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Editorial on the Research Topic

Predicting High-Risk Individuals for Common Diseases Using Multi-Omics and

Epidemiological Data

Physiological data are the reflections of the physiological status of living systems (Terranova
et al., 2021). It is precious and preserves meticulous information. Capturing, interpreting, and
rationalizing them is imperative for next-generation medicine. Obtaining real-time, patient-centric
data have been progressively positioned at the core of digital disruption in healthcare. It promises
to deliver an accurate yet early diagnosis, and personalized precision therapy (Esteva et al., 2019).
The advent of multi-omics technologies and proficiency in utilizing complex, multi-dimensional
biological, epidemiological, and clinical data from bench-side to real-world have significantly
steered biomedical research and healthcare practices. With the mounting resources of multi-omics
data including transcriptomics, genomics, proteomics, metabolomics, and epigenomics, it becomes
challenging to integrate and infer them to insights. However, it is essential in reimagining the scopes
of discoveries in predictive healthcare (Boniolo et al., 2021; Ding et al., 2021).

This special issue congregated 15 different studies demonstrating different computational
frameworks, algorithms, and methods for inferring multi-omics, high-throughput data for
predictive health and early diagnosis of many common diseases. This issue covered different
conditions including sleep, gynecological, and oral health, common viral infections, and different
cancers including breast cancers (BC), multiple myeloma (MM), stomach adenocarcinoma (SA),
esophageal cancer (OC), gastric cancer (GC), and hepatocellular carcinoma (HC).

The majority of the studies published in this topic have introduced diverse methods to predict
risks for different cancers (Guo et al.; He et al.; Liu et al.; Pang et al.; Song et al.; Sun J. R. et al.; Sun
Z. et al.; Zhao et al.; Zhang et al.; Zhou et al.). Zhou et al. introduced a novel long non-coding RNAs
(lncRNAs) based screening method that can indicate risk score for MM. They obtained the raw
transcriptome data from Gene Expression Omnibus by performing weighted gene co-expression
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network analysis (WGCNA) and principal component analysis
to identify several risk lncRNAs. Successively, they employed
univariate, least absolute shrinkage, and selection operator
(LASSO) Cox regression and multivariate Cox hazard regression
analysis to identify the reliable targets of the lncRNAs,
LINC00996 and LINC00525 to devise a predictive risk score
system. These lncRNAs were associated with survival and
involved in the occurrence and progression of MM. Similarly,
Zhao et al. identified the six-lncRNA signature as a potential
prognostic marker to predict disease-free survival of BC patients.
Liu et al. introduced an effective multi-gene modeling framework
to predict the overall prognosis of heterogenous SA including
their signature mutations. They collected two independent SA
cohorts with both genetic profiling and clinical follow-up data
to investigate the association between the somatic mutations
and prognosis. Guo et al. identified a practical and robust
nine-gene prognostic model based on an immune gene dataset.
Immune-related genes (IRGs) are crucial contributors to the
development of EC. The authors studied the transcriptome data
and matched it with the clinical data of OC patients from
The Cancer Genome Atlas (TCGA) database. GEPIA2.0 was
employed to analyze 4,094 differentially expressed prognostic
genes among the 286 normal from Genotype-Tissue Expressions
(GTEx) and 182 TCGA samples. Then, they used Clusterprofiler
for GeneOntology annotations and Kyoto Encyclopedia of Genes
and Genomes enrichment analysis and performed joint Cox
regression analysis to study candidate prognostic biomarkers for
OC. Relying on this, they estimated the risk scores of each patient
from the expressions of differentially expressed IRGs and the
regression coefficient from the regression model.

Sun J. R. et al. focused on alternative splicing (AS) and flagged
the AS events as a reliable biomarker for the prognosis of OC.
They constructed the splicing factors-AS correlation networks
to offer new insights in identifying the potential regulatory
mechanisms associated with OC development. In the second
study by this team, genomic scores (GS) were calculated based on
Genome-Wide Network Analysis to predict the survival in GC
(Sun Z. et al.). Their multivariate analysis revealed a GS strategy
as a novel prognostic factor that comprises 7 miRNAs, 8 mRNA,
and 19 DNA methylation sites.

The power of machine learning models have emerged in the
study by He et al. Sequencing-based identification of tumor
tissue-of-origin (TOO) is critical for patients with cancers of
unknown primary lesions. There has always been a probability
of misdiagnosis. To avoid those issues, He et al., developed
a machine learning model using the expression of a 150-
gene panel to infer the tumor TOO for 15 common solid
tumor cancer types, including lung, breast, liver, colorectal,
gastroesophageal, ovarian, cervical, endometrial, pancreatic,
bladder, head and neck, thyroid, prostate, kidney, and brain
cancers. They studied 7,460 primary tumor samples across
those 15 cancer types and employed the Support vector
machines based recursive feature elimination algorithm to
perform the feature selection and classification modeling on gene
expression data. It designated 154 out of the 11,925 genes with
distinct biological significance. Thus, they elucidated a robust
classifier on gene expression data to predict TOO-based accurate

reclassifications of cancer types which were supplemented with
clinical examination.

Zhang et al. introduced an interesting method relying on
miRNA-based nomogram to predict distal lung metastasis of BC.
They acquired miRNA and clinicopathological data from the
Molecular Taxonomy of Breast Cancer International Consortium
(METABRIC) and screened out 8 miRNAs as highly relevant to
lung metastasis of BC patients. They used the limma package to
distinguish miRNAs annotated within the METABRIC dataset
and differentially expressed miRNAs (DEMs). They employed
LASSO regression to select the most suitable predictive miRNAs
from the 16-lungmetastasis-related DEMs and formulated a risk-
score prediction tool relying on 8-miRNAs for predicting lung
metastasis status of BC patients in the training set. Then, they
used univariate and multivariate logistic regression analysis to
determine the proficiency of those 8 miRNAs as predictors and
employed decision-curve analysis to test its clinical applicability.
Song et al. investigated a vital direction to identify the hub genes
associated with HC. Using a Robust Rank Aggregation method
combined with WGCNA, they constructed a clinically relevant
prediction model to uncover the complex biological mechanisms
of HC.

Sleep is one of the most neglected public health concerns.
Sambou et al. instituted a large study comprising the big data
obtained from 328,850 participants to endorse a data-driven
decision on the associations of the quality of sleep and the
healthier life span.

Implantation failure (IF) is one of the recurring issues in
assisted pregnancy (Busnelli et al., 2021). Thin endometrium
(TE) is a critical factor in IF. mRNA-miRNA cross-talks have
been repeatedly flagged as one of the essential etiologies for IF.
Xu, B et al., reconstructed integrative transcriptional regulatory
networks based on the miRNA-mRNA expression profiles in
the TE and normal endometrium tissue obtained from 8
patients (Zong et al.). It involved the miRNA sequence analysis
using the DeAnnIso tool (Zhang et al., 2016). They employed
Solexa CHASTITY and Cutadapt pipeline to process mRNA
sequence data and identified multiple hub genes by constructing
the miRNA–mRNA regulatory networks that illuminate new
insights underpinning the TE formation (Zong et al.). Huang
et al. studied single-cell transcriptional profiles to identify the
impact of sex and age on the gene expression of endothelial
cells. The transcriptomes of endothelial cells from 5 organs,
heart-aorta, fat, lungs, limb, muscle, kidney of the mouse
were analyzed. It discovered that older mice had increased
expressions of genes involved in inflammation in endothelial
cells, which may contribute to the development of chronic, non-
communicable diseases like atherosclerosis, hypertension, and
Alzheimer’s disease with age.

Another study focused on host-pathogen interactions and
devised oligoadenylate synthetases-like (OASL) as a potential
biomarker for early detection of flu-mediated acute respiratory
infection (ARI) cases (Li et al.). This study was aimed to
distinguish a strong single-gene biomarker with a superior
diagnostic accuracy by using integrated bioinformatics analysis
with XGBoost, a feature selection method relying on recursive
feature elimination with cross-validation (Li et al.). They
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analyzed transcriptome profiles to reconstruct a co-expression
network by employing WGCNA to identify the OASL as a hub
gene for ARI. Pang et al. applied random forest to predict dental
caries risks among teenagers. They constructed the caries risk
prediction model that serves as an easy, accessible community-
level tool to identify individuals with high caries risk.

All of the research articles published under this topic
introduced the state-of-the-art technologies employed on
multiplexed physiological data. It offers a newer perspective
on the early diagnosis of different diseases using data-driven
approaches. We anticipate it will be impactful in accelerating the
scopes in predictive healthcare research and applications.
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Host response biomarkers offer a promising alternative diagnostic solution for identifying
acute respiratory infection (ARI) cases involving influenza infection. However, most of
the published panels involve multiple genes, which is problematic in clinical settings
because polymerase chain reaction (PCR)-based technology is the most widely used
genomic technology in these settings, and it can only be used to measure a small
number of targets. This study aimed to identify a single-gene biomarker with a high
diagnostic accuracy by using integrated bioinformatics analysis with XGBoost. The
gene expression profiles in dataset GSE68310 were used to construct a co-expression
network using weighted correlation network analysis (WGCNA). Fourteen hub genes
related to influenza infection (blue module) that were common to both the co-expression
network and the protein–protein interaction network were identified. Thereafter, a
single hub gene was selected using XGBoost, with feature selection conducted using
recursive feature elimination with cross-validation (RFECV). The identified biomarker was
oligoadenylate synthetases-like (OASL). The robustness of this biomarker was further
examined using three external datasets. OASL expression profiling triggered by various
infections was different enough to discriminate between influenza and non-influenza
ARI infections. Thus, this study presented a workflow to identify a single-gene classifier
across multiple datasets. Moreover, OASL was revealed as a biomarker that could
identify influenza patients from among those with flu-like ARI. OASL has great potential
for improving influenza diagnosis accuracy in ARI patients in the clinical setting.

Keywords: influenza infection, host response, OASL, XGBoost, WGCNA

INTRODUCTION

Acute respiratory infection (ARI) is responsible for significant levels of morbidity and mortality
worldwide related to infectious diseases. Viruses and bacteria are the main causes of ARI. Among
the viruses, influenza virus kills more people than other viruses. It has been estimated that there
were 250,000–500,000 additional deaths during the first 12 months of the global circulation of the
2009 pandemic H1N1 influenza A virus (Dawood et al., 2012). Better diagnostics for ARI (with or
without influenza virus) are urgently needed in both inpatient and outpatient settings. However,
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discriminating between influenza and non-influenza flu-like
illnesses on clinical grounds is often difficult, because these ARIs
share similar clinical features (e.g., cough and fever).

Diagnostic methods for viral pathogens, such as culture,
serodiagnosis, nucleic acid-based methods, and high-throughput
sequencing, are important to guide disease management. When
the presence of a viral pathogen is confirmed by these methods,
this does not exclude a possible coinfection with bacteria, leading
to antimicrobial prescriptions “just in case” (Tsalik et al., 2016).
Moreover, as for most respiratory pathogens, the presence of
influenza virus is sometimes unrelated to the presenting illness
(Jansen et al., 2011). There is currently widespread interest in tests
for virus detection in general and tests for “active” virus detection.

The host response to infection provides an alternative
target for “active” virus detection. It has been reported that
biomarkers based on host gene expression have great potential for
distinguishing ARI patients infected with viruses versus bacteria
(Herberg et al., 2016; Sweeney et al., 2016b; Tsalik et al., 2016; Yu
et al., 2019). In addition to ARI, other infectious diseases such
as tuberculosis (Sweeney et al., 2016a), systemic inflammation
(Sampson et al., 2017) and hemorrhagic fevers (Robinson et al.,
2019) have been studied using this approach. Most published
panels for detecting the host response to infections contained
multiple genes, making it difficult to apply them in clinical
settings, as polymerase chain reaction (PCR)-based technologies
could only measure a small number of targets. Recently,
interferon alpha-inducible protein 27 (IFI27) was found to be able
to distinguish influenza and non-influenza flu-like illnesses in a
large cohort, with an area under the curve (AUC) value of 0.87
(Tang et al., 2017). However, IFI27 was the most upregulated gene
during influenza virus, respiratory syncytial virus (RSV), and
human rhinovirus (HRV) infections (Ioannidis et al., 2012; Zhai
et al., 2015). Here, we aimed to follow the single-gene strategy to
improve the discrimination between influenza and non-influenza
flu-like illnesses based on an integrated bioinformatics analysis
with XGBoost (Figure 1).

MATERIALS AND METHODS

Study Design
The purpose of this study was to use an integrated bioinformatics
analysis to analyze multiple gene expression datasets in order to
identify a biomarker that can accurately classify patients with
influenza or non-influenza flu-like illnesses, including bacterial
infections and other viral infections. The general study workflow
was shown in Figure 1.

Data Collection
In brief, data were obtained from the Gene Expression Omnibus
(GEO) database1 in December 2019 using the keyword “influenza
cohort.” The following exclusion criteria were applied to the
microarray data: (1) only involved influenza infection; (2) no
or insufficient clinical data; (3) concerned influenza vaccine
responses; and (4) used non-baseline (“healthy”) controls. After

1http://www.ncbi.nlm.nih.gov/geo/

review, GSE68310, which contains 880 samples from 133 subjects
with influenza infection or other viral ARIs, was selected for
biomarker discovery (Zhai et al., 2015).

For the validation stage, three external independent
microarray datasets were selected. GSE6269 (Ramilo et al.,
2007) was used to evaluate the diagnostic performance between
influenza and bacterial infections. Both GSE42026 (Herberg et al.,
2013) and GSE38900 (Mejias et al., 2013) were used to estimate
the discriminatory power to differentiate the influenza against
other viral infections. In addition to controls, the three datasets
contained cases with common bacterial and viral respiratory
infections, i.e., Streptococcus pneumoniae, Staphylococcus aureus,
influenza virus, HRV, and RSV etc. Before further analysis, the
expression matrices were normalized and log2-transformed.

Differentially Expressed Genes
Screening
The limma R package was used to screen the influenza infection
associated differential expressed genes (DEGs). DEGs analyses
contrasting the Day 0 influenza A virus infected individual data
with the baseline samples were performed by function for linear
model fitting in the R package limma (Ritchie et al., 2015).
Correction for multiple testing was addressed by controlling the
false discovery rate (FDR) using the Benjamini–Hochberg (B.H.)
method. Criteria for DEGs were an absolute log2 fold change
(Log2FC) of 0 and the FDR-adjusted P-value of <0.05.

Co-expression Network Construction
A co-expression network was constructed using the normalized
GSE68310 data by the weighted correlation network analysis
(WGCNA) in R (Langfelder and Horvath, 2008). Briefly, quality
assessment of GSE68310 samples was conducted using the cluster
method. The soft-thresholding power was then calculated, with
the type of network set to signed. The correlation coefficient
threshold was 0.90. Network construction was then performed
based on the calculated power. In addition, the minimum number
of genes in each module was 30 and the threshold for cut height
was set to 0.25 to merge possible similar modules.

Identification of Modules Related to
Influenza Infection
For a given module, the expression profile was summarized
into a single characteristic expression profile, designated
module eigengenes (MEs). MEs were considered as the first
principal component in the principal component analysis (PCA).
Thereafter, a Pearson correlation analysis, calculating the Student
asymptotic P-values for the correlations, between MEs and
clinical traits (Progression, Baseline, Day0 of viral infection and
gender) was conducted.

Gene Ontology and Kyoto Encyclopedia
of Genes and Genomes Analyses
To understand the functions of enriched genes in interesting
modules, Gene Ontology (GO) (Ashburner et al., 2000) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa
et al., 2017) analyses were performed using clusterProfiler
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FIGURE 1 | General study workflow: data collection, in silico analysis, and external validation. PPI, protein–protein interaction; RFECV, recursive feature elimination
with cross-validation.

(Yu et al., 2012), identifying significant results based on a
Benjamini–Hochberg FDR-adjusted P-value ≤0.05.

Candidate Hub Gene Selection
Three bioinformatics approaches were combined to select the
hub genes. First, the module that was most highly correlated with
influenza infection was selected. Hub genes in the module were
determined by both gene significance and module membership.
Second, all the interesting genes were uploaded to the Search Tool
for the Retrieval of Interacting Genes (STRING) database2 to
create a protein–protein interaction network (PPIN) (Szklarczyk
et al., 2019). Hub genes in PPIN were selected by maximum
neighborhood component (MNC), degree and maximal clique
centrality (MCC) using cytoHubba with Cytoscape (Shannon
et al., 2003; Chin et al., 2014). Thereafter, hub genes common
to both networks were chosen. Finally, a single hub gene was
selected using XGBoost with recursive feature elimination with
cross-validation (RFECV) (Pedregosa et al., 2011; Chen and
Guestrin, 2016).

External Dataset Validation of the Hub
Gene
We validated the hub gene-based classification performance
related to distinguishing influenza and non-influenza acute

2https://string-db.org

respiratory illness using the external datasets GSE6269,
GSE42026, and GSE38900. We also compared the performance
of the selected hub gene to the performance of IFI27, which
is a biomarker that discriminates influenza from all other
conditions, with an AUC value of 0.87 (Tang et al., 2017).
Additionally, a receiver operating characteristic (ROC) curve
was plotted, and AUC was calculated using “pROC” (Robin
et al., 2011) to evaluate the performance of the selected hub
gene regarding distinguishing influenza infection from all
other conditions.

Statistical Analysis
R (version 3.5.1) was used for most analyses, with hub gene
selection being performed using XGBoost in Python (version
3.6). The statistical significance of pairwise differences between
groups was analyzed using a two-tailed t-test. P-value ≤0.05 was
considered statistically significant.

RESULTS

Quality Control and Sample Selection
Raw data in dataset GSE68310 was subjected to background
adjustment, variance stabilization after log2 transformation, rank
invariant normalization, and quality control evaluation with a
detection P-value less than 0.05 by using corresponding functions
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FIGURE 2 | Co-expression network constructed using weighted correlation network analysis (WGCNA). (A) Analysis of the scale-free fit index with a threshold of
0.90 (top) and mean connectivity (bottom) for various soft-thresholding power values. (B) Distribution of average gene significance and errors in the modules
associated with Influenza infections (FluA-Day0). (C) Heatmap of the correlation between module eigengenes and the clinical traits recorded in GSE68310. FluA,
influenza A virus; FluB, influenza B virus; HRV, human rhinovirus; HCoV, human coronavirus.

in the R package lumi (Du et al., 2008). The preprocessed
expression matrix was then normalized by quantile method
in R package limma. Thereafter, the probe sets with known
gene symbol were kept, with 20,914 probes out of 47,254
remaining. No samples were removed after cluster analysis
(Supplementary Figure S2).

Influenza Associated DEGs
After quality control, we obtained the normalized expression
matrices from GSE68310. Under the threshold of FDR < 0.05 and
| log2FC| ≥ 0, a total of 6142 DEGs (2465 up-regulated and 3677
down-regulated) were achieved. The volcano plot of DEGs were
shown in Supplementary Figure S2.

Weighted Co-expression Network and
Identification of the Influenza
Infection-Related Module
To ensure that a scale-free network was constructed, a soft-
thresholding power of 3 was selected while 0.90 was used as the
correlation coefficient threshold (Figure 2A). After removing the
gray module which contained unassigned genes (n = 10,047),
a total of eight modules were identified and constructed in the
WGCNA analysis (Figure 2B). The module with the most genes
was the turquoise (n = 3127) module, followed by the blue
(n = 1930), and brown (n = 1155) modules (Supplementary
Figure S3). Modules with a greater MS were considered to
have more connection with the influenza infections, and we
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FIGURE 3 | Functional analysis of interesting modules. (A) GO and KEGG enrichment results for the blue module; (B) Venn diagram of KEGG results for the blue and
purple modules; (C) Venn diagram of GO results for the blue and purple modules. GO: Gene Ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes.

found that the MS of the blue module was higher than those
of any other modules (Figure 2C). In addition, module–trait
correlation analyses showed that multiple modules were related
to influenza infection. The Pearson correlation analysis, which
involved calculating the Student asymptotic P-values for the
correlations, between the MEs of each module and clinical traits
is shown in Figure 2B. The blue module was the module most
relevant to influenza infection, while the purple module was
related to HRV infection.

Quality Control of Modules Using
Functional Analysis
Functional enrichment results of genes in the blue module, which
was highly related to influenza infection, should hypothetically
be related to the immune response to viruses. The GO

and KEGG functional enrichment results were both used to
examine this hypothesis (Figure 3A). The most highly enriched
GO terms included regulation of innate immune response,
neutrophil activation, neutrophil degranulation, neutrophil
mediated immunity, and neutrophil activation involved in
immune response. The KEGG results directly included the
influenza A pathway (Figure 3).

It has been reported that different respiratory viruses can
cause similar symptoms via different mechanisms. As the purple
module was associated with HRV infection, GO and KEGG
analyses were also performed on the genes in the purple
module. The KEGG pathway results clearly suggested that the
blue module (influenza-related) and the purple module (HRV-
related) shared highly similar KEGG pathways (Figure 3B).
Conversely, the GO Biological Process results were very
dissimilar (Figure 3C). Thereafter, the correlation between
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FIGURE 4 | Hub gene selection. (A) Scatter plot of module eigengenes in the blue module with selection thresholds. (B) Visualization of the network connections
among the most connected genes in the blue module. The size of circles was equal to the log2 fold change. (C) Common hub genes in both the PPI and
co-expression networks. (D) Classification accuracy versus number of genes, based on the combination of XGBoost and recursive feature elimination with
cross-validation. (E) Evaluation of classification performance of the selected hub gene, oligoadenylate synthetases-like (OASL), using dataset GSE68310.

module membership regarding the blue module and gene
significance for HRV was assessed. No correlation was found,
as shown in Supplementary Figure S4 (r = −0.11, P = 1.3e-6).
Therefore, the presence of a unique set of genes in the blue
module was correlated with influenza infections.

Hub Gene Selection
The genes in the blue module were identified as candidate hub
genes by the co-expression network approach. A total of 106
genes were selected using a gene significance threshold of 0.9
and a module membership significance of 0.6 (Figure 4A and
Supplementary Table S1). In addition, the network connections

among the most connected genes in the blue module was
displayed through Cytoscape (Figure 4B). Next, a PPIN of all the
genes in the blue module was constructed using Cytoscape based
on the STRING database. The top 101 genes shared by MNC,
degree and MCC through cytoHubba were considered as hub
genes (Supplementary Table S1). Thereafter, 14 genes that were
common to both networks were selected as the candidates to be
further analyzed (Figure 4C and Supplementary Figure S5).

Hub gene selection based on XGBoost and RFECV was carried
out using the 14 candidate genes. The samples labeled “Day0”
(meaning that samples were collected within 48 h of ARI onset,
i.e., in the acute phase) with data on the 14 genes were firstly
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FIGURE 5 | Forest plot of diagnostic performance of OASL and IFI27 on external cohorts. AUC, Area under curve. *Cases with bacterial infections were removed.

standardized. They were then randomly assigned at a 7:3 ratio
to a training set (93 samples) and a test set (40 samples). The
“XGBoost” package in Python was used for data classification.
Parameter max_depth was defined as 3; learning_rate was defined
as 0.01; gamma was defined as 0.05; n_estimators was defined as
100. To obtain the best XGBoost model parameter combination
(learning_rate, max_depth, gamma, and n_estimators) with the
highest classification accuracy, fivefold cross-validation and grid
search were applied to the training set. RFECV was then applied
for feature selection based on the feature importance scores
calculated by XGBoost. Parameter step was defined as 1; cv was
defined as 5. The highest accuracy of classification was 0.944
which could be achieved through a single gene, oligoadenylate
synthetases-like (OASL) (Figure 4D). Moreover, the AUC score
in the training and test sets for this single gene was 0.935 and
0.889, respectively (Figure 4E).

External Validation Cohorts
Three external cohorts were chosen to evaluate the diagnostic
performance of the single gene-based classifier (Figure 5). First
of all, GSE6269 was used to evaluate the diagnostic performance
between influenza and bacterial infections. Both OASL and IFI27
showed high diagnostic accuracy (0.900 and 0.963, respectively).
Next, GSE42026 and GSE38900 were used to estimate the
discriminatory power to differentiate the influenza virus against
other respiratory viruses. To meet this aim, cases with bacterial
infection (n = 18) were firstly removed in GSE42026. After that,
the AUC of OASL was 0.852 (95% CI: 0.738–0.965) while the
AUC of IFI27 was 0.765 (95% CI: 0.658–0.872). For GSE38900,
the AUC of OASL was 0.797 (95% CI: 0.696–0.899) while the
AUC of IFI27 was 0.409 (95% CI: 0.320–0.498). AUC values were
calculated using bootstrapping validation (Robin et al., 2011).
Based on these findings, OASL achieved overall accurate results.

DISCUSSION

Over the last decade, considerable achievements have been
made regarding the discovery of gene expression biomarkers
of infections, especially respiratory illnesses (Herberg et al.,
2016; Sweeney et al., 2016b; Tang et al., 2017; Robinson et al.,
2019; Yu et al., 2019). In clinical settings, panels with multiple
genes are problematic for infection diagnostics, as the most
widely used genomic technology in clinical settings is PCR-based
technologies, which can only be used to assess a handful of
targets. To overcome this barrier, a single gene-based diagnostic
strategy will be highly beneficial. IFI27 has recently been
reported to be able to distinguish between influenza and bacterial
infections (with an AUC of 0.91) and between influenza and
non-influenza but flu-like illness (with an AUC of 0.87) (Tang
et al., 2017). However, IFI27 has been found to be the highest
upregulated gene during both influenza and RSV infections
(Ioannidis et al., 2012). Therefore, an integrated bioinformatics
analysis with machine learning was performed in this study to
identify a hub gene that was specific to influenza infection.

As ARIs share similar clinical features and various respiratory
viruses trigger a variety of interferon-stimulated genes (ISGs),
an ideal dataset for biomarker discovery should include not
only influenza infections, but also other respiratory infections.
GSE68310 was finally selected (Zhai et al., 2015). To discriminate
influenza infections from other viral infections, WGCNA, an
unsupervised analysis method that clusters genes based on
their expression profiles, was the first step to identify the hub
module associated with influenza infection. Moreover, quality
control involving enrichment analysis was performed on both
the blue (influenza-related) module and the purple (HRV-related)
module. Although diverse GO results were observed, similar
KEGG pathways were enriched, which provides insights as to why
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the clinical features are similar among various viral infections
(Figures 3B,C). The ISGs related to different viral infections were
unique, which was consistent with previous research (Ioannidis
et al., 2012; Andres-Terre et al., 2015). Therefore, the presence of
a distinctive set of genes in the blue module was as expected.

To obtain a single hub gene for influenza infection, XGBoost
was applied to the high-dimensional gene expression matrix.
Compared with other ensemble machine learning algorithms,
XGBoost extends simple classification and regression trees
(CARTs) instead of building a single tree. Building many trees
and then aggregating them to form a single consensus prediction
model can improve the prediction accuracy (Chen and Guestrin,
2016). In addition, as a tree-based algorithm, XGBoost provided
an importance score for each gene in each tree model. The
importance score revealed how informative the gene was. RFECV
showed good performance regarding feature reduction. Finally,
the hub gene OASL was selected and tested in the discovery
dataset GSE68310 (Figure 4).

To evaluate the diagnostic performance of OASL, three
external datasets were selected (Figure 1). Firstly, both OASL
and IFI27 shared similar highly accurate performance in
discriminating between influenza and bacterial infections on
GSE6269. To classify influenza and viral infections, OASL
outperformed IFI27 slightly on GSE42026 with an AUC of 0.852
(95% CI 0.738–0.965) versus 0.765 (95% CI 0.658–0.872). In
addition, we investigated another external cohort GSE38900 as a
challenge dataset which contained 121 cases with non-influenza
viral infections. Although both OASL and IFI27 showed reduced
AUC on GSE38900, it was worth of noting that the AUC of OASL
still remained close to 0.8. To avoid poor reproducibility across
external patient populations, more studies with larger sample
sizes were needed to verify the diagnostic performance of OASL.

Oligoadenylate synthetases-like, a member of the OAS family,
mediates antiviral activities via promoting retinoic acid-inducible
gene I (RIG-I)-mediated signaling by mimicking polyubiquitin
(pUb) (Zhu et al., 2014). Notably, to evade host innate
immunity, a number of viruses (especially influenza virus) target
ubiquitin ligases or encode deubiquitinases (DUBs) and DUB-
like molecules (Gack et al., 2009). Thus, in the absence of
pUb (which is caused by influenza viruses), the activation of
RIG-I triggered by OASL plays central roles in host antiviral
activities. Recently, OASL has been considered as a new
player in controlling antiviral innate immunity (Zhu et al.,
2015). In addition, OASL was included by previous panels for
discriminating viral and bacterial infections (Andres-Terre et al.,
2015; Sampson et al., 2017). It was consistent with present results.
OASL has considerable discriminatory power in differentiating
between viral and bacterial infections (Figure 5). It was worthy
of noting the expressions of OASL triggered by various viruses
were different enough to tell influenza infection apart from other
viral infections (Figure 5 and Supplementary Figure S8). The
role of expressions of OASL triggered by different viruses in the
pathogenesis of ARI need to be studied in the future.

Compared with other genomic technologies, influenza-
targeted quantitative reverse transcription polymerase chain
reaction (qRT-PCR) was widespread in clinical practice. The
performance of PCR was limited because samples tend to

be collected prior to ARI onset (and, sometimes, late in
the illness), there is often a limited specimen quantity,
and the nucleic acid (typically RNA) is often degraded.
However, OASL was found to be upregulated during the
progression of influenza infection (Supplementary Figure S9).
To our surprise, OASL remained upregulated at 21 days
after ARI onset which was the timepoint the subject had
clinically recovered. The same trend was observed for IFI27
(Supplementary Figure S9). This might be caused by the
influenza virus load was reduced but not eliminated. Therefore,
identification of OASL expression might indicate the presence
of an influenza infection when PCR indicated a negative
result. As the OASL expression value was important and
influenza is an RNA virus, we suggested using qRT-PCR
to detect both OASL expression and influenza virus to
distinguish between influenza and non-influenza flu-like cases in
clinical settings.

Nevertheless, our study had certain limitations. First of
all, the performances of OASL in the external datasets were
moderate (AUC < 0.9). Secondly, limited types of viral infections
were validated in the datasets. ARI is not caused by one or
two viruses but a diverse viral community in the respiratory
tract. We previously found that RSV, human coronaviruses
(HCoV), human bocavirus (HBoV), influenza virus, human
adenoviruses (HAdV), and human parainfluenza virus (HPIV)
may be the main causes of severe ARI in Beijing, China (Wang
et al., 2016). Thirdly, although it is accepted that the current
study provides useful baseline data for future study, an ideal
approach should be to perform a prospective study to verify
the usefulness of OASL as an influenza ARI biomarker. Yet, it
will be challenging to collect ARI specimens currently during
the COVID-19 pandemic. Moreover, qRT-PCR is a commonly
used validation tool for confirming gene expression results
obtained from microarray. Therefore, we shall apply qRT-
PCR to test the OASL assay’s accuracy with various ARI in
the future work.

On the whole, this study addressed a major challenge related to
translating genomic science into clinical practice. It has recently
been reported that transcriptomes in nasal and blood samples
from ARI patients exhibit similar patterns of type I interferon
response (Yu et al., 2019). Thereafter, we suggested that a
combination of both OASL and universal influenza detection,
as measured by qRT-PCR using nasal samples, could be utilized
to identify influenza infection in individuals with flu-like illness.
Ultimately, before the OASL and influenza assay is used in clinical
practice, there will be a need for prospective studies to establish
its clinical utility as well as cost-effectiveness analyses.
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Keratoconus (KC) is a complex ocular disease that is affected by both genetic and

non-genetic triggers. A recent genome-wide association study (GWAS) identified a

genome-wide significant locus for KC in the region of PNPLA2 (rs61876744), as well as

a suggestive signal in the MAML2 (rs10831500) locus. In order to validate their findings,

here we performed a replication study of the Han Chinese population, with 120 sporadic

KC cases and 206 gender and age matched control subjects, utilizing the TaqMan SNP

genotyping assays. SNP rs10831500, as well as two proxy SNPs for rs61876744, named

rs7942159 and rs28633403, were subjected to genotyping. However, we did not find a

significant difference (P > 0.05) in all the three genotyped SNPs between KC cases

and the controls. A further meta-analysis on four previous cohorts of white patients and

this Han Chinese cohort showed a significant genetic heterogeneity within the replicated

loci. Thus, the current study suggests that SNP rs61876744 (or its proxy SNPs) and

rs10831500 might not be associated with KC susceptibility in this Han Chinese cohort,

and a large-scale association analysis focusing on the loci is therefore warranted in

further investigations.

Keywords: keratoconus, association study, Han Chinese population, SNP, replication

INTRODUCTION

Keratoconus (KC) is a degenerative ocular disorder that is characterized by continuous corneal
thinning and steepening, which finally causes moderate to severe visual impairment (Rabinowitz,
1998). Most of these diagnosed cases are sporadic, while a familial form of KC is also observed. The
prevalence of KC has been estimated to be 1:2,000 in the general population. However, a strikingly
higher incidence among Asians has been reported, and Asians are younger at presentation
and require corneal grafting at an earlier age. This is suggestive of substantial influences of
ethnic differences underlying this disease (Kok et al., 2012). The therapeutic intervention of KC
varies heavily on the clinical stage. Contact lenses and corneal collagen UV cross-linking are
major effective approaches for the management of KC at early stages, achieving biomechanical
stabilization of the cornea and reducing the disease progression rate (Karolak and Gajecka, 2017).

18

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2020.00827
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2020.00827&domain=pdf&date_stamp=2020-07-22
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:jianjiangxu@126.com
https://doi.org/10.3389/fgene.2020.00827
https://www.frontiersin.org/articles/10.3389/fgene.2020.00827/full
http://loop.frontiersin.org/people/797308/overview
http://loop.frontiersin.org/people/797344/overview
http://loop.frontiersin.org/people/1034691/overview
http://loop.frontiersin.org/people/706188/overview


Zhang et al. KC Association in Han Chinese

Unfortunately, not all KC cases are recognized at early stages, and
as the disease progresses, corneal transplantation is necessitated
for up to 20% of KC patients. KC is therefore one of
the major indications for corneal transplantation in western
countries (Faria-Correia et al., 2015). This makes finding
specific biomarkers that can target KC at its early stage of
particular importance.

KC has a complicated etiology, with UV exposure (Arnal
et al., 2011), atopy (Bawazeer et al., 2000), contact lens wear
(Steahly, 1978), and constant eye rubbing (McMonnies, 2009)
considered as the main behavioral and environmental risk factors
for the disease. Biologically, down-regulation of collagens and
structural proteins like lumican, keratocan, and decorin, as well
as increased expression of catabolic enzymes were observed
in KC patients, indicating the dramatic rearrangement of the
corneal architecture (Sharif et al., 2018; Ferrari and Rama, 2020).
Altered TGF-β signaling, which is a key regulator of extracellular
matrix (ECM) secretion and assembly, was found to be involved
in KC progression (Engler et al., 2011). In addition, increased
oxidative stress and classic pro-inflammatory proteins including
IL1, IL6, MMP9, and TNF-α were also found in KC corneas
(Mas Tur et al., 2017; Vallabh et al., 2017). More importantly,
an increasing body of evidence suggests a substantial genetic
basis underlying KC, such as the increased probability for siblings
of KC to develop the same disease (Naderan et al., 2016),
the higher concordance rate in monozygotic twins compared
to dizygotic twins (Tuft et al., 2012), and the observation
of multi-generation pedigrees with KC (Burdon and Vincent,
2013). Many efforts have therefore been made to identify the
genetic risks for KC, mainly based on approaches including
linkage analyses and genome-wide association studies (GWAS).
To date, single nucleotide polymorphism (SNPs) in these genes
have been identified, including CAST, RAB3GAP1, DOCK9,
LOX, HGF, ZNF469, VSX1, IL1A, IL1B, WNT10A, SOD1 (De
Bonis et al., 2011; Bykhovskaya et al., 2012; Czugala et al.,
2012; Li et al., 2012, 2013a,b; Wang et al., 2013; Cuellar-
Partida et al., 2015), and some central corneal thickness
(CCT) related loci including MDPZ-NF1B, FOXO1, FND3B,
COL4A3, COL4A4, and COL5A (Lu et al., 2013; Iglesias et al.,
2018). Several of them were independently investigated in
other ethnicities, including the Han Chinese population, whilst
substantial heterogeneity remains across various ethnicities
(Wang et al., 2013, 2016, 2018; Hao et al., 2015; Zhang et al.,
2018).

Recently, McComish et al. performed a GWAS study of four
independent cohorts of white patients with KC. Two novel loci
showed genome-wide significance, rs61876744 in the PNPLA2
gene on chr11, and rs138380 in the CSNK1E gene on chr22. They
also reported a suggestive association signal from rs10831500,
which was close to the MAML2 gene on chr11 (McComish
et al., 2019). However, given the potential genetic heterogeneity
underlying KC etiology, it still remains unclear whether these
newly identified SNPs are still in association with KC risk in other
populations. An intensive investigation on the loci of interest, is
therefore in demand. We thus conducted a replication study here
to examine their roles in KC susceptibility in an independent Han
Chinese cohort.

MATERIALS AND METHODS

Subjects
A total of 120 sporadic Han Chinese keratoconus cases, as well
as 206 age and gender matched controls were recruited. KC
cases were collected from the Department of Ophthalmology
at the EENT Hospital of Fudan University from October 2015
to March 2018. They all lived in East China and were of Han
Chinese ethnicity. KC cases were diagnosed based on both
clinical examination and videokeratography pattern analysis,
according to the following criteria: (1) at least one KC sign by slit-
lamp examination (stromal thinning, Fleischer’s ring, Munson’s
sign, and Vogt’s striae); (2) an asymmetric bowtie pattern in
corneal topography; refractive errors; signs of videokeratography;
(3) KISA index >100; central K reading >47D. The control
subjects had no ocular disease and attended the same hospital due
to accidental injury.Written informed consent forms were signed
by all participants. This study was performed in accordance
with the declaration of Helsinki and was approved by the Ethics
Committee of the EENT Hospital of Fudan University.

DNA Extraction
Genomic DNA was extracted from the monocytes in peripheral
blood, with the QIAGEN FlexiGene DNA kit (Qiagen, Germany)
following the standard protocol. DNA concentration was tested
by a NanoDrop spectrophotometer. DNA samples were stored at
−20◦C before use.

SNP Genotyping
SNP rs10831500, as well as two proxy SNPs for rs61876744,
named rs7942159 and rs28633403 were subjected to genotyping.
The probes were designed by ThermoFisher TaqManTM

SNP genotyping Assay (Catalog nos. C__30938976_10 for
rs10831500, C__11279798_10 for rs7942159, C__64236579_10
for rs28633403). The probe for SNP rs138380 failed to be
designed by the custom TaqManTM SNP genotyping Assay, and
it was not further investigated here. Real-time PCR (Applied
Biosystems VII, USA) was applied to complete the genotyping
assay. Each reaction for the samples was prepared as 5 µL
2×SuperMix for SNP Genotyping (ThermoFisher, USA), 0.25
µL 40×probe, 2.5 µL ddH2O, and 2 µL DNA. PCR cycling
conditions were 95◦C for 10min, 45 cycles of 95◦C for 15 s
and 60◦C for 1min. Fluorescence data were automatically
analyzed by QuantStudioTM Real-Time PCR Software (Applied

TABLE 1 | Characteristics of KC cases and controls included in this study.

Feature Cases (n = 120) Controls (n = 206)

Gender (female/male) 29/91 79/127

Average age (years)* 22.77 ± 5.69 26.23 ± 4.17

Age range (years) 13–45 15–33

Disease onset age (years)* 20.96 ± 5.08 NA

Visual activity* OS: 0.61 ± 0.25 NA

OD: 0.35 ± 0.26

OS, left eye; OD, right eye. *Data is shown as mean ± S.D.
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Biosystems, USA). Genotypes were classified by the ratio of the
two fluorescence signals (FAM and VIC).

Data Analysis
The statistical analyses were mainly carried out by PLINK
(Purcell et al., 2007). The validation of SNP frequency in cases
and controls was calculated for departure from the Hardy-
Weinberg equilibrium through an exact test. The allele frequency
of each SNP between the cases and controls was calculated with

a χ
2-test. The logistic regression model, with adjustment for

gender and age, was applied to evaluate odds ratios (ORs) and
their 95% confidence intervals (CIs). The linkage disequilibrium
(LD) among SNPs was calculated using the LDlink package
(Machiela and Chanock, 2015). A meta-analysis was performed
by weighting effect size estimates using the inverse of the
corresponding standard errors. The between-study heterogeneity
was evaluated by the I2-value. OR and 95%CI for the minor allele
were calculated with the random effects model when I2 > 50%.

FIGURE 1 | (A) LD pattern of SNP rs61876744 and its two proxy SNPs in the PNPLA2 gene (shown as pairwise r2 values in Europeans, East Asians, Americans, and

Africans. Data was obtained from the 1000G Project Phase 3). (B) Allele frequencies of the investigated SNPs among different ancestries. Data was retrieved from the

1000 Genomes project and the gnomAD database (Allele frequency for SNP rs61876144 was not available in gnomAD).
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The statistical significance of SNP association was calculated by
the Z-test. The P-values were transformed from the Z-scores and
a pooled P < 0.05 was considered as statistically significant.

RESULTS

A total of 120 sporadic Han Chinese KC cases and 206 controls
were recruited for this study. As presented in Table 1, KC cases
showed an average age of 22.77 ± 5.69 yrs, and 75.8% of them
were male. The control subjects showed an average age of 26.23
± 4.17 yrs, and the percentage of males was 61.6%, similar to that
of the case group.

Three SNPs were subjected to genotyping in our cohort. SNP
rs10831500 in the MAML2 gene was directly replicated here
to investigate its association in this Han Chinese cohort. SNP
rs61876744 in the PNPLA2 gene showed the most significant
association signal in the original GWAS, however, the TaqMan
probe for this SNP failed to be designed, probably due to the
features of flanking sequences around this SNP, and thereby
its two proxy SNPs, rs28633403 (the most correlated SNP in
Asians, r2 = 0.83) and rs7942159 (the most correlated SNP in
Europeans, r2 = 0.95) were selected for further replication. The
LD pattern among the three SNPs in the PNPLA2 region, and
their allele frequencies varied a lot in different ancestries (shown
in Figure 1). Another suggestive signal in the CSNK1E gene,
SNP rs138378, was not further replicated due to the failure of

TABLE 2 | Basic association result of the genotyped SNPs in this study.

SNP Allele MAF_ MAF_ χ
2 P-value OR (95% CI)

Case % Control %

rs28633403 A/G 49.4 50.0 0.01639 0.8981 0.98 (0.67–1.42)

rs7942159 G/A 34.9 29.9 1.163 0.2808 1.26 (0.83–1.91)

rs10831500 T/G 51.4 45.8 1.716 0.1901 1.25 (0.89–1.74)

MAF, minor allele frequency, the minor allele of each SNP was underlined; OR, odds ratio,

with respect to the minor allele; 95% CI: Lower/Upper bound of 95% confidence interval

for OR; P-values and ORs were calculated after adjustment for age and gender.

designing its custom probe for genotyping, as well as the lack of
suitable proxy SNP (r2> 0.8).

We achieved an averaged genotyping call rate of 92.9% for
the investigated SNPs. The two proxy SNPs for rs61876744 were
in Hardy-Weinberg equilibrium in the controls, whilst SNP
rs10831500 showed a slight deviation (P = 0.02905). Allelic
association analyzed by PLINK showed that none of the SNPs
were significantly in association with KC susceptibility in this
Han Chinese cohort (Table 2). Theminor allele frequency (MAF)
of rs28633403 in the case group was almost comparable to that
in the control group (49.4 vs. 50.0%). SNP rs7942159, the other
proxy SNP for rs61876744 showed a 5%MAF difference between
the cases and the controls, but did not reach nominal significance.
Interestingly, its risk allele “G” had much lower frequency in
Asians (Asians: 30%, Europeans: 61.5%; gnomAD data). For
SNP rs10832500, its protective allele “T” in the original GWAS,
presented a risk role in this Han Chinese cohort. A following
genotypic association analysis was performed. However, only
the genotype distribution of rs7942159 presented a borderline
difference (P = 0.06726). The frequencies of the GG, GA, and
AA genotypes of rs7942159 were found to be 8.2, 53.4, and 38.4%
in the KC case group, compared to 11.1, 37.7, and 51.2% in
the control group. A higher OR of 1.69 was shown when the
dominant model was applied (Table 3).

Of note, in addition to rs10832500, SNP rs28633403,
and rs7942159 were also genotyped in the original
GWAS project, and the raw summary data was obtained
(Supplementary Table 1). A meta-analysis of association results
from previous four cohorts of white patients and this Han
Chinese cohort was then further performed (Figure 2). It
was found that these SNPs presented opposite trends among
the included five cohorts, and substantial between-study
heterogeneity was found. Therefore, the random-effects model
was used here. SNP rs28633403 and rs7942159 were found to
be in association with KC by meta-analysis (P_meta = 0.004
and 0.04, respectively). However, their contributions to KC
susceptibility remain questionable, as substantial heterogeneity
existed (I2 > 50%) and their association P-values in 3 out of
5 cohorts were bigger than the 0.05 cutoff. SNP rs10832500

TABLE 3 | Genotype frequencies of the genotyped SNPs and their association with susceptibility to KC.

SNP/group Group frequency P-value Dominant model Recessive model

OR (95% CI) P-value OR (95% CI) P-value

rs28633403 AA AG GG 0.5483 AA&AG vs. GG AA vs. GG&AG

Cases 20.7% 57.3% 22.0% 1.18 (0.63–2.22) 0.5962 0.78 (0.41–1.49) 0.4556

Controls 25.0% 50.0% 25.0%

rs7942159 GG GA AA 0.07729 GG&GA vs. AA GG vs. AA&GA

Cases 8.2% 53.4% 38.4% 1.69 (0.96–2.97) 0.06726 0.72 (0.27–1.89) 0.4981

Controls 11.1% 37.7% 51.2%

rs10831500 TT TG GG 0.3785 TT&TG vs. GG TT vs. GG&TG

Cases 32.4% 37.8% 29.7% 1.18 (0.71–1.96) 0.5171 1.18 (0.71–1.96) 0.5171

Controls 25.0% 41.7% 33.3%

OR, odds ratio; CI, confidence interval; P-values and ORs were calculated after adjustment for age and gender.

Frontiers in Genetics | www.frontiersin.org 4 July 2020 | Volume 11 | Article 82721

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Zhang et al. KC Association in Han Chinese

FIGURE 2 | Meta-analysis of association results from previous four cohorts of white patients and this Han Chinese cohort, shown as a forest plot of the three

genotyped SNPs. (A) PNPLA2 rs28633403; (B) PNPLA2 rs7942159; (C) MAML2 rs10831500. The size of the box is proportional to the weight of the study. Squares

indicate the study-specific odds ratio (OR). Horizontal lines indicate 95% confidence interval (CI). A diamond shows the summary OR with its corresponding 95% CI.

USA, United States; AUS+NI, Australia and Northern Ireland; VIC, Victoria, Australia.

did not show significant association with KC by meta-analysis.
Taken together, due to the substantial heterogeneity within the
replicated loci, the current study did not support the association
between KC and SNPs in PNPLA2 and MAML2 in this Han
Chinese cohort.

DISCUSSION

The etiology of KC is not well-understood, with genetic,
environmental, and behavioral risk factors all contributing to the
disease. Identifying the genetic risk factors for KC has proved
challenging. Recently, well-powered GWAS for keratoconus and
central corneal thickness have uncoveredmany risk loci, butmost
of them were performed in western populations (Burdon et al.,
2011; Li et al., 2012; Lu et al., 2013; Cuellar-Partida et al., 2015;
Khawaja et al., 2019; McComish et al., 2019). Some of those
reported KC susceptibility loci have been further investigated
in a Han Chinese cohort, including by our group (Wang et al.,
2013, 2018; Hao et al., 2015; Zhang et al., 2018). However, not

all these established KC-associated loci could be successfully
validated, highlighting the great genetic heterogeneity underlying
this complicated disease between Asians and Europeans.

Here we replicated the association of SNPs in the PNPLA2
and MAML2 gene with KC susceptibility in a Han Chinese
cohort. We were unable to discover a remarkable difference
(P > 0.05) in all the three genotyped SNPs between KC cases and
the controls. Further meta-analysis on previous four cohorts of
white patients and this Han Chinese cohort showed a significant
genetic heterogeneity within the replicated loci. Thus, the current
study suggested that SNP rs61876744 (or its proxy SNPs) and
rs10831500 might not link with KC susceptibility in this Han
Chinese cohort. Actually, based on the original GWAS, only
rs61876744 was selected to represent the association signal of this
locus due to its qualified P-value (P < 5 × 10−8) and the same
direction of association among the four examined white cohorts.
It is also possible that other SNPs within the PNPLA2 locus
may confer the risk to KC susceptibility, and thereby a large-
scale association analysis on other candidate SNPs is required in
further investigations.
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The current study indicated great heterogeneity within the
PNPLA2 and MAML2 region, as the I2-values calculated by the
meta-analysis for all these investigated SNPs were larger than
50%. The discrepancy between original GWAS and the meta-
analysis results might come from the existence of false positive
signals from GWAS, and more likely, could be explained by
their substantial population differences across various ancestries.
Indeed, the allele frequency (AF) of these SNPs, as well as the
LD patterns within, varied a lot among different populations
(Figure 1B). For SNP rs7942159, which was in high LD (r2

= 0.96) with rs61876144, the lead SNP in previous GWAS in
Europeans, showed a markedly reduced AF in East Asians (57 vs.
28%). Consistently, its LD (shown as r2) with rs61876144 reduced
to 0.30 in East Asians. The heterogeneity P-value for rs7942159 in
the meta-analysis on four white cohorts and this Chinese cohort
was 0.0007. The “G” allele of rs7942159 was the risk allele in both
Europeans and East Asians, although the “G” allele is the minor
allele in East Asians, but major allele in Europeans. Similarly, the
“A” allele of rs28633403 was the risk allele for both populations,
while its AF differed a lot. For SNP rs10831500 (MAML2 locus),
replication in the Han Chinese cohort and the subsequent meta-
analysis did not support its association to KC susceptibility.
Actually, in the original GWAS, the signal from rs10831500 was
supported by the US replication cohort only. Its association P-
values in another two white cohorts were both larger than 0.5.
More interestingly, its risk allele was even contradictory in the
Han Chinese cohort, making the causative role of rs10831500 to
KC susceptibility questionable.

This study had several limitations that need to be noted. The
primary limitation came from the relatively small sample size
here, which might cause lower power and negative findings.
We suggested that SNP rs28633403 and rs10831500 should
not be associated to KC in Han Chinese, due to their similar
allele frequencies in KC cases and controls, or the contrasting
risk allele among different cohorts. However, the contribution
of rs7942159 to KC risk is worth further exploration with an
increased sample size, although the dominant allele differed
among ethnicities. The association of other outstanding SNPs in
the PNPLA2 also needs attention. Secondly, due to the failure
to design suitable probes for direct genotyping on the lead
SNP in previous GWAS, two proxy SNPs for rs61876144 were
genotyped instead. We speculated that the failure of designing
suitable probes might be due to the features of the flanking
sequences around rs61876144, as they may affect the efficiency

or specificity of PCR amplification reactions. Although we have
already selected the most correlated proxy SNPs for replication
instead, they were not in absolute LD with the lead SNP, and this
might influence the outcomes.

In conclusion, this case-control study of a Han Chinese
cohort did not support the association of SNPs in the PNPLA2
and MAML2 gene and KC susceptibility, which was suggested
by a previous GWAS report. Nevertheless, we could not
fully rule out the probability that other SNPs within the
loci might contribute to KC risk. Further investigations are
required to explore other potential causative variants within
the loci.
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Background: Alternative splicing (AS) is a molecular event that drives protein diversity
through the generation of multiple mRNA isoforms. Growing evidence demonstrates
that dysregulation of AS is associated with tumorigenesis. However, an integrated
analysis in identifying the AS biomarkers attributed to esophageal carcinoma (ESCA)
is largely unexplored.

Methods: AS percent-splice-in (PSI) data were obtained from the TCGA SpliceSeq
database. Univariate and multivariate Cox regression analysis was successively
performed to identify the overall survival (OS)-associated AS events, followed by the
construction of AS predictor through different splicing patterns. Then, a nomogram that
combines the final AS predictor and clinicopathological characteristics was established.
Finally, a splicing regulatory network was created according to the correlation between
the AS events and the splicing factors (SF).

Results: We identified a total of 2389 AS events with the potential to be used as
prognostic markers that are associated with the OS of ESCA patients. Based on splicing
patterns, we then built eight AS predictors that are highly capable in distinguishing high-
and low-risk patients, and in predicting ESCA prognosis. Notably, the area under curve
(AUC) value for the exon skip (ES) prognostic predictor was shown to reach a score
of 0.885, indicating that ES has the highest prediction strength in predicting ESCA
prognosis. In addition, a nomogram that comprises the pathological stage and risk
group was shown to be highly efficient in predicting the survival possibility of ESCA
patients. Lastly, the splicing correlation network analysis revealed the opposite roles of
splicing factors (SFs) in ESCA.

Conclusion: In this study, the AS events may provide reliable biomarkers for the
prognosis of ESCA. The splicing correlation networks could provide new insights in the
identification of potential regulatory mechanisms during the ESCA development.

Keywords: esophageal carcinoma, alternative splicing, survival, prognosis, splicing factor
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INTRODUCTION

Being the seventh most frequently occurring tumor in humans,
esophageal carcinoma (ESCA) ranks the sixth in causing
fatalities worldwide. In year 2018 alone, the number of
new ESCA cases and ESCA-related deaths was estimated
to be 572,034 and 508,585, respectively (Bray et al., 2018).
Although the development of early diagnosis and treatment
approaches for ESCA have seen much improvement in recent
years, the five-year survival rate of 15–20% is unsatisfactory
(Pennathur et al., 2013). Due to the high morbidity and
mortality rates of ESCA, there is an urgent call for the
development of a highly efficient prognostic method. Over
the past few decades, a great deal of effort has been made
to identify prognostic biomarkers and therapeutic targets for
ESCA. Although the studies showed some promising results,
the research only focused on aspects such as mutation-driving
factors and transcriptional levels (Zhu J. et al., 2018), thereby
neglecting the diversity of RNA isoforms driven by post-
translational modifications.

Alternative splicing (AS) is a crucial molecular mechanism
by which mRNA is spliced into different RNA transcripts in
order to be translated into diverse protein products (Tress
et al., 2017). Recent studies showed that AS modifies about
94% of all human genes and plays an important role in
the biological process (Matera and Wang, 2014; Oltean and
Bates, 2014). Dysregulation of AS is associated with manifold
pathological processes, including cancers where it promotes
cancer development by causing the loss-of-function in tumor
suppressors or the activation of oncogenes and cancer pathways.
A recent study has shown multiple AS events participated in
carcinogenesis, including proliferation, angiogenesis, invasion
and metastasis (Mao et al., 2019). Tumor cells often tend
to generate isoform switches where the variants produced
are utilized to promote cell growth, drug resistance, invasion,
immune escape and metastasis (Chen and Weiss, 2015; Climente-
Gonzalez et al., 2017; Kim et al., 2018). For example, ZAK
has two isoforms, namely ZAKα and ZAKβ (Lee et al.,
2018), that play an opposite role in cancer development.
Whilst ZAKα exerts an anti-neoplastic effect, ZAKβ exhibits
an anti-proliferation feature. In BRCA2, one of the splicing
variants BRCA2-13 (Gelli et al., 2019), has been shown
to be associated with a high risk of developing breast or
ovarian cancer (Muller et al., 2011; Caputo et al., 2018).
CXCR3 is another tumor-related gene in humans with three
different splice variants: CXCR3A, CXCR3B, and CXCR3-alt.
Recent studies have shown that the CXCR3 protein level
is often heightened in tumor tissues than that of adjacent
tissues. A high expression of CXCR3 is usually associated
with adverse prognosis in cancer patients. Other studies
have found that the CXCR3A variant promotes tumor cell

Abbreviations: AA, alternate acceptor site; AD, alternate donor site; AP, alternate
promoter; AS, alternative splicing; AT, alternate terminator; AUC, area under
curve; DCA, decision curve analysis; ES, exon skip; ESCA, esophageal carcinoma;
HR, hazard ratio; ME, mutually exclusive exons; OS, overall survival; PSI,
Percent Spliced In; RI, retained intron; RNA-seq, RNA sequencing; ROC, receiver
operating characteristic; SFs, splicing factors; TCGA, The Cancer Genome Atlas.

growth while the CXCR3B variant induces tumor cell apoptosis
(Ruytinx et al., 2018).

In addition, splicing factors have been shown to play a
role in regulating tissue- or cell-type-specific AS (Tripathi
et al., 2010), Alterations in the expression and activity of
critical splicing factors can cause a string of changes to
the AS, which then jointly promote tumor cell growth and
survival (Ladomery, 2013). Therefore, an integrated analysis
of AS events is needed in order to dissect the molecular
mechanisms of ESCA and to identify potential prognostic
markers for cancer.

With the continuous development of genome-wide
sequencing technologies in recent years, it is now possible
to identify cancer-specific molecules and prognostic biomarkers
for patients (Griffith et al., 2010; Katz et al., 2010). Although
systematic analysis of prognostic AS signature in liver cancer,
lung cancer, head and neck cancer, and breast cancer has
been reported (Suo et al., 2015; Li Y. et al., 2017; Liang
et al., 2019; Wu et al., 2019), the AS signature in ESCA is
largely unknown.

In the current study, we revealed numerous AS events
connected with the overall survival (OS) of ESCA patients
through an integrated profiling for the genome-wide AS events
in the ESCA cohort from TCGA SpliceSeq. Based on the
AS events identified, we constructed prognostic predictors.
Then, we presented an AS-clinicopathologic nomogram which
is useful in predicting the survival probability for ESCA
patients. Finally, we established an SF-AS correlation network
to demonstrate the underlying regulation mechanism for
ESCA prognosis.

MATERIALS AND METHODS

The flowchart of the current study was presented in Figure 1A.

Data Acquisition
The RNA-seq data and clinical information of the TCGA
ESCA cohort were obtained from the TCGA data portal1;
while the Percent-splice-in (PSI) data of AS events for ESCA
were obtained from the TCGA SpliceSep2, a data portal that
provides AS profiles across 33 tumors based on the TCGA
RNA-seq data. There are seven types of AS events (Figure 1B)
identified to date, namely Alternate Acceptor site (AA), Alternate
Terminator (AT), Mutually Exclusive Exons (ME), Retained
Intron (RI), Alternate Donor site (AD), Alternate Promoter
(AP), and Exon Skip (ES) (Ryan et al., 2016). PSI values
ranging from zero to one were used to quantify the AS events.
Thus, to obtain a reliable set of AS events, we set a strict
screening filter so that the percentage of samples containing PSI
values exceeds 75%.

The AS events were annotated by combining the splicing type,
ID number in the SpliceSeq and the corresponding parent gene
symbol. For example, in “ERBB2| 99888| ES”, ERBB2 denotes

1https://portal.gdc.cancer.gov, version 18.0
2https://bioinformatics.mdanderson.org/TCGASpliceSeq/
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FIGURE 1 | Flowchart of the present study and splicing pattern of AS events. (A) Study flowchart. (B) Illustrations for seven types of AS events, including exon skip
(ES), retained intron (RI), alternate promoter (AP), alternate terminator (AT), alternate donor site (AD), alternate promoter (AP), mutually exclusive exons (ME).

the corresponding parent gene name, 99888 represents the ID of
splicing variant and ES indicates the splicing type.

Survival Analysis of AS Events, Gene
Interaction Network, Functional, and
Pathway Enrichment Analysis
The clinical information of ESCA patients was downloaded from
the TCGA database. Based on the median PSI values, the patients
were divided into two subgroups (high- and low-PSI). Univariate
Cox regression analysis was conducted to detect the association
between the alternative splicing (AS) events and the overall
survival (OS) of ESCA patients, with P < 0.05 being considered
significant. UpSetR (version 1.4.0) was used to create Upset plots
in order to analyze the intersections of all seven types of OS-
associated AS events in ESCA (Lex et al., 2014). Subsequently,
the corresponding parent genes of OS-associated AS events were
selected to construct a gene interaction network using Reactome
FI plugin in Cytoscape (version 3.7.1), and the key genes in the
network were identified using CentiScaPe2.2 plugin in Cytoscape
(version 3.7.1). Functional enrichment analysis was performed by
Database for Annotation, Visualization and Integrated Discovery
(DAVID) online functional annotation tool3 using the parent
genes (Dennis et al., 2003). Gene Ontology (GO) terms and
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways
with P < 0.05 were considered statistically significant. Then, the
significant pathways in KEGG and the top 10 terms in each GO
category, namely containing cellular (CC), molecular function
(MF), and biological process (BP) were visualized by ggplot2
package in R (version 3.3.0).

Construction of the Prognostic Predictor
for ESCA Patients
Firstly, Lasso regression analysis was performed for OS-
associated AS events in each splicing type in order to

3https://david.ncifcrf.gov/, version 6.8

screen for candidates in subsequent analysis and to avoid
model over-fitting. Secondly, the screened AS events were
used in multivariate Cox regression analysis to construct the
prognostic predictor (McNeish, 2015). Meanwhile, considering
that all seven AS types have differences in their individual
mode of action that is independent from each other in
post-transcriptional modification, the screened AS events in
each splicing type above were consolidated to construct
another prognostic predictor. Then, the risk scores were
computed based on each prognostic predictor and the formula
used for calculating the risk score for each patient is
as follows: Risk score = βAS event1 × PSIAS event1 + βAS event2 ×

PSIAS event2 + · · · + βAS eventn × PSIAS eventn. The patients were
divided into two subgroups (high- and low-risk) according to
the median risk score in order to perform Kaplan-Meier test for
estimating the predictive accuracy of each prognostic predictor.
The predictive accuracy of each prognostic predictor was assessed
by computing the area under the curve (AUC) value at 3 years of
the Receiver operating characteristic (ROC) curve by the survival
ROC package (version 1.0.3). Since fewer events occurred after
5 years (see Kaplan-Meier curves), the dynamic AUC value from
1 to 5 years was calculated by time ROC package (version 0.4)
in order to obtain an optimal signature. Besides, the mutations
of parent genes in final signature were analyzed using maftools
package in R (version 3.10).

Finally, stratified Cox survival analysis was performed to verify
the independent prognostic power of the final signature in ESCA
cohort such as age, gender, pathological stage and tumor grade.

Development and Validation of an
AS-Clinicopathologic Nomogram
In order to detect whether the prognostic predictor along with
all clinical variables described above was associated with the
OS of ESCA patients, Univariate Cox regression analysis was
performed. Subsequently, the OS-related variables were used for
multivariate Cox regression analysis to screen for independent
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prognostic factors and to develop a nomogram model that can
better predict the survival probability of patients. Subsequently,
to make sure that the results obtained were reliable, the
nomogram model was validated by the Bootstrap method with
the resample number set as 1000. The calibration curves were
used to assess the predictive ability of the nomogram and the
C-statistic were calculated to evaluate the discriminative ability
using Hmisc package in R (version 4.1.1). A calibration curve
close to 45◦ is an indication of good prediction ability of the
model constructed by this factor. To verify clinical application of
the nomogram, the decision curve analysis (DCA) was conducted
using stdca package4.

Construction of Underlying SF-AS
Correlation Network
Splicing factors (SFs) were retrieved from the SpliceAid 2
database (Piva et al., 2012). The mRNA expression data of
SFs were obtained from the TCGA database and normalized
using the trimmed mean method of M-values (TMM) from
edgeR package in R (version 3.6.0). Univariate Cox regression
analysis was performed to screen the OS-associated SFs. Then,
the Spearman correlation analysis was performed between the
PSI values of OS-associated AS events and the expression level
of OS-associated SFs, with P < 0.05 being set as a cut-off
value. Finally, Cytoscape (version 3.7.1) was used to generate
an underlying SF-AS correlation network among the significant
result of spearman correlation analysis, with the correlation
coefficient greater than 0.5.

RESULTS

Integrated AS Events Profiles in TCGA
ESCA Cohort
Within the integrated AS events profiles of 185 ESCA patients
from TCGA SpliceSeq, we detected a total of 50342 AS events in
10766 genes, which included 20843 ESs in 7174 genes, 10033 APs
in 4046 genes, 8448 ATs in 3690 genes, 4145 AAs in 2871 genes,
3590 ADs in 2463 genes, 3038 RIs in 2001 genes, and 245 MEs in
237 genes (Figure 2A). The results showed that, among the seven
types of AS events, ES was the main splicing pattern while ME
was the least frequent event in ESCA patients.

Detection and Functional Enrichment
Analysis of OS-Associated AS Events
The clinical information of ESCA patients was downloaded
from the TCGA database. A total of 185 ESCA patients with
fully characterized tumors were included in the analysis. The
demographic and clinical characteristics of patients are provided
in Supplementary (Supplementary Table S1).

Using the AS events profiles in the ESCA cohort, we identified
2389 AS events which were significantly associated with the
OS of ESCA patients (P < 0.05) by univariate Cox regression
analysis. In particular, we found one gene with potentially more

4https://www.mskcc.org/

than one AS events that were significantly connected with
patient survival. In order to better visualize intersecting sets, an
UpSet plot was created as shown in Figure 2B. Interestingly,
our analysis revealed that one gene can exhibit up to four
types of AS events that were all found to be significantly
associated with patient survival. Specifically, ES, AA, AD, and
RI of CIRBP were all significantly linked to the OS of patients.
The distribution of top 20 AS events in different splicing type
presented in Figure 3 clearly showed that, the majority of AS
event was related to good prognosis. Furthermore, all parent
genes of OS-associated AS events were used in functional and
pathway enrichment analysis. A total of 74 Gene Ontology
(GO) terms and 15 Kyoto Encyclopedia of Genes and Genomes
(KEGG) terms were identified significantly in the analysis
(P < 0.05). The top pathways of GO and KEGG enrichment were
shown in Figures 4A–D.

In order to dissect the biological relationships between the
corresponding parent genes of OS-associated AS events in ESCA,
a gene interaction network was created using Cytoscape. Our
results revealed, three vital hub genes in the network, namely
SIN3A, YWHAZ, and RPA3 (Figure 4E), which may be closely
related to the development of ESCA.

Construction of the Prognostic Predictor
for ESCA Patients
To avoid model over-fitting, the significant OS-associated
AS events (P < 0.05) in each AS type were analyzed by
lasso regression (Supplementary Figure S1), and the results
were selected to perform multivariate Cox regression analysis,
respectively. Meanwhile, the AS events screened above in each
splicing type were amalgamated to fit another multivariate Cox
regression. Finally, a total of eight AS models were constructed,
namely AA, AT, ME, RI, AD, AP, ES, and ALL models. The
specific formulas of each model shown in Table 1 were used to
compute the risk score of each patient, which were then divided
into high- and low-risk subgroups according to the median of
risk scores. Kaplan-Meier survival analysis of each model was
considerably efficient in distinguishing good or poor outcome
between the two subgroups (Figures 5A–H). To compare the
level of efficiency among different AS models, ROC curves were
created with the AUC values calculated at 3 years survival,
respectively (Figures 6A–H). The AUC value of ROC for the ES
prognostic predictor was calculated to be 0.885, which remained
higher than other AS models over time, suggesting that ES
has a higher level of efficiency than other prognostic predictors
(Figure 7A). The distribution of patients’ survival status, risk
score and AS events for the ES prognostic predictors as illustrated
in Figure 7B showed that, the risk score increased as the patient’s
survival time decreased, which resulted in a significant increase
(P < 0.05) in the number of deaths (red dots in the upper part
of Figure 7B). The corresponding parent genes of AS events
included in the ES prognostic predictor were shown in Table 2.
Moreover, among these seven parent genes, ERBB2 and C19orf82
possessed the most frequent genetic mutation and the missense
mutation was the most common alteration (Figure 8A). The
mutant of ERBB2 and C19orf82 also indicated a significantly
shorter OS time than the wild type (Figures 8B,C).
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FIGURE 2 | Overview of seven types of AS in this study. (A) Number of AS events and related genes in ESCA. (B) UpSet plots in ESCA, showing the interactions
among the seven types of OS-associated AS events. One gene may have up to seven types of AS events.

