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Honeybees (Apis mellifera) have fascinating navigational skills and learning capabilities in
the field. To decipher the mechanisms underlying place learning in honeybees, we need
paradigms to study place learning of individual honeybees under controlled laboratory
conditions. Here, we present a novel visual place learning arena for honeybees which
relies on high temperatures as aversive stimuli. Honeybees learn to locate a safe spot in
an unpleasantly warm arena, relying on a visual panorama. Bees can solve this task
at a temperature of 46◦C, while at temperatures above 48◦C bees die quickly. This
new paradigm, which is based on pioneering work on Drosophila, allows us now to
investigate thermal-visual place learning of individual honeybees in the laboratory, for
example after controlled genetic knockout or pharmacological intervention.

Keywords: learning, memory, honeybee, temperature, landmark

INTRODUCTION

Temperature is an important modality for honeybees and small variations in ambient temperature
can have large effects on honeybee development and behavior (Tautz et al., 2003; Groh et al.,
2004; Jones et al., 2005; Kablau et al., 2020a,b). High temperatures are particularly critical not only
for the proper development of larvae but also for adult honeybee workers. When in summer the
temperatures exceed a threshold of 34◦C, workers move outside the hive to lower hive temperature
by fanning and by carrying water inside (Lindauer, 1954). With increasing ambient temperatures
due to climate change, honeybee foragers are increasingly facing extreme temperatures during their
foraging bouts (Soroye et al., 2020). Cold spots in an otherwise hot environment are, for example,
provided by leaves of trees, which give shadow and thus allow honeybees and other bees to relax
from temperature stress (Böll et al., 2019). Individual bees try to avoid temperatures above 44◦C
and even respond with the extension of their sting to stimulations with heat, indicating that heat can
serve as an aversive stimulus for these insects in learning situations (Junca et al., 2014). Honeybees
are excellent models of associative learning and memory (Giurfa, 2003). In addition to training
bees to associate an odor (neutral stimulus) with sugar water reward in the conditioning of the
proboscis’ extension response (for review see Giurfa and Sandoz, 2012), they can learn to associate
an odor with a short and aversive heat stimulus in aversive conditioning of the sting response
such that the odor can predict a punishment by high temperature (Junca et al., 2014). Most of
the aversive learning paradigms rely on the observation of sting extension, which requires that the
bee is immobilized on her back in a highly unnatural position, which might induce a large degree
of stress in the insect.
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To overcome this problem of fixation and to ask if honeybees
can actually employ a normal ambient temperature as a reward
or escape stimulus in an otherwise unpleasantly hot arena,
we introduce a thermal-visual place learning paradigm for
honeybees, which is based on a similar arena for fruit flies
(Ofstad et al., 2011). A great advantage of this novel paradigm
for honeybees is that the bees can walk about freely in the arena,
which is highly advantageous over the fixed situation necessary
for the learning paradigms described above. Also, this paradigm
allows us to study the physiological mechanisms underlying
visual learning in an arena under fully controlled conditions
using a simulated environment, which is very important for
understanding how bees orientate and navigate.

MATERIALS AND METHODS

Animals
All experiments were performed with honeybees (Apis
mellifera carnica) from queen-right colonies maintained at
the departmental apiary of Würzburg University. Colonies have
been treated against Varroa destructor regularly with a sufficient
time interval to experiments. Returning foragers aged between
3 and 5 weeks were collected from the hive entrance and wings
were cut on the same day of the experiment or the day before,
depending on the experiment, to prevent the bees from flying
about. Bees were kept overnight in an incubator for 24 h at 28◦C
and 60% humidity. Bees could feed ad libitum from either 30%
or 50% sugar solution until testing.

Behavioral Experiments
Spatial learning experiments were performed in a visual heat
maze arena, which was described for the first time by Ofstad et al.
(2011). Bees were collected individually from the hive entrance
the day before testing. Until the start of the experiment, they
were maintained in small cages (11.7 cm × 8.6 cm × 7 cm) and
had access to either 30% or 50% sucrose solution ad libitum,
depending on the experiment. Cages were placed in an incubator
maintained at 28◦C and 60% humidity. Before the behavioral
experiment, a bee was taken out of the cage and transferred
in a small glass vial, in which it was immobilized on ice for
approximately 5min. Then, we had to cut off the wings to prevent
the bees from flying about in the arena. After 2 min, the bee was
placed into the arena and usually began to walk immediately.

We adapted the thermal-visual arena of Ofstad et al. (2011)
for honeybees. The ground of the round arena was heated
by a water bath. To introduce a safe spot within the arena,
a defined temperature (here 25◦C) can be set at a specific
spot due to 64 individually addressable thermoelectric modules
(Peltier elements; 23 × 23 × 4.2 mm3; Q = 13.1 W, I = 2.7 A,
U = 8.1 V, dT = 71 K; JenMechanik Limited, Jena, Germany,
see Supplementary Material). We placed thermal conductive
pads and a white PVC disk (material thickness of 0.5 cm) on
top of the Peltier array providing a flat and even surface for
the bees. The arena was limited by an 8 mm high, 18.5 cm
diameter aluminum ring heated at 60◦C covered with glass disc
preventing the bees from escaping. The arena was surrounded
by an LED screen of 30 cm heights with a diameter of 32 cm.

The LED screen consisted of twelve P4 soft modules with
256 per 64 LEDs (Shenzhen UNIT LED Company Limited,
China)1 which was used to produce landmarks in the form
of black horizontal, vertical and diagonal stripe patterns in
front of a white background. Each bar covered 15◦ of the
screen seen from the center of the arena which corresponds to
a spatial frequency of 0.033 cycles/◦. During the experiment,
the arena was illuminated with infrared light and bees were
recorded with a non-chromatic camera (DMK27BUP031 with
a TCL 1216 5MP objective; The Imaging Source Europe
GmbH, Germany) supplemented by an infrared transmission
filter. The camera was placed perpendicular above the arena
center at a height of 56 cm. Movies were recorded using IC
Capture 2.4.642.2631.

The experiment aimed to show that bees can find a safe spot
by use of landmarks that were projected on the LED screen. A
learning session consisted of six (Experiment 1) or 10 (all other
experiments) training trials of 5 min each and a subsequent test
without a safe spot (apart from Experiment 1). In each trial,
the safe spot and the landmark were shifted by 90◦ clockwise
or anticlockwise, i.e., one out of four quadrants that virtually
divided the arena. Thus, the relation between landmarks and
safe spots always remained constant. In each trial, the time was
measured until the bee reached the safe spot, where it usually
remained until the safe spot was re-located and thus the place
became too hot for the bee.

Movies were compressed using the program any2ufmf.
Subsequently, the walking path of a bee was tracked using Ctrax
0.5.11 (Branson et al., 2009). The location of the bee and the
time it needed to reach the safe spot were subsequently calculated
using a custom-made R-script (see Supplementary Material).
We determined the duration until the safe spot was reached
for each bee in each trial. In the subsequent test, we measured
the time the bee spent in the quadrant where the safe spot had
been in the trial before. However, the landmark was shifted as
before. We only tested one shape in our experiments, because
we could not detect any preference of the bees for a landmark
without a safe spot (data not shown). But, we are convinced
that honeybees do not have a natural preference for this highly
artificial shape because it has been demonstrated that honeybees
prefer flower-like patterns and shapes (Lehrer et al., 1995). We
calculated a learning index as the quotient of the time the bee
spent in the correct quadrant and the time it spent in the
quadrant across the correct quadrant (Ofstad et al., 2011).

Statistics
Data were analyzed for normal distribution using the
Shapiro–Wilk Normality test. The effect of training trial
and treatment on the time needed to reach the safe spot was
compared between different groups using repeated-measures
analysis of variance (ANOVA RM, factor training trial or
factor treatment, SPSS, IBM). To test whether the learning
index differed from zero, one sample T-tests were performed
(because all data appeared to be normally distributed). The

1www.ledcontrolcard.com
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learning indices of two different groups were compared using
independent T-tests. All tests were two-tailed.

RESULTS AND DISCUSSION

Despite their minute brain, honeybees have impressive
navigational skills, which allow them to locate diverse food
sources within a range of several kilometers around their
nest and to return fast and direct to their hive (Beekman and
Ratnieks, 2000). Many experiments suggest that they rely on a
cognitive map similar to humans (Menzel et al., 2005; Moser
et al., 2008). When young bees leave the hive for the first time,
they need to acquire information on the local area and perform
2 days of orientation flights before they begin to forage. If
they are displaced during this time, many of them are unable
to return to their hive (Capaldi and Dyer, 1999). Once they
have performed their orientation flights, however, they can
be displaced during their outward foraging trip and will still
return to their hive using the most direct route, which often
involves novel short cuts. Honeybees use both path integration,
relying on a celestial compass and an odometer (Srinivasan,
2015) and view-based navigation, i.e., comparing memorized
panoramic views with current views (Towne et al., 2017) for
orientation in complex landscapes. Intriguingly, we still know
very little about the neuronal mechanisms underlying these
complex navigational skills in honeybees (Zwaka et al., 2019).
Several studies indicate an important role for the mushroom
bodies in honeybee orientation—a region of the insect brain
involved in sensory integration and memory (Plath et al.,
2017; Zwaka et al., 2019). Further, the central complex receives
orientation and spatial information and processes how the bee
is orientated in relation to its environment using visual working
memory (Plath et al., 2017). An unresolved open question is
whether there is a connection between the mushroom bodies
and the central complex. Similar to vertebrates, the transcription
factor early growth response protein 1 seems to play a role in
orientation, since its expression is upregulated following a single
orientation flight in the mushroom bodies in young foragers
(Lutz and Robinson, 2013). A homolog of this gene is known
to play a role in memory consolidation by promoting structural
neuroplasticity in the brain following exposure to novel stimuli in
vertebrates (Knapska and Kaczmarek, 2004).

To study visual place learning under controlled laboratory
conditions for future analyses on the molecular mechanisms and
genetics underlying learning and navigation, we established a
thermal visual arena for honeybees, which was adapted from an
arena for fruit flies (Ofstad et al., 2011). It was inspired by the
Morris water maze for rodents and heat mazes for crickets and
cockroaches (Morris, 1981; Mizunami et al., 1998; Wessnitzer
et al., 2008; Ofstad et al., 2011). In this arena, honeybees
learn to escape an unpleasantly hot environment (>44◦C) by
approaching a safe spot (i.e., a 25◦C cool tile) associated with a
visual stimulus (Figures 1A–C).

Honeybees are very sensitive to ambient temperature and
maintain a brood nest temperature between 32◦C and 36◦C,
with an optimal temperature of 35◦C, to support the appropriate

brood development (Tautz et al., 2003). When adult honeybees
were tested for their thermotaxis on an aluminum block with a
temperature gradient of 28–48◦C, they preferred temperatures of
34–35◦C (Kohno et al., 2010). At the individual level, bees avoid
temperatures above 44◦C and respond with a sting extension to
heat stimulations (Junca et al., 2014). The lethal temperature for
honeybees (Apismellifera carnica) is at around 50◦C (Kovac et al.,
2014). We, therefore, applied temperatures between 42◦C and
50◦C to test which temperature is optimal to induce avoidance
of honeybees in our arena.

