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Influence of Aggregates in Concrete
on Fiber-Optic Based Thermal
Integrity Profiling Analysis of
Concrete Structures
Ruoyu Zhong and Wen Deng*

Department of Civil, Architectural and Environmental Engineering, Missouri University of Science and Technology, Rolla, MO,

United States

Fiber-optic sensor has drawn wide attention in the non-destructive testing and evaluation

of civil engineering materials due to its high accuracy and resolution as well as

cost-efficiency. Currently, using optical fiber as the temperature sensor is proposed to

conduct the thermal integrity profiling (TIP) of concrete structures. However, concrete is

not a thermally homogeneous material as assumed in current studies of concrete TIP. Its

essential components, such as aggregates may cause thermal inhomogeneity problems

when implementing fiber-optic sensors for TIP. In this paper, we use the concrete

structures with different grades of aggregates to conduct numerical simulation for

non-destructive thermal testing. The goal is to investigate how the thermal inhomogeneity

caused by aggregates would influence the testing result. Firstly, we establish three

concrete structure models with three different grades of aggregates based on the

scenarios where these concrete structures will be used. Then, we numerically simulate

the thermal process on these models and extract the temperature at the location where

optical fiber would be installed. The influence caused by the inhomogeneity of aggregate

size and distribution as well as the possible method to minimize the effect are evaluated in

the paper. Overall, aggregates of concrete have a significant influence on the accuracy of

TIP analysis, and defects could be veiled if no proper treatment to the data is implemented

for TIP analysis.

Keywords: fiber-optic sensing, drilled shaft, concrete beam, thermal integrity profiling, concrete aggregates

INTRODUCTION

Concrete is one of themost important civil engineeringmaterials across the world. From residential
houses to transportation superstructures, numerous concrete structures are constructed and
maintained every day. A key indicator of the structural safety is the integrity of the concrete.
Thus, the integrity of the concrete structure should be monitored from its construction process
throughout its service time. During the construction process, concrete could be foiled due to
inappropriate procedures, especially for a cast-in-site concrete shaft. Concrete shafts, which bear
and transfer the loading to the ground, play an important role in superstructure construction.
However, slump, soft soil, misplacement of rebar cage, and other multiple factors could cause
defects when pouring the concrete (O’Neill, 1991). 15% of 5,000 to 10,000 tested concrete shafts had
the indication of potential defects, and 5% of the tested shafts showed indisputable defect signals
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(Klingmüller and Kirsch, 2004; Brown and Schindler, 2007).
Defects cannot be prevented during the construction completely
since the excavation and concrete pouring are both blind
processes. Thus, the integrity test to determine whether defects
exist within the concrete shaft is critical for the evaluation
of concrete structural safety. On the other hand, the concrete
structure could be intact after construction, but it would still
degrade over time. For example, during a fire hazard, extreme
high temperature could cause cracking of the concrete, which
leads to degradation of mechanical property and integrity of
concrete structures (Kodur and Sultan, 2003; Kodur et al., 2009).
An appropriate method of monitoring concrete structures helps
evaluation of remaining capacity.

Recently, the thermographic approach for the material
integrity and damage analysis becomes promising as the non-
destructive testing technique (Ciampa et al., 2018; Wang et al.,
2018, 2019). The current state of practice in thermal integrity
analysis of civil engineering materials is to measure temperature
using thermocouples or infrared probes, then estimate the
temperature distributions within the structures. However, these
methods are usually costly, time-consuming, easily affected
by electromagnetic interference, moisture, and unanticipated
junction problems (Smalcerz and Przylucki, 2013). Recent
studies in thermographic approach has aroused interest of
using optical fiber as an alternative for the concrete material
integrity testing and monitoring due to its durability, accuracy,
immunity to electromagnetic interference, resistance to harsh
environment and cost-efficiency. Zhong et al. (2018) as the
first explored using the optical fiber in thermal integrity
profiling (TIP) for drilled shafts to acquire higher resolution
spatial data. TIP, as a non-destructive method, makes use of
cement hydration heat to test the integrity of a concrete shaft.
Any defect such as inclusion and necking, will be shown as
temperature anomaly in temperature measurement (Mullins,
2010, 2013; Johnson, 2016). Compared to the conventional
method by using cross-hole sonic logging or sonic pulse
echo, the TIP can cover a larger area and provide a more
comprehensive result. However, the accuracy of the TIP is
limited by the number of sensors when using thermocouples
or access tubes within the concrete shaft when using infrared
probes. Thus, it was proposed to use Rayleigh scattering
within optical fiber to replace thermocouples or thermal probes
to improve data quality (Zhong et al., 2018). The optical
fibers can be wrapped spirally around the rebar cage due to
its flexibility which reduces horizontal interval significantly
and provides a more comprehensive temperature distribution
within the concrete shaft. On the other hand, Bao et al.
(2017) proposed using pulse pre-pump Brillouin optical time
domain analysis (PPP-BOTDA) as a temperature sensing method
to measure spatially-distributed temperatures in reinforced
concrete specimens exposed to fire. The remaining capacity of a
concrete structure can be evaluated through thermo-mechanical
analysis when the temperature distributions in situ are known
(Usmani et al., 2001).

However, none of above fiber-optic based thermal integrity
research took the influence of thermal inhomogeneity
caused by concrete aggregates into account. Concrete is a

multi-components composite material, which consists of
aggregate and cement. Up to 60–80% of the volume of concrete
is aggregate. Generally, aggregates are classified into two groups:
fine-grained aggregates with grain size smaller than 4.75mm
and coarse aggregates with grain size larger than 4.75mm.
Due to economic reasons, lower usage of cement is preferred
in order to lower the cost, which requires the aggregates to
consist of a range of sizes rather than a uniform size. While
this fulfills the economic and mechanical purpose, a range
of sizes of aggregate introduces material-heterogeneity to
concrete. Various sizes of aggregates cause variation in bulk
composition which leads to macro heterogeneity in concrete
(Kreijger, 1990). Properties of concrete are related to the
size, geometry, and distribution of aggregates (Shahbazi and
Rasoolan, 2017). The properties differences between cement
and aggregates, like thermal conductivity and heat capacity,
cause uneven temperature distribution after heated. Since
the thermal integrity testing method relies on temperature
anomalies to identify defects that exist or occur within the
concrete structure, the variation of temperature caused by
random aggregate distribution may lead to an overestimation or
a misjudgement of defects. However, the uniform fine-grained
aggregate was adopted when testing the feasibility of fiber-optic
sensor applications in the laboratory integrity test. While the
test results were promising, the specimens were less realistic.
The influence of aggregates should be tested thoroughly before
introducing fiber-optic sensor into real applications to avoid any
misjudgement of defects.

The objective of this paper is to investigate the influence
of thermal inhomogeneity caused by concrete aggregates on
the fiber-optic based thermal integrity analysis of concrete
structures. To remain problem focused, the superiority of fiber-
optic sensor with applications in non-destructive thermal testing
over other thermographic approaches will not be discussed. In
this study, two engineering scenarios are analyzed: the concrete
beam exposed to fire hazards and the concrete shaft installation.
Three concrete structure models are established, two of which
are for concrete beams and one is for concrete shaft. Each
model has different sizes of aggregates randomly distributed
within the structures. The size of aggregates is based on the
scenarios these concrete structures will be poured. We simulate
the thermal testing on these models and extract the temperature
at the location where optical fibers would be installed. The
influence caused by the thermal inhomogeneity of concrete
aggregates with different sizes and distribution is investigated,
and the method used to minimize the effect is also proposed in
this paper.

METHODOLOGY

Governing Equation
The thermal integrity testing method for either concrete beams
or concrete shafts predicts the existence of crack or the defect
shape of foiled concrete structure based on the temperature
distribution inside the material. We makes use of finite element
method based commercial software COMSOL Multiphysics R© to
simulate the temperature distribution within concrete structures.
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The governing equation of heat transfer process in solid is:

ρCp∂T
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where T is the temperature; Q is the heat generation rate of the
material; Cp is the heat capacity of the material; k is the thermal
conductivity of the material; ρ is the density of the material.

Heat Transfer in Air
In beam models, concrete beams are not directly heated by an
internal heat source such as the hydration process but heated
in a fire hazard scenario as an external heat source. The heat
source is set with a certain distance away from the concrete beam.
Thus, the heat transfer is not limited to a conduction which is the
primary heat transfer way within a solid object. Conduction and
radiation in air are two primary ways to transfer heat from the
source to concrete beams. Conduction and radiation in air can be
determined by Equations (2–7):

ρCpu · ∇T +∇ · q = Q+ Qp + Qvd (2)

q = −kNu∇T (3)

(1− ε)G = J − εeb(T) (4)

G = Gm (J) + Gamb + Gext (5)

Gamb = Fambeb(Tamb) (6)

eb (T) = n2σT4 (7)

where u represents the velocity of the fluid; Nu represents
the Nusselt number; Qp represents the pressure work; Qvd

represents the viscous dissipation; n represents the refractive
index; ε represents the emissivity of the surface. G represents
surface irradiation; Gamb represents ambient irradiation; Gext

represents external irradiation; Gm represents mutual surface
irradiation; Famb represents ambient view factor; eb represents
blackbody total emissive power; J represents the surface radiosity;
σ represents Stefan-Boltzmann constant.

Heat Generation
In the drilled shaft model, the hydration heat generated during
the concrete curing process is the key to the TIP test. Thus,
it is necessary to determine the heat generation of concrete
before simulation. The gross heat production and generation
rate are two significant factors of temperature distribution. Two
factors together determine the temperature of the shaft and the
performance of TIP. Both factors are related to the ingredient
of cement. Changing the proportion of cement would generate
a different amount of heat. The total heat production can be
calculated by Equations (8–10), (Schindler and Folliard, 2005):

Q0 = Qcempcem + 461pslag + QFApFA (8)

Qcem = 500pC3S + 260pC2S + 866PC3A + 420pc4AF

+ 624pSO3 + 1186pFreeCaO + 850pMgO (9)

QFA = 1800pFACaO (10)

where p with different subscripts represents the weight fraction
of each compound; Q with different subscripts represents the

heat generated according to each compound of the concrete. The
subscript represents the name of each compound. The chemical
composition of cement and fly ash are usually available from
the supplier.

The rate of hydration can be calculated using the following
equations provided by Schindler and Folliard (2005):

α (t) = αu exp(−
[τ

t

]β

) (11)

αu =
(1.031w/cm)

(0.194+ w/cm)
+ 0.5pFA + 0.3pSLAG < 1 (12)

β = p0.227C3S
· 181.4 · p0.146C3A

· Blaine−0.535 · p0.558SO3

· exp(−0.647pSLAG) (13)

τ = p−0.401
C3S

· 66.78 · p−0.154
C3A

· Blaine−0.804 · p−0.758
SO3

· exp(2.187 · pSLAG + 9.5 · pFA · pFACaO) (14)

where α(t) represents the degree of hydration of cement at time
t; and w/cm is a water-cement ratio; β and τ are determined
by the cementitious constituent fractions. According to ASTM
D7949-14, the recommended timing to perform TIP would be
12 h after concrete pouring until the number of days equivalent
to foundation diameter in meters divided by 0.3 m.

Heat Transfer in Soil
Heat is dissipated into surrounding soil after the heat is generated
due to the hydration process. Since the predominant material in
soil is solid, conduction plays the most important role in heat
dissipation in the shaft simulation. Aside from the temperature
and density of the material, two factors control the conduction
process: thermal conductivity and heat capacity.

Soil is a composite material consisting of solid, air, and water.
The effective thermal conductivity depends on the constitution
of soil and the thermal conductivity of each phase. The thermal
conductivity can be calculated by Equation (15), (Liu et al., 2002;
Barry-Macaulay et al., 2013; Sáez Blázquez et al., 2017):

k1 = ks − n[ks − Swkw − (1− Sw)ka] (15)

where k with subscripts represents the thermal conductivity of
each phase of soil; n represents porosity; Sw represents the degree
of saturation. The subscript s denotes solid phase; w denotes
water phase; a denotes air phase.

The shape of void inside of soil has an effect on heat transfer as
well. To take that effect into account, the shape factor χ =

√
Sw

is introduced into the equation. Now the equation becomes:

k =
√

Sw
{

ks − n
[

ks − Swkw − (1− Sw) ka
]}

+ (1−
√

Sw)ka

(16)

The temperature of the soil is assumed to be the same among
the three phases. The heat required to raise the temperature of
soil one degree can be calculated by the sum of three phases:
Csms+Cwmw+Cgma. The total mass of the soil is:ms+mw+ma.
Therefore, the effective heat capacity of soil can be calculated
as follow:

Cp =
Csms + Cwmw + Cgma

ms +mw +ma
(17)
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where C with subscripts represents the heat capacity of each
phase of soil;m with subscripts represents the mass of each phase
of soil.

Considering that the mass of air is negligible, the equation can
be simplified as:

Cp =
Cs + Cww

1+ w
(18)

where w is the water content.

Aggregate Distribution
The aggregate distribution method used in the simulation is
referenced to Qian et al. (2016). Concrete is considered as
a composite geometrical structure where aggregates such as
sands and gravels are embedded in a mortar matrix. Although
using non-spherical particles is more realistic, the temperature
fluctuation caused by the shape of aggregates is less significant
compared to other factors such as size and distribution. To

simplify the calculation, thermal inhomogeneity caused by
the shape of aggregates is not considered. Spherical shape
aggregates are adopted in this study. An aggregate particle is
generated with a random radius at each time. The radius is
determined by a pseudo-random number generator within a
given radius range. Then, the aggregate particles are placed
at a random coordinate within a given range of coordinates
which is the size of the model. The key algorithm required in
the particle placing procedure is to check whether aggregate
particles are overlapped. Since the shape of the particle is not
considered, the overlap algorithm simply consists of equations
to check whether the distance between particles and the distance
between particle and boundaries are smaller than zero. A
variable is assigned to count the failure of placement. When
the total amount of aggregate for a certain radius range is
reached or the failure count exceeds the limit, the next radius
range would be used for a new round of placement. The
placement procedure will stop after all radius ranges are finished.

FIGURE 1 | Flow chart of aggregate placement.
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FIGURE 2 | Demonstration of aggregates distribution within a 2-D beam. A void gap line represents the location of optical fiber placed in the beam. Different colors of

the aggregates represent certain size ranges.

TABLE 1 | Properties of each component in beam model.

Volumetric

fraction

Density

(kg/m3)

Heat

capacity

[kJ/(kg × K)]

Thermal

conductivity

[W/(m × K)]

HCP 0.204 2,160 1.55 1.163

Coarse aggregate 0.7 2,660 0.84 2.5

Fine aggregate 0.082 2,660 0.80 2

Air 0.014 1.225 1 0.0333

TABLE 2 | Heat rate and duration.

Heat rate 25 kW 40 kW 80 kW

Duration 45 min 10 min 10 min

The flow chart in Figure 1 demonstrates the procedure of
aggregate placement.

Simulation Parameters and Model for
Beam
To simulate the temperature distribution within the beam
exposed to a fire hazard environment, a two-dimensional (2-D)
model is established. The model is shown in Figure 2. The reason
for adopting a 2-D model rather than a three-dimensional (3-D)
model is that the computation stress using a 3-D model is too
high. Since we mainly focus on vertical heat transfer, to simplify
the model without loss of generality, a 2-D model is employed.
The size of the model is 610 × 152mm. The model consists of
three elements: gravel, sand, and cement. The aggregates particles
are input to the model following the procedures illustrated in
Figure 1. The circles with multiple colors represent aggregates,
and each color represents a radius range. The gray section
represents the cement surrounding aggregates. The small gap
between aggregate represents the location of the fiber optic
sensor. Rebar is not established in this model since themain focus
is the effect of aggregate. Although is not shown in the figure,
the beam model is surrounded by air with default properties
in COMSOL. The heat source is set at the bottom of the air
section to simulate fire. The heart rate is set at several given rates.
Temperature distribution data is acquired at the gap with a space
interval of 1 cm. The properties of each component can be found
inTable 1, and the heat rate and duration can be found inTable 2.

FIGURE 3 | Shaft-soil model. Aggregates are embedded in the concrete shaft.

Simulation Parameters and Model for Shaft
To simulate the temperature evolution and distribution within
the shaft, a 3-D model is established as shown in Figure 3.
Figure 3 shows the composition of a concrete shaft model.
We made two simplifications to the model. Firstly, the rebar
cage is not reconstructed in the model. Rebar has relatively
low heat capacity and high thermal conductivity, and the
heat that transfers into rebar cage is negligible. Moreover,
the volume of the rebar cage is relatively small compared
to the concrete shaft. Therefore, to simplify the model, no
rebar cage geometry is input to the model. However, it is
still necessary to point out the location of the rebar cage.
Secondly, aggregates of which diameter is smaller than 5mm
are removed due to the high requirement of computational
resources for 3-D simulation. According to our preliminary
study, the influence of thermal inhomogeneity caused by small
aggregates on the integrity analysis is relatively insignificant.
Therefore, in our simulation, the volume ratio of aggregates
actually cannot reach 60% or above. Since our goal is not to
study the mechanical properties of concrete but the thermal
process within the concrete, current packing of aggregates
by neglecting the small aggregates can still meet the goal of
the study.

In the paper proposed using fiber-optic sensor as means to
acquire temperature distribution data for TIP, the optical fiber
is proposed to be wrapped spirally around rebar cage (Zhong
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FIGURE 4 | Simulation flow chart (Zhong et al., 2018).

et al., 2018). In the realistic scenario, the optical fiber is wrapped
on the outside of rebar cage before the rebar cage is placed into
the drilled pit and location of the optical fiber relative to rebar
cage is calibrated. The location of the rebar cage in the model
is where the temperature distribution data would be extracted.
Optical fiber is not input to the geometry for a similar reason. The
properties of concrete can be found in Table 1. The properties of
soil can be found in Table 3. The flow chart of simulation is given
in Figure 4.

RESULTS AND DISCUSSION

The simulation results of two beam-models and one shaft model
are presented in this section along with the discussion of the
influence of thermal inhomogeneity caused by aggregates. First,
we present the result of a beam model of self-consolidating
concrete (SCC) following with another model of conventional
concrete (CC). Then, the results from a concrete shaft model with

TABLE 3 | Soil properties.

Properties Unit Value

Soil solid thermal conductivity W/m · K 5.2

Water thermal conductivity W/m · K 0.55

Air thermal conductivity W/m · K 0.05

Density kg/m3 1,830

Soil solid heat capacity J/(kg · K) 850

Water heat capacity J/(kg · K) 4,190

Water content % 39.8

Saturation % 97

Porosity % 51.1

maximum grain size of 80mm and minimum grain size of 5mm
are presented. The influence of aggregates on thermal integrity
analysis is discussed separately in the other section.
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FIGURE 5 | Temperature distribution of beam model I for SCC.

Results of SCC Beam
SCC is a type of concrete of which predominant aggregate type
is the fine aggregate. This type of concrete sacrifices economic
efficiency for higher workability. Its high workability gives it the
ability to flow into intricate spaces and congested reinforcement.
Moreover, SCC does not require vibrators to compact concrete
which improves safety and reduces noise at the site. Since SCC
has wide applications in the construction, SCC would be a
standard material to study the influence of aggregates on the
thermal integrity analysis with relatively small-size aggregates.

The SCC in the simulation has a maximum grain size of
12mm. The beam model is heated at the given heat rate as given
in Table 2. After 65min of heating and crack occurs, temperature
data are extracted at the location of the virtual fiber-optic sensor.
Since our main focus is not the temperature distribution of
the whole beam structure, only temperature distribution at a
straight-line direction is extracted. Temperature distribution data
along the fiber-optic sensor are shown in Figure 5.

As shown in Figure 5, the temperature data plot has a main
peak along with multiple minor fluctuations at other locations.
The main peak, according to the paper published by Bao et al.
(2017), indicates the location of cracks which occurred due to
extremely high temperatures. The predominant heat transfer way
in concrete is conduction before a crack appears. However, after
crack appears, the void space in the crack is filled with hot
air, which means the predominant heat transfer at that location
would be convection in the air and radiation. The heat transfer
at crack location has higher efficiency compared with the intact
concrete cover. Therefore, the temperature rises dramatically
around the crack and the fiber-optic sensor can catch this
temperature change. The temperature fluctuation shown in
Figure 5 demonstrates the thermal inhomogeneity of concrete
caused by the aggregate distribution. Assuming that concrete
is homogeneous, temperature distribution should be a flat line
along the intact concrete cover. However, the thermal properties
of cement are not the same as those of aggregates. Moreover, the
spatial distribution of aggregates is not perfect uniform. These
two factors make the heat conduction has a different rate in
different directions, resulting in temperature fluctuation. The

temperature increment is distinct compared to the fluctuation.
This is because the size of the crack is considerably larger than the
maximum grain size and the grain size is relatively small in SCC.
The temperature increment due to cracking outgrows the effect
caused by the thermal inhomogeneity due to aggregates. In the
case of SCC, the influence of aggregates on the thermal integrity
analysis is relatively insignificant.

Results of CC Beam
Compared to SCC beam, CC beam is more commonly used. The
second case uses CC as a study example. The maximum grain
size in the CC is 26mm. In this model, the CC beam is heated at
the same condition as in the SCC model, and the temperature
is also extracted at the same location at different time. The
temperature data are shown in Figure 6A. The temperature
fluctuation is considerably pronounced compared to the SCC
model. The effect of aggregates increases with the increment of
the maximum size of the aggregates. The fluctuation is almost
twice as the one in the SCC model. The location of cracks is
pointed in Figure 6A, and almost undetectable from the data. On
the one hand, the size of the crack is slightly smaller compared
to the SCC model, which decreases the increment caused by
crack. On the other hand, the larger fluctuation due to larger
aggregates makes it harder to distinguish the thermal effect
due to the crack from the temperature fluctuation due to the
thermal inhomogeneity. These two factors together result in a
non-distinctive temperature increment as shown in Figure 6A.
The existence of coarse aggregates could be problematic for
the application of the fiber-optic sensor in concrete structures
exposed to fire hazards.

Although the location of defects cannot be detected based
on the data at a certain time, there could be still a solution to
that problem. It should be noted that cracks are not naturally
existed in the concrete structure. The crack in the model usually
develops due to the exposure to extremely high temperatures.
Therefore, we can make use of the temporal temperature
logging to solve this problem of non-distinguishable data. Firstly,
we divide temperature data into groups based on the time
collected. Then we divide the temperature data at each group
by the average temperature (Tavg) of that group. The outcome
is shown in Figure 6B. We have a more direct comparison
of temperature distribution at a different time compared to
Figure 6A. The temperature increment caused by cracking can
easily be detected with the help of reference data of intact
concrete. The temperature distribution of a damaged concrete
outside of the damaged region is lower than the intact concrete
beam. This is because the temperature increment caused by crack
rises the average temperature, which leads to a lower ratio at the
intact region. By subtracting the reference data from each group,
we can further diminish the effect of thermal inhomogeneity
caused by aggregates. The result is shown in Figure 6C. The
only peak in Figure 6C is the temperature increment caused by
crack. The intact region has an almost flat line by diminishing the
effect of aggregates. Therefore, this method can be further used
to detect the cracking of CC beam when the concrete structure is
exposed to fire hazards.
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FIGURE 6 | (A) Temperature distribution of beam model II, (B) normalized

temperature by Tavg, and (C) normalized temperature after subtraction of

temporal temperature data.

Shaft Model
The maximum grain size used in the current production shafts
could be as large as 160mm. Although 40mm may be the
most common case for concrete shaft, the maximum size used
in the shaft model is 80mm to better study the influence of
larger aggregates. To simulate the TIP test of concrete shaft,
we establish a 6-foot concrete shaft with a longitudinal length
of 1m. Since the temperature anomaly is only restricted in the
vicinity of the defect region, only part of the concrete shaft nearby
the defect is simulated in the model to save the computational
resources. Themodel geometry is shown in Figure 3. To simulate
the inclusion defect in the concrete shaft, a 15×15×10 inch
sand block as inclusion defect is placed at the edge of concrete
shaft in the circumferential direction. The concrete shaft would
generate heat during the curing process. Any location that has a

FIGURE 7 | Third-day temperature distribution for concrete shaft with coarse

aggregates. The x-axis is the corresponding length of optical fiber spirally

wrapped on the rebar cage.

shortage of concrete would generate less heat and be recognized
as a thermal sink region at the plot. We simulate the 5-day
curing process starting from pouring with 1-day interval. The
temperature on the third day is recorded. The result is shown in
Figure 7.

The fiber-optic sensor is wrapped around a rebar cage spirally,
and the sensor may pass the defective region several times. Each
local minimum on the temperature plot represents the location
of the defective region. As shown in the Figure 7, two local
minima indicate the fiber-optic sensor passes the defective region
for two times. The location that measures the local minimum
temperature represents the spot that is closest to the center of
the anomaly. Even though it is not pronounced, temperature
fluctuations can be found in the plot. The temperature anomalies
outgrows the fluctuation even more than the case of SCC beam.
The explanation would be that the defect size is much greater
than the maximum size of aggregates. If we consider that each
aggregate as a small inclusion, and the sand block as a single large
inclusion, and temperature will change according to the size of
inclusion. The ability to detect anomaly in the concrete shaft or
other structure would be affected by aggregates only when the
size of anomaly is comparable or smaller than the maximum size
of aggregates. By considering the required detectable defects of
concrete shaft installation, it can be concluded that the influence
of thermal inhomogeneity caused by aggregates is insignificant to
practical application of fiber-optic based TIP of concrete shafts.

CONCLUSION

Within this paper, it is demonstrated that the thermal
inhomogeneity due to the aggregates could cause temperature
fluctuation during the non-destructive thermal integrity testing.
This fluctuation may conceal the temperature anomaly caused by
the damaged or defective region which is the essential mechanism
for non-destructive thermal integrity testing. The larger the
maximum aggregate size is, the larger the fluctuation would
be due to thermal property contrast between aggregates and
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concrete cement. The ability to detect damaged or defective
region in the concrete shaft or other structure could be affected by
aggregates when the size of defects is comparable or smaller than
the maximum size of aggregates. For the case of SCC beam and
concrete shaft as we study in this paper, the influence of aggregate
on the thermal integrity analysis is insignificant.

Even though temperature anomaly due to defects might be
veiled by temperature fluctuation due to thermal inhomogeneity
caused by aggregates, with proper treatment provided within this
paper, the effect of aggregates can still be diminished by using the
temperature data of intact structure as a reference.

The result indicates that the aggregates could have significant
influence on the thermal integrity analysis of concrete structures
when pouring with CC. However, proper treatment of the
temperature data can diminish such an influence.

All of current conclusions are based on our explorative
numerical simulation, the further verification by laboratory and
in situ testing is suggested in the future study.
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Multifunctional sensor network has become a research focus in the field of structural
health monitoring. To improve the reliability and stability of the diagnosis results, it is
necessary to fuse heterogeneous signals under the interference of the external load
and damage. In this paper, a piezoelectric-fiber hybrid sensor network is integrated to
monitor the crack growth around the hole in the aviation aluminum plate. The effect
of the load change on the signals of piezoelectric transducers (PZTs) and optical fiber
sensors is analyzed. To improve the damage diagnosis result obtained by ultrasonic
guided wave imaging diagnosis based on PZTs and strain damage identification based
on distributed optical fiber sensor, a fusion strategy of heterogeneous signals based
on a two-stage Kalman filtering algorithm is proposed. In the first stage, the features
extracted from two types of sensors are fused at a specific time at the feature level, and
then the location of the damage center is predicted. Then, the second fusion is to fuse
the predicted damage location results at multiple specific times at the decision level.
Crack growth monitoring experiments in hot spots of metallic material under bending
moment loading is carried out to verify the feasibility of the proposed fusion method.
The experimental results indicate that the fusion damage diagnosis results are more
stable, moreover, the accuracy of damage location and quantification is improved than
the single signal diagnosis results.

Keywords: structural health monitoring, multi-sensor information fusion, Kalman filtering, piezoelectric
transducers, guided waves, optical fiber sensor

INTRODUCTION

In recent years, structural damage and failure have led to some dramatic accidents in the field of
aeronautical and ocean engineering. With the complexity of the structural load and the harsher
environment, the demand for obtaining real-time information on the structural state becomes
more and more urgent. Structural health monitoring (SHM) techniques have been widely used
to assess the structural state and improve the structural safety of aircraft (Qing et al., 2012) and
ocean platform (Tang et al., 2020) in recent years. Different types of lightweight sensor networks
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are permanently integrated on the surface or embedded within
the structure to obtain information on load, deformation, and
damage expansion of key structural regions. Many advanced
SHM techniques have emerged, such as ultrasonic guided
waves (Villegas, 2019; Wang et al., 2019), optical fiber gratings
(Lau, 2014), vibration-based (Zhang et al., 2018), eddy current
(Bohacova, 2013), acoustic emission (Michalcová and Růžek,
2016), and mechanical impedance (Min et al., 2012). However,
most of these techniques are based on single-type sensors,
which is difficult to meet the requirements of complex structure
and multi-physical field monitoring. The monitoring results
are also easily disturbed by the surrounding environment and
external scenarios such as temperature, vibration, and different
forms of the load.

Recently, a multi-functional sensor network composed of
different kinds of sensors has become a research focus (Qing et al.,
2005; Wu et al., 2009). However, the research of multi-source
sensor interaction in the multi-physics field is still insufficient.
To improve the reliability and stability of the diagnosis results,
it is necessary to make full use of various sensor information
(data or signals) when the structural load and damage are
considered comprehensively (Wu et al., 2017; Sun et al.,
2018). Multi-sensor information fusion technology integrates
the redundant or complementary information of each sensor
in space or time. The reliability and robustness of the system
can be improved by overcoming the uncertainty and limitation
of single-type sensors and obtaining consistent interpretation
or description of the structure. Information fusion can be
carried out at different levels, including data level, feature level,
and decision level, which correspond to three fusion methods.
Among them, data-level fusion is mainly used to preprocess
multi-source information such as strain, modal parameters,
acceleration, temperature, and pressure. Feature-level fusion is to
extract characteristic indices by damage sensitivity analysis and
data mining. Decision-level fusion is used to predict the state
characteristics of the structure. Gravina et al. (2017) provided a
comprehensive and systematic review of the latest technologies
from three levels: data-level, feature-level, and decision-level.
They pointed out that multiple homogeneous sensors can be
directly fused, while for heterogeneous sensors, feature-level or
decision-level fusion techniques are required. Besides, common
fusion methods were listed, including the Kalman filtering
method (Kalman, 1960), weighted average method, Bayesian
estimation method, Dempster-Shafer evidence theory, artificial
neural network, fuzzy theory, genetic algorithm, support vector
machine and so on. Su et al. (2009) evaluated mono- and
multi-delamination of carbon fiber-epoxy (CF/EP) composite
structures using three fusion schemes, namely disjunctive,
conjunctive, and compromise fusion. The difference between the
three fusion schemes lies in whether the signal feature extraction
and pattern recognition are carried out at single-type sensors or
the whole network. They found that disjunctive and conjunctive
fusion might exaggerate and minimize the possibility of damage,
respectively, while compromise fusion scheme showed high
robustness and reliability.

The Multi-sensor system is the hardware foundation of
data fusion. In the field of SHM, an ultrasonic guided wave

technique based on piezoelectric transducers (PZTs) (Liu et al.,
2016b; Memmolo et al., 2016; Miniaci et al., 2019) and optical
fiber sensing (Liang and Yuan, 2015) have been widely used.
The guided wave monitoring technique has high monitoring
efficiency and sensitivity and can realize large area active
monitoring. It is mainly used to monitor fatigue crack, fracture,
delamination, and other damages. However, the guide wave
signal is easily restricted by actuator-sensor paths, which makes
the signal interpretation very complicated. Besides, temperature,
stress, and other external environmental factors have a greater
impact on the signal fluctuations. In contrast, the optical fiber
sensor is light in weight, small in size, and easy to install, it
can realize multi-point continuous passive monitoring relatively
stably. Especially, a distributed optical fiber sensor can replace
multiple strain gauges to realize high-density monitoring, thus
greatly reducing the weight of connecting cables and sensor
networks. However, the monitoring area of optical fiber sensors
is limited, which can only be detected after temperature changes
and structural deformation, and only the signal along the fiber
length direction can be monitored. Therefore, based on the above
advantages and disadvantages of guided wave and optical fiber
monitoring, it is important to fuse ultrasonic guided wave signals
with optical fiber signals to make up for the shortage of single-
type sensors. The accuracy and stability of SHM can be improved
by constructing a hybrid sensor network and integrating multi-
source sensor information to monitor the load state, damage
state, and other information of the structure.

In this paper, a two-stage Kalman filtering-based
heterogeneous signal fusion of the piezoelectric-fiber hybrid
sensor network is proposed to monitor crack growth at the
feature level and decision level. The remaining work is organized
as follows. Section “Sensing Principle of Damage Monitoring”
describes the damage monitoring principle of the piezoelectric
transducer and the optical fiber sensor, respectively. Section
“Heterogeneous Signal Fusion based on Kalman Filtering”
depicts the heterogeneous signal fusion technology based on
Kalman filtering. Section “Experiment” conducts a crack growth
monitoring experiment in the hot spot area of metal material
under bending moment loading. In section “Two-Stage Fusion
of Kalman Filtering for Damage Location Monitoring,” a Kalman
filtering fusion algorithm based on two-stage fusion is proposed,
which firstly fuses the multi-sensor signals at a specific time at the
feature level and predicts the damage location, and then fuses the
prediction results at multiple specific times at the decision level.
The whole process of two-stage heterogeneous signal fusion of
multi-sensing is shown in Figure 1.

SENSING PRINCIPLE OF DAMAGE
MONITORING

Structural health monitoring (SHM) is mainly concerned with
the diagnosis of damage in large and local areas. It is very
important to select sensors with reliable performance and
high-cost performance. Piezoelectric transducers (PZTs) and
optical fiber sensors were commonly used because of their
small size and lightweight. In sections “Guided Wave Method
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FIGURE 1 | The heterogeneous signal fusion process based on a piezoelectric-fiber hybrid sensor network.

based on Piezoelectric Transducers” and “Optical Fiber Sensing,”
the sensing theory of PZTs and the optical fiber sensors are
introduced, corresponding to the elliptic probabilistic weighted
damage imaging method and the damage diagnosis method based
on strain change, respectively.

Guided Wave Method Based on
Piezoelectric Transducers
Guided wave damage monitoring is suitable for both large and
local areas with the advantages of high detection efficiency
and damage sensitivity. Different types of damage such as
fatigue crack, fracture, and delamination can be monitored.
As is shown in Figure 2, the ultrasound signals are excited
by the actuator on the surface of the detected structure and
the other sensors receive the structural response signal at
one or more locations of the structure (Qing et al., 2019).
When the structure is damaged, the structure boundary changes
accordingly, which leads to the scattering and energy absorption

of the ultrasonic guided waves propagating in the structure.
Therefore, the structural health state can be judged by analyzing
the signal changes of each actuator-sensor path before and
after damage (Wu et al., 2015). PZTs are often used to
excite and receive guided wave signals and can be regarded
as exciter and receiver due to their positive and negative
piezoelectric effects.

Damage imaging diagnosis methods based on guided waves
mainly include the probability weighting method (Wu et al.,
2015), phase control array method, time of flight method, delay
superposition method, time-reversal method, etc. Considering
that damage diagnosis cannot be realized only based on the
change of the guided wave signal in the single actuator-sensor
path, the change of the wave signal in the multi-actuator-sensor
path is needed. Therefore, the elliptic probability weighting
method was used in this paper because of its high efficiency
and strong applicability (Wu et al., 2015; Liu et al., 2016a). The
damage indicator (DI) of each actuator-sensor path was first
calculated. Then the damage probability of each point on the

FIGURE 2 | The monitoring principle of the Guided wave method (Wu et al., 2015; Liu et al., 2016a).
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structure was obtained by integrating the DI information of
all actuator-sensor paths with the weighted function, thus the
damage diagnosis and imaging of the whole monitoring area
can be carried out.

DI has a great influence on the sensitivity of damage diagnosis
and can be expressed in the time domain, frequency domain,
and other characteristic forms, such as wave velocity, amplitude,
and energy. The time-domain energy of the scattered signal
not only contains the attenuation information of the ultrasonic
guided wave caused by damage but also reflects the phase delay
information of the guided wave signal, so it is highly sensitive
to damage. Therefore, the time-domain energy (i.e., eng) of the
direct wave, S0 scattered signal was selected to represent DI of
the guided wave monitoring method. The form of eng and DI
are as follows:

eng =
∫ tf

t0

u2(t)dt (1)

DI =
engC − engB

engB
(2)

Where t0 and tf represent the range of time-domain signals used
for signal comparison, u is the signal amplitude, the subscripts C
and B of eng represent the measured signal and the baseline signal
of the guided wave, respectively.

Optical Fiber Sensing
Optical fiber sensor monitoring is to judge the damage state of the
structure according to the change of strain field and its correlation
with the damage. The damage near the actuator-sensor path of
the optical fiber sensor can be determined by accurate strain field
measurement (Shan et al., 2019). The location and severity of
damage can be determined by comparing the signal differences
of optical fiber sensing before and after the damage. Optical fiber
sensor has the characteristics of lightweight, flexibility, strong
anti-interference, and high sensitivity, and can realize long-
distance measurement. The most commonly used optical fiber
sensors are fiber Bragg gratings (FBGs) and distributed optical
fiber sensors. In this paper, a distributed fiber sensor was selected
because the strain information at any point along the length of
the fiber can be obtained.

When strain or temperature is measured by the distributed
fiber sensor, the variation of temperature or strain will cause the
deviation of the Raleigh scattering spectrum of backscattering
in the fiber. By observing the spectrum of the scattered light,
it can be determined which part of the fiber has changed in
temperature or strain (Kreger et al., 2009). The relationship
among the backscatter spectral shift (similar to the wavelength
λ), the strain ε, and the temperature T in fiber Bragg gratings
(Kreger et al., 2009) is:

1λ

λ
=Kεε+ KT1T (3)

Where Kε and KT are the calibration constants of strain
and temperature respectively, whose values are related to the
characteristics of the optical fiber.

For optical fiber monitoring, the variation of strain before and
after the damage is usually taken as the DI, which is specifically

expressed as follows:
DI = ε− ε0 (4)

Where ε and ε0 are the strain values collected after and before the
damage. The higher the DI value, the greater the probability or
severity of the damage.

HETEROGENEOUS SIGNAL FUSION
BASED ON KALMAN FILTERING

Kalman Filtering is an important and widely used information
fusion algorithm based on the theory of closed-loop feedback
information estimation (Kalman, 1960). In the field of damage
identification, Kalman filtering is commonly used to detect
large civil and mechanical structures. By establishing the
Kalman filtering system model, the sensor data are predicted
and corrected recursively, so that the system processing does
not need a large number of data storage and calculation.
Especially, the Kalman filter can estimate the state of a dynamic
system from a series of data with measurement noise when
measurement variance is known. It is convenient for computer
programming and can update and process the data collected on-
site in real-time. These advantages are conducive to information
fusion of piezoelectric plate and optical fiber sensor, especially
their complementary advantages (global detection and local
detection). By monitoring different information such as load state
and damage state of the structure at the same time, the deficiency
of the damage diagnosis method based on a single-type sensor is
avoided, and thus have a more comprehensive understanding of
structure state.

However, for other common fusion methods, such as weighted
average method, Kalman filtering method, Bayesian estimation
method, Dempster-Shafer (D-S) evidence theory, artificial
neural network, fuzzy theory, genetic algorithm, support vector
machine, etc., they all have various disadvantages. For example,
the weighted average method is not suitable for complex signal
processing, Bayesian estimation requires the prior probability to
be given, D-S evidence theory’s exponent is extremely complex,
the artificial neural network has a large amount of computation
and is difficult to find the local optimal solution.

Kalman filtering (Kalman, 1960) is an optimal state estimation
method, mainly including prediction and correction (Woods and
Radewan, 1977). The current state is predicted according to the
previous state and control quantity, and then the credibility of
sensor data and overall estimate is judged by correction, and the
current state is updated by repeated prediction and correction.
Assume that the system state is expressed by a state vector X
(X ∈ Rn), and the state equation of the system at time k is
(Cui and Huang, 2001):

Xk = AXk−1 + BUk +Wk (5)

Where Uk and Wk are the control input and state noise of the
system respectively, and A and B are the state transition matrices.

The observation equation of the system at the corresponding
time k is:

Zk = HXk + Vk (6)
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TABLE 1 | The material properties of the 7075 aircraft aluminum plate.

Density (kg/m3) Tensile strength
(MPa)

Yield strength
(MPa)

Poisson
ratio

Thermal expansion
coefficient

Elasticity modulus
(GPa)

Elongation (%)

2810 572 503 0.33 23.6 71 11

Where Z ∈ Rm, H and Vk are the observation matrix and the
observation noise, respectively. Wk and Vk are two independent
white noises with a mean value of zero and a covariance matrix of
Q and R, respectively.

The state estimation at time k is divided into a prior estimate
and a posterior estimate. The prior estimate is to estimate the
state at time k according to the state before time k, while the
posterior estimate is an estimate of the state at time k given the
observed quantity Zk at time k.

The prior estimate X̂k_pre and its error Ek_pre and covariance
Pk_pre of the system at time k are:

X̂k_pre = AX̂k−1 + BUk (7)

Ek_pre = Xk − X̂k_pre (8)

Pk_pre = AP̂k−1AT
+ Q = EEk_preET

k_pre (9)

Where X̂k−1 is the posterior estimate of time k−1, P̂k−1 is the
covariance of the posterior estimate of time k−1, E is a unit
matrix, ET

k_pre is the transposed matrix of Ek_ pre .
The posterior estimate X̂k, error Ek, and covariance Pk of the

posterior estimate at time k are:

X̂k = X̂k_pre + KkZk − X̂k_pre (10)

Ek = Xk − X̂k (11)

Pk = Pk_pre − KkHPk_pre = EEkET
k (12)

Where ET
k is the transpose matrix of Ek, Kk is the Kalman gain at

time k, and the expression of Kk is:

Kk = Pk_preHTHPk_preHT
+ R−1 (13)

The common multi-sensor Kalman filtering fusion needs to
calculate the Kalman factor of each sensor at each time, which is
a huge amount of computation. In this paper, when the Kalman
filtering fusion algorithm is used to fuse the signals of the PZTs
and optical fiber signals, assume that the sensor error conforms
to the normal distribution. The measurement error of the PZTs
is M, and the measurement error of the optical fiber sensor is N.
When piezoelectric and optical fiber sensors are used to measure
the same damage, the measurement values of the two sensors are
weighted and averaged to obtain the best measurement value.
Taking Eqs (7)–(13), Kalman optimal estimated weight can be
obtained by: 

WPZT =
N2

M2+N2

WOP =
M2

M2+N2

WF =
M2N2

M2+N2

(14)

Where WPZT and WOP are the fusion weights of the measured
values of the PZTs and the optical fiber sensors, respectively
during the first fusion. WF is the covariance of the estimated value
after the first fusion.

EXPERIMENT

The experiment is to monitor the crack growth in the hot
spot area of metal materials under bending moment loading.
The specimen is a 300 mm × 300 mm × 2 mm 7075 aircraft
aluminum plate with a 10 mm diameter through-hole in the
center specimen. The material properties of the specimen are
shown in Table 1. As is shown in Figure 3, the crack growth of
the specimen starts from the point (155, 150) and extends along
the positive direction of the X-axis.