FIGURE 3 | Top 20 most significant AS events in ESCA. (A) The volcano plots of prognosis-connected AS events. The top 20 AS events associated with survival
outcome for ESCA in different splice patterns, including (B) AA, alternate acceptor site. (C) AD, alternate donor site. (D) AP, alternate promoter. (E) AT, alternate
terminator. (F) ES, exon skip. (G) ME, mutually exclusive exons. (H) RI, retained intron.

Furthermore, to verify the prognostic value of the final
predictor, we performed Cox survival analysis in stratified ESCA
cohort where the patients were classified by clinicopathological
characteristics, including age, gender, tumor grade and different
pathological stages, such as T stage, M stage, and N stage. The
results clearly showed that the high-risk group had a worse
prognosis than that of the low-risk group in almost all cohorts
(Table 3). Taken together, our results showed that the final
predictor can maintain its efficiency to precisely identify patients
with adverse prognosis, regardless of clinical parameters.

Development and Efficiency of
AS-Clinicopathologic Nomogram
To screen for potential factors correlated with the OS of ESCA
patients, the risk level (high or low) based on the ES prognostic
predictor along with clinicopathologic variables mentioned

earlier were studied by univariate Cox analysis. The results
showed that tumor grade, pathological stage and risk score level
were statistically significant (P < 0.05) (Table 4). Multivariate
Cox regression analysis revealed that the risk score level derived
from the ES prognostic predictor and the pathological stage
were the only independent prognostic factors associated with the
OS of ESCA patients (Table 4). These independent prognostic
factors were used in the construction of subsequent nomograms
(Figure 9A). The calibration curve of the nomogram for the
probability of survival at 1, 3, 5 years showed good uniformity
between prediction and actual observation (Figures 9B–D).
The C-statistic for OS prediction of ESCA patients was 0.78,
indicating that the predictive ability of this nomogram model was
efficient. The DCA of this nomogram for 1, 3, 5 years as shown
in Figures 9E–G demonstrated that this nomogram had good
clinical usefulness, which meant that if the threshold probability
was less than 80%, using this nomogram to predict prognosis in
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FIGURE 4 | Gene interaction network and functional analysis of OS-associated alternative splicing events in ESCA. (A) biological processes (BP). (B) cellular
component (CC). (C) molecular function (MF). (D) KEGG pathway analysis. (E) Gene interaction network of corresponding parent genes of OS-associated AS events
generated by Cytoscape.

TABLE 1 | Formula of prognostic signature for esophageal carcinoma.

Type Formula

AA
ZNF467 |82205|AA× (−8.77) + NPEPPS |42083|AA× 3.59 + VEZT |23760|AA× (−9.88) + RAB34 |39959|AA× (−35.9)

+ FBXO44 |659|AA× (−4.92) + SETD4 |60521|AA× 1.69 + NR1H3 |15700|AA× (−2.05) + ZCCHC11 |3009|AA× (−6.17)

AD

FAM222B |39988|AD× 4.77 + EGLN3 |27150|AD× (−11.07)+ COX6C |84682|AD× 3.29+ ZNF384 |19927|AD× (−5.16)

+ ZNF783 |82186|AD× (−5.33) + UIMC1 |74697|AD× (−4.84)

+FANCA |38145|AD× (6.74)+ RPA3 |78779|AD× (−31.74)+ LYRM2 |77013|AD× (−5.92)

AP
CHRDL2 |17777|AP× (−7.74) + IAH1 |52629|AP× 8.73+ RNF150 |70661|AP× (−8.97)+ RANBP9 |75399|AP× (−21.7)

+GPR75− ASB3 |53555|AP× (3.44)+ TACC2 |13333|AP× (−3.86)+HOOK1 |3215|AP× (−13.94)

AT
FHAD1 |747|AT× (−1.51) + TRIM4 |80863|AT× (3.28) + BRSK1 |52060|AT× (−8.77)+ EYS |76614|AT× (−8.45)+ NTM |19522|AT× (−3.88)

+MRPL37 |3138|AT× (−9.51)+ LEPROTL1 |83274|AT× (−6.95)+ PTPRO |20575|AT× (−3.16)

ES
ERBB2 |99888|ES× (−25.65) + C19orf82 |47381|ES× 3.35 + C16orf13 |32924|ES× (−4.68)

+UTRN |78027|ES× (−2.93)+ TMPRSS4 |18957|ES× (−11.68)+ HPS1 |91779|ES× (−5.21)+FCAB10 |81303|ES× (−10.77)

ME
CTSB |82667|ME× (−15.83) + KIAA0753 |155897|ME× (−3.57)+ KLHL2 |71038|ME× (−1.82)+ P4HA1 |12122|ME× (−3.46)

+ CMC2 |37707|ME× (1.91)+ EEF1D |98098|ME× (−1.03)+MTMR2 |92805|ME× 2.43+MAPK10 |69825|ME× 2.55

RI
FBXO27 |49746|RI× (−18.33)+ TRIM23 |72236|RI× (−28.37)+ PDDC1 |13743|RI× (−20.12)+ AKAP8L |48081|RI× 4.51

+ PTPN7 |9400|RI× (−25.60)+ SLC35C1 |15510|RI× (−14.10)+POLR2J2 |81127|RI× (2.55)

ALL

CHRDL2 |17777|AP× (−7.19)+ ERBB2 |99888|ES× (−34.28)+ IAH1 |52629|AP× (6.44)+ C16orf13 |32919|ES× (−3.21)

+C19orf82 |47381|ES× 2.64+ RNF150 |70661|AP× (−8.56)+ PNKP |51105|ES× (−29.80)+ ZNF467 |82205|AA× (−8.53)

+TMPRSS4 |18957|ES× (−10.62)+ HPS1 |91779|ES× (−3.26)

1, 3, or 5 years added more benefit than either the treat-none
scheme or treat-all scheme.

Establishment of the SF-AS Correlation
Network
To explore the upstream mechanism of AS regulation, we
calculated the gene expression levels of SFs from the TCGA ESCA
level 3 RNA-seq data and subsequently conducted univariate Cox

regression analysis. The results showed that a total of 15 SFs
were significantly related to the OS of ESCA patients (P < 0.05)
(Supplementary Table S2). For instance, the expression level
of SFs CLK1 and SNRPB2 was found to be associated with
poor prognosis (Figures 10A,B). In addition, the correlations
between the PSI values of OS-associated AS events and the gene
expression levels of OS-associated SFs were investigated using
Spearman’s test. Our analysis identified a total of six key SFs that
are associated with poor prognosis, including CLK1, SNRPB2,
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FIGURE 5 | Kaplan-Meier curve of prognostic predictors constructed with either one type or all seven AS types in the ESCA cohort. (A) AA: alternate acceptor site.
(B) AD: alternate donor site. (C) AP: alternate promoter. (D) AT: alternate terminator. (E) ES: exon skip. (F) ME: mutually exclusive exons. (G) RI: retained intron. (H)
ALL: all seven AS types combined. Red line indicates high-risk subgroup while blue line indicates low-risk subgroup.

FIGURE 6 | ROC curves with calculated AUC values of prognostic predictors constructed with either one type or all seven AS types in the ESCA cohort. (A) AA:
alternate acceptor site. (B) AD: alternate donor site. (C) AP: alternate promoter. (D) AT: alternate terminator. (E) ES: exon skip. (F) ME: mutually exclusive exons. (G)
RI: retained intron. (H) ALL: all seven AS types combined.

TCERG1, HTATSF1, RBMX2, and HNRNPH1, indicating that
the abnormal expression of these key SFs may play a role
in the dysregulation of the splicing patterns in ESCA. The
correlation network as shown in Figure 10C revealed a total
of 5 OS-associated SFs (blue triangles) that were significantly
correlated with 77 OS-associated AS events (red and blue
dots). The red dots indicate adverse prognosis (HR > 1)
while green dots denote favorable clinical outcomes (HR < 1).

Additionally, we found that most adverse survival prognostic
AS events (red dots) were positively correlated (red lines) with
the expression of SFs (blue triangles); while most favorable
prognosis AS events (green dots) were negatively correlated
(green lines) with the expression of SFs. The representative
dot plots of correlation between the SFs and AS events
were shown in Figures 10D,E. Based on our observations,
we bypothesize that the oncogenic SFs play a key role in
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FIGURE 7 | Dynamic AUC values of ROC curves for each AS model and determination of the ES prognostic signature in the ESCA cohort. (A) The curves of
time-dependent AUCs versus time (1–5 years) of each signature: AUC(t) versus t (B) Patients were divided into high- and low-risk subgroups based on the median of
risk scores based on the ES prognostic predictor. The upper part is the heatmap of AS events involved in the prognostic predictor, color transition from green to red
indicates the increasing PSI score of corresponding AS event from low to high. The middle part is the survival status and survival time of each individual. Color of
each plot represents the survival status of each patient. The bottom part is risk score of each individual.

TABLE 2 | Prognostic predictors for esophageal carcinoma.

Gene AS id Splicing type Exons HR Lower95 Upper95 P-value Index

ERBB2 99888 ES 22 7.24E-12 1.86E-16 2.82E-07 1.97E-06 −25.651926

C19orf82 47381 ES 2:03 28.41024 5.787874 139.4539703 3.74E-05 3.346750

C16orf13 32924 ES 2 0.009271 0.000568 0.151374336 0.00102 −4.680888

UTRN 78027 ES 67 0.053443 0.007712 0.370361388 0.003021 −2.929139

TMPRSS4 18957 ES 11 8.48E-06 6.10E-09 0.011780172 0.001563 −11.678310

HPS1 91779 ES 9 0.005465 0.000377 0.079114333 0.000133 −5.209448

EFCAB10 81303 ES 2 2.11E-05 1.71E-08 0.026086922 0.003038 −10.765213

AS, alternative splicing; ES, Exon Skip; HR, hazard ratio.

meditating the dysregulation of AS in ESCA, which leads to
cancer development.

DISCUSSION

AS is a post-translational modification process that generates
multiple mRNA isoforms from a single gene. The resulting RNA
transcripts can function differently and participate in various
physiological processes. Dysregulation of AS in cancer-related
genes has been found to participate in many biological processes
in tumors, and these abnormally regulated genes can be used as
molecular markers for cancer prognosis and treatment. However,
an integrated analysis of the AS signature in ESCA remains
largely unknown.

In this study, we performed a systematic analysis of OS-
associated AS events in 185 of ESCA patients from TCGA
SpliceSeq. A total of 2389 AS events were found to be
significantly associated with the OS of ESCA patients. Among
these OS-associated AS events, some splice variants that have

been identified to play an important part in tumor biology
were also included in our analysis. For instance, ECM1b, a
splice isoform derived from ECM1 (due to an ES event based
on our data) can enhance chemosensitivity by suppressing
MTORC2/MYC/MTORC1 signaling pathway. One study has
demonstrated that ECM1b expression sensitizes ESCA cells to
cisplatin, a drug commonly used in ESCA patient treatment (Yu
et al., 2019). MUC1, a spliced variant of PUF60 (following an
ES event based on our data) can promote carcinogenesis by
regulating P53 and β-catenin. An increased expression level of
MUC1 is associated with malignant transformation of various
malignancies in different tissues, such as breast, colon and
pancreas. MUC1 itself has nine main splice variants in which
MUC1/C, D and Z are associated with cancer progression
(Kahkhaie et al., 2014). Therefore, our comprehensive analysis of
AS events nicely complements the AS atlas of ESCA.

The carcinogenesis of ESCA is correlated to multiple
pathological processes with a complicated regulatory network.
Therefore, predicting tumor prognosis by amalgamating multiple
biomarkers and establishing a model is far more effective than
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FIGURE 8 | The mutation profiling of parent genes in ESCA samples. (A) The waterfall plot of parent genes in ESCA cohort. (B,C) Kaplan-Meier survival curves of
two different mutated genes (ERBB2 and C19orf82).

that of using a single clinical indicator. Over the past decade,
numerous studies have integrated genome-wide prognostic
biomarkers to improve the prognosis and diagnosis of ESCA.
However, most studies are limited at the transcriptome level,
as the focus were given to mRNA, lncRNA or miRNA as the
prognostic predictors (Fan and Liu, 2016; Xue et al., 2018).
In this study, we focused on AS which belongs to the gene
posttranscriptional regulation level. Therefore, we created the
prognostic predictors for each type of AS by multivariate Cox
regression analysis. Our results showed that the ES model with
the best AUC value at 0.885 exhibited a high prediction efficiency
than other models. Some parent genes of AS events in the ES

model have also been reported to play critical roles in cancer
biology. For instance, TMPRSS4, a type-II transmembrane serine
protease found to be upregulated in many solid cancers can
promote the proliferation, invasion and migration of cancer
cells (Jin et al., 2016; Li X.M. et al., 2017; Jianwei et al., 2018).
ERBB2, a common oncogene that has been used as one of the key
prognostic and treatment indicators in breast cancer, exhibits an
overexpressed level in approximately 25–30% of breast cancers
and confers a worse biological effect. Besides breast cancer,
ERBB2 overexpression is also commonly detected in gastric,
esophageal and endometrial cancers (Moasser, 2007). Notably, ES
was found to be the most frequent splicing type in our study.
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TABLE 3 | Analysis of the final AS signature in stratified ESCA cohorts.

Characteristics High risk Low risk HR (95% CI) P-value

Age (years)

≤60 47 46 5.29 (2.45-11.4) <0.001

>60 46 46 6.74 (2.95-15.43) <0.001

Gender

Male 83 75 5.49 (3.14-9.60) <0.001

Female 11 16 7.73 (0.86-69.63) 0.068

Tumor grade

G1/2 43 49 7.53 (3.09-18.35) <0.001

G3 31 17 9.87 (2.32-42.09) 0.002

Pathological stage

Stage I/II 47 56 5.04 (2.21-11.50) <0.001

Stage III/IV 43 34 6.80 (3.28-14.09) <0.001

T stage

T1/2 32 40 4.18 (1.83-9.56) <0.001

T3/4 56 50 6.39 (3.13-13.08) <0.001

M stage

M0 70 75 5.57 (2.99-10.37) <0.001

M1 8 4 7.32 (0.88-60.59) 0.065

N stage

N0 34 42 6.63 (2.10-20.93) 0.001

N1 37 34 4.84 (2.41-9.73) <0.001

N2/3 18 11 5.07 (1.45-17.72) 0.011

HR, hazard ratio; CI, confidence interval.

TABLE 4 | Univariate and multivariate Cox regression analysis for clinical variables.

Variables Univariate analysis Multivariate analysis

HR (95% CI) P-value HR (95% CI) P-value

Age 1.01 (0.99–1.03) 0.45 − −

Gender 2.92 (0.91–9.38) 0.07 − −

Tumor grade 1.63 (1.07–2.48) 0.02 1.15 (0.66–1.98) 0.63

Pathological stage 2.51 (1.74–3.61) <0.001 3.03 (1.12–8.18) 0.03

T 1.65 (1.13–2.41) <0.01 1.05 (0.56–1.62) 0.86

N 1.76 (1.33–2.34) <0.001 1.03 (0.60–1.75) 0.93

M 2.93 (1.30–6.58) <0.01 1.25 (0.08–2.55) 0.36

Risk score 1.17 (1.12–1.22) <0.001 1.13 (1.08–1.19) <0.001

The “−” indicates that the value is not available; HR, hazard ratio; CI,
confidence interval.

In agreement with this, some studies have shown that some
splicing variants of genes generated through ES was upregulated
in some solid cancers, and can increase the motility of cancer cells
(Oltean and Bates, 2014). D16ERBB2, a splice variant of ERBB2
generated through the skipping of exon 16, has been shown to
exert high tumorigenecity, and a close association with increased
tumor invasive properties and metastasis (Gautrey et al., 2015).
Interestingly, our analysis showed that the AS events of ERBB2
is a favorable prognostic predictor, indicating that depending
on the exon deletion site, the resulting splicing variant may
play an entirely opposite role in tumor development. However,
few studies have reported the detailed biological significance
of other parent genes in the ES model. Hence, the underlying

mechanism of these splicing events involved in final model
is largely unclear. Therefore, further research with functional
experiments is urgently in need.

Furthermore, to enable the prognostic predictor achieve a
more reliable and valuable prediction efficacy in clinical settings,
the prognostic nomogram that comprises the pathological stage
and the risk level based on the ES prognostic predictor, was
developed for assessing individual survival risk of patients with
satisfactory discrimination. The calibration curve, C-statistic,
and DCA curve demonstrated that the nomogram had great
potential to be applied in clinical practice. Moreover, we
performed functional enrichment analysis to explore the
biological function of AS events in ESCA. Our CC of GO
enrichment analysis showed that AS can mediate extracellular
matrix-related pathways to promote tumor cell proliferation,
invasion and metastasis (Wang et al., 2016). Additionally, KEGG
analysis revealed several significant signaling pathways, such
as ubiquitin-mediated proteolysis and focal adhesion signaling,
which were consistent with the comprehensive analysis of AS
in gastrointestinal adenocarcinomas and correlated with the
tumorigenesis and prognosis of ESCA (Lin et al., 2018; Zhu R.
et al., 2018). Therefore, we hypothesize that the cancer-associated
outcomes due to AS alteration may be associated with these
common pathways.

As the main regulator of the AS event, SF can affect
the choice of splicing sites through recognition and binding
of the mRNA precursor. In this study, we identified 6 SFs
(CLK1, SNRPB2, TCERG1, HTATSF1, RBMX2, and HNRNPH1)
associated with adverse prognosis of ESCA. Some of these
SFs have been reported previously. For example, HNRNPH1,
an RNA-binding protein highly expressed in many cancers,
was found to alter the splicing of some oncogenes following
knockdown, which then inhibits the tumor formation and
growth in Rhabdomyosarcoma (Li et al., 2018). CLK1, a
member of the CLKs family that phosphorylates SR proteins
involved in splicing, was shown to promote the phosphorylation
of SPF45 when overexpressed, which ultimately induces cell
migration and invasion of ovarian cancer (Liu et al., 2013).
Finally, our SF-AS correlation network outlined an obvious
trend, showing that whilst most favorable prognostic AS events
were negatively associated with the expression level of SFs in
ESCA; adverse prognostic AS events were positively associated
with the expression level of SFs. Notably, this phenomenon
proposed an assumption that the dysregulation of AS in ESCA
was related to the up-regulation of SFs. This study provided
another approach to understand the splicing patterns and their
mechanistic connection to SFs in the ESCA, which will enable
us to dissect the potential mechanism of AS events in the
development of ESCA.

Although our predictor performed well in ESCA prognosis
prediction, there are inevitably several limitations in the current
study that can be improved. Firstly, the number of patients
included in the ESCA cohorts were limited. Secondly, this study
lacks other independent cohort of ESCA patients that can be used
to demonstrate the reproducibility of the prognostic predictors
constructed in this report. Nevertheless, our comprehensive
analysis of the splicing pattern provides some fundamental
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FIGURE 9 | The AS-clinicopathologic nomogram for prediction on survival probability in patients with ESCA. (A) Development of AS-clinicopathologic nomogram for
predicting 1-, 3-, and 5-years OS for ESCA patients. (B–D) Calibration plot of the AS-clinicopathologic nomogram in terms of agreement between
nomogram-predicted and observed 1-, 3-, and 5-years outcomes in the ESCA cohort. The actual performances of our model are shown in red lines. And the silver
line of 45◦ represents the ideal performance. (E–G) Decision curve analyses of the AS-clinicopathologic nomogram for 1-, 3-, and 5-years risk in ESCA cohort. The
gray line represents the net benefit of treat-all scheme varying with threshold probability, while the black line represents the net benefit of treat-no scheme. The net
benefits by using our nomogram for predicting 1-, 3-, and 5-years OS are displayed with imaginary line.
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FIGURE 10 | The OS-associated splicing factors in ESCA and SF-AS correlation network. (A,B) Kaplan-Meier curves of survival-related splicing factors. (C) SF-AS
correlation network. Blue triangles were OS-associated splicing factors. Red/green lines represent positive/negative correlations between substances. Red/green
dots represent adverse/favorable AS events. (D,E) Dot plots of correlations between expression of SFs (CLK1 and SNRPB2) and PSI values of OS-associated AS
events.

knowledge to study the molecular mechanism and to identify
potential drug targets for ESCA.

CONCLUSION

In conclusion, we performed an integrated analysis for RNA
splicing patterns of ESCA and constructed a prognostic predictor
that can be used to predict the survival probability of ESCA
patients. More importantly, we constructed a well-executed
nomogram that combines clinicopathological variables with the
final prognostic predictor, which showed a great potential to
be applied in clinical settings. The correlation network between
prognostic AS events and SFs suggested a potential mechanism
of the oncogenic process in ESCA. Additionally, the AS events
revealed in our study, particularly those that can be used as a
prognostic predictor, exhibited considerable potential for clinical
application as prognostic markers as well as therapeutic targets.
Our study also provided valuable fundamental knowledge to
understand the underlying mechanism of ESCA development.
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Breast cancer (BRCA) is the most common cancer and a major cause of death in
women. Long non-coding RNAs (lncRNAs) are emerging as key regulators and have
been implicated in carcinogenesis and prognosis. In this study, we aimed to develop
a lncRNA signature of BRCA patients to improve risk stratification. In the training
cohort (GSE21653, n = 232), 17 lncRNAs were identified by univariate Cox proportional
hazards regression, which were significantly associated with patients’ survival. The
least absolute shrinkage and selection operator-penalized Cox proportional hazards
regression analysis was used to identify a six-lncRNA signature. According to the median
of the signature risk score, patients were divided into a high-risk group and a low-risk
group with significant disease-free survival differences in the training cohort. A similar
phenomenon was observed in validation cohorts (GSE42568, n = 101; GSE20711,
n = 87). The six-lncRNA signature remained as independent prognostic factors after
adjusting for clinical factors in these two cohorts. Furthermore, this signature significantly
predicted the survival of grade III patients and estrogen receptor-positive patients.
Furthermore, in another cohort (GSE19615, n = 115), the low-risk patients that
were treated with tamoxifen therapy had longer disease-free survival than those who
underwent no therapy. Overall, the six-lncRNA signature can be a potential prognostic
tool used to predict disease-free survival of patients and to predict the benefits of
tamoxifen treatment in BRCA, which will be helpful in guiding individualized treatments
for BRCA patients.

Keywords: long non-coding RNA, signature, prognosis, disease-free survival, breast cancer

INTRODUCTION

Breast cancer (BRCA) is the second leading cause of cancer death among women. More than
268,000 new patients are diagnosed with BRCA each year and 41,760 patients will die from BRCA
(DeSantis et al., 2019; Siegel et al., 2019). The current treatment for BRCA, which can improve
survival of BRCA patients, includes mastectomy, hormone therapy (Early Breast Cancer Trialists
Collaborative et al., 2011), surgery with adjuvant radiation therapy (Bradley and Mendenhall, 2018;
Chargari et al., 2019), and chemotherapy (Oikonomou et al., 2019). Immunotherapy of BRCA
patients is a recent emerging area of treatment (Greenlee et al., 2017; Jia et al., 2017; Adams et al.,
2019). Although the TNM stage system is a valuable resource for the classification of BRCA patients,
it does not predict the prognosis of patients. Therefore, the molecular markers need to be identified
so that the survival of BRCA patients can be evaluated (Giuliano et al., 2017; Zhang et al., 2017).
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Long non-coding RNAs (lncRNA, >200 nucleotides in length)
are a class of non-coding RNAs transcribed from mammalian
genomes (Yu et al., 2018). Some lncRNAs are found to be
deregulated between cancer and normal tissues, such as BRCA
(Liu et al., 2015), lung cancer (Jen et al., 2017), gastric cancer (Liu
et al., 2017), and prostate cancer (Xu et al., 2018). Furthermore,
lncRNAs have been confirmed to participate in diverse biological
processes by acting as key regulators in cancers. Gupta et al.
(2010) found that dysregulated HOTAIR increased cancer
invasiveness and metastasis through dependence on PRC2, and
lncRNA HOXD-AS1 regulated the Rho GTPase activating protein
11A (ARHGAP11A), which resulted in induced metastasis (Lu
et al., 2017). In recent years, some lncRNAs have been found
to be biomarkers of predicting BRCA patient outcomes, such as
lncRNA BCYRN1 (Booy et al., 2017) and HOTAIR (Zhang et al.,
2013a), which has attracted increasing attention.

In this study, we developed a six-lncRNA signature based
on lncRNA expression, with the ability to predict disease-free
survival of patients with BRCA, and we assessed its prognostic
value in the training and validation cohorts. This signature had an
independent prognostic value after adjusting for clinical factors.
Furthermore, the lncRNA signature also significantly predicted
survival of grade III and estrogen receptor (ER)-positive BRCA
patients. Moreover, the signature predicted survival benefits of
tamoxifen therapy in BRCA patients.

MATERIALS AND METHODS

Study Samples
Breast cancer gene expression data generated by the Affymetrix
HG-U133 Plus 2.0 microarray platform and corresponding
clinical information were obtained from the publicly available
GEO database1. To analyze the correlation of lncRNA expression
with disease-free survival (DFS) for BRCA, we selected those data
sets that included patients with survival status information. In
total, 232 samples from GSE21653 (Sabatier et al., 2011a,b), 101
samples from GSE42568 (Clarke et al., 2013), and 87 samples
from GSE20711 (Dedeurwaerder et al., 2011) were obtained.
The GSE21653 data set was defined as the training cohort,
and the GSE42568 and GSE20711 data sets were treated as
the validation cohort. Another dataset, GSE19615 (n = 115)
(Li et al., 2010), which contained 62 patients treated with
tamoxifen, was obtained to validate the prognostic value of the
signature for patients after hormone treatment. Detailed clinical
information of patients with BRCA in this study is shown in
Table 1.

Microarray Data Processing and lncRNA
Re-annotation
All the raw microarray data (CEL files) of BRCA patients
were downloaded from the GEO database and background
adjusted and normalized using the Robust Multichip Average
(RMA) algorithm (Irizarry et al., 2003a,b) and “Affy” package

1https://www.ncbi.nlm.nih.gov/geo/

(Gautier et al., 2004). The probe sequences of Affymetrix HG-
U133 Plus 2.0 array were downloaded from the Affymetrix
website2 and uniquely mapped to the human genome (hg19).
Specific probes of lncRNAs were obtained by matching the
chromosomal position of probes to the chromosomal position
of lncRNA genes based on the annotations from GENCODE
(release 23) according to the previous studies (Du et al., 2013;
Zhou et al., 2015). When multiple probes were mapped to the
same lncRNA, expression values of these probes were integrated
using the median value to represent the expression value of the
single lncRNA. As a result, 2,673 lncRNAs were obtained for
further analysis.

Identification of a Survival-Related
lncRNA Signature Set Associated With
Breast Cancer
A univariate Cox proportional hazards regression analysis was
carried out to evaluate the association between expression
levels of lncRNAs and patients’ disease-free survival in the
training cohort. Only those lncRNAs with a p-value of <0.01
were considered statistically significant. We then conducted
the least absolute shrinkage and selection operator (LASSO)
penalized Cox proportional hazards regression analysis to select
the prognostic markers of the above lncRNAs (Tibshirani, 1997;
Zhang et al., 2013b). We created a risk-score formula by a
linear combination of the expressions of these six lncRNAs,
weighted by their respective Cox regression coefficients as follows
(Zhang et al., 2012, 2013c):

Risk Score =
N∑
i=1

(
Expi × Coefi

)
where N is the number of prognostic genes, Expi is the expression
value of the i gene, and Coefi is the estimated regression
coefficient of the i gene in the univariate Cox regression analysis.
Using the median signature risk score in each cohort as the cutoff
point, BRCA patients in every cohort were divided into low- and
high-risk groups.

Statistical Analysis
The association between the lncRNA gene expression and the
patient’s survival was assessed by univariable Cox regression
analysis. LASSO logistic regression analysis was used to identify
the lncRNAs comprising the prognostic signature with non-
zero coefficients in the training cohort using “glmnet” package
(Friedman et al., 2010). Kaplan–Meier survival analysis and
the log-rank test were used to compare the difference in
disease-free survival between the high-risk group and low-
risk group using the R package “survival.” Furthermore, we
used Cox multivariate analysis to test whether the lncRNA
signature was independent of patient age and histological grade.
Hazard ratio (HR) and 95% confidence intervals (CI) were
estimated by the Cox proportional hazards regression model.
The time-dependent receiver operating characteristic (ROC)

2http://www.affymetrix.com/
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TABLE 1 | The Clinical and pathological characteristics of patients in four GEO cohorts.

Characteristic GSE21653 (n = 232) GSE42568 (n = 101) GSE20711 (n = 87) GSE19615 (n = 115)

Age (years) 55.0 (24.0–85.0) 56.9 (31.1–90.0) 53.8 (32.1–82.1) 53.0 (32.0–85.0)

Grade

Grade I 39 10 13 23

Grade II 76 40 4 28

Grade III 117 51 70 64

ER status

Positive 128 67 42 70

Negative 104 34 45 45

Median follow up (months) 51.8 66.0 71.4 64.0

Disease-free status

Relapse 74 45 39 14

No relapse 158 56 48 101

Hormone therapy − − −

Tamoxifen − − − 62

Arimidex − − − 2

None − − − 47

Unknown − − − 4

curves were used to compare the prognostic accuracy of the
six-lncRNA signature for survival. Statistical significance was
defined as two-tailed p-values being less than 0.05. All of
the statistical analyses were performed using R program 3.5.23

and Bioconductor.

RESULTS

Identifying a Six-lncRNA Signature in the
Training Cohort
As summarized in the workflow (Figure 1), we first performed
an univariable Cox proportional hazards regression analysis
to assess the association between lncRNA expression and
disease-free survival of patients with BRCA in the training
cohort. A set of 17 lncRNAs that were significantly correlated
with patients’ survival (p ≤ 0.01, Table 2) was identified. We
found six lncRNAs (LINC00917, AL391840.1, TRIM52-AS1,
AL355075.4, AC093802.2, and AC091544.4) to comprise a
prognostic signature using a LASSO-penalized Cox proportional
hazards regression analysis for the above 17 lncRNAs with
optimal tuning parameters. All six lncRNAs have positive
coefficients, which indicates that their high expressions are
associated with shorter survival. Finally, we calculated the
signature risk score based on a linear combination of the
expression levels of six prognostic lncRNAs, weighted by
the coefficients derived from the univariable Cox regression
analysis as follows: Risk Score = (1.6348 × expression
value of LINC00917) + (1.7487 × expression value of
AL391840.1) + (0.6661 × expression value of TRIM52-AS1) +
(0.9439 × expression value of AL355075.4) + (1.1742 ×
expression value of AC093802.2) + (0.4818× expression value of
AC091544.4).

3https://www.r-project.org/

FIGURE 1 | The workflow of identification and validation of the six-lncRNA
signature.

The Six-lncRNA Signature Predicts
Disease-Free Survival of Patients With
Breast Cancer
We calculated the six-lncRNA signature risk score for each
patient in the training cohort (GSE21653, n = 232). The patients
were divided into a high-risk group (n = 116) and a low-risk
group (n = 116) using the median risk score as the cutoff.
Compared with the low-risk patients, the high-risk patients had
shorter disease-free survival (median survival 62.4 months vs
greater than 200 months, HR = 1.67, 95% CI = 1.05–2.66,
p = 0.028, Figure 2A). The prognostic value of the six-lncRNA
signature was then evaluated in the validation cohort (GSE42568,
n = 101). The signature classified patients into two groups,
including a high-risk group (n = 50) and a low-risk group
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TABLE 2 | The 17 lncRNAs that are significantly associated with the disease-free survival in the training cohort (n = 232).

Ensembl ID lncRNA name P-value HR (95%CI of HR)

ENSG00000168367 LINC00917 0.0015 5.128 (1.872− 14.048)

ENSG00000215231 LINC01020 0.0046 10.021 (2.036− 49.326)

ENSG00000227467 LINC01537 0.0055 8.267 (1.860− 36.742)

ENSG00000224699 LAMTOR5-AS1 0.0091 1.762 (1.151− 2.698)

ENSG00000226754 AL606760.1 0.0034 2.184 (1.294− 3.685)

ENSG00000231533 AL391840.1 0.0054 5.747 (1.678− 19.686)

ENSG00000259001 AL355075.4 0.0082 2.570 (1.276− 5.176)

ENSG00000231312 MAP4K3-DT 0.0005 3.687 (1.778− 7.642)

ENSG00000231528 FAM225A 0.0027 2.220 (1.318− 3.738)

ENSG00000254887 AC010247.1 0.0054 3.369 (1.432− 7.923)

ENSG00000259889 AC093802.2 0.0008 3.236 (1.619− 6.468)

ENSG00000260337 AC091544.4 0.0036 1.619 (1.170− 2.240)

ENSG00000261292 AC110491.1 0.0036 2.041 (1.262− 3.301)

ENSG00000260027 HOXB7 0.0094 1.975 (1.181− 3.302)

ENSG00000248275 TRIM52-AS1 0.0041 1.947 (1.235− 3.068)

ENSG00000261357 AC099518.2 0.0015 7.756 (2.189− 27.479)

ENSG00000267317 AC027307.2 0.0022 2.219 (1.331− 3.699)

(n = 51), based on the median risk score. The disease-free survival
of the high-risk group was significantly shorter than that of the
low-risk group (median survival 69.7 months vs greater than
100 months, HR = 2, 95% CI = 1.09–3.66, p = 0.022, Figure 2B).
Similarly, in another validated cohort (GSE20711, n = 87), the
high-risk group still had a poorer prognosis than the low-risk
group (median survival 77.8 months vs 122.5 months, HR = 1.54,
95% CI = 1.02–2.91, p = 0.040, Figure 2C).

Next, we assessed whether the prognostic value of the six-
lncRNA signature was independent of other clinical factors.
We performed univariate and multivariate Cox proportional
hazards regression analysis for factors, including age, ER status,
histological grade, and the signature. In the training cohort, the
high-risk six-lncRNA signature (HR = 1.789, 95% CI = 1.122–
2.852, p = 0.015), grade III (HR = 3.174, 95% CI = 1.314–7.666,
p = 0.010) and grade II (HR = 2.881, 95% CI = 1.181–7.028,
p = 0.020) were significantly correlated with DFS of patients
(Table 3). We found that the signature (HR = 2.327, 95%
CI = 1.256–4.311, p = 0.007) and ER status (HR = 0.472,
95% CI = 0.234–0.877, p = 0.017) significantly independently
predicted patients’ disease-free survival in the validation cohort
GSE42568 (Table 3). Moreover, the six-lncRNA signature was
also an independent prognostic factor associated with disease-
free survival in the GSE20711 dataset (HR = 1.631, 95%
CI = 1.037–3.105, p = 0.043). These results indicate that the six-
lncRNA signature is an independent prognostic factor for BRCA
patients’ disease-free survival.

The Six-lncRNA Signature Predicts
Survival of Patients During Diverse
BRCA Groups
We explored whether the six-lncRNA signature was effective
for patients within different histological grades using a
Kaplan–Meier survival analysis. For grade III patients, the

signature significantly classified patients into two groups
with distinctively different survival times (median survival
55.2 months vs greater than 150 months, HR = 2.39, 95%
CI = 1.26–4.51, p = 0.0057, Figure 3A), including the high-risk
group (n = 56) and the low-risk group (n = 61) in the training
cohort. The signature showed a similar prognostic value for
grade III patients in the validation cohort (median survival
25.2 months vs greater than 69.3 months, HR = 3.01 95%
CI = 0.96–9.46, p = 0.048, Figure 3B). In grade I patients, there
were no significant survival differences among the high-risk
groups and the low-risk groups in two cohorts (Supplementary
Figure S1A,B). A similar phenomenon was observed in grade
II patients from the GSE21653 data set (Supplementary
Figure S1C). However, in grade II patients from the GSE42568
data set, the high-risk and low-risk groups had significant
survival differences (HR = 5.29, 95% CI = 1.17–23.9, p = 0.015,
Supplementary Figure S1D).

Furthermore, Kaplan–Meier survival analysis was performed
after patient stratification according to ER status. The ER-
positive patients were divided into high-risk and low-risk
groups. The high-risk ER-positive patients had shorter disease-
free survival than low-risk ER-positive patients in the training
cohort (HR = 1.77, 95% CI = 0.93–3.38, p = 0.078, Figure 4A)
and the validation cohort (HR = 3.32, 95% CI = 1.31–8.38,
p = 0.0072, Figure 4B). There were no significant survival
differences between the high-risk and low-risk ER-negative
patients in these two cohorts when using the same risk formula
(Supplementary Figure S2).

The Six-lncRNA Signature Predicts
Patient Outcome After Tamoxifen
Therapy
We further tested whether the six-lncRNA was useful to guide
therapy in an independent cohort (GSE19615). In this cohort,
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FIGURE 2 | Kaplan–Meier survival curves of disease-free survival between high-risk (red) and low-risk (blue) patients in the (A) training cohort (GSE21653, n = 232),
and the (B,C) validation cohort (GSE42568, n = 101; GSE20711, n = 87). The differences between the two curves were determined by the two-sided log-rank test.
The number of patients at risk is listed below the survival curves. HR, hazard ratio.

TABLE 3 | Multivariate analysis for the six-lncRNA signature of disease-free survival in cohorts.

Variables Univariate analysis Multivariate analysis

HR 95% CI P-value HR 95% CI P-value

Training set GSE21653 (n = 232)

Age 1.006 0.988−1.024 0.533 1.007 0.989−1.026 0.423

ER status

Positive vs Negative 0.670 0.424−1.059 0.087 0.772 0.468−1.272 0.310

Grade

Grade II vs Grade I 2.748 1.129−6.691 0.026* 2.881 1.181−7.028 0.020*

Grade III vs Grade I 3.395 1.437−8.026 0.005* 3.174 1.314−7.666 0.010*

Six-lncRNA signature

High-risk vs Low-risk 1.674 1.052−2.664 0.030* 1.789 1.122−2.852 0.015*

Validation set GSE42568 (n = 101)

Age 0.995 0.969−1.021 0.700 1.001 0.975−1.027 0.962

ER status

Positive vs Negative 0.439 0.243−0.793 0.006* 0.472 0.254−0.877 0.017*

Grade

Grade II vs Grade I 1.497 0.337−6.638 0.596 1.059 0.234−4.788 0.940

Grade III vs Grade I 3.966 0.943−16.679 0.060 2.880 0.662−12.53 0.158

Six-lncRNA signature

High-risk vs Low-risk 1.998 1.092−3.655 0.025* 2.327 1.256−4.311 0.007*

Validation set GSE20711 (n = 87)

Age 1.041 1.010−1.073 0.009* 1.043 1.013−1.075 0.005*

ER status

Positive vs Negative 0.554 0.286−1.070 0.079 0.637 0.308−1.316 0.223

Grade

Grade II vs Grade I 1.941 0.315−11.947 0.474 2.028 0.275−14.976 0.488

Grade III vs Grade I 2.564 0.786−8.362 0.118 2.177 0.592−8.013 0.242

Six-lncRNA signature

High-risk vs Low-risk 1.539 1.021−2.905 0.040* 1.631 1.037−3.105 0.043*

there were 62 patients who received tamoxifen therapy and 47
who did not. We classified each patient into high- and low-
risk groups based on the lncRNA signature risk score. Among
the 58 low-risk patients, tamoxifen treatment could prolong

the disease-free survival of these patients (HR = 0.08, 95%
CI = 0.01–0.62, p = 0.0018, Figure 5A), while there were no
significant survival differences between patients with and without
tamoxifen therapy in the high-risk group (Figure 5B). This
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FIGURE 3 | Survival analysis of grade III patients based on the six-lncRNA signature. Kaplan–Meier survival curves for grade III patients in (A) GSE21653 (n = 117)
and (B) GSE42568 (n = 51).

FIGURE 4 | Survival analysis of ER-positive patients based on the six-lncRNA signature. Kaplan–Meier survival curves for ER-positive patients in (A) GSE21653
(n = 128) and (B) GSE42568 (n = 67).

result revealed that tamoxifen treatment was only beneficial for
low-risk BRCA patients.

Comparison of the Survival Prediction
Power Between Clinical Factors and the
Six-lncRNA Signature
To compare the sensitivity and specificity in survival prediction
between clinical factors (histological grade and ER status) and
the six-lncRNA signature, we performed a time-dependent ROC
analysis in the training cohort. We also constructed a prognostic

model by combining our signature with histological grade or ER
status. There were no significant differences between histological
grade and the lncRNA signature (p = 0.171). A similar result was
found between the signature and ER status (p = 0.997). Moreover,
for the histological grade, we observed that the histologic grade
combined with the six-lncRNA signature (AUC = 0.73) had a
higher area under the ROC curve than the histological grade
alone (AUC = 0.68, Figure 6A). The six-lncRNA signature could
also improve the prognostic accuracy of the ER status (0.63
vs 0.59, Figure 6B). In addition, for further clinical utility,
we constructed a full clinical prognostic model by combining
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FIGURE 5 | Kaplan–Meier curves of the disease-free survival according to low-risk or high-risk scores, stratified by tamoxifen therapy in an independent cohort
(GSE19615, n = 115). (A) Patients with tamoxifen therapy (red) had significantly longer disease-free survival than patients without treatment (blue) in the low-risk
group. (B) Patients who received tamoxifen therapy (red) and those who did not (blue) showed no survival differences in the high-risk group.

FIGURE 6 | Comparison of sensitivity and specificity for survival prediction by the six-lncRNA signature, histological grade, and ER status. (A) The receiver operating
characteristics (ROC) curves of the six-lncRNA signature, histological grade, and the combination of the two factors. (B) The ROC curves of the six-lncRNA
signature, ER status, and the combination of the two factors. (C) The ROC curves of the clinical model and the clinical model combined with the six-lncRNA
signature. AUC, the area under the curve.

all clinical factors including age, histological grade, and ER
status. After adding the six-lncRNA signature into the clinical
prognostic model, the prediction accuracy of the model was
effectively improved (0.74 vs 0.69, Figure 6C). These results
suggest that our six-lncRNA signature can add a complementary
value to known clinical factors.

DISCUSSION

In the current study, we developed and validated a prognostic six-
lncRNA signature based on lncRNA expression, which stratified
BRCA patients into two groups (high-risk group and low-risk

group) with different disease-free survival. We demonstrated
that this signature could predict the survival of grade III BRCA
patients. The ER-positive patients who were classified as the low-
risk group achieved better survival benefits. Furthermore, by
using this signature, we can find a subgroup of patients who are
likely to benefit from tamoxifen therapy. In sum, the six-lncRNA
signature for BRCA patients may be a prognostic tool that is
helpful in guiding individualized treatment of patients.

Histological classification of BRCA into grades I, II, and III,
determines the treatment of BRCA patients (Cortes et al., 2012;
Harris et al., 2016; Waks and Winer, 2019). The tumor cells of
grade III cancer tend to grow more quickly and look different
from normal breast cells (Wani et al., 2010). We observed that
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the six-lncRNA signature significantly predicted the survival of
grade III BRCA patients. This finding suggests that this lncRNA
signature predicted survival in patients with invasive cancer. In
addition, we found that high-risk ER-positive BRCA patients had
shorter disease-free survival than low-risk ER-negative patients.
Some studies have confirmed that ER is an essential predictor for
responding to therapy, such as tamoxifen therapy, in metastatic
BRCA (Fisher et al., 1997).

Given the heterogeneity of cancer, reliable prognostic
biomarkers are needed to identify patients who can benefit from
therapy (Li et al., 2017; Zhang et al., 2018). There is growing
research on several gene signatures to improve decision-making
and individualization of BRCA therapy (Cronin et al., 2007;
Cardoso et al., 2016; Yu et al., 2019). However, it is difficult
to apply all of them for clinical management. Our prognostic
signature could identify a group of patients at low risk, where the
use of tamoxifen therapy led to significantly extended disease-
free survival. This suggests that our signature may hold special
clinical value by separating responders to tamoxifen treatment,
from non-responders, independent of pathological stage. Such
separation could spare non-responders from therapy that is not
beneficial and could promote the exploration of more effective
therapeutic regimens.

The six-lncRNA (LINC00917, AL391840.1, TRIM52-AS1,
AL355075.4, AC093802.2, and AC091544.4) signature in BRCA
suggests that lncRNAs can be used as prognostic factors for
the survival of patients. To avoid the influence of protein-
coding genes, we annotated these probes with protein-coding
genes, and found that only one lncRNA overlapped with protein-
coding gene RPPH1. This gene had no predictive performance
for survival, whether by itself or in combination with other
lncRNAs (p = 0.39 and 0.16 respectively, Supplementary
Figure S3). In addition, among these lncRNAs, TRIM52-AS1
was dominantly up-regulated in triple-negative breast cancer
(TNBC) tissues compared to non-TNBC tissues by a RT-PCR
(Lv et al., 2016). Moreover, another study found that the
overexpression of TRIM52-AS1 suppressed cell migration and
proliferation and induced cell apoptosis in renal cell carcinoma
(Liu et al., 2016). However, these six lncRNAs have not been
studied in BRCA. Thus, this is a novel study on the association
between lncRNA expression and the disease-free survival of
patients with BRCA.

Although the signature demonstrated an accurate survival
prediction, several limitations should be noted. Because the
sample size of our study was limited, large-scale cohort
studies should be performed to investigate the prognostic
value of this six-lncRNA signature. In addition, we only

used a bioinformatics method to predict the six-lncRNA
signature in BRCA, thus, further in vitro or in vivo
experiments need to be conducted. Third, we investigated
the efficacy of tamoxifen therapy in a low-risk BRCA
group, thus more examinations are required to evaluate its
efficacy and safety.

In conclusion, the six-lncRNA signature that we identified
predicted the disease-free survival of patients with BRCA. This
signature also predicted the survival of grade III and ER-positive
patients. Furthermore, our findings revealed that the six-lncRNA
signature could predict the benefits to patients treated with
tamoxifen therapy. Further validation studies are needed to test
the prognostic power of this signature before it is used clinically.
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A Neural Network Framework for
Predicting the Tissue-of-Origin of 15
Common Cancer Types Based on
RNA-Seq Data
Binsheng He1*†, Yanxiang Zhang2†, Zhen Zhou3†, Bo Wang2, Yuebin Liang2,
Jidong Lang2, Huixin Lin2, Pingping Bing1, Lan Yu4, Dejun Sun4, Huaiqing Luo1* ,
Jialiang Yang1,2* and Geng Tian2*

1 Academician Workstation, Changsha Medical University, Changsha, China, 2 Geneis (Beijing) Co., Ltd., Beijing, China,
3 Department of Radiology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor
Research Institute, Beijing, China, 4 Inner Mongolia People’s Hospital, Huhhot, China

Sequencing-based identification of tumor tissue-of-origin (TOO) is critical for patients
with cancer of unknown primary lesions. Even if the TOO of a tumor can be diagnosed
by clinicopathological observation, reevaluations by computational methods can help
avoid misdiagnosis. In this study, we developed a neural network (NN) framework
using the expression of a 150-gene panel to infer the tumor TOO for 15 common
solid tumor cancer types, including lung, breast, liver, colorectal, gastroesophageal,
ovarian, cervical, endometrial, pancreatic, bladder, head and neck, thyroid, prostate,
kidney, and brain cancers. To begin with, we downloaded the RNA-Seq data of 7,460
primary tumor samples across the above mentioned 15 cancer types, with each type of
cancer having between 142 and 1,052 samples, from the cancer genome atlas. Then,
we performed feature selection by the Pearson correlation method and performed a
150-gene panel analysis; the genes were significantly enriched in the GO:2001242
Regulation of intrinsic apoptotic signaling pathway and the GO:0009755 Hormone-
mediated signaling pathway and other similar functions. Next, we developed a novel
NN model using the 150 genes to predict tumor TOO for the 15 cancer types. The
average prediction sensitivity and precision of the framework are 93.36 and 94.07%,
respectively, for the 7,460 tumor samples based on the 10-fold cross-validation;
however, the prediction sensitivity and precision for a few specific cancers, like prostate
cancer, reached 100%. We also tested the trained model on a 20-sample independent
dataset with metastatic tumor, and achieved an 80% accuracy. In summary, we
present here a highly accurate method to infer tumor TOO, which has potential clinical
implementation.

Keywords: cancer of unknown primary, tissue-of-origin, neural network, RNA sequencing, the Pearson
correlation
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INTRODUCTION

Worldwide, almost one in three cancer patients is clinically
diagnosed with distant metastases. In most cases, primary
and metastatic lesions are identified simultaneously; however,
some primary tumors cannot be found after systematic
clinicopathological diagnosis (Tomuleasa et al., 2017). Cases
with cancer of unknown primary (CUP) lesions account for
approximately 3–5% of all newly diagnosed cancers (Richardson
et al., 2015); due to its poor prognosis, CUP is the fourth-
highest cause of cancer-related deaths around the world (Pavlidis
and Fizazi, 2005; Kamposioras et al., 2013). Cancer of unknown
primary patients are generally treated with non-selective
empirical chemotherapy, which leads to a very low short-term
survival rate (Kurahashi et al., 2013). Thus, identifying the
primary site is critical for improving long-term survival in
CUP patients, especially when considering cancer-type specific
targeted therapy (Hudis, 2007; Varadhachary et al., 2008;
Hyphantis et al., 2013).

To identify the primary lesion of CUP, a systematic assessment
is performed which consists of physical examination, patient-
history analysis, serum markers, radiological imaging; as well as
immunohistochemical analysis. Immunohistochemical markers
are very important for determining tissue-of-origin (TOO;
MacReady, 2010; Molina et al., 2012; Oien and Dennis, 2012;
Pavlidis and Pentheroudakis, 2012); however, the expressed
markers may be non-specific sometimes (Handorf et al., 2013;
Montezuma et al., 2013; Tothill et al., 2013). Recently, studies
have shown that cellular-origin signatures, which are sufficiently
retained in primary tissue, persist after primary cancer cells
undergo dedifferentiation and colonization in different tissue
types (Ma et al., 2005; Tothill et al., 2005). Molecular profiling
is a promising technique that can improve primary-site diagnosis
in CUP patients (Ma et al., 2005; Lazaridis et al., 2008; Meiri et al.,
2012); it is based on expression microarrays and the quantitative
real-time polymerase chain reaction (qRT-PCR) experimental
platform (Ma et al., 2005; Lazaridis et al., 2008; Greco et al., 2012;
Meiri et al., 2012).

In recent years, cancer classification based on gene expression
data such as RT-PCR has attracted great interest and has
been implemented in different studies (Lapointe et al., 2004;
Mramor et al., 2007; Liu et al., 2008). Single studies are
prone to laboratory-specific bias; they are usually limited
to a relatively small number of samples and fail to yield
novel markers for clinical application. However, applying Next
Generation Sequencing (NGS) technology helps alleviate the
issue of batch effect by providing gene expression data sets
from multiple studies; thus, the integrative analysis of such
data can be considered a source of cancer classification. In
this regard, establishing a robust classification model is a
challenging task; bioinformatics feature selection techniques for
establishing such models have been introduced in a previous
review (Saeys et al., 2007).

Support vector machines (SVMs) based on the recursive
feature elimination (RFE) algorithm represent embedded
methods used for feature selection and classification modeling
based on microarray gene expression data, which mined

11,925 genes to 154 genes with definite biological significance
(Xu et al., 2016). More than 20,000 genes were generated
from NGS RNA-Seq data in other studies (Bhowmick
et al., 2019); this number is almost twice as much as that
from microarray gene expression data. Hence, RNA-Seq
data from nine cancer types (lung, liver, colon, thyroid,
prostate, bladder, kidney, brain, and skin) were analyzed
with different algorithms, and Artificial Bee Colony (ABC)
yielded better results than Ant Colony Optimization,
Differential Evolution, and Particle Swarm Optimization.
Among different cancer types, lower grade brain glioma had
the highest accuracy (99.1%) based on the ABC algorithm
(Bhowmick et al., 2019). However, the robustness of feature
selection and classification modeling methods still needs to be
comprehensively evaluated; different algorithms might result
in different results depending on their model (Chopra et al.,
2010; Bhowmick et al., 2019). Therefore, it is necessary to
design a robust classification algorithm based on NGS data that
can yield accurate cancer type classification and supplement
clinical examination.

In the present study, genome-wide gene expression profiles
were established based on comprehensive RNA-Seq data. The
gene expression data of ∼8,000 tumor samples were used
to identify gene signatures for 15 common human cancer
types (lung, breast, liver, colorectal, gastroesophageal, ovarian,
cervical, endometrial, pancreatic, bladder, head and neck,
thyroid, prostate, kidney, and brain). To screen gene features
and evaluate cancer classifiers, the Pearson correlation Neural
Network (NN) algorithm was implemented in this study to
identify tumor origins.

MATERIALS AND METHODS

RNA-Seq Datasets
NGS-based gene expression profiling data of 7,480 tumor samples
were collected from The Cancer Genome Atlas (TCGA, release
version v26),1 and the tissue origins of those samples were
confirmed through histopathological analysis. The downloaded
data offered RNA-seq data of 21 cancer types that belongs
to projects from United States, which is sequenced using
the same protocols. Among them, melanoma had a distinct
distribution from other cancer types (80 samples were sampled
from primary tumor and 352 were sampled from metastatic
tumor) and was excluded. Thus, the expression profiles
of 15 common cancer types (lung, breast, liver, colorectal,
gastroesophageal, ovarian, cervical, endometrial, pancreatic,
bladder, head and neck, thyroid, prostate, kidney, and brain)
were studied in this work. The normalized expression value
of expression data was downloaded from TCGA and provided
the expression levels of 20,501 unique genes for the 15
chosen cancer types.

To perform the bioinformatics analysis in this study, the
transcript level of genes was normalized again to form a matrix
with rows of sample numbers and columns of gene numbers.

1https://dcc.icgc.org/releases/release_26
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The normalization was done by dividing the sum of the gene
expression value of each sample. Normalized gene expression
data were extracted and represented as a matrix with ‘m’ rows
and ‘n’ columns, such that ‘m’ represented 7,480 tumor samples
and ‘n’ represented the expression levels of 20,501 unique genes.

For log transformation, we used log2 to transform the original
dataset after replacing zeros to global minimum × 0.1. No
normalizations were done after feature selection.

Among all the samples, 7,460 samples were sampled from
primary tumors, remaining 20 samples sampled from the
metastatic tumors.

Gene Feature Identification
To identify an optimal gene signature, we introduced a strategy
of feature selection and multi-class classification modeling in this

study. According to the mechanism of feature selection, the sets of
genes were screened by the Pearson Correlation algorithm (Hall,
1998; Saeys et al., 2007). This study consisted of the following
steps: (i) create an array to binarize rows for each cancer type (C
columns) for the m tumor samples, labeling the sample as “true”
if the sample belongs to the cancer type, otherwise the sample was
labeled as “False,” where C is the total cancer types and m is the
sample number; (ii) calculate the correlation of gene expression
level with samples labeled “true” for each cancer type, then sort
in decreasing order according to their correlation; (iii) take the
most important signatures, appeared top N of the list, for each
cancer type, where N is an integer; and (iv) combine C lists of the
top N genes and remove the redundant genes, generating a gene
set. Gene expression values from the gene set will be extracted
for further usage.

FIGURE 1 | Workflow of gene-feature identification and performance assessment.
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Feature Performance Assessment
We used a NN (Hinton, 1989) to train the classification model.
The gene expression values were used as input signatures for the
NN. The NN was designed with three layers, in which the input
layer has N units, the hidden layer has 50 units, and output layer
has 15 units corresponding to each cancer where N is the gene
number of the input matrix. The output layer of the NN was used
as the input for the Softmax function to obtain the probabilities
for each cancer type. To prevent overfitting, L2 penalty was
set to 0.0001. For comparison, we used logistic regression as a
baseline method. The parameter C was set to 10,000 for logistic
regression. The algorithms were implemented using scikit-learn
package (Pedregosa et al., 2011).

Gene Ontology Analysis
To perform the Gene ontology (GO) analysis of the identified
gene features, GO consortium (Ashburner et al., 2000) was
used. The enrichment result was generated by clusterProfiler,
which performs a hyper geometric test between the tested genes
and gene sets in GO terms (Yu et al., 2012). The biological
significances of the selected genes were examined by GO
enrichment analysis to identify the most enriched biological-
process terms. Benjamini–Hochberg was used to adjust the
p value.

RESULTS

Collection of Gene Expression Datasets
of Common Human Cancer Types
The main objective in this study is to identify putative
gene biomarkers to classify cancer type. The workflow of
the present study is shown in Figure 1. For this analysis,
the TCGA was used to obtain gene expression profiles of
15 common solid tumor cancer types via NGS-based RNA-
Seq, including lung, gastroesophageal, colorectal, liver, breast,
thyroid, cervical, brain, pancreatic, ovarian, endometrial, bladder,
kidney, head and neck, and prostate. In total, the expression
data of 7,480 tumor samples were collected. Among those,
the gene expression profiles of lung adenocarcinoma and
lung squamous cell carcinoma samples were merged into
lung cancer; those of colon adenocarcinoma and rectum
adenocarcinoma were merged into colorectal cancer; those of
kidney renal clear cell carcinoma and kidney renal papillary
cell carcinoma were merged into kidney cancer; and those of
glioblastoma multiforme and lower grade glioma were merged
into brain cancer.

Around 20 of the 7,480 samples were sampled from metastatic
tumors, whereas 7,460 were sampled from primary tumors. Thus,
we split the dataset into the 7,460-sample training dataset and the
20-sample test dataset according to the sampling tumor type. All
cancer types in the training dataset had more than 100 samples;
the largest sample size was that of breast cancer (1,056 samples),
whereas, the smallest sample size was that of pancreatic cancer
(142 samples). Table 1 summarizes the datasets and provides
information on the tumor samples.

TABLE 1 | Summary of samples used in the experiments.

Sampling
site

Cancer type Code Sample
size

Percentage
(%)

Primary Lung LUAD + LUSC 914 12.25

Gastroesophageal STAD 415 5.56

Colorectal COAD + READ 604 8.10

Liver LIHC 294 3.94

Breast BRCA 1056 14.16

Thyroid THCA 500 6.70

Cervical CESC 258 3.46

Brain GBM + LGG 529 7.94

Pancreatic PAAD 142 1.90

Ovary OV 261 3.50

Endometrial UCEC 516 6.92

Bladder BLCA 301 4.03

Kidney KIRC + KIRP 748 10.03

Head and Neck HNSC 480 6.43

Prostate PRAD 379 5.08

Total for primary tumors 7,460 100

Metastatic Breast BRCA 7 35.00

Cervical CESC 2 10.00

Colorectal COAD + READ 1 5.00

Head and Neck HNSC 2 10.00

Thyroid THCA 8 40.00

Total for metastatic tumors 20 100

Hundred and Fifty as a Feature Number
Works Well With the Neural Network
A classification modeling database of 15 common cancer types
was established based on the expression data of 20,501 unique
genes obtained from TCGA. However, having a large number
of samples per cancer type might result in variations due to
intra-tumor heterogeneity; hence, it is critical to identify the
gene expression features from high-dimension datasets. Pearson
correlation-based feature selection represents a multivariable
filter method for high-dimension data analysis (Hall, 1998;
Saeys et al., 2007), which is fast in operation and simple in
complex computation; they are used to assess the correlation
between cancer type and corresponding gene-expression features.
Here, we used Pearson correlation to select the gene-expression
signature from NGS-based mRNA expression data for each
cancer type. In this study, we used integers from 1 to 20
as candidates for gene number for each cancer type, which
might give rise to 20 possible gene sets of 15, 30, . . ., 300
with a step of 15.

The regression model is an important mathematical model
for classification. NNs, as types of deep learning algorithms,
are advanced techniques that can analyze complex and high-
dimensional data. NNs have been applied in protein classification
(Asgari and Mofrad, 2015) and anomaly classification (Suk and
Shen, 2013; Plis et al., 2014; Hua et al., 2015). Here, we used
NNs as the classification model to assess the performance of
different numbers of features. The gene expressions levels were
the input layer for the NN; 15 cancer types were the output layer
obtained from NNs.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 4 August 2020 | Volume 8 | Article 73752

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-00737 August 4, 2020 Time: 15:18 # 5

He et al. DNN-Based Inference of Cancer Tissue-of-Origin

Usually, 10-fold cross-validation is used for minimizing the
over-fitting issues and obtaining good performance. Hence, to
avoid overfitting of the NN algorithm, we ran a 10-fold cross-
validation 10 times using the 7,460-sample training dataset to
obtain relatively stable and reliable results, possibly minimizing
the percentage of false positives and false negatives. The 10-fold
cross validation was performed as follows. (a) Split the whole
training dataset into 10 disjoint parts randomly. (b) Use 9 parts
as the training set (9/10 training set). (c) Choose N genes using
Pearson correlation from the 9/10 training set, where N is the
gene number which might be 15, 30, . . ., 300 with a step of
15. (d) Train a model using the selected genes using the 9/10
training set. (e) Use the remaining one part as test set as the
validation set of the previously trained model. (f) Repeat b–e 10

times with each part being the test set, until all the samples are
predicted once. Finally, (g) merge the results from the test parts
and evaluate the metrics.

The cross validation was done using different gene number
and the accuracies from each 10-fold cross validation are plotted.
For comparison, we also used logistic regression as a baseline
model (Figure 2). We achieved a good accuracy when the selected
gene number is 150. Though a better accuracy could be achieved
using the 200 or more as the feature number, the growth curve
of number-accuracy is slowing down. The 150 could be seen
as a turning point for this curve. Thus, we finally chose the
number 150 as the feature number. The results was calculated
by averaging the results of 10 times of 10-fold cross validations
and showed that the overall accuracy of each cancer type was

FIGURE 2 | The cross validation accuracy of different gene numbers using neural network (A) and logistic regression (B).
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TABLE 2 | Sensitivity and precision assessment for each cancer type.

Sensitivity (%) Precision (%)

Lung 91.87 92.76

Gastroesophageal 94.89 96.33

Colorectal 98.06 96.88

Liver 97.99 98.80

Breast 98.43 97.98

Thyroid 99.38 99.58

Cervical 71.63 76.38

Brain 99.32 99.41

Pancreatic 91.76 94.63

Ovarian 97.55 97.15

Endometrial 95.54 94.85

Bladder 74.75 88.36

Kidney 98.42 98.54

Head and Neck 90.83 79.39

Prostate 100.00 100.00

Average 93.36 94.07

94.87% using 150 as the feature number; the sensitivity was
on average 93.36%, while the precision was on average 94.07%,
corresponding to the actual numbers of cancer samples (Table 2).
Among the 15 cancer types, the classifier sensitivity of 13 cancer
types (lung, breast, liver, colorectal, gastroesophageal, ovarian,
endometrial, pancreatic, head and neck, thyroid, prostate, kidney,
and brain) was more than 90%, with that of prostate cancer
having the highest sensitivity (100%). On the contrary, the
remaining two cancer types had a sensitivity of <90% (74.75%
for bladder cancer and 71.63% for cervical cancer) (Figure 3
and Table 2).

We also attempted to use the log-transformed data for in
the cross validation since log-transformation was a common
transformation for gene expression profile. For a reasonable

comparison, we selected 10 genes for each cancer in each fold
of cross validation. However, the overall accuracy by 10 times of
10-fold cross validations only reached 80.90% (Supplementary
Table S1), which is not satisfactory. In contrast, the data by the
previously described transformation method output the result of
94.87%, showing more optimization shall be done for a better
result using the log-transformed data.

The Identified Genes Were Enriched in
Several Organ-Specific Pathways
A 150-gene set was identified using the whole training dataset
for subsequent processing (Table 3). To understand how
frequently those genes will show up in the cross validation
phase, we counted the genes in all the 100 gene sets used
in the cross validation and found that 117 genes out of
the 150 gene showed up in all gene sets validation, showing
the robustness of the feature selection method based on
Pearson correlation (Supplementary Table S2). To investigate
the biological processes of the involved signature genes, GO
enrichment analysis was performed. We saw that the most
functionally enriched processes related to our 150-gene panel by
GO analysis were biological processes (Figure 4 and Table 4).
Among those, GO:0048568 Embryonic organ development,
GO:0061458 Reproductive system development, GO:0007389
Pattern specification process, GO:0043062 Extracellular structure
organization, GO:0002009 Morphogenesis of an epithelium, and
GO:0048732 Gland development were related to tissue or organ
morphogenesis. Our signature genes were involved in these
biological processes and might be useful for classifying distinct
cancer types. Hence, the enrichment analysis in the present study
might provide a basis to improve our understanding of lung,
gastroesophageal, colorectal, liver, breast, thyroid, cervical, brain,
pancreatic, ovarian, endometrial, bladder, kidney, head and neck,
and prostate cancers.

FIGURE 3 | Prediction of cancer type by confusion matrix analysis. The confusion matrix is from one 10-fold cross validation and displayed the relationship between
reference diagnosis and the predicted cancer type. The first column represents reference diagnoses; the predicted cancer types by transcript levels of the 150 genes
are shown across the top row.
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The Trained Neural Network Showed
High Accuracy on Independent
Metastatic Tumor Dataset
We further sought to validate our model on the 20-sample
metastatic dataset as a test set. We trained the NN model and
the logistic regression model on the whole training dataset using
the 150-gene set, which was then used for predicting the test set.
The prediction accuracy of NNs was 80%, while the prediction
accuracy of the logistic regression model was 70%. The detailed
predictions are shown in Table 5.

DISCUSSION

Inferring cancer TOO is important for CUP patients and might
serve well for minimizing misdiagnosis, even if the cancer origin
is diagnosed by pathological observation. Hence, it is critical
to develop a method to classify TOO of common cancer types.
This study was possible because of the great advancements in
NGS technologies and the general application of NGS in clinical
experiments, along with the efforts made by researchers who
have contributed to the TCGA, from where huge gene expression
datasets can be obtained. In the present study, we utilized the
NN method to comprehensively analyze high-dimensional RNA-
Seq datasets of 15 common cancer types. The 150-gene panel of
cancer classifiers demonstrated an average accuracy of 94.87%,
corresponding to the actual numbers of cancer samples.

Several hallmarked studies indicated that the cellular origin
signatures that are expressed in primary tissue are sufficiently
retained even after primary cancer cells undergo dedifferentiation
and colonization in different tissue types (Ma et al., 2005;
Tothill et al., 2005). A recent study compared four different
algorithms and indicated that the modeling performance differed
between these algorithms when analyzing RNA-Seq data from
4,127 primary tumor tissue samples related to nine cancer types
(Bhowmick et al., 2019). Among those, ABC yielded the best
results; it had an average precision of 91.16% and an average
sensitivity of 96.5% for nine cancer types (Bhowmick et al., 2019).
However, our study demonstrated an average precision of 94.07%
and an average sensitivity of 93.36%, corresponding to 7,460
cancer samples related to 15 common cancer types. Although the
average sensitivity from our study was a bit lower than that of
ABC algorithm, we managed to dramatically minimize the false-
positive rate to 0.34% (Table 2). Moreover, the overall accuracy
with an average of 94.87% is higher than that of other gene
expression-based signatures, which ranged from 79–91% (Ma
et al., 2005; Monzon et al., 2009; Kerr et al., 2012). Furthermore,
the performance of the 150-gene panel was higher than that of
the immunohistochemistry technique (75%), which represents
the current clinical practice standard, as tested by a 10-antibody
panel (Park et al., 2007).