The only visual cues for spatial orientation for the bee in
the arena are provided by the surrounding LED panorama
(Figures 1A–C). This displays three different stripe patterns with
vertical, horizontal and diagonal bars (Figures 1A,B; Ofstad et al.,
2011). To assess visual place learning, an individual honeybee is
introduced into the arena. During training, we measure the time
which the bee needs to reach the safe spot within a time window
of 5 min. A surrounding heated ring (∼60◦C) and a glass lid
prevent the bee from flying off the arena (Ofstad et al., 2011).
Once the bee has located the safe spot, it remains there until
the cool tile and the corresponding visual panorama are rotated
randomly clockwise or anticlockwise by 90◦. Then the bee starts
searching for the safe spot anew. With increasing training trials
the bees associate the position of the safe spot relative to that
of the visual landmark. Temperatures between 42◦C and 50◦C
(ground temperature) were applied in a first experiment in six
trials to investigate at which temperature the bees find the safe
spot fastest with repeated training. At 50◦C, five out of seven
individuals died after 5 min in the arena, so that this temperature
was abandoned. At the other temperatures (42◦C, 44◦C, 46◦C
and 48◦C), honeybees became increasingly faster in locating the
safe spot with each training trial (Figure 1D). The two higher
temperatures led to a particularly steep decrease in time to
reach the safe spot. For that reason, we selected 46◦C (second-
highest temperature; at 46◦C 20% of bees died during training,
mostly because they did not accept the safe spot) for further
experiments, when asking if bees would use the visual landmarks
for orientation. In this experiment, one group of bees (Figure 1E;
blue line) could use the T shaped landmark (border area between
horizontal and vertical stripes) in the arena, which changed its
relative position together with the safe spot (Figure 1E, inset).
A second group of bees did not get any landmarks (the screen
was set off; Figure 1E, gray graph). Further, we increased the
number of training trials to ten, because after six trials not all
of the groups tested before appear to have reached an asymptotic
performance level. Although both groups showed a significant
decrease in time to reach the safe spot (Figure 1E; effect of
training trial: F(6,327) = 85.86; P < 0.001, ANOVA RM), the bees
which could employ landmarks showed a significantly stronger
reduction in the time to reach the safe spot (effect of landmark
presence: F(1,49) = 354, P < 0.001).

Immediately after training, the bees faced a probe trial without
a safe spot to test for visual place memory expression (described
in Ofstad et al., 2011). The landmark changed its position as
before. We hypothesized that bees should spend significantly
more time in the quadrant of the arena where the visual landmark
suggests the safe spot to be, even though there is no safe spot to
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FIGURE 1 | (A) Schematic picture of the arena for thermal visual place learning in honeybees (adapted from Ofstad et al., 2011). The ground of the arena is
unpleasantly hot and only a small safe spot is (25◦C) is offered to walking honeybees. The visual panorama changes with the cold tile. (B) Photograph of the arena
from the top. Light-emitting diodes illuminate the arena from the wall. (C) Thermal image of the arena: spatial learning experiments were performed using 46◦C
ground temperature. Also, a heated ring (∼60◦C) and a glass lid on top prevent bees from escaping. (D) The time needed to reach the safe spot at different ground
temperatures (42◦C–48◦C) within in six training trials of 5 min each. Different letters (a,b) indicate significantly different groups (n = 11–12). (E) Times to reach the safe
spot using 46◦C ground temperature. Of bees that could use landmarks (green and blue graphs; bees of these two groups received different sugar solutions before
training) and those which did not have landmarks (gray graph) within 10 training trials. The inlet shows examples of the safe spot position. In (D,E), mean values and
standard errors are shown (n = 20–29). (F) Performance indices of groups trained without landmarks (gray dots; n = 20) and of those with landmarks [green (n = 47)
and blue dots (n = 29)] which differed in the sugar concentration they could feed on before training (green: 50% and blue: 30%). *P < 0.05, T-test; n.s., not
significantly different from zero (LM, Landmarks).

escape the still high temperature in the arena during testing. The
performance index of bees, i.e., the time bees spend in the target
quadrant (the quadrant with the safe spot to be) in comparison
to the opposing quadrant (Ofstad et al., 2011), was significantly
larger than zero (Figure 1F; T = 2.17, P < 0.05, n = 47, for 50%
sugar and T = 2.51, P < 0.05, n = 29, for 30% sugar), indicating
place memory expression. In the absence of landmarks, however,
the performance index did not differ from zero (Figure 1F;
T = 0.1; P = 0.91, n = 20).

In many experiments on learning in honeybees [but also
in other insects such as Drosophila and rodents (Lukoyanov
et al., 2002; Friedrich et al., 2004; Krashes et al., 2009)], the
feeding status of the individual has a strong effect on the
behavioral response and in particular on learning performance.
In honeybees, associative appetitive learning performance, for
example, strongly depends on individual sucrose responsiveness
(Scheiner et al., 1999, 2001a,b, 2005, 2013) and starvation time
(Friedrich et al., 2004), which affects sucrose responsiveness. A
starvation period of 18 h before training leads to a significantly
higher memory performance than a starvation period of
4 h (Friedrich et al., 2004). Similarly, a high sugar water
concentration (30%) used as a reward leads to a significantly
higher acquisition performance than a low sugar concentration
of 1.6% (Scheiner et al., 2005). Bees with a high sucrose
responsiveness, i.e., good learners, also display a higher brain

activity of cAMP-dependent protein kinase (PKA; Scheiner et al.,
2003) and have higher levels of the biogenic amine octopamine
(Behrends and Scheiner, 2012). Both PKA and octopamine
play important roles in associative appetitive learning and
memory formation (Fiala et al., 1999; Scheiner et al., 2006) and
may have a similar function in thermal-visual place learning
in honeybees.

Accordingly, we hypothesized that place memory expression
in bees is dependent on the feeding status, as food deprivation
at the individual or colony level is the main driving force
for foraging behavior (Seeley, 1989; Desmedt et al., 2016).
We, therefore, asked if learning in a thermal-visual arena may
be affected by the sugar concentration which the bees had
access to before training. Bees fed with either 30% or 50%
ad libitum sugar solution before training displayed a significant
decrease in time to reach the safe spot (effect of training
trial: F(9,684) = 209.32; P < 0.001, ANOVA RM), while the
time to locate the safe spot of both groups did not differ
statistically (factor feeding status: F(1,76) = 0.68; P = 0.411,
ANOVA RM). During the test, the performance index of both
groups differed significantly from zero (30%: T = 2.51, n = 29,
P < 0.05; 50%: T = 2.17, n = 47, P < 0.05) suggesting place
memory expression. The performance index of the two groups
receiving different sugar solutions did not differ significantly
(T = 0.50; P > 0.05).
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Many similar setups exist to test spatial orientation and
learning in various insects including honeybees, fruit flies, ants,
crickets and cockroaches (Zhang et al., 1996; Mizunami et al.,
1998; Schatz et al., 1999; Menzel et al., 2005; Neuser et al., 2008;
VanderSal, 2008; Wessnitzer et al., 2008; Foucaud et al., 2010;
Ofstad et al., 2011; Tsvetkov et al., 2019). Many of the available
paradigms investigating spatial learning in honeybees rely on
food rewards. Tsvetkov et al. (2019), for example, developed
a food search task adopted from the vertebrate literature for
honeybees to study spatial learning. In their assay, the bees
have to learn the location of artificial flowers inside the testing
arena. Other paradigms use the successful return to the hive
or the feeder after displacement as rewards (Menzel et al.,
2005). Still, other paradigms employ complex mazes to study
spatial learning and memory in bees (Zhang et al., 1996).
Our new assay employing visual place learning in an arena
under fully controlled conditions relies on temperature as a
reinforcer. It offers several advantages, including the possibility
of high-resolution analysis of the individual behavior, during
training and testing. The recording of single animals allows a
detailed and individual analysis including parameters such as
quadrant distribution and transitions, speed, and directional
changes when using a suitable tracking software like CTRAX (in
this study; Branson et al., 2009) or others (Pérez-Escudero et al.,
2014; Werkhoven et al., 2019). Ofstad et al. (2011) showed no
difference in place learning performance between individually
tested flies and flies tested in groups. Whether this also applies
to social animals such as the honeybee will have to be tested in
the future (Howard et al., 2019).

Taken together, our results show that honeybees can rely
on visual landmarks to locate and learn a safe spot position in
an otherwise hot arena. Further, the bee’s performance in this
non-food reinforced task is independent of the feeding regime,
at least for the selected standard sugar solutions (30% and 50%)
given to the bees before the day of training. Our paradigm allows
us now to study navigational skills of individual honeybees under
controlled laboratory conditions, enabling manipulations and
intervention with neuronal signaling pathways to understand
the neuronal mechanisms underlying visual navigation and
learning. The arena also allows detailed comparative studies,
as different model organisms such as fruit flies, honeybees,
but also ants can be trained with the same quality of stimuli
(light and temperature) under controlled laboratory conditions.
It may also provide a link to vertebrate studies because setups
like the Morris Water Maze or the Radial Arm Maze have
been used there for many years to study place learning and

spatial tasks related to both basic and applied, clinical research
(Savonenko et al., 2005; Vorhees and Williams, 2006; Wolf
et al., 2016). Alzheimer’s disease, for example, could serve as
an example here. To understand the disease in its entirety and
to develop possible effective treatment strategies, mouse models
are tested in different spatial memory tasks to characterize
the cognitive profile. A major opportunity is therefore to
identify fundamental mechanisms of memory formation and
memory loss in insects using a similar behavioral assay like
the visual place memory arena described in this study and in
Ofstad et al. (2011).
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The behavior of an animal has substantial effects on its metabolism. Such effects,
including changes in the lipid composition of different organs, or changes in the turnover
of the proteins, have typically been observed using liquid mass spectrometry methods,
averaging the effect of animal behavior across tissue samples containing multiple cells.
These methods have provided the scientific community with valuable information, but
have limited resolution, making it difficult if not impossible to examine metabolic effects
at the cellular and subcellular levels. Recent advances in the field of secondary ion mass
spectrometry (SIMS) have made it possible to examine the metabolic effects of animal
behavior with high resolution at the nanoscale, enabling the analysis of the metabolic
effects of behavior on individual cells. In this review we summarize and present these
emerging methods, beginning with an overview of the SIMS technique. We then discuss
the specific application of nanoscale SIMS (NanoSIMS) to examine cell behavior. This
often requires the use of isotope labeling to highlight specific sections of the cell for
analysis, an approach that is presented at length in this review article. We also present
SIMS applications concerning animal and cell behavior, from development and aging to
changes in the cellular activity programs. We conclude that the emerging group of SIMS
technologies represents an exciting set of tools for the study of animal behavior and of
its effects on internal metabolism at the smallest possible scales.