As is shown in Figure 4, eight circular PZTs and a distributed
optical fiber sensor with a length of one meter were set on
the surface of the same aluminum plate by high-temperature
AB glue. For PZTs sensing, the diameter and thickness of the
circular piezoelectric sensor are 8 and 0.48 mm, respectively,
and each PZT acted as excitation or receiver. For optical fiber
sensing, the distributed optical fiber sensor was used to monitor
the strain information at predefined points. The effective strain
monitoring path of the optical fiber sensor consists of four parts,
i.e., AB, CD, EF, and GH segments. The AB and EF segments
of the fiber monitored the strain in the X direction and the

FIGURE 3 | The schematic diagram of through-hole on the aluminum plate.
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FIGURE 4 | The sensor layout of the PZTs and distributed optical fiber sensor on the same aluminum plate.

CD and GH segments monitored the strain in the Y direction.
Table 2 lists the positions of initial points of four segments in
the coordinate system and on the entire distributed optical fiber
sensor (relative to head end). There are seventeen equispaced
strain measuring points for each segment on the optical fiber
sensor. The position range of strain measuring points in AB,
CD, EF, and GH segments are 205–285, 435–515, 690–770, and
905–985 mm, respectively. The distance between two adjacent
measurement points is 5 mm.

Figure 5 shows the layout of the piezoelectric-fiber hybrid
sensor network of the aluminum alloy plate. To simulate the
stress scenario of the wing skin, the bending test was conducted
with five G-clamp fixed the aluminum plate evenly on the
experimental rack. Five loading points distributed uniformly
by magnets hooks at the free end of the aluminum plate. The
baseline signal of the structure under the health state without
load and the damage signal under crack growth were collected,
respectively. Considering the magnet and hook will change the
structure of the specimen, which will affect the propagation of the
ultrasonic guided wave, the state of the magnet hook was served
as the baseline of no load.

The specific loading process mainly includes four steps:
Step 1: Collect the signals when the load is 0 g;
Step 2: Load weights in turn from 250 to 1500 g with intervals

of 250 g for sampling;

Step 3: Prefabricate 1 mm long cracks at the edge of the circular
hole, then repeat Steps 1 and 2;

Step 4: After the crack generated in Step 3 extended by 1 mm,
repeat Step 1 and 2 until the crack extended to 6 mm.

In Figure 6A, the ScanGenie II monitoring system developed
by Acellent was adopted as the monitoring system of ultrasonic
guided waves, mainly completing the generation of excitation
signals required by sensors and the collection of sensing
signals. The signal of ultrasonic guided wave adopts the five-
cycle sinusoid Hanning-modulated tone bursts, the frequency
range of the excitation signal is 160–260 kHz with an
interval of 20 kHz, and the amplitude of the excitation is
30 V. The selection of excitation signal frequency was mainly
based on the quality of the direct S0 signal received by the
sensor. For signals of multiple excitation frequencies, the S0
signal with little or no crosstalk was selected for analysis.
In Figure 6B, the strain monitoring based on distributed
optical fiber sensor was conducted by high-resolution fiber
sensor interrogating system ODiSI-A (Optical Distributed Sensor
Interrogator) of the American Luna Technology company. The
optical fiber signal with a resolution of 0.5 cm/point was
selected. It should be noted that since the two sensors are
based on different working principles, data acquisition can
be carried out simultaneously without affecting each other.
During the experiment, all the tests were conducted within

TABLE 2 | The starting points of each optical fiber monitoring path (Unit: mm).

Initial points of sensing paths A B C D E F G H

X coordinate 190 110 125 125 165 165 190 110

Y coordinate 140 140 110 190 110 190 165 165

Position on the entire optical fiber (relative to head end) 205 285 435 515 690 770 905 985
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FIGURE 5 | The layout of the fiber-piezoelectric hybrid sensor network.

10 min after the system was loaded to avoid the impact of
vibration on the signal. To avoid the occurrence of accidental
abnormal signals, outliers were removed from all signals,
and the average value is taken for three times. Besides, the
air conditioner was used to adjust the temperature of the
laboratory, and a thermometer was placed around the specimen
to control the temperature change in the range of 24.9–
25.1◦C.

TWO-STAGE FUSION OF KALMAN
FILTERING FOR DAMAGE LOCATION
MONITORING

According to the advantages and disadvantages of PZTs and
optical fiber sensors, a two-stage Kalman filtering fusion was
proposed to achieve damage location monitoring. The first
stage is to fuse the features extracted from two types of
sensors at a specific time at the feature level and predict
the damage location. Then, the predicted damage location

results at multiple specific times are fused at the decision
level in the second fusion. In sections “Guided Wave Signal
Analysis” and “Optical Fiber Signal Analysis,” the effects
of load and crack length on the signals of PZTs and
distributed optical fiber sensors were analyzed, respectively.
In section “Multi-sensor Information Fusion Based on Two-
Stage Kalman Filtering,” two-stage multi-sensor heterogeneous
signal fusion for damage monitoring was conducted, and
the monitoring results were compared with those of single-
type sensors.

Guided Wave Signal Analysis
The guided wave signal based on PZTs was analyzed by the
elliptic probability weighting method. It is easier to distinguish
the damaged area from the healthy area by using the square
value of DI for damage imaging. Figure 7 shows the damage
diagnostic imaging of guided wave signals for 5 mm crack
under the load from 0 to 1500 g. Different colors in the figure
represent different DI squared values and correspond to different
damage probabilities. The seven imaging results were all based
on the health signal, and the maximum of DI was regarded
as the position of damage center. Take 250 g as an example,
the predicted damage was obtained by analyzing the difference
between health signal and damage signal under the 250 g load.
It can be seen that the position of the damage center does not
change with the load.

To compare DI values of different crack lengths under
different loads, Figure 8 shows the DI value of optical fiber sensor
for 1–8 mm crack under the load of 0–1500 g. It can be seen
intuitively that the DI value of the 6 mm crack increases by
leaps and bounds under different loads, and the damage is easily
predicted. However, when the crack length is less than or equal
to 5 mm, the DI value fluctuates within a lower range. Therefore,
the sensitivity of the guided wave to the monitoring results with
small damage is not high in this actuator-sensor path.

Considering that different loads have different effects on
ultrasound guided wave diagnostic imaging, Table 3 lists four
cases with a different combination of load and guided wave
signals, corresponding to the guided wave imaging results in
Figure 9. Take Case 1 as an example, the baseline signal is
the health signal with no load, and the diagnostic signal is the
damage signal with no load. However, the special reason for
Case 3 is that the aluminum plate has not been damaged with
no load, so it only corresponds to the health signal. It can
be seen from Figure 9 that the change of baseline of guided

FIGURE 6 | Experimental monitoring system for measuring signals of optical fibers and guided waves: (A) ScanGenie II, (B) ODiSI.
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FIGURE 7 | Guided wave damage imaging diagnosis under different loading quality (Load from 0 g to 1500 g at intervals of 250 g).

FIGURE 8 | The effect of load and crack length on the guided wave damage
imaging.

wave damage imaging seriously affects the diagnosis result,
and even leads to the misdiagnosis of damage location and
number especially in Case 2. From Case 1–3, it can be seen
that under the same baseline signal, i.e., no-load healthy signal,
different diagnostic signals lead to completely different imaging

diagnosis results. However, by comparing Case 3 and Case 4,
no matter the no-load health signal or the 150 0g health signal
as the baseline signal, the imaging results of the 1500 g damage
signal are similar.

Optical Fiber Signal Analysis
The DI values of optical fiber monitoring with crack growth
in different segments were monitored under the load from 0
to 1500 g. Figure 10 shows the DI value of four segments
(AB, CD, EF, and GH) with an undamaged and 1–6 mm crack
under the load 1500 g. The points on the X-axis represent
the position of each strain measurement point on the entire
length of the distributed optical fiber sensor, which can be
referred to in Table 2. The DI value of optical fiber monitoring
is calculated by Equation (4), and the larger the DI value
is, the greater the probability of damage or the more serious
the damage is. It can be seen that with the increase of crack
length, the DI values monitored by the four-segment optical fiber
sensor increases. The changes of DI near the damage was more
obvious than in the undamaged area, especially for AB and GH
segments. This is because AB and GH segments are closer to the
damage in the X direction than EF and CD segments in the X
and Y direction.

Figure 11 shows the DI values of optical fiber monitoring
under the load from 0 to 1500 g under the 5 mm crack.
The green marked area corresponding to the X-axis is the
circular hole position in the center of the specimen, and the
red marked signal area is the crack damage at the edge of

TABLE 3 | The baseline and diagnostic signals of different cases.

Case 1 Case 2 Case 3 Case 4

Baseline signal No-load; healthy signal No-load; healthy signal No-load; healthy signal 1500 g load; healthy signal

Diagnostic signal No-load; damage signal 1500 g load; healthy signal 1500 g load; damage signal 1500 g load; damage signal
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FIGURE 9 | Damage location based on guided wave damage diagnosis in Cases 1–4.

FIGURE 10 | The DI changes of distributed optical fiber signal segments (AB, CD, EF, GH) with crack growth.
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FIGURE 11 | The effect of load under 5 mm crack on the DI value of distributed optical fiber segments (AB, CD, EF, GH).

FIGURE 12 | The effect of load and crack length on the strain of the distributed optical fiber segments (AB, GH) near the hole.

the hole. Combined with the crack growth extending from
point (155, 150) to the positive direction of the X-axis in
Figure 3, the relative position relationship between the green
region and the red region in Figure 11 can be verified. For
the X direction of AB and EF segments, the crack is close
to point A and F and away from point B and E, so the
red areas are to the left and right of the green range. For
the Y direction of CD and GH segments, the crack is in the
middle of the circular hole, so the red area is within the green
range. It can be seen from Figure 11 that the DI variation
of AB, CD, and EF segments has a peak near the damage,
while the DI value of the CD segment changes irregularly. This
phenomenon indicates that the strain method based on optical

fiber sensors has the shortcoming of monitoring area limitation.
Therefore, a further fusion of optical fiber signals with other
technology is necessary.

According to Figure 4, AB and GH segments are closer
to the damage center than CD and EF segments, the severity
of damage can be represented by strain values at the damage
center of the AB segment and GH segment. Figure 12 shows
the strain value of the AB and GH segments of distributed
optical fiber near the hole varies with load and crack length.
It can be seen that the strain of damage center in AB and GH
segment increases with the increase of load and crack length. The
difference between AB and GH segment is that the strain value
of the GH segment is relatively larger with better linearity, which
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TABLE 4 | The predicted damage center location and location error of single-type sensors and two-stage Kalman filtering fusion.

Load (g) Actual damage location (mm) Damage location monitored by
Single-type sensors (mm)

Two-stage Kalman filtering
fusion predicted (mm)/error*

Single-type PZTs
monitoring/error*

Single-type optical
fiber sensor

monitoring/error*

0 (157.5, 150.0) (151.0, 151.0)/6.5765 (152.5, 144.0)/7.8102 (151.7017, 147.7256)/6.2285

250 (157.5, 150.0) (151.0, 151.0)/6.5765 (153.0, 143.5)/7.9057 (151.9356, 147.4917)/6.1037

500 (157.5, 150.0) (151.0, 151.0)/6.5765 (153.0, 144.5)/7.1063 (151.9356, 147.9595)/5.9268

750 (157.5, 150.0) (151.0, 151.0)/6.5765 (153.0, 144.0)/7.5000 (151.9356, 147.7256)/6.0113

1000 (157.5, 150.0) (151.0, 151.0)/6.5765 (153.0, 144.5)/7.1063 (151.9356, 147.9595)/5.9268

1250 (157.5, 150.0) (151.0, 151.0)/6.5765 (153.0, 145.5)/6.3640 (151.9356, 148.4272)/5.7824

1500 (157.5, 150.0) (151.0, 151.0)/6.5765 (153.0, 145.0)/6.7268 (151.9356, 148.1933)/5.8504

*Error means the distance between the predicted damage center and the actual damage center.

FIGURE 13 | The location error reduction rate of the two-stage fusion relative to single-type PZTs and single-type optical fiber sensor monitoring.

FIGURE 14 | The location error reduction rate of second-stage fusion relative
to the first-stage fusion.

is attributed to the strain change in Y direction mainly caused by
the bending load.

Multi-Sensor Information Fusion Based
on Two-Stage Kalman Filtering
By analyzing the effects of loads and crack length on guided
wave imaging and optical fiber strain in sections “Guided
Wave Signal Analysis” and “Optical Fiber Signal Analysis,” it
is found that both guided wave and fiber monitoring methods

have advantages and disadvantages. For example, guided wave
imaging diagnosis based on PZTs is prone to misjudgment
due to baseline signal, and the monitoring area of fiber sensor
monitoring is limited, only the signal along the fiber length
direction can be monitored, etc. Therefore, the fusion of these
two heterogeneous signals is very significant. However, the
common multi-sensor Kalman filtering fusion needs to calculate
the Kalman factor of each sensor at each moment, which requires
a huge amount of computation. In this paper, an improved
Kalman filtering, i.e., two-stage Kalman filtering fusion was
proposed to achieve damage location monitoring at the feature
level and decision level. In the first stage, the characteristics
of the heterogeneous signal of PZTs and optical fiber sensors
at time k were fused by Kalman filtering at the feature level,
and predict the damage location which is also known as the
weighted least square method. Then the second stage is to
fuse the predicted damage location by the Kalman filtering at
the decision level.

Table 4 shows a comparison of the damage center location
predicted by single-type sensors and two-stage Kalman filtering
fusion under different loads. Among them, the distance between
the predicted damage center and the actual damage center is
regarded as location error. It can be seen that the location error
of the two-stage fusion method is less than that of the single-type
sensors, and the location error of the single-type PZTs monitoring
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is less than that of single-type optical fiber monitoring.
Besides, by comparing the location errors under different
loads, it is found that the location errors of single-type PZTs
monitoring remain unchanged, which confirms the conclusion
in Figure 7. However, the location errors of single-type optical
fiber sensor monitoring under high load are more accurate
than those under low load, which means that the larger the
structure deformation is, the more favorable it is for optical
fiber monitoring.

To further verify the accuracy of the proposed two-stage
Kalman filtering fusion method, the reduction rate of location
error was used, as shown in Formula (15). The higher the location
error reduction rate means the higher the damage monitoring
accuracy. Figure 13 shows the location error reduction rate
of piezoelectric-fiber information fusion compared with single-
type PZTs and single-type optical fiber sensor monitoring
under different loads. It can be seen that the location error
reduction rate of two-stage piezoelectric-fiber fusion is 5–
12% compared with that of the single-type PZTs monitoring,
and 9–23% compared with that of single optical fiber sensor
monitoring. This indicates that the damage monitoring accuracy
by two-stage fusion is higher, and the accuracy of optical fiber
monitoring is greatly improved than that of PZTs monitoring.

RE =
Ei − Ef

Ei
× 100% (15)

Where RE is the reduction rate of the location error,
Ri is the location error of the single-type sensors
monitoring, and Ef is the location error by two-
stage fusion.

Besides, to compare the predicted results of second-stage
fusion with the first-stage fusion, Figure 14 shows the location
error reduction rate of second-stage fusion relative to the
first-stage fusion. The location error reduction rate of the
second-stage fusion is within 0–7%, which is the highest
when the load is 500g. This indicates that the predicted
location is more accurate than that of the first-stage fusion.
Therefore, the two-stage Kalman filtering fusion method
reduces the damage misjudgment and the damage location
error effectively.

CONCLUSION

In this paper, a two-stage Kalman filtering fusion method for
crack growth location monitoring of the aviation aluminum

plate is proposed. The heterogeneous signals are collected
by piezoelectric-fiber hybrid sensor networks composed of
piezoelectric transducers (PZTs) and distributed optical fiber
sensors. The first stage is to fuse the features extracted from two
types of sensors at a specific time at the feature level, and then
predict the damage location. In the second fusion, the predicted
damage location results at multiple specific times are fused at the
decision level. The proposed two-step fusion method is verified
by the experiment of hole edge crack growth monitoring under
the bending moment load, and the effect of load on two kinds
of sensor signals is analyzed. The experimental results show
that, compared with single-type PZTs and single-type optical
fiber sensor monitoring, multi-source sensing information fusion
based on the two-stage Kalman filtering can reduce the damage
misjudgment and improve the damage monitoring accuracy.
The proposed two-step fusion method is expected to fuse other
heterogeneous signals, such as acoustic emission, impedance, and
eddy current signals, and can be extended to the fusion of more
than two types of signals. Furthermore, multi-sensor data fusion
can be further combined with artificial intelligence technology.
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Michalcová, L., and Růžek, R. (2016). Fatigue test of an integrally stiffened panel:
prediction and crack growth monitoring using acoustic emission. Proc. Struct.
Integr. 2, 3049–3056. doi: 10.1016/j.prostr.2016.06.381

Min, J., Park, S., Yun, C. B., Lee, C. G., and Lee, C. (2012). Impedance-
based structural health monitoring incorporating neural network technique
for identification of damage type and severity. Eng. Struct. 39, 210–220. doi:
10.1016/j.engstruct.2012.01.012

Miniaci, M., Mazzotti, M., Radzienski, M., Kudela, P., Kherraz, N., Bosia, F.,
et al. (2019). Application of a laser-based time reversal algorithm for impact
localization in a stiffened aluminum plate. Front. Mater. 6:30. doi: 10.3389/
fmats.2019.00030

Qing, X. L., Kumar, A., Zhang, C., Gonzalez, I. F., Guo, G. P., and Chang, F. K.
(2005). A hybrid piezoelectric/fiber optic diagnostic system for structural health
monitoring. Smart Mater. Struct. 14:S98. doi: 10.1088/0964-1726/14/3/012

Qing, X. L., Li, W. Z., Wang, Y. S., and Sun, H. (2019). Piezoelectric transducer-
based structural health monitoring for aircraft applications. Sensors 19:545.
doi: 10.3390/s19030545

Qing, X. L., Wang, Y. S., and Zhao, L. (2012). Structural health monitoring
technology and its application in aeronautics and astronautics. J. Exp. Mech.
27, 517–526.

Shan, Y. N., Xu, H., Zhou, Z. H., Yuan, Z. Y., Xu, X. S., and Wu, Z. J. (2019).
State sensing of composite structures with complex curved surface based on
distributed optical fiber sensor. J. Intell. Mater. Syst. Struct. 30, 1951–1968.
doi: 10.1177/1045389X19849287

Su, Z. Q., Wang, X. M., Cheng, L., Yu, L., and Chen, Z. P. (2009). On selection of
data fusion schemes for structural damage evaluation. Struct. Health. Monit. 8,
223–241. doi: 10.1177/1475921708102140

Sun, L., Wang, Y. S., Miao, B. R., Wu, D., Sun, H., and Qing, X. L. (2018).
“Research on structural health monitoring method based on multi-source

sensing information fusion,” in Proceedings of the 7th Asia-Pacific Workshop on
Structural Health Monitoring, APWSHM 2018, Hongkong, 670–681.

Tang, D., Chen, J., Wu, W. H., Jin, L. Y., Yue, Q. J., Xie, B., et al. (2020).
Research on sampling rate selection of sensors in offshore platform shm
based on vibration. Appl. Ocean. Res. 101, 102–192. doi: 10.1016/j.apor.2020.1
02192

Villegas, I. F. (2019). Ultrasonic welding of thermoplastic composites. Front. Mater.
6:291. doi: 10.3389/fmats.2019.00291

Wang, Y. S., Gao, T., Liu, D. B., Sun, H., Miao, B. G., and Qing, X. L. (2019).
Propagation characteristics of ultrasonic weld-guided waves in friction stir
welding joint of same material. Ultrasonics 102:106058. doi: 10.1016/j.ultras.
2019.106058

Woods, J., and Radewan, C. (1977). Kalman filtering in two dimensions. IEEE
Trans. Inf. Theory. 23, 473–482. doi: 10.1109/tit.1977.1055750

Wu, J., Su, Y., Zhu, Y., and Deng, C. (2017). Real-time remaining useful life
prediction of cutting tool based on information fusion. J. Huazhong Univ. Sci.
Technol. 45, 1–5. doi: 10.13245/j.hust.170401

Wu, Z. J., Liu, K. H., Wang, Y. S., and Zheng, Y. B. (2015). Validation and
evaluation of damage identification using probability-based diagnostic imaging
on a stiffened composite panel. J. Intell. Mater. Syst. Struct. 26, 2181–2195.
doi: 10.1177/1045389X14549873

Wu, Z. J., Qing, X. L., and Chang, F. K. (2009). Damage detection for
composite laminate plates with a distributed hybrid PZT/FBG sensor network.
J. Intell. Mater. Syst. Struct. 20, 1069–1077. doi: 10.1177/1045389X081
01632

Zhang, Z. F., He, M. Y., Liu, A. R., Singh, H. K., Ramakrishnan, K. R., Hui, D.,
et al. (2018). Vibration-based assessment of delaminations in FRP composite
plates. Composites Part B 144, 254–266. doi: 10.1016/j.compositesb.2018.
03.003

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Wang, He, Sun, Wu, Wang and Zou. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Materials | www.frontiersin.org 13 August 2020 | Volume 7 | Article 30025

https://doi.org/10.1177/1475921715627491
https://doi.org/10.1016/j.ultras.2015.10.025
https://doi.org/10.1117/1.OE.55.1.011007
https://doi.org/10.1117/1.OE.55.1.011007
https://doi.org/10.1016/j.prostr.2016.06.381
https://doi.org/10.1016/j.engstruct.2012.01.012
https://doi.org/10.1016/j.engstruct.2012.01.012
https://doi.org/10.3389/fmats.2019.00030
https://doi.org/10.3389/fmats.2019.00030
https://doi.org/10.1088/0964-1726/14/3/012
https://doi.org/10.3390/s19030545
https://doi.org/10.1177/1045389X19849287
https://doi.org/10.1177/1475921708102140
https://doi.org/10.1016/j.apor.2020.102192
https://doi.org/10.1016/j.apor.2020.102192
https://doi.org/10.3389/fmats.2019.00291
https://doi.org/10.1016/j.ultras.2019.106058
https://doi.org/10.1016/j.ultras.2019.106058
https://doi.org/10.1109/tit.1977.1055750
https://doi.org/10.13245/j.hust.170401
https://doi.org/10.1177/1045389X14549873
https://doi.org/10.1177/1045389X08101632
https://doi.org/10.1177/1045389X08101632
https://doi.org/10.1016/j.compositesb.2018.03.003
https://doi.org/10.1016/j.compositesb.2018.03.003
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org/
https://www.frontiersin.org/journals/materials#articles


ORIGINAL RESEARCH
published: 25 September 2020
doi: 10.3389/fmats.2020.00301

Frontiers in Materials | www.frontiersin.org 1 September 2020 | Volume 7 | Article 301

Edited by:

Jun Wu,

Huazhong University of Science and

Technology, China

Reviewed by:

Xi Wang,

Beijing Jiaotong University, China

Dongyue Gao,

Sun Yat-sen University, China

*Correspondence:

Hongwei Song

songhw@imech.ac.cn

Specialty section:

This article was submitted to

Structural Materials,

a section of the journal

Frontiers in Materials

Received: 21 July 2020

Accepted: 11 August 2020

Published: 25 September 2020

Citation:

Lu L, Wang Y, Bi J, Liu C, Song H and

Huang C (2020) Internal Damage

Identification of Sandwich Panels With

Truss Core Through Dynamic

Properties and Deep Learning.

Front. Mater. 7:301.

doi: 10.3389/fmats.2020.00301

Internal Damage Identification of
Sandwich Panels With Truss Core
Through Dynamic Properties and
Deep Learning

Lingling Lu 1, Yabo Wang 1, Jianquan Bi 2, Cheng Liu 3, Hongwei Song 1* and

Chenguang Huang 4

1 Key Laboratory for Mechanics in Fluid Solid Coupling Systems, Institute of Mechanics, Chinese Academy of Sciences,

Beijing, China, 2Department of Information Engineering, Army Academy of Armored Forces, Beijing, China, 3Department of

Aeronautics and Astronautics, Stanford University, Stanford, CA, United States, 4Hefei Institutes of Physical Science,

Chinese Academy of Sciences, Hefei, China

For sandwich panels with truss core, the weakest part is the low-density core; therefore,

some effective damage identification methods have been previously proposed for

sandwich panels. However, these studies have mainly focused on damage location

identification and only a few studies have discussed detection of the extent of the

damage. In this study, a damage identification method integrating a deep learning

technique with dynamic properties is proposed to identify both the location and extent

of internal damage in sandwich panels with truss core. An analytical model verified

by experiments based on a laser vibrometer is used to obtain raw data, which can

generate various levels of damage inside the two face sheets. Instead of using surface

photographs or raw data as the deep learning training dataset, the dataset is constructed

using damage indices. By combining this with an analytical model, a dataset of

specimens with various defects was collected and used as the input for the neural

networks. The ability to identify the locations of damage and the extent of damage

was used to evaluate the effectiveness of the proposed technique. The results show

that the proposed method could be used to identify the location and extent of internal

damage accurately.

Keywords: sandwich panel with truss core, damage identification, deep learning, vibration-based damage index,

feature extraction

INTRODUCTION

Structural safety and integrity cannot be overemphasized because a catastrophic structural failure
may result in a significant loss of human life and wealth. Also, a more complicated service
environment may bring about additional problems (Lai, 2019; Lai et al., 2019a,b). Sandwich
structures with truss core (SPTCs) have been increasingly applied in industrial sectors, such as in
ships, aircraft, civil engineering, and aerospace engineering (Hg, 1969; Chiras et al., 2002; Wadley
et al., 2003). The lightweight cellular core can be in the form of a stochastic foam, a periodic
honeycomb, a corrugated sheet, or a lattice truss (He et al., 2014; Liu et al., 2014). During the
manufacturing process or during service, damage or defects are inevitable, such as buckling of the

26

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org/journals/materials#editorial-board
https://www.frontiersin.org/journals/materials#editorial-board
https://www.frontiersin.org/journals/materials#editorial-board
https://www.frontiersin.org/journals/materials#editorial-board
https://doi.org/10.3389/fmats.2020.00301
http://crossmark.crossref.org/dialog/?doi=10.3389/fmats.2020.00301&domain=pdf&date_stamp=2020-09-25
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles
https://creativecommons.org/licenses/by/4.0/
mailto:songhw@imech.ac.cn
https://doi.org/10.3389/fmats.2020.00301
https://www.frontiersin.org/articles/10.3389/fmats.2020.00301/full


Lu et al. Damage Dynamic Properties Deep Learning

panel (Yuan et al., 2014, 2015), breakage of the truss, burn-
through of the face sheets, or truss nodes that are not bound to the
face sheet. Different damage features (style, extent, and location)
have different influences on the structural vibration properties
(Lou et al., 2014). Compared with traditional structure styles,
such as beams or plates, internal damage identification of SPTCs
is more difficult:

1) Internal damage, such as unbound nodes, is shielded by
the face sheets, which hinders direct visible inspection,
so a vibration-based identification method may be an
important choice.

2) There is a wealth of damage features that vary in damage type,
location, extent, and their combinations; these can, in turn,
affect the structural vibration behavior.

3) Damage identification can be classified into inversion
problems, and the solutions may be non-unique.

4) The final process of damage identification relies on human
judgment, which is time-consuming and subjective.

In the literature, some methods have been proposed for the
detection and localization of damage in sandwich structures.
For surface cracks in composite laminates, Hu et al. (2006)
proposed a strain-energy method to identify the surface crack
location. The results revealed that the method could identify
the location of the damage successfully. For honeycomb
sandwich plates, Andrzej (2014) proposed a vibration-based non-
destructive testing method with a post-processing algorithm
based on wavelet analysis. The results revealed that different
types of damage could be detected and localized accurately.
For composite SPTCs, Li et al. (2015) proposed a baseline-
free damage localization method based on uniform load surface
curvature, a gapped smoothing method, and the Teager energy
operator to detect truss bar damage. Lu et al. (2017a) proposed
a damage identification method based on a flexural matrix of
metallic SPTCs. Subsequently, an improved method was also
developed to identify damage to unbounded nodes (Lu et al.,
2017b). Seguel and Meruane (2018) proposed four damage
indices, including mode shape curvatures, uniform load surface,
modal strain energy, and gapped smoothing, to evaluate the
debonding damage of an aluminum honeycomb sandwich panel.
Sikdar et al. (2018) proposed an acoustic emission-based real-
time health monitoring framework to efficiently identify the
probable damage in sandwich composite structures. Zhu et al.
(2016) proposed a torsional guided wave method to detect
debonding damage in honeycomb sandwich beams. Klepka et al.
(2013) used non-linear acoustics to detect impact damage in
a composite chiral sandwich panel. High-frequency ultrasonic
excitation and low-frequency model excitation were used to
observe non-linear modulations in ultrasonic waves due to
structural damage.

Most of these studies could detect and locate the damage
accurately, but fewer studies have discussed quantification of the
extent of damage (Kumar et al., 2009; Zhu et al., 2014; Khan
et al., 2019). To detect the extent of damage more accurately,
some intelligent techniques, such as a genetic algorithm (GA)
or convolutional neural networks (CNNs), have been combined

with traditional vibration-based methods or other methods
(Zhu et al., 2014; Khan et al., 2019). In these studies, damage at
different locations and of different extents are considered. Kumar
et al. (2009) presented a model strain-energy two-step method
for a composite sandwich beam. This method can identify
both the location and extent of damage in the faces and the
core. Using the frequency response function (FRF), Zhu et al.
(2014) proposed a non-destructive evaluation method to identify
debonding in a honeycomb sandwich beam. By combining this
with a GA, the method could determine both damage location
and size. When detecting damage in large structures, the method
cannot effectively identify small debonding, which has little
influence on the low-frequency range of an FRF. Khan et al.
(2019) proposed a CNN-based approach for the classification and
prediction of various types of in-plane and through-the-thickness
delamination in smart composite laminates by using structural
vibration information.

With the capacity ofmassive data processing, datamining, and
fast training through the deep architecture of neural networks,
machine learning gives an objective solution with quantitative
accuracy. Chen and Jahanshahi (2018) proposed a deep learning
(DL) framework to analyze individual video frames for crack
detection. The proposed framework achieves a 98.3% hit rate.
Cha et al. (2017) proposed a vision-based method by using the
deep architecture of a CNN for detecting cracks in concrete. The
trained CNN was combined with a sliding window technique
to scan any image size. The results indicate that the proposed
method performs well in finding cracks in concrete in realistic
situations. Zhang et al. (2016) used deep CNN to detect cracks in
roads. The training images were obtained by means of a low-cost
smart mobile phone, demonstrating that DL has the potential
to be applied in practical damage identification. Pathirage et al.
(2018) proposed an autoencoder-based framework for damage
identification, which could support deep neural networks and
which could be used to obtain optimal solutions for pattern
recognition problems of a highly non-linear nature. The method
was applied on steel-frame structures. Guo et al. (2020) presented
a DL-based method that extracts the damage features from
mode shapes without utilizing any hand-engineered feature
or prior knowledge. Datasets based on numerical simulations,
along with two datasets based on laboratory measurements,
were used. Zhang et al. (2020) used machine vision and DL
for structural health monitoring by focusing on detecting bolt
loosening. A dataset that contains 300 images was used. Huang
et al. (2020) proposed a CNN-based method for detection of
surface damage to a steel wire rope (SWR). In this work, only
two different types of SWR surface defects were investigated.
In this study, the authors mentioned that it is necessary
to combine the method with other imaging techniques to
detect SWR inner damage. Liu et al. (2020) reported that a
novel damage identification framework was established in this
study by integrating massive datasets constructed by structural
transmissibility functions and a DL strategy based on one-
dimensional convolutional neural networks (1D-CNNs). Avci
et al. (2017) used 1D-CNNs to automatically extract damage-
sensitive features from the raw acceleration signals and presented
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the preliminary experiments that were conducted to verify the
proposed method.

Previous studies often dealt with damage to the structural
surface that could be captured by a camera or that used the
structural raw displacement or acceleration data captured in
experiments directly as the input data. However, for SPTCs, the
weakest part is the low-density truss core, and the inside damage
is covered by the face sheets and cannot be directly detected
in photographs. Also, compared with plates or beams, SPTCs
consist of two face sheets and a truss core, meaning that the raw
response data hardly reflect the structural damage information.
Therefore, vibration-based methods, which involve many forms
of damage indices that could reflect both the surface and internal
damage, could be used in combination with DL for structural
damage identification in SPTCs.

This work incorporates a DL technique with a vibration-based
method to detect internal damage to SPTCs. Unlike previous
studies, which used surface photographs or raw data as the
DL training dataset, we construct a dataset by using damage
indices instead of raw data. An analytical model is then used
to obtain massive raw structural data, which are verified by
experiments. Then two damage indices, one with a baseline
and the other without a baseline, are used to construct the
input to the neural networks. The effectiveness of the method
is evaluated according to the accuracy of damage location and
extent identification.

CONSTRUCTION OF THE DATASET

Outline of the Construction Process
Obtaining more data is always the best way to make a neural
network model generalize better, although the amount of data is
usually limited in practice. In this study, a vibration analytical
model with random damage features, described previously by
the authors (Lu et al., 2017c), was used to generate the raw
data. Experiments were carried out to verify the proposed model.
Two damage indices were applied to extract the internal damage
features. Finally, the input dataset, including massive and diverse
samples, was built.

SPTC Specimens
A sketch of the pyramidal SPTC model being simulated is
provided in Figure 1. The SPTC is made of stainless steel.
The boundary condition for the SPTC is fully clamped (CCCC).
The unit cell of the pyramidal truss is shown in Figure 1B. The
thickness of the face sheets is 1mm. Parameter Lx is equal to
Ly, which is 11.312mm. There are 15 cells along the x- and
y-directions, respectively. The details of the model are given
in Table 1.

In the damage identification process, three types of damage
features are considered, including damage location, damage style,
and damage extent, denoted as DL, DS, and DE, respectively.
In this study, DS, that is, cell missing damage, is used to
simulate structural damage, which is a typical form of damage for
SPTCs. FourDE values are considered, including half-cell missing
(HCM), one cell missing (OCM), two cells missing (TCM),
and four cells missing (FCM). To consider all possible damage
distributions, the parameter DL is set as a random number, with
its position inside the sandwich panels.

Analytical Models With Random Damage
Features
The training dataset is often obtained through real videos or
images. However, information from videos or images is normally
very limited and cannot cover all possible damage features. In
addition, for SPTCs, only the surface information can be obtained
by videos or images, which does not reflect the internal damage
features of SPTCs. Therefore, in this study, analytical models with
random damage features, verified by experiments, are used as
they are able to consider all possible damage features.

TABLE 1 | Material properties and geometrical information.

Material property Geometrical parameter

Young’s modulus 200 GPa hc 8 mm

Poisson’s ratio 0.3 tc 1 mm

Mass density 7,800 kg/m3 θ 45◦

FIGURE 1 | Model information of sandwich panel with truss core (SPTC). (A) A damaged SPTC model. (B) A unit cell of a pyramidal truss.
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Analytical Models

To build the rich dataset, two kinds of analytical models are
presented. For single-damage cases, a step-by-step analytical
model is proposed. In the model, for a given DE and DS, DL

moves step by step until all possible DL values are used, as
shown in Figure 2A. For multiple-damage cases, an analytical
model with random damage features is used. In the analytical
model, the parameters DL, DS, and DE are set as variables. By

FIGURE 2 | Vibration analytical models of sandwich structure with truss core (SPTC). (A) Single-damage case. (B) Multiple-damage case.

FIGURE 3 | Experimental information. (A) Damaged specimen (SD1). (B) Experimental set-up.
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setting the values of DL, DS, and DE, the damage features can
be given randomly. DE includes HCM, OCM, TCM, and FCM,
and the corresponding parameter DE is set to 1, 2, 3, and 4,
respectively. DL is the starting location of the damage, including
DLX , DLY . The procedure used by the analytical model is shown
in Figure 2B.

Experimental Validation

To verify the proposed analytical model, experiments were
carried out in which pyramidal SPTCs (Figure 3A) were used.
The relative density of the truss core was about 3%. The
thicknesses of the face sheets and the truss core were 0.9
and 7mm, respectively. The dimensions of the metallic SPTC
specimen were 250× 250 mm.

In the experiments, specimens with a single area of damage
and multiple areas of damage were considered. For specimens
with a single area of damage, three cases were used: SD1,
SD2, and SD3. The corresponding DE values were 2×3, 3×4,
and 4×5, where x×y represents the DE and x and y are the
numbers of the missing cells by row and column, respectively.
The defined single area of damage is in the center of the
specimens. For specimens with areas of multiple damage, a
specimen comprising two areas of damage at DE 2×3 and
3×5, respectively (MD1), was used. The healthy specimen is
denoted by SD0. For each damage case, repeated experiments of
specimens with the same damage extent were conducted to verify
the model.

The experimental set-up is shown in Figure 3B. The
specimens were excited by a JZK-50 shaker. Two edges of
the specimens were clamped. A laser Doppler vibrometer
(Polytec, PSV-400) generated the excitation signal and measured
the structural response. The structural modal information
was obtained by analyzing the excitation and structural
response signal.

Numerical models of the same dimensions as the experimental
specimens were built to verify the analytical model. In contrast
to the experimental specimens, in which the damage zone was
prefabricated, the numerical model could simulate various cases
with randomly distributed damage. The number of random
damage cases Cmax was set as 80.

To compare the numerical and experimental results,
parameter ηi is defined as

ηi = ωD
i /ωU

i (1)

where ωD
i and ωU

i are the i-th natural frequency of the damaged
and undamaged specimens, respectively.

In the experiment, only the 1st order of mode is selected
and i is set as 1. According to the results for η1 shown in
Figure 4, it can be seen that the trend of η1 of simulation is
in accordance with the experimental results as the DE increases
from 0 to 4×5. For a given DE, DL has a significant influence
on the structural vibration properties. Taking SD3 for example,
the largest η1 is almost 1, and the smallest η1 is 0.84, because
theDL is different. Therefore, in structural damage identification,
various damage cases using different DE and DL values must
be considered. When the damage case changes from SD3 to

FIGURE 4 | Numerical and experimental results.

MD1, the trend of η1 of simulation is also in accordance with
experimental results. Although there are two areas of damage in
the case of MD1, the effect of MD1 on the structural vibration
properties is smaller than that of SD3, demonstrating that a
number of areas of damage, DL, DE, and DS, couple together and
influence the structural vibration properties. This demonstrates
that small changes in damage features may cause large variations
in the structural properties. However, it is impractical to
obtain massive data merely from experiments. Therefore, a
simulation or numerical model is a very important way to obtain
the data.

Damage Indices
Because of the difficulty in identifying internal damage in
sandwich panels (as mentioned in section introduction), damage
indices are used to extract damage features. Then, by combining
these with a DL technique, the identification of damage features
is more accurate.

Vibration-based damage indices are used to extract the
internal damage features according to information gained
from the face sheet. Two damage indices are used (Li et al.,
2015; Le et al., 2019) and compared; these are denoted DI-1
and DI-2.

DI-1 is proposed for filled SPTCs, and needs information
from a healthy structure as the baseline. When a specimen is
damaged, its stiffness or mass changes. Therefore, the vibration
characteristics (natural frequencies and mode shapes) change.
According to the variations in the vibration characteristics, the
damage features can be identified. The damage index DITr(k) is
defined as:

DITr

(

k
)

=
∣

∣DI12r
(

k
)

− DI1r
(

k− 1
)

DI1r
(

k+ 1
)
∣

∣ (2)

where DI-1r is calculated according to the natural
frequencies and mode shapes, expressed in Equation (3);
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FIGURE 5 | Samples of datasets based on (A) DI-1 and (B) DI-2. HCM, half-cell missing; OCM, one cell missing; TCM, two cells missing; FCM, four cells missing.

k is the number of the selected node; and r is the
weight coefficient.

DI1r =

√

√

√

√

√

√

√

P2
∑

p=P1

ωr
p

P2
∑

p=P1

ωr
p

([

Fp · I
]

D
−

[

Fp · I
]

U

)2
(3)

Fp =
8p8

T
p

ω2
p

(4)

where ωp and Φp are the p-th natural frequency and mode shape,
respectively; I is {1,. . . ,1}T1×n; P1 and P2 are the beginning and
ending order modes, respectively, in the practical case; and D
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and U denote the damaged and undamaged model, respectively.
Parameter r is used to define the weight of low- and high-order
modes in the damage index DI-1. Different damage features have
different influences on different order modes: some damage has a
great influence on low-order modes and some damage has a great
influence on high-order modes.

However, in practice, it is hard to obtain information on a
healthy status. Therefore, a baseline-free damage index DI-2 was
also used in this study. A gapped smoothing method (GSM)
was used to construct a baseline. If there was no damage in the
structure, the mode shapes were smooth and continuous. When
there was damage in the structure, themode shapes at the damage
were not smooth. We used a GSM to construct a baseline. By
comparing the information before and after the GSM, the damage
features could be extracted. DI-2 is expressed as:

DI∗m(n) = T(DI2m(n)) = DI22m (n) − DI2m (n+ 1)DI2m (n− 1) (5)

where DI-2 is defined in Equation (6), n is the number of the
selected node, andm is the weight coefficient.

DI2m(xi, yj) =
P2
∑

p=P1

αmp

(

MDCp(xi, yj)−MDCp(xi, yj)
′)2

E
∑

i=1

F
∑

j=1

(

MDCp(xi, yj)−MDCp(xi, yj)′
)2

(6)

αm
p = ωm

p�K2
∑

p=K1

ωm
p

(7)

where E and F are the numbers of the columns and rows of the
measuring points; P1 and P2 are the beginning and ending order
modes, respectively, in the practical case; and αm

p is defined as
the weight coefficient of the p-th component and is expressed in
Equation (7). The details of DI-2 can be found in our previous
work (Le et al., 2019).

Dataset Building
Based on the proposed analytical models and the two damage
indices, data in the cases of single and multiple damage are
obtained. Some samples are shown in Figure 5. To detect damage
of a different orientation and to increase the variety of the
dataset, data enhancement was applied to increase the number
of samples.

Comparing the first line of results for DI-1 (Figure 5A) and
DI-2 (Figure 5B), it can be seen that the results for HCMorOCM
identified by DI-1 are better than those identified by DI-2 because
the influence of small areas of damage on the structural vibration
properties is small; however, when DE becomes significant, DI-2
also shows very good performance.

DL FRAMEWORK FOR INTERNAL
DAMAGE IDENTIFICATION IN SPTCS

In this study, Faster RCNN (Ren et al., 2015), a framework for
target recognition, is combined with a vibration-based method

FIGURE 6 | Flowchart of the identification process.

TABLE 2 | Parameters of faster RCNN.

Parameter Parameter

Learning rate: 0.001 Average loss 100

Gamma 0.1 Momentum 0.9

Step size 30,000 Weight decay 0.0005

Learning rate policy Step

FIGURE 7 | The training loss curves of DI-1 and DI-2.

(section construction of the dataset) to identify internal damage
features of SPTCs. The flowchart of the identification process
is provided in Figure 6. The method can be summarized in
four steps:

Step 1 Build dataset according to the damage indices and
analytical model.
Step 2 Set the dataset as input and train the Faster
RCNNmodel.
Step 3 Obtain the trained Faster RCNNmodel.
Step 4 Input the new data and evaluate the trained model.
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In this study, a Zend Framework (ZF) CNN was selected. Before
the training process, all images were normalized to 1,491× 1,501
pixels. To detect damage of different orientations and increase the
variety of the dataset, data enhancement was applied to increase
the number of samples. Of the 2018 samples obtained, 50% were
set as the training set and 50% were set as the testing set. The
parameters of the Faster RCNN are shown in Table 2.

Caffe, a DL framework, was used to conduct the training
process as it has been widely applied in DL andmachine learning,
such as computer vision, speech recognition, image feature
coding, and information retrieval. The computing platform was
Ubuntu 16.04, and all the codes were run on a server equipped
with 12 Intel Core i7-6800K CPUs (3.40 GHz) and an NVIDIA
GeForce GTX 1080 Ti with 11 GB of memory.

