules to develop PROTACs reagents to directly target and
degrade the MYC/MYCN proteins (Figure 5). Intrinsically
disordered region analysis of MYCN indicates that the MB II
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domain of MYCN is the most ordered region of MYCN having
less flexibility and interacts with TRRAP (Figure 1). A small
molecule or peptide screen to identify binders to the MBII region
of MYCN would be another strategy to identify components
needed to construct a MYCN PROTAC.

MiRNA are small RNA molecules that regulate their target
gene expression at the post-transcriptional level and via their
effects on the epigenetic machinery. Many miRNAs such as
miR-34a, miR-375, miR-393-5p and let-7 are found to inhibit
MYCN mRNA translation or target MYCN mRNA for
degradation to suppress tumor cell growth (161–164). With
more and more effective drug delivery systems for small
interference RNA (siRNA) and miRNA being developed (165),
directly targeting MYCN mRNA using miRNAs or siRNAs is a
another approach for the treatment of MYCN-driven tumors.
Indeed, the recent clinical findings which showed the systemic
administration of a next generation antisense targeting the
STAT3 TF decreased nuclear STAT3 levels in tumors are proof
of principle that direct mRNA targeting of a transcription factor
is feasible (166).

Targeting DNA amplification is another possible way to
directly target MYCN. The genome-editing tool CRISPR-Cas9
is able to cut DNA at a targeted location and lead to cancer cell
death if the targeted regions contain copy number gains.
Whether this is clinically translatable is unknown. Pyrrole-
imidazole (PI) polyamides when conjugated with DNA-
alkylating agents could induce sequence-specific DNA
alkylation to suppress target gene expression. A recent study
showed that aMYCN-targeting PI- polyamide, MYCN-A3, binds
to and alkylates DNA within theMYCN transcript, resulting in a
decrease in MYCN copy number, downregulation of MYCN
expression and suppression of NB growth in vitro and in
xenografts (167). This indicates that the direct targeting of
amplified MYCN at a genomic level is feasible. However, the
feasibility of developing targeting approaches in pre-clinical
models is only the first and sometimes the easiest step in the
drug development pipeline.
FIGURE 5 | PROTAC strategy to directly target MYCN. The schematic illustrates the mode of action of a proteolysis targeting chimera (PROTAC) targeting MYCN.
First of all, a bio-conjugatable analog of a MYCN binding ligand (such as modified 10058-F4 or MYCi361) will be conjugated to E3 ubiquitin ligase binding ligand
through a linker to synthesize a MYCN PROTAC. The formation of MYCN-PROTAC-E3 ubiquitin ligase complex will result in a transfer of ubiquitin (Ub) to the lysine
residues of MYCN by E2 ubiquitin-conjugating enzyme. Afterwards, the PROTAC will be released and reutilized, and the poly-ubiquitinated MYCN will undergo
proteasome degradation. Notes: circled ‘Ub’ represents ubiquitin.
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CONCLUSION

The oncogenic amplification and/or overexpression of MYC
family genes occur in most human cancers, making MYC
family oncogenes one of the most sought-after therapeutic
targets. Here we specifically reviewed multiple pharmacological
approaches to target MYCN by interfering with pathways that
MYCN uses to drive oncogenesis. Indirect inhibitors of MYCN,
such as the BET bromodomain inhibitor, the CDK7 inhibitor,
the AURKA inhibitor, the HAUSP inhibitor and the ODC
inhibitor have clearly shown benefit in suppressing MYCN-
amplified tumor growth in the preclinical studies, and a few of
these inhibitors including bromodomain inhibitor GSK525762,
AURKA inhibitor MLN8237 and ODC inhibitor DFMO are being
evaluated in the clinic for MYCN-driven cancers. Once again it is
possible that combinatorial strategies that integrate these new
approaches with standard chemo- and immunotherapy will lead
to improved tumor control with less toxicity for patients.
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A wide range of malignancies presents MYCN amplification (MNA) or dysregulation.
MYCN is associated with poor prognosis and its over-expression leads to several
dysregulations including metabolic reprogramming, mitochondria alteration, and cancer
stem cell phenotype. Some hints suggest that MYCN overexpression leads to cancer
immune-escape. However, this relationship presents various open questions. Our work
investigated in details the relationship of MYCN with the immune system, finding a
correlated immune-suppressive phenotype in neuroblastoma (NB) and different cancers
where MYCN is up-regulated. We found a downregulated Th1-lymphocytes/M1-
Macrophages axis and upregulated Th2-lymphocytes/M2-macrophages in MNA NB
patients. Moreover, we unveiled a complex immune network orchestrated by N-Myc
and we identified 16 genes modules associated to MNA NB. We also identified a MYCN-
associated immune signature that has a prognostic value in NB and recapitulates clinical
features. Our signature also discriminates patients with poor survival in non-MNA NB
patients where MYCN expression is not discriminative. Finally, we showed that targeted
inhibition ofMYCN by BGA002 (anti-MYCN antigene PNA) is able to restore NK sensibility
inMYCN-expressing NB cells. Overall, our study unveils aMYCN-driven immune network
in NB and shows a therapeutic option to restore sensibility to immune cells.

Keywords:MYCN, immune system, neuroblastoma, immune signature, immune network, anti-MYCN antigene PNA,
MYCN blocking
INTRODUCTION

MYCN is a transcription factor member of the MYC proto-oncogene family involved in nervous
system development during embryogenesis (1). MYCN regulates different fundamental cellular
processes including cell cycle, apoptosis, mitochondria dysfunction, and metabolism (2, 3). Indeed,
MYCN expression deregulation is linked to a wide range of human tumors (4). MYCN
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overexpression is generally associated to poor prognosis, driving
the cancer cells to a stem cell like phenotype, promoting growth,
angiogenesis, and metastasis (5, 6).

Considering the MYCN restricted expression in embryogenesis
and it is impact in cancer (7), N-Myc is a promising target.
However, small molecule approaches to specifically target the N-
Myc protein resulted inconsistent. Thus, different other approaches
have been developed to downregulate N-Myc or its associated
pathways (8). Among these strategies, anti-MYCN antigene
oligonucleotide PNA showed the ability to specifically block
MYCN expression in a sustained way (3, 9, 10), resulting in an
anti-cancer effect.

MYCN amplification (MNA) is established as a major driver of
Neuroblastoma (NB) (characterizing 50% of the high-risk group)
(11–13). NB is currently the most common and deadly pediatric
solid cancer (representing 6–8% of solid tumors in childhood) (14).
Current therapy includes chemotherapy, radiotherapy, surgery,
and stem cell transplantation, besides the severe side effects still
many patients undergo relapse and progression (15–17).

Immune evasion plays a fundamental role in the development
and progression of cancers and is driven by the tumor
microenvironment remodeling by cancer cells (18). Different
studies showed that NB presents the capacity to evade and to
harness the immune system to favor metastasis and progression.
In this view, tumor infiltrating lymphocytes (CD4+ and CD8+ T-
cells) and natural killers (NKs) are favorable associated with the
outcome while T regulatory cells and macrophages are associated
with poor prognosis (19–21). NB cells can express checkpoint
inhibitors or other molecules capable to interact with the
immune system such as PD-L1, MIF, chemokines, release of
microRNAs to microenvironment cells, suggesting the potential
impact of checkpoint inhibitors and immune-therapy also in this
tumor (22–25).

However, while anti-GD2 therapy and chimeric antigen
receptor (CAR) T cells showed some promising results in non-
MNA NB patients, the checkpoint inhibitors have not shown the
same success in improving the survival in NB, as in other solid
tumors. These poor results can be linked to different factors as
low MHC-I expression, low presence of neoantigens,
immunosuppressive environment (15, 26–28). Moreover,
N-Myc could play a role in the development of this
immunosuppressive microenvironment, as MNA is associated
to down-regulation of MHC-I expression in NB and to inhibition
of the interferon pathway and to PD-L1 expression (29–32).
Indeed, MNA-NB still shows a poor outcome and need a missing
specific therapy.

In this context, the tremendous amount of interactions
between NB cells and the tumor microenvironment leads to a
high complexity, leaving different open questions on how NB
harness the immune system to sustain its growth and which
factors have a dominant role or have context dependent
functions. No studies systematically analyzed immune cell
infiltration and their molecular interactions or broadly
investigate MYCN impact on the immune system. Indeed, the
NB immunity and the role of MYCN in the immunosuppression
are still a field of investigation (33).
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MATERIALS AND METHODS

Patient Gene Expression Profiles
The NB dataset (accession: E-MTAB-1781) and the small cell lung
cancer (SCLC) (accession: E-MTAB-1999) datasets were
downloaded from ArrayExpress, (http://www.ebi.ac.uk/
arrayexpress) and processed using the quantile algorithm in
limma. Another NB dataset and Wilms’ dataset were downloaded
from TARGET data portal (https://ocg.cancer.gov/programs/target;
data freely accessible). From NCBI GEO DataSets (https://www.
ncbi.nlm.nih.gov/gds) were downloaded the following datasets:
retinoblastoma (accession: GSE59983), rhabdomyosarcoma
(accession: GSE114621), T acute lymphoblastic leukemia (T-ALL),
and acute myeloid leukemia (AML) dataset (accession: GSE13159,
as defined in the dataset meta-data) and for the T-helper
lymphocyte (Th) profiles (accession: GSE107011). Another SCLC
dataset was retrieved from the supplementary of the article (PMID:
26168399) (34). In the article the different cohorts are referred as
following: NB1: E-MTAB-1781, NB2: TARGET NB, Wilms:
TARGET Wilms, SCLC1: E-MTAB-1999, SCLC2: PMID
26168399, RB: GSE59983, rhabdomyosarcoma (RMS):
GSE114621, T-ALL: GSE13159, AML: GSE13159. The replicate
probes within the array were replaced by their average before being
scaled. Pearson correlation between MYCN, MYC, and other genes
was calculated with R software. The differential expressed genes
betweenMYCN-amplified (MNA) patients and non-MNA patients
in the NB datasets (E-MTAB-1781, TARGET dataset) were
obtained using the limma package algorithm (clinical information
was retrieved from the dataset meta-data, patient with an unknown
MNA status were removed).

Pathway Analysis
Correlated genes with MYCN or MYC in each dataset were used
as ranked gene list to identify enriched pathway through Gene
Set Enrichment Analysis (GSEA) (35). We used Gene Ontology
(biological process, cellular component, molecular function, C5
from Molecular Signatures Database v7.0), and GSEA software
(V. 4.02). We used the differential expressed genes to conduct the
pathway enrichment as described above. Graphic representation
was performed with R software. Additional data can be found in
Supplementary Tables 1–3.

Immune Cell Fraction Estimation Analysis
We used CIBERSOFT tool (Cell type Identification By
Estimating Relative Subsets Of known RNA Transcripts) as
described in the developer instruction (36). NB expression
datasets (E-MTAB-1781, TARGET dataset) were used as
mixture file input and were performed 1,000 permutations. We
used the LM22 gene signature matrix, an available validated
signature for 22 human hematopoietic cell phenotypes.
Additionally, we derived from GSE107011 the signature for the
Th profile and to generate a Th gene signature matrix (we
considered Th1, Th2, Th17, T-regulatory, T follicular helper
subsets). The Th signature was input in CIBERSOFT and
performed 1,000 permutations. Graphic representation and
statistical analysis were performed with R software.
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Immune Interaction Network
Protein interactions were retrieved from String database, we
selected interactions with a score higher than 400. Protein
localization was downloaded from Human Protein Atlas (37).
We considered as cell surface proteins only proteins which the
approved and supported locations included one of the following
terms: cell junctions, focal adhesion sites, plasma membrane.
Immune population protein expression were obtained from data
supplementary (38). We considered as expressed for each
immune subpopulation only proteins with a normalized score
higher than 1.5 and only if present in the cell surface. The
immune network in MNA and non-MNA patients were
established filtering the immune surface proteins present in the
differential expressed genes (in order to capture weak
interactions, we considered log fold change of 0.5 to assign to
MNA or non-MNA). The protein-protein interactions were used
to build the circular plots. MYCN knock out genes were
downloaded by KnockTF (39), we considered log fold change
of 1 to assign a gene to the MYCN positive or negative regulated
list. The previous lists were filtered for the subcellular position.
The obtained genes were paired with their possible interactors on
the immune population to build the circular plots.

WGCNA Module Analysis and
Transcriptional Regulator
Immune population protein expression was retrieved as
described above. Patient gene expression profiles (GEP) from
E-MTAB-1781 were filtered for this list. WGCNA (40) was
performed using the WGCNA package (41) and changing the
standard parameters: power of 8, signed network, and a
minimum module size of 20. The algorithm assigned the 6,641
filtered genes to 16 modules (2,472 were not assigned to any
module, the full list is present in Supplementary Table 4).
Module similarity was conducted calculating Pearson
correlation between module eigengenes. Cell populations were
grouped in (CD4+ T-cells, CD8+ T-cells, antigen processing
cells, B-cells, NK cells) and calculated the number of proteins
present in each module. Graph network was building using the
iGraph package. For the heatmap, we calculated the number of
proteins present in each module for each immune population
and then normalized (z-score). We also calculated the average of
the module eigengenes for MNA and non-MNA patient groups
and then we normalized (z-score). Pathway enrichment was
conducted for each module using anRichment package, the
results are present in Supplementary Table 5. Gene modules
were used to infer transcriptional regulators, we then clustered
the obtained regulators in three clusters. Patient expression
profiles were also clustered according to the cluster regulators.
This procedure is also described in details in Supplementary
Methods and Supplementary Tables 6-8.

MYCN Immune Score
Immune genes retrieved from Gene Ontology (GO) and
literature. Patient gene expression profiles (GEP) from E-
MTAB-1781 and TARGET were filtered for this list (gene list
is present in Supplementary Table 9). We build a logistic
regression model to identify which immune genes where
Frontiers in Oncology | www.frontiersin.org 376
associated to MNA versus not MNA patients. The model was
cross-validated 50-fold using E-MTAB-1781 as training set (80%
of observation at each run) and using TARGET dataset as test
set. We used L1 penalization (C = 0.1) and SAGE solver. We
selected the weights for each gene and averaged (we filtered all
zero weights). We selected two different vector weights
associated with MYCN, positive weight vector (associated with
MNA) and negative weight vector (associated with non-MNA).
The two vectors were normalized subtracting the minimum and
dividing by the range:

Ŵ PM
i =

WPM
i −min WPM

� �

max WPMð Þ −min WPMð Þ

Ŵ NM
i =

WNM
i −min WNM

� �

max WNMð Þ −min WNMð Þ
Through univariate cox regression we selected genes

significantly associated to the prognosis (we used the same
gene list used for the logistic regression model). The obtained
p-value was correct with the Bonferroni correction (list of
significant genes obtained through univariate cox regression is
present in Supplementary Table 10). We then used multivariate
Cox regression analysis on the obtained genes, we used a Lasso
penalization to select genes associated to the prognosis [we used
Penalized R package (42) and selecting lambda1 parameter equal
to 0.25]. We selected two different vector weights associated with
the survival, positive weight vector (associated with hazard) and
negative weight vector (associated with reduction in hazard). The
two vectors were normalized subtracting the minimum and
dividing by the range:

Ŵ PC
i =

WPC
i −min WPC

� �

max WPCð Þ −min WPCð Þ

Ŵ NC
i =

WNC
i −min WNC

� �

max WNCð Þ −min WNCð Þ
We selected the genes in common between the two vectors

and normalized weight were calculated as the sum of the
normalized vector for MYCN and Cox model. We then build a
positive and a negative immune score for each dataset (-MTAB-
1781 and TARGET) multiplying each gene x (log2 expression)
for each normalized weight (weights are listed in Supplementary
Table 11).

immP =  
1
no

n

i=1
xi(Ŵ

PM
i + Ŵ PM

i )

immN =  
1
no

n

i=1
xi Ŵ

NM
i + Ŵ NC

i

� �

We defined the MYCN immune score as the ratio between
immp and immn for each patient GEP. We download
Neuroblastoma (last 10 years) and MYCN abstracts querying
PubMed (details are present in the Supplementary Methods) to
identify genes of the signature present in literature. Patient were
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stratified according their positive or negative normalized MYCN
immune score (low enriched was defined as z score lower than
−0.5, medium enriched comprised between −0.5 and 1, high
enriched z score higher than 1). Clinical information was
retrieved within the dataset (Supplementary Tables 12 and
13). Uniform Manifold Approximation and Projection
(UMAP) was computed with a minimum distance of 0.5,
considering 30 local neighbors and selecting the Euclidean
distance as metric (43).

Statistical Analysis and Software
Analysis were conducted in R (RStudio) and Python (Anaconda
release). The following libraries from Python (version 3.7) were
used: Scikit-learn, Matplotlib, matplotlib.pyplot, Pandas, UMAP,
numpy. The following libraries from R (version 3.5) were used
for analysis and graphs: ggplot2, dplyr, data.table, tydr, survival,
survminer , wordc loud , WGCNA, c i rc l i ze , iGraph,
anRichment, stringr.

Cell Lines and Treatment
The cell lines used in this study were obtained in 2020 and kept
in culture for 30 days and seven passages at maximum.
Mycoplasma detection was conducted with LookOut
Mycoplasma PCR Detection Kit (Sigma-Aldrich). Additional
details about the cell line used in this study can be found in
Supplementary Table 14. Cell lines treatment with BGA002 and
quantitative real-time PCR were conducted as described in (3).
List of the primers used in this study can be found in
Supplementary Table 15. Results have been analyzed in Prism
software version 6 (GraphPad).

Neuroblastoma Cell Lines and Natural
Killers Co-Culture
Kelly-luc cell-line (Kelly NB cell line transfected with luciferase
gene) was generated as described in (3). Kelly-luc has been
treated with 2.5 μM of BGA002 for 12 h in Opti-MEM. PBMC
from healthy donors has been isolated through Ficoll protocol
and resuspended in Opti-MEM. NK cells have been isolated
using Human NK Cell Enrichment Set–DM (cat no. 557987, BD
Bioscience). NB-NK co-culture has been performed in Opti-
MEM for 4 h After adding D-luciferine and lysis buffer we
measured luminescence Infinite F200 Tecan. Results have been
analyzed in Prism software version 6 (GraphPad).
RESULTS

MYCN Is Associated With Immune
Repression and a Th2-Lymphocytes/M2-
Macrophages Axis Upregulation
In order to investigate which immune system pathways are
associated with MYCN in NB, we performed GSEA analysis in
NB patient datasets. Interestingly, MYCN negative correlated
genes are significantly enriched of different immune system
pathways in both NB cohort 1 (E-MTAB-1781) and NB cohort
2 (TARGET) (Figure 1A). Moreover, we performed differential
Frontiers in Oncology | www.frontiersin.org 477
expressed gene analysis, and found that non-MNA patients are
enriched of immune pathways (Figure S1A). Furthermore,
immune pathways represent a consistent part of the enriched
pathways in the MNA patients and in theMYCN anti-correlated
genes (Figures S1B, C). Collectively, these data suggest that
MYCN is negatively associated with the immune system
(especially associated to interferon gamma and phagocytosis)
in MNA NB. Since, MYCN overexpression is present in a large
group of tumors (4, 9, 44–48), we investigated ifMYCN was also
associated to immune suppression in differentMYCN-expressing
cancers (SCLC, RMS, RB, Wilms, AML, T-ALL). We observed
that different pathways associated to Th1 are negatively
correlated to MYCN in different cancer types (Figures 1B,
S2A, B). Remarkably, despite MYC and MYCN are orthologs
we did not find the same anti-correlation for MYC in these
malignancies (Figure 1B). In this view, we investigated which T-
helper subsets were enriched in NB. The results confirmed a
significantly high abundance of Th1 in non-MNA patients, while
Th2 and Th17 were enriched in MNA patients (Figure 1C).
Furthermore, patients enriched for Th1 are not enriched for
Th2/Th17 (Figure S3). As described before, Th1 cells are
polarizing macrophages toward M1 phenotype, while Th2
direct macrophages polarization toward M2 (49). Thus, we
investigated macrophage phenotype enrichment in NB, and
found that M1 are significantly enriched in non-MNA patients
while M2 are more abundant in MNA patients (Figure 1D).

MYCN Exerts a Key Role in the Wide
Neuroblastoma Immune Network
As MYCN overexpression deeply reprograms NB cells, we
investigated the difference in immune network between MNA
and non-MNA patients. We firstly identified differential
expressed immune genes on the MNA and non-MNA which
are present in the cell surface, and we mapped the protein-
protein interaction between immune population. We found that
non-MNA patients present a much more complex network than
MNA patients and a more diverse population scenario (Figures
2A, B). Moreover, we identified differential expressed genes after
MYCN silencing which sub-cellular locations is on the surface.
Furthermore, we mapped their potential interactors on the
immune population, showing that MYCN regulates a wide
network of interactions in immune cells in the NB context
(Figures S4A, B). We used an unbiased clustering approach to
group genes in NB belonging to immune system with correlating
expression patterns, and we annotated their functional properties
through GO enrichment analysis. This analysis revealed 16
different modules that are differentially enriched in MNA and
non-MNA patients (Figures 2C–D, and S5A, B). Interestingly,
modules 1 and 2 that are enriched in MNA patients are
functional annotated with chromosome organization, cell cycle,
RNA processing. Modules containing immune activation genes
are instead enriched in non-MNA (Figure 2D). Moreover, non-
MNA are enriched in modules associated to extracellular
vesicles, cytokine production and cell communication (Figure
2D). We also inferred the putative regulons in order to identify
transcription factor dysregulated between MNA and non-MNA.
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FIGURE 1 | MYCN but not MYC anticorrelates with immune pathways in cancers. (A) Bar plot represents Gene Ontology enriched terms in the MYCN negative
correlated genes in two neuroblastoma (NB) datasets (left panel: E-MTAB-1781, right panel: TARGET). Bar length represents NES absolute value while color intensity
represents -log10 FDR. (B) Pathway enrichment for five select immune pathways (GO terms) in different cancer datasets. Symbol size and color intensity indicate—
log10 FDR and NES. GO terms enriched in MYCN (left panel) and MYC (right panel) correlated genes. (C) Color intensity indicated the mean of T-helper subset
relative abundance in MYCN amplified (MNA) and non-MNA patient expression profiles plotted as heatmap. (D) Macrophage relative abundance (left panel: M1
population, right panel: M2 population) in MNA and non-MNA patient gene expression profiles. Each symbol represents an individual patient (MNA = 122, non-MNA =
580), the middle line represents the median, the first and third quartiles are indicated as box limits, whiskers represents 1.5 box lengths, extreme values are indicated as
single dots. Wilcoxon matched pair test; **P < 0.01; ****P < 0.0001.
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A B

C D

E

FIGURE 2 | MYCN up-regulation impacts a wide immune interaction network. (A, B) Circular plots. Immune subpopulations are specified outside the circle, outer
circle represents cell types, inner circle represents activation status. Connecting lines indicate connection between two subpopulations and are proportional to the
number of connections. (A) Immune network in non-(MYCN amplification) MNA patients. (B) Immune network in MNA patients. (C) Immune system gene module
network in neuroblastoma (NB). Edges size is proportional to Pearson correlation coefficients, correlation is indicated in gray and negative correlation in red. Modules
with no connections are not shown, module size is proportional to the number of genes within. Pie chart colors correspond to immune cell types, the size of the
slices corresponds to the number of the genes. (D) Heatmap of MNA and non-MNA patient gene expression profiles (MNA = 122, non-MNA = 580) in NB1 cohort
(E-MTAB-1781). Color intensity is proportional to z-score of the average eigengenes for each gene module. Main pathway enrichment for each module is listed on
the left, full list is present in the Supplementary Tables. (E) heatmap representing the normalize relative abundance of regulons in NB1 cohort (E-MTAB-1781).
Hierarchical clustering is conducted on the row and the columns using the Euclidean distance. Clinical data are on top.
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We identified 22 regulons that are common between the two NB
cohorts (Figures 2E and S6A–D), showing a similar enrichment
pattern in MNA and non-MNA patients (Figures 2E and S7A)
and interestingly these transcription factors are also connected
through direct protein-protein interactions (Figure S7B).
Therefore, we apply hierarchical clustering defining three
regulon groups with transcriptional factors with similar activity
(Figures 2E and S7C). These three-regulon clusters are
differentially enriched of immune modules: regulon cluster one
is enriched with genes related to cell-cycle while the other
clusters group genes related to immunity (Figures S7D, E).
Lastly, ChIP-seq public data analysis reveals that the regulon
transcription factors are directly regulated by N-Myc (Figures
S8A, B).

MYCN Effect on Immune System Is an
Independent Prognostic Indicator
in Neuroblastoma
The identified regulon clusters showed a prognostic impact in both
NB cohorts (Figures S9A–D). Therefore, we investigated the
prognostic impact of MYCN regulation of the immune system
using a logistic regression and penalized Cox regression, to identify
which genes involved in the immune system are associated with the
MYCN status and the prognosis (AUC = 0.97, Figures S10A–C).
We built aMYCN immune score using the model weight to stratify
the NB patients (Figure 3A). We identified 430 genes positively
associated with MNA and 218 negatively associated. Moreover, we
mined PubMed to check which genes in the signature were already
identified in literature: 127 were already associated to NB and 60 to
MYCN (Figure S10D). Interestingly, cluster 2-3 transcription factor
(TF) regulons were found to negatively regulates MYCN positive
associated immune signature and positively regulates the negatively
associated genes (Figure S10E). The MYCN immune score was
significantly enriched in MNA patients (Figure 3B) and according
to the score we stratified the patients in three clusters (low, medium,
and high MYCN immune dysregulation). Remarkably, the high
MYCN immune dysregulation group was associated with poor
prognosis while the low group with a favorable prognosis in NB
(Figure 3C). Furthermore, theMYCN immune score was associated
with stage 4 (Figure 3D) and high proliferation (Figure 3E). We
confirmed in an additional NB cohort that the MYCN immune
score was associated with MYCN-status, poor survival, stage, high
proliferation and unfavorable histology (Figures S11A–F). We also
confirmed with a different algorithm (50) that MYCN immune
score is associated with low immune infiltration and high tumor
purity (Figures S12A, B). Moreover, the MYCN immune score
correlated with negative immune checkpoints and anti-correlated
with positive immune checkpoints in both cohorts (Figure S12C).
Interestingly, MYCN immune score correlated with Th2 cytokines
while negatively associated with Th1 cytokines (Figure S12D). As
aforementioned, MHC genes are poorly expressed in NB, we
investigated whether MYCN immune score was associated to
MHC genes. Indeed, we noticed that MYCN immune score anti-
correlated with MHC genes (Figure S12E). We also found that
MYCN immune score is also negatively associated to Toll Like
Receptors, as a confirmation that immune receptors are negatively
Frontiers in Oncology | www.frontiersin.org 780
associated to MYCN (Figure S12F). Moreover, MYCN immune
score was predictive of the survival inMYCN in non-MNA patients
in both NB cohorts, while the MYCN expression did not (Figures
S13A–D). Lastly, Cox multivariate analysis showed that MYCN
immune score is an independent prognostic factor and significantly
associated at overall and event free survival in both NB cohorts and
also in non-MNA patients (Figures S14A–H).

Anti-MYCN BGA002 Inhibits CD276
Expression and Restores Natural Killer
Susceptibility in Neuroblastoma
We found that NK related pathways are downregulated in MNA-
NB patients in the two cohorts used in this study (Figure 4A).
Indeed, we also found that MHC associated pathway are
enriched in genes that are anti-correlating with MYCN (Figure
S15A). MNA patient GEP showing a reduced expression of NK
receptors (NKG2D and Nkp46) and a reduced expression of the
cognate ligands (ULBP1, ULBP2, ULPB3, MICA, MICB) known
as Self-induced antigen (Figure S15A). As reported in literature
NK are dysregulated in NB and CD276 has been identified as one
of the most relevant factors leading NK inhibition in NB (51–55).
Moreover, we found CD276 expression higher in MNA versus
non-MNA NB patients (Figures S15B, C). Thus, we investigated
if MYCN blocking through the anti-MYCN antigene PNA
oligonucleotide BGA002 could downregulates its expression in
different NB cell lines (comprising MNA, p53 mutated, and non-
MNA). Anti-MYCN BGA002 potently reduced MYCN
expression and led to a significant CD276 down-regulation
after the treatment in MYCN-expressing MNA and non-MNA
NB cell lines (Figure 4B).

PD-L1 (also named CD274) expression has been reported in
NB, but PD-L1 blockade immunotherapy has not reported to be
effective in NB (56). We did not find association between neither
the survival nor the MYCN immune score and PD-L1, while we
found that its expression is higher in non-MNA NB patients in
both NB cohorts (Figure S15A). Moreover, basal expression of
CD274 was low (Figure S15B). In line with these finding,MYCN
blocking by BGA002 did not lead to CD274 down-regulation
(Figure 4B).

HMGA1 has been described as N-Myc transcriptional target
(57) and linked to resistance to apoptosis, proliferation
induction, and angiogenesis, while it is implicated in the
mechanism of resistance to retinoic acid in NB (58–60). We
found in the previous section that HMGA1 is a regulon in the
cluster 1 associated with poor prognosis in both the NB cohorts,
regulated different genes in the MYCN immune signature and
highly expressed in MNA NB patients (Figure S15A). Therefore,
we tested if MYCN inhibition by anti-MYCN BGA002 led to its
down-regulation, and indeed we observed a dramatic HMGA1
reduction of expression (Figure 4B).

The analysis in the previous section showed that PVR is
present in the MYCN immune score and negatively associated
with the survival (Supplementary Tables 10 and 11) and its
expression is higher in MNA patients (Figure S15A). However,
the role of PVR in NB is debated, it has been reported to
positively activate NK cells while it has been noticed the
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contrary in other malignancies where is also associated with poor
outcome (61, 62). However, MYCN blocking by BGA002 led to
PVR down-regulation in a small extent (Figure 4B).

Considering we found downregulated the NK pathways in
MNA-NB patients in the two cohorts used in this study (Figure
4A) and because we also found CD276 down-regulation after
MYCN inhibition by BGA002 (Figure 4B), we evaluated the
potential effect of MYCN inhibition by BGA002 of the
reactivation capacity on NK lysis of MNA NB cells (we used
Kelly-luc, MNA cell-line transfected with luciferase). We did not
notice viability decrease adding the NK-cells alone in co-culture
Frontiers in Oncology | www.frontiersin.org 881
with MNA-NB cells (Figure 4C). Indeed, we found that
treatment with BGA002 in co-culture with NK in the MNA
NB cells significantly impacted on cell viability (Figure 4C).
DISCUSSION

MYCN is known to influence diverse aspects of the cancer cells,
dysregulating a large network of intracellular pathways (2).
Despite previous indication that immune system in NB is
altered, the role of MYCN in the immune response is not fully
A B

C D

E

FIGURE 3 | MYCN effect on immune system has a prognostic impact. (A–E) Analyses conducted on E-MTAB-1781 dataset. (A) Uniform Manifold Approximation
and Projection (UMAP) projection of MYCN amplification (MNA) and non-MNA patient gene expression profiles (PGEP). (B) Violin plots represent normalized MYCN
immune score in MNA and non-MNA PGEP. (C) Kaplan–Meier plots for the probability of overall survival over time for patients associated with MYCN immune score
(high enriched, n = 114; medium enriched, n = 311; low enriched, n = 277). Associated P value is shown in the middle of the plot (log-rank test). (D) Normalized
MYCN immune score in different International Neuroblastoma Staging System Committee (INSS) classification stages. (E) Ki-67 log2 expression in patients
associated with MYCN immune. Wilcoxon matched pair test; ****P < 0.0001.
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understood (19, 33). Since the high complexity showed by the
immune system and the intricate relationship between itself and
the cancer cells, proper system biology studies are required to
map this complex network (63). Our results show that MYCN
has a great role in dysregulating the immune network in NB, as
we showed that different immune pathways are enriched in
MYCN correlated genes and in MNA versus non-MNA
differential expressed genes. Moreover, we confirmed in
independent cancer mRNA expression patient cohorts that
MYCN immune anti-correlation is not restricted to NB, but it
is a feature also of other malignancies (small cell lung cancer,
rhabdomyosarcoma, Wilms’ tumor, retinoblastoma, acute
myeloid leukemia, and T-acute lymphoid leukemia) (4).
Frontiers in Oncology | www.frontiersin.org 982
Interestingly, we did not find the same anti-correlation
pathway with MYC, suggesting a different behavior between
the two oncogenes of the same family. We found that MYCN
anti-correlated with Th1 immunity while correlated with Th2,
and these subsets are mutually exclusive enriched in NB. As
expected by that, MYCN correlated with M2 macrophages and
inversely correlated with M1 subset. In line with previous
literature, Th1 and M1 subsets are associated to anti-tumor
immunity while Th2/Th17 and M2 are hijacked by the cancer
cells to sustain their growth (64). Indeed, our results evidence a
complex regulation in MNA versus non-MNA NB, whereMYCN
is a key player in remodeling the immunological micro-
environment toward a suppressive phenotype.
A C

B

FIGURE 4 | BGA002 blocks CD276 and restores neuroblastoma (NB) susceptibility to natural killer (NK) cells. (A) Pathway enrichment for four select immune
pathways [Gene Ontology (GO) terms] associated to NK cells. (NB1: E-MTAB-1781, NB2: TARGET NB). Symbol size and color intensity indicate—log10 FDR and
NES. GO terms enriched in MYCN (left) anti-correlated genes and GO terms enriched in non-MYCN amplification (MNA) (right) patients. (B) mRNA expression
inhibition of different genes (MYCN, CD276, CD274, HMGA1, PVR) in NB cell lines measured through real-time PCR after 12 h of treatment with BGA002 2.5 µM
(black is the control, red the treatment, n = 4 biological replicates for each cell line). Wilcoxon matched pair test; *P < 0.05, **P < 0.01, where not shown is not
significant (P > 0.05). (C) Kelly-luc cell line (MNA NB cell line transfected with luciferase) viability after treatment with BGA002 2.5 µM and NK co-culture (five
independent experiments). Wilcoxon matched pair test; **P < 0.01.
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We showed that mapping the possible protein-protein
interactions between immune cell types in non-MNA NB patients
revealed a complex immune network that is lost in MNA patients.
Moreover, we found that MYCN expression regulated different
genes involved indirect interactionswith immune cell types playing
as a driver of this poor immune environment. We identified 16
immune gene modules that are differently enriched in MNA and
non-MNA NB patients, where modules related to immune
receptors, signaling, and cytokines are enriched in the latter
group. Therefore, all these results confirm a deeply dysregulated
immune tumor micro-environment in NB. We also inferred the
putative TFs that regulate the immune genes and differed between
MNA and non-MNA NB, founding three regulon clusters (22
regulons in total) who are in common between NB1 and NB2
cohorts. Our results show that these regulon clusters are
differentially enriched in MNA and non-MNA patients and they
regulate the immune landscape in NB. We found that there are
direct interactions between these TFs, aswell asN-Myc also directly
regulates the expression of these regulons as mechanistic
explanation of the immune response dysregulation in NB.

Furthermore, we found a link between MYCN immune
dysregulation and prognostic impact in NB. Generating a MYCN
immune signature we stratified the NB cohorts in three groups (low,
medium and high MYCN immune dysregulation) which showed a
marked difference in the prognosis. Moreover, the MYCN immune
score was also associated with other different NB characteristics as
stage, proliferation, and histology and we confirmed these
associations in an independent NB cohort. As a confirmation, the
MYCN immune score correlated with immune checkpoints, Th
cytokines, MHC genes, and TLRs capturing the immune landscape
of the NB. Moreover, apart from MNA, there are other cancer
events that can lead to dysregulated N-Myc higher activity (mRNA
and protein stabilization, mi-RNA alteration, and so on) making
difficult to infer theMYCN relevance in these cases (65, 66). Indeed,
our score is able to capture this activity in non-MNA patients where
MYCN mRNA expression level is not able to stratify the patients.