Keywords: cellular behavior, SIMS, isotope labeling, high-resolution imaging, nanoscale

INTRODUCTION

Recent years have produced large advances in the analysis of the general aspects of proteins,
including ‘‘omics’’ studies for protein abundance (Antonelli et al., 2019; Noor et al., 2019),
analysis techniques for the abundance of mRNA (Washburn et al., 2019), analyses of protein
translation rates (Riba et al., 2019; Sharma et al., 2019) and much more. Similarly, substantial
progress has also been made in microscopy techniques for imaging the location of proteins
and the general morphology of cells. For example, optical microscopy techniques have been
able to observe cellular processes at the nanoscale (Schermelleh et al., 2019). X-ray imaging
and tomography techniques are also progressing and are useful tools in the cellular study
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(Weber et al., 2019; Zhang, 2019). These encouraging trends
suggest that the organization and spatial configuration of
cells will be examined efficiently in the next few years.
Live fluorescence imaging complements these approaches by
providing information in the temporal domain, albeit only in the
short term, from seconds to hours. Overall, despite the power of
these tools, the long-term temporal domain remains relatively
unclear, since none of these technologies provide sufficient
information on the cellular activity over days or longer.

The examination of cellular activity at various time scales
is critical for the study of much of animal behavior, as it is
well-established that the metabolic processes of a cell influence
behavior and vice versa (for example Kohsaka et al., 2007;
Leulier et al., 2017). This has been recognized decades ago,
and several technologies have therefore been introduced. They
typically involve measuring the composition of cells suspended
in solution, using conventional biochemical tools or in-solution
mass spectrometry approaches. Unlike many of the modern
techniques mentioned above, these tools provide information on
processes and rates averaged across multiple cells. Thesemethods
are therefore limited in resolution and are unable to fully describe
metabolic processes at the cellular and subcellular scales.

A modern solution to this problem comes from new advances
in mass spectrometry imaging techniques, particularly in the
field of secondary ion mass spectrometry (SIMS). SIMS analysis,
which makes use of instruments such as time-of-flight secondary
ion mass spectrometry (ToF-SIMS) and nanoscale secondary
ion mass spectrometry (NanoSIMS), allows for the imaging of
individual cells, with resolutions up to the 100 s of nanometers.
When coupled with isotope labeling and other correlative
microscopy techniques, SIMS analysis represents an exciting new
avenue for the examination of animal behavior at the cellular and
subcellular scales, across the long-term temporal domain.

In this review article, we present an overview of the SIMS
technique and its application for the examination of the behavior
of individual cells. We begin with a general overview of SIMS
methodology and later focus on the specific application of
SIMS in cellular studies. We present three case studies that
have used NanoSIMS to examine the behavior of individual
cells, and we also discuss the broader applications of SIMS
in biological and environmental studies. These topics aim to
inform the reader about the advantages and limitations of
these novel techniques, which will likely continue to expand
in the future, as creative applications for SIMS technology are
continually developed.

SIMS ANALYSIS

SIMS refers to measurement techniques wherein a selection
of samples under a high vacuum is removed using a beam
consisting of primary ions. This process is known as ‘‘sputtering.’’
Sputtering using the primary ion beam generates secondary
ions, ionized atoms, and molecules which are then ejected from
the analysis chamber and conveyed into a mass spectrometer
for analysis (Figure 1; Fearn, 2015; Nuñez et al., 2018).
While all SIMS techniques share these initial similarities, they
differ slightly in the source of the primary ions, the voltage

with which the ion beam strikes the sample, the amount of
sample removed, and the separation of ions for detection.
Two of the most common types of SIMS instruments used
for imaging are time-of-flight SIMS (ToF-SIMS) and nanoscale
SIMS (NanoSIMS). Matrix-assisted laser desorption/ionization
combined with mass spectrometry (MALDI-MS), while not
strictly a SIMS technique, is also often used to image
biological samples and is mentioned here for comparison. For
more information on MALDI and other mass spectrometry
imaging methods, we refer the reader to the following reviews
and studies: Hanrieder et al. (2013); Passarelli and Ewing
(2013); Petras et al. (2017); Buchberger et al. (2018); and
Xiao et al. (2020).

SIMS analyses are generally used to create images, where
each pixel of the image contains a mass spectrum with chemical
information of the analyte of interest. As such, the spatial
resolution of this technique is typically correlated to beam
diameter and pixel density. Previous studies have discussed
methods of estimating the spatial resolution of SIMS by imaging
over a known edge (Senoner et al., 2004). In contrast with the
spatial resolution, the mass resolution of SIMS refers to the
ability of the instrument to distinguish between adjacent masses.
This is also referred to as the mass resolving power, or M/∆M,
where M is the mass being measured and ∆M is the mass
difference resolvable between two peaks of interest (Hillion et al.,
1993). A summary of expected sensitivities, mass resolutions, and
spatial resolutions of SIMS techniques can be found in Table 1.
The major differences between the three mentioned imaging
techniques have to dowith theirmode of detection and the choice
of the primary ion source, which affects both sensitivity and
spatial resolution.

Unlike many other instrumental methods, which require the
use of individual labels such as antibodies to mark specific
proteins for analysis, SIMS images can be acquired without the
use of labels (Hanrieder et al., 2013; Passarelli and Ewing, 2013).
This is in contrast to techniques such as fluorescent noncanonical
amino acid tagging (FUNCAT), which always requires the use
of special labels (Dieck et al., 2012). In FUNCAT experiments
a cellular metabolite, such as the amino acid methionine, is
replaced with a noncanonical one, which is incorporated into
proteins through the metabolic processes of the cells (i.e., protein
synthesis). The typical noncanonical amino acids used in these
procedures bear either an azide or an alkyne and are later
revealed by a specific reaction to a modified fluorophore, termed
a click reaction (Dieterich et al., 2010). This procedure is readily
applied to cell cultures, where amino acids in the cell medium
can be replaced easily with noncanonical ones but it is difficult
to perform with animals. The ability of SIMS analyses to obtain
information on the location of different structures without the
use of these tools is a notable advantage of this method, although
there are instances in which these labels can be used to enhance
SIMS analysis (for example see Kabatas et al., 2015, 2019a,b; Vreja
et al., 2015). These methods will be discussed in more detail later
in this review article.

Within SIMS techniques, a difference exists between ‘‘static’’
and ‘‘dynamic’’ SIMS, where ‘‘static’’ SIMS refers to SIMS
analyses that use a low primary ion dose (generally less than
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FIGURE 1 | General principles of secondary ion mass spectrometry (SIMS) analysis. (1) SIMS analysis begins by making use of a primary ion beam, which can
either be made of positive ions or negative ions. (2) The primary ion beam strikes the analysis surface during sputtering, producing secondary ions. (3) Secondary
ions are accelerated towards the detector, either through a flight tube [time-of-flight SIMS, ToF-SIMS; image adapted with permission from Mazel and Richardin
(2009) or through magnetic separation using a quadrupole (nanoscale SIMS, NanoSIMS), image adapted with permission from Nuñez et al. (2018)].

TABLE 1 | Comparison of secondary ion mass spectrometry (SIMS) techniques with other mass spectrometry imaging techniques.

Instrument Primary Ion Source Spatial Resolution Mass Resolution
(M/∆M)

Upper Mass Limit

NanoSIMS Ion beam (Cs+ or O−) <50 nm (Cs+),
<200 nm (O−)

10,0001 Atomic and diatomic
(e.g: CN−) ions1

ToF-SIMS Ion beam (Bi+3 , C+
60,

Ar+n . . .etc.)
200 nm–5 µm
(dependent on source)

>10,0002 1,500–2,500 Da3

MALDI-MS/MS Laser light 1–150 µm4

(typically 10 µm)
>1,000,0005 (using
Fourier Transform ion
cyclotron resonance
mass spectrometry)

20 kDa6

1Hillion et al. (1993); Nuñez et al. (2018); 2Boxer et al. (2009); 3Fearn (2015) 4Hanrieder et al. (2013); 5Dilillo et al. (2017); 6Jones et al. (2014)

1013 ions cm−2) which removes only 1% of atomic sites from
the sample surface (Benninghoven, 1969). In contrast, ‘‘dynamic’’
SIMS refers to SIMS techniques that remove relatively large
amounts of material. ‘‘Static’’ SIMS techniques are useful for
obtaining molecular information, as the chemical bond between
molecular fragments is more likely to be preserved at low
primary ion doses, while ‘‘dynamic’’ SIMS techniques do not
preserve chemical bonds, and are useful for providing high

spatial resolution data on the distribution of elements in a sample
(Cannon et al., 2000).

As the name implies, time-of-flight secondary ion mass
spectrometry (ToF-SIMS) uses time-of-flight as a detection
mode, where ions are accelerated through a flight chamber and
are separated based on the time it takes for ions to reach the
detector. Using ToF-SIMS, spatial resolutions up to 200 nm
are possible (Fearn, 2015). In a typical dual-beam ToF-SIMS
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instrument, a primary ion gun is used to generate secondary ions
for analysis, while a second ‘‘sputter’’ ion gun is used for depth
profiling. There are a variety of primary ion sources available
for ToF-SIMS, including the bismuth (Bin+; Nygren et al., 2005;
Touboul et al., 2005b), gold (Au++, Au+, Au2+; Walker and
Winograd, 2003) and gallium (Ga; Vickerman, 2001) sources, the
buckminsterfullerene (C60

+) source (Wong et al., 2003), and the
argon gas cluster (Arn+) source (Rabbani et al., 2011). Sputtering
with the primary ion source yields charged secondary ions, which
are then accelerated into the flight chamber.

ToF-SIMS can be operated in static mode, where <1% of
material is removed. This is often ideal for biological samples,
however, to maintain static mode, higher concentrations of the
analyte of interest are required to maintain spatial resolution.
Besides, ToF-SIMS can also be operated under different
conditions and configurations, by changing the source of the
primary ion beam. For example, the C60

+ source, the Arn+

source, and other polyatomic ion sources have recently been
used to generate 3D chemical images, which can provide more
detailed information from multi-layered samples (for example
see Brison et al., 2013; Fletcher, 2015). This relatively new
capability has expanded the utility of ToF-SIMS in examining
biological samples.

ToF-SIMS is a flexible technique that, depending on the
current of the primary ion beam, can obtain information from
molecular fragments or atomic information. Thus, ToF-SIMS
is a useful tool for mapping the distribution of elements, ions,
and molecules in unlabeled samples. In contrast, NanoSIMS
cannot be operated in static mode. Instead, NanoSIMS is
always operated in dynamic mode. While ToF-SIMS can
generate both atomic and molecular fragments as secondary
ions, NanoSIMS only generates secondary ions at the atomic
(and occasionally diatomic) scale. In the absence of molecular
secondary ions, stable isotope measurements in NanoSIMS
can be used to infer molecular distribution (for example see
Pett-Ridge and Weber, 2012).