RESULTS AND DISCUSSION

As is well-known, in damage identification, the effectiveness of
different damage indices for the same damage feature is different.
Even for the same damage, one index could identify it and
another one may not. Therefore, in this section, comparisons
betweenDI-1 andDI-2 are conducted to investigate the capability
and applications of the indices.

There are two steps in damage identification: first, detect if
there is any damage in the structures and identify theDL; second,
identify the DE and DS. Compared with DL, it is more difficult to
identify theDE andDS. Most of the previous studies have focused

on the identification ofDL, and few studies could identify all three
damage features. In this study, only oneDS (truss core missing) is
considered. Therefore, in section 4.1, the capacity of the proposed
method to determine the DL and DE is discussed.

DL and DE Identification
Figure 7 shows the training loss results of DI-1 and DI-2. For DI-
1, the loss value becomes stable very quickly. For DI-2, it can be
seen that the loss value tends to be stable when the iteration is
around 1,000 times, and the final loss value is stable at around 0.1.
Because the proposed damage indices have extracted the damage
feature effectively, the loss value becomes stable more quickly.

Figure 8 provides some identification results of DI-1 and DI-
2. From Figure 8, it can be seen that the accuracy of damage
feature identification is high, no matter whether the DE is HCM,
OCM, TCM, or FCM or whether the DL is in the center of the
model or on the boundary edge. From the middle and right-hand
panels in Figure 8A, it can be seen that the features of HCM and
OCM are similar; it is difficult for humans to identify the DE

accurately, but the DL-based method could identify the location
and extent accurately.

To evaluate the proposed method, 100 figures were used to
test the trained network, and the statistical results are provided in
Figure 9. In Figures 9A,B, the x-axis is the DE results identified
by the trained network and the y-axis is the real DE. When
using the trained network to identify the damage, five cases
may occur. Taking HCM as an example, the five cases are listed
in Table 3. Cases 3–5 demonstrate that the damage location is

FIGURE 8 | Examples of the identified results. (A) DI-1 and (B) DI-2.
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FIGURE 9 | The statistical results. (A) DI-1 and (B) DI-2. HCM, half-cell

missing; OCM, one cell missing; TCM, two cells missing; FCM, four cells

missing.

TABLE 3 | Five cases for HCM identification.

Case number Detail Status

1 HCM is not identified ×
2 HCM is identified as HCM

√

3 HCM is identified as OCM ×
4 HCM is identified as TCM ×
5 HCM is identified as FCM ×

HCM, half-cell missing; OCM, one cell missing; TCM, two cells missing; FCM, four

cells missing.

identified accurately, but the damage extent could not be detected
accurately. Case 2 shows the best result, with both the location
and extent identified.

The accuracies of damage location and extent identification
based on DI-1 and DI-2 are listed in Tables 4 and 5, respectively.
It can be seen that the identification accuracy increases as the DE

TABLE 4 | Accuracy of damage location identification according to the statistical

results.

Index

Accuracy
HCM OCM TCM FCM

DI1 70.8% 79.1% 79.4% 83.4%

DI2 41.9% 75.6% 82.4% 94.5%

HCM, half-cell missing; OCM, one cell missing; TCM, two cells missing; FCM, four

cells missing.

TABLE 5 | Accuracy of damage extent identification according to the statistical

results.

Index

Accuracy
HCM OCM TCM FCM

DI-1 55.4% 57.5% 62% 72.2%

DI-2 36.9% 58.8% 80.9% 92.8%

HCM, half-cell missing; OCM, one cell missing; TCM, two cells missing; FCM, four

cells missing.

increases because the damaged feature identified by the indices
becomes more obvious as the DE increases.

From Figure 10A, it can be seen that there are three areas
of damage in the SPTC, including one OCM and two HCMs.
However, after identifying the network, only damage areas 1
and 2 are identified because the effects of damage area 3 on the
structure vibration properties are hidden by those of damage
areas 1 and 2. This demonstrates that the sensitivity of the
damage index to the damage feature plays a very important
role in DL identification. This conclusion is in accordance with
previous studies. From Figure 10B, there are three areas of
damage, including FCM, TCM, and HCM. The trained network
could only identify damage areas 1 and 3. The reason for damage
area 2 in Figure 10B not being identified is that the DE for
damage area 2 is smaller than that for the other two damage
areas. Damage area 3 (TCM) is identified as HCM, and the
corresponding accuracy is about 0.352, meaning that the trained
network could identify that there is damage at this location but
the probability of identifying it as HCM is not high.

In conclusion, according to the results in Figure 10, it can
be seen that the damage can be located if the damage can be
characterized in the figure, and the damage cannot be located
if the damage cannot be characterized. When there are multiple
areas of damage in SPTCs, damage feature identification is more
difficult. The small DE value is easily covered by large DE values,
meaning that the small DE values could not be identified or that
the damage is mis-identified, as in cases 3, 4, or 5. Therefore, to
identify the damage with small DE values, it is better to combine
more effective indices that are sensitive to the small DE values.

Comparison of DI-1 and DI-2
In this study, a dataset based on two damage indices is used;
this dataset has a significant influence on the effectiveness of the
proposed method. Therefore, the effectiveness of the two damage
indices is compared. Comparing Figure 5A with Figure 5B, it
can be seen that the extracted feature based on DI-1 is more
obvious than that based on DI-2 when DE is small (HCM and

Frontiers in Materials | www.frontiersin.org 9 September 2020 | Volume 7 | Article 30134

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


Lu et al. Damage Dynamic Properties Deep Learning

FIGURE 10 | Examples of DI-1. (A) Case 1 and (B) case 2.

OCM). When DE is small, the identification of damage features
is easily affected by other factors, such as the boundary condition
or singularity caused by contact points, especially in the baseline-
free damage identification process.

When the extent of the damage is small (HCM), the accuracy
of damage feature identification based on DI-1 is higher than
that based on DI-2, as shown in Tables 4 and 5. When the
extent of the damage increases, the accuracy of damage feature
identification based on DI-1 is smaller than that based on DI-
2. From Figure 5A, it can be seen that the HCM feature is
very obvious based on index 1. However, based on index 2, it
shows that HCM tends to be covered by an influencing factor (in
Figure 5B), such as the singularity caused by the contact nodes.
Therefore, when theDE is small, DI-1 is more effective than DI-2.

However, as the DE increases from HCM to TCM or FCM,

the accuracy based on DI-2 is better than the accuracy based on
DI-1, as shown in Tables 4 and 5. From Figure 5A, when the
DE increases from HCM to TCM or FCM, the characteristics of
the identified damage, such as the color gradient or area, change
a little, especially for HCM, OCM, or FCM. When the trained
network identifies the DE, it is easy for the framework to identify

one DE as another DE. But, for DI-2, it can be seen that the
characteristics of the identified damage change a lot as the DE

increases fromHCM to FCM. As theDE increases, DI-2 performs
better than DI-1.

According to the accuracy results inTable 5, it can be seen that
DI-2 performs better than DI-1. Therefore, for identification of
internal damage in sandwich panels, the proposed method based
on DI-2 is better and more effective, as it is more successful in
extracting internal damage features.

CONCLUSIONS

This paper proposed a method for identifying internal damage to
sandwich panels by integrating a DL technique with a vibration-
based method for internal damage in sandwich panels with a
truss core. Instead of using the photographs or raw structural
responses, two damage indices were used to extract the damage
features and construct the dataset. According to the statistical
results, the proposed method can identify the internal damage
features DL and DE. As the DE increases, the accuracy of
identification increases. The statistical results also reveal that
damage indices play a very important role in the identification
process. Considering massive damage features, it is better to
combine the two indices to improve their accuracy. When DE

is small, DI-1 is better than DI-2. When DE is large, DI-2 is
better than DI-1. According to the characteristics of the damage
identified by the indices, we can choose suitable indices to
identify as many damage features as possible.
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To investigate the similarities and differences of mechanical behavior between the
bamboo-concrete connections and the wood-concrete connections, thirty-six
specimens were tested through push-out tests with the material type (bamboo or
wood), concrete strength and dowel diameter as test parameters. In addition to the
linear variable displacement transducer the digital image correlation was also used to
obtain the slip distribution of the whole field of the specimens, which was conducive to the
further detailed analysis of the slip distribution and a comprehensive understanding of the
load-slip relationship. The results showed that the failure modes of the bamboo-concrete
connections were similar to that of the wood-concrete connections, such as the concrete
failure near the joint and the dowels bending in different degrees. The load-slip curves of
the two kinds of connections were similar, which could be summarized as the elastic
section, strengthening section and descending section. The shear stiffness and capacity of
bamboo-concrete connections were higher than that of wood-concrete connections, and
the shear capacity increased with the increase of dowel diameter and concrete strength.
The slip distribution of the left and right sides of the specimen was basically identical. The
load-transfer performance of the dowel was excellent. Finally, the prediction method of
shear capacity and load-slip curve model of composite connections were proposed and
verified to be effective.

Keywords: bamboo-concrete shear connections, wood-concrete shear connections, dowel-type connector,
mechanical behavior, comparative study

INTRODUCTION

The bamboo/wood-concrete composite system usually consist of a bamboo/wood part in the tensile
zone, a concrete layer in the compressive zone, and a connection between bamboo/wood and
concrete. Thus, the mechanical properties of each material are used in efficient ways. Bamboo/wood-
concrete composite system are used in bridges and buildings (Dias et al., 2016; Sebastian et al., 2016;
Shan et al., 2017). Because of the low density and renewability of bamboo/wood, bamboo/wood-
concrete composite system show several advantages over reinforced concrete structures, including
better efficiency in terms of strength to self-weight ratio, and better seismic and environmental
friendly performance (Shan et al., 2020).

At present, many countries are short of wood resources. The wood supply in many areas is
insufficient, so it is necessary to find a renewable material with excellent mechanical properties to
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replace wood. It is feasible to develop engineered bamboo to
realize more effective utilization of bamboo (Li et al., 2019),
especially in the countries where bamboo resources are abundant
(Tian et al., 2019). Among them, bamboo scrimber is the most
widely used engineering bamboo at present. The material
performance and preparation technology of bamboo scrimber
had been investigated by many researchers. Yu et al. (2017)
investigated the manufacturing process and basic properties of
bamboo scrimber. Wei et al. (2016, 2018, 2020a, 2020c), Chen
et al. (2020c) performed tests on the mechanical properties of
bamboo scrimber, including axial tension, axial compression,
eccentric compression and bending. Shangguan et al. (2015),
Zhong et al. (2017) studied the compressive properties and
bending properties of bamboo scrimber. Xu et al. (2017), Cui
et al. (2018) tested the tensile properties at elevated temperatures
and thermal performance of bamboo scrimber. It could be found
from the current research results that the bamboo scrimber could
meet the requirements of structural materials.

However, the serviceability limit of flexural members is
determined by deformation rather than strength in most cases.
The bamboo flexural members have the defects of insufficient
bearing capacity, low section stiffness, and insufficient spanning
capacity (Chen et al., 2020a; Chen et al., 2020b; Wei et al., 2020b),
which is similar to the wood flexural members. To enhance the
flexural performance, the wood-concrete composite structure was
proposed. For this structure, the performance of shear
connections plays an important role in the composite effect of
composite structure. Auclair et al. (2016) found the ductility and
the performance of the wood-concrete beams could be improved
by changing the concrete shell diameter and steel core diameter of
connectors. Martins et al. (2016) developed a wood-concrete
composite component for the floor. Three connection systems
were tested. In the push-out test, the connection with dowel
connectors was the best. Sebastian et al. (2016) tested the
wood–concrete composite beams with different screw thread
connectors. The beams with fully threaded screw connectors
presented an excellent ductility, and the beams with partially
threaded screw connections exhibited a good bearing capacity.
Jiang et al. (2017) studied the early behavior of shear connections
with screw. The results showed that the strength and stiffness of
screw connections increase rapidly in the first seven days.
Khorsandnia et al. (2018) studied the numerical models for
the analysis of the wood-concrete composite beams with
panelised reinforced concrete slabs.

Based on the reference of wood-concrete composite structure,
bamboo-concrete composite (BCC) structure was proposed. Due
to the obvious differences between bamboo and wood in fiber
structure, manufacturing technology and mechanical properties,
etc., it was not appropriate to apply the research results of wood-
concrete composite structure indiscriminately to bamboo-
concrete composite structure. Wei et al. (2017b, 2017c), Wang
et al. (2020) had carried out the four-point bending tests and
push-out test on two types of BCC structures with different
connections. The results indicated that two connections
showed a remarkable bearing capacity and the ductility of the
perforated plate shear connections was larger. Shan et al. (2017)
conducted the push-out test on six types of connections for

glubam-concrete composite beams, and four kinds of
connectors suitable for BCC structure are recommended. Shan
et al. (2020) carried out short-term bending tests on glued
laminated bamboo and concrete composite beams. Four-point
bending tests were conducted on nine full-scale BCC beams with
four types of connectors. All BCC beams showed excellent
behavior and the 200 mm long notch connection exhibited
higher bearing capacity. With the development of various
engineering materials (Ding et al., 2018; Zhang et al., 2018),
fiber reinforced polymer had been widely used in the
reinforcement of structural members (Wei et al., 2017a; Ding
et al., 2019; Zhang et al., 2020). Wei et al. (2014) presented a new
fiber reinforced polymer-bamboo-concrete composite structure.
The bearing capacity and section rigidity were significantly
improved. The mechanical properties of the novel composite
beams were intermediate between the full-composite and non-
composite.

However, the similarities and differences of mechanical
properties of bamboo-concrete and wood-concrete shear
connections are rarely studied. Therefore, a series of
bamboo-concrete specimens and wood-concrete specimens
were tested under static push-out loading in this paper.
Except for the material (bamboo or wood), other parameter
the two kinds of specimens were set in the same and symmetric
way. The interface slip was measured by the digital image
correlation (DIC) and the linear variable displacement
transducer (LVDT). The failure modes, load-slip
relationship, shear stiffness, shear capacity, and slip
distribution were discussed.

MATERIALS AND METHODS

Materials
Bamboo and Wood
Bamboo scrimber used in this test is made up of bamboo fibers
that had been dried, impregnated, and pressed under high
pressure and high temperature conditions. The key
manufacturing process is shown in Figure 1. In this test,
the impregnation rate of adhesive is about 5% of the dry
weight of bamboo fibers, the average density is 1,100 kg/m3,
and the moisture content is between 6.0% and 8.0%. According
to ASTM D143-09 (ASTM International, 2009), 10 tensile
specimens (25 × 10 × 455 mm, TB-1 to TB-10) and 10
compressive specimens (50 × 50 × 150 mm, CB-1 to CB-10)
were tested for the mechanical properties of bamboo scrimber.
The test setup, stress-strain curves, and mechanical properties

FIGURE 1 | Production of bamboo scrimber.
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of the bamboo specimens are shown in Figures 2 and 3 and
Table 1, respectively.

The wood used in this test was made of pinus sylvestris, which
is a kind of popular timber. The number, size, and test method of
wood tensile specimens (TW-1 to TW-10) and compressive
specimens (CW-1 to CW-10) were the same as that of the
bamboo scrimber specimens. The test setup, stress-strain
relationship, and mechanical properties of the wood specimens
are shown in Figures 2 and 3 and Table 1, respectively.

Concrete
Two kinds of concrete with different strength were used in this
test. Three cylinders (φ150 × 300 mm) of C30 and C50 were

tested. The average compressive strength and modulus of
elasticity of C30 were 34.7 MPa and 33.3 GPa, respectively.
The average compressive strength and modulus of elasticity of
C50 were 58.0 MPa and 37.3 GPa, respectively.

Dowel
The dowels used in this experiment were ribbed steel bars with
8, 12, and 16 mm in diameter. Three bars of each diameter
were selected for the tensile test. The average strength of dowel
tensile specimens was shown in Table 2.

Adhesives
The adhesive used in this test was the epoxy resin adhesive,
which was mainly used for the connection between dowel and
bamboo (wood) hole. Its main function was to ensure the stress
transfer and avoid sliding friction between them. According to
the manufacturer’s statement, the average tension strength,
modulus of elasticity, and ultimate tensile strain of the epoxy
resin adhesives were 67.7 MPa, 2.9 GPa, and 0.029,
respectively.

Specimen Preparation
Eighteen bamboo-concrete connections and 18 wood-concrete
connections were processed with the material type (bamboo or
wood), concrete strength and dowel diameter as test
parameters in this experiment. Table 3 listed the details of
these specimens. The number of specimen is based on the
principle of material + concrete strength + dowel diameter, B
represents bamboo, W represents wood, for example, B3008
represents BCC structure, in which the concrete strength grade
is C30 and dowel diameter is 8 mm. Additionally, the number
“- 1/2/3” referred to the three specimens with the same sizes in
each group. As shown in Figure 4, the specimens consists of
two concrete blocks (140 × 350 × 70 mm) and one bamboo
(wood) block (140 × 350 × 70 mm). The bamboo (wood) block
was located in the middle of the specimen, the concrete blocks
were arranged on both sides connected. The dowel passed
through the reserved hole of the bamboo (wood) block,
extending 60 mm into concrete blocks both sides,
respectively. The concrete is strengthened by the 8 mm
diameter constructional steel bars in the direction of length,
width, and height.

Push-Out Test
A 3,000 kN hydraulic actuator was used in the push-out tests.
After pre-loading (510 kN load) to eliminate the influence of
specimen clearance, the test was started with the loading speed
of 0.2 mm/min. When the specimen approached failure, the
loading speed changed to 0.5 mm/min. The details of test setup
were illustrated in Figure 4. The interface slip between the
concrete block and the bamboo block was measured by two
methods. The first method was the LVDT. Four displacement
meters were fixed on the concrete blocks near the interface,
and the measuring rods were fixed at the same level on the
bamboo block near the interface (Figure 5). The second
method was the DIC. After the surface of the specimen was
polished and cleaned, uniformly distributed spots are set up for

FIGURE 2 | Specimens of bamboo scrimber and wood. (A) Tension
specimen size (units: mm). (B) Tension specimen of bamboo scrimber. (C)
Tensile specimens of wood. (D)Compression specimen of bamboo scrimber.
(E) Compression specimens of wood.
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camera recognition. After equipment calibration, two image
collectors were used to continuously collect the deformation
images of the specimens during the entire test process
(Figure 6). In the test, the acquisition frequency of LVDT
was the same as that of DIC, and the data was collected once
every 3 s. After the pre-loading was completed, LVDT and DIC
started to collect at the same time.

TEST RESULTS AND DISCUSSION

Observations and Failure Modes
Figure 7 shows the failure modes of the wood-concrete composite
connections. When the load approached 70–85% ultimate
capacity, the diagonal crack occurred in the concrete block
near the interface. When load increased up to the ultimate

FIGURE 3 | Stress-strain curves of specimens. (A) Bamboo scrimber compression specimens. (B) Bamboo scrimber tensile specimens. (C)Wood compression
specimens. (D) Wood tensile specimens.

TABLE 1 | Mechanical properties of bamboo and wood.

Specimen type Test results Property Average value Standard deviation Coefficient of
variation

Bamboo Tension test results Ultimate tensile stress (MPa) 75.237 13.096 17.41%
Ultimate tensile strain 0.0062 0.0012 19.96%
MOE (GPa) 12.53 2.07 16.54%

Compression test results Ultimate compressive stress (MPa) 54.897 3.583 6.53%
Ultimate compressive strain 0.032 0.005 11.56%
MOE (GPa) 9.55 1.42 14.90%

Wood Tension test results Ultimate tensile stress (MPa) 102.75 11.44 10.77%
Ultimate tensile strain 0.0083 0.0009 11.45%
MOE (GPa) 12.33 2.02 16.38%

Compression test results Ultimate compressive stress (MPa) 28.5 2.7 9.2%
Ultimate compressive strain 0.0043 0.0007 16.4%
MOE (GPa) 8.15 0.97 11.9%

Note: MOE is modulus of elasticity.
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load, there were many cracks and even spalling of the concrete
surface. Subsequently, the load dropped continuously and slowly
until the end of the test. When the load value dropped to about
35% ultimate capacity, the concrete blocks on both sides were
destroyed along the cracks.

Figure 8 shows the failure modes of the bamboo-concrete
composite connections. The cracks began to appear on concrete
block near the joint under 60–80% ultimate load, and the cracks
expanded around as the load increases. When load reached up to
the ultimate load, the concrete near the dowels were destroyed,
which caused the load value to drop rapidly. When the load value
dropped to about 30% ultimate load, the concrete blocks on both
sides were failed.

To sum up, the failure modes of the wood-concrete composite
connections and bamboo-concrete composite connections were not
significantly different, which could be defined as the moderate
failure considering that the specimens had large plastic deformation
after the ultimate load. After testing, the concrete slab was carefully
removed, the directly interconnected fractures between the dowel
holes and the dowels bending to different degrees could be found.
The difference was that the wood holes were deformed while the
bamboo holes were not, which could intuitively reflect the reason
for the different shear stiffness and shear capacity of two kinds of
specimens. Compared with wood, the higher strength of bamboo
led to the different position of the inflection point of dowels.

Load-Slip Curves
As showed in Figure 9, the load-slip curves of the two kinds of
connections were similar, which could be summarized as the

elastic section, strengthening section and descending section. The
load-slip curves were basically linear at the first elastic section
(0–60% ultimate load). The load-slip curves were nonlinear, and
the increasing rates of the interface slip were obviously
accelerated at the second strengthening section (60–100%
ultimate load). At the third descending section, the load
dropped and the slip increased continuously until the end of
the test.

Besides, it could be found that the slip values
corresponding to the ultimate load of wood-concrete
specimens were larger than those of bamboo-concrete
specimens. After passing the ultimate load point, the curves
of bamboo-concrete specimens decreased rapidly, while the
curves of wood-concrete specimens decreased slowly. The slip
corresponding to the ultimate load decreased with the dowel
diameter increase.

To verify the reliability of the measurement results based on
DIC, B5012 group, andW5012 group were selected for comparison.
The load-slip curves are shown in Figure 10. It could be seen that
the LVDT results were basically the same as the DIC results.

Shear Stiffness
According to Eurocode 5 (European Union, 2006), the shear
stiffness K (Eq. 1) and the ductility coefficient D (Eq. 2) were
calculated, respectively. The Ductility coefficient model is shown
in Figure 11.

K � P/S (1)

D � Su/Sy (2)

TABLE 2 | Bearing capacity and strength of dowel tensile specimens.

Specimen type Property Average value Standard deviation Coefficient of variation

S8 Ultimate tensile stress (MPa) 618.13 21.23 3.44%
Yield stress (MPa) — — —

MOE (GPa) 213.76 9.81 4.59%
S12 Ultimate tensile stress (MPa) 593.05 4.79 0.81%

Yield stress (MPa) 490.00 2.13 0.44%
MOE (GPa) 222.76 4.32 1.94%

S16 Ultimate tensile stress (MPa) 615.45 15.35 2.49%
Yield stress (MPa) 482.26 9.69 2.01%
MOE (GPa) 214.44 1.64 0.76%

TABLE 3 | Specimen parameters.

Specimen type Specimen group Dowel diameter (mm) Strength
grades of concrete

Number of specimens

Connections of bamboo-concrete B3008 8 C30 3
B5008 8 C50 3
B3012 12 C30 3
B5012 12 C50 3
B3016 16 C30 3
B5016 16 C50 3

Connections of wood-concrete W3008 8 C30 3
W5008 8 C50 3
W3012 12 C30 3
W5012 12 C50 3
W3016 16 C30 3
W5016 16 C50 3
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where p is the load value, kN; Pu is the ultimate load, kN; S is the
slip value, mm; Su and Sy are the slip value corresponding the
different load as showed in Figure 11, mm.

The results of the stiffness and ductility of all specimens are
shown in Table 4, and the data are the average values of each
group of specimens. The following findings could be obtained
from the table. The values of Ks,0.4, Ks,0.6 and Ks,0.8 of all
specimens showed a decreasing trend in general. The shear
stiffness of bamboo-concrete connections were more than 19%
higher than that of wood-concrete connections. According to the
second section of this paper, the compressive strength and
modulus of elasticity of bamboo are 1.93 and 1.17 times of
that of wood. The different mechanical properties of two kinds
of materials led to the difference of the stiffness and ductility of

composite connections. The ductility of the bamboo-concrete
specimens with 12 mm diameter dowels and the wood-concrete
specimens with 16 mm diameter dowels was the best among all
specimens. The increase of concrete strength could improve the
stiffness of all specimens, but the change of concrete strength had
little effect on the ductility of all specimens.

Shear Capacity
The average value of ultimate shear capacity of each group of
specimens was showed in Figure 12. The ultimate capacity of
bamboo-concrete specimens was up to 31% larger than that of
wood-concrete specimens at most. The main reason could be
considered that the higher strength of bamboo resulted in the
higher shear capacity of bamboo-concrete connections. The
ultimate shear capacity increased with the increase of dowel
diameter and concrete strength.

Slip Distribution
The distribution of relative slip could not be obtained by
LVDT, which could get only a limited number of relative
slip values at the designated positions. The relative slip
values between bamboo/wood and concrete at all positions
of the specimen could be obtained by DIC. Base on DIC, the
displacement of the whole field is shown in Figure 13A.
Considering that the height of the specimen was 350 mm, as
shown in Figure 13B, thirteen points (vertical spacing 25 mm)
were selected along the height of the specimen on both sides of
the interface. The difference value of displacement between
two points in parallel position were calculated to represent the
relative slip value.

The variation of slip along the specimens height on both sides
of the interface was analyzed. The slip distributions of bamboo-
concrete specimens under the test loads of 40, 60, 80, 100, 120,
and 140 kN are shown in Figure 14. The slip distributions of
wood-concrete specimens under the test loads of 40, 60, 80, 100,
and 120 kN are shown in Figure 15.

FIGURE 6 | Digital image correlation measurement. (A) Optical imaging
system. (B) Calibration before collection of data.

FIGURE 4 | Test setup of bamboo/wood-concrete connections.

FIGURE 5 | Linear variable displacement transducer.
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Combined with Figures 14 and 15, the summary was as follows.
The distribution of the slip of the wood-concrete specimens and
the bamboo-concrete specimens was similar. The relative slip
values of the left and right sides of the specimen were basically
identical, indicating that there was no visible offset load in the
testing process. The line connecting 13 points at different heights
was basically a straight line, which means that the force
transmission was stable without sudden change. At the later
stage of the test, there was a higher increase amplitude of the
slip with the same load increment, which indicated a decrease in
shear stiffness of composite specimens. The slip decreased with the
increase of the dowel diameter and the concrete strength grade.

THEORETICAL ANALYSIS

Shear Capacity
In reference to the calculation equation of shear capacity of the
steel-concrete composite structure and wood-concrete composite
structure, this paper attempted to find a suitable analytical
methodologies of shear capacity of the bamboo/wood-concrete
composite connections.

Ceccotti Model
Ceccotti (2002) proposed that the shear strength of the wood-
concrete system should be analyzed according to three modes: the

FIGURE 7 | Typical failure mode of wood-concrete connection. (A) Cracks on the concrete surface. (B) Concrete failure and dowel bending at joint. (C) Large area
failure of concrete. (D) Wood holes deformation. (E) Bending mode.
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failure of the timber side (Eq. 3), the failure of the dowel (Eq. 4),
and the concrete side (Eq. 5), and the minimum of the three
values should be taken as the shear capacity of the connection.

Q � 1.5
������
2Myfhd

√
(3)

Q � 0.8Asfu/cv (4)

Q � 0.23d2
�������
fckEc/cv√

(5)

where, Q is the shear capacity of the single dowel, N; As is section
area of the dowel, mm2; fu is the ultimate tensile strength of dowel,
MPa; cv is the safety factor, generally cv � 1.25; d is the dowel
diameter, mm; fh is compression strength of wood parallel to the

grain, MPa; fck is the compressive strength of concrete cylinder,
MPa; Ec is the elastic modulus of concrete, MPa; My is the
moment value corresponding to the formation of plastic
hinges of the dowel, It could be calculated according to Eq. 6.

My � 0.8fud
3/6 (6)

Saulius Model
Saulius et al. (2007) proposed that there were three failure modes
of the wood-concrete connection: hingeless yield mode (Eq. 7),
single hinge yield mode (Eq. 8), and double hinge yield mode (Eq.
9), as shown in Figure 16.

FIGURE 8 | Typical failure mode of bamboo-concrete connection. (A) Concrete failure. (B) Dowel bending. (C) Directly interconnected fractures between holes.
(D) No bamboo holes deformation. (E) Bending mode.
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1. Calculation equation of shear capacity of dowel in hingeless
yield mode:

Q � V � fh · d · lE (7)

2. Calculation equation of shear capacity of dowel in single hinge
yield mode:

Q�V · sinα� fh ·d · lE( ���������������������(4My · sin2α/fh ·d · l2E)+2√
−1) (8)

3. Calculation equation of shear capacity of dowel in double hinge
yield mode:

Q � V · sin α � 2
��������
fh · d ·My

√
sin α (9)

FIGURE 9 | Comparison of load-slip curves of bamboo-concrete and wood-concrete connections. (A) 3008, (B) 3012, (C) 3016, (D) 5008, (E) 5012, and
(F) 5016.
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where, Q is the shear capacity of the single dowel, N; lE is the
length of the dowel into the wood, mm; d is the dowel diameter,
mm; fh is compression strength of wood parallel to the grain,
MPa;My is the moment value corresponding to the dowel plastic
hinge formation.

The bending angle of the dowel was small in this test. So α was
larger, which was greater than 80°, sinα was approximately 1. So
the shear capacity under the three yield modes could be expressed
as Eq. 10.

Q �

fh · d · lE (Hingeless yield mode)
fh · d · lE( ����������������(4My/fh · d · l2E) + 2

√
− 1)

(Single hinge yield mode)
2

���������
fh · d ·My

√ (Double hinge yield mode)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(10)

European Code
According to Eurocode 4 (European Union, 2006), the shear
capacity of the steel-concrete composite system was the smaller of
the two values calculated by Eqs. 11 and 12.

Q � 0.29αd2
����
Ecfck

√ /cv (11)

Q � 0.8Asfu/cv (12)

where, α is the influence coefficient of dowel length, when 3 ≤ h/d ≤
4, a � 0.2 [(h/d + 1)] ≤ 1.0, when h/d ≥ 4, α � 1;As is section area of
the dowel, mm2; fu is the ultimate tensile strength of dowel, MPa; cv
is the partial safety factor, generally cv � 1.25; d is the dowel
diameter, mm; fck is the standard compressive strength of concrete
cylinder, MPa; Ec is the elastic modulus of concrete, MPa.

Chinese Code
The influence of the minimum tensile strength and yield value of
the dowel is further considered in the Chinese CodeGB50017-2013
(Chinese Committee for Standardization, 2013). The shear
capacity could be calculated by Eq. 13.

Q � 0.43As

���
fcEc

√
≤ 0.7Ascf (13)

where, As is section area of the dowel, mm2; fc is the standard
compressive strength of concrete cube, MPa; Ec is the elastic
modulus of concrete, MPa; c is the ratio of the minimum tensile
strength to the yield strength of the dowel; f is the design value of
dowel tensile strength, MPa.

In this test, two dowels passed through the reserved hole of the
bamboo/wood block and formed four shear connectors with the
concrete blocks. To divide the test load by four to get the shear
capacity of a single connector. The actual shear capacity and
theoretical shear capacity of all specimens were showed in Table 5.

It could be found from the table that increasing the dowel
diameter could improve the shear capacity of the specimens
according to the theoretical calculation. In contrast, the shear

FIGURE 10 | Load-slip curves measured of connections by LVDT and DIC (A) B5012 and (B) W5012.

FIGURE 11 | Ductility coefficient model.
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capacity changed little with the dowel diameter according in the
test. Through preliminary analysis, the reasons for the differences
could be summarized as follows.

The influence of dowel bending in the wood was considered,
but the influence of concrete strength was not considered in
the theoretical equation of wood-concrete connection. The
influence of concrete strength was considered, but steel
strength was not considered in the theoretical equation of
the steel-concrete connection. In general, Saulius model was
more in line with the actual failure mode of this paper. In this
paper, it was suggested that the ratio (fc/fh) of compressive
strength of concrete to that of bamboo/wood should be added
as a parameter, and it was suggested to add the revised
parameters α, β to modify the Saulius model.

Q�

α1 ·(fcfh)
β1

· fh ·d · lE( ���������������(4My/fh ·d · l2E)+2√
−1)

(Single hinge yield mode)
2α2 ·(fcfh)

β2

·
�������
fh ·d ·My

√ (Double hinge yield mode)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(14)

My could be calculated according to the Eq. 15.

My � 0.8fud
3/6 (15)

By using mathematical statistics method to fit the results of
each specimen, it could be concluded that α1 � 1.5, β1 � 0.5; α2 � 3,
β2 � 0.4. The revised equation was as follows.

Q �
1.5 · fc0.5 · fh0.5 · d · lE( ����������������(4My/fh · d · l2E) + 2

√
− 1)

(Single hinge yield mode)
6 · fc0.4 · fh0.1 ·

�����
My · d

√ (Double hinge yield mode)
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (16)

where, Q is the shear capacity of the single dowel, N; fu is the
ultimate tensile strength of dowel, MPa; d is the dowel diameter,
mm; lE is the dowel length into bamboo (wood), mm; fh is the
compression strength of bamboo (wood) parallel to the grain,
MPa; fc is the standard compressive strength of concrete
cube, MPa.

The shear capacity of the specimens was calculated by the
above Eq. 16 and compared with the test value. As provided in
Table 6, there was a good correlation between the test values
and the values calculated by the revised equation. The result
also proved the necessity of considering the influence of
concrete compressive strength in the calculation of shear
capacity.

Load-Slip Curves
Dias (2012) used a three-parameter model to describe the rising
segment of the load-slip curves of wood-concrete connections, as
shown in Figure 17 and Eq. 17. In this paper, the model was
proposed to describe the upward section of the load-slip curve of
the bamboo-concrete connections.

F/Fmax � (c + b · s) · [1 − exp(−a · s/c)] (17)

where, a, b, c are the parameters, s is the slip, F is the load, Fmax is
the ultimate load. The values of a, b, and c of all specimens were
fitted by mathematical software. The results were shown in
Table 7.

After analyzing the results, it was suggested to take values of a,
b, and c according to the following Eqs. 18–20.

FIGURE 12 | Comparison of ultimate shear capacity.

TABLE 4 | Test results of bamboo/wood-concrete specimens.

Specimens
type

Specimens Pmax

(kN)
Su

(mm)
Ks,0.4

(kN/mm)
Ks,0.6

(kN/mm)
Ks,0.8

(kN/mm)
Sy

(mm)
D

Bamboo-concrete connections B3008 109.71 14.16 60.90 44.54 21.89 4.42 3.70
B3012 126.03 12.05 148.80 91.09 53.23 2.03 6.20
B3016 152.33 6.90 63.66 64.54 55.95 2.23 3.31
B5008 136.29 12.26 274.84 187.23 34.82 3.52 3.79
B5012 138.40 10.11 162.92 119.84 83.57 1.44 7.35
B5016 175.26 6.05 140.20 125.73 103.77 1.36 4.47

Wood-concrete connections W3008 95.45 16.77 20.96 14.87 10.67 7.37 2.24
W3012 107.37 21.00 18.96 18.65 9.97 9.25 2.39
W3016 116.55 20.01 49.62 42.18 35.33 2.87 7.69
W5008 122.13 21.73 19.60 10.23 9.18 10.62 2.04
W5012 138.88 21.83 81.46 38.36 13.82 8.12 2.71
W5016 146.62 13.65 199.31 105.94 70.68 1.86 7.86
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a � Ks,0.4/85 (18)

c � Ks,0.6/Ks,0.4 (19)

b � (1 − c)/sest (20)

where, Ks,0.4 and Ks,0.6 are the secant slip modulus at the 40% and
60% of the ultimate shear capacity, respectively. sest is the slip
value corresponding to the ultimate load.

According to the above Eqs. 18–20 the values of a, b, and c
of all specimens were calculated, then the results were brought
into Eq. 17 for further calculation. It could be found that the
prediction curve was more consistent with the actual test
curve. Groups 3,008 and 5,012 were representatives, as
shown in Figure 18. The predicted curves were consistent
with the test curves. It was verified that this method could
better express the load-slip relationship of this test. Therefore,
the proposed model (Eq. 17) can better express the load-slip
relationship of this type of bamboo/wood-concrete
connection.

CONCLUSIONS

This paper reports an experimental research on the bamboo-
concrete connections and the wood-concrete connections to
study the similarities and differences of mechanical properties
between them. The interface slip of the specimens was measured
by the LVDT and the DIC. The failure mode, the load-slip
relationship, the shear stiffness, the shear capacity and the slip
distribution of the specimens were studied. The following
conclusions could be drawn:

1. The failure modes of bamboo-concrete connections were
similar to that of wood-concrete connections, which could
be defined as the moderate failure considering that the
specimens had large plastic deformation after the ultimate
load. The concrete surface of the specimens was cracked

seriously or even peeled off locally. The directly
interconnected fractures between the dowel holes and the
dowels bending to different degrees could be found. The
difference was that the wood holes were deformed, while no
bamboo holes deformation.

2. The load-slip curves of wood-concrete specimens and
bamboo-concrete specimens were similar, which could be
summarized as elastic section, strengthening section and
descending section. The shear stiffness of bamboo-concrete
connections were more than 19% higher than that of wood-
concrete connections. With the increase of concrete
strength, the shear stiffness of the specimen increased
and the deflection of the specimen changed little. The
ultimate capacity of bamboo-concrete specimens was up
to 31% larger than that of wood-concrete specimens at most.
The ultimate shear capacity increased with the increase of
dowel diameter and concrete strength. The different
strength and modulus of elasticity of two kinds of
materials led to the difference of the mechanical
properties of composite connections.

3. According to the data measured by DIC, it could be found
that the slip distribution of the wood-concrete specimens
and the bamboo-concrete specimens was similar. The
relative slip values of the left and right sides of the
specimen were basically identical, indicating that there
was no visible offset load in the testing process. The line
connecting points at different heights was basically a straight
line, which means that the force transmission was stable
without sudden change.

4. Revised parameters α, β and the ratio (fc/fh) were added to revise
the Saulius model to predict the shear capacity for the bamboo
(wood)-concrete connections, and the modified model could
provide satisfactory calculating results. Based on Dias model, a
new model was proposed to describe the rising segment of the
load-slip curves of the bamboo (wood)-concrete connection,
and the predicted curves were consistent with the test curves.

FIGURE 13 | Test results and post-processing methods based on digital image correlation. (A) The cloud picture of slip. (B) Selection of analysis points near the
interface.
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FIGURE 14 | The curves of the slip of bamboo-concrete specimens along interface height. (A) B3008-2 left, (B) B3008-2 right, (C) B3012-3 right, (D) B3016-1
right, (E) B5008-1 right, (F) B5012-3 right, (G) B5016-2 right.
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FIGURE15 | The curves of slip of wood-concrete specimens along interface height. (A)W3008-3 left, (B)W3008-3 right, (C)W3012-3 right, (D)W3016-2 right, (E)
W5008-3 right, (F) W5012-2 right, (G) W5016-1 right.
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FIGURE 16 | Stress analysis of three yield modes. (A) Hingless yield mode, (B) single hinge yield mode, and (C) double hinge yield mode.

TABLE 5 | Comparison of shear capacity (units: kN).

Specimens Ceccottimodel Test
value/

calculated
value

Saulius
model

Test
value/

calculated
value

Eurocode Test
value/

calculated
value

Chinese
standard

Test
value/

calculated
value

B3008 9.11 3.01 8.59 3.19 15.97 1.72 17.24 1.59
B3012 20.08 1.57 19.43 1.62 35.92 0.88 38.78 0.81
B3016 36.37 1.05 29.27 1.30 63.86 0.60 68.95 0.55
B5008 9.11 3.74 8.59 3.97 19.89 1.71 23.54 1.45
B5012 20.08 1.72 19.43 1.78 42.93 0.81 52.96 0.65
B5016 36.37 1.20 29.27 1.50 79.20 0.55 94.16 0.47
W3008 6.58 3.63 6.20 3.85 15.97 1.50 17.24 1.39
W3012 14.50 1.85 13.67 1.96 35.92 0.75 38.78 0.69
W3016 26.26 1.11 18.58 1.57 63.86 0.46 68.95 0.42
W5008 6.58 4.64 6.20 4.92 19.89 1.54 23.54 1.30
W5012 14.50 2.39 11.56 3.00 42.93 0.81 52.96 0.66
W5016 26.26 1.40 18.58 1.97 79.20 0.46 94.16 0.39

TABLE 6 | Comparison of test and calculated values of the shear capacity.

Specimens Calculated values
(kN）

Test average
load (kN）

Calculated value/test
value

Mean absolute
error

Standard deviation Coefficient of
variation

B3008 23.50 27.43 0.86 0.14 2.20 0.08
B3012 25.97 31.51 0.82 0.18 4.12 0.14
B3016 39.13 38.08 1.03 0.03 2.39 0.06
B5008 28.86 34.07 0.85 0.15 2.28 0.07
B5012 33.57 34.60 0.97 0.03 1.40 0.04
B5016 50.57 43.82 1.15 0.15 3.00 0.07
W3008 22.02 23.90 0.92 0.08 0.81 0.03
W3012 25.53 26.84 0.95 0.05 1.60 0.06
W3016 28.25 29.14 0.97 0.03 2.12 0.07
W5008 27.04 30.53 0.89 0.11 2.65 0.09
W5012 29.59 34.72 0.85 0.15 2.38 0.07
W5016 36.52 36.66 1.00 0.00 1.05 0.03
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A Deep Belief network and Least
Squares Support Vector Machine
Method for Quantitative Evaluation of
Defects in Titanium Sheet Using Eddy
Current Scan Image
Jun Bao1,2, Bo Ye1,2*, Xiaodong Wang1,2 and Jiande Wu1,2

1Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, China, 2Yunnan
Key Laboratory of Artificial Intelligence, Kunming University of Science and Technology, Kunming, China

Titanium (Ti) is an ideal structural material whose use is gradually emerging in civil
engineering. Regular defect evaluation is indispensable during the long-term use of Ti
sheets, which can be performed effectively using eddy current (EC) imaging, a method of
visualizing defects that is convenient for inspectors. However, as EC scan images contain
abundant information and have discrepancies in terms of their quality, it is difficult to extract
effective features, thus affecting the evaluation results. In this article, we propose a method
that combines the EC imaging technology with a quantitative evaluation method for Ti
sheet defects based on the deep belief network (DBN) and least squares support vector
machine (LSSVM). Amultilayer DBN is constructed to extract the effective features from EC
scan images for Ti sheet defects. Based on the extracted feature vectors, a multi-objective
regression model of defect dimensions is established using the LSSVM algorithm. Then,
the dimensions of Ti sheet defects such as length, diameter, and depth are quantitatively
evaluated by the effective features and the efficient regression model. The experimental
results show that the evaluation errors for the defect lengths and depths tested are less
than 3 and 5%, respectively, confirming the validity of the proposed method.

Keywords: titanium sheet, eddy current scan image, feature extraction, defect quantitative evaluation, deep belief
network

INTRODUCTION

Titanium (Ti) is an ideal structural material with excellent all-round properties, such as low density,
high specific strength, and excellent corrosion resistance (Cui et al., 2011). For decades, Ti was mainly
used in the aerospace and defense industries (Malwina, 2016). Later, as its production increased, it was
also gradually applied to other fields, such as the chemical and medical industries, and ocean and civil
engineering (Gurrappa, 2003; Veiga et al., 2012; Bayrak and Yilgor Huri, 2018). In civil engineering, Ti
sheets can be safely connected with ceramics, glass, and concrete because all of these materials have
similar thermal expansion coefficients (Winowiecka and Adamus, 2016). As a result, the Ti sheet
structures constructed are not only light and beautiful but can also be made resistant to chemical
pollution, acid rain, and marine corrosion (Adamus, 2014); this construction method has been
successfully applied to marine buildings and earthquake-proof constructions around the world
(Adamus, 2014; Malwina, 2016). Despite the excellent all-round properties of Ti sheets, defects are
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inevitably produced during long-term use. In order to ascertain the
remaining life of the Ti sheets, it is important to characterize the
dimensions of Ti sheet defects. Therefore, a method for effectively
detecting and evaluating Ti sheet defects is indispensable.