In the present study, GO analysis revealed several over-
represented biological processes related to tissue morphogenesis,
such as embryonic organ development, reproductive system
development, pattern specification process/regionalization,
extracellular structure organization, epithelial morphogenesis,
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FIGURE 4 | The most represented biological processes associated with our signature genes. Dot plot displaying the number of signature genes involved in each
biological process, determined by enrichment analysis. Dot size represents the number of genes, and dot color represents p-value; a lower p-value represents a
higher probability of a biological process being enriched with the signature genes.

and glandular development (Figure 4 and Table 4). Additionally,
the expression patterns of several signature genes of the 150-
gene panel were previously reported to be related to tissues of
specific tumor types. For example, GRHL3 (Grainyhead-Like
Transcription Factor 3) encodes a cancer suppressor that is
a member of the grainyhead-like transcription factor family
(Darido et al., 2011). The downregulated GRHL3 gene was
associated with head and neck squamous cell carcinomas (Frisch
et al., 2018); overexpression of the oncogenic mir21 was as
result of decreased GRHL3 (Bhandari et al., 2013). In addition,
KLKs (Kallikrein-Related Peptidases) are genes that encode serine
proteases that exhibit a deregulated expression in prostate cancer.
In our study, KLK2, KLK3, and KLK4 were identified as gene
signatures for prostate cancer; KLK3 is a prostate-specific antigen
that is a gold-standard clinical biomarker widely employed in
the diagnosis and monitoring of prostate cancer (Fuhrman-Luck
et al., 2014); KLK2 showed promise as prostate cancer biomarker,
as well. Additionally, the deregulated expression of KLKs has
been utilized in designing novel therapeutic targets for prostate
cancer (Fuhrman-Luck et al., 2014).

GATA DNA-binding proteins, commonly abbreviated as
GATAs, are zinc-finger binding transcription factors that regulate
tissue differentiation and specification (Chou et al., 2010;
Zheng and Blobel, 2010). In our study, GATA3 and GATA6
transcripts were identified as gene signatures for breast cancer
and gastroesophageal cancer, respectively. Previous studies have
indicated that GATA3 was weakly expressed in a wide variety
of normal tissues, while its expression was remarkably elevated
in breast cancer (Yang and Nonaka, 2010; Liu et al., 2012);
moreover, GATA3 has been identified as a novel clinical
marker for detecting primary and metastatic breast cancer

(Cimino-Mathews et al., 2013; Krings et al., 2014; Shield et al.,
2014; Braxton et al., 2015; Sangoi et al., 2016; Yang et al.,
2017). GATA6 was initially cloned from rat gastric tissue,
designated as GATA-GT1 (Tamura et al., 1994); however, recent
studies have indicated that GATA6 was frequently overexpressed
and/or amplified in human gastroesophageal cancer (Sulahian
et al., 2014; Chia et al., 2015; Song et al., 2018). There’s some
limitations about our studies. First, we assessed the model based
on NGS RNA-Seq data from the formalin-fixed and paraffin-
embedded materials, but not fresh materials. We did not evaluate
it in fresh materials mainly due to the formalin-fixed and
paraffin-embedded materials are most diagnostic materials in
routine practice. Second, some solid tumor cancer types such as
sarcoma was not included due to the unavailability of RNAseq
data; besides, the non-solid tumors were currently excluded;
melanoma was also excluded due to the data scarcity and the
distinct distribution of its primary tumor sample number and
metastatic tumor sample number. Thus, further efforts should be
made for a broader application scope. Third, the training dataset
could be further expanded. Since the final gene set contains
some organ development-related genes, we can infer that the
gene set does not only classify cancer types, but also organs.
Staub et al. has already made efforts by expand the training
dataset and achieved a better result (Staub et al., 2009). Thus,
expression profiles from normal tissues could be further added to
our training dataset for a better performance. Another limitation
is that our method is based on the expression value without any
manipulations. Recently, an algorithm called TSP was applied
to this problem, which will generate gene pairs instead of
single gene features, giving rise to a leap to the prediction
accuracy (Shen et al., 2020). We believe that combining the
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TABLE 5 | The performance on metastatic samples of the neural network trained
on the primary samples.

Sample Id predicted_
by_NN

predicted_by
_logistic

true_label

TCGA-AC-A6IX-06A-11R-A32P-07 BRCA BRCA BRCA

TCGA-BH-A18V-06A-11R-A213-07 BRCA BLCA BRCA

TCGA-BH-A1ES-06A-12R-A24H-07 BRCA LIHC BRCA

TCGA-BH-A1FE-06A-11R-A213-07 KIDNEY KIDNEY BRCA

TCGA-E2-A15A-06A-11R-A12D-07 BRCA BRCA BRCA

TCGA-E2-A15E-06A-11R-A12D-07 BRCA BRCA BRCA

TCGA-E2-A15K-06A-11R-A12P-07 BRCA BRCA BRCA

TCGA-HM-A6W2-06A-22R-A33Z-07 UCEC UCEC CESC

TCGA-UC-A7PG-06A-11R-A42S-07 CESC CESC CESC

TCGA-NH-A8F7-06A-31R-A41B-07 COAD +
READ

COADREAD COAD +
READ

TCGA-KU-A6H7-06A-21R-A31N-07 CESC CESC HNSC

TCGA-UF-A71A-06A-11R-A39I-07 LUNG LUNG HNSC

TCGA-DE-A4MD-06A-11R-A250-07 THCA THCA THCA

TCGA-EM-A2CS-06A-11R-A180-07 THCA THCA THCA

TCGA-EM-A2P1-06A-11R-A206-07 THCA THCA THCA

TCGA-EM-A3FQ-06A-11R-A21D-07 THCA THCA THCA

TCGA-EM-A3SU-06A-11R-A22U-07 THCA THCA THCA

TCGA-J8-A3O2-06A-11R-A23N-07 THCA THCA THCA

TCGA-J8-A3YH-06A-11R-A23N-07 THCA THCA THCA

TCGA-J8-A4HW-06A-11R-A250-07 THCA THCA THCA

neural network and the feature generation could further improve
the performance for CUP problems.

CONCLUSION

In the present study, our 150-gene panel exhibited promising
results as a tumor classifier for inferring the origin of tumor
tissue. First, we obtained NGS-based RNA-Seq data for 7,460
tumor samples from TCGA. Second, we built a fine pipeline to
identify gene signatures based on their transcript-levels for 15
common cancer types. Third, we utilized the Neural Network to
evaluate the performance of the genes; on average, the precision
was 94.07%, while the sensitivity was 93.36%. In addition,
GO enrichment analysis revealed several biological processes,
including tissue morphogenesis; notably, most of the gene
signatures were involved in key oncogenic pathways, supporting
our 150-gene panel. Therefore, the 150-gene biomarker signature
in our study might prove to be clinically useful for identifying
cancers of unknown origin and confirming initial clinical
diagnoses. In future studies, we will focus on the application
of this model in metastatic cancer patients, in addition to
patients with cancer of unknown origin, to evaluate their
therapy outcome.
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Purpose: Gastric cancer (GC) is a product of multiple genetic abnormalities,
including genetic and epigenetic modifications. This study aimed to integrate various
biomolecules, such as miRNAs, mRNA, and DNA methylation, into a genome-wide
network and develop a nomogram for predicting the overall survival (OS) of GC.

Materials and Methods: A total of 329 GC cases, as a training cohort with a random of
150 examples included as a validation cohort, were screened from The Cancer Genome
Atlas database. A genome-wide network was constructed based on a combination of
univariate Cox regression and least absolute shrinkage and selection operator analyses,
and a nomogram was established to predict 1-, 3-, and 5-year OS in the training
cohort. The nomogram was then assessed in terms of calibration, discrimination,
and clinical usefulness in the validation cohort. Afterward, in order to confirm the
superiority of the whole gene network model and further reduce the biomarkers for the
improvement of clinical usefulness, we also constructed eight other models according
to the different combinations of miRNAs, mRNA, and DNA methylation sites and made
corresponding comparisons. Finally, Gene Ontology (GO), and Kyoto Encyclopedia of
Genes and Genomes (KEGG) analyses were also performed to describe the function of
this genome-wide network.

Results: A multivariate analysis revealed a novel prognostic factor, a genomics score
(GS) comprising seven miRNAs, eight mRNA, and 19 DNA methylation sites. In the
validation cohort, comparing to patients with low GS, high-GS patients (HR, 12.886;
P < 0.001) were significantly associated with increased all-cause mortality. Furthermore,
after stratification of the TNM stage (I, II, III, and IV), there were significant differences
revealed in the survival rates between the high-GS and low-GS groups as well
(P < 0.001). The 1-, 3-, and 5-year C-index of whole genomics-based nomogram were
0.868, 0.895, and 0.928, respectively. The other models have comparable or relatively
poor comprehensive performance, while they had fewer biomarkers. Besides that,
DAVID 6.8 further revealed multiple molecules and pathways related to the genome-wide
network, such as cytomembranes, cell cycle, and adipocytokine signaling.
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Conclusion: We successfully developed a GS based on genome-wide network, which
may represent a novel prognostic factor for GC. A combination of GS and TNM
staging provides additional precision in stratifying patients with different OS prognoses,
constituting a more comprehensive sub-typing system. This could potentially play an
important role in future clinical practice.

Keywords: gastric cancer, genome-wide network, miRNA, mRNA, DNA methylation, nomogram

BACKGROUND

Gastric cancer (GC) is one of the most common malignant
human tumors and the third leading cause of cancer-related
mortalities worldwide. Reports estimate that nearly one million
new cases and 800,000 deaths occur each year across the world
(Torre et al., 2015). Despite the rapid research advancement, GC-
related impacts on human life remain high around the globe.
According to the global cancer burden data, hundreds of billions
of dollars in economic losses are incurred each year due to GC.
At the same time, stomach cancer has been reported to cause 19.1
million disability-adjusted life years, with 98% of these resulting
from years of life lost and 2% from years lived with disability
(Global Burden of Disease Cancer Collaboration et al., 2019).

Despite major breakthroughs in GC prevention, diagnosis,
and treatment therapies reported over the past decade, prognosis
remains a challenge at different TNM stages (Jiang et al., 2018a;
Sun et al., 2019a,b). Notably, patients with similar clinical
features and at the same tumor stage who receive uniform
treatment have exhibited varying clinical outcomes (Bang et al.,
2012; Jiang et al., 2018b). Such evidence indicates the existing
challenges to traditional TNM staging (Serra et al., 2019), possibly
due to a lack of molecular tools for effectively predicting the
prognosis and the therapeutic effect of GC patients. Therefore,
more rigorous and reliable systems that accurately reflect the
heterogeneity of different patients and guide the development of
treatment approaches are urgently needed (Duarte et al., 2018;
Serra et al., 2019).

Tumors are a product of multiple genetic mutations, including
genetic (gene expression) and epigenetic (DNA methylation and
histone modification) modifications, as well as deregulations
of tumor-suppressor genes and proto-oncogenes (Anna et al.,
2018; Choi et al., 2019). In addition, changes in a set of genetic
materials have been closely associated with cancer outcomes
(Anna et al., 2018; Choi et al., 2019). Therefore, to effectively
predict the prognosis of tumors, such as GC, a single biomarker
is insufficient, necessitating the need for a gene network.

A variety of mRNAs have been associated with GC prognosis
(Camargo et al., 2019), with microRNAs (miRNAs) also
implicated in tumor prediction in the recent years (Li et al.,
2010; Ueda et al., 2010; Camargo et al., 2019). These small,
non-coding RNAs, comprising 22 nucleotides, primarily function
to regulate protein translation by inhibiting the expression
of target messenger RNAs (mRNAs). Apart from genetics,
epigenetics is currently receiving considerable research attention.
DNA methylation is the most common epigenetic event
associated with cancer development and progression (Anna et al.,
2018). Consequently, numerous studies have implicated DNA

methylation in the diagnosis and the prognosis of various tumors,
including GC (Camargo et al., 2019; Choi et al., 2019). Although
these studies have revealed several biomarkers that have proved to
be prognostic predictors in GC, only a handful have been adopted
in clinical therapies or are used to build predictive models for
the disease (Anna et al., 2018; Duarte et al., 2018; Camargo et al.,
2019; Choi et al., 2019; Serra et al., 2019).

Previous studies have identified and recommended numerous
biomarkers for GC. However, since malignant tumors often
involve multiple layers and different levels of genetic changes,
including the genome, transcriptome, and proteome, or even
epigenetic content, selecting reasonable candidate factors from
tens of thousands of biomarkers and comprehensively analyzing
them as an independent feature is imperative to effectively
develop a suitable prognostic target. Therefore, genetic networks
containing a panel of abnormal factors from different regulatory
levels represent the best chance for achieving prognostic value.

The whole genome-wide network analysis is reported in
several other cancers, such as colorectal cancer, breast cancer, and
lung cancer (Hou et al., 2018; Zhang et al., 2018), and it shows
great value in differentiating the prognosis of these patients.
Therefore, it is feasible and advantageous to apply genome-wide
network analysis to GC.

In the current study, we performed a series of sophisticated
statistical analyses and identified 33 genetic molecules that were
highly correlated with the prognosis of GC. Specifically, we
screened The Cancer Genome Atlas (TCGA), a genome project
with 33 types of cancer, including gene expression, and DNA
methylation as well as other biological information. Furthermore,
we extended these independent prognostic factors to the
“omics” concept. Then, a genome-wide network was constructed.
Interestingly, the genomics score (GS) obtained herein could
supplement TNM staging and enhance the prognostic value of
different patients. Moreover, we developed multiple prognostic
models, then validated, and compared them to ascertain their
strengths and weaknesses. Finally, we performed pathway
enrichment and gene oncology annotation analyses to elucidate
the function of this gene network.

MATERIALS AND METHODS

Data Acquisition and Preprocessing
Level 3 data were downloaded from the TCGA database
using TCGA-Assembler Module A, in January 2019, which
was then pretreated with Module B. The dataset comprised of
clinical variables from 443 patients, including age, sex, stage,
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primary site, grade, treatment, and survival, as well as associated
genome-wide data. In addition, the expression levels of 1,871
miRNAs, 20,531 mRNA, and 485,577 DNA methylation sites
(Illumina methylation 450) were obtained from 384, 377, and
394 patients, respectively. Afterward, an intersection with a total
of 332 samples was eventually retained. Furthermore, patients
with missing active follow-up data were excluded from the
analysis, leaving 329 patients in the final cohort (Figure 1).
Moreover, genome-wide level 3 data whose expression levels
for miRNAs, mRNA, and DNA methylation sites were missing
in more than 50% of all samples were excluded from the final
analysis. Finally, 329 GC patients with 566 miRNAs, 17,963
mRNA, and 396,081 DNA methylation sites were chosen for
further analysis.

Genome-Wide Network Analysis
Gene expression and DNA methylation data were normalized
using R package before subsequent processing. Univariate and
least absolute shrinkage and selection operator (LASSO) Cox
regression models were combined and used to identify the
most useful prognostic factors in miRNAs, mRNA, and DNA

methylation sites associated with survival. Firstly, univariate Cox
regression was performed on each candidate miRNA, mRNA, and
DNA methylation site to elucidate its role in patient survival,
then signatures with P value less than 0.05 were retained for
subsequent analysis. Thereafter, the LASSO Cox regression model
was applied to select and shrink the data (Supplementary
Figure S3; Tibshirani, 1997). Finally, a GS, based on a genome-
wide network comprising seven miRNAs, eight mRNAs, and 19
DNA methylation sites, was constructed for predicting survival.
A summary of the whole screening process is displayed in
Supplementary Figure S1.

Development and Comparison of
Individualized Prediction Models
The TCGA cohort with 329 cases was used as the training
set, with a random 150 cases from the total cohort included
as a validation group. The random number is 1,356. Firstly,
we developed the original GS based on 34 biomarkers (seven
miRNAs, eight mRNAs, and 19 DNA methylation sites). Then,
considering the complexity of the original GS and difficult
clinical application, in order to obtain a more concise and

FIGURE 1 | A Venn diagram displays the patients’ screening process.
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effective GS, we also constructed eight other models according
to the different combinations of miRNAs, mRNA, and DNA
methylation and made corresponding comparisons. Finally, a
total of nine GS models based on the genome-wide network
from LASSO were adopted to screen for the most appropriate
markers. These included the following models: genomics (seven
miRNAs, eight mRNA, and 19 DNA methylation sites), miRNAs
(seven miRNAs), mRNA (eight mRNA), methylation (19 DNA
methylation sites), miRNAs + methylation (seven miRNAs
and 19 DNA methylation sites), miRNAs + mRNA (seven
miRNAs and eight mRNA), mRNA + methylation (eight
mRNA and 19 DNA methylation sites), Cox-model 1 (two
miRNAs, six mRNA, and nine DNA methylation sites), and
Cox-model 2 (one miRNA, one mRNA, and seven DNA
methylation sites). Among them, markers from Cox-model
1 were separately detected from miRNAs, mRNA, or DNA
methylation sites using multivariate Cox regression analysis after
LASSO (Supplementary Tables S2–S4). On the other hand,
markers from Cox-model 2 depended on signatures from a
multivariate Cox regression analysis combining the genome-
wide network and the clinical characteristics (Supplementary
Table S5). Thereafter, we constructed several nomograms by
incorporating significant (P < 0.05) GS variables and other
clinical features following multivariate Cox regression (Iasonos
et al., 2008), and a clinical nomogram was built as a blank control.
The equations used for calculating the GS of these models are
listed in Supplementary Table S6.

To calculate the discrimination and the stability of different
Cox regression models, we applied C-statistics and calibration.
Additionally, we performed an analysis of time-dependent
receiver operator characteristics (ROC), based on the 1-, 3-,
and 5-year survival endpoints, to assess the prognostic accuracy
of the different nomograms. Furthermore, we evaluated the
potential net benefit of different predictive models using decision
curve analysis (DCA). DCA compares the clinical usefulness of
different indicators by calculating the potential net benefit of each
decision strategy at each threshold probability. Thus, DCA was
a significant novel approach for comparing the old and the new
models (Vickers and Elkin, 2006).

Screening for Potential miRNA Target
Genes
We predicted the potential target genes of the seven miRNAs,
from LASSO, by screening the miRTarBase, miRDB, and
TargetScan databases. Common genes from each miRNA across
the three databases were then used for subsequent studies. More
than 90% of the miRNAs showed negative regulation to target
genes. Consequently, the expression data from TCGA were used
to perform a batch of correlation analysis of each miRNA,
with corresponding target genes, and the three genes with the
largest absolute negative correlation were retained as the most
likely targets. Additionally, at least three potential target genes
from miRTarBase, which is co-expressed with miRNAs, were
considered as equally important and were subjected to Cytoscape
(version 3.7.2) for identification of miRNA–target genes co-
expression network analysis (Supplementary Figure S2).

Functional Enrichment Analysis
The potential target genes that were negatively correlated with
miRNAs in TCGA, as well as the coding sequences for mRNA
and DNA methylation sites, were used for functional enrichment
analysis using the Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway and Gene Ontology (GO) using DAVID 6.8
(Supplementary Figure S2). Functional enrichment analysis
indicates why the gene network produces images on the survival
of GC from a molecular mechanism. Visualization was then done
using the “ggplot2” package implemented in R.

Statistical Analysis
The patients were divided into low-risk and high-risk groups
by the median GS as the cutoff point. Survival estimates were
obtained according to the Kaplan–Meier method and compared
using the log-rank test. Variables that reached significance, with
P < 0.05, were entered into the multivariable analyses using
the Cox proportional hazards model, with an entry stepwise
approach to identify covariates associated with increased all-
cause mortality, and then hazard ratio with 95% confidence
intervals (CIs) of each variable was achieved. All the statistical
significance values were set as two-sided (P < 0.05). LASSO
Cox regression was performed through the “glmnet” package.
Time-dependent ROC analysis at different follow-up times was
implemented using the “timeROC” package of R project in order
to further expound the performance of different GS models,
and DCA was used to compare their clinical use by “rmda”
package. Finally, nomogram based on the Cox regression model
was constructed using the “rms” package. C-index and calibration
to calculate the discrimination and the stability of these models
were performed using c-statistics and Bootstrap sample. Harrell’s
concordance index (C-index) indicated a better prognostic model
if its value was closer to 1, and the calibration diagram showed
that the better the prediction if the closer the correction line was
to the diagonal. All statistical methods are applied to both the
training group and the validation group. Statistical analyses were
performed using SPSS statistical software (version 18.0) and R
software (version 3.5.3).

RESULTS

Patient Characteristics
Among the 329 GC patients analyzed in this study, 212 (64.4%)
were male, whereas 117 (35.6%) were female. The average age
of the entire study population was 65.0 ± 10.6 years. In terms
of pathological stage, 38 (11.6%) cases were identified as stage
I, 117 (35.6%) were stage II, 155 (47.1%) were stage III, and 19
(5.8%) were at stage IV. With regards to treatment, 303 (92.1%)
patients received surgery (280 cases of R0 surgery, 14 R1, and nine
R2), whereas 146 (44.4%) were subjected to fluorouracil-based
chemotherapy. The genomic nomogram classified 165 samples
into low GS (GS ≤ -0.137) and 164 into high GS (GS > -
0.137) groups based on the median cutoff (Figure 2). A detailed
description of tumor location, pathology grade, and Lauren
classification is outlined in Supplementary Table S1, while a
heat map of the genomic scores layered by clinicopathological

Frontiers in Genetics | www.frontiersin.org 4 August 2020 | Volume 11 | Article 83563

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00835 August 4, 2020 Time: 15:44 # 5

Sun et al. Genomics Score

FIGURE 2 | Distribution of patient cases and density based on genomics score (GS) in the total The Cancer Genome Atlas cohort (A,B). Scatter plots of genomics
scores regarding the classification of low and high GS (C,D), and the bold line represents the median.

factors is illustrated in Supplementary Figure S4. The median
(mean; 95% CI) survival time for OS was 1,043 (670.2–1,415.8)
days in the total cohort, 466 (370.6–561.4) days in the high-
GS group, and 2,613 (mean; 2209.4–2017.5) days in the low-GS
group (Supplementary Figure S5). Toward the last follow-up,
a total of 129 deaths and 200 censoring were recorded. The
estimated cumulative 1-, 3-, and 5-year OS in the total cohort
were 78.9, 48.4, and 36.7%, respectively, although these rates
increase to 95.1, 74.2, and 68.5%, respectively, in the low-
GS group. Conversely, the 1-, 3-, and 5-year OS decreased to
63.3, 23.6, and 15.4%, respectively, in the high-GS group. The
baseline information of the validation cohort is also listed in
Supplementary Table S1 and Supplementary Figure S6.

Survival Analysis
We identified a basic genome-wide network comprising
seven miRNAs, eight mRNAs, and 19 DNA methylation
sites as the prognostic factor for OS, from hundreds of
thousands of univariate Cox regression and LASSO analyses.
This network was then classified as other models in the
training and the validation groups. Among the 34 features
identified, poor prognosis was significantly associated with
a high expression of seven miRNAs (hsa-mir-100, hsa-mir-
1304, hsa-mir-136, hsa-mir-193b, hsa-mir-22, hsa-mir-653,
and hsa-mir-6808), six mRNAs (NRP1|8829, RNF144A|9781,
ZNF22|7570, DUSP1|1843, CPNE8|144402, MAGED1|9500,
and LOC91450|91450), and seven DNA methylation sites
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(cg07020967, cg08859156, cg12485556, cg15861578, cg15861578,
cg25161386, and cg22740006). Conversely, poor prognosis was
strongly associated with a low expression of SOX14|8403 and
12 DNA methylation sites, including cg02223323, cg00481239,
cg14791193, cg15486740, cg20100408, cg20350671, cg22395807,
cg24361571, cg25361506, cg22813794, cg26014401, and
cg26856948 (Table 2). Univariate analysis performed on
clinical characteristics revealed a significant association between
age, pathological stage, TNM, and surgery with OS (Table 1).
On the other hand, results from multivariable Cox regression
showed that age, pathological stage, and GS were significantly
associated with all-cause mortality in GC (Table 1 and Figure 3).
Furthermore, stratification of the pathological stage (I, II, III,
and IV) revealed significant differences in survival rates between
the high-GS and the low-GS groups (Figure 3). A similar
result was found when the data were stratified by demographic
variables (sex and age), clinical characteristics (primary site,
grade, and Lauren classification) as well as treatments (surgery
and chemotherapy; Supplementary Figures S7, S8). On
the other hand, categorizing GS into high or low groups,
using the median value across different models, indicated
that the genomics nomogram had the highest HR value.
Interestingly, HR was almost equal to miRNAs + methylation,
mRNA + methylation, Cox-model 1, and Cox-model 2
nomograms, which contained fewer gene features. Moreover,
the HR value showed a marked decrease in miRNAs, mRNA,
methylation, and miRNAs+mRNA nomograms, which included
the least characteristics (Table 3).

Nomograms Based on Genome-Wide
Network
A genomics nomogram was first constructed based on the
genome-wide network, comprising 34 gene features (Figure 4).
To obtain a more concise and effective nomogram, we also built
a Cox-model 1 (17 gene features) and Cox-model 2 (nine gene
features) nomograms (Supplementary Figures S9, S10). Next,
a clinical nomogram, based on stage and age, was built as a
control (Supplementary Figure S11). Thereafter, we performed
internal and external validation to evaluate the feasibility of all
nomograms using a three-grouped random bootstrap sampling
(Figure 5 and Supplementary Figures S9–S11). We observed
good predictive performance in the first three nomograms, but
not in the simple clinical model.

Validation of the Nomograms Using ROC
and DCA
To ensure a good comparison across different GS nomograms,
we performed a time-dependent ROC (at 1, 3, and 5 years of
follow-up) as well as DCA. In the validation group, genomics
nomogram revealed the best comprehensive performance, with
1-, 3-, and 5-year area under the curve (AUC) values of 0.868,
0.895, and 0.928, respectively (Table 4), and Cox-model 1,
miRNAs + methylation, and mRNA + methylation nomograms
had a comparable performance, with 1-, 3-, and 5-year AUC
values of 0.856–0.873, 0.884–0.905, and 0.907–0.919, respectively,
but it had fewer biomarkers (Table 4). Although the Cox-model 2

nomograms had the least biomarkers, including miRNA, mRNA,
and DNA methylation sites, it had a relatively poor performance
with 1-, 3-, and 5-year AUC values of 0.835, 0.859, and 0.785,
respectively. Besides that, the miRNA, mRNA, methylation,
miRNAs + methylation, and miRNAs + mRNA nomograms
recorded 1-, 3-, and 5-year AUC values of 0.729–0.877, 0.656–
0.805, and 0.721–0.894, respectively. Finally, we found that,
compared to miRNA (0.641, 0.729, and 0.736) and mRNA
nomogram (0.806, 0.785, and 0.843), methylation nomogram
had higher 1-, 3-, and 5-year AUC values of 0.866, 0.877, and
0.894. Nevertheless, all of them showed better performance than
the clinical nomogram, which recorded 1-, 3-, and 5-year AUC
values of 0.638, 0.598, and 0.721, respectively (Figures 6A,B and
Supplementary Figure S12). The C-index based on different
nomograms exhibited a similar effect (Supplementary Table S8).
Additionally, DCA showed that the genomics, Cox-model 1,
mRNA + methylation, and methylation nomograms had a
significant net benefit compared to other GS models and the
clinical nomogram (Figures 6C,D).

Potential miRNA Target Genes
A total of 72 hsa-mir-22, 39 hsa-mir-100, 56 hsa-mir-136,
58 hsa-mir-193b, 23 hsa-mir-653, 96 hsa-mir-1304, and 285
hsa-mir-6808 potential target genes were identified from the
miRTarBase, miRDB, and TargetScan databases (Supplementary
Figure S14). We then performed a correlation analysis between
each target gene and miRNAs and finally generated a miRNA–
potential target gene plot (Supplementary Figure S15A) as well
as a miRNA–target gene co-expression network (Supplementary
Figure S15B) using Cytoscape.

Functional Analysis of Genome-Wide
Network
We imported the 301 potential target genes, mRNA, and
DNA methylation site-coding sequences, identified above, into
DAVID for KEGG and GO analyses and identified biological
processes, molecular functions as well as cellular components
(Figures 7A–C). Their corresponding KEGG pathways were also
plotted (Figure 7D).

DISCUSSION

GC can be divided into two types or four main categories,
according to the Lauren and World Health Organization
(WHO) classifications (Lauren, 1965; Nagtegaal et al., 2019),
although neither of these classifications is based on molecular
markers. In the last decade, however, three novel molecular-
based classification systems have been suggested for GC. The
Singapore-Duke Group was the first to describe a classification
with two intrinsic genomic subtypes, G-INT, and G-DIF, which
had different gene expression (Tan et al., 2011; Serra et al.,
2019). The subtypes have different levels of resistance to various
chemotherapy drugs and show limited prognostic value. Later,
TCGA used molecular evaluation to propose a new classification
with four subtypes: EBV, MSI, GS, and CIN. The identification of
these subtypes has provided a roadmap for patient stratification
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TABLE 1 | Univariable and multivariable analyses of the genomics score and the clinicopathological characteristics for overall survival in the training group and the
validation group.

Variables Training group, n = 329 Validation group, n = 150

Univariable analysis Multivariable analysis Univariable analysis Multivariable analysis

HR 95% CI P value HR 95% CI P value HR 95% CI P value HR 95% CI P value

Age at diagnosis, tears

<65 1 1 NA 1 1 NA 1 1 NA 1 1 NA

≥65 1.674 1.167–2.402 0.005 2.043 1.407–2.966 <0.001 1.464 0.856–2.505 0.164 2.029 1.086–3.789 0.026

Pathological stage

I 1 1 NA 1 1 NA 1 1 NA 1 1 NA

II 1.627 0.784–3.377 0.192 1.644 0.777–3.481 0.194 1.412 0.510–3.905 0.507 1.377 0.480–3.951 0.552

III 2.240 1.116–4.496 0.023 1.880 0.924–3.825 0.082 1.637 0.635–4.219 0.308 1.926 1.344–2.487 0.878

IV 7.801 3.247–18.745 <0.001 5.119 1.832–14.303 0.002 8.106 2.527–26.005 <0.001 9.364 2.267–38.672 0.002

Surgery

R0 1 1 NA 1 1 NA 1 1 NA 1 1 NA

R1 1.556 0.755–3.209 0.231 1.214 0.578–2.547 0.608 1.240 0.286–5.372 0.774 0.937 0.209–4.209 0.932

R2 6.944 3.163–15.246 <0.001 1.686 0.615–4.621 0.310 12.906 3.796–43.886 <0.001 1.316 0.285–6.075 0.725

Unknown 2.373 1.347–4.182 0.003 2.006 1.115–3.607 0.020 2.309 1.030–5.175 0.042 2.000 0.852–4.693 0.111

Genomics scorea

Low 1 1 NA 1 1 NA 1 1 NA 1 1 NA

High 6.304 4.079–9.744 <0.001 6.093 3.910–9.493 <0.001 10.906 5.452–21.817 <0.001 12.886 6.158–26.963 0.000

T staging

T1 1 1 NA 1 1 NA

T2 7.604 1.022–56.585 0.048 5.008 0.638–39.304 0.125

T3 7.278 1.003–52.802 0.050 3.895 0.524–28.976 0.184

T4 9.473 1.312–68.368 0.026 3.951 0.536–29.143 0.178

N staging

N0 1 1 NA 1 1 NA

N1 1.424 0.869–2.335 0.161 1.563 0.722–3.393 0.257

N2 1.642 0.930–2.898 0.087 1.612 0.658–3.953 0.296

N3 2.200 1.369–3.535 0.001 2.509 1.252–5.029 0.009

M staging

M0 1 1 NA 1 1 NA

M1 4.224 2.309–7.726 <0.001 5.499 2.446–12.364 <0.001

Sex

Female 1 1 NA 1 1 NA

Male 1.449 0.989–2.123 0.057 1.126 0.648–1.956 0.674

Primary site

Cardia 1 1 NA 1 1 NA

Fundus/body 0.844 0.543–1.312 0.451 0.605 0.320–1.144 0.122

Antrum 0.822 0.530–1.274 0.380 0.763 0.394–1.476 0.422

Unknown 0.183 0.025–1.343 0.095 0.152 0.003–0.254 0.976

Pathology grade

I–II 1 1 NA 1 1 NA

III–IV 1.361 0.939–1.971 0.103 1.590 0.902–2.805 0.109

Unknown 1.881 0.673–5.257 0.228 2.534 0.854–7.524 0.094

Lauren classification

Intestinal type 1 1 NA 1 1 NA

Diffused type 1.245 0.805–1.925 0.326 1.416 0.728–2.756 0.305

Unknown 1.156 0.770–1.736 0.484 1.923 1.061–3.485 0.031

Chemotherapy

Yes 1 1 NA 1 1 NA

No 1.305 0.919–1.852 0.136 1.361 0.806–2.299 0.249

aBased on 34 biomarkers: seven miRNAs, eight mRNAs, and 19 DNA methylation sites.
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TABLE 2 | miRNAs, mRNA, and DNA methylation whose expression levels showed a significant association with overall survival in least absolute shrinkage and
selection operator.

Molecular (probe) ID (reference gene) Coefficient HR 95% CI SE z value p value

miRNAs hsa-mir-100 0.234 1.263 1.102–1.449 0.070 3.345 <0.001

hsa-mir-1304 0.113 1.120 1.006–1.247 0.055 2.060 0.039

hsa-mir-136 0.235 1.265 1.097–1.458 0.072 3.243 0.001

hsa-mir-193b 0.241 1.272 1.116–1.450 0.067 3.612 <0.001

hsa-mir-22 0.248 1.281 1.101–1.490 0.077 3.210 0.001

hsa-mir-653 0.148 1.160 1.046–1.287 0.053 2.804 0.005

hsa-mir-6808 0.180 1.197 1.027–1.396 0.078 2.297 0.022

mRNA NRP1|8829 0.291 1.338 1.178–1.519 0.065 4.492 <0.001

RNF144A|9781 0.313 1.367 1.186–1.576 0.073 4.313 <0.001

ZNF22|7570 0.302 1.353 1.160–1.579 0.079 3.843 <0.001

SOX14|8403 −0.464 0.629 0.470–0.841 0.148 −3.126 0.002

DUSP1|1843 0.360 1.434 1.240–1.657 0.074 4.874 <0.001

CPNE8|144402 0.342 1.407 1.203–1.646 0.080 4.269 <0.001

MAGED1|9500 0.291 1.338 1.165–1.537 0.071 4.112 <0.001

LOC91450|91450 0.278 1.320 1.156–1.509 0.068 4.083 <0.001

cg02223323 MAP7D2 −0.360 0.697 0.590–0.824 0.085 −4.225 <0.001

cg00481239 SHC4;EID1 −0.668 0.513 0.338–0.777 0.212 −3.153 0.002

cg07020967 TMEM117 0.380 1.462 1.215–1.759 0.094 4.026 <0.001

cg08859156 RPS4X 0.409 1.505 1.305–1.736 0.073 5.609 <0.001

cg12485556 PREP 0.435 1.545 1.196–1.994 0.130 3.333 <0.001

cg14791193 C1orf144 −0.400 0.671 0.581–0.773 0.073 −5.496 <0.001

cg15861578 ZC3H10 0.329 1.390 1.169–1.652 0.088 3.731 <0.001

cg15486740 ACOT13;TTRAP −0.363 0.695 0.573–0.843 0.098 −3.697 <0.001

cg20100408 HLA-DPB1 −0.357 0.700 0.605–0.810 0.074 −4.799 <0.001

cg20350671 IL1RAPL1 −0.390 0.677 0.561–0.817 0.096 −4.080 <0.001

cg22395807 ATXN10 −0.443 0.643 0.476–0.867 0.153 −2.898 0.004

cg24361571 MIR365-2 −0.340 0.712 0.611–0.829 0.078 −4.374 <0.001

cg25361506 Unconfirmed −0.362 0.696 0.587–0.825 0.087 −4.167 <0.001

cg25622155 Unconfirmed 0.331 1.392 1.176–1.647 0.086 3.851 <0.001

cg25161386 NUFIP2 0.305 1.357 1.159–1.590 0.081 3.787 <0.001

cg22740006 PC;LRFN4 0.342 1.407 1.149–1.723 0.103 3.303 <0.001

cg22813794 STYXL1;MDH2 −0.351 0.704 0.508–0.976 0.166 −2.106 0.035

cg26014401 Unconfirmed −0.430 0.651 0.539–0.786 0.097 −4.453 <0.001

cg26856948 GOLGA3 −0.334 0.716 0.609–0.842 0.083 −4.042 <0.001

as well as targeted therapeutic trials (Cancer Genome Atlas
Research, 2014). However, initial data on disease outcomes from
this cohort did not show differences in survival among the
four groups. A series of positive studies on prognosis based
on TCGA classification was also reported (Sohn et al., 2017).
In addition, the Asian Cancer Research group divided GC
into four subtypes, MSI, EMT, MSS/TP53+, and MSS/ TP53-,
based on gene expression data and found significantly different
survival outcomes across them (Cristescu et al., 2015; Serra
et al., 2019). Despite the significant milestones of these studies,
they are all mainly based on the analysis of gene expression
(mRNA). Besides that, a 2019 study proposed a five-miRNA
model, while it had a C-index of 0.72 only (Zhang et al.,
2019). In the current study, we included methylation data and
performed functional enrichment analysis, making our work
stronger. The aforementioned classifications are also complicated
and need further optimization to increase clinical applicability.

Furthermore, they focused on typing and finding new targets,
whereas our study reports on prognostic analysis.

Some of the biomarkers we identified herein, including hsa-
mir-22, hsa-mir-100, hsa-mir-136, hsa-mir-193b, hsa-mir-1304,
NRP1, DUSP1, and MAP7D2 (cg02223323), have previously
been reported in GC (Grandclement and Borg, 2011; Chen
et al., 2014; Mu et al., 2014; Zuo et al., 2015; Zheng et al.,
2017; Chen et al., 2018; Kurata and Lin, 2018; Liu K.T. et al.,
2018; Song et al., 2018; Teng et al., 2018; Liu et al., 2019;
Pan et al., 2019; Wang et al., 2019). Others, such as CPNE8,
MAGED1, RNF144A, SOX14, ACOT13 (cg15486740), EID1
(cg00481239), RPS4X (cg08859156), and TTRAP (cg15486740),
have been identified in various tumors other than GC (Kamio
et al., 2010; Zeng et al., 2012; Zhou et al., 2013; Kuang et al.,
2017; Stanisavljevic et al., 2017; Liu X. et al., 2018; Tosic et al.,
2018; Nagasawa et al., 2019; Yang et al., 2019). The remaining
biomarkers, including hsa-mir-653, hsa-mir-6808, LOC91450,
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FIGURE 3 | Kaplan–Meier curve of overall survival in all patients, then stratified by genomics score (GS), pathological stage, and age. Survival analysis in the low-
and high-GS groups was further divided based on stages (stages I–IV).

ZNF22, C1orf144 (cg14791193), GOLGA3 (cg26856948),
HLA-DPB1 (cg20100408), LRFN4 (cg22740006), MDH2
(cg22813794), MIR365-2 (cg24361571), NUFIP2 (cg25161386),
PREP (cg12485556), STYXL1 (cg22813794), TMEM117
(cg07020967), ZC3H10 (ZC3H10), IL1RAPL1 (cg20350671), PC
(cg22740006), SHC4 (cg00481239), and ATXN10 (cg22395807),
have not been previously reported.

Currently, focus has been directed on identifying prognostic
miRNAs for GC. Particularly, one miRNA can regulate multiple
targets, while multiple miRNAs can regulate a single mRNA.
Therefore, a single miRNA may play an opposite role in
cancer progression by regulating different target genes. For
example, Mir-22 and Mir-100 were found to be tumor
suppressors in various cancers, including GC (Chen et al., 2014;

Zuo et al., 2015). Similarly, a high expression of Mir-136 was
found to promote proliferation and invasion in GC cell lines
by inhibiting PTEN expression (Chen et al., 2018), while a
contrasting result was reported when HOXC10 was targeted
(Zheng et al., 2017). Similarly, Mir-193b reportedly induced
GC proliferation or apoptosis by mediating different mRNA
expressions (Mu et al., 2014; Song et al., 2018), whereas a high
Mir-1304 expression in GC was reported as a negative predictor
for prognosis of lung and thyroid cancers (Kurata and Lin, 2018;
Liu et al., 2019; Pan et al., 2019). However, the function of Mir-653
and Mir-6808 has not been previously reported. In the current
study, we found an association between a high expression of all
miRNAs and poor survival. Different outcomes may be observed
in our study, relative to previous reports, owing to the huge
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TABLE 3 | Comparison of different genomics score models (based on the median value) for overall survival in the training group and the validation group.

Variables Training group, n = 329 Validation group, n = 150

Hazard ratio 95% CI P value Hazard ratio 95% CI P value

Genomics nomogram

Age 1.897 1.322–2.724 0.001 1.547 0.903–2.652 0.112

Pathological stage 1.489 1.155–1.920 0.002 1.267 0.846–1.897 0.252

Genomics scorea 6.153 3.971–9.535 <0.001 10.141 5.011–20.520 <0.001

Clinical nomogram

Age 1.760 1.225–2.528 <0.002 1.778 1.025–3.085 0.041

Pathological stage 1.754 1.349–2.282 <0.001 1.788 1.194–2.677 0.005

miRNAs nomogram

Age 1.664 1.157–2.392 0.006 1.597 0.917–2.780 0.098

Pathological stage 1.748 1.345–2.273 <0.001 1.771 1.181–2.656 0.006

Genomics scoreb 2.011 1.402–2.883 <0.001 2.474 1.416–4.324 0.001

mRNA nomogram

Age 2.140 1.484–3.086 <0.001 1.862 1.076–3.222 0.026

Pathological stage 1.716 1.314–2.241 <0.001 1.610 1.058–2.449 0.026

Genomics scorec 3.222 2.209–4.700 <0.001 4.834 2.671–8.781 <0.001

Methylation nomogram

Age 1.798 1.253–2.580 0.001 1.834 1.070–3.144 0.027

Pathological stage 1.599 1.231–2.078 <0.001 1.362 0.903–2.055 0.140

Genomics scored 4.627 3.058–7.002 <0.001 7.271 3.694–14.313 <0.001

miRNAs + methylation nomogram

Age 1.750 1.220–2.511 0.002 1.692 0.987–2.899 0.056

Pathological stage 1.539 1.193–1.986 0.001 1.414 0.954–2.096 0.084

Genomics scoree 5.009 3.291–7.624 <0.001 9.080 4.399–18.739 <0.001

miRNAs + mRNA nomogram

Age 1.932 1.343–2.778 <0.001 1.824 1.057–3.148 0.031

Pathological stage 1.676 1.291–2.177 <0.001 1.546 1.027–2.326 0.037

Genomics scoref 2.894 1.993–4.203 <0.001 3.431 1.969–5.979 <0.001

mRNA + methylation nomogram

Age 1.939 1.351–2.784 <0.001 1.768 1.032–0.3.031 0.038

Pathological stage 1.523 1.181–1.965 0.001 1.322 0.882–1.979 0.176

Genomics scoreg 5.050 3.330–7.658 <0.001 7.553 3.911–14.586 <0.001

Cox-model 1 nomogram

Age 1.908 1.329–2.740 <0.001 1.878 1.091–3.233 0.023

Pathological stage 1.642 1.276–2.112 <0.001 1.688 1.126–2.530 0.011

Genomics scoreh 5.034 3.334–7.601 <0.001 9.334 4.671–18.652 <0.001

Cox-model 2 nomogram

Age 2.033 1.415–2.921 <0.001 1.777 1.030–3.067 0.039

Pathological stage 1.647 1.261–2.151 <0.001 1.722 1.142–2.595 0.009

Genomics scorei 5.481 3.602–8.341 <0.001 8.679 4.347–17.325 <0.001

aBased on 34 biomarkers (seven miRNAs, eight mRNA, and 19 DNA methylation sites). bBased on seven miRNAs. cBased on eight mRNA. dBased on 19 DNA methylation
sites. eBased on seven miRNAs + 19 DNA methylation sites. fBased on seven miRNAs + eight mRNA. gBased on eight mRNA + 19 DNA methylation sites. hBased on
two miRNAs + six mRNA + nine DNA methylation sites. iBased on one miRNAs + one mRNA + seven DNA methylation sites.

number of corresponding miRNA target genes herein and lack
of evidence on their role in GC development.

Messenger RNAs have been reported to play an essential
role in GC cancer. For example, high NRP1 expression and
hypermethylation were associated with poor GC prognosis
(Wang et al., 2019), whereas another study indicated that
it could be an anti-tumor target (Grandclement and Borg,
2011). In addition, high DUSP1 expression levels were found
to promote progression, drug resistance, and poor prognosis
of GC (Teng et al., 2018). On the other hand, SOX14

showed opposite prognostic values in cervical cancer and
leukemia, with anti-tumor and carcinogenic effects, respectively
(Stanisavljevic et al., 2017; Tosic et al., 2018). Studies have also
implicated CPNE8, MAGED1, and RNF144A in ovarian and
breast cancers (Zeng et al., 2012; Nagasawa et al., 2019; Yang
et al., 2019). However, LOC91450 and ZNF22 have not been
reported in cancer.

Accumulating evidence indicates that DNA methylation plays
a significant role in cancer progression. However, only a handful
of studies have described the relationship between levels of
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FIGURE 4 | Genomics nomogram to predict the probability of 1-, 3-, and 5-year overall survival (OS) in the training cohort (A) and the validation cohort (B): to
determine how many points for each variable to the probability of OS, locate the variable on its axis, draw a line straight upward to the point axis, repeat this process
for each variable, sum up the points achieved for each of the risk factors, locate the final sum on the total point axis, and draw a line straight down to find the
patient’s probability of OS.

single-site methylation and GC prognosis. Particularly, high
expressions of MAP7D2, ACOT13, EID1, RPS4X, and TTRAP
have been associated with poor prognosis in gastric, lung, and
pancreatic cancers as well as hepatic carcinoma, respectively,
while a high TTRAP expression reportedly inhibits the growth
of osteosarcoma (Kamio et al., 2010; Zhou et al., 2013; Kuang
et al., 2017; Liu K.T. et al., 2018; Liu X. et al., 2018). Notably, the
relationship between methylation levels and corresponding gene
expression profiles is unknown, necessitating further research.
Furthermore, the remaining DNA methylation sites and their
corresponding genes have not been reported. Lastly, no study
has described the prognostic significance using a genome-
wide network.

Last but not least, in general, no study concerning their
prognostic significance as a genome-wide network has
been reported yet.

Tumorigenesis involves multiple interacting biological
processes. In addition, an integrated genetic network is better
at reflecting intra-tumor heterogeneity compared to a single
biomarker. In the current study, we identified a novel, prognostic,
signature genome-wide network, consisting of seven miRNAs,
eight mRNA, and 19 DNA methylation sites after screening the
entire TCGA cohort using training and random cohorts. This
network was further divided into several other models.

Our results revealed that the integrative signature was
an independent prognostic factor for survival in GC
patients and performed better than any single biomarker

or clinical characteristic. Moreover, stratification by other
clinicopathological features, such as stage, age, sex, primary site,
pathology grade, Lauren classification, and treatments, revealed
significantly different prognosis values based on different GSs.
In addition, staging was still an effective prognostic factor
after dividing into low- and high-genomics-score groups,
suggesting that GS and traditional staging can complement each
other, and the genetic network could add prognostic value to
traditional staging. Exclusion of patients with I staging showed
that chemotherapy is a significant prognostic factor because
I staging does not always need additional chemotherapy for
effective prognosis.

We also developed and validated nomograms based on the
GS. Particularly, results from ROC and DCA indicated that
all of them had significantly better predictive performances
than the traditional clinical nomogram. Comprehensive property
(similar C-index) was not significantly different in genomics
nomogram and Cox-model 1 nomogram, and compared to
the genomics nomogram, Cox-model 1 nomogram had fewer
biomarkers. In addition, Cox-model 1 nomogram performed
well, with a higher positive net reclassification improvement
(NRI). Therefore, Cox-model 1 nomogram might be more
suitable for clinical application, which deserved further study.
Besides that, the Cox-model 2 nomogram had the least
feature (nine biomarkers) including miRNAs, mRNA, and DNA
methylation sites for constructing a genome-wide network, while
it had a lower C-index and a negative NRI. The other six
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FIGURE 5 | Time-dependent receiver operating characteristic curves on 1, 3, and 5 years of genomics nomogram. Calibration plot showing 1-, 3-, and 5-year
overall survival (OS) probability: the nomogram-estimated OS is plotted on the x-axis, and the actual OS is plotted on the y-axis. The diagonal dotted line is a perfect
estimation by an ideal model, in which the estimated outcome perfectly corresponds to the actual outcome. The solid line is the performance of the nomogram: A
closer alignment with the diagonal dotted line represents a better estimation. Decision curve analysis for genomics nomogram and clinical nomogram: the y-axis
measures the net benefit. The gray line or the horizontal black line represents a follow-up of all patients or no patients. The model makes more benefit with a higher
position in curve.

TABLE 4 | The area under the curve (AUC) values of different genomics score models in the training group and the validation group.

Models Training group, n = 329 Validation group, n = 150

1-year OS 3-year OS 5-year OS 1-year OS 3-year OS 5-year OS

AUC (95% CI) AUC (95% CI) AUC (95% CI) AUC (95% CI) AUC (95% CI) AUC (95% CI)

Genomics nomogram 0.815 (0.787–0.843) 0.823 (0.785–0.861) 0.855 (0.799–0.911) 0.868 (0.832–0.900) 0.895 (0.851–0.939) 0.928 (0.886–0.970)

Clinical nomogram 0.609 (0.571–0.647) 0.615 (0.573–0.657) 0.642 (0.582–0.702) 0.638 (0.577–0.699) 0.598 (0.528–0.659) 0.721 (0.626–0.816)

miRNAs nomogram 0.621 (0.582–0.660) 0.656 (0.610–0.703) 0.717 (0.650–0.779) 0.641 (0.581–0.701) 0.729 (0.670–0.788 0.736 (0.656–0.817)

mRNA nomogram 0.747 (0.713–0.781) 0.711 (0.666–0.756) 0.728 (0.65.6–0.79.8) 0.806 (0.761–0.851) 0.785 (0.724–0.846) 0.843 (0.766–0.918)

Methylation nomogram 0.799 (0.768–0.830) 0.813 (0.774–0.852) 0.845 (0.781–0.909) 0.866 (0.827–0.905) 0.877 (0.830–0.923) 0.894 (0.821–0.966)

miRNAs + methylation
nomogram

0.796 (0.765–0.827) 0.819 (0.781–0.857) 0.850 (0.787–0.911) 0.856 (0.817–0.895) 0.895 (0.854–0.939) 0.908 (0.856–0.961)

miRNAs + mRNA
nomogram

0.743 (0.710–0.776) 0.731 (0.687–0.775) 0.771 (0.707–0.835) 0.803 (0.758–0.848) 0.825 (0.772–0.878) 0.883 (0.826–0.939)

mRNA + methylation
nomogram

0.819 (0.791–0.847) 0.818 (0.780–0.856) 0.849 (0.794–0.904) 0.873 (0.837–0.909) 0.884 (0.836–0.932) 0.919 (0.867–0.971)

Cox-model 1 nomogram 0.833 (0.804–0.862) 0.851 (0.821–0.881) 0.833 (0.778–0.888) 0.869 (0.832–0.906) 0.905 (0.866–0.944) 0.907 (0.858–0.956)

Cox-model 2 nomogram 0.795 (0.764–0.826) 0.805 (0.767–0.843) 0.736 (0.662–0.810) 0.835 (0.793–0.877) 0.859 (0.797–0.921) 0.785 (0.667–0.903)

models showed a relatively poor performance in ROC or DCA,
with limited application value. What is more, it is possible that
DNA methylation was the highest contributor to the survival

prediction of this gene network. We suspect that this may be
related to the larger number of DNA methylation sites compared
to miRNA and mRNA.
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FIGURE 6 | Time-dependent receiver operating characteristic curves on 1, 3, and 5 years of each nomogram and decision curve analysis for each nomogram.

We adopted GO and KEGG analyses to assess the influence
of genome-wide network in the prognosis of GC. Generally,
biological processes mainly involve various biological functions,
such as methylation, phosphorylation, and endocrine regulation.
Methylation pathway was related to the occurrence and the
development of GC, which was consistent with our results.
Besides that, functional enrichment analysis revealed that
phosphorylation pathway was significantly enriched as well,
which got more and more attention these years. On the other
hand, the main components of participation included organelles,
cytomembranes, extrinsic to membranes, nuclear and synapses,
whereas molecular functions comprise nucleoside, ATP, RNA,
and transcription factor binding as well as activity of various
enzymes. Abnormal cell composition is closely related to the

development of tumor. The abnormal protein may act on
the nucleus, membrane, or cell matrix, thereby leading to the
progression of cancer, such as NRP1 protein (Wang et al.,
2019). In the current study, KEGG analysis indicated that the
gene network function was a relevant pathway in cancer, cell
cycle, and adipocytokine signaling, while the other pathways
had been reported in small cell lung and bladder cancers.
Further experiments to reveal the biological function of this gene
network are needed.

We also employed a series of complex statistical analyses
to construct and validate a genome-wide network based on
different biomarkers and then divided it into different models.
We recommend the resulting GS despite it not being an
absolute representative of tumor heterogeneity. This network
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FIGURE 7 | Gene enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways for the genome-wide network. The biological process (A),
molecular function (B), cellular component (C), and KEGG pathways (D).

could complement the deficiency of traditional staging and
generate a more accurate prediction of survival rates in GC
patients. Additionally, it effectively distinguishes patients who
could benefit from chemotherapy, thereby reducing unnecessary
treatments. It is also possible that the network could be used to
identify novel therapeutic targets for GC, although this requires
further investigation.

Limitation
This study had several limitations. Firstly, information relating to
patient co-morbidities and performance status was not available
in the TCGA database. Secondly, the systemic chemotherapy
regimens were not uniform, and most of them were based on
fluoropyrimidines. Thirdly, the gene network contains too many
biomarkers, increasing the difficulty of clinical use. Lastly, this

was a retrospective study, without any independent external
patient datasets as test. Despite some limitations, it was the first,
to the best of our knowledge, to integrate miRNAs, mRNA, and
DNA methylation sites as a genome-wide network to predict the
OS of patients with GC, and we would try to design a validation
in our hospital.

CONCLUSION

In summary, we used a TCGA cohort to develop and validate
a novel genome-wide network comprising seven miRNAs, eight
mRNAs, and 19 DNA methylation sites for the prognosis of GC.
A combination of GS and TNM staging enhances its prognostic
value, proposing a more comprehensive sub-typing system. The
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developed network is expected to aid in predicting GC patients
who may benefit from chemotherapy to some degree.
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Esophageal cancer (EC) is a serious malignant tumor, both in terms of mortality and
prognosis, and immune-related genes (IRGs) are key contributors to its development.
In recent years, immunotherapy for tumors has been widely studied, but a practical
prognostic model based on immune-related genes (IRGs) in EC has not been
established and reported. This study aimed to develop an immunogenomic risk score
for predicting survival outcomes among EC patients. In this study, we downloaded the
transcriptome profiling data and matched clinical data of EC patients from The Cancer
Genome Atlas (TCGA) database and found 4,094 differentially expressed genes (DEGs)
between EC and normal esophageal tissue (p < 0.05 and fold change >2). Then, the
intersection of DEGs and the immune genes in the “ImmPort” database resulted in 303
differentially expressed immune-related genes (DEIRGs). Next, through univariate Cox
regression analysis of DEIRGs, we obtained 17 immune genes related to prognosis.
We detected nine optimal survival-associated IRGs (HSPA6, CACYBP, DKK1, EGF,
FGF19, GAST, OSM, ANGPTL3, NR2F2) by using Lasso regression and multivariate
Cox regression analyses. Finally, we used those survival-associated IRGs to construct a
risk model to predict the prognosis of EC patients. This model could accurately predict
overall survival in EC and could be used as a classifier for the evaluation of low-risk
and high-risk groups. In conclusion, we identified a practical and robust nine-gene
prognostic model based on immune gene dataset. These genes may provide valuable
biomarkers and prognostic predictors for EC patients and could be further studied to
help understand the mechanism of EC occurrence and development.

Keywords: esophageal cancer, immune-related gene, TCGA, prognostic model, bioinformatics analysis

INTRODUCTION

Esophageal cancer (EC) is ranked 7th and 6th in incidence and mortality, respectively (Bray et al.,
2018). It is one of the most aggressive types of cancer. Although the addition of neoadjuvant
or perioperative therapy provides a modest improvement in overall survival in resectable cases,
the prognosis of patients with advanced EC is still very poor (Cunningham et al., 2006; Allum
et al., 2009; van Hagen et al., 2012; Noble et al., 2017). Due to recurrence, extensive invasion
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and metastasis, the overall 5-year survival rate of EC is lower than
13% after initial diagnosis (Khalil et al., 2016; Vo et al., 2019).
Hence, identifying biomarkers for the treatment and prognostic
prediction of EC could lead to better interventions for patients
with an otherwise poor prognosis.

Immune disorders in tumor is regarded as a promoting
factor during tumorigenesis and development. In recent years,
immunotherapy has become a promising potential therapy for
various cancers in addition to surgery and radiotherapy (Khalil
et al., 2016; Zhao et al., 2019). EC cells harbor abundant tumor
antigens, including tumor-associated antigens and neoantigens,
which have the ability to initiate dendritic cell-mediated tumor-
killing cytotoxic T lymphocytes in the early stage of cancer
development. As EC cells battle the immune system, they obtain
an ability to suppress antitumor immunity through immune
checkpoints, secreted factors, and negative regulatory immune
cells (Huang and Fu, 2019). Immune checkpoint inhibitors (ICIs)
have been investigated in various types of cancers and provide a
new treatment landscape (Tanaka et al., 2017). ICIs have been
reported to attenuate tumor growth mainly by reducing the
immune escape of cancer cells, and programed death 1 (PDL1) is
one of the immune checkpoints that is the most commonly used
target for immunotherapy in EC (Shaib et al., 2016). However,
at present, EC immunotherapies always lead to mixed results,
which are partially caused by the absence of reliable markers
that are predictive of treatment response (Ohashi et al., 2015).
Molecular profiles of tumor cells and cancer-related cells within
their microenvironments represent promising candidates for
predictive and prognostic biomarkers. Despite vigorous efforts
have been made with major breakthroughs in high-throughput
genomic technologies (Li et al., 2017). Increasing evidence
suggests that the expression of IRGs may be related to the
prognosis of tumors. Qiu et al. (2020) identified and verified of
an individualized prognostic signature of bladder cancer based
on seven immune related genes. Zhang et al. (2020) discovered a
novel immune-related gene signature for risk stratification and
prognosis of survival in lower-grade glioma. And Zhao et al.
(2020) used immune score to predict survival in early-stage lung
adenocarcinoma patients.

Similarly, the prognostic characteristics based on these IRGs
may help in the diagnosis and individualized treatments for EC
(Gentles et al., 2015). However, several studies have reported
the relationship of IRGs with the prognosis of patients with
EC (Turato et al., 2019; Yan et al., 2019). In addition, there is
currently no systematic description or study of IRGs and the
tumor immune microenvironment in large samples of patients
with EC. Therefore, a systematic description and analysis of
the tumor immune microenvironment and IRGs impact on
prognosis is necessary for EC immunotherapy and patient
prognosis. In this study, we analyzed 182 samples of EC in
the TCGA database, and 303 differentially expressed IRGs were
found. Through multivariate Cox regression analysis, we found
9 immune-related prognosis genes. An accurate model for
evaluating the prognosis of patients was established, and we
investigated the clinical utility of this model in patients with EC.
In addition, we calculated the correlation between immune cell
infiltration and risk score in the tumor microenvironment. Our

study identified new biomarkers and prognostic factors for EC,
thus provides some new therapeutic targets in EC.

MATERIALS AND METHODS

Data Acquisition and Processing
The RNA-Seq gene expression profiles of patients with EC,
including the Fragments Per Kilobase of transcript per Million
Mapped reads (FPKM) based on the Illumina (San Diego, CA,
United States) HiSeq 2000 RNA sequencing platform, were
downloaded from the TCGA database using the GDC-client
download tool1 (Cao et al., 2019). The workflow type is HTSeq-
FPKM. Then, the “limma” package of R software was utilized
for the normalization of RNA expression profiles and averaged
the duplicate data to remove the batch effects. Clinical data
for the corresponding EC patients were also retrieved from
the TCGA database, which included gender, age, tumor stage,
and survival information. The patient’s TCGA ID was used
to distinguish between a tumor sample and a normal sample.
The detailed characteristics and histopathological features of
the EC patients and their TCGA IDs are summarized in
Supplementary Table S1.

Immunologically relevant list of genes curated with functions
and Gene Ontology terms (immune-related gene list) were
download from the resources section of the “ImmPort” database2

(Bhattacharya et al., 2018). It contains a total of 2,496 genes
defined as immune-related. Data regarding 318 cancer-associated
transcription factors (TFs) were obtained from the “Cistrome”
project3 (Mei et al., 2017).

Criteria of Enrolled Patients for the
Construction of Risk Signature
The inclusive criteria of patients with EC for model construction
were as follows: (1) patients primarily diagnosed with EC, (2) with
only adenocarcinoma or squamous cell carcinoma as pathological
type, (3) only samples with RNA-sequencing data, (4) patients
with complete clinicopathological parameters, (5) overall survival
time is more than 30 days.

Identification of Differentially Expressed
Genes, Differentially Expressed IRGs
Differentially expressed genes (DEGs) between EC and normal
tissues were identified using Wilcoxon test after within-array
replicate probes were replaced with their average via “limma”
package in the R software (version 3.6.2). | Log2 fold change (FC)|
>2.0 and false discovery rate (FDR) adjusted to less than 0.05
were set as the cutoff criteria. Then, the DEGs were intersected
with the immune-related gene list to obtain the DEIRGs. Those
significant DEGs are visualized using heatmaps and volcano plots
via “pheatmap” package in the R software. In addition, an online
database, GEPIA 2.0 (Tang et al., 2019), was used to analyze

1https://portal.gdc.cancer.gov/
2https://www.immport.org/home
3http://www.cistrome.org/
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differential expression of prognostic genes between 286 GTEx
normal samples and 182 TCGA tumor samples.

Functional Annotations and Signaling
Pathway Enrichment Analysis
“Clusterprofiler” R package (Yu et al., 2012) was used for Gene
Ontology (GO) annotation and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analysis of DEGs and
IRGs. The results of GO annotation and KEGG pathway analyses
were visualized using the “GOplot” package in R platform. Gene
Set Enrichment Analysis (GSEA) software (version 4.0.1) was
used to analyze pathway activation and inhibition in high-risk
and low-risk patients.

Risk Score Calculation and Survival
Analysis
To explore candidate prognostic biomarkers of EC, a joint
cox regression analysis was performed. Firstly, we merged the
expression levels of IRGs with the corresponding survival time
and survival status data of EC patients. Then, a univariate Cox
proportional hazard regression analysis was used to identify the
candidate survival-associated IRGs when p-value < 0.05. Next,
the least absolute shrinkage and selection operator (LASSO) Cox
regression analysis was used to identify the genetic model with the
best prognostic value by using “glmnet” package in R software.
Finally, multivariate Cox regression analysis was employed to
construct the prognosis signature for predicting the prognosis
in EC patients. We calculated the risk score of each patient
using the expression of DEIRGs and the regression coefficients
obtained in the regression model. The coefficient of the gene is
multiplied by the expression of the gene and then summed to
obtain each patient’s risk score. The calculation formula is below
(Wan et al., 2019):

Risk score(patients) =
n∑

i=1

coefficien t (genei) expression

value of (genei) (1)

Here, “genei” is the ith selected gene, and “coefficient
(genei)” is the estimated regression coefficient of genei from the
Cox proportional hazards regression analysis. Time-dependent
receiver operating characteristic (ROC) curves were used to
assess the accuracy of prognostic prediction models. The area
under the ROC curve (AUC) >0.60 was considered an acceptable
prediction, and an AUC >0.75 was recognized as an excellent
predictive value. For survival analysis, patients were divided into
low- and high-risk groups according to the median risk score
calculated by this prognostic model, and then log-rank tests were
used to analyze the survival data.

Construction of Cancer-Associated TFs
and IRG Regulatory Networks
Differentially expressed transcription factors (DETFs) were
derived from the intersection of tumor-associated TFs and DEGs.
DETFs and survival-associated IRGs samples with the same

TCGA patient ID were then used for correlation testing. p < 0.05
and cor ≥ 0.3 were considered significant correlations. Then,
cytoscape software (Shannon et al., 2003) was used to draw the
regulatory network.

Construction of a Predictive Nomogram
Based on the IRGs
A nomogram encompassing the risk score based on expression
of prognostic IRGs and clinicopathological factors was
constructed using the “rms” R package. Based on the different
clinicopathological characteristics and the risk score of each
patient, we calculated the total score to predict 1, 2, and 3-year
prognosis of EC patients.

Clinical Correlation Analysis
Univariate regression analysis and multivariate regression
analysis were used to identify factors (including gender, age,
TNM stage and risk score) affecting survival and independent
prognostic factors in patients with EC. The correlation between
survival-associated IRGs and clinicopathological characteristics
was analyzed in R platform. p < 0.05 was considered to have a
significant correlation.

Relationship Between Risk Score and
Immune Cell Infiltration
The immune cell infiltrate data were collected from Tumor
Immune Estimation Resource (TIMER)4 (Liu et al., 2011)
database. The database includes 10,897 samples across 32 cancer
types from TCGA to estimate the abundance of six subtypes
of tumor-infiltrating immune cells, including B cells, CD8 T
cells, CD4 T cells, dendritic cells (DCs), macrophages, and
neutrophils. Based on the same patient’s ID as TCGA, the
correlation between patient immune infiltrated cells and risk
score was calculated in R software.

Statistical Analyses
All data were processed with R (version 3.6.2) and Perl (5.30.1)
software. DEGs were identified using the Wilcox test. Survival
analyses were performed using the Kaplan-Meier method and
the log-rank test.

RESULTS

Differentially Expressed IRGs in EC
The analysis process for this study is shown in Figure 1. A total of
182 patients were involved in the development and validation of
the prognostic signature, including 95 squamous cell neoplasms,
87 adenomas and adenocarcinomas. Of these, 111 were white
people, 46 were Asian, five were African American, and 20
were unreported. The TCGA IDs for the 182 patients were
presented in Supplementary Table S1. Initially, we downloaded
and normalized the mRNA expression data of 182 patients with
EC from the TCGA database and eliminated partial incomplete

4http://timer.cistrome.org/
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FIGURE 1 | Flowchart of the study. RNA-Seq data and corresponding clinical information of EC cohort were downloaded from the TCGA data portal. After excluding
patients with incomplete clinical data and duplications, the complete data was used for subsequent analysis.

data. Then, we performed a differential expression analysis using
Wilcoxon test with a log2(FC) > 1 and p < 0.05. We found
4,094 DEGs between 10 normal samples and 162 tumor samples
(Figures 2A,B). The DEGs list, including log2FC and the FDR
adjusted p-values of each gene was provided in Supplementary
Table S2. Then, we performed GO and KEGG pathway analysis
for the DEGs and the top 10 GO and KEGG pathway enrichment
terms shown in Figures 2C,D. The KEGG analysis indicated that
the genes were mainly involved in cytokine-cytokine receptor
interaction and cell cycle signaling pathway, which are pivotal
in the regulation of immune responses (Murphy and Murphy,
2010; Zhang J. et al., 2018). Next, we downloaded the list of
IRGs from the “ImmPort” database. These IRGs intersect with
the DEGs, and 303 differentially expressed IRGs were obtained
(Figure 3A), including 56 down-regulated and 247 up-regulated
genes (Figures 3B,C).

Prognostic Immune Signatures in EC
Clinical EC data corresponding to RNA sequencing data were
downloaded from the TCGA database, and data with a survival
time of less than 1 month were excluded. Then, we merged
the survival time and survival status of each patient with gene
expression data. Then, we set filter criteria of p < 0.05 and

used univariate Cox regression analysis. Seventeen (HSPA1A,
HSPA1B, HSPA6, IL1B, FABP3, CST4, CACYBP, CCL3, CCL3L1,
DKK1, EGF, FGF19, GAST, OSM, ANGPTL3, NR2F2, and OXTR)
prognostic immune signatures were obtained (Figure 4).