The NanoSIMS method is typically used with one of two
sources, the cesium source (Cs+), which enhances the ionization
of negative secondary ions, and the oxygen source (O− or O−

2 ),
which enhances the ionization of positive secondary ions. A new
radio frequency (RF) oxygen source has been developed, which
has increased the sensitivity and long-term stability of this mode
(Malherbe et al., 2016). The Cs+ source, which has a maximum
spatial resolution of <50 nm, is used to examine elements that
more readily ionize into negative secondary ions, such as H,
C, N, O, F, P, S, and Cl. The oxygen source, in contrast, is
used to examine elements that more readily ionize into positive
secondary ions, such as Li, Na, Mg, Ca, and some transition
metals (Nuñez et al., 2018).

The NanoSIMS makes use of both an electrostatic and
magnetic sector. Ions are deflected into six movable detectors
and one stationary detector, which allows for a total of seven
species to be detected during each analysis. The need to decide
on a maximum of seven species at a single time is one limitation
of the NanoSIMS instrument. Also, negative and positive ions
cannot be collected within the same analysis, necessitating that
researchers choose analytes that can be measured with either

the Cs+ source or the O− source respectively. Also, NanoSIMS
cannot be operated in static mode, and as such, provides
information only on the distribution of elements and small
molecular fragments such as CN−. Despite these limitations, the
high spatial resolution and mass resolution of NanoSIMS and its
ability to collect reliable isotopic information make it a highly
useful technique.

Both ToF-SIMS and NanoSIMS rely heavily on appropriate
sample preparation to ensure the quality of these analyses. In
particular, SIMS analysis requires the preparation of thin, flat
surfaces which are then placed on the conductive material.
The methods for generating these samples vary depending on
the type of sample and the nature of the study. For example,
cryo-sectioning with a microtome and directly applying the
sections to a conductive surface is common for tissue analysis
(Amstalden van Hove et al., 2010), whereas other SIMS samples
are embedded in various heat and/or vacuum resistant epoxies
before sectioning and placing on silicon wafers (Saka et al., 2014).
In cases where conductivity is difficult to achieve, such as with
geological samples, coating with a thin layer of a conductive
material such as gold is also common (Bonnin et al., 2019). A
full discussion of sample preparation is beyond the scope of this
review, however, we refer the reader to the following reviews and
studies, which cover sample preparation methods in more detail:
Goodwin (2012); Hanrieder et al. (2013); Passarelli and Ewing
(2013); Wang et al. (2014); Fearn (2015); Dong et al. (2016);
Nuñez et al. (2018); and Buchberger et al. (2018).

MALDI, an instrumental technique that ionizes the sample
using a laser energy absorbing matrix, is typically used to analyze
large molecular species (up to 10,000 Da) which cannot be
imaged using NanoSIMS. However, MALDI has an imaging
resolution in the micrometer range, which is substantially poorer
than either of the SIMS techniques (Schwamborn and Caprioli,
2010; Passarelli and Ewing, 2013; Buchberger et al., 2018). While
the spatial resolution of this technique has been improving
(Hanrieder et al., 2013), and this technique is useful for mapping
proteins and peptides, its low spatial resolution makes it less
suitable for the subcellular and cellular scales focused on in this
review, and so we primarily discuss applications of ToF-SIMS
and NanoSIMS.

ANALYZING UNLABELED SAMPLES WITH
SIMS

Both NanoSIMS and ToF-SIMS instruments can be used to
examine samples that are prepared for analysis and introduced
into the SIMS without any elemental or isotopic labeling. To
successfully use SIMS to image these samples, the analyte of
interest must be sufficiently distinct from the surrounding
matrix. For example, the NanoSIMS technique has been used
to examine the distribution of selenium in cereal grain and
arsenic in rice (Moore et al., 2010). Because arsenic and selenium
are not major components of the structure of cereals and rice,
SIMS can be used to detect areas where these elements can be
found in high concentrations. The NanoSIMS has also been used
to examine the origin of dust particles in Luxembourg (Krein
et al., 2008) and to examine Ca and P in the axonal and glial
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regions of mice to study the response of the central nervous
system to neurotrauma (Lozić et al., 2014). The latter study
revealed that Ca microdomains not associated with P rapidly
decrease after injury, while Ca microdomains associated with P
are unaffected. In recent years, NanoSIMS has also become useful
in the study of ancient life. Typically, in these studies, samples are
examined for traces of organic material, using chemical features
that indicate biological activity. For example, measuring C, N,
and S in fossil samples taken from the Omdraaivlei Formation
in South Africa (Kaźmierczak et al., 2016) allowed researchers to
identify evidence of ancient organisms.

The majority of NanoSIMS techniques, however, take
advantage of its high mass resolution by combining it with
isotope labeling techniques, an approach that will be discussed
in detail in the next section. For further reference on the use
of NanoSIMS for analyzing biological samples, both labeled
and unlabeled, see Nuñez et al. (2018). In contrast, ToF-SIMS
is often used in examining unlabeled samples. For example,
ToF-SIMS has been used to examine the incorporation of
calcium into silicon-based bone grafts, an important precursor
to bone regeneration (Wang et al., 2014). In conjunction with
atom probe tomography (APT), ToF-SIMS has also been used to
examine the organic-mineral interface in the calcium carbonate
shells of foraminifera, a type of marine zooplankton, which has
implications for studies of biomineralization (Branson et al.,
2016; Bonnin et al., 2019). In a similar vein, ToF-SIMS analyses
have also been conducted on tissues and lipids to examine lipid
biomarkers of diseases (Touboul et al., 2005a; Debois et al.,
2009; Kezutyte et al., 2013) and to examine the distribution
of cholesterol in brain tissue, which is relevant for studies of
Alzheimer’s disease (Lazar et al., 2013).

While this review is primarily focused on the use of isotope
labeling to examine subcellular metabolic effects, we note that
valuable insights into cell behavior can still be gained through the
use of unlabeled samples. For example, a study by Philipsen et al.
(2018) used ToF-SIMS to examine major lipids in the brains of
specimens of the fruit fly Drosophila melanogaster that had been
exposed to cocaine and methylphenidate (MPH), a common
ADHD medication. In this experiment, three- to four-day-old
male flies were transferred to yeast paste containing either 15mM
cocaine or 50 mM MPH for 3 days. The fly heads were then
detached and brain samples analyzed using ToF-SIMS.

Philipsen et al. found that lipid distribution changed after
the administration of cocaine, with lipids that form positive
ions becoming visibly more abundant in the central brain
and optical lobes after cocaine administration and lipids that
form negative ions becoming less abundant (Figure 2). This
suggests that cocaine use may change the chemical structure
of the brain. While MPH also altered the lipid distribution
of the Drosophila brain, the alterations caused by MPH were
strikingly opposite to those caused by cocaine. Because cocaine
and MPH also have opposite behavioral effects, with MPH
enhancing cognition, memory, and behavior while cocaine
decreases attention, learning, and memory, the results of this
study imply a link between brain lipid distribution and cognition.

Similarly, a recent study by Dowlatshahi Pour et al.
(2019) used ToF-SIMS on unlabeled brain samples to measure

hippocampal zinc, which is an essential trace element in
many proteins, but which also acts as a neurotoxin in high
concentrations. By using ToF-SIMS to examine zinc-related
compounds, an act which necessitates using static SIMS to
preserve chemical bonds, the researchers were able to observe
that zinc compounds in the rat hippocampus increase in
concentration after acute brain injury. Because these compounds
are all from bound zinc species, their findings challenge the idea
that the accumulation of free zinc in synaptic vesicles is the main
source of neuronal degeneration after traumatic brain injuries.
These studies highlight the fact that valuable insights into cell
behavior can be obtained from unlabeled samples, particularly
when using ToF-SIMS.

COMBINING SIMS ANALYSIS WITH
ISOTOPE LABELING

Isotope labeling is a powerful tool that can be used to highlight
areas of interest with high resolution and precision. In general,
isotope labeling is used in SIMS analysis in one of two ways,
either to highlight a specific area of interest or to mark a
particular experimental time. In both cases, rare stable isotopes
are used because the rare isotope is easily distinguished from the
surrounding matrix, and the ratio of rare isotope to common
isotope in nature is well-constrained. Because NanoSIMS can
differentiate between stable isotopes of the same element with
high resolution, using SIMS analysis on an isotopically labeled
sample allows the researcher to see the labeled area clearly in the
resulting intensity map (Steinhauser et al., 2012).

Isotope labeling is particularly useful in biological studies
because rare isotopes are processed by organisms in the same
way as common isotopes are, and are incorporated into the
organism’s biomass in the sameway as ordinary organicmaterial.
This makes it possible to label tissues and other parts of
the organism by introducing the stable isotope label into the
organism’s food (Steinhauser and Lechene, 2013). If the amount
of time it takes an isotope label to be incorporated into the
tissue is known, an isotope label or several isotope labels can
be used to mark time points throughout an experiment. For
example, a researcher can introduce the isotopic food at the
start of an experiment, so that only cells produced during the
experiment are labeled (for example see Hassouna et al., 2016),
or a researcher can provide isotopic food for a certain amount
of time as part of a pulse-chase experiment. Figure 3 shows one
example of such an isotope labeling scheme, taken from Arrojo e
Drigo et al. (2019). In this experiment, described in more detail
later, 15N food is used at the beginning of the organism’s life
to mark old material. The label can be seen very clearly in the
subsequent NanoSIMS images.

Isotope labeling has also been used in the fields of
oceanography and paleoclimatology, to label portions of the
skeletons of corals and other calcifying organisms. Many of these
organisms will be affected by ocean acidification and climate
change in the future, and some of these organisms are also
useful for paleoclimate studies because the chemical composition
of their shells changes in measurable ways as the surrounding
environment changes. For both these applications, it is beneficial
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FIGURE 2 | Distribution of biomolecules in the Drosophila brain before and after cocaine treatment by ToF-SIMS in positive and negative ion modes. Image area:
800 × 800 µm2 and 256 × 256 pixels; pixel size, ∼3 µm. Overlaid images: (A,B) purple, control brain; green, cocaine-treated brain (positive ion mode); (C,D) green,
control; red, treated brain (negative ion mode). Scale bar: 200 µm. A color “thermal” scale is shown. This shows marked differences in the distribution of lipids after
the introduction of cocaine, particularly in the negative ion mode. This may indicate that behavioral changes induced by cocaine can be related to changes in lipid
distribution, and can be observed through SIMS. Reprinted with permission from Philipsen et al. (2018).

to understand how the organism’s skeleton or shell is formed.
Isotope labeling provides valuable insights into this process.
For example, Brahmi et al. (2012) demonstrated how labeling
a coral skeleton with 86Sr can be used to calculate average
extension rates, allowing researchers to examine the rate of
biomineralization in these organisms.

Furthermore, NanoSIMS has seen increasing use in the
field of environmental microbiology, where the instrument’s
ability to track the flow of biologically active elements such as
nitrogen, carbon, and iron is greatly useful. By using NanoSIMS
and isotope labeling, the distribution of these cellular activities
(for example, carbon and nitrogen fixation) can be examined
(Behrens et al., 2012). Carbon and nitrogen fixation in algae from
marine and freshwater habitats, for example, can be examined
using 13C and 15N labels to examine how carbon and nitrogen
are fixed through ecosystems. The use of SIMS to measure
environmental processes is further detailed in the review by
Behrens et al. (2012).