Eddy current testing (ECT) is a nondestructive testing method
based on electromagnetic induction (Sophian et al., 2001), which has
been widely used for detecting and evaluating defects in conductive
parts of engineered structures. Compared with other nondestructive
testing methods, ECT has many advantages, such as no contact, low
cost, and no pollution (Fan et al., 2016). In ECT, the characterization
of a material defect is considered to be an inverse problem, in which
the defect dimensions are retrieved from the detected signals (Tian
et al., 2005). Traditionally, the dimensions of a defect have been
estimated by visual judgment of ECT detection signals by an
inspector. This method usually requires highly trained personnel,
and the results are usually influenced by the subjectivity of the
inspector (Fan et al., 2016). Thus, some researchers have turned to
machine learning methods to deal with the ECT inverse problem. In
these methods, defect feature extraction mainly relies on a manual
design or simple signal processing methods, such as principal
component analysis (PCA) and independent component analysis
(ICA) (Tian et al., 2005; Sophian et al., 2003; He et al., 2013; Daura
and Tian, 2019), while the quantitative evaluation of defects mainly
employs conventional machine learning methods, such as artificial
neural network (ANN) and Bayesian network (Wrzuszczak and
Wrzuszczak, 2005; Khan and Ramuhalli, 2008). In recent years,
improved visualization methods for ECT have been developed that
can accurately and intuitively reflect the shape, degree, and position
of defects, while keeping the original advantages of ECT.
Bodruzzaman et al. reported a neural network–based method for
estimating the dimension of cracks in metal plates using eddy
current (EC) scan images (Bodruzzaman and Zein-Sabatto, 2008).
Diraison et al. presented an EC imager designed for defect evaluation
of aeronautical lap joints, with PCA used to extract the EC image
features for defect characterization (Diraison et al., 2009). He et al.
investigated pulsed EC (PEC) imaging, with defect evaluation
performed based on the morphological features of EC scan
images (He et al., 2011). Ye et al. used a giant magnetoresistance
(GMR) array to image crack defects in the inner wall of a steam
generator tube and evaluated the crack depth using the amplitude of
the defect area in the EC image (Ye et al., 2016). Nafiah et al. used
PEC testing to obtain an EC scan image of an inclined crack, and
then, three image-based features were designed to characterize the
inclination and depth of the crack (Nafiah et al., 2019). With
improvements in ECT scanning speed, the EC image
contains more information, and there are discrepancies in
image quality under different working conditions.
Therefore, extracting effective features using an artificial
design or simple signal processing becomes difficult, which
affects the efficacy of quantitative evaluation.

To solve the above problem, deep learning seems to be a good
solution. Because deep learning methods have powerful nonlinear
characterization and self-learning capabilities, they are very useful for
extracting essential features from high-dimensional nonlinear data
(Cheng et al., 2019). In 2006, Hinton et al. discussed the deep
learning theory for the first time and proposed a deep belief network
(DBN) built from multiple stacked restricted Boltzmann machines

(RBMs) to solve the difficulty of deep network training and
optimization (Hinton et al., 2006; Hinton and Salakhutdinov,
2006). To date, deep learning has achieved good performance in
many fields, such as image recognition, voice detection, and fault
diagnosis (Zhang and Wu, 2013; O’Connor et al., 2013; Chen and
Li, 2017; Wu et al., 2020). These valid theoretical foundations and
successful applications provide new ideas for the ECT field.
Currently, combining deep learning with the ECT technology is
a trend in the future development of modern civil engineering
material testing. Therefore, in this article, we propose a method that
combines the EC scan imaging technology with a quantitative
evaluation method for Ti sheet defect evaluation based on DBNs
and least squares support vector machine (LSSVM). First,
unsupervised self-learning was conducted on multiple RBMs
layer by layer, and the trained RBMs were stacked to construct a
multilayer DBN, before conducting supervised fine-tuning. Then,
defect features were extracted from the EC scan images of Ti sheets
using the trained DBN. Finally, based on the extracted feature
vectors, a multi-objective regression model of defect dimensions
was established using the LSSVM algorithm. This combination of
effective features and an efficient regression model was used to
perform the quantitative evaluation of Ti sheet defects. Detection
and evaluation experiments were conducted on Ti sheets with
different degrees of defects to confirm the validity of the
proposed method. The proposed method does not require
manually design features, avoiding inspector subjectivity.
Furthermore, the deep learning method provides essential and
concise features, leading to higher accuracy and reliability for the
proposed method than for conventional methods.

The remainder of the work is arranged as follows: the DBN
used for feature extraction and LSSVM used for multi-objective
regression of defect dimensions are briefly introduced in Section
2; then, the experimental setup and materials are described in
Section 3; in Section 4, the experimental results are described and
discussed; and finally, conclusions and further potential work are
outlined in Section 5.

METHOD

Restricted Boltzmann Machine
An RBM (Hinton, 2012) is a basic unit constituting the DBN and
can be regarded as a neural network containing a visible layer and
a hidden layer, with the number of neurons in the hidden layer

FIGURE 1 | Structure of an restricted Boltzmann machine.
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usually being smaller than that in the visible layer. Themain purpose
of an RBM is to compress a given data set and to minimize the
reconstruction error so as to obtain the effective features of the
original data set. The structure of an RBM is shown in Figure 1.

According to Figure 1, combined with EC scan imaging, the
visible layer represents a column vector of a rearranged EC image,
while the hidden layer represents the features after dimension
reduction. There is a bidirectional symmetric connection between
the two layers of the RBM, with no connections within each of the
layers. An RBM is an energy-based model (Zhang andWu, 2013),
with the layer-by-layer learning process following the energy
function expressions:

E(v, h|θ) � −∑m
i�1

aivi−∑n
j�1

bjhj −∑m
i�1
∑n
j�1

viWijhj, (1)

where θ � {W � (Wij)m × n, a � (aij)1 × m, and b � (bi)1 × n} are the
model parameters; vi and ai are the state and bias of the ith neuron
in the visible layer, respectively; hi and bi are the state and bias of
the jth neuron in the hidden layer, respectively; Wij is the
connection weight between the ith visible neuron and the jth
hidden neuron; and m and n are the number of neurons in the
visible and hidden layers, respectively.

Based on the above energy function, the joint probability
distribution of the RBM over the visible and hidden neurons
is defined as follows:

P(v, h|θ) � e−E(v,h|θ)∑
v
∑
h
e− E(v,h|θ). (2)

Due to the structure of the RBM model (full connectivity
between layers and no connectivity within layers), when the state
of visible neurons is given, the activation state of each hidden
neuron is conditionally independent, and vice versa (Chen and Li,
2017). Therefore, the conditional probabilities over hidden and
visible neurons are given by

P(hj � 1
∣∣∣∣v, θ) � sig(bj +∑

i
viWij)

P(vi � 1|h, θ) � sig(ai +∑
j
Wijhj) ,

⎧⎪⎨⎪⎩ (3)

where sig(x) is a sigmoid function, which is selected as the
activation function in this study.

RBM training involves adjusting the parameter θ. The
training objective is to maximize the likelihood function
L(θ|v̂) � P(v � v̂|θ) using the gradient descent algorithm
(O’Connor et al., 2013). Suppose the input data are vt �
(vt1, vt2,/, vtm)T , t � 1, 2,/,N , the calculation of gradients is
performed according to the following equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

zln L(θ|vt)
zWij

� P(hj � 1
∣∣∣∣vt)vti −∑ v

P(v)P(hj � 1
∣∣∣∣v)vi,

zln L(θ|vt)
zai

� vti −∑ v
P(v)vi, and

zln L(θ|vt)
zbj

� P(hj � 1
∣∣∣∣vt) −∑

v
P(v)P(hj � 1

∣∣∣∣v).
(4)

The calculation of P(v) in Eq 4 is very complicated. In this study,
contrastive divergence (CD) (Hinton, 2002) is used to provide an
approximate estimation. During training, the parameter θ is
updated according to the following equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Wij � Wij + ϵ zln L(θ|v
t)

zWij

ai � ai + zln L(θ|vt)
zai

bj � bj + ϵ zln L(θ|v
t)

zbj

, (5)

where ε > 0 is the learning rate.

Deep Belief Network
A DBN is a deep network composed of multiple RBMs and is a
feedforward neural network algorithm with the advantages of
multiple hidden layers and fast training (Hinton et al., 2006). Due
to a large number of pixels and discrepancy in quality of EC scan
images, it is difficult to obtain effective defect features via self-
learning using only one RBM. Therefore, in this study, a DBN
containing multiple hidden layers is constructed by stacking
multiple RBMs, which realize self-learning of effective features
layer by layer. Figure 2 shows a DBN comprising three stacked
layers of RBMs. The training process for a DBN consists of two
stages (Hinton et al., 2006): the unsupervised pretraining stage
and the supervised fine-tuning stage:

(1) Pretraining uses the layer-by-layer greedy algorithm (Bengio
et al., 2007) to train each RBM separately. When the training
of the first layer of an RBM is completed, its output is taken as
the input of the next layer of the RBM, and then, this process
of transmission continues layer by layer. During the training
of each layer of an RBM, the gradient is calculated according
to Eq 4 and the parameters are updated according to Eq 5.

(2) After pretraining, multiple RBMs are stacked, and a logic
layer is added as the top layer to construct a DBN containing
multiple hidden layers. The stacking of RBMs described
above can be understood as initializing a deep neural
network with the connection weights of multiple RBMs as
an initial weight of the deep neural network. Then, the back
propagation (BP) algorithm and the batch gradient descent
method are used to fine-tune the network. During the
training process, the error is back-propagated to each
layer of the RBM from high to low, with the parameters
between each layer adjusted until the maximum number of
iterations is reached, to achieve the optimal DBN model

Least Squares Support Vector Machine
The LSSVM (Suykens and Vandewalle, 1999) is an improved
version of the general SVM. It transforms the quadratic
programming problem arising from the constraint conditions
of the traditional SVM to the problem of solving linear equations,
which greatly improves the solution speed (Haifeng and Dejin,
2005). In many cases, the relationship between defects and
features is very complex and nonlinear, making it difficult to
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build an effective mathematical model. Therefore, the LSSVM
algorithm is used in this study to establish a multiple-objective
regression model using the extracted features, allowing for the
quantitative evaluation of defects.

For the input sample set (xi, yi), i � 1, 2, . . . , l, xi and yi indicate
the feature vector and defect parameters of the ith EC scan image,
and l is the total number of samples. The nonlinear mapping Φ
maps the features to a feature space, with the regression model
expressed as

y � f (x) � ωTΦ(x) + b. (6)

Determining unknown parameters ω and b is equivalent to
solving the following optimal problem:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
min

1
2
⎛⎝‖ω‖2 + c∑l

i�1
e2i⎞⎠

s.t.ωTΦ(xi) + b + ei � yi, i � 1, 2,/, l

, (7)

where c is the regularization parameter controlling the penalty
degree of error, ω is the weight vector, Φ is a kernel function, b is
the bias, and ei is the error variable. To solve this optimization
problem, the Lagrange multiplier is introduced to construct a
Lagrange function:

L(ω, b, e, α) � 1
2
⎛⎝‖ω‖2 + c∑l

i�1
e2i⎞⎠

−∑l
i�1

αi(ωTΦ(xi) + b + ei − yi).
(8)

According to the Karush–Kuhn–Tucker (KKT) condition for
solving the nonlinear programming problem, the equation for
solving ω and b is obtained as follows (Suykens and Vandewalle,
1999):

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
I 0 0 −Z
0 0 0 L
0 0 cI −I
ZT LT I 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ω
b
e
α

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0
0
0
y

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (9)

where I is an unit vector of l order, L � [1,1, . . . ,1], α � [α1,α2, . . .
,αl]

T, and Z � [Φ(x1), Φ(x2), . . ., Φ(xl)]. By eliminating ω and e, Eq 8
can be simplified as follows:

⎡⎢⎢⎢⎢⎢⎢⎢⎣ 0 L

LT ZTZ + 1
c
I
⎤⎥⎥⎥⎥⎥⎥⎥⎦[ bα] � [ 0

y
], (10)

where ZTZ � k(xi, xj), with k being the kernel function of LSSVM.
Since the quantitative evaluation of defects in Ti sheets has

obvious nonlinear characteristics, the radial basis kernel function
was chosen as k:

k(xi, xj) � exp( − ‖x − xi‖
2δ2

), (11)

where δ
2 is the kernel parameter. Support vector coefficients α and

bias b can be obtained by solving the above linear equations to
determine the regression model as follows:

y � f (x) �∑l
i�1

αik(x, xi) + b. (12)

Quantitative Evaluation of Ti Sheet Defects
Based on Deep Belief Network and Least
Squares Support Vector Machine
Considering the high information content and discrepancy in
quality of EC scan images, we propose a method for the
quantitative evaluation of Ti sheet defects based on the
DBN and LSSVM combined with EC scan imaging. This
method stacks multiple RBMs to construct a DBN with
multiple layers, with the deep network being trained via
unsupervised self-learning and supervised fine-tuning. The
trained DBN can fit nonlinear functions well, so it is used
to extract the potential high-order features from EC scan
images. Based on the extracted features, a multi-objective
regression model of defect dimensions (length, diameter,
and depth) is established using the LSSVM. The effective

FIGURE 2 | Deep belief network structure.
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features and efficient regression model are then combined to
achieve the quantitative evaluation of Ti sheet defects. In line
with the description given above, the specific steps of the
quantitative evaluation method are shown in Figure 3.

As shown in Figure 3, the main steps carried out to implement
this method are as follows:

(1) EC imaging testing is performed on different Ti sheet defects
to obtain EC scan images. After preprocessing (such as de-
noising), the training and testing samples are constructed.

(2) Multiple RBMs are initialized, and the training samples are
input into the first-layer RBM for training. After the training
of the first-layer RBM is complete, its output is used as the
input for the next-layer RBM, and the training is continued.
This process is repeated until the training of all of the RBMs
is complete.

(3) Multiple trained RBMs are stacked, and a logic layer is added
to construct a DBN containing multiple hidden layers, which
is then fine-tuned using the labels of the training samples.

(4) The trained DBN is used to extract features from the training
samples; based on these features, a regression model of defect
dimensions is established using the LSSVM algorithm.

(5) The above methods are then tested by using the DBN to
extract features of the testing samples, which are input into
the LSSVM model to obtain quantitative evaluation results.
Finally, error analysis is conducted on the results.

EXPERIMENTAL SETUP AND MATERIALS

The entire detection system used in this study is shown in
Figure 4, consisting of a programmable scanning stage, a stage
controller, an EC probe, a host PC, and an electromagnetic (EM)
instrument. The EM instrument was developed by the Sensing,
Imaging, and Signal Processing Group at the School of Electrical
and Electronic Engineering at the University of Manchester (Yin
and Peyton, 2006; Yin et al., 2011). The EM instrument can
operate at frequencies of 5–200 kHz and can perform digital
demodulation at a rate of 100 k/s (Yin et al., 2019).

The probe used in the above system is a transmitter–receiver
(T-R)–type probe composed of two coils: one for excitation and
the other for pickup. A schematic of the T-R probe is shown in
Figure 5. Compared with absolute probes with a single coil, T-R
probes have a higher gain, have a wider frequency range, and are
unaffected by thermal drift (Cao et al., 2018). In addition, the
spatial resolution of T-R probes along a scan line is almost twice
as high as that of absolute probes with the same coil size. These
characteristics make the T-R probes more suitable for imaging
applications (Cheng et al., 2017). Although the T-R probes have
good performance, their detection effect is also affected by coil

FIGURE 3 | Flowchart of the proposed method.

FIGURE 4 | Experimental detection system. FIGURE 5 | Structure of eddy current probe.
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parameters such as coil radius, coil gap, and lift-off of the probe.
The parameters of T-R probes should be selected as needed.

The larger the coil, the lower the working frequency required
for maximum sensitivity; however, it also results in a reduction in
spatial resolution (Xu et al., 2018). Considering the dimensions of
the smallest defect in the specimen used in this study, the inner
radius of the coils was chosen to be 0.75 mm. The outer radius of
the coils is related to coil turns to ensure sufficient signal strength.
After coil processing, the outer radius of transmitter and receiver
coils was 1.25 and 1.50 mm, respectively. In addition, the
sensitivity decreases and the lift-off resistance increases with
the increase in coil gap (Ona et al., 2019). After testing, the
receiving coil voltage was greatest at the smallest coil gap of
2.75 mm and almost zero when the coil gap was greater than

10.00 mm. Following consideration of the balance of sensitivity
and lift-off resistance, a median value of 3.50 mmwas taken as the
coil gap. With a decided coil gap, the voltage variation in the
receiver coil will be maximized at a certain lift-off. For the above
coil gap, the voltage variation achieves its maximum at a lift-off of
0.50 mm. According to the above analysis, the parameters of the
T-R probe used in this study are determined and listed in Table 1.

In order to simulate defects of different types and degrees, two
representative types of defects were selected for processing in two
Ti specimens. As shown in Figure 6, cracks and holes were
machined in two 3.0-mm-thick Ti (TA2) sheets via electrical
discharge machining, respectively. Each specimen contained nine
defects of different dimensions. From Figure 6A, the width of all
cracks was 1.0 mm, while the length of each row was 4.0, 8.0, and
12.0 mm, respectively, and the depth of each column was 0.5, 1.5,
and 2.5 mm, respectively; from Figure 6B, the hole diameter of
each row was 1.0, 2.0, and 3.0 mm, respectively, and the depth of
each column was 0.5, 1.5, and 2.5 mm, respectively. The numbers
and parameters of defects are listed in Table 2.

The T-R probe used in this study is a directional sensor, and
the detection mainly relies on the coupling of coils and eddy
current, which are predominant in the middle part of two coils.
During the scanning process, to facilitate the description, the
direction of the connection line between the two coil centers is

TABLE 1 | Probe parameters.

Probe parameter Value

Excitation coil outer/inner radius (re1/re2) 0.75 mm/1.25 mm
Pickup coil outer/inner radius (rp1/rp2) 0.75 mm/1.50 mm
Height of coil (l2−l1) 3.00 mm
Lift-off (L1) 0.50 mm
Gap of two coils (w) 3.50 mm
Excitation/pickup coil turns (N1/N2) 160/200

FIGURE 6 | Machined specimen: (A) specimen #1; (B) specimen #2.

Frontiers in Materials | www.frontiersin.org September 2020 | Volume 7 | Article 5768066

Bao et al. Evaluation of Titanium Sheet Defect

60

https://www.frontiersin.org/journals/materials
www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


defined as the probe direction, as shown in Figure 7A. When the
transmitter coil of the T-R probe approaches a defect, the EC is
cut off by the defect, as shown in Figure 7B. The severed EC is
concentrated at the edge of the crack, and the EC density in the
middle part of the two coils is stronger than that in the other
areas. If the probe direction is along the scan direction, the
concentrated EC in the middle of the two coils is propitious to
strengthen the coupling between the transmitter and receiver
coils. If the probe direction is perpendicular to the scan direction,
as shown in Figure 7C, the T-R probe is under completely
different operation conditions. The receiver coil is away from
the area where the EC is concentrated. Thus, the mutual coupling
between the transmitter and receiver coils was significantly
reduced under the influence of eddy current, and the
sensitivity of the receiver coil, which is in the perpendicular
direction, decreases significantly.

According to the above discussion, the scan mode used in the
experiments is shown in Figure 8. Better performance of scan
detection can be obtained if the scan direction is along the probe
direction, which makes the voltage variation in the receiver coil to
be greater when the T-R probe moves to a defect. In this way,
defects in the EC scan image will also be better represented. From
Figure 8, during the experimental measurement, the scan stage
was driven by the stage controller to move the probe to scan the
specimen: the steps in the X and Y directions were 0.40 and
1.25 mm, respectively, and the scanning points for each defect
were arranged in a 40 × 20 grid (covering a 15.60-mm area ×
23.75-mm area).

During the scanning process, the EM instrument provided a
sine voltage output to the excitation coil of the T-R probe, thereby
generating an alternating magnetic field over the specimen. The
induced EC generates a magnetic field opposite to the original
magnetic field, and the pickup coil receives the resultant magnetic

flux. The resultant magnetic flux varies in the presence of a defect,
thus changing the induced voltage in the pickup coil. Then, the
pickup coil voltage was sampled by the analog-to-digital
converter (ADC) in the EM instrument. At the same time,
two quadrature reference signals with the same frequency as
excitation were generated in the processor of the EM instrument.
The two reference signals were input into the digital phase-
sensitive detection (PSD) module together with the sampling
signal. The real and imaginary parts of the sampling signal were
obtained by mixing and integrating the sampling signal and each
reference signal. Finally, the real and the imaginary parts of the
signals were transmitted to the host PC via an Ethernet interface.

In addition, the working frequency of ECT determines the skin
depth and detection accuracy. Generally, the lower the working
frequency, the greater the skin depth, but the smaller the
detection precision. The selection of working frequency
depends on the thickness and electromagnetic characteristics
of the measured material. The expression of the standard skin
depth δ is given as follows:

δ � 1/ �������
πf μ0μrσ
√

, (13)

where f is the working frequency; σ and μr are the conductivity and
relative permeability of the measured material, respectively; and
μ0 is the permeability of free space.

In the experiment, the thickness of the Ti (TA2) specimen is
3.0 mm, the conductivity is 1.8 MS/m, and the relative
permeability is 1. The standard skin depth was selected as
0.7 times the thickness of the specimen to prevent EC from
appearing on the other side of the specimen and to ensure the
depth and accuracy of the detection. According to Eq 13, the
working frequency used for the EM instrument in the experiment
carried out in this study was 30 kHz.

TABLE 2 | Parameters of defects.

Crack no Length (mm) Width (mm) Depth (mm) Hole no Diameter (mm) Depth (mm)

C1/C2/C3 4.0/8.0/12.0 1.0 0.5 H1/H2/H3 1.0/2.0/3.0 2.5
C4/C5/C6 4.0/8.0/12.0 1.0 1.5 H4/H5/H6 1.0/2.0/3.0 1.5
C7/C8/C9 4.0/8.0/12.0 1.0 2.5 H7/H8/H9 1.0/2.0/3.0 0.5

FIGURE 7 | Influence of T-R probe direction: (A) probe direction definition; (B) probe direction is along the scan direction; (C) probe direction is perpendicular to the
scan direction.
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EXPERIMENTAL RESULTS

A defect in a Ti sheet causes a change in the voltage of the pickup
coil. However, for different materials, the sensitivity of the real
and imaginary parts of the voltage differs. In order to determine
the more sensitive signal components, we first carried out a line
scanning along the vertical direction of three defects. Defects with
the minimum length and different depths were selected as
examples (C1, C4, and C7 defects in specimen #1) and

referenced to Ti sheets without defects; the differences in the
pickup coil voltages are shown in Figure 9.

From Figures 9A–C, it can be seen that the real and imaginary
parts of the coil voltage difference reach the peak value at the
defect center and that the trend of the change is opposite to this.
However, the peak-to-peak value of the real part is much larger
than that of the imaginary part. As shown in Figure 9D, the peak-
to-peak value of the real part is on average five times greater than
that of the imaginary part. From this, it can be concluded that the
real part of the peak-to-peak value is more sensitive at detecting
defects in Ti sheets. According to the preliminary testing
mentioned above, visualization of defects can be improved by
using the difference in the real part because the stronger signals
are not as easily drowned out by environmental noise.

The scan mode described in Figure 8 was adopted to scan the
different defects in the two specimens. However, in actual
detection, differences in manual operations will result in
discrepancies in the quality of the scan images. Such situations
were simulated by scanning each defect at different angles and
from different start positions to provide experimental samples for
subsequent evaluation, where the angle refers to the angle
between the specimen and the scan direction, from 0 to 25°

with an interval of 5°, and the X and Y axis coordinates of the start
position change in the range of −2 to 2 mm with an interval of
2 mm.With six angles and nine start position combinations, each
scan was repeated five times. In total, 270 samples were obtained
for each defect: 200 samples of each defect were randomly
selected as the training data, and the remaining 70 samples

FIGURE 9 | Signal strength comparison: (A) real and imaginary parts of voltage difference for C1 notch; (B) real and imaginary parts of voltage difference for C4
notch; (C) real and imaginary parts of voltage difference for C7 notch; (D) comparison of peak-to-peak values.

FIGURE 8 | Scan mode.
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were used as the testing data. Finally, for each specimen, the total
number of training samples was 1,800 and the number of testing
samples was 630. After the above scan process was completed,
taking the scanning image with the start position of (0,0) and
scanning angle of 0° as an example, the imaging effect of the two
specimens is shown in Figure 10.

Figures 10A,B show the nine crack defects and nine hole
defects in specimens #1 and #2, respectively. In Figures
10A,B, each panel represents the imaging effect of the
defect of the corresponding number, allowing the shape
and depth of defects to be intuitively assessed in EC scan

images. For the defects with the same shape, the defect regions
in EC scan images had relatively similar contours. For the
defects with the same depth, the defect regions in EC scan
images had similar pixel value distribution, and as the defect
depth increases, the color value of the defect region in EC scan
image gradually decreases.

Before the experiments of feature extraction and quantitative
evaluation, how the parameters in the DBN and LSSVM affect the
performance of the proposed method was first discussed and
analyzed. The network structure is the most important factor for
the DBN and is related to the number of hidden neurons and the

FIGURE 10 | Imaging effect: (A) specimen #1 (crack defects); (B) specimen #2 (hole defects).

FIGURE 11 | Mean square error (MSE) curves of different numbers of
hidden neurons.

FIGURE 12 | Mean square error curves of different numbers of hidden
layers.
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number of layers. Since each RBM in the DBN is independently
trained, taking the first RBM to construct a DBN as an example,
an experiment was conducted to determine the appropriate
number of hidden neurons. The input layer and the output
layer were set to 800 and nine neurons, respectively,
representing the input data dimension and the binary-coded
defect type. The hidden neurons were set to 50–700 at a step
of 50. The mean square error (MSE) between output code and
actual code is used to evaluate feature characterization ability of
the DBN. The mean results of two specimens are shown in
Figure 11. It is noted that the feature characterization results
seem to be satisfactory when the number of neurons in the hidden
layer is less than 1/4th that in the previous layer.

Based on the analysis above, the number of hidden layers in the
DBN was set to 1–3, and their network structure was 800/200/9,
800/200/50/9, and 800/200/50/12/9, respectively. An experiment
was conducted to analyze the influence of the number of hidden
layers on the deep learning structure. The results for each
experimental condition are shown in Figure 12. It is noted that
the results seem to be best when the number of hidden layers is 2.

Learning rate plays an important role in the DBN to determine
whether andwhen the objective function converges to theminimum;
momentum factor determines the direction and efficiency of

gradient descent. So, a suitable learning rate and momentum
factor could not only improve the learning ability but also
enhance the computing efficiency. Taking all of the above results
together, further experiments of the learning rate and momentum
factor were conducted. In the experiments, the learning rate was set
to 0.05–1.00 in the pretraining and fine-tuning stages; when one
stage was analyzed, the learning rate of the other stage remained
unchanged, which was 1.00; the momentum factor was set to
0.05–1.00 in pretraining and fine-tuning stages. The results of the
experiments above are shown in Figures 13 and 14, respectively.

From Figure 13, in the pretraining stage, the MSE increases
with the increase in the learning rate, and the MSE becomes
stable gradually after the learning rate is greater than 0.35. In
addition, theMSE achieves its minimum of 0.01 at a learning rate
of 0.10. In the fine-tuning stage, the MSE decreases with the
increase in the learning rate. As the learning rate varies from 0.70
to 1.00, the MSE clearly decreases, with a result of 0.037–0.049,
and the MSE shows little variation when the learning rate
continues to increase. From Figure 14, when the momentum
factor was taken as an intermediate value, the MSE is the
smallest, and the MSE achieves its minimum of 0.021 at a
momentum factor of 0.50.

After the above analysis and preliminary experiment, the DBN
used in this experiment was set to contain two hidden layers, and
the outputs of the last hidden layer were the extracted features.
Detailed parameters of the DBN are listed in Table 3.

In LSSVM algorithm, the regularization parameter and kernel
parameter directly affect the learning and generalization ability.
Besides, there is no necessary relationship between the

FIGURE 13 | MSE curves of different numbers of learning rate.

FIGURE 14 | MSE curves of different numbers of momentum factor.

TABLE 3 | Parameters of deep belief network model.

Parameter Value

Network structure 800/200/50/9
Activation function Sigmoid
Learning rate (pretraining/fine-tuning) 0.10/1.00
Momentum factor 0.50
Batch size 100
Epoch number (pretraining/fine-tuning) 350/150

FIGURE 15 | Defect evaluation results of different regularization
parameters.

Frontiers in Materials | www.frontiersin.org September 2020 | Volume 7 | Article 57680610

Bao et al. Evaluation of Titanium Sheet Defect

64

https://www.frontiersin.org/journals/materials
www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


regularization parameter and kernel parameter. Thus, they can be
analyzed and discussed independently. A DBN model with the
parameters inTable 3was trained by training samples. The trained
DBN model was used to extract features from the training and
testing samples. The features from the training samples were used
to establish the LSSVM regressionmodel, and the features from the

testing samples were used to analyze how the parameters affect the
LSSVM. The regularization parameter was set to 0.1–20.0, and the
kernel parameter was set to 0.05–2.50. According to the above
parameter settings, the relative errors of defect evaluation by using
the LSSVM are shown in Figures 15 and 16.

From Figure 15, the relative error of defect evaluation
decreases with the increase in the regularization parameter.
For both crack and hole defects, the relative error decreases
obviously in the range of the regularization parameter from
0.5 to 12.0, and the relative error shows little variation when
the regularization parameter continues to increase. From
Figure 16, the variation in relative error with the kernel
parameter is similar to the above description of the
regularization parameter. The relative error shows little
variation when the kernel parameter is greater than 1.00 and
achieves its minimum at a kernel parameter of 1.50. So, we
determine that the regularization parameter and kernel
parameter of the LSSVM are 10.0 and 1.50, respectively.

After the above preliminary experiments, we analyzed the
effects of parameters in the DBN and LSSVM on the
performance of the proposed method and determined the
optimal parameters. Next, the feature extraction and defect
quantitative evaluation experiments were carried out. A

FIGURE 16 | Defect evaluation results of different kernel parameters.

FIGURE 17 | Comparison of feature extraction effects: (A) PCA; (B) ANN; (C) RBM; (D) DBN.
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trained DBN model was used to extract features from the EC
scan images in the testing samples. In addition, in this
experiment, PCA, ANN, and single-layer RBM were used
for comparison, where the number of neurons in each layer
of the ANN was set to 800/200/50/9 and the structure of the
RBM was set to 800/50, with the other parameters being the
same as those in the DBN. To visualize the distribution of
features, the obtained features were mapped to 3D feature
vectors, taking specimen #1 as an example, and the results are
shown in Figure 17.

From Figure 17, it can be seen that the defect features
extracted by PCA were relatively mixed, which shows that
this method has difficulty in processing high-dimensional
nonlinear data. The features of the same defect extracted by
the ANNwere obviously clustered, but for different defects, there
were some overlaps of between-class features. The features
extracted by the RBM formed a curve-like distribution, also
with some overlaps of between-class features when there were
too many defect types. The performance of the DBN model was
better than that of the other models; this is mainly because the
unsupervised self-learning of the DBN (based on its deep
structure) is conducive to characterizing the essential and
concise high-order features, while the supervised learning of
the DBN improves the clustering of inner-class feature sets.
Therefore, the features extracted by the DBN are more suitable
for the quantitative evaluation of defects.

The extracted features from EC scan images of two specimens
were input into the previously established LSSVM regression
model to quantitatively evaluate the Ti sheet defects. This
experiment involved performing a multi-objective regression
task to evaluate the lengths and depths of the crack defects,
and the diameters and depths of the hole defects. Table 4 shows
the relative errors of the estimation results.

As shown in Table 4, the relative errors of estimation of crack
length were between 0.047 and 4.020%, and those of crack depth
were between 0.322 and 2.931%; the relative errors of estimation of
hole diameter were between 0.180 and 0.997%, and those of the hole
depth were between 0.212 and 2.551%. Overall, larger deviations
were observed in the estimation of smaller degrees of defects
(smaller in length/diameter and depth), and the mean relative
errors of the above estimations were 1.233, 1.233, 0.619, and
0.920%, respectively; all errors are very small and within a
reasonable range. Then, the above method was compared with
other methods. In the comparison experiments, the four types of
features (PCA, ANN, RBM, and DBN) described in Figure 17 were
used, and two regressionmethods, multiple linear regression (MLR)
and LSSVM, were used to reconstruct the defect dimensions.
Table 5 shows the mean relative errors of the evaluation results
for a total of eight groups of comparison experiments.

As shown in Table 5, in terms of the features used in these
methods, the performance of the methods using PCA or ANN
features is similar. Compared with the above features, the

TABLE 4 | Relative error of the defect evaluation of deep belief network–least squares support vector machine.

Defect parameter of specimen #1 Relative error of the corresponding defect (%)

C1 C2 C3 C4 C5 C6 C7 C8 C9 Mean

Crack length 4.020 1.844 0.477 1.434 0.086 0.510 2.242 0.047 0.439 1.233
Crack depth 2.931 2.609 2.236 0.355 0.579 0.479 0.873 0.717 0.322 1.233

Defect parameter of specimen #2 Relative error of the corresponding defec (%)

H1 H2 H3 H4 H5 H6 H7 H8 H9 Mean

Hole diameter 0.657 0.722 0.986 0.997 0.257 0.407 1.058 0.180 0.305 0.619
Hole depth 1.987 2.067 2.551 0.212 0.355 0.283 0.296 0.306 0.219 0.920

TABLE 5 |Mean relative error of the defect evaluation of the comparison methods.

Comparison
method

Defect parameter relative error (%)

Crack
length

Crack
depth

Hole
diameter

Hole
depth

PCA–MLR 20.006 16.871 13.515 20.776
ANN–MLR 12.423 9.358 7.984 17.779
RBM–MLR 23.091 9.69 6.540 23.649
DBN–MLR 5.477 10.522 3.302 8.561
PCA–LSSVM 3.041 3.893 0.959 1.376
ANN–LSSVM 2.543 2.884 1.008 1.560
RBM–LSSVM 18.164 3.707 1.637 16.991
DBN–LSSVM 1.233 1.233 0.619 0.920

PCA, principal component analysis; MLR, multiple linear regression; ANN, artificial neural
network; RBM, restricted Boltzmann machines; DBN, deep belief network; LSSVM, least
squares support vector machine.

TABLE 6 | Repeatability of the evaluation methods.

Comparison
method

Defect parameter standard deviation (mm)

Crack
length

Crack
depth

Hole
diameter

Hole
depth

PCA–MLR 1.274 0.334 0.195 0.212
ANN–MLR 0.900 0.201 0.199 0.276
RBM–MLR 0.917 0.178 0.148 0.145
DBN–MLR 0.556 0.195 0.097 0.131
PCA–LSSVM 0.218 0.054 0.010 0.009
ANN–LSSVM 0.285 0.045 0.013 0.013
RBM–LSSVM 1.009 0.047 0.054 0.154
DBN–LSSVM 0.116 0.018 0.010 0.009

PCA, principal component analysis; MLR, multiple linear regression; ANN, artificial neural
network; RBM, restricted Boltzmann machines; DBN, deep belief network; LSSVM, least
squares support vector machine.
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performance of RBM features is relatively weak, which indicates
that the single-layer RBM is difficult to approximate high-order
functions and extract effective features. In addition, the DBN
feature has the best performance, and the errors of reconstructed
defect dimensions are the smallest, no matter which regression
algorithm was used. In terms of the regression algorithm used in
these methods, the LSSVM is much better than MLR, and the
average error is one order of magnitude smaller, which indicates
that the LSSVM is more suitable for dealing with the nonlinear
relationship between high-dimensional features and defect
dimensions.

These results were further analyzed to evaluate the
repeatability of the proposed method. The experiments were
repeated under identical conditions, with the standard
deviation used to evaluate the repeatability of the proposed
method, and the results are shown in Table 6.

As shown in Table 5, the standard deviations of the
experimental results for the DBN–LSSVM method ranged from
0.009 to 0.116 mm for the different defect parameters. These values
are far below those of other comparison methods, demonstrating
that the results of the proposedmethod do not readily fluctuate and
show better repeatability. All in all, the above experiments prove
the validity of the proposed method from the two aspects of
accuracy and repeatability. The proposed method can be applied
to perform effective detection and quantitative evaluation of Ti
sheet defects, providing a novel way of combining deep learning
with the EC scan imaging technology.

CONCLUSION

This study proposed a method for quantitatively evaluating Ti
sheet defects based on the DBN and LSSVM combined with the
EC scan imaging technology. The proposed method utilizes a
trained DBN to extract effective features from the EC scan
images of Ti sheet defects. Then, based on the extracted feature
vectors, the LSSVM algorithm was used to establish a multi-
objective regression model of the dimensions of the Ti sheet
defects. The combination of effective features and an efficient
regression model was used to perform the quantitative
evaluation of Ti sheet defects. The main conclusions of this
study are as follows:

(1) For defects in Ti materials, the strength of the real part of
the detection signal is on average five times greater than
that of the imaginary part. Therefore, the real part of the
signal is not easily drowned out by environmental noise
and can therefore achieve better imaging results.
Furthermore, it is also better suited to the quantitative
evaluation of defects based on features extracted from
EC scan images.

(2) The proposed method does not require manually
designed features, thus avoiding the problem of the
subjectivity of the inspector. In addition, compared
with feature extraction by conventional methods, the
proposed method stacks multiple RBMs and combines

unsupervised and supervised learning, giving it a
stronger ability to characterize features.

(3) The proposed method utilizes the LSSVM algorithm to
transform the complex ill-posed ECT inverse problem to a
simple problem of solving linear equations. The final
experimental results showed that the maximum relative
error and standard deviation of the defect evaluation were
less than 4.1% and 0.12 mm, respectively, and the proposed
method yielded a higher accuracy and repeatability than the
other conventional methods tested.

In addition, due to limitations in our capacity to process the
specimen, the defects studied in this research were all regular,
ideal defects. However, defects often have more complex shapes
in actual situations. We hope that future work will be able to
extend the proposed method to investigate more complex defects.
Second, the method should not be limited to the detection of Ti
sheets in civil engineering but can also be extended to other ECT
applications, such as reinspection and quality monitoring in the
manufacturing of various metal sheets. In industrial production,
with the accumulation of EC image data, the training samples will
be enriched and the generalization capability of the proposed
method will be further improved. We hope that future work will
also focus on how to extend the proposed method to more ECT
applications.
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A grout sleeve connection is a typical kind of joint in prefabricated structures. However, for

construction andmanufacturing reasons, defects in this kind of joint are usually inevitable.

The joint quality of a prefabricated structure has a significant influence on its overall

performance and can lead to structural failure. Due to the complexity of various types of

materials used in grout sleeve connections, traditional non-destructive testing methods,

such as Acoustic Emission (AE), Ultrasonic Testing (UT), Guided Wave Testing (GW), are

facing great challenges. The recent development of deep learning technology provides

a new opportunity to solve this problem. Deep learning can learn the inherent rules and

abstract hierarchies of sample data, and it has a powerful ability to extract the intrinsic

features of training data in complex classification tasks. This paper illustrates a deep

learning framework for the identification of joint defects in prefabricated structures. In

this method, defect features are extracted from the acceleration time history response of

a prefabricated structure using a convolutional neural network. The proposed method

is validated by vibration experiments on a half-scaled, two-floor prefabricated frame

structure with column rebars spliced by different defective grout sleeves.

Keywords: prefabricated structure, grout sleeve, convolutional neural network, deep learning, defect identification

INTRODUCTION

In recent years, prefabricated structures have been widely used in construction, and grout sleeves
are the most widely used connection type in these structures. Usually, the special grout used in
these connections has good fluidity, early and high strength, and micro-expansion. However, most
of these sleeves have complicated internal structures and complicated construction procedures,
and this often leads to joint defects during the construction process. The underfilling of sleeve
grouting is one of the typical defects that are seen in these connections. Such defects will seriously
affect the mechanical properties of the joints and eventually affect the bearing capacity and seismic
performance of the overall structure (Zhu et al., 2019). Conveniently and effectively detecting the
fullness of sleeve grouting has always been a difficult problem in prefabricated concrete buildings.
The ultrasonic wave method (Feng et al., 2020), the impact-echo method (Chou, 2019), the X-ray
CT method (Zelelew et al., 2013; Gao et al., 2017), the damped vibration method (Zhu et al., 2018),
the X-ray method (du Plessis and Boshoff, 2019), and the embedded wire-drawing method (Gao
et al., 2019) are relatively mature detection technologies, but they are expensive and labor intensive,
which means they are not conducive to the full detection of sleeve grouting. Because such defects
are typically local, traditional global-based non-destructive dynamic testing methods also face great
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challenges when used with complex structures, because these
technologies are unable to obtain effective local feature
information from global dynamical data (Yoon et al., 2010).
Moreover, with the increasing complexity of these connections,
the influences of the different parts will increase, which will
lead to these methods being unable to effectively extract
feature information.

As a subset of machine learning in artificial intelligence
(AI), deep learning involves networks that are capable of
learning without supervision from original data. Deep learning
technology has the potential to provide a new identification
method in a case such as this because it can autonomously learn
highly abstract features from original data.

Deep learning has enabled many practical applications of
machine learning, and by extension the overall field of AI.
An increasing number of researchers have tried to apply
deep learning to identification problems in the field of civil
engineering. LeCun et al. (1989) developed the first deep
convolutional neural network (DCNN) to realize handwritten
postcode identification (LeNet-5), using back propagation (BP),
a supervised training algorithm. Cha et al. (2017) proposed
a crack detection method for concrete structures based on
a convolutional neural network (CNN) that used crack
photographs taken under different conditions (such as different
photo sizes, light sources, and shadows) for testing. Dorafshan
et al. (2018) compared the performance of commonly used edge
detectors and DCNNs in crack detection in concrete structures
and proposed a method combining a DCNN and edge detectors
that can reduce residual noise. Xu et al. (2019) proposed a
fast region-CNN (R-CNN) method for identifying and locating
multiple types of seismic damage to damaged reinforced concrete
columns from images. The image data sets were established
through on-site imaging, and these were expanded using a
data-enhancement method. Based on fast R-CNN, Beckman
et al. (2019) proposed a method for detecting concrete layer
damage and studied the influence of the distance between the
specimen and the sensor on the recognition accuracy. Chen
et al. (2019) built a four-camera vision system that can obtain
visual information about targets, including static objects and a
dynamic concrete-filled steel tube specimen. Tang et al. (2019)
presented a dynamic real-time detection method for examining
surface deformation and full-field strain in recycled aggregate
concrete-filled steel tubular columns. Mathematical models were
proposed that combined the four-ocular visual coordinates and
point-cloud matching.