MNA and refractory NB patients are lacking viable therapeutic
options (67, 68). Since the broad role ofMYCN in the pathology, its
restricted profile of expression during the embryonal stage, it is a
promising target of intervention (69). Despite different attempts, it
has been proven to be challenging to specifically target N-Myc with
small molecules. We previously reported the specific MYCN
inhibition through an anti-MYCN antigene oligonucleotide PNA
(BGA002), showing MYCN inhibition and a therapeutic effect in
vitro and in vivo (3, 10). Thus, we investigated if this specific
inhibition exerted an effect on the immune suppression guided by
MYCN. Our results showed that MYCN inhibition by BGA002
resulted in a cascade to downregulation of negative immune
checkpoints (CD276) and regulons implied (HMGA1) in the
immune-suppression phenotype. Indeed, we noticed that anti-
MYCN treatment also led to NK lysis of MNA NB cells.

Collectively, the data here presented provide demonstrations of
the broad role of MYCN in suppressing the immune landscape,
which play a role in the poor prognosis associated to this oncogene.
These data also suggest that MYCN blocking can ameliorate the
immune suppression characterizing MNA NB patients. Indeed,
Frontiers in Oncology | www.frontiersin.org 1083
while specific MYCN inhibition by anti-MYCN BGA002 can be
proposed as a single treatment for MNA NB patients, our results
also show that its activity can restore the responsiveness of the
immune system against NB, opening the way to use anti-MYCN
inhibition in combination with immune-therapy.
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genomic profiles of small cell lung cancer. Nature (2015) 524:47–53.
doi: 10.1038/nature14664

35. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA,
et al. A knowledge-based approach for interpreting genome-wide expression
profiles. PNAS (2005) 102:15545–50. doi: 10.1073/pnas.0506580102

36. Newman AM, Steen CB, Liu CL, Gentles AJ, Chaudhuri AA, Scherer F, et al.
Determining cell type abundance and expression from bulk tissues with digital
cytometry. Nat Biotechnol (2019) 37:773–82. doi: 10.1038/s41587-019-0114-2

37. Thul PJ, Åkesson L, Wiking M, Mahdessian D, Geladaki A, Ait Blal H, et al. A
subcellular map of the human proteome. Science (2017) 356(6340):eaal3321.
doi: 10.1126/science.aal3321

38. Rieckmann JC, Geiger R, Hornburg D, Wolf T, Kveler K, Jarrossay D, et al.
Social network architecture of human immune cells unveiled by quantitative
proteomics. Nat Immunol (2017) 18:583–93. doi: 10.1038/ni.3693

39. Feng C, Song C, Liu Y, Qian F, Gao Y, Ning Z, et al. KnockTF: a
comprehensive human gene expression profile database with knockdown/
knockout of transcription factors. Nucleic Acids Res (2020) 48:D93–D100.
doi: 10.1093/nar/gkz881

40. Zhang B, Horvath S. A general framework for weighted gene co-expression
network analysis. Stat Appl Genet Mol Biol (2005) 4(1):17. doi: 10.2202/1544-
6115.1128. Article17.

41. Langfelder P, Horvath S.WGCNA: an R package for weighted correlation network
analysis. BMC Bioinformatics (2008) 9:559. doi: 10.1186/1471-2105-9-559
February 2021 | Volume 11 | Article 625207

https://doi.org/10.1016/j.ccell.2015.12.009
https://doi.org/10.3390/genes8040113
https://doi.org/10.1158/0008-5472.CAN-19-0008
https://doi.org/10.1158/0008-5472.CAN-19-0008
https://doi.org/10.1158/2159-8290.CD-17-0273
https://doi.org/10.1101/cshperspect.a014415
https://doi.org/10.1038/nrdp.2016.78
https://doi.org/10.1038/nrdp.2016.78
https://doi.org/10.1038/319780a0
https://doi.org/10.1038/s41568-018-0003-x
https://doi.org/10.1158/1078-0432.CCR-11-1981
https://doi.org/10.1158/1535-7163.MCT-04-0213
https://doi.org/10.1002/cncr.30873
https://doi.org/10.1056/NEJM198510313131802
https://doi.org/10.1056/NEJM198510313131802
https://doi.org/10.1126/science.6719137
https://doi.org/10.1038/nrc1014
https://doi.org/10.1016/j.semcancer.2017.11.009
https://doi.org/10.1016/j.semcancer.2017.11.009
https://doi.org/10.1200/JCO.1999.17.7.2264
https://doi.org/10.3322/caac.21219
https://doi.org/10.3322/caac.21219
https://doi.org/10.1016/j.cell.2011.02.013
https://doi.org/10.1080/2162402X.2015.1019981
https://doi.org/10.1080/2162402X.2015.1019981
https://doi.org/10.1038/srep15179
https://doi.org/10.1155/2018/1812535
https://doi.org/10.1155/2018/1812535
https://doi.org/10.1093/jnci/djv135
https://doi.org/10.1016/j.jpedsurg.2004.06.019
https://doi.org/10.1002/cncr.30724
https://doi.org/10.1159/000155223
https://doi.org/10.1158/1078-0432.CCR-15-0491
https://doi.org/10.1016/j.ccell.2019.08.008
https://doi.org/10.3389/fimmu.2018.02380
https://doi.org/10.1016/0092-8674(86)90509-x
https://doi.org/10.1080/2162402X.2017.1320626
https://doi.org/10.1080/2162402X.2017.1316439
https://doi.org/10.1158/1078-0432.CCR-16-2601
https://doi.org/10.1016/j.canlet.2015.11.017
https://doi.org/10.1038/nature14664
https://doi.org/10.1073/pnas.0506580102
https://doi.org/10.1038/s41587-019-0114-2
https://doi.org/10.1126/science.aal3321
https://doi.org/10.1038/ni.3693
https://doi.org/10.1093/nar/gkz881
https://doi.org/10.2202/1544-6115.1128
https://doi.org/10.2202/1544-6115.1128
https://doi.org/10.1186/1471-2105-9-559
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Raieli et al. MYCN Impacts Neuroblastoma Immune Landscape
42. Goeman JJ. L1 penalized estimation in the Cox proportional hazards model.
Biom J (2010) 52:70–84. doi: 10.1002/bimj.200900028

43. Becht E, McInnes L, Healy J, Dutertre C-A, Kwok IWH, Ng LG, et al.
Dimensionality reduction for visualizing single-cell data using UMAP. Nat
Biotechnol (2019) 37:38–44. doi: 10.1038/nbt.4314

44. Brägelmann J, Böhm S, Guthrie MR, Mollaoglu G, Oliver TG, Sos ML. Family
matters: How MYC family oncogenes impact small cell lung cancer. Cell Cycle
(2017) 16:1489–98. doi: 10.1080/15384101.2017.1339849

45. Lee WH, Murphree AL, Benedict WF. Expression and amplification of the N-
myc gene in primary retinoblastoma. Nature (1984) 309:458–60. doi: 10.1038/
309458a0

46. Hirvonen H, Hukkanen V, Salmi TT, Pelliniemi TT, Alitalo R. L-myc and N-
myc in hematopoietic malignancies. Leuk Lymphoma (1993) 11:197–205.
doi: 10.3109/10428199309086996

47. van Lohuizen M, Breuer M, Berns A. N-myc is frequently activated by proviral
insertion in MuLV-induced T cell lymphomas. EMBO J (1989) 8:133–6.
doi: 10.1002/j.1460-2075.1989.tb03357.x

48. Williams RD, Al-Saadi R, Chagtai T, Popov S, Messahel B, Sebire N, et al.
Subtype-specific FBXW7 mutation and MYCN copy number gain in Wilms’
tumor. Clin Cancer Res (2010) 16:2036–45. doi: 10.1158/1078-0432.CCR-
09-2890

49. Orecchioni M, Ghosheh Y, Pramod AB, Ley K. Macrophage Polarization:
Different Gene Signatures in M1(LPS+) vs. Classically and M2(LPS-) vs.
Alternatively Activated Macrophages. Front Immunol (2019) 10:1084.
doi: 10.3389/fimmu.2019.01084

50. Yoshihara K, Shahmoradgoli M, Martıńez E, Vegesna R, Kim H, Torres-
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Upregulated MYCN gene expression is restricted to specialized cell populations such as
EpCAM+ cancer stem cells in liver cancer, regardless of DNA amplification and mutation.
Here, we reviewed the role of MYCN gene expression in liver homeostasis, regeneration,
and tumorigenesis, and discussed the potential non-genomic mechanisms involved in
controllingMYCN gene expression in liver cancer, with a focus on inflammation-mediated
signal transduction and microRNA-associated post-transcriptional regulation. We
concluded that dynamic MYCN gene expression is an integrated consequence of
multiple signals in the tumor microenvironment, including tumor growth-promoting
signals, lipid desaturation-mediated endoplasmic reticulum stress adaptation signals,
and tumor suppressive miRNAs, making it a potential predictive biomarker of tumor
stemness and plasticity. Therefore, understanding and tracing the dynamic changes and
functions of MYCN gene expression will shed light on the origin of liver tumorigenesis at
the cellular level and the development of novel therapeutic and diagnostic strategies for
liver cancer treatment.

Keywords: MYCN, liver cancer, microenvironment, inflammation, plasticity, lipid desaturation, endoplasmic
reticulum stress, miRNA
INTRODUCTION

Liver cancer, mostly hepatocellular carcinoma (HCC), is a highly lethal cancer (>600,000 deaths per
year worldwide) in which approximately 10% of patients survive the first 5 years after diagnosis (1).
Liver cancer is recognized as an inflammation-related cancer, since more than 90% of HCC cases
arise in the context of chronic liver injury and unresolved inflammatory microenvironment due to
viral infection, alcohol consumption, or high-fat diet (HFD) hypernutrition (2–4). Advances in
antiviral therapy have reduced the risk of developing hepatitis B virus- and hepatitis C virus-related
HCC (5, 6). In contrast, non-alcoholic steatohepatitis (NASH) which is characterized by obesity-
associated inflammation has attracted much attention, and is believed that it will soon be the leading
etiology of HCC (7). Notably, mice fed with HFD alone did not develop liver injury and
tumorigenesis. However, hyperresponsivity to lipopolysaccharide and endoplasmic reticulum
(ER) stress were observed in fatty liver that contributed to the progression of NASH and HCC
(8, 9). This suggested that a non-genomic mechanism was involved in the control of cellular
responses such as adaptation to inflammatory stresses during hepatic tumorigenesis. In this line,
whereas tumor initiation depends on somatic mutations, the mechanisms underlying tumor
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https://www.frontiersin.org/articles/10.3389/fonc.2020.618515/full
https://www.frontiersin.org/articles/10.3389/fonc.2020.618515/full
https://www.frontiersin.org/articles/10.3389/fonc.2020.618515/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:xyqin@riken.jp
mailto:luc.gailhouste@riken.jp
https://doi.org/10.3389/fonc.2020.618515
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2020.618515
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2020.618515&domain=pdf&date_stamp=2021-04-16


Qin and Gailhouste MYCN Gene Expression in HCC
promotion are likely to involve epigenetic factors and
environmental factors extrinsic to the cancer cell (10).

MYCN is a canonical proto-oncogene basic helix-loop-helix
transcription factor that is mainly restricted to the migrating neural
crest (11) and governs cell growth and differentiation during
embryonic stages (12). Amplification of the MYCN locus was
first observed in human neuroblastoma (13).MYCN amplification
is observed in about 20% of neuroblastoma and represents one of
the strongest clinical predictors of poor prognosis (14). MYCN
amplicons are either organized as extrachromosomal double
minutes or as homogeneously stained regions in addition to the
single copy ofMYCN on the short arm of chromosome 2, retained
at 2p24, in neuroblastoma cells and other solid tumor cells (15).
Notably, the MYCN gene is located in a non-fragile region of 2.8
Mbp between two common fragile sites, FRA2Ctel and FRA2Ccen,
located at 2p24.3 and 2p24.4, respectively (16). A study by
Blumrich and colleagues suggested that MYCN amplicons might
arise from extra rounds of replication of unbroken DNA secondary
structures that accumulate at FRA2C (16). Recent clinical studies
have reported increased gene expression of MYCN in liver tumor
tissues (17, 18). However, according to The Cancer Genome Atlas
(TCGA) database, nine of the 371 HCC patients (2.4%) with
upregulated MYCN mRNA expression but not the seven patients
(1.9%) with MYCN amplification had a dramatically worse
prognosis (Figure S1A). Data mining using the Cancer Cell Line
Encyclopedia (CCLE) database identified a total of 65 MYCN
mutations, but none of them was detected in HCC cell lines
irrespective of their corresponding mRNA abundance (Table
S1). This highlights the existence of non-genomic mechanisms
potentially responsible for MYCN overexpression in liver cancer.
Notably, data mining in TCGA showed that the expression of
MYCN in human HCC was not correlated with that of c-MYC,
another MYC family membranes known to be crucial for liver
cancer maintenance (19) and oncogenic reprogramming of
terminally differentiated hepatocytes into liver cancer stem cells
(CSCs) (20) (Figure S1B). In addition,MYCN gene expression but
not c-MYC gene expression was significantly correlated with the
liver CSC marker EpCAM gene expression (Figure S1B). These
data highlight the possibility that MYCN gene expression is
restricted in CSC-like cells and serves as a more sensitive
biomarker than c-MYC gene expression for the detection of
tumor stemness during liver tumorigenesis. Here, we reviewed
the role of dynamic MYCN gene expression in liver homeostasis,
regeneration, and tumorigenesis, and discussed the potential non-
genomic mechanisms involved in controlling MYCN gene
expression in liver cancer, focusing on inflammation-mediated
signal transduction and microRNA-associated (miRNA)-post-
transcriptional regulation.
MYCN GENE EXPRESSION IN LIVER
HOMEOSTASIS, REGENERATION, AND
TUMORIGENESIS

Single-cell RNA sequencing provided a comprehensive view of
MYCN gene expression in both human and mouse livers (21, 22).
Frontiers in Oncology | www.frontiersin.org 287
Under steady-state conditions, the expression of MYCN gene is
low in hepatocytes (Figure S1C) (21).MYCN gene expression in
the liver is significantly zonated, which is predominantly induced
in the pericentral cells and progressively decreases along the liver
lobule towards periportal cells (Figure S1D) (22). Metabolic liver
zonation requires a Wnt/b-catenin signaling gradient (23). In the
uninjured liver, diffusible Wnt ligands produced by the
pericentral endothelial cells activate b-catenin signaling-
induced target genes such as Axin2 and maintain a population
of proliferating and self-renewing cells, surrounding the central
vein, that contribute to homeostatic hepatocyte renewal (24).
Wnt/b-catenin signaling is critical for organ development,
homeostasis, and regeneration through governing stem cell
pluripotency (25). During neocortical development, MYCN is a
direct downstream target of the Wnt/b-catenin pathway
and promotes neuronal fate commitment (26). Therefore, the
basal expression of MYCN gene in the liver is a likely
consequence of the activation of Wnt/b-catenin signaling
during liver homeostasis.

Cap Analys is of Gene Express ion(CAGE)-based
transcriptional profiling of isolated primary mouse hepatocytes
revealed that low level ofMYCN gene expression was detected at
2 h and peaked at 48 h after 70% partial hepatectomy (Figure
S1E) (27). Liver regeneration is a coordinated multistep process
that is largely dependent on the re-entry of differentiated adult
hepatocytes into the cell cycle and proliferation (28). In response
to loss of hepatic tissue, hepatocyte DNA synthesis peaks at
around 24 h, accompanied by the induction of gene expression of
growth-regulated and cell-cycle-regulated genes at around 48 h
(29). It is possible that the induction ofMYCN gene expression is
a mitogenic response of hepatocytes during liver regeneration.
Indeed, a major direct mitogen of hepatocytes, the epidermal
growth factor (EGF), stimulated MYCN gene expression in
neuroblastoma cells via the recruitment of the transcription
factor Sp1 to the MYCN promoter region (30).

Transcriptome profiling of frozen human liver tissues using
microarray showed that MYCN gene expression was low in
healthy livers, cirrhotic livers, and adjacent non-tumorous liver
tissue, while it was dramatically increased in tumor tissues (17).
Project HOPE (High-tech Omics-based Patient Evaluation), a
clinical study aiming to provide multi-omics data of cancer
patients, showed the upregulation of MYCN gene expression in
tumor tissues compared to normal tissues in 22% of recruited
HCC patients (18). Our previous cohort studies in Japan (n =
102) and Europe (n = 50) confirmed an increase in MYCN gene
expression in HCC tumor regions as compared to non-tumor
regions (17). Importantly, in a long-term (>10 years) follow-up
study, MYCN gene expression in HCC tumors was significantly
higher in patients with recurrence than in those without
recurrence and was positively correlated with the de novo
recurrence of HCC with a single tumor but not with multiple
tumors (17). HCC recurrence at approximately 1–2 years after
resection was considered to be mainly due to de novo
carcinogenesis of liver CSCs or tumor-initiating cells (31).
MYCN gene expression in HCC was positively correlated with
the expression of liver CSC markers and Wnt/b-catenin
April 2021 | Volume 10 | Article 618515
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signaling markers, suggesting that MYCN expression is restricted
to CSC-like HCC (17). Consistently, MYCN expression marked
an EpCAM+ CSC-like subpopulation, which was selectively
dep le ted by acyc l i c re t ino id (ACR) , a promis ing
chemopreventive agent against the recurrence of HCC after
curative treatment (17, 32). EpCAM is a well-characterized
liver CSC marker and is a direct transcriptional target of Wnt/
b-catenin signaling (33). Similar to liver homeostasis, the
restricted MYCN expression in liver CSCs is probably related
to the activation of Wnt/b-catenin signaling. Furthermore, four
out of six liver biopsies of HCC patients (66.7%) who had
received 8 weeks of high-dose ACR treatment (600 mg/day),
but not low-dose ACR treatment (300 mg/day), after definitive
treatment showed decreasedMYCN gene expression (< 0.5-fold)
(17). In line with this, clinical studies showed that administration
of ACR at 600 mg/day, but not 300 mg/day, reduced HCC
recurrence after curative treatment (34). Collectively, MYCN
expression marked CSC-like subpopulations in heterogeneous
HCC and served as a potential therapeutic target and prognostic
marker for HCC.
REGULATION OF MYCN GENE
EXPRESSION BY TISSUE REPAIR
SIGNALS IN THE INFLAMMATORY
MICROENVIRONMENT OF LIVER CANCER

Activation of inflammatory signal transduction in the tumor
microenvironment is strongly linked to tumor initiation
and progression based on two mechanisms: tissue repair
and stress adaptation. Obesity-associated production of
inflammatory cytokines, such as interleukin-6 (IL-6) and
tumor necrosis factor-a (TNFa), induce repeated liver injury
and compensatory proliferation, which might lead to aberrant
stabilization and activation of “repair signals” such as signal
transducer and activator of transcription 3 (STAT3)-dependent
oncogenic signaling pathways and initiation and progression of
HCC (35–37). The involvement of hyperactivated IL-6-STAT3
signaling axis as a driver oncogenic mechanism in promoting cell
proliferation and suppressing antitumor immune response in the
background of tumor microenvironment has been reported in
several cancers (38). STAT3 directly mediates the initiation of
MYCN transcription in neuroblastoma cells (39). Inhibition of
STAT3 with antisense oligonucleotide or pharmacological
inhibitors reduced MYCN gene expression and decreased
neuroblastoma tumorigenicity in preclinical mouse models (39,
40). During early hepatocarcinogenesis, STAT3 activated by
paracrine IL-6 produced by inflammatory cells, might directly
bind to the promoter and upregulate the gene and protein
expression of CD133, a well-defined liver CSC marker
representing a specialized subpopulation of highly tumorigenic
cells with high MYCN expression (17, 41, 42). Inhibition of
STAT3 with sorafenib, the first-line recommended therapy for
patients with advanced HCC, decreased CD133 levels and
suppressed in vivo tumorigenicity by eradicating the liver
Frontiers in Oncology | www.frontiersin.org 388
tumor microenvironment (41). Of note, a recent proteomics-
based pathway analysis showed that sorafenib inactivated
downstream signaling of MYCN in HCC cells (43). In
addition, growth factors such as EGF induced by inflammatory
cytokines contribute to the upregulation of MYCN gene
expression in an inflammatory microenvironment (30). Nerve
growth factor (NGF) is expressed by hepatocytes during fibrotic
liver injury (44). In MYCN-amplified neuroblastoma cells, NGF
suppressed MYCN gene expression through mitogen-activated
protein kinase signaling pathways (45). In contrast, a global
transcriptome analysis showed reduced MYCN gene expression
in NGF-deprived sympathetic neurons (46). It is unclear whether
NGF directly regulates MYCN gene expression in normal livers
and HCC cells.
REGULATION OF MYCN GENE
EXPRESSION BY LIPID DESATURATION-
MEDIATED STRESS ADAPTATION
SIGNALS IN THE INFLAMMATORY
MICROENVIRONMENT OF LIVER CANCER

The cell membrane serves as the barrier between life and death for
individual cells and the first line of defense in response to
environmental stress. In addition to their function as energy
storage sources or as building blocks of membranes, membrane
lipids have attracted much attention as biologically active molecules.
They regulate the formation of membrane assembly of signal
complexes by either binding to cognate receptors or recruiting
proteins from the cytosol and coordinating signal transduction (47).
Membrane lipids are highly diverse in chemical structures, varying
in the desaturation and chain elongation of fatty acyl chains,
backbones (such as glycerol, sphingoid base, and cholesterol), and
head group substituents. Changes in membrane lipid composition
affect membrane physical properties, as observed in mammalian
cells in response to environmental stimuli (47). For example,
macrophages rapidly reprogram their lipid metabolism, especially
de novo cholesterol biosynthesis (48, 49) and desaturated fatty acid
biosynthesis (50), for appropriate inflammatory and host defense
functions in response to diverse inflammatory signals. Under
inflammatory conditions, the fatty acid synthetic enzyme fatty
acid synthase, reshapes macrophage lipid homeostasis for the
assembly of cholesterol-dependent inflammatory signals such as
Rho GTPase at the plasma membrane (51). In contrast, lipid
desaturases such as stearoyl-CoA desaturase (SCD1) and fatty
acid desaturase (FADS) were induced to inhibit the inflammatory
responses through the production of anti-inflammatory omega-3
polyunsaturated fatty acids or disruption of membrane signaling
complexes associated with lipid rafts, also known as membrane
microdomains, which are enriched with saturated sphingolipids and
cholesterol (52). Importantly, lipid reprograming, especially the
upregulation of unsaturated fatty acids, has recently been
recognized as a critical feature of stem cell maintenance under
both physiological and abnormal conditions (53, 54). Our previous
proteome andmetabolome analyses demonstrated that highMYCN
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expression in liver CSCs was characterized by increased expression
of lipid desaturases such as SCD1 and FADS and elevated levels of
monounsaturated fatty acids such as palmitoleic acid and oleic acid
in comparison to non-CSC HCC cells (55, 56). In addition to the
upstream regulatory role of MYCN in lipid metabolism
reprograming of cancer cells [reviewed in (57)], inhibition of lipid
desaturation using both genetic and pharmacological approaches
against SCD1 reduced MYCN gene expression and selectively
suppressed the proliferation of high MYCN-expressing HCC cells,
suggesting a direct regulatory role of lipid desaturation on MYCN
transcription (56). Genome-wide transcriptome analysis using
RNA-seq showed that ER stress-related signaling pathways were
regulated upon siRNA knock-down of SCD1 but notMYCN in high
MYCN-expressing HCC cells (56). Further, mechanistic studies
showed that inhibition of lipid desaturation resulted in activation of
ER stress signaling pathways, such as the expression of the
transcription suppressor, cyclic AMP-dependent transcription
factor 3 (ATF3), which reversibly regulates MYCN gene
expression in high MYCN-expressing CSC-like HCC cells, CSC-
rich spheroids, and in clinical HCC tissues (56).

ER stress response, also known as unfolded protein response
(UPR), is activated as a cell-defensive mechanism triggered by
multiple stress factors and plays a critical role in the switch
between cell survival and cell death. Evading ER stress-induced
apoptosis and differentiation is critical for the maintenance of long-
living and self-renewing stem cells under both normal and
malignant conditions (58–60). Therefore, modulation of ER
stress-induced loss of stemness represents a potential therapeutic
strategy for cancers and chronic inflammatory diseases (61, 62). In
line with this, pharmacological targeting of SCD1 achieved
remarkable therapeutic outcomes in glioblastoma and liver cancer
by triggering ER stress-mediated apoptosis and differentiation of
CSCs (63, 64). Mechanistically, enhanced levels of unsaturated fatty
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acids in CSCs could suppress ER stress by preventing saturated fatty
acid-induced calcium accumulation, oxidative stress, or detrimental
stiffening of the ER and plasma membrane (65–68). Collectively,
under lipid-rich inflammatory conditions, both repair signals and
stress adaptation signals contribute to the upregulation of MYCN
gene expression (Figure 1). Inflammatory cytokine-induced
chronic injury leads to the activation of repair signals, which
triggers downstream MYCN gene expression and compensatory
proliferation. In contrast, lipid desaturation-mediated membrane
reprogramming reduces or counteracts the formation of membrane
assembly of stress signal complexes and enables CSCs to survive and
evade ER stress-induced apoptosis/differentiation. We propose that
the stress adaption mechanism in long-living CSC-like cells
contributes to tumorigenesis such as through accumulation of
mutations in the survived cells, which is accompanied by the
increase of MYCN gene expression.
POST-TRANSCRIPTIONAL CONTROL OF
MYCN GENE EXPRESSION BY MIRNAS IN
LIVER CANCER

miRNAs are evolutionarily conserved small non-coding RNAs of
approximately 22 nucleotides in length that modulate gene
expression by complementary base pairing with the 3’-
untranslated regions (3’-UTRs) of messenger RNAs [reviewed
in (69)]. An essential feature of miRNA-based gene regulation is
that a single miRNA can recognize numerous mRNAs and,
conversely, a target mRNA can be recognized by several
miRNAs. A large number of studies have reported the key role
of these posttranscriptional regulators in the control of various
cellular processes and human diseases (70). In cancer, aberrant
FIGURE 1 | Tissue repair and stress adaptation signal-based control of MYCN gene expression in the inflammatory microenvironment of liver cancer. Under lipid-
rich inflammatory conditions, inflammatory cytokines-induced chronic injury leads to the activation of repair signals such as mitogenic signals resulting in
compensatory proliferation, thereby triggering downstream MYCN gene expression. In contrast, lipid desaturation-mediated membrane reprogramming reduces or
counteracts the formation of membrane assembly of stress signal complexes and enables the CSCs to survive and evade ER stress-induced apoptosis/
differentiation, which leads to the rescue of MYCN gene expression and initiates tumorigenesis by accumulation of mutations in long-living CSCs.
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expression of miRNAs has been well described and is associated
with the deregulation of critical genes involved in tumor
progression (71). Indeed, cancer-related miRNAs can act as
oncogenes (called oncomirs) or tumor-suppressors, depending
on their targets, and promote or negatively influence tumor
growth, invasion, and/or drug resistance, respectively (72).
Specific miRNA profiles have been identified in neuroblastoma,
which reflect different subtypes of tumors and correlate with the
advancement of the disease or its prognosis [reviewed in (73)]. In
this malignancy, numerousMYCN-targeting miRNAs have been
identified. Loss of miR-34a at chromosome band 1p36, a region
frequently deleted due to loss of heterozygosity in neuroblastoma
cells (74), is associated withMYCN amplification and promotion
of tumor aggressiveness (75). Thus far, several additional
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miRNA/MYCN regulatory axes have been characterized. In a
model of MYCN-amplified neuroblastoma cells, experimental
overexpression of miR-101 and let-7e induced a decrease in
MYCN protein levels and inhibited cell growth via the direct
regulation of MYCN (76, 77). In another interesting study by
Neviani and colleagues, the tumor-suppressor miR-186 was
detected in natural killer cell-derived exosomes, which
exhibited cytotoxicity against neuroblastoma cells with high
MYCN levels (78). The authors showed that MYCN expression
was directly inhibited by miR-186. In addition, the targeted
delivery of miR-186 to MYCN-amplified neuroblastoma cells
or natural killer cells resulted in significant tumor growth
inhibition. A recent study based on the modeling of miRNA-
mRNA interactions identified a regulatory loop between MYCN
FIGURE 2 | miRNA-based control of MYCN gene expression in liver cancer. miRNA biogenesis is a multistep process. Following transcription by RNA polymerase II,
primary precursor miRNAs (pri-miRNAs) are cleaved into precursor miRNAs (pre-miRNAs) by the RNase III enzyme Drosha and exported out of the nucleus to
produce mature miRNAs. Subsequently, mature miRNAs are loaded onto the RNA-induced silencing complex (RISC) and directed to the 3’-UTR of target mRNAs.
Here, we propose the miRNA/MYCN regulatory network model, in which the tumor-suppressor miR-493-5p and the ATRA-stimulated miRNAs modulate MYCN
expression and impede HCC progression.
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and miR-204 in neuroblastoma cells (79). The authors showed
that miR-204 directly targeted MYCN mRNA and decreased
its protein levels. In contrast, MYCN was able to bind to the
promoter of miR-204 and inhibit the expression of the miRNA.
Remarkably, the capability of MYCN to activate the expression
of critical oncomirs, such as miR-221, miR-9, or the miR-17-92
cluster, has also been observed in neuroblastoma cells and other
types of solid tumor cells (80).

A plethora of studies have described the functional
interconnection between miRNAs and MYCN in neuroblastoma.
However, little is known about the miRNAs involved in the
posttranscriptional regulation of MYCN in liver cancer. The
aberrant expression of miRNAs is a typical hallmark of
hepatocarcinogenesis and tumor progression (81). We previously
demonstrated that maternally expressed 3 (MEG3)-derived miR-
493-5p tumor-suppressor was epigenetically silenced by CpG
hypermethylation in HCC cells and tumor tissues from patients
(82). Experimental overexpression of miR-493-5p promoted an
anti-cancer response by inhibiting HCC cell growth and invasion,
in part, through the negative regulation of insulin-like growth factor
2 (IGF2) and the IGF2-derived intronic oncomir miR-483-3p. More
recently, our group highlighted MYCN as another major target of
miR-493-5p using global gene expression analysis of liver cancer
cells with restored expression of miR-493-5p (83). More precisely,
real-time qPCR data showed an inverse and significant correlation
between miR-493-5p andMYCN expression levels in the tumors of
patients with advanced HCC. A dual-luciferase reporter activity
assay validated miR-493-5p-mediated inhibition of MYCN via the
targeting of two distinct regions in the MYCN 3’-UTR (Figure 2).
To the best of our knowledge, no additional miRNA interacting
directly withMYCNmRNA has been described in liver cancer thus
far. However, in a study based on big data mining and connectivity
map analysis, Xiong et al. uncovered the existence of a potential
hsa_circRNA_104515/hsa-miR-142-5p/MYCN regulatory axis in
HCC (84). In agreement with this finding, we found that
TargetScanHuman predicted an exact consequential pairing of the
MYCN 3’-UTR with positions 2-8 (7mer-m8) of mature miR-142-
5p (Figure S1F). Interestingly, two reports described
downregulation of miR-142-5p in liver cancer cells and showed
that forced expression of miR-142-5p inhibited HCC cell growth
and invasion (85, 86). Taken together, these data strongly suggest
the tumor-suppressive role of miR-142-5p through post-
transcriptional control of MYCN and its therapeutic potential in
liver cancer. Finally, recent studies showed that all-trans retinoic
acid (ATRA), which is an isomer of retinoic acid, was able to
modulate the expression of more than 300 miRNAs and inhibit the
growth of various types of tumor cells (87). Among the miRNAs
upregulated after ATRA treatment, miR-34a-5p, miR-103a-3p,
miR-200b/c-3p, miR-302-3p, and members of the let-7 family
appeared appealing given their potential ability to target the
MYCN 3’-UTR as predicted by TargetScanHuman 7.2 (Figure
S1F). While the tumor-suppressor feature of the let-7 family
members has been well-documented, further investigations will be
required to evaluate the beneficial role of ATRA-stimulated
miRNAs in HCC, since some of these miRNAs may also exhibit
oncogenic activity.
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CONCLUSIONS

Mature hepatocytes exhibit remarkable plasticity by direct
dedifferentiation into an undifferentiated state in the tumor
microenvironment, which are believed to represent the cells of
origin for liver cancer (88). Since any cell has the potential to
become a CSC, the stemness of liver CSCs could be considered as
a dynamic state that can be acquired rather than a cell intrinsic
property of specialized existing cells [reviewed in (89)].MYCN gene is
overexpressed in restricted cell populations such as EpCAM+CSCs in
liver cancer, regardless of DNA amplification andmutation. Dynamic
MYCN gene expression is an integrated consequence of multiple
signals in the tumor microenvironment, including tumor stemness/
growth-promoting signals such as Wnt/b-catenin and IL-6-STAT3
signaling, lipid desaturation-mediated ER stress adaptation signals,
and tumor suppressive miRNAs. We propose that MYCN gene
expression might represent a potential predictive biomarker of
tumor stemness and plasticity. Hence, understanding and tracing
the dynamic changes and functions ofMYCN gene expression during
hepatic tumorigenesis will shed light on the origin of liver
tumorigenesis at the cellular level and the development of novel
therapeutic and diagnostic strategies for HCC treatment.
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Supplementary Figure 1 | Supporting data of MYCN gene expression in the
liver. (A) Overall survival Kaplan-Meier estimate of HCC patients with MYCN
overexpression (left) or amplification (right) according to TCGA database (TCGA,
PanCancer Atlas). (B) Correlation between MYCN gene expression and c-MYC
gene expression (left), MYCN gene expression and EpCAM gene expression
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(middle), and c-MYC gene expression and EpCAM gene expression (right) in human
HCC according to TCGA database (TCGA, PanCancer Atlas). (C) MYCN gene
expression pattern in human liver visualized using a web interface (http://human-
liver-cell-atlas.ie-freiburg.mpg.de/), which is based on the single cell RNA-seq data
published in (21). (D) Mycn gene expression in mouse liver zonation according to
the single cell RNA-seq data (GSE84498) published in (22). (E) Mycn gene
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expression in mouse primary hepatocyte isolated at 2, 30, 48 h or 1 w after partial
hepatectomy and at 2 h from sham control during liver regeneration. The data was
obtained from the CAGE-based transcriptome data published in Table S1 in (27).
(F) Prediction of miR-142-5p, miR-34a-5p, miR-103a-3p, miR-200b/c-3p, miR-
302-3p, and members of the let-7 family targeting MYCN 3’-UTR according to
TargetScanHuman (http://www.targetscan.org, release 7.2).
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Background: MYCN is an oncogenic transcription factor of the MYC family and plays an
important role in the formation of tissues and organs during development before birth. Due
to the difficulty in drugging MYCN directly, revealing the molecules in MYCN regulatory
networks will help to identify effective therapeutic targets.

Methods: We utilized network controllability theory, a recent developed powerful tool, to
identify the potential drug target around MYCN based on Protein-Protein interaction
network of MYCN. First, we constructed a Protein-Protein interaction network of MYCN
based on public databases. Second, network control analysis was applied on network to
identify driver genes and indispensable genes of the MYCN regulatory network. Finally, we
developed a novel integrated approach to identify potential drug targets for regulating the
function of the MYCN regulatory network.

Results: We constructed an MYCN regulatory network that has 79 genes and 129
interactions. Based on network controllability theory, we analyzed driver genes which
capable to fully control the network. We found 10 indispensable genes whose alternation
will significantly change the regulatory pathways of the MYCN network. We evaluated the
stability and correlation analysis of these genes and found EGFRmay be the potential drug
target which closely associated with MYCN.

Conclusion: Together, our findings indicate that EGFR plays an important role in the
regulatory network and pathways of MYCN and therefore may represent an attractive
therapeutic target for cancer treatment.