The versatility of isotope labeling means that it can be used
to examine questions on the scale of whole organs or organisms,
but SIMS and isotope labeling can also be used at the subcellular
level to examine processes within cells. For example, NanoSIMS
has been used to track the uptake of isotopically labeled human
proteins by microbes in the human intestine (Berry et al., 2013),
to measure the anabolic activity of Staphylococcus aureus by
tracking deuterium (2H) and 15N (Kopf et al., 2016), and to
examine dividing cells in the small intestine (Steinhauser and
Lechene, 2013).

While isotope labeling is a common part of SIMS experiments
involving microbes, rats, or mice, there is growing evidence

that suggests that isotope labeling and SIMS may also be
used to examine human metabolism and cell behavior, by
the administration of 15N thymidine to a human volunteer
(Steinhauser and Lechene, 2013). This is an exciting avenue
for research, and will likely become more prominent in
future years if it can be proven that the patient suffers
no ill effects from the administration of these isotopically
enriched chemicals. In further sections of this article, we
present three examples of the combination of isotope
labeling and NanoSIMS to examine the behavior of cells in
various organs.

SAMPLE CASE 1: BRAIN

Hassouna et al. (2016) used a combination of NanoSIMS and 15N
labeling during an investigation on the effects of recombinant
human erythropoietin (EPO) on cognitive performance in mice.
The goal of this study was to examine whether EPO, which
has been suggested to improve cognitive performance in cases
such as schizophrenia, multiple sclerosis, major depression, and
bipolar disease, is linked to neurogenesis. To investigate this,
the authors first injected male mice intraperitoneally with either
recombinant human EPO or a placebo, beginning at the age
of 28 days. Isotope labeling was achieved by feeding the mice
food pellets labeled with 15N, also beginning at the age of
28 days. Ensuring that the 15N labeled food was coincident
with the start of the experiment is important, as it ensured
that only cells produced during the experimental period were
labeled with 15N. In this case, 15N serves as a marker for
experimental cells.
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FIGURE 3 | (A) Sample measurement scheme for an isotope labeling NanoSIMS experiment. In this case, the isotope label used is 15N, which is used to mark
“older” cells. (B) NanoSIMS image from the optic nerve head (ONH) of the labeled mouse. Here, bright colors refer to older, labeled cells. The dashed line refers to an
endothelial cell present in the electron microscopy image which does not have any discernible features in the NanoSIMS image. (C) NanoSIMS image of two
capillaries in the ONH of a 6-month chase mouse. An endothelial cell nucleus (yellow arrow) and myelin sheaths (pink arrows) are indicated. A pericyte nucleus is
visible to the left of the capillary lumen. Labeled cells are visible in comparison to unlabelled cells, illustrating the usefulness of isotope labeling methods applied to
SIMS. Reprinted from Arrojo e Drigo et al. (2019) with permission from Elsevier.

The mice included in the NanoSIMS study were given
either EPO or placebo injections every other day over 3 weeks.
After three weeks of feeding, EPO and 15N-leucine feeding
stopped simultaneously. One week later, mice were anesthetized
and brains removed. Brain slices were embedded in resin
and imaged using a combination of fluorescence microscopy
and NanoSIMS. Other mice were separated into groups for
cognitive experiments.

In this study, the authors used NanoSIMS was used to
identify pyramidal neurons with higher than average 15N
incorporation (Figure 4). Because higher than average 15N
could only come from the 15N leucine feeding, cells with
higher than average 15N can be assumed to correspond
to areas of induced protein synthesis. By comparing the
brains of the EPO-treated mice and the placebo-treated
mice, the researchers found that 15N incorporation was
higher in EPO-treated mice, suggesting that treatment
with EPO resulted in increased protein synthesis within
pyramidal neurons. This was supported by stereology
(cresyl violet) and CTIP2 staining, both of which showed
an increase in cell number in EPO-treated brains. When
combined with cognitive studies of EPO treated mice, the
researchers were able to conclude that EPO can not only
improve cognition in mice and humans but also result in

increased amounts of neurogenesis from inconspicuous local
precursors. This is relevant for studies of central nervous system
regeneration in adults, as EPO expression has been observed
to be linked to brain injury, and presumably to recovery
from injury.

SAMPLE CASE 2: HEART

NanoSIMS and pulse-chase experiments using isotope labeling
have also been used to obtain valuable information about the
renewal of mammalian heart cells, as described in Senyo et al.
(2013) which examined the differentiation of progenitor cells
to cardiomyocytes. This study sought to answer a fundamental
question about the formation of cardiomyocytes in adult
mammals—specifically, whether stem cell activity could result
in a high rate of renewal of cardiomyocytes, or whether new
cardiomyocytes are born at a low rate, derived from the division
of pre-existing cardiomyocytes.

To answer this question, the authors first administered
15N-labeled thymidine for 8 weeks to three age groups
of mice—newborn (4 days), young adult (10 weeks),
and old adult (22 months). The authors chose these
periods to examine the formation of cardiomyocytes at
different ages. Because, newly formed cells would be

Frontiers in Behavioral Neuroscience | www.frontiersin.org 7 July 2020 | Volume 14 | Article 12418

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


Bonnin and Rizzoli SIMS Methods for Cellular Behavior

FIGURE 4 | 15N-leucine incorporation in CA1 pyramidal neurons evaluated by NanoSIMS. (A) Overview of the hippocampus showing dense proliferation signals
(EdU) in the dentate gyrus. The white square illustrates the EdU signal-free area in the pyramidal layer, analyzed by NanoSIMS. (B,C) Illustration of samples following
placebo treatment; (D,E,E’) Illustration of samples following erythropoietin (EPO) treatment; arrows in panel (E’) point to newly generated neuronal cell mass with
high15N/14N ratio; stars in (E’) denote “control” signal in cytoplasmic regions of older neurons. (F,G) Scatter plots of 15N/14N ratios in pyramidal neurons in both
treatment groups. (H,I) Coefficient of variation of 15N/14N ratios in cytoplasm and nuclei of pyramidal neurons (n = 3 for both groups). All bar graphs are shown as
mean ± s.e.m.; **P < 0.01 (unpaired two-tailed t-test). 15N incorporation appears higher in EPO-treated mice, indicating increased protein synthesis within pyramidal
neurons treated with EPO. These observations thus show that EPO may contribute to central nervous system regeneration in adults, which may have behavioral and
cognitive implications. Reproduced with permission from Hassouna et al. (2016).

labeled with 15N, the authors could analyze samples
using NanoSIMS and examine which cells showed higher
than average 15N labeling, similar to the method used in
Hassouna et al. (2016).

Following NanoSIMS analyses on these samples, the authors
found that in the newborn group, more than half of the
cardiomyocytes showed 15N labeling. This suggested a large
concentration of newly formed cells, consistent with the
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FIGURE 5 | [15N]Thymidine was administered for 8 weeks to mice of different ages: newborn, starting at postnatal day 4; young adult, starting at 2 months; old
adult, starting at 22 months. Top, 14N mass images show histological details. Bottom, 15N:14N hue–saturation–intensity images show 15N+ nuclei. Mosaics are
constructed from nine tiles, 60 µm each. Scale bar: 30 µm. These data indicate a decrease in 15N-labeled cells with age, which demonstrates that DNA synthesis in
cardiomyocytes decreases with age under normal conditions. In this case, the 15N label acts to mark DNA synthesis occurring after the administration of the isotope
label. Reprinted by permission from Senyo et al. (2013).

observation that cardiomyocytes continue to synthesize DNA
and develop after birth. However, in the young adult group,
the frequency of 15N-labeled cardiomyocytes decreased by 66-
fold. In the old adult group, the frequency of the 15N label
in cardiomyocytes further decreased. This indicates a decrease
in DNA synthesis in cardiomyocytes with age under normal
conditions (Figure 5). Further examination with 15N thymidine
labeling on double-transgenic MerCreMer/ZEG mice showed
that during aging, most new cardiomyocytes are derived from
existing cardiomyocytes.

SIMS was also used to examine the effect of myocardial
injury on cardiomyocyte renewal. For this experiment, a group
of mice underwent surgery, during which they were subjected
to myocardial infarction. A second, control group of mice
also underwent surgery without myocardial infarction. Both
groups were continuously labeled with 15N thymidine for over
8 weeks. In the mice that had sustained an injury, the frequency
of labeled cardiomyocytes increased significantly in the area
surrounding the infarction site, something that was not observed
in the control group. This indicates that in those 8 weeks,
cardiomyocyte division increased in the injured mice. This
suggests that cardiomyocytes do have some ability to divide
and re-enter the cell cycle, particularly after injury, however,
the results of the overall study suggest that the majority of

DNA synthesis in cardiomyocytes still occurs in pre-existing
cells. By using a combination of SIMS and isotope labeling, the
authors were able to conclude that cardiac progenitor cells do
not significantly contribute to the formation of cardiomyocytes
in mammals.

SAMPLE CASE 3: INNER ORGANS

The combination of isotope labeling and SIMS analysis has also
been applied to the question of cell age, as illustrated by Arrojo
e Drigo et al. (2019). In this study, female mice were fed 15N
labeled food before the introduction of a male. Feeding with
the labeled food continued during pregnancy, including during
mating, gestation, and lactation. Pups were thenweaned onto 14N
unlabeled food after either 21 or 45 days. Feeding with 14N food
continued for a period of up to two years. This method results in
cells that were produced during early development maintaining
a 15N label, particularly if these cells did not divide or exchange
material with 14N-rich cells. By using this method, the authors
hoped to use SIMS to find especially long-lived cells that had
maintained the 15N label from early development.

The authors reported age mosaicism in certain inner organs,
including the central nervous system, pancreas, and liver, where
some cells appeared long-lived, others new, and others of
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FIGURE 6 | (A,B) SEM (A) and MIMS (B) of a cross-section of the islets of Langerhans (pancreas). Old and young acinar cells are indicated by the pink and white
arrow, respectively. Yellow dotted box highlights cells shown in (C). (C) Enlarged view of boxed region in (A) and (B). SEM and MIMS of beta cells (yellow arrows) and
an old alpha cell (pink arrow). (D) An old delta cell (left) next to a younger beta cell (top right). (E) SEM and MIMS of a young (bottom) and an old (top right) endothelial
cell. Old pancreatic stellate cells are seen in the top and lower right corners. (F) Relative turnover in percentages of cells that are as old (gray) or younger (white) than
L2 neurons from 15N-SILAM P21 mouse chased for 26 months. (G) Same as in (F), but from a 15N-SILAM P45 mouse chased for 18 months. The total number of
cells analyzed for each cell type is listed underneath each pie chart. At the bottom of the MIMS images, the heatmap shows the 15N/14N x 104 and scaled with an
HSI. Scale bars: 5 µm (A,C,E) and 2.5 µm (D). In this case, the 15N label represents “older” cells. Thus, the 15N label can be used to identify long-lived cells in the
pancreas, and using a pulse-chase experiment, shows the period during which cellular turnover is most likely to occur. Reprinted from Arrojo e Drigo et al.
(2019) with permission from Elsevier.

varying ages. In particular, the authors found that the liver and
pancreas were composed of cells with different ages, particularly
fibroblasts and endothelial cells. By having a subset of mice
subjected to the experiment for six months, while another subset
of mice was kept in experimental conditions for up to 18 months,
the authors were also able to investigate the rate of turnover in
various inner organs during that time.