Abdeljaber et al. (2018) presented an enhanced CNN-based
approach which only needs two measurement sets for structural
damage detection. Dorafshan and Azari (2020) proposed one-
dimensional CNN which can successfully detect the subsurface
defects of cement overlay bridge using impact echo data.
Li et al. (2018) proposed a damage- identification method
for bridges based on a CNN. The acceleration time-history
responses from nine measuring points in a simply supported
beam were used as input data to train and test the CNN,
and the effects of different excitation sizes and different noise
environments on the CNN identification results were analyzed.
Xie et al. (2018) proposed a bridge damage-identification method

based on a stacked noise-reduction autoencoder. The damage
features of the bridge’s acceleration response were extracted using
multiple autoencoders, and the softmax function was used to
identify bridge damage. Zhao (2019) proposed a blade damage-
recognition method based on CNN, selecting a residual neural
network (ResNet) as the basic model structure, and combined a
batch gradient descent algorithm with CNN to improve learning
efficiency. Lin et al. (2017) proposed a damage-recognition
method based on CNN that automatically extracts features from
time-domain response data from the structure. A numerical test
of a simply supported Euler–Bernoulli beam was designed, and
the CNN was trained and tested using the response time history
of the beam under different working conditions. Abdeljaber
et al. (2017) developed a structural-damage-recognition system
based on a one-dimensional CNN that integrated feature
extraction and classification into a complete learning module,
thereby realizing vibration-based damage detection and real-time
damage location.

Pathirage et al. (2018) proposed a deep learning network based
on autoencoders that can identify structural damage through
vibration responses. The natural frequency, vibration mode,
and other vibration characteristics were taken as inputs, and
structural damage was the output. Lee et al. (2018) compared
DNNs with different hidden layers, activation functions, and
optimization algorithms, and tested the performance of different
combinations. Khodabandehlou et al. (2019) established an
11-layer, two-dimensional CNN that can extract features
from the acceleration response time history of a structure,
making it possible to classify bridge damage using acceleration
measurements. Duan et al. (2019) proposed a bridge damage
detection method based on CNN. The acceleration response time
history and Fourier spectrum were compared as a training data
set for the CNN. Gulgec et al. (2019) trained and compared 50
CNNs with different learning rates, convolutional layers, and
fully connected layers, and finally proposed a CNN approach
for structural damage detection and localization. Wang et al.
(2019) proposed a dual-path network composed of a ResNet
and a densely connected convolutional network. A spatial time-
frequency data set was established using multi-dimensional
vibration signals, and different railway events were classified by
monitoring data that contained environmental noise. Kim and
Sim (2019) proposed a framework composed of a fast R-CNN
and a region-suggestion network based on deep learning that
can automatically extract peaks in frequency-domain pattern
recognition. Tang et al. (2020) presented an overview of
recognition and localization methods for vision-based fruit-
picking robots. Yu et al. (2019) proposed a deep CNN-based
method for the identification of damages in buildings. The
proposed method can automatically extract high-level features
from raw signals in time domain, and the performance of the
method is verified by a five-level benchmark building. Avci
et al. (2020) introduced the recent applications of deep learning
methods which is used in vibration-based structural damage
detection in the area of civil structures.

Convolutional neural networks have been widely recognized
as powerful tools to deal with problems such as image
identification. Identification methods based on image processing
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need to collect response images as input data. While it is usually
difficult to collect images of defects in an actual prefabricated
structure, acceleration response data can be obtained from such
a structure relatively easily. However, effectively utilizing this
sensing data for structural response modeling to identify defects
remains a challenge.

In this paper, we propose an approach for sleeve joint defect
identification in prefabricated frame structures using a CNNwith
a customized architecture. The proposed method is verified by
dynamic tests of a half-scaled, two-floor prefabricated concrete
frame structure. Structural acceleration response sensing data
are taken as input samples. The existence of defects, and their
location and degree, are identified, and the accuracy is evaluated
using a confusion matrix (Thongkam et al., 2008).

MATERIALS AND METHODS

Grout Sleeve Connection
For prefabricated concrete structures, grout sleeves are the most
widely used rebar connection type. As shown in Figure 1, a
full grouting sleeve connection mainly includes three parts: a
sleeve, ribbed steel bar, and grout. In this paper, the material
used for the sleeve was nodular cast iron and the ribbed steel
bar was made from steel with a standard value of yield strength
of 400 MPa and a modulus of elasticity of 200 GPa. The rebar
diameter was 12mm. According to the Technical Specification
for Precast Concrete Structures, the outer and inner diameters
of the sleeve were set as 44 and 34mm, respectively, and the
length was set as 250mm (China Institute of Building Standard
Design and Research, 2014). The grout was made from cement
as the basic material, and this was mixed with fine aggregate,
a concrete admixture, and other materials. After stirring with
water, this mixture had good fluidity, early and high strength,
and micro-expansion.

To form the joints, two steel bars were inserted into the
sleeve, one from each end. The upper and lower longitudinal
ribs extended into the sleeve by 120 and 110mm, respectively.

The special grout was then poured in via the grouting hole and
flowed out from the overflow slurry hole until the sleeve was
filled. In this situation, the hardened grout grips both the steel bar
and the sleeve, and due to its micro-expansion and high strength
characteristics, the positive force between the sleeve and the steel
bar is strengthened (Zheng et al., 2015).

The construction of a full grouting sleeve is very complicated,
and during the construction process, sleeve defects, such as grout
leakage, eccentricity of the steel bars, incomplete fill of grout, and
peeling of the grout from the connecting members are usually
inevitable. Grout sleeve bond failure is a typical but undesirable
failure mode in grout sleeve joints. Grout sleeve defects will
seriously affect the mechanical properties of the joint, becoming

FIGURE 2 | Incomplete fill of grout sleeve defect caused in on-site

construction.

FIGURE 1 | Full grouting sleeve connection. (A) Schematic diagram. (B) Physical diagram.
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a potential risk to the structure. Figure 2 shows an incomplete fill
of grout sleeve defect caused in on-site construction, and it is the
most common defect type in actual engineering.

CNN-Based Defect Identification Method
This study presents a defect identification method for
prefabricated concrete structures based on a deep convolutional
neural network. This network can directly extract defect
features from the dynamic response of the fabricated concrete

structure. An overview of the proposed method is shown in
Figure 3 and is described briefly as follows: (1) An experiment is
conducted to obtain acceleration response data for the fabricated
concrete structure; (2) the collected dynamic response data are
preprocessed, data sets (training, validation and test sets) are
established, and the samples are labeled; (3) a deep CNN, as
shown in Figure 4, is trained on the training data set; (4) the
loss of validation during the training process was calculated for
each epoch to test whether it is over fitting; (5) the test set is

FIGURE 3 | The process of structural defect identification based on a CNN. Here, defect probability represents that the output was mapped into a probability

distribution in the range [0, 1] through the Softmax function.

FIGURE 4 | Basic framework of the CNN. Here, C represents a convolution layer, S represents a pooling layer, FC represents the fully connected layer, N represents

the number of nodes in the input sample, and M represents the number of nodes in the output.
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used to verify the feasibility and accuracy of the CNN; (6) Defect
location and degree were identified.

The deep learning network is established based on LeNet-5
(LeCun et al., 1989), a CNN that is famous for its simple structure
and high efficiency. The Matlab toolkit DeepLearnToolbox
was employed to establish the proposed CNN architecture.
DeepLearnToolbox is the most widely used deep learning toolkit
in Matlab, and the CNN in this toolkit was built by Rasmus
Berg Palm on the basis of LeNet-5. In a recognition test of
the Modified National Institute of Standards and Technology
database, an error rate of 1.22% was obtained. The proposed
deep CNN basic framework is shown in Figure 4. It can be
seen that the CNN consisted of an input layer, three alternating
convolutional and pooling layers, a fully connected layer, and an
output layer. The components of the CNN and the selection of
the activation function and optimization algorithm are described
in the next sections.

Convolution Layer
The convolution layer is the core of the CNN, and its purpose is
to use a convolution kernel to extract signal features. Generally,
convolution is a mathematical operation on two real variable
functions. The convolution expression of functions x and w can
be calculated as

s(t) =
∫

x(a)× w(t − a)da (1)

The discrete form of this convolution operation can be defined as

s(t) = (x ∗ w)(t) =
∑

x(a)w(t − a) (2)

In general, the first parameter in the convolution operation is
called the input, the second parameter is called the convolution
kernel, and the output is called a feature map. According
to the convolution expression, each element in the output
is obtained by the weighted addition of the elements of the
corresponding block in the input, and the weight value is
determined by the convolution kernel. The convolution kernel
therefore plays the role of filtering or feature extraction in
the convolution. Convolutional layers have powerful feature-
learning capabilities. In general, deep networks can continuously
and iteratively extract higher-level features from the features of
the underlying network.

Activation Function
Generally, a convolutional layer is followed by a non-linear
activation function. The activation function maps the linear
input data into non-linear features through its own non-linear
features, and the features obtained in the convolutional layer are

TABLE 1 | Identification accuracy for tanh and ReLU activation functions with

different learning rates.

Learning rate 0.005 0.01 0.02 0.05

tanh 76.11% 97.31% 94.08% 88.74%

ReLU 60.59% 70.97% 70.54% 64.40%

filtered. Common non-linear functions in convolutional neural
networks include the sigmoid, tanh, softsign, and ReLU functions
(Zhou and Mi, 2017). Generally, the performance of the ReLU
function is considered best. In this study, the defect identification
accuracies obtained using tanh and ReLU functions with different
learning rates of 0.005, 0.01, 0.02, and 0.05 were compared
using experimentally obtained sensing acceleration response
data. The results are shown in Table 1, and these show that the
identification accuracy of the tanh function in this example is
significantly better than that of the ReLU function. Therefore,
the tanh function was selected as the activation function of the
convolutional layer in the CNN. An expression for the tanh
function is shown in Equation (3).

y =
ex − e−x

ex + e−x
(3)

Pooling Layer
Pooling is mainly used to filter redundant features and reduce
the number of parameters, avoiding over-fitting. There are two
common pooling operations: maximum pooling and average
pooling. Maximum pooling takes the maximum value of each
pooling window and average pooling takes the average value of
each pooling window. In this work, the average pooling method
was used. The average pooling operation is shown in Figure 5.

Fully Connected Layer and Softmax Classifier
The fully connected layer is connected to all the activations in
the previous layer. In this work, all the elements in the feature
map of pooling layer S6 were processed into an M-dimensional
column vector, multiplied by weighting coefficients, and added
with corresponding offsets. The softmax function was then used
to calculate the final output of the CNN. The softmax function
can be expressed as

Si =
eVi

C
∑

i=1
eVi

(4)

where Si is the probability that the current input is the i-th
category, e is Euler’s number, Vi is the i-th output of the previous

FIGURE 5 | The average pooling operation.
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output unit, and C is the total number of categories. As shown
in Equation (4), the softmax classifier maps the output of the
previous output unit to the interval (0, 1), and this represents
the relative probabilities of different categories so that the input
samples can be classified according to their probability.

Batch Gradient Descent Algorithm
In the calculation process of the backpropagation algorithm, the
parameters in the CNN need to be optimized to minimize the
cost function to obtain an optimal solution. In this work, a cross-
entropy cost function was used. The cross-entropy cost function
can be expressed as

E = −
1

N

(

y(i) × ln(o(i))+ (1− y(i))× ln(1− o(i))
)

(5)

where E represents the cost function value, N represents the total
number of samples, y(i) represents the true output (label) of the
i-th sample, and o(i) represents the predicted output of the i-th
sample. The small-batch gradient descent algorithm was used as
the optimization algorithm. As shown in Table 1, in this example,
the identification accuracy is better when the learning rate is
0.01, so the learning rate was set as 0.01 in the batch gradient
descent algorithm.

Experimental Verification
To verify the accuracy and feasibility of the proposed deep
learning method, dynamic excitation tests were carried out on a
prefabricated half-scaled, two-floor concrete frame with different
defective columns.

Experimental Model
A half-scaled, two-floor prefabricated concrete frame structure
was constructed. This mainly comprised four parts: precast
columns, precast beams, precast foundation beams, and a poured
concrete slab. The beams and columns were made from concrete,
the standard value of compressive strength of concrete cube

FIGURE 7 | The grouting process.

FIGURE 6 | Plan and elevation views of the frame model. (A) Plan view of the column net of the frame model. (B) The A–C and 1–2 elevation views of the frame model.
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FIGURE 8 | Frame structure model after assembly. Red rectangles represent locations of defects (the dashed lines indicate that they are shaded).

FIGURE 9 | Defect setting of the second floor and excitation point

arrangement. Solid dots represent grouting sleeves and hollow dots represent

ungrouted sleeves. EX represents the excitation point location.

is 30 N/mm. Longitudinal reinforcements and stirrups were
made from hot-rolled ribbed bars with a standard value of yield
strength of 400 MPa and a modulus of elasticity of 200 GPa. The
full grouting sleeve connection method was used to splice the
internal reinforcements in the foundation beams and columns.
A plan of the column net in this experimental model is shown
in Figure 6A, and elevation views are shown in Figure 6B. Total
48 grouting connections were used in this frame structure model.
The grouting process is shown in Figure 7.

In this test, precast beam and column members were
manufactured by professional prefabricated assembly member
manufacturing plants, and they were assembled in the laboratory
of Tongji University after curing. The frame structuremodel after
assembly is shown in Figure 8.

Defect Setting
In these experiments, defects in grout sleeve joints are introduced
through incomplete grouting. To avoid structural damage to
or collapse of the structure, the defects were arranged in the

TABLE 2 | Working conditions.

Working Excitation Non-defective Defective column

condition point column number number (ungrouted

sleeve number)

1 EX1 (JZ 1–2) 1 2 (3)

2 EX2 (JZ 3–2) 3 4 (1)

3 EX3 (JZ 5–4) 5 6 (2)

4 EX4 (JZ 5–6) 5 4 (1)

5 EX5 (JZ 1–4) 1 2 (3)

6 EX6 (JZ 5–2) 5 2 (3)

7 EX7 (JZ 3–6) 4 6 (2)

precast columns of the second floor instead of the first floor.
As shown in Figure 9, for comparative analysis, defects were set
only on one of the columns on either side of a particular beam.
Excitation points were arranged across the span of the beams.
Thus, for the same excitation, both defective column vibration
responses and non-defective column vibration responses could
be obtained.

As shown in Table 2, there were seven working conditions
corresponding to seven excitation points. Taking working
condition 5 as an example, 14measuring points were arranged for
each working condition. The locations and numbers of excitation
points and measuring points are shown in Figure 10.

RESULTS AND DISCUSSION

Data Collection
Excitation was applied by vibration exciters, and acceleration
sensors were arranged at the measuring points to collect
acceleration responses. The excitation force was 200N and the
acquisition frequency was 1,024Hz. Each excitation point is
excited once, and the duration of excitation is 60 s.

According to the acceleration time-history curve analysis, the
amplitude at each measuring point in each working condition
was different. For the stability of the convolutional neural
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network during the training process, a normalization layer is
added to the proposed network (Dorafshan and Azari, 2020). The
amplitudes of the acceleration time-histories are normalized as

yi =
xi

max
i=1,2,··· ,N

(|xi|)
(6)

where x represents the original acceleration time history, y
represents the acceleration time history after the amplitude is
normalized, and i is the index of each measuring point.

The acceleration time history from each measuring point
was taken as the input sample. For each working condition, 14
acceleration time histories were obtained. As shown in Figure 11,
the 60× 1,024 signals of each measuring point were divided into
5,000 parts. Each part includes 1,024 signals and adjacent parts
have an overlap of 1,012 signals. The first seven acceleration time
histories were collected from the columns and beams without
defects and constituted the non-defective sample; the last seven
acceleration time histories were collected from the defective
columns and beams and constituted the defective sample. That
is, there are in total 5,000 non-defective samples and 5,000 defect
samples for each working condition, and each sample contains
7 × 1,024 acceleration signals. Sixty percentange of the total
samples were randomly selected as the training set, 20% of
the samples were selected randomly as validation set, with the
remaining 20% constituting the test set.

The number of training set samples generated in this
experiment was relatively small. The batch size was therefore set
to five to ensure that there were a sufficient number of samples
for training; the epoch number was set to 20. The number of
iterations can be calculated as

IN = EN ×
TS

BS
(7)

where IN represents the number of iterations, EN represents
epoch number, TS represents the training set size, and BS
represents the batch size.

Defect Location Identification
The defects and their locations were identified for the samples
in each working condition. The samples were labeled with a
vector consisting of eight elements. The first seven elements
represent the probability that a defect is located at each of the
seven corresponding measurement points. The eighth element
represents the probability that the sample is a non-defective
sample. In this experiment, a defect was set at measuring point
4, so the label of the defective sample was [0, 0, 0, 1, 0,
0, 0, 0]; the label of the non-defective sample was [0, 0, 0,
0, 0, 0, 0, 1]. Thus, the sample is identified as a defective
sample when the fourth element in the sample output vector
is > 0.95, the sample is identified as a non-defective sample
when the eighth element in a sample output vector is >0.95,
and the identification is invalid when no element in a sample
output vector is > 0.95. Based on the above label setting, the
detailed parameters for each layer in the CNN are shown in
Table 3.

As shown in Figure 12, during the training process, the loss
function in the CNN gradually decreased with an increasing

FIGURE 10 | Arrangement of the excitation points and measuring points. (A)

Physical diagram. (B) Schematic diagram.

number of iterations and converged to a stable level for each
working condition. As shown in Figure 13, the loss of validation
during the training process was calculated for each epoch to test
whether it is over fitting, and the training stopped in the 20th
epoch (the loss of validation was not changed significantly). The
identification accuracies for each working condition during the
training process of the CNN are shown in Figure 14. It can be
seen that during the CNN training process, the identification
accuracy rate of samples in the seven working conditions
continuously increased with the growth of the epochs, and finally
stabilized at 100%. The four longitudinal working conditions
(conditions 1–4) converged faster than the three lateral working
conditions (conditions 5–7).

For each working condition, 2,000 test samples were
sequentially input into the trained convolutional neural network.
The test results showed that the identification accuracies of the
seven test sets were all 100%. This means that the proposed
method can successfully identify defects and their locations.
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FIGURE 11 | The creation of datasets.

FIGURE 12 | The loss functions for each working condition during the CNN training process. (A) Working conditions 1–4. (B) Working conditions 5–7.
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FIGURE 13 | Losses of validation for each working condition during the CNN training process. (A) Working conditions 1–4. (B) Working conditions 5–7.

TABLE 3 | Detailed parameters of each layer in the CNN.

Number Type Kernel num. Kernel size Stride Input Output

C1 Convo. 45 6 1 1, 024 × 7 6@980 × 7

S2 Pooling 5 None 1 6@980 × 7 6@196 × 7

C3 Convo. 32 12 1 6@196 × 7 12@165 × 7

S4 Pooling 5 None 1 12@165 × 7 12@33 × 7

C5 Convo. 20 12 1 12@33 × 7 12@ 14× 7

S6 Pooling 2 None 1 12@14 × 7 12@7 × 7

FC FC None None None 12@7 × 7 8 × 1

Defect Degree Identification
For defect degree identification, the precast defective columns of
working conditions 5, 6, and 7 have covered the defect degrees of
25, 75, and 50% with the same boundary conditions in the test.
So these three working conditions (5, 6, and 7) were taken as this
section’s research object. There were in total 15,000 samples, 60%
of these were randomly selected as the training set, 20% of the
samples were selected as validation set, with the remaining 20%
constituting the test set. The batch size was set to five, and the
epoch number was set to 20.

The sample labels were vectors consisting of three elements.
The first element represents the defect degree being 25%, the
second element represents the defect degree being 50%, and
the third element represents the defect degree being 75%. For
example, a sample label with 25% defect degree would be [1, 0, 0].

To realize the identification of the defect degree, the difference
between the sample output vector and the sample label vector is
calculated using the Euclidean distance (Schnitzer et al., 2012).
The Euclidean distance ρ between two points (x1, x2, . . . , xn) and
(y1, y2, . . . , yn) in n-dimensional space can be calculated from

ρ =
√

(x1 − y1)
2 + (x2 − y2)

2 + · · · + (xn − yn)
2 (8)

A confusion matrix is used to measure the classification and
prediction ability of the model (Thongkam et al., 2008). The

identification result of a sample can be one of four types, as shown
in Table 4: true positive (TP), false positive (FP), false negative
(FN), and true negative (TN). The precision ratio (p) and recall
ratio (r) of the confusion matrix can be calculated from

p =
TP

TP + FP
(9)

r =
TP

TP + FN
(10)

During the training process, the losses of train and validation
are shown in Figure 15. Three samples (from three working
conditions) were randomly selected from the test set. The
Euclidean distances between the output vectors and the sample
labels are shown in Table 5. Test samples were sequentially input
into the trained convolutional neural network, and the confusion
matrix of the identification results is shown in Table 6. This table
shows that both the precision ratio and the recall rate for each
sample type were 100%. The evaluation target of precision ratio is
the prediction results, the number of positive samples among the
samples whose prediction is positive. The precision ratio is 100%,
indicating that the prediction results of all samples with different
defect degrees are positive. The evaluation target of recall ratio
is the original samples, the number of positive examples that are
predicted correctly. The recall ratio is 100%, indicating that all
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FIGURE 14 | The identification accuracies of seven working conditions during

the CNN training process. (A) Working condition 1. (B) Working condition 2.

(C) Working condition 3. (D) Working condition 4. (E) Working condition 5. (F)

Working condition 6. (G) Working condition 7.

the samples with different defect degrees have been predicted
correctly. Table 6 shows that the CNN is stable and has good
identification performance for structural defect identification in a
prefabricated frame. There was no significant difference between
the recall rate and the accuracy rate, indicating that the CNNdoes
not show bias toward different defect types.

CONCLUSIONS

This paper presented a deep-CNN-based method for
identification of sleeve joint defects in prefabricated concrete
frame structures. The proposed method uses LeNet-5 as the basic
framework and refers to the CNN in the DeepLearnToolbox.

TABLE 4 | Confusion matrix.

Confusion Matrix True value

Positive Negative

Predicted value Positive TP FP

Negative FN TN

TABLE 5 | Euclidean distances between the output vectors and the sample labels.

Working Output Label Euclidean Identification

condition vector vector distance result

5 [0.98, 0.02, 0] [1, 0, 0] 0.03 25% defect

[0, 1, 0] 1.38

[0, 0, 1] 1.40

6 [0, 0.02, 0.98] [1, 0, 0] 1.40 75% defect

[0, 1, 0] 1.38

[0, 0, 1] 0.03

7 [0.02, 0.97, 0.01] [1, 0, 0] 1.37 50% defect

[0, 1, 0] 0.04

[0, 0, 1] 1.38

TABLE 6 | Confusion matrix of the identification results.

Confusion matrix Defect degree True defect Precision ratio

25% 50% 75%

Identification result 25% 1,000 0 0 100%

50% 0 1,000 0 100%

75% 0 0 1,000 100%

Recall ratio 100% 100% 100% –

Non-destructive dynamic tests on a half-scaled, two-floor
prefabricated concrete frame structure were carried out. The
CNN was trained using only the collected sensing acceleration
responses to extract features for sleeve joint defect identification.
In the experiment, there were seven working conditions due
to the different defect degrees and boundary conditions. For
each working condition, 5,000 non-defective samples and 5,000
defective samples were collected, and 60% of these were selected
randomly as the training set, 20% of these were selected as
validation set, while the remaining 20% were used to test the
CNN. The defects and their locations were identified using the
CNN, and the identification accuracy was 100% in each working
condition. The Euclidean distances between the output vectors
and the label vectors were calculated to determine the defect
identification result, and a confusion matrix was used to judge
the identification accuracy. Defects with different degrees were
identified in lateral working conditions 5, 6, and 7. The results
showed that both the precision ratio and the recall rate were
100%, and the proposed method did not show bias toward
different defect degrees. Overall, the proposed method was found
to be very effective in joint defect identification in prefabricated
concrete frame structures in the experimental situation examined
in this paper.
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FIGURE 15 | The train and validation losses during the CNN training process. (A) Train losses over iterations. (B) Validation losses over epochs.
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Fusion and Visualization of Bridge
Deck Nondestructive Evaluation Data
via Machine Learning
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To maintain infrastructure safety and integrity, nondestructive evaluation (NDE)
technologies are often used for detection of subsurface defects and for holistic
condition assessment of structures. While the rapid advances in data collection and
the diversity of available sensing technologies provide new opportunities, the ability to
efficiently process data and combine heterogeneous data sources to make robust
decisions remains a challenge. Heterogeneous NDE measurements often conflict with
one another and methods to visualize integrated results are usually developed ad hoc. In
this work, a framework is presented to support fusion of multiple NDE techniques in order
to improve both detection and quantification accuracy while also improving the
visualization of NDE results. For data sources with waveform representations, the
discrete wavelet transform (DWT) is used to extract salient features and facilitate fusion
with scalar-valued NDE measurements. The description of a signal in terms of its salient
features using a wavelet transform allows for capturing the significance of the original data,
while suppressing measurement noise. The complete set of measurements is then fused
using nonparametric machine learning so as to relax the need for Bayesian assumptions
regarding statistical distributions. A novel visualization schema based on classifier
confidence intervals is then employed to support holistic visualization and decision
making. To validate the capabilities of the proposed methodology, an experimental
prototype system was created and tested from NDE measurements of laboratory-
scale bridge decks at Turner-Fairbank highway research center (TFHRC). The
laboratory decks exhibit various types of artificial defects and several non-destructive
tests were previously carried out by research center technicians to characterize the
existing damages. The results suggest that the chosen feature extraction process, in
this case the DWT, plays a critical role in classifier performance. The experimental
evaluation also indicates a need for nonlinear machine learning algorithms for optimal
fusion performance. In particular, support vector machines provided the most robust and
consistent data fusion and defect detection capabilities. Overall, data fusion combinations
are shown to provide more accurate and consistent detection results when compared to
single NDE detection approaches, particularly for the detection of subsurface
delamination.

Keywords: data fusion, nondestructive Evaluation, visualization, machine learning, support vector machine, feature
extraction, wavelet transform
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INTRODUCTION

To preserve infrastructure safety and integrity, reliable and
effective damage detection techniques need to be established.
Increasingly, nondestructive evaluation (NDE) technologies are
used for the detection of surface and subsurface defects,
evaluation of the extent of defects, and as a critical aspect of
holistic asset management. A key challenge with NDE is that the
accuracy of the data from a single source is dependent on
operator training and environmental conditions that can add
considerable uncertainty to defect detection and quantification
(McCann and Forde 2001). From a practical standpoint, this
measurement uncertainty has inhibited the adoption of NDE
across many application domains.

To reduce measurement uncertainty, researchers have
explored the concept of using multiple NDE methods in
conjunction with data fusion algorithms. Recent advances in
sensing and data analytics have led to the adoption of data
fusion in fields such as computer vision and image analysis
(Chen et al., 2017), transportation systems (Faouzi, Leung, and
Kurian 2011; Faouzi and Klein 2016), biometrics (Haghighat,
Abdel-Mottaleb, and Alhalabi 2016), and structural health
monitoring (Sun et al., 2016; Wu and Jahanshahi, 2018;
Ramos et al., 2015; Chen et al., 2017; Habib et al., 2016;
Kralovec and Schagerl, 2020). In these cases, the use of data
fusion was shown to provide a better interpretation of observed
information by decreasing the measurement uncertainty present
in individual source data (Faouzi and Klein, 2016).

Data fusion encompasses a vast array of analytical methods
ranging from Bayesian probabilistic approaches, Dempster–Shafer
(DS) evidence approaches, fuzzy reasoning, and machine learning
(Wu and Jahanshahi, 2018; Khan and Anwar, 2019). These
methods have been used for damage identification,
quantification, and system response estimates (Hall and Llinas,
2001; Chair and Varshney, 1986; Liu et al., 1999; Vanik et al., 2000).
For example, a recursive Bayesian framework was used to update
the parameters of a crack growth model, as well as the probability
distribution of the crack size and crack growth rate (Rabiei and
Modarres, 2013), and a neural network and fuzzy inference were
combined to evaluate the structural condition of a cable bridge
(Sun et al., 2016).

Data fusion can generally be carried out at various “levels” of
data processing ranging from combinations of raw data to a
fusion of individual operational decisions (Steinberg and
Bowman, 2017). Data-level fusion refers to combining raw
data directly and it is possible only if the sensors measure the
same physical quantities. On the other hand, if the survey
observations are heterogeneous, then the data must be fused at
the feature-level or decision-level. For feature-level fusion, a vector
of data descriptors is extracted from the raw measurements of
individual NDE results and the features are then combined
together into a single concatenated descriptor vector (Chen
and Jen, 2000). This combined vector can be further processed
through machine learning techniques based on neural networks
or clustering algorithms (Kittler 1975; Sun et al., 2016). Once
features are fused through machine learning, the resulting output

reflects the correlations in data content and reduces the
uncertainty of results. Decision-level fusion is the blending of
operational decisions derived from individual data streams
considered in isolation. Decision-level fusion naturally leads to
loss of performance, but this type of fusion represents a feasible
fusion approach when fusion at lower levels is not practical or
advisable.

Frequently applied fusion methods in structural health
monitoring include: Bayesian probabilistic approaches
including techniques such as Kalman filtering (Vanik et al.,
2000; Rabiei and Modarres, 2013; Ramos et al., 2015),
Dempster–Shafer (DS) evidential reasoning (Wu, 2004; Huang
et al., 2014), and machine learning algorithms such as artificial
neural networks (ANN) (Chen and Jahanshahi, 2018; Jiang et al.,
2011) or support vector machines (SVM) (Zhou et al., 2015).
SHM applications tend to focus on the fusion of time-series
sensor data, such as from accelerometers, to reduce measurement
and state-estimation uncertainty.

In this work, the application of machine learning driven data
fusion to the NDE assessment of concrete bridge decks is
considered. Bridge deck deterioration plays a critical role in
highway asset management due to the costs and traffic
disruptions associated with deck repair and replacement.
While pattern analysis and machine learning have been
studied for use with individual concrete NDE methods, they
have not been considered as a basis for data fusion. Furthermore,
how the results of NDE data fusion can be intuitively visualized
and assessed holistically by engineers remains an under-studied
problem.

The primary contributions of this work are:

• A wavelet-based approach to extracting statistically relevant
features from NDE waveforms

• A non-parametric machine learning approach to the fusion
of NDE data features

• A novel visualization schema for representing the fused
results and measurement uncertainty

In order to best illustrate the benefits of NDE fusion, the
machine learningmodels developed in this work were trained and
evaluated for the detection of single defect classes (binary
classification). As such, they do not provide defect diagnosis
across a range of observed defects. Such considerations may lead
to different conclusions regarding fusion efficacy and are an
avenue for future work.

The remainder of this paper is structured as follows. First, the
overall methodological framework is presented. This is followed
by an experimental case study to illustrate the behavior and
performance of the approach, based on laboratory scale data
collected at the Turner-Fairbank Highway Research Center
(TFHRC). The NDE data for this case study was captured in a
manner that mimicked the NDE systems available onboard an
inspection robot developed at TFHRC, illustrating a potential
practical application for the proposed framework. The following
NDE methods were considered (see Experimental Validation for
more details): ultrasonic surface waves (USW), impact echo (IE),
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ground penetrating radar (GPR), electrical resistivity (ER),
ultrasonic tomography (UT), half-cell potential (HCP),
infrared thermography (IRT), and impulse response (IR). The
paper concludes with a discussion of outstanding research efforts
that must be considered prior to practical implementation.

METHODOLOGY

The primary focus of this study was on the development of a
feature-level fusion approach (Figure 1). A decision-level fusion
approach was also developed for comparative purposes and is
discussed in Decision Fusion. First, data from multiple NDE
sources are preprocessed for spatial registration and salient
numerical features are extracted from each NDE data source.
Feature extraction is achieved through the discrete wavelet
transform (DWT). Once extracted, features are combined into
a concatenated feature (descriptor) vector. This feature vector
then serves as input to a supervised machine learning classifier
trained to detect subsurface defects in the concrete specimen. For
model training, features extracted from test data were manually
labeled to generate a ground truth. Once the machine learning
model assesses the likelihood of a defect at each location along a
bridge deck, the probability of occurrence of damage across the
deck is visualized as a red-blue heatmap.

Data Preprocessing
Data preprocessing encompasses a range of tasks such as data
cleaning, data transformation, and feature extraction

(Nantasenamat et al., 2009). In this work, the emphasis for
data preprocessing is on making heterogeneous NDE datasets
spatially compatible followed by feature extraction. Even for
robotic multi-NDE systems, discrepancies in the location of
measurements is inevitable. To accommodate, measurements
are linearly interpolated onto a consistent 2D grid spacing.
Incomplete data is also an inevitable problem in handling
most real-world data sources, and is interpolated as well.

Some NDE techniques provide scalar valued measurements at
each test point (e.g., HCP or ER) while others produce a
waveform result (e.g., IE or GPR). This data heterogeneity
necessitates fusion at either the feature or decision-level. To
fuse at the feature-level, numerical feature must first be
extracted from waveform measurements. These descriptors are
then concatenated with scalar response data (Figure 2).

Waveform Feature Extraction
Feature extraction refers to the process of extracting statistically
salient numerical descriptors from the original data. In most
conventional approaches to NDE data analysis, feature extraction
has focused on reducing an NDE waveform measurement to a
single scalar-valued representation. For data fusion, such
approaches dramatically reduce the amount of relevant
information. The wavelet transform is a time-frequency
analysis technique that is commonly used for advanced signal
processing (Daubechies, 1992). It was developed as an alternative
to the short time Fourier (Mallat 1989; Nouri Shirazi et al., 2014)
to overcome problems related to the simultaneous representation
of frequency and time resolution properties. Compared to a

FIGURE 1 | Schematic overview of the proposed methodology for multiple NDE feature fusion.
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traditional Fourier analysis, a wavelet transformation has the
ability to simultaneously reproduce temporal and scale data,
making it better suited for analyzing signals that are periodic,
transient (or non-stationary), and noisy. As a result, wavelet
transforms are increasingly employed in numerous applications
for feature extraction (Epinat et al., 2001; Ghazali et al., 2007; Luk
et al., 2008; Al Ghayab et al., 2019). In particular, wavelet
transforms have recently seen use in SHM and NDE analysis,
for instance in the assessment of acoustic IE measurements of
concrete slabs (Saadat et al., 2004; Khatam et al., 2007; Yeh and
Liu, 2008; Hou et al., 2015).

Wavelets can be considered as a family of functions
constructed from translations and dilations of a single
function called the “mother wavelet” (t) (Mallat, 2009). They
are defined by the following equation:

Ψa,b(t) � 1���|a|√ Ψ(t − b
a

) a, b ∈ R, a≠ 0 (1)

The parameter a is the scale, and it measures the degree of
compression. The parameter b is the translation parameter that
determines the time location of the wavelet and t is time (Debnath
and Shah, 2014). For a signal (t), the transformed wavelet

representation of the signal, Ws, at scale a, position b is
defined as an inner product:

Ws(b, a) � ∫∞

−∞
s(t) 1���|a|√ Ψ(t − b

a
)dt (2)

The wavelet transform can be implemented in either a
continuous or discrete form. The widely used DWT is
employed in this study. DWT is an adaptive decomposition
which decomposes a signal with high- and low-pass filters and
increases the frequency resolution in lower frequency bands
(Zhang et al., 2018a). The DWT decomposes a signal onto a
set of bases that correspond to different time and frequency scales
or resolutions (Figure 3). At the first stage of decomposition, the
initial signal is decomposed into approximation and detail
coefficients. The first level approximation coefficients are
further decomposed into second-level approximation and
detail coefficients, and the process is repeated, resulting in
levels of approximation and detail that capture both frequency
and time domain information about a signal (Zhang et al., 2016).
The approximations are the high-scale, low-frequency
components of the signal, while the details are low-scale, high
frequency. This wavelet decomposition also suppresses signal
noise, effectively serving to denoise the signals prior to data
fusion.

In this work, a fourth order variant of the Daubechies wavelet,
known as the Symlet wavelet, is used in conjunction with the
DWT. This particular wavelet feature extraction approach was
first developed in (Zhang et al., 2016) for the analysis of IE data.
In this study, this wavelet extraction approach is applied to both
IE and GPR signals. Both IE and GPR signals are considered
transient in nature with nonstationary noise characteristics,
indicating that they are well suited for wavelet representation
(Zhang et al., 2018b). Based on prior studies and empirical analysis
by the authors, a four-level decomposition is adopted for both IE
andGPR signals and decomposition, as illustrated in Figure 4. After
decomposition and reconstruction of sub-signals, four features are
extracted from each wavelet basis. The root mean square
(i.e., average power of signal), standard deviation (i.e., Second
spectral moment), kurtosis (i.e., Third spectral moment) and

FIGURE 2 | Combining scalar and waveform responses of interpolated data.

FIGURE 3 | Schematic discrete wavelet transforms for the four-level
Symlet wavelet decomposition used in this work.
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skewness (i.e., Fourth spectral moment). Overall, this results in 20
features for each original measurement signal. These features
extracted from IE and GPR signals are later combined into a
vector as an input to a given statistical model. The functions for
feature calculation are defined as follows:

Let xn, n � 1, 2, . . ., N be the time domain signals and [pi, fi], i �
1, 2, . . ., M be its corresponding spectrum, where pi and fi are the
amplitude and the frequency at ith frequency bin, respectively.

Total Power : TP � ∑M
i�1

pi,

Centroid : M1 � ∑M
i�1

pi.fi/TP (3)

Root Mean Square �

����������
1/M ∑M

i�1
p2i

√√
(4)

Standard Deviation : M2 �

�����������������
∑M
i�1

(fi −M1)2.pi/TP

√√
(5)

Skewness : M3 � ∑M
i�1 (fi −M1)3.pi

M3
2 .TP

(6)

Kurtosis : M4 � ∑M
i�1 (fi −M1)4.pi

M4
2 .TP

(7)

Data Interpolation
In a multi-NDE assessment scenario, the goal is to capture
measurements at identical locations across an assessment area.
However, the practicalities of NDE mean that it is typically not
possible to achieve this goal. For instance, in the experimental

study of this work, NDEmeasurement spacing was not consistent
across NDE techniques and there were intermittent missing
measurements. Prior to data fusion, NDE values must be
interpolated onto a consistent grid spacing. In the example
shown in Figure 5, the grid spacings of measurements NDE 1
and NDE 2 are different. Features from NDE 2 are measured at
grid points x0, x, and x1, resulting in measurements u0, u, and
u1. Features extracted from NDE 1 are only measured at grid
points x0 and x1 (measurements f0 and f1). The features f at
location x are linearly interpolated via first order polynomial.
The relationship between spatially distributed NDE
measurements is not well-defined, and more complex
interpolation approaches could prove more suitable. This is
one potential avenue for future study.

Data Fusion
As discussed previously, feature and decision-level fusion are
considered in this study because the heterogeneity of bridge deck
NDE data prohibits the use of data level fusion. In general, the
“higher up” in the fusion ontology from data to decision-level, the
greater the loss of information. As such, it is generally advisable to
fuse data at the lowest possible level, motivating the focus on
feature-level fusion in this work.

The general concept is to take the concatenated set of wavelet
features extracted from each NDE measurement (Waveform
Feature Extraction) at each location and use the combined
vector of features as the inputs into a statistical model that
associates the vector with a statistical assessment of material
condition. Here this statistical model takes the form of a statistical
classification problem, one that classifies a feature vector as being
a member of either a “detected defect” or “sound concrete”
assessment class. Multiclass classifications are also possible,

FIGURE 4 | A)Original IE signal; (B–E) reconstructed detail coefficients at level 1(B), level 2 (C), level 3(D), level 4(E); (F) reconstructed approximation coefficients at
level 4.
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though they were not extensively studied here due to limited data
availability (see Experimental Validation for more details).
Ultimately, the end result is that the raw data from each NDE
source is effectively fused together to provide an enhanced
assessment.

There are a broad range of classification algorithms that can be
used such purposes. Generally, they can be divided into parametric
and nonparametric methods. Parametric techniques make
assumptions about the underlying statistical distribution or the
measurement uncertainty of observations in order to enable
inference. Implicitly, such techniques often require statistical
stationarity, as well as consistent and quantifiable measurement
uncertainty. The alternative are nonparametric fusion methods.
Nonparametric methods relax assumptions regarding underlying
statistical distributions and instead construct a model of
measurement states from sets of existing data (Tsiliki and
Kossida, 2011). Such approaches have the advantage of being
applicable to highly complex and nonlinear statistical problems.
Machine learning approaches have become the dominant
paradigm for nonparametric data fusion, with ANN and SVM
as the most widely used approaches. ANN have the advantage of
being more flexible with respect to data input and can be highly
tuned for optimization to a specific problem domain. SVM have
fewer user parameters (hyperparameters), making them more
suitable for rapid prototyping and problems with less data
available for model training (Dong et al., 2009). Given the
limited size of the available data sets for prototyping, the focus
here is on the use of SVM. The behavior of several other methods
are presented as well for comparative purposes. These methods
included: logistic regression, decision tree-based models and ANN.
The weighted decision-level fusion is also studied and is briefly
discussed (Lu and Michaels, 2009; Heideklang and Shokouhi,
2013).

Conventional machine learning performance metrics are
used to assess data fusion capabilities, including confusion
matrices, ROC curves and F1 scores (Fawcett, 2006). While
classifiers typically produce a discrete classification, statistical
probabilities are used for class separation. This statistical
probability provides a more nuanced representation of
classifier performance, and can be used for holistic
assessment and visualization purposes (see Holistic
Visualization for details).

Feature Fusion - SVM
SVM are a group of algorithms that were originally designed for
binary classification, and gained popularity due to promising
performance in a wide range of applications (Cortes and Vapnik,
1995; Cristianini and Shawe-Taylor, 2000; Ruiz and Lopez-de-
Teruel, 2001). SVMs attempt to discriminate between classes of
data by finding the optimal high-dimensional hyperplanes that
bisect the data, and then combining these hyperplane bi-sections
to enable more complex reasoning. The original data points from
an input feature vector are projected by a kernel function into a
higher dimension feature space (Figure 6). In this space, SVM
tends to find the hyperplane that separates the data with the
largest margin. The method places class-separating hyperplanes
in the original or transformed feature space, and the new sample
is labeled with the class label that maximizes the decision
function—the distance between support vectors (Boser et al.,
1992; Vapnik, 2000).

The SVM is especially suited for scenarios with smaller sample
sizes, as is the case for many NDE assessment scenarios (Luts
et al., 2012). In contrast to other algorithms, SVM tends to use all
available features, even if they are not of real statistical
importance, and therefore requires more care regarding
cleaning and preprocessing of the input data.

SVM Standardization
Standardization (i.e., feature scaling) refers to the process of
rescaling the values of the input variables so that they share a
common scale, in order to reduce classifier biasing.
Standardization is an important step for SVM classifiers. For
instance, many elements used in the RBF kernel of Support
Vector Machines assume that all features are centered around
0 and have variance in the same order. If a feature has a variance
that is orders of magnitude larger than others, it can potentially
dominate the objective function andmake the estimator unable to
learn from other features. Data standardization also can speed up
training time of SVM by starting the training process for each
feature within the same scale (Kotsiantis et al., 2006). Here,
features are standardized by removing the mean and scaling to
a unit variance. The standard score of a sample x is calculated as:

Z � (x − u)
s

(8)

FIGURE 5 | Linear interpolation of NDE data.
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where u is the mean of the training samples and s is the standard
deviation of the training samples (Shanker et al., 1996). Centering
and scaling happen independently on each feature by computing
the relevant statistics from samples in the training set. These
scaling parameters are then applied to the test data.