Keywords: PPI network, MYCN, potential targets, network controllability, EGFR
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INTRODUCTION

The MYC proto-oncogene family consists of three paralogs: c-
MYC, MYCN, and MYCL (1, 2). Abnormal MYC regulation can
lead to increased cell proliferation and growth, MYC family
members are the dysregulation of MYC family is common in
cancer (2). The MYCN cancer gene in the MYC family is a
structurally and functionally similar fragment of MYC discovered
by Schwab (3) in 1983. It acts to promote cell proliferation, and
inhibit cell differentiation, apoptosis, or programmed cell death
(4–6). Existing researches suggest that MYCN plays a key role in
cell proliferation and cell growth during embryonic development
(7) and it is associated with a number of childhood-onset tumors,
including neuroblastoma, medulloblastoma, rhabdomyosarcoma,
glioblastoma multiform, retinoblastoma, astrocytoma,
hematologic malignancies, and small-cell lung cancer (8, 9), as
well as some adult cancers such as prostate and lung cancer (10,
11). Despite the proven importance of MYCN, which has very
promising therapeutic potential, how to directly target MYCN
remains an open question. There is no better method to target
MYCN directly in existing research (9), but we can still target
MYCN indirectly by targeting molecules that interact directly
with MYCN to control MYCN activity (9, 12–19). Thus, the
problem of targetingMYCN can be translated into the study of the
MYCN regulatory network of its interactions.

Recently, network controllability theory has made remarkable
achievements in analyzing biological networks, such as Protein-
Protein Interaction (PPI) network (20–24), brain network (25, 26)
and disease-related networks (27, 28). Ryouji (20) applied network
controllability theory on breast cancer gene expression networks,
and designed a novel method to identify a set of critical control
proteins that uniquely and structurally control the entire
proteome. Wu (29) determined minimum dominating sets of
proteins (MDSets) in human and yeast protein interaction
networks and found that MDSet proteins were enriched with
essential, cancer-related, and virus-targeted genes. Guo (30)
developed an algorithm for identifying steering nodes to a gene
regulatory network related to type 1 diabetes and they found that
FASLG and CD80 are steering nodes for controlling the target
nodes related to type 1 diabetes and supported by wet experiments.

In the view of control theory, drug targets in a biological
network can be interpreted as a steering node. By applying an
extra signal to this set of guide nodes, the network is expected to
be steered to the desired state. In other words, for a biological
system with an abnormal state, if some biomolecules affect other
biomolecules by extra perturbations and steer the system towards
a healthy state, these perturbed biomolecules can be considered
potential drug targets. Thus, the problem of identifying drug
targets can be mapped to the problem of finding a set of steering
nodes in a network system. By applying a control signal to these
nodes, the states of the network are expected to transition
between the healthy state and the disease state.

Here, we utilized network controllability theory (31–36) to
analyze the protein-protein interaction (PPI) network of MYCN.
We identified possible potential drug targets of the MYCN
regulatory network and evaluated the importance of these
potential targets with several existing databases. The results
Frontiers in Oncology | www.frontiersin.org 296
showed that network controllability theory may provide new
ideas to reveal the function of MYCN and target MCYN, which is
of great importance and application prospect.
METHODS

Network Controllability
Consider a linear time-invariant networked system, the
dynamics of the process can be described as follows:

dx tð Þ
dt

= Ax tð Þ + Bu tð Þ (1)

Where vector x(t) = (x1(t),…,xN(t))
T represents the system

state vector of N nodes at time t; matrix A is a state parameter
describing the components of the system; matrix B of N*M(M≥N)
is the input matrix from which the controlled node is identified by
the external controller. Vector u(t)=(u1(t),…,uM(t))

T represents
the input vector of M nodes at the time t and the controller
uses the input vector u(t) to control the entire system and a single
control signal ui(t) can typically drive multiple nodes.

According to the Kalman rank condition (31, 37):

C = B,AB, A2B,…,AN−1B
� �

rank Cð Þ = N

The system is controllable if and only if the N*NMmatrix C=
(B,AB,A2B,…,AN–1B) is full rank, and the system can drive any
initial state to any final state in a finite time. Based on this theory,
Lin (33) proposed the theory of structural controllability, in
which the state matrix A and the control matrix B can be
regarded as a structured matrix, and if there are matrices A
and B with non-zero weights that make the Kalman criterion
hold, then for the way of combining different weights in matrices
A and B, the system is almost always controllable except for the
all-zero state and some special cases. On this basis, researchers in
the field of network control (32, 34) have transformed the
problem of least external input to a directed network into a
problem of calculating the maximum matching for that network,
as shown in Figure 1. For a directed network, a maximum
matching is a set of maximal edges that do not share the starting
and ending node, while nodes that do not have matching edges
pointing to them are driver nodes. In contrast, the driver nodes
computed by maximum matching is called minimum set of
driver nodes (MDS). Since the maximum matching is often not
unique for the same network, it is often possible to obtain
multiple different MDS for the same network (38–41). In this
case, we can analyze the nodes in different MDS and thus assess
the importance of the nodes.
Node Classification Based
on Network Controllability
This method measures the nodes in different MDS and considers
the importance of the nodes in the whole network. For a
network, MDS can be obtained by using the maximum
April 2021 | Volume 11 | Article 633579
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matching method (34) and the type of node can be determined
by the size of MDS after this node removing from the network.
A node is indispensable if the size of MDS decreases after
removing the node from the network. A node is dispensable if
the size of MDS increases after removing the node from the
network. A node is neutral if the size of MDS do not change after
removing the node from the network. The simple network (Figure
2A) has two different maximum matching (Figure 2B), and the
size of original MDS is 2. The size of the MDS will change when
the nodes in this network are removed and the size of MDS after
different nodes removed are shown in Figures 2C–F.

In this simple network, the removal of node 1 does not change
the MDS size of the network, as defined in the classification that
node 1 is a neutral node. While the removal of node 2 increases
the MDS size, and node 2 is an indispensable node. Similarly,
node 3 and node 4 are dispensable nodes. The classification result
of MYCN regulatory network is shown in Figure 3B.

Source of Data Sets
The Cancer Genome atlas (TCGA, https://tcga-data.nci.nih.gov/
tcga), a project initiated jointly by the National Cancer Institute
(NCI) and the National Genome Research Institute (NHGRI).
Utilize large scale sequencing based genomic analysis techniques
to finalize a complete set of mapping associated with all cancer
genomic alterations. To date, TCGA has been tested in over
10,000 human samples with whole cancers. We selected
PanCancer Atlas Studies as our data set from TCGA for
validating the results of the method, which included 32
different cancers with 10,967 samples. Survival analysis is
provided by Cbioportal (www.cbioportal.org), it supports the
use of custom data and provides researchers with an interactive
interface to discover associations between genetic alterations and
the clinic, and the data source for Cbioportal is TCGA. Co-
expression and pathway analysis is also provided by Cbioportal,
whose pathway data are provided by TCGA research and the
TCGA PanCanAtlas project (42–50). These pathways have been
rigorously extrapolated and validated and are published, which is
Frontiers in Oncology | www.frontiersin.org 397
of great biological significance and very important for the
analysis of disease or gene interaction mechanisms.

Data sets of drug targets provided by Behan et al.’s work (51),
they used genome-scale CRISPR–Cas9 screens in 324 human
cancer cell lines from 30 cancer types and developed a data-
driven framework to prioritize candidates for cancer therapeutics.
RESULTS

Control Analysis of Human Protein-Protein
Interaction Network
Consider a Protein-Protein interactions (PPI) network, a node of
the network represents a protein and the interactions between
proteins are the edges of the network. We used human binary
protein interactions (HuRI) (52), a Protein interaction database
which is the largest human protein interactome data to date. The
protein-protein interaction in the network is of paramount
importance both for understanding the underlying biological
processes and for understanding disease occurrence. In addition,
we have combined the protein-protein interactions provided by
other databases (53–57) to form a more comprehensive network.
The specific data sources are shown in Figure 2A.

The result of the PPI network consists of 11,584 proteins and
76,434 interactions. The average degree of the network is 13.2 and
the diameter of the network is 24. To analyze the control properties
of the PPI network, we used the maximum matching method to
compute the Minimum Driver nodes Set (MDS) in the network.
Although the MDSs are not unique for the PPI network, but the
size of all MDSs is same and determined by the network topology.
In the PPI network, there are 5436 (46.93%) driver proteins which
composed of the MDS of the PPI network. It means that to fully
control the PPI network, we need to control nearly half of the
proteins in the network. Therefore, the MDS did not provide much
information for identifying potential drug target of the network.

Furthermore, We used a control classification method (21) to
divide the proteins into three types: indispensable, dispensable,
A B

FIGURE 1 | Control of the network system. (A) Controllability of a network through the controllability matrix; (B) Controllability of a network through the maximum matching.
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and neutral proteins. This node classification is based on the size
changes of MDS after removing the node from the network.
A node is indispensable if the size of MDS decreases after
removing the node from the network. A node is dispensable if
the size of MDS increases after removing the node from the
network. A node is neutral if the size of MDS do not change after
removing the node from the network. An example network is
shown in Figure 2. For the PPI network, a total of 1710 (15%)
proteins are indispensable, 5218 (44%) proteins are dispensable
nodes and 4749 (41%) proteins are neutral. We found the
average degree of the indispensable nodes is much higher than
the other class nodes, which means the selected indispensable
proteins have more interactions and are more closely related to
other molecules than the other proteins in the network.
Control Analysis of MYCN Sub-Network
To find potential drug target of MYCN, we extracted the second-
order egocentric network of MYCN from the PPI network. The
MYCN-egocentric network includes the neighbor nodes that
Frontiers in Oncology | www.frontiersin.org 498
interact directly with MYCN and the neighbor nodes that
interact with the neighbors of MYCN. We used the second-
order egocentric network to analyze the MYCN network because
the goal of our analysis is to find molecules that can be targeted
among the direct or indirect interactions of MYCN, and the
nodes we selected should not be too far away from MYCN.
Figure 3 shows the result of control analysis of MYCN network.
The network consists of 79 nodes and 129 edges and the size of
MDS of MYCN network is 49 (62.03%). The number of
matching edges is 30 (23.26%) and the network diameter is 4.

By using the node classification method (21) based on
controllability analysis, we computed the control types of the
proteins in the MYCN network. As the same as the PPI network,
the average degree of the indispensable nodes is much higher than
the other type nodes in MYCN regulation network (Figure 3C).
However, the value of average degree is not involved in the
processing of the classification and the phenomenon is not
accidental or biased. For all the nodes in the MYCN regulatory
network, we found 10 (13%) nodes are indispensable, 21 (26%)
nodes are neutral nodes and 48 (61%) nodes are dispensable.
A

IH

K L

J

B

D E F

G

C

FIGURE 2 | Characterizing of the PPI network. (A) A simple network; (B) Two different maximum matching of (A); (C–F) The size of MDS after different node
removed; (G) Classification results of (A); (H) Classification results of PPI network; (I) Average degree of different type nodes in PPI network; (J) Percentages of
different types in PPI network; (K) Data source of PPI network; (L) Basic property of PPI network.
April 2021 | Volume 11 | Article 633579

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Pan et al. Control Analysis Network for MYCN
Table 1 showed the indispensable proteins and their topological
properties and associated diseases. Meanwhile, among these 10
indispensable nodes, MAX, AURKA, YEATS4, and NMI are the
nodes directly associated with MYCN, these proteins are present
in the first-order egocentric network of MYCN and have close
interactions with MYCN.

Functional Analysis of
Indispensable Proteins
To further investigate the biological significance of indispensable
genes in the MYCN network, we perform survival analysis of
indispensable genes base on the clinical data of The Cancer
Genome Atlas (TCGA) (69) included 32 different cancers with
10,967 samples. Here we used overall survival without disease-
specific for a gene, it can eliminate the survival differences in
certain diseases. By plotting the relationship between survival
months and surviving percentage, can obtain the differences in
survival for altered group and unaltered group. Figure 4 showed
the clinical survival of 10 indispensable genes. Among the ten
indispensable genes, EGFR and YEATS4 had a significant
difference between the altered group and the unaltered group,
which suggested that the mutation of these two genes will
significantly change the survival of patients. Clinical samples
and median survival Months are shown in Table 2. Considering
the differences in disease grade and treatment strategy, we also
Frontiers in Oncology | www.frontiersin.org 599
divided the sample into multiple groups for statistical analysis
(Supplement 2).

Furthermore, we performed pathway analysis for the
indispensable genes (42–50) based on Cbioportal (70). We
found that EGFR, MAX, MNT and SMAD3 are associations
with MYCN or MYC family in several pathways, as shown in
Figure 5. EGFR was indirectly associated with MYC activity in
ESAD-2017-RTK-RAS-PI(3)K-pathway and HNSC-2015-RTK-
RAS-PI(3)K-pathway by PIK3CA. MAX and MNT are
correlated with MYCN in the MYC-pathway, where MAX and
MYCN form the MYC/MAX complex, and MNT associated with
the MAX/MGA complex. The pathway analysis shows that the
indispensable genes computed by the network controllability
theory are precise and are directly or indirectly associated with
MYCN in different pathways.

Finally, we analyzed the indispensable node that are targeted
by the drugs. Based on the database of drug targets in 324 human
cancer cell lines from 30 cancer types (51), we found that EGFR
is an anti-cancer target in Squamous Cell Lung Carcinoma, Lung
Adenocarcinoma, Oral Cavity Carcinoma, Ovarian Carcinoma,
Head and Neck Carcinoma and Esophagus. It has a high priority
and has a class B biomarker, making it a more desirable target.
EGFR has at least one drug that has been developed for the
cancer type in which the target was identified as a priority. In
relation to our research of the MYCN regulatory network, EGFR
A

B D

C

FIGURE 3 | Characterizing of MYCN regulatory network. (A) Topological statistics of MYCN regulatory network; (B) Node classification of MYCN network; (C) Average
degree of different type of nodes; (D) Percentages of different types in MYCN network.
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may be the potential drug target which closely associated
with MYCN.

Overall, based on the survival analysis, cancer pathway and
drug targets analysis of indispensable genes, it is clear that the
indispensable genes have a significant role in the MYCN
regulatory network. The indispensable genes are directly
associated with cancers, especially EGFR, MAX, MNT,
SMAD3. EGFR is also a drug target that has already been
developed and is considered to be the most promising
potential target in the MYCN regulatory network.
Indispensable Proteins in Brain Lower
Grade Glioma
To further validate the biological significance of indispensable
genes, in this section, we verified the effectiveness of our results
with the specific-diseases. For the choice of specific-diseases, we
should select a disease that is associated with MYCN, to analyze
the survival of indispensable genes and the co-expression
relationship with MYCN. Due to MYCN plays a key role in
cell proliferation and cell growth during embryonic development
(7) and it is often associated with a number of childhood-onset
tumors, here we combined Brain Lower Grade Glioma to show
the results of analysis. The survival curves for indispensable
genes for Brain Lower Grade Glioma are shown in Figure 6. And
the co-expression correlation between indispensable genes and
MYCN of Brain Lower Grade Glioma are shown in Table 3. We
found that BANP, NME1, YEATS4, and EGFR, have relatively
significant Spearman’s Correlation with MYCN. Among them,
YEATS4 has been shown in existing studies to have a direct
interaction with MYCN (53–57). Although there are no direct
association between three other genes and MYCN in existing
studies, from the co-expression of Brain Lower Grade Glioma, it
is possible that had correlation between them.
DISCUSSION

MYCN plays an important role in many diseases and cancers (2,
7–11), in-depth understanding of the role of MYCN has a great
Frontiers in Oncology | www.frontiersin.org 6100
significance and application prospect. However, MYCN is difficult
to directly target and design therapeutic strategies in existing
research (9). Therefore, we hope to find potential targets around
the MYCN regulatory network and regulate MYCN indirectly by
controlling the potential targets. By using network controllability
method (21), we found ten indispensable genes in the MYCN
regulatory network. Through the pathway, survival, drug target
analysis, we found that the indispensable genes, especially EGFR,
play an important role in MYCN regulatory networks.

To validate the biological significance of indispensable genes,
especially EGFR, we calculated the correlation between the 10
indispensable genes and MYCN using the TCGA dataset
(Supplement 1). For the 33 cancers proposed by TCGA, we
analyzed spearman’s correlation, p-value (2-sided t-test), and q-
value (Benjamini-Hochberg FDR correction) of MYCN with
indispensable genes in expression in different diseases
sequentially. Our core target EGFR had significant positive
correlation results in Thymoma, Kidney Chromophobe, Diffuse
Large B-Cell Lymphoma, Brain Lower Grade Glioma, and Skin
Cutaneous Melanoma. All other indispensable genes also had a
significant co-expression results with MYCN in specific diseases,
this is concur with the results of existing studies. For the ten
potential targets we obtained, MAX, AURKA, YEATS4 and NMI
are directly associated with MYCN. MAX and AURKA in
particular have been rigorously argued to be tightly associated
with MYCN activity (71). For the other 6 potential targets, they
are indirectly connected to MYCN. Although current research of
these genes hasn’t a direct interaction with MYCN, in the theory
of network control when this type of node changes, it can alter
the features of network and affect the state of MYCN result in
indirectly target MYCN. Among them, EGFR, MNT, and
SMAD3 are all directly or indirectly associated with the
MYCN or MYC families in different pathway. EGFR, in
particular, is not only significantly different between the altered
and unaltered groups in clinical survival data, but also a molecule
that can already be drug-targeted (51).

As the driving gene of many kinds of tumors, EGFR plays an
important role in promoting the malignant progression of tumors
(60). Its role in non-small cell lung cancer, glioblastoma and basal-
like breast cancers has spurred many research and drug
development efforts. Tyrosine kinase inhibitors have shown
TABLE 1 | Indispensable genes in MYCN regulatory network.

symbol Full name Indegree Outdegree Diseases associated

AURKA (58) Aurora Kinase A 1 6 Colorectal Cancer/Colorectal Adenocarcinoma.
BANP (59) BTG3 Associated Nuclear Protein 3 1 Keratoconus/Brittle Cornea Syndrome 2
EGFR (60) Epidermal Growth Factor Receptor 4 2 Inflammatory Skin/Bowel Disease, Neonatal, 2/Lung Cancer
FTH1 (61) Ferritin Heavy Chain 1 2 1 Hemochromatosis/Type 5 and Superficial Siderosis Of The Central Nervous

System
MAX (62) MYC Associated Factor X 8 18 Pheochromocytoma/Hereditary Paraganglioma-Pheochromocytoma

Syndromes
MNT (63) MAX Network Transcriptional Repressor 1 2 Tetanus Neonatorum/Mixed Type Thymoma
NME1 (64) NME/NM23 Nucleoside Diphosphate

Kinase 1
2 1 Anal Canal Carcinoma/Larynx Cancer

NMI (65, 66) N-Myc And STAT Interactor 11 34 –

SMAD3 (67) SMAD Family Member 3 3 1 Loeys-Dietz Syndrome 3/Familial Thoracic Aortic Aneurysm And Aortic
Dissection

YEATS4 (68) YEATS Domain Containing 4 1 5 Cellular Myxoid Liposarcoma/Pleomorphic Liposarcoma
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efficacy in EGFR amplified tumors, most notably gefitinib and
erlotinib. But the mutations in EGFR have been shown to confer
resistance to these drugs, particularly the variant T790M, which
has been functionally characterized as a resistance marker for both
of these drugs. The later generation TKI’s have seen some success
Frontiers in Oncology | www.frontiersin.org 7101
in treating these resistant cases, and targeted sequencing of the
EGFR locus has become a common practice in treatment of non-
small cell lung cancer (72–74). Therefore, we consider EGFR to be
the most promising potential target among these indispensable
genes (Supplement 2).
FIGURE 4 | Survival curve of 10 indispensable genes. 10 plots correspond to different indispensable genes, here we chose overall survival data rather than disease-
specific survival data.
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Meanwhile, referring to the biological properties of MYCN
(7, 75) (Supplement 2), we selected Brain Lower Grade Glioma to
validating indispensable genes. Among them, BANP, NME1,
YEATS4, and EGFR, have relatively significant Spearman’s
Correlation with MYCN. It is worth noting that NMI has a high
Frontiers in Oncology | www.frontiersin.org 8102
negative correlation with MYCN. Due to the algorithm views the
biological network as an abstract network structure in isolation
from the specific biological constraints, this algorithm without
specific biological constraints is able to filter out genes with high
correlation (positive and negative), not just positive correlation.
And NMI as an interactor of MYCN, has a high absolute value of
correlation with MYCN in the network, which is consistent with
the algorithm results. For EGFR, which we considered the most
potentially target, there were more significant results in Brain
Lower Grade Glioma, both in the co-expression and survival.

Each cancer is extremely complex and different networks will
come with different results. In this study, we chose pan-cancer
data to construct a more comprehensive network to predict
potential targets for MYCN in terms of overall relationships, and
A

B C

FIGURE 5 | Cancer pathway of indispensable genes. (A–C) are the pathways that EGFR, MAX, MNT, SMAD3 associated with MYCN or MYC, respectively.
TABLE 2 | Clinical samples of indispensable genes.

Id Name Type Number of
Cases,
Total

Number of
Cases,

Deceased

Median
Months
Overall

1 AURKA Altered group 233 77 80.74
Unaltered group 10569 3437 78.97

2 BANP Altered group 237 69 120.62
Unaltered group 10565 3445 78.67

3 EGFR Altered group 812 460 24.3
Unaltered group 9990 3054 85.08

4 FTH1 Altered group 87 27 88.11
Unaltered group 10715 3487 78.9

5 MAX Altered group 99 32 89.72
Unaltered group 10703 3482 78.97

6 MNT Altered group 147 41 74.93
Unaltered group 10655 3473 78.97

7 NME1 Altered group 153 42 105.04
Unaltered group 10649 3472 78.67

8 NMI Altered group 102 30 83.57
Unaltered group 10700 3484 78.97

9 SMAD3 Altered group 175 48 156.49
Unaltered group 10627 3466 78.67

10 YEATS4 Altered group 318 141 49.05
Unaltered group 10483 3373 80.48
TABLE 3 | Co-expression correlation between indispensable genes and MYCN
of Brain Lower Grade Glioma.

Name Spearman’s Correlation p_value q_value

EGFR 0.274 2.83E-10 1.29E-09
AURKA 0.137 1.913E-3 3.532E-3
BANP 0.26 2.25E-09 9.14E-09
FTH1 -0.282 7.77E-11 3.78E-10
MAX 0.085 0.054 0.0775
MNT 0.161 2.418E-4 5.084E-4
NME1 0.29 1.96E-11 1.02E-10
NMI -0.3 3.72E-12 2.11E-11
SMAD3 0.0736 0.0954 0.13
YEATS4 0.361 3.02E-17 3.14E-16
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finally verified the effect of indispensable genes combined with
specific-diseases. The theory of network controllability bring a
new view and theoretical framework to the analysis of regulatory
networks. However, the composition of nodes and edges will
impact the accuracy of the results. Therefore, it is still a challenge
to accurate construction of the initial network and find the exact
target network from a large amount of data and specific-diseases.
Frontiers in Oncology | www.frontiersin.org 9103
This is a new methodological trying to identify potential targets,
and after the network control framework analysis, how to design
wet experiments to further verify the analysis results is also one
of our subsequent concerns.

Overall, the method of network controllability in this paper is
able to screen potential targets against MYCN and our findings
indicate that EGFR plays an important role in the MYCN
FIGURE 6 | Survival curve of 10 indispensable genes of Brain Lower Grade Glioma. 10 plots are the survival curves of different indispensable genes and Brain
Lower Grade Glioma respectively.
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regulatory network. In the future, experimental evidence to support
the above regulatory relationship will be further provided through
in vitro and in vivo experimental systems, so as to promote the
identification and discovery of potential new regulatory targets.
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MYCN gene amplification and upregulated expression are major hallmarks in the
progression of high-risk neuroblastoma. MYCN expression and function in modulating
gene synthesis in neuroblastoma is controlled at virtually every level, including poorly
understood regulation at the post-transcriptional level. MYCN modulates the expression of
various microRNAs including the miR-17-92 cluster. MYCN mRNA expression itself is
subjected to the control by miRNAs, most prominently the miR-17-92 cluster that balances
MYCN expression by feed-back regulation. This homeostasis seems disturbed in
neuroblastoma where MYCN upregulation coincides with severely increased expression
of the miR-17-92 cluster. In the presented study, we applied high-throughput next
generation sequencing to unravel the miRNome in a cohort of 97 neuroblastomas,
representing all clinical stages. Aiming to reveal the MYCN-dependent miRNome, we
evaluate miRNA expression inMYCN-amplified as well as none amplified tumor samples. In
correlation with survival data analysis of differentially expressed miRNAs, we present
various putative oncogenic as well as tumor suppressive miRNAs in neuroblastoma.
Using microRNA trapping by RNA affinity purification, we provide a comprehensive view
of MYCN-regulatory miRNAs in neuroblastoma-derived cells, confirming a pivotal role of
the miR-17-92 cluster and moderate association by the let-7 miRNA family. Attempting to
decipher how MYCN expression escapes elevated expression of inhibitory miRNAs, we
present evidence that RNA-binding proteins like the IGF2 mRNA binding protein 1 reduce
miRNA-directed downregulation of MYCN in neuroblastoma. Our findings emphasize the
potency of post-transcriptional regulation of MYCN in neuroblastoma and unravel new
avenues to pursue inhibition of this potent oncogene.

Keywords: microRNAs, MYCN, IGF2BP1, mir-17-92 cluster, diagnostic marker, neuroblastoma, pediatric cancer
INTRODUCTION

Neuroblastoma, the most common extracranial solid childhood tumor, originates from precursors
of the sympathetic nervous system and account for approximately 15% of all cancer-related death in
infants (1). The clinical presentation of neuroblastoma is remarkably heterogeneous in pathological,
genetic and biological characteristics, ranging from spontaneous regression or differentiation of the
tumor to a high-risk aggressive disease. Neuroblastoma is thought to arise from sympathoadrenal
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lineage precursor cells, derived from the neural crest. Most
frequently tumor initiation emanates from one of the adrenal
glands, but is also observed in the neck, chest, abdomen or along
the spine (2). Risk classification depends on several clinical and
biological factors, such as age at diagnosis, stage, histology and
genetic aberrations (2). Favorable neuroblastoma, in particular
clinical stage 4S neuroblastoma often undergo remission without
any therapy. In contrast, the clinical outcome of patients with
high-risk neuroblastoma stagnates despite many therapeutic
approaches like surgery, radiation, chemotherapy, stem cell
transplantation or immunotherapy (2). The 5-year survival rate
of high-risk patients is still under 50% and the treatment remains
challenging (3).

The MYCN oncogene is frequently amplified in high-risk
neuroblastoma and a known biomarker for disease stratification
(4). Amplification or severe upregulation results in a lower
survival probability and a more aggressive disease. Regulation
of MYCN mRNA is not fully understood, but post-
transcriptional regulation by microRNAs (miRNAs) seems to
be important (5, 6). Some MYCN-targeting miRNAs are
downregulated in neuroblastoma like for instance members of
the let-7 family. This, at least partially, is due to the increased
expression of LIN28B, which impairs let-7 biogenesis and
promotes neuroblastoma formation (7–9). Hence, it was
assumed that upregulated expression of MYCN protein is
supported by the overall downregulation of MYCN-inhibitory
miRNAs in neuroblastoma (10). However, various miRNAs
impairing MYCN expression, in particular members of the
miR-17-92 cluster are substantially transcriptionally activated
by MYC/MYCN protein and consequently co-upregulated with
MYC/MYCN in various malignancies. This suggests that this
negative feed-back regulation is at least partially uncoupled in
MYCN-amplified (MNA) neuroblastoma, either due to a miRNA
decoy function of the MYCN-3’UTR, proposed for the let-7a
miRNA (11), or by trans-acting factors like RNA-binding
proteins (RBPs). In respect of the latter, ELAVL4 (Embryonic
lethal, Abnormal Vision, Drosophila-Like 4) RNA-binding
protein (also termed HuD) and the IGF2 mRNA binding
protein 1 (IGF2BP1) are of immediate interest. ELAVL4 was
proposed to antagonize downregulation of MYCN expression by
miR-17 (12). Expression of the oncofetal IGF2BP1 is upregulated
in MNA neuroblastoma (13, 14), promotes MYCN protein and
RNA expression (13), and is considered a potent and conserved
inhibitor of miRNA-dependent downregulation of oncogenic
factors in cancer (15, 16).

In the presented study, we provide a comprehensive analysis
of miRNA expression in 97 neuroblastoma samples and reveal
signatures of significantly upregulated as well as decreased
miRNAs in MNA neuroblastoma. On the basis of miRNA
trapping by RNA affinity purification [miTRAP, (17)], we
confirm and report novel MYCN-regulatory miRNAs
expressed in MNA neuroblastoma as well as MYCN-driven
glioblastoma cell models. Finally, we evaluate if trans-acting
factors, in particular IGF2BP1 and ELAVL4, or a putative
miRNA decoy function of the MYCN-3’UTR uncouple
increased expression of MYCN-regulatory miRNAs in
Frontiers in Oncology | www.frontiersin.org 2108
neuroblastoma from elevated expression of MYCN protein.
Our findings provide strong evidence that enforced expression
of MYCN in MNA neuroblastoma essentially relies on IGF2BP1.
MATERIALS AND METHODS

Small RNA Library Construction, High-
Throughput Sequencing and Differential
Expression Analysis
Total RNA of neuroblastoma tumor samples [provided by
Cologne/Essen neuroblastoma tumor bank upon application,
as indicated in Bell et al. (13); for tumor information see
Supplementary Table 6] was extracted from 30 µg of primary
tumor tissue using the Qiagen ALLprep tumor protocol with
miRNeasy kits (Qiagen). 500 ng of total RNA was used in the
small RNA protocol with the TruSeq™ Small RNA sample
prepkit v2 (Illumina) according to the instructions of the
manufacturer. The barcoded libraries were size restricted
between 140 and 165 bp, purified and quantified using the
Library Quantification Kit–Illumina/Universal (KAPA
Biosystems) according to the instructions of the manufacturer.
A pool of 10 libraries was used for cluster generation at a
concentration of 10 nM using an Illumina cBot. Sequencing of
51 bp was performed with an IlluminaHighScan-SQ sequencer at
the sequencing core facility of the IZKF Leipzig (Faculty of
Medicine, University Leipzig) using version 3 chemistry and
flowcell according to the instructions of the manufacturer.
Demultiplexing of raw reads, adapter trimming and quality
filtering were done according to Stokowy et al. (18).
Unstranded single-end reads with 51 bp in length were
trimmed for adapter and low quality sequences using Cutadapt
(v 1.18). Trimmed reads were mapped to the human genome
(hg38 UCSC) using Bowtie2 [v 2.2.6, (19)], allowing for one
mismatch in the seed region (parameter-N 1). Subsequent,
mapped reads were summarized using featureCounts [v 1.6.3,
(20)] and miRBase [v 22, (21)] annotations. Differential
expression of miRNAs was determined using R package edgeR
[v 3.28, (22)] utilizing trimmed mean of M-values [TMM, (23)]
normalization of read counts. A false discovery rate (FDR) value
below 0.05 was considered as threshold for the determination of
differential expression.

Survival Analysis
Survival analyses were performed using differentially expressed
miRNAs (MYCN-amplified (MNA) vs. none MYCN-amplified
(nMNA)) by use of TMM normalized expression data processed
as mentioned in Small RNA Library Construction, High-
Throughput Sequencing and Differential Expression Analysis.
These miRNAs were associated with available clinical data
obtained from the analyzed tumor cohort. The log-rank test
was implemented in an R-script according to the description in
Bewick et al. (24). High and low expression groups were
separated by the respective median of normalized miRNA
expression values. Hazardous ratios (HR) for differential
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expressed miRNAs were determined by Kaplan–Meier plotting
using median cut-off. For determining the overall HR of
oncogenic and tumor suppressive miRNA signatures
respectively, the log2-transformed expression values of all
oncogenic or tumor suppressive miRNAs were first median-
centered, subsequently combined and then divided into high and
low expression group (median cut-off).

Identification of Putative Oncogenic and
Tumor Suppressive miRNAs
We identified miRNAs for a classification of putative oncogenic
(upregulated in MNA, poor prognostic value) and tumor
suppressive (downregulated in MNA, good prognosis) miRNAs
in a MYCN dependent manner. This identification is based on
the aforementioned results from differential gene expression (see
Small RNA Library Construction, High-Throughput Sequencing
and Differential Expression Analysis), comparing MNA against
nMNA tumors, in combination with the prognostic values from
the survival data analysis (see Survival Analysis). In more detail,
miRNAs were first abundance filtered (average CPM ≥1, counts
per million mapped reads) and checked for significant
differential expression changes between MNA vs. nMNA
(FDR <0.05). Subsequent, miRNAs were selected by significant
difference in survival by hazard ratios (HR below or above 1)
with a log-rank p-value below 0.05. Finally, miRNA duplicates
(miRNAs mapped to different chromosomal locations) were
removed by selecting miRNAs with most significant FDR from
differential expression analysis.

MicroRNA–Target Predictions
Predicted and validated miRNA-MYCN bindings were obtained
by utilizing the R-package multiMiR [v1.12.0, database version
2.3.0, (25)]. Eight databases containing predicted and two
databases including validated binding information were
queried (prediction cutoff 20%) for targeting MYCN mRNA. If
a certain miRNA–mRNA pair was obtained by at least two
(predicted) and one (validated) database, it was considered as a
putative interacting pair (Supplementary Table 3).

MiTRAP Experiments
MiTRAP experiments using 3´UTR of MYCN or MS2 control
RNA were essentially performed as described recently (17).
Purified RNA was sent for short-read RNA sequencing. Single-
end sequencing was performed on Illumina HiSeq 1500 platform
at Novogene (Hong Kong). Originating sequence reads of 50 bp
in length were quality checked [FastQC, v. 0.11.8]. Adapters and
low quality read ends were clipped off, resulting in reads with a
length of 16–50 bases. Kept reads were further processed as
described in Small RNA Library Construction, High-Throughput
Sequencing and Differential Expression Analysis to determine
normalized read counts. Fold enrichment was achieved by
comparing miRNAs in the MYCN-3’UTR pulldown to MS2
control pulldown.

Western Blotting
Western blots were analyzed by an Odyssey Infrared Imaging
System (LI-COR Biosciences). Antibodies used included anti-
Frontiers in Oncology | www.frontiersin.org 3109
AGO2 (clone 11A9, serum was provided by Prof. Dr. Gunther
Meister, dilution 1:5 in 5% BSA), anti-VCL (Sigma, V9131,
dilution 1:5,000 in 5% BSA), anti-MBP (Cell Signaling, E8032,
dilution 1:1,000 in 5% BSA) and IRDye 680/800CW-labeled
mouse or rat secondary antibodies (LI-COR Biosciences,
dilution 1:10,000 in 5% BSA).

Plasmids and Cloning
Cloning strategies including vectors, oligonucleotides used for
PCR and restrictions sites are summarized in Supplementary
Table 5. All constructs were validated by sequencing.

Cell Culture and Transfection
BE(2)-C cells were cultured in a 1:1 mixture of DMEM/F12 (with
HEPES, Gibco) and EMEM (ATCC) supplemented with 10%
FBS. KNS42 cells were cultured in DMEM (Gibco) supplemented
with 10% FBS. Cells were grown at 37°C and 5% CO2. 3.5 × 105

BE(2)-C cells were seeded in a 6-well plate and after 6 h
transiently transfected with 2.5 µg GFP reporter and 7 µg iRFP
vector using 14.5 µl Lipofectamine 3000 reagent (Life
Technologies, 19 µl P3000 reagent, 125 µl OPTImem (Gibco)).
Medium was changed after 24 h and cells were harvested and
analyzed by flow cytometry 48 h post transfection.