Establishment and Verification of
Prognostic Model
Through further analysis via Lasso and multivariate Cox
proportional hazards regression analysis, we ultimately obtained
9 optimal prognostic immune genes and incorporated them
into the prognostic risk model: HSPA6, CACYBP, DKK1,
EGF, FGF19, GAST, OSM, ANGPTL3, and NR2F2. All the 9
genes are high-risk genes, as shown in Table 1. We used
gene mRNA levels and risk estimate regression coefficients to
calculate risk score for each patient to explore the significance
of prognostic genes. The calculation formula is described
in the methods. Risk score = (-0.008235 × expression of
HSPA6) + (0.492 × expression of CACYBP)+ (0.014939
× expression ofDKK1)+ (0.29151× expression of EGF)+(0.004
× expression of FGF19) + (0.03515 × expression of GAST)
+ (0.327446 × expression of OSM) + (0.732285 × expression
of ANGPTL3) + (0.018484 × expression of NR2F2). Then,
those prognostic genes were verified between 182 tumor samples
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FIGURE 2 | Expression of genes and function enrichment. Heatmap (A) and volcano plot (B) showing the DEGs between EC and normal esophageal specimen.
Red dots represent up-regulated and green dots represent down-regulated DEGs, black dots represent no difference, respectively (fold change >2, p < 0.05). GO
(C) and KEGG (D) showing the differentially expressed immune-related genes. (C) GO analysis results showing that DEGs were particularly enriched in BP, CC, and
MF. (D) The significantly enriched pathways of the DEGs determined by KEGG analysis. GO, gene ontology; BP, biological process; CC, cell component; MF,
molecular function; KEGG, Kyoto Encyclopedia of Genes and Genomes.

of TCGA database and matched 286 normal samples from
GETx database (Figure 5). Thus, we found HSPA6, CACYBP,
DKK1, GAST, OSM were up-regulated in EC tissues (p < 0.05
and logFC > 1).

Then, patients were divided into a low-risk group and a high-
risk group according to the median risk score. We used the
log-rank test to plot survival curves to evaluate the difference
in OS between the two groups. As shown in Figure 6A, the
prognosis of the low-risk group was significantly better than
that of the high-risk group (p = 1.281e-04). The 1-year survival
rates for the high-risk and low-risk groups were 67% (95% CI:
56.8–79.5%) and 95% (95% CI: 90.14–100%), respectively. The
2-year survival rates for the high-risk and low-risk groups were
38% (95% CI: 25.1–59.9%) and 69% (95% CI: 56.79–84.7%),
respectively. Here, because of the poor prognosis in the high-
risk group, we could not obtain a complete 5-year survival
rate. In order to test the predictive accuracy of the model, we

constructed a ROC curve. The AUC value for the prognostic
model was 0.886, which illustrates the accuracy of the model
(Figure 6B). Then, we ranked patients according to their risk
score and analyzed their distribution using the median risk score
as the cut-off (Figure 6C). It can be seen that after patients were
sorted according to risk score, as the risk score increases, more
and more patients die, i.e., the higher the risk score, the greater
was the number of deaths. Similarly, the higher the risk score,
the shorter the survival time of the patient. The distribution
of survival status, survival time and risk score were shown in
Figure 6D. As the risk score increases, the expression of high-
risk genes also increases, and vice versa. Expression patterns
of risk genes in the low-risk group and high-risk group are
shown in a heat map (Figure 6E). The risk score in the high-risk
group was significantly higher than that in the low risk group
(Figure 6F), and the survival time of patients in the high-risk
group was significantly lower than that in the low risk group
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FIGURE 3 | Differential expression of immune-related genes. (A) The intersection of DEGs and IRGs. Heatmap (B) and volcano plot (C) showing the DEGs between
EC and normal esophageal specimen. Red dots represent up-regulated and green dots represent down-regulated DEGs, black dots represent no difference,
respectively (fold change >2, p < 0.05).

FIGURE 4 | The prognostic value of prognostic associated IRGs in EC. Univariate regression analysis of IRGs related to survival. p < 0.05 indicates a significant
correlation between genes and prognosis, hazard ratio (HR) value >1 means that the gene is a high-risk gene, and HR <1 means a low-risk gene.

(Figure 6G), and the risk score was negatively correlated with the
survival time of patients (Figure 6H). Those results show that the
risk score in the model has an accurate predictive effect on the
prognosis of patients.

Independent Prognostic Value of the
Risk Model
First, we used univariate regression analysis to determine the
correlation between clinical characteristics (age, gender, stage,
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TABLE 1 | Coefficients and multivariable Cox model results for immune related
genes in esophageal cancer.

Gene symbol Coef HR (95%CI) p-value

HSPA6 0.008235 1.008269 (1.001731–014852) 0.013119

CACYBP 0.043103 1.044046 (0.99238–1.098401) 0.095996

DKK1 0.014939 1.015051 (1.004806–1.025401) 0.003942

EGF 0.291513 1.338447 (0.993541–1.803087) 0.055194

FGF19 0.004144 1.004148 (1.000211–1.008102) 0.038915

GAST 0.034152 1.03474 (1.013293–1.05664) 0.001395

OSM 0.327446 1.387419 (1.178695–1.633105) 8.27E-05

ANGPTL3 0.732285 2.079828 (1.319571–3.278099) 0.001607

NR2F2 0.018484 1.018656 (1.00547–1.032014) 0.005427

coef, coefficient; HR, hazard ratio; CI, confidence interval.

and TNM staging) and prognosis. We found that age (p = 0.007),
stage (p < 0.001), M staging (p < 0.001), N staging (p = 0.005)
and risk score (p < 0.001) were significantly correlated with
prognosis (Figure 7A). Then, we used multivariate analysis
to determine the independent prognostic value of the risk
model, and the results showed that age (p = 0.001), stage
(p = 0.021), and risk score (p = 0.005) were independently
associated with prognosis (Figure 7B). These results indicate
that the prognostic risk model can be used to predict the
prognosis of patients with EC accurately and independently.

Subsequently, we used ROC curves to verify the accuracy of
risk score in evaluating prognosis. The fact that the AUC is
0.850 also indicates the exactitude of our model (Figure 7C).
Meanwhile, for better prediction of the prognosis of patients with
EC at 1, 2, and 3 years after diagnosis, we constructed a new
nomogram based on OS-related variables (age, sex, stage, and
risk score). The higher the patient’s total score, the worse is their
prognosis (Figure 7D).

Correlation Between the Prognostic
Factors and Clinicopathologic
Parameters
To confirm our model’s ability to predict EC progression,
we also analyzed the potential relationship between the risk
genes (HSPA6, CACYBP, DKK1, EGF, FGF19, GAST, OSM,
ANGPTL3, and NR2F2), risk score and clinicopathologic
parameters, including patient sex, tumor grade, and TNM
staging. As shown in Figures 8A,B, ANGPTL1 and CACYBP
were significantly overexpressed in female patients. As
the expression of DKK1 increases, the risk of T staging
increases in patients with EC (Figure 8C). However, as FGF19
expression decreased, the risk of distant metastasis decreased
(Figure 8D). High expression of OSM was significantly
correlated with high stage (Figure 8E). These results suggest

FIGURE 5 | Relative expression of prognostic-related IRGs between EC sample in TCGA database (n = 182) and normal esophageal sample form GTEx database
(n = 286). (A) HSPA6, (B) CACYBP, (C) DKK1, (D) EGF, (E) FGF19, (F) GAST, (G) OSM, (H) ANGPTL3, and (I) NR2F2 *p < 0.05.

Frontiers in Genetics | www.frontiersin.org 7 August 2020 | Volume 11 | Article 98983

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00989 August 20, 2020 Time: 20:8 # 8

Guo et al. Immune-Related Genes in Esophageal Cancer

FIGURE 6 | The prognostic value of the immune-related risk score. (A) Patients in high-risk group suffered shorter OS. The blue represents the overall survival of
patients in the low-risk group; the red represents the overall survival of patients in the low-risk group. (B) Survival-dependent receiver operating characteristic (ROC)
curve validation of prognostic value of the prognostic index. (C) The risk score distribution. Green dots represent risk score for low-risk patients; red dots represent
risk score for high-risk patients. (D) The relationship between survival status and risk score. The abscissa represents the number of patients, and the ordinate is the
risk score. Red dots represent dead patients, green dots are living patients. (E) Risk gene expression and risk score (abscissa) in EC patients. (F) Risk score in high
and low-risk group. (G) Patient survival time in high and low-risk group. (H) The correlation between survival time and risk score. *p < 0.05, **p < 0.001.

that the development of EC may be related to dysregulated
expression of IRGs.

Immune Cell Infiltration Analysis
To determine whether there is a correlation between risk score
and tumor infiltration with immune cells (CD8+ T cells, CD4+
T cells, B cells, macrophages, neutrophils and dendritic cells),
we conducted a correlation test between immune cell infiltration

and risk score, as shown in Figure 9. The risk score had no
significant correlation with B cells (p = 0.434), CD4+ T cell
(p = 0.666) or CD8+ T cells (p = 0.385) (Figures 9A–C).
However, the risk score positively correlated with the levels
of dendritic cell infiltration (cor = 0.180, p-value = 0.030)
(Figure 9D), macrophage cells (cor = 0.191, p-value = 0.021)
(Figure 9E) and neutrophil cells (cor = 0.394, p-value = 9.348e-
07) (Figure 9F).
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FIGURE 7 | Independent prognostic value of the risk model. (A) Univariate and (B) multivariate regression analysis of clinical characteristics and risk score as
independent prognostic factors. (C) The ROC curve evaluated the accuracy of independent prognostic factors for EC. (D) A nomogram predict the outcome of EC
patients based on their clinical characteristics.

FIGURE 8 | Relationships of the variables in the model with the clinical characteristics of patients. (A) ANGPTL3 expression and gender. (B) CACYBP expression
and gender. (C) DKK1 expression and T staging. (D) FGF19 expression and M stage. (E) OSM expression and pathological stage. The three horizontal lines in each
picture means mean ± SD.
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FIGURE 9 | Analysis of the correlation between the risk score and immune cell infiltration. (A) B cells. (B) CD4+ T cells. (C) CD8+ T cells. (D) Dendritic cells.
(E) Macrophages. (F) Neutrophils. Cor >0.4 and p < 0.05 was used for correlation test.

FIGURE 10 | Prognostic associated IRGs and TFs regulatory network. Heatmap (A) and volcano plot (B) show the differentially expressed transcription factors
between EC and esophageal normal specimen. Red dots represent up-regulated and green dots represent down-regulated DEGs, black dots represent no
difference, respectively. (C) Regulatory network of TFs and prognostic related IRGs; the green nodes represent TFs and the red nodes represent prognostic related
IRGs. Correlation coefficient >0.3 and p < 0.05.

Construction of a Survival-Associated
IRG and TF Regulatory Network
Transcription factors play an important role in the regulation
of genes. To explore possible mechanisms of survival-associated
IRG dysregulation in EC, we analyzed the correlation between
tumor-related transcription factors (TFs) and survival-associated

IRG expression. We screened 60 (FDR < 0.05, log2FC > 2)
TFs that were differentially expressed between EC and normal
tissues from 318 transcription factors in the “Cistrome” database
(Figures 10A,B). Next, we used a p-value < 0.05 and correlation
coefficient >0.3 as the cut-off values to analyze the correlations
between the 60 TFs and survival-associated IRGs. Among the
60 TFs, 27 were significantly associated with survival-associated
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FIGURE 11 | The function enrichment analysis of the IRGs. Differentially expressed IRGs (A) Gene Ontology (GO) analysis, (B) Kyoto Encyclopedia of Genes and
Genomes (KEGG) analysis. (C) The networks between IRGs and top 5 enrichment pathway. (D) GO analysis of Gene Set Enrichment Analysis (GSEA) in high-risk
and low-risk groups, (E) KEGG analysis of GSEA in high-risk and low-risk groups.

IRGs. To better explain the regulatory relationship, Cytoscape
software was used to draw the regulatory network, as shown
in Figure 10C.

Enrichment Analysis of IRGs
To further study the potential function and mechanism
of IRGs, we performed Kyoto Encyclopedia of Genes and
Genomes (KEGG) and Gene Ontology (GO) analysis by using
“clusterprofiler” R packages. The top 10 GO enrichment terms
included biological process (BP), molecular function (MF) and
cell component (CC), as shown in Figure 11A. The KEGG
enrichment analysis results show that it is mainly enriched in
some key immune-related pathways, such as chemokine signaling
pathway, cytokine-cytokine receptor interaction and JAK-STAT
signaling pathways (Figure 11B). Based on the relationship
between IRGs and KEGG pathways, we constructed a network
using Cytoscape to show the genes enriched in the top 5 pathways
(Figure 11C). In addition, we also observed which pathways
were enriched in patients in the high-risk and low-risk groups
by using Gene Set Enrichment Analysis (GSEA) software. The
top five GO terms enriched in the high-risk and low-risk groups
are shown in Figure 11D, and the top 5 pathways enriched in
the high-risk and low-risk groups are shown in Figure 11E. The
results showed that key important pathways, such as the cell cycle,
pyrimidine metabolism and RNA degradation, were significantly
activated in the high-risk group. The GNRH signaling pathway,
viral myocarditis, spliceosome pathway and other pathways were
active in the low-risk group.

DISCUSSION

Esophageal cancer (EC) is a clinically challenging disease that
requires a multidisciplinary approach (Lagergren et al., 2017).
The high fatality rate of EC is a cause of concern around
the world. Despite incremental advances in diagnostics and
therapeutics, EC still carries a poor prognosis, and thus,
there remains a need to elucidate the molecular mechanisms
underlying this disease. Increasing evidence shows that a
comprehensive understanding of EC requires attention not only
to tumor cells but also to the tumor microenvironment (Lin et al.,
2016). Further study on the relationship between immune signals
and EC occurrence and development will help to develop new
and specific targeted therapy strategies, especially in combination
therapy, with great potential (Li et al., 2017).

In this study, we performed a comprehensive analysis of
IRGs and immune infiltrating cells in EC and linked the data
to clinical outcomes and prognosis of patients with EC. First,
we systematically studied the IRGs in EC. We identified 303
differentially expressed IRGs. They are mainly enriched in
the chemokine signaling pathway, cytokine-cytokine receptor
interaction, NF-κB signaling pathway and JAK-STAT signaling
pathway. Recent research reported that tumor cell-secreted IL-6
and IL-8 impair the activity and function of NK cells via STAT3
signaling, and contribute to esophageal squamous cell carcinoma
malignancy (Wu et al., 2019). NF-κB is overexpressed in many
solid and liquids tumors, including both ESCC and EAC (Karin
et al., 2002). Our results are the same as before, and some
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of these pathways play an important role in EC (Izzo
et al., 2006). Zhang B. et al. (2018) reported on IRGs,
specifically that TSPAN15 interacts with BTRC to promote
esophageal squamous cell carcinoma metastasis by activating
NF-κB signaling and indicated that TSPAN15 may serve as a
new biomarker and/or provide a novel therapeutic target for
patients with OSCC. This suggests that IRGs can be used as
prognostic biomarkers. To study the underlying mechanisms
of EC development, we constructed an IRG-TF regulatory
network and found 27 TFs related to prognostic genes; among
them, NR2F2 is both an IRG and TF and is involved in
transcriptional regulation.

It makes sense to stratify patients and find predictive
prognostic markers. Yuting He et al. found that a new model
based on IRGs was effective in predicting prognosis, evaluating
disease state, and identifying treatment options for patients
with hepatocellular carcinoma (He et al., 2020). Therefore, we
used univariate regression analysis to identify IRGs associated
with prognosis and tested the value of these survival-associated
IRGs for the prognostic stratification of patients. We finally
identified the nine best candidate genes (HSPA6, CACYBP,
DKK1, EGF, FGF19, GAST, OSM, ANGPTL3, and NR2F2)
through a combination of Cox regression analyses and Lasso
regression. These genes were used to construct a Cox regression
risk model. This model can predict the outcome of high-
and low-risk groups. The accuracy of the model was tested
by ROC curve analysis. Then, we found that the risk score
could be used as an independent prognostic factor by using
univariate and multivariate regression analysis to determine
the correlation between clinical characteristics, risk score and
prognosis. A nomogram analysis suggested that by combining
the clinical characteristics with the risk score, the 1, 2, and
3-year survival rates for EC can be predicted based on the
patient’s score.

An increasing number of studies about the tumor
microenvironment (TME) have been published in the field
of cancer immunotherapy (Fidler, 2003). For example, it has
been reported in lung cancer (Shi et al., 2020), endometrial
cancer (Chen et al., 2020), cervical squamous cell carcinoma
(Pan et al., 2019) and so on. Tumor escape from antitumor
immunity is essential for tumor survival and progression.
Tumor cells can suppress the antitumor immune response via
recruitment of various immune cell populations or expression
of inhibitory molecular factors. Therefore, we explored the
correlation between risk score and immune infiltrating cells and
found that risk score in the model were not correlated with CD8+
T cells, B cells, or CD4+ T cells but were significantly correlated
with dendritic cells, macrophage cells and neutrophil cells. The
positive correlation between high risk score and immune cells
also confirmed the accuracy of the model.

In conclusion, we constructed a prognostic model of EC
based on IRGs that can accurately predict the prognosis
of patients with EC. Furthermore, this model may help to
identify new therapeutic targets for advanced EC and provide
individualized immunotherapy for patients with EC. Further
study of these survival-associated IRGs may shed light on the
pathogenesis of EC.

DATA AVAILABILITY STATEMENT

Transcriptomic data and matching clinical data were downloaded
from the TCGA GDC portal (https://portal.gdc.cancer.gov/).
The 2498 immune genes were obtained from the ImmPort
databae (https://www.immport.org/home) (Bhattacharya et al.,
2018). Transcription factors (TFs) associated with cancer data
and immune cell infiltrate data (including the abundances of
CD8+T cells, B cells, macrophages, CD4+T cells, dendritic cells
and neutrophils) were both obtained from the Cistrome project
(http://www.cistrome.org/) (Liu et al., 2011).

AUTHOR CONTRIBUTIONS

XG and YW conceived, designed this research, and assisted in
writing the manuscript. HZ, CQ, and XD conducted the data
and statistics analysis. JL, AC, and ZW edited and revised the
manuscript. ZW was responsible for supervising the study. All
authors read and gave final approval of the manuscript.

FUNDING

This study was supported by the Chongqing Municipal Key
Discipline Funding (201128GRJFJY).

ACKNOWLEDGMENTS

We thank the TCGA network for its generous sharing of
large amounts of data. We thank the reviewers for their
constructive comments.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fgene.
2020.00989/full#supplementary-material

REFERENCES
Allum, W. H., Stenning, S. P., Bancewicz, J., Clark, P. I., and Langley, R. E. (2009).

Long-term results of a randomized trial of surgery with or without preoperative
chemotherapy in Esophageal Cancer. J. Clin. Oncol. 27, 5062–5067. doi: 10.
1200/JCO.2009.22.2083

Bhattacharya, S., Dunn, P., Thomas, C. G., Smith, B., Schaefer, H., Chen, J., et al.
(2018). Immport, toward repurposing of open access immunological assay data
for translational and clinical research. Sci. Data 5:180015. doi: 10.1038/sdata.
2018.15

Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., and Jemal, A.
(2018). Global Cancer statistics 2018: globocan estimates of incidence and

Frontiers in Genetics | www.frontiersin.org 12 August 2020 | Volume 11 | Article 98988

https://portal.gdc.cancer.gov/
https://www.immport.org/home
http://www.cistrome.org/
https://www.frontiersin.org/articles/10.3389/fgene.2020.00989/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2020.00989/full#supplementary-material
https://doi.org/10.1200/JCO.2009.22.2083
https://doi.org/10.1200/JCO.2009.22.2083
https://doi.org/10.1038/sdata.2018.15
https://doi.org/10.1038/sdata.2018.15
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00989 August 20, 2020 Time: 20:8 # 13

Guo et al. Immune-Related Genes in Esophageal Cancer

mortality worldwide for 36 Cancers in 185 countries. CA Cancer J. Clin. 68,
394–424. doi: 10.3322/caac.21492

Cao, J., Yang, X., Li, J., Wu, H., Li, P., Yao, Z., et al. (2019). Screening and
identifying immune-related cells and genes in the tumor microenvironment
of bladder urothelial carcinoma: based on TCGA database and bioinformatics.
Front. Oncol. 9:1533. doi: 10.3389/fonc.2019.01533

Chen, P., Yang, Y., Zhang, Y., Jiang, S., Li, X., and Wan, J. (2020). Identification
of prognostic immune-related genes in the tumor microenvironment of
endometrial cancer. Aging 12, 3371–3387. doi: 10.18632/aging.102817

Cunningham, D., Allum, W. H., Stenning, S. P., Thompson, J. N., Van de Velde,
C. J., Nicolson, M., et al. (2006). Perioperative chemotherapy versus surgery
alone for resectable gastroesophageal cancer. N. Engl. J. Med. 355, 11–20. doi:
10.1056/NEJMoa055531

Fidler, I. J. (2003). The pathogenesis of cancer metastasis: the ‘Seed and Soil’.
Hypothesis Revisited. Nat. Rev. Cancer 3, 453–458. doi: 10.1038/nrc1098

Gentles, A. J., Newman, A. M., Liu, C. L., Bratman, S. V., Feng, W., Kim, D., et al.
(2015). The prognostic landscape of genes and infiltrating immune cells across
human Cancers. Nat. Med. 21, 938–945. doi: 10.1038/nm.3909

He, Y., Dang, Q., Li, J., Zhang, Q., Yu, X., Xue, M., et al. (2020). Prediction of
hepatocellular carcinoma prognosis based on expression of an immune-related
gene set. Aging 12, 965–977. doi: 10.18632/aging.102669

Huang, T. X., and Fu, L. (2019). The immune landscape of esophageal Cancer.
Cancer Commun. 39:79. doi: 10.1186/S40880-019-0427-Z

Izzo, J. G., Correa, A. M., Wu, T. T., Malhotra, U., Chao, C. K., Luthra, R., et al.
(2006). Pretherapy nuclear factor-kappab status, chemoradiation resistance,
and metastatic progression in esophageal carcinoma. Mol. Cancer Ther. 5,
2844–2850. doi: 10.1158/1535-7163.MCT-06-0351

Karin, M., Cao, Y., Greten, F. R., and Li, Z. W. (2002). Nf-Kappab in Cancer:
from innocent bystander to major culprit. Nat. Rev. Cancer 2, 301–310. doi:
10.1038/nrc780

Khalil, D. N., Smith, E. L., Brentjens, R. J., and Wolchok, J. D. (2016). The future of
Cancer treatment: immunomodulation, cars and combination immunotherapy.
Nat. Rev. Clin. Oncol. 13, 273–290. doi: 10.1038/nrclinonc.2016.65

Lagergren, J., Smyth, E., Cunningham, D., and Lagergren, P. (2017).
Oesophageal Cancer. Lancet 390, 2383–2396. doi: 10.1089/omi.2011.0118016/S
014

Li, Y., Lu, Z., Che, Y., Wang, J., Sun, S., Huang, J., et al. (2017). Immune signature
profiling identified predictive and prognostic factors for esophageal squamous
cell carcinoma. Oncoimmunology 6:e1356147. doi: 10.1080/2162402X.2017.
1356147

Lin, E. W., Karakasheva, T. A., Hicks, P. D., Bass, A. J., and Rustgi, A. K. (2016).
The tumor microenvironment in esophageal Cancer. Oncogene 35, 5337–5349.
doi: 10.1016/S0140-6736(17)31462-9

Liu, T., Ortiz, J. A., Taing, L., Meyer, C. A., Lee, B., Zhang, Y., et al. (2011). Cistrome:
an integrative platform for transcriptional regulation Studies. Genome Biol.
12:R83. doi: 10.1186/gb-2011-12-8-r83

Mei, S., Meyer, C., Zheng, R., Qin, Q., Wu, Q., Jiang, P., et al. (2017). Cistrome
Cancer: a web resource for integrative gene regulation modeling in Cancer.
Cancer Res. 77, e19–e22. doi: 10.1158/0008-5472.CAN-17-0327

Murphy, T. L., and Murphy, K. M. (2010). Slow down and survive: enigmatic
immunoregulation by BTLA and HVEM. Annu. Rev. Immunol. 28, 389–411.
doi: 10.1146/annurev-immunol-030409-101202

Noble, F., Lloyd, M. A., Turkington, R., Griffiths, E., O’Donovan, M.,
O’Neill, J. R., et al. (2017). Multicentre cohort study to define and
validate pathological assessment of response to neoadjuvant therapy in
oesophagogastric adenocarcinoma. Br. J. Surg. 104, 1816–1828. doi: 10.1002/
bjs.10627

Ohashi, S., Miyamoto, S., Kikuchi, O., Goto, T., Amanuma, Y., and Muto, M.
(2015). Recent advances from basic and clinical studies of esophageal squamous
cell carcinoma. Gastroenterology 149, 1700–1715. doi: 10.1053/j.gastro.2015.08.
05

Pan, X. B., Lu, Y., Huang, J. L., Long, Y., and Yao, D. S. (2019). prognostic genes
in the tumor microenvironment in cervical squamous cell carcinoma. Aging 11,
10154–10166. doi: 10.18632/aging.102429

Qiu, H., Hu, X., He, C., Yu, B., Li, Y., and Li, J. (2020). Identification and
validation of an individualized prognostic signature of bladder cancer based
on seven immune related genes. Front. Genet. 11:12. doi: 10.3389/fgene.2020.
00012

Shaib, W. L., Nammour, J. P., Gill, H., Mody, M., and Saba, N. F. (2016). The future
prospects of immune therapy in gastric and esophageal adenocarcinoma. J. Clin.
Med. 5:100. doi: 10.3390/jcm5110100

Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D.,
et al. (2003). Cytoscape: a software environment for integrated models of
biomolecular interaction networks. Genome Res. 13, 2498–2504. doi: 10.1101/
gr.1239303

Shi, X., Li, R., Dong, X., Chen, A. M., Liu, X., Lu, D., et al. (2020). Irgs: an immune-
related gene classifier for lung adenocarcinoma prognosis. J. Transl. Med. 18:55.
doi: 10.1186/s12967-020-02233-y

Tanaka, T., Nakamura, J., and Noshiro, H. (2017). Promising Immunotherapies
for Esophageal Cancer. Expert Opin. Biol. Ther. 17, 723–733. doi: 10.1080/
14712598.2017.1315404

Tang, Z., Kang, B., Li, C., Chen, T., and Zhang, Z. (2019). GEPIA2: an enhanced
web server for large-scale expression profiling and interactive analysis. Nucleic
Acids Res. 47, W556–W560. doi: 10.1093/nar/gkz430

Turato, C., Scarpa, M., Kotsafti, A., Cappon, A., Quarta, S., Biasiolo, A., et al.
(2019). Squamous cell carcinoma antigen 1 is associated to poor prognosis
in esophageal cancer through immune surveillance impairment and reduced
chemosensitivity. Cancer Sci. 110, 1552–1563. doi: 10.1111/cas.13986

van Hagen, P., Hulshof, M. C., van Lanschot, J. J., Steyerberg, E. W., van
Berge Henegouwen, M. I., Wijnhoven, B. P., et al. (2012). Preoperative
chemoradiotherapy for esophageal or junctional Cancer. N. Engl. J. Med. 366,
2074–2084. doi: 10.1056/NEJMoa1112088

Vo, J. N., Cieslik, M., Zhang, Y., Shukla, S., Xiao, L., Zhang, Y., et al. (2019). The
landscape of circular rna in Cancer. Cell 176, 869.e13–881.e13. doi: 10.1016/j.
cell.2018.12.021

Wan, B., Liu, B., Huang, Y., Yu, G., and Lv, C. (2019). Prognostic value of immune-
related genes in clear cell renal cell carcinoma. Aging 11, 11474–11489. doi:
10.18632/aging.102548

Wu, J., Gao, F. X., Wang, C., Qin, M., Han, F., Xu, T., et al. (2019). Il-6 and
Il-8 secreted by tumour cells impair the function of Nk Cells Via the Stat3
pathway in oesophageal squamous cell carcinoma. J. Exp. Clin. Cancer Res.
38:321. doi: 10.1186/s13046-019-1310-0

Yan, T., Cui, H., Zhou, Y., Yang, B., Kong, P., Zhang, Y., et al. (2019). Multi-
region sequencing unveils novel actionable targets and spatial heterogeneity
in esophageal squamous cell carcinoma. Nat. Communi. 10:1670. doi: 10.1038/
s41467-019-09255-1

Yu, G., Wang, L. G., Han, Y., and He, Q. Y. (2012). Clusterprofiler: an R Package
for comparing biological themes among gene clusters. OmicsJ. Integr. Biol. 16,
284–287. doi: 10.1089/omi.2011.0118

Zhang, B., Zhang, Z., Li, L., Qin, Y. R., Liu, H., Jiang, C., et al. (2018). Tspan15
interacts with btrc to promote oesophageal squamous cell carcinoma metastasis
via activating Nf-Kb signaling. Nat. Commun. 9:1423. doi: 10.1038/s41467-018-
03716-9

Zhang, J., Bu, X., Wang, H., Zhu, Y., Geng, Y., Nihira, N. T., et al. (2018). Cyclin
D-CDK4 kinase destabilizes PD-L1 via cullin 3-SPOP to control cancer immune
surveillance. Nature 553, 91–95. doi: 10.1038/nature25015

Zhang, M., Wang, X., Chen, X., Zhang, Q., and Hong, J. (2020). Novel immune-
related gene signature for risk stratification and prognosis of survival in
lower-grade glioma. Front. Genet. 11:363. doi: 10.3389/fgene.2020.00363

Zhao, Q., Yu, J., and Meng, X. (2019). A good start of immunotherapy in
esophageal Cancer. Cancer Med. 8, 4519–4526. doi: 10.1002/cam4.2336

Zhao, Z., Zhao, D., Xia, J., Wang, Y., and Wang, B. (2020). Immunoscore predicts
survival in early-stage lung adenocarcinoma patients. Front. Oncol. 10:691. doi:
10.3389/fonc.2020.00691

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Guo, Wang, Zhang, Qin, Cheng, Liu, Dai and Wang. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Genetics | www.frontiersin.org 13 August 2020 | Volume 11 | Article 98989

https://doi.org/10.3322/caac.21492
https://doi.org/10.3389/fonc.2019.01533
https://doi.org/10.18632/aging.102817
https://doi.org/10.1056/NEJMoa055531
https://doi.org/10.1056/NEJMoa055531
https://doi.org/10.1038/nrc1098
https://doi.org/10.1038/nm.3909
https://doi.org/10.18632/aging.102669
https://doi.org/10.1186/S40880-019-0427-Z
https://doi.org/10.1158/1535-7163.MCT-06-0351
https://doi.org/10.1038/nrc780
https://doi.org/10.1038/nrc780
https://doi.org/10.1038/nrclinonc.2016.65
https://doi.org/10.1089/omi.2011.0118016/S014
https://doi.org/10.1089/omi.2011.0118016/S014
https://doi.org/10.1080/2162402X.2017.1356147
https://doi.org/10.1080/2162402X.2017.1356147
https://doi.org/10.1016/S0140-6736(17)31462-9
https://doi.org/10.1186/gb-2011-12-8-r83
https://doi.org/10.1158/0008-5472.CAN-17-0327
https://doi.org/10.1146/annurev-immunol-030409-101202
https://doi.org/10.1002/bjs.10627
https://doi.org/10.1002/bjs.10627
https://doi.org/10.1053/j.gastro.2015.08.05
https://doi.org/10.1053/j.gastro.2015.08.05
https://doi.org/10.18632/aging.102429
https://doi.org/10.3389/fgene.2020.00012
https://doi.org/10.3389/fgene.2020.00012
https://doi.org/10.3390/jcm5110100
https://doi.org/10.1101/gr.1239303
https://doi.org/10.1101/gr.1239303
https://doi.org/10.1186/s12967-020-02233-y
https://doi.org/10.1080/14712598.2017.1315404
https://doi.org/10.1080/14712598.2017.1315404
https://doi.org/10.1093/nar/gkz430
https://doi.org/10.1111/cas.13986
https://doi.org/10.1056/NEJMoa1112088
https://doi.org/10.1016/j.cell.2018.12.021
https://doi.org/10.1016/j.cell.2018.12.021
https://doi.org/10.18632/aging.102548
https://doi.org/10.18632/aging.102548
https://doi.org/10.1186/s13046-019-1310-0
https://doi.org/10.1038/s41467-019-09255-1
https://doi.org/10.1038/s41467-019-09255-1
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1038/s41467-018-03716-9
https://doi.org/10.1038/s41467-018-03716-9
https://doi.org/10.1038/nature25015
https://doi.org/10.3389/fgene.2020.00363
https://doi.org/10.1002/cam4.2336
https://doi.org/10.3389/fonc.2020.00691
https://doi.org/10.3389/fonc.2020.00691
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00940 August 24, 2020 Time: 17:26 # 1

ORIGINAL RESEARCH
published: 26 August 2020

doi: 10.3389/fgene.2020.00940

Edited by:
Bailiang Li,

Stanford University, United States

Reviewed by:
Edwin Wang,

University of Calgary, Canada
Deli Liu,

Weill Cornell Medicine, United States

*Correspondence:
Xianxiong Chen

gzcxx@szu.edu.cn
Yejun Wang

wangyj@szu.edu.cn

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Computational Genomics,
a section of the journal

Frontiers in Genetics

Received: 31 March 2020
Accepted: 28 July 2020

Published: 26 August 2020

Citation:
Liu X, Hui X, Kang H, Fang Q,

Chen A, Hu Y, Lu D, Chen X and
Wang Y (2020) A Multi-Gene Model

Effectively Predicts the Overall
Prognosis of Stomach

Adenocarcinomas With Large Genetic
Heterogeneity Using Somatic

Mutation Features.
Front. Genet. 11:940.

doi: 10.3389/fgene.2020.00940

A Multi-Gene Model Effectively
Predicts the Overall Prognosis of
Stomach Adenocarcinomas With
Large Genetic Heterogeneity Using
Somatic Mutation Features
Xianming Liu1†, Xinjie Hui2†, Huayu Kang2†, Qiongfang Fang2, Aiyue Chen2, Yueming Hu2,
Desheng Lu2, Xianxiong Chen2* and Yejun Wang2*

1 Department of Gastrointestinal Surgery, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan
University, Shenzhen, China, 2 School of Basic Medicine, Shenzhen University Health Science Center, Shenzhen, China

Background: Stomach adenocarcinoma (STAD) is one of the most common
malignancies worldwide with poor prognosis. It remains unclear whether the prognosis
is associated with somatic gene mutations.

Methods: In this research, we collected two independent STAD cohorts with both
genetic profiling and clinical follow-up data, systematically investigated the association
between the prognosis and somatic mutations, and analyzed the influence of
heterogeneity on the prognosis-genetics association.

Results: Typical association was identified between somatic mutations and overall
prognosis for individual cohorts. In The Cancer Genome Atlas (TCGA) cohort, a list of 24
genes was also identified that tended to mutate within cases of the poorest prognosis.
The association showed apparent heterogeneity between different cohorts, although
common signatures could be identified. A machine-learning model was trained with
20 common genes that showed a similar mutation rate difference between prognostic
groups in the two cohorts, and it classified the cases in each cohort into two groups
with significantly different prognosis. The model outperformed both single-gene models
and TNM-based staging system significantly.

Conclusion: The study made a systematic analysis on the association between STAD
prognosis and somatic mutations, identified signature genes that showed mutation
preference in different prognostic groups, and developed an effective multi-gene model
that can effectively predict the overall prognosis of STAD in different cohorts.

Keywords: stomach adenocarcinoma, prognosis, prediction, multi-gene model, heterogeneity

INTRODUCTION

Stomach adenocarcinoma (STAD) represents the global fifth most common malignancy and the
third leading cause of cancer mortality, with estimated 1,033,701 newly diagnosed cases and 782,685
deaths in 2018 (Bray et al., 2018). Screening of STADs at early stages with endoscopy and biopsy
sampling remains the most effective approach to improve prognosis and reduce the mortality
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(Banks et al., 2019). However, the majority of STADs worldwide
except Japan and Korea were diagnosed at a late stage, due to
the lack of symptoms at early stages, invasiveness of endoscopy,
and unsound early-screening programs (Banks et al., 2019).
Surgical resection and chemotherapy remain the main treatment
regimens (Charalampakis et al., 2018). Although new therapies,
such as targeted and immune therapies, have been applied to
STADs, the overall outcome was only improved moderately (Tran
et al., 2017; Charalampakis et al., 2018).

Multi-omics studies disclosed a high heterogeneity of STADs
in genetics (Cancer Genome Atlas Research Network, 2014;
Cristescu et al., 2015; Oh et al., 2018), gene expression
(Boussioutas et al., 2003; Tan et al., 2011; Lei et al., 2013),
and other molecular levels (Ooi et al., 2016; Ni et al., 2019;
Zhang et al., 2019). The molecular heterogeneity could be
associated with the complexity of anatomic regions of stomach,
cell origins, and etiologies (Cancer Genome Atlas Research
Network, 2014; Choi et al., 2014; Cristescu et al., 2015; Waldum
and Fossmark, 2018; Ni et al., 2019; Zhang et al., 2019). STADs
could originate from different anatomic sites such as cardia
or gastroesophageal junction, fundus, lesser curvature, greater
curvature, angular incisures, antrum, and pylorus, each with
different cell compositions (Soybel, 2005; Choi et al., 2014).
STADs are divided by the Lauren classification system into
intestinal and diffuse types, the latter of which show poor clinical
outcomes generally (Laurén, 1965; Shen et al., 2013). The World
Health Organization proposed an alternative system, dividing
STADs into papillary, tubular, mucinous (colloid), and poorly
cohesive carcinomas (Bosman et al., 2010). Recently, genome-
based molecular signatures were comprehensively identified
and employed by The Cancer Genome Atlas (TCGA) to
classify STADs into four subtypes, namely, Epstein–Barr virus
positive (EBV), microsatellite instable (MSI), genome stable
(GS), and chromosomal instability (CIN) (Cancer Genome
Atlas Research Network, 2014). A gene expression-based study
from the Asian Cancer Research Group (ACRG) also classified
STADs into two major subtypes, MSI and microsatellite
stable (MSS), while MSS STADs were further subdivided into
three subtypes, epithelial-to-mesenchymal transition (EMT),
TP53 active (TP53+), and TP53 inactive (TP53-) (Cristescu
et al., 2015). The new molecular classification schemes could
have more prospective clinical utilities in guiding STAD
therapies and prognosis.

For a variety of tumors, prognosis has been reported to be
associated with somatic gene mutations (Loi et al., 2013; Lee et al.,
2017; Zhang et al., 2017; Cho et al., 2018; Yu et al., 2019). Despite
the large heterogeneity of STADs, common genetic factors (e.g.,
BRCA2 and MUC16) were still identified and reported to be
associated with the prognosis (Chen et al., 2015; Li et al., 2018).
Currently, there is still a lack of systemic exploration of the
association between STAD prognosis and somatic mutations. To
achieve this goal, here, we collected the publically available data
from two STAD cohorts that contained both genetic mutation
profiles and clinical follow-up information (Cancer Genome
Atlas Research Network, 2014; Chen et al., 2015), analyzed the
STAD prognosis–genetics association globally and the influence
of heterogeneity on the prognosis–genetics association, and

identified a list of common genetic signatures that can be used
widely for the guidance of STAD prognosis.

MATERIALS AND METHODS

Datasets, Stratification, and Mutation
Frequency Comparison
Two STAD cohorts were used in this study, the TCGA
cohort and a Chinese cohort (Cancer Genome Atlas Research
Network, 2014; Chen et al., 2015). The TCGA cases were
multiethnic but mostly white people, while the Chinese cohort
was comprised by Chinese patients exclusively. Both the clinical
data and the somatic mutation data were downloaded. Mutations
causing codon changes, frame-shifts, and premature translational
terminations were retrieved for further analysis. For prognosis–
genetics association analysis, first, the cases were removed
that received targeting therapies. Furthermore, only the ones
with both somatic mutation data and corresponding prognostic
follow-up information were recruited. The included cases were
classified into two categories according to prognosis (“good”
or “poor”). The “good” prognosis group included the patients
surviving through the preset follow-up period while the “poor”
one indicated the patients died within the observed period.
The TNM (tumor-nodal-metastasis) staging system was used
for stratification, and for the sake of convenience in binary
classification, two categories, “early” (Stages I and II) and “later”
(Stages III and IV) were predefined. In addition, considering the
possible effects of different anatomic sites of tumor on prognosis,
subdivisions were used for stratification as well. To compare the
somatic gene mutation frequency between prognostic groups, a
matrix was prepared to record the mutations of all the genes
for each case, followed by counting the number of cases with
mutations for each gene in each group. A genome-wide rate
comparison test (EBT) proposed recently that could balance
statistic power and precision was adopted to compare the gene
mutation rates (Hui et al., 2017). To test the robustness of
gene mutation signatures identified by EBT tests, a repeated
resampling strategy was adopted, by which a subset (70% of the
total sample size) of the training cases was randomly selected
for 100 rounds, gene mutation rates were compared for each
round, and the signature genes were observed for the recurrence
among the top 50 genes with smallest p-values for each round
(Hui et al., 2017).

Feature Extraction, Representation, and
Model Training
Two strategies were adopted for the feature extraction in this
research, p-value based and empirical. For the p-value-based
strategy, the top n genes with the most significant mutation
frequency difference were used as the genetic features. For the
empirical strategy, the difference of mutation rates was calculated
per gene between the two prognostic groups and ordered, and
the genes with a minimal 10% (or any indicated percentage)
mutation rate difference and with recurrent mutations in either
group were retrieved as candidate features.
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For each case, Pj (j = 1, 2,., mi) belonging to a certain
category Ci, where i equaled to 1 or 0, and mi represented
the total number of cases of the category Ci, the genetic
features were represented as a binary vector Fj (g1, g2,.,
gn) in which gk (k = 1, 2,., n) represented the kth genetic
feature, taking the value of 1 if the corresponding gene was
mutated and 0 otherwise. There was an mi

∗n matrix for
category Ci. When stage was used as an additional feature,
the size of the matrix was enlarged to mi

∗(n + 1), and the
stage feature was also represented in a binary form in the
additional column, for which 1 and 0 represented “early”
and “later,” respectively. The anatomic sites were represented
as two-bit features, i.e., “cardia/gastro-esophagus junction,”
“fundus/corpus,” and “antrum/pylorus” being represented as
“00,” “01,” and “10,” respectively.

An R package, “e1071,” was used for training SVM
models using each training dataset1. During the training
stage, all four kernels, “Radial Base Function (RBF),” “linear,”
“polynomial,” and “sigmoid,” were tested and the parameters
were optimized based on a 10-fold cross-validation grid search.
The best kernel with optimized parameters was selected for
further model training.

Model Performance Assessment
A 5-fold cross-validation strategy was used in this study.
The original feature-represented matrix for each category was
randomly split into five parts with identical size. Every four parts
of each category were combined and served as a training dataset
while the rest one of each category was used for testing and
performance evaluation.

The Receiver Operating Characteristic (ROC) curve, the area
under the ROC curve (AUC), Accuracy, Sensitivity, Specificity,
and Mathews Correlation Coefficient (MCC) were utilized to
assess the predictive performance. In the following formula,
Accuracy denotes the percentage of both positive instances
(“good prognosis”) and negative instances (“poor prognosis”)
correctly predicted. Specificity and Sensitivity represent the true
negative rate and true positive rate, respectively, while the default
threshold value from “e1070” (0.0) was used to define the
Sensitivity and Specificity in the research. An ROC curve is a
plot of Sensitivity versus (1 – Specificity) and is generated by
shifting the decision threshold. AUC gives a measure of classifier
performance. MCC takes into account true and false positives and
false negatives and is generally regarded as a balanced measure
which can be used even if the classes are of very different sizes.

Accuracy = (TP+ TN)/(TP+ FP+ TN+ FN),

Specificity = TN/(TN+ FP), Sensitivity = TP/(TP+ FN),

MCC = ((TP∗TN)− (FN∗FP))/Sqrt((TP+ FN)∗

(TN+ FP)∗(TP+ FP)∗(TN+ FN)).

Survival Analysis
The follow-up survival information of STAD cases was annotated.
To evaluate the survival of prediction results of each model,

1https://cran.r-project.org/

all the 5-fold cross-validation testing results were collected and
grouped, followed by the survival analysis for each predicted
group. Kaplan–Meier overall survival analysis was performed
with R survival package1. The Gehan–Breslow–Wilcoxon test was
used to compare the difference of overall survival curves, and the
significance level was set as 0.05.

TML Analysis
Both Tumor Mutation Load (TML) and Missense TML were
analyzed for STAD cases of different prognostic groups. TML
is defined as logarithm transformation of mutation rate per
megabase, while Missense TML only counts the mutations
causing amino acid changes. The Wilcoxon rank-sum test was
performed to compare the distributions of TML or Missense
TML, with the preset significance level as 0.05.

RESULTS

Somatic Mutation Profile Difference
Between Prognostic Groups of TCGA
STADs
In total, 142 TCGA STAD cases remained after filtering the
duplicates, the ones missing somatic mutation or clinical
information and those treated with targeting therapies. The
general clinical properties are shown in Supplementary Table S1.
A somatic mutation profile analysis for these cases disclosed
a list of genes with high mutation rates (>30%), including
TTN, PCDHAC2, PCDHGC5, TP53, MUC16, SYNE1, and CSMD
(Supplementary Table S2). The cases were also stratified
according to sex and anatomic site, and the somatic mutation
profiles were compared among the corresponding strata. Six
genes were found with significant somatic mutation rates
between male and female (EBT, p < 0.05), while 5 genes showed
marginally significant somatic mutation rates among different
anatomic sites (EBT, p < 0.10) (Supplementary Table S2).

The overall survival of the included TCGA STAD cases
appeared poor, with a median of 805 days (Figure 1A). The
cases were classified into good and poor prognostic groups
with identical sample size (each with 40 cases) based on a
cutoff survival period (573 days), and somatic gene mutation
rates were compared between the groups (Supplementary
Figure S1A). In total, 52 genes were identified with most striking
difference (EBT, p < 0.20) (Supplementary Table S3). A random
resampling procedure further indicated that these genes were
stably associated with STAD prognosis (50/52 with the largest
recurrence among the top 50 genes of smallest p-values for
each resampling test; Supplementary Table S3). Genes involved
in collagen chain trimerization were significantly enriched
(Supplementary Figure S1B; Fisher’s Exact, FDR = 0.013). Most
of the genes (82.7%) were reported to be associated with cancers
and 16 (30.8%) with gastric cancer, including MUC16, for which
higher mutation rates were recently found to be associated with
prognosis and the immune therapy outcome of gastric cancer (Li
et al., 2018; Supplementary Table S3). With subsets or all of the
52 genes as features, SVM models were trained to predict the
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FIGURE 1 | Association between the overall prognosis of TCGA STADs and somatic gene mutations. (A) The Kaplan–Meier overall survival curve of the TCGA STAD
cases. The median was indicated with an arrow. The analysis throughout the figure used the median survival as stratification cutoff of STAD prognosis. (B) The 5-fold
cross-validated ROC curves of genetic models predicting the prognosis of STADs. (C) The Kaplan–Meier overall survival curves of the TCGA STAD cases classified
by f52 with a 5-fold cross-validation strategy. (D) The distribution of TMLs for TCGA cases of good and poor prognosis groups. The p-value of the Wilcoxon
rank-sum test was indicated. (E,F) The Kaplan–Meier overall survival curves of the TCGA STAD cases stratified by TNM stage information (E) or the combined f52s
model with a 5-fold cross-validation strategy (F). (G) The 5-fold cross-validated ROC curves of the genetic model f52 and the combined models f52s and f52sa
predicting the prognosis of STADs. (H) The Kaplan–Meier overall survival curves of the TCGA STAD cases stratified by presence or absence of MUC16 mutations.
Gehan–Breslow–Wilcoxon tests were performed to compare the overall survivals, and the p-values were shown in context.

tumor prognosis. Generally, the model performance improved as
the number of features increased (Figure 1B). The 52-gene model
(f52) could classify the cases into good and poor prognostic
groups most accurately, with average 5-fold cross-validated
accuracy (ACC), area under the receiver operating characteristic
(ROC) curves (AUC), and Mathews Correlation Coefficient
(MCC) of 0.81, 0.82, and 0.64, respectively (Supplementary
Table S4). Cases classified by the model f52 showed significantly
different overall survival (Figure 1C; Gehan–Breslow–Wilcoxon
test, p = 3e-07).

To test whether the observed mutation–prognosis association
was biased by tumor mutation load (TML), we compared
the TML distribution between the cases with good and poor
prognosis. However, neither total TML nor missense TML
showed significant difference between the two groups of cases
either classified by the median survival time or predicted by the
f52 model (Figure 1D and Supplementary Figure S2; Wilcoxon
rank-sum test, p > 0.05). Distribution analysis on clinical factors
of the training cases demonstrated that clinical TNM stage could
be a significant co-founding factor (Supplementary Figure S3).
We developed a model featured by stage information, and
found that its performance was far inferior to that of f52,
despite its ability in classifying the cases into two groups with
significantly different overall survival (Supplementary Figure S4,
Supplementary Table S4, and Figure 1E). A model combined
the 52 genetic features and stage information, f52s, but achieved

better performance (Supplementary Table S4), which could
classify the cases into two groups with more significant survival
difference (Figure 1F; Gehan–Breslow–Wilcoxon test, p = 7e-08).
The models further integrated with other clinical information-
based features (e.g., anatomic site, f52sa), however, performed not
better than f52s (Figure 1G and Supplementary Table S4).

MUC16 was recently reported to be associated with the
prognosis of gastric cancer (Li et al., 2018). The gene was
also included in our multi-gene feature list. We also found
that the MUC16 prognosis-prediction model can classify the
cases into two prognostic groups, but the significance was
much lower than our multi-gene models (Figure 1H; Gehan–
Breslow–Wilcoxon test, p = 0.03). Other performance measures
further demonstrated the superiority of multi-gene models over
the individual MUC16 model (Supplementary Figure S5 and
Supplementary Table S4).

Taking together, we identified a list of genes, whose somatic
mutation profile could be used for effective prediction of
prognosis for TCGA STAD cases.

Somatic Mutation Indicators for Poor
Prognosis of TCGA STADs
We noticed that the f52 model showed lower classifying power
for short-term prognosis of TCGA STAD cases (Figure 1C). All
of the 52 genes were also found with higher mutation rates in
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cases with good prognosis (Supplementary Table S3). Finally,
the stratification for STAD prognosis was based on the median
overall survival, and it would be also interesting to observe
the dynamic changes of gene mutation rates between groups
stratified with different cutoff survival times. To this end, we
grouped the cases using overall survival of 1, 2, and 3 years as
prognosis cutoff respectively besides the median and compared
the gene mutation rates. Similar to the comparison results based
on 573 days, an absolute majority of top significant genes showed
higher mutation rates in the group of good prognosis than that
of poor prognosis stratified by 2-year overall survival (Figure 2A;
3-year not shown due to the very limitation of case number for
good prognosis). For 1-year stratification, however, the results
demonstrated a contrary trend, i.e., most of the top significant

genes showing higher mutation rates in the poor-prognosis group
(Figure 2A). The consistent intersect between the top significant
genes (50, 100, or 200) of 573-day and 2-year stratification
was much larger than that between 573-day or 2-year and 1-
year (Figure 2B).

To further explore the possible factors causing the observed
contrary trends, we identified genes with the most strikingly
different mutation rates (with a minimal difference of 10%)
between poor and good prognostic groups stratified by 1 year,
and observed the mutation rate changes along with overall
survival time (Figures 2C,D and Supplementary Table S5). The
results suggested that all of these (24) genes inclined to mutate
in cases with the poorest prognosis (<1-year overall survival)
(Figures 2C,D). As control, the genes showed no or much fewer

FIGURE 2 | Somatic mutation indicators for poor prognosis of TCGA STADs. (A) The distribution of top 50 significant genes of good and poor prognosis groups
stratified with different cutoff survival time. Genes with higher mutation rates were counted for either the good or poor prognosis group and represented as
“good-higher” or “poor-higher,” respectively. The total number was also indicated. (B) The consistent intersect among the top significant genes (50, 100, or 200)
identified by 573-day, 1-year, and 2-year stratifications. (C,D) The number of cases with mutation (C) and the mutation rate changes (D) of the top 24 significant
genes selected in the good and poor prognostic groups stratified by 1 year along with overall survival time. The total case number for either prognostic group
stratified by each survival cutoff was shown on the top of (C). (E,F) The Kaplan–Meier overall survival curves of the TCGA STAD cases stratified by f1y24 (E) or the
combined f76 model (F) with a 5-fold cross-validation strategy. Gehan–Breslow–Wilcoxon tests were performed to compare the overall survivals, and the p-values
were shown in context.
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mutations in cases with good prognosis, and the case number
with mutations or mutation rates decreased generally for the
patients with longer prognosis (Figures 2C,D).

The above results suggested that these gene mutations could
be indicators for poorest prognosis. As validation, we used these
genes as features and trained models based on 1-year-stratified
TCGA training data (Supplementary Table S4). The 5-fold cross-
validated results suggested that the optimized model (f1y24)
could distinguish the cases with different prognoses in spite
of a weaker distinguishing power (Figure 2E; Gehan–Breslow–
Wilcoxon test, p = 0.03). Compared to f52, f1y24 did show
better performance for the short-term prognosis classification
(Figure 2E). Combination of the 24 short-term gene markers
and 52 medium- and long-term markers generated a new model,
f76, which showed a balanced classification power for both short-
term and long-term prognosis classification, although the general
significance was not comparable to f52 (Supplementary Table S4
and Figure 2F; Gehan–Breslow–Wilcoxon test, p = 1e-05).

Heterogeneity of Prognosis-Associated
Genetic Signatures Between TCGA and
Chinese STAD Cohorts
The overall survival of the Chinese cohort with 78 STAD
cases appeared better than the TCGA cohort, with a median

of 1353 days (Figure 3A). We also stratified the Chinese
cases into good and poor prognostic groups according to
1-, 2-, and 3-years, and median overall survival, respectively.
Different from TCGA results, the top significant genes showed
large consistence between 1-year and other survival time
stratifications (Figures 3B,C).

To our surprise, the Chinese and TCGA cohorts showed
an unexpected heterogeneity on the prognosis-associated gene
mutation signatures. Very few common genes were identified
in both cohorts with either higher or lower mutation rates
in good prognostic groups (Figure 3D, upper; 4 with higher
and 5 with lower mutation rates in good prognostic groups).
More genes even showed the contrary trends in the TCGA
and Chinese cohorts, e.g., higher mutation rates in the good
prognostic group of TCGA cohort and the poor prognostic group
of Chinese cohort (Figure 3D, lower; 48 genes). Further analysis
for ethnicity stratification of the TCGA cases was precluded since
the number of included Asian cases was too limited, and the
secondary prognosis stratification and mutation rate comparison
were infeasible.

This dramatic genetic heterogeneity could likely make
the TCGA-based prognosis prediction models ineffective in
application for the Chinese cohort. The application of the f52,
f1y24, and f76 models confirmed the following assumption: none
of them could well classify the Chinese cases into groups with

FIGURE 3 | Heterogeneity of prognosis-associated genetic signatures between TCGA and Chinese STAD cohorts. (A) The Kaplan–Meier overall survival curve of the
Chinese STAD cases, with a median of 1353 days. (B) Distribution of the top 50 significant genes with different mutation rates between the good and poor
prognostic groups stratified by different cutoff survival times. Genes with higher mutation rates were counted for either the good or poor prognosis group and
represented as “good-higher” or “poor-higher,” respectively. The total number was also indicated. (C) The consistent intersect among the top significant genes (50,
100, or 200) identified by 1-, 2-, and 3-years stratifications. (D) The consistent intersect between the prognosis-associated gene mutation signatures of TCGA and
Chinese STAD cohorts. Genes were merged for the 1-year, 2-year, and 573-day stratifications for the TCGA cohort and merged for the 1-year, 2-year, and 3-year
stratifications for the Chinese cohort in the first place. (E–G) The Kaplan–Meier overall survival curves of the Chinese STAD cases classified with different models built
on the TCGA training data.
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different prognosis (Figures 3E–G; Gehan–Breslow–Wilcoxon
test for f52, p = 0.5; f1y24 and f76 classifying all Chinese cases
as good and poor prognosis, respectively).

Common Signatures Effectively Predict
STAD Prognosis of Both TCGA and
Chinese Cohorts
To overcome the generalization drawbacks of the prognosis
prediction models based on individual cohorts due to the genetic
heterogeneity, we came up with a new strategy to identify
and test a list of new signatures by screening the genes with
the same change trend of somatic mutation rates between
prognostic groups in the TCGA and Chinese cohorts. Genes
were extracted with different levels of mutation rate difference
(≥15%, ≥10%, and ≥5%) between prognostic groups for both
cohorts stratified, respectively, and the common ones were
further identified correspondingly to serve as signatures. To
reduce the biases caused by imbalanced sample size between
groups, the prognostic groups were stratified by an overall
survival period of 576 days for the TCGA cohort and 3 years
for the Chinese cohort, respectively, with which the two groups
in either cohort showed the identical sample size. There were
0, 4 (MUC16, ATP10A, MPDZ, and VPS13A) and 20 genes
showing ≥15%, ≥10%, and ≥5% mutation rate differences

between prognostic groups for both cohorts with the same
direction (Supplementary Table S6). Furthermore, the 20 genes
(with ≥ 5% mutation rate difference) were tested for the
prognosis prediction performance as signatures. With these
common feature genes, we trained a prognosis prediction model
(cf20) based on the TCGA training data stratified with the
median survival time. The 5-fold cross-validation performance
on TCGA data was not comparable to f52, however, it remained
to be effective in classifying the data into two prognostic groups
(Figure 4A; Gehan–Breslow–Wilcoxon test, p = 0.008). The
model appeared much more effective in prognosis prediction of
the Chinese cohort (Figure 4B; Gehan–Breslow–Wilcoxon test,
p = 4e-06). It consistently showed good performance to predict
the different stratifications of prognosis for the Chinese cohort,
especially for 3- and 2-year prognosis (Figure 4C).

We also integrated the TNM staging information in cf20 to
generate a new model, cf20s. For TCGA data and based on the 5-
fold cross-validation evaluation, cf20s apparently outperformed
cf20 (Figure 4D; Gehan–Breslow–Wilcoxon test for cf20s,
p = 4e-06). When testing in the Chinese cohort, however, the
performance deteriorated, in spite that it remained effective to
predict the prognosis (Figure 4E; Gehan–Breslow–Wilcoxon test,
p = 4e-06). Both cf20 and cf20s, however, outperformed the
single-gene models in predicting the prognosis of the STAD
cases (Figure 4F).

FIGURE 4 | Prediction of STAD prognosis with the genetic models based on 20 common somatic mutation features. (A) The Kaplan–Meier overall survival curves of
the TCGA STAD cases classified by cf20 with a 5-fold cross-validation strategy. (B) The Kaplan–Meier overall survival curves of the Chinese STAD cases stratified by
the cf20 model. (C) The 5-fold cross-validated ROC curves of cf20 model predicting the prognosis of Chinese STAD cohorts stratified by different cutoff survival
time. (D) The Kaplan–Meier overall survival curves of the TCGA STAD cases classified by the cf20s model which was combined 20 common-gene features and TNM
stage information. (E) The Kaplan–Meier overall survival curves of the Chinese STAD cases stratified by the combined cf20s model. (F) The Kaplan–Meier overall
survival curves of the Chinese STAD cases stratified by models based on example individual genes, including MUC16, ATP10A, APC, and TRPC6.
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DISCUSSION

In this research, we found the association between overall
prognosis of STADs and somatic gene mutations from the TCGA
cohort. Despite that the rate comparison-based feature extraction
strategy involved division of the cases into different prognostic
groups according to a survival cutoff preset subjectively, the
model (f52, median survival as cutoff) could well classify the
cases into two groups with significantly differentiated survival
(Figures 1B,C). It is noteworthy that 5-fold cross validation
was used for assessment of model performance, independent
between each training subset and testing subset, and the survival
comparison was performed between the predicted groups for
all testing cases. Therefore, the observed association was not
biased by the model-training scheme. Except tumor stage, other
possible co-founding clinical factors, including sex, anatomic site,
and histopathology, did not show a biased distribution between
the prognostic groups. The TNM staging system could predict
STAD prognosis independently but was not comparable to the
f52 genetic model (Figure 1E and Supplementary Figure S4).
Combination of the genetic features and stage information
improved the prognosis-classifying performance significantly
(Figure 1F). Therefore, as for the TCGA cohort, the prognosis
is associated with genetic factors.

It was noted that all the 52 genes with most significant
difference showed higher mutation rates in the good prognosis
group of TCGA cases stratified by the median survival time
(Figure 2A). It was consistent with previous findings in lung
adenocarcinomas (Yu et al., 2019). Recently, a study identified
the association between higher MUC16 gene mutation rate
and better prognosis of STADs. Meanwhile, the more frequent
MUC16 mutation was associated with a higher TML (Li et al.,
2018). Maruvka et al. argued that a larger MUC16 mutation
frequency could only be an accompanying result of high TML
(Maruvka et al., 2019). MUC16 was also present in our 52-gene
list. We suspected that the list of signature genes with different
mutation rates in prognostic groups could be merely caused by
different TMLs. However, no significant difference was detected
for either TMLs or missense TMLs between the prognosis
groups of the TCGA data (Figure 1D and Supplementary
Figure S2). Interestingly, we noticed that, for TML or missense
TML, although there was no difference in the medians or lower
quartile, the good prognosis group always showed a larger upper
quartile (Figure 1D). Therefore, a higher TML could be an
important but not unique factor predicting better prognosis. The
identified signatures could partially represent TML difference
and also represent other unknown mechanisms influencing the
prognosis of STAD.

With the analytic strategy in this study, we also got an
interesting finding that the composition of genes and the
direction of mutation rate difference between groups stratified
by 1-year survival were totally different from those identified
for median (573-day) or 2-year stratification (Figures 2A,B).
The latter two stratifications showed larger consistency between
each other (Figures 2A,B). A list of genes was identified with
different mutation rates between prognostic groups stratified by
1 year, which showed more frequent mutations in the group of
poor prognosis (Figure 2C). These genes tend to mutate in cases

of poorest prognosis (Figures 2C,D), unlike those identified in
median (or 2-year) stratification for which the mutation rate
showed a linear correlation with overall survival period generally.
The model trained with the 1-year gene features could only
distinguish the cases with poorest prognosis (Figure 2E), further
demonstrating that the mutations of these signatures could be the
indicators of very poor prognosis of STAD.

Heterogeneity of STADs and their genetics was not
surprisingly identified between cohorts, and yet the dramatic
difference of prognosis-associated genetic signatures between
the TCGA and Chinese cohort was unexpected (Figure 3D).
Direct application of the signatures and models trained in
the TCGA cohort showed an awful performance in prognosis
prediction of the Chinese cohort (Figures 3E–G). There was
a large heterogeneity of genes with mutation rate difference
identified from the two cohorts. Many genes even showed
a contrary trend for the mutation rate in prognostic groups
(Figure 3D). We attempted to isolate the Asian cases from
the TCGA cohort but failed to evaluate the gene mutation
rates within different prognosis groups due to the very limited
number of the cases. It remains to be clarified whether the
heterogeneity between cohorts is related with ethnicity of STAD
cases. Two prognostic biomarker genes, BRCA2 and MUC16
(Chen et al., 2015; Li et al., 2018), were found with a mutation
rate difference between the good and poor prognostic groups,
and with the same trend in the two cohorts. We modified the
signature-identification strategy, with an attempt to find out
all the common genes with a consistent mutation difference
between prognostic groups within each cohort. In total, 20 genes
were identified, including MUC16 and BRCA2. A model (cf20)
was trained with these genes as features and the TCGA cohort
as training data. The model well predicted the prognosis of both
TCGA cases based on a cross-validation evaluation, and the
Chinese cases independently (Figures 4A–C). The multi-gene
model also outperformed the ones based on individual genes
strikingly (Figure 4F). However, the problems of over-fitting
cannot be totally excluded despite of the use of only TCGA
data for model training and cross-validation evaluation, and the
Chinese cohort as an independent validation dataset, because
the signatures were identified using both the cohorts. The
effective sample sizes for the cohorts (especially the Chinese
cohort) were too small so that they were hardly further divided,
and therefore resampling or cross-validation-based feature
identification strategies appeared difficult. It would be better
to, but currently we cannot, find one or more independent
STAD datasets (with both gene mutation profiling data and
clinical follow-up information) to make further assessment.
New larger datasets are also in need to further evaluate
the potential heterogeneity caused by human ethnicity and
develop more ethnicity-specific models like the f52 for the
TCGA population.

Besides somatic mutation signatures, germline variants could
also be associated with tumor prognosis. Recently, Milanese et al.
reported different germline variants in recurred and non-
recurred patients of breast cancers (Milanese et al., 2019).
These signature germline variants could potentially facilitate the
formation of the pro-tumorigenic environment by impairing
adaptive and innate immune pathways and could be used
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for prediction of breast cancer outcomes (Milanese et al.,
2019). In another study, Xu et al. (2019) observed negative
associations between the number of germline defective genes
in natural killer cells and survival time in a variety of cancer
types. It is interesting to understand whether there is also
heterogeneity between different cohorts for the associations
between germline mutations and STAD prognosis. Combination
of both germline variants and somatic mutations as well as other
signatures, e.g., hypermethylation signatures, and RNA markers,
could also further improve the model prediction performance
on STAD prognosis.
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FIGURE S1 | The general prognosis of TCGA STAD cases and the functional
enrichment analysis of the prognosis-associated genes. (A) The good and poor
prognostic groups of STAD cases within different survival periods, including 1, 2,
and 3 years and the median of 573 days. (B) Gene Ontology (GO) enrichment
analysis of the top 52 genes with significant mutation rate difference between the
prognostic groups stratified by the median survival time.

FIGURE S2 | TML distribution for different prognostic groups of the TCGA cases.
The distribution of TMLs (A) and missense TMLs (B,C) for TCGA cases of good
and poor prognosis groups for the raw TCGA training dataset stratified by
573-day survival or classified by the f52 model. The p-value of Wilcoxon rank-sum
test was indicated.

FIGURE S3 | Distribution analysis on clinical factors of the training cases. Sex (A),
anatomic regions of stomach (B), clinical TNM stage (C), and the two main
histological types of gastric carcinoma (D) were involved. Chi-square tests were
performed and the p-values were indicated.

FIGURE S4 | Performance comparison of the prognosis prediction models based
on 52 somatic mutation features and clinical TNM stage information. Specificity
(Sp), Sensitivity (Sn), Accuracy (ACC), and Mathews Correlation Coefficient (MCC)
were utilized to assess the predictive performance. The model f52 was based on
the 5-fold cross-validation results. Pairwise one-tail Student’s t-tests were
performed, and the p-values were indicated.