Hyperparameter Identification
Prior to model training and fitting, the model
hyperparameters must be optimized (Wang et al., 2010).
Good model selection is the key to getting good
performance from any machine learning algorithm. Also, if
the hyperparameters are not selected appropriately, an SVM
may take an unduly long time to train (Nalepa et al., 2018).
The SVM model contains two main parameters that must be
optimized: the kernel function used for dimensional
reprojection, and the regularization parameter (c). SVM
algorithms can use different types of kernel functions such
as linear, polynomial, sigmoid, and radial basis functions
(RBF). The regularization parameter (c) is used to prevent
overfitting. In this study, a hyperparameter search (grid
search) is performed across combinations of different
kernel functions and regularization parameters. The
performance of the selected hyperparameters and resulting
trained model is then measured on a dedicated evaluation set
that was not used during formal model selection and training.
Different combinations of hyperparameters are compared
against each other based on model predictive performance.
For the experimental data set discussed in Experimental
Validation, a combination of the Radial Based Function
and regularization parameter, c, equal to unity showed the
best performance among all combinations.

Other Considered Classifiers
To provide a point of comparison with SVM data fusion, logistic
regression, decision trees, and ANN are presented and evaluated
here as well. Logistic regression is a simple, parametric machine
learning algorithm which assumes a linear mapping function
between input data and output classification, and has been used
extensively in the data fusion literature (Pigeon et al., 2000; Sohn
and Lee, 2003). Generally, this function is a linear combination
of the input variables. The benefit of the algorithm is that it does
not require as much training data as methods such as methods

such as SVM and ANN, however it is constrained to the
specified logistic functional form, which may or may not be
sufficiently accurate. As will be shown in Experimental
Validation, since logistic regression is only suitable for linear
problems, its performance was strongly biased to one of the
technique’s results and did not provide a true fusion of
information for NDE data.

Tree-based learning models such as the Decision tree (DT)
classifier are nonparametric algorithms that first select the best
feature for an initial separation of the data (root node) using the
concept of information gain ratio. It then builds subtrees and
nodes in a recursive manner that splits the data into classes based
on an evaluation of each feature in an input vector (Demirbas,
1989). Decision trees generally work better for larger datasets and
are prone to overfitting.

An ANN employs a complex network of nonlinear response
functions, with the value of each function in the network
weighted based on an optimized fitting to training data
(Zhang et al., 2017). The input “layer” of the network can
range from combinations of raw data to a set of extracted
data features to a numerical representation of a set of
decisions. The output can be a layer of the same size and
type as the input, or smaller. Increasing the complexity of an
ANN architecture allows for more nonlinear and sophisticated
representations and fusions and is the basis for modern deep
learning strategies. However, such increases in complexity
typically require even larger increases in the amount of
training data used to find network weights. Similarly, SVM
outperformed the ANN in the preliminary analysis. The reason
is that unlike ANNs, the computational complexity of SVMs
does not depend on the dimensionality of the input space. ANNs
use empirical risk minimization, while SVMs use structural risk
minimization. The reason that SVMs often outperform ANNs
in practice, particularly for smaller data sets, is that SVMs are
less prone to overfitting (Olson and Dursun, 2008). In recent
years, deep learning–based approaches have become popular
across research fields due to their ability to automatically learn
meaningful feature representations from the raw data (Hinton
et al., 2006; Najafabadi et al., 2015). However for smaller dataset
sizes, such as those in this study, deep learning algorithms do
not perform well and become prone to overfitting (Brownlee,
2017).

FIGURE 6 | Support Vector Machine illustration of projection of 2D data into a higher dimension through kernel function projection.
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Decision Fusion
Decision-level fusion combines information after each sensor
source has been independently processed to make a preliminary
determination of the existence of damage. Such fusions are
valuable when an effective workflow for using a single data
source in decision making already exists. Decision-level fusion
then allows those existing workflows to be integrated and
combined. As a point of comparison, the weighted decision
combination algorithm (Hall and Llinas, 2001) was used in
this study.

Weighted decision making assumes that each individual
assessment has its own weight with respect to accuracy or
validity. These weights can be assumed equal for simplicity,
however usually the decision from a data source with less
precision and confidence is assigned a smaller weight
contribution prior to the fusion. For classification tasks, the
selection of appropriate thresholds is needed to assign the
predicted damage pattern. This method therefore requires a
priori assumptions regarding statistical distributions or the
uncertainty of any given measurement.

It should be noted that many data fusion techniques can be
used for decision-level fusion as easily as they can for feature or
data-level fusions.What differs across these levels is the simplicity
of the inputs to the algorithms, with data-level fusion requiring
the largest and most complex inputs and decision-level requiring
the simplest, with correlated requirements for the size of the data
necessary for training and testing. Feature-level stands as a
flexible compromise between the two extremes.

Holistic Visualization
The developed approach to visualization stemmed from a series
of interviews the authors performed with NDE end-users, as
well as recent advances in data visualization (Rangwala et al.,
2009; Choo et al., 2012). Rather than present the discrete output
classification of the machine learner at each measurement
location, the model’s statistical confidence in its prediction is
presented (Figure 7). To accomplish this, the aggregated
detection results across the deck slab are shown as a contour
heat map, as is common practice. But rather than indicate a
discretized detection, what is shown is in fact the machine
learning model’s classification confidence at each location,
represented by a probability score ranging from 0.0

(confident in no defect) to 1.0 (confident in a detected
defect). Once the probability of a defect’s existence is
estimated by the fusion algorithm for each measurement grid
location, the grids with the same probability value range are
then connected through polygonization. Further polygons are
filled with varying shades of color corresponding to their
probability score (Figure 8). The heat map uses a two color
diverging heat map scale, with varying shades of blue if no defect
is more likely, and varying shades of red for a likely detected
defect (Moreland, 2009). Lighter color intensity indicates lower
model confidence, with a white midpoint suggesting no
confidence in an assessment. The resulting heatmap provides
end users with a data product that is familiar to them while
presenting nuanced information in an intuitive and
comprehensible format. Moreover, the confidence thresholds
can potentially be tuned and controlled by the end user, as
several interview participants requested.

EXPERIMENTAL VALIDATION

This section presents an experimental study designed to illustrate
the potential capabilities of a machine-learning approach to data
fusion. Prior to this study, researchers at Turner-Fairbank
Highway Research Center (TFHRC) constructed a series of
laboratory-scale bridge decks and performed a set of NDE
assessments on those decks. Overall, eight NDE techniques
were used to collect synchronous data from the specimens.
Four of these NDE measurements simulate measurements
from the Federal Highway Administration (FHWA) Robotics-
Assisted Bridge Inspection Tool (RABIT), a robot designed to
perform synchronous multi-NDE assessments of bridge decks
(Gucunski et al., 2017; La et al., 2017; Gibb et al., 2018; Ahmed
et al., 2020). The other four are commonly used techniques for
bridge deck NDE.

The data from these NDE assessments was used to prototype
and test the data fusion algorithms discussed inMethodology. The
performance of the data fusion algorithm was tested for two
different types of defects and NDE methods. The first set of tests
focused on deck corrosion detection, while the second sets of tests
explored algorithm performance for sub-surface delamination
detection.

FIGURE 7 | Heat map showing confidence of defect prediction.
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FIGURE 8 | Flowchart of the process for generating fusion confidence visualizations.

FIGURE 9 | Laboratory-scale bridge deck specimen design. Section (A-A) shows the location for each defect type with respect to slab depth. Section (B-B) shows
defect placement for shallow delaminations. The placement of other defects in the cross-section is similar, accounting for variations in depth.
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It is important to note that these experiments were all
performed under idealized laboratory conditions. While the
test specimens and data are representative of real-world
scenarios, environmental conditions and the practicalities of
full-scale field assessments will inevitably degrade algorithm
behavior. Still, the results of these experiments illustrate the
potential benefits of data fusion and serve as motivation for
larger-scale testing under field conditions.

Nondestructive Evaluation Data Generation
Researchers at TFHRC constructed eight geometrically identical
concrete decks with a series of controlled subsurface defects
(Figure 9). These defects included deep and shallow
delamination, honeycombing, voids and vertical cracks and
accelerated corrosion. The 12 × 8 inch artificial delaminations
were built using plexiglass and plastic gutter guards. Two
plexiglass sheets with a thickness of 0.093 inches were cut to
size, and two layers of plastic gutter guard were placed between
the sheets to create an air gap, then the edges were sealed with
duct tape. This artificial delamination was used to simulate
shallow and deep delaminations at the top and bottom rebar
levels. The artificial honeycombing was simulated with a bag of
loose aggregates. For each honeycomb defect, 12 lbs of aggregate
were placed into mesh bags and the edges were stitched with wire.
The mesh bags were then placed in wood molds and secured to
the rebar cage. The 23 × 8 × 2 inch voids were simulated with
Styrofoam boards, Corrugated plastic sheets with a height of
either 6 inches or 2.5 inches, a thickness of 0.16 inch, and a length
of 10 inches were used to simulate vertical cracks within the
concrete structure. Then the RC decks were then constructed
using normal-weight concrete mix with a water-to-cement ratio
of 0.37.

After the RC decks were fully cured, prior to data collection,
accelerated corrosion was employed to create a corrosive
environment with elevated chloride content in the concrete
and active corrosion in the pre-corroded rebar. Different
levels and uneven distribution of chloride content were

introduced by a sponge saturated with NaCl solution. The
reader should consult (Meng et al., 2020) for more details on
deck construction and the development of the corrosive
environment. Of the eight specimens, four also had an
overlay. After construction of the test specimens, 8 NDE
techniques were used to collect synchronous data from the
specimens. Employed technologies included ultrasonic
surface waves (USW), IE, GPR, ER (RABIT-based
techniques), ultrasonic tomography (UT), HCP, infrared
thermography (IRT) and impulse response (IR).

Of all eight NDE techniques, HCP, ER and GPR A-scan data
were used in this research for corrosion detection: HCP for
detection of corrosion activity, ER for detection of corrosive
environment, and GPR for condition assessment. Previous
nondestructive testing (NDT) applications on RC decks have
demonstrated that ER and GPR can detect corrosive
environments in concrete (elevated chloride content in this
study), and HCP can detect active corrosion in the
reinforcement (Gucunski et al., 2011; Gucunski et al., 2012).
For delamination detection, GPR, IE and ER were used for
condition assessment. For each specimen, nine gridlines were
established with a spacing of 4 inches in the transverse direction,
and 29 gridlines with a spacing of 4 inches were set in the
longitudinal direction. For all techniques, data was collected
on a specific grid spacing across the deck surface, though that
spacing varied based on the specific NDE method used. ER, HCP
and IE data were collected at grid points, and GPR A-scans were
collected along each gridlines. The GPR was set to 36 scan/foot,
resulting 322 scans along the longitudinal direction. As discussed
in Data Interpolation, the data from each NDE method was
linearly interpolated to generate approximate measurements on a
consistent grid spacing. The specifics of the data set are shown in
Table 1.

Data Fusion for Corrosion Detection
There are various electrochemical and physical methods for the
detection of corrosion in concrete and the advantages and
disadvantages of each respective method is well-explained in
the literature (Alonso et al., 1988). The study concludes that
there is no optimal method, and usually a combination of
several techniques is used. For this study, three different
NDE methods were chosen for corrosion detection: HCP,
GPR, and ER. The HCP technique is a generally accepted
method for identifying active corrosion in reinforced concrete
bridge decks. The method is supported by an American Society
for Testing Materials C876–09 standard (ASTM C876–09, 1999)
with well-defined thresholds distinguishing actively corroded

TABLE 1 | Details of NDE measurements used for data fusion.

Method Measurement spacing Number of samples
prior to interpolation

IE 4 inches - data was not collected at centerline vertical crack 2,016
GPR (A-scan) 9 longitudinal scan lines at 4 inch spacing–GPR was set to 36

scans/foot
2,898

HCP 4 inches 2,088
ER 4 inches 2,088

TABLE 2 | Comparison of fusion algorithm performance for corrosion detection.

Fusion Algorithm Accuracy Precision Recall F1-score

SVM 0.96 0.92 0.91 0.91
ANN 0.95 0.92 0.89 0.90
Decision tree 0.91 0.89 0.89 0.89
Logistic regression 0.89 0.82 0.82 0.82
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and non-corroded areas. GPR data has been shown to correlate
reasonably well with HCP data on bridge decks (Martino et al.,
2014). ER probes are also frequently used in corrosion
monitoring systems in various industrial fields, especially in
the Petro-chemical industry (Legat, 2007). In previous study
(Legat et al., 2004) it was shown that measurements with ER
probes are efficient for measuring the corrosion of steel in
concrete.

The HCP and ER data sources provided scalar values (voltage
and resistivity value respectively) at each measurement location,
whereas the GPR data was a waveform. Wavelet features were
extracted from the GPR signal (including mean power of
reconstructed waveform and second, third, and fourth
spectral moment of spectrum of reconstructed waveform
from each wavelet basis, see Waveform Feature Extraction)
and combined with the scalar-valued HCP and ER data for
model training and testing. All the values were standardized and
hyperparameters were identified prior to training, as discussed
in Methodology. Classifiers were then trained using 70% of the
data and tested on the remaining 30%. Using the training
dataset, the classifier automatically determines an optimal
decision boundary, a hypersurface that partitions data into
defect and no defect classes. The classifier then classifies all
the points on one side of the decision boundary as belonging to
one class and all those on the other side as belonging to the other
class. Unfortunately, direct interpretation of this hypersurface is
challenging, and is a significant downside to machine learning
driven analysis.

Corrosion Detection: Results and Discussion
Once the scalar values from ER and HCP data sources and
extracted features from GPR waveform are combined into a
concatenated vector, this vector is then an input to a statistical
model. In this study, as explained in Feature fusion - SVM
(Other Considered Classifiers), ANN, decision tree, and logistic
regression algorithms are considered to provide a point of
comparison to SVM fusion. The performance of all
mentioned algorithms are shown in Table 2. The results of
this comparative analysis show that the SVM and ANN fusion
algorithms produced relatively similar results. Accuracy for the
decision tree model was slightly degraded, mostly due to a loss of
precision. The logistic regression approach yielded by far the
worst results, indicating that the statistical relationships
between NDE measurements and corrosion are sufficiently
nonlinear in nature to warrant more sophisticated machine
learning approaches. Given the comparably performance of the
SVM and ANN classifiers, the SVM approach is preferable due
to the fewer hyperparameters and reduced risk of model
overfitting.

Decision Fusion for Corrosion Detection
As a point of comparison, a decision-level fusion approach was
also developed. This approach combined the independent
detection assessments of various different NDE methods,
weighting them based on their statistical significance, a
technique referred to as a Weighted-Sum Model (Hall and
Llinas, 2001). Each NDE technique was used to generate an
independent decision based on its own features and an SVM
classifier, with a binary declaration of either “corrosion” or “no
corrosion.” The weight of each decision was then determined.
Several metrics for weighting were considered, including false
positive rate, probability of detection (recall), and precision (Lu
and Michaels, 2009). Using precision as the criterion, the order
of weights was GPR > HCP > ER. Considering recall, the order
of weights changed to HCP > GPR > ER. For the false positive
rate, the resulting weight order was GPR > HCP > ER. The
resulting weighted decisions were then combined and
compared against the SVM classifier (Table 3). As is shown,
the accuracy never reached the level of feature-level fusion via
SVM. Similar results were found for decision fusion of
delamination defects.

SVM Fusion Analysis
Once SVM was identified as the preferred machine learning
method for corrosion detection, a more in-depth analysis of
SVM model behavior was performed. In addition to a fusion of
all the techniques, different fusion combinations were studied.
The goal was to understand the effect of adding an NDE data
source to fusion models and identify the best combination of

TABLE 3 | Comparison of weighted decision combination with various weight order in corrosion detection.

Techniques HCP > GPR > ER GPR > ER > HCP GPR > HCP > ER SVM

Overall accuracy (%) 94.0 88.5 85.65 96.0

FIGURE 10 | Receiver Operating Characteristic curve of Support Vector
Machine for corrosion detection.
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techniques for deck assessment. The following data fusion
combinations were tested: ER + HCP, ER + GPR, HCP +
GPR, and ER + HCP + GPR. SVM classifiers were also
constructed for each NDE type separately. For scalar-valued
HCP and ER data a linear function was fit to the data, whereas
for the waveform GPR data, wavelet-based features were fit to
an SVM model with a RBF function, similar to the model used
for the fused case.

Some of these algorithms didn’t increase the corrosion
detection accuracy in compare with individual techniques, also
their underperformance in comparison with SVM was more for
delamination detection.

The resulting Receiver-Operator-Characteristic (ROC)
curves from each fusion combination for corrosion detection
is shown in Figure 10. The area under a ROC curve is an
effective measure of the sensitivity of a classifier to variations in
classification thresholds, with a larger area indicating a more
robust classifier. What can clearly be seen is that HCP on its own
is a highly effective method of quantifying corrosion, whereas
ER and GPR perform relatively poorly in isolation. In fact, GPR
actually serves to degrade classifier accuracy when fused with
HCP data. This behavior is due to the nature of laboratory
conditions for the HCP measurements that were idealized, and
may not be representative of performance under field
conditions. After the RC decks were fully cured, accelerated
corrosion was employed with elevated chloride content in the
concrete and active corrosion in the pre-corroded rebar. This
caused corrosion to occur much faster compared to natural
conditions (Meng et al., 2020). This type of accelerated
corrosion is ideal for HCP measurements and led to high
detection accuracy for HCP (Yuan et al., 2007). Such a result
reflects the potential for model biasing that can occur in
machine learning. The fusion of all three data sources is

slightly better than for HCP or HCP + ER, but these
differences are statistically negligible. The most notable result
is that the fusion of ER + GPR is measurably better than either
measurement on its own, and highlights the value of statistical
data fusion.

A visualization heat map for the complete fusion (HCP + ER +
GPR) is shown in Figure 11. An analysis of the visualization
shows that the certainty of corrosion was degraded near the upper
left corner of the slab. Again, the reasons for this loss in detection
certainty are likely due to experimental testing conditions.

FIGURE 11 | Fusion heat map based on Support Vector Machine indicating existence of corrosion in slab.

FIGURE 12 | Receiver Operating Characteristic curve of Support Vector
Machine classifiers for delamination detection.
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Data Fusion for Delamination and Crack
Detection
To evaluate the impact of data fusion for detecting subsurface
delamination and cracks, three NDE methods were considered:
GPR, ER and IE. Similar to the procedure for corrosion
detection, data from these techniques were combined into a
unified dataset. Like GPR, IE produces a waveform signal at each
grid location, and wavelet features were extracted from IE and
GPR (Waveform Feature Extraction). Once salient features were
extracted using wavelet transform, a series of classifiers were
prototyped. As with the corrosion tests, the SVM classifier
produced the most accurate and robust classifications. Results
for the ANN, decision tree, and logistic regression classifiers, as
well as the decision-level fusions were similar to the corrosion
tests and are not reported here.

Delamination Detection: Results and Discussion
The resulting ROC curves for SVM classifiers for delamination
and crack detection are shown in Figure 12, and the resulting
heat map is shown in Figure 13. For this set of tests, no single
NDE method dominated classifier performance and single-
source NDE assessments were consistently poor performers. In
all cases, fusions produced substantially improved assessments,
and the complete data fusion was substantially better than any
other combination. These results not only show that the fusion
algorithm significantly improve delamination detection
capabilities on their own, but the fusion of any combination
of techniques results in a substantial improvement in detection
accuracy compared individual techniques. This was most
notable for IE data. For example, IE + GPR fusion improved
detection accuracy by +50% compared to IE and GPR

detection. These results show the most dramatic
improvements from data fusion observed in this study and
should be the focus of future data fusion efforts.

The results for the ER data warrant additional discussion. ER
measurements are not designed to explicitly detect delaminations
in concrete, but rather the associated rebar corrosion, and the
artificial delaminations of this test were not corroded to simulate
this relationship. Yet adding ER data to the fusion of IR and GPR
had a measurable beneficial impact on detection accuracy and
served to reduce measurement uncertainty across the slab. An
analysis of the results indicates that this benefit is not isolated to
the corroded left-hand portion of the slab or any particular type of
defect within the slab. While not conclusive, the authors believe
that this result may be related to how the artificial defects are
installed within the test slabs and may not be representative of
field conditions. Further investigation is warranted and highlights
the need for physics-driven understanding of machine learning
analysis.

While not shown here for clarity, an initial series of tests
utilized scalar-valued measurements extracted from the IE
waveform results, as was done in (Hsiao et al., 2008). Single-
source classifications were comparable between waveform and
scalar valued NDE data. The benefits of data fusion without the
complete waveform response were negligible. What this suggests
is that components of an NDE signal that are not relevant for
single-source assessments can be of high value for a data fusion
scenario.

The behavior of the fused SVM classifier is more clearly seen in
the heatmap visualization of Figure 12. The upper and lower part
of the crack in the middle of the slab was detected while the
middle part was not detected because of the shallower crack depth

FIGURE 13 | Support Vector Machine fusion heat map indicating the existence and extents of delamination and cracking.
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(2” vs. 6”). While not every defect was perfectly identified, a large
portion of each of the eight defects was classified as a
delamination by the SVM. The worst performance was seen
for the honeycombing defect, where a smaller portion of the
defect was detected. The other six defects were more clearly
detected. For a holistic assessment, this kind of visualization goes
beyond defect detection and illustrates both the extents of a defect
and NDE detection confidence in an intuitive context that is
familiar to engineers and inspectors.

CONCLUSION AND FUTURE WORK

In this work, a methodology to process and fuse multiple NDE
data sources for bridge deck defect detection is developed.
This approach leverages a wavelet transform (DWT) to
extract numerical features from waveform NDE responses.
Using the DWT provides consistent feature extraction that is
well suited to signals that are periodic, transient (or non-
stationary), and noisy. In conjunction with scalar-valued NDE
measurements, these data sources are used as input in a
machine learning classifier to provide a feature-level data
fusion of NDE measurements. Support vector machine
methods showed demonstrably better detection accuracy
than other machine learning algorithms, most noticeably
when compared to linear classification methods that more
closely mirror conventional assessment methods. The benefits
of data fusion were most significant for the detection of
delaminations and cracks, while the results from the
corrosion analysis were likely biased by how HCP data was
collected in the laboratory and may not be representative of
realistic field performance. Overall, the findings of this study
show that data fusion has a measurable and positive impact on
defect detection performance for both corrosion assessment
and generalized defect detection. The visualization approach
developed in this study is capable of intuitively representing
the classifiers detection confidence—a key criterion for
inspectors and engineers managed as part of this
study—and provides a more nuanced representation of
NDE assessments that help to quantify the geometric
extents of a defect. As stated before, the laboratory
conditions for the test data likely overestimate classifier
accuracy under field conditions, but they do reflect the
relative benefits of data fusion over single-source NDE
assessments. It is also important to emphasize that the data
fusion processes developed in this work do not allow direct
insight into the capabilities of any single NDE method to
detect defects such as delaminations. Creating fusion
approaches that provide such insights is a compelling
avenue for future work.

This study was part of an on-going research program and
various part of the presented methodology are being
considered for further improvement. The goal of this study
was to fundamentally explore fusion viability, leveraging NDE
data relevant to the FHWA RABIT inspection system. While
the results show the promise of data fusion, there are many
unanswered questions. For instance, this study only considered

a small subset of possible data fusion combinations and defect
classes, and the results showed that data fusion was more
beneficial for delamination detection than corrosion. This
suggests the need for additional studies that consider a
broader range of NDE methods and defect types, and that
the benefits of fusion for any given scenario cannot be easily
generalized to other scenarios. However, the framework and
evaluative methodology presented here are generalizable
enough to be effective for a diverse range of experimental
scenarios. As stated earlier, the statistical learning models
developed here are not capable of distinguishing between
defect classes, a simplification that aided illustration of the
impact of NDE fusion. Future work could include expanding
the work to include defect diagnosis, rather than detection, for
instance the distinction between shallow and deep defects for a
given data fusion. Based on these initial findings, additional
studies on the wavelet decomposition-based feature extraction
methods are warranted as well. There is also a need to evaluate
these approaches under realistic field conditions. Lastly, the
probability score of damage in the structural component can be
modeled as stochastic process and tracked over time and using
time series modeling their future states can be predicted.
Tracking the fused data for prognostic purposes would be
highly beneficial to engineers and managers attempting to
do portfolio-level asset management.
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Adapting Artificial Intelligence to
Improve In Situ Concrete Compressive
Strength Estimations in Rebound
Hammer Tests
Yu Ren Wang*, Yen Ling Lu and Dai Lun Chiang

Department of Civil Engineering, Natioanl Kaohsiung University of Science and Technology, Kaohsiung, Taiwan

Compressive strength is probably one the most crucial properties of concrete material. For
existing structures, core samples are drilled and tested to obtain the concrete compressive
strength. Many times, taking core samples is not feasible, and as a result, nondestructive
methods to examine the concrete are required. The rebound hammer test is one of the
most popular methods to estimate concrete compressive strength without causing
damage to the existing structure. The test is inexpensive and can be easily conducted
compared to other nondestructive testing methods. Also, concrete compressive strength
estimations can be obtained almost instantly. However, previous results have shown that
concrete compressive strength estimations obtained from rebound hammer tests are not
very accurate. As a result, this research attempts to apply artificial intelligence prediction
models to estimate concrete compressive strength using data from in situ rebound
hammer tests. The results show that artificial intelligence methods can effectively
improve in situ concrete compressive strength estimations in rebound hammer tests.

Keywords: artificial intelligence, non-destructive test, concrete strength, rebound hammer test, artificial neural
networks, support vector machines, adaptive network-based fuzzy inference systems

INTRODUCTION

Concrete is a man-made composite material, consisting mainly of aggregate, water, and cement.
Because it is relatively cheap and provides high compressive strength, concrete is one of the most
commonly used materials in the construction industry. It is extensively used in buildings, bridges,
roads, and many other structures. To ensure the safety of the structures, the quality of the concrete
material, especially the concrete strength, is of great concern to the construction industry. One of the
most popular ways to assess the performance of concrete is to measure its compressive strength.
Compressive strength is one of the most important criteria used to examine whether a given concrete
mixture will fulfill its design requirements. Compressive strength is typically measured by breaking
cylinder concrete samples in a compressor machine. These specimens are randomly sampled from
different ready-mixed concrete batches delivered to the construction site. Nevertheless, for existing
structures, it is necessary to drill core samples in order to obtain concrete compressive strength in the
field. Taking core samples causes certain damage to existing structures, and sometimes, it is not
feasible to take core samples (for example, when you cannot obtain the owner’s consent). Under such
circumstances, alternative testing methods, such as nondestructive tests, are desirable for assessing
concrete compressive strength. Among the nondestructive concrete compressive strength tests,
rebound hammer (RH) and ultrasonic pulse velocity (UPV) tests are commonly seen in the industry.
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The major benefits of RH and UPV tests are their abilities to
examine the condition of a concrete structure without causing
damage (Shariati et al., 2011).

In the RH test, a spring-loaded steel hammer is pushed against
the surface of the concrete. When released, the hammer impacts
the concrete with a predetermined amount of energy. The
hardness of the concrete affects the extent of the elastic mass
rebound. This rebound distance is measured and used to estimate
the concrete strength (ASTM C805 / C805M – 18, 2020). In the
UPV test, first, the propagation velocity of longitudinal stress
wave pulses through concrete is measured. Then, the compressive
strength of the concrete is estimated using the measured UPV.
The UPV test is conducted by transmitting ultrasonic pulses
through the test specimen, and then, the time taken by the pulse
to pass through the concrete is measured. Higher velocities
indicate good quality and continuity of the material, and lower
velocities may indicate cracks or voids in the concrete (ASTM
C597 – 16, 2020). Compared to other nondestructive methods,
RH tests are cheaper (in terms of test equipment), faster, and
easier to conduct (Hamidian et al., 2012). In addition, RH tests
are adopted in the American Society for Testing and Materials
(ASTM 805) (ASTM C597 – 16, 2020) and Chinese National
Standards (CNS 10732) as an alternative way to assess concrete
compressive strength. Therefore, this research utilizes RH tests to
estimate concrete compressive strength.

Typically, the rebound distance measured is used to estimate
concrete compressive strength either using the conversion table
or equations provided by the manufacturer. Nevertheless, despite
its convenience, compressive strength estimations from RH tests
are not very accurate, and an average of more than 20% mean
absolute percentage error (MAPE) is reported (Huang et al.,
2011). In light of this, this research attempts to further examine
the relationship between RH measurements and actual
compressive strength.

Previous research has attempted different approaches to
investigate the relationship between RH measurements and
actual compressive strength. To achieve this goal, many
researchers adopt linear and nonlinear statistical regressions to
improve the concrete compressive strength estimation in the RH
test (Hajjeh, 2012; Rojas-Henao et al., 2012; El Mir and Nehme,
2017; Xu and Li, 2018; Kocáb et al., 2019). In addition, some
researchers have successfully adopted nontraditional statistical
methods, such as artificial neural networks (ANNs), to improve
concrete compressive strength estimations in RH tests (Yılmaz
and Yuksek, 2008; Iphar, 2012; Asteris and Mokos, 2019).
Nevertheless, most research uses new cube or cylinder samples
produced in the laboratory. As a result, there might be some
limitations when applying these research findings to in situ RH
tests. In light of this, this research intends to investigate the
relationships between RH measures and actual compressive
strength for existing structures. In situ RH tests and core
sampling are conducted on a large residential complex
building. Both traditional (linear/nonliner regression) and
nontraditional (artificial intelligence or AI) statistical analyses
are conducted to develop concrete compressive strength
prediction models. The research results show that, by
introducing the AI methods into the RH tests, concrete

compressive strength estimations can be improved for in situ
test objects. It should be noted that the emphasis of this research
is on examining the relationships between in situ RH
measurements and concrete strength; therefore, the nature of
the RH test itself is not discussed in this research.

LITERATURE REVIEW

By adopting AI methods, this research intends to investigate the
relationships between in situ RH test measurements and actual
concrete compressive strengths. First, previous research related to
RH tests and concrete compressive strength estimation are
reviewed. Then, literature related to AI methods are reviewed.

Rebound Hammer Test
When destructive test measures are not feasible, nondestructive
testing methods have been adopted as an alternative to examine the
properties of construction materials. Over the years, successful
results have been obtained by researchers using nondestructive
methods to estimate material properties (Kumar et al., 2019). For
concrete material, the RH test is often chosen as an alternative
nondestructive testing method to estimate compressive strength.
RH test standards have been established in different countries and
regions, such as ASTM 805 in the United States (ASTM C805 /
C805M – 18, 2020), BS 1881: part 202 in the United Kingdom
(British Standards Institution (BSI), 1986), EN 12504-2 in Europe
(European Normalization Committee (En), 2012), and CNS 10732
in Taiwan The National Standards of the Republic of China, 1986.
The RH test is easy to conduct, and the test results can be obtained
almost instantly. RH measurements can be used to estimate
concrete compressive strength either using a conversion table or
a conversion equation provided by the instrument manufacturer.
However, these concrete compressive strength estimations are not
very accurate when using RH test measurements (Huang et al.,
2011). Some researchers have attempted to improve concrete
compressive strength estimations by introducing factors other
than RH value, such as water:cement ratio, age, and types of
admixture (Atoyebi et al., 2019). Others have attempted
different prediction methods to better correlate the RH value
with actual compressive strength. Among them, traditional
statistical regressions are the most popular methods adopted by
the researchers (Hajjeh, 2012; Rojas-Henao et al., 2012; El Mir and
Nehme, 2017; Xu and Li, 2018; Kocáb et al., 2019). In recent years,
nontraditional statistical regression methods, such as ANNs, are
reported to have better compressive strength estimations when
compared to traditional regression methods (Yılmaz and Yuksek,
2008; Iphar, 2012; Asteris and Mokos, 2020). In addition to
traditional regression methods and ANNs, this research also
adopts alternative AI methods, support vector regression, and
adaptive network-based fuzzy inference systems (ANFIS) to
develop concrete compressive prediction models. These methods
are introduced in the next section.

Artificial Intelligence Methods
Some previous RH estimation research adopts traditional
statistical methods to correlate RH measurements and
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concrete compressive strength. However, the results have not
been satisfactory so far (Qasrawi, 2000; Szilágyi et al., 2011;
Brencich et al., 2013; Breysse and Martínez-Fernández, 2014).
This research attempts to use AI methods to investigate the
relationship between RH measurements and concrete
compressive strength. As an application of AI, machine
learning algorithms use sample data to develop (or train)
mathematical models. Learning from sample data allows the
model to make predictions without being explicitly
programmed (Bishop, 2006). For this research, RH
experiments are conducted to obtain sample data for machine
learning prediction models. Among the various machine learning
techniques for regression, ANNs, support vector machines
(SVMs), and ANFIS are chosen to develop the prediction
models. For this research, these techniques are chosen because
ANNs, SVMs, and ANFIS are reported to have been successfully
applied in many different areas, such as finance, engineering,
medicine, and manufacturing. The model prediction results from
these AI techniques also outperformed traditional statistical
regression methods (Shirsath and Singh, 2010; Balabin and
Lomakina, 2011; Yilmaz and Kaynar, 2011; Rezaeianzadeh
et al., 2014).

Based on the literature, this research adapts AI regression
methods to improve concrete compressive strength estimation
for in situ RH tests. The RH test and AI regression methods are
briefly introduced in the next section.

METHODOLOGY

RH tests are popular nondestructive tests to measure the surface
hardness and penetration resistance of concrete. RH test
measurements can be related to the elastic properties or
strength of the test object. In the RH tests, the hammer is first
pressed against the concrete surface (small, nonstructural beams
in this research). Next, the spring-loaded hammer mass strikes
with a defined energy, and then the rebound is measured. The

rebound value measured is known as the rebound number. By
referring to the conversion table or equation provided by the
manufacturer, the concrete compressive strength can then be
estimated using the rebound number. For digital RH, the
compressive strength can be automatically calculated
(Information on, 2012). The RH gives an indication of the test
object’s surface hardness. When using RH to examine concrete
compressive strength, a lower rebound value is obtained for low
strength and stiffness concrete due to more energy absorption
(Brencich et al., 2013).

For this research, the research team first conducted RH tests
on nonstructural beams in the basement of a large residential
complex. After the RH tests, core samples were carefully drilled
and then tested in the laboratory to obtain the actual compressive
strength. Due to the destructive nature of the core drilling
process, in situ RH test data are difficult to collect. In order to
get more reliable concrete strength estimations, data from a total
of 100 samples are collected. A digital RH (Silver Schmidt Type
N-PC) is used for this research as shown in Figure 1. The digital
hammer offers intuitive, menu-guided operation; electronic data
processing; automatic correction for testing positions; and test
data storage (Information on, 2012). This instrument is chosen
because its accuracy and repeatability are improved compared to
traditional concrete test hammers. The collected data are then
used to develop and validate the AI regression models.

ANNs are machine learning methods that are inspired by the
biological neural systems in the brain. An ANN consists of
interconnected nodes (artificial neurons), and these nodes can
receive, process, and transmit signals to artificial neurons
connected to them. Each artificial neuron has weighted inputs,
one transfer function, and one output. Although a single neuron
can perform certain simple tasks, the real computation power
comes from the interconnecting neurons. Typically, these
interconnected neurons are aggregated into the input layer, the
hidden layer(s), and the output layer. Signals are received by the
input layer and then transmitted through the hidden layer(s) and
output layer. Such systems are able to learn from examples
without being programmed with task-specific rules (Zupan
and Gasteiger, 1991; Gurney, 2014). A typical three-layer
neural network is shown in Figure 2 with one input layer, one
hidden layer, and one output layer.

FIGURE 1 | Silver schmidt type N-PC rebound hammer.

FIGURE 2 | Three-layer ANNs.
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In the hidden layer, the neurons receive activation signals from
the neurons in the input layer. The activation signal entering each
neuron is the weighted sum of all the signals from the input layer.
This weighted sum of all signals (also known as activation signal)
is shown in Eq. 1. In Eq. 1, xj is the activation signal that neuron j
in the hidden layer receives; Ii is ith neuron in the input layer, and
Wij is the weight of the connection between neuron j in the
hidden layer and the input layer neuron Ii. After receiving the
activation signals, the neuron generates an output through a
predetermined activation function. One of the most common
activation functions is the sigmoid function, illustrated in Eq. 2.
In Eq. 2, xj is the input for neuron j in the hidden layer and hj is
the output of neuron j. Sigmoid functions transform input values
into output values between 0 and 1.

xj � ∑
i

IiWij (1)

hj � f (xj) � 1
1 + e−xj

(2)

yk � ∑
j

hjWjk (3)

The outputs of the hidden layer neurons are then transmitted
to the output layer. As shown in Eq. 3, hj is the output of neuron j
andWjk is the weight of the connection between neurons j and k.
yk is the activation signal received by the output layer neuron k,
the weighted sum of inputs to the output layer neuron k. In the
output layer, the activation function transforms the received
activation signals and generates the outputs of the neural
networks. As illustrated in Eq. 4, ok is the output of the neural
network model after sigmoid function transformation. For
supervised neural networks, the model error, E(W), is then
calculated by comparing the desired (or actual) value dk and
the model output ok as calculated in Eq. 5.

ok � f (yk) � 1
1 + e−yk

(4)

E(W) � 1
2
∑
k

(dk − ok)2 (5)

In neural network model development, the error function,
E(W), is minimized to find the best fit model. One of the most
popular techniques to minimize he error is the back-propagation
(BP) algorithm. In the BP algorithm, the errors obtained at the
output layers are propagated backward to the hidden layer and
then to the input layer. During the BP process, the connecting
weights between all the neurons in the networks are updated.
With the updated weights, the network output is recalculated.
The error obtained from the updated neural network is back-
propagated to update the weights again. This process is repeated
to minimize the error until the best fit model is found.

ANNs have been successfully applied in many research fields
to make predictions. Some researchers have successfully adapted
ANNs to predict concrete compressive strength using input
variables such as age, Portland cement, water, sand, crushed
stone, high range water-reducing agent, and fly ash (Topçu
and Sarıdemir, 2008). This research also utilizes ANNs to
develop the concrete strength prediction model.

SVMs, first purposed by Vapnik (2013), are supervised
machine learning methods based on statistical learning theory.
As shown in Figure 3, SVMs first conduct nonlinear mapping of
sample data into the higher dimensional feature space, and then
the sample data can be classified using a linear model. The Φ
indicates the transformation function for the nonlinear mapping.

SVMs were first developed for classification; Drucker et al.
further proposed using the concepts for regression (Drucker et al.,
1997), also known as support vector regression. The support
vector regression concepts are briefly described below (Smola and
Schölkopf, 2004).

For a given data set, D � {(xi, di)}ni , xi is the input vector, di is
the desired (target) value, and n is the size of the data set. With the
nonlinear mapping (Φ) of the input vector, the nonlinear
regression in the lower dimensional space can then be
represented by the linear regression in the higher dimensional
feature space as shown in Eq. 6.

f (x) � ωΦ(x) + b, (6)

where ω is the weight vector, Φ is the higher dimensional feature
space, and b is the bias.

The main concepts of the support vector regression are to
minimize the structural risks. By minimizing the risk penalty
function, ω and b can be obtained as shown below (Smola and
Schölkopf, 2004):

RSVR(C) � C × 1
n
∑n
i−1

Lε(di, yi) + 1
2
‖ω‖2, (7)

where

Lε � { ∣∣∣∣d − y
∣∣∣∣ − ε if

∣∣∣∣d − y
∣∣∣∣≥ ε

0 otherwise
, (8)

where C × 1/n∑n
i−1Lε(di, yi) is the estimated risk based on Lε

(ε -insensitive loss function) in Eq. 7, yi is the target, 1/2‖ω‖2 is the
penalty item for estimating the structural risk, andC is the penalty
constant.

By introducing the slack variables ξ and ξ*, ω and b can be
estimated. Then, the new objective function is shown as.

Minimize

FIGURE 3 | SVM higher dimension mapping.
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RSVMs(ω, ξ(p)) � C × 1
n
∑n
i−1
(ξ i + ξpi ) + 1

2
‖ω‖2 (9)

Subject to

di − ωφ(xi) − bi ≤ ε + ξ i
ωφ(xi) + bi − di ≤ ε + ξpi

ξ(p) ≥ 0 (10)

The Lagrange multipliers, ai and ai*, can then be incorporated,
and the SVM decision function becomes

f (x, ai, api ) � ∑n
i�1
(ai − api )K(x, xi) + b (11)

Next, the Lagrange multipliers, ai and ai*, are adopted in the
penalty objective function as shown below:

Maximize

R(ai, api ) � ∑n
i�1

di(ai − api ) − ε(ai + api ) − 1
2
∑n
i�1

∑n
j�1
(ai − api )

× (aj − apj )K(x, xi) (12)

Subject to

∑n
i�1
(ai − api ) � 0,

0≤ ai ≤C i � 1, 2, ..., n
0≤ api ≤C i � 1, 2, ..., n

(13)

The kernel function, K (xi, xj), is the inner product of xi and xj
in the corresponding feature spaces ψ(xi) and ψ(xj), K(xi, xj) �
φ(xi)pφ(xj).

Compared to ANNs, which are sometimes criticized as black
box approximations, the support vector regression can be
theoretically analyzed using computational learning theory
(Smola and Schölkopf, 2004; Anguita et al., 2010). Several
research results have shown that SVMs are able to provide
better prediction results when comparing to ANNs (Kim,
2003; Huang et al., 2005). As a result, this research uses
support vector regression as one of the AI prediction
techniques in the model development.

ANFIS is a kind of ANN that is based on the Takagi–Sugeno
fuzzy inference system (Jang, 1993). It is a hybrid intelligent
system that integrates the human-like reasoning style of fuzzy
systems and the learning structure of neural networks. Fuzzy
if–then rules are incorporated into the inference system so that
the system can learn to approximate nonlinear functions from
sample data. ANFIS is based on the first-order Sugeno fuzzy
model proposed by Takagi and Sugeno. Considering two input
variables (x and y) and one output variable (z), with the Sugeno
fuzzy model, ANFIS incorporates the learning algorithms in the
ANNs to determine the parameters in the premise and
consequent parts of the fuzzy rules (Abraham, 2005). The
structure of the ANFIS model with two input variables (x and
y) and one output variable (z) is shown in Figure 4.

The functions of each layer in this ANFIS structure are
introduced below (Abdulshahed et al., 2015):

Layer 1 is the input layer, which is intended for input fuzzification.
In this layer, input variables are mapped into the fuzzy sets. Each
node represents an adaptive node with node function.

O1,i � µAi (x) for i � 1, 2 (14)

or O1,i � µBi (y) for i � 1, 2 (15)

x and y are the inputs for node i; O1,i is the membership degree for
fuzzy set A (membership functions A1, A2) or fuzzy set B
(membership functions B1, B2). The typical bell-shaped
membership function in this layer can be expressed as

µA(x) �
1

1 +
∣∣∣∣∣x−ciai

∣∣∣∣∣2bi (16)

In Eq. 16, a, b, and c are the parameters for membership
function u(x). These parameters determine the shape of the
membership function and are referred to as premise parameters.

Layer 2 is the rule layer, which calculates the product of all the
incoming signals to the nodes. Each node in this layer is a fixed
node, and the output of this layer is the product of all the
incoming signals or obtained from min (AND) in the fuzzy
sets. Each node represents the firing strength of the rule. It
can be calculated as

O2,i � wi � µAi(x)µBi (y) for i � 1, 2 (17)

or O2,i � wi � min(µAi(x), µBi(y)) for i � 1, 2 (18)

Layer three is the normalization layer, which normalizes the
firing strength of each node. Each node in this layer is also a fixed
node, and the output is referred to as the normalized firing
strength of that node. The output of the ith node is obtained
by calculating the ratio of the ith rule’|’s firing strength to the sum
of all rules’ firing strengths. It can be calculated as

O3,i � w � wi

w1 + w2
for i � 1, 2 (19)

Layer 4 is the inference layer, which is intended for
defuzzification. Each node in this layer is an adaptive node. It
takes the outputs from layer 3 and then multiplies them by the
consequent parameters. It can be calculated as

FIGURE 4 | ANFIS model.
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O4,i � wifi � wi(pix + qiy + ri) (20)

In Eq. 20, wi is the normalized firing strength from layer 3 and {pi,
qi, ri} are the relevant consequent parameters for that node.