In the liver, the authors reported that the majority of
hepatocytes retained the 15N label during this period, remaining
‘‘older’’ cells. In contrast, stellate-like cells and sinusoid-like cells
experienced significant turnover between 6 and 18 months of
age, transitioning from mostly ‘‘old’’ cells to mostly ‘‘younger’’
cells. The pancreas, meanwhile, appears to be composed of
cells of varying ages, with non-uniform turnover between alpha,
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beta, and delta cells. Comparing the cells from mice that had
been weaned at 21 days with mice that had been weaned onto
unlabeled food at 45 days, the authors found that a significant
percentage of alpha and beta cells appear to be formed in the time
between 45 and 21 days, while all delta cells appeared ‘‘old’’ in
both conditions (Figure 6).

ALTERNATIVE METHODS FOR SAMPLE
LABELING

Although SIMS techniques are useful recorders of chemical
information, one enduring limitation of these techniques is that
without an independent method for imaging the location of
interest, it is difficult to determine exactly what cellular structure
is being imaged. While certain cellular structures such as the
nucleus are often obvious and easily distinguished in SIMS
images, the same cannot be said for many organelles. One
solution, then, is to combine SIMS imaging techniques with an
optical microscopy technique. This technique, termed correlated
optical and isotopic nanoscopy, or COIN, can allow researchers
to obtain isotopic data from organelles and other structures
which may not easily be recognized in SIMS (Saka et al., 2014).
For detailed information on the application of COIN to biological
samples, we refer the reader to Saka et al. (2014), which discusses
the technique at length.

In brief, however, the proper application of COIN requires
that the microscopy technique used is of sufficient resolution
to correlate the organelle of interest with the isotopic signature.
Thus, while confocal microscopy techniques are sufficient for
organelles above the diffraction limit, smaller organelles and
proteins would require super-resolution microscopy techniques
for COIN to be usable. Also, COIN requires that a biological
sample be prepared in a manner such that the same sample can
be imaged by both techniques. This requires ensuring that the
resin used is viable for both SIMS analysis and the chosen optical
microscopy technique and that samples are cut to a thickness that
optimizes resolution in both methods. It must also be possible to
image the same location in both techniques, which would require
a method of marking the area of interest without damaging
the sample.

These requirements impose additional limitations on this
technique. Other solutions have been proposed, such as
the immunostaining of samples using antibodies coupled to
isotopically pure metals (Angelo et al., 2014). In this manner,
antibodies can be imaged through SIMS, which eliminates the
need for correlative microscopy. However, antibodies coupled
to metal tags tend to incorporate poorly into specimens. This
undermines the high resolution of SIMS, resulting in a less
precise image (Opazo et al., 2012; Ries et al., 2012).

To solve these issues, various methods using elemental and
isotopic probes have been developed, which add enriched labels
to proteins of interest. For example, labels enriched with 19F can
be added to various proteins, which can then enable them to be
analyzed both using NanoSIMS and using fluorescence imaging
(Vreja et al., 2015). Similarly, areas of interest can be labeled
by using boron-based probes, which then can be used to reveal
the structure of proteins while other measurement channels can

be used to examine other pertinent positive ions (Kabatas et al.,
2019b). These methods allow for more flexibility when designing
SIMS experiments, and alleviate some of the limitations of the
SIMS techniques.

The use of correlative microscopy techniques and probes
to better identify analysis regions in SIMS is an ongoing area
of study and is a complex issue. The combination of SIMS,
various probes and labels, and microscopy is not necessarily
straightforward, and a full discussion of these tools would be
more suited as the subject of its review. However, it appears
clear that the development of new SIMS imaging techniques
will remain correlated with advances both in microscopy and
elemental probe techniques.

CONCLUSIONS

The high resolution and sensitivity of SIMS make it a good
tool for the analysis of behavior at the cellular and subcellular
levels, particularly when coupled with isotope labeling techniques
to highlight areas of interest. Advances in SIMS technology
continue to make this a promising method for the analysis
of cell structure, metabolism, and protein turnover, which can
ultimately lead to changes in animal behavior. The various
studies mentioned in this review showcase the potential of this
technique for measuring behavioral and metabolic effects and
also show other biological and environmental applications for
these new and emerging techniques.

It should be noted, however, that the majority of these
studies also made use of correlative microscopy techniques.
Hassouna et al. (2016), for example, made use of fluorescence
and staining, while Arrojo e Drigo et al. (2019) utilized electron
microscopy to determine the location of cells. This highlights one
enduring limitation of SIMS techniques, namely that without an
independent method for imaging the location of interest, it is
difficult to tell exactly what structure being analyzed. Because of
this, the development of new SIMS techniques will likely remain
correlated with advances in microscopy. However, as further
developments continue in these areas, SIMS will likely remain a
fundamental tool in cellular imaging well into the future.
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Current neuroethological experiments require sophisticated technologies to precisely
quantify the behavior of animals. In many studies, solutions for video recording and
subsequent tracking of animal behavior form a major bottleneck. Three-dimensional
(3D) tracking systems have been available for a few years but are usually very expensive
and rarely include very high-speed cameras; access to these systems for research
is limited. Additionally, establishing custom-built software is often time consuming –
especially for researchers without high-performance programming and computer vision
expertise. Here, we present an open-source software framework that allows researchers
to utilize low-cost high-speed cameras in their research for a fraction of the cost of
commercial systems. This software handles the recording of synchronized high-speed
video from multiple cameras, the offline 3D reconstruction of that video, and a viewer for
the triangulated data, all functions previously also available as separate applications. It
supports researchers with a performance-optimized suite of functions that encompass
the entirety of data collection and decreases processing time for high-speed 3D position
tracking on a variety of animals, including snakes. Motion capture in snakes can be
particularly demanding since a strike can be as short as 50 ms, literally twice as fast as
the blink of an eye. This is too fast for faithful recording by most commercial tracking
systems and therefore represents a challenging test to our software for quantification of
animal behavior. Therefore, we conducted a case study investigating snake strike speed
to showcase the use and integration of the software in an existing experimental setup.

Keywords: motion capture, high-speed, opensource, tracking, snake, strike

INTRODUCTION

High-speed video recording is a common tool to visualize and subsequently quantify fast behavioral
performances such as in snakes (Kardong and Bels, 1998; Young, 2010; Herrel et al., 2011; Penning
et al., 2016; Ryerson and Tan, 2017), other fast moving animals (Patek et al., 2004; Tobalske
et al., 2007; Seid et al., 2008), or insect flight (e.g. Altshuler et al., 2005; Boeddeker et al., 2010;
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Geurten et al., 2010; Straw et al., 2011). However, in most snake
studies only one camera or a maximum of two are used to
capture such rapid motion, with the one exception of a recent
study where multiple cameras with only moderate temporal
resolution, were used to investigate locomotor maneuvers (Gart
et al., 2019). Software such as DLTdv (Hedrick, 2008), Tracker
(Open Source Physics)1, ImageJ (Rasband, 1997-2018), or Didge
(Alistair Cullum, Creighton University) have usually been used
to process the captured images. These open source solutions
are suitable tools to use when capturing with a single camera
and with a known distance to the recorded object(s), with an
exception for DLTdv as it performs triangulation when combined
with calibration information provided by a different software.
Single camera capture, however, creates some limitations. Using
a mirror allows a single camera to perceive multiple views of
the snake such as done by Kardong and Bels (1998), but any
time a single camera is used to capture three-dimensional (3D)
information, the camera must be placed in a setup that is
stereotypically well-defined in a way that the distances such as
between camera sensors or from the camera sensor to the object
are known. The inflexibility of these well-defined setups can be
troublesome for the use in multiple experiments, requires extra
expertise, and entails extra costs for building and storage.

Motion capture technology using multiple infrared cameras
has been available for experimental studies already for decades.
While one of the principal fields of employment for these systems
was and still is the capture of human motion, this technology
has been used in more recent years for the tracking of animal
locomotion (Dahmen and Zeil, 1984; Fry et al., 2000; Straw et al.,
2011; Tian et al., 2011; Theunissen and Dürr, 2013; Robie et al.,
2017; Theunissen et al., 2017). Systems such as Vicon, Optitrack,
Motion Analysis, Qualisys, or XSense are largely comparable and
use infrared reflective spherical surface markers on the subject of
interest that are tracked by multiple spatially fixed cameras and
allow triangulating the positions of various body parts in virtual
3D space. In contrast, active marker-based tracking systems
such as Dari Motion, Myomotion, NDI, or marker-less systems,
commonly use depth information and a wire-frame, or similar,
model of the tracked object mostly for applications involving
humans. These model-based systems are expensive with costs
that range from $10,000 to $100,000, though some open source
algorithms are available for human pose estimation in video
recordings (e.g. OpenPose, Cao et al., 2018, DeepPose, Toshev
and Szegedy, 2014, ArtTrack, Insafutdinov et al., 2017, and
DeeperCut, Insafutdinov et al., 2016). While commercial systems
work well with low reconstruction error and ease of use, this
technology is rather insufficient for high-speed motion capture,
mostly because of the typically low maximal camera frame rates
of 100–250 Hz. Accordingly, details of ultrafast movements such
as strikes of rattlesnakes, which from initiation to target contact
are completed within ∼0.05 s (Kardong and Bels, 1998; Penning
et al., 2016) require a camera with a capture frame rate well
beyond 200 Hz. At such a frame rate, and using a state-of-the-
art tracking procedure, optical recordings of a rattlesnake strike
would comprise a mere 10 frames of triangulated trajectory.

1http://www.compadre.org/OSP/

Accordingly, many details about the kinematic profile would be
unavailable and thus invisible apart from the fact that raw images
are usually not stored. Though often done to save disk space
as well as to minimize bandwidth saturation, it prevents any
re-analysis of the triangulated motion trajectory.