FIGURE S5 | Performance comparison of the prognosis prediction models based
on 52 somatic mutation features and MUC16. Specificity (Sp), Sensitivity (Sn),
Accuracy (ACC), and Mathews Correlation Coefficient (MCC) were utilized to
assess the predictive performance. The model f52 was based on the 5-fold
cross-validation results. Pairwise one-tail Student’s t-tests were performed, and
the p-values were indicated.
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Long non-coding RNAs (lncRNAs) are non-protein-coding RNAs longer than 200
nucleotides. Accumulating evidence demonstrates that lncRNA is a potential biomarker
for cancer diagnosis and prognosis. However, there are no prognostic biomarkers
and lncRNA models for multiple myeloma (MM). Hence, it is necessary to screen
novel lncRNA that can potentially participate in the initiation and progression of MM
and consequently construct a risk score system for the disease. Raw microarray
datasets were obtained from the Gene Expression Omnibus website. Weighted gene
co-expression network analysis and principal component analysis identified 12 lncRNAs
of interest. Then, univariate, least absolute shrinkage and selection operator Cox
regression and multivariate Cox hazard regression analysis identified two lncRNAs
(LINC00996 and LINC00525) that were formulated to construct a risk score system
to predict survival. Receiver operating characteristic analysis certificated the superior
performance in predicting 3-year overall survival (area under the curve = 0.829).
The similar prognostic values of the two-lncRNA signature were also observed in
the tested The Cancer Genome Atlas dataset. Furthermore, two other lncRNAs
(LINC00324 and LINC01128) were differentially expressed between CD138+ plasma
cells from normal donors and MM patients and were verified to be associated with
cancer stage in the Gene Expression Omnibus dataset. A lncRNA-mediated competing
endogenous RNA network, including 2 lncRNAs, 12 mitochondrial RNAs, and 103
target messenger RNAs, was constructed. In conclusion, we developed a two-lncRNA
expression signature to predict the prognosis of MM and constructed a key lncRNA-
based competing endogenous RNA network in MM. These lncRNAs were associated
with survival and are probably involved in the occurrence and progression of MM.

Keywords: long non-coding RNA, biomarkers, multiple myeloma, weighted gene co-expression network
analysis, principal component analysis, competing endogenous RNA network, prognostic long non-coding RNA
expression signature
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INTRODUCTION

Multiple myeloma (MM) is the second most common
hematological malignancy. It is caused by the clonal proliferation
of malignant plasma cells in the bone marrow (BM) (Laubach
et al., 2011). MM is characterized by renal impairment, lytic bony
lesions, anemia, and bone pain. The survival of MM patients
ranges from a few weeks to more than 10 years (Decaux et al.,
2008; Chen W. C. et al., 2017; Cowan et al., 2018).

As a newly discovered type of non-coding RNA, long non-
coding RNAs (lncRNAs) function as imperative regulators
involved in tumorigenesis, tumor suppression (Poliseno et al.,
2010; Hung and Chang, 2010), and many biological processes
(Geisler and Coller, 2013; Fatica and Bozzoni, 2014). Many
lncRNAs involved in the initiation and progression of MM have
been identified. Furthermore, lncRNAs can also regulate gene
expression by interacting with mitochondrial RNA (miRNA)
at miRNA-binding sites (MREs). For example, MALAT1 is an
lncRNA that inhibits the proliferation and adhesion of myeloma
cells by upregulating the expression of miR-181a-5p (Sun et al.,
2019a). The aberrant expression of urothelial cancer associated 1
lncRNA affords it the ability to promote proliferation and inhibits
apoptosis by regulating miR-1271-5p and hepatocyte growth
factor in MM cells (Yang and Chen, 2019). Abnormally expressed
lncRNA NR_046683 in patients of different MM subtypes and
stages indicated that it could be used as a new indicator
for potential drug target and prognosis (Dong et al., 2019).
Although several lncRNA prognostic models have been identified
in uterine corpus endometrial carcinoma (Ouyang et al., 2019),
hepatocellular carcinoma (Sun et al., 2019b), cervical cancer (Wu
et al., 2019), and lung adenocarcinoma (Zhou et al., 2019), the
clinical implication of most lncRNAs in MM remains unclear.

Weighted gene co-expression network analysis (WGCNA)
is an algorithm that is frequently used to cluster highly
synergistically altered gene sets into separate modules. This
can establish connections with clinical traits and thus screen
out candidate indicator genes or therapeutic targets (Langfelder
and Horvath, 2008; Shi et al., 2010). Principal component
analysis (PCA) is another mathematical algorithm. It is a
powerful technique that is widely applied in bioinformatics
and other fields. It can reduce the dimensionality of the data
while retaining most of the variations that are uncorrelated
in the data set. These unrelated variables are called principal
components (PCs) (Ringner, 2008). After identifying new
variables, the PCs, with a sample-like pattern and a weight
for each gene, further exploration can be done by building a
link with clinical data, and candidate genes can be obtained by
comparing component loadings. In the present study, the Gene
Expression Omnibus (GEO) public integrated database provided
an application platform of genomic sequencing data along with
the clinical information of each MM patient. WGCNA and PCA
were performed to explore public sequencing data and clinical
information of MM patients.

A few key gene modules associated with tumor stage and
PCs correlated with risk score and proliferation index were
identified, and 12 lncRNAs in the intersection were identified. We
found a two-lncRNA signature that might act as an independent

prognostic factor to identify MM patients that are at higher risk
of poor clinical outcome. Furthermore, using other datasets, we
recognized database of essential genes (DEG) and constructed a
competing endogenous RNA (ceRNA) network in MM based on
two of the 12 abnormally expressed lncRNAs. These two lncRNAs
may participate in tumorigenesis or serve as clinical indicators of
the progression of MM.

RESULTS

Weighted Gene Co-expression Network
Analysis Identification of Clinically
Significant Modules
A total of 32 MM samples with a known stage of cancer
were utilized to conduct the hierarchical clustering analysis
using the WGCNA package. The sample dendrogram and
clinical trait heatmap of GSE16791 is displayed in Figure 1A.
No obvious outlier was evident in the sample clustering. The
information of two clinical traits of 32 MM samples, including
age and cancer stage, is presented in Figure 1A. Selecting
the best soft-thresholding powers is imperative to obtain
relatively balanced scale independence and mean connectivity.
As presented in Supplementary Figure S2A, we selected β = 8
(scale-free R2 = 0.81) as a soft-threshold to construct a scale-free
network, and a total of 21 modules were detected (Figure 1B).
As the overall gene expression level of the corresponding
module, the module eigengenes were calculated to assess the
relationship between modules and clinical information by
Pearson’s correlation analysis. The results indicated that the
stage was negatively associated with blue and green modules
(Figure 1C). Scatterplots of gene significance of stage vs. module
membership in the blue and green modules revealed that they
were highly correlated (Supplementary Figure S2B). Also, we
calculated eigengenes of all modules and clustered them on the
base of their correlations. A module eigengenes dendrogram
indicated that the blue and green modules were clustered
together, and the eigengene network heatmap revealed similar
results (cor = 0.65, P = 5e-05; Supplementary Figure S2C).
Therefore, we chose blue and green modules for further analysis.

Principal Component Analysis
Determination of Interesting Principal
Components Associated With Clinical
Traits
Principal component analysis was performed on the 52 samples
in GSE17306. In this dataset, the gene expression profiling (GEP)-
risk score and proliferation index of each sample were calculated
according to the GEP (Zhou et al., 2010). Initially, PCA created
52 composite variables (PCs) by reducing the dimensionality of
numerous genes. The first 33 components, which explained 80%
of the variability among the 52 samples, were retained to correlate
clinical traits (Figure 2A). These 33 composite variables are
enough to explain the sample differences to the greatest extent.
Next, to ascertain the capability of PCs to differentiate risk score
level and proliferation index level, the pairs plot was conducted
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FIGURE 1 | Weighted gene co-expression network of multiple myeloma and module–trait relationships. (A) Cluster analysis of samples and clinical traits. All the
samples were in the clusters. (B) Gene dendrogram obtained by clustering all genes from GSE16791. Each branch in the figure corresponds to one gene, and each
color to one co-expression gene module. (C) Module clinical associations. Each row represents a module eigengene, and each column represents a clinical trait.
Each cell contains the corresponding correlation coefficient and the P-value. The blue and green modules were significantly correlated with a stage.

to compare PC1 with PC8 on a pairwise basis (Figure 2B).
Additionally, a bi-plot of PC1 versus PC6 indicated that PC6
could roughly distinguish the high-risk group from the low-
risk group (Figure 2D). Next, we correlated the PCs back to
the clinical data, including the GEP-risk score and proliferation
index, to identify interesting PCs. PC6 and PC8 were negatively
associated with risk score and proliferation index in all the
33 PCs retained (Figure 2C). PC11 and PC12 were positively
correlated with the proliferation index. For each PC of interest,
“plotloadings” determined the genes ranked in the top 20 of
the loadings range and then created a final consensus list of
these (Figure 2E).

Construction a Risk Assessment Model
To construct a lncRNA scoring system that is predictive of
survival in the MM patients, we extracted lncRNAs from the
blue and green modules and PC6 and PC8 based on the
Genecode annotation1. Finally, a total of 12 lncRNAs were
obtained from the intersection of the interesting modules
and PCs (Figure 3A). The expression levels of 12 lncRNAs
were extracted from GSE57317 to conduct the univariate Cox
regression analysis. The results of the univariate Cox analysis

1https://www.gencodegenes.org/

of 12 prognostic lncRNAs from the discovery cohort are shown
in Table 1. After this, six significant lncRNAs (P < 0.05) were
identified and were included in the least absolute shrinkage and
selection operator (LASSO) model; cross-validation was adopted
to select the penalty parameters (Figures 3B,C). Two lncRNAs
were identified based on lambda.1se values (Supplementary
Table S1). The quantitative real-time polymerase chain reaction
(qRT-PCR) results showed that the expression of LINC00525
was significantly downregulated in Roswell Park Memorial
Institute (RPMI)-8226 and KM3 cell lines, whereas LINC00996
was significantly upregulated in KM3 cell line compared with
normal plasma cells (Supplementary Figures S3A,B). We further
included expression levels of the two lncRNAs in a multivariate
Cox model. The risk score = (−0.3647) × (expression value of
LINC00996) + (−0.4266) × (expression value of LINC00525).
The details of the two lncRNAs are depicted in Figure 4B. We
used the median of the risk score as the cutoff to define the
groups of MM patients with high and low scores (Figure 4A).
The survival time and overall survival (OS) status in the
training dataset are presented in the middle panel of Figure 4A.
Compared with those in the low-risk score group, patients in
the high-risk score group displayed an obviously worse OS
(Figure 4C). The 3-year survival receiver operating characteristic
(ROC) curve was also plotted. The area under the curve of the
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FIGURE 2 | PCA of GSE17306. (A) PCs accounted for 80% of the explained variation in the dataset, and the first 33 PCs were responsible for the same. (B) A plot
comparing PC1–PC8 on a pairwise basis. PC1 is usually the most important part of PCA. (C) Correlation of the principal components (PCs) to the clinical data.
*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. (D) A bi-plot of PC1 versus PC6. (E) Determine the variables that drive variation among each PC. Components
have a sample-like pattern with a weight called component loading for each gene. Genes ranked the top 20 of the loadings range were presented.
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FIGURE 3 | Determination of candidate lncRNAs and LASSO regression analysis. (A) Venn diagram of candidate lncRNAs in blue and green modules and PC6 and
PC8. (B) LASSO coefficient profiles of the six candidate lncRNAs. (C) Ten-fold cross-validation used to tune parameter selection in the LASSO model. A vertical line
is drawn at the value chosen by 10-fold cross-validation.

risk score reached 0.829 (Figure 4D), revealing that the risk
score based on the two lncRNAs is a good indicator of prognosis.
The results of univariate and multivariate Cox regression analyses

TABLE 1 | Univariate Cox analysis of 12 prognostic lncRNAs from the discovery
cohort.

lncRNA name Type HR P

LINC01128 Bad 5.324513 0.015396

LOC339803 Bad 2.530873 0.031322

LOC100507053 Bad 1.474999 0.259866

LINC01278 Bad 1.437495 0.173067

LINC00643 Bad 1.097326 0.578361

LINC00877 Good 0.876417 0.512653

LOC645485 Good 0.85804 0.474318

LINC00996 Good 0.602728 7.11E-05

LINC00525 Good 0.575173 0.001695

LOC101929759 Good 0.464721 0.040177

LINC00324 Good 0.382086 0.004307

HR, hazard ratio. Type represents bad survival lncRNAs and good survival lncRNAs.
All statistical tests were two-sided.

indicated that the risk score (P < 0.001 and P = 0.006) was an
independent prognostic indicator (Supplementary Table S2). To
further examine the accuracy of the lncRNA risk score model
developed in the training dataset, the performance of the risk
score was also evaluated in The Cancer Genome Atlas (TCGA)
dataset. The result of multivariate Cox regression analysis for
the expression level of two lncRNAs in the TCGA dataset
is presented in Supplementary Figure S4B. The risk survival
status, score distribution, and expression pattern of the two
lncRNAs in the 787 MM patients in the TCGA dataset are
displayed in Supplementary Figure S4A. Also, corresponding
to our previous conclusion, the OS was significantly shorter
in the high-risk group compared with that in the low-risk
group (Supplementary Figure S4C), and the AUC of the risk
score reached 0.584 (Supplementary Figure S4D). Univariate
Cox regression analyses were conducted to detect various
factors correlated with prognosis. The results revealed that age
(P = 0.009), tumor stage (P < 0.001), and risk score (P = 0.002)
were significantly associated with the OS of the MM patients.
A subsequent multivariate Cox regression analysis indicated that
the tumor stage (P < 0.001) and risk score (P = 0.001) were
independent prognostic indicators (Supplementary Table S3).
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FIGURE 4 | Risk score performance in the GSE57317 (training) datasets. (A) Risk score of the two lncRNAs in 55 MM patients (top); overall survival status and
duration (middle); heatmap of the two lncRNA expression in MM patients (bottom). (B) Forest plot showing the hazard ratios with 95% confidence interval of the
multivariate Cox regression results. (C) Overall survival of the high- and low-risk score groups. (D) Three-year survival receiving operating characteristic curve (ROC)
according to the two-lncRNA signature risk score (red).
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FIGURE 5 | Detection and validation of differentially expressed lncRNAs (DELs). (A) Venn plot of DELs between GSE16558 and GSE47552. (B) GSE16558 and
GSE47552 indicated the lower expression of LINC00324 in CD138+ plasma cells of MM patients compared with normal donors. (C) GSE16558 and GSE47552
indicated the higher expression of LINC01128 in CD138+ plasma cells of MM patients compared with normal donors. (D) Relationship between the two lncRNAs
and cancer stages in GSE16791. (E) GSE57317 dataset (left) and TCCA dataset (right) revealed that MM patients with low expression of LINC00324 and high
expression of LINC01128 had an obviously poorer overall survival. (F) Expression of LINC00324 (top) and LINC01128 (bottom) in human multiple myeloma cell lines
(RPMI-8226, SKO-007, KM3) as well as normal plasma cells. Data are presented as the mean ± standard deviation. *P < 0.05, **P < 0.01, ***P < 0.001,
****P < 0.0001.
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FIGURE 6 | A co-expression network of six lncRNAs and DEmRNAs in the blue module. For simplicity, only DEmRNAs with a connection with the interesting
lncRNAs in the blue module were retained to construct the co-expression subnetwork. lncRNAs are depicted by diamonds, whereas DEmRNAs are indicated by the
rounded rectangles (upregulation) or vs. (downregulation). Size of genes is related to the intra-modular connectivity, and the color is related to the weighted score of
the interactions.

Detection and Validation of Differentially
Expressed Long Non-coding RNAs
CD138+ plasma cells obtained from healthy donors in
GSE16558 and GSE47552 were analyzed. Based on the cutoff
criteria of P < 0.05, 20 DELs were detected (Figure 5A).
Surprisingly, among the 12 prognostic lncRNAs we identified
earlier, LINC00324 and LINC01128 are abnormally expressed
(Figures 5B,C). The relationship between the two lncRNAs and
cancer stages in GSE16791 is displayed in Figure 5D. Expression
levels of the two lncRNAs among patients with different
stages were compared, and statistical differences were calculated
using Student’s t-test. Corresponding to our previous WGCNA
and PCA results, patients with poorly differentiated stage III
cancer displayed significantly lower LINC00324 expression levels
compared with patients with moderately differentiated cancer
of less advanced stage I. Furthermore, increased expression

of LINC01128 was correlated with advanced MM stage. Also,
to determine the prognostic value of these two lncRNAs
in MM, the survival data of MM patients were obtained
from the TCGA database and GSE57317. As presented in
Figure 5E, patients with high LINC01128 expression exhibited
a significantly poorer OS rate compared with patients with
high LINC01128 expression. On the contrary, we observed
that patients with higher LINC00324 expression had better OS
than those with lower LINC00324 expression. These results
indicate that LINC00324 may be a tumor suppressor gene,
whereas LINC01128 may be a cancer gene. The qRT-PCR
results also showed that the expression pattern of the two
lncRNAs in MM cells and normal plasma cells was similar to
the microarray results (Figure 5F). LINC01128 was upregulated,
whereas LINC00324 was significantly downregulated in the
three MM cell lines.
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FIGURE 7 | Functional annotation analysis of DEmRNAs co-expressed with LINC01128. (A) Gene ontology (GO) terms enrichment analysis was performed using
the Database for Annotation, Visualization, and Integrated Discovery and visualized by GOplot. Significance of a term is indicated by the adjusted P-value (adj_p-val).
logFC of selected genes is taken from GSE16558. z-score provided a hint if the biological process (/molecular function/cellular components) was more likely to be
decreased (negative value) or increased (positive value). z-score is assigned to the x-axis and the negative logarithm of the adjusted P-value to the y-axis. Area of the
displayed circles is proportional to the number of genes assigned to the term, and the color corresponds to the category. A threshold for the labeling is set as
log(adj_p-value) > 2.8. (B) Plot of the enriched KEGG pathway. Outer circle shows a scatter plot for each term of the logFC of the assigned genes. Red circles
display upregulation and blue ones downregulation by default. There were no upregulated DEmRNAs co-expressed with LINC01128 enriched.

Co-expression Network of Key Long
Non-coding RNAs and Differentially
Expressed Messenger RNAs in the Blue
Module
Based on the previous results, we recognized six lncRNAs
(LINC00525, LINC00996, LINC01128, LINC00324,
LINC101929759, and LINC339803) as potential biomarkers
or prognostic indicators. These lncRNAs were all in the
blue module. To further dissect the role of six lncRNAs in
MM, we created a gene co-expression subnetwork for the

genes in the blue module according to their topology overlap
matrix similarity; messenger RNAs (mRNAs) connected to
six lncRNAs are too much to display perfectly; thus, we
selected only differentially expressed mRNAs (DEmRNAs) to
construct a network. Our lncRNAs may potentially regulate
these co-expressed DEmRNAs through the ceRNA mechanism.
DEmRNAs were obtained from GSE16558 and GSE47552 based
on the cutoff criteria of a P-value < 0.05; | log (FC)| > 1.680
DEmRNAs that overlapped in GSE16558 and GSE47552 were
identified (Supplementary Table S4). Finally, the connections
between the six lncRNAs and DEmRNAs are displayed in
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FIGURE 8 | Gene set enrichment analysis (GSEA) and gene set variation analysis (GSVA) of two lncRNAs in GSE16791. (A–G) GSEA results of c2 reference gene
sets for high LINC01128 expression groups in GSE16791. (H–L) GSEA results of c2 reference gene sets for high LINC00324 expression groups in GSE16791.
(M) GSVA-derived clustering heatmaps of differentially expressed pathways for LINC01128 in GSE16791.
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FIGURE 9 | Global view of the ceRNA network in MM. Network consists of two lncRNA nodes, 12 miRNA nodes, and 103 mRNA nodes. Diamonds indicate
lncRNAs, triangles indicate miRNA, and ellipses indicate mRNA. Pink and blue represent up- and downregulation, respectively.

Figure 6. LncRNAs are shown by diamonds, whereas DEmRNAs
are represented by round rectangles (upregulation) or vs.
(downregulation). The size of the nodes reflects the strength of
connectivity, and the color is related to the weighted score of
the interactions.

Functional Annotation
The preceding findings indicated that the LINC00324 and
LINC01128 were potentially involved in the occurrence and
progression of MM. To more precisely understand the biological
relevance and function of these two lncRNAs, we uploaded
DEmRNAs, which were co-expressed with key lncRNAs in the
blue module into the Database for Annotation, Visualization,
and Integrated Discovery to conduct Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses.
The results were visualized using the GOplot R package. The

results of the differential analysis were used to calculate a z-score
for presenting enriched KEGG pathways (Supplementary
Table S4). Regarding enriched GO terms, DEmRNAs co-
expressed with LINC01128 were mainly enriched in the
endoplasmic reticulum to Golgi vesicle-mediated transport,
protein transport, mitotic nuclear division, cytosol, Golgi
membrane, nucleoplasm, and protein binding (Figure 7A).
Regarding the enriched KEGG pathways, there were no
upregulated DEmRNAs co-expressed with LINC00324 enriched,
and other downregulated DEmRNAs were significantly enriched
in the cell cycle, propanoate metabolism, B-cell receptor signaling
pathway, protein processing in the endoplasmic reticulum,
chronic myeloid leukemia, human T-cell lymphotropic virus type
1 infection, and beta-alanine metabolism (Figure 7B). There were
no significant results for LINC00324 because too few mRNAs are
connected with it.
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Gene Set Enrichment Analysis and Gene
Set Variation Analysis Reveal a Close
Relationship Between Key Long
Non-coding RNAs, Multiple
Cancer-Related Pathways, and
Metabolic Pathways
To further investigate the potential functions of LINC01128
and LINC00324, we performed gene set enrichment analysis
(GSEA) and gene set variation analysis (GSVA) on the GSE16791
dataset. We divided these samples into two groups based
on the expression levels of these two lncRNAs. As shown in
Figures 8A–G, samples in GSE16791 with high expression of
LINC01128 were enriched in multiple cancer-related pathways,
including the P53 signaling pathway, cell cycle, mismatch repair,
nucleotide excision repair, and several metabolic pathways,
including cysteine and methionine metabolism, peroxisome,
and beta-alanine metabolism. Also, our previous finding that
the DEmRNAs co-expressed with LINC01128 were enriched
in beta-alanine metabolism was, surprisingly, verified by
GSEA and GSVA results (Figures 8G,M). The expression level
of LINC00324 was also extracted for enrichment analysis.
Genes in the high expression groups of LINC00324 were
mainly involved in multiple metabolic pathways, including
propanoate metabolism, selenoamino acid metabolism,
aminoacyl-tRNA biosynthesis, tyrosine metabolism, and
lysine degradation (Figures 8H–L).

Long Non-coding RNA-Mediated
Competing Endogenous RNA Network
Revealed Potential Mechanisms of
LINC01128 and LINC00324
To investigate the interaction between the lncRNA and mRNAs,
the lncRNA–miRNA–mRNA network was constructed according
to the ceRNA hypothesis by integrating expression profile data
and their regulatory relationships. We obtained DEmRNAs,
DEmiRNAs based on the criteria mentioned in section “Materials
and Methods.” The interaction between the two lncRNAs and
miRNAs were first predicted through Starbase3.0 and the RNA22
tool. We then predicted that the potential DEmiRNAs can target
LINC01128 and LINC00324 co-expressed DEmRNAs in the
blue module using DIANA TOOLS (Supplementary Table S5).
Finally, a total of 12 miRNAs overlapped in our prediction
results; 2 lncRNAs and 103 mRNAs were included in the
ceRNA network (Supplementary Table S6), and their regulatory
relationships were visualized by Cytoscape (Figure 9). In this
network, different shapes represent different RNA types, with
pink and blue denoting up- and downregulation, respectively.

DISCUSSION

Multiple myeloma is the most common primary bone cancer
among 70-year-old and older American adults (Reisenbuckler,
2014). Although genetic and epigenetic events contributing to
the occurrence and progression of MM have been increasingly

identified, the diagnosis, treatment, and clinical outcome of
MM remain mostly unclear (Prideaux et al., 2014). More
recently, aberrant lncRNA expression in MM was observed and
further validated to be involved in epigenetic, transcriptional,
and posttranscriptional regulation (Meng et al., 2018). Several
lncRNA prognostic models have been identified in multiple
cancers, including hepatocellular carcinoma (Zhang et al.,
2020), bladder cancer (Zhou et al., 2020), non-small cell lung
cancer (Zhou et al., 2015a; Sun et al., 2020), breast cancer
(Shen et al., 2020), glioma (Wang et al., 2018), glioblastoma
(Zhou et al., 2018), and diffuse large B-cell lymphoma (Zhou
et al., 2017). These studies had highlighted the diagnostic and
prognostic roles of lncRNAs, and the lncRNA signatures they
constructed had an imperative value for survival predicting for
different cancer patients. Therefore, identifying new and effective
prognostic biomarkers and establishing a reliable prognostic
model based on lncRNA expression signature are critical for
patients with MM.

WGCNA is a powerful algorithm that has not yet been utilized
to analyze the expression profile of MM samples. Presently, a
total of 32,216 genes, which were not all DEGs, were selected
to conduct WGCNA analysis in case of missing significant
information. Furthermore, we applied PCA for the first time
to correlate PCs with clinical traits to find key lncRNAs. Then,
12 key lncRNAs that were associated with cancer stage, risk
score, and proliferation index were identified in the intersection
of key modules and PCs. Univariate Cox regression analysis
retained six significant lncRNAs (P < 0.05) for further analysis.
A co-expression network of six lncRNAs and co-expressed
DEmRNAs in the blue module was constructed to present the
co-expression pattern and the relationship between key lncRNAs
and DEmRNAs. This network can provide insights for identifying
possible targets of key lncRNAs. After the LASSO and Cox
proportional hazard regression analysis, we detected a prognostic
formula for predicting survival based on the two lncRNAs,
including LINC00525 and LINC00996, and verified it in the
testing set. The patients were ultimately divided into high- or low-
risk patients according to the median risk value. Kaplan–Meier
analysis showed that the patients in the high-risk score group
displayed obviously worse OS compared with those in the low-
risk score group. Furthermore, ROC curve analysis revealed the
stability and accuracy of the two-lncRNA signature in predicting
patient prognosis. Further analysis showed that the two-lncRNA
risk score signature is an independent predictor of MM patient
prognosis. Indeed, prior studies had established several lncRNA
prognostic signatures that can provide a comprehensive clinical
assessment of MM prognosis (Zhou et al., 2015b; Samur
et al., 2018). Significantly, instead of simply utilizing survival
associated lncRNAs to construct lncRNA prognostic signatures,
it Is our first time to combine WGCNA and PCA to select
prognostic lncRNAs that could be further used to establish
a survival model. Subsequently, we performed a series of
rigorous analyses, including univariate, LASSO Cox regression,
and multivariate Cox hazard regression analysis to realize exact
survival prediction. Additionally, in contrast to the earlier
lncRNA model in MM (Zhu et al., 2020), we utilized an external
dataset to examine the accuracy of our lncRNA signature.
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Many recent studies have indicated that lncRNAs can
regulate gene expression by interacting with the miRNA via
MREs in MM (Sun et al., 2019a; Yang and Chen, 2019).
Thus, it is imperative to recognize MM-specific lncRNAs as
biomarkers and determine their potential mechanisms. These
lncRNAs may be essential in the initiation and development
of MM. Firstly, we identified 12 interesting lncRNAs, which
may participate in the development of MM. To further
select MM-specific lncRNAs, we screened DElncRNAs that
overlapped in GSE16558 and GSE47552. Surprisingly, our PCR
and microarray results indicated that 2 of the 12 lncRNAs
(LINC01128 and LINC00324) were differentially expressed.
LINC00324 can promote proliferation and metastasis but
can inhibit cell apoptosis of lung adenocarcinoma cells by
sponging miR-615-5p to promote AKT1 expression (Pan et al.,
2018). Similar results were also found where LINC00324 can
promote gastric cancer cell proliferation by binding with HuR
and stabilizing FAM83B expression (Zou et al., 2018). It
can also be used to predict the prognosis in patients with
thymoma (Gong et al., 2018). There are no references for
LINC01128. Its potential function remains to be determined.
Next, GO analysis revealed that those LINC01128 co-expressed
DEmRNAs were associated with protein transport and protein
binding processes. KEGG pathway analysis demonstrated that
they were enriched in cancer-related pathways, including cell
cycle, chronic myeloid leukemia, small cell lung cancer, and
metabolism-related pathways, including propanoate metabolism
and beta-alanine metabolism. To further explore the underlying
mechanism of LINC00324 and LINC01128, we formulated
a ceRNA network based on predicted interactions between
DEmiRNAs and DEmRNAs. Based on our network and the
ceRNA mechanism, we speculated that LINC01128 might act
as a tumor suppressor in MM through multiple mechanisms,
including miR-142-5p/PARP9 or FAM133A axis, and the miR-
299-3p/estrogen-related receptor gamma axis. The cancer–testis
antigen FAM133A is a downstream target of miR-155 and is
a negative regulator of glioma invasion and migration (Huang
et al., 2018). Estrogen-related receptor gamma is a tumor
suppressor as well as an activator of multiple cancers, including
gastric cancer (Kang et al., 2018), breast cancer (Kumari et al.,
2018), laryngeal squamous cell carcinoma (Shen et al., 2019),
and liver cancer (Kim et al., 2016). LINC00324 may exert
tumor-promoting functions in MM through targeting the miR-
512-3p/ZNF566 axis. However, this remains to be verified.
Finally, GSEA revealed that samples with high expression of
LINC01128 were in multiple cancer-related pathways, including
the P53 signaling pathway, cell cycle, mismatch repair, nucleotide
excision repair, and several metabolic pathways, including
cysteine and methionine metabolism, peroxisome, and beta-
alanine metabolism. Several studies have reported that the cell
cycle, P53 signaling, and DNA repair-related pathways are
important tumor biological mechanisms (Balint and Vousden,
2001; Jackson and Bartek, 2009). Also, high beta-alanine
concentrations are linked with cancer (Pine et al., 1982;
Nishimura et al., 2012). Our findings suggested that the high
expression of LINC01128 may be crucial in tumorigenesis and
progression of MM, probably by regulating the cell cycle,

DNA damage, or amino acid metabolism. Corresponding with
our predicted mechanism of LINC01128, the mutation of the
NAD+ binding site in PARP9 has been reported to increase
the DNA repair activity of the heterodimer (Yang et al.,
2017). On the other hand, genes in high expression groups
of LINC00324 were mainly involved in multiple metabolic
pathways, including propanoate metabolism, selenoamino acid
metabolism, aminoacyl-tRNA biosynthesis, tyrosine metabolism,
and lysine degradation. These observations can be explained
by the hypothesis that LINC00324 suppresses tumorigenesis of
MM by interfering with carbohydrate metabolism, amino acid
metabolism, and protein translation.

In conclusion, WGCNA and PCA were performed to correlate
the gene expression profile of patients with MM to the
corresponding clinical traits. We identified lncRNAs that may
potentially be involved in the initiation and development of MM.
Finally, a two-lncRNA risk score model was formulated, and its
precise prediction value was demonstrated. We also identified
two lncRNAs as biomarkers and predicted their possible function
as ceRNAs. These findings provide fundamental insights for
further basic studies.

MATERIALS AND METHODS

Gene Expression Profile Data and
Clinical Characteristics
The overall design and workflow of this study are presented
in Supplementary Figure S1. The RNA expression profiles
of MM patients and normal donors were identified from
the GEO database2 (Table 2). GSE16791 was utilized to
conduct a WGCNA analysis for this study. This series of
microarray experiments include 16,325 mRNA and 1,137 lncRNA
expression profiles of purified plasma cells (PCs) obtained
from 32 newly diagnosed MM. GSE17306 is a microarray
analysis that contains 16,401 mRNA, 556 miRNA, and 1,146
lncRNA expression profiles of MM patients with corresponding
clinical information, including mRNA-based GEP-risk score
and proliferation index (Shaughnessy et al., 2007). It was used
here to implement the PCA algorithm to correlate clinical
traits with gene expression patterns. Corresponding clinical
information, including survival time and vital status, was
obtained from the GSE57317, including 16,325 mRNA and 1,137
lncRNA expression profiles of 55 MM patients, and TCGA
RNA-Seq dataset contains 56,753 mRNA, 1,881 miRNA, and
14,142 lncRNA expression profiles of 765 MM patients to
construct lncRNA risk score system. GSE16558, including 18,966
mRNA, 382 miRNA, and 431 lncRNA expression profiles of
60 MM patients and 5 healthy donors, GSE47552, including
18,966 mRNA and 431 lncRNA expression profiles of 41 MM
patients and 5 healthy donors, and GSE17498, including 722
miRNA expression profiles of 40 MM patients and 3 healthy
donors, were used to screen DEGs including DElncRNAs,
DEmiRNAs, and DEmRNAs. Microarray annotation information
was utilized to match probes with corresponding genes, and

2https://www.ncbi.nlm.nih.gov/geo/
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TABLE 2 | Summary of included datasets.

Dataset ID Sample size Age (year) Gender Tumor stage Vital status

Multiple myeloma Normal Male Female I II III Alive Dead

GSE16791 32 0 40–65 – – 3 7 22 – –

GSE17306 52 2 – – – – – – – –

GSE57317 55 0 – – – – – – 43 12

GSE16558 60 5 – – – – – – – –

GSE17498 40 3 39–85 23 17

GSE47552 41 5 – – – – – – – –

TCGA 765 0 27–88 449 316 266 276 223 609 156

lncRNA expression was obtained based on the annotation of
Genecode (see footnote 1).

Weighted Co-expression Network
Analysis
A total of 32,216 genes identified in each sample of GSE16791
were utilized to construct a gene co-expression network
using the WGCNA R package (Langfelder and Horvath,
2008; Chen L. et al., 2017). Sample clustering of all genes
was applied to check if they were good genes and good
samples. A scale-free co-expression network was achieved
when the soft-threshold power was set as 8 (scale-free
R2 = 0.81), cut height as 0.25, and minimal module size as 30.
Then, to evaluate co-expression levels between genes, Pearson
correlations were performed and then weighted by raising their
absolute value to a power. Hierarchical clustering dendrograms
visualized gene modules in different colors. Modules with
the highest correlation with cancer stage were selected for
further analysis.

Principal Component Analysis
Principal component analysis compresses all the original
variables into a smaller subset of composite variables (PCs)
instead of ignoring or discarding variables. PCA tools, a useful
R package that provides functions for data exploration, were
applied to analyze GSE17306 dataset3. At first, PCA helped
us to determine PCs, accounting for 80% of the explained
variation. Secondly, we correlated the PCs back to the clinical
data, including mRNA-based GEP-risk score and proliferation
index, to gain interesting PCs. Finally, the plotLoadings function
could contribute to determining the variables ranked top 5% of
the loadings range.

Identification and Evaluation of a Risk
Assessment Model
The prognostic value of 12 lncRNAs in the intersection of blue
and green modules, and PC6 and PC8, were evaluated by a
univariate Cox model with a statistical level of significance set at
P < 00.05. Critical prognostic lncRNAs were further identified
by the LASSO regression method (Gao et al., 2010). LASSO

3https://github.com/kevinblighe/PCAtools

regression is a penalized regression method that is often used
in machine learning to select the subset of variables. The R
glmnet software package was adopted to carry out the LASSO
Cox analysis (Tibshirani, 1997). Also, lncRNAs obtained in these
steps were then enrolled into a multivariate Cox regression model
using a survival R package, and prognosis-associated lncRNAs
were selected. The risk score of each patient was calculated
based on the summation of each lncRNA and its coefficient, and
we distinguished high- from low-risk patients according to the
median risk score. The Kaplan–Meier method was applied to
analyze the difference of OS between two groups, and a ROC
analysis was adopted to estimate the predictive power of this
lncRNA risk score system. The TCGA dataset served as a testing
set for further validation.

Construction of Co-expression Network
of Key Long Non-coding RNAs and
Differentially Expressed Messenger
RNAs in the Blue Module
The multivariate Cox regression analysis identified six lncRNAs
with P < 0.05, which were considered as key lncRNAs. We
created a gene co-expression subnetwork for the genes in
the blue module according to their topology overlap matrix
similarity; DEmRNAs connected to key lncRNAs were selected to
construct a co-expression network using Cytoscape. DEmRNAs
that overlapped in GSE16558 and GSE47552 (n = 680) were
identified based on the cutoff criteria of P < 0.05 and | log (FC)|
> 1. The size of the nodes reflected the strength of connectivity,
and the color was related to the weighted score of the interactions.

Screening of Database of Essential
Genes and Survival Analysis
The Limma package in R (Ritchie et al., 2015) was used to
identify the DEGs from GSE16558 and GSE47552. We identified
DElncRNAs and DEmiRNAs according to the criterion that
adjusted P < 0.05. Abnormally expressed miRNAs in GSE17306,
GSE16558, and GSE17498 were all selected for constructing the
ceRNA network. The two DElncRNAs were utilized to perform
Kaplan–Meier analysis and log-rank test to identify whether they
were correlated with OS using the GSE57317 and TCGA datasets.
Log-rank test with P < 0.05 was set as statically significant.
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Cell Lines and Clinical Specimens
The RPMI-8226, SKO-007, and KM3 MM cell lines were a
generous gift of Prof. Yumin Huang, Department of Hematology,
First Affiliated Hospital of Zhengzhou University. Cells were
maintained in RPMI-1640 medium (Sigma-Aldrich, St. Louis,
MO, United States) with 10% fetal bovine serum at 37◦C in an
atmosphere of 5% CO2. BM was obtained from three healthy
controls from a pool of volunteers without any diseases. All
volunteers provided written informed consent, and the research
ethics committee of the First Affiliated Hospital of Zhengzhou
University approved the study (2019-KY-357). Flow cytometry
was performed using the CD138 antibody (PE, BD Bioscience,
United States) to isolate CD138-positive PC from BM samples
according to the manufacturer’s protocol.

Quantitative Real-Time Polymerase
Chain Reaction
Total RNA was extracted using TRIzol reagent (Invitrogen,
Carlsbad, CA, United States). A NanoDrop 2000
spectrophotometer (Thermo Fisher Scientific, Waltham,
MA, United States) was utilized to detect RNA purity and
concentration. RT-PCR was performed using a FastStart
Universal SYBR Green Master (Servicebio, Wuhan, China) Kit.
Actin was used as an internal control. Primers were synthesized
by Servicebio (Wuhan, China). Primer sequences were:
LINC01128: Forward 5′-AGGACATAGGCCAGCCAGTAC-3′,
Reverse 5′-GTCTTTGGTCCCAGATCACTCC-3′; LINC00324:
Forward 5′-ACCTACGGTTTCTGGTCAGCG-3′, Reverse
5′-GACGACGGCAGCCATTACTTT-3′; ACTIN: Forward
5′-CACCCAGCACAATGAAGATCAAGAT-3′, Reverse 5′-
CCAGTTTTTAAATCCTGAGTCAAGC-3′. LINC00525:
Forward 5′-GCTTTGGAAACTTACTCAGGGTG-3′, Reverse
5′-CTTGAGGCACCAGTGCAAATAC-3′; LINC00996: Forward
5′-GAGGGCACTTTGTCTTACTTGGC-3′, Reverse 5′-
ATTCTTCATGCCAATCCTCTCAC-3′. Relative expression
was calculated using the 2-MMCt method. Student’s t-test
was conducted by SPSS 25.0 software (SPSS Inc., Chicago,
IL, United States) to determine the significance of the
differences in mean values.

Construction of Interesting Differentially
Expressed Long Non-coding RNA-Based
Competing Endogenous RNA Network
The ceRNA hypothesis posits that lncRNAs can regulate gene
expression by interacting with miRNA at miRNA-binding sites
(MREs). It is vital to match the DEmRNAs, miRNAs, and
lncRNAs to figure out a novel molecular mechanism involved in
the development of MM. The MIRanda database4, Starbase3.05,
and RNA22 tool6 were used to predict the interactions between
DElncRNAs and miRNAs. The miRNAs that potentially target
DEmRNAs were predicted by DIANA Tools7. DElncRNAs,

4http://www.microrna.org/
5http://starbase.sysu.edu.cn/index.php
6https://cm.jefferson.edu/
7http://diana.imis.athena-innovation.gr/DianaTools/index.php

DEmRNAs, and DEmiRNAs that overlapped with the predicted
miRNAs were selected to construct a ceRNA network and were
visualized with Cytoscape version 3.6.1.

Functional Annotation of Long
Non-coding RNA Target Genes
The GO and KEGG enrichment analyses for DEmRNAs, which
were co-expressed with LINC00324 and LINC01128, were
analyzed using the Database for Annotation, Visualization, and
Integrated Discovery database (Huang et al., 2007) and visualized
by the GOplot R package (Walter et al., 2015). The z-score is
a value that can be easily calculated and reveals whether the
biological process (molecular function/cellular components) is
more likely to be decreased (negative value) or increased (positive
value). It is calculated as z-score = (up-down)/

√
count. Up or

down represents the number of upregulated or downregulated
genes, respectively. The count represents the number of genes
that belong to each term. A threshold for the labeling is set as
log (adjust p-value) > 2.8.

Gene Set Enrichment Analysis and Gene
Set Variation Analysis
The GSE16791 dataset was used to conduct GSEA according
to expression levels of two lncRNAs (high expression vs. low
expression) (Subramanian et al., 2005). Annotated gene sets
c2.cp.kegg. v 7.0.symbols.gmt was chosen as the reference gene
sets8. The nominal P-value estimates the statistical significance of
the enrichment score, and a nominal P-value ≤ 0.05 was set as
the cutoff criterion.
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FIGURE S1 | Overall design and workflow of this study.

FIGURE S2 | Soft threshold determination and the relationship between these two
modules and clinical traits. (A) Determination of soft-thresholding power in Wgcna.
(B) Scatter plot of module eigengenes in blue and green modules. (C) Module
eigengene dendrogram and interactions among different gene coexpression
modules.

FIGURE S3 | Relative quantification of Linc00525 and Linc00996 expression by
qRt-Pcr. The expression of Linc00525 (A) and Linc00996 (B) in human multiple
myeloma cell lines (Rpmi-8226, Sko-007, Km3) as well as normal plasma cells.
Data are presented as the mean ± standard deviation. The ns represents not
significant, ∗ represents P < 0.05, ∗∗ represents P < 0.01, ∗∗∗ represents
P < 0.001 and ∗∗∗∗ represents P < 0.0001.

FIGURE S4 | The risk score performance in the Tcga (testing) datasets. (A) Risk
score of the 2 lncRnas in 787 Mm patients (top); overall survival status and
duration (middle); heatmap of the 2 lncRnas expression in Mm patients (Bottom).
(B) The forest plot showed the hazard ratios (Hr) with 95% confidence interval
(95%Ci) according to the multivariate Cox regression results. (C) The overall
survival of high-risk score group and low-risk score group. (D) The 3-year survival
receiving operating characteristic curve (Roc) of according to 2 lncRna signature
risk score (red).
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Background: Bioinformatics provides a valuable tool to explore the molecular
mechanisms underlying pathogenesis of hepatocellular carcinoma (HCC). To improve
prognosis of patients, identification of robust biomarkers associated with the pathogenic
pathways of HCC remains an urgent research priority.

Methods: We employed the Robust Rank Aggregation method to integrate nine
qualified HCC datasets from the Gene Expression Omnibus. A robust set of differentially
expressed genes (DEGs) between tumor and normal tissue samples were screened.
Weighted gene co-expression network analysis was applied to cluster DEGs and the key
modules related to clinical traits identified. Based on network topology analysis, novel
risk genes derived from key modules were mined and biological verification performed.
The potential functions of these risk genes were further explored with the aid of miRNA–
mRNA regulatory networks. Finally, the prognostic ability of these genes was assessed
by constructing a clinical prediction model.

Results: Two key modules showed significant association with clinical traits. In
combination with protein–protein interaction analysis, 29 hub genes were identified.
Among these genes, 19 from one module showed a pattern of upregulation in HCC
and were associated with the tumor node metastasis stage, and 10 from the other
module displayed the opposite trend. Survival analyses indicated that all these genes
were significantly related to patient prognosis. Based on the miRNA-mRNA regulatory
network, 29 genes strongly linked to tumor activity were identified. Notably, five of the
novel risk genes, ABAT, DAO, PCK2, SLC27A2, and HAO1, have rarely been reported in
previous studies. Gene set enrichment analysis for each gene revealed regulatory roles
in proliferation and prognosis of HCC. Least absolute shrinkage and selection operator
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regression analysis further validated DAO, PCK2, and HAO1 as prognostic factors in an
external HCC dataset.

Conclusion: Analysis of multiple datasets combined with global network information
presents a successful approach to uncover the complex biological mechanisms of HCC.
More importantly, this novel integrated strategy facilitates identification of risk hub genes
as candidate biomarkers for HCC, which could effectively guide clinical treatments.

Keywords: weighted gene co-expression network analysis (WGCNA), hub genes, hepatocellular carcinoma
(HCC), biomarker, progression and prognosis

INTRODUCTION

Hepatocellular carcinoma (HCC) is the sixth most common
malignant tumor type and the fourth leading cause of cancer-
related deaths worldwide, with approximately 841,000 new cases
and 782,000 deaths each year (Bray et al., 2018). Although
multiple therapies have been recently developed for HCC,
prognosis remains unsatisfactory due to disease progression,
recurrence, and metastasis (Budhu et al., 2006). Abnormal
expression of several genes is critical in tumorigenesis and
development of HCC. Recent research has shown that tumor
necrosis factor-α-induced protein 8 (TNFAIP8) increases HCC
cell survival by blocking apoptosis, promoting greater resistance
to the anticancer drugs sorafenib and regorafenib (Niture et al.,
2020). High expression of ATP/GTP binding protein like 2
(AGBL2) is associated with significantly enhanced survival and
proliferation of HCC cells in vitro and tumor growth in vivo
(Wang L. L. et al., 2018). Although these single genes affect
the phenotype of HCC, it is not known whether they constitute
the hub genes. Integration of multiple datasets and network
topology structures may therefore facilitate the identification of
more robust biomarkers.

Owing to the substantial improvements in high-throughput
gene microarray and next-generation sequencing technologies,
bioinformatics analyses are increasingly applied to explore the
biological characteristics of cancers. To avoid the potential large
bias caused by analysis of a single dataset, many researchers have
focused on analysis of multiple datasets for HCC. Recently, Li and
colleagues examined the intersection of differentially expressed
genes (DEGs) of three datasets (Li and Xu, 2020) and merged the
multiple datasets for analysis (Li and Xu, 2020; Li et al., 2020).
In the current study, we adopted the Robust Rank Aggregation
(RRA) method for the analysis of multiple integrated datasets
(Kolde et al., 2012).

We downloaded nine eligible microarray datasets from
the Gene Expression Omnibus (GEO), which were subjected
to meta-analysis to identify robust DEGs between HCC
and matched normal tissues using the RRA method. Next,
weighted gene co-expression network analysis (WGCNA) was
performed with the DEGs to identify the most significant
modules related to clinical traits of HCC. After screening
the protein–protein interaction (PPI) network (Szklarczyk
et al., 2015), the 29 hub genes uploaded to miRNet1 were

1https://www.mirnet.ca/

screened to construct miRNA–mRNA regulatory networks
and explore their potential functions. In an external test
dataset from The Cancer Genome Atlas Liver Hepatocellular
Carcinoma (TCGA-LIHC) collection, 28 of these hub genes
were associated with the prognosis and progression of HCC.
Gene set enrichment analysis (GSEA) was further performed
on the independent dataset (TCGA-LIHC) to determine the
potential functions of the identified hub genes. Least absolute
shrinkage and selection operator (LASSO) regression was
applied to construct clinical predictive models with the aim
of verifying the prognostic capability of these genes in
patients with HCC. In summary, integrated analysis of multiple
datasets was initially conducted, followed by comprehensive
screening of hub genes strongly related to HCC using a
variety of efficient bioinformatics methods and verification
of the results in an external dataset. Our overall findings
contribute to the elucidation of the molecular mechanisms
underlying pathogenesis and identification of novel prognostic
biomarkers for HCC.

MATERIALS AND METHODS

Data Sources
We downloaded nine microarray datasets from the GEO
database for RRA2. Access numbers of the included datasets
are as follows: GSE36376 (Lim et al., 2013), GSE39791 (Kim
et al., 2014), GSE45114 (Wei et al., 2014), GSE57957 (Mah
et al., 2014), GSE60502 (Wang et al., 2014), GSE76297
(Chaisaingmongkol et al., 2017), GSE76427 (Grinchuk et al.,
2018), GSE84005, and GSE14520 (Roessler et al., 2010). Datasets
were collected up to February 1, 2020, and were included
based on the following criteria: (1) gene expression data from
HCC and adjacent normal tissue samples were evaluated; (2)
at least 15 pairs of tumor and paracancerous tissue samples
were assessed; and (3) the number of genes in a single
dataset was >10,000. GSE14520 contained adequate clinical
information and the largest HCC sample number (471 samples)
for WGCNA and LASSO regression. Detailed information
on these datasets is provided in Table 1. Additionally, the
TCGA-LIHC dataset containing 374 HCC and 50 normal
samples was utilized as the external validation dataset and
GSEA was performed.

2https://www.ncbi.nlm.nih.gov/gds/?term=
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TABLE 1 | Details of the eight GEO datasets about HCC.

GEO No. of samples Platform References

T N

GSE36376 249 193 GPL10558 Lim et al., 2013

GSE39791 72 72 GPL10558 Kim et al., 2014

GSE45114 24 25 GPL5918 Wei et al., 2014

GSE57957 39 39 GPL10558 Mah et al., 2014

GSE60502 18 18 GPL96 Wang et al., 2014

GSE76297 61 58 GPL17586 Chaisaingmongkol et al., 2017

GSE76427 115 52 GPL10558 Grinchuk et al., 2018

GSE84005 38 38 GPL5175 NA

GSE14520 471 459 GPL571&GPL3921 Roessler et al., 2010

GEO, Gene Expression Omnibus; GPL, Gene Expression Omnibus Platform; GSE,
Gene Expression Omnibus Series; T, tumor samples; N, paracancerous normal
samples. There is no reference information in GSE84005. NA, not available.

Identification of Robust DEGs
The input data of WGCNA is usually less than 5000 genes.
Therefore, preliminary screening of genes is required. In
addition, DEGs (tumor vs normal tissue) can better reflect
the differences in biological characteristics between tumors
and normal liver tissues (Sarathi and Palaniappan, 2019).We
employed “limma” (R package) to normalize and analyze the
differences of each dataset downloaded from the GEO (HCC
and normal samples) under a false discovery rate threshold
(FDR) < 0.05 (Ritchie et al., 2015). Results from each dataset were
ranked according to the fold change value of each gene. Next,
“RobustRankAggreg” (R package) was implemented to analyze
the results of the nine datasets for the identification of robust
DEGs with adjusted P-values < 0.05 (Kolde et al., 2012).

Construction of the WGCNA Network
and Enrichment Analysis of Key Modules
Weighted gene co-expression network analysis was used to
identify modules highly correlated with clinical traits. We applied
“WCGNA” (R package) to cluster all the robust DEGs identified
from the GSE14520 HCC dataset with the largest sample size (471
HCC samples) and sufficient clinical information (Langfelder and
Horvath, 2008). The resulting adjacency matrix was transformed
into a topological overlap matrix (TOM). Differentially expressed
genes were subsequently grouped into different modules based on
the TOM-based dissimilarity measure. A soft-thresholding power
of 7 (scale-free R = 0.90) and minimal module size of 30 were
applied. The cut height was set as 0.4 to merge similar modules.

After clustering the genetic modules, key modules associated
with clinicopathological variables were determined using
Pearson’s correlation coefficient, including age, hepatitis B virus
(HBV) activity, alanine aminotransferase (ALT) level (≤ and
>50 U/L), primary tumor size (≤ and >5 cm), multinodular
characteristics, cirrhosis, tumor node metastasis (TNM) stage,
Barcelona Clinic Liver Cancer (BCLC) stage, Cancer of the Liver
Italian Program (CLIP) stage, AFP level (≤ and >300 ng/mL),
survival status, survival time (months), recurrence status, and
recurrence time (months). We selected the modules that were

highly correlated with clinical traits. To establish the biological
functions of the key modules, R package “clusterprofiler” was
applied to perform Gene Ontology (GO) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) analyses on individual genes.
P-values <0.05 were indicative of significant enrichment.

Identification of Hub Genes Based on
WGNCA Combined With PPI and
Construction of miRNA–mRNA
Regulatory Networks
After the identification of the key modules, genes with gene
significance (GS) > 0.3 and module membership (MM) > 0.8
were taken as core genes in WGCNA. Initially, the top 100
genes with high connectivity from each module were screened,
of which the top 30 were marked as “hub genes in WGCNA”.
Next, we uploaded the top 100 connectivity genes to the STRING3

database for PPI network analysis (Szklarczyk et al., 2017). The
“TSV: tab separated values” file was downloaded in the “Exports”
option and imported into the Cytoscape software (version 3.7.0),
whereby the top 30 genes were screened as “hub genes in
PPI” by “Degree” using the “cytoHubba” (Chin et al., 2014)
app. GeneMANIA is a common tool for PPI network analysis
and predicting the functions of preferred genes (Warde-Farley
et al., 2010). The program displays genes or gene lists using
bioinformatics methods, including gene co-expression, physical
interactions, gene co-location, gene enrichment analysis, and
website prediction. We observed the interaction types among
the hub genes and visualized the gene networks with the aid of
GeneMANIA. Finally, the intersecting results of both analytical
methods were used to obtain hub genes, which were uploaded
to miRNet4 to generate a miRNA–mRNA regulatory network for
establishing their potential functions.

Verification of Hub Genes
First, GEPIA2 was employed to visualize the differential
expression of the hub genes between HCC and normal tissues
(one-way ANOVA). Next, we used “ggpubr” (R package)
to analyze the expression patterns at different TNM stages
(Kruskal–Wallis test). Stage IV samples were excluded owing to
a small size of less than five samples. In addition, we used the
“survival” R package to perform Kaplan–Meier (K-M) survival
or unique Cox regression analysis. Results were validated in the
external verification dataset TCGA-LIHC.

GSEA and LASSO
To further explore the potential functions of the genes rarely
reported in HCC, we utilized the “clusterprofiler” R package
to perform GSEA for each gene. In the TCGA-LIHC dataset
(normalized with the “edgeR” package), 374 HCC samples were
used as the gene expression matrix. Gene lists were generated
according to the order of correlation with the expression of
each hub gene. The C2 reference gene sets were downloaded

3https://string-db.org/
4https://www.mirnet.ca/
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from the Molecular Signatures Database (MSigDB)5. We set an
adjusted P-value < 0.05 as the cut-off criterion. LASSO regression
is widely used in the construction of clinical prediction models
(Tibshirani, 1997). Next, “glmnet” (R package) was applied to
verify the potential of these genes as biomarkers. GSE14520 was
used as the training set and TCGA-LIHC as the test set for the
LASSO regression analysis. Each cohort was divided into two
groups according to the best cutoff risk score. Finally, results were
visualized with K-M and ROC curves.

RESULTS

Overall Study Design
A flow chart of the study, divided into four steps, is presented
in Figure 1A. Firstly, we used the RRA method to integrate and
analyze the nine GEO datasets to obtain robust DEGs (Step 1).
These DEGs were used to construct a WGCNA network using the
GSE14520 dataset, and the key modules displaying a significant
correlation with clinical traits were identified (Step 2). Hub genes

5http://software.broadinstitute.org/gsea/msigdb/index.jsp

were screened according to the WGCNA and PPI networks (Step
3). Finally, the hub genes were validated (Step 4).

RRA-Based Identification of Robust
DEGs Between HCC and Normal Tissues
A total of 4244 robust DEGs (2674 significantly upregulated
and 1570 significantly downregulated) were identified from the
nine datasets integrated using RRA (adjusted P-value < 0.05).
As shown in Figure 1B, the 20 most significant DEGs were
consistently identified among most of the datasets evaluated,
signifying the robustness of the results. The majority of these
genes are associated with HCC. For example, TOP2A displaying
the most significant upregulation has been identified as a
biomarker for HBV-related HCC (Liao et al., 2019) and APOF
with the most significant downregulation is considered a tumor
suppressor in HCC (Wang Y. B. et al., 2019). Significantly,
AKR1B10 was not included in the GSE84005 dataset or
NCAPG and LAPTM4B in the GSE45114 dataset. However, close
association of these three genes with the progression of HCC
has been recently reported (DiStefano and Davis, 2019; Gong
et al., 2019; Wang F. et al., 2019). The RRA method effectively
maximizes the retention of hub genes.

FIGURE 1 | Study workflow and heatmap of the top 20 robust DEGs. (A) Study workflow. GEO, Gene Expression Omnibus; RRA, Robust Rank Aggregation; DEGs,
differentially expressed genes; WGCNA, weighted gene co-expression network analysis; KEGG, Kyoto Encyclopedia of Genes and Genomes; GO, Gene Ontology;
PPI, protein– protein interaction. GSEA, Gene Set Enrichment Analysis. GEPIA2, gene expression profiling interactive analysis. LASSO, least absolute shrinkage and
selection operator (B) Robust DEGs analyzed by RRA. The top 20 up and down regulated genes according to the fold change value of the RRA analysis are shown
in this heatmap. The row names are DEGs. The column names are GEO datasets. The numbers in each cell represent logarithmic fold change in each dataset
calculated by the “limma” R package. “0” indicates that the gene corresponding to the row is missing in the data set corresponding to the column. Red indicates
that DEGs are upregulated in HCC samples, while green indicates the opposite. DEGs, differentially expressed genes; GEO: Gene Expression Omnibus; RRA: robust
rank aggregation. GSE14520_1, dataset from GPL571, GSE14520_2, dataset from GPL3921.
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Identification of Key Modules
To acquire the key modules, “WGCNA” (R package) was used to
examine the co-expression network with the GSE14520 dataset.
All DEGs derived from the RRA analysis were used as input. As
shown in Supplementary Figure 1A, when the soft-thresholding
power was 7 or 8, R2 was >0.9 (red line). Here, a power of

β = 7 (scale-free R2 = 0.9) was selected as the soft-thresholding
power to ensure a scale-free network. After applying threshold
values, a total of eight modules were obtained for subsequent
analysis (Supplementary Figures 2C,D). As determined from
evaluation of module-trait relationships (Figure 2A), the brown
and turquoise modules showed greater significance in relation

FIGURE 2 | Identification of key modules. (A) The heatmap shows the correlation between the genes module and clinical traits of HCC. Pearson’s correlation
coefficient between the gene modules and clinicopathological variables are shown, accompanied by the corresponding P value in brackets. Red represents positive
correlation and green represents negative correlation. (B) The scatter plot of module eigengenes in the turquoise module. (C) The scatter plot of module eigengenes
in the brown module. ALT, alanine aminotransferase; HBV, hepatitis B virus; TNM, tumor node metastasis; BCLC, Barcelona Clinic Liver Cancer; CLIP, Cancer of the
Liver Italian Program.
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to clinical information, compared with the other modules, in
particular, main tumor size, TNM stage, and AFP level critical for
prognosis of HCC patients (Han et al., 2014; Zhang et al., 2016)
(Figures 2B,C).

Functional Enrichment Analysis of Genes
Within the Key Modules and
Identification of Hub Genes
To clarify the functions of genes from the two modules, we
performed separate GO and KEGG analyses. In the brown
module, “DNA replication,” “cell cycle,” “p53 signaling pathway,”
and “cellular senescence” were enriched in the KEGG pathway
analysis (Supplementary Figure 2A) while in the turquoise
module, “drug metabolism – cytochrome P450” and “chemical
carcinogenesis” were enriched (Supplementary Figure 2B).
These findings were consistent with previous studies reporting
the involvement of the above functions in tumorigenesis of HCC.
For example, Xie et al. (2018) showed that DNA replication
is associated with tumor cell proliferation and prognosis of
patients with HCC. Moreover, genetic variations in cell cycle
pathway genes affect the disease-free survival of patients with
HCC (Liu et al., 2017). The TP53 mutation is considered one of
the molecular mechanisms of HCC pathogenesis (Hussain et al.,
2007). Abnormal cellular senescence is a characteristic phenotype
of various cancers (Chen S. L. et al., 2019). Cytochrome P450
is severely damaged and dysregulated in HCC (Yan et al.,
2015). The collective findings validate the functional association
of the key modules in this study with HCC. The significant
biological process (BP), cellular component (CC), and molecular
function (MF) GO terms of the two modules are presented in
Supplementary Tables 1–6.

To further screen for the most significant hub genes, we used
a combination of two methods (WGCNA and PPI networks,
see section “Materials and Methods”). The PPI network of the
top 100 connectivity genes from the brown module is shown
in Figure 3A. According to degree (high to low), the positions
of genes are arranged from the inside to outside, and the
top 30 considered “hub genes in PPI”. Interaction analysis of
hub genes in PPI was further performed using GeneMANIA
to clarify the correlations among colocalization, shared protein
domains, co-expression, prediction, and pathways. As revealed
by the protein–protein interaction network generated with
GeneMANIA (Figure 3C), co-expression interactions accounted
for the largest proportion (83.83%), consistent with the results
of WGCNA. “Hub genes in WGCNA” and their correlated
expression levels are shown in Figure 3B. The hub genes
were obtained by selecting the intersecting results with the
two methods (Figure 3D). The hub genes of the turquoise
module were obtained with the same method (Supplementary
Figures 3A–D). Overall, we identified a total of 29 core genes
from the two key modules.

Construction of the miRNA–mRNA
Regulatory Network
Interactions between miRNA and mRNA are an increasing focus
of research attention. To further explore the functions of hub

genes from a global perspective, a miRNA–mRNA regulatory
network was constructed via miRNet (Figure 4). Previous studies
suggest that a number of these miRNAs are related to HCC. For
example, exosome hsa-miR-335 was identified as a therapeutic
target for HCC (Wang F. et al., 2018). Furthermore, according to
web-based KEGG analysis, this network is enriched in multiple
tumor-related pathways (Supplementary Table 7), such as cell
cycle and p53 signaling (Hussain et al., 2007; Sanchez-Vega
et al., 2018; Ikeno et al., 2019). Thus our group of hub genes
may play important roles in HCC through the miRNA–mRNA
regulatory network.

Verification of Hub Genes Based on the
TCGA-LIHC Dataset
In total, 29 hub genes were obtained. Interestingly, TOP2A was
consistently ranked first. Ten of the genes were filtered from
the turquoise module (Figure 3C), which were further verified
in TCGA-LIHC and GEPIA2 based on three parameters: (1)
differential expression (HCC sample vs paracancerous sample),
(2) TMN staging, and (3) survival analysis. In terms of expression,
hub genes from the turquoise module were downregulated in
HCC relative to normal samples. Notably, F13B was excluded
due to lack of statistical significance. These results were validated
using an external dataset (Figure 5A and Supplementary
Figure 4A). Additionally, genes were differentially expressed
in HCC samples with different TNM stages to a significant
extent. A higher expression of these genes was correlated with an
earlier TNM stage (Figure 5B and Supplementary Figure 4B).
Survival analysis revealed an association of low expression of
these genes with poor prognosis (Figure 5C and Supplementary
Table 8). Using the same method, hub genes of the brown module
(Supplementary Figure 3D) were validated, which showed an
opposite trend to genes of the turquoise module (Supplementary
Figures 5, 6 and Supplementary Table 8). Our collective data
support critical roles of 28 of the 29 hub genes in HCC.

GSEA of Tumor Suppressor Roles of Hub
Genes
The majority of the hub genes for HCC have already
been reported (Supplementary Table 9). However, DAO,
SLC27A2, GYS2, HAO1, and PCK2 have not been previously
studied in association with HCC. To analyze their potential
functions in HCC, we performed GSEA on TCGA-LIHC
RNA sequencing data. As shown in Supplementary Figure 7,
three gene sets associated with tumors were defined. In
samples showing a significant negative correlation of HAO1
and SLC27A2 expression with HCC, “epithelial-mesenchymal
transition” (EMT) and “PI3K/Akt/mTOR” were enriched.
“Wnt/beta-catenin signaling” and “MYC target v1” were
significantly enriched in samples showing a negative correlation
of PCK2 and DAO expression with HCC. The gene set “DNA
repair” was enriched in samples showing negative correlation of
ABAT and SLC27A2 expression with HCC. These mechanisms
are typical tumor-associated pathways. For instance, EMT
is reported to coordinate the occurrence of liver fibrosis,
carcinogenesis, and proliferation and invasion of HCC cells
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FIGURE 3 | Identification of hub genes. (A) The PPI network of the top 100 connectivity genes from the brown module. According to degree from high to low, the
gene is arranged from the center to the edge. “Hub genes in PPI” is inside the white circle. (B) The top 30 genes gained in WGCNA from the brown module by
setting MM) > 0.8 and GS > 0.3. The correlation between these genes is shown. (C) The PPI network (GeneMANIA) of the top 30 genes in the brown module.
Different colors of the network edge indicate the bioinformatics methods applied: physical interactions, co-expression, predicted, co-localization, pathway, genetic
interactions, and shared protein domains. The size of each node indicates the value of LogFC according to the result of RRA. The black nodes present the
intersection of hub genes in PPI and WCGNA. (D) The hub genes in the brown module are selected by PPI network and co-expression network. PPI, protein–protein
interaction; MM, module membership; GS, gene significance. LogFC, log fold change; RRA, Robust Rank Aggregation. WGCNA, weighted gene co-expression
network analysis.

(Giannelli et al., 2016). The activation of PI3K/AKT signaling
has been shown to promote EMT (Liu et al., 2018). “Wnt/beta-
catenin signaling”, “MYC target v1”, and “DNA repair” are closely
related to tumorigenesis and the development of HCC (Dolezal
et al., 2017; Dimri and Satyanarayana, 2020; Pardini et al., 2020).
Taken together, the findings clearly suggest that these genes
are closely associated with the mechanisms underlying HCC
cell proliferation.

Construction of the Novel Hub Gene
Signature for Survival Prediction
Finally, we included the above five hub genes in the LASSO
regression analysis to construct a survival prediction model

for HCC patients. GSE14520 was used as the training set
to generate a prediction model comprising three of the
genes, specifically, OSPCK2, DAO, and HAO1. The formula
for calculating the prognostic risk score was as follows:
(−0.0179 × expression HAO1) + (−0.0221 × expression
PCK2) + (−0.1209 × expression DAO). The results of this
scoring system were depicted using a K–M curve (Figures 6A,B).
The high-risk group had shorter OS, both in the training
(P = 0.002) and test (P < 0.001) datasets. In addition, we
generated time-dependent ROC curves to evaluate the predictive
effects of the three-gene signature based on the area under the
curve (AUC) value. In the training cohort, one-year and three-
year AUC values were 0.673 and 0.605, respectively. In the
verification cohort, AUC for one year was 0.605 and that for
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FIGURE 4 | miRNA-mRNA network of 29 hub genes by miRNet. The purple spheres represent 29 hub genes; the blue squares represent the miRNA associated with
the hub genes, and the red spheres represent the genes associated with the hub genes.

three years was 0.672 (Figures 6C,D). Based on the results, we
propose that this novel three-gene signature can serve as a reliable
predictor of OS in HCC patients.

DISCUSSION

In this study, we used multiple bioinformatics methods to
establish the biological mechanisms of HCC. To avoid the
potential bias caused by DEGs in a single database, numerous
studies have focused on evaluating multiple datasets (Xu et al.,
2016). In the process of merging data, gene symbols that are
not detected in only one dataset may be lost. For example,
as shown in Figure 1B, AKR1B10, NCAPG, and LAPTM4B
exist in multiple datasets and would therefore be lost if the
datasets were simply merged. However, these genes are closely

related to the progression of HCC (DiStefano and Davis,
2019; Gong et al., 2019; Wang F. et al., 2019). Furthermore,
in dataset GSE39791, logFC values of some of the top 20
DEGs were less than 1. However, in combination with other
datasets, the RRA method suggests that these genes are robust
DEGs. Potential bias of results due to inclusion of only
one dataset should be avoided. In the current investigation,
RRA was applied to analyze nine groups of datasets to
minimize bias, avoid missing hub genes, and obtain the
most robust DEGs.