Flow Cytometry Analysis
GFP and iRFP fluorescence was measured with a MACSQuant
system. Transfected cells were harvested, washed once with PBS
and then resuspended in 1% BSA in PBST. To exclude dead cells
DAPI was added to the sample by the machine. Cells were gated
to analyze a homogenous and single cell population. Mean
fluorescence of GFP and iRFP double positive cells was
analyzed. For Figures 4B and 5C each GFP reporter (Figure
3A) was co-transfected with respective iRFP vectors (Figures 4A,
5A). The mean GFP fluorescence of empty GFP, GFP-MYCN 3´
UTR WT and GFP-MYCN 3´UTR mut transfection was first
normalized to respective empty iRFP vector co-transfection and
then normalized to empty GFP with respective iRFP vector
transfection. For Figures 5B the mean iRFP fluorescence was
normalized to empty iRFP vector co-transfection.
RESULTS

Deregulated miRNA Expression
Distinguishes MNA Neuroblastoma
The miRNA transcriptome was profiled in 97 primary
neuroblastoma tumors, including 17 MYCN-amplified (MNA)
and 80 none MYCN-amplified (nMNA) tumors and differential
expression of miRNAs between these two groups was
investigated (for tumor information see Supplementary Table
6). This analysis indicated 52 significantly up- and 66
significantly downregulated miRNAs in MNA when compared
to nMNA tumors (FDR <0.05, Figure 1A). Among these, we
observed seven upregulated miRNAs reported to control MYCN
mRNA expression, but only three MYCN-targeting miRNAs
downregulated in MNA (Figure 1A, red). To generally
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investigate to what extent a low or high expression of these
miRNAs affects the overall survival in neuroblastoma, we applied
Kaplan–Meier survival analysis to these miRNA signatures
upregulated and downregulated in MNA neuroblastoma. By
dividing the cohort into low and high expressing groups (see
Materials and Methods), these analysis confirmed that high
expression of upregulated miRNAs was associated with
substantially reduced overall survival probability, as expected
and indicated by a Hazard ratio (HR) of 9.19 (Figure 1B). The
opposite was observed for miRNAs significantly decreased in
MNA tumors, for which low expression was associated with an
Frontiers in Oncology | www.frontiersin.org 4110
overall poor prognosis (Figure 1C; HR = 0.09). Notably, the
investigation of the overall prognosis relevance of each
differentially expressed miRNA confirmed a rather oncogenic
role, indicated by HR values greater 1, for miRNAs upregulated
in MNA. Rather tumor suppressive functions (HR <1) were
indicated for miRNAs downregulated in MNA (Figure 1A,
Supplementary Table 1). Accordingly, miRNAs upregulated in
MNA were considered to indicate oncogenic (oncomiRs),
whereas miRNAs decreased in MNA indicated tumor-
suppressive miRNAs, respectively. In agreement with these
analyses, the investigation of miRNA expression in individual
A B

D

C

FIGURE 1 | miRNA expression can distinguish between MYCN-amplified and non-amplified tumors. (A) Differential miRNA expression analysis in 17 MNA and 80
nMNA neuroblastoma tumors and subsequent determination of hazardous ratio (HR, one sample lack survival data) of these miRNAs revealed 52 oncogenic and 66
tumor suppressive miRNAs (see Supplementary Table 1 for fold changes and HR). MYCN-targeting miRNAs are indicated by colors, members of the miR-17-92
cluster and let-7 family are indicated by circles and triangles, respectively. Survival analysis of upregulated (B) or downregulated (C) miRNA signature show strong
association of the respective miRNAs to overall patient survival probability. (D) The 118 differential expressed miRNAs distinguish MNA and nMNA tumors, as
indicated by heatmap. Expression values are scaled for individual miRNAs (rows in heatmap). MYCN-amplified tumors (MNA) as well as clinical staging of nMNA
tumors are indicated in the top panel.
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tumor samples clearly indicated that MNA tumors are
distinguished from nMNA neuroblastoma by a severe
upregulation of oncomiRs (red in MNA) and downregulation
of tumor suppressive miRNAs (blue in MNA), as depicted by a
heat map (Figure 1D and Supplementary Table 2).

In contrast to previous reports, suggesting downregulation of
MYCN-regulatory miRNAs in MYCN-driven neuroblastoma
(10), we observed a variety of known MYCN-targeting
miRNAs among oncomiRs assoc ia ted with MYCN
amplification. Most prominently, members of the miR-17-92
cluster, of which miR-17/-18a/-19a/-20a/-25/-92a/-92b and
miR-93 were significantly upregulated in MNA neuroblastoma,
were among oncomiRs. This is concise with the role of MYC and
MYCN protein in promoting expression of this miRNA cluster
via E-box sequences in the promotor region upstream of the
miR-17-92 cluster (26, 27). In support of various previous
studies, we furthermore observed upregulation of miR-9 (28),
miR-15b-5p (29), miR-16-2-3p (30), and miR-181a/b (27) in
MNA tumors. Likewise, we confirmed previously reported
downregulation of miRNAs in MNA tumors, including miR-
628-5p, miR-137-3p, miR-542-5p and miR-488-5p (29–31). In
addition, we identified various previously none reported
upregulated and downregulated miRNAs in MNA (see
Supplementary Table 1). Surprisingly, miR-34c expression was
elevated in MNA tumors, although previous studies claimed that
the MYCN-targeting miR-34 family is downregulated in high-
risk neuroblastoma (32–34). In sum our findings suggested that a
variety of miRNAs reported to control MYCNmRNA expression
are upregulated in MNA. To corroborate these findings, we re-
analyzed the expression of miRNAs predicted to target MYCN
mRNA in neuroblastoma. To this end, candidate regulatory
miRNAs controlling MYCN expression were identified by
inve s t i g a t ing e i gh t miRNA pred i c t i on da t aba s e s
(Supplementary Table 3). In support of the notion that
MYCN-regulatory miRNAs are rather downregulated in
MYCN-driven neuroblastoma (10), the reported miR-542 (35),
and the predicted MYCN-regulatory miR-488 were identified
among miRNAs downregulated in MNA tumors. In contrast,
however, the vast majority of reported MYCN-controlling
miRNAs were found to be upregulated in MNA tumors. These
included miR-17 (12, 36), miR-19a (5), as well as miR-15b and
miR-16 (37). Furthermore miR-20a and miR-93 (same seed
sequence as miR-17) and members of the let-7 family,
expected or reported to control MYCN mRNA expression,
were among miRNAs upregulated in MNA tumors.

MiTRAP Reveals MYCN-Regulatory
miRNA Candidates
Our investigation of miRNA expression in MNA neuroblastoma
indicated that a substantial number of reported or predicted
MYCN-regulatory miRNAs are upregulated in MNA. To
evaluate MYCN-targeting directly, we employed miTRAP
(miRNA trapping by RNA in vitro affinity purification) using
the MYCN-3’UTR as bait to identify associating miRNAs in the
MYCN-amplified BE(2)-C neuroblastoma and MYCN-driven
KNS42 glioblastoma cell lines [Figure 2A, (17)]. KNS42 cells
Frontiers in Oncology | www.frontiersin.org 5111
were included to address conserved association of miRNAs. The
affinity purification of the MS2-fused MYCN-3´UTR by MS2-
binding protein (MS2-BP) resulted in a robust co-purification of
the RISC protein AGO2 in both cell lines, whereas neither
vinculin (VCL, negative control) nor AGO2 were co-purified
with the MS2 bait control (Figure 2B). The association of
miRNAs was investigated by determining miRNA abundance
using small RNA sequencing of MYCN-3’UTR and MS2 control
pulldown fractions in three independent analyses. Enrichment of
miRNAs was determined by the fold enrichment of miRNAs in
the MYCN-3’UTR pulldown compared to MS2 controls. The
comparison of miRNA enrichment revealed a striking
conservation of miRNA co-purification in both cell lines
(Figure 2C and Supplementary Table 4; RP = 0.7784,
p <0.0001). In contrast, miRNA enrichment was largely
independent of miRNA abundance (Supplementary Figure
S1), as indicated by Pearson correlation coefficient of RP =
−0.001072 9BE(2)-C, p = 0.96880 and RP = −0.002382
(KNS42, p = 0.9306). Among the most severely enriched
miRNAs were members of the MYCN-regulatory miR-17-92
cluster (Figure 2C, red), e.g. miR-17, as well as other validated
MYCN-regulatory miRNAs like miR-29 (38). Notably, among
the top 15 enriched miRNAs more than half belong to the miR-
17-92 cluster (Figure 2C, red and Supplementary Table 4).
Surprisingly, however, despite substantial abundance (1.15% (BE
(2)-C) or 3.12% (KNS42) of all reads in input) and reported
regulation of MYCN mRNA (39), let-7 family members were
only modestly enriched with the MYCN-3’UTR (Figure 2C,
cyan). Likewise, although reported to regulate MYCN expression
(34), miR-34a was not enriched with the MYCN-3’UTR,
presumably due to low abundance. Novel miRNAs potentially
controlling MYCN mRNA expression due to substantial and
conserved enrichment with the MYCN-3’UTR discovered by
miTRAP are miR-193b-3p and the miR-302 family, both
predicted as MYCN-regulatory miRNAs, as well as miR-6782-
5p and miR-1248 (Supplementary Table 4).

The comparison of miRNA enrichment with the MYCN-
3 ’UTR and altered expression of miRNAs in MNA
neuroblastoma indicated that the miR-17-92 cluster miRNAs
stood out due to substantially increased expression in MNA
neuroblastoma and the obviously substantial enrichment by
miTRAP in both analyzed cell lines (Figure 2D). In sum, the
presented analyses provided further evidence that MYCN-
regulatory miRNAs, most prominently the miR-17-92 cluster,
are enriched in MNA neuroblastoma suggesting mechanisms
that limit MYCN downregulation by miRNAs in this
diseases subtype.

IGF2BP1 Is a Potent, 3’UTR- and miRNA-
Dependent Regulator of MYCN Expression
Our studies imply that elevated MYCN expression in MNA
neuroblastoma involve mechanisms uncoupling MYCN-driven
expression of miR-17-92 miRNAs from the inhibition of MYCN
mRNA by feed-back regulation. To this end, we addressed the
potential involvement of two RNA-binding proteins (RBPs),
ELAVL4 and IGF2BP1. ELAVL4 (HuD) was reported to
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interfere with miR-17-directed inhibition of MYCN expression
by associating with the MYCN-3’UTR (12, 36, 40). However,
ELAVL4 mRNA expression is significantly downregulated in
MNA neuroblastoma (Supplementary Figure S2). IGF2BP1 is
an oncofetal RBP upregulated in MNA neuroblastoma and
repor ted to contro l MYCN express ion [ (13 , 14) ,
Supplementary Figure S2]. Moreover, IGF2BP1’s main and
conserved role in cancer cells is the impairment of miRNA-
directed mRNA degradation by recruiting target mRNAs to
miRNA/RISC-devoid mRNPs (15, 16).

To investigate MYCN-3’UTR dependent regulation in MNA
neuroblastoma BE(2)-C cells, we employed a dual fluorescent
reporter assay allowing the rapid assessment of altered protein
expression by flow cytometry. In addition to the MYCN wild
type 3’UTR fused to GFP (Figure 3A), we included a control
reporter with a vector encoded 3’UTR (GFP) and a reporter in
which targeting seeds of the miR-17-92, let-7 as well as some
other MYCN-regulatory, indicated miRNAs were inactivated by
mutation. In comparison to the control reporter, the activity of
both reporters, either comprising the MYCN wild type 3’UTR or
the mutated MYCN-3’UTR showed markedly reduced GFP
expression (Figure 3B). This clearly indicates a pivotal role of
the MYCN-3’UTR in controlling MYCN expression. Notably,
the mutation of eight miRNA binding sites led to a significant
increase of GFP expression. Thus miRNA-dependent regulation,
in particular by the miR-17-92 cluster which summed up
Frontiers in Oncology | www.frontiersin.org 6112
to ~63% of MYCN-regulatory miRNAs with inactivated seeds
in the mutant reporter (Figure 3C), substantially contribute to
the 3’UTR-dependent regulation of MYCN expression.

To investigate the potential role of ELAVL4 and IGF2BP1 in
the 3’UTR- and miRNA-dependent regulation of MYCN
expression, the proteins were co-expressed with GFP reporters
as iRFP-fused (near-infrared fluorescent protein) proteins
(Figure 4A). In addition to wild type IGF2BP1, we also
analyzed an RNA-binding deficient mutant protein (I1 mut).
This failed to restore RNA-dependent regulation by IGF2BP1
(16, 41–43), but maintains RNA-binding independent regulation
of the recently reported protein-directed activation of the SRC
kinase (44). Activity of the GFP control reporter remained
largely unaffected by the expression of iRFP-fused proteins
when comparing mean GFP fluorescent (Figure 4B, left panel).
On the contrary, expression of the GFP-reporter comprising the
wild type MYCN-3’UTR was significantly elevated by co-
expression of IGF2BP1 as well as ELAVL4 (Figure 4B, middle
panel). Importantly, an only modestly increased GFP abundance
was observed in cell co-expressing the RNA-binding deficient
IGF2BP1. This suggested, that both, IGF2BP1 and ELAVL4,
promote MYCN expression, as previously proposed, and that
this regulation largely relies on the MYCN-3’UTR. Finally, we
analyzed how inactivation of miRNA sites influences regulation
by IGF2BP1 and ELAVL4 (Figure 4B, right panel). Although
only modest, both tested IGF2BP1 proteins led to a slightly
A
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C

FIGURE 2 | miTRAP identified selective co-purified miRNAs with in vitro transcribed bait RNA. (A) Scheme of the miTRAP procedure. In vitro transcribed bait RNAs
comprising two MS2 stem-loops fused to the 3´ end of bait transcripts were immobilized on amylose resin (light gray) via recombinant MBP-fused (black) MS2-BP
(dark gray) protein (upper panel). Scheme of the used bait RNAs (lower panel). MS2: 120-nt-long control RNA encoded by the template vector, MYCN: wild type 3´
UTR of the MYCN mRNA. (B) Western blot analysis of indicated proteins isolated from BE(2)-C and KNS42 cells co-purified with MS2 control transcript (MS2) or the
MS2-fused MYCN 3´UTR (MYCN), respectively. Vinculin (VCL) served as negative control for unspecific binding, whereas MS2-BP indicates equal loading of the
resin. (C) Enrichment of specific miRNAs was calculated as ratio of MYCN 3´UTR compared to MS2 control pulldown. Enrichment from BE(2)-C and KNS42 cells
show strong consistency in enriched miRNAs (Pearson correlation: RP = 0.7784, p < 0.0001). The miR-17-92 cluster is depicted in red, the let-7 family in cyan. (D)
The enrichment of miRNAs with the MYCN-3’UTR in BE(2)-C and KNS42 cell lines were compared to the fold change of miRNA expression in MNA versus nMNA
tumors. Only members of the miR-17-92 cluster are consistently and substantially enriched at the MYCN 3´UTR and upregulated in MNA tumors.
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upregulated expression of the respective GFP-reporter. However,
essentially no difference was observed between the wild type
IGF2BP1 and RNA-binding deficient protein, suggesting
secondary, RNA-binding independent regulation. Surprising
was the essentially unaltered activation of the wild type and
miRNA-mutated MYCN-3’UTR reporter by ELAVL4. This
suggested that either ELAVL4 controls MYCN expression by
impairing other miRNAs than miR-17 or secondary, largely
miRNA-independent regulation by ELAVL4. In conclusion,
these findings suggest IGF2BP1 as a potent, RNA-binding and
miRNA-dependent regulator of MYCN expression. Thus,
IGF2BP1 likely contributes to the uncoupling of elevated miR-
17-92 and MYCN expression.

The miR-17 Seed Family Is the Main
Antagonist of MYCN Expression
Our analyses revealed a strong effect of miRNAs of the miR-17
seed family and potential involvement of let-7 family members in
controlling MYCN expression in neuroblastoma. Notably, it was
Frontiers in Oncology | www.frontiersin.org 7113
proposed that the MYCN-3’UTR serves as a let-7a sponge (11).
Aiming to evaluate the postulated potency of the MYCN-3’UTR
in sponging main regulatory miRNAs, we explored the activity of
iRFP-fused miR-17 and let-7a antisense reporters (Figure 5A)
when expressing the aforementioned GFP-reporters (Figure
3A). The expression of iRFP from both miRNA antisense
reporters was markedly reduced in BE(2)-C cells when co-
expressed with the GFP control reporter (Figure 5B, left
panel), indicating substantial activity of miR-17 and let-7a in
BE(2)-C cells. Most notably, however, the activity of both
antisense reporters remained largely unaffected when
expressing either the wild type or the miRNA mutant MYCN-
3’UTR fused to GFP (Figure 5B, middle and right panel). This
strongly argues against a miRNA sponge effect of the
MYCN-3’UTR.

Our miTRAP studies revealed a strong enrichment of miR-17-
92 cluster miRNAs with the MYCN-3’UTR, whereas let-7 miRNAs,
including let-7a, were only modestly enriched (see Figure 2 and
Supplementary Table 4). Thus, to evaluate if regulation of the
A B C

FIGURE 3 | MYCN 3´UTR is a strong miRNA target. (A) Scheme of used GFP reporters. Control reporter (GFP) contains only a minimal, vector-encoded 3´UTR.
MYCN wildtype (WT) and mutated (mut) 3´UTR were inserted 3’ of the GFP open reading frame. The mutated 3´UTR was generated by conversion of seed
sequences in eight indicated miRNA-targeting sites. (B) Normalized mean GFP fluorescence in BE(2)-C cells transiently transfected with GFP reporters. The WT
MYCN-3´UTR is strongly repressed, indicated by lower GFP fluorescence. Mutation of several miRNA-binding sites increases GFP fluorescence (n = 3). (C) Among
the accumulated CPM (count per million) of mutated MYCN-regulatory miRNA sites in BE(2)-C the miR-17 seed family (red) and let-7 family (cyan) are the most
abundant. Statistical significance was determined by Student’s t-test (p-values indicated).
A B

FIGURE 4 | IGF2BP1 and ELAVL4 are potent, 3´UTR-dependent regulators of MYCN expression. (A) Scheme of used iRFP vectors. Control vector (iRFP) or vectors
with iRFP-fused wildtype IGF2BP1 (I1 WT), RNA-binding deficient mutant IGF2BP1 (I1 mut) or ELAVL4 (HuD) were transfected with GFP reporters (see Figure 3A)
into BE(2)-C cells. (B) Transfected BE(2)-C were analyzed by flow cytometry. GFP and iRFP double positive cells were analyzed to determine the influence of
IGF2BP1 (WT and mut) as well as ELAVL4 to the MYCN 3´UTR upon cross-normalization (n = 3). Statistical significance was determined by Student’s t-test
(p-values indicated).
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MYCN-3’UTR by the respective miRNAs is distinct, we evaluated
the expression of GFP reporters when expressing the respective
iRFP miRNA antisense reporters (Figure 5C). Whereas expression
of the control GFP reporter remained largely unaffected by the
miRNA antisense reporters, the wild type, but also the miRNA
mutated (including inactivation of all reported let-7 targeting sites)
MYCN-3’UTR reporter showed markedly elevated expression by
co-expressing the let-7a antisense reporter. Although requiring
further in depth investigation, these findings largely suggest that
the let-7-dependent regulation of MYCN expression is largely
Frontiers in Oncology | www.frontiersin.org 8114
secondary, but provides no conclusive evidence for a sponging
role of the MYCN-3’UTR.
DISCUSSION

We provide a comprehensive analysis of miRNA expression in
primary neuroblastoma. These studies reveal thatMYCN-amplified
(MNA) neuroblastoma is sharply distinguished by the upregulated
expression of miRNAs associated with adverse diseases outcome
A
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FIGURE 5 | miR-17 is a strong antagonizing miRNA for MYCN 3´UTR. (A) Scheme of used iRFP vectors. Control vector (iRFP) contains only a minimal 3´UTR. For
miRNA antisense vectors, two perfectly complementary miRNA-targeting sites (miR-17 or let-7a) were cloned behind the iRFP open reading frame. (B, C)
Transfected BE(2)-C cell were analyzed by flow cytometry. GFP and iRFP double positive cells were analyzed to determine the influence of the MYCN 3´UTR to the
antisense reporter (B) or the influence of the miRNA antisense reporter to the MYCN 3´UTR (C) upon normalization (n = 3). Statistical significance was determined by
Student’s t-test (p-values indicated).
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and the downregulation of miRNAs associated with more favorable
prognosis. Among sharply upregulatedmiRNAs aremembers of the
miR-17-92 cluster, which are increased by MYCN at the
transcriptional level and impair MYCN expression by feed-back
regulation (12, 26, 27). This strongly argues, that elevated MYCN
expression inMNAneuroblastoma is not substantially supported by
the downregulation of major MYCN-regulatory miRNAs, as
previously proposed (10).

In MNA neuroblastoma BE(2)-C cells, expressing both, MYCN
protein as well as miR-17-92 at substantial levels, members of the
miR-17-92 cluster are the most enriched miRNAs observed in
MYCN-3’UTR miTRAP studies. Likewise, we demonstrate
striking enrichment of miR-17-92 members with the MYCN-
3’UTR also in MYCN-driven glioblastoma KNS42 cells. Together
with ample evidence for a pivotal role of the miR-17-92 cluster
miRNAs in controlling MYCN expression, this indicates that this
miRNA family is an essential regulator of MYCN mRNA
abundance. However, the co-upregulation of both, MYCN protein
and the miR-17-92 cluster miRNAs, in MNA neuroblastoma
suggests that miRNA-dependent regulation of MYCN expression
is substantially modulated by trans-acting factors controlling
MYCN expression via the 3’UTR. To this end, we have
investigated two RNA-binding proteins (RBPs), previously
reported to control MYCN expression in neuroblastoma,
ELAVL4 (HuD) and IGF2BP1. Whereas ELAVL4 expression is
decreased in MNA neuroblastoma, IGF2BP1 expression is elevated.
MNA neuroblastoma is considered an aggressive and de-
differentiated disease. In this respect, the downregulation of
ELAVL4 is consistent with its proposed role in promoting neural
differentiation, as reviewed in (45). On the contrary, IGF2BP1
upregulation in MNA neuroblastoma is supported by previous
studies in primary tumors, MYC/MYCN-driven transcriptional
regulation and conserved oncofetal expression of the protein (13,
14, 46, 47). Notably in this respect, the conserved upregulation or de
novo synthesis of IGF2BP1 in cancer is primarily observed in
progressed, de-differentiated malignancies, as demonstrated for
instance in anaplastic thyroid carcinoma (48). MYCN-3’UTR
reporter studies provide strong evidence that both proteins
modulate MYCN expression in a 3’UTR-dependent manner. This
is consistent with the reported role of ELAVL4 in antagonizing
downregulation of MYCN expression by miR-17 and recently
reported roles in the 3’UTR-dependent enhancement of mRNA
translation in neural and neuroblastoma-derived cells (12, 49).
However, stimulation of MYCN-3’UTR reporter expression by
ELAVL4 remained essentially unaffected by inactivating miR-17
targeting sites. In contrast, the RNA-dependent regulation of
MYCN-3’UTR reporters by IGF2BP1 was essentially lost upon
inactivation of miR-17 and other miRNA-targeting sites. Together,
this provides strong evidence that IGF2BP1 is a potent miRNA
antagonist upregulating MYCN mRNA and protein in
neuroblastoma. This likely is of pivotal importance in MNA
neuroblastoma, where IGF2BP1 probably serves as a MYCN-
driven antagonist of MYCN-inhibitory miRNAs upregulated in
MNA neuroblastoma.

In addition to investigating trans-acting factor promoting
MYCN expression in MNA neuroblastoma in a 3’UTR- and
Frontiers in Oncology | www.frontiersin.org 9115
miRNA-dependent manner, we also evaluated if the MYCN-
3’UTR may serve as a miRNA decoy for MYCN-targeting
miRNAs, as previously proposed (11). This was investigated for
MYCN-targeting miRNAs upregulated in MNA neuroblastoma,
like miR-17-92 cluster miRNAs, or substantially expressed like the
let-7 miRNA family. MiTRAP studies indicate that both miRNA
families are enriched with the MYCN-3’UTR, although
enrichment was substantially pronounced for miR-17-92 cluster
miRNAs. MiRNA antisense reporter analyses, however, clearly
demonstrate that the MYCN-3’UTR lacks decoy activity, since
expression of either reporter remained essentially unchanged
when overexpressing the MYCN-3’UTR fused to GFP.
Moreover, expression of the miR-17 antisense reporter remained
ineffective in changing GFP-MYCN-3’UTR expression providing
supportive evidence that neither the antisense nor the native
MYCN-3’UTR have miRNA decoy activity. Why the let-7a
antisense reporter changed expression of GFP reporters
irrespective of let-7 targeting site inactivation remains unclear at
present. However, in view of perturbed expression of both
reporters, it appears likely that altered GFP reporter expression
results from secondary regulation.

In conclusion our studies provide a comprehensive view on
the expression of miRNAs in neuroblastoma and provide further
insights into the pro-oncogenic role of the RNA-binding protein
IGF2BP1 involving positive feed-back regulation with MYCN in
neuroblastoma, in particular MYCN-amplified (MNA) diseases.
These findings reveal new avenues for the treatment of MNA
neuroblastoma. In recent studies, we demonstrated that
inhibition of IGF2BP1-RNA association by the small molecule
BTYNB impairs tumor cell growth in vitro and in xenograft
mouse models (43, 50). Moreover, we recently showed for the
first time that circular RNA miRNA decoys directed against the
potent oncomiR 21-5p impair tumor cell vitality in vitro and
tumor growth in xenograft models when delivered via
nanoparticles (51). This highlights new avenues to pursue the
targeting of post-transcriptional regulation in cancer, in
particular the strongly 3’UTR-dependent regulation of MYCN
mRNA in MNA neuroblastoma.
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The constitutive and dysregulated expression of the transcription factor MYCN has a
central role in the pathogenesis of the paediatric brain tumour medulloblastoma, with an
increased expression of this oncogene correlating with a worse prognosis. Consequently,
the genomic and functional alterations of MYCN represent a major therapeutic target to
attenuate tumour growth in medulloblastoma. This review will provide a comprehensive
synopsis of the biological role of MYCN and its family components, their interaction with
distinct signalling pathways, and the implications of this network in medulloblastoma
development. We will then summarise the current toolbox for targeting MYCN and
highlight novel therapeutic avenues that have the potential to results in better-tailored
clinical treatments.

Keywords: MYCN, medulloblastoma, targeted therapy, metabolism, immunotherapy, PROTACs
INTRODUCTION

The MYC family of transcription factors, including c-MYC (MYC), MYCL and MYCN are amongst
the most commonly altered genes in cancer, including paediatric cancers (1). Tumorigenic activity
of the MYC family can result from constitutive activation of associated mitogenic signalling
pathways e.g., Wingless (WNT), Hedgehog (SHH), Transforming growth factor beta (TGF-b), or
through direct genetic alterations from amplification or chromosomal aberrations. Sequence
homology between the two proteins, MYC and MYCN remain relatively high, and similarities
remain between organisation of loci, and protein binding sites (2–4). Pioneering developmental
studies have been integral in illustrating the interchangeable nature of the MYC proteins, in
particular between MYC and MYCN (5). These studies assessing the phenotypic consequences of
Myc or Mycn deficiency in mouse development identified expression divergence during the early
developmental stages. Whilst null homozygosity for both Myc and Mycn resulted in embryonic
lethality (approximately E10.5-E11.5),Myc-null embryos were associated with marked reduction in
size and a general delay in primitive development of the heart (6).Mycn-null embryos also exhibited
delayed development and stunted growth, as well as diminished cellularity in organs that normally
express abundantMycn transcripts, most notably the cranial and spinal ganglia (7–9). Significantly,
despite a compensatory Myc increase observed in Mycn deficient embryos (8), developmental
defects occurred that suggested a unique and essential role for Mycn during CNS development.
Conversely, replacement of endogenous Myc-coding sequences with Mycn-coding sequences
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showed that Mycn is capable of performing most of the essential
functions of Myc required for embryonic development and
proliferation (5). Whilst the proteins share similarities in
structure and binding partner MAX (10), the differences
remain in their spatial and temporal expression patterns, with
MYCN showing a preference to the early hindbrain development
(11–14). Overall, both proteins at the transcriptional level
can orchestrate the cell cycle machinery and stimulate cell
growth, division, and regulate the differentiation states of cells
throughout development.

In this review, we will focus on the role of the MYC family
proteins, specifically MYCN, in different subgroups of the
childhood brain tumour medulloblastoma (MB). MYC proteins
play an important role in MB biology and often are dysregulated
in all MB tumours, withMYC, MYCN andMYCL1 each showing
commitment to specific subgroup (15). MYC and MYCN
amplifications especially are prominent in MB due to the highly
aggressive nature of tumours associated with these aberrations
(16). MYC and MYCN have been considered undruggable for
many years as they carry out essential functions in proliferative
tissues, suggesting that their inhibition could cause severe side
effects. Only recently has there been an improvement in making
their protein surfaces amenable to binding small molecules,
further accelerating their use in therapeutics (17). We will
highlight the potential application of several new therapeutic
strategies targeting MYCN and its signalling partners to tackle
the overarching obstacles.
MEDULLOBLASTOMA

Clinical and Molecular Diversity of
Medulloblastoma
Medulloblastoma is one of the most prevalent malignant
paediatric brain tumours (WHO grade IV) (18). MB arises
from the posterior fossa and features a heterogeneous tumour
landscape. MB accounts for ~63% of childhood intracranial
embryonal tumours, and has an incidence of 4.9 per 1 million
children, peaking at ~7 years of age (19, 20). The tumour is
usually proximal to the fourth ventricle, making metastasis
through cerebrospinal fluid (CSF) flow common (21). The
current standard of care consists of maximal surgical resection
followed by cranio-spinal irradiation (CSI) in patients >3 years,
and multi-agent chemotherapy. The overall survival rate ranges
from 40-90%, depending on the molecular subtype and other
factors such as extent of dissemination and degree of resection.
Whilst survival rates have improved overtime due to better
understanding and implementation of CSI, ~1/3 of patients
still succumb to the disease, and survivors often experience
debilitating neurologic, endocrinologic, and cognitive sequelae
from treatment (22).

Different Subgroups and Subtypes
Initially, using gene expression analysis techniques, MB was
segregated into four distinct molecular subgroups, with
differences in genomic drivers, mutational events, methylation
Frontiers in Oncology | www.frontiersin.org 2119
patterns and clinical characteristics (23). These groups are known
as: wingless (WNT), Sonic hedgehog (SHH), and, group 3 (Grp3),
and group 4 (Grp4), also known as non-WNT/non-SHH (24–27).
Due to the well-defined developmental pathways of WNT and
SHH, many studies have been able to dissect the mechanism of
these two groups, whereas Grp3 and Grp4 have recently
raised attention owing to next-generation sequencing techniques
(15, 28–31). Further gene expression and DNA-methylation
analysis of the subgroups by Cavalli et al. introduced additions
layers of heterogeneity within the four main subgroups, these are
as follows: WNT; WNT-a and WNT-b, SHH; SHH-a, SHH-b,
SHH-c, SHH-d, Group 3; Grp3-a, Grp3-b, Grp3-c and Group 4;
Grp4-a, Grp4-b, Grp4-c (32). Adding to this, other variations of
subtypes emerged during the same time as several research groups
utilised different sample analysis methods (33, 34). Whilst the use
of separate analytic techniques provides a more dynamic and
richer dataset, it is now essential to compare and combine these
differences to produce a single, streamline set of subtypes.

Comparing the clinical features of the subgroups, the WNT
subgroup has the most favourable clinical outcomes, with the
overall survival standing at >90% (35). However, this is the least
common MB subtype, accounting for only 10% of MBs (23). The
favourable prognosis associated with activation of the WNT
signalling pathway is now being exploited for other subgroups of
this cancer (36). The majority of these tumours (86%) harbour
activating mutations in b-catenin (CTNNB1), a central orchestrator
of the canonical WNT pathway (33, 37, 38), or mutations in the
tumour suppressor gene APC (71%) (39). Further prominent genes
identified from whole genome sequencing include DDX3X (7.6%),
SMARCA4 (3.4%), TP53 (~10%) and KMT2D (~7%) (40).

The SHH-subgroup, despite its heterogeneity, is the best
clinically and molecularly characterised MB-subgroup. The age of
the patient is especially important here as each age group has a
distinct transcriptomic profile; adult patients (SHH-d) show
frequent mutation in the TERT promoter, whilst younger patients
show enrichment in focal amplifications of MYCN, GLI2, and
YAP1, frequent germline or somatic TP53 mutations, and more
recently discovery of germline variants in ELP1 (32, 41–44). ELP1
encodes the scaffold protein elongator complex protein 1 (ELP1)
which is involved in neuronal migration and is responsible for
transcriptional elongation (45, 46). Furthermore, PTCH1 mutation
is highly frequent in this subgroup, the only distinction of this
within the subtypes is the number of additional aberrations
accommodating this mutation; with a higher aberrational load
seen in the adult subtype (SHH-d). More recent research shows a
prominent role for TP53 dysregulation. This frequently arises in
conjunction with chromothripsis, a catastrophic genomic
rearrangement commonly occurring due to micronucleus
formations (29, 42, 47).

In contrast toWNT and SHH, both Grp3, and Grp4 have very
few prominent driver genes. Nonetheless, they both show
distinct genetic events which define each subgroup as separate
entities. Grp3 MB primarily occurs during infancy and
childhood and is associated with a high rate of disseminated
disease. This subgroup is defined by high levels of MYC
amplification and a particular genetic signature related to
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increased transcription and translation (48). Important genes
dysregulated at a somatic level include SMARCA4, KBTBD4, and
KMT2D. Furthermore, recent studies have shown increased
activation of genes representing the Notch and TGFb
signalling pathways, and a particular inclination for activation
of GFI1/GFI1B through enhancer hijacking (49). Grp4 MB is the
most prevalent MB subgroup. With a lack of single gene
mutations, this subgroup features a higher frequency of
disposition to somatic mutations, with notable mutations in
histone-modifying genes such as KDM6A, ZMYM3 and
KMT2C. The recent discovery of ERBB4-SRC signalling in
Grp4 tumours has highlighted this pathway as a hallmark of
Grp4 MB (50). Both Grp3 and Grp4 groups have recurrent
mutations in KBTBD4, underpinning the gene as a common
candidate tumour driver (33).

Cancer predisposition syndromes remain a risk factors for the
development of MB and account for approximately 5-6% of MBs
(39). Germline mutations in WNT signalling pathway genes such
as APC mutations, found in Turcot Syndrome, can lead to the
WNT subgroup. SHH MB can be initiated through various
germline mutations such as PTCH1, occurring in the autosomal
dominant condition Gorlin syndrome (known as nevoid basal cell
carcinoma syndrome), or aberration in germline TP53 as seen in
Li-Fraumeni syndrome (33). Furthermore, germline mutation in
SMO from Curry-Jones syndrome is also associated with SHH
MB (39).With the advancement in stem cell research and patient-
derived iPSC culture systems, this information will inevitably
allow for more accurate modelling and prediction of the
development of particular subgroups of MB (51).

The innate differences within this highly heterogeneous cancer
provides an insight into the putative cells of origin residing in
different regions of the cerebellum (32, 52). The embryonic nature
of MB makes it difficult to pinpoint the exact cell of origin.
Therefore, it is essential to investigate the complete genetic
aetiology of these tumours in order to build more accurate and
robust models of the disease. The normal development of the
cerebellum serves as a healthy control for the development of MB.
MB cells are thought to arise from progenitor cell populations from
early hindbrain development. This has been investigated for WNT
and SHH MB, with WNT tumours thought to arise from the
extracerebellar lower rhombic lip, and SHH from cerebellar granule
cell precursors (GCPs) (53). More recently, it was postulated that
for Grp4, the cellular origin consisted of more differentiated
neuronal population, with glutamatergic cells including residues
of unipolar brush cells and glutamatergic cerebellar nuclei (30, 54).
Whilst for Grp3 origin remains quite vague, with studies referring
to a potential origin of undifferentiated progenitor-like lineage with
high MYC activity (54).
THE ROLE OF MYCN IN THE ORIGIN OF
MEDULLOBLASTOMA

MYCN in Cerebellar Development
When looking at the development of MB, the environment in
which the tumour grows should be treated almost as a crime
Frontiers in Oncology | www.frontiersin.org 3120
scene, as Bailey and Cushing once wrote "the histogenesis of the
brain furnishes the indispensable background for an
understanding of its tumours'' (55). A defect in the normal
expansion of the cerebellar precursor population can lead to
uncontrolled proliferation, resulting in the development of MB.