Layer 5 is the output layer, which calculates the overall output.
There is only onefixednode in this layer. It calculates the overall output
as the summation of all incoming signals and can be expressed as

O5,i � ∑
i

wifi � ∑iwifi∑iwi
(21)

In the ANFIS structure, the premise parameters are typically
nonlinear, and consequent parameters are normally linear. This
makes the parameter optimization process very complicated. Jang
(Jang, 1993) proposes a hybrid learning algorithm to solve this
problem. It involves a forward and backward process. In the
forward pass, the premise parameters are first fixed, and the
algorithm uses the least-squares method to identify the consequent
parameters in Layer 4. After comparing the model output and desired
output and obtaining the errors, the errors are propagated backward to
the first layer, and the premise parameters are updated by the gradient
descent method in the backward pass. This forward/backward process
is repeated many times until the errors fall within the tolerance level.
Since its introduction, ANFIS has been adopted to develop prediction
models in many different research disciplines and is able to produce
good prediction results (Vural et al., 2009; Boyacioglu and Avci, 2010;
Abdulshahed et al., 2015).

Based on the related research, this research attempts to adopt
three AI techniques (ANNs, SVMs, and ANFIS) to further
investigate the relationship between in situ RH measurements
and actual concrete compressive strength.

DATA COLLECTION

The researchers collaborated with a government-certified material
testing laboratory and the Chinese Professional Civil Engineer
Association for data collection. The RH tests were conducted on
nonstructural beams in the basement of a large residential complex
as shown in Figure 5. For consistency, all test hammer
measurements were taken by the same personnel. The
specifications in ASTM 805 and CNS 10732 for RH tests were
carefully followed. After the RH tests, core samples were taken in
order to obtain the actual compressive strength. To limit the
structural damage due to coring, test locations were carefully
chosen by the professional engineers. The design drawings were
carefully reviewed to avoid rebar in the test areas. Before the test
was conducted, test locations were examined again to avoid heavily
textured or soft surfaces or surfaces with loose mortar. The digital
RH was held firmly so that the plunger is perpendicular to the test
surface. Ten readings were taken for each test area, and all the
distances between impact points are greater than 25mm. After
each impact, the impression made on the surface was examined to
see if the impact crushed or broke through a near-surface air void.
If so, the reading was disregarded, and another reading was taken.

To obtain the actual compressive strength, core samples were
also taken at the same location and then brought back to the

laboratory for destructive compression tests. Design drawings
were carefully reviewed, and professional engineers were
consulted when determining the test locations (mostly within
the middle third section of the beam). To avoid damage to the
rebar, rebar detectors were employed to confirm the locations of
rebar before drilling took place. In addition, the void was filled
with low-shrinkage concrete right after the drilling. All of the core
drillings were conducted by the same professional team from a
local material testing laboratory. All the core samples were taken
and prepared per the CNS 1238 A3051 (method of test for
obtaining and testing drilled core samples of concrete)
specifications. After cores were drilled, the surface water was
wiped off, and the sample was stored in a nonabsorbent
container. Before the compression tests, the ends of the core
specimens were sawed so that they were flat and perpendicular to
the longitudinal axis. The size of the test specimens is 7.5 Φ ×
10 cm.

The basement is mainly intended for parking, and the building
construction was approaching the completion stage when the
tests were conducted. A total of 100 small beams were chosen for
the RH tests, and these beams are have the same dimensions
(50 cm in width and 70 cm in depth). For each beam, a total of 10
RHmeasurements were taken at one location. The Silver Schmidt
N-Type electronic RH was used to conduct the tests. Core
samples were taken at the same locations after the RH tests as
shown in Figure 6. RH tests, core sample collection, and
compression tests were conducted during a period of 4 weeks.
These drilled core samples were taken back to the laboratory and
carefully cured after the drill. To obtain the compressive strength,
destructive compression tests were conducted using the HT-8391

FIGURE 5 | In situ rebound hammer test.
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200-ton concrete compression test machine. The data collected
were used to develop and test the ANN, SVM, and ANFIS
prediction models.

It should be noted that, before conducting the experiments, the
research team were requested to sign a confidential agreement by
the facility owner. As a result, only limited information regarding
the research results can be revealed to the public. The descriptive
statistics of RH tests and core sample compressive strength tests
are shown in Table 1.

MODEL DEVELOPMENT AND VALIDATION

A total of 100 RH test sample data were collected for this research
analysis. The data are used to develop and validate the regression
and artificial intelligence (ANNs, SVMs, and ANFIS) prediction
models. Among the 100 samples, 80 of them are randomly chosen
as the training data set, and the remaining 20 samples are
assigned as the testing data set. For consistency, all the
prediction models use the same 80 randomly selected samples
to develop the models, and the same 20 samples are used to
validate the models.

Some researchers have incorporated additional factors (such
as water:cement ratio, aggregate size, and age) as input variables
in their prediction models. Nevertheless, it is difficult (sometimes
not feasible) to obtain these properties for existing structures.
Therefore, this research only used RH measurements as the
model inputs. For each test location, a total of 10 rebound
measurements were taken as shown in Figure 6. These
measurements were first recorded in the test hammer, and
then the averages and standard deviations were calculated. All
models proposed by this research have two input variables
(average and standard deviation of the RH measurements) and
one output variable (actual concrete compressive strength). As for
the measure of model prediction accuracy, this research uses
MAPE to compare prediction accuracies between the proposed
models. MAPEs are widely used measures in examining the
prediction accuracies for AI models (Nurcahyo and Nhita,
2014; Priya and Iqbal, 2015; Ramasamy et al., 2015). The
MAPE is calculated using the following equation:

MAPE � 1
n
∑n
i�1

∣∣∣∣∣∣∣Ai − Pi

Ai

∣∣∣∣∣∣∣ (22)

where Ai is actual compressive strength, Pi is model output, and n
is the total number of data.

In addition to MAPE, root mean square error (RMSE) is also
calculated as an alternative prediction measurement for models.
Compared to MAPE, RMSE emphasizes large errors as shown in
the following equation:

RMSE �













1
n
∑n
i�1

(Ai − Pi)2
√

(23)

Also, the variance accounted for (VAF) between the actual
(desired) value and model prediction (output) is also calculated
using the following equation (Kumar et al., 2013):

VAF � (1 − var(A − P)
Var(A) ) × 100% (24)

If the output values all equal the desired values, the MAPE and
RMSE equal 0; the VAF equals 100%.

Regression Models
First, scatterplots of the collected data are plotted and examined
for possible relationships between the average RH measurements
and actual compressive strength. Next, simple linear and
nonlinear regressions are conducted to see if simple regression
models can yield good prediction results. The randomly chosen
80 training data are used to develop the linear and nonlinear
regression models as shown in Figures 7, 8.

The linear regression function obtained is

y � 6.3826 x + 144.6 (25)

For the linear regression model, the MAPE obtained from the
training data is 17.88% and the RMSE is 90.81 kgf/cm2.

FIGURE 6 | Rebound hammer and core sample location.

TABLE 1 | Rebound hammer and core sample test results summary.

Test Results Max Min Average Stdev.

Rebound Value (n � 100 × 10) 64 30 55.7 5.24
Actual Compressive Strength (kgf/cm2)
(n � 100)

673 158 486.3 98.18
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The nonlinear regression function obtained is:

y � 181.38 e0.0182 x (26)

For the nonlinear regression model, the MAPE obtained
from the training data is 16.62% and the RMSE is 92.4 kgf/
cm2.

After obtaining the regression equations, the remaining 20
testing data are used to validate the regression models. The
average rebound values from the testing data set are input into
the equations to obtain concrete compressive strength
predictions. The prediction results are then compared with
the actual compressive strength obtained from the core
sample destructive compression tests. The MAPE, VAF,

and RMSE calculated for the linear regression model are
15.67%, ‒21.58%, and 103.07 kgf/cm2, respectively. For the
nonlinear regression models, the MAPE, VAF, and RMSE
obtained are 16.75%, ‒19.13%, and 110.79 kgf/cm2,
respectively.

The prediction results show that both the linear and nonlinear
regression models have MAPEs over 15%. Similar results are
observed from other research indicating that traditional linear
and nonlinear regression methods might not yield good
prediction results (Wei, 2012; Mishra et al., 2019). In order to
improve the prediction accuracy, this research proposes
alternative prediction models based on AI methods (ANNs,
SVMs, and ANFIS).

FIGURE 7 | Linear regression scatterplot.

FIGURE 8 | Nonlinear regression scatterplot.
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Artificial Neural Networks Models
This research uses NeuroSolutions 7.0 to develop the BP network
(BPN) model for concrete compressive strength estimations.
During the ANN model development process, parameters such
as number of hidden layers, number of neurons in each layer, type
of transfer functions, and learning rules are explored to obtain
better prediction models. For this research, ANN models with
both one and two hidden layers are developed. Different numbers
of neurons in each layer, transfer functions, and learning rules are
also investigated. In other words, trial and error is implemented
to obtain better model parameter setup. Please refer to Table 2 for
ANN model parameter setup details.

There are 80 samples in the training data set (including
10 cross-validation samples) and 20 samples in the testing
data set. In order to find the best ANN prediction model, the
ANN parameters are explored through the trial and error process.
After several trials, it was found that better results (lower training
errors) are obtained when using the “TanhAxon” transfer
function and “Levenberg-Marquardt” (LM) learning rule. The
TanhAxon transfer function applies a bias and tanh function to
each neuron in the layer. This squashes the range of each neuron
in the layer to between −1 and 1. The LM algorithm is a standard
technique for nonlinear least-squares problems and can be

thought of as a combination of steepest descent and the
Gauss-Newton method.

The best training results obtained from the one-hidden-layer
network is from a 2 to 5-1 (two inputs, five process elements in
the hidden layer, and one output) ANN model. The MAPE and
RMSE obtained are 16.82% and 101.21, respectively, from the
training data set. This model is validated with the 20 samples
using the testing data set. The MAPE, VAF, and RMSE obtained
from the one-hidden-layer ANNmodel are 14.77%, −33.88%, and
92.67, respectively, when validating with the testing data.

ANN models with two hidden layers are also developed using
the same training data set. Various parameter settings are
explored in order to obtain lower training errors. The best
training results obtained from the two-hidden-layer network is
from a 2-5 to 5-1 (two inputs, five process elements in the first and
second hidden layers, and one output) ANN model. The
corresponding MAPE and RMSE obtained from the training
data are 11.9% and 85.36, respectively, which are lower than
the one-hidden-layer model. The training and validation errors
for this ANN model are shown in Figure 9.

Next, the two-hidden-layer model is validated with the 20
samples from the testing data set. The MAPE, VAF, and RMSE
obtained from the testing data are 12.37%, −30.68%, and 88.45,
respectively, which are also lower than the one-hidden-layer
model. The desired values (actual compressive strength) and
model outputs are presented in a scatterplot as shown in
Figure 10. If the model output equals the desired value, it
should fall on the red line. In Figure 11, the line chart of the
desired and model output compressive strengths is also plotted.
To get a better understanding of the individual errors between the
desired values and model outputs, a residual histogram of the
testing samples is presented in Figure 12.

From the above, it can be observed that, most of the time, the
predicted values (model outputs) are smaller than the desired
values. It indicates that this ANN model tends to underestimate.

TABLE 2 | ANNs model setup.

Model Parameter Settings

Exemplars Training Dataset 80
Cross-Validation 10a

Testing Dataset 20
Hidden Layers One and two
Transfer Functions TanhAxon, SigmoidAxon, LinearAxon
Learning Rule Levenberg Marqua, Momentum
Maximum Epochs Starting from 500

aThese 10 samples are randomly chosen from the 80 training samples.

FIGURE 9 | ANN model (2-5-5–1) training and validation error.
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In addition, there are 10 samples with residuals over 50 kgf/cm2,
which might contribute to the low prediction accuracy. The
training and testing results of ANN models with one and two
hidden layers are summarized in Table 3.

Support Vector Regression Models
This research uses the least squares SVM (LSSVM) in the Matlab
R2018a to develop the support vector regression model. The same
80 training data used in ANN model development are used to
develop the LSSVM regression model.

For the SVM regression models, there are typically four types
of kernel functions: linear, polynomial, sigmoid, and radial basis
function (RBF) kernels. Among them, RBF is favorable for its

capability of dealing with nonlinearity and high-dimensional
computation and effectiveness in reducing complexity for
inputs by adjusting C and c (Hsu et al., 2003), where C is the
cost of the soft-margin SVM loss function and gamma is the free
parameter of the RBF. For this research, support vector regression
parameters are obtained from the trial and error process.
Different C and c values are investigated to obtain the best
SVM model with the training data set as shown in Table 4.

From Table 4, the best training MAPE obtained for the SVM
model is 15.13%, and the corresponding C and c values are 2 and
5,000, respectively.

Next, this model is validated with the 20 samples from the
testing data set. The desired values (actual compressive strength)

FIGURE 10 | ANN model (2-5-5–1) scatterplot.

FIGURE 11 | ANN model (2-5-5–1) line chart.
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and support vector regression model outputs are presented in a
scatterplot as shown in Figure 13. The red line indicates 100%
accuracy prediction. The MAPE, VAF, and RMSE obtained for
this support regression model are 16.08%, 6.05%, and 99.05,
respectively. The line chart of the desired and model output
compressive strengths is provided in Figure 14. The residual
histogram of the testing samples is presented in Figure 15. The
results show that the support vector regression model is not as
accurate compared to the ANN model.

Adaptive Network-Based Fuzzy Inference
Models
The ANFISmodel is developed in theMatlab 2018a environment.
The same 80 training samples used in ANN and SVM model
development are also used to develop the ANFIS model. When
developing the ANFIS models, the researchers can choose
different numbers and types of membership functions. The
researchers developed three different sets of models (models
with three, five, and eight membership functions). For each
membership function setting in Matlab 2018, there are eight
different types to choose from: triangular (trimf), trapezoidal
(trapmf), generalized bell-shaped (gbell), Gaussian (gauss1),
Gaussian combination (gauss2), pi-shaped (pimf), difference
between two sigmoidal (dsigmf), and product of two sigmoidal
membership functions (psigmf). Each of them is tried in the
ANFIS model development to find the best prediction results.

In the model setup, the tolerance level is set as 0, and the
training is set to repeat 1,000, 2,000, and 3,000 times. The training
error diagram for the model with three sigmoid membership
functions (dsigmf) is shown in Figure 16.

ANFIS models with three, five, and eight membership
functions are developed using different types of membership
functions. The models that yield the best training results are
summarized in Table 5. For models with three membership
functions ([3, 3]), the best MAPE, 10.45%, is obtained with
the sigmoid membership functions (dsigmf). For models with
five membership functions ([5, 5]), the best MAPE, 10.10%, is
obtained with the trapezoidal membership functions (trapmf).
For models with eight membership functions ([8, 8]), the best
MAPE, 9.11%, is obtained with the trapmf membership function.

After the best trainingmodel ([8, 8]), trapmfmembership function)
is identified, the remaining 20 testing samples (unseen data to the
model) are used to obtain the concrete compressive strength
predictions. The desired values (actual compressive strength) and
support vector regression model outputs are presented in a
scatterplot as shown in Figure 17. The line chart of the desired and
ANFISmodel output is provided in Figure 18. The residual histogram
of the testing samples is presented in Figure 19. TheMAPE, VAF, and
RMSE obtained are 10.01%, −58.58%, and 62.46, respectively.

TABLE 3 | ANNs model results.

ANNs Model Type Training Testing

MAPE RMSE MAPE RMSE

2-5-1 16.82% 101.21 14.77% 92.67
2-5-5-1 11.9% 85.36 12.37% 88.45

TABLE 4 | SVM parameter settings and training error.

C value γ value Training MAPE C value γ value Training MAPE

2 1,000 15.24% 2 1,000 15.24%
4 1,000 15.54% 2 1,500 15.20%
8 1,000 15.60% 2 2,000 15.18%
16 1,000 15.72% 2 3,000 15.15%
32 1,000 16.05% 2 5,000 15.13%
64 1,000 16.40% 2 7,000 16.11%
128 1,000 16.40% 2 10,000 16.14%

FIGURE 12 | ANN model (2-5-5–1) residual histogram.
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The prediction results show that MAPEs in both training and
testing data sets obtained from the three AI-based models are
better than the 20% MAPE observed from previous research.
Among them, the ANFIS model yields the best prediction
accuracy with both the lowest training MAPE (9.11%) and
testing MAPE (10.01%).

In order to examine the reliability of the prediction results,
K-fold cross-validation is used to test the ANFIS model. In K-fold
cross-validation, part of the available data is used to develop the
model, and a different part of the data is used to test it. The K-fold
cross-validation is also known as leave-one-out cross-validation

(Hastie et al., 2009). For this research, the data are split into five
equal-sized parts. Each of the five parts has 20 samples, and there
are 100 samples in total. Four parts are first chosen to develop the
prediction model, and the fifth part is used to calculate the
prediction error. Then, another four parts are chosen to develop
the model, and the remaining part is used to test the model. This
process is repeated five times until all of the five parts are used to test
the predictionmodel. TheMAPE average and standard deviation of
the five-fold cross-validation are 9.90% and 2.28%, respectively. The
RMSE average and standard deviation of the five-fold cross-
validation are 58.67 and 8.93, respectively. This result shows

FIGURE 13 | Support vector regression model scatterplot

FIGURE 14 | Support vector regression model line chart.
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that, with different combinations of training and testing data, the
ANFIS models are able to yield consistent prediction accuracies.

In summary, this research collected a total of 100 in situ RH
and core sampling test data to develop concrete compressive
estimation models. Among them, 80 samples were randomly
selected to train the models, and the remaining 20 samples were

FIGURE 16 | ANFIS model training error.

FIGURE 15 | Support vector regression model residual histogram.

TABLE 5 | ANFIS model training results.

ANFIS Model Transfer Function Type Training MAPE Training RMSE

[3 3] Dsigmf 10.45% 64.43
[5 5] Trapmf 10.10% 64.16
[8 8] Trapmf 9.11% 57.48
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used for model validation. First, linear and nonlinear regression
models were developed and tested. The compressive strength
prediction accuracies (measured by MAPE) obtained from the
linear and nonlinear regression models are 15.66 and 16.75%,
respectively, which do not show significant improvement from
previous research. Subsequently, AI-based models (ANNs, SVMs,
andANFIS)were developed and validated using the same training and
testing data sets. For each model, various model parameters were
explored in order to achieve lower training error and higher prediction
accuracy. Among these models, the ANFIS model yielded the best
training and testing results with the lowest training and testingMAPEs
of 9.11 and 10.01%, respectively. The model development and
validation results from this research effort are summarized in
Table 6. From Table 6, it can be observed that both ANN and

ANFIS models are able to generate better prediction accuracies when
compared to traditional linear and nonlinear regression models.
Similar to Wei’s research results (Wei, 2012), the ANFIS model
can produce the lowest prediction errors when using the RH
measurement to measure concrete compressive strength.

CONCLUSIONS AND
RECOMMENDATIONS

To further investigate the relationship between in situ RH test
measurements and actual concrete compressive strength, this
research adopts AI techniques to develop concrete compressive
strength prediction models. A total of 100 test data are collected

FIGURE 17 | ANFIS model scatterplot

FIGURE 18 | ANFIS model line chart.
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from a large residential complex building. The data collected are used
to develop and validate traditional regression models as well as AI-
based models (ANN, SVM, and ANFIS models). For traditional
regression models, the MAPEs calculated for the linear and
nonlinear models are 15.66 and 16.75%, respectively. For the ANN
model, the best prediction results are obtained froma two-hidden-layer
network (2-5–5-1), and theMAPE obtained is 12.37%. For the support
vector regression model, the best MAPE obtained is 16.08%. The
corresponding parameters for the best support vector regressionmodel
are C � 2 and c � 5,000. For this research, the ANFIS model yields the
best prediction accuracy with an MAPE of 10.01% when the model is
validated using the testing data. This result is obtained from theANFIS
model with eightmembership functions for the two input variables ([8,
8]), and the membership function type is trapmf. K-fold cross-
validation is also conducted, and the results show that the ANFIS
model have consistent prediction errors when validated with different
data. The research results show that AI techniques can be used to
develop concrete compressive strength prediction models using in situ
RH test measurements. The prediction accuracies are better when
comparing to previous research results.

It should be noted that the RH testmeasurements are highly related
to the near surface of the test object. Therefore, it is recommended that
the RH tests can be combined with other nondestructive test methods
(such as UPV tests) to improve concrete compressive strength
estimations. Research results have shown that the SonReb (UPV +

RH test) method (Rilem Report TC43-CND, 1993) might improve
concrete strength estimations in NDT tests (Nobile, 2015; Rashid and
Waqas, 2017; Pereira and Romão, 2018). For this research, the results
are obtained from the 100-sample data collected. In order to improve
reliability, it is suggested that more sample data could be collected for
model development and validation.
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FIGURE 19 | ANFIS model residual histogram.

TABLE 6 | Summary of model validation result.

Model Type Model Setup Testing MAPE Testing RMSE

Regression linear 15.67% 103.07
Non-linear 16.75% 110.79

ANNs 2-5–5-1 12.37% 88.45
SVMs C � 2, γ � 5,000 16.08% 99.05
ANFIS [8 8], Trapmf 10.01% 62.46
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A Positioning Method of Temperature
Sensors for Monitoring Dam Global
Thermal Field
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Yu Qiao3
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During the concrete pouring process of a dam construction, timely and accurate
temperature monitoring is of great significance to reveal the thermal distribution
characteristics and evolution process, and control concrete cracking. In this study, a
positioning method of temperature sensors (PMTS) in a concrete dam is developed to
determine the arrangement of temperature sensors quantitatively. The proposed
positioning method is related to the restructured thermal field based on the natural
neighbor interpolation algorithm, and the cross-validation. Based on the method,
thermometers, distributed optical fibers and infrared thermal imagers are optimally
installed in a super-high arch dam for real-time measurement of concrete temperature.
The results show that the PMTS is reasonable and reliable for obtaining the dam global
thermal field. The on-site temperature monitoring data indicate that the time and space
temperature distribution law of the restructured thermal field is consistent with the actual
situation of the super-high arch dam. In addition, the cons and pros, and improvement of
the PMTS are further discussed. The proposed PMTS is a valuable method to monitor the
global thermal field of concrete dams.

Keywords: positioning method of temperature sensors, global thermal field, cross-validation, restructured thermal
field, concrete dam

INTRODUCTION

Concrete dams usually have a large pouring size during construction. Due to the large amount of
heat released by cement hydration, the concrete temperature rises sharply. As concrete age
increases, the concrete temperature would decrease because of the ambient temperature
influence. Different concrete areas have temperature differences during the process of
temperature change. Under certain constraints, a remarkable thermal stress could be
generated (Lin et al. 2014). Since mass concrete usually contains few steel bars, the thermal
stress is almost entirely borne by the concrete. Concrete is a fragile material, and the tensile
strength is generally 1/10 of the compressive strength. The ultimate tensile deformation during
short-term loading is only (0.6–1) × 10−4, and (1.2–2) × 10−4 during the long-term loading (Zhu
1999). Therefore, if a larger tensile stress is generated due to the temperature change, a greater
impact on the crack resistance of the concrete would be inevitable (Jaafar et al. 2007; Lin et al.
2015; Schackow et al. 2016; Lin et al. 2018; Lin et al. 2019). In order to effectively control
the temperature change process of mass concrete and reduce the risk of concrete cracking, timely
and accurate temperature monitoring is of great significance during a concrete dam construction
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(Lin et al. 2012; Peng et al. 2019). Generally, with the pouring
of dam concrete, a number of temperature sensors are
synchronously buried to obtain the real-time temperature.

At present, there are mainly three types of concrete
temperature sensors:

1) thermometers for point temperature measurement inside
concrete. In concrete dams, the most commonly used
temperature sensors are thermometers. In order to verify
the cooling effect and observe the long-term temperature
change, 440 resistance thermometers are installed in the
concrete during the Hoover Dam construction (Fan et al.
2016). Most of these thermometers are placed on two
symmetrical cross-sections about 30 m away from the
central cross-section. Almost all thermometers are placed
15 m–23 m away from the galleries. About 70 resistance
thermometers installed at a depth of some centimeters from

the external surface in the Alto Lindoso dam are used to
monitor the temperature of air, water and concrete (Mata
et al. 2014). There are 26 thermometers installed in the La
Baells double curvature arch dam. The water temperature is
measured by means of five water thermometers installed at the
upstream surface of the dam. The concrete temperature is
measured by means of 21 concrete thermometers at midpoints
between dam surfaces (Santillán et al. 2014; Santillan et al.
2015). The Tichy Haf arch dam is equipped with 12
thermometers for temperature monitoring. The
thermometers are usually located at 4 m–5 m away from the
upstream or downstream surface, or in the middle of the
concrete blocks (Belmokre et al. 2019). In buttress No.13 of
the SefidRud concrete buttress dam, the approximate location
of the thermometers are near the upstream and downstream
surface to monitor the concrete temperature (Mirzabozorg
et al. 2019).

2) distributed optical fibers for line temperature measurement
inside concrete. In recent years, due to the development of the
optical fiber sensing technology, optical fibers have also been
adopted in concrete dams for line temperature monitoring. In the
Baise Hydropower Station, the temperature-sensing optical fibers

FIGURE 1 | The flow chart of the PMTS.

FIGURE 2 | Accuracy of the thermal field judged by the cross-validation
method.
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are installed at the No. 5 overflow dammonolith of the RCCmain
dam and the No. 6A of the highest gravity dam monolith. The
snake-shaped optical fibers are embedded on the dam pouring
layer (Bao et al. 2006). In the Guangzhao Hydropower Station,
there are 7 optical fiber loops below EL615.50 m, and 16 optical
fiber loops above EL615.50 m. In addition, two vertical optical
fibers are arranged from EL560 m to the dam crest to obtain the
temperature distribution along the vertical direction. Most optical
fibers are buried as a straight line (Jiang and Guo 2008). The
Jinghong Hydropower Station is designed to install optical fibers
in the dam monoliths 12# and 17# to monitor the concrete
temperature. The optical fibers are laid in a “S” shape, with a total
length of 1,600 m (Shi 2008). In the Xiluodu arch dam, optical
fibers are embedded in 4 dam monoliths 5#, 15#, 16# and 23#,
and the total length of fibers is 13500 m. It is generally buried
from the upstream or downstream surface to the middle of the
concrete blocks, and straight-line layout scheme is usually
adopted (Zhou et al. 2017). In the Baihetan arch dam, the
optical fibers are embedded in 5 dam monoliths to acquire the
concrete temperature and three types of layout schemes on the
horizontal surface are applied, including “I”, “L”, and “Z” shape
from upstream surface to downstream surface (Zhou et al. 2019).

In the Qianping reservoir, the optical fibers are mainly used to
control the temperature cracking of the intake tower. The total
length of the mentioned optical fibers is about 4,000 m (Ouyang
et al. 2019).

3) infrared thermal imagers for concrete surface temperature
measurement. Infrared thermal imaging nondestructive testing
technology is usually adopted to obtain the temperature of
concrete surface. Based on the surface temperature of
concrete piers measured by infrared thermal imagers at
different time, Gong et al.(2012) and Chen et al.(2012)
acquire the temperature distribution of the concrete structure
and calculate the thermal deformation. Chen et al.(2013) obtain
the temperature difference of asphalt concrete pavement
between the non-manhole position and the manhole position
by infrared thermal imagers to facilitate the construction
compaction and quality control. Song (2016) monitors the
temperature change of the concrete surface by infrared
thermal imagers to determine the location and scope of the
concrete defect. Zhao et al.(2014) make use of the infrared
thermal imagers to monitor the temperature of LNG concrete
storage tank and find the fault structure of LNG storage tank
according to the thermal field change.

FIGURE 3 | The simulated thermal field of the concrete block: (A) 1 day; (B) 7 days; (C) 14 days; (D) 28 days.
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Although thermometers and optical fibers have been widely
used in concrete dams for temperature monitoring for a long time
(Pei et al. 2014), the embedding method and the quantity of
thermometers or optical fibers mainly rely on empirical design.
Generally, thermometers or optical fibers are embedded in the
representative elevation of a typical dam monolith. Moreover,
although the infrared thermal imaging nondestructive testing
technology has many advantages, such as fast measurement
speed, large observation area, non-contact, and high
measurement accuracy (Shepard and Steven 1997), this
technology has not been widely used in hydropower projects.
Therefore, a reasonable design method for the number and
positioning of temperature sensors in concrete dams is
necessary (Huang et al. 2019). However, this problem is rarely
reported in the related literatures. In this study, based on the
principle of the cross-validation method, a positioning method of
temperature sensors (PMTS) is developed to achieve a scientific
and reasonable layout of concrete temperature sensors.
Combined with the temperature data measured by the
thermometers, optical fibers and infrared thermal imagers in
the arch dam, the thermal field of low-heat cement concrete is
obtained and analyzed. Finally, the cons and pros, and
improvement of the PMTS are further discussed.

POSITIONING METHOD OF
TEMPERATURE SENSORS (PMTS)

The Principle of the PMTS
The global thermal field of a concrete dam refers to the real
temperature distribution in the entire three-dimensional (3D)
space. In order to obtain the global thermal field, the temperature
sensors should be embedded reasonably in the dam concrete,
including the reasonable quantity and position of the sensors.
Excessive temperature sensors would increase unnecessary
economic costs, and add a lot of trouble during construction. Few
temperature sensors cannot comprehensively monitor the
temperature of the dam concrete. When the number of
temperature sensors is appropriate, the global thermal field cannot
be accurately obtained if the arrangement is unreasonable. Therefore,
the principle of the PMTS is proposed to accurately reflect the
concrete temperature and get the best economic benefits. Details
are as follows:

(1) Considering the economy and technical feasibility, the
number of temperature sensors should be as minimal as
possible. Generally, about 2–4 thermometers are installed in
each concrete block, and the distributed optical fibers are

FIGURE 4 | The restructured thermal field of the concrete block based on m � 10: (A) 1 day; (B) 7 days; (C) 14 days; (D) 28 days (the red points represent
temperature sensors).
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embedded in 2–3 dam monoliths of the riverbed and bank
slope dam monolith. 2 to 3 infrared thermal imagers are
installed to monitor the dam surface temperature.

(2) The embedded position should be reasonable, which can
reflect the real concrete thermal field. When the number of

sensors is limited, the position must be optimized in order to
obtain a more accurate thermal field.

(3) The temperature sensors must have sufficient temperature
measurement accuracy to represent the real temperature.
Generally, the temperature measurement accuracy of the

FIGURE 5 | The restructured thermal field of the concrete block: (A) m � 3; (B) m � 5; (C) m � 7; (D) m � 10 (the red points represent temperature sensors).

FIGURE 6 | General view of the super-high arch dam.
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thermometers, distributed optical fibers and infrared thermal
imagers is 0.3°C, 1°C, 1°C–2°C, respectively.

Algorithm Implementation
The positioning steps of the temperature sensors are shown in
Figure 1. The specific details are as follows:

First, assuming that the coordinates of a dam block vertex are
(xi, yi, zi)，i � 1, 2, 3, . . . . . . , n. Based on the thermodynamic
parameters and boundary conditions of the concrete block, the
concrete thermal field is simulated, and the temperature of each
point inside the concrete is obtained. Then,m points (xh, yh, zh)
h � 1, 2, 3, . . . . . . , m, are randomly selected inside the dam

block. The initial temperature value Th acquired from the
simulation thermal field is assigned to the m points.
Therefore, the information of known temperature points
(xh, yh, zh, Th) are obtained. Based on the temperature data
of the m points, the natural neighbor interpolation algorithm is
used to restructure the thermal field of the dam block. Then, the
accuracy of the restructured thermal field by the cross-
validation method is judged (Figure 2). The details are as
follows:

The one deleted point from the initialm temperature points is
recorded as (xj, yj, zj). The other temperature points remain
unchanged, and the remaining (m − 1) temperature points are
used for interpolating the thermal field of the dam block. The

FIGURE 7 | Position of thermometers in concrete blocks below EL910m: (A) in horizontal direction (3 m); (B) in vertical direction (3 m); (C) in horizontal direction
(4.5 m); (D) in vertical direction (4.5 m).
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restructured temperature value T*
j at (xj, yj, zj) is then compared

with the initial value Tj. The absolute difference between them are
shown in Eq. (1):

ΔTj �
∣∣∣∣∣T*

j − Tj

∣∣∣∣∣ (1)

Next, another point is deleted from the initial temperature
points, and the thermal field is restructured by the remaining
temperature points. The restructured temperature value is
compared with the initial temperature value of this point, and
this step is repeated until all temperature points have been
compared once. Finally, m absolute difference values ΔTj are
obtained. The average difference is shown in Eq. (2):

ΔTj � 1
m

∑m
1

ΔTj (2)

The smaller ΔTj is, the more accurate and reasonable the
restructured thermal field is. The number of initial temperature
pointsm and the position of the temperature measurement points
(xh, yh, zh) h � 1, 2, 3, . . . . . . ,m, are constantly adjusted to
obtain the ΔTjMin in Eq. (3):

ΔTjMin � Min{ΔTj1, ΔTj2, ΔTj3, . . . . . . , ΔTjm} (3)

The number and the position of temperature points related to
the ΔTjMin are optimal. Finally, the position of the temperature
measurement points constitutes the layout route of the optical

FIGURE 8 | Position of thermometers in concrete blocks above EL910m: (A) in horizontal direction (3 m); (B) in vertical direction (3 m); (C) in horizontal direction
(4.5 m); (D) in vertical direction (4.5 m).
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fibers, that is, the line temperature measurement arrangement is
obtained from the point temperature measurement arrangement.
The surface temperature measurement is mainly based on the
infrared temperature measurement tomonitor the temperature of
the dam upstream and downstream surfaces.

Calibration of the PMTS
In order to further illustrate the implementation of the PMTS, a
square concrete block is selected. This block size and its mesh size
are assumed to be 5 m × 5 m and 1 m × 1 m, respectively. First,
the concrete block thermal field is simulated according to the
thermodynamic parameters of concrete (Figure 3). In this case,
the concrete thermal conductivity is λ � 7980 J/(m · h ·℃); the
concrete specific heat is c � 1008.6 J/(kg ·℃); the concrete
density is ρ � 2400kg/m3; the convective heat transfer
coefficient β � 13w/(m2 · h); the coefficient of thermal
expansion of concrete is α � 8 × 10− 6/℃; the concrete pouring
temperature and ambient temperature are assumed to be 20°C; an
exponential expression of the adiabatic temperature rise of
concrete is shown in Eq. (4):

θ(τ) � 25[1 − exp{ −0.45(τ − τ0)}] (4)

where θ(τ) is temperature rise at age of τ; τ is the age of concrete.
The simulated thermal field of the concrete is selected as the

initial temperature. Assuming the temperature measurement
points m � 10, the final optimized position of temperature
points is obtained based on the positioning optimization
algorithm in Algorithm Implementation. According to the
position and temperature of the measurement points, the
thermal field is restructured at the age of 1, 7, 14, and 28 days,

respectively (Figure 4). By comparing the restructured thermal
field and initial temperature, it can be found that the thermal field
distribution law is the same as the simulated field. It is illustrated
that with a certain number of the temperature measuring points,
the restructured thermal field can reflect the actual concrete
temperature distribution based on the PMTS by optimizing
the position.

Comparing different temperature measurement points m � 3,
5, 7 and 10, it can be seen that the more temperature monitoring
points are arranged, the closer the restructured thermal field is to
the initial thermal field (Figure 5). However, the number of
temperature measurement points should be reasonable and
appropriate considering the economic costs and construction
interference in actual projects. Therefore, it is particularly
important to optimize the position of temperature measurement
points. In addition, the construction conditions of the concrete
dam are complex, and the temperature sensors are greatly affected
by the external factors, such as the influence of the cooling water
pipe. In order to avoid the influence of cooling water on the
temperature, the temperature sensors are usually as far away as
possible from the water pipes. Hence, the layout of temperature
monitoring sensors is more complicated in the engineering.

ENGINEERING APPLICATION IN A
SUPER-HIGH ARCH DAM

A super-high arch dam studied in this paper is a double-curved
concrete dam with a height of 270 m and a thickness-height ratio
of 0.19 (Figure 6), which is the thinnest 300 m level arch dam in

FIGURE 9 | Layout scheme of distributed optical fibers: (A) in quadrilateral concrete blocks; (B) in triangular concrete blocks.
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the world. The dam crest elevation is 988 m, and the dam
concrete volume is 27 million m3. The whole dam is
constructed by low-heat cement concrete, which is the first
time in the dam construction history. The dam is located at
dry and hot valley. The climate is hot and rainy in summer, dry
and windy in winter, and large temperature difference about 14°C
during day and night. Hence, it is very difficult to control the arch
dam concrete temperature.

Necessity and Challenges of Temperature
Monitoring
(1) The thinnest 300 m level arch dam

The thinner the arch dam, the more sensitive it is to air and
water temperature, and the greater the temperature change in the
dam concrete. For the temperature load, the early calculation is
mainly based on the US Bureau of Reclamation’s empirical
formula (Creager et al., 1945), which is shown in Eq. (5):

Tm � 57.57/(L + 2.44) (5)

where Tm is the average temperature of the dam cross section
(°C), L is the dam thickness (m).

In 1970s, the dam temperature T(x) is decomposed into three
parts (Zhu 1999): the average temperature Tm along the thickness
direction, equivalent temperature difference Td , and nonlinear
temperature difference Tn, which are shown in Eq. (6):

FIGURE 10 | Layout of thermometers, distributed optical fibers and infrared thermal imagers in the super-high arch dam.
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ΔTm � 1
L

∫L/2
−L/2

T(x)dx

ΔTd � 12
L2

∫L/2
−L/2

T(x)xdx

ΔTn � T(x) − Tm − Tdx/L

(6)

Since the Tn does not affect the displacement and internal
force calculation of the dam, only Tm and Td are usually
considered in arch dam design. It can be seen from the Eqs.
(5) and (6) that the thinner the arch dam, the greater the
corresponding temperature load.

Except the free boundary at the dam crest, the other three
boundaries of the arch dam are constrained by the bedrock,
and the temperature deformation is constrained greatly.
Therefore, the greater the temperature change of the dam,
the greater the thermal stress. As the world’s thinnest 300 m
level super-high arch dam, the temperature control is
particularly significant. Reliable and accurate temperature
monitoring is a prerequisite to ensure effective temperature
control of the dam concrete.

(2) The whole dam constructed by low-heat cement concrete for
the first time

Low-heat cement has the characteristics of slow hydration
rate, low hydration heat, high strength in the later period and
great durability (Wang et al. 2018). It can effectively improve the
crack resistance ability of hydraulic mass concrete and reduce the
risk of concrete cracking. The super-high arch dam uses low-heat
cement for the construction of the entire dam, which has no
precedent in arch dam construction history. The engineering level
of this dam is high. The quality of low-heat cement and the
construction method are all different from other dams. In
addition, the law of low-heat cement hydration and concrete
temperature distribution are unclear. In order to obtain the
temperature change law of the arch dam concrete,
thermometers are embedded in all concrete blocks and the
distributed optical fibers are buried in dam monoliths 7# and
12#. Moreover, the infrared thermal imagers are installed on the
upstream surface and the right bank abutment platform for
temperature monitoring. On this basis, the dam concrete
temperature control measures can be optimized and adjusted.

Layout of Temperature Sensors
Based on the optimization principle of the PMTS, the real 3D
spatial thermal field of the super-high arch dam studied in this
paper is realized by thermometers, distributed optical fibers and
infrared thermal imagers.

1) the position of thermometers

FIGURE 11 | The arrangement of thermometers, distributed optical fibers and infrared thermal imagers in the concrete blocks 12#-0033, 0034, 0035, 0036.
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In the arch dam, thermometers are embedded in each concrete
block to monitor the concrete temperature. The number and
position of thermometers buried in the dam concrete during
construction are as follows:

When the elevation of concrete blocks is below EL910 m, 3
and 4 thermometers are embedded in the 3 m and 4.5 m
pouring blocks, respectively. When the thickness of concrete
blocks is 3 m, thermometers should be arranged in each of the
upstream, middle and downstream areas (about 1/4 length of
the concrete blocks along the water flow direction) between the
two layers of cooling water pipes (Figures 7A,B). When the
thickness of concrete blocks is 4.5 m, thermometers should be
arranged in each of the upstream, middle and downstream
areas between the first and second layers of cooling water pipes.
There is also a thermometer embedded in the middle area
between the second and third layers of cooling water pipes
(Figures 7C,D).

When the elevation of concrete blocks is above EL910 m, 2 and
3 thermometers are embedded in the 3 m and 4.5 m pouring
blocks, respectively. When the thickness of concrete blocks is 3 m,
thermometers should be arranged in each of the upstream and
downstream areas (about 1/3 length of the concrete blocks along
the water flow direction) between the two layers of cooling water
pipes (Figures 8A,B). When the thickness of concrete blocks is

4.5 m, thermometers should be arranged in each of the upstream,
and downstream areas between the first and second layers of
cooling water pipes. There is also a thermometer embedded in the
middle area between the second and third layers of cooling water
pipes (Figures 8C,D).

2) the layout of distributed optical fibers
The concrete blocks of the arch dam have two shapes. One is a

quadrilateral block, mainly located at the riverbed dammonoliths
and the high elevation of bank slope dam monoliths. The other is
a triangular block, mainly located at the low elevation of the bank
slope dam monoliths.

For quadrilateral concrete blocks, optical fibers are arranged
as a "Z" shape and embedded in the same layer with the
thermometers. Taking the dam monolith 7# of the arch dam
as an example, Z-shaped optical fibers are embedded in two
forms (Figure 9A), the first of which (①-①) is as follows: the
embedded starting point is 1 m and 3 m away from the upstream
surface and the transverse joint 6#, respectively. Then, the
optical fibers are buried along the water flow direction and
turned at the thermometer in the middle of the concrete block.
Next, the optical fibers are embedded along the direction
transverse to the water flow direction until they are 3 m away
from the transverse joint 7#. Finally, the optical fibers are
embedded along the water flow direction again and end at

FIGURE 12 | The 3D thermal field in the concrete blocks 12#-0033, 0034, 0035 and 0036: (A) May 1, 2019; (B) Aug 1, 2019; (C) Nov 1, 2019; (D) Jan 1, 2020.
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the point 1 m away from the downstream surface. The second
(②-②) and the first embedded forms are symmetric about the
center line of the concrete block. When the two embedded forms
alternate along the vertical direction, the optical fibers can be
coupled with each other to obtain a more accurate and real
thermal field.

For the triangular concrete blocks, due to the short length
along the direction transverse to the water flow direction, the
optical fibers are embedded as a "7" shape. Taking the dam
monolith 12# of the arch dam as an example, the embedded
starting point of optical fibers is 1 m and 3 m away from the
upstream surface and the transverse joint 12#, respectively. Then,
the optical fibers are buried along the direction transverse to the
water flow direction, turned to the thermometer in the upstream
area of the concrete block. Finally, the optical fibers are embedded
along the center line of the concrete block and end at the point
1 m away from the downstream surface (Figure 9B).

3) the layout of infrared thermal imagers
The infrared thermal imaging nondestructive testing

technology is an indirect temperature measurement and has
great advantages, which can overcome the complex
environmental influence, e.g. strong wind, fog, high
temperature, etc. Moreover, the longest monitoring distance
can be up to approximately 300 m, and the temperature
accuracy can reach 1°C–2°C. According to the infrared thermal
radiation characteristics of the object, an infrared thermal imager
is used to receive the thermal radiation of the concrete surface.
Considering the monitoring range of the infrared thermal imager,
two infrared thermal imagers are installed on the upstream
surface and the right bank abutment platform to monitor the
surface temperature of the studied super-high arch dam,
respectively. The thermometers, optical fibers and infrared
thermal imagers installed in the studied super-high arch dam
are shown in Figure 10.