Weighted gene co-expression network analysis is based on
the correlation between modules and clinical features, and the
screening results are highly reliable and biologically meaningful
(Yin et al., 2018). To our knowledge, the current study is the
first to combine the RRA method with WGCNA for efficient
identification of hub genes associated with HCC. Among the
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FIGURE 5 | External validation of the partial hub genes in the turquoise module. (A) Partial hub genes, rarely reported on HCC, expression differences between HCC
and adjacent normal tissues in GPEIA 2. ABAT, DAO, PCK2, SLC27A2, and HAO are downregulated in HCC tissues. “*” represents P value < 0.05. (B) Expression
of ABAT, DAO, PCK2, SLC27A2, and HAO1 in HCC samples with different TNN stages. The lower the expression level of these genes indicates the more advanced
stage of HCC. “*” represents P value < 0.05; “**” represents P value < 0.01; “***” represents P value < 0.001; “****” represents P value < 0.0001. (C) The
association between ABAT, DAO, PCK2, SLC27A2, and HAO1 expression and overall survival time in the TCGA-LIHC dataset. The yellow line indicates high
expression groups and the green line represents the low expression group. T, number of HCC samples, N, number of normal samples.

eight gene modules, brown and turquoise modules were closely
related to clinical characteristics, such as primary tumor size,
AFP level, TNM stage, and overall survival time. In addition,
GO and KEGG analyses showed enrichment of both modules in
multiple tumor-related pathways. For instance, DNA replication
is associated with tumor cell proliferation and the prognosis of
HCC (Xie et al., 2018), variations in cell cycle pathway genes affect
disease-free survival of patients with HCC (Liu et al., 2017), TP53
mutation is considered one of the critical molecular mechanisms
of HCC pathogenesis (Hussain et al., 2007), an abnormal cellular
senescence phenotype is observed in various cancer types (Chen
S. L. et al., 2019), and cytochrome P450 is severely damaged and
dysregulated in HCC (Yan et al., 2015).

Next, we combined co-expression and PPI networks to screen
for hub genes. After a series of strict screening steps, 29 hub
genes (10 from the turquoise module and 19 from the brown

module) were isolated. To explore the functions of this group
of genes from the global network, miRNA–mRNA regulatory
networks were generated using miRNet (Figure 4). As shown in
Supplementary Table 7, specific pathways, such as cell cycle, and
p53 signaling, were highlighted, both of which are closely related
to tumorigenesis and the development of HCC (Hussain et al.,
2007; Sanchez-Vega et al., 2018; Ikeno et al., 2019). Importantly,
we used TCGA-LIHC, a dataset containing 374 HCC samples,
to validate the predictive power of these hub genes in the
progression and prognosis of HCC. Among the genes examined,
only one (F13B) failed verification.

The involvement of the majority of these genes in HCC
has been confirmed in earlier experiments (Supplementary
Table 9), supporting the efficacy of our screening strategy.
Among the hub genes, TOP2A, RFC, and the CCMB family have
received considerable research attention. DNA topoisomerase
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FIGURE 6 | Risk score and survival analysis in training and validation datasets.(A,B) K–M curves for patients in GSE14520 (A) and TCGA-LIHC (B) datasets divided
into high- and low-risk groups by the best cutoff values. Patients of a high risk group exhibited poorer prognosis in both cohorts. (C,D) ROC curves showed the
predictive risk signature for patients in GSE14520 (C) and TCGA-LIHC (D) datasets on the survival rate. K–M, Kaplan–Meier; ROC, receiver operating characteristic,
AUC, area under curve.

II alpha (TOP2A) is abundantly expressed in testis, lymph
node tissues, and a variety of tumor tissues, including liver
cancer. Several bioinformatics analyses have validated TOP2A
as a biomarker for HCC, in particular, HBV-related HCC (Liao
et al., 2019). Panvichian et al. (2015) reported overexpression of
TOP2A in 72.5% of tumor tissues and its significant association
with the hepatitis B surface antigen (HBsAg) in serum. In
addition, results of a phase III prospective randomized study
showed that TOP2A is associated with the histological grade of
liver cancer, microvascular invasion, early onset of malignant
tumors (≤40 years), and chemotherapy resistance (Wong et al.,
2009). Replication factor C subunit 4 (RFC4) has recently been

identified as a hub gene affecting prognosis of patients with
HCC (Kong et al., 2019). The knockdown of endogenous RFC4
suppresses HCC cell growth and enhances the chemosensitivity
of HepG2 cells (Arai et al., 2009). Cyclin B1 (CCNB1) and
TOP2A are considered key genes for early diagnosis of HCC
(Wu et al., 2019).

Interestingly, DAO, ABAT, SL27AL, PCK2, and HAO1, all
from the turquoise module, have not been shown to be associated
with HCC to date, either in vivo or in vitro. However, several
studies support inhibitory roles of these genes in other tumors.
The peroxisomal enzyme D-amino acid oxidase (DAO) is
highly expressed in the kidney, liver, and brain in mammals
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(Fang et al., 2008) and plays a critical role in the pathophysiology
of schizophrenia (Liu et al., 2016). Earlier reports suggest that
DAO inhibits glioma cell growth by inhibiting angiogenesis
(El Sayed et al., 2012) and inducing apoptosis (Li et al.,
2008). 4-Aminobutyrate aminotransferase (ABAT) is mainly
responsible for decomposing γ-aminobutyric acid (GABA),
an inhibitory neurotransmitter, into succinic semialdehyde. In
basal-like breast cancer (BLBC) cells, GABA increases the
intracellular Ca2+ concentration and effectively activates nuclear
factor 1-4 (NFAT1). Consequently, ABAT expression inhibits
the tumorigenicity and metastasis of BLBC cells in vitro and
in vivo. Conversely, the downregulation of ABAT promotes the
progression of BLBC (Chen X. et al., 2019) and resistance to
endocrine therapy of inflammatory breast cancer (Jansen et al.,
2015). Moreover, ABAT has been identified as a prognostic
factor for renal cell carcinoma and hepatic adenocarcinoma
(Reis et al., 2015; Lu et al., 2020). Chen et al. (2017) screened
six genes related to HCC metastasis and prognosis through a
co-expression network analysis, which led to the identification
of DAO and ABAT. However, their mechanisms of action in
HCC have not been clarified. Solute carrier family 27 member
2 (SLC27A2), also designated FATP2, improves the efficiency of
cancer therapy by inhibiting the activity of polymorphonuclear
myeloid-derived suppressor cells (PMN-MDSCs) (Veglia et al.,
2019). Phosphoenolpyruvate carboxykinase 2 (PCK2) encodes
a key mitochondrial enzyme for gluconeogenesis in the liver.
The overexpression of PCK2 inhibits melanoma cell growth
in vitro and prevents tumorigenesis in vivo (Luo et al., 2017).
More recent experiments have demonstrated an association of
decreased PCK2 expression with metastasis and the recurrence
of osteosarcoma (Zhang et al., 2019). Upon suppression
of autophagy, levels of glucose-6-phosphatase (G6Pase) and
phosphoenolpyruvate carboxykinase (PEPCK, a protein encoded
by PCK2) are reduced in the human HCC cell line HepG2
(Jeon et al., 2015). Hypoxia-inducible factor 1α (HIF-1α) can
promote the growth of human breast tumor-repopulating cells
by downregulating PCK2 (Tang et al., 2019). However, a number
of studies have reported that PEPCK coordinates the regulation
of central carbon metabolism to promote tumor cell growth
(Montal et al., 2015). Therefore, the biological characteristics
of PCK2 in HCC requires further investigation. Hydroxyacid
oxidase 1 (HAO1) is expressed mainly in the liver and pancreas.
An earlier genome-wide association study in Korea showed
that a single nucleotide polymorphism in HAO1 is one of
the risk factors for childhood acute lymphoblastic leukemia
(Han et al., 2010).

In our study, GSEA consistently supported the tumor
suppressor roles of these genes in multiple carcinogenic
pathways in HCC datasets. Further research is warranted
to establish the mechanisms of action of these genes in
HCC. The collective evidence to date suggests that these
genes play a suppressive roles in the biological processes of
tumors. In addition, the clinical prediction model generated
using a three-gene signature showed efficacy in predicting
the survival of patients with HCC and the potential as a
robust biomarker. Our study has some limitations, such as
the fact that the nine datasets of the training set are all

microarrays and lack RNA-seq datasets. The data diversity
is insufficient.

CONCLUSION

Systematic analysis of the genes involved in pathogenesis of HCC
using a novel integrated strategy led to the identification of two
risk modules and several representative hub genes. Among these,
HAO1, SCL27A2, DAO, ABAT, and PCK2, rarely reported in
HCC to date, were validated as novel hub genes that may serve
as effective clinical diagnostic and prognostic markers as well as
therapeutic targets for HCC.
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Supplementary Figure 1 | Determination of soft-thresholding power and cut
height in the WGCNA. (A) Analysis of scale-free index (left) and mean connectivity
(right) for different soft-thresholding power (β) red line indicates signed Rˆ2 = 0.9.
(B) When β = 7 histogram of connectivity distribution (left) and scale-free topology
Rˆ2 = 0.9 (right). (C) Clustering of module eigengenes. Set the cut height as 0.4
(red line) to merge similar modules. (D) Dendrogram of all DEGs clustered based
on a dissimilarity measure (1-TOM). Each color represents a set of gene modules.

Supplementary Figure 2 | The screening of hub genes in the turquoise module.
(A) The PPI network of top 100 connectivity genes from the brown module. “Hub
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genes in PPI” is inside the black circle. (B) The top 30 hub genes gained in
WGCNA from the brown module by setting MM) > 0.8 and GS > 0.3. Correlation
between these genes is shown. (C) PPI network (GeneMANIA) of the top 30
genes in the brown module. (D) Selection of hub genes that occur in both the PPI
network and WGCNA. PPI, protein–protein interaction; MM, module membership;
GS, gene significance. WGCNA, weighted gene co-expression network analysis.

Supplementary Figure 3 | KEGG analysis for the key modules. (A) Brown
module. (B) Turquoise module. KEGG, Kyoto Encyclopedia of Genes
and Genomes.

Supplementary Figure 4 | External validation of the rest of the hub genes in the
turquoise module. (A) The rest of the hub genes in the turquoise module
expression differences between HCC and adjacent normal tissues in GPEIA2. “∗”
represents P value l < 0.05. (B) Expression of CAT, F13B, EHHADH, GYC2, and
SERPINC1 in HCC samples with different TNN stages. “∗” represents P
value < 0.05; “∗∗” represents P value l < 0.01; “∗∗∗” represents P value < 0.001.

Supplementary Figure 5 | External validation of hub genes in the brown module.
The hub genes from the brown module expression differences between HCC and
adjacent normal tissues in GPEIA2. “∗” represents P value l < 0.05.

Supplementary Figure 6 | External validation of hub genes in the brown module.
Expression of these genes in HCC samples with different TNN stages. “∗”
represents P value < 0.05; “∗∗” represents P value l < 0.01; “∗∗∗” represents P
value < 0.001.

Supplementary Figure 7 | Gene sets related to cancer. Results of GSEA related
to cancer in samples negatively correlated with PCK2 (A), ABAT (B), HAO1 (C),
SLC27A2 (D), and DAO (E) expression. Highlight 3 gene sets for each gene.

Supplementary Figure 8 | Risk score distribution, survival status, and heatmaps
for patients in the GSE14520 (A) and TCGA-LIHC (B) datasets divided into high-
and low-risk groups.

Supplementary Figure 9 | Node degree distribution plot of differentially
expressed genes.

Supplementary Table 1 | BP of GO analysis for brown module.

Supplementary Table 2 | CC of GO analysis for brown module.

Supplementary Table 3 | MF of GO analysis for brown module.

Supplementary Table 4 | BP of GO analysis for turquoise module.

Supplementary Table 5 | CC of GO analysis for turquoise module.

Supplementary Table 6 | MF of GO analysis for turquoise module.

Supplementary Table 7 | Enriched function of the miRNA-mRNA
network by miRNet.

Supplementary Table 8 | Survival analysis for the rest of the hub genes.

Supplementary Table 9 | Biological functions of the hub genes in HCC.
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Although it is well-known that sex and age are important factors regulating endothelial

cell (EC) function, the impact of sex and age on the gene expression of ECs has

not been systematically analyzed at the single cell level. In this study, we performed

an integrated characterization of the EC transcriptome of five major organs (e.g., fat,

heart-aorta, lung, limb muscle, and kidney) isolated from male and female C57BL/6

mice at 3 and 18 months of age. A total of 590 and 252 differentially expressed genes

(DEGS) were identified between females and males in the 3- and 18-month subgroups,

respectively. Within the younger and older group, there were 177 vs. 178 DEGS in

fat, 305 vs. 469 DEGS in heart/aorta, 22 vs. 37 DEGS in kidney, 26 vs. 439 DEGS

in limb muscle, and 880 vs. 274 DEGS in lung. Interestingly, LARS2, a mitochondrial

leucyl tRNA synthase, involved in the translation of mitochondrially encoded genes was

differentially expressed in all organs in males compared to females in the 3-month group

while S100a8 and S100a9, which are calcium binding proteins that are increased in

inflammatory and autoimmune states, were upregulated in all organs in males at 18

months. Importantly, findings from RNAseq were confirmed by qPCR and Western

blot. Gene enrichment analysis found genes enriched in protein targeting, catabolism,

mitochondrial electron transport, IL 1- and IL 2- signaling, and Wnt signaling in males

vs. angiogenesis and chemotaxis in females at 3 months. In contrast, ECs from males

and females at 18-months had up-regulation in similar pathways involved in inflammation

and apoptosis. Taken together, our findings suggest that gene expression is largely similar

between males and females in both age groups. Compared to younger mice, however,

older mice have increased expression of genes involved in inflammation in endothelial

cells, which may contribute to the development of chronic, non-communicable diseases

like atherosclerosis, hypertension, and Alzheimer’s disease with age.

Keywords: single-cell sequencing, endothelial cells, sex, age, cardiovascular disease
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INTRODUCTION

The endothelium comprises a single monolayer of cells that lines
the cardiovascular and lymphatic system, serving as the interface
between tissue walls and the blood and lymph, respectively.
Although once considered a passive conduit for nutrient and
waste exchange, endothelial cells (ECs) are now recognized as
active regulators of coagulation, inflammation, vascular tone,
metabolism, and tissue repair. Endothelial cells, however, are not
identical in their structure and function across organ systems.
An organ’s phenotype as well as its microenvironment play
an important role in shaping vascular development during
embryogenesis as well as vascular repair after injury, which
in turn alters the morphology and behavior of ECs within
individual organs and across various organs. Interestingly, EC
heterogeneity may be maintained even after removal from their
microenvironment as shown in previous studies showing that
ECs from different organs respond uniquely to pro-inflammatory
cytokines, such as tumor necrosis factor alpha, interleukin-1 beta
and the bacterial product lipopolysaccharide, when administered
in vitro (Booth et al., 2004; Gutierrez et al., 2013). Whether
age and sex add additional layers of heterogeneity has not been
systematically evaluated.

As the gatekeepers of vascular health, it is not surprising
that injury to endothelial cells in the arteries, capillaries
and veins has been associated with a myriad of diseases
affecting the brain [e.g., multiple sclerosis (Barak et al.,
2017), stroke (Budhiraja et al., 2004)], cardiovascular system
[e.g., coronary artery disease (Johnson and Nangaku, 2016),
vasculitis (Perticone et al., 2010)], lung [e.g., asthma, COPD
(Dabiré et al., 2012), pulmonary hypertension (Timmerman and
Volpi, 2013)], kidney [e.g., diabetic kidney disease (Molema,
2010), hypertensive kidney disease (Muller et al., 2002)], and
muscle [e.g., Duchenne’s muscular dystrophy (Derada Troletti
et al., 2019), age-associated sarcopenia (Cereda et al., 2013)].
Importantly, many of these diseases have age (e.g., old vs.
young) and sex dimorphisms in their prevalence, manifestation,
and outcome. The biological reasons underlying these clinical
observations remain poorly understood.

We hypothesize that the phenotypic similarities and
differences in EC structure and function across various organs
are reflected in their global gene expression and show a pattern of
age and sexual dimorphism. While we are not the first group to
evaluate the EC global gene expression across organs (Feng et al.,
2019), we provide an unbiased, systematic, and comprehensive
comparison of EC transcriptomics based on sex and age within
the tissue microenvironment of 5 major organs (e.g., fat, heart
and aorta, lung, limb muscle, and kidney) harvested from the
same mice, using state-of-the-art single cell technology. We
identify shared and organ-specific gene signatures for ECs
in males and females across different age groups. Findings
from this study will not only provide a reference guide for the
gene expression of ECs across multiple organs in males and
females, but may also provide valuable insight into the potential
mechanisms that underlie why the patterns of certain diseases
may vary by sex and age and may facilitate the development of
personalized approach to diagnosis and treatment.

MATERIALS AND METHODS

Data Source and Identification of
Differentially Expressed Genes
Single cell transcript data was obtained from the database
generated by the Tabula Muris Consortium et al. (2018) and
Tabula Muris Consortium (2020) (https://figshare.com/projects/
Tabula_Muris_Transcriptomic_characterization_of_20_organs_
and_tissues_from_Mus_musculus_at_single_cell_resolution/
27733).

The data was processed using Seurat V2. The expression of
Cdh5 and Pecam1 were used to identify the endothelial cells in
each tissue in males and females in the young and old cohort. Of
the 20 organs, only the following five organs contained sufficient
cell numbers for analysis: (1) fat, (2) heart and aorta, (3) lung,
(4) limb muscle, and (5) kidney. Only cells that expressed both
transcripts in these five organs were merged into a Seurat object
and analyzed for differential expression at a cut off of log2 fold
change >1 and adjusted p < 0.05 (Benjamin Hochberg).

GO and Pathway Enrichment Analysis
Gene ontology and pathway enrichment analysis was performed
using EnrichR (https://amp.pharm.mssm.edu/Enrichr3; Chen
et al., 2013; Kuleshov et al., 2016), ClusterProfiler, and the
Gene Ontology Consortium website (http://geneontology.org/).
Specifically, all differentially expressed genes for males and
females from all organs were analyzed to generate Figures 4–
9. The p-value is computed using the Fisher exact test and
represents the probability of having at least × genes out of y
total genes in the list annotated by the GO term, given the
proportion of genes in the whole genome annotated by the GO
term. For Figure 4 for the analysis of all ECs, we used Enrichr,
which uses a combined score that is computed by multiplying
the unadjusted P-value with the Z-score that is calculated by
assessing the deviation from the expected rank. For Figures 5–
9 for the analysis of ECs in each organ, we used Cluster Profiler,
which computes a gene ratio that represents the number of genes
in our input list associated with a given GO term divided by the
total number of input genes. All graphs were plotted in Prism 7,
and a heatmap was plotted in R 3.6.1 (https://www.r-project.org).

Aortic Endothelial Cell Isolation, qPCR, and
Western Blot
To verify findings from single cell transcriptomics, we performed
qPCR on aortic ECs isolated from young and old C57Bl/6J
mice. To obtain ECs for in vitro culture, we extracted aortas
from mice (n = 6 per group) and digested them using Liberase
(e.g., 5mg dissolved in 10ml DMEM/F12 medium to achieve
a concentration of 1 mg/ml). We collected the cell pellet and
resuspended it in EGM medium with 5%FBS and Pen strep. The
resuspended cells were then placed in 24 well-plates coated with
gelatin. Media was changed daily. After 1 week, wells containing
confluent cells were trypsinized and re-plated into six well-plates.
After another week of expansion, cells were trypsinized and
collected for RNA extraction, cDNA synthesis, and qPCR using
standard protocols. We used the following primers: (1) Lars2, (2)
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FIGURE 1 | T-SNE visualization of endothelial cells (ECs) from single cell sequencing. (A) t-SNE plot of all ECs collected by single cell transcriptomics and colored by

organ; (B) t-SNE plot of all ECs colored by sex in the 3 month (left) and 18 month (right) age groups.

S100a8, (3) S100a9, and (4) genes belonging to theWNT pathway
(e.g., FZD4, PFN1, PSMA2, PSMA7, PSMB8, and PSMB).

In addition to PCR, using standard protocols, we performed
Western blot on aortic ECs to determine the protein expression
of selected genes. Briefly, endothelial cells were harvested and
lysed for Western blot analysis. Protein was loaded onto 4–
15% Tris gels (Bio-red) at 100V for 60min. The separated
proteins were transferred onto a polyvinylidene fluoride (PVDF)
membrane (Bio-red, 0.2µm). The PVDF membrane was then
blocked with 5% skim milk powder at room temperature for 2 h,
washed with PBS for 3min, and incubated overnight at room
temperature with the following rabbit anti-mouse antibodies:
(1) anti-Lars2 (Proteintech, 1:500, 17170-1-AP), (2) anti-
Profilin-1 (Invitrogen, 1: 1,000, 11680-1-AP), (3) anti-Frizzled4
(Invitrogen, 1: 300, PA5-41972), (4) anti-S100a8 (Invitrogen,
1:100PA5-79948), (5) anti-S100a9 (Invitrogen, 1:200, 14226-
1-AP), and (6) anti-GAPDH (Invitrogen, 1:2,000, # 39-
8600). The membrane was then incubated with anti-rabbit
secondary antibody (Jackson immunoresearch, 1:5,000, 111-
035-144) for 2 h in room temperature and washed by TBST
three times. Protein expression was detected using enhanced
chemiluminescence. The relative expression of the target protein
was defined as the ratio of average OD value of target protein
bands to that of the internal reference GAPDH.

Statistical Analysis
All statistical analysis was performed by GraphPad Prism
software (version 7) and R software (version 3.6.1). All p-values
were adjusted for multiple comparisons. Adjusted p < 0.05 was
considered statistically significant.

RESULTS

Data Source and Analysis
Original data from the Tabula Muris Consortium (e.g., Tabula
Muris and Aging Transcriptomic Atlas) was obtained (Tabula

Muris Consortium et al., 2018; Tabula Muris Consortium, 2020).
Information on the following 5 organs were analyzed from 4male
and 3 female mice in the 3 month group, and 2 males and 4
females in the 18 month group: fat, heart and aorta, lung, limb
muscle, and kidney (Supplementary Figure 1A). To identify
distinct cell populations based on shared and unique patterns
of gene expression, we performed dimensionality reduction and
unsupervised cell clustering methods. EC lineage genes, Pecam1
and Cdh5, were used as markers to identify the ECs (Figure 1;
Tabula Muris Consortium, 2020). Cell counts for each organ
stratified by age and sex are shown in Supplementary Figure 1B.
Profiles of 4,883 cells analyzed in the Seurat V2 by unsupervised
analysis revealed that most cells are grouped by their parent
organs. There was a sub-cluster of ECs from the heart and aorta
as well as another sub-cluster composed of all organs except
the heart and aorta that diverged from the primary cluster.
Analysis by sex in each age group, did not reveal distinct clusters,
suggesting that the majority of the transcriptome in male and
female ECs is similar across age groups.

Differentially Expressed Genes in All ECs
Based on Age and Sex
Subsequent analyses focused on comparing the patterns of
differential gene expression between male and female in
young and old age group. Consistent with tSNE visualization
analysis of all ECs by age and sex, density plots showed that
the majority of genes have <50% difference in expression
between males and females (log2 fold <1) (Figure 2A). A
total of 590 and 252 differentially expressed genes (DEGS)
were identified between females and males in the 3- and 18-
month subgroups, respectively, with 59 shared genes between
young and older mice that were sexually dimorphic (Figure 2B
and Supplementary Table 1). These genes are involved in
angiogenesis (e.g., Acvrl1, Lrg1, Ptprb, and Tmem100), immunity
and inflammation (e.g., Adamts1, Cd74, Cebpb, Ctla2a, DCN,
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FIGURE 2 | Differential analysis reveals age and sex dimorphism in ECs. (A) A comparison of density plots of differential gene expression reveals the expression of the

majority of genes was not significantly different in ECs isolated from males and females for both age groups (log fold change <1). Genes up-regulated in male mice

plotted in aqua. Genes up-regulated in female mice plotted in red. (B) Venn diagram showing 590 and 252 genes that are differentially expressed (adjusted p < 0.05)

between females and males in the 3 and 18 month group, respectively. Of those genes that are differentially expressed, there are 59 shared genes that are differentially

expressed between the sexes in both age groups. (C) The most statistically upregulated genes with the largest fold-change in males at 3 months were: Lars2, GSN,

Clec4g, DCN, and Dnase1l3 at 3 months. The most statistically upregulated genes with the largest fold-change in males at 18 months was S100a9, S100a8, and

Retnlg. The most statistically significant genes with the larges fold change include Xist, Ddx3x, and Cfh, which are upregulated in females, and S1009, S1008, and

Retinlg, which are upregulated in males at 3 months (left). The most statistically significant genes with the larges fold change include H2Ab1, Ppp1r16b, and

Tmem100B in females and Dnase1l3, Clec4g, Lars2, GSN, and DCN in males at 18 months (right). (D) Heat map showing the expression levels of 50 genes with the

largest fold difference between males and females at 3 months (top) and 18 months (bottom). Of the 50 top genes, the following three genes have the largest fold

difference and shared between the young and old group (highlighted in red): Cd74, DDx3y, and Icam2.

Fcgrt, H2-Ab1, Icam2, Kdm6b, Lcn2, Nfkbia, Nfkbiz, and Sgk1),
cellular chemotaxis (e.g., Ecscr, Gpr56, Pcdh1, and Tmsb10),
endothelial specific function (e.g., Apold1), smooth muscle cell
differentiation (e.g., Crip2), and cellular growth and development
(e.g., Bmpr2, Ccdc85b, Egr1, Fosb. Id3, Oaz1, Pfkbfb3, and
Tspan8), apoptosis (e.g., Gas5 and Phlda3), and lipid metabolism
(e.g., Thrsp). Of note, genes with the largest fold change
(>1.4-fold) included Dnase1l3, Clec4g, Lars2, GSN, and DCN,
which were significantly upregulated in males at 3 months.
Of these, Clec4g and GSN are important in the immune
response, DCN is related to angiogenesis, Lars2 is involved
in mitochondrial function, and DNASE1l3 regulates apoptosis
(Figure 2C and Supplementary Table 2). In contrast, three genes
including RETNLG, S100A8, and S100A9, which are involved
in the regulation of immune function and inflammation, were
significantly upregulated inmales>18months.When comparing
the gene expression profiles across the age groups, we find
the following two genes with shared sexual dimorphism across
age: (1) Cd74, a cell surface receptor for cytokine macrophage
migration inhibitory factor that is involved in apoptosis, immune
response and cell migration (Fan et al., 2011; LeHiress et al., 2015;

Gil-Yarom et al., 2017); and (2) ICAM2, intracellular adhesion
molecule 2, that mediates adhesive interactions important for
immune response and surveillance and angiogenesis (Figure 2D;
Huang et al., 2005; Halai et al., 2014).

Differentially Expressed Genes of ECs in
the Five Major Organs Based on Age and
Sex
In order to explore if the tissue microenvironment affects the
differential expression of ECs, we performed an organ-specific
analysis based on age and sex. We found gene expression
signatures that distinguish each organ and appear to alter more
with age than sex (Figure 3 and Supplementary Figures 2–6,
Supplementary Tables 3, 4). Interestingly, we found that the
genes Lars2 is differentially expressed in males compared to
females in all five organs in the 3-month group. In contrast,
S100A8 and S100A9 are upregulated in all organs from males
compared to females at 18 months. In addition to various
other functions, these genes are involved in regulating immunity
and inflammation.
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FIGURE 3 | EC gene expression signatures in the five organs. (A) Heat map showing the genes with the highest expression values in males and females in fat, heart

aorta, kidney, limb and lung at 3 months (top) and 18 months (bottom). (B) Venn diagram showing that Lars2 is differentially expressed at 3 months (top) and S100A8

and S100A9 are differentially expressed at 18 months (bottom) in all five organs.

GO Analysis of DEGS in ECs Based on Age
and Sex
To further explore differences in functional characteristics of ECs
based on age and sex, DEGS were submitted to gene ontology
pathway analysis. The overall analysis revealed enrichment in
pathways involving protein targeting, catabolism, mitochondrial
electron transport, IL 1- and IL 2- signaling, and WNT
signaling at 3 months (Figure 4). In contrast, genes involved
in angiogenesis and chemotaxis were enriched in females at 3
months. ECs from males and females at 18 months, however,
had up-regulation in similar pathways involved in inflammation
and apoptosis. When analyzing DEGS stratified by organ
(Figures 5–9), we find that genes enriched in pathways regulating
inflammation and immunity pathways were upregulated in
fat and lung from females. In contrast, these pathways were
upregulated in both male and female ECs from fat, in male ECs
from heart and aorta, in both male and female ECs from the lung,
and inmale ECs from the kidney. ECs from limbmuscles for both
sexes as well as ECs from the heart and aorta were enriched in
genes involved in apoptosis.

Confirmation of Single Cell RNAseq
Findings by qPCR and Western Blot
Importantly, findings from RNAseq were verified by qPCR
including up-regulation of Lars2 in 3-month old males
as well as S100A8 and S100A9 in 18-month old males,

respectively (Figure 10). We also confirmed differential
expression of genes involved in selected pathways (Figure 10).
Further analysis with Western blot showed increased
protein expression in Lars2 and selected proteins involved
in the Wnt pathway (e.g., FZD4 and PFN1) in 3-month
males as well as S100A8 and S100A9 proteins in the
18-month males.

DISCUSSION

Age and sex are major risk factors for many diseases associated
with endothelial dysfunction including obesity (Palmer and
Clegg, 2015; Jura and Kozak, 2016), metabolic syndrome (Chella
Krishnan et al., 2018), coronary artery disease (Nguyen et al.,
2011; Madhavan et al., 2018), diabetes (DECODE Study Group,
2003), hypertension (Gillis and Sullivan, 2016), emphysema
(Barnes, 2016), pulmonary artery hypertension (Lakshmanan
et al., 2020), sarcopenia (Tay et al., 2015), and chronic kidney
disease (Yu et al., 2012). It has been suggested that the female
sex chromosome increases survival and lifespan although the
exact mechanisms remain unclear (Davis et al., 2019). Biological
changes associated with normal chronological aging—including
alterations in the immune system, changes in hormone secretion,
and defects in the cell repair systems as a result of telomere
shortening or cellular mutations—can result in the deterioration
of micro- and macrovascular function that can lead to disease
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FIGURE 4 | Comparison of biological pathways that are upregulated in ECs from all organs in males and females in the young and old cohort. (A) Bar graph showing

the top significant biological pathways that are upregulated in males and females at 3 months. (B) Bar graph showing significant biological pathways that are

upregulated in males and females at 18 months (adjusted P < 0.05).

development (López-Otín et al., 2013). To evaluate whether
age- and sex related differences in EC function are reflected
in the EC transcriptome, we performed an unbiased analysis
of ECs isolated from fat, heart and aorta, lung, limb muscle,

and kidney obtained from the same male and female mice
at 3 months (equivalent to the human age of 20–30 years
old) and 18 months of age (equivalent to the human age of
50–60 years old).
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FIGURE 5 | Comparison of the biological pathways that are upregulated in ECs isolated from fat in males and females in the young and old cohort. (A) Dot plot

showing significant biological pathways that are upregulated in males and females in ECs isolated from fat at 3 months. (B) Dot plot showing significant biological

pathways that are upregulated in males and females in ECs isolated from fat at 18 months (adjusted P < 0.05).
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FIGURE 6 | Comparison of the biological pathways that are upregulated in ECs isolated from heart and aorta in males and females in the young and old cohort. (A)

Dot plot showing significant biological pathways that are upregulated in males and females in ECs isolated from heart and aorta at 3 months. (B) Dot plot showing

significant biological pathways that are upregulated in males and females in ECs isolated from heart and aorta at 18 months.
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FIGURE 7 | Comparison of biological pathways that are upregulated in ECs isolated from lung in males and females in the young and old cohort. (A) Dot plot showing

significant biological pathways that are upregulated in males and females in ECs isolated from lung at 3 months. (B) Dot plot showing significant pathways that are

upregulated in males and females in ECs isolated from lung at 18 months.
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FIGURE 8 | Comparison of biological pathways that are upregulated in ECs isolated from limb muscle in males and females in the young and old cohort. (A) Dot plot

showing the significant biological pathways that are upregulated in males and females in ECs isolated from limb muscle at 3 months. (B) Dot plot showing significant

biological pathways that are upregulated in males and females in ECs isolated from limb muscle at 18 months.
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FIGURE 9 | Comparison of biological pathways that are upregulated in ECs isolated from kidney in males and females in the young and old cohort. (A) Dot plot

showing significant biological pathways that are upregulated in males and females in ECs isolated from kidney at 3 months. (B) Dot plot showing significant biological

pathways that are upregulated in males and females in ECs isolated from kidney at 18 months.
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FIGURE 10 | Expression of selected genes and proteins in aortic ECs. (A) Bar graphs displaying upregulation of the expression of Lars2 as well as genes involved in

the Wnt pathway at 3 months (top) and upregulation of S100A8 and S100A9 at 18-months in males relative to females by quantitative PCR (bottom). (B) Western blot

analysis confirming the expression of Lars2 as well as genes involved in the Wnt pathway are expressed at the protein level (top) and displayed as relative

fold-difference between males and females in a bar graph (bottom). ***P < 0.001; **P < 0.01; and *P < 0.01.

Our analysis revealed that changes in the EC transcriptome
are largely similar between the sexes in each age group.
Consistent with previous studies using mouse and human tissues
(InanlooRahatloo et al., 2017; Kassam et al., 2019), the relative
fold-difference in gene expression of ECs between males and
females in the majority of genes is <50% (average fold change
<1), a finding that is similar across all organs evaluated.
Interestingly, in the entire transcriptome of these organs, Lars2
is the one somatic gene appears to be consistently up-regulated
in males compared to females in the younger age group. Lars2
encodes for a mitochondrial leucyl-tRNA synthetase that affect
aminoacyl-tRNA ligase activity in mitochondria (‘t Hart et al.,
2005; Carminho-Rodrigues et al., 2020). As a part of a unique
group of enzymes that catalyzes the ligation of amino acids to
their cognate tRNAs, Lars2 as well as other aminoacyl-tRNA
synthetases determine the genetic code that is essential for
protein synthesis and cell viability. Abnormalities in aminacyl-
tRNA synthetases have been implicated in the development
of neurological disease, cancer, and auto immune disease
(Park et al., 2008). Interestingly, single nucleotide mutations in
Lars2, perhaps induced by the accumulation of oxidative stress
stimulated by episodes of hyperglycemia and hyperinsulinemia,
has been implicated as a novel type 2 diabetes susceptibility
gene (Kassam et al., 2019). Mutations in Lars2 have also
been associated with sensorineural hearing loss, hydrops, lactic
acidosis, sideroblastic anemia, and multisystem failure (Riley
et al., 2016; Xia et al., 2018). Although the exact function of Lars2

in ECs is unclear, given its basic function in protein synthesis in
mitochondria, further study is warranted to investigate whether
the expression levels of Lars2 mediate phenotypic differences
between younger males and females.

In contrast to their younger counterparts, across all the
organs, the older male mice had upregulation in S100A8
and S100A9 (Vogl et al., 2007), which are Ca2+ binding
proteins in the S100 family that regulate apoptosis, proliferation,
differentiation, migration, energy metabolism, calcium balance,
protein phosphorylation, and inflammation. During cellular
stress, S100A8 and S100A9 is released as a heterodimer (e.g.,
calprotectin) into the extracellular space where it binds to TLR4
and initiate a signaling cascade that regulates inflammation, cell
proliferation, differentiation, and tumor development in an NF-
κB-dependent manner (Turovskaya et al., 2008). Alternatively,
calprotectin can interact with receptor for advanced glycation
end products (RAGE), which activates NF-κB to induce
production of pro-inflammatory cytokines that result in the
migration of neutrophils, monocytes, and macrophages (Yen
et al., 1997; Sorci et al., 2013). Although predominantly
expressed in immune cells, expression of S100A8 and S100A9
is increased in activated endothelial cells under conditions of
oxidative stress, hyperglycemia, and pro-inflammatory stimuli
(McCormick et al., 2005; Sroussi et al., 2009; Yao and Brownlee,
2010; Furman et al., 2019). Taken together, these findings suggest
that age-related changes in the EC tissue microenvironment in
males can promote inflammation, which could account for the
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increased incidence of endothelial dysfunction and its associated
diseases among older middle aged males compared to their
female counterparts.

Consistent with these findings, we found that the differentially
expressed genes in older mice were enriched in pathways related
to inflammation. Aging has long been associated with the
development of inflammation (Donato et al., 2015). Previous
studies have demonstrated that aging endothelial cells acquire
a senescent phenotype characterized by increased secretion of
pro-inflammatory cytokines and chemokines into the micro-
environment (Hoffmann et al., 2001; Uraoka et al., 2011).
Previous studies have shown that senescent endothelial cells
do not migrate, proliferate, or sprout; they have limited
capacity to form new vessels and have reduced numbers
of endothelial progenitor cells; and they do not respond
appropriately to hypoxia (e.g., reduced expression of HIF-
1 alpha and angiogenic factors) (Lin et al., 2015; Rudnicki
et al., 2018). These senescent cells contribute to many non-
communicable age-related chronic diseases including insulin
resistance, CVD, pulmonary arterial hypertension, chronic
obstructive pulmonary disorder, emphysema, Alzheimer’s and
Parkinson’s diseases, macular degeneration, osteoarthritis, and
cancer (Lin et al., 2015). Although the exact reasons why these
cells develop this senescent phenotype is unclear, studies suggest
that both endogenous factors related to biological aging (e.g.,
oxidative stress, telomere shortening, and DNA damage) and
environmental factors (e.g., diet, stress, and chronic infection)
may contribute (Uraoka et al., 2011).

Unlike their older counterparts, younger female mice had
activation of pathways associated with angiogenesis including
activation of genes involved in blood vessel morphogenesis,
VEGF signaling, and endothelial cell migration and organization.
This finding is consistent with previous studies that have shown
that young female mice produce higher levels of proangiogenic
factors and vascularity in response to stress than male mice (Xu
et al., 2019). Angiogenesis is an important adaptive response to
physiological stress and an endogenous repair mechanism after
injury that can be impaired with aging. In contrast to young
female mice, young male mice showed increased expression
of genes involved in the Wnt signaling pathway, which has
been shown to be an important regulator of lifespan, especially
in the earlier stages of life (MacDonald et al., 2009; Franco
et al., 2016). In endothelial cells, Wnt ligands have been shown
to regulate vascular remodeling through their regulation of
endothelial cell survival and proliferation (MacDonald et al.,
2009). Although further study is needed, these findings suggest
that vascular morphogenesis in males and females are regulated
by diverse pathways.

In summary, our unbiased, integrated analysis of the
gene transcriptome has revealed that the EC transcriptome
is largely similar in male and female mice. Older mice,
especially males, have increased expression of genes
involved in immunity and inflammation, which could
contribute to the increased prevalence of age-related
non-communicable diseases associated with endothelial
dysfunction in older men. Future studies are needed to further
elucidate the role of DEGS identified in this study in the
development of disease.

Limitations
The major limitation of this study is that not all of the organs
were collected from both males and females in both age groups.
The five organs that we analyzed, however, represent major
tissues with important physiological function for health. Another
limitation is that single cell sequencing was performed using
different techniques for the young (e.g., plate-seq) and old group
(e.g., dropseq). In the Tabula Muris and Tabula Muris Senis
project, gene expression data from 20 organs were performed
using these two sequencing methods and compared. The study
showed close agreement between the genes, defining each organ-
specific cells cluster for both methods. Moreover, gene expression
analysis showed several hundred genes were differentially
expressed to a similar degrees across organs using both methods.
To address the differences in sequencing methods, in our study,
we perform DEG and pathway analysis separately for each age
group. Within each age group, we calculated the relatively gene
expression only for males and females. Any comparisons between
age groups was performed only on the output of the differential
analysis. Importantly, we performed qPCR on selected genes to
confirm results from the RNAseq analysis.
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and analyzed by organ specific expression, by age group, and by sex. (B) Five
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months and 4 at 18 months) were analyzed. Data for 3 and 18 month were

generated from single cell plateseq and dropseq data from the Tabula Muris

Project, respectively.
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Supplementary Figure 2 | Age and sex differences in gene expression in ECs

from fat. (A) T-SNE visualization of endothelial cells from fat. (B) Violin plots

showing the top genes, defined by their fold change, which were differentially

expressed in fat in males vs. females and in young vs. old.

Supplementary Figure 3 | Age and sex differences in gene expression in ECS

from the heart and aorta. (A) T-SNE visualization of endothelial cells from heart

and aorta. (B) Violin plots showing the top genes that were differentially expressed

in heart and aorta in males vs. females and in young vs. old.

Supplementary Figure 4 | Age and sex differences in gene expression in ECS

from the lung. (A) T-SNE visualization of endothelial cells from lung. (B) Violin plots

showing the top genes that were differentially expressed in lung in males vs.

females and in young vs. old.

Supplementary Figure 5 | Age and sex differences in gene expression in ECS

from the limb muscle. (A) T-SNE visualization of endothelial cells from limb muscle.

(B) Violin plots showing the top genes that were differentially expressed in limb

muscle in males vs. females and in young vs. old.

Supplementary Figure 6 | Age and sex differences in gene expression in ECS

from kidney. (A) T-SNE visualization of endothelial cells from kidney. (B) Violin plots

showing the top genes that were differentially expressed in kidney in males vs.

females and in young vs. old.

Supplementary Table 1 | Genes differentially expressed in both 3 month and 18

month groups.

Supplementary Table 2 | Organ-specific gene signatures.

Supplementary Table 3 | Significant difference in gene expression in each organ

between male and female in 3 Month.

Supplementary Table 4 | Significant difference in gene expression in each organ

between male and female in 18 Month.
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The lung is one of the most common sites of distant metastasis in breast cancer (BC). 
Identifying ideal biomarkers to construct a more accurate prediction model than 
conventional clinical parameters is crucial. MicroRNAs (miRNAs) data and clinicopathological 
data were acquired from the Molecular Taxonomy of Breast Cancer International 
Consortium (METABRIC) database. miR-663, miR-210, miR-17, miR-301a, miR-135b, 
miR-451, miR-30a, and miR-199a-5p were screened to be highly relevant to lung 
metastasis (LM) of BC patients. The miRNA-based risk score was developed based on 
the logistic coefficient of the individual miRNA. Univariate and multivariate logistic regression 
selected tumor node metastasis (TNM) stage, age at diagnosis, and miRNA-risk score 
as independent predictive parameters, which were used to construct a nomogram. The 
Cancer Genome Atlas (TCGA) database was used to validate the signature and nomogram. 
The predictive performance of the nomogram was compared to that of the TNM stage. 
The area under the receiver operating characteristics curve (AUC) of the nomogram was 
higher than that of the TNM stage in all three cohorts (training cohort: 0.774 vs. 0.727; 
internal validation cohort: 0.763 vs. 0.583; external validation cohort: 0.925 vs. 0.840). 
The calibration plot of the nomogram showed good agreement between predicted and 
observed outcomes. The net reclassification improvement (NRI), integrated discrimination 
improvement (IDI), and decision-curve analysis (DCA) of the nomogram showed that its 
performances were better than that of the TNM classification system. Functional enrichment 
analyses suggested several terms with a specific focus on LM. Subgroup analysis showed 
that miR-30a, miR-135b, and miR-17 have unique roles in lung metastasis of BC. 
Pan-cancer analysis indicated the significant importance of eight predictive miRNAs in 
lung metastasis. This study is the first to establish and validate a comprehensive lung 
metastasis predictive nomogram based on the METABRIC and TCGA databases, which 
provides a reliable assessment tool for clinicians and aids in appropriate treatment selection.

Keywords: breast cancer, lung metastasis, microRNA, nomogram, the cancer genome atlas, METABRIC dataset, 
risk score
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INTRODUCTION

Breast cancer (BC) is the most common cancer diagnosed 
(excluding skin cancers) and is the second leading cause of 
cancer death among United  States women (DeSantis et  al., 
2019) and worldwide. Most BC-related deaths are caused by 
distant metastases, which become lethal even after the primary 
lesion being removed (Knott et al., 2018). BC tends to metastasize 
distantly to the bone, brain, liver, lung, and distant lymph 
nodes. Lung metastases particularly tend to occur within the 
initial 5 years of BC diagnosis and significantly impact patients’ 
prognosis (Medeiros and Allan, 2019). Therefore, it is of great 
clinical importance to select patients who are prone to have 
lung metastasis so that they can benefit from prevention 
treatment and early diagnosis.

Currently, the traditional tumor node metastasis (TNM) 
staging system is a standard tool for risk evaluation in clinical 
practice. However, BC patients with the same stage can have 
varying clinical outcomes (Wang et al., 2019). The TNM staging 
system is mainly based on anatomical information, which fails 
to incorporate important pathological parameters and biological 
changes that happened in BC. The mechanisms of the lymphatic 
dissemination and hematogenous dissemination are different, 
which may be  one of the reasons for the poor metastasis 
prediction ability of the TNM staging system. Hence, new 
methods to identify patients who are likely to have lung 
metastasis are needed.

MicroRNAs (miRNAs) are small, non-coding single-stranded 
RNAs (18–25 nucleotides) and negatively regulate gene expression 
by binding to complementary sequences in the 3' untranslated 
region (3' UTR) of mRNAs (Lin and Gregory, 2015). 
Accumulating evidence suggests that miRNAs play critical roles 
in various physiological and pathological processes, including 
many proposed mechanisms of cancer metastasis (Pencheva 
and Tavazoie, 2013). Previous studies have presented the 
association of certain miRNAs with lung metastasis, including 
miR-629-3p, miR-106b-5p, and so on (Schrijver et  al., 2017; 
Wang et al., 2017). However, due to the biological heterogeneity 
of BC, a comprehensive prediction model incorporating multiple 
biomarkers, rather than a single parameter, can improve predictive 
accuracy. Nomograms constructed on the basis of known 
predictive variables are being widely used to predict the specific 
outcome for an individual patient (Iasonos et  al., 2008). There 
have been reports that clinical variables-based nomogram and 
miRNA signature could be  used to predict distant metastasis 
in BC patients (Delpech et  al., 2015; Rohan et  al., 2019), yet 
there is no literature concerning comprehensive lung metastasis 
prediction model. We  hypothesized that our new model based 
on the combination of predictive miRNAs and clinicopathological 
variables could improve the accuracy in predicting lung metastasis 
and prolong survival in BC patients.

Therefore, the purpose of this study was to establish and 
validate a comprehensive nomogram that incorporated both 
the miRNAs signature and clinical-related risk features for the 
individual prediction of lung metastasis status of BC patients. 
The new prediction model was compared with the traditional 
TNM staging system in order to determine its reliability.  

Aiding with this model, clinicians might be  able to evaluate 
the lung metastasis risk of BC patients, thus choosing appropriate 
medical examinations and optimizing therapeutic regimen.

MATERIALS AND METHODS

Datasets Selection and Data Processing
To identify lung metastasis-related miRNA and mRNA in BC, 
public datasets with matched miRNA, mRNA, and clinical data 
were used in this study. A European Genome-phenome Archive 
(RRID: SCR_004944),1 EGAS00000000122 (Molecular Taxonomy 
of Breast Cancer International Consortium, METABRIC miRNA 
landscape; Curtis et  al., 2012; Dvinge et  al., 2013), contains  
a total of 1,302 BC patients with matched mRNA 
(EGAD00010000434) and miRNA (EGAD00010000438) data. 
The inclusion criteria included: (1) samples had lung metastasis 
or no metastasis (NM); (2) samples had both mRNA and miRNA 
expression data; and (3) samples had intact clinical data. Around 
439 patients were selected in subsequent analysis. Among them 
(n  =  439), 327 samples were randomly assigned as a training 
cohort and the rest were assigned as an internal validation cohort 
based on a computer number generator (Supplementary Table S1). 
About 449 of 1,109 BC patients from The Cancer Genome 
Atlas (TCGA) dataset (RRID: SCR_003193) were selected according 
to the same inclusion criteria as an external validation cohort 
(Network, 2012; Supplementary Table S1).2 The method of 
acquisition and application complied with the guidelines and 
policies. It is not necessary to obtain informed patient consent 
for data obtained from the METABRIC and TCGA databases 
since they do not include information that can be  used to 
identify individual patients.

Development of a miRNA-Based Risk 
Score
Among the 439 BC patients in the METABRIC dataset, two 
subsets of patients were defined based on their metastasis 
status: a lung metastasis group (those who had lung metastasis) 
and an NM group (those who did not report metastasis until 
the last follow-up). We  identified 853 miRNAs annotated in 
the METABRIC dataset, and differentially expressed miRNAs 
(DEmiRNAs) between the two groups were identified using 
the LIMMA package of R (Ritchie et  al., 2015; LIMMA, 
RRID:  SCR_010943). Of the top  20 DEmiRNAs with the most 
significant foldchanges, four miRNAs were dropped from highly 
correlated pairs (r  >  0.8, Wei and Simko, 2017). The least 
absolute shrinkage and selection operator (LASSO) method 
(Friedman et  al., 2010) was used to select the most useful 
predictive miRNAs from the 16 lung metastasis-related 
DEmiRNAs in the training cohort and constructed an eight-
miRNA based risk score for predicting lung metastasis status 
of BC patients in the training set. The risk score was calculated 

1 https://www.ebi.ac.uk/ega/home
2 https://portal.gdc.cancer.gov/
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for each patient via a linear combination of selected miRNAs 
that were weighted by their respective coefficients.
 

Risk score Exp
i

i i = ×∑
=1

8

b

An optimal cut-off point was determined using receiver 
operating characteristic (ROC) curve, to classify samples into 
low (≤0.168) and high risk (>0.168) group. The Kaplan-Meier 
(KM) survival analysis with a log-rank test was implemented 
to compare the survival difference between the two groups 
(Kassambara et  al., 2017). Then KM analysis with the log-rank 
test was also implemented to show the relationship between 
the expression of predictive miRNAs and prognosis in external 
validation cohort.

Construction and Validation of 
miRNA-Based LM Predictive Nomogram
Univariate logistic regression analysis was performed to compare 
the predictive power of the eight-miRNA risk score and clinical 
parameters including age at diagnosis, tumor size, TNM stage, 
grade, estrogen receptor (ER) status, progesterone receptor (PR) 
status, human epidermal growth factor receptor 2 (HER2) 
status, and hormone therapy. Furthermore, we used a multivariate 
logistic regression analysis to determine whether the eight-
miRNA risk score could be  an independent predictive factor 
for lung metastasis in BC patients. Other clinical parameters 
with values of p less than 0.1 in the univariate logistic regression 
analysis were also incorporated in the analysis. A composite 
nomogram was constructed based on all independent predictive 
parameters screened by multivariate logistic regression analysis 
above to predict the rate of lung metastasis (Harrell, 2013), 
and to be  a graphic representation of the prediction model.

The ROC curves were plotted to assess the sensitivity and 
the specificity of independent predictive parameters including 
eight-miRNA signature, age at diagnosis, TNM stage, and 
miRNA-based nomogram in predicting lung metastasis (Sing 
et al., 2005). The area under the receiver operating characteristics 
curve (AUC) was also calculated to make a comparison for 
the discriminatory ability of the above predictive parameters. 
Calibration curves were implemented to assess the calibration 
ability of the miRNA-based nomogram, accompanied by the 
Hosmer-Lemeshow test (Kramer and Zimmerman, 2007). The 
predicted and observed outcomes of the nomogram could 
be  compared in the calibration curve, while the 45-degree 
diagonal line represented the ideal prediction. The net 
reclassification improvement (NRI) and integrated discrimination 
improvement (IDI) were used to quantify the improvement in 
sensitivity and specificity offered by our miRNA-based nomogram 
compared to the TNM staging system (Kundu et  al., 2011). 
NRI was based on reclassification tables composed of patients 
with and without events and could quantify the correct 
reclassification in categories (Pencina et al., 2011). IDI summarized 
the extent to which a new model increased risk in patients 
with events and decreased risk in patients without events 
(Pencina et  al., 2008; Chipman and Braun, 2017). We  used 
decision-curve analysis (DCA) to test the clinical applicability 

of our miRNA-based nomogram model by quantifying the net 
benefits at different threshold probabilities. DCA was conducted 
by adding the benefits (true positives) and subtracting the harms 
(false positives; Vickers and Elkin, 2006; Vickers et  al., 2008).

Identification of Potential Targets for 
Predictive miRNAs and Construction a 
miRNA-mRNA Network Associated With 
Lung Metastasis
The target genes of eight predictive miRNAs were first predicted 
and analyzed using miRWalk3.0 (RRID:  SCR_016509; Sticht 
et  al., 2018),3 miRDB (RRID:  SCR_010848; Chen and Wang, 
2020),4 TargetScan (RRID: SCR_010845; Nam et al., 2014),5 and 
miRTarBase (RRID: SCR_017355; Chou et al., 2018).6 An mRNA 
would be  considered as a target of a miRNA if the mRNA 
was predicted to be  the target in all three in silico prediction 
algorithms (miRWalk, miRDB, and miRTarBase) or could be found 
in a experimentally validated database (miRTarBase). We  also 
acquired matched mRNA transcriptome data (RRID: SCR_004944, 
EGAD00010000434) of the patients enrolled in the analysis of 
identifying DEmiRNAs.7 3,791 differentially expressed mRNAs 
(DEmRNAs) between the lung metastasis group and no metastasis 
group were identified using the LIMMA package of R. CytoHubba 
plugin (RRID: SCR_017677) in Cytoscape (RRID: SCR_003032) 
was used to predict the hub genes among the target genes of 
upregulated or downregulated miRNAs (Chin et  al., 2014).8 
miRNA-mRNA networks were also visualized with the 
Cytoscape software.

Functional Enrichment Analysis of Target 
Genes of Predictive miRNAs
For the screened overlapped target genes of each miRNA 
separately or hub genes for upregulated or downregulated 
miRNAs, gene ontology (GO) enrichment analysis and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathways analysis 
were performed (clusterProfiler, RRID:  SCR_016884; Yu et  al., 
2012; Walter et al., 2015). Statistically significant GO and KEGG 
terms (p < 0.05) related to cancer and metastasis were identified.

Identification of miRNAs Unique to Lung 
Metastasis or BC
MicroRNA transcriptome data of BC patients from the TCGA 
dataset were selected to perform two differential miRNA 
expression analyses between different subgroups of BC patients. 
Around 48 DEmiRNAs between patients with lung metastasis 
only and patients with distant metastasis (except for the lung) 
were identified using the DESeq2 package of R (DESeq2, RRID:  
SCR_015687; Love et al., 2014). Around 90 DEmiRNAs between 
patients with distant metastasis (except for the lung) and patients 
without metastasis were identified.

3 http://mirwalk.umm.uni-heidelberg.de/
4 http://www.mirdb.org/
5 http://www.targetscan.org/vert_72/
6 http://mirtarbase.cuhk.edu.cn/php/index.php
7 https://www.ebi.ac.uk/ega/home
8 http://cytoscape.org
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The miRNA expression data and corresponding clinical data 
of the patients of six cancer types [adrenocortical carcinoma 
(ACC), bladder urothelial carcinoma (BLCA), sarcoma (SARC), 
skin cutaneous melanoma (SKCM), cervical squamous cell 
carcinoma and endocervical adenocarcinoma (CESC), and 
stomach adenocarcinoma (STAD)] were downloaded from the 
TCGA database. DEmiRNAs between patients with lung 
metastasis and patients without metastasis were identified in 
each type of cancer using the DESeq2 package of R.

Statistical Analysis
All the statistical analyses were performed with the SPSS 
software (RRID:  SCR_002865) and R software (version 4.0.0; 
RRID: SCR_001905).9,10 A two-sided probability value of p < 0.05 
was considered to be  statistically significant.

RESULTS

Demographic and Clinicopathological 
Characteristics
A total of 479 BC patients from METABRIC and 449 BC 
patients from TCGA were included in this study. Baseline 
clinical and pathological characteristics of the study participants 
in the training and two validation cohorts were listed in Table 1. 
The median age of patients was 61.11, 60.57, and 60  years in 
the training and two validation cohorts, respectively. The rates 
of lung metastasis were 8.26, 7.24, and 3.56% in the training 
and two validation cohorts, respectively.

Identification Candidate Lung 
Metastasis-Related miRNAs in the Training 
Cohort
The METABRIC dataset includes 1,302 BC samples, of which 
479 (36.79%) of them reached the inclusion criteria for the 
analysis of identifying DEmiRNAs. About 327 samples were 
randomly assigned as a training cohort and the rest were 
assigned as the internal validation cohort based on a computer 
number generator. The flow chart of the study design was 
showed in Figure  1. A total of 184 miRNAs (p  <  0.05) were 
identified to be  differentially expressed between patients with 
lung metastasis and patients without metastasis (Figure  2A; 
Supplementary Table S2). Around 20 most significantly 
upregulated and downregulated miRNAs were selected to conduct 
correlation analysis (upregulated in lung metastasis patients: 
miR-663, miR-210, miR-1,202, miR-1973, miR-17, miR-18a, 
miR-301a, miR-135b, miR-20a, miR-17*; down-regulated in lung 
metastasis patients: miR-451, miR-26b, miR-199b-5p, miR-30a*, 
miR-10a, miR-10b, miR-30a, miR-199a-3p, miR-199a-5p, and 
miR-99a; Supplementary Figure S1). Four miRNAs (miR-30a*, 
has-miR-199a-3p, miR-99a, and miR-18a) were dropped from 
highly correlated pairs (r  >  0.8) to reduce multicollinearity 
and improve stability for subsequent model selection.

9 http://www-01.ibm.com/software/uk/analytics/spss/
10 http://www.Rproject.org

Development of an Eight-miRNA Signature 
to Distinguish Lung Metastasis Status in 
BC Patients
In the training cohort, we used LASSO-based logistic regression 
and identified eight miRNAs from the 16 DEmiRNAs, which 
were as follows: miR-663, miR-210, miR-17, miR-301a, 
miR-135b, miR-451, miR-30a, and miR-199a-5p (Figures 2B,C). 
The eight-miRNA based risk score was calculated based on 
their logistic coefficients. An optimal cut-off point was 
determined according to ROC. We  then divided samples into 
a low-risk (risk score  ≤  0.168) and a high-risk (risk 
score  >  0.168) group. The distributions of the miRNA-based 
risk score, overall survival (OS), OS status, and the expression 

TABLE 1 | Demographics of the samples chosen for the study.

Variables Training cohort 
(n = 327)

Internal 
validate cohort 

(n = 152)

External 
validate cohort 

(n = 449)

Median age at 
diagnosis in years 
(IQR)

61.11 (51.09–
68.99)

60.57 (50.94–
70.25)

60.00 (71.00–
67.00)

Median follow up time 
from diagnosis in days 
(IQR)

3,318 (1916–
4,719)

3,144 (1781–
4,479)

343.5 (114–
1,108)

Lung metastasis status
 No metastasis 300 141 433
 Lung metastasis 27 11 16
Pam50 subtype

 Luminal A 151 78 205
 Luminal B 83 37 66
 HER2 26 7 21
 Basal like 46 22 100
 Normal breast-like 21 8 14
 Unknown 0 0 43
TNM stage

 1 203 93 152
 2 114 58 281
 3 8 1 14
 4 2 0 2
ER status

 Positive 259 118 304
 Negative 68 34 124
 Unknown 0 0 21
PR status

 Positive 187 87 270
 Negative 142 65 156
 Unknown 0 0 23
HER2 status

 Positive 41 9 53
 Negative 286 143 248
 Unknown 148
Menopausal state

 Pre 71 32 84
 Post 256 120 312
 Peri 0 0 19
 Unknown 0 0 34
Vital status

 Alive 198 86 435
 Dead 129 66 14

PAM50, prediction analysis of microarray 50; ER, estrogen receptor; PR, progesterone 
receptor; HER2, human epithelial growth factor receptor 2; and TNM, the tumor node 
metastasis.
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profiles of eight miRNAs in the training cohort were shown 
in Figure  2D. The five risky upregulated miRNAs identified 
in lung metastasis cases exhibited high expression in the 
high-risk group and the three protective downregulated miRNAs 
had high expression in the low-risk group. And the patients 
with higher risk scores tended to have poorer prognoses, 
yet failed to reach a significant level (p  =  0.078) (Figure  2E). 
Age stratified analysis indicated that miRNAs-based risk score 
predicted prognosis well in people aged 45–70  years 
(Supplementary Figure S2).

Establishment of a Nomogram for 
Predicting Lung Metastasis Status 
Incorporating miRNAs Signature and 
Clinical-Related Factors
In the training cohort, according to the results of univariate 
logistic regression analysis, the eight-miRNA signature, and 
five clinical risk factors (age at diagnosis, tumor size, grade, 
TNM stage, and HER2 status) with values of p less than 0.1 
were included in multivariate regression analysis for assessing 
the independent risk factors for lung metastasis (Table  2). A 
multivariate logistic regression analysis was used to develop a 
nomogram model and found age at diagnosis, TNM stage, 
and the eight-miRNA signature significantly increased the 
likelihood of lung metastasis (Figure  3). The AUC of the 
miRNA-based nomogram model was 0.774 (95% CI, 0.669–0.879) 
in the training cohort (Table  3; Figure  4A). The calibration 
curve of the miRNA-based nomogram was very close to the 
standard 45-degree diagonal line, which showed good calibration 
in the training cohort (Figure  4D).

Assessment of the Eight-miRNA Signature 
and Nomogram Model in Validation 
Cohorts
We then examined the predictive ability of our eight-miRNA 
signature and nomogram model in two validation cohorts. The 
distributions of the miRNA-based risk score, OS, OS status, 
and the expression profiles of predictive miRNAs in the internal 
validation cohorts have been shown in Supplementary Figure S3A. 
The eight-miRNA signature and miRNA-based nomogram model 
displayed an AUC of 0.754 (95% CI, 0.561–0.946) and 0.763 
(95% CI, 0.597–0.929) for lung metastasis risk prediction, 
respectively (Table  3; Figure  4B). The calibration curve of the 
miRNA-based nomogram also exhibited favorable accordance 
between the predicted risk and the actual risk in the internal 
validation cohort (Figure  4E).

An independent external validation cohort of 449 patients 
who fulfilled the same requirements as above was recruited 
from the TCGA dataset. A total of seven of the eight miRNAs 
identified in our study were found in the TCGA miRNA 
dataset (the exception being miR-663). The distributions of 
the miRNA-based risk score, OS, OS status, and the expression 
profiles of predictive miRNAs in the external validation 
cohorts has been shown in Supplementary Figure S3B. 
Among them, the elevated expression of four miRNAs was 
significantly associated with poorer OS and disease-free 
survival (DFS) (miR-210, miR-451a, miR-135b, and miR-17) 
(Figures 5A–D,F–I). In the meantime, the higher expression 
of miR-30a indicated better OS and DFS (Figures  5E,J). 
Due to the different sequence platforms used in the external 
validation cohort, the risk score of the external validation 

FIGURE 1 | Study design. METABRIC, molecular taxonomy of BC international consortium; LASSO, the least absolute shrinkage and selector operation; KEGG, 
Kyoto encyclopedia of genes and genomes; Abs, absolute value; FC, fold change; miRNA, microRNA; and TCGA, the cancer genome atlas.
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FIGURE 2 | Parameter selection to develop an eight-miRNA signature to distinguish lung metastasis status of breast cancer. (A) Volcano plot of miRNAs expression 
in the METABRIC dataset. (B) 3-fold cross-validation for parameter selection via minimum criteria in the LASSO model. Two dotted vertical lines were drawn at the 
optimal values by using the minimum criteria (the value of lambda that gives a minimum mean cross-validated error) and the one SE of the minimum criteria (the 
value of lambda that gives one SE away from the minimum error). (C) LASSO coefficient profiles of the 16 LM-related differentially expressed miRNAs (DEmiRNAs) in 
the training cohort. Each curve corresponds to a miRNA. The coefficient profile plot was against the log (lambda) sequence. The dotted vertical line was drawn at the 
value lambda = 0.01718646 selected by using 3-fold cross-validation via minimum criteria, where optimal lambda resulted in eight nonzero coefficients. (D) The 
distribution of risk score, overall survival (OS), vital status, and the expression profiles of eight-miRNA in the training cohort. (E) Kaplan-Meier (KM) curves of OS of 
breast cancer patients stratified by eight-miRNA risk score in the training cohort. METABRIC, molecular taxonomy of breast cancer international consortium; LASSO, 
the least absolute shrinkage and selector operation; miRNA, microRNA; LM, lung metastasis; and DEmiRNAs, differentially expressed miRNAs.
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cohort was constructed using seven miRNAs. An optimal 
cut-off point was determined by ROC to dichotomize the 
samples into low and high-risk groups. Patients with higher 
miRNA risk scores tended to have a poorer prognosis than 
those with lower risk scores (Figures  5K,L). Other than 
predicting OS and DFS, the miRNA risk score was also 
significantly associated with the risk of lung metastasis in 
univariate and multivariate logistic regression analysis 
(Table 4). The miRNA signature and miRNA-based nomogram 
model displayed an AUC of 0.711 (95% CI, 0.608–0.815) 
and 0.925 (95% CI, 0.846–1.000) for the estimation of lung 

metastasis risk respectively (Table 3; Figure 4C). The calibration 
plot showed that the predicted risks of the nomogram were 
in good accordance with the actual risks (Figure  4F).

Comparison With Other Prognostic 
Markers
Currently, the conventional TNM staging system is the standard 
tool for risk evaluation in clinical practice. When comparing 
the AUC, we found that the miRNA-based prediction nomogram 
achieved better predictive accuracy than the TNM stage in 
the training cohort and two validation cohorts (Table  3). NRI 
and IDI were employed to compare the discriminative ability 
between our model and the TNM stage. Compared the TNM 
stage alone, the NRI values for miRNA-based prediction 
nomogram were 0.216 (95% CI, 0.048–0.384, value of p = 0.012), 
0.307 (95% CI, 0.020–0.594, value of p  =  0.036) and 0.308 
(95% CI, 0.081–0.535, value of p  =  0.008) in the training 
cohort and two validation cohorts, respectively (Table  5). The 
IDI values for miRNA-based prediction nomogram were 0.065 
(95% CI, 0.015–0.115, value of p  =  0.011), 0.093 (95% CI, 

TABLE 2 | Risk factors for lung metastasis (LM) in training cohort.

Univariate analysis Multivariate analysis

OR (95% CI) p value OR (95% CI) p value

miRNA score 1.898 (1.237–
2.912)

0.0033 1.651 (1.046–
2.606)

0.0311

Age at 
diagnosis

0.583 (0.330–
1.020)

0.0587 0.486 (0.275–
0.862)

0.0134

Tumor size 1.499 (1.148–
1.958)

0.0030

Grade 3.129 (0.824–
11.884)

0.094

TNM stage 3.494 (1.905–
6.407)

<0.0001 4.025 (2.078–
7.795)

<0.0001

ER status 0.738 (0.298–
1.824)

0.511

PR status 1.085 (0.487–
2.416)

0.842

HER2 status 2.759 (1.087–
7.005)

0.0328

Hormone 
therapy

0.563 (0.253–
1.254)

0.1599

LM, lung metastasis; miRNA, microRNA; ER, estrogen receptor; PR, progesterone 
receptor; HER2, human epidermal growth factor receptor 2; and TNM, the tumor node 
metastasis.

TABLE 3 | Area under the receiver operating characteristics curve (AUC) of 
prognostic indicators for lung metastasis in breast cancer (BC).

Variables Training cohort Internal 
validation cohort

External 
validation cohort

miRNA score 0.681 (95% CI, 
0.589–0.774)

0.754 (95% CI, 
0.561–0.946)

0.711 (95% CI, 
0.608–0.815)

Age at diagnosis 0.403 (95% CI, 
0.290–0.516)

0.282 (95% CI, 
0.117–0.448)

0.623 (95% CI, 
0.479–0.768)

TNM stage 0.727 (95% CI, 
0.628–0.825)

0.583 (95% CI, 
0.407–0.759)

0.840 (95% CI, 
0.716–0.963)

Nomogram model 0.774 (95% CI, 
0.669–0.879)

0.763 (95% CI, 
0.597–0.929)

0.925 (95% CI, 
0.846–1.000)

TNM, the tumor node metastasis; AUC, area under the receiver operating 
characteristics curve.