The developing cerebellum is moulded by three distinct pools
of progenitor cells; these consist of GCPs from the deep nuclei
(emerging from rhombic lip), GABAergic Purkinje cells (arising
from multipotent precursors of the primary germinal epithelium
in the roof of the 4th ventricle), and CD133/Nestin+ cells (the
white matter of the postnatal cerebellum). During postnatal
development, GCPs rapidly proliferate and expand in response
to SHH secreted by Purkinje cells (56), and mature to become
cerebellar granule neurons – the largest neuronal population in
the brain (57), as shown in Figure 1.

MYCN plays a fundamental role in orchestrating both normal
and abnormal development of the cerebellum, with critical
functions in precursor growth and maturation (Figure 1).
MYCN is present at low levels in many neonatal tissues and
expressed at particularly high levels in the hindbrain (8, 58).
MYCN expression persists during differentiation stages where
MYC is downregulated (8).MYCN expression is predominant in
neural stem cells and progenitor cell populations, with its
expression diminishing after the cells become committed to
more differentiated states. One putative mechanism employed
by MYCN to sustain CNS development is the conservation of
large domains of chromatin in an euchromatic state (59). This is
demonstrated through double knockout animal models of MYC
and MYCN, which showed gene alterations in chromatin
structure (60).

MYCN also contributes to cerebellum development
downstream of SHH. SHH is an extracellular signalling
molecule with a critical role in regulating growth and
differentiation in the developing brain (61, 62). SHH
signalling upregulates MYCN through activation of PI3K, a
corollary of this is glycogen synthase kinase 3 beta (GSK-3b)
inhibition, preventing destabilisation of the MYCN protein by
GSK-3b and halting skp-cullin-F-box (SCF)-FBXW7 induced
proteasomal degradation (63). Several studies have
demonstrated SHH as a primary driver of the expansion of
GCPs through direct upregulation of MYCN, highlighting the
importance of MYCN in the proliferation of GCP cells and for
their responses to SHH (64, 65). As a mitogen, SHH induces
genes involved in cell cycle progression and DNA replication,
mainly during the period of post-natal hindbrain expansion. In
parallel, the role of MYCN is most critical during this phase.
DysfunctionalMYCN can prime the progenitor cells by altering
internal regulatory mechanisms, making them more susceptible
to defects in cerebellar development. Studies have shown
MYCN null neural precursors have high levels of specific
cyclin dependent kinase inhibitors (CDKI), p18Ink4c and
p27KIP1 which induces differentiation programmes in cells,
supported by reduced levels of cyclin-D2 (66, 67). More
specific to its structure, preventing phosphorylation of the
MYCN amino-terminal impedes cell cycle exit of GCPs (68);
phosphorylation of the S62 priming site of MYCN by CDK1/
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cyclin A/B prevents this continuous activation of the cell cycle
and allows cell cycle exit (69). MYCN has a vital role in the early
cerebellum development. By orchestrating a time-dependent
expansion of progenitor cells to form the EGL, it indicates a
window of high activity, after which it is downregulates to allow
cell cycle arrest and subsequent differentiation and maturation
of the cells.

The Role of MYCN in MB Groups
Collectively, this family of oncogene is of particular interest as
MYC and MYCN are each committed to specific subtypes of
MB. MYC is often found to be overexpressed in WNT tumours,
despite a lack of MYC amplification, whereas amplification of
MYC is commonly detected in G3 tumours (31). Both MYCN
amplification and overexpression is observed in SHH MB.
MYCN amplifications are also present in G4 tumours,
however, this is generally at a much lower level compared
with the SHH subgroup (31). MYC and MYCN amplifications
in particular have been the main focus in MB due to the highly
aggressive nature of tumours associated with these aberrations
(16). Alongside genetic abnormalities, dysregulated epigenetic
Frontiers in Oncology | www.frontiersin.org 4121
modifiers are also frequently observed in more aggressive
medulloblastoma tumours, including those harbouring
MYCN/MYCN abnormalities (70, 71). The preference of MYC
to a distinct subtype suggests potential ideas about
MB tumorigenesis.

The WNT Group
Moderately high levels of MYCN and MYCL1 are observed in
this subtype compared to Grp3 and Grp4 (72). Furthermore,
MYC is also highly expressed with comparable levels to those
seen in Grp3 (13). This high level MYC expression could be
explained byMYC being a downstream target of WNT signalling
(73). Whilst MYC expression usually correlates with poor
prognosis in other MB subgroups, the WNT subtype displays
the most positive prognosis within the subgroups, regardless of
MYC levels (74).

The SHH Group
Gene amplification is a very common event in SHH MB. The
most prevalent amplifications includeMYCN andMYCL1, as well
as other important genes such as GLI2, MDM4, PPM1D and
FIGURE 1 | MYCN maintains the proliferation of granule cell progenitors in the external granule layer during early development. VZ, ventricular zone; RL, rhombic lip; PL,
purkinje layer; IGL, internal granule layer; EGL, external granule layer; ML, molecular layer; GCP, granule cell precursors. D, dorsal; C, caudal; V, ventral; R, rostral.
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YAP1 (15, 75). Patients with SHH subtype MB have a frequent
gain of chromosome 2, which harbours MYCN, this may also
explain the resultingMYCN amplification event seen regularly in
this subgroup. In subtypes where MYCN amplification co-occurs
with TP53-mutations, there is a worsening of the overall outcome
(32, 76). An event linking the two together is chromothripsis.
Tumours with high levels of this complex genome arrangement
show a positive correlation in the frequency of MYC/MYCN
amplifications (77). The chronological order of TP53 mutation,
MYCN amplification and chromothripsis is largely unknown and
yet to be explored. Pursuing this further will inevitably shed light
on novel DNA repair mechanisms which can be utilised for
therapeutic targeting.

Studies have shown that MYCN has dual-capacity to produce
either SHH-dependent (63) or SHH-independent MB (78).
Formation of either is highly dependent on the temporal
expression of MYCN, either during embryonic or postnatal
development (58). This further highlights MYCN's dynamic
role in CNS development. Novel pathways fuelling MB growth
include the evolutionarily conserved signalling pathway known
as the Salvador-Warts-Hippo (Hippo) pathway (79). SHH
signalling may have cross talk with the Hippo pathway to
regulate important downstream efforts such as the Yes-
associated protein (YAP), an oncoprotein shown to promote
proliferation of CGPs (80). Indeed, genomic profiling of OLIG2-
expressing glial progenitors as transit amplifying cells of SHH-
MB revealed that these cells activate oncogenic networks
including HIPPO-YAP/TAZ and AURORA-A/MYCN (81).

Group 3
The majority of Grp3 tumours are characterised by high protein
levels of MYC, either induced by MYC amplifications or by
aberrant MYC expression (41). Differential analysis of super-
enhancers has identified MYC as a prominent target in Grp3.
Thus, MYC is noted as the key driver of Grp3 MB (30).
Plasmacytoma Variant Translocation 1 (PVT1) gene fusion in
Grp3 is linked to chromothripsis and MYC amplification on
chromosome 8q24 (82). New molecular stratification of this
subtype into different subgroups, has shown that subgroup II
and III harbour amplifications of the MYC oncogene and are
associated with poor outcomes (83). Interestingly, subgroup V,
characterised by amplification of both MYC and MYCN, is
associated with moderate clinical outcomes (83). Moreover, the
increased abundance of many proteins involved in mRNA
processing, transcription and translation observed in Grp3 MB
is associated with high MYC expression (48, 50). Interestingly,
whilst this subgroup is mainly associated with MYC
amplifications, MYCN amplifications is also seen in a minority
of patients (5%) (33).

Group 4
The most frequent somatic copy-number alterations (SCNAs)
in this group target the gene SNCAIP (synuclein, alpha
interacting protein) (15). While MYCN amplification also
occur in this subtype, they are mutually exclusive with
SNCAIP duplications (31).
Frontiers in Oncology | www.frontiersin.org 5122
Current Management of MYCN-
Associated MB
Since the identification and isolation of MB as a distinct entity in
1926 by Cushing and Bailey, the prognosis of patients has
alleviated from no survival to now, the most positive outcome
of 80% 5-year overall survival (OS). This improvement was led
through continuous progression in understanding the biological
mechanisms behind this cancer and strengthened by emerging
technologies and treatments. Although this OS sounds very
positive, the reality of the age of these patients, coupled with
the harsh quality of life (QOL) observed after the treatments (84,
85) pushes this scientific field to develop more novel and targeted
therapies which can ameliorate the dismal QOL.

While our understanding of MB biology and molecular
features has greatly improved over the last decade, current
treatment regimens for MB have been relatively unchanged.
These strategies are principally tailored based on clinico-
radiological risk criterion, used to define the standard-risk (SR)
or high-risk (HR) group (86). Children who are >3 years with no
evidence of metastatic disease (M0), post-surgical residual
tumour <1.5 cm2, and histologically non-anaplastic are
categorized as SR, while the remaining are considered HR.
Children >3 years who have significant residual disease
following surgery, large cell/anaplastic (LC/A) histology and
metastatic disease have a worse prognosis with poor survival
outcome (87).

Medulloblastomas are typically more radiosensitive than
other paediatric brain tumours, including glioblastomas
(GBM). Therefore, radiotherapy is an essential element in the
multidisciplinary management of children with MB, and
postoperative craniospinal axis radiotherapy is considered a
curative treatment. Commonly, children >3 years, receive
surgery, external beam radiation to the spine and brain,
combined with multidrug chemotherapy (cisplatin, vincristine,
and cyclophosphamide). While both SR and HR children are
treated with radiation, HR patients are given larger boosts of
radiation. Children <3 years are treated postoperatively with
high-dose chemotherapy as an irradiation-avoiding strategy or
with non-high-dose chemotherapy during induction followed by
a reduced dose of conformal radiotherapy (CRT) to the tumour
bed (88, 89). Radiation is generally avoided in children <3 years
due to the adverse effects on the developing brain. Radiation in
older children has been linked to reduced IQ and induction of
secondary cancers, vasculopathy, hearing loss, and future strokes
(90–92). The standardised treatment of MB solely based on
histopathology and clinico-radiological risk stratification can
lead to unpredictable relapses and therapeutic failures. Disease
relapse is the most adverse prognostic factor in MB, occurring in
approximately 30% of patients (93). Children with tumour
relapse receive various strategies, including continuous
administration of low doses of chemotherapeutic, high-dose
chemotherapy, intrathecal medication, and re-irradiation, but
these approaches are commonly unsuccessful (94, 95).

It is evident from the review that MYCN is a very attractive
therapeutic target. Nevertheless, it has proven challenging to
target, with current techniques unsuccessful in exploiting the
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molecule for therapeutic gain (10). Structurally, MYC proteins
lack any enzymatic activity/globular functional domains, which
makes it unapproachable for structure-based virtual screening,
and undesirable for the long-established enzyme inhibitor design
(96). Adding to this, MYCN is also known as an intrinsically
disordered (ID) oncoprotein, meaning the protein structure of
MYCN in isolation fails to adopt a defined three-dimensional
structure (97). This is advantageous for its role as a transcription
factor as the ID structure allows MYCN to hold a larger surface
area for increased interaction with numerous other proteins – the
disordered domains mean it can be "re-used" in multiple
pathways (98). However, this makes it challenging to target
MYCN directly.

Further to its structure and function, the widespread
expression of MYCN by all early proliferating cells also poses a
concern. The numerous target genes of MYCN makes it difficult
to define critical oncogenic effector pathways for precise
drugging. Thus, targeting this oncogene may present with
unacceptable toxicities (99). However, as most "normal" CNS
cells spend the majority of their life in quiescence, the adverse
effects may be more negligible than expected (100). Limited
direct targeting of MYCN has motivated strategies to look at
indirect or MYCN-dependent interactions instead. Due to the
high growth-inducing activity of MYCN, its mechanism is
controlled at multiple steps.
EMERGING THERAPEUTIC
OPPORTUNITIES

Targeting MYCN Stability
The stability of the MYCN protein itself is a critical level of
regulation. MYCN is controlled by phosphorylation of specific
residues, most of which takes place within Myc box I (MBI).
First, phosphorylation mediated by CDK1-CyclinA/B1
complexes occurs at S62, which permits recognition. Second,
phosphorylation activity occurs via serine/threonine kinase
GSK3b on T58. The phosphorylating activity of GSK3b causes
degradation of MYCN. MYCN protein has an ephemeral half-life
(20-30 minutes), and is tightly regulated by E3 ubiquitin ligase
(E3 ligase) through recruitment and proteasomal degradation
(97, 101). Whilst there is also a role played by calpains for the
turnover of MYC, the majority of degradation is carried out by
the ubiquitin-proteasome system (UPS) (102, 103). The ligases
FBXW7 and TRUSS have essential roles in restricting MYCN
functions via the UPS. FBXW7 recognises MYCN upon
phosphorylation at both S62 and T58, causing MYCN to be
specifically degraded during mitosis, providing a mechanism
which induces cell cycle exit and differentiation of neural
progenitor cells. Thus, increasing the level of FBXW7 would be
especially attractive to MB with MYCN overexpression. More
recently, in a study by Skowron et al. looking at the
transcriptome of 250 human SHH MB, they discovered
missense mutation within the tryptophan-aspartic acid motif
(WD40) of FBXW7 in SHH MBs (42). This supports the idea of
Frontiers in Oncology | www.frontiersin.org 6123
targeting this important ligase to alter MYCN activity. Another
ligase responsible for restricting MYCN function is the HECT
(Homologous to the E6-AP Carboxy Terminus)-domain
ubiquitin ligase, HUWE1. This degradation system acts by
priming the protein through addition of Lys 48-mediated
linkages. HUWE1 carries this out for both MYC and MYCN,
but shows a greater efficiency for the latter (104). Interfering with
this mechanism, at the MYCN protein level, remains a potential
strategy of intervention.

The degradation of MYCN can be further inhibited by the
activation of PI3K/AKT/mTOR axis, as active AKT can
phosphorylate and inactivate GSK-3b, leading to MYCN
stabilisation. Targeting PI3K may therefore be valuable to
control the level of MYCN (105) (Figure 2). This has been
attempted through various candidate inhibitors such as taselisib,
copanlisib, pictilisib, buparlisib, dacotilisib and idelasib, only to
find the emergence of resistance to be common, and usually
associated with upregulation of MYCN. To overcome this,
studies have tried to utilise a combination therapy method
with compounds such as SF2523 (106). This compound was
investigated in a study by Andrews et al. in which it was able to
inhibit both the MYC transcriptional co-factor, BRD4 and PI3K
with increased efficacy and reduced toxicity to animals
(106). More recent compounds targeting this pathway, and are
ongoing clinical trials include LY3023414 [NCT03155620] and
AZD2014 [NCT02813135]. In addition to the PI3K/AKT/mTOR
pathway, WNT and SHH also play a role in inactivating GSK-3b,
leading to upregulation and stabilisation of MYCN. Both
pathways hold potential targets to regulate this stabilisation.

Recently, Aurora kinase A (AURKA), a member of the
Aurora family of mitotic regulators, has been shown to form a
complex with MYCN, to prevent its degradation by FBXW7.
AURKA stabilises MYCN via a direct interaction with a protein
binding site flanking MYCN's MBI sequence (107), this
stabilisation of MYCN exacerbates its oncogenic functions, and
prevents differentiation of neuroblasts in MYCN-driven
neuroblastoma (NB) cell lines, leading to aberrant proliferation
(108). It is likely that AURKA exerts similarly deleterious effects
in MYCN-driven MB, with evidence for this provided by
significantly decreased tumour volumes, and a tendency
towards increased survival in Ptch1+/-;p53-/- mice treated with
the AURKA inhibitor CD535 (109). Other inhibitors which
target the AURKA complex with MYCN include MLN8054
and MLN8237. Upon destabilisation of the complex by these
small molecule inhibitors, AURKA is no longer able to protect
MYCN from proteasomal degradation. Using MLN8237, which
blocks the interaction between AURKA and MYCN, our group
was able to demonstrate that AURKA inhibition is effective
against NB in a MYCN-driven transgenic mouse model (TH-
MYCN), in which high-level expression of MYCN is driven in
neural crest by a tyrosine hydroxylase (TH) promoter (110).
Correlating with this finding, MLN8237 also significantly
impaired the growth of MB allografts derived from GTML
(Glt1-tTA/TRE-MYCN-Luc) tumour-derived neurosphere cell
lines (111, 112). Additionally, MLN8237's in vivo activity was
positively confirmed using a panel of human NB xenografts
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(113). Another AURKA inhibitor, namely PHA-739358,
suppress proliferation of human SHH MB models, including
allografts of Patched mutant tumour cells and patient-derived
xenografts (114) (Figure 2).

These findings have led to the investigation of AURKA
inhibitors for the treatment of MYCN-dependent paediatric
cancers. However, despite the encouraging results in pre-
clinical studies, clinical trials with different Aurora Kinase
inhibitors showed a limited efficacy against solid tumours
(115). This has been attributed to mechanisms of resistance
triggered by strong upregulation of ATP-binding cassette
transporters, such as ABCB1, ABCG2 and ABCC2, and the
emergence of AURKA mutations, impairing the efficient
binding of the inhibitor in the ATP pocket of the enzyme and
functional single nucleotide polymorphisms (SNP) (116, 117). In
an analysis of a highly specific AURKA inhibitor LY3295668 in
560 cancer cell lines, NB was among the most sensitive tumour
type tested, with MYC/MYCN amplification identified as among
the strongest predictors of sensitivity to this agent (Figure 2).
Phase I trial of alisertib with irinotecan and temozolomide
showed promising results prompting to a phase 2 study in
Frontiers in Oncology | www.frontiersin.org 7124
children with relapsed/refractory NB. While these clinical
studies supported a potential role for AURKA inhibition in the
management of patients with advanced NB, patients with
MYCN/MYC-driven tumours still showed poor outcomes
despite treatment with this regimen (118). Inhibition of
another component of AURK family, AURKB, has been found
to sensitize MYC overexpressed Grp3 MB cells to cell death both
in vitro and in vivo (119).

Targeting MYCN Transcriptional Activity
Another therapeutic opportunity against MYCN-dependent MB
is the use of drugs that effect the transcriptional activity of
MYCN. For instance, MYC family gene expression depends on
the activity of the co-factor bromodomain and extra-terminal
(BET) family member BRD4. The bromodomain and extra-
terminal (BET) family contain bromodomains (BRD), acetyl-
lysine-specific protein interaction modules that play a key role in
regulating gene transcription and are evolutionarily conserved
and present in diverse nuclear proteins (120).

The BET family member BRD4 is of particular relevance to
MYC-driven MB (Figure 2). MYC gene expression is dependent
FIGURE 2 | Overview of current strategies targeting MYCN at different levels, from signalling receptors to downstream regulation, as well as epigenetics, and
synthetic lethality. Specific modalities (highlighted in red) have been developed to target the mechanistic components of each pathway. BRD4, Bromodomain-
containing protein 4; GF, Growth Factor; HDAC, Histone deacetylases; MAX, MYC-associated factor X; P-TEFb, Positive transcription elongation factor b; PTCH1,
Patched 1; RNA pol II, RNA polymerase II; SF, Survival factor; WNT, Wingless.
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on the activity of the BET family members (121). BRD4
preferentially binds to acetylated lysine residues K9/14 of
histone H3, and deacetylated lysine residues K5/K12 of histone
H4 (122, 123), following this BRD4 interacts with the positive
transcription elongation factor b (P-TEFb) complex, leading to
RNA polymerase II transcriptional activity (124). BRD4 is
recruited to a wide range of promoter regions, including those
for G1 cell cycle regulators (125, 126), and MYC (121, 127, 128),
following this BRD4 co-recruits P-TEFb leading to gene
transcription, which in the case of MYC is essential for MYC-
dependent stimulation of its target genes (129). Taken together
this highlights the potential of BET proteins, in particular BRD4,
in driving cell cycle and MYC dysregulation, a corollary of which
may be aberrant proliferation and tumorigenesis. By using a cell
permeable BET inhibitor (BETi) called JQ1, a thieno-triazolo-1,4-
diazepine, which displaces BET bromodomains from chromatin
by competitively binding to the acetyl lysine recognition pocket,
different research teams have demonstrated that tumours with
deregulated MYC are susceptible to JQ1 inhibition both in vitro
and in vivo (121, 127, 130, 131). In an unbiased screen of a
collection of 673 genetically characterized tumour-derived cellular
models, NB cell lines were identified as among the most JQ1
sensitive and MYCN amplification as the most predictive marker
of sensitivity (132). Additional studies have demonstrated that JQ1
also suppresses MYC/MYCN expression and MYC/MYCN-
associated transcriptional activity in MB, resulting in an overall
decrease in MB cell viability (132–134). JQ1 treatment has been
shown to be effective inMYC- andMYCN-drivenMB by targeting
cancer dependency genes driven by super-enhancers. More
recently, the pan-BETi clinical compound Molibresib
(GSK525762) shows positive outcome in Phase I and awaits
further clinical trial result (135) (Figure 2).

Cyclin-dependent kinases, especially CDK1 and CDK2, are
key players in stabilizing phosphorylation of MYC proteins at S62
upon activation (69, 136, 137). Mechanistically, the response to
BET inhibitors in MB is regulated by the suppression of genes
involved in neuronal differentiation and progression through the
cell cycle. In particular, the upregulation of the cell-cycle regulator
CCND2 is a key mediator of sensitivity or resistance to BET
inhibitors. Indeed, cells that tolerate BET inhibition do not
terminally differentiate, maintain high expression of CCND2,
that allows them to cycle through the S-phase. More recently it
has been shown that JQ1 combined with Milciclib, an inhibitor of
the MYC-stabilising enzyme CDK2, results in synergistic anti-
tumoral effects. Mice xenograft of the human MBMB002 cell line
showed prolonged survival when treated with JQ1 and Milciclib
compared to vehicle and individual JQ1 or Milciclib treatment
(138). This provides a strategy by which MYC, an 'undruggable'
protein, may be indirectly targeted for therapeutic gain. Several
small molecule BET inhibitors, structurally related to JQ1, are in
clinical development and have shown preliminary clinical activity
in solid tumours and blood cancers (139, 140). A phase I clinical
trial with the BET inhibitor, BMS-986158, is currently ongoing in
patients with paediatric cancers [NCT03936465].

Cyclin dependent kinases such as CDK7 and CDK9 play a key
role in regulating transcriptional activity of MYCN (141–143).
Frontiers in Oncology | www.frontiersin.org 8125
We have identified strong enrichment for CDK9 at both the
MYCN promoter and the distal super enhancer and shown that
pharmacologic blockade of CDK9 using Fadraciclib targeted
MYCN-dependent transcriptional landscape (143). Several
small molecule inhibitors targeting CDK7 and CDK9 (such as
fadraciclib, dinaciclib and BAY1143572) have been shown to
inhibit MYCN transcription and selectively kill MYCN amplified
or expressing neuroblastoma, medulloblastoma and other cancer
cells and are currently in early phase clinical trial.

Targeting MYCN-Associated Epigenetic
Molecules
MYC family genes also regulate transcription via epigenetic
modifications, suggesting that epigenetic drugs could be used
in the clinic to successfully treat MYC/MYCN-amplified
tumours. Epigenetic alterations and aberrant expression of
genes controlling epigenetic mechanisms have been identified
in several cancers, including NB and MB. In this regard,
numerous in vitro and in vivo evidence indicate that histone
deacetylase inhibitors (HDACi) suppress MYCN expression and
are promising candidates for novel treatment strategies of
paediatric cancers (144–146). Selective inhibition of HDAC8
by small-molecule inhibitors kills tumour growth in xenograft
mouse models of MYCN-amplified NB (147). The combination
of the HDAC inhibitor, 4-phenylbutyrate (4-PB) and the
demethylation agent, 5-Aza-2'deoxycytidine (5-Aza-dC)
reduces DNA methyltransferase activity, global methylation
and induces apoptosis in MB cell lines (148). Ecker and
colleagues found HDAC2 to be overexpressed in MB
subgroups with poor prognosis (SHH, Grp3 and Grp4)
harbouring a MYC amplification compared to normal brain
and the WNT subgroup. Indeed, increased sensitivity to
HDACi is specifically observed in MYC amplified cells (149).
HDACi further enhances the anticancer efficacy of other
therapeutic regimens, such as ionizing radiation (IR) and can
synergize with PI3K or MAPK/ERK inhibitors to impair tumour
growth in vivo (150–152). Mechanistically, HDACi have been
associated with different biological activities in MB, including the
dissipation of mitochondrial membrane potential, changes in cell
stemness, increased expression of the FOXO1 tumour suppressor
gene, enhancing mitochondrial apoptosis in a p53-dependent
manner and inhibition of the Hedgehog signalling (150, 152–
154). Taken together, these data provide strong support for
clinical testing of HDACi in the treatment of paediatric brain
cancer patients, particularly those with MB. Further studies
supporting this include a phase I trial and pharmacokinetic
study of SAHA in children with solid tumours found to be
well-tolerated (155), and a phase-I consortium clinical study
recommending vorinostat in combination with the proteasome
inhibitor bortezomib for future phase 2 studies in children with
recurrent or refractory solid tumours (156).

HDACs represent an important epigenetic mechanism by
which MYCN exerts its transcriptional effects. Treatment of
murine and human PDX medulloblastoma cell lines with the
pan-HDAC inhibitor Panobinostat lead to significant decreases
in cell viability, with the lowest IC50 (14.4nM) seen in Grp3
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MYC-driven PDX cells, and a marginally higher IC50 (25.27nM)
in Grp4 MYCN-driven PDX (152). Exploration of the
mechanism of HDAC inhibition using mouse MYC-driven
medulloblastoma cell lines and Grp3 MYC-driven PDX cells
revealed that HDAC inhibition significantly alters gene
expression in treated MB cells. Having particularly notable
effects on BRD4 target genes, MYC target genes, and stem cell
proliferation genes, which were all downregulated following
Panobinostat treatment. Further analysis of differential gene
expression changes in these cells identified increased FOXO1
expression, and its subsequent interactions, as a key driver of the
efficacy of HDAC inhibitors in MYC-driven medulloblastoma
cells. This increase in FOXO1 expression may also be
synergistically increased via combination therapy of
Panobinostat with the PI3K inhibitor buparlisib (BKM-120)
(152). Whilst the potential efficacy of HDAC inhibitors such as
Panobinostat has been relatively neglected in MYCN-driven
Grp4 and SHH MB, data from studies of MYCN-driven NB
may provide evidence for HDAC inhibitors having similar effects
on MYCN activity to those seen in MYC-driven cell lines. In one
study of particular note, Panobinostat and the BRD4 inhibitor
JQ1 acted synergistically to increase apoptosis and inhibit
growth in human Kelly and SK-N-BE (2) MYCN-driven NB
cells, whilst also synergistically reducing MYCN protein
levels, but not mRNA levels (157). Together these studies in
Grp3 MB and NB suggest that inhibition of HDACs may also be
efficacious in MYCN-driven medulloblastoma. Future studies
utilising Grp4 MB PDX cells will be required to confirm this
hypothesis (Figure 2).

MYC-driven primary medulloblastoma tumours have high
expression of the arginine methyltransferase PRMT5 compared
to non-MYC medulloblastoma tumours and adjacent normal
tissues (158). PRMT5 is the major symmetric arginine methylase
of histone tails and this histone modification is associated to both
transcription activation and repression (159). PRMT5-mediated
arginine methylation modulates a variety of cellular processes
including cell growth, metastasis, ribosome biogenesis, cellular
differentiation, gene transcription, germ cell specification,
alternative splicing, and Golgi apparatus formation.
Interestingly, the PRMT5 inhibitor EPZ015666 significantly
suppressed cell growth and induced apoptosis in MYC-driven
medulloblastoma cells (159) (Figure 2). A variety of PRMT5
enzymatic inhibitors are currently applied in clinical trials of
myelodysplastic syndrome, acute myeloid leukaemia, breast
cancer and B cell non-Hodgkin lymphoma, prompting for
further investigation in medulloblastoma [NCT03614728,
NCT03573310, NCT02783300] (160).

Targeting MYC-MAX Complexes
The bHLH-LZ structure of MYCN allows it to dimerise with
various proteins, this is particularly relevant for its obligate
partner MAX, with this interaction forming a stable four-helix
bundle. MYCN/MAX heterodimers are required for non-
consensus binding, as well as binding to the E-box sequences
(161). Once bound to promoters of target genes, the complex can
recruit transcriptional coactivators, elongation factors, and
histone modifying enzymes to initiate gene transcription.
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Antagonists of this heterodimer complex represent strong
candidates for MYCN-specific inhibitors. MAX forms
homodimers, and heterodimers with other partners such as
MNT and the MAD family members MAD1-4; these compete
with MYCN for MAX. Complexes with MAD predominantly
occur in resting or differentiated cells, whilst MYCN/MAX
complexes are common in proliferating cells (162, 163). A
potent inhibitor of the complex is Omomyc. This is a
dominant-negative Myc peptide which facilitates the binding
with the MYC protein through four specifically designed amino
acid substitutions, thus disrupting the binding between MYC/
MAX. This molecule has shown to promote apoptosis is many
cancers retaining high MYC activity (133, 164), in particular with
a preference for MB tumours (165). Other notable small-
molecule MYCN/MAX inhibitors include 10058-F4, MYCi361,
MYCi975 and KI-MS2-008 (17, 166, 167) (Figure 2).

Synthetic Lethal Targets of MYCN
A revolutionary method of indirectly targeting MYCN is to use
the approach of synthetic lethal interactions. This term is defined
as the extreme form of negative genetic interaction wherein the
combination of two genes leads to cell death, whilst the two genes
alone have no effect on viability of the cell. Synthetic lethal
screens for MYCN amplification/overexpression have been more
extensively investigated in NB, and more recently in MB due to
identification of specific cell cycle checkpoint kinases (Chk1/2).
In particular for Grp3 MB, Endersby et al. showed increased
sensitivity of MYC amplified Grp3 MB cells to these check
inhibitors (Chki) Prexasertib (LY2606368, (Chk1/2i), AZD7762
(Chk1/2i), and MK-8776 (Chk1i), with LY2606368 showing
superior activity over the other compounds (Figure 2).
Ongoing basket trial for this compound is further investigating
its anti-tumour activity [NCT02873975]. Furthermore, when
used in combination with typical cancer drugs, LY2606368/
gemcitabine combination showed specific activity for Grp3 MB
subgroup alone. Whilst SHH MB showed reduced sensitivity to
the LY2606368 compound alone, better outcome was seen when
used in combination as LY2606368/cyclophosphamide (168).
Current ongoing trial for these combinations include SHH and
Grp3/4 patients [NCT04023669].
FUTURE AREAS OF RESEARCH FOR
INNOVATIVE THERAPIES

MYCN-Driven Cancer Metabolism
Being a high-grade tumour, MBmust balance energy metabolism
with the need to synthesize the macromolecules essential for its
rapid proliferation. This contrasts with lower grade tumours that
do not require constant accumulation of biomass and can
therefore prioritize ATP production. Likewise, the neural
progenitors from which it derives, MB cellular metabolism is
characterized by increased lipogenesis and aerobic glycolysis.
Indeed, both normal and malignant neuronal cells face similar
challenges: they need the largest amount of ATP to support
electrical activity and intercellular communication, but this
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requirement must be in balance with the additional metabolic
requirements of rapid proliferation (169).

During the early stage of development, the rapid expansion of
cerebellar GCPs (CGCP), fuelled by SHH signalling, compete for
intermediates for the synthesis of lipids, nucleic acids and
proteins with the downstream generation of ATP. SHH
induces lipogenesis in CGCPs through a mechanism
dependent on E2F1 transcriptional activity, involving the up-
regulation of fatty acid synthase (FASN) and acetyl-CoA
carboxylase 1 (ACC1). In parallel, it down-regulates fatty acid
catabolism enzymes, including acyl-CoA oxidase 1 (ACOX1)
and medium chain acyl-CoA dehydrogenase (MCAD) (170–
172). SHH signalling also induces aerobic glycolysis in CGCPs
and tumour cells to support biosynthesis (173). Hexokinase-2
(Hk2) is a key metabolic regulator induced by SHH, its
importance is highlighted upon deletion, which leads to
impairment in CGCP development and reduced tumorigenesis
in the MB-prone SmoM2 mouse model (174). The nutrient
sensor peroxisome proliferator-activated receptor g (PPARg) is
also involved in SHH-mediated regulation of glycolysis;
pharmacological blockade of PPARg inhibits CGCP
proliferation and extends animal survival in the NeuroD2-
SmoA1 mouse model of MB by inducing cell death (170).

The activation ofMYC family is a key point of convergence of
the metabolic features of many different cancer types. Similar to
its family members, MYCN is a potent regulator of cellular
metabolism, through controlled expression of amino acid
transporters and other proteins involved in aerobic glycolysis,
oxidative phosphorylation, detoxification of reactive oxygen
species (ROS), and fatty acid oxidation (175). While numerous
studies have demonstrated a key role of MYCN in NB and
GBM metabolism (176–180), its metabolic function in
medulloblastoma still remains elusive. It is likely that in these
tumours, as in other cancers, MYCN reconfigures metabolism to
favour aerobic glycolysis and a dependency on the serine-
glycine-one-carbon (SGOC) to generate metabolic products
starting from serine and glycine amino acids (181).

Selective targeting of tumour glucose metabolism has long
been considered as an attractive therapeutic strategy. MYC
invariably promotes expression of critical enzymes involved in
aerobic glycolysis, such as HK2 and LDHA, making cancer cells
more vulnerable to glycolysis inhibition. 2-Deoxyglucose, an
analogue of glucose that binds and inhibits HK2, has yielded
promising antitumour activity in vitro and in vivo. Aerobic
glycolysis produces excessive lactate that is toxic to tumour
cells. MYC modulates lactate export by inducing MCT1/MCT2
expression to shift toxic levels of lactate within tumour cells.
Therefore, a potential, effective strategy is to block MYC-driven
lactate export by MCT1/MCT2 inhibitors. Of note, clinical trials
of the MCT1 inhibitor AZD3965 in diffuse large B cell
lymphoma and Burkitt's lymphoma, two typical MYC-driven
cancer types, are currently ongoing [NCT01791595] (Figure 3).

Inhibitors of glutaminase or transaminase have shown the
therapeutic efficacy in multiple MYC-driven tumour models, and
a representative glutaminase inhibitor, CB-839, is currently
under clinical trials for patient treatment. MYC and SLC7A5
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constitute a feedback loop to amplify MYC transcriptional
program, and sustain essential amino acid (EAA) metabolism
in tumour cells (182). In principle, therapeutic targeting of
SLC7A5 would offer an opportunity to unleash the functional
association between MYC and SLC7A5, leading to tumour
suppression. JPH203 (also known as KYT-0353), a specific
SLC7A5 inhibitor (183) can be evaluated as a MYC-selective
cancer therapeutics in the future clinical trials (Figure 3). MYC is
a key player in regulation of lipid metabolic reprogramming.
ACC, FASN, and 3-Hydroxy-3-Methylglutaryl-CoA reductase
(HMGCR), three key enzymes for lipid metabolism, are
significantly activated by MYC. ND-646, an allosteric inhibitor
of ACC that prevents ACC dimerization and subsequently
suppresses fatty acid synthesis, has shown efficacy in mouse
models of lung cancer (184). TVB-2640 is a highly potent,
selective, and reversible first-in-class inhibitor of FASN. Its
monotherapy and in combination with paclitaxel have entered
the clinical trial stage [NCT03179904]. Lovastatin, simvastatin,
and atorvastatin are specific HMGCR inhibitors that have been
FDA approved to lower cholesterol (185). Targeting these
enzymes may be a therapeutic alternative for MYC-driven
cancers (Figure 3). However, caution should also be taken
because it remains unclear as to which aspects of cell
metabolism could represent a realistic, targetable vulnerability
of tumour cells in comparison with normal counterparts. It
should be noted that cancer cells acquire metabolic adaptations
in response to a variety of cell-extrinsic and cell-intrinsic cues,
thus, MYC effects on cellular metabolism depend both on the
tissue of tumour origin and on interaction with tumour
microenvironment. A better understanding of these metabolic
diversities will improve our ability to define their contribution to
aggressive tumour progression.