FIGURE 13 | The thermal field in section A-A and B-B in the concrete blocks 12#-0033, 0034, 0035 and 0036: (A)May 1, 2019; (B) Aug 1, 2019; (C)Nov 1, 2019;
(D) Jan 1, 2020.
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Global Thermal Field Realization
According to the temperature measured by thermometers,
distributed optical fibers and infrared thermal imagers, the
real 3D spatial thermal field is obtained. Illustrated by the
example of concrete blocks 12#-0033, 0034, 0035, 0036
(Figure 11), the concrete thermal field is restructured on
May 1, Aug 1, Nov 1, 2019 and Jan 1, 2020. The
restructured 3D thermal fields of different time are shown
in Figures 12,13.

As can be seen from Figures 12A,13A, on May 1, 2019, the
temperature of concrete blocks at the high elevation is higher
than that of the concrete blocks at the low elevation. The main
reasons are the late pouring time of the high elevation concrete
blocks, the great cement hydration heat and the less heat
exchange between cooling water and concrete. The concrete
temperature of the downstream area is lower than that of the
upstream area along the water flow direction. The higher the
concrete blocks elevation, the greater the temperature
difference between the upstream and downstream area. The
temperature difference of the high elevation concrete blocks is
about 3°C, whereas the temperature difference of the low
elevation concrete blocks is less than 1.5°C.

According to the Figures 12B,13B, with the increase of
concrete age, the concrete temperature decreases due to water
cooling and heat dissipation. On Aug 1, 2019, the maximum
temperature of concrete blocks 12#-0033, 0034, 0035, 0036
dropped by about 1.6°C compared with that on May 1, 2019.
The concrete temperature of the downstream area is lower
than that of the upstream area along the water flow direction.
For instance, the temperature difference between the upstream
and downstream area of the concrete block 12-0036 is
about 4.4°C.

t can be seen from Figures 12C,13C that the maximum
concrete temperature on Nov 1, 2019 decreased by about 5.4°C
compared with that on Aug 1, 2019. The main reason is that
the concrete blocks 12#-0033, 0034, 0035, 0036 are in the
initial temperature control stage and the concrete temperature
should be controlled at about 22°C–24°C on Aug 1, 2019.
However, the concrete blocks 12#-0035, 0036 are in the
intermediate temperature control stage and the concrete
temperature should be controlled at about 18°C–20°C on
Nov 1, 2019. The concrete blocks 12#-0033, 0034 are in the
late temperature control stage and the concrete temperature
should be controlled at 14°C on Nov 1, 2019. Hence, the
temperature decrease is large during this period.

As shown in Figures 12D,13D, the maximum concrete
temperature on Jan 1, 2020 decreased by about 3.5°C
compared with that on Nov 1, 2019. The 3D concrete thermal
field tends to be uniform, and most of the temperature is
approximately 13.5°C–14°C. According to the design standard
of the studied super-high arch dam, the concrete blocks 12#-0033,
0034, 0035, 0036 should be in the late temperature control stage
on Jan 1, 2020. In order to satisfy the requirement of transverse
joints grouting, the temperature should be controlled at about
14°C. It can be seen that the space-time distribution law of the
restructured thermal field is consistent with the actual situation of
the super-high arch dam.

DISCUSSION

Compared with the method of determining the position of
temperature sensors empirically, the PMTS proposed in this
study, which can obtain the thermal field of concrete dams
more efficiently and provide method support for the
arrangement of temperature sensors, is more reasonable and
reliable. However, the PMTS may be affected by the complex
construction and economic conditions in engineering
application. When the thermometers, optical fibers and
infrared thermal imagers are arranged mutually, the
construction interference is usually large, which reduces the
survival rate of the sensors. Moreover, concrete is a relatively
complex material and multiple temperature control measures
may be applied simultaneously during construction, which
result in a particularly complex temperature change and bring
great challenges to temperature monitoring.

Under such complex conditions, the PMTS proposed in this
paper has been successfully applied to the construction of a
super-high arch dam, which provides a basis for the
temperature control measures. Up to now, the studied
super-high arch dam has not produced a single temperature
crack during construction and impounding period. In the
PMTS method, the natural neighbor interpolation algorithm
and cross-validation are used in this study to restructure the
thermal field and verify the accuracy of the restructured
thermal field, respectively. However, there are many
methods for restructuring and verifying the thermal field.
For instance, the restructuring methods of the thermal field
include kriging and inverse distance weighting interpolation
algorithm. The verification methods can utilize average error
or root mean square error methods. Therefore, two key points
of the PMTS will be further studied in future research, that is
the thermal field restructuring method and the accuracy
verification method of restructured thermal field, in order
to facilitate the wide engineering application of the PMTS.

CONCLUSIONS

A positioning method of temperature sensors is developed to
determine the arrangement of temperature sensors in concrete
dams scientifically and quantitatively. The proposed method is
then applied to the arrangement of thermometers, distributed
optical fibers and infrared thermal imagers in a super-high
arch dam for real-time measurement of concrete temperature.
According to this study, several conclusions are as follows:

(1) The proposed PMTS based on the natural neighbor
interpolation algorithm and the cross-validation is reasonable
and reliable, which is illustrated by the accurate acquisition of
the super-high arch dam thermal field based on point, line,
surface temperature measurement.

(2) The temperature change of the studied super-high arch dam
is consistent with the design temperature control process,
which indicates that the dam has achieved precise control of
concrete temperature.
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(3) The PMTS may be affected by the complex engineering site.
Therefore, future studies will focus on the application of the
PMTS considering construction interference and the
integration of the advantages of other thermal field
restructuring methods and the accuracy verification
methods.
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Prediction of Rubber Fiber Concrete
Strength Using Extreme Learning
Machine
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The conventional design method of concrete mix ratio relies on a large number of tests for
trial mixing and optimization, and the workload is massive. It is challenging to cope with
today’s diverse raw materials and the concrete’s specific performance to fit modern
concrete development. To innovate the designmethod of concrete mix ratio and effectively
use the various complex novel raw materials, the traditional mix ratio test method can be
replaced with the intelligent optimization algorithm, and the concrete performance
prediction can be realized rapidly and accurately. The mixed ratio of the rubber fiber
concrete was designed with its 28-day strength test. Then the range and variance analysis
of the orthogonal test results were carried out to determine the optimal mix ratio and its
influencing factors. A data set containing 114 sets of valid test data was collected by
combining the rubber concrete mix test data published in recent years. Based on this data
set, there are six influencing factors; rubber content, rubber particle size, and
polypropylene fiber content are considered as the input variables, and the 28-day
concrete compression, splitting tensile, and flexural strength are considered as the
output variables. A strength prediction model of rubber fiber concrete is established
based on the extreme learning machine (ELM). For verifying the ELM prediction model’s
performance, this article has conducted a comparison experiment between this model and
other intelligent algorithm models. The results show that the model has the advantages of
high accuracy and high generalization ability compared with other algorithm models such
as conventional neural networks. It can be used as an effective method for predicting
concrete performance. Themethod allows for the innovation and development of concrete
mixing technology.

Keywords: rubber fiber concrete, mix ratio design, intelligent optimization, concrete strength, extreme learning
machine

INTRODUCTION

With the development and application of green-energy-saving and resource recyclable materials,
green and friendly waste rubber fiber concrete, which has excellent physical and mechanical
properties, has attracted much attention. Rubber fiber concrete is a kind of engineering
composite material made of ordinary concrete as a base material, mixed with waste rubber
aggregates and fibers according to a specific ratio. It is solidified and hardened to form a kind
of engineering composite material. Rubber fiber concrete has excellent properties such as good
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toughness, wear-resistance, and frost resistance. Besides, it
effectively solves the problem of waste rubber treatment and
improves the performance of concrete. So it plays a dual role in
resource conservation and environmental protection. Rubber
recycled concrete has become a hot topic in the research and
development of the concrete industry and contributed to much
research (Fang et al., 2001; Topçu and Demir, 2007; Reda Taha
et al., 2008; Atahan and Yücel, 2012; Bravo and de Brito, 2012;
Richardson et al., 2016). Farhad Aslani et al. prepared a self-
compacting rubber fiber concrete. Fibers include polypropylene
(PP) fiber and steel fiber, and they studied the influence of
different rubber fiber particles’ parameters on concrete’s
mechanical properties (Aslani and Gedeon, 2019). Zahid
Hossain et al. studied rubber crumbs (CR), recycled coarse
aggregate (RCA) and polypropylene fiber composite concrete,
and tested the compressive strength, splitting tensile strength, and
bending resistance at different ages (Zahid et al., 2019). Mostafa
Jalal et al. prepared high-strength concrete by adding different
fine rubber particles and polypropylene fibers. The performance
of high-strength concrete (HSC), rubber high-strength concrete
(RHSC), polypropylene high-strength concrete (PHSC), and
polypropylene rubber high-strength concrete (PRHSC) before
and after the high temperature was studied (Jalal et al., 2019a;
Jalal et al., 2019b). Jiaqing Wang et al. prepared rubber fiber
concrete samples with different rubber volume content and fiber
volume fraction and made ordinary concrete samples for
comparison. The synergistic effect of polypropylene fiber and
rubber concrete was studied in terms of mechanical properties,
durability properties, and microstructure (Wang et al., 2019).

Due to low hydrophilicity, the rubber particles have different
properties than the concrete particles, and the adhesion between
the two kinds of particles is poor. The rubber particles’ strength is
reduced after the concrete is mixed with the rubber aggregate.
The performance of rubber fiber concrete is affected by many
factors, and the research on the design of its mix ratio is still
developing (Zheng et al., 2008; Skripki�unas et al., 2009;
Richardson et al., 2012). In practical engineering, for the
performance of rubber fiber concrete to meet the
requirements, a large number of tests are carried out to
determine the optimal range of each influencing factor in the
design of its mix ratio. This makes the mix ratio design process
more complicated. Many workforce and material resources are
consumed (Gao, 2018). Although the orthogonal test method has
uniform dispersion features in the mix ratio design, it is an
efficient and economical test design method. However, it still
requires many experiments to get satisfactory results in practical
engineering. This situation brings a significant challenge to the
mix design. The traditional concrete strength test method is to
test the concrete specimens after 28 days of standard curing.
Thus, it is difficult to know whether the concrete’s strength will
meet the design requirements in time for concrete-based
construction. If the final test strength of concrete does not
meet the design requirements, it will seriously affect the
construction period and construction quality. Therefore, how
to get the expected 28-day strength of concrete with different
mixing ratios in time for construction is a subject worthy of
in-depth study. The concrete strength is affected by many factors

such as cement strength grade, water-cement ratio, sand ratio,
and admixture. There is a complex and highly nonlinear
relationship between these influencing factors and concrete
strength. So it is difficult to find out the regularity between
them by using the traditional regression method. In recent
years, the rapid development of machine learning technology
has provided a platform for establishing this complicated
nonlinear mapping relationship. The application of machine
learning technology to establish a prediction model of material
performance is a more effective method in improving novel
materials development efficiency. It has become a hot
international issue (Wu et al., 2019; Li et al., 2020).

In recent years, some scholars have applied machine learning
methods such as neural networks (ANN), support vector
machines (SVM), deep learning, and gray theory to the
prediction of concrete strength. They have even made some
valuable achievements (Ni and Wang, 2000; Lim et al., 2004;
Topçu and Sarıdemir, 2008; Chou et al., 2014; Xu et al., 2015;
Young et al., 2019; Xu and Yu, 2020). Mostafa Jalal et al. used an
adaptive neurofuzzy inference system to establish a concrete
compressive strength prediction model and studied the
influence of cement content, rubber content, silica fume, and
sample age on the concrete compressive strength (Jalal et al.,
2020). They also used rubber powder and pozzolan to partially
replace the aggregate and cement in the concrete raw materials
and established three different regression models: linear
regression model, logarithmic regression model, and power
regression model to predict the compressive strength of
concrete (Jalal et al., 2019a; Jalal et al., 2019b). Hesam
Madanil et al. tried to use artificial neural methods such as
adaptive neurofuzzy inference system (ANFIS), artificial neural
network (ANN) technology, and linear and nonlinear regression
analysis to predict the compressive strength of cement composite
materials and compared the difference of those methods in
predicting the strength of the cementitious mixture (Madanil
et al., 2020).

However, these methods still have certain limitations.
Traditional algorithms such as ANN and SVM are based on
the Empirical Risk Minimization (ERM) criterion, which requires
a sufficient number of learning samples to obtain a good learning
effect. The limitations of the small sample test environment, such
as poor adaptability and generalization, affect the prediction
accuracy to a certain extent (Yeh, 2006; Li et al., 2015; Xu
et al., 2017; Dutta et al., 2018; Prayogo, 2018). Therefore, it is
necessary to study a more effective prediction method. Extreme
learning machine (ELM) is a particular type of neural network.
ELM only needs to set the number of hidden layer nodes of the
network. During the algorithm’s execution, there is no need to
adjust the input weight of the network and the threshold of the
hidden element. The weight and threshold can be initialized
randomly, and the corresponding output weight can be
obtained. It is only necessary to solve a linear least-squares
problem. Its solution can be directly generated by the
generalized inverse matrix from the hidden layer output
matrix, and the optimal solution is unique. Due to this
particular network design, ELM has a simple structure and has
few training parameters, fast learning speed, and excellent
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generalization performance compared to other traditional
algorithms that pursue infinite training samples. Because of
this "ultimate learning speed," it is named the extreme learning
machine (Huang et al., 2006; Huang et al., 2011).

Currently, the application of the ELM is mainly focused on
fault diagnosis, defect detection, and sound analysis, but rarely
in the field of material performance prediction (Bhat et al.,
2008; Yaseen et al., 2018). Yaseen et al. proposed a high-
precision prediction model of foam concrete compressive
strength based on extreme learning machine (ELM) and
compared it with multiple adaptive regression spline
(MARS), M5 tree model, and support vector regression
(SVR) (Yaseen et al., 2018). Jian Tang et al. compared
several prediction modeling methods of concrete
compressive strength based on extreme learning machine
(ELM). The compressive strength of concrete is simulated
and verified by various methods (Tang et al., 2014).

The number of data samples in the current literature is
relatively small, and the model parameters need to be further
optimized. Most approaches are for the strength prediction of
ordinary concrete, while rubber fiber concrete with multivariable
indicators has not yet been involved. Therefore, it is necessary to
establish a prediction model and achieve a more accurate and
useful performance prediction of rubber fiber concrete based on
ELM. This article, combined with the orthogonal test results of
rubber fiber concrete mix, collected relevant concrete mix test
data. A predictionmodel based on ELMwas established to predict
rubber fiber concrete’s mechanical properties and compared with
other methods such as BP neural network. The model has high
accuracy and robustness. It moves concrete mixing towards high
efficiency, intelligence, and generalization. The work further
enhances the level of innovation and the application of
concrete mixing.

LABORATORY EXPERIMENT

Raw Materials of Rubber Fiber Concrete
As a multicomponent composite material, rubber fiber concrete
mainly consists of cement, fly ash, coarse aggregate, fine
aggregate, rubber particles, polypropylene fiber, and additives.

Cement (P·O 42.5 ordinary Portland cement produced by Conch
Cement Co., Ltd.) was used. The chemical composition and
performance indexes are shown in Tables 1 and 2.

Fly ash: grade II fly ash, material properties shown in Table 3.
Coarse aggregates: calcareous gravel, 5–25 mm continuous

gradation, apparent density 2,720 kg/m3.
Fine aggregate: river sand, fineness modulus 2.55, apparent

density 2,650 kg/m3.
Rubber particles: 10 orders (1140 kg/m3), 20 orders (1120 kg/

m3), 40 orders (1130 kg/m3).
Polypropylene fiber: single bundle of staple fiber (12 mm).
Admixture: polycarboxylic acid superplasticizer, water

reduction rate 20%.

Testing Scheme and Mix Ratio
According to "Specification for Mix Proportion Design of
Ordinary Concrete" JGJ55-2011, the mix design of the C40
benchmark concrete was carried out to determine each cubic
meter of concrete with a water-cement ratio of 0.4, a sand ratio
of 42%, and a slump of 100–120 mm. The rubber aggregate
was mixed into the concrete to replace part of the fine
aggregate with an equal volume (substitution rate is
10–30%). The polypropylene fiber was added in the way of
external reference. For the multi-index mixed design of rubber
fiber concrete, it is necessary to investigate the influence of the
three factors of rubber content, polypropylene fiber content,
and rubber particle size on the mechanical properties of
concrete at different levels. The L9 (33) orthogonal test
scheme was used to optimize the mix proportion of the
three levels of each influencing factor and seek the optimal
level combination. The levels of various factors are shown in
Table 4.

In Table 4, the three levels and the three factors of rubber
content, polypropylene fiber content, and rubber particle size are
represented by A1, A2, A3, B1, B2, B3, and C1, C2, C3,
respectively. The comprehensive combination test was carried
out; the total number of mix ratio groups is 27. From the L9 (33)
orthogonal test plan, the number of mix ratio groups obtained is
nine groups, as shown in groups 1–9 of Table 5. Another nine sets
of mix ratio designs were made in work, such as groups 10–18 in
Table 5.

TABLE 1 | Cement chemical components (%).

Composition SiO2 Al2O3 Fe2O3 CaO MgO SO3 Na2Oeq

Content 22.51 4.6 3.59 64.18 2.85 0.66 0.58

TABLE 2 | Cement performance index.

Standard consistency
water consumption/%

Stability (Boiling method) Setting time/min Flexural
strength/MPa

Compressive
strength (MPa)

Initial setting Final setting 3 d 28 d 3 d 28 d

27.3 Qualified 178 249 4.5 8.3 22.0 49.2
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Testing Content and Method
The testing content considers the 28-day compressive strength,
split tensile strength, and flexural strength tests of rubber fiber
concrete. According to the mix ratio of each group listed in
Table 5, the rubber fiber concrete specimens were prepared by
referring to "Standard for Test Methods of Mechanical Properties
of General Concrete" GB/T 50081-2016. For each mixing ratio of
1–18 groups in Table 5, 3 groups of test blocks (3 test blocks for
each group) were prepared for compressive, split tensile, and
flexural strength tests. The size of the compression and splitting

test block is 150 × 150 × 150 mm, and the size of the bending test
block is 100 × 100 × 400 mm. The concrete was mixed with a
forced mixer. The test piece was vibrated and compacted on the
shaker, left to stand for 24 h in the room, and the numbering
mark was marked. Then it was put into the standard curing room
for 28 days. After that, the concrete strength test was performed.
The various test blocks produced are shown in Figure 1.

Experimental Results and Analysis
(1) Testing Results

TABLE 3 | Physical and chemical performance indexes of fly ash.

Loss on
ignition/%

Fineness/% Water requirement
ratio/%

Water content/% Density/kg/m3 SO3/% f-CaO/%

2.97 18 92 0.9 2,480 0.51 0.8

TABLE 4 | Factor levels of orthogonal test.

Level Influencing factors

A-Rubber content/% B-polypropylene fiber content/kg/m3 C- rubber particle size/orders

1 10 0.6 10
2 20 0.9 20
3 30 1.5 40

TABLE 5 | Mix ratio of rubber fiber concrete.

Group Water/kg/
m3

Cement/kg/
m3

Fly
ash/kg/m3

Water
reducer/kg/

m3

Gravel/kg/
m3

Sand/kg/
m3

Rubber
content/kg/

m3

Polypropylene
fiber

parameters/kg/
m3

Rubber
particle
size/
orders

1-A1B1C1 185 416 46 9.3 1,016 662 30.67 0.6 10
2-A2B1C2 185 416 46 9.3 1,016 589 61.34 0.6 20
3-A3B1C3 185 416 46 9.3 1,016 515 92.01 0.6 40
4-A1B2C2 185 416 46 9.3 1,016 662 30.67 0.9 20
5-A2B2C3 185 416 46 9.3 1,016 589 61.34 0.9 40
6-A3B2C1 185 416 46 9.3 1,016 515 92.01 0.9 10
7-A1B3C3 185 416 46 9.3 1,016 662 30.67 1.5 40
8-A2B3C1 185 416 46 9.3 1,016 589 61.34 1.5 10
9-A3B3C2 185 416 46 9.3 1,016 515 92.01 1.5 20
10-
A1B3C1

185 416 46 9.3 1,016 662 30.67 1.5 10

11-
A2B2C1

185 416 46 9.3 1,016 589 61.34 0.9 10

12-
A3B1C1

185 416 46 9.3 1,016 515 92.01 0.6 10

13-
A1B1C2

185 416 46 9.3 1,016 662 30.67 0.6 20

14-
A2B3C2

185 416 46 9.3 1,016 589 61.3 1.5 20

15-
A3B2C2

185 416 46 9.3 1,016 515 92.01 0.9 20

16-
A1B2C3

185 416 46 9.3 1,016 662 30.67 0.9 30

17-
A2B1C3

185 416 46 9.3 1,016 589 61.34 0.6 30

18-
A3B3C3

185 416 46 9.3 1,016 515 92.01 1.5 30
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Three test blocks with the same conditions were taken as a
group, and the average of each test value was taken as the
strength. The 28-day compressive, split-pull, and flexural
strength of each group mix ratio is shown in Table 6, and the
test process is shown in Figure 2.

(2) Orthogonal Range and Variance Analysis

The orthogonal test results (group 1–9) in Table 6 were
analyzed by range and variance. The analysis results are
shown in Table 7. In Table 7, from the range analysis, the
three influencing factors of the rubber content (A),
polypropylene fiber content (B), and rubber particle size (C)
were considered. The rubber content (A) is the largest for the
effect of strength. The rubber particle size (C) is the second, and
the effect of the polypropylene fiber content (B) is the smallest.
The order of each influencing factor is rubber content > rubber
particle size > polypropylene fiber content. From the analysis of
variance, for the 28-day compressive strength, factor A is highly
significant, while the other two factors are not significant. For the
28-day flexural strength, factor A is highly significant, the
influence of factor C is significant, and factor B is no
significant; for the 28-day tensile strength, factor A is
exceptionally significant and factor C is highly significant. The

primary and secondary factors influenced by variance analysis are
consistent with the results of range analysis.

According to the concrete performance index mentioned
above and the comprehensive analysis results of range and
variance, it shows that the influence of rubber content A on
the three essential indexes of 28-day compressive, flexural, and
tensile strength is extremely significant, and A1 is the best. The
rubber content selects A1. The fiber content B only has a
significant effect on the compression ratio, and it is best when
B2 is used. However, there is no significance to the other
indicators. The fiber content selects B2. The rubber particle
size C has a significant effect on the 28-day flexural and
tensile strength, and it is best when C1 is used. Nevertheless,
there is also no significance for the other indicators. The rubber
particle size selects C1. Therefore, the optimal ratio of rubber fiber
concrete obtained by comprehensive analysis is A1B2C1.

INFLUENCE OF VARIOUS FACTORS ON
RUBBER CONCRETE PERFORMANCE

From the orthogonal test in Table 7, it can be seen that the
influencing factors (A, B, C) of different levels (k1, k2, k3) affect
the basic mechanical properties of rubber fiber concrete
(compressive, flexural, and splitting tensile strength).

Analysis of Influence on Compressive
Strength
It can be seen from Table 7 that the change in the number of
rubber particles (A) has a significant effect on the compressive
strength of rubber fiber concrete. With the increase in the number
of rubber particles (A), the concrete cube’s compressive strength
shows a significant downward trend. The change of rubber content
on the compressive strength of concrete is that the rubber particles
are a low-strength organic elastic and hydrophobic material. It has
low compatibility with the cement matrix and has a large difference
in strength. There is a weak bonding surface inside the concrete,
and the effective bearing area is reduced, resulting in decreasing the
strength of the concrete.

The most important effect of polypropylene fiber parameter
(B) on concrete strength is the weak interface effect and the crack
resistance effect. It can be seen from Table 7 that the change in

FIGURE 1 | Test block for the strength test.

TABLE 6 | Testing strength of rubber fiber reinforced concrete.

Orthogonal group 28-day strength index/MPa Other groups 28-day strength index/MPa

Compression Bending Tensile Compression Bending Tensile

1-A1B1C1 40.5 5.21 3.11 10-A1B3C1 40.3 5.33 2.99
2-A2B1C2 33.6 4.65 2.62 11-A2B2C1 34.1 4.89 2.67
3-A3B1C3 27.1 3.83 2.17 12-A3B1C1 28.4 4.48 2.49
4-A1B2C2 37.4 5.28 2.93 13-A1B1C2 37.6 5.21 3.02
5-A2B2C3 29.3 4.42 2.45 14-A2B3C2 33.5 4.68 2.50
6-A3B2C1 28.2 4.54 2.38 15-A3B2C2 26.6 4.18 2.33
7-A1B3C3 37.5 4.99 2.73 16-A1B2C3 37.4 5.02 2.81
8-A2B3C1 34.3 4.86 2.58 17-A2B1C3 29.7 4.39 2.58
9-A3B3C2 26.8 4.16 2.24 18-A3B3C3 27.0 3.87 2.04
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concrete compressive strength and fiber content is not a simple
linear relationship with the increase of polypropylene fiber
content. Generally, it first decreases and then rises. When
polypropylene fiber’s content increases from level k1 (0.6 kg/
m3) to level k2 (0.9 kg/m3), the compressive strength is reduced.
The weak interface effect of polypropylene fiber is evident at this
stage. When the fiber content continues to increase to the level k3
(1.5 kg/m3), the concrete compressive strength rises again. The
crack resistance effect of polypropylene fiber plays a leading role
at this stage.

The impact of different rubber particle size (C) on concrete’s
compressive strength is also apparent. It can be seen from Table 7
that the compressive strength of the concrete mixed with rubber
particles of particle size level k1 (10 mesh) is significantly higher
than the particle size level k2 (20 mesh) and level k3 (40 mesh)
when the rubber volume is the same. It can be seen that the
addition of coarse rubber particles reduces the degree of
weakening of the compressive strength of concrete while the

specific surface area of fine rubber particles is relatively large. The
larger the weak bonding surface formed between the cement
matrix, the more unfavorable the compressive strength of
concrete.

Analysis of Influence on Flexural Strength
It can be seen from Table 7 that the increase in the number of
rubber particles (A) has a significant adverse effect on the flexural
strength of concrete. In addition, the flexural strength of concrete
decreases significantly with the decrease of the rubber particle size
(C). The magnitude of the decrease in strength is even more
remarkable when the rubber particle size changes from level k2
(20 mesh) to level k3 (40 mesh). With the increase of the content
of polypropylene fiber (B), the flexural strength of concrete shows
a change law that first increases and then gradually decreases. The
crack resistance effect of polypropylene fiber is dominant within a
particular content range, which strengthens toughness and delays
the development of cracks. The flexural strength of concrete

TABLE 7 | Range and variance analysis results.

Indicator Factors k1 k2 k3 R Primary
and sec-
ondary
factors

Optimal
ratio

Deviation
sum of
squares

Freedom Variance F Significant Threshold

Compression
strength

A 38.47 31.67 27.37 11.10 A > C > B A1B1C1 187.94 2 93.97 38.78 ** F0.01 (2, 2) �
9 9.0; F0.05
(2, 2) � 19.0;
F0.10 (2, 2)

� 9.0

B 33.73 30.90 32.87 2.83 12.65 2 6.32 2.61
C 34.33 32.60 30.57 3.76 21.33 2 10.66 4.40

Bending
strength

A 5.16 4.64 4.18 0.98 A > C > B A1B2C1 1.45 2 0.725 57.15 **
B 4.56 4.75 4.67 0.19 0.05 2 0.025 2.00
C 4.87 4.70 4.41 0.46 0.32 2 0.159 12.55 *

Tensile
strength

A 2.92 2.55 2.26 0.66 A > C > B A1B1C1 0.66 2 0.329 271.3 ***
B 2.63 2.59 2.52 0.11 0.02 2 0.010 8.54
C 2.69 2.60 2.45 0.24 0.09 2 0.044 36.26 **

FIGURE 2 | Specimen strength testing.
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increases with the increase of fiber content. However, as
polypropylene fiber’s content increases, the weaker interfaces
in the concrete matrix will increase, and the weak interface
effect of polypropylene fibers is more prominent and gradually
approaches the crack resistance effect. When the content exceeds
the critical value, the polypropylene fiber’s weak interface effect
plays a leading role. It leads to a decrease in the strength of the
concrete matrix, which shows that as the amount of
polypropylene fiber increases, the flexural strength of concrete
gradually decreases.

Analysis of Influence on Splitting Tensile
Strength
It can be seen from Table 7 that the impact of rubber particle
content (A) and rubber particle size (C) on the split tensile
strength of concrete is similar to the impact mentioned earlier
on flexural and compressive strength. By increasing the rubber
particles’ content and decreasing the rubber particle size, the
splitting tensile strength of concrete shows a significant
downward trend. Especially, the change of rubber particle
content has a significant impact on the splitting tensile
strength of concrete. The polypropylene fiber (B) content has
no noticeable effect on the split tensile strength of concrete. The
splitting strength of concrete decreases slightly with the increase
of fiber content, but the overall change is not significant. Besides,
it can be seen that, for the split tensile strength of concrete, the
content of rubber particles (A) is hugely significant, the size of
rubber particles (C) is significant, and the content of
polypropylene fiber (B) is not significant.

STRENGTH PREDICTION MODEL BASED
ON EXTREME LEARNING MACHINE

The orthogonal test’s optimal mix ratio of rubber fiber concrete
was finally determined through the range and variance analysis of
the orthogonal test. The influence of various factors on the
mechanical properties of concrete was also analyzed. However,
the relationship between these influence factors and concrete
strength is highly nonlinear. The traditional mixing ratio test
method is time-consuming and labor-intensive and difficult to
adapt to the requirements of using diverse and differentiated raw
materials to prepare new concrete. The extreme learning machine
(ELM) has good nonlinear mapping capabilities and reasonable
response to the nonlinear relationship between concrete strength
and various influencing factors. It can realize rapid and accurate
prediction of the strength of rubber fiber concrete. Therefore,
ELMmodeling will be carried out in this article, and the obtained
model will be used for the strength prediction of rubber fiber
concrete.

Extreme Learning Machine Principle and
Parameter Optimization
Given a set of M training samples (xi, yi), xi ∈ Rn, yi ∈ R, the
number of hidden layer neurons isN in a single-layer feedforward

neural network, and the activation function of each hidden layer
neuron is f. Then the output of the network can be expressed as
follows:

∑N
i�1

βi f (wixj + bi), j ∈ [1,M], (1)

where wi and bi are the weight and bias of the i neuron in the
hidden layer, respectively; βi is the output weights.

To reduce the error between prediction and target, the
following relationship can be established:

∑N
i�1

βi f (wixj + bi) � yj, j ∈ [1,M]. (2)

Equation (2) can be simplified as follows:

Hβ � Y , (3)

where β � (β1 . . . βN)
T; Y � (y1 . . . yN)

T; H is the output matrix of
the hidden layer. It can be defined as follows:

H � ⎛⎜⎝ f (w1x1 + b1) / f (wNx1 + bN)
« 1 «

f (w1xM + b1) / f (wNxM + bN )
⎞⎟⎠. (4)

The output weight β can be obtained from β � H†Y according
to (3), where H† is the Moore-Penrose generalized inverse of the
matrix H.

Given a training sample set, activation function, and the
number of hidden layer neurons, the ELM algorithm’s specific
steps are as follows:

(1) The hidden layer weight matrix wi and bias matrix bi are
from probability distribution random setting.

(2) The hidden layer output matrix H is calculated.

(3) The output weight matrix β
∧
is calculated from β

∧ � H†Y.

The hidden layer activation function of extreme learning
machine usually chooses the Gaussian radial basis function.
The prediction accuracy of the model is related to the
selection of hyperparameters. The adjustment and
optimization of hyperparameters usually use the Bayesian
Optimization Algorithm (BOA). The optimization steps are as
follows:

(1) Define the objective function: X* � argmax f(x).
(2) Randomly generate n initial sample points of

hyperparameters. The hyperparameter distribution obeys
the Gaussian distribution. UsingGaussian process obtains
the prior distribution of the initial hyperparameters.

(3) The acquisition function is based on the principle of
maximizing the expected increment and selecting the
expected X that maximizes the expected function.

(4) Calculate the actual target value of X. If the conditions are
met, output X is the optimal hyperparameter. Otherwise,
add X and the real value to the initial sampling point and
repeat the previous step.
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Construction of Prediction Model
The orthogonal experiment design adopted a representative
factor parameter combination for the experiment, and the
resulting sample set was highly representative and
comprehensive in the information. The complete sample set
met the ELM algorithm’s requirements for the
representativeness of the training samples, and the accurate
prediction model can be obtained through a small number of
training samples. This paper combined the 27 sets of data
obtained from the above-mentioned orthogonal test of the
rubber fiber concrete’s mix ratio and used searching engines
such as Springer, Google, and CNKI (China National Knowledge
Infrastructure) to collect the cement-based rubber data in recent
years. The concrete mix ratio test data (a total of 87 data sets as
shown in Table 8) was established, which contains 114 data sets.
The selection of the data set’s variable factors is based on the
available information of all test data samples. According to the
orthogonal test of the rubber fiber concrete’s mix ratio, the rubber
content, rubber particle size, and polypropylene fiber content are
variable factors that affect the strength of concrete and the cement
content water-cement ratio factors. The rubber aggregate is
mixed in the same volume instead of as part of the fine
aggregate, sand changes with the rubber content. Therefore,
the data set established includes the above six influencing
variables.

The data set’s six variables were taken as input parameters
with the MATLAB program platform, and 28-day-old concrete
compressive, flexural, and tensile strength were taken as output
parameters. The rubber fiber concrete’s strength prediction
model was constructed. Since the established data set is from
different researchers, a small part of the data samples lacks

concrete flexural strength or tensile strength output variables.
For making the data samples in the data set consistent and
facilitating the model’s training, the statistical regression
relationship between the concrete compressive strength and its
tensile strength or flexural strength was used based on the
relevant literature. For a data sample with incomplete output
variables, the tensile or flexural strength can be calculated from
the sample’s compressive strength. Thus, the three output
variables were complemented. The influencing variables and
their statistical descriptions are shown in Table 9.

To improve the efficiency and generalization characteristics of
the model, first, the data set is normalized, and then about 80% of
the original data set is randomly selected as the training and
validation data set (90 data samples) and 20% as the test data set
(24 data samples). A 5-fold cross-validation method is used to
train and verify the ELM prediction model. The training and
verification data set containing 90 data samples is randomly
divided into five parts, and four of them are used as the
training set and one as the verification set. The average of the
five verification results is used to estimate the accuracy of the
algorithm (performance index of the prediction model). Finally,
the test data set is used to evaluate or validate the model. When
the number of samples is limited, this method can effectively
avoid over-learning and under-learning states. Thereby it can
obtain a prediction model with good robustness and good
generalization ability.

Model Performance Evaluation
In the process of training and testing, this article adopts the
correlation coefficient (R2), relative standard deviation (RSD),
and mean relative error (MRE) to evaluate the effectiveness and
prediction accuracy of the model. The equation is as follows:

R � ∑n
i�1(xi − x)(yi − y)�����������∑n

i�1(xi − x)2
√ �����������∑n

i�1(yi − y)2√ , (5)

RSD �

���������������
1

n − 1
∑n
i�1

(xi
yi
− 1)2

√√
× 100%, (6)

MRE � 1
n
∑n
i�1

∣∣∣∣∣∣∣∣xiyi − 1

∣∣∣∣∣∣∣∣ × 100%, (7)

where xi is the measured or experimental value of concrete
strength, yi is the predicted value or model output, x is the

TABLE 8 | 87 groups of rubber fiber concrete’s test data sets.

References Rubber content/% Rubber size (mm) Fiber content/kg/m3 No. of samples

Chen et al. (2014) 20 1–2 0.6, 1.2 12
Xue et al. (2016) 15 2–4 2, 4, 6, 8, 10 18
Li (2016) 5, 10, 15 0.18, 0.42, 2 0, 1 10
Huang (2017) 2, 5, 8 1.18 2, 4, 6 9
Bai et al. (2018) 4, 10, 15 0.42, 0.84, 2 2, 6, 10 9
Hossain et al. (2019) 5, 10 Maximum size of 4.75 9.1, 18.2 15
Wang et al. (2019) 10, 15 0.6–2.8 4.5 4
Mo et al. (2020) 0, 4.5 0.38 0, 1.6, 3.2, 4, 6 10

TABLE 9 | Input and output variable in the data set.

Variables Min Max Average

Input Cement/kg/m3 262 528 353.72
W/C ratio 0.35 0.59 0.46
Fine aggregate/kg/m3 448 688 573.26
Rubber content/kg/m3 0 129.2 28.0
Rubber particle size/mm 0.18 4.75 1.37
Fiber content/kg/m3 0 18.2 4.93

Output 28-day compressive strength 13.3 56.8 31.19
28-day tensile strength 1.33 3.93 2.51
28-day flexural strength 1.79 6.84 4.03
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average measured or experimental value, y is the average
predicted value, and n is the number of collected data samples.

Efficient models with good predictive capabilities have lower
RMSE and MAPE values and higher R values. The RSD is not
more than 12%, and theMRE is not more than 10%. The accuracy
of the model is relatively ideal.

RESULTS AND DISCUSSION

The concrete strength value predicted and the actual concrete
strength value in the data set are shown in Figures 3–5. Figure (a),
(b), and (c) are the linear least squares regression lines between
the output predicted value and the actual value of the ELMmodel

for training, verification, and testing. R2, RSD, and MRE of each
linear regression equation are listed in Table 10. It can be seen
that the prediction of training, verification, and testing of the
ELM model are close to the actual values. R2 values of each data
set are relatively high, and the RSD andMRE are less than 10%. In
considering multiple influencing parameters, the model can well
establish the nonlinear relationship between input and output
variables. It has good robustness for predicting the complex
behavior of rubber fiber concrete mechanical properties.

According to Table 10, the average of the comprehensive
performance indicators R2, RSD, and MRE of each stage of the

FIGURE 3 | Correlation between predicted and experimental
compressive strengths: (A) training dataset, (B) validation dataset, and (C)
testing dataset of ELM.

FIGURE 4 | Correlation between predicted and experimental tensile
strengths: (A) training dataset, (B) validation dataset, and (C) testing dataset
of ELM.
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ELM model are 0.9644, 6.75%, and 5.22%, respectively. For
verifying the ELM’s generalization performance and
computational efficiency, this study also used BP neural
network (BPNN) and support vector machine (SVM) to
establish a prediction model and conducted a comparative
experiment of the three algorithms.

For obtaining the best structure of the prediction model and
ensuring its generalization, it is necessary to optimize the
hyperparameters of the model. Levenberg–Marquardt method
and Bayesian regularization were used to determine the optimal
weight of the ANN model. A 5-fold cross-validation method was

used to determine the optimal number of neurons in the
network’s hidden layer to avoid over-fitting and make the
model have a better generalization and minimum prediction
bias. The number of neurons in the input layer and the output
layer is determined by the input and output parameters. The
kernel function is a Gaussian function. For SVM’s optimal
penalty parameter C and RBF kernel parameter gamma, it is
also obtained by optimizing the 5-fold cross-validation method.
The cross-validation method can effectively avoid the over-fitting
and under-fitting of the model.

The comprehensive performance indicators of each algorithm
model are shown in Table 11. The training time of the model
ignores super-parameter optimization. It can be seen from
Table 11 that the extreme learning machine has the highest
prediction accuracy compared with BP neural network and
support vector machine. The training time is similar to that of
a support vector machine and shorter than the BP neural network.
It indicates that the generalization ability of extreme learning
machines is more suitable for predicting the strength of rubber
fiber concrete. BP neural network has the longest training time, but
its accuracy is slightly higher than that of support vector machine.

Wu Xiaoping et al. used Bayesian optimization of the extreme
learning machine prediction model to predict concrete
compressive strength. The model has higher accuracy and
higher efficiency of model training than classic algorithms
(Wu et al., 2020). The BP neural network has the highest
prediction accuracy in the experiment, but the calculation
performance is the worst, and the training time is the longest.
The training time of extreme learning and support vector
machine is similar, and both are shorter than the BP neural
network. Jian Tang et al. compared several concrete compressive
strength prediction model methods based on extreme learning
machines (ELMs) (Tang et al., 2014). The results show that the
conventional ELMs algorithm has fast modeling speed and high

FIGURE 5 | Correlation between predicted and experimental flexural
strengths: (A) training dataset, (B) validation dataset, and (C) testing dataset
of ELM.

TABLE 10 | Results of performance criteria of the ELM model.

Dataset R2 RSD/% MRE/%

Compressive strengths Training 0.9902 5.17 3.89
Validation 0.9723 7.89 6.15
Testing 0.9505 8.79 6.43

Tensile strengths Training 0.9707 6.34 4.75
Validation 0.9652 4.29 3.67
Testing 0.9432 6.68 5.40

Flexural strengths Training 0.9807 5.93 4.63
Validation 0.9687 5.79 4.43
Testing 0.9384 9.85 7.65

TABLE 11 | Performance criteria comparison of different machine-learning
models.

Algorithm R2 RSD/% MRE/% Running time/s

ELM 0.9644 6.75 5.22 2.5301
BPNN 0.9601 7.66 5.91 30.0715
SVM 0.9489 10.03 7.48 2.8540
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prediction accuracy and can be used to predict concrete’s
compressive strength. Thus, our experimental results are
basically consistent with the above-mentioned literature.

CONCLUSIONS

The rubber fiber concrete mix was designed with the orthogonal
test method. The rubber fiber concrete’s mix test data were
collected based on published articles in recent years. A data
set containing 114 sets was obtained. Based on the data set
and the MATLAB platform, a strength prediction model of
rubber fiber concrete was established with ELM. The
prediction performance of the model was also verified.

The conclusions can be drawn as follows:

(1) Orthogonal experiment design adopts a representative
factor parameter combination for the experiment, and the
obtained sample set is highly representative and complete
in its information. The orthogonal test method was used to
design the mix ratio of rubber fiber concrete and its 28-day
strength test for obtaining the complete data sample. The
complete sample set meets the ELM algorithm’s
requirements for representing the training samples, and
an accurate prediction model can be obtained through a
small number of training samples.

(2) There is a highly nonlinear relationship between rubber fiber
concrete’s strength and its influencing factors, challenging to
deal with using traditional regression methods. With the
orthogonal experiment, there are six influencing factors;
rubber content, rubber particle size, and polypropylene
fiber content are used as input; and 28-day concrete
compression, splitting tensile, and flexural strength are
used as output. One strength prediction model was
established based on ELM. The experimental results show
that themodel has strong nonlinearmapping ability and high
prediction accuracy. It can be used as an effective method for
the strength prediction of the rubber fiber concrete.

(3) Since the generalization accuracy of the ELM model is
greatly affected by the hyperparameters, the ELM needs
further research in the super-parameter optimization

method and the reduction of optimization time. It is
also difficult to carry out a large number of mix ratio tests
in the laboratory. The complete rubber fiber concrete’s
mix ratio test data samples currently available are limited.
Although ELM has outstanding advantages over other
small sample modeling methods, the prediction accuracy
of this method still depends on the number and quality of
learning samples. Therefore, it is necessary to
continuously enrich the learning samples to further
improve the prediction model’s reliability in future
practical applications.
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Topçu, İ. B., and Demir, A. (2007). Durability of rubberized Mortar and concrete.
J. Mater. Civ. Eng. 19 (2), 173–178. doi:10.1061/(ASCE)0899-1561.2007192173
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