FIGURE 3 | Development and assessment of the miRNA-based nomogram. Constructed a miRNA-based nomogram to predict LM for BC patients in the training 
cohort, with age at diagnosis, stage, and eight-miRNA signature incorporated. LM, lung metastasis; BC, breast cancer; and miRNA, micro RNA.
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0.021–0.165, value of p  =  0.011), and 0.025 (95% CI, −0.048–
0.098, value of p  =  0.500) in the training cohort and two 
validation cohorts, respectively (Table  5). Both NRI and IDI 
indicated a superior predictive ability of our model compared 
to the TNM staging system.

Decision-curve analysis was conducted to compare the clinical 
use of our nomogram to that of the TNM staging system 
(Stewart et  al., 2005; Figures  4G–I). The decision curves in 
both the training and external validation cohorts showed that 
if the threshold probability was between 0 and 0.60 (in the 
internal validation cohort, the threshold probability was between 
0 and 0.40), using the miRNA-based nomogram to predict 
lung metastasis added more benefit than treating either all or 
no patients. DCA also indicated that the net benefit of the 
miRNA-based nomogram model was comparable, with several 
overlaps, or even superior to the TNM staging system. Overall, 
these results suggested the superiority of the miRNA-based 
nomogram for its lung metastasis predictive performance when 
compared to the TNM stage.

Identification of Potential Targets for 
Predictive miRNAs and Their Roles in Lung 
Metastasis
We identified the gene targets for predictive miRNAs using 
in silico predictions (TargetScan, miRWalk, and miRDB) and 
experimentally verified microRNA database (miRTarBase). 
We  also acquired matched mRNA transcriptome data of the 
patients enrolled in the analysis of identifying DEmiRNAs. 
Around 3,791 genes were differentially expressed, of which 
1,710 were upregulated and 2,081 were downregulated 
(Figure  6A; Supplementary Table S3). The benefit of using 
matched mRNA dataset was that it acted as an approach to 
be  the functional validation of targets genes identified by the 
prediction algorithm (Krishnan et  al., 2015). We  further used 
Venn diagram to found the overlap between DEmRNAs and 
the gene targets for miRNAs and proceeded to the subsequent 
analysis (Figure  6B; Supplementary Table S4).

Gene ontology and Kyoto Encyclopedia of Genes and 
Genomes pathway enrichment analyses were performed for 
the overlapped target genes of each predictive miRNAs. Among 
pro-metastatic miRNAs, miR-17 mainly interfered with cell 
cycle arrest (BP), mitotic G1/S transition checkpoint (BP), 
positive regulation of autophagy (BP), signal transduction by 
p53 class mediator (BP), focal adhesion (KEGG), signaling 
pathways regulating pluripotency of stem cells (KEGG), 
regulation of actin cytoskeleton (KEGG), and hippo  
signaling pathway (KEGG; Supplementary Figures S4A,B). 
miR-210 negatively influenced lactate metabolic process  
(BP), post-embryonic animal organ development (BP),  
and negative regulation of vascular permeability (BP; 
Supplementary Figure S4C). Another pro-metastatic miR-663 
potentiated the invasion of tumor cells by targeting actin 
filament polymerization (BP), cell-substrate junction assembly 
(BP), cell-substrate junction assembly (BP), focal adhesion 
assembly (BP), and actin filament organization (BP; 
Supplementary Figure S4D). The protective miR-30a was found 
able to restrain PI3K-Akt signaling pathway (KEGG), Ras 

signaling pathway (KEGG), IL-17 signaling pathway (KEGG), 
estrogen signaling pathway (KEGG), MAPK signaling pathway 
(KEGG), Wnt signaling pathway (KEGG), and ERBB signaling 
pathway (KEGG; Supplementary Figure S4E). No terms were 
enriched in the enrichment analysis of other miRNAs alone.

These miRNAs functioned together in the organism, so then 
we  tried to identify the role of five upregulated or three 
downregulated miRNAs as a whole. Hub genes of the  
target genes for five upregulated or three downregulated  
miRNAs were generated to identify central elements  
of pro-metastatic and anti-metastatic biological networks 
(Supplementary Table S5). miRNA-mRNA interaction networks 
of the hub genes of five upregulated or three downregulated 
miRNAs were plotted (Figures  6C,D). The metastatic cascade 
is composed of a series of sequential events that involve cell 
detachment from the primary tumor, invasion of these cells 
into surrounding tissue, intravasation migration, arrest, and 
extravasation into distant tissues, and formation of metastasis 
(Lambert et  al., 2017). GO analysis was also performed for 
the hub genes of five upregulated or three downregulated 
miRNAs (Figures  6E,F; Supplementary Table S6). We  found 
our predictive miRNAs participated in most of the above events 
and thereby promoting lung metastasis. They suppressed the 
adhesion between cancer cells and matrix facilitated the 
vasculature development and hematogenous metastasis, promoted 
proliferation, and then adapted to the lung so as to form 
the metastasis.

miR-30a and miR-135b Have Unique Roles 
in Lung Metastasis of BC
In order to determine whether these eight predictive miRNAs 
were unique to lung metastasis in BC patients, we  first 
identified DEmiRNAs between patients with lung metastasis 
only and patients with distant metastasis except for the lung 
(Supplementary Tables S7, S8). Baseline clinical and 
pathological characteristics of the study participants in the 
comparison were listed in Table  6. Compared to patients 
with distant metastasis except for the lung, protective miR-30a 
was found to be downregulated in patients with lung metastasis 
only. On the contrary, miR-135b was upregulated in patients 
with lung metastasis only. In addition, we  recognized 
DEmiRNAs between patients with distant metastasis except 
for the lung and patients without metastasis (Table  6; 
Supplementary Tables S7, S8). The expression levels of 
miR-135b and miR-17 were downregulated in patients with 
distant metastasis except for the lung. In order to further 
confirm whether these three miRNAs were lung-metastasis-
specific in BC patients, we  performed dot plots to see their 
expression levels in patients with distant metastasis except 
for the lung, patients with lung metastasis only, and patients 
without metastasis (Figure 7). The expression level of miR-30a 
was extremely low in BC patients with lung metastasis, while 
the expression level of miR-135b was extremely high in BC 
patients with lung metastasis. These analyses of identifying 
DEmiRNAs in different subgroups of BC patients showed 
the unique roles of miR-30a and miR-135b in lung 
metastasis of BC.
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Pan-Cancer Analysis of the Expression 
Levels of Eight Predictive miRNAs in 
Patients With Lung Metastasis and 
Without Metastasis
We performed differential miRNA expression analyses between 
patients with lung metastasis and patients without metastasis 

in six cancer types (ACC, BLCA, SARC, SKCM, CESC, and 
STAD; Supplementary Tables S9, S10). The expression level 
of miR-663 was not detected in these datasets. The distributions 
of the expression levels of these predictive miRNAs in six 
cancer types were also presented (Supplementary Figures S5A–F). 
Combined analyses indicated that compared to patients without 

A B C

D E F

G H I

FIGURE 4 | Assessment of the miRNA-based nomogram. Receiver operating characteristic (ROC) curves of eight-miRNA signature, age at diagnosis, stage, and the 
miRNA-based nomogram model predicting LM in (A) training cohort, (B) internal validation cohort, and (C) external validation cohort. Calibration plots for miRNA-
based nomogram model predicting LM in the (D) training cohort, (E) internal validation cohort, and (F) external validation cohort. Calibration curves depict the 
calibration of the model in terms of the agreement between the predicted risks of LM and the observed outcomes of LM. The y-axis represents the actual LM rate. 
The x-axis represents the predicted LM risk. The dashed line (the 45-degree diagonal line) represents a perfect prediction by an ideal model, and the black solid line 
represents the performance of the nomogram of which a closer fit to the diagonal dotted line represents a better prediction. Decision curve analysis of the miRNA-
based nomogram model and tumor staging system in (G) training cohort, (H) internal validation cohort, and (I) external validation cohort. The y-axis displays the net 
benefit. Solid black line: net benefit when all breast cancer patients are considered as not having the LM; solid gray line: net benefit when all breast cancer patients are 
considered as having LM. Solid red line: net benefit when all breast cancer patients are considered according to the tumor staging system. Solid blue line: net benefit 
when all breast cancer patients are considered according to the miRNA-based nomogram model. The net benefit was calculated by subtracting the proportion of all 
patients who are false positive from the proportion who are truly positive, weighting by the relative harm of giving up treatment compared with the negative 
consequences of unnecessary treatment (Vickers et al., 2008). miRNA, microRNA; ROC, receiver operating characteristic; LM, lung metastasis; and BC, breast cancer.
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FIGURE 5 | Survival curves of BC patients stratified by different variables. KM curves of overall survival of breast cancer patients stratified by (A) mir-210 
expression, (B) mir-17 expression, (C) mir-135b expression, (D) mir-451a expression, (E) mir-30a expression, and (K) miRNA risk score in the external validation 
cohort. Kaplan-Meier curves of disease-free survival of breast cancer patients stratified by (F) mir-210 expression, (G) mir-17 expression, (H) mir-135b expression, 
(I) mir-451a expression, (J) mir-30a expression, and (L) miRNA risk score in the external validation cohort. miRNA, microRNA; BC, breast cancer.
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metastasis, miR-210 was upregulated in ACC and SARC patients 
with lung metastasis. The expression level of miR-199a-5p was 
higher in BLCA patients with lung metastasis, whereas the 
expression level of miR-199a-5p was lower in SARC patients 
with lung metastasis. miR-17 was upregulated in SARC patients 
with lung metastasis. Elevated expression levels of miR-135b 
were detected in ACC patients with lung metastasis. Compared 
to patients without metastasis, the expression level of miR-30a 
was suppressed in ACC patients with lung metastasis.

DISCUSSION

Based on Surveillance, Epidemiology, and End Results (SEER) 
database, the median survival time for BC patients with lung 
metastases was 21  months, and only 15.5% of the patients 
were alive for more than 3  years (Xiao et  al., 2018). Once 
metastasis occurs, the disease is largely incurable. Identifying 
effective predictive biomarkers to construct an accurate 
nomogram model to predict the lung metastasis status of BC 
patients is an advisable choice applied in the clinical practice. 
At present, the TNM staging system is commonly used to 
assess the metastasis probability of BC patients. But as discussed 
above, a single clinical parameter has limited power of outcome 
prediction. We  put forward the idea for the first time that 
BC patients with lung metastasis might have unique 
clinicopathologic characteristics and miRNA expression profiles, 
which could distinguish themselves from those who had no 
lung metastasis.

Subgroup analysis suggested that miR-30a and miR-135b 
have distinct roles in lung metastasis of BC patients. miR-30 
has been reported to be  able to stabilize pulmonary vessels 

and inhibit pulmonary vascular hyperpermeability in the 
premetastatic phase (Qi et  al., 2015). The role of miR-135b 
in BC patients remains controversial. miR-135b reduces the 
proliferation of ERα-positive BC cells (Aakula et  al., 2015), 
but promotes the proliferation and invasion of triple-negative 
breast cancer (TNBC) by downregulating APC expression (Lv 
et al., 2019). TNBC especially tends to metastasize to the lungs 
(Foulkes et al., 2010), which may partly explain the uniqueness 
of miR-135b to the lung metastasis. The precise roles of these 
miRNAs in the lung have been studied to some extent, yet 
further research is needed to fill the gap.

The significance of miRNAs is better appreciated from the 
aspect of their potential functional impact on biological pathways, 
as these influence the outcomes for the patient (Krishnan et al., 
2015). Cancer metastasis is a complicated process, and the 
outcome of metastasis depends on the interactions between 
cancer cells and a given microenvironment. We  could see that 
the targets for the identified miRNAs were enriched for cell 
proliferation, invasion, and migration, which participated in 
the whole regulatory process of metastasis. During lung 
metastasis, metastatic tumor cells will rewrite their biology 
and expression profiles to adapt to the distant microenvironment, 
which endows tumor cells with full competence for outgrowth 
in the lung. Therefore, we  also identified some adaptations 
specific to the lung microenvironment. The target of miR-30a, 
SEMA3A, has been reported to modulate distal pulmonary 
epithelial cell development and alveolar septation, which has 
also been found upregulated in patients with lung metastasis 
(Becker et  al., 2011). Transforming growth factor beta (TGFβ) 
promotes metastasis of BC to the lungs but it is dispensable 
to bone metastasis (Chen et  al., 2018). We  identified “positive 
regulation of TGFβ production” enriched in patients with lung 
metastasis. Terms concerning lung such as “lung development” 
and “epithelial tube branching involved in lung morphogenesis” 
have also been identified in GO analysis.

We also conducted a pan-cancer analysis to figure out 
whether the eight predictive miRNAs were specific to BC. 
Some of the miRNAs had consistent effects in different cancer 
types, such as miR-30a, miR-17, miR-451a, and miR-135b, 
while others showed controversial effects, such as miR-210, 
miR-301a, and miR-199a. Previous studies also identified the 
role of these predictive miRNAs in lung metastasis of other 
types of cancer (Qi et  al., 2015; Kai et  al., 2016; Jin et  al., 
2017; Xu et  al., 2019; Wang et  al., 2020). miR-17, miR-135b, 
and miR-210 facilitate cancer cells to metastasize to the lungs, 

TABLE 4 | Risk factors for lung metastasis in external validation cohort.

Univariate analysis Multivariate analysis

OR (95% CI) p value OR (95% CI) p value

miRNA 
score

2.748 (1.299–
5.816)

0.0082 4.207 (1.440–
12.290)

0.0086

Age at 
diagnosis

1.678 (0.861–
3.268)

0.1277 1.748 (0.811–
3.769)

0.1540

TNM stage 29.345 (9.153–
94.086)

<0.0001 32.540 (8.986–
117.830)

<0.0001

TNM, the tumor node metastasis.

TABLE 5 | The improvement of miRNA-based nomogram in predicting lung metastasis according to net reclassification improvement (NRI) and integrated 
discrimination improvement (IDI).

Training cohort Internal validation cohort External validation cohort

NRI (95% CI) p IDI (95% CI) p NRI (95% CI) p IDI (95% CI) p NRI (95% CI) p IDI (95% CI) p

0.216 (0.048–
0.384)

0.012 0.065 
(0.015–
0.115)

0.011 0.307 (0.020–
0.594)

0.036 0.093 
(0.021–
0.165)

0.011 0.308 (0.081–
0.535)

0.008 0.025 
(−0.048–

0.098)

0.5

NRI, net reclassification improvement; IDI, the integrated discrimination improvement; and P, p value.
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FIGURE 6 | Identification of potential targets for predictive miRNAs and their role in lung metastasis. (A) Volcano plot of mRNAs expression in the METABRIC 
dataset. (B) Venn diagram was plotted to show the overlap between differentially expressed mRNAs (DEmRNAs) and gene targets for predictive miRNAs. The 
overlap of each predictive miRNA was used in subsequent analysis. miRNA-mRNA interaction networks of the hub genes of (C) five upregulated or (D) three 
downregulated predictive miRNAs. Enriched metastasis-related gene ontology (GO) terms of the hub genes of (E) five upregulated or (F) three downregulated 
predictive miRNAs. miRNA, microRNA; METABRIC, molecular taxonomy of breast cancer international consortium; DEmRNAs, differentially expressed mRNAs; and 
GO, gene ontology.
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while miR-30a and miR-451a suppress lung metastasis, which 
exerts similar effects to our results. The lack of research and 
missing data of miR-663 suggests it can serve as an appealing 
target for future research. In addition, the notion that miRNAs 
exert both oncogenic and tumor-suppressive effects has been 
put forward (Rohan et  al., 2019). An individual miRNA could 
regulate the expression of hundreds of genes. The effect of 
miRNA in each situation depends on the balance of the 
pro-tumor and anti-tumor pathways. Multiple biological factors 
can interfere with the balance, such as the interplay between 

cells and microenvironment, energy supply, and so on. Although 
two miRNAs have conflicting roles in pan-cancer analysis, the 
overall consistency indicated the significant importance of these 
eight miRNAs in lung metastasis.

The univariate and multivariate logistic regression analysis 
showed that the eight-miRNA signature could be an independent 
risk factor in training and validation cohorts. The AUC of 
eight-miRNA signature alone for lung metastasis prediction 
showed a little bit smaller than that of the TNM staging 
system in training and external validation cohort. Therefore, 
the comprehensive predictive nomogram was constructed 
integrating the risk score and conventional clinical parameters 
including stage and age, all of which were verified as an 
independent risk factor using univariate and multivariate 
logistic regression analysis for the lung metastasis status of 
BC patients. Apart from AUC, the calibration plot was also 
used to assess the discrimination performance of the nomogram 
model. Although the overall trend was in line with the 45-degree 
ideal diagonal line, yet the calibration plot showed some 
deviation, which may due to the limited events and thus 
affecting the power. NRI, IDI, and DCA were used to evaluate 
the prediction ability between miRNA-based nomogram and 
the TNM staging system. The results of NRI indicated the 
significant improvement of miRNA-based nomogram in all 
three cohorts, and the results of IDI suggested that the 
nomogram model improved the predictive power, yet failed 
to reach a significant level in the external validation cohort. 
DCA results also indicated that our miRNA-based nomogram 
improved current treatment standards, while the ideal model 
was the model with the positive net benefit at any 
given threshold.

However, several limitations of our study should 
be  acknowledged. Firstly, due to the different sequence 
platforms, only seven of eight predictive miRNAs were 
identified in the external validation cohort, so we  did not 
adopt the risk scores and cut-off points generated in the 
training set as previous research suggested (Volinia and Croce, 
2013; Krishnan et  al., 2015; Rohan et  al., 2019). Secondly, 
the limited number of events in the cohorts may affect the 
statistical power. Among DEmiRNAs that were not selected 
by LASSO method, some have also been reported to be related 
to lung metastasis (Ma et  al., 2010). HER2 overexpression 
has been proved to be a risk for the development of visceral-
only metastasis including lung (Bartmann et  al., 2017). 
However, HER2 status reached a significant level in univariate 
logistic regression but failed in multivariate logistic regression, 
so it was not included in the nomogram model. Last but 
not least, we  have emphasized the complexity of miRNA 
regulation previously. Therefore, experiments for revealing 
and verification of their roles in lung metastasis are crucial 
in the future.

In this study, we  constructed a nomogram model based on 
multiple lung metastasis-related miRNAs and clinical risk factors 
to predict the lung metastasis of BC patients. We  screened 
the high-throughput sequence data from the METABRIC database 
to explore DEmiRNAs and used the LASSO method to identify 
an eight-miRNA signature. The risk score was calculated by 

TABLE 6 | Demographics of the samples recruited in subgroup analysis.

Variables lung 
metastasis 
only (n = 6)

distant 
metastasis 

except for the 
lung (n = 54)

without 
metastasis 

(n = 433)

Median age at diagnosis 
in years (IQR)

65 (56–71.5) 57 (47–63.25) 60 (50.5–67.00)

Median follow up 
time from diagnosis in 
days (IQR)

1,233 (645.3–
3,578)

1,096 (190.5–
2,405)

343.5 (109.3–
1,064)

Pam50 subtype
 Luminal A 0 22 201
 Luminal B 1 11 64
 HER2 0 5 21
 Basal like 2 6 94
 Normal breast-like 1 2 13
 Unknown 2 8 40
TNM stage

 1 0 7 151
 2 2 27 276
 3 4 14 5
 4 0 6 1
ER status

 Positive 1 37 115
 Negative 5 12 297
 Unknown 0 5 21
PR status

 Positive 1 31 266
 Negative 5 19 144
 Unknown 0 4 23
HER2 status

 Positive 1 2 52
 Negative 1 17 241
 Unknown 4 35 140
Menopausal state

 Pre 1 12 82
 Post 5 32 299
 Peri 0 2 19
 Unknown 0 8 33
Patient metastatic sites

 Lung 6 0 0
 Bone 0 29 0
 Brain 0 3 0
 Liver 0 7 0
 Multi-organ Metastasis 0 15 0
 No metastasis 0 0 433
Vital status

 Alive 1 16 433
 Dead 5 38 0

PAM50, prediction analysis of microarray 50; ER, estrogen receptor; PR, progesterone 
receptor; HER2, human epithelial growth factor receptor 2; and TNM, the tumor node 
metastasis.
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the multivariate logistic coefficient multiplied by the expression 
of the miRNA. Then the risk score and clinical risk factors 
were combined together to construct a miRNA-based nomogram, 
which was assessed by the calibration plot, ROC analysis, NRI, 
IDI, and DCA. Internal and external validation was also 
performed to evaluate the nomogram model. Functional 
enrichment analyses were performed to identify the potential 
biological roles of eight predictive miRNAs. Subgroup analysis 
of BC patients with different distant metastasis showed that 
miR-30a, miR-135b, and miR-17 have unique roles in lung 
metastasis of BC. Pan-cancer analysis of patients with lung 
metastasis or without metastasis in six types of cancer indicated 
the significant importance of eight predictive miRNAs in lung 
metastasis. A biomarker-based approach to accurately predict 
the metastasis status of BC patients is urgently needed in the 
era of precision medicine. Risk assessment is vital for making 
appropriate therapeutic decisions and follow-up strategies in 
BC patients. If a patient has a high probability to have lung 
metastasis in the future, we  might recommend the patient to 
take a close inspection of the lung and adopt advanced treatment. 
This model might be  able to perform well in all patients, for 
it was constructed based on large-scale datasets. In addition, 
this risk score was also a significant factor in affecting survival. 
Therefore, this nomogram could be used as a supportive graphic 
tool in clinical practice to facilitate treatment decisions of 
BC patients.

CONCLUSION

In our current study, we  identified eight predictive miRNAs 
from publicly available data and constructed an eight-miRNA 
based nomogram that incorporated other clinical parameters 
including stage and age to predict the lung metastasis status 
of BC patients, whose prediction power was better than that 
of conventional TNM stage system. Subgroup analysis suggested 
that miR-30a, miR-135b, and miR-17 may have unique roles 

in lung metastasis of BC patients. On the basis of the GO, 
KEGG enrichment, and pan-cancer analyses, the eight miRNAs 
played crucial roles in lung metastasis cascade. Therefore, our 
eight-miRNA-based nomogram might be  a vital tool for lung 
metastasis prediction in BC patients, aiding in developing 
personalized treatment strategies.
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GLOSSARY

BC Breast cancer
miRNAs MicroRNAs
METABRIC Molecular taxonomy of breast cancer international consortium
DEmiRNAs Differentially expressed miRNAs
TCGA The cancer genome atlas
AUC Area under the receiver operating characteristics curve
TNM The tumor node metastasis
NRI Net reclassification improvement
IDI The integrated discrimination improvement
DCA Decision-curve analysis
LASSO Least absolute shrinkage and selection operator
OS Overall survival
3' UTR 3' untranslated region
KM Kaplan-Meier
ROC Receiver operating characteristic curve
ER Estrogen receptor
PR Progesterone receptor
HER2 Human epidermal growth factor receptor 2
DEmRNAs Differentially expressed mRNAs
GO Gene ontology
KEGG Kyoto encyclopedia of genes and genomes
DFS Disease-free survival
SEER Surveillance, epidemiology, and end results
EMT Epithelial-mesenchymal transition
TGFβ Transforming growth factor beta
ACC Adrenocortical carcinoma
BLCA Bladder urothelial carcinoma
SARC Sarcoma
SKCM Skin cutaneous melanoma
CESC Cervical squamous cell carcinoma and endocervical adenocarcinoma
STAD Stomach adenocarcinoma
LM Lung metastasis
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Dental caries is a multifactorial disease that can be caused by interactions between
genetic and environmental risk factors. Despite the availability of caries risk assessment
tools, caries risk prediction models incorporating new factors, such as human genetic
markers, have not yet been reported. The aim of this study was to construct a new
model for caries risk prediction in teenagers, based on environmental and genetic
factors, using a machine learning algorithm. We performed a prospective longitudinal
study of 1,055 teenagers (710 teenagers for cohort 1 and 345 teenagers for cohort 2)
aged 13 years, of whom 953 (633 teenagers for cohort 1 and 320 teenagers for cohort
2) were followed for 21 months. All participants completed an oral health questionnaire,
an oral examination, biological (salivary and cariostate) tests, and single nucleotide
polymorphism sequencing analysis. We constructed a caries risk prediction model
based on these data using a random forest with an AUC of 0.78 in cohort 1 (training
cohort). We further verified the discrimination and calibration abilities of this caries risk
prediction model using cohort 2. The AUC of the caries risk prediction model in cohort 2
(testing cohort) was 0.73, indicating high discrimination ability. Risk stratification revealed
that our caries risk prediction model could accurately identify individuals at high and
very high caries risk but underestimated risks for individuals at low and very low caries
risk. Thus, our caries risk prediction model has the potential for use as a powerful
community-level tool to identify individuals at high caries risk.

Keywords: caries, risk prediction model, preventive dentistry, biomarkers, biomedical informatics

INTRODUCTION

Permanent teeth caries was the most common chronic disease worldwide in 2016. A previous study
reported that the global cost of dental diseases exceeded 540 billion dollars in 2015 and resulted
in major health and financial burdens (Righolt et al., 2018). Therefore, there is an urgent need for
effective caries control.
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Accumulating evidence has shown a skewed distribution
of caries; the majority of the disease was suffered by the
minority teenagers in the population (Kaste et al., 1996).
The conference of National Institutes of Health Consensus
Development Conference Statement (2001) concluded that a
focus on high-risk individuals was required for the prevention
and control of dental caries (2001). Since caries is largely
preventable, risk prediction models for early and accurate
identification of teenagers at high risk of caries would be useful
tools for designing more cost-effective caries control measures.

As a prerequisite for implementing minimally invasive
treatment programs, caries risk prediction models (CRPMs)
have huge potential in improving patient care because they
allow individuals to choose appropriate non-invasive or invasive
interventions (Domejean et al., 2017). There are four commonly
used standardized caries risk assessment models at present: ADA
(American Dental Association), CAT (Caries-Risk Assessment
Tool), CAMBRA (Caries Management by Risk Assessment), and
Cariogram. All these models included only environmental factors
such as socio-demographic indicators, behavioral factors, plaque
index, the number of Streptococcus mutans, and Lactobacillus,
saliva flow, and salivary buffer capacity (Petersson and Twetman,
2015). Cariogram, one of the better CRPMs, has provided reliable
results for few tests in children, but there is not enough evidence
to prove its effectiveness in caries assessment and prediction.
Cagetti et al. (2018) reported that the sensitivity of Cariogram in
different samples ranged from 41.0 to 75.0%, while the specificity
ranged from 65.8 to 88.0%.

Dental caries is a multifactorial disease caused by complex
interactions between genetic and environmental risk factors.
Environmental risk factors for caries included sugar-rich diet,
poor oral hygiene, dental plaque, high numbers of cariogenic
bacteria, inadequate salivary flow and so on (Selwitz et al.,
2007). Genetic contribution to caries risk score variation has
been reported to be 49.1–62.7% (Haworth et al., 2020). As a
genetically complex phenotype, caries risk may be influenced by
many loci with small contributions individually. These genetic
factors that contribute to caries may include variants in loci for
enamel formation, immune response, saliva, taste, and dietary
habits (Vieira et al., 2014). Enamel formation was tested as
being potentially involved in caries susceptibility. Patir et al.
(2008) reported an association between enamelin (ENAM) and
higher caries experience. Additionally, a relationship between
the genetic variation of tuftelin (TUFT1) and caries could be
detected only when the Streptococcus mutans levels were high
(Slayton et al., 2005).

Therefore, CRPMs based on environmental factors alone may
lead to the loss of useful information. Previous studies have
suggested that constructing a disease risk prediction model with
both environmental and genetic factors can stratify the disease
risk more accurately than either of these factors alone (Li et al.,
2019; Okubo et al., 2020). Accordingly, research is needed to
construct CRPMs based on both genetic and environmental
risk factors and evaluate their abilities to predict caries risk
better. Thus, this prospective study aimed to construct a new
CRPM including both genetic and environmental risk factors in
teenagers of the Chinese population.

MATERIALS AND METHODS

Study Population
This study was approved by the Ethics Committee of the
Guanghua School of Stomatology, Sun Yat-sen University (ERC-
[2018]01). The analysis consisted of two cohorts that began
from March to April 2018 and were followed up for 21 months
until the end, from December 2019 to January 2020, in Foshan,
southern China. The two cohorts included 710 and 345 teenagers
aged 13–14 years. Cohort 1 was used to construct the model,
which included teenagers from two urban and two rural schools.
Cohort 2 was used to evaluate the caries risk prediction model
and included teenagers from one urban and one rural school.
All participants completed an oral health questionnaire, clinical
examination, and donated saliva samples at baseline. Written
informed consent was obtained from the guardians of every
participant before the study.

Oral Health Questionnaire
Under the guidance of their guardians, the adolescents completed
a well-designed oral health questionnaire consisting of three
parts: Part 1 was mainly about demographic information, Part
2 was mainly about socioeconomic information, and Part 3 was
mainly about oral health-related behaviors (Wang et al., 2020a).
The specific variables are as follows:

The variables in part 1: sex, age, residence, whether the child is
an only child in his/her family, and his/her primary caregiver.

The variables in part 2: family income, caregivers’ education
levels, and whether they have dental insurance.

The variables in part 3: frequency of tooth brushing,
flossing or mouthwash habits, toothpaste containing fluoride
or not, professional application of fluoride, frequency of snack
consumption, sweet drink consumption, and attendance in a
dental clinic in the past 6 months.

Clinical Examination
Plaque index (PlI) was evaluated using Silness and Löe’s scale
(Loe, 1967), and six dental indices were recorded. Plaque samples
were collected with sterile swabs, according to the procedural
instructions of the cariostat kit (GangDa Medical Technology Co.
Ltd., Beijing, China). The swabs were then immersed in culture
media in ampules and incubated at 37◦C for 48 h. Finally, the
color of the medium was compared with the reference colors in
the color chart provided by the cariostat kit.

After air drying, each tooth was examined and recorded
as decayed, missing, or filled (DMFT). The caries status was
evaluated according to the International Caries Detection and
Assessment System (ICDAS) criteria (Pitts and Ekstrand, 2013).
Codes 3–6 in the ICDAS system were recorded as decayed teeth.
We also recorded filled and missing teeth due to caries. Oral
examinations were conducted at both the baseline and after
21 months in the classrooms.

The students rinsed their mouths before the collection of
unstimulated saliva. Unstimulated saliva was collected for 15 min.
Students were first asked to swallow all the saliva in the mouth,
then spit all the saliva into the scaled tube every 3 min and
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five times in total. The saliva flow rate (ml/min) was calculated,
and saliva buffering capability was measured according to the
Ericsson method. One milliliter of saliva was added to 3 ml of
3.3 mmol HCl within 5 min after collection and then allowed to
stand for 20 mins. The final pH of the saliva was evaluated by an
electrical pH meter (Wang et al., 2020b).

Selection of Candidate Genetic Markers
and DNA Analysis
Single nucleotide polymorphisms (SNPs) were selected based on
the results of previous studies on caries susceptibility (n = 4)
and screening of tag SNPs (n = 19). We used a candidate
gene approach or related-pathway strategies to screen tag SNPs.
Caries-related pathway genes, such as those involved in enamel
formation, immune responses, saliva secretion, and taste, were
identified based on the pathogenesis of caries. The tag SNPs
were screened as described in our previous study (Wang
et al., 2020b). Thus, 23 target SNPs were detected in all study
participants (Table 1).

From each participant, 2 ml of unstimulated saliva samples
were collected and stored in Oragene DNA Self-Collection kits
(Lang Fu, China) at room temperature until they were processed.
Genomic DNA was extracted from saliva samples according
to the manufacturer’s instructions. DNA samples were first
purified using MassARRAY Nanodispenser (Sequenom,
United States) and then transferred to a SpectroCHIP
(Sequenom, United States) chip. Finally, the SNP markers
were sequenced by matrix-assisted laser desorption/ionization
time-of-flight mass spectrometry (MALDI-TOF MS) (Pang et al.,
2017). First, 10 ng of genomic DNA were amplified by PCR in
a final volume of 0.5 µL containing locus-specific primers at
a final concentration of 10 µmol/L using 0.1-unit HotStarTaq
DNA polymerase (Qiagen, Hilden, Germany). PCR conditions
were 94◦C for 3 min for hot start followed by 40 cycles of
denaturation at 94◦C for 30 s, annealing at 56◦C for 25 s, and
extension for 30 s at 72◦C, and, finally, incubation at 72◦C for
3 min. Then, PCR products were treated with shrimp alkaline
phosphatase (Amersham, Freiburg, Germany) for 40 min at
37◦C to remove excess deoxynucleotide triphosphates followed
by 5 min at 85◦C to inactivate shrimp alkaline phosphatase.
Base extension reaction conditions were 94◦C for 30 s followed
by 40 cycles of 94◦C for 5 s, 52◦C for 5 s, and 80◦C for 5 s,
and, finally, incubation at 72◦C for 3 min. The final base
extension products were treated with SpectroCLEAN resin
(Sequenom) to remove salts from the reaction buffer. A total of
10 nl of the reaction solution was dispensed onto a 384 format
SpectroCHIP microarray (Sequenom, SanDiego, CA). The
MassARRAY Analyzer Compac was used for data acquisitions
from the MassARRAY SpectroCHIP. Genotyping calls were
made in real-time with the Mass Array RT software (Sequenom)
(Pang et al., 2020).

Statistical Analysis
Data of all teenagers in cohort 1 were used to construct a
CRPM with random forest, and those of teenagers from cohort
2 were used to verify this newly constructed model. The logistic

TABLE 1 | Candidate genetic markers evaluated in this study.

Gene Chromosome Marker
public ID

Base pair
exchange

(MAF)

Most severe
consequence

Enamel formation genes

ENAM 4 rs12640848 A/G (0.33) Intron variant

rs3796703 C/T (0.01) Missense(leu)

AMBN 4 rs13115627 A/G (0.30) Intron variant

AMELX X rs946252 C/T (0.31) Intron variant

TFIP11 22 rs134143 T/C (0.35) Non-coding transcript
exon variant

rs2097470 C/T (0.29) Intron variant

MMP20 11 rs1612069 G/T (0.48) Intron variant

rs1784418 C/T (0.42) Intron variant

TUFT1 1 rs17640579 A/G (0.22) Intron variant

rs3790506 G/A (0.25) Intron variant

Immune response genes

DEFB1 8 rs11362 C/T (0.40) 5 prime UTR variant

rs1800972 G/C (0.14) 5 prime UTR variant

LTF 3 rs4547741 C/T (0.07) Intron variant

rs1126478 C/T (0.37) Missense variant

MBL2 10 rs1800450 C/T (0.12) Missense variant

rs11003125 G/C (0.31) Intron variant,
upstream variant 2
KB

MASP2 1 rs10779570 T/G (0.36) Intron variant

Water channel protein gene

AQP5 12 rs1996315 G/A (0.43) Intron variant,
upstream variant 2
KB

rs923911 C/A (0.22) Intron variant,
upstream variant 2
KB

Saliva secretion gene

CA6 1 rs2274327 C/T (0.27) Intron variant,
missense

Taste gene

TAS1R2 1 rs35874116 T/C (0.27) Missense variant

rs9701796 C/G (0.20) missense variant

TAS2R38 7 rs713598 G/C (0.50) Missense variant

regression model was used as a reference for performance
evaluation. When we analyzed the variables associated with the
occurrence and development of caries, the independent variable
included the environmental variables and SNPs. The dependent
variable was DMFT increment (1DMFT) over 21 months of
follow-up, which is the outcome of this study. A previous
study conducted by Chaffee BW (Chaffee et al., 2015) found
that the DMFT increment was about 1.01 in the low caries
risk groups after 18 months of follow-up. Remember that
individuals with DMFT increments of no more than one caries
after 21 months of follow-up should be classified in the low
caries risk group. Chi-square tests were used to identify SNPs
associated with increased risk of caries, and univariate logistic
analysis was used to select environmental factors associated
with caries. Variables with P < 0.1 were considered statistically
significant and used as predictors in the caries risk prediction
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model. R 3.6.1 software was used to construct the model. Using
the data of the training cohort (cohort1), the random forest
package was used to train the random forest model, and the
nTree and mtry parameters were debugged. The random forest
prediction model was the most effective when nTree = 300
and mtry = 2. In the model constructed with cohort 1, we
segmented the population into five different caries risk layers
based on the 5-quantiles: very low, low, moderate, high, and
very high caries risk. Then, we stratified the caries risk in
the cohort 2 (testing cohort) population based on the cutoff
value in cohort 1. The discrimination ability of the model was
evaluated using receiver operator characteristic (ROC) curve
analysis. The calibration ability of the model was measured via
a risk stratification plot, which was used to demonstrate the
similarity of the predicted absolute risk to the absolute observed
risk at different risk levels.

RESULTS

Characteristics of Study Samples
In total, 1,055 teenagers (710 in cohort 1 and 345 in cohort
2) were recruited. The average age at baseline was 13.19 ±

0.40 years (Wang et al., 2020a). The questionnaire was completed
by all teenagers. After 21 months, 953 teenagers (including
633 teenagers in cohort 1 and 320 teenagers in cohort 2)
were followed up. During these 21 months, follow-up was lost
for only 102 (9.66%) teenagers. The main reasons for loss of
follow-up were absence in school or transfer from schools.

The flow chart of the prospective longitudinal study is shown
in Figure 1.

At baseline, 34.37% of the teenagers in cohort 1 and 39.88%
of those in cohort 2 were affected by caries, and the mean (SD)
DMFTs were 0.67 ± 1.25 and 0.84 ± 1.38, respectively. After
21 months, 57.66% of the teenagers in cohort 1 and 63.13% of
those in cohort 2 developed more than one caries (1DMFT > 1).
The mean (SD) increases in DMFTs after 21 months were
2.40 ± 2.97 in cohort 1 and 2.73 ± 3.21 in cohort 2.

Caries Risk Prediction Factors
Table 2 shows the results of a logistic analysis of the
association between environmental variation and caries. Among
the environmental variations, we found that “sex,” “dental
attendance in the past 6 months,” “cariostat score,” and “past
caries experience” were significantly associated with the caries
risk (all P < 0.05).

Table 3 shows the results of the chi-square tests on the
association between SNPs and caries. Among all the SNPs,
rs1996315 (AQP5), and rs3790506 (TUFT1) were significantly
associated with caries risk (all P < 0.05).

CRPM Training and Validation
The CRPM has been developed using logistic regression and
random forest. The performance of CRPM developed using
logistic regression was 0.70 (0.66–0.74) for the training cohort
(Figure 2A) and 0.74 (0.68–0.79) for the test cohort (Figure 2B).
The performance of the random forest was 0.78 (0.75–0.82)
for the training cohort (Figure 3A) and 0.73 (0.67–0.78) for

FIGURE 1 | Flow chart of the prospective longitudinal study.
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TABLE 2 | Logistic analysis of the association between environmental factors and caries.

Characteristics Level 1DMFT ≤ 1
(n = 328)

1DMFT > 1
(n = 305)

P-value

Pit and fissure sealant (%) No 320 (97.6) 296 (97.0) 0.879

Yes 8 (2.4) 9 (3.0)

Sex (%) Female 118 (36.0) 135 (44.3) 0.041*

Male 210 (64.0) 170 (55.7)

Frequency of tooth brushing (%) <1 times/day 7 (2.1) 6 (2.0) 0.127

1 times/day 146 (44.5) 112 (36.7)

2 times/day 175 (53.4) 187 (61.3)

Toothpaste (%) No 1 (0.3) 2 (0.7) 0.95

Yes 327 (99.7) 303 (99.3)

Mouthwash (%) No 243 (74.1) 230 (75.4) 0.771

Yes 85 (25.9) 75 (24.6)

Dental flossing (%) No 301 (91.8) 288 (94.4) 0.247

Yes 27 (8.2) 17 (5.6)

Professional application of fluoride (%) No 313 (95.4) 294 (96.4) 0.68

Yes 15 (4.6) 11 (3.6)

Dental attendance in the past 6 months (%) No 166 (50.6) 122 (40.0) 0.009*

Yes 162 (49.4) 183 (60.0)

One-child family (%) No 250 (76.2) 252 (82.6) 0.059*

Yes 78 (23.8) 53 (17.4)

Activity (%) No 108 (32.9) 107 (35.1) 0.625

Yes 220 (67.1) 198 (64.9)

Cariostat score (%) Low 85 (25.9) 48 (15.7) <0.001*

Medium 198 (60.4) 183 (60.0)

High 45 (13.7) 74 (24.3)

Plaque Index (%) Low 31 (9.5) 23 (7.5) 0.057*

Medium 119 (36.3) 139 (45.6)

High 178 (54.3) 143 (46.9)

Residence (%) Urban 171 (52.1) 151 (49.5) 0.561

Rural 157 (47.9) 154 (50.5)

Toothpaste (%) Non-fluoride 79 (24.1) 91 (29.8) 0.123

Fluoride 249 (75.9) 214 (70.2)

Saliva buffering capability (pH) (%) PH < 3.5 94 (28.7) 94 (30.8) 0.895

PH 3.5–4.24 104 (31.7) 89 (29.2)

PH 4.25–4.75 50 (15.2) 48 (15.7)

PH > 4.75 80 (24.4) 74 (24.3)

Dental insurance (%) No 251 (76.5) 230 (75.4) 0.814

Yes 77 (23.5) 75 (24.6)

Caregiver (%) Mother 194 (59.1) 192 (63.0) 0.151

Father 48 (14.6) 28 (9.2)

Grandparents 17 (5.2) 11 (3.6)

Nursemaid 11 (3.4) 8 (2.6)

No regular
caregiver

58 (17.7) 66 (21.6)

Education of caregiver (%) <9 years 293 (89.3) 272 (89.2) 1

≥9 years 35 (10.7) 33 (10.8)

Household monthly income (CNY) (%) <3,000 54 (16.5) 48 (15.7) 0.97

3,000–7,000 192 (58.5) 180 (59.0)

≥7,000 82 (25.0) 77 (25.2)

(Continued)
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TABLE 2 | Continued

Characteristics Level MDMFT ≤ 1 MDMFT>1 P-value

Frequency of snacks consuming (%) <1 per day 215 (65.5) 211 (69.2) 0.374

Saliva secretion(ml/min)

≥1 per day
<0.1
0.1–0.25
>0.25

113 (34.5)
31 (9.5)
62 (18.9)
235 (71.6)

94 (30.8)
33 (10.8)
60 (19.7)
212 (69.5)

0.801

Frequency of sweet drinks consuming (%) <1 per day 212 (64.6) 193 (63.3) 0.786

≥1 per day 116 (35.4) 112 (36.7)

Past caries experience (%) No 273 (83.2) 170 (55.7) <0.001*

Yes 55 (16.8) 135 (44.3)

1DMFS, mean increment of decayed, missing, or filled surfaces over 21 months. Past caries experience means whether the individual had caries at the baseline
examination or not. Univariate logistic regression was used to analyze the environmental factors related to the occurrence and development of caries. *P < 0.1.

TABLE 3 | Chi-square test analysis of the association between SNPs and caries.

1DMFT ≤ 1 1DMFT>1

SNP Allele 1/2 11 12 22 11 12 22 OR 95% CI P-value

rs10779570 G/T 21 111 196 17 105 183 0.97 0.75–1.26 0.824

rs11003125 C/G 55 173 100 48 170 87 1.02 0.81–1.29 0.860

rs1126478 C/T 163 133 32 144 121 40 1.15 0.91–1.45 0.231

rs11362 C/T 121 161 46 115 138 52 1.06 0.85–1.33 0.604

rs12640848 A/G 219 95 14 198 94 13 1.07 0.81–1.41 0.631

rs13115627 A/G 190 118 20 175 120 10 0.93 0.71–1.21 0.578

rs134143 T/C 152 132 44 129 140 36 1.05 0.83–1.31 0.699

rs1612069 G/T 84 177 67 77 176 52 0.93 0.74–1.18 0.567

rs17640579 A/G 176 133 19 156 121 28 1.17 0.91–1.5 0.214

rs1784418 C/T 95 168 65 77 169 59 1.07 0.85–1.35 0.548

rs1800450 C/T 239 82 7 235 63 7 0.85 0.61–1.16 0.305

rs1800972 G/C 260 60 8 240 63 2 0.93 0.66–1.31 0.671

rs1996315 G/A 110 160 58 116 154 35 0.79 0.62–0.99 0.042*

rs2097470 C/T 170 136 22 150 139 16 1.02 0.79–1.32 0.858

rs2274327 C/T 162 139 27 140 141 24 1.07 0.84–1.37 0.579

rs35874116 C/T 4 58 266 0 77 228 1.31 0.92–1.89 0.138

rs3790506 G/A 187 125 16 158 114 33 1.33 1.04–1.71 0.024*

rs3796703 C/T 309 15 4 287 13 5 1.06 0.64–1.76 0.830

rs457741 C/T 293 32 3 277 28 0 0.76 0.46–1.25 0.283

rs713598 C/G 30 137 161 31 125 149 1.03 0.81–1.31 0.811

rs923911 C/A 199 116 13 201 87 17 0.90 0.69–1.17 0.434

rs946252 C/T 136 54 138 127 66 112 0.93 0.79–1.11 0.440

rs9701796 C/G 204 112 12 194 99 12 0.97 0.74–1.29 0.857

1DMFS, mean increment of decayed, missing, or filled surfaces over 21 months. Chi-square test was used to analyze the SNPs related to the occurrence and development
of caries. *P < 0.05.

the test cohort (Figure 3B). The results showed that the
prediction performance of the CRPM constructed using Random
Forest was stable.

The Gini coefficient of the random forest suggested
that the selected variables in this prediction model could
be arranged as follows according to their importance:
“past caries experience,” “cariostate score,” “plaque index,”
“rs3790506,” “rs1996315,” “gender,” and “whether they were only
teenagers” (Figure 4).

The ability of the CRPM to identify caries risk in individuals
was examined further. A risk stratification plot was created,
in which the data from 320 patients in cohort 2 were sorted
by increasing the predicted risk and separated into five risk
layers: very low, low, medium, high, and very high. Then,
the actual rate of caries incidence after 21 months was
calculated for each risk layer. Figure 5 shows the degree of
discrepancy between the actual and predicted risks for each of
the five risk layers.

Frontiers in Genetics | www.frontiersin.org 6 March 2021 | Volume 12 | Article 636867168

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-636867 March 7, 2021 Time: 16:4 # 7

Pang et al. Constructing Caries Risk Prediction Model

FIGURE 2 | ROC curve of training and testing cohort (Logistic Regression Model). Measurement of the discrimination ability of the caries risk prediction model
(Logistic Regression) with ROC curve. The AUC (95%CI) of the training cohort was 0.70 (0.66–0.74) (A), and the AUC (95% CI) of the testing cohort was 0.74
(0.68–0.79) (B).

FIGURE 3 | ROC curve of training and testing cohort (Random Forest Model). Measurement of the discrimination ability of the caries risk prediction model (Random
Forest) with ROC curves. The AUC of the training cohort was 0.78 (0.75–0.82) (A), and the AUC of the testing cohort was 0.73 (0.67–0.78) (B).

Using the CRPM constructed with the training cohort, we
assigned the participants in cohort 1 into five risk groups based on
the 5-quantiles of the predicted incidence probabilities as follows:
very low, low, medium, high, and very high. The predicted
incidence rates of caries after 21 months in cohort 1 for each
risk layer were 5.60, 16.02, 33.29, 65.06, and 90.51%, respectively,
and the actual incidence rates of caries after 21 months in
cohort 1 for each risk layer were 18.25, 31. 71, 39. 34, 61. 94,
and 87.50%, respectively (Table 4). The numbers of individuals

in the caries layers of cohort 2, i.e., very low, low, medium,
high, and very high, were 48,49,73,102, and 48, respectively, and
the mean DMFT increment in each risk layer are shown in
Table 5; the predicted incidence rates of caries after 21 months
in each risk layer of cohort 2 were 5.41, 16.79, 33.56, 66.20,
and 91.07%, respectively, and the actual incidence rates of caries
after 21 months in each risk layer of cohort 2 were 27.08,
34.69, 47.95, 59.80, and 85.42%, respectively (Table 5). The
risk of new caries was consistently reduced from the extremely
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FIGURE 4 | The Gini coefficient of the random forest.

FIGURE 5 | Risk stratification plot for the training and testing cohort (Random Forest Model). Relationship between observed (orange, 95% confidence intervals) and
predicted (green) scores of new carious lesions for 21 months for the training cohort (A) and the testing cohort (B). The prediction model could accurately estimate
risk for individuals at high and very high caries risk but underestimated risks for individuals at low and very low caries risk.
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TABLE 4 | Actual number of new caries after 21 months: actual and predicted caries incidences in cohort 1.

Caries risk Total number of participants
in cohort 1 (n)

Actual number of new caries
incidence in cohort 1 (n)

Actual caries incidence
in cohort 1 (%)

Predicted caries
incidence in cohort 1 (%)

Very low 126 23 18.25 5.60

Low 123 39 31. 71 16.02

Moderate 122 48 39. 34 33.29

High 134 83 61. 94 65.06

Very high 128 112 87. 50 90.51

TABLE 5 | Actual number of new caries after 21 months: actual and predicted caries incidences in cohort 2.

Caries risk Total number of
participants in cohort 2 (n)

Actual number of new caries
incidence in cohort 2 (n)

Actual caries incidence
in cohort 2 (%)

Predicted caries
incidence in cohort 2 (%)

Caries increment
mean (SD)

Very low 48 13 27.08 5.41 1.25 ± 2.12

Low 49 17 34.69 16.79 1.67 ± 2.63

Moderate 73 35 47.95 33.56 2.39 ± 2.93

High 102 61 59.80 66.20 3.43 ± 3.72

Very high 48 41 85.42 91.07 4.33 ± 2.90

high-risk category to the extremely low-risk category, reflecting
the ability of our newly constructed CRPM to estimate future
caries accurately.

The sensitivity, specificity, positive predictive value, and
negative predictive value of cohorts 1 and 2 are displayed
in Table 6. The positive predictive value was high (>73%)
for those stratified into very high and high caries risk
categories. When the “moderate caries risk” and “low caries risk
“categories were used as a cutoff level, the negative predictive
values were low.

DISCUSSION

In this study, a new caries risk prediction model was constructed,
using both environmental risk factors, such as cariostate score,
plaque index, and past caries experience, and genetic factors as
predictors. To our knowledge, this is the first CRPM constructed
with both environmental and genetic factors, using machine
learning algorithms. We further verified the accuracy of this
prediction model using another independent cohort, and the
results demonstrated that this CRPM could effectively identify
high caries-risk individuals.

It is well recognized that dental caries is a multifactorial
disease. Environmental and genetic factors play important roles
in the occurrence and development of caries (Yildiz et al., 2016).
Combining genetic factors with environmental factors to explain
the incidence of caries is both reasonable and necessary. Being a
polygenetic disease, caries is difficult to predict based on a single
SNP or SNPs of individual genes. Hence, it is necessary to select
SNPs from different candidate genes. In this study, SNPs were
selected based on the results of previous studies, combining tag
SNP screening via related-pathway strategies and candidate gene
approach (Opal et al., 2015). Finally, 23 SNPs from 16 candidate
genes were included in this study. After analyzing the correlation
of each SNP, two SNPs were found to be associated with caries in
the Chinese population.

The SNPs included in the final CRPM described here were
rs3790506 and rs1996315. Of these, rs3790506 is an SNP
of TUFT1, which is involved in enamel development and
mineralization. Previous studies have reported a relationship
between TUFT1 and caries incidence in both children and adults.
Slayton et al. suggested that rs3790506 in TUFT1 interacts with
the Streptococcus mutans present in the oral cavity and further
explained over a quarter of the factors affecting the variability
of caries conditions in teenagers from Iowa, United States

TABLE 6 | Sensitivity, specificity, and predictive values for new caries lesions over 21 months.

Caries risk Sensitivity (%) Specificity (%) PPVa (%) NPVb (%) Youden’s indexc

Cohort 1 Cohort 2 Cohort 1 Cohort 2 Cohort 1 Cohort 2 Cohort 1 Cohort 2 Cohort 1 Cohort 2

Very-high 67.8 65.8 75.0 57.2 95.0 90.0 25.0 22.2 0.43 0.23

High 54.2 59.0 68.7 68.3 73.8 73.5 47.9 52.8 0.23 0.27

Moderate 45.8 34.3 69.0 65.8 48.9 48.0 66.2 52.1 0.15 0.001

Low 41.0 29.4 73.9 62.5 42.1 29.4 72.9 62.5 0.15 0.08

aPPV, positive predictive value.
bNPV, negative predictive value.
cYouden’s index, sensitivity + specificity − 1.
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(Slayton et al., 2005). rs1996315 is a SNP of AQP5, which encodes
a water channel protein expressed in lacrimal and salivary glands
and epithelial cells. Aquaporins play a role in the generation
of tears, saliva, and pulmonary secretions. AQP5 protein also
plays an important role in extracellular matrix hydration during
tooth development (Felszeghy et al., 2004). It has been reported
that variations in AQP5 could contribute to the occurrence and
development of caries (Wang et al., 2012; Anjomshoaa et al.,
2015). Our previous study showed that gene-gene interaction
between rs1996315 and rs923911 was significantly associated
with molar-incisor hypomineralization (Pang et al., 2020). Both
SNPs included in the CRPM constructed in this study were
associated with enamel development. The etiological theory
of dental caries states that enamel characteristics also affect
the pathogenesis of dental caries, although it is not feasible
to detect the physical and chemical characteristics of enamel
in vivo. The identification of variations in enamel-related genes
can indirectly reflect enamel characteristics associated with
the occurrence of dental caries. Although genetic factors were
included in this CRPM, it should be noted that environmental
factors were more dominant than genetic factors. Silva et al.
revealed that, compared to environmental factors, genetic
factors have relatively little influence on the risk of dental
caries, which is consistent with the results of our study
(Silva et al., 2019).

In accordance with the results of traditional CRPMs, such as
the Cariogram model, the CRPM constructed in this study using
a machine learning algorithm identified “past caries experience”
as the strongest predictor of individual risk. Besides the “past
caries experience,” “cariostate score,” “plaque index,” “gender,”
and “whether they were only teenagers in the family” were
also included in this new CRPM. Unlike the Cariogram model,
we used the “cariostate score” instead of “bacterial counts” to
evaluate the cariogenic ability of the dental plaque. Cariostat uses
a colorimetric test to evaluate the acid produced by bacteria in the
plaque (Ramesh et al., 2013). The occurrence of carious lesions is
a dynamic process in which acids produced by bacteria impact
the demineralization of dental tissues (Richards et al., 2017).
When the pH of the tooth surface decreases to a level < 5.5, the
hydroxyapatite (HA) matrix of the tooth starts to demineralize;
Cariostat can assess the activity of the caries microbiology. Unlike
other cariogenic microbiology tests, such as Dentocult SM,
Cariostat assesses bacteria in plaque instead of saliva, leading to
higher accuracy because cariogenic bacteria act on tooth surfaces
in the form of plaque.

An ideal but possibly unrealistic model will correctly
distinguish individuals at risk of a caries event from those who
are not at risk, without any instance of misdiagnosis (Alba
et al., 2017). The extent to which a model can achieve this
goal is represented by two related properties of discrimination
and calibration (Alba et al., 2017). Discrimination refers to
the extent to which the model distinguishes between high-
risk and low-risk participants of an event, usually described
by the receiver operating characteristic (ROC) curve. It is well
recognized that an AUC < 0.6 represents poor discrimination,
while an AUC ≥ 0.7 indicates high discrimination ability
(Fontana et al., 2020). The training set resulted in an AUC

of 0.78 in cohort 1 and 0.73 in cohort 2, indicating high
discrimination ability.

Discrimination alone is not sufficient to evaluate the
performance of a prediction model. The second essential
characteristic of a prediction model is demonstrating the
similarity of the predicted absolute risk to the absolute observed
risk at different risk levels. Calibration is usually considered the
most important characteristic of a prediction model because it
reflects the extent to which a model correctly predicts the absolute
risk (Alba et al., 2017). In terms of accurate estimation, the
model is well-calibrated. The relationship between predicted and
observed risk could be visually represented, allowing efficient
evaluation of the calibration (Alba et al., 2017). We found that
the CRPM constructed in this study can accurately estimate
the risks of individuals at high and very high caries risks but
underestimates those for individuals at low and very low caries
risks. However, this poor calibration may not pose a problem
for low-risk individuals because the purpose of this CRPM is
to identify teenagers at high risk of developing caries for better
prevention and intervention, and the underestimation of patients
at lower risk would be rather irrelevant. Hence, our CRPM
can be considered a useful tool for selecting high caries risk
population in China.

Our study has several limitations. First, although the SNPs
were selected based on the results of previous studies on caries
susceptibility and through screening of tag SNPs from multiple
genes, it cannot be ruled out that some key loci with powerful
diagnostic performance were missed. As an infectious disease,
caries risk will certainly be affected by microorganisms. Even if
we use “cariostate score” to evaluate the cariogenic ability of the
dental plaque, the prediction performance might be influenced
by microbiome markers. Although the ICDAS system was used to
record caries, earlier signs (ICDAS code 1 or 2) of caries were not
detected in our study. In addition, despite external verification
with an independent cohort, further multicenter research is
also highly needed.

In conclusion, we constructed a CRPM based on both
environmental and genetic factors using a machine learning
algorithm. We also estimated the discrimination and calibration
abilities of this CRPM using a separate independent cohort for
validation, demonstrating that this CRPM can accurately identify
a high caries risk population. Our CRPM included specific
patient characteristics, such as SNPs, gender, and whether the
participants were the only child of the respective families, to
provide an estimate of the absolute risk of a specific caries
outcome. Thus, our CRPM can be utilized as a powerful
tool at the community level for identifying high caries risk
groups, enabling policymakers to plan necessary preventive
measures for the future.
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Although the thin endometrium (TE) has been widely recognized as a critical factor

in implantation failure, the contribution of miRNA–mRNA regulatory network to the

development of disease etiology remains to be further elucidated. This study performed

an integrative analysis of the miRNA–mRNA expression profiles in the thin and adjacent

normal endometrium of eight patients with intrauterine adhesion to construct the

transcriptomic regulatory networks. A total of 1,093 differentially expressed genes

(DEGs) and 72 differentially expressed miRNAs (DEMs) were identified in the thin

adhesive endometrium of the TE group compared with the control adjacent normal

endometrial cells. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway analyses showed that the DEGs and the target genes of DEM were

significantly enriched in angiogenesis, cell growth regulation, and Wnt signaling pathway.

Multiple hub genes (CAV1, MET, MAL2, has-mir-138, ARHGAP6, CLIC4, RRAS, AGFG1,

has-mir-200, and has-mir-429) were identified by constructing the miRNA–mRNA

regulatory networks. Furthermore, a miRNA–mRNA pathway function analysis was

conducted, and the hub genes were enriched in the FoxO signaling pathway, cell growth

regulation, inflammatory response regulation, and regulation of autophagy pathways.

Our study is the first to perform integrated mRNA-seq and miRNA-seq analyses in

the thin adhesive endometrium and the control adjacent normal endometrial cells. This

study provides new insights into the molecular mechanisms underlying the formation of

thin endometrium.

Keywords: thin endometrium, transcriptome analysis, miRNA, mRNA, regulatory

INTRODUCTION

The endometrium is an indispensable factor for implantation and pregnancy, and an increase in
endometrial thickness promotes an increased pregnancy rate. An endometrial thickness of <7mm
is usually regarded as sub-optimal for embryo transfer and results in a decreased probability of
pregnancy (Shufaro et al., 2008). For patients with Asherman’s syndrome (AS), repetitive curettage
or invasive endometritis disrupts endometrial regeneration, thus resulting in a fibrotic and thin
endometrium (TE) (Azizi et al., 2018). Patients suffering from thin or fibrotic endometrium
are more susceptible to abnormal menstruation and, particularly, fertility impairments, such as
a decreased pregnancy rate, unfavorable pregnancy outcomes, or recurrent pregnancy loss (Du
et al., 2020). The current AS treatments aim to increase endometrial regeneration with low-dose
aspirin, exogenous estrogen, vitamin E, vaginal sildenafil citrate, cytokines, and colony-stimulating
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factors (CSFs). Nonetheless, these treatments are unable to
attain a satisfactory clinical response in many patients with TE
(Azizi et al., 2018). The definite etiology and physiopathology of
thin endometrium remain largely unclear at present. Therefore,
studies aiming to explore the related molecular mechanism of TE
are urgently needed to guide disease therapy in the future.

A transcriptomic analysis is essential for understanding the
occurrence and pathogenic mechanism of thin endometrium.
Only one existing study has reported the global transcriptomic
abnormalities in thin endometrium at the mid-luteal phase
(Maekawa et al., 2017). The study compared the transcriptomic
profiles between three patients and three normal subjects
using the Gene Chip Human Genome U133 Plus 2.0
Array platform. Finally, 318 genes were upregulated in the
thin endometrium, while 322 genes were downregulated.
According to that study, implantation failure induced by thin
endometrium might be related to the abnormal activation of
the inflammatory environment, together with an abnormally
reduced oxidative stress (OS) response. Nonetheless, researchers
have not clearly elucidated the underlying mechanism of
endometrial regeneration dysfunction in patients with thin
endometrium. Additionally, more studies are needed to
comprehensively characterize how thin endometrium affects the
transcriptomic profiles.

MicroRNAs (miRNAs) are non-protein-coding RNA
molecules with short (20–25) nucleotides. miRNAs bind to target
mRNAs for transcription and translation regulation, including
mRNA degradation, cleavage, or translational repression (Shukla
et al., 2011; Li et al., 2019). miRNAs have been deemed to
participate in the regulation of various cellular processes,
including cellular proliferation, differentiation, apoptosis, and
angiogenesis (Laurent, 2008; Nicoli et al., 2010; Hong et al.,
2019). Recently, more and more miRNAs were found to be
associated with endometrial receptivity (Altmae et al., 2013),
endometrial stromal cell differentiation (Qian et al., 2009),
embryo development (Laurent, 2008), and implantation (Paul
et al., 2019). The expression of miR-27a-3p and miR-124-3p
was downregulated in the endometrium of chronic endometritis
(Di Pietro et al., 2018). The expression of hsa-miR-449a, hsa-
miR-3135b, and hsa-miR-345-3p could promote endometrium
receptivity in preparation for in vitro fertilization and embryo
transplantation (Mu et al., 2020). miR-30 and miR-200 family
members have been repeatedly recognized as important miRNAs
in the regulation of endometrial receptivity (Rekker et al.,
2018). Aberrant miR-200 expression may negatively regulate
endometrial development and decidualization (Jimenez et al.,
2016) and plays an important role in regulating normal
endometrial development and disorders such as endometriosis
and endometrial cancer (Panda et al., 2012). However, few studies
have investigated the effect of miRNA on thin endometrium.
The dysfunction of endometrium cells in TE and how miRNAs
regulate the pathogenesis of TE remain to be elucidated.

Our article aimed to identify the miRNA–mRNA networks
and molecular pathways in women experiencing intrauterine
adhesion (IUA) and to provide additional insights into the
underlying transcriptomic mechanisms by performing RNA-
Seq. The differentially expressed miRNA–mRNA regulatory axis

along with the gene pathway–function network interactions
in thin endometrium was constructed. Our findings supply a
basis to better investigate the biological mechanisms of thin
endometrium and facilitate the formulation ofmolecular targeted
treatments for thin endometrium.

MATERIALS AND METHODS

Tissue Sample Collection
Eight females aged 20–40 years old, with a history of severe IUAs
(Grade III–V) as diagnosed by hysteroscopy at the Reproductive
Medicine Center of The First Affiliated Hospital of the University
of Science and Technology of China, were enrolled in the study.
The severity of IUAs was determined according to the American
Fertility Society classification system (1988 version) (1988).
Scores of 9–12 represented severe adhesions. The thickness of
the endometrium was determined through vaginal ultrasound (at
mid-luteal phase) as the maximum distance between endometrial
interfaces, and the endometrial thickness in all patients was
<7mm. The sample information is described in Table 1. The
endometrial tissue from the IUA (TE group) and adjacent
normal endometrium tissues (AJ-CN group) from eight patients
with severe IUAs (Grade III–V) were analyzed in the present
study. This study was approved and monitored by the Human
Research Ethics Committee of the First Affiliated Hospital of the
University of Science and Technology of China. Each patient
was required to provide a written informed consent prior to
participation in this study. Endometrial tissues were sampled
at mid-luteal phase during the menstrual cycle. Afterwards, the
collected endometrial tissue samples were rinsed with saline to
remove blood and then stored in liquid nitrogen at −80◦C until
subsequent RNA isolation.

RNA Isolation and Library Construction
Total tissue RNAwas extracted using TRIzol reagent (Invitrogen,
Carlsbad, CA, USA), pooled equally, and reverse-transcribed
into cDNAs using the QuantiTect Reverse Transcription Kit
(Qiagen, Valencia, CA, USA) according to the manufacturer’s

TABLE 1 | Information about the sample of patients with thin endometrium

analyzed in our study.

Group Age

(years)

Endometrial

thickness

(mm)

Sample date

(from LMP)

History of

gestation

Score of

IUA

TE 1 31 6.5 20 G3P1 9

TE 2 28 5.6 21 G3P1 10

TE 3 35 4.8 22 G2P1 10

TE 4 32 5.2 21 G2P1 11

TE 5 27 6.4 21 G2P1 10

TE 6 32 5.8 20 G4P1 12

TE 7 37 6.5 22 G3P1 10

TE 8 30 5 21 G2P1 10

LMP, last menstrual period; TE, thin endometrium; history of gestation, G for gestation, P

for parturition.
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specific instructions. The quantity and quality of the extracted
RNA were measured using Nanodrop (Thermo Scientific).
The cDNA library was constructed using KAPA Stranded
RNA-Seq Library Preparation Kit (Illumina) following the
manufacturer’s protocol. The synthetic cDNAswere end-repaired
by polymerase and ligated with “A-tailing” base adaptors. Suitable
fragments were selected for polymerase chain reaction (PCR)

amplification to construct the final cDNA library. The final
double-stranded cDNA samples were verified with Agilent 2100
Bioanalyzer (Agilent Technologies). Sequencing was performed
on an Illumina HiSeq 4000 sequencing platform with 150-bp
paired-end sequencing.

Then, the combined RNA samples were separated using
15% (w/v) denaturing polyacrylamide gel electrophoresis.

TABLE 2 | Gene Ontology analysis of the 1,093 differentially expressed genes between thin endometrium and adjacent normal endometrium.