Immunotherapy in Medulloblastoma
The last decade has seen a tremendous progress in our
understanding of how cancer cell evade the immune system
and how to harness these mechanisms to develop new therapies.
Cancer immunotherapy has proven successful in the so-called
"hot" tumours, such as lung cancer and melanoma, characterized
by high infiltrating immune cells, while "cold" tumour with
low infiltrates still represents a therapeutic challenge
for immunotherapy.

The MB microenvironment inhabits reduced numbers of
infiltrating immune cells and have been generally considered as
immunologically "cold". This is largely backed by a limited
amount o f in fo rmat ion ex i s t ing on the immune
microenvironment. Whilst this is the current understanding,
the paracrine signalling between the tumour microenvironment
suggests the existence of a more intricate interaction (186). More
recently, an increasing number of studies have shed light on the
immune profiling of MB, in an attempt to use these data as
diagnostic and prognostic tools. Grabovska and colleagues have
mapped the tumour immune microenvironment of >6000
primarily paediatric tumour of the CNS, by using
methylCIBERSORT, an algorithm derived from CIBERSORT
and based on genome-wide DNA methylation data (187, 188).
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By combining methyCIBERSORT data with pre-existing clinico-
pathological and parallel multi-omics, the study exhibited
varying proportions of infiltrates within the four classic
subgroups of MB. CD8+ T cells (27% of all non-cancer cells),
B cells (16%), and eosinophils (15%) (187) were the most
abundantly estimated non-cancer cell infiltrates within all MB
tumours. The distribution of cell types within the subgroups
showed Grp3 MB holding the highest proportion of CD8+ T
cells, Grp4 MB homing the natural killer (NK) cells, and SHH
MB, the B cells. MYC amplification in Grp3 MB is associated
with a significantly higher frequency of tumour infiltrating
lymphocytes, CD8+ T cells, and B cells and a lower infiltration
of regulatory T cells (Treg). Interestingly, this immune infiltrate
analysis further supports the recent refinement of the Grp3/Grp4
MB subgroups into eight subtypes I–VIII (83).

In all cases, the methyCIBERSORT estimates of TILs aligns
with the "Cytolytic score", derived from the expression of
granzyme A (GZMA) and perforin 1 (PRF1), secreted by
effector cytotoxic T cells and NK cells. In another gene
expression study, a smaller cohort of SHH MB tumours show
high content of fibroblasts, T cells and macrophages, whilst Grp4
MB expresses markers of cytotoxic lymphocytes. SHH MB
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subgroup has increased expression of inflammation-related
genes (CD14, PTX3, CD4, CD163, CSF1R, and TGFB2) and
significantly higher infiltration of tumour-associated fibroblasts
than Grp3 MB and Grp4 MB (189). In another cohort, cytotoxic
T-cells, with variable activation status, showed no correlation
with overall survival of the patients (190). While these studies
prove that immune profiles are specific to the different molecular
subgroups of MB, their applicability in the clinical settings is still
unclear. Moreover, data on the immune checkpoint proteins,
PD-1 and PD-L1 are limited and controversial, due both to
technical challenges to detect these markers or discrepancy
between in vitro and in vivo results (191–193).

Another reason why MB are considered "cold" is the relatively
low expression of cancer-specific antigens on their cell surface.
Orlando and colleagues have recently reported expression of the
tumour-associated antigen PRAME in 82% of MB tumour
tissues. However, its levels only showed correlation with the
worst overall survival groups. Moreover, MB cells targeted using
genetically modified T cells carrying a PRAME-specific TCR
controlled tumour growth in an orthotopic mouse model of MB
(194). Intrathecal delivery of T cells engineered to express
EPHA2, HER2 and interleukin 13 receptor a2 (IL13Ra2)
FIGURE 3 | Emerging strategies targeting MYCN. Innate systems regulating metabolism and immune response can be manipulated in cancer models to hijack the
tumorigenic mechanism. PROTAC technology can be used to target MYCN (the target protein) by enhancing protein degradation through coupling with E3 ligase,
which ubiquitinates the protein leading to degradation via the proteasome. Specific modalities (highlighted in red) have been developed to target the mechanistic
components of each pathway. SHH, Sonic hedgehog; MCT1/2, Monocarboxylate transporter 1; SLC7A5, Solute carrier family 7 member 5; EAA, Essential amino
acid; CAR T-cell, Chimeric antigen receptor T cells; ACC, Acetyl-CoA carboxylase; FASN, Fatty acid synthase; HMGCR, 3-hydroxy-3-methylglutaryl-CoA reductase;
PROTACs, proteolysis targeting chimeras.
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chimeric antigen receptors showed efficacy in the treatment for
primary, metastatic, and recurrent Grp3-MB xenografts in
mouse models. Administration of these chimeric antigen
receptor T (CAR-T) cells into the CSF, alone or in
combination with the epigenetic modifier azacytidine, was
highly effective against different metastatic mouse models of
Grp3 MB, thereby providing a rationale for CAR-T approaches
in the clinic (195) (Figure 3).

While computational analyses are advancing our general
knowledge of MB-tumour microenvironment (TME), the direct
link between MYCN expression and TME profiling is still under
investigation. What has emerged in neuroblastoma and other
malignancies (small cell lung cancer, rhabdomyosarcoma, Wilms'
tumour, retinoblastoma, acute myeloid leukaemia, and T-acute
lymphoid leukaemia) is that MYCN has a great role in
dysregulating the immune network. In neuroblastoma patients
for instance, gene set enrichment analysis has shown that
MYCN levels negatively correlate with genes involved in
different immune system pathways, especially those associated
to interferon gamma and phagocytosis (196). Overall, MYCN
suppresses the immune landscape, through dysregulation of
immune checkpoints, CD4+ helper T (Th) cytokines, major
histocompatibility complex (MHC) genes, and Toll-like
receptors (TLRs) (197). Apart from tumour cases with MYCN
gene amplification, the immune system dysregulation can occur
as a consequence of other events leading to increased MYCN
activity (mRNA and protein stabilization, mi-RNA alteration).
Based on these considerations, it is imperative to have a better
understanding of the mechanistic components linking MYCN to
MB-TME functions. The blockage of MYCN or specific MYCN
dependencies could ameliorate the immune suppression by
restoring the responsiveness of the immune system, opening
the way to combinatorial treatments with immunotherapies. In
this context, the link between MYCN and polycomb repressive
complex 2 (PRC2) may offer a promising therapeutic opportunity
via a mechanism that alters TME immunogenicity (198, 199).

Use of PROTACs
Proteolysis targeting chimeras (PROTAC) and hydrophobic
tagging are successful technologies/strategies for selective
degradation of the target protein (200, 201). Although
PROTAC technology has been rapidly gaining momentum in
the drug discovery field, the hydrophobic tagging approach has
received considerably less attention from the biomedical
community. This approach utilizes a bulky and hydrophobic
group attaching to a small-molecule binder of the target protein.
The binding of this bivalent compound to the target protein leads
to misfolding of the target protein and its subsequent
degradation by the proteasome (202). Targeting oncogenic
proteins for degradation using PROTACs recently gained an
increased momentum in the field of cancer research. Compared
with BET inhibitors HJB-97 and JQ1, the activity of the
PROTAC BET degrader BETd-260 increased over 1000 times
(203). The degrader complex showed stability through
cooperative binding between AURKA and CEREBLON (204).
The enhancer of zeste homolog 2 (EZH2) is the main enzymatic
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subunit of the polycomb repressive complex 2, which catalyses
tri-methylation of lysine 27 on histone H3 (H3K27me3) to
promote transcriptional silencing. PRC2 complex has
important roles in tissue development, primarily to maintain
cell identity (205). EZH2 is overexpressed in multiple types of
cancer including triple-negative breast cancer (TNBC), and high
expression levels correlate with poor prognosis. In MB, studies
have shown increased expression of EZH2 in all subgroups, with
particularly high levels in G3 and G4 (206, 207). The link
between this enzyme and MYC or MYCN remains largely
unexplored. Whilst studies have shown correlation between
levels of the enzyme and MYC activity (208), the causation
behind this is yet to be mapped. Nonetheless, Chen et al. showed
in MYCN amplified neuroblastoma, a strong dependency
between tumour cells and the PRC2 complex. MYCN was
shown to directly activate EZH2 by binding to its promoter,
leading to inhibition of neuronal differentiation networks in
MYCN-amplified (209). This approach should also be applied
to MB to elucidate the underlying mechanism. Several EZH2
inhibitors, which inhibit the methyltransferase activity of EZH2,
have shown promising results in treating sarcoma and follicular
lymphoma in clinics. However, EZH2 inhibitors are ineffective at
blocking proliferation of TNBC cells, even though they effectively
reduce the H3K27me3 mark. Using a hydrophobic tagging
approach, generation of MS1943, a first-in-class EZH2 selective
degrader that effectively reduces EZH2 levels in cells
(210) (Figure 3).
CONCLUSION AND FUTURE OUTLOOK

In this review, we have highlighted the relationship between
MYCN and the paediatric brain tumour medulloblastoma, with
an emphasis on the emerging therapeutic avenues to target this.
The ever-increasing advancements in sequencing technologies,
coupled with global efforts to improve the disease models
through strong collaborations, and the use of more
humanised systems, is rapidly dissecting the precise role of
MYCN in all MB subgroups. Model systems such as patient-
derived iPSCs (51, 211, 212), and human hindbrain-derived
neuroepithelial stem cells (213) align with the developmental
trajectory of the CNS, therefore are likely to reflect a more
authentic evolution of the tumour through targeting of relevant
oncogenes such as MYCN. Novel MB targeting strategies using
PROTACs, and CAR T-cell therapy offer a selective advantage
over the more generic inhibitors. Additional focus on the
metabolic dependencies of MB tumours can shed light on the
most vulnerable target for tumour growth. Whilst the
supporting evidence indicate a practical use for these
technologies in MB, these mechanisms remain largely
unexplored. Recently, liquid biopsies using CSF to assess
circulating tumour DNA have been used to genetically
characterise MB (214). This is an important development in
the management of MB, one particularly relevant to the
potential MYCN-focussed therapeutic approaches discussed
here, as liquid biopsies detect the majority of MYCN-effecting
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mutations such as MYCN and Gli2 amplification, and SUFU
loss (214). As CSF may be obtained during hydrocephalus
surgery, a common procedure for MB patients, this will open
the possibility to personalised medicine approaches for the
treatment of this devastating disease. Furthermore, MB is a
brain tumour protected from the systematic delivery of cancer
drugs by the blood brain barrier (BBB). This defence system is a
unique problem which prevents majority of the current
therapies from succeeding. Utilising lipid-soluble cargoes such
as nanoparticles which disintegrate at the target site (215, 216),
or focused ultrasound techniques e.g., pulsed ultrasound (217),
can greatly improve the delivery of targeted drugs.

It is certainly evident that MYCN is a phenomenally complex
molecule. As illustrated in this review, the multiple downstream
signalling pathways directly or indirectly regulated by Myc
highlights that targeting this oncogene is a compelling, yet
challenging strategy for MB. Our ultimate goal is to increase
the proportion of surviving patients, more specifically by
reverting the adverse effects of disseminated disease and
treatment sequelae. Thus, our expanding knowledge of the
mechanisms in this cancer offers the promise to formulate
more targeted therapies and translate this to the clinic in the
best form.
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MYCN-Driven Malignant Cancers
Atsushi Takatori*, MD. Shamim Hossain†, Atsushi Ogura, Jesmin Akter†,
Yohko Nakamura and Akira Nakagawara*†

Division of Innovative Cancer Therapeutics, Chiba Cancer Center Research Institute, Chiba, Japan

Receptor tyrosine kinases (RTKs) receive different modulation before transmitting
proliferative signals. We previously identified neuronal leucine-rich repeat 1 (NLRR1) as
a positive regulator of EGF and IGF-1 signals in high-risk neuroblastoma cells. Here, we
show that NLRR1 is up-regulated in various adult cancers and acts as a key regulator of
tumor cell proliferation. In the extracellular domains of NLRR1, fibronectin type III (FNIII)
domain is responsible for its function to promote cell proliferation. We generated
monoclonal antibodies against the extracellular domains of NLRR1 (N1mAb) and
screened the positive N1mAbs for growth inhibitory effect. The treatment of N1mAbs
reduces tumor cell proliferation in vitro and in vivo, and sensitizes the cells to EGFR
inhibitor, suggesting that NLRR1 is a novel regulatory molecule of RTK function.
Importantly, epitope mapping analysis has revealed that N1mAbs with growth inhibitory
effect recognize immunoglobulin-like and FNIII domains of NLRR1, which also indicates
the importance of FNIII domain in the function of NLRR1. Thus, the present study provides
a new insight into the development of a cancer therapy by targeting NLRR1 as a
modulator of proliferative signals on cellular membrane of tumor cells.

Keywords: neuronal leucine-rich repeat 1, neuroblastoma, epidermal growth factor receptor, monoclonal antibody,
epitope mapping
INTRODUCTION

Neuroblastoma (NB), originally arising from the sympathoadrenal lineage of the neural crest, is
one of the most common extracranial solid tumors in childhood. NBs in patients less than 1 year
of age often regress spontaneously, resulting in a favorable prognosis (1). In contrast, tumors
found over 1 year of age are usually aggressive leading to poor prognosis. A subset of NB with
Abbreviations: ALK, anaplastic lymphoma kinase; DMEM, Dulbecco’s Modified Eagle Medium; BrdU, 5-bromo-2-
deoxyuridine; DTSSP 3,3′-Dithiobis(sulfosuccinimidylpropionate); EGF, epidermal growth factor; EGFR, epidermal growth
factor receptor; FBS, fetal bovine serum; FCM, flow cytometric analysis; FNIII, fibronectin type II; IHA, hemagglutinin; Hpfs,
high power fields; Ig, immunoglobulin-like; IGF, insulin-like growth factor; LRR, leucine-rich repeats; N1mAb, monoclonal
antibodies against the extracellular domains of NLRR1; NB, neuroblastoma; NLRR, neuronal leucine-rich repeat; mAbs,
monoclonal antibodies; PBS, phosphate-buffered saline; qRT-PCR, quantitative real-time RT-PCR; RTK, Receptor
tyrosine kinases.
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poor prognosis is characterized by the presence of genetic
aberrations, such as gain of chromosome 17q, loss of
chromosome 11q, and amplification of MYCN oncogene (2,
3). MYCN is a nuclear transcription factor and one of the most
important prognostic indicators of poor clinical outcome (4).
In general, MYCN regulates cell proliferation through
transcriptional regulation of its target genes in both positive
and negative manners (5, 6). However, genes contributing to
tumor growth and aggressiveness of NB under MYCN
regulation still remain elusive.

Tumor growth is mediated by the activity of receptor tyrosine
kinases (RTKs) functionally regulated by different mechanisms
including gene expression, endocytosis, dephosphorylation, and
crosstalk with other membrane proteins (7–9). Our previous
studies have revealed that neuronal leucine-rich repeat 1
(NLRR1), a type І transmembrane protein, is associated with
tumorigenesis by promoting cell proliferation through the
activation of ERK mediated by EGF and IGF-1 (10) and
negatively regulating anaplastic lymphoma kinase (ALK) (11)
in NB, although the contribution of NLRR1 to other types of
cancers is not understood. NLRR1 was originally identified in a
cDNA project to seek new therapeutic target genes differentially
expressed between favorable and unfavorable NBs (12, 13). The
human NLRR family consists of three members, NLRR1,
NLRR2, and NLRR3. NLRR1 expression is significantly high
in advanced stages of NB with poor prognosis, whereas
that of NLRR3 is significantly high in early stages of NB
with good prognosis (14, 15). Interestingly, transcription of
NLRR1 and NLRR3 is oppositely regulated by MYCN, a
member of MYC family of oncogenes frequently amplified in
aggressive NB. These previous findings suggested NLRR1 as an
executer protein for aggressiveness of NB under MYCN
regulation and a possible therapeutic target to control
tumor growth.

Inhigh-riskNB,despite a great improvementof its combinatorial
therapy with surgical resection, intensive chemotherapy,
radiotherapy, and immunotherapy, only 40 to 50% of patients
survive long term (3, 16). Therefore, new and efficient therapeutic
strategies are required to improve overall survival of the high-risk
group. To date, clinical trials of molecular targeted therapy (e.g.
EGFR, IGF-IR, or ALK) have been performed in pediatric solid
tumors (17–19). However, more preclinical and clinical trials are
needed to identify key targets that can be efficiently exploited
therapeutically and help develop a patient-tailored therapy
because NB is a heterogeneous tumor (3).

In the present study, we found the up-regulation of
NLRR1 expression in various adult cancers and non-NB cell
lines. Hybridomas producing monoclonal antibodies (mAbs) to
extracellular part of NLRR1 were developed and subjected to
screening assays. Monoclonal antibody against NLRR1
(N1mAb) with growth inhibitory effect was found to target the
domains of NLRR1 responsible for its function to regulate
cell proliferation. Furthermore, the treatment of N1mAb
suppressed EGF signals, potentiated the effect of EGFR
inhibitor, and decreased the tumor growth in mouse
xenograft models.
Frontiers in Oncology | www.frontiersin.org 2138
MATERIALS AND METHODS

Reagents and Antibodies
EGF and IGF-I were from Sigma (St. Louis, MO, USA).
Complete protease inhibitor cocktail and phosphatase inhibitor
cocktail were from Roche (Indianapolis, IN, USA); 5-bromo-2-
deoxyuridine (BrdU) was from Sigma; 3,3′-Dithiobis
(sulfosuccinimidylpropionate) (DTSSP) was from Thermo
Fisher Scientific (Rockford, IL, USA). Antibodies against
phospho-EGFR (#2236), phospho-ERK (#9101), phospho-Akt
(#9271), EGFR (#4267), ERK (#9102), Akt (#9272), and myc tag
(#2276) were from Cell Signaling Technology (Danvers, MA,
USA); anti-b-III tubulin (Tuj1) antibody (#MMS-435P) was
from Covance (Princeton, NJ, USA); anti-HA tag antibody
(#11867423001) was from Roche; anti-BrdU antibody
(#M0744) was from DakoCytomation (Glostrup, Denmark);
anti-actin (#A5060) was from Sigma; and the sheep polyclonal
anti-NLRR1 antibody (#AF4990) was from R&D Systems
(Minneapolis, MN, USA). AG1478 was from Calbiochem
(Darmstadt, Germany). Lung and prostate tissue lysate
arrays (Tissue Lysate Dipstick Array) were from Protein
Biotechnologies (Ramona, CA, USA).

Quantitative Real-Time PCR
Total RNA was extracted from 12 lung adenocarcinoma or nine
squamous cell carcinoma and adjacent non-cancerous tissues as
well as NB and non-NB cell lines using TRIzol reagent
(Invitrogen) according to the manufacturer’s instructions, and
reverse transcription was performed with SuperScript II reverse
transcriptase (Invitrogen). qRT-PCR was carried out using 7500
Real-Time PCR System (Applied Biosystems), according to the
manufacturer’s protocol. TaqMan probe for NLRR1 (Assay ID:
Hs00979743_m1) and b-actin control reagent kit were
purchased from Applied Biosystems. The mRNA levels of each
gene were standardized by b-actin. All human neuroblastoma
specimens used in the present study were obtained at various
institutions and hospitals in Japan and provided to the Chiba
Cancer Center Neuroblastoma Tissue Bank with appropriate
informed consent. The procedure of this study was reviewed and
approved by the internal review board of Chiba Cancer Center.

Cell Culture
HEK293 and MCF7 cells were cultured in Dulbecco’s Modified
Eagle Medium (DMEM; Sigma) supplemented with 10% fetal
bovine serum (FBS; Invitrogen, Carlsbad, CA, USA). Human
neuroblastoma SH-SY5Y and SK-N-BE(2) cells were maintained
in RPMI 1640 (Sigma) supplemented with 10% FBS. HEK293
cells were obtained from the JCRB Cell Bank and MCF7 and SH-
SY5Y cells were from ATCC, while SK-N-BE(2) cells were
purchased from the European Collection of Authenticated Cell
Cultures. Mycoplasma contamination was tested by Mycoplasma
Detection Set (Takara), and short tandem repeat analysis was
performed for cell authentication (Promega). Transient
transfection with C-terminal hemagglutinin (HA) or myc-
tagged human NLRR1 plasmids was performed using Fugene
HD (Roche) or Lipofectamine2000 (Invitrogen) according to the
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manufacturer’s instructions. Seventy to eighty percent confluent
monolayers of transfected cells were treated with growth factors
for the indicated times after 16 h serum starvation, and cell
lysates were subjected to western blot analyses. Cell proliferation
was determined using a Cell Counting Kit-8 (Dojindo, Japan).

Generation of NLRR1 Stable Knockdown
Cell Lines Using shRNA Lentiviruses
SK-N-BE cells were infectedwith four differentMISSION lentiviral
particles encoding NLRR1 shRNAs (Sigma). NLRR1 shRNA target
sequences were as follows: #1, CCGGCCACAACTTTGCGTAT
GTGAACTCGAGTTCACATACGCAAAGTTGTGGTTTTTTG;
#2, CCGGCCACCTGAACTCCAACAAATTCTCGAG
AATTTGTTGGAGTTCAGGTGGTTTTTTG; #3, CCGGG
CTGAACAACAATGCCTTGAACTCGAGTTCAAGG
CATTGTTGTTCAGCTTTTTTG; and #4, CCGGGCTAGACTT
GTTACCTTCGTTCTCGAGAACGAAGGTAACAAGTCTAG
CTTTTTTG. Stable cell lines were generated by selection with
puromycin (0.8 µg/ml). To exclude the possibility of off-target
effects of NLRR1 shRNAs, 3′UTR-targeted #4 shRNA stably
expressing SK-N-BE cells were transiently introduced with
pcDNA3-NLRR1-HA expression plasmid and subjected to cell
proliferation assays, as above.

Histology and Immunostaining
Human tissue array slides were obtained from Super Bio Chips
(Seoul, Korea) and subjected to immunostaining using polyclonal
anti-NLRR1 antibody (1:25). BrdU was injected intraperitoneally
into mice bearing tumors at a dose of 100 mg/g body weight 24 h
before autopsy. Tumor tissues were fixed in 4% paraformaldehyde,
dehydrated with a graded ethanol series, and embedded in paraffin.
Sections (4 µm) were deparaffinized by immersion in xylene and
rehydrated, followed by immunostaining for BrdU. Number of
BrdU-positive cells was counted in four high power fields (hpfs) of
each tumor at ×400 magnification.

Immunoprecipitation and Western
Blot Analyses
HEK293 cells expressing HA-tagged and myc-tagged NLRR1 were
treated with cross-linker (DTSSP) for 2 h at 4°C. The cell lysates
(500–750 mg) were incubated with appropriate antibodies for 1 h at
4°C, followed by incubation with protein G-agarose at 4°C
overnight. After extensive washing of the beads with lysis buffer,
the immunoprecipitates were detected by western blot analyses.
Total cell lysates were resolved by SDS-PAGE followed by western
blot detection using the indicated antibodies (1:1,000).

Biotin Labeling on Cell Surface
HEK293 cells were transiently transfected with C-terminal
tagged human NLRR1, NLRR2, or NLRR3 plasmids and
treated with EZ-Link Sulfo-NHS-LC-LC-Biotin (Thermo Fisher
Scientific) or vehicle alone for 30 min at room temperature. Cell
lysates (500 mg) were incubated with NeutrAvidin Agarose Resin
(Thermo Fisher Scientific). The precipitated proteins were
resolved by SDS-PAGE followed by western blot detection
using appropriate antibodies.
Frontiers in Oncology | www.frontiersin.org 3139
Generation of Anti-Human NLRR1
Monoclonal Antibodies
The monoclonal antibodies were generated against extracellular
domain of NLRR1 (MBL, Nagoya, Japan). The purified proteins
of NLRR1 extracellular domain and complete Freund’s adjuvant
(1:1) were injected into mice. Three days after the final injection,
lymph-node cells were removed from immunized mice and were
fused with P3U1 myeloma cells at a ratio of 5:1 by the
polyethyleneglycol-400 procedure. Cultured supernatants of the
hybridomas were screened in transfectants expressing NLRR1 by
flow cytometric analysis (FCM) and the binding assay in 96-well
plate coated with NLRR1 proteins. After cloning of the
hybridomas which showed the positive results in FCM and/or
the binding assay, the culture supernatants from wells were
tested for growth inhibitory effect by culturing CHP134 cells at
1 × 105/ml in the medium containing 50% of the conditioned
medium from the hybridomas. For the positive hybridomas, the
monoclonal antibodies were purified by protein A Sepharose
column chromatography by MBL.

Characterization of NLRR1 mAb
The isotype of each of the N1mAbs was determined by MBL.
The plasmids for NLRR1 lacking the extracellular domains
(DLRR, DIg, and DFNIII) were prepared using Infusion
(Clontech, Mountain View, CA, USA). Peptide microarray
was generated by JPT Peptide Technologies GmbH (Berlin,
Germany) and analyzed by SureScan Microarray Scanner
(Agilent Technology, Santa Clara, CA, USA). For flow
cytometry, HEK293 cells were transiently transfected with the
plasmids of NLRR1 lacking the extracellular domains and
resuspended in phosphate-buffered saline (PBS). The cells were
incubated with N1mAbs for 1 h at 4°C followed by the
incubation with Alexa Fluor 488-labeled anti-mouse IgG
(Thermo Fisher Scientific). The cells were analyzed using
FACSCalibur (BD, San Diego, CA, USA).

Tumor Growth Inhibition Study
SH-SY5Y cells stably expressing NLRR1 were established by
transfection followed by selection with G418 at concentration of
600 µg/ml for about 4–6 weeks (10). Seven-week-old SCID mice
(Charles River Laboratories) were subcutaneously inoculated with
5 x 106 SH-SY5Y cells stably expressing NLRR1 and CHP134
cells in 0.1 ml of PBS/Matrigel. After implantation, tumor sizes
were measured using the following formula: [(width)2 × length]/2.
After tumors became >75 mm3, mice were randomized into
two groups and intraperitoneally administered with vehicle or
NLRR1 monoclonal antibody #281 twice a week for 3 weeks. For
in vivo imaging, N1mAb 281 was labeled with HiLyte Fluor 750
using AnaTag Protein Labeling Kit (AnaSpec, Fremont, CA, USA)
and visualized using a Lumazone imaging system (Roper
Scientific, Tucson, AZ, USA) after injection into the tail vein.
All mice were maintained in a specific pathogen-free animal
facility. All animal experiments were approved by the Animal
Care and Use Committee of Chiba Cancer Center
Research Institute.
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Statistical Analysis
Student’s t-tests (two-tailed) and ANOVA tests were employed
to examine the differences between two groups and that of
differences between more than two groups, respectively. In
xenograft study, the difference between groups was evaluated
by two-way repeated measures ANOVA followed by Bonferroni
posttest. *, P < 0.05; **, P < 0.01; and ***, P < 0.001 versus saline
at each time; ##, P < 0.01 versus saline group.
RESULTS

NLRR1 Expression Is Up-Regulated in
Many Cancers
NLRR1 expression is significantly high in advanced stages of NBs
with poor clinical outcome (20). High expression of NLRR1 was
also detected in NB cell lines and non-NB cell lines (Figure S1A).
Here, we further examined NLRR1 expression in various cancer
tissues. Immunohistochemistry revealed strong staining in
cancer tissues from skin, lung, and breast as compared with
the corresponding normal tissues (Figures 1A and S1B). Higher
expression of NLRR1 in adult cancer tissues (lung and prostate)
compared to normal tissue was also indicated by tissue lysate
arrays (Figure S1C). To confirm the elevated expression of
NLRR1, we measured mRNA expression in primary lung
cancers by quantitative real-time RT-PCR (qRT-PCR). High
expression of NLRR1 was observed in tumorous tissues; eight
out of twelve adenocarcinomas and three out of nine squamous
cell carcinomas showed more than two-fold higher expression of
NLRR1 than normal tissues (Figure 1B). These data suggest that
NLRR1 may contribute to the malignant status and serve as a
biomarker not only in NB, but also in adult cancers.

NLRR1 Increases Cell Proliferation by
Enhancing the Cellular Signals of EGF
and IGF
Similar to our previous observation inNBcells (10), overexpression
of NLRR1 increased the cell growth in NLRR1-low-expressing
MCF7 breast cancer cells (Figure 1C) and the activation of ERK
in the cells was enhanced when treated with EGF and IGF in dose-
dependent manner (Figures 1D, E) and time-dependent manner
(Figure S2). To confirm the requirement of NLRR1 for cell
proliferation, we performed NLRR1 depletion using lentiviral
shRNAs in SK-N-BE NB cells with a moderate level of NLRR1
expression (10). Four different lentiviruses were prepared for stable
cell lines and NLRR1 knockdown dramatically diminished cell
proliferation (Figure S3A). The reduced proliferation with
shRNA targeting 3′-UTR region of NLRR1 was recovered by
exogenous NLRR1 expression in a dose-dependent manner
(Figure S3B), suggesting that NLRR1 expression is crucial to
maintain normal cell proliferation.

FNIII Domain Is the Functional Region
of NLRR1 Required for Enhancing
Growth Signaling
NLRR1 is a glycosylated transmembrane protein with external
leucine-rich repeats (LRRs), immunoglobulin-like (Ig),
Frontiers in Oncology | www.frontiersin.org 4140
fibronectin type III (FNIII) domains and a short intracellular
tail. To identify the functional domains of NLRR1, we
constructed the expression vectors of NLRR1 with the
deletions in extracellular domains (DLRR, DIg, and DFNIII).
Cell growth assay in MCF7 cells expressing the deletion mutant
NLRR1 revealed that the deletion of FNIII domain significantly
reduced the cell growth compared to wild-type NLRR1
(Figure 1F). In addition, the phosphorylation of ERK upon
EGF treatment was diminished in DFNIII-expressing cells,
while NLRR1 lacking DLRR had a comparable phospho-ERK.
Of note, the deletion of Ig domain resulted in the reduced
activation of ERK upon EGF treatment (Figure 1G). These
data suggest that FNIII domain is a responsible domain of
NLRR1 to enhance EGF signaling and increase cell
proliferation and that Ig domain has an auxiliary function to
support FNIII domain.

N1mAb Suppresses Cell Proliferation
To produce mAbs against NLRR1, the purified proteins of
NLRR1 extracellular domain were used to immunize mice. To
obtain a mAb that blocks the function of NLRR1, we tested
cultured supernatants from candidate hybridomas sequentially
by FCM and ELISA (Figure S4A). The positive cultured
supernatants were further examined in growth inhibition
assays using NLRR1-expressing cells. The cell growth treated
with NLRR1 IgGmAbs of No. 240, 281, and 300, was suppressed,
while little effect was observed by FCM-negative NLRR1 mAb
No. 23 (Figure S4B). After purification of the positive IgG mAbs,
CHP134 NB cells were cultured in the medium containing
varying amounts of the purified candidate mAbs. Four days
after treatment, the proliferation of cells was greatly inhibited by
NLRR1 mAbs, especially by N1mAb 281 and 300, in a dose-
dependent manner (Figure 2A). Among the mAbs, N1mAb281
was more effective in suppressing cell proliferation compared to
other mAbs, and it was selected for further investigation. The
growth inhibition assay using N1mAb281 was performed in NB
cells (SK-N-DZ, NLF, SK-N-BE), breast cancer cells (MCF7),
and lung cancer cells (A549). The treatment with high dose of
N1mAb281 (100 mg/ml) significantly suppressed cell growth in
NLF and SK-N-BE cells, while the marginal inhibitory effect was
observed in SK-N-DZ, MCF7 and A549 cells (Figure 2B).

The Treatment of N1mAb Inhibits
Tumor Growth
We next checked the efficacy of N1mAb treatment in xenograft
model using SCID mice bearing NLRR1-stably expressing SH-
SY5Y (SH-SY5Y/NLRR1) tumors. Even at relatively low dose
(100 µg, twice a week), treatment of N1mAb led to significant
suppression of tumor growth of SH-SY5Y/NLRR1 cells, strongly
supporting the growth inhibitory effect of N1mAb (Figure 3A).
The localization of N1mAb in the tumor was confirmed using
near-infrared fluorescent-labeled N1mAb 281 systemically
administered by tail vein injection (Figure S5). We further
determined the antitumor effect of N1mAb on endogenously
expressed NLRR1 in CHP134 tumor xenograft. As shown in
Figure 3B, N1mAb treatment (200 µg, twice a week) significantly
reduced the tumor growth with 51% tumor regression without a
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loss of body weight (data not shown). To examine the effect of
N1mAb in cell proliferation in vivo , we performed
immunohistochemistry for BrdU-labeled cells and found that
the number of BrdU positive cells was significantly decreased in
N1mAb-treated CHP134 xenograft tumors (Figures 3C, D).
Hence, we concluded that the treatment of N1mAb induces
growth inhibitory effect in vitro and in vivo.