Here, we present a multi-camera system that allows high-
speed motion capture of ultrafast animal movements such as
snake strikes using low-priced cameras with high frame rates of
750 Hz and sufficient spatial resolution. The developed software
provides a suite of functions that encompass the entirety of
data collection, processing, and storage of motion capture with
a special focus on processing speeds for high-speed camera
capture. Another advantage of using a single software for the
data recording and processing pipeline is that the amount
of ambiguity and pitfalls that inexperienced motion capture
practitioners could encounter is decreased. The amount of data
that is generated by high-speed cameras grows quite rapidly
with the number of cameras, their speed, and their resolution.
Handling this large amount of data often causes problems and
can be vastly time consuming when large data sets are processed
without performance optimization. This software processes the
data to the full extent of the available computer system resources;
a feature not available in other tracking software such as
DLTdv Hedrick (2008), but which greatly diminishes the time
required for processing. Although this system was developed
in order to capture snake strike motion dynamics, it can easily
be employed for motion studies of other animals than snakes.
SnakeStrike is an open source framework written to allow users
to harness the power from other open source libraries for
image manipulation, camera interaction, and computer vision
(Bradski, 2000; Schroeder et al., 2006; Guennebaud and Jacob,
2010; Rusu and Cousins, 2011; Moulon et al., 2013). Thus,
besides assisting in the resource-intense and time-critical initial
collection of images at high frame rates with multiple cameras,
SnakeStrike performs subsequent offline image processing for
triangulation and data visualization. Color thresholding is used
for marker identification, allowing simultaneous tracking of
multiple animals or body parts when markers with different
colors are used. If infrared cameras are used, then infrared
markers can subsequently also be used. Marker types need not
be spherical or 3D in form. Something as simple as a piece of
colored tape can be used, and no wire-frame, or similar model,
is required. A major advantage of SnakeStrike is the storage of
all original images as reference. This permits repeated off-line
data re-interpretation in case new automatic tracking methods
or sequential modeling methods become available. Because of
the open source code and the modular structure of SnakeStrike,
other annotation and pose estimation tools such as DeepLabCut
(Mathis et al., 2018) or LEAP (Pereira et al., 2019) can be
incorporated into the processing pipeline.

MATERIALS AND METHODS

In this section we describe the requirements to use the system
and how we fulfilled those requirements, how to use the software
from a user’s perspective, as well as provide a high-level overview
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of how the images are processed such that 3D triangulated points
of the markers become available. The order of the sections follows
the order the user will generally interact with the interface.
This order is reinforced by the software to create a consistent
pipeline for the user. Where appropriate we include suggestions
for solutions to problems that can arise during use. Furthermore,
we describe the experimental setup used for each of our two
experimental settings.

Hardware Requirements
For effective recording of high-speed videos for 3D tracking, it is
important to use cameras that are fast enough to capture every
detail of the motion of interest and can function together. The
only absolute requirements to run the SnakeStrike software are
a 64-bit computer running 64-bit Linux. To ensure faithful data
transfer to the computer, enough bandwidth on a single bus
or multiple busses for the communication protocol is required
to save data without dropping individual frames. Therefore, it
should be thoroughly calculated which camera communication
protocol (e.g. USB3, Ethernet, etc.) is most beneficial given the
respective requirements. The only requirements are that the
camera adheres to the GenICam standard and has an application
programming interface (API). Since very large amounts of data
need to be transferred and stored, a computer equipped with
sufficient sized RAM and hard drives that have enough storage
space to store the recorded raw images is required. However, the
precise camera and computer configuration generally depends
on the speed of the motion of interest and total recording time
necessary to capture every detail. An example data set of only 1
second of recording time from a setup equipped with 5 USB 3.0
cameras with a resolution of 640 × 480 pixels and using lossless
data compression requires∼700 MB of disk space, while∼3.2 GB
of RAM is the minimal requirement for the images from the data
capture, assuming that the images are returned from the camera
in RGB8 format. If the format is changed to something like Bayer
BG8, then the amount of required RAM decreases by a third.
Sufficient RAM for running the software should also be included
in the calculation. Since AC powered lights flicker when recorded
with high-speed cameras, lights for the experimental setup need
to have a flicker frequency that is higher than the camera speed or
are non-flickering. Note that not all LED lights are non-flickering.

To satisfy secondary requirements of our experiments, we
used a computer with multiple CPU cores, 64 GB RAM, and
several Terabytes of available hard disk storage. Furthermore,
we used multiple USB 3.0 cameras. Consequently, a PCI card
that expanded the available USB 3.0 ports and ensured that
each new port had its own controller was utilized. A separate
controller for each port guaranteed that the port would not share
bandwidth with other USB 3.0 ports. When running a high-
speed camera, it is very easy to saturate these buses with a single
camera, let alone multiple. For triggering the cameras, a software
trigger is usually available, although this does not guarantee
synchronized images when using a USB connection. If a hardware
trigger is required while using USB cameras, an external hardware
trigger must be added.

We chose Basler Ace acA1300-200uc cameras (Basler AG,
Ahrensburg, Germany), which have a maximum image size of

1280 × 1024 pixels. At full spatial resolution, the maximum
speed is 203 Hz, however, if the resolution is decreased to 640
× 480 pixels, a frame rate of 750 Hz can be achieved. With
camera speeds this high, light flickering of the illumination
can be a major issue. Accordingly, surgical lights were used
when recording snake strikes in the 3D X-ray setup. However,
AQ Aquaflora 54-watt fluorescent bulbs (D-D The Aquarium
Solution Ltd., Ilford, United Kingdom) are cost-efficient and
have successfully been applied in initial tests. When available,
non-flickering LED-technology can be used as an alternative.
The used cameras were connected to the computer by USB
3.0. To exclude potentially dropped images due to saturation
of the bus, a Startech PEXUSB3S44V card (StarTech.com,
London, ON, Canada) was used. For correct triangulation during
our experiments, USB camera synchronization was essential.
Accordingly, a Labjack U3 (Lakewood, CO, United States)
AD/DA converter with custom-built housing to trigger the
cameras via three available digital ports was used. A maximum
of three cameras can be triggered per port, without critical
attenuation of the TTL signal. As long as the camera speed
is less than 25,000 fps, i.e. one frame per 40 µs, the 20 µs
delay between each of the pulses is short enough to ensure a
quasi-simultaneous image recording from all triggered cameras.
Thus, recorded images are saved as the same frame. If only
one trigger is available, another solution to allow all cameras
to be triggered is to use a buffer amplifier; this prevents the
signal from being affected by load currents and ensures a truly
synchronous trigger.

User Interface
SnakeStrike is currently only available for 64-bit Linux.
The C++ source code and installation instructions are
available at “https://github.com/gwjensen/SnakeStrike”, while
the main user and code documentation can be found at
“https://gwjensen.github.io/SnakeStrike/”. Since compiling C++
source code with many dependencies is not an easy task, a docker
image with the required dependencies as well as SnakeStrike
pre-installed is available on DockerHub at gwjensen/snake_strike
with the requisite source for building the Docker image manually
located at “https://github.com/gwjensen/SnakeStrikeDocker”.
Information regarding plugins or specific functions is available
at “https://gwjensen.github.io/SnakeStrike/”.

The main method of interacting with SnakeStrike is through
a basic graphical user interface (GUI). The interface manages
folder structure and encapsulates the many steps behind the
actions of calibration, capture, and triangulation tasks. The
functionality of the interface is divided into three separate tabs
in the top left corner of the window (Figure 1A). First, the user
creates a new project/experiment, where a project/experiment
comprises a single data collection. This ensures consistent
data annotation output and reduces workload for the user by
automatically organizing created files. After the project is created,
new options become available guiding the user along the GUI. For
instance, if the cameras are not connected, the user is unable to
use any recording options until establishing the connections and
pressing “Refresh Camera Connection.” The “Collect Data” tab as
well as the side toolbar provides the user with a live preview from
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FIGURE 1 | User Interface of the SnakeStrike software and view of the experimental setup used for Study 1. (A) Main screen of the software depicting simultaneous
previews from four connected cameras. (B) Calibration dialog window after a successful calibration attempt. (C) DIN A1-sized calibration image adopted from Li
et al. (2013), affixed to a 1 cm thick cardboard for calibration. (D) Example of the dialog window used to triangulate the markers encountered in the images.
(E) Overview of the experimental setup used for study 1, depicting the arrangement of three low-cost Basler cameras and a Franka Emika Panda robotic arm.
(F) Close-up of the robotic arm with green markers affixed to a piece of fiberboard.

the cameras, to initially position the cameras and perform the fine
tuning of the focus.

Camera parameters, such as frame size, frame rate, and
exposure length need to be set by the software provided by

the camera manufacturer and has to be saved in an external
configuration file that adheres to the GenICam programming
standard. This standard is a generic programming interface that
is supported by all compliant cameras and guarantees that a
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configuration file is transferable between cameras produced by
different manufacturers. To set the camera parameters within
SnakeStrike, the configuration file must be loaded using the
“Load Camera Config” button. Further information, i.e. whether
the camera is USB 3.0 or Ethernet-connected, are automatically
abstracted. After the configuration of the cameras, the calibration
can be started by pressing the “Calibrate Cameras” button that
opens the calibration dialogue (Figure 1B). Using the technique
described by Li et al. (2013), the intrinsic calibrations, i.e.
finding the optical center, focal length, and lens distortion of
the individual camera, as well as the extrinsic calibrations, i.e.
how the cameras are positioned relative to each other in 3D
space, are performed.

Undistortion and Calibration
The size of the image used for calibration depends on the angles
between the cameras and the viewing space covered by the
cameras. A large viewing angle and/or a large viewing space
requires a calibration image that is sufficiently large to be viewed
by more than one camera at a time. Optimal calibration objects
allow finding correspondences at multiple levels of resolution.
The calibration object must be affixed to a movable planar surface
such that the image remains flat, but still can be moved through
the cameras’ field of view (Figure 1C). It is not necessary for the
calibration image to be fully viewable by each camera or that
all cameras see the calibration image at the same time. More
important for a successful extrinsic calibration is that the cameras
can be linked across images that are shared. For example, in a
setup with three cameras (A, B, C), where A and B can see the
calibration image in a few image captures, and B and C can
see the calibration image in a few captures, it is unnecessary
for A and C to also share image captures when capturing the
calibration image.

Calibration images should be recorded at low frame rates
(e.g. 4 Hz in the current study). This reduces the amount of
multiple copies of identical images that would be recorded if the
movement of the calibration object is too slow with respect to
the camera frame rate. Identical images lead to instabilities in the
calibration calculation and unnecessarily increase computation
time. Generally, it is recommended to use a slow capture frame
rate, and make sure that the calibration object is presented
with multiple different orientations relative to the cameras.
For a detailed and mathematical explanation of the calibration
procedure (see Hartley and Sturm, 1997; Kanatani et al., 2016).

To undistort the images from individual cameras, and to
calculate the relative camera positions, we used the technique
described by Li et al. (2013). One camera sensor will always
be used to define the origin of world space. After collection of
the images, the user can choose to see the text output of the
calibration and can set the lower boundary for the number of
matches. The SURF-like (Bay et al., 2006) difference of Gaussian
filter (Li et al., 2013) detectors must find a pair of images that can
be paired for further calibration. If the calibration returns with no
errors, then a root-mean square error (RMS) of camera positions
in space relative to each other is provided (Figure 1B). As the
positioning is an optimization and not a closed-formula solution,
the error depends on different parameters, such as camera

resolution, quality of focusing, number of recorded images, and
number of Gaussian filter matches. After calibration, a mask of
the experimental setup can be saved (although not required)
along with the project information, to improve post-processing
such as thresholding.