Term Count P-value Genes

GO:0007155 Cell adhesion 62 1.92E-10 NRP2, MPZL3, CXCL12, PRKX, HMCN2, AZGP1, WISP2, WISP1, CTGF, COL12A1,

AFDN, CEACAM1, EGFL6, ADGRE5, NECTIN4, GRHL2, CTNNA2, JUP, NCAM1,

PGM5, CD36, LAMC3, VCAN, LAMC2, TGFB1I1, MFAP4, ADAM12, AOC3, OLFM4,

ITGA11, PCDHGC3, ALCAM, LAMB3, SORBS1, ITGB8, COMP, MSLN, THBS1,

ENTPD1, DPT, SPP1, HAPLN2, SELP, LPP, MCAM, EMILIN2, TINAGL1, COL4A6,

LAMA2, ITGA9, CDH13, NME1-NME2, CDH16, DSG2, FREM2, CDON, ITGA7,

NLGN4X, DSC2, PDZD2, OMG, MUC16

GO:0030198 Extracellular matrix

organization

31 4.19E-07 MPZL3, ELF3, PDGFA, NPNT, ITGA11, CDH1, SOX9, SMOC2, LAMB3, HPSE,

ITGB8, COMP, THBS1, SPP1, RXFP1, EGFL6, CCDC80, SPINT1, OLFML2A,

COL4A6, COL4A5, LAMA2, ITGA9, BGN, LAMC3, KAZALD1, FBLN5, ITGA7,

LAMC2, VCAN, MFAP5

GO:0090190 Positive regulation of

branching involved in

ureteric bud morphogenesis

9 3.85E-06 NOG, AGTR2, HOXB7, PAX8, SIX4, PAX2, GREM1, SOX9, WNT2B

GO:0045926 Negative regulation of

growth

8 4.46E-05 HIF1A, MT1M, MT2A, MT1H, MT1X, MT1G, MT1F, IGFBP5

GO:0001525 Angiogenesis 29 4.63E-05 NRP2, SAT1, CAV1, HTATIP2, PDGFA, CSPG4, FGF10, PRKX, NOV, TYMP, OVOL2,

UNC5B, CTGF, XBP1, HS6ST1, SOX17, RAMP1, CEACAM1, SCG2, KLF5, MCAM,

ECM1, HOXB3, HIF1A, CLIC4, ID1, PROK1, HIF3A, RBPJ

GO:0086073 Bundle of His cell-Purkinje

myocyte adhesion involved

in cell communication

5 1.30E-04 JUP, DSG2, PKP2, DSC2, DSP

GO:0034329 Cell junction assembly 6 2.99E-04 LIMS2, FERMT2, ILK, FLNC, GRHL2, FLNA

GO:0051145 Smooth muscle cell

differentiation

6 4.63E-04 MEF2C, WNT4, MYOCD, GATA6, HEY2, FGF10

GO:0030336 Negative regulation of cell

migration

15 7.39E-04 PTPRJ, NOG, EPPK1, PLXNB3, DPYSL3, SLC9A3R1, TPM1, SLIT2, WNT4, PKP2,

CLIC4, SFRP2, RRAS, STC1, IGFBP5

GO:0001558 Regulation of cell growth 13 0.001477124 NOV, PRKCQ, SGK1, WISP2, WISP1, CTGF, KAZALD1, FBLN5, FOXM1, RASGRP2,

IGFBP6, CEACAM1, IGFBP5

GO:0055015 Ventricular cardiac muscle

cell development

5 0.001518037 CCNB1, CDK1, HEY2, LMNA, FHL2

GO:0090027 Negative regulation of

monocyte chemotaxis

4 0.001571138 NOV, MINOS1-NBL1, GREM1, SLIT2

GO:0070830 Bicellular tight junction

assembly

8 0.001582947 OCLN, ACTN4, MARVELD2, CLDN3, MARVELD3, CRB3, ECT2, GRHL2

GO:0050679 Positive regulation of

epithelial cell proliferation

11 0.001599078 NOG, OSR1, NME1-NME2, ID1, DLX6, DLX5, FGF10, ESRP2, PAX2, SOX9, IHH

GO:0002576 Platelet degranulation 15 0.001650782 SELP, ACTN4, PDGFA, ACTN1, ECM1, TIMP3, FLNA, CTSW, ORM1, CD36,

LEFTY2, SERPINA3, SERPINA1, THBS1, ORM2

GO:0016055 Wnt signaling pathway 22 0.001694244 NKD1, SPIN1, FERMT2, TLE2, FRZB, SLC9A3R1, APCDD1, WNT2B, CCNE1,

RNF43, DKK3, WNT4, WISP1, RSPO1, CPE, DACT3, SFRP2, RSPO3, KREMEN1,

RNF138, TGFB1I1, LRP4

GO:0045216 Cell–cell junction

organization

6 0.002445448 OCLN, LIMS2, MARVELD2, MARVELD3, NLGN4X, CXADR

GO:0030308 Cell growth negative

regulation

16 0.002889171 PTPRJ, CRYAB, FHL1, FBP1, OSGIN2, FRZB, GREM1, SLIT2, RERG, NOV, AGTR2,

MSX1, SFRP2, DACT3, CDKN2AIP, SOX17

GO:0030514 Negative regulation of BMP

signal transduction pathway

9 0.003034824 RBPMS2, CAV1, NOG, CHRDL1, DKK1, MINOS1-NBL1, SFRP2, GREM1, TOB1
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Subsequently, miRNA fragments with a size of ∼18–28 nt were
separated by gel extraction, followed by RNA purification. The
total RNA of each sample was used to prepare the miRNA
sequencing library, which included the following steps: (1) 3′-
adaptor ligation, (2) 5′-adaptor ligation, (3) cDNA synthesis,
(4) PCR amplification, and (5) size selection of ∼135–155-bp
PCR-amplified fragments (corresponding to ∼15–35 nt small
RNAs). Libraries were quantified and validated with Agilent
2100 Bioanalyzer (Agilent Technologies). Thereafter, the small
RNA library was sequenced using Illumina Hiseq 4000 (Illumina,
San Diego, CA, USA), with a configuration of 50 cycles single
reads according to the manufacturer’s recommendations. All
sequencing procedures were performed by Kang Chen Bio-tech
(Shanghai, China).

mRNA Sequencing and Data Analysis
Raw data were pre-processed using Solexa CHASTITY and
Cutadapt to remove adaptor sequences, ribosomal RNA, low-
quality reads, and other contaminants that may interfere
with assembly. The criteria for this filtering procedure were

set as follows: (1) RNA 5
′

and 3
′

adapters were removed,
respectively, (2) bases with a phred quality score below 20
were clipped from both ends of reads, (3) after low-quality
bases were trimmed, reads containing over two “N” were
discarded, (4) reads with a length shorter than 75 nt were
discarded; and (5) the parameters for BWA v0.5.724 were
set as recommended according to Fastq_clean instructions.

Then, the sequence quality was examined using FastQC v0.11.7.
Afterwards, Hisat2 was utilized to align those trimmed reads
to the reference genome. StringTie (version 1.2.3) was used
to reconstruct the transcriptome. Fragments per kilobase per
million (FPKM) values of genes were normalized with Ballgown
using the default parameters. FPKM ≥0.5 (Cuffquant) was
considered as statistically significant for the next DEG analysis.
RNA sequencing data were deposited into the Gene Expression
Omnibus (GEO accession number GSE160635).

miRNA Sequencing and Data Analysis
The miRNA sequencing data from TE group and AJ-CN group
endometrium cells were analyzed by our previously published
tool, DeAnnIso (Zhang et al., 2016). Briefly, after sequencing,
Bowtie was used for mapping reads into the reference genome.
The aligned reads had no more than “N” mismatches (0–3,
default is 2) in the first “L” bases (≥5, default is 10) of the left
end. Thereafter, those precursor sequence-matched reads were
aligned to the pooled pre-miRNA databases (known pre-miRNAs
in miRBase v21) using the BLAST. The default E-value was set
to 0.01 for BLAST. All the detected isomiRs were aligned with
their canonical miRNAs, the numbers of mapped reads that were
defined as the raw expression levels of that miRNA. To correct for
the difference in read counts between samples, the read counts
were scaled to reads per million (RPM). Small RNA sequencing
data were deposited into the Gene Expression Omnibus (GEO
accession number GSE108966).

FIGURE 1 | Gene Ontology analysis of 1,093 differentially expressed genes between thin endometrium and adjacent normal endometrium.
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Differential Expression Analysis
After excluding the transcripts with a low count, genes with
an FPKM or RPM ≥5 in at least one sample were used for
the analysis. Fold change (FC) and P-value for Fisher’s exact
test was calculated and used when comparing the differentially
expressedmRNAs (DEGs) andmiRNAs (DEMs) between the two
groups. The log2FC derived from the comparisons of the FPKM
or RPM values of the TE group with the AJ-CN group is depicted
(|Log2FC| ≥ 2) and P < 0.05 were selected as the cutoff criteria
to identify significant DEMs and DEGs. Additionally, TargetScan
(Garcia et al., 2011) and miRDB (Wang and El Naqa, 2008) were
used to predict mRNAs targeted by DEMs.

Functional Annotations
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analyses were performed
using the online analysis tool of Annotation Visualization and

Integrated Discovery (https://david.ncifcrf.gov/). The P-value for
Fisher’s exact test was calculated as a result of enrichment degree.
GO term enrichment of biological processes or KEGG pathway
annotations with a P-value cutoff of 0.05 were identified as an
important term in this study.

Construction of the Protein–Protein

Interaction Network
The Search Tool for the Retrieval of Interacting Genes (STRING)
database (http://www.string-db.org/) was used to construct the
PPI network. The obtained interactions included both the known
and the estimated interactions. A requisite confidence value
(pooled score >0.4) was used as the threshold. In addition,
Cytoscape v3.7.1 was utilized to visualize the PPI network, and
CytoHubba functions were employed to identify the hub genes.
Genes with Gene significance >0.2, module membership >0.8,
and P ≤ 0.05 were defined as hub genes.

TABLE 3 | Kyoto Encyclopedia of Genes and Genomes pathway analysis of 1,093 differentially expressed genes between thin endometrium and adjacent normal

endometrium.

Term Count P-value Genes

hsa04270 Vascular smooth muscle

contraction

22 2.32E-06 KCNMA1, ACTA2, CALD1, MRVI1, PRKG1, ITPR3, KCNMB1, ITPR1, PRKCB,

MYL9, ITPR2, PRKCQ, ACTG2, PLA2G4A, PLA2G2A, AVPR1A, PLA2G4F,

CACNA1C, RAMP1, MYLK, ADRA1D, PPP1R14A

hsa04512 Extracellular matrix–receptor

interaction

16 1.06E-04 ITGA11, COL4A6, COL4A5, HMMR, LAMA2, ITGA9, LAMB3, SDC1, CD36, ITGB8,

LAMC3, COMP, ITGA7, LAMC2, THBS1, SPP1

hsa05410 Hypertrophic

cardiomyopathy

15 1.14E-04 ITGA9, ACE, ACTC1, DES, TNNC1, ITGB8, DMD, ITGA7, ITGA11, LMNA, CACNB2,

TPM2, CACNA1C, TPM1, SGCA

hsa04510 Focal adhesion 26 2.73E-04 CAV2, CAV1, ACTN4, PDGFA, MET, ITGA11, ACTN1, BIRC3, FLNC, COL4A6, FLNA,

COL4A5, PRKCB, MYL9, LAMA2, ITGA9, LAMB3, LAMC3, ITGB8, COMP, ILK,

ITGA7, LAMC2, THBS1, MYLK, SPP1

hsa04530 Tight junction 14 0.001241795 CLDN7, OCLN, CLDN4, ACTN4, CLDN3, CRB3, ACTN1, LLGL2, MYL9, CGN,

MYH11, AFDN, MYH14, TJP3

hsa04514 Cell adhesion molecules 18 0.002948225 SELP, CLDN7, OCLN, CLDN4, CADM1, CLDN3, VTCN1, CD276, CDH1, HLA-DMB,

ALCAM, NCAM1, ITGA9, SDC1, ITGB8, NLGN4X, VCAN, HLA-DOB

hsa04750 Inflammatory mediator

regulation of transient

receptor potential channels

14 0.003685506 IL1R1, CYP2J2, CAMK2G, F2RL1, ITPR3, ITPR1, PRKCB, ITPR2, PRKCQ,

PLA2G4A, MAPK13, PLA2G4F, CAMK2A, MAP2K6

hsa04610 Complement and

coagulation cascades

11 0.005535681 C7, CD55, MASP1, C4A, C4B, C3, F3, SERPINA5, SERPINA1, CFI, C4BPA

hsa04670 Leukocyte transendothelial

migration

14 0.013940458 CLDN7, OCLN, CLDN4, ACTN4, CLDN3, ACTN1, CXCL12, PRKCB, MYL9,

CTNNA2, EZR, CXCR4, MAPK13, AFDN

hsa04730 Long-term depression 9 0.020179859 GNAZ, PLA2G4A, GRIA2, PLA2G4F, PRKG1, ITPR3, ITPR1, PRKCB, ITPR2

hsa04911 Insulin secretion 11 0.022698704 KCNMA1, CAMK2G, ADCYAP1R1, SLC2A1, KCNN2, ITPR3, CACNA1C, CAMK2A,

SNAP25, KCNMB1, PRKCB

hsa04020 Calcium signal transduction

pathway

18 0.02706823 PTGER3, TNNC1, ERBB3, CAMK2G, ITPKB, PTGFR, ITPR3, ITPR1, PRKCB, ITPR2,

GNAL, PLN, AVPR1A, CACNA1H, CACNA1C, CAMK2A, MYLK, ADRA1D

hsa00512 Mucin type O-glycan

biosynthesis

6 0.029788794 GALNT3, GCNT3, GALNT4, GALNT18, GALNT12, ST6GALNAC1

hsa05150 Staphylococcus aureus

infection

8 0.033164245 SELP, MASP1, C4A, C4B, C3, CFI, HLA-DMB, HLA-DOB

hsa04720 Long-term potentiation 9 0.033723842 GRIA2, RPS6KA1, CAMK2G, ITPR3, CACNA1C, CAMK2A, ITPR1, PRKCB, ITPR2

hsa04912 GnRH signal transduction

pathway

11 0.034509876 PLA2G4A, MAPK13, CAMK2G, PLA2G4F, ITPR3, CACNA1C, CAMK2A, MAP2K6,

ITPR1, PRKCB, ITPR2

hsa04115 p53 signal transduction

pathway

9 0.036464983 CCNB1, CCNE1, CDK1, CCNB2, MDM4, SFN, THBS1, PERP, GTSE1

hsa04520 Adherens junction 9 0.04891771 PTPRJ, ACTN4, SORBS1, MET, ACTN1, CDH1, AFDN, NECTIN4, CTNNA2

Frontiers in Genetics | www.frontiersin.org 5 March 2021 | Volume 12 | Article 589408179

https://david.ncifcrf.gov/
http://www.string-db.org/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Zong et al. Integrated Transcriptome Analysis in Thin Endometrium

Construction of the DEM–DEG Regulatory

Network
TargetScan (http://www.targetscan.org/) and miRDB (http://
www.mirdb.org/) were utilized to preliminarily predict DEM
target genes. The co-predicted targets were used for further
GO and KEGG pathway enrichment analyses. The genes shared
between DEM targets and DEGs were used to analyze the
miRNA–mRNA pairs, which were maintained to construct the
DEM–DEG regulatory network with Cytoscape. Differentially
expressed target genes were chosen for GO and KEGG pathway
analyses to investigate the miRNA–mRNA regulatory networks
in TE.

RESULTS

Genome-Wide Patterns of the mRNA

Transcriptomic Landscape
Using Illumina Hiseq 4000, 18,354,811 original RNA reads
were obtained from the thin endometrial cells of patients with

IUA, and 21,755,164 reads were obtained from adjacent normal
endometrial cells. After removing adaptor sequences and low-
quality reads, 18,288,140 (thin endometrial cells from patients
with IUA) and 21,745,564 (adjacent normal endometrial cells)
clean reads remained. Then, the genes were normalized to FPKM,
and 15,561 genes were expressed in endometrial tissues from
those eight women.

In the thin adhesive endometrial tissue of the TE group, 374
genes were upregulated, while 719 genes were downregulated
compared to the control adjacent normal endometrial cells
(Supplementary Tables 1, 2). The GO analysis of 1,093 DEGs
identified many genes that were significantly enriched in the
cell adhesion process (GO: 0007155, P = 1.92E-10), negative
regulation of growth (GO: 0045926, P = 4.46E-05), angiogenesis
(GO: 0001525, P = 4.63E-05), cell junction assembly (GO:
0034329, P = 2.99E-04), negative regulation of cell migration
(GO: 0030336, P = 7.39E-04), the Wnt signaling pathway
(GO: 0016055, P = 0.0017), and negative regulation of the
BMP signaling pathway (GO: 0030514, P = 0.003) (Table 2
and Figure 1). A blockade angiogenesis was considered as the

FIGURE 2 | Kyoto Encyclopedia of Genes and Genomes pathway analysis of 1,093 differentially expressed genes between thin endometrium and adjacent normal

endometrium.
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main pathological change in the scarred thin endometrium
(Jiang et al., 2019). Moreover, this study identified several
DEGs-related signaling pathways by performing KEGG pathway
enrichment analysis, including the vascular smooth muscle
contraction pathway, extracellular matrix–receptor interaction,
focal adhesion, tight junction, cell adhesion molecules, calcium
signal transduction pathway, p53 signal transduction pathway,
and adherens junction pathway (Table 3 and Figure 2). The
1,093 DEGs were also compared with the primary associated
changes identified in the transcriptome of the thin endometrium
(Maekawa et al., 2017), and nine commonly upregulated genes
(PDLIM3, FABP3, HIF3A, FILIP1, DPP6, MYOCD, PRKCB,
ALDH1B1, and TRNP1) and 65 commonly downregulated genes
were identified (Supplementary Table 3). The expression of
MYOCD (myocardin), a cardiac-specific co-activator of serum
response factor, was upregulated in thin endometrium, while
ADAM12 (a disintegrin and metalloproteinase 12) expression
was decreased in thin endometrium, and these genes are
associated with the fibrosis process (Li et al., 2018; Mittal et al.,
2019; Nakamura et al., 2019).

Genome-Wide Patterns of the miRNA

Transcriptomic Landscape
First, clean reads were mapped to the human genome, and
then those mapped reads were further matched to miRbase
(V22). Notably, 7,004,583 reads (TE sample) and 5,717,874

reads (AJ-CN sample) were aligned to human pre-miRNAs. A
total of 1,244 known miRNAs were altogether identified in our
endometrial samples. According to the results of the miRNA-seq
analysis, 72 known miRNAs were deemed to be DEMs between
the thin adhesive endometrium of the IUA group and the
control adjacent normal endometrial cells. Among these DEMs,
five miRNAs were upregulated and 67 were downregulated
compared with the control adjacent normal endometrial cells
(Supplementary Table 4). The five upregulated and top 10
downregulated DEMs are shown in Table 4.

TargetScan and miRDB were used to characterize the putative
target mRNAs of the 72 candidate DEMs in thin endometrium
and to better illustrate the functions of DEMs. TargetScan
and miRDB were employed to identify 812 common candidate
target genes for the 15 DEMs (Supplementary Table 5). Then,
GO and KEGG analyses were performed for the 812 target
genes. GO enrichment analyses suggested that the target genes
of multiple DEMs were associated with the regulation of
angiogenesis, MAPK activation, negative regulation of cell
migration, negative regulation of stress fiber assembly, positive
regulation of epithelial cell proliferation, regulation of the
canonical Wnt signaling pathway, and positive regulation of
cell proliferation (Table 5 and Supplementary Figure 1). The
KEGG pathways in which the DEM targeted genes are involved
were discovered, which included the Ras signal transduction
pathway, Hippo signal transduction pathway, MAPK signal

TABLE 4 | The five upregulated and top 10 downregulated differentially expressed miRNAs in thin endometrium.

MATURE-ID PRE-ID MATURE-SEQ Log2 (fold change)

hsa-miR-1-3p hsa-mir-1-2 UGGAAUGUAAAGAAGUAUGUAU 4.369546

hsa-miR-133a-3p hsa-mir-133a-1 UUUGGUCCCCUUCAACCAGCUG 3.602664

hsa-miR-143-3p hsa-mir-143 UGAGAUGAAGCACUGUAGCUC 2.285041

hsa-miR-133b hsa-mir-133b UUUGGUCCCCUUCAACCAGCUA 2.142958

hsa-miR-145-5p hsa-mir-145 GUCCAGUUUUCCCAGGAAUCCCU 1.896256

hsa-miR-34c-5p hsa-mir-34c AGGCAGUGUAGUUAGCUGAUUGC −6.13482

hsa-miR-200a-3p hsa-mir-200a UAACACUGUCUGGUAACGAUGU −5.88598

hsa-miR-200c-3p hsa-mir-200c UAAUACUGCCGGGUAAUGAUGGA −5.57759

hsa-miR-200b-3p hsa-mir-200b UAAUACUGCCUGGUAAUGAUGA −5.57684

hsa-miR-375 hsa-mir-375 UUUGUUCGUUCGGCUCGCGUGA −5.49063

hsa-miR-449c-5p hsa-mir-449c UAGGCAGUGUAUUGCUAGCGGCUGU −5.24102

hsa-miR-429 hsa-mir-429 UAAUACUGUCUGGUAAAACCGU −5.17173

hsa-miR-141-3p hsa-mir-141 UAACACUGUCUGGUAAAGAUGG −5

hsa-miR-449a hsa-mir-449a UGGCAGUGUAUUGUUAGCUGGU −4.92875

hsa-miR-182-5p hsa-mir-182 UUUGGCAAUGGUAGAACUCACACU −4.89552

hsa-miR-34c-5p hsa-mir-34c AGGCAGUGUAGUUAGCUGAUUGC −6.13482

hsa-miR-200a-3p hsa-mir-200a UAACACUGUCUGGUAACGAUGU −5.88598

hsa-miR-200c-3p hsa-mir-200c UAAUACUGCCGGGUAAUGAUGGA −5.57759

hsa-miR-200b-3p hsa-mir-200b UAAUACUGCCUGGUAAUGAUGA −5.57684

hsa-miR-375 hsa-mir-375 UUUGUUCGUUCGGCUCGCGUGA −5.49063

hsa-miR-449c-5p hsa-mir-449c UAGGCAGUGUAUUGCUAGCGGCUGU −5.24102

hsa-miR-429 hsa-mir-429 UAAUACUGUCUGGUAAAACCGU −5.17173

hsa-miR-141-3p hsa-mir-141 UAACACUGUCUGGUAAAGAUGG −5

hsa-miR-449a hsa-mir-449a UGGCAGUGUAUUGUUAGCUGGU −4.92875
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TABLE 5 | Gene Oncology analysis of the identified targets of differentially expressed miRNAs between thin endometrium and adjacent normal endometrium.

Term Count Fold

enrichment

P-value Targeted genes

GO:0007264 Small GTPase-mediated

signal transduction

22 2.37 3.79E-04 RALGPS2, RAB3C, RAP2C, RAP1GDS1, RASGEF1B, RHOQ, ARF6,

PLCE1, RAB43, ARF3, ARF4, ARHGAP1, YWHAQ, RAB5A, RAB14, RRAS,

RHEB, RAB6B, RAP1B, RAB38, RIT2, RAB21

GO:0045944 Positive regulation of

transcription from RNA

polymerase II promoter

43 1.70 8.26E-04 FOSL2, HELZ2, LMO4, EDN1, RHOQ, INO80, EGLN1, PAX3, ZEB1,

ASH2L, PAX7, RARB, PPP3CA, MYC, GABPB2, SATB2, RARG, KLF12,

EPAS1, MET, EOMES, IGF1, DLL1, DDX5, NCL, TET1, RBMX, BCL2L12,

RNF222, FOXP1, PPARGC1B, MYCN, ASCL1, RPS6KA4, EBF3, ETS1,

SP3, JUN, ARF4, ZFPM2, TFAP2D, NR5A2, BMPR1B

GO:0045765 Regulation of angiogenesis 6 7.24 1.02E-03 ETS1, EFNA1, EGLN1, EMP2, VASH2, VASH1

GO:0000045 Autophagosome assembly 8 4.69 1.28E-03 GABARAPL2, GABARAPL1, ATG4B, MAP1LC3B, TRAPPC8, RB1CC1,

WIPI2, TP53INP2

GO:0000187 Activation of MAPK activity 8 4.00 3.32E-03 MAP3K7, PLCE1, NTF3, EFNA1, IGF1, LPAR1, THBS1, FRS2

GO:0030336 Negative regulation of cell

migration

10 3.20 3.64E-03 DLC1, RECK, TMEFF2, PTPRK, RAP2C, CLIC4, SULF1, RRAS, SRGAP1,

SRGAP2

GO:0051592 Response to calcium ion 6 5.13 5.29E-03 CAV1, SLC25A13, ALG2, AHCYL1, PPP3CA, THBS1

GO:0000422 Mitophagy 6 4.39 1.04E-02 GABARAPL2, GABARAPL1, ATG4B, MAP1LC3B, RB1CC1, WIPI2

GO:0051497 Negative regulation of stress

fiber assembly

4 6.31 2.28E-02 DLC1, TMEFF2, ARHGAP6, PPFIA1

GO:0016601 Rac protein signal

transduction

4 6.31 2.28E-02 EPS8, WASF1, ELMO1, NCKAP1

GO:0050679 Positive regulation of

epithelial cell proliferation

6 3.51 2.61E-02 WDR48, NOTCH1, FGF9, IGF1, MYC, FOXP1

GO:0008277 Modulation of G-protein

coupled receptor protein

signal transduction pathway

4 5.86 2.80E-02 PLCE1, GPR158, KCTD16, USP33

GO:0060828 Modulation of canonical Wnt

signal transduction pathway

4 5.47 3.37E-02 AMER1, CCNY, CTNND2, CDK14

GO:0035556 Intracellular signal

transduction

22 1.60 3.52E-02 ARHGEF3, SGK1, NUAK1, PREX1, DSTYK, SPSB4, ITSN1, PLCL2,

RPS6KA4, SNRK, DGKE, PPP1R1C, STAC, GUCY1A3, DGKZ, RGS7,

STK39, DCX, STK38L, PAG1, NET1, SHC4

GO:0007205 Protein kinase C-activating

G-protein coupled receptor

signaling pathway

4 5.13 4.01E-02 GRM5, DGKE, EDN1, DGKZ

GO:0008284 Positive regulation of cell

proliferation

18 1.68 4.05E-02 RARG, PDCD10, NTF3, PTH1R, IGF1, DLL1, PTGFR, TET1, TGFB2, CRKL,

KRAS, ASH2L, HBEGF, RARB, MAB21L1, EMP2, CSF1R, SHC4

transduction pathway, PI3K–Akt signal transduction pathway,
gap junction, p53 signaling pathway, Wnt signal transduction
pathway, and ErbB signal transduction pathway (Figure 3
and Table 6). The PI3K/Akt signal transduction pathway is
suggested to participate in endometrial regeneration induced by
granulocyte macrophage–CSF therapy (Liu et al., 2020).

DEG–DEM Regulatory Network and

Functional Assessment
For the establishment of the DEG-DEM regulatory network, 53
(21 upregulated genes and 32 downregulated genes) overlapping
genes were discovered by comparing the target genes of DEMs
(five were upregulated and 10 were downregulated) with DEGs,
and they were deemed as consistently expressed genes (CEGs)
(Figure 4). The STRING database was used to construct the
PPI network using the CEG list. As shown in Figure 5, CAV1,
MET, MAL2, has-mir-138, ARHGAP6, CLIC4, RRAS, AGFG1,

has-mir-200, and has-mir-429 were the top 10 hub genes that
interacted with the maximum number of nodes. Additionally,
the gene pathway–function interactions were analyzed, and the
identified hub genes showed significant enrichment in negative
regulation of cell growth and inflammatory response regulation.
For a better assessment of how this miRNA–mRNA regulatory
network affected thin endometrium, a KEGG pathway analysis
of CEGs was performed. The miRNA-mediated gene regulatory
network in thin endometrium plays important roles in the
regulation of the FoxO signaling pathway and the regulation of
autophagy (Table 7).

DISCUSSION

IUA, which is characterized by endometrial fibrosis and thin
endometrium, was always regarded as a major cause of female
infertility and a major challenge to clinical therapy. Even
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FIGURE 3 | Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis of the identified targets of differentially expressed miRNAs. Count indicates the

number of predicted target genes.

through a surgical operation combined with hormone treatment,
TE with severe endometrial injuries is difficult to restore.
The previous transcriptomic microarray analysis discovered
318 upregulated genes and 322 downregulated genes in thin
endometrium and revealed the abnormal activation of the
inflammatory environment and an abnormal decrease in the OS
response in thin endometrium (Maekawa et al., 2017). Current
knowledge about the pathogenesis and involvement of miRNA–
mRNA networks in thin endometrium is limited. In this study,
gene expression patterns of thin endometrium along with the
matched control endometrial tissues from women were explored,
and we revealed the abnormal activation of the inflammatory
environment and an abnormal decrease in the OS response in
thin endometrium. To our knowledge, this study is the first
to employ self-controlled transcriptomic analysis to investigate
the regulatory functions of miRNA–mRNA networks of cells
from the mid-secretory thin endometrium and adjacent normal
endometrial cells.

As revealed in our results, some genes were abnormally
expressed at the time of disease onset, revealing that thin
endometrium may have occurred as a type of endometrial
disorder due to the abnormal expression of genes within

endometrial tissues prior to lesion occurrence. Indeed
1,093 genes were significantly differentially expressed in
thin endometrium. A total of 74 DEGs associated with TE in
our study were consistent with a previous study performed
in thin and control endometrial samples using a microarray
(Maekawa et al., 2017), including those that were up-regulated.
Furthermore, our DEG functional enrichment analysis also
revealed the involvement of angiogenesis and negative regulation
of growth and cell migration in thin endometrium. Typically,
during each menstrual cycle, angiogenesis promotes new blood
vessel formation and is crucial for endometrial regeneration
by supplying a vascularized and receptive endometrium for
embryo implantation. Previous studies also show that the
vascular endothelial growth factor (VEGF) could be a regulator
of endometrial angiogenesis. Thus, the differential expression
of VEGF and the blockade of angiogenesis in our study could
be considered as pathological changes of the scarred thin
endometrium (Jiang et al., 2019).

Interestingly, consistent with previous miRNA expression
profiles reported for the recurrent implantation failure
endometrium (Vilella et al., 2015; Rekker et al., 2018),
some upregulated DEMs in TE in our study also belonged
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TABLE 6 | Kyoto Encyclopedia of Genes and Genomes pathway analysis of the identified targets of differentially expressed miRNAs between thin endometrium and

adjacent normal endometrium.

Term Count Fold

enrichment

P-value Targeted genes

cfa05100 Bacterial invasion of

epithelial cells

13 3.92 9.32E-05 ACTB, CAV1, CLTA, WASF1, MET, CLTC, CD2AP, ELMO1, ACTG1, CTTN,

CRKL, GAB1, SHC4

cfa04360 Axon guidance 16 3.08 1.86E-04 GNAI3, EFNA1, MET, NTNG1, L1CAM, EPHA2, SLIT2, SEMA6A, KRAS,

CFL2, CFL1, SEMA3A, PPP3CA, RASA1, SRGAP1, SRGAP2

cfa04014 Ras signaling pathway 22 2.41 2.81E-04 FGF9, GRB2, EFNA1, MET, IGF1, ARF6, EPHA2, KDR, PLCE1, KRAS,

ETS1, GAB1, PDGFRA, RAB5A, RAPGEF5, RRAS, RAP1B, PRKACB,

ABL2, RASA1, CSF1R, SHC4

cfa04390 Hippo signaling pathway 17 2.69 5.28E-04 ACTB, MOB1B, YWHAZ, MPP5, LEF1, SMAD1, TGFB2, AJUBA, ACTG1,

YWHAG, CCND2, PPP2CA, PPP2CB, YWHAQ, BMPR1B, MYC, FBXW11

cfa04010 MAPK signaling pathway 23 2.21 6.38E-04 LAMTOR3, NTF3, FGF9, GRB2, MAP2K4, CACNB3, CACNB4, TGFB2,

MAP3K7, BDNF, CRKL, KRAS, RPS6KA4, DUSP1, JUN, PDGFRA, RRAS,

RAP1B, PRKACB, PPP3CA, MYC, RASA1, DUSP6

cfa04015 Rap1 signaling pathway 20 2.30 9.89E-04 ACTB, GNAI3, FGF9, EFNA1, MET, IGF1, LPAR1, EPHA2, KDR, ACTG1,

PLCE1, CRKL, KRAS, GNAQ, PDGFRA, RAPGEF5, RRAS, RAP1B,

THBS1, CSF1R

cfa04151 PI3K–Akt signaling pathway 27 1.91 1.71E-03 YWHAZ, PPP2R3A, EFNA1, GRB2, FGF9, LPAR1, FOXO3, CCNE2, KRAS,

PPP2CA, PPP2CB, PIK3AP1, THBS1, MYC, CSF1R, SGK1, MET, IGF1,

IL6R, EPHA2, KDR, YWHAG, EIF4E, CCND2, YWHAQ, PDGFRA, RHEB

cfa04350 TGF-beta signaling pathway 10 2.94 6.36E-03 E2F5, PPP2CA, PPP2CB, TGIF2, SMAD1, SKP1, THBS1, BMPR1B, MYC,

TGFB2

cfa04012 ErbB signaling pathway 10 2.74 1.01E-02 CRKL, KRAS, GRB2, JUN, GAB1, MAP2K4, HBEGF, MYC, ABL2, SHC4

cfa04961 Endocrine and other

factor-regulated calcium

reabsorption

7 3.71 1.04E-02 CLTA, AP2B1, ATP1B3, GNAQ, PTH1R, PRKACB, CLTC

cfa04540 Gap junction 10 2.71 1.08E-02 GRM5, GNAI3, KRAS, GNAQ, GRB2, PDGFRA, GJA1, GUCY1A3,

PRKACB, LPAR1

cfa04152 AMPK signaling pathway 12 2.35 1.27E-02 MAP3K7, PPP2R3A, HNF4A, PFKFB3, PPP2CA, PPP2CB, RAB14,

ADIPOR2, IGF1, RHEB, FOXO3, SCD5

cfa04115 p53 signaling pathway 8 2.94 1.81E-02 CCNE2, CCND2, ZMAT3, SHISA5, IGF1, MDM4, THBS1, SESN1

cfa04144 Endocytosis 17 1.74 3.41E-02 CAV1, CLTA, PSD3, VPS37B, ARF6, SNX4, ASAP3, CLTC, DAB2, AP2B1,

CHMP1A, ARF3, PDGFRA, RAB5A, GIT2, STAM, EPN1

cfa04730 Long-term depression 7 2.78 3.82E-02 GNAI3, KRAS, GNAQ, PPP2CA, PPP2CB, GUCY1A3, IGF1

cfa04919 Thyroid hormone signal

transduction pathway

10 2.11 4.61E-02 ACTB, ACTG1, SLC16A2, PLCE1, NOTCH1, KRAS, ATP1B3, RHEB,

PRKACB, MYC

cfa04310 Wnt signal transduction

pathway

11 2.00 4.69E-02 MAP3K7, CTBP2, CCND2, JUN, LEF1, PRKACB, PPP3CA, SKP1,

DAAM1, MYC, FBXW11

to the miR-200 family, including miR-200a-3p, miR-200c-3p,
miR-200c-5p, miR-141-3p, and miR-429. The miR-200 family
has been suggested to target multiple genes that are involved
in cell proliferation, invasion, and inflammation. Thus, the
aberrant expression of miR-200 may negatively regulate the
endometrial development which would result in endometriosis
or endometrial cancer (Panda et al., 2012).

Through analyzing the interactions between DEMs and their
targets, some vital pathways, including MAPK, p53, PI3K–Akt,
and Wnt signal transduction, were found to participate in TE.
As endometrial thickness has been recognized as an important
indicator of endometrial receptivity (Ledee-Bataille et al., 2002),
we thus assume that the abnormalities of these pathways may
compromise the development of the endometrium. For example,
rapid activation of PI3K/Akt signaling cascades by growth factors

and estrogen is involved in the migration of normal endometrial
stromal cells (Gentilini et al., 2007). However, the expression
of DEGs in the PI3K/AKT pathway, including EFNA1, FGF9,
LPAR1, CCNE2, SGK1,MET, IL6R, and PDGFRA, was decreased
in thin endometrium, which suggests that the repair ability of
the thin endometrium was impaired during the proliferative
phase (Le et al., 2016). Similarly, the abnormal Wnt/beta-catenin
signal pathway would also impair the proliferation of estrogen-
dependent endometrial cells (Tepekoy et al., 2015).

In the present study, our miRNA–mRNA regulatory networks
provided a complete profile for the underlying mechanism of
thin endometrium formation, and the hub genes identified in
the networks may play certain roles in the development of
thin endometrium. CAV1 expression is associated with cell
survival and proliferation (Zhao et al., 2013). MET, the receptor
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for insulin-like growth factor, potentially affects the functions
of the endometrium (Satterfield et al., 2008). Therefore, the
present study may provide useful information for understanding

FIGURE 4 | The intersecting mRNAs between the common predicted target

mRNAs and differentially expressed genes.

of the miRNA-mediated changes in mRNA expression in thin
endometrium, and a further understanding of the functions
of miRNA–mRNA networks can provide a new perspective
for future studies examining potentially novel biomarkers and
therapeutic targets.

TABLE 7 | Gene Ontology and Kyoto Encyclopedia of Genes and Genomes

pathway enrichment analyses of consistently expressed genes.

Term Count Fold

enrichment

P-value Genes

GO:0030308—cell growth

negative regulation

2 76.69298 0.025132 OSGIN2, SLIT2

GO:0006954—inflammatory

response

3 10.30204 0.032433 SGK1, THBS1,

PTGFR

GO:0001558—cell growth

regulation

2 20.00686 0.093047 SGK1, IGFBP5

GO:0007605—sensory

perception of sound

2 20.00686 0.093047 CLIC4,

MARVELD2

xtr04068: FoxO signaling

pathway

3 6.969466 0.059369 SGK1,

GABARAPL1

xtr04140: regulation of

autophagy

2 24.34667 0.074102 GABARAPL1

FIGURE 5 | Differentially expressed miRNA–differentially expressed gene regulatory network. The red and green colors denote upregulation and downregulation,

respectively.
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Objective: To examine the associations between sleep quality and health span using a
prospective cohort design based on the UK Biobank (UKB).

Materials and Methods: This longitudinal cohort study enrolled 328,850 participants
aged between 37 and 73 years from UKB to examine the associations between
sleep quality and risk of terminated health span. End of health span was defined
by eight events strongly associated with longevity (cancer, death, congestive heart
failure, myocardial infarction, chronic obstructive pulmonary disease, stroke, dementia,
and diabetes), and a sleep score was generated according to five sleep behavioral
factors (sleep duration, chronotype, sleeplessness, daytime sleepiness, and snoring)
to characterize sleep quality. The hazard ratio (HR) and 95% confidence intervals (CIs)
were calculated by multivariate-adjusted Cox proportional hazards model. Moreover,
we calculated population attributable risk percentage (PAR%) to reflect the public health
significance of healthy sleep quality.

Results: Compared with poor sleep quality, participants with healthy sleep quality had a
15% (HR: 0.85, 95% CI: 0.81–0.88) reduced risk of terminated health span, and those of
less-healthy sleep quality had a 12% (HR: 0.88, 95% CI: 0.85–0.92) reduced risk. Linear
trend results indicated that the risk of terminated health span decreased by 4% for every
additional sleep score. Nearly 15% health span termination events in this cohort would
have been prevented if a healthy sleep behavior pattern was adhered to (PAR%: 15.30,
95% CI: 12.58–17.93).

Conclusion: Healthy sleep quality was associated with a reduced risk of premature end
of health span, suggesting healthy sleep behavior may extend health span. However,
further studies are suggested for confirmation of causality and potential mechanism.

Keywords: sleep quality, sleep score, health span, aging, population attributable risk percent, UK Biobank
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INTRODUCTION

Health span is a significant phenotype that enables individuals
to age in good health without chronic diseases or disability
(Zenin et al., 2019). Although global life expectancy has increased
(Gbd 2016 Mortality Collaborators, 2017), aging populations
often suffer functional health loss, and absolute expansion of
morbidity (Jagger et al., 2008; Gbd 2015 DALYs and Hale
Collaborators, 2016). Due to the significance of sleep and the
fact that humans spend one-third of their lives asleep, there is
growing interest in sleep behavior as a determinant of health
span (Kay and Dzierzewski, 2015). Moreover, an alarming
number of individuals suffer from sleeping problems and sleep
deprivation worldwide. It was estimated that over 36% of the
global population are suffering from sleep loss (Kryger et al.,
2017), and nearly 50–70 million Americans chronically suffer
from sleeplessness and sleep-related disorders, which hinder daily
functioning and adversely affect health and longevity (Institute of
Medicine Committee on Sleep Medicine and Research, 2006).

Poor sleep moderates biological responses such as increased
oxidative stress, altered inflammatory and coagulatory
responses, neural autonomic control changes, and accelerated
atherosclerosis (Kryger et al., 2017; Tobaldini et al., 2017),
which also show the profound impact of sleep on maintaining
individual health status. Recent studies revealed that sleep
quality is associated with cardiometabolic health and mortality
(Karthikeyan et al., 2019; Fan et al., 2020), as well as epigenetic
and skin aging, frailty, and mental health (Lo et al., 2014;
Oyetakin-White et al., 2015; Carskadon et al., 2019; Sun
et al., 2020). Abnormal sleep duration (both short and long
sleep duration) was associated with a higher risk of total
cardiovascular diseases (CVDs), chronic heart disease (CHD),
stroke, and myocardial infarction (MI) (Mesas et al., 2010;
Cappuccio et al., 2011; Daghlas et al., 2019). Therefore, it is
essential to pay particular attention to sleep problems.

Although the associations of sleep behavioral factors with
morbidity and mortality risk are documented (Merikanto et al.,
2013), the evidence related to health span is still insufficient and
uncertain, especially from the perspective of integrating multiple
sleep behaviors. Most of the studies were limited by their modest
sample sizes, the inclusion of patients with certain diseases at
baseline, short follow-up, or insufficient confounder control,
leading to inconsistency in the findings (Cappuccio et al., 2011;
Yin et al., 2017). To fill this void, we integrated eight predominant
health span-terminating events (Zenin et al., 2019) and adopted a
sleep score consisting of five sleep behavioral factors (chronotype,
sleep duration, sleeplessness/insomnia, snoring, and daytime
sleepiness) as a measurement for sleep quality. Therefore, our
study aimed to assess the associations between sleep quality
and health span based on a large-scale prospective cohort
[UK Biobank (UKB)].

MATERIALS AND METHODS

Study Population
The study population was composed of 328,850 participants
of the UKB, a large-scale prospective cohort study with over

500,000 participants recruited between 2006 and 2010 across the
United Kingdom. A detailed description of the UKB project is
reported elsewhere (Sudlow et al., 2015). Briefly, the participants
(aged from 37 to 73 years) attended one of 22 assessment
centers in England, Wales, and Scotland, where they completed
baseline questionnaires, underwent various physical assessments,
and reported medical conditions. The North West Multicenter
Research Ethical Committee approved the UKB project, and
participants’ consent was obtained.

Before performing the analysis in this study, we pruned
the data for suitability. First, we excluded 72,477 and 29,027
participants whose health span had terminated prior to the
baseline according to in-patient hospital admissions data (UKB
data category 2000) and self-reported diagnoses obtained via
verbal interview (UKB data category 100074), respectively.
Additionally, 72,153 participants with missing sleep-related data
were excluded. Finally, 328,850 participants of the UKB were
included in this study (Supplementary Figure 1).

Ascertainment of Sleep Behaviors
The self-reported sleep behaviors (chronotype, sleep duration,
sleeplessness/insomnia, snoring, and daytime sleepiness) were
measured in the UKB using a standardized questionnaire. Except
for sleep duration and snoring, the responses were measured
on Likert scales from “never/rarely” to “usually” experiences
(Fan et al., 2020). Chronotype means the tendency for earlier
or later timing of sleep. An individual who prefers going
to bed and waking earlier is considered a “morning person,”
while a person who prefers going to bed and waking late is
considered an “evening person” (Jones et al., 2019). Chronotype
preference was assessed with the question “Do you consider
yourself to be (i) “definitely a morning person,” (ii) “more a
morning than evening person,” (iii) “more an evening than
morning person,” or (iv) “definitely an evening person.” For
sleep duration, participants responded to the question “About
how many hours sleep do you get in every 24 h? (including
naps)” with responses in hourly increments. Experience of
sleeplessness/insomnia symptom was assessed with the question
“Do you have trouble falling asleep at night or do you wake
up in the middle of the night?” and the responses were
given in 3-point Likert scale (never/rarely; sometimes; usually).
Habitual snoring was assessed with the question “Does your
partner or a close relative or friend complain about your
snoring?” with responses of (i) yes or (ii) no. The question for
subjective daytime sleepiness was “How likely are you to doze
off or fall asleep during the daytime when you don’t mean
to (for example, when working, reading, or driving)?,” with
responses of (i) never/rarely, (ii) sometimes, (iii) often, or (iv)
all of the time.

Definition of Sleep Score and Sleep
Quality
According to an epidemiologic study associated with sleep
patterns and incident cardiovascular disease (Fan et al., 2020), for
each sleep behavior, participants with the low-risk sleep behavior
were assigned a score of 1, while those classified as high risk
earn the score of zero (0). Then, all component scores were
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summed to acquire a total sleep score ranging from 0 to 5, with
higher scores indicating healthier sleep patterns. Furthermore, we
defined “sleep quality” as three levels: “healthy” (sleep scores 4–
5), “less-healthy” (sleep scores 2–3), and “poor” (sleep scores 0–1)
(Fan et al., 2020).

Here, the low-risk sleep behaviors include early chronotype
(“morning” or “morning than evening”) (Merikanto et al.,
2013), sleep duration 7–8 h per day (Gallicchio and
Kalesan, 2009; Itani et al., 2017), never or rarely experience
sleeplessness/insomnia symptoms (Hsu et al., 2015; Javaheri and
Redline, 2017), no self-reported snoring (Li et al., 2014), and
no frequent daytime sleepiness (“never/rarely” or “sometimes”)
(Gangwisch et al., 2014).

Ascertainment of Outcome
Health span is defined generally as aging without functional
health loss (GBD, 2015; Li et al., 2020). In this study, health
span was defined based on eight predominant health-terminating
events strongly associated with longevity, such as congestive heart
failure (CHF), myocardial infarction (MI), chronic obstructive
pulmonary disease (COPD), stroke, dementia, diabetes, cancer,
and death (Zenin et al., 2019). Health span was considered
“terminated” for only participants first time diagnosed with any
of these conditions during the UKB follow-up.

For each selected condition, except for cancer and death, we
compiled a list of hospital data codes [International Classification
of Diseases, 10th Revision (ICD-10)] and self-reported data
codes (UKB data coding 6) to define these conditions in our
study (Supplementary Table 1). We used the “National cancer
registries linkage to UKB” (UKB data category 100092) to define
cancer, and the “National death registries linkage to UKB”
(UKB data category 100093) to define death event. The National
cancer registries linkage to UKB was updated until December
14, 2016, earlier than the other two databases (inpatient hospital
admissions data: March 31, 2017; National death registries
linkage to UKB: February 14, 2018). To ensure consistency for
the three databases, we set December 14, 2016, as the end date
of follow-up in this study. Therefore, we calculated the personal
follow-up time from the date of attending assessment center
until the date of health span termination or December 14, 2016,
whichever occurred first.

Statistical Analysis
We applied descriptive statistics (mean, SD, and proportion)
to explore the baseline characteristics of the participants and
estimated multivariate-adjusted hazard ratio (HR) for terminated
health span using Cox proportional hazards regression models
(Chandola et al., 2010; Boden-Albala et al., 2012). The
proportional hazards assumptions for the Cox model were
tested using Schoenfeld residuals method (Weisberg, 2010). In
the basic model, we adjusted for age, sex, and ethnicity and
further adjusted, in the fully adjusted model, for Townsend
Deprivation Index, education, body mass index (BMI), smoking
status, alcohol consumption, physical activity, healthy diet,
family history of diseases [cancer and cardiac–cerebrovascular
disease (CCVD)], and medication (sleep-related drugs and
aspirin/ibuprofen). More details of the covariates can be found

in the section “Supplementary Method”). Furthermore, we
calculated the population attributable risk percentage (PAR%)
for high-risk sleep behaviors using the “epi2by2” function in
“epiR” package of R (Stevenson et al., 2020). Stratified analyses
were conducted according to age (<50, 50–60, and >60 years),
gender (male and female), BMI (<30 and ≥30 kg/m2), smoking
status (never and ever), alcohol intake frequency (≥once a week
and <once a week), physical activity (low and moderate&high),
healthy diet intake (yes and no), college degree (yes and no),
and Townsend Deprivation Index (≥median and <median) to
examine heterogeneity across these subgroups.

Additionally, in sensitivity analysis, we constructed a weighted
sleep score of five sleep behaviors using the following equation:
weighted sleep score = (β1 × factor 1 + β2 × factor
2 +. + β5 × factor 5) × (5/sum of the β coefficients) to
evaluate the reliability of the results (Fan et al., 2020). To
validate the robustness of our findings, we further performed
sensitivity analyses: (1) excluding participants with terminated
health span within the first 2 years of follow-up, (2) excluding
those with poor self-reported health status at baseline, (3) further
adjustment for principal components (PC1–3) and genotype
chip. All analyses were performed using R (version 4.1.0), and
statistical significance was defined as two-sided p-value ≤ 0.05.

RESULTS

In total, 49,772 participants of the 328,850 participants had
terminated health span during the follow-up period, and
approximately half of the events were caused by cancer (46.38%),
followed by MI (17.73%) and death (10.99%) (Supplementary
Table 2). The median follow-up time was 7.66 years (interquartile
range: 6.80–8.42 years).

The baseline characteristics of 328,850 participants are
summarized in Table 1. Overall, 4.08% of the participants had
poor sleep quality (sleep scores 0–1), 57.59% had less-healthy
sleep quality (sleep scores 2–3), and 38.33% had healthy sleep
quality (sleep scores 4–5), with corresponding 18.87%, 15.75%,
and 13.81% terminated health span, respectively. The female
population was slightly higher among the healthy sleep quality
group (58.45%). More participants with healthy (37.70%) sleep
quality attained higher education than those with less-healthy
(32.27%) or poor (27.89%) sleep quality. Besides, participants
in the healthy sleep quality group had a relatively lower mean
BMI (26.38 kg/m2), and approximately 37.64% of them engaged
in high physical exercise. Participants who reported “currently
smoking” seldom had healthy sleep quality (7.46%) compared to
“never smoked” (61.45%). Participants with healthy sleep quality
were more likely to have a healthy diet intake (79.15%) and less
likely to have a family history of cardiovascular diseases (61.23%)
and cancer (33.58%). Similarly, compared to poor sleep quality,
participants with less-healthy and healthy sleep quality were less
likely to take sleep-related drugs and aspirin/ibuprofen.

In Table 2, associations for sleep quality with risk of
terminated health span were exhibited. Compared to poor sleep
quality, participants with healthy sleep quality and less-healthy
sleep quality had 15% (HR: 0.85, 95% CI: 0.81–0.88) and 12%
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TABLE 1 | Baseline characteristics of 328,850 participants according
to sleep quality.

Characteristics (%) Sleep quality

Poor
(n = 13,432)

Less-healthy
(n = 189,371)

Healthy
(n = 126,047)

Terminated health span 2,535 (18.87) 29,834 (15.75) 17,403 (13.81)

Age, years, mean (SD) 55.32 (7.89) 55.91 (7.99) 55.35 (8.27)

Townsend Index, mean
(SD)

−0.91 (3.26) −1.41 (3.03) −1.64 (2.89)

BMI, kg/m2, mean (SD) 29.22 (5.25) 27.50 (4.65) 26.38 (4.23)

Sex, female 6,359 (47.34) 1103,036
(54.41)

73,680 (58.45)

Ethnicity, white race 112,381
(92.18)

1179,379
(94.72)

1119,806
(95.05)

College or university degree 3,746 (27.89) 61,111 (32.27) 47,514 (37.70)

Smoking status

Current smokers 2,320 (17.27) 21,568 (11.39) 9,397 (7.46)

Never smokers 6,077 (45.24) 1101,789
(53.75)

77,450 (61.45)

Alcohol intake frequency

>3 times/week 5,915 (44.04) 87,335 (46.12) 55,260 (43.84)

Special occasions
only/Never

2,665 (19.84) 32,431 (17.13) 22,404 (17.77)

Physical activity

Low 2,841 (21.15) 30,115 (15.90) 15,907 (12.62)

High 3,754 (27.95) 61,972 (32.73) 47,442 (37.64)

Healthy diet 8,825 (65.70) 1140,048
(73.95)

99,760 (79.15)

Family history of CCVD 8,615 (64.14) 1119,497
(63.10)

77,184 (61.23)

Family history of cancer 4,909 (36.55) 66,667 (35.20) 42,323 (33.58)

Sleep-related drugs use 227 (1.69) 1,565 (0.83) 404 (0.32)

Aspirin/ibuprofen use 3,826 (28.48) 46,494 (24.55) 26,286 (20.85)

Having low-risk sleep
factors (%)

Early chronotype 879 (6.54) 93,740 (49.50) 1111,806
(88.70)

Sleep 7–8 h/day 548 (4.08) 1107,747
(56.90)

1119,576
(94.87)

Never/rarely insomnia 143 (1.06) 22,324 (11.79) 60,545 (48.03)

No self-reported snoring 612 (4.56) 96,133 (50.76) 1111,032
(88.09)

No frequent daytime
sleepiness

10,639
(79.21)

1184,742
(97.56)

1125,777
(99.79)

The chi-square test for categorical variables and Kruskal–Wallis test for continuous
variables were used to calculate the p values across the sleep quality, and all the
variables had p value < 0.001.
SD, standard deviation; BMI, body mass index; CCVD, cardiac–
cerebrovascular disease.

(HR: 0.88, 95% CI: 0.85–0.92) reduced risk of terminated health
span, respectively. The corresponding PAR% for less-healthy and
healthy sleep quality was 1.29% (PAR%: 1.29, 95% CI: 1.01–1.58)
and 3.41% (PAR%: 3.41; 95% CI: 2.95–3.88), respectively.

From the perspective of sleep score, we found the participants
with the score 5 had the lowest risk of premature end of health
span (HR: 0.84, 95% CI: 0.80–0.88), and the trend analysis also
revealed that the risk of terminated health span decreased by 4%

(HR: 0.96, 95% CI: 0.96–0.97) for every additional sleep score
(Figure 1A). Moreover, the corresponding PAR% for score 5
was nearly 15% (PAR%:14.31; 95% CI: 12.45–16.13) compared to
those with the lowest sleep scores (Figure 1B).

Additionally, we also demonstrated the cumulative hazard
curves between sleep situation and terminated health span.
Figure 2A showed that with increasing follow-up time, the
cumulative hazard of terminated health span increased more in
individuals with poor sleep quality than those with less-healthy
or healthy sleep quality. Similar results were observed for sleep
score, showing distinct risk between sleep scores 0–1 and high
scores (Figure 2B).

Then, we further explored the effects of related sleep traits
on health span (Table 3). Participants with the low-risk sleep
behaviors such as “sleep duration 7–8 h/day” (HR: 0.94, 95%
CI: 0.92-0.95), “Never/rarely insomnia” (HR: 0.94, 95% CI: 0.92–
0.96), and “rarely daytime sleepiness” (HR: 0.83, 95% CI: 0.79–
0.87) had decreased risk of terminated health span. Furthermore,
PAR% for terminated health span suggests that nearly 15%
(PAR%: 15.30, 95% CI: 12.58–17.93) of terminated health span in
this cohort would not have occurred if all participants had been
in the low-risk group for all five sleep factors.

In stratified analyses, we observed that the associations of
sleep quality with the risk of terminated health span were largely
consistent across subgroups, except the smoking status. The
ever smokers had a stronger association than never smokers
(Supplementary Figure 2). Additionally, we constructed a
weighted sleep score to reevaluate its association with the risk
of terminated health span. We found that high-grade weighted
sleep score (weighted sleep score 4∼5 vs. 0∼<1, HR: 0.76,
95% CI: 0.71–0.82) also reduced the risk of terminated health
span (Table 4).

Moreover, further sensitivity analyses were performed by
respectively excluding participants with terminated health span
within the first 2 years of follow-up and those with poor self-
reported health status at baseline. The associations were largely
similar to our previous findings (Supplementary Tables 4, 5).
Given that complicated structure of population in UKB, we
additionally adjusted the top 3 principal components (PC1–
3) and genotype chip to offset the potential effect. Similarly,
the results were consistent and supported the robustness of the
observed findings in our study (Supplementary Table 6).

DISCUSSION

In this large-scale prospective cohort study, we examined
the associations of sleep quality/sleep score with risk of
terminated health span based on 328,850 participants of the
UKB. Participants with a healthy sleep quality had a 15%
lower risk of terminated health span. The PAR% further
suggested that nearly 15% of terminated health span in this
cohort would not have occurred if all participants had low-
risk sleep behavior for all five sleep behavioral factors. Besides,
four sensitivity analyses implemented in this study indicated
that the associations we found are robust and reliable to
some degree.
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TABLE 2 | Associations for sleep quality with risk of terminated health span among 328,850 participants.

Sleep quality Total N (%) Cases N (%) Basic model* Fully adjusted model† PAR% (95% CI)

HR (95% CI)a HR (95% CI)a

Poor 13,432 (4.08) 2,535 (18.87) ref ref ref

Less-healthy 189,371 (57.59) 29,834 (15.75) 0.80 (0.77–0.83) 0.88 (0.85–0.92) 1.29 (1.01–1.58)

Healthy 126,047 (38.33) 17,403 (13.81) 0.72 (0.69–0.75) 0.85 (0.81–0.88) 3.41 (2.95–3.88)

N, number; HR, hazard ratio; 95% CI, 95% confidence interval; ref, reference; PAR%, population attributable risk percentage; BMI, body mass index; CCVD, cardiac–
cerebrovascular disease.
*Basic model: adjusted for age, sex, and ethnicity.
†Fully adjusted model: additionally adjusted for Townsend Deprivation Index, education, BMI, smoking status, alcohol consumption, physical activity, healthy diet, family
history of diseases (cancer and CCVD), and medication (sleep-related drugs and aspirin/ibuprofen).
aEach group was compared to participants with poor sleep quality.

FIGURE 1 | Hazard ratio (HR) and population attributable risk percentage (PAR%) for risk of terminated health span according to sleep score. (A) HR [95%
confidence interval (95% CI)]. (B) Population attributable risk percentage (PAR%). Basic model: adjusted for age, sex, and ethnicity. Fully adjusted model further
adjusted for Townsend Deprivation Index, education, body mass index (BMI), smoking status, alcohol consumption, physical activity, healthy diet, family history of
diseases [cancer and cardiac–cerebrovascular disease (CCVD)], and medication (sleep-related drugs and aspirin/ibuprofen). Sleep scores 0–1 were the reference.
The values were the point estimation of HRs and PAR%.

Our results are in line with other comparable findings that
sleep behavior affects health and wellbeing (Cappuccio et al.,
2011; Gangwisch et al., 2014). Although sleep behavioral factors
separately have a bearing on health, it was significant to evaluate
a combination of sleep behavioral factors due to their synchrony
that could jointly increase the risk of health span termination
(Javaheri and Redline, 2017). For instance, a previous study
showed that insomnia/sleeplessness was related to sleep duration
and excessive daytime sleepiness (EDS), and late chronotype
reduced sleep duration (Depner et al., 2014). Thus, we generated
a sleep score integrating five sleep behaviors to comprehensively
assess sleep quality and its association with health span, which
was characterized by a host of eight health events that are
commonly involved in health span termination (Zenin et al.,
2019). Our study showed that healthy sleep quality reduced the
risk of terminated health span, suggesting that healthy sleep
behavior can improve health span. In agreement with our finding,

previous studies showed that insomnia accompanied short sleep
duration (Hsu et al., 2015; He et al., 2017; Javaheri and Redline,
2017), and habitual snoring with EDS increased the risk of
hypertension, lung cancer (Liu et al., 2019; Campos et al., 2020),
vascular death (Blachier et al., 2012; Boden-Albala et al., 2012),
atherosclerosis (Sands et al., 2013; Javaheri and Redline, 2017),
and diabetes (Li et al., 2015).

We also observed a decreased risk of terminated health
span for single low-risk sleep behaviors, such as “sleep
duration 7–8 h/day,” “no daytime sleepiness,” “never/rarely
insomnia/sleeplessness,” and “early chronotype.” Similarly,
high-risk sleep behavioral factors including “late chronotype”
(Merikanto et al., 2013; Erren et al., 2016), “abnormal sleep
duration” (Mesas et al., 2010; Cappuccio et al., 2011; Rudnicka
et al., 2017; Daghlas et al., 2019), “frequently experience
insomnia/sleeplessness” (Hsu et al., 2015; Javaheri and Redline,
2017), “habitual snoring” (Seidel et al., 2012; Sands et al., 2013;
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FIGURE 2 | Cumulative hazard curve for the associations between sleep quality and risk of terminated health span. (A) Sleep quality (poor, less–healthy, and
healthy). (B) Sleep score (scores 0–1, 2, 3, 4, and 5). The Y-axis represents cumulative hazard of terminated health span, the while X-axis represents the follow-up
time (years). Shaded regions represent the 95% confidence intervals (95% CIs). Cumulative hazard curves were based on the fully adjusted model.

TABLE 3 | Associations for low-risk sleep behaviors with risk of terminated health span among 328,850 participants.

Sleep behaviors Total (N) Cases (N) Basic model* Fully adjusted model† PAR% (95% CI)

HR (95% CI)a HR (95% CI)a

Early chronotype 206,425 (62.77) 31,686 (15.35) 0.95 (0.94–0.97) 1.00 (0.98–1.01) −1.42 (−2.04 to −0.80)

Sleep 7–8 h/day 227,871 (69.29) 33,049 (14.50) 0.88 (0.87–0.90) 0.94 (0.92–0.95) 4.17 (3.62–4.72)

Never/rarely insomnia 83,012 (25.24) 11,510 (13.87) 0.92 (0.90–0.94) 0.94 (0.92–0.96) 8.39 (7.02–9.74)

No self-reported snoring 207,777 (63.18) 29,664 (14.28) 0.93 (0.91–0.95) 0.99 (0.97–1.01) 5.67 (5.04–6.30)

Rarely daytime sleepiness 321,158 (97.66) 48,208 (15.01) 0.77 (0.73–0.81) 0.83 (0.79–0.87) 0.82 (0.68–0.96)

All five factors (overall)b 24,548 (7.46) 3,147 (12.82) 0.89 (0.86–0.92) 0.96 (0.93–1.00) 15.30 (12.58–17.93)

*Basic model: adjusted for age, sex, and ethnicity.
aCompared with all other participants not in this low-risk group.
bAll low-risk factors were included simultaneously in the same model, and participants without all five low-risk behaviors were set as the reference
†Fully adjusted model: additionally adjusted for Townsend Deprivation Index, education, BMI, smoking status, alcohol consumption, physical activity, healthy diet, family
history of diseases (cancer and CCVD), and medication (sleep-related drugs and aspirin/ibuprofen).

Li et al., 2015), and “excessive daytime sleepiness” (Blachier
et al., 2012; Boden-Albala et al., 2012; Barfield et al., 2019) were
associated with increased risk of chronic disease morbidity and
mortality. If all these five high-risk sleep behaviors were rectified
appropriately, nearly 15% of terminated health span would have
been prevented, highlighting the importance of adhering to
healthy sleep behaviors. However, it is worth noting that due to
the multiple-center and large-scale design of UKB, these 328,850
participants aged from 37 to 73 years were nationwide. Besides,
sleep traits were collected by trained volunteers according to
a standard questionnaire. Therefore, the exposure distribution
could represent the general population of United Kingdom,
indicating the reliability of the PAR% we calculated at some
degree, although a further validation in other cohorts was
still necessary.

Biologically, sleep regulates many important pathways
in the human physiology, such as autonomic, sympathetic,

cardiometabolic, and immunologic responses (Cappuccio et al.,
2011; Tobaldini et al., 2017), which support that adopting healthy
sleep behavior to the circadian rhythm would enhance health
and quality of life (Backhaus et al., 2015; Jones et al., 2019).
On the other hand, poor sleep quality affects functional health
in both young and adult, including disruption of cognitive
performance and diurnal alertness (Skeldon et al., 2016).
Moreover, it is essential to be cautious about shared and non-
shared environmental determinants of ill-sleep habit (Gregory
et al., 2016), including lifestyle, such as alcohol dependence,
smoking, obesity, physical inactivity, and stress, that could upset
healthy sleep behaviors (Chakravorty et al., 2016; Christie et al.,
2016; Liao et al., 2019; Garcia-Marin et al., 2020).

Moreover, sleep disorders and poor sleep habits are alarming
health threats warranting more public attention and are necessary
to take appropriate action to promote sleep quality and health
status, particularly for those with irregular sleep patterns, such
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TABLE 4 | Associations for weighted sleep score with risk of terminated health span among 328,850 participants.

Weighted score Total N (%) Cases N (%) Basic model* Fully adjusted model†

HR (95% CI)a HR (95% CI)a

0∼ < 1 3,409 (1.04) 746 (21.88) ref ref

1∼ < 2 3,864 (1.18) 749 (19.38) 0.83 (0.75–0.92) 0.89 (0.81–0.99)

2∼ < 3 28,229 (8.58) 5,055 (17.91) 0.80 (0.74–0.86) 0.84 (0.77–0.90)

3∼ < 4 120,549 (36.66) 19,418 (16.11) 0.72 (0.67–0.78) 0.79 (0.74–0.85)

4∼5 172,799 (52.55) 23,804 (13.78) 0.65 (0.60–0.70) 0.76 (0.71–0.82)

Overall (continuous) 328,850 (100.00) 49,772 (15.14) 0.91 (0.90–0.92) 0.94 (0.93–0.95)

N, number; HR, hazard ratio; 95% CI, 95% confidence interval; ref, reference; BMI, body mass index; CCVD, cardiac–cerebrovascular disease.
*Basic model: adjusted for age, sex, and ethnicity.
†Fully adjusted model: additionally adjusted for Townsend Deprivation Index, education, BMI, smoking status, alcohol consumption, physical activity, healthy diet, family
history of diseases (cancer and CCVD), and medication (sleep-related drugs and aspirin/ibuprofen).
aEach group was compared to participants with 0–1 sleep scores.

as shift workers (Palermo et al., 2015; Redeker et al., 2019).
A previous study among shift workers showed that resting
and napping lowered the levels of sleepiness at the end of
the shift (Barthe et al., 2015), which means more efficiency at
work and less chances of accidents due to sleepiness (Ruggiero
and Redeker, 2014; Geiger-Brown et al., 2016) and ultimately
beneficial for the extension of health span. In addition to potential
contributions to the individual’s life quality, a healthy sleep
quality may also mitigate extravagant medical costs associated
with chronic disease morbidity as well as lighten the heavy
burden of social demands on health services. Therefore, we
not only aim to investigate the potential effects of sleep quality
on health span but also hope to call for more attention to
individual sleep problems and correct improper sleep patterns as
far as possible.

Here, the definition of health span we adopted is a
promising longevity phenotype, reflecting individual aging and
health status. Based on the richness and accuracy of clinical
information in UKB, the construction of the health span
phenotype is reliable and robust. Thus, we have a chance
to assess the associations between sleep quality and risk of
premature health span termination for the first time. The
sleep score constructed by five sleep behaviors is an effective
way to measure the sleep quality quantitatively. Meanwhile,
the reliable data, large-scale sample, and long-term follow-up
time of UKB provide sufficient power for our study. However,
all the sleep behaviors are self-reported, which may lead to
misclassification of exposures inevitably. To our knowledge,
misclassification will underestimate the associations we observed.
Although we have adjusted the sociodemographic characteristics,
lifestyles, and other confounding factors in the full model,
residual confounding from unknown or unmeasured factors
still remains possible. Thus, the effects of associations and
the PAR% we calculated are essential to be further validated
in other perspective cohorts. Thirdly, a single measurement
of sleep behaviors at baseline is not satisfactory to reflect
the dynamic change of sleep factors during the following
time, which means that the evaluation of effects of changing
sleep patterns on health span requires repeated measurements
of sleep traits. Moreover, in our observational study, the

potential causality is hard to determine, and further work is
necessary. Finally, most of the study participants are white,
and generalizing the findings to other populations should
warrant caution.

In summary, we tentatively explored the effect of sleep quality
on health life span in this study. A healthy sleep quality plays an
important role in individual health status, aging, and diseases.
Sleep problem is not only related to individual physical and
mental health but also a public health and social problem, which
deserves more attention and early intervention.

CONCLUSION

In this large-scale prospective study that enrolled 328,850
participants, we found that healthy sleep quality was associated
with a reduced risk of premature end of health life span,
suggesting that healthy sleep behaviors may be beneficial to
extend health life span. Therefore, sleep problems deserve
more attention and early intervention. However, further
studies are suggested for confirmation of causality and
potential mechanism.
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