N1mAb 281 Binds to Ig and FNIII Domains
of NLRR1
To elucidate the mechanism of growth inhibition by N1mAb,
the binding property of N1mAb 281 was examined by
immunoprecipitation and indirect flow cytometry. HEK293
Frontiers in Oncology | www.frontiersin.org 5141
cells overexpressing HA-tagged NLRR1 were subjected to
immunoprecipitation assay. As shown in Figure 4A, HA-tagged
NLRR1 was immunoprecipitated with N1mAb 281. To further
examine a responsible region of NLRR1 protein for the binding of
N1mAb 281, HEK293 cells transfected with expression vectors of
NLRR1wild-type,DLRR,DIg, orDFNIII were immunostainedwith
N1mAb 281 followed by Alexa Fluor 488 conjugated anti-mouse
IgG. The population ofNLRR1-expressed cells detected byN1mAb
281 was decreased by deletion of Ig and FNIII domains, while
NLRR1 lacking LRR domain exhibited little change compared to
NLRR1 wild-type (Figure 4B). According to these results, we
postulated that N1mAb 281 binds to Ig and/or FNIII domains of
NLRR1. To identify the epitope sites recognized byN1mAb 281,we
A B

C D E

F G

FIGURE 1 | NLRR1 is up-regulated in various cancers and the Ig and FNIII domains are responsible for its function. (A) Immunohistochemistry using anti-N-terminal
NLRR1 antibody in human normal and cancerous skin, lung, and breast tissue. The scale bar represents 500 mm. (B) Relative expression levels of NLRR1 mRNA in
normal and lung carcinoma tissues (twelve adenocarcinoma and nine squamous cell carcinoma). Relative expression levels of NLRR1 mRNA were determined by
calculating the ratio between b-actin and NLRR1. (C) Overexpression of NLRR1 tagged with myc in NLRR1 low-expressing MCF7 cells promotes cell proliferation.
Quantification of cell proliferation was performed by WST-8 assays. Results are given as mean ± SD. *P < 0.05, compared to pcDNA3. (D, E) NLRR1-expressing
cells show ERK activation upon EGF and IGF treatment at low concentrations. MCF7 cells were transfected with pcDNA3-NLRR1 and treated with different
concentrations of EGF (D) or IGF (E). Ten minutes after treatment, the cell lysates were collected. Arrowheads, glycosylated NLRR1. (F) Deletion of FNIII domain
resulted in a marked suppression of cell growth in MCF7 cells. Wild-type (WT) of NLRR1 or deletion mutants lacking leucine-rich repeats (LRR), immunoglobulin-like
(Ig) or fibronectin type III (FNIII) were transiently expressed in MCF7 cells and subjected to WST-8 assays. Data were normalized to the results at Day 1 and indicated
as mean ± SD. *P < 0.05, compared to WT. (G) FNIII domain is responsible for enhancing ERK phosphorylation upon EGF treatment. MCF7 cells expressing NLRR1
deletion mutants were treated with EGF (10 ng/ml) for 10 min, and the cell lysates were subjected to western blot analyses.
June 2021 | Volume 11 | Article 669667

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Takatori et al. Targeting NLRR1 for Cancer Therapy
next generated 12-amino acid peptide microarray against Ig and
FNIII domains from Pro 424 to Thr 614 (Figure 4C). As shown in
Figure 4D, positive signals on microarrays in three independent
experiments of immunostaining with N1mAb 281 were obtained
Frontiers in Oncology | www.frontiersin.org 6142
mainlywith the two regions of spots in Ig domain and three regions
in FNIII domain (Figure 4E). These data suggest that the N1mAb
281 can recognize the discontinuous epitopes of Ig and FNIII
domains in the extracellular part of NLRR1. We failed to detect
A B

FIGURE 2 | Generation of monoclonal antibodies against the extracellular domain of NLRR1 with growth inhibitory effect. (A) CHP134 NB cells were cultured in the
medium containing varying amounts of the purified candidate mAbs. Four days after treatment, the proliferation of cells was subjected to WST-8 assays. Data were
normalized to the results for untreated cells and represented as percentage of control (mean ± SD). (B) NB cells (SK-N-DZ, NLF, SK-N-BE), breast cancer cells
(MCF7), and lung cancer cells (A549) were treated with N1mAb 281 at 100 mg/ml for 5 days. Quantification of cell proliferation was performed by WST-8 assays.
Data are presented as the mean ± SD. The P-value was determined by the unpaired t-test.
A B

C D

FIGURE 3 | NLRR1 monoclonal antibody inhibits NB tumor growth in vivo. (A) Female SCID mice were subcutaneously inoculated with SH-SY5Y cells stably
expressing NLRR1 and randomized into two groups (seven mice per group). Mice were i.p. injected with saline or N1mAb 281 (100 µg) twice a week for 3 weeks
(arrows). Data are shown as mean tumor volume ± SD. (B) SCID mice (seven mice per group) bearing CHP134 xenografts were injected i.p. with saline or N1mAb
281 (200 µg) twice a week for 3 weeks (arrows). The difference between groups was evaluated by two-way repeated measures ANOVA followed by Bonferroni
posttest. *P < 0.05; **P < 0.01; and ***P < 0.001 versus saline at each time; ##P < 0.01 versus saline group. (C) Twenty-four hours after BrdU administration
(100 µg/g of body weight), all mice bearing CHP134 tumors in (B) were sacrificed and the paraffin sections of tumor tissues were subjected to BrdU immunohistochemistry
to quantify cell proliferation. (D) The number of BrdU-positive cells in tumor tissues was counted per high power field (hpf). Data are mean ± SD obtained from seven mice
for each group.
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the bands of NLRR1 by western blot analysis using N1mAb 281
(data not shown), indicating that the antibody binds to the two
domains of NLRR1 in a conformation-dependent manner. We
further examined the epitope sites recognized by the other
N1mAbs, 300 and 240 (growth inhibitory effect positive and
negative, respectively). N1mAb 300, which showed a comparable
growth inhibitory effect to N1mAb 281 (Figure 2A), detected the
peptides from both Ig and FNIII domains, whereas N1mAb 240
with a weak growth inhibitory effect showed no signals in the
peptide microarray (Figure S6). These results suggest that the
growth inhibitory effect of N1mAb 281 is exerted through
binding to Ig and FNIII domains of NLRR1.

Combinatory Use of N1mAb With EGFR
Inhibitor Is Effective in the Resistant
Cancer Cells
Next, we tested N1mAbs for the combinatorial effect with EGFR
inhibitor because previous reports showed that EGFR is
expressed in NB and adult cancers and could be a therapeutic
target for these tumors (21, 22). The results in Figure 5A
demonstrate that the additional treatment with N1mAb 281
resulted in the reduced cell proliferation at low concentration
of AG1478 EGFR inhibitor. Compared with AG1478 alone,
treatment with N1mAb 281 reduced 40% of viable cells
Frontiers in Oncology | www.frontiersin.org 7143
co-treated with AG1478. In AG1478-resistant lung cancer
A549 cells, N1mAb #281 treatment increased the sensitivity to
AG1478 treatment (Figure 5B). A similar result was obtained
by N1mAb 300 (Figure S7). In addition, the activation of EGF
signals was examined in N1mAb pre-treated SH-SY5Y/NLRR1
cells. The phosphorylation of EGFR, HER2, and the downstream
molecules, Akt and ERK, was greatly decreased by N1mAb 281
treatment (Figure 5C). The reduced downstream signals upon
EGF treatment were also observed in NLRR1-stably expressing
MCF7 cells (Figure 5D). Because NLRR1 knockdown in SK-
N-BE cells resulted in the impaired cell proliferation (Figure S3),
we treated the cells with N1mAb for 7 days to check the influence
on EGF signaling molecules. As shown in Figure 5E, N1mAb
treatment down-regulated ERK activation, although the reduced
expression of EGFR and phosphorylation of Akt was observed
only in N1mAb 281-treated cells. Of note, N1mAb treatment
increased the expression of HER2 and NLRR1, implying a
mechanism of feedback up-regulation of the expression against
NLRR1 inhibition. Thus, N1mAb treatment suppresses EGF
signals and sensitizes the cells to the growth suppression
induced by EGFR inhibitor treatment.

To understand the mechanism how N1mAb inhibits the
function of NLRR1, we first performed immunoprecipitation
assay using vectors for two different tagged NLRR1 and found
A

B

D

C E

FIGURE 4 | Epitope mapping of N1mAb 281 using a peptide microarray. (A) HA-tagged NLRR1 was expressed in HEK293 cells, and the cell lysates were
subjected to immunoprecipitation using N1mAb 281. Normal mouse IgG was used as a negative control. NLRR1 protein was detected by anti-HA antibody. Input
represents 2% of the total lysates used for immunoprecipitation. Arrowheads, glycosylated NLRR1. (B) HEK293 cells were transfected with plasmids encoding wild-
type (WT) of NLRR1 or deletion mutants lacking leucine-rich repeats (LRRs), immunoglobulin-like (Ig), or fibronectin type III (FNIII). The binding of N1mAb 281 was
assessed by flow cytometry to find the domains recognized by the antibody. (C) Schematic representation of NLRR1. Peptide microarray was prepared for Ig and
FNIII domains by spotting 91 overlapping 12-mer peptides and immunostained with N1mAb 281. (D) Bound antibodies were detected with Alexa 546-labeled
anti-mouse IgG. The scanned arrays obtained from three independent experiments were indicated. (E) Sequence of the peptides positive for all three independent
experiments are indicated.
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that NLRR1 proteins form self-multimers (Figures 6A and S8A).
Because cell surface biotinylation confirmed the localization of
NLRR1 to the cell surface (Figure S8B), we postulated that
NLRR1 might be present on the cell surface as self-multimer.
Therefore, we pre-treated the cells expressing the two different
tagged NLRR1 with N1mAbs and found that N1mAb 281
blocked the self-multimerization of NLRR1, whereas N1mAb
23, a negative control antibody, showed little or no effect
(Figures 6B and S8C). To further examine the importance of
NLRR1 self-interaction on its function, we prepared conditioned
medium from HEK293 cells expressing extracellular domain of
NLRR1 (Figure 6C). Treatment of the conditioned medium
containing 10% FBS induced phosphorylation of ERK in
control MCF7 cells, whereas NLRR1-expressing cells had no
phosphorylation of ERK at 15 min after treatment (Figure 6D).
These data suggest that the inhibition of self-multimerization
Frontiers in Oncology | www.frontiersin.org 8144
by the antibody or free extracellular protein of NLRR1 blocks
the function of NLRR1 and represses growth-promoting
intracellular signals.
DISCUSSION

We demonstrate that NLRR1 expression is up-regulated in adult
cancer tissues including lung and breast in addition to
unfavorable NBs. NLRR1 is involved in determining the
malignant status of cancer cells by enhancing the proliferative
signaling of EGFR and IGF-IR. This is unique to NLRR1 among
NLRR family members despite their close similarity in protein
structures with high evolutional conservation (15). EGFR family
receptors and IGF-IR, expressed in a wide variety of human
cancers including NB, contribute to cell proliferation and tumor
A B

C D E

FIGURE 5 | N1mAbs potentiates EGFR inhibitor-induced growth suppression. (A) NLRR1-stably expressing SH-SY5Y cells were treated with N1mAb 281 (25 mg/ml)
and different concentrations of AG1478 (AG) for 72 h Data are represented as mean ± SD. Quantification of cell proliferation was performed by WST-8 assays. Data
were normalized to the results for untreated cells and represented as percentage of control (mean ± SD). (B) AG1478-resistant A549 cells were treated with N1mAb
281 and different concentrations of AG1478 for 72 h (C) NLRR1-stably expressing SH-SY5Y cells were starved and treated with N1mAb 240 or 281 at 25 mg/ml for
3 h, followed by EGF treatment at the indicated concentration for 10 min. Cell lysates were subjected to western blot analyses. Arrowheads, glycosylated NLRR1.
(D) MCF7 cells overexpressing NLRR1 were starved and treated with N1mAb 281 at 25 mg/ml for 3 h, followed by EGF treatment (1 ng/ml) for 10 min. The cell lysates
were subjected to western blot analyses. (E) To check the effect of the long-term treatment of N1mAbs, SK-N-BE cells were incubated with N1mAbs (30 mg/ml) for
7 days with medium change every 2 days, and the cell lysates were subjected to western blot analyses.
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progression (23, 24). However, their expression levels in NB
show no apparent correlation with the tumor stages (21, 25). On
the other hand, high levels of NLRR1 expression are significantly
associated with poor prognosis of NB (14, 20). Therefore, it is
likely that the clinical significance of EGFR and IGF-IR in the
pathogenesis of NB is at least in part inferred from their co-
expression with NLRR1.

Transmembrane proteins that function to regulate cell
proliferation have been the most popular candidates for
therapeutic targets to develop a novel remedy against cancers.
In particular, kinase inhibitors and neutralizing antibodies have
been developed against RTKs of which the knockdown
expression shows a great repression of cell growth and
survival. Given that NLRR1 knockdown repressed NB cell
proliferation, these lines of evidence regarding NLRR1 function
in the present study may provide us an attractive scientific basis
for targeting NLRR1. Three possible mechanisms of the
inhibitory effect by single usage of NLRR1 antibody are
hypothesized: [1] inhibition of NLRR1 self-dimerization which
is shown in Figure 6B, although it is not clear yet whether
N1mAb can recognize the dimeric conformation of NLRR1 Ig
and FNIII domains, [2] induction of NLRR1 internalization, and
[3] competitive inhibition of an endogenous unknown ligand for
NLRR1. Further experiments may answer these remaining
Frontiers in Oncology | www.frontiersin.org 9145
questions partly by investigating NLRR1 trafficking upon
antibody treatment.

Ourpresent characterizationof epitopes recognizedbyN1mAbs
revealed thatN1mAbswithgrowth inhibitory activity bind to Igand
FNIII domains of NLRR1 (Figure 4). It is noteworthy to mention
that, by the deletion mutant experiments, the same domains of
NLRR1 were demonstrated to be required for its function in the
regulation of cell proliferation (Figure 1). These data suggest that
the Ig and FNIII domains are ideal antigen to raise a therapeutic
antibody with potent growth inhibitory activity for malignant
tumors with NLRR1 expression. The epitope sites of human
NLRR1 recognized by N1mAbs have 100% identity to the
sequence corresponding to mouse Nlrr1. The treatment of
N1mAb in mice showed no influence on the gain of body weight
and health condition, suggesting that the possible adverse effects by
anti-NLRR1 therapy might be small.

We also tested combinatorial use of N1mAb with EGFR
kinase inhibitor. At present, it has been proposed that partial
inhibition of multiple targets could be more effective than full
inhibition of a single molecule in NB therapy (3, 26). Indeed,
N1mAb has more intensive inhibitory effect in combination
with EGFR inhibitor, which may offer a novel therapeutic
option to address some issues including acquired resistance and
adverse effects arising from molecular targeting treatments (27).
A B

C D

FIGURE 6 | N1mAb 281 blocks the self-interaction of NLRR1 on cell surface. (A) HA-tagged and myc-tagged NLRR1 were expressed in HEK293 cells and
the cell lysates were collected after crosslinking with membrane-impermeable DTSSP. Immunoprecipitation was performed using anti-myc antibody, and the
immunoprecipitates were subjected to western blot analyses. Arrowheads, glycosylated NLRR1. (B) HA-tagged NLRR1 co-immunoprecipitated with myc-tagged
NLRR1 was reduced by N1mAb 281 treatment. HEK293 cells expressing HA-tagged and myc-tagged NLRR1 were treated with N1mAb 23 or 281 at the indicated
concentration for 3 h The cell lysates were collected after DTSSP treatment and subjected to immunoprecipitation using anti-myc antibody. (C) HEK293 cells were
transfected with pSecTag2 vector (Invitrogen) containing the extracellular domain of NLRR1 tagged with myc (exN1). The secreted exN1 protein in the conditioned
medium supplemented with 10% FBS was confirmed by immunoprecipitation using anti-myc antibody. (D) MCF7 cells were transfected with empty or pcDNA3-
NLRR1-HA vectors and treated with the conditioned medium containing exN1 (C) for the indicated time. The cell lysates were collected and subjected to western
blot analyses.
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Thus, we propose here that NLRR1 is a novel molecular target for
treating particular cancers including NB and that its function to
regulate growth signals is dependent on its extracellular domain
which can be a target for antibody-based therapy of NLRR1-
expressing cancers.
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NCYM, a cis-antisense gene of MYCN, encodes a Homininae-specific protein that
promotes the aggressiveness of human tumors. Newly evolved genes from non-genic
regions are known as de novo genes, and NCYM was the first de novo gene whose
oncogenic functions were validated in vivo. Targeting NCYM using drugs is a potential
strategy for cancer therapy; however, the NCYM structure must be determined before
drug design. In this study, we employed vacuum-ultraviolet circular dichroism to evaluate
the secondary structure of NCYM. The SUMO-tagged NCYM and the isolated SUMO tag
in both hydrogenated and perdeuterated forms were synthesized and purified in a cell-free
in vitro system, and vacuum-ultraviolet circular dichroism spectra were measured.
Significant differences between the tagged NCYM and the isolated tag were evident in
the wavelength range of 190–240 nm. The circular dichroism spectral data combined with
a neural network system enabled to predict the secondary structure of NCYM at the
amino acid level. The 129-residue tag consists of a-helices (approximately 14%) and b-
strands (approximately 29%), which corresponded to the values calculated from the
atomic structure of the tag. The 238-residue tagged NCYM contained approximately 17%
a-helices and 27% b-strands. The location of the secondary structure predicted using the
neural network revealed that these secondary structures were enriched in the Homininae-
specific region of NCYM. Deuteration of NCYM altered the secondary structure at D90
from an a-helix to another structure other than a-helix and b-strand although this change
was within the experimental error range. All four nonsynonymous single-nucleotide
polymorphisms (SNPs) in human populations were in this region, and the amino acid
alteration in SNP N52S enhanced Myc-nick production. The D90N mutation in NCYM
promoted NCYM-mediated MYCN stabilization. Our results reveal the secondary
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structure of NCYM and demonstrated that the Homininae-specific domain of NCYM is
responsible for MYCN stabilization.
Keywords: NCYM, MYCN, de novo evolved protein, secondary structure, VUVCD, perdeuterated protein, SNP,
Myc-nick
INTRODUCTION

NCYM is a cis-antisense gene of MYCN (1) and encodes an
oncogenic protein that promotes the aggressiveness of
neuroblastomas (1–5). NCYM regulates the proliferation,
invasion, migration, stemness, and apoptosis of cancer cells
by stabilizing MYCN (1–5) and/or b-catenin (1, 6) by
inhibiting GSK3b. The open reading frame (ORF) is located
in the MYCN promoter, and mutations introduced during the
evolution of Homininae resulted in the generation of the
coding transcript of NCYM from the non-genic region (1, 5).
New genes originating from non-genic regions are known as de
novo genes (7–10), and NCYM is the first human de novo gene
product whose oncogenic functions have been validated in vivo
(5, 9). Because of its de novo emergence, NCYM does not shows
homology to other known proteins, and its functional domain
structure remains unclear.

Newly evolved proteins, including de novo gene products
(hereinafter de novo evolved proteins), are predicted to be small
and disordered proteins (11); generally, these high-dimensional
structures are difficult to analyze by crystallization/cryo-
electron microscopy. Bungard et al. (12) showed that the
yeast de novo evolved protein Bsc4 folds to a partially ordered
three-dimensional structure, forming compact oligomers with
high b-sheet content and a hydrophobic core using near-UV
circular dichroism as well as nuclear magnetic resonance. They
revealed that de novo evolved proteins could have some
structural order as well as native-like properties; however, the
precise locations of the ordered secondary structure in Bsc4
remain unclear.

In this study, we investigated the secondary structure of
NCYM by synchrotron radiation vacuum-ultraviolet circular
dichroism technology (VUVCD) combined with a neural
network. Synchrotron radiation VUVCD enables the analysis
of the content and number of segments in the secondary
structure of proteins at a wider range of wavelengths
compared to near-UV circular dichroism (13, 14).
Furthermore, the analysis of results combined with a neural
network can predict the locations of the secondary structure of
proteins at the amino acid sequence level (15). We carried out
VUVCD measurements on both hydrogenated NCYM and
perdeuterated NCYM, because some perdeuterated proteins
have been reported to change their local structure and to have
decreased protein stability compared with their hydrogenated
counterparts, affecting their function/activity (16–18). A
comparison of the possible differences in the secondary
structures between these molecules may provide insights into
regions that contribute to molecular stability and function. In
addition, we determined whether perdeuterated proteins are
2149
helpful for gaining insights into the de novo evolved protein
structure-function relationship.
METHODS

Purification of the NCYM Protein by
In Vitro Cell-Free System
We purchased the following proteins in solution produced by an
in vitro cell-free system from Taiyo Nippon Sanso Corporation
(Tokyo, Japan)

-SUMO-taggedNCYMprotein in hydrogenated form at 1.1mg/mL

-SUMO-tag in hydrogenated form at 0.6 mg/mL

-SUMO-taggedNCYMprotein in perdeuterated form at 1.4mg/mL

-SUMO-tag in perdeuterated form at 1.4 mg/mL

The protein concentration was determined spectrophotometrically
using the extinction coefficient E1%

280 of 3.74 and 1.99 for SUMO-
tagged NCYM and the isolated SUMO-tag, respectively. The
buffer composition was 20 mM phosphate buffer (pH or pD 8.0), 3
mM DTT. The isolated SUMO tag was separately synthesized
and purified from the SUMO-tagged NCYM (Figures 1A, B).
Measurements of VUVCD Spectra
A VUVCD spectrophotometer (Hiroshima Synchrotron Radiation
Center, HiroshimaUniversity, Japan) and an assembled-type optical
cell withCaF2windowswere used tomeasure theVUVCDspectra of
the four samples described above from 260 to 175 nm at 25°C. The
isolatedSUMOtagsweremeasured for comparison.Thedetailsof the
optical systems of the spectrophotometer and design of the sample
cell have been described previously (19). The path length in the
optical cell was adjusted to 50 mm using a Teflon spacer. All spectra
were measured under the following conditions: slit, 1.0 mm; time
constant, 4 s; scan speed, 20 nm/min; and accumulations, 4–8. The
molar circular dichroism,De,which is innormalizedunits ofCD,was
obtained from the path length of the optical cell and solute
concentrations. The values of error in the CD spectrum were
within 5%, which was mainly attributable to noise and inaccuracy
in the optical path length.

Analysis of the Secondary-Structure
Content and Segments of NCYM Using
VUVCD and SELCON 3
The contents of a-helices, b-strands, turns, and unordered
structures of proteins were estimated from the corresponding
VUVCD spectra using the SELCON3 program and a database of
VUVCD spectra and secondary-structure contents for 31
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reference proteins (13–15, 19). The number of a-helix and b-
strand segments was calculated from the distorted a-helix and
distorted b-strand contents, respectively (19). The root-mean-
square deviation (d) and the Pearson correlation coefficient (r)
between the X-ray and VUVCD estimates of the secondary-
structure contents of the reference proteins were 0.058 and 0.85,
respectively (13, 15).
Frontiers in Oncology | www.frontiersin.org 3150
Analysis of the Positions of the Secondary
Structures of NCYM Using VUVCD and
Neural-Network Method
The positions of a-helix and b-strand segments in the amino-
acid sequence were predicted using a neural-network (NN)
method based on the secondary-structure contents and the
number of segments obtained in the VUVCD analysis
A B

D

C

FIGURE 1 | Vacuum-ultraviolet circular dichroism (VUVCD) analyses revealed the secondary structure of NCYM. (A) NCYM with SUMO tag (arrow) and the isolated SUMO
tag were synthesized and purified using an in vitro cell-free system. (B) Perdeuterated NCYM with SUMO tag (arrow) and the isolated SUMO tag were synthesized and
purified using an in vitro cell-free system. (C) VUVCD spectra for hydrogenated SUMO-tagged NCYM (H_Tag_NCYM), perdeuterated SUMO-tagged NCYM
(D_Tag_NCYM), hydrogenated SUMO tag (H_Tag), and perdeuterated SUMO tag (D_Tag). (D) Secondary structure of NCYM predicted using the neural network.
Secondary structures are highlighted in red, yellow, and gray for a-helix, b-strand, and other structures, respectively. Arg/Lys-rich (basic) region is highlighted in purple.
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(VUVCD-NNmethod). The computational protocol is described
in detail elsewhere (14). Briefly, we utilized an NN algorithm (20)
that predicts the position of secondary structures using the
evolutionary sequence information based on the position-
specific scoring matrices generated using the PSI-BLAST tool.
A training dataset of 607 proteins used in the NN algorithm was
obtained from the X-ray structures in the PDB and the weights
and biases of 20 amino acids for a-helices and b-strands were
calculated from the secondary structures and amino-acid
sequences of these 607 proteins. The positions of a-helices and
b-strands in the amino acid sequence were assigned in a
descending order of the a-helix and b-strand weights of the 20
amino acids until the determined numbers of a-helix and b-
strand residues converged to those estimated from the VUVCD
analysis. Next, the numbers of a-helix and b-strand segments
estimated from the VUVCD analysis were introduced in NN
calculation until the predicted numbers of segments converged
to those obtained from VUVCD estimation. If the predicted
numbers of residues and segments for a-helices and b-strands
did not converge to the VUVCD estimates, the sequence
alignment that minimized the difference between the two
estimates was taken as the final value. The turns and
unordered structures estimated using SELCON3 were classified
as “other structures” in the VUVCD-NN method. The predictive
accuracy of this method for the positions of a-helix and b-strand
segments was 74.9% for the 30 reference soluble proteins (14).

The predictive accuracy obtained from the randomization
protocol is around 36.8% (21). Further, when we use only NN
method, the accuracy was 70.9% and this accuracy finally
improved to 74.9% when the method was combined with the
experimental data (14).

The method has been used for the structural analysis of
unknown proteins in the native and other states so far (22, 23).

Purification of GST-Fused NCYM Protein
in Bacteria
The open reading frame of NCYM was inserted into the pGEX-
6p-1 plasmid so that the GST tag was attached to the N-terminus
of NCYM. The plasmid was transformed to BL21 (DE3) cells,
which were then grown at 30°C in Luria broth medium
supplemented with ampicillin at a concentration of 0.1 mg/mL.
At OD = 1.0, protein expression was induced by adding
isopropyl-b-D-thiogalactopyranoside at a concentration of 1 mM,
followed by 3 h of incubation.

After harvest, the cell pellets were lysed by sonication in
phosphate-buffered saline supplement with a protease inhibitor
cocktail cOmplete (Roche, Mannheim, Germany). The lysate was
subjected to ultracentrifugation and its supernatant was applied to
a GSTrap FF column (GE Healthcare, Little Chalfont, UK), which
was equilibrated with phosphate-buffered saline. NCYM attached
to the GST-tag was purified using elution buffer containing 50mM
Tris-HCl (pH 8.0) and 10 mM reduced glutathione, and the eluate
was stored at 4°C. When NCYM was purified without the GST-
tag, the column described above was detached from the system
and PreScission Protease (GE Healthcare) was added, followed by
incubation for 17–18 h at 4°C. After reattaching the column to the
system, buffer containing 50 mM Tris-HCl (pH 8.0), 100 mM
Frontiers in Oncology | www.frontiersin.org 4151
NaCl, 1 mM EDTA, and 1 mM DTT was used to elute NCYM.
Finally, GST-tagged molecules attached to the column were eluted
with elution buffer. Using the Bradford method (bovine serum
albumin was used as a standard), the yields were determined to be
17.5 and 3.8 mg/L culture for NCYM with and without the GST-
tag, respectively.

Analyses of Single-Nucleotide
Polymorphisms in the NCYM Gene
We analyzed single-nucleotide polymorphisms (SNPs) in NCYM
using the Japanese Multi Omics Reference Panel (jMorp, https://
jmorp.megabank.tohoku.ac.jp/202102/variants).

Cell Culture and Transfection
The human neuroblastoma cell line SH-SY5Y was maintained in
DMEM supplemented with 10% fetal bovine serum, 50 U/mL
penicillin, and 50 mg/mL streptomycin. The human
neuroblastoma cell line IMR32 was maintained in RPMI-1640
medium supplemented with 10% fetal bovine serum, 50 U/mL
penicillin, and 50 mg/mL streptomycin.

Plasmid transfections were performed using Lipofectamine
3000 transfection reagent (Invitrogen, Carlsbad, CA, USA)
according to the manufacturer’s instructions. At 24 h after
transfection, we prepared total RNA for quantitative real-time
RT-PCR. At 24 or 72 h after transfection, we prepared cell lysates
for western blotting.

Subcellular Fractionation
To prepare nuclear and cytoplasmic extracts, the cells were lysed
in 10 mM Tris-HCl (pH 8.0), 1 mM EDTA, 0.5% Nonidet P-40
(Nacalai Tesque, Kyoto, Japan), and cOmplete™ Protease
Inhibitor Cocktail Tablets and centrifuged at 17,800 ×g for 10
min to collect the soluble fractions, which were referred to as
cytosolic extracts. Insoluble materials were washed with lysis
buffer and further dissolved in RIPA buffer to collect the
nuclear extracts.

Western Blotting
Cells were lysed with RIPA buffer, Benzonase (Millipore,
Billerica, MA, USA), and MgCl2 at final concentrations of
25 U/mL and 2 mM, respectively, incubated at 37°C for 1 h,
and centrifuged at 10,000 × g for 10 min at 4°C, after which the
supernatant was collected. The supernatant was denatured in
SDS sample buffer with or without 2-mercaptoethanol (reducing
or non-reducing, respectively). Cell proteins were resolved by
SDS-PAGE before being electroblotted onto polyvinylidene
fluoride membranes. We incubated the membranes with the
following primary antibodies for 60 min: anti-NCYM [1:1000
dilution (1)], anti-MYCN antibody (1:1000 dilution; Cell
Signaling Technology, Danvers, MA, USA), anti-Lamin B
(1:1000 dilution; Millipore), anti-a-tubulin (1:1000 dilution;
Cell Signaling Technology), anti-HA (1:1000 dilution; Cell
Signaling Technology), and anti-actin (1:1000 dilution; Wako,
Osaka, Japan). The membranes were then incubated with
horseradish peroxidase-conjugated secondary antibody (anti-
rabbit IgG at 1:5000 dilution or anti-mouse IgG at 1:5000
dilution; both from Cell Signaling Technology), and the bound
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proteins were visualized using a chemiluminescence-based
detection kit (ImmunoStar Zeta, Wako; ImmunoStar
LD, Wako).

RNA Isolation and Quantitative
Real-Time RT-PCR
The total RNA from plasmid-transfected SH-SY5Y cells was
prepared using an RNeasy Mini kit (Qiagen, Hilden, Germany)
following the manufacturer ’s instructions. cDNA was
synthesized using SuperScript II with random primers
(Invitrogen). Quantitative real-time RT-PCR (qRT-PCR) using
a StepOnePlus™ Real-Time PCR System (Thermo Fisher
Scientific, Waltham, MA, USA) was performed with SYBR
green PCR. The following primer sets were used: MYCN, 5′-
TCCATGACAGCGCTAAACGTT-3′, and 5′-GGAACACAC
ACAAGGTGACTTCAAC-3′. b-actin expression was quantified
using the TaqMan real-time PCR assay. The mRNA levels of
MYCN gene were standardized using that of b-actin.

Vector Construction
Plasmid vectors were synthesized by GenScript Japan (Tokyo,
Japan) as follows. Plasmid vectors encoding the HA-NCYM ORF
(WT) and amino acid mutants of HA-NCYM ORF (E7G(A20G),
N52S(A155G), G59R(G175A), L63P(T188C), Y66S(A197C), L70V
(C208G), V71D(T 212A), G78E(G233A), D90N(G268A), and
E98G(A293G)) were synthesized using the restriction enzymes
KpnI and BamHI with pcDNA3. 1-N-HA is a vector with a
CMV promoter for expressing proteins with an HA tag at the
N-terminus. The start codon of the ORF of NCYM was deleted.
RESULTS

VUVCD Analyses Revealed the Secondary
Structure of the NCYM Protein
Significant differences in the spectra were observed in the
wavelength range of 190–240 nm between the tagged proteins
and tag only solution (Figure 1C). These differences arise from
the spectra of NCYM. The secondary structure contents and
segments of the isolated SUMO tag were analyzed using the
VUVCD spectra and SELCON3 program (15, 19). The isolated
SUMO tag (129 residues) contained 14.2% a-helices and 29.2%
b-strands in the hydrogenated state and 13.9% a-helices and
28.7% b-strands in the perdeuterated state (Table 1). The atomic
structure (PDB ID: 3PGE) of tag fragment (80 residues) from X-
ray crystallography showed that this fragment contains 14%
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helices and 32% sheets. The lengths of the tags in the X-ray
and VUVCD methods differed but the secondary structure
contents estimated by VUVCD agreed well with those of the
crystal structure. The SUMO-tagged NCYM (238 residues) in the
hydrogenated state was found to contain 17.1% a-helices and
27.2% b-strands (Table 1), indicating that NCYM forms the
characteristic secondary structures when tagged with SUMO. To
investigate the disordered nature of de novo evolved proteins, we
synthesized perdeuterated NCYM with a SUMO tag and the
isolated SUMO tag using an in vitro cell-free system (Figure 1B).
Small differences in the spectra were observed in the wavelength
range of 210–220 nm between perdeuterated and hydrogenated
NCYM (Figure 1C). The secondary structure analysis showed
that perdeuterated SUMO-tagged NCYM contains 16.3% a-
helices and 27.0% b-strands (Table 1). The secondary structure
contents between perdeuterated and hydrogenated NCYM were
identified within the calculation error range of SELCON 3
program, but the differences between both spectra around 220
nm affect the helical contents because the CD intensity at 222 nm
is highly sensitive to the amount of helical structure (13).

Prediction of the Secondary Structure of
NCYM at the Single Amino-Acid Level
To predict the secondary structure of NCYM at the amino-acid
sequence level, we used the sequence-based prediction method
(PSIPRED, JPred4, trRosetta, and RaptorX), which can estimate
the secondary structure only from the amino-acid sequence
of the target protein (24–27). The predicted results and the
estimated secondary structure contents are shown in Figure S1.
Evidently, these results had large variations in the region of the
NCYM. Furthermore, the secondary structure contents from the
VUVCD results (Table 1) are different to those obtained from
these sequence-based prediction methods. This indicates that the
prediction of the secondary structure of NCYM would not be
adequate for the current algorithms, probably due to specificities
of amino-acid sequence of de novo evolved protein. Hence, from
the perspective of the secondary structure contents, we used the
experimental data obtained from the VUVCD analysis to predict
the secondary structures of NCYM at the amino-acid
sequence level.

We predicted the positions of the secondary structures in
SUMO-tagged NCYM and the isolated SUMO tag at the amino
acid sequence level (Figures 1D and S2) using the neural
network system combined with the contents and segments of
secondary structures obtained using the VUVCD analysis
(Table 1) (14). The predicted sequence of the secondary
TABLE 1 | Secondary structure content of the NCYM samples used for the VUVCD measurements.

Nres H(r) H(d) S(r) S(d) Nhelix Nstrand

H_Tag_NCYM 238 6.7 10.4 15.9 11.3 6 13
D_Tag_NCYM 238 6.5 9.8 15.9 11.1 6 13
H_Tag 129 5.4 8.8 16.6 12.6 3 8
D_Tag 129 4.9 9.0 16.3 12.4 3 8
August 2021
 | Volume 11 | Article
Nres denotes the number of residues contained in the samples. H(r), H(d), S(r), and S(d) are the fraction (%) of ordered a-helix, disordered a-helix, ordered b-strand, and disordered b-strand,
respectively. Nhelix and Nstrand show the number of a-helix and b-strand (sum of the ordered and disordered structures) contained in the corresponding samples, respectively.
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structure of the tag was consistent with that of X-ray
crystallography with 75% accuracy (data not shown), which is
the same as the average performance for the 30 reference
proteins (15). Comparisons between the secondary structure
sequences of SUMO-tagged NCYM and the isolated SUMO tag
revealed that NCYM contains seven b-strands and four a-helices
(Figure 1D). Three of the four a-helices were localized in the
central region of NCYM. In addition, the protein database
UniProt revealed the presence of compositional bias to Arg/
Lys-rich (basic) at the C-terminal (68–109 aa) of NCYM
(UniProt KB-P40205 NCYM Human, Figure 1D). According
to the amino acid sequence only, NCYM was previously
predicted to be a basic helix-loop-helix protein (28) (Figure S3),
but the predicted regions of the helix in the present study differed
from those in the previous report. This is likely because we
considered the secondary structure contents experimentally
obtained from the VUVCD method (Table 1). The sequences of
secondary structures of hydrogenated and perdeuterated NCYM
proteins were identical to each other but showed slight differences in
aspartic acid (D90) (other structure in the perdeuterated protein
and a-helical structure in the hydrogenated structure), as shown in
Figure 1D. This indicates that D90 might perturb the conformation
of the NCYM. Note that “other structure” comprises all secondary
structures other than a-helix and b-strand. Considering the
experimental and analytical errors, the differences in the
secondary structures of SUMO-tagged NCYM between
hydrogenated and perdeuterated forms including D90 assignment
are expected to be within the error range. Nevertheless, as aspartate
often plays a major role in protein function, as in the catalytic triad,
the secondary structural change at D90 from a-helix (hydrogenated
state) to other structures (perdeuterated state) suggests that this
residue is more prone to differences in local physicochemical
environments (hydrogenated vs. perdeuterated) and is thus
involved in the molecular stability of NCYM and its function.
Therefore, it is worth investigating the possible role of D90 in the
interaction with MYCN or GSK3b, especially focusing on the
negative charge of D90. We chose asparagine for generating
NCYM D90 mutant because it resembles aspartic acid the most,
with a difference only in one chemical group change which made
the residue polar instead of charged. For this purpose, the D90N
mutant was generated and its effect on NCYM function was
studied, although D90N is yet to be detected as a naturally
occurring mutation in humans.

NCYM Forms Oligomers
Because the structurally characterized de novo evolved protein
Bsc4 forms oligomers (12), we examined the oligomer structure
formation ability of NCYM. The NCYM protein was synthesized
and purified from bacterial cells (Figure S4A). The bands of
purified NCYM were detected at the predicted sizes of
monomers, dimers, trimers, and tetramers via non-reducing
SDS-PAGE (Figure S4B). Next, whole cell extracts of MYCN-
amplified neuroblastoma cells IMR32 were prepared to detect
oligomers of endogenous NCYM (Figure S4C). To prevent the
oligomers of NCYM from degrading, the samples were prepared
without sonication. The addition of benzonase increased the
concentration of soluble NCYM protein, and the bands of
Frontiers in Oncology | www.frontiersin.org 6153
endogenous NCYM were detected at the predicted sizes of
monomers, dimers, trimers, tetramers, and pentamers in a
western blot under reducing conditions (Figure S4C). To
study the subcellular localization of NCYM oligomers, western
blotting of the nuclear fraction was performed. Monomeric
bands of NCYM were detected in the nucleus, and bands
predicted to be dimers, trimers, and tetramers were detected in
the cytoplasm (Figure S4D).

Non-Synonymous SNPs in NCYM Are
Enriched in the Domain Structure
Next, we conducted a search for SNPs of NCYM in the human
population using the Japanese Multi Omics Reference Panel
(jMorp, Supplementary Table 1). All four non-synonymous
SNPs (N52S, L63P, L70V, and V71D) in humans and two of
five non-synonymous substitutions in chimpanzee (G59R and
Y66S) were found to be accumulated in the central domain
structure of the NCYM (Figure 2A). The frequencies of these
SNPs differed among people of different ethnicities, with the
highest proportion observed for L70V. Substitution of the 35th
serine, a phosphorylation site (Japan Proteome Standard
Repository/Database, ID: PSM204_1_28892), of NCYM to
cysteine (S35C) was detected at a frequency of 0.0001 in
African people. A frameshift mutation causing a deletion in
the NCYM (I19N*17) was found in Japanese, African, and Non-
Finnish European people, and it causes the protein to have
similar amino acid sequences as the ancestral form of NCYM
(Table 2). A previous study reported that NCYM stabilizes the
MYCN protein (1) and promotes Myc-nick production (3). To
investigate the effect of amino acid substitutions on the function
of NCYM, variants of NCYM including the D90N mutant were
overexpressed in the neuroblastoma cell line SH-SY5Y. Western
blotting revealed that the expression of MYCN increased upon
overexpression of the NCYM variant of D90N (Figure 2B). The
real-time RT-PCR showed no change in the mRNA expression
level of MYCN (Figure 2C). We detected Myc-nick production
at 72 h (Figure 2D), and N52S mutation of NCYM significantly
increased Myc-nick production (Figure 2E).
DISCUSSION

In this study, we revealed the secondary structure of NCYM and
showed that a-helices and b-strands were enriched in the central
region (amino acids 40–73) of NCYM, which emerged in
Homininae by two frameshifts in the ORF (1, 5). Furthermore,
it was found that the D90N mutation activated NCYM-mediated
MYCN stabilization. Within the ORF of NCYM, all four
nonsynonymous SNPs were in the central region, three of
which showed high frequency in East Asians and N52S
promoted the NCYM function to produce Myc-nick.
Therefore, the central region of NCYM appears to be a
functional domain responsible for NCYM-mediated Myc-
nick production.

Although the D90N mutation is not one of the naturally
occurring mutations, we found that D90N increases MYCN
August 2021 | Volume 11 | Article 688852
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TABLE 2 | Frequency of NCYM SNPs.

ref SNP Variant Frequency Remark

AFR NFE AMR ASJ EAS JPN

rs181162426 N52S 0.0002 – – – 0.0263 0.0022 High frequency (>0.01)
rs190044705 L63P – – – – 0.0006 0.0237 High frequency (>0.01)
rs11886063 L70V 0.9986 0.9958 1 1 1 1 High frequency (>0.01)
rs75731159 V71D – 0.0007 – – 0.0148 0.0383 High frequency (>0.01)
rs919133132 I19N*17 0.0002 0.0004 – – – 0.0001 Ancestral variant
Rs973265238 S35C 0.0001 – – – – – Phosphorylation site
Frontiers in Oncology |
 www.frontiersin.org
 August 2021 | Volum7154
JPN, Japanese; AFR, African; AMR, American; ASJ, Ashkenazi Jewish; EAS, East Asia; NFE, Non-Finnish European. - indicates not detected.
A
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FIGURE 2 | MYCN stabilization and Myc-nick production by each NCYM variant. (A) NCYM amino acid sequences. Purple, variants found in chimpanzees; red,
variants found in humans; green, D90N, a mutant of NCYM in which the 90th aspartic acid is substituted with asparagine. (B) Western blotting of HA-NCYM, MYCN
proteins in NCYM SNP plasmid-transfected SH-SY5Y cells. At 24 h after transfection, the cells were subjected to western blotting. Actin was used as a loading
control. Control: empty vector. (C) Quantitative real-time RT-PCR analyses of MYCN in NCYM SNP plasmid-transfected SH-SY5Y cells. At 24 h after transfection,
mRNA expression levels were measured by real-time RT-PCR with b-actin as an internal control. N.S., not significant. Data were analyzed using Student’s t test
(comparison with control). (D) Western blotting of MYCN and Myc-nick proteins in NCYM SNP plasmid-transfected SH-SY5Y cells. At 72 h after transfection, cells
were subjected to western blotting. Actin was used as a loading control. (E) Quantification of western blotting analysis of NCYM SNP plasmid-transfected SH-SY5Y
cells. At 72 h after transfection, the cells were subjected to western blotting. Myc-nick level was normalized to MYCN level. Data are shown as plots and means of
three independent experiments. *p < 0.05. Data were analyzed using Student’s t test (comparison with control).
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stabilization, suggesting that the negative charge in D90 has an
inhibitory effect on the binding of NCYM to MYCN or GSK3b.
Thus, the use of both hydrogenated and perdeuterated NCYM
proteins enabled to identify a residue that significantly modulates
NCYM function, raising a possibility that protein deuteration
might be useful for studying the molecular mechanism of protein
activity. Moreover, further systematic biochemical studies using
different mutations at D90 would be beneficial to decipher the
effects of volume, polarity, and hydrophobicity of the residue at
this site on NCYM function.

In this study, the secondary structure of SUMO-tagged NCYM
was analyzed. In the intrinsically disordered regions in proteins,
their transiently folded and disordered states are typically in
equilibrium with each other, and the interaction with other
molecules shifts this equilibrium toward the former (29).
Although the effect of non-covalent interactions with other
proteins on protein structure may be different from that of the
covalent binding of the tag, it is possible that the SUMO tag
stabilizes NCYM conformation, thus facilitating the folding of
some regions in NCYM that would otherwise be disordered when
isolated. In this case, it indicates that the regions of NCYM where
the folded secondary structure was assigned are susceptible to a
slight change in local physicochemical environments caused by
binding of the SUMO tag, suggesting that these regions contribute
to the molecular stability of NCYM. Therefore, in order to better
understand the structural properties of NCYM, the folded state of
NCYM with SUMO tag should be compared with the structure of
the isolated NCYM in the near future.

The western blotting analysis revealed that NCYM exists as
oligomers in addition to monomers, and NCYM oligomers were
detected even under reducing conditions. This suggests that the
interaction between monomers in the NCYM oligomers is strong
enough not to be disrupted easily by the thermal energy.
Therefore, it is possible that the secondary structure of NCYM
changes as it forms oligomers, especially in the binding interface
between monomers. The fact that NCYM oligomers are detected
in the fraction of the cytoplasm while NCYM monomers are
detected in the fraction of the nucleus implies that subcellular
localization of these molecular species might be an important
factor for NCYM function, which requires structural
characterization of NCYM oligomers and monomers.

The present study also revealed the first function-structure
relationships of de novo evolved proteins. De novo evolved
proteins, by definition, lack homology to known proteins or known
functional domains and show high flexibility, as observed in
intrinsically disordered proteins (11). These features have impeded
the functional and structural characterization of de novo evolved
proteins. The present study suggests that synchrotron-radiation
VUVCD with perdeuterated proteins is a promising strategy for
identifying functional domain structures of de novo evolved proteins.
SNPs in populations are also useful for functional characterization of
de novo evolved proteins because they occasionally include amino
acids that are essential for protein functions.

The existence of nonsynonymous SNP that affects NCYM-
mediated Myc-nick production supports that NCYM is a bona
fide protein-coding gene (1, 5), rather than a long noncoding
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RNA. Nonsynonymous SNPs at the phosphorylation site of
NCYM (S35C) further support that NCYM encodes proteins.
In addition to noncoding variants of NCYM/MYCNOS
(NR_110230, transcript variant 1 in the National Center for
Biotechnology Information database) (30, 31), the transcript
variants of coding NCYM (NR_161162 and NR_161163,
transcript variants 2 and 3) have been proposed to function as
long noncoding RNAs that enhance MYCN expression (32, 33)
and promote metastasis (32), as reported for protein function
(1). Two contradictory molecular mechanisms have been
proposed for MYCN induction as mediated by noncoding
NCYM transcripts (32, 33). One study reported that NCYM
noncoding RNA stimulates the upstream promoter ofMYCN via
the recruitment of CTCF (32), and the other showed that NCYM
noncoding RNA suppressed the upstream promoter and
stimulated the internal promoter activity of MYCN, resulting
in efficient translation of MYCN (33). Under our experimental
conditions, we did not detect MYCN mRNA induction after
transduction of wild-type NCYM, and no significant difference
in MYCN mRNA levels was observed in cells that overexpressed
NCYM variants. Further studies are required to examine whether
these variants affect the noncoding functions of NCYM.

Orthologous transcripts of NCYM are widely detected in
mammals (5), but the ORF emerged in Homininae during
evolution (1, 5). Similar to other de novo genes (34), we detected
ORF-disrupting SNPs which caused the NCYM gene resemble the
ancestral-type sequence. Furthermore, one NCYM SNP mutant
found in East Asians promotedMyc-nick production. In addition to
neuroblastomas, high expression of MYCN or NCYM is associated
with poor outcomes in hepatocellular carcinomas (35) or
cholangiocarcinomas (5), respectively. Therefore, the roles of
NCYM SNPs in the development of these tumors, frequently
found in East Asians, should be further studied.
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Supplementary Figure 1 | Secondary structures of SUMO-tagged NCYM using
the sequence-based prediction methods. (A) From top to bottom, positions of the
SUMO-tagged NCYM predicted using PSIPRED, JPred4, trRosetta, and RaptorX
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are shown. a-Helix, b-strand, and other structures are shown in red, yellow, and
gray, respectively. (B) Contents of a-helix, b-strand, and other structures estimated
using the prediction methods used in (A). Nhelix and Nstrand denote the number of
a-helix and b-strand, respectively.

Supplementary Figure 2 | Secondary structure of hydrogenated SUMO-tagged
NCYM (H_Tag_NCYM), perdeuterated SUMO-tagged NCYM (D_Tag_NCYM),
hydrogenated SUMO tag (H_Tag), and perdeuterated SUMO tag (D_Tag) predicted
by the neural network. Note that in the region I119–P133 of H_Tag_NCYM, there
are two b-strands, that is, I119–G128 and G129–P133. The residues belonging to
the disordered b-strand, which are assigned by the neural network, correspond to
the edges of the b-strands (I119, G128, G129, and P133 in this case). The fraction
of the ordered and disordered b-strand is listed in Table 1.

Supplementary Figure 3 | Comparison of the structure of NCYM between the
present study and previous report.

Supplementary Figure 4 | NCYM forms oligomers. (A) Purification of NCYM.
(B) Western blotting showing the monomer, dimer, trimer, and tetramer
structures of purified NCYM in non-reducing conditions, but the protein did not
form an oligomer under reducing conditions. (C) Western blots showing
monomer, dimer, trimer, tetramer, and pentamer structures of NCYM from
IMR32 cells. (D) Western blotting of nuclear and cytoplasmic fractions from
IMR32 cells. Monomers and oligomers of NCYM were found in the nucleus
cytoplasm, respectively.

Supplementary Table 1 | Single-nucleotide polymorphisms (SNPs) in NCYM.
REFERENCES
1. Suenaga Y, Islam SR, Alagu J, Kaneko Y, Kato M, Tanaka Y, et al. NCYM, a Cis-

Antisense Gene of MYCN, Encodes a De Novo Evolved Protein That Inhibits
GSK3b Resulting in the Stabilization of MYCN in Human Neuroblastomas. PLoS
Genet (2014) 10:e1003996. doi: 10.1371/journal.pgen.1003996

2. Kaneko Y, Suenaga Y, Islam SM, Matsumoto D, Nakamura Y, Ohira M, et al.
Functional Interplay Between MYCN, NCYM, and OCT4 Promotes
Aggressiveness of Human Neuroblastomas. Cancer Sci (2015) 106:840–7.
doi: 10.1111/cas.12677

3. Shoji W, Suenaga Y, Kaneko Y, Islam SR, Alagu J, Yokoi S, et al. NCYM
Promotes Calpain-Mediated Myc-Nick Production in Human MYCN-
Amplified Neuroblastoma Cells. Biochem Biophys Res Commun (2015)
461:501–6. doi: 10.1016/j.bbrc.2015.04.050

4. Suenaga Y, Yamamoto M, Sakuma T, Sasada M, Fukai F, Ohira M, et al. TAp63
Represses Transcription of MYCN/NCYM Gene and Its High Levels of
Expression Are Associated With Favorable Outcome in Neuroblastoma.
Biochem Biophys Res Commun (2019) 518:311–8. doi: 10.1016/j.bbrc.2019.08.052

5. Suenaga Y, Nakatani K, Nakagawara A. De Novo Evolved Gene Product NCYM
in the Pathogenesis and Clinical Outcome of Human Neuroblastomas and Other
Cancers. Jpn J Clin Oncol (2020) 50:839–46. doi: 10.1093/jjco/hyaa097

6. Zhu X, Li Y, Zhao S, Zhao S. LSINCT5 Activates Wnt/b-Catenin Signaling by
Interacting With NCYM to Promote Bladder Cancer Progression. Biochem
Biophys Res Commun (2018) 502:299–306. doi: 10.1016/j.bbrc.2018.05.076

7. Van Oss SB, Carvunis AR. De Novo Gene Birth. PLoS Genet (2019) 15:
e1008160. doi: 10.1371/journal.pgen.1008160

8. McLysaght A, Hurst LD. Open Questions in the Study of De Novo Genes: What,
How and Why. Nat Rev Genet (2016) 17:567–78. doi: 10.1038/nrg.2016.78

9. McLysaght A, Guerzoni D. New Genes From Non-Coding Sequence: The
Role of De Novo Protein-Coding Genes in Eukaryotic Evolutionary
Innovation. Philos Trans R Soc Lond B (2015) 370:20140332. doi: 10.1098/
rstb.2014.0332

10. Zhang YE, Long M. New Genes Contribute to Genetic and Phenotypic
Novelties in Human Evolution. Curr Opin Genet Dev (2014) 29:90–6.
doi: 10.1016/j.gde.2014.08.013

11. Wilson BA, Foy SG, Neme R, Masel J. Young Genes Are Highly Disordered as
Predicted by the Preadaptation Hypothesis of De Novo Gene Birth. Nat Ecol
Evol (2017) 1:146. doi: 10.1038/s41559-017-0146
12. Bungard D, Copple JS, Yan J, Chhun JJ, Kumirov VK, Foy SG, et al. Foldability
of a Natural De Novo Evolved Protein. Structure (2017) 25:1687–96.e4.
doi: 10.1016/j.str.2017.09.006

13. Matsuo K, Yonehara R, Gekko K. Secondary-Structure Analysis of Proteins by
Vacuum-Ultraviolet Circular Dichroism Spectroscopy. J Biochem (2004)
135:405–11. doi: 10.1093/jb/mvh048

14. Matsuo K, Watanabe H, Gekko K. Improved Sequence-Based Prediction of
Protein Secondary Structures by Combining Vacuum-Ultraviolet Circular
Dichroism Spectroscopy With Neural Network. Proteins (2008) 73:104–12.
doi: 10.1002/prot.22055

15. Matsuo K, Yonehara R, Gekko K. Improved Estimation of the Secondary
Structures of Proteins by Vacuum-Ultraviolet Circular Dichroism
Spectroscopy. J Biochem (2005) 138:79–88. doi: 10.1093/jb/mvi101

16. Meilleur F, Contzen J, Myles DAA, Jung C. Structural Stability and Dynamics
of Hydrogenated and Perdeuterated Cytochrome P450cam (Cyp101).
Biochemistry (2004) 43:8744–53. doi: 10.1021/bi049418q

17. Ramos J, Laux V, Haertlein M, Boeri Erba E, McAuley KE, Forsyth VT, et al.
Structural Insights Into Protein Folding, Stability and Activity Using In Vivo
Perdeuteration of Hen Egg-White Lysozyme. IUCrJ (2021) 8:372–83.
doi: 10.1107/S2052252521001299

18. Liu X, Hanson BL, Langan P, Viola RE. The Effect of Deuteration on Protein
Structure: A High-Resolution Comparison of Hydrogenous and
Perdeuterated Haloalkane Dehalogenase. Acta Crystallogr D (2007)
63:1000–8. doi: 10.1107/S0907444907037705

19. Sreerama N, Woody RW. Estimation of Protein Secondary Structure From
Circular Dichroism Spectra: Comparison of CONTIN, SELCON, and
CDSSTR Methods With an Expanded Reference Set. Anal Biochem (2000)
287:252–60. doi: 10.1006/abio.2000.4880

20. Jones JT. Protein Secondary Structure Prediction Based on Position-
Specific Scoring Matrices. J Mol Biol (1999) 292:195–202. doi: 10.1006/
jmbi.1999.3091

21. Rost B, Sander C. Prediction of Protein Secondary Structure at Better
Than 70% Accuracy. J Mol Biol (1993) 232:584–99. doi: 10.1006/
jmbi.1993.1413

22. Matsuo K, Kumashiro M, Gekko K. Characterization of the Mechanism of
Interaction Between A1-Acid Glycoprotein and Lipid Membranes by
Vacuum-Ultraviolet Circular-Dichroism Spectroscopy. Chirality (2020)
32:594–604. doi: 10.1002/chir.23208
August 2021 | Volume 11 | Article 688852

https://www.frontiersin.org/articles/10.3389/fonc.2021.688852/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2021.688852/full#supplementary-material
https://doi.org/10.1371/journal.pgen.1003996
https://doi.org/10.1111/cas.12677
https://doi.org/10.1016/j.bbrc.2015.04.050
https://doi.org/10.1016/j.bbrc.2019.08.052
https://doi.org/10.1093/jjco/hyaa097
https://doi.org/10.1016/j.bbrc.2018.05.076
https://doi.org/10.1371/journal.pgen.1008160
https://doi.org/10.1038/nrg.2016.78
https://doi.org/10.1098/rstb.2014.0332
https://doi.org/10.1098/rstb.2014.0332
https://doi.org/10.1016/j.gde.2014.08.013
https://doi.org/10.1038/s41559-017-0146
https://doi.org/10.1016/j.str.2017.09.006
https://doi.org/10.1093/jb/mvh048
https://doi.org/10.1002/prot.22055
https://doi.org/10.1093/jb/mvi101
https://doi.org/10.1021/bi049418q
https://doi.org/10.1107/S2052252521001299
https://doi.org/10.1107/S0907444907037705
https://doi.org/10.1006/abio.2000.4880
https://doi.org/10.1006/jmbi.1999.3091
https://doi.org/10.1006/jmbi.1999.3091
https://doi.org/10.1006/jmbi.1993.1413
https://doi.org/10.1006/jmbi.1993.1413
https://doi.org/10.1002/chir.23208
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Matsuo et al. Secondary Structure of NCYM
23. Matsusaki M, Okuda A, Matsuo K, Gekko K, Masuda T, Naruo Y, et al.
Regulation of Plant ER Oxidoreductin 1 (ERO1) Activity for Efficient
Oxidative Protein Folding. J Biol Chem (2019) 294:18820–35. doi: 10.1074/
jbc.RA119.010917

24. Buchan DWA, Jones DT. The PSIPRED Protein Analysis Workbench: 20
Years on. Nucleic Acids Res (2019) 47:W402–7. doi: 10.1093/nar/gkz297

25. Drozdetskiy A, Cole C, Procter J, Barton GJ. JPred4: A Protein Secondary
Structure Prediction Server. Nucleic Acids Res (2015) 43:W389–94.
doi: 10.1093/nar/gkv332

26. Yang J, Anishchenko I, Park H, Peng Z, Ovchinnikov S, Baker D. Improved
Protein Structure Prediction Using Predicted Interresidue Orientations. Proc
Natl Acad Sci U S A (2020) 117:1496–503. doi: 10.1073/pnas.1914677117

27. Kallberg M, Wang H, Wang S, Peng J, Wang Z, Lu H, et al. Template-Based
Protein Structure Modeling Using the RaptorXWeb Server. Nat Protoc (2012)
7:1511–22. doi: 10.1038/nprot.2012.085

28. Armstrong BC, Krystal GW. Isolation and Characterization of
Complementary DNA for N-Cym, a Gene Encoded by the DNA Strand
Opposite to N-Myc. Cell Growth Differ (1992) 3:385–90.

29. Kim D-H, Han K-H. Transient Secondary Structures as General Target-
Binding Motifs in Intrinsically Disordered Proteins. Int J Mol Sci (2018)
19:3614. doi: 10.3390/ijms19113614

30. O’Brien EM, Selfe JL, Martins AS, Walters ZS, Shipley JM. The Long Non-
Coding RNA MYCNOS-01 Regulates MYCN Protein Levels and Affects
Growth of MYCN-Amplified Rhabdomyosarcoma and Neuroblastoma
Cells. BMC Cancer (2018) 18:217. doi: 10.1186/s12885-018-4129-8

31. Yu J, Ou Z, Lei Y, Chen L, Su Q, Zhang K. LncRNA MYCNOS Facilitates
Proliferation and Invasion in Hepatocellular Carcinoma by Regulating miR-
340. Hum Cell (2020) 33:148–58. doi: 10.1007/s13577-019-00303-y

32. Zhao X, Li D, Pu J, Mei H, Yang D, Xiang X, et al. CTCF Cooperates With
Noncoding RNAMYCNOS to Promote Neuroblastoma Progression Through
Frontiers in Oncology | www.frontiersin.org 10157
Facilitating MYCN Expression. Oncogene (2016) 35:3565–76. doi: 10.1038/
onc.2015.422

33. Vadie N, Saayman S, Lenox A, Ackley A, Clemson M, Burdach J, et al.
MYCNOS Functions as an Antisense RNA Regulating MYCN. RNA Biol
(2015) 12:893–9. doi: 10.1080/15476286.2015.1063773

34. Guerzoni D, McLysaght A. De Novo Genes Arise at a Slow But Steady Rate
Along the Primate Lineage and Have Been Subject to Incomplete Lineage
Sorting. Genome Biol Evol (2016) 8:1222–32. doi: 10.1093/gbe/evw074

35. Qin XY, Suzuki H, Honda M, Okada H, Kaneko S, Inoue I, et al. Prevention of
Hepatocellular Carcinoma by Targeting MYCN-Positive Liver Cancer Stem
Cells With Acyclic Retinoid. Proc Natl Acad Sci U S A (2018) 115:4969–74.
doi: 10.1073/pnas.1802279115

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Matsuo, Nakatani, Setoguchi, Matsuo, Tamada and Suenaga. This
is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums is
permitted, provided the original author(s) and the copyright owner(s) are credited and
that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does not
comply with these terms.
August 2021 | Volume 11 | Article 688852

https://doi.org/10.1074/jbc.RA119.010917
https://doi.org/10.1074/jbc.RA119.010917
https://doi.org/10.1093/nar/gkz297
https://doi.org/10.1093/nar/gkv332
https://doi.org/10.1073/pnas.1914677117
https://doi.org/10.1038/nprot.2012.085
https://doi.org/10.3390/ijms19113614
https://doi.org/10.1186/s12885-018-4129-8
https://doi.org/10.1007/s13577-019-00303-y
https://doi.org/10.1038/onc.2015.422
https://doi.org/10.1038/onc.2015.422
https://doi.org/10.1080/15476286.2015.1063773
https://doi.org/10.1093/gbe/evw074
https://doi.org/10.1073/pnas.1802279115
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Advantages  
of publishing  
in Frontiers

OPEN ACCESS

Articles are free to read  
for greatest visibility  

and readership 

EXTENSIVE PROMOTION

Marketing  
and promotion  

of impactful research

DIGITAL PUBLISHING

Articles designed 
for optimal readership  

across devices

LOOP RESEARCH NETWORK

Our network 
increases your 

article’s readership

Frontiers
Avenue du Tribunal-Fédéral 34  
1005 Lausanne | Switzerland  

Visit us: www.frontiersin.org
Contact us: frontiersin.org/about/contact

FAST PUBLICATION

Around 90 days  
from submission  

to decision

90

IMPACT METRICS

Advanced article metrics  
track visibility across  

digital media 

FOLLOW US 

@frontiersin

TRANSPARENT PEER-REVIEW

Editors and reviewers  
acknowledged by name  

on published articles

HIGH QUALITY PEER-REVIEW

Rigorous, collaborative,  
and constructive  

peer-review

REPRODUCIBILITY OF  
RESEARCH

Support open data  
and methods to enhance  
research reproducibility

http://www.frontiersin.org/

	Cover
	Frontiers eBook Copyright Statement
	Molecular Mechanisms and Treatment of MYCN-driven Tumors
	Table of Contents
	Editorial: Molecular Mechanisms and Treatment of MYCN-Driven Tumors
	Mechanism of MYCN Dysregulation and Drugs Targeting MYCN-Driven Tumors
	Mechanism of MYCN-Driven Tumorigenesis From an Embryological Perspective
	Induction of MYCN by Environmental Factors and MYCN Regulation by miRNAs
	Author Contributions

	Beyond the Warburg Effect: N-Myc Contributes to Metabolic Reprogramming in Cancer Cells
	Introduction
	Metabolic Reprogramming through the Regulation of Amino Acid Transporters by N-Myc
	Mitochondrial Metabolic Reprogramming in N-Myc-Driven Cancer Cells
	Lipid Metabolic Reprogramming in N-Myc-Driven Tumor Cells
	The Novel Significance of N-Myc in Hepatic Cancer Stem Cells
	Conclusions and Perspectives
	Author Contributions
	Funding
	References

	The Role of MYCN in Symmetric vs. Asymmetric Cell Division of Human Neuroblastoma Cells
	Introduction
	Mycn
	Trim32
	Ncym (Mycnos)
	Aldh18A1
	Hmga1, Numb, and p53
	Aurka, Plk1, and Lin28B
	Concluding Remarks
	Author Contributions
	Funding
	References

	MYCN Function in Neuroblastoma Development
	Introduction
	MYCN in Neuroblastoma
	Neuroblastoma Is a Neural Crest Derived Malignancy
	MYCN as an Oncogenic Driver in Neuroblastoma
	MYCN as a Stem Cell Factor
	MYCN as an Apoptosis Regulator
	MYCN Confers Metabolic Plasticity
	Self-Renewal in MYCN Non-Amplified High-Risk Neuroblastoma
	Preclinical In Vivo Models of Neuroblastoma
	Perspectives and Conclusions
	Author Contributions
	Funding
	References

	Targeting MYCN in Molecularly Defined Malignant Brain Tumors
	Introduction
	Diagnosis and Molecular Profiling of Brain Tumors With MYC Family Activation
	High-Grade Gliomas in Children
	High-Grade Gliomas in Adults
	Embryonal Tumors in Children
	Pineal Brain Tumors in Children and Adults

	Current Treatment of Brain Tumors
	MYCN Biology and Regulation in Normal Cells
	Direct or Indirect Targeting of MYCN in Brain Tumors
	Genetically Engineered Proof-of-Concept Inhibition Models of MYCN
	Direct MYC/MYCN Inhibitors
	MYCN Transcriptional Machinery
	Ribosome Biosynthesis
	Cell Cycle and MYCN Stability
	Aurora Kinases
	Upstream Regulation of MYCN via PI3K  and mTOR
	The OCT4/mTOR Malignancy Axis

	Summary and Discussion
	Author Contributions
	Acknowledgments
	References

	Molecular Mechanisms of MYCN Dysregulation in Cancers
	Introduction
	Molecular Mechanisms of MYCN Dysregulation and the Therapeutic Targets
	Gene Amplification of MYCN
	Regulation of MYCN Transcription
	Super Enhancer and Transcription Factors
	G-Quadruplex

	Posttranscriptional Regulation of MYCN mRNA
	Regulation of MYCN Translation
	Regulation of N-MYC Stability
	NCYM, a cis-Antisense Gene of MYCN
	Somatic Mutation of MYCN
	Synthetic Lethal Interaction With Deregulated MYCN
	Conclusion and Perspectives
	Author Contributions
	Funding
	References

	Targeting MYCN in Pediatric and Adult Cancers
	Introduction
	MYCN Is an Oncogenic Driver in Many Types of Cancers
	MYCN Structure: Critical Regions That Mediate Protein-Protein Interaction and Transcriptional Activity
	Targeting MYCN Transcription
	Targeting MYCN Protein Stability
	Targeting MYCN Cofactors/Coregulators
	Targeting MYCN Downstream Targets
	Targeting MYCN Synthetic Lethal Approach
	Prospect of Directly Targeting MYCN

	Conclusion
	Author Contributions
	Acknowledgments
	References

	MYCN Drives a Tumor Immunosuppressive Environment Which Impacts Survival in Neuroblastoma
	Introduction
	Materials and Methods
	Patient Gene Expression Profiles
	Pathway Analysis
	Immune Cell Fraction Estimation Analysis
	Immune Interaction Network
	WGCNA Module Analysis and Transcriptional Regulator
	MYCN Immune Score
	Statistical Analysis and Software
	Cell Lines and Treatment
	Neuroblastoma Cell Lines and Natural Killers Co-Culture

	Results
	MYCN Is Associated With Immune Repression and a Th2-Lymphocytes/M2-Macrophages Axis Upregulation
	MYCN Exerts a Key Role in the Wide Neuroblastoma Immune Network
	MYCN Effect on Immune System Is an Independent Prognostic Indicator in Neuroblastoma
	Anti-MYCN BGA002 Inhibits CD276 Expression and Restores Natural Killer Susceptibility in Neuroblastoma

	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Non-Genomic Control of Dynamic MYCN Gene Expression in Liver Cancer
	Introduction
	MYCN Gene Expression in Liver Homeostasis, Regeneration, and Tumorigenesis
	Regulation of Mycn Gene Expression by Tissue Repair Signals in the Inflammatory Microenvironment of Liver Cancer
	Regulation of MYCN Gene Expression by Lipid Desaturation-Mediated Stress Adaptation Signals in the Inflammatory Microenvironment of Liver Cancer
	Post-Transcriptional Control of MYCN Gene Expression by Mirnas in Liver Cancer
	Conclusions
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Control Analysis of Protein-Protein Interaction Network Reveals Potential Regulatory Targets for MYCN
	Introduction
	Methods
	Network Controllability
	Node Classification Based on Network Controllability
	Source of Data Sets

	Results
	Control Analysis of Human Protein-Protein Interaction Network
	Control Analysis of MYCN Sub-Network
	Functional Analysis of Indispensable Proteins
	Indispensable Proteins in Brain Lower Grade Glioma

	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	The MicroRNA Landscape of MYCN-Amplified Neuroblastoma
	Introduction
	Materials and Methods
	Small RNA Library Construction, High-Throughput Sequencing and Differential Expression Analysis
	Survival Analysis
	Identification of Putative Oncogenic and Tumor Suppressive miRNAs
	MicroRNA–Target Predictions
	MiTRAP Experiments
	Western Blotting
	Plasmids and Cloning
	Cell Culture and Transfection
	Flow Cytometry Analysis

	Results
	Deregulated miRNA Expression Distinguishes MNA Neuroblastoma
	MiTRAP Reveals MYCN-Regulatory miRNA Candidates
	IGF2BP1 Is a Potent, 3’UTR- and miRNA-Dependent Regulator of MYCN Expression
	The miR-17 Seed Family Is the Main Antagonist of MYCN Expression

	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Biological Role of MYCN in Medulloblastoma: Novel Therapeutic Opportunities and Challenges Ahead
	Introduction
	Medulloblastoma
	Clinical and Molecular Diversity of Medulloblastoma
	Different Subgroups and Subtypes

	The Role of MYCN in the Origin of Medulloblastoma
	MYCN in Cerebellar Development
	The Role of MYCN in MB Groups
	The WNT Group
	The SHH Group
	Group 3
	Group 4
	Current Management of MYCN-Associated MB

	Emerging Therapeutic Opportunities
	Targeting MYCN Stability
	Targeting MYCN Transcriptional Activity
	Targeting MYCN-Associated Epigenetic Molecules
	Targeting MYC-MAX Complexes
	Synthetic Lethal Targets of MYCN

	Future Areas of Research for Innovative Therapies
	MYCN-Driven Cancer Metabolism
	Immunotherapy in Medulloblastoma
	Use of PROTACs

	Conclusion and Future Outlook
	Author Contributions
	Funding
	Acknowledgments
	References

	NLRR1 Is a Potential Therapeutic Target in Neuroblastoma and MYCN-Driven Malignant Cancers
	Introduction
	Materials and Methods
	Reagents and Antibodies
	Quantitative Real-Time PCR
	Cell Culture
	Generation of NLRR1 Stable Knockdown Cell Lines Using shRNA Lentiviruses
	Histology and Immunostaining
	Immunoprecipitation and Western Blot Analyses
	Biotin Labeling on Cell Surface
	Generation of Anti-Human NLRR1 Monoclonal Antibodies
	Characterization of NLRR1 mAb
	Tumor Growth Inhibition Study
	Statistical Analysis

	Results
	NLRR1 Expression Is Up-Regulated in Many Cancers
	NLRR1 Increases Cell Proliferation by Enhancing the Cellular Signals of EGF and IGF
	FNIII Domain Is the Functional Region of NLRR1 Required for Enhancing Growth Signaling
	N1mAb Suppresses Cell Proliferation
	The Treatment of N1mAb Inhibits Tumor Growth
	N1mAb 281 Binds to Ig and FNIII Domains of NLRR1
	Combinatory Use of N1mAb With EGFR Inhibitor Is Effective in the Resistant Cancer Cells

	Discussion
	Data Availability Statement
	Ethical Statement
	Author Contributions
	Funding 
	Acknowledgments
	Supplementary Material
	References

	Secondary Structure of Human De Novo Evolved Gene Product NCYM Analyzed by Vacuum-Ultraviolet Circular Dichroism
	Introduction
	Methods
	Purification of the NCYM Protein by In Vitro Cell-Free System
	Measurements of VUVCD Spectra
	Analysis of the Secondary-Structure Content and Segments of NCYM Using VUVCD and SELCON 3
	Analysis of the Positions of the Secondary Structures of NCYM Using VUVCD and Neural-Network Method
	Purification of GST-Fused NCYM Protein in Bacteria
	Analyses of Single-Nucleotide Polymorphisms in the NCYM Gene
	Cell Culture and Transfection
	Subcellular Fractionation
	Western Blotting
	RNA Isolation and Quantitative Real-Time RT-PCR
	Vector Construction

	Results
	VUVCD Analyses Revealed the Secondary Structure of the NCYM Protein
	Prediction of the Secondary Structure of NCYM at the Single Amino-Acid Level
	NCYM Forms Oligomers
	Non-Synonymous SNPs in NCYM Are Enriched in the Domain Structure

	Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Back Cover


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
    /ENP ()
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages false
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages false
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages false
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages false
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages false
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages false
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