Marker Detection and Tracking
After configuration and calibration of the cameras, the “Record”
button in the “Collect Data” tab becomes available and the
recording can be started. Once a recording has been completed,
offline data processing can be started by pressing the “Process”
tab. Pressing “Triangulate Points” brings up the dialog window
for thresholding the markers from each camera’s image and
triangulating those points into world coordinates (Figure 1D).
Our marker detection method is analogous to how commercial
tracking systems work in that a specific color range, as supplied
by the user, is thresholded to detect the markers in an image.
This thresholding combined with the grouping of pixels close
to each other and then returning the center of that group
is how a colored marker on the object/animal is transformed
into a marker position. Typically, commercial systems rely
on the markers being IR reflective and of a spherical shape
to allow the use of ellipse fitting algorithms. Our approach
does not have these restrictions. To decrease computational
complexity in our software, the initial correspondence of
marker position in relation to the different cameras and the
colored marker in 3D space are provided by the user. All
subsequent correspondences are performed automatically as
described below. For thresholding, a range of colors according
to the HSV scale can be chosen. To help remove noise, which can
pose a severe problem when using this rudimentary approach, a
small configurable filter is available. The preview dialog allows
the user to fine tune the values for a particular capture session
before proceeding to the triangulation. Images being used for
triangulation will automatically be undistorted according to the
camera distortion coefficients that were calculated separately for
each particular camera during calibration.

Markers are not required to be 3D in shape when capturing
data, i.e. the IR reflective spheres used by commercial systems,
however, when capturing data, it must be ensured that at
least two cameras see the tracked points. While two cameras
are the minimal requirement for 3D triangulation, the quality
of triangulation is considerably improved using three cameras
(Stewenius et al., 2005). The benefit of using non-3D markers,
like tape or paint, on animals that are difficult to handle such
as snakes, is that such 2D markers are more likely to remain
attached to the animal. This benefit is offset by the need for more
cameras if markers are obscured from one or more cameras.
The optimal marker size depends on the camera resolution and
size of the object to be tracked. Markers and lighting need to
be adjusted to each other. Markers must appear bright enough
to allow a dissociation from other low light background colors.
On the other hand, markers must not be too bright, because of
a potential confoundment with reflections or glare from other
surfaces in the experimental environment. We thus recommend
choosing colors that have a very high value and saturation in the
HSV color space. This facilitates segmenting with both small and
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large amounts of light. Using a less vibrant color for a marker
is possible, but requires that the color is non-glossy; otherwise,
reflections on the marker surface can optically change the shape
of the marker and thus impair the function of the thresholding
algorithm. This could lead to larger errors such as the mid-point
of the marker shifting, or even optically splitting the marker into
two. In this case, noise smoothing operators in the thresholding
dialog are required to rejoin the marker. Accordingly, the larger
the markers, the larger the potential error that can occur during
triangulation, due to the number of pixels that the marker
covers and the problem of finding a representative pixel for
this group. When several pixels enter or leave the group, the
representative center pixel will most likely change as well. This
splitting can also occur because of changes in illumination of
the marker, i.e. slight shadow on the marker. This is a source of
error related to the lighting of the setup that cannot be fixed by
non-flickering lights.

In a perfect situation, where the cameras in a setup have
perfect intrinsic and extrinsic calibration matrices, i.e. the
parameters of the camera and its position to every other camera is
perfectly known, the triangulation of corresponding pixels across
cameras is straightforward. A ray extends from each camera
sensor through the corresponding pixel in question. In a perfect
setup, these projection rays would intersect in 3D space. In
reality, however, there are many sources of noise that prevent
an intersection of these lines. These sources include noise in
the calibration of the camera, noise in how the camera sensor
converts light information, noise caused by the viewing of a 3D
object from different positions that might not view the object in
the same way, etc. When the lines don’t intersect, as is usually the
case, a method for finding the 3D point of intersection is required.
This means that a new pixel in each image needs to be found such
that all the projection lines through those pixels intersect in 3D
space. There are many metrics that can be used for determining
where this new pixel in each image is located.

To help correct for noise inherent in marker location
triangulation we used a technique described by Kanatani
et al. (2008) as “optimal correction,” but using the specific
implementation from Kanatani et al. (2016), that translocates
the marker’s center pixel in the image space a minimal amount
such that all projection lines from the cameras intersect again
in 3D space. This is known as minimizing the reprojection
error (geometric error), i.e. the error in pixel space of the
data point and its reprojection. In other words, this method
finds a pixel as close to the original pixel in the pixel space
for each camera such that the projection lines through those
pixels will intersect. Once the lines intersect again, the algorithm
of Direct Linear Transformation (DLT) (Sutherland, 1974),
which solves using the singular value decomposition (SVD),
can be used to calculate the 3D point represented by the
corresponding marker locations in each image. If DLT is
used without the geometric correction afforded by “optimal
correction,” or by another correction algorithm, then the SVD
in the equation has multiple possible answers. The algorithm
chooses the solution that minimizes the sum of least squares
distance, not in the pixel space, but in 3D space from the
projection lines of the data points to the point in 3D space

that satisfies the intersection constraint. Minimizing the error
in the pixel space is generally agreed to be an inferior solution
compared to minimizing the error in the geometric space,
i.e. the reprojection error (Hartley and Zisserman, 2003) (See
Supplementary Videos S1, S2).

When using three or fewer cameras, the globally optimal
translocation of data points according to geometric correction
can be provided by the polynomial algorithms of Hartley and
Sturm (1997) for two cameras, which was later extended by
Stewenius et al. (2005) to three cameras. However, as the number
of cameras grows, the size of the polynomial function to solve
becomes unwieldy. As described by Hartley and Kahl (2007),
Stewenius and Nister, in an unpublished work, calculated the
degree of the polynomial that would need to be solved for
views 2–7. They found 6, 47, 148, 336, 638, and 1081 to
be the respective order of the polynomial for calculating the
global optimal solution. This shows how quickly the number
of local optima of the cost function increases. For more
than three cameras, the search for a global optimal solution
is commonly done with optimization of a cost function or
gradient descent algorithms. These solutions for more than
three cameras, however, as mentioned by Hartley and Zisserman
(2003) can be quite computationally expensive as well as
difficult to program. Quite often these methods also rely on
assumptions regarding the source of the noise, e.g. Gaussian
distributed. We used the iterative method of Kanatani et al.
(2008) to minimize the geometric error without minimizing
a cost function or relying on any assumptions regarding the
source of the noise. Furthermore, as was shown in Kanatani
et al. (2008), since this method starts as an approximation of
the solution, it typically requires only a couple of iterations to
converge and, in the case of three or less cameras, to provide
the same solution as the closed form polynomial equations in
less time. In our experience with five cameras the algorithm
performs quickly and produces high quality results even with
the additional noise that is contributed by the movement of
marker center positions. These errors are discussed further
in Study 1 below.

Matching multiple points across multiple cameras is not a
trivial problem, as Munkres (1957) demonstrated. If we have M
cameras, finding the corresponding point from one camera in
the set of all other points in each of the other M-1 cameras is a
computationally intensive task. This problem can be solved for
two sets in O(N3), i.e. the time required to solve the problem
scales cubically with the number of inputs, assuming that there
are no further constraints to the matching. For more than two
sets and when there are additional constraints, such as that the
assignment over time stays consistent, these problems are still
an active area of research. A general solution to the problem
of triangulation of occluded points during tracking has also
proved elusive. Only basic methods for the tracking of points are
available in our implementation at the moment. Currently, for a
triangulation attempt, the user has to select the visible markers
in images from a single time step manually using an intuitive
GUI. The selection does not need to be pixel precise as the closest
visible marker will automatically be selected. This initial marking
helps to decrease the computational complexity of assigning
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matching points across camera views to a more manageable
problem. These starting positions are then used as the initial
starting positions for points in a Kalman filter (Kalman, 1960).
Using this initial configuration, the Hungarian algorithm, also
known as the Munkres-Kuhn algorithm (Munkres, 1957; Kuhn,
1959; Bourgeois and Lassalle, 1971), along with the Kalman filter,
which receives its step update information from the matching of
the Hungarian algorithm, are used to keep the point assignments
consistent through time. These algorithms are only used to
support the correct assignment of correspondence, while the
pixel positions of the marker come from the thresholding and
not from the steps of the filter. A high-level diagram of this
processing pipeline is shown in Figure 2. The user has the option
to force the algorithm to skip timesteps where not all markers for
each camera are visible. When the setup consists of more than
two cameras, the user can fall back to a set of fewer cameras
that have no occlusion for that timestep. An algorithm library
for correspondence is used to match corresponding points from
images taken at different angles. In the default case this library
is the Kalman filter and Hungarian algorithm combination
mentioned above. However, since this library is dynamically
loaded, the user has the option to write a correspondence
plugin for keeping the identity of thresholded points unique
through time, making it unnecessary to rely on the basic method
described above.

Our framework provides an API where these new algorithms
can be supplied to the framework without re-compiling the
codebase. This interface is basic in the sense that it provides
the points for each timestep, and expects the points to return
in ordered lists for each timestep. This creates an interface that
puts a minimal amount of constraints on the algorithms that
are used to process the point tracking data. More information
regarding the API for these algorithms can be found on
“https://gwjensen.github.io/SnakeStrike/”. This is where software
such as DeepLabCut (Mathis et al., 2018) or LEAP (Pereira et al.,
2019) can be integrated into SnakeStrike. This also allows data to
be processed by many different algorithms, if necessary. It further
offers the possibility for the user to maximize the constraints such

as how to handle obscured points, what to do when point labels
are swapped, etc.

Viewing Tracking Data
After triangulation, the data can be viewed by the built-in
3D point cloud viewer. This generates an animation of the
movement through time, and also allows stepping through each
individual timestep. A line connects the points in the order as
indicated by the user for disambiguation. This line is useful
for relating triangulated points to the body of the animal, but
does not directly reflect pose information of the animal. For
example, in the case of a snake, the line won’t follow the
contours of the snake unless the markers are spaced with minimal
distance to each other. The points are also of different colors
to prevent ambiguity when viewing the motion of the points
through time (Figures 3A2,B2,C2). The triangulation performed
by SnakeStrike does not perform any direct filtering or smoothing
on the triangulated points over time. It only provides a simple
forward-backward filter as part of the GUI window to allow the
user to see how filtering or smoothing could improve the data.

Procedures for Study 1: Measurement of
Accuracy
The accuracy of SnakeStrike was determined under particular
control conditions, that, however, differed with respect to the
experimental setting used in study 2 for the strike movements of
snakes (e.g. cameras, lighting conditions, etc.). The accuracy of
the system was determined with a robotic arm that reproducibly
moved an artificial object to calculate the error level for the
calibration technique and illustrated the effect of different
recording conditions. The setup consisted of a robotic arm
(Model: “Franka Emika Panda,” Franka Emika GmbH, Munich,
Germany) used to move a flat plane with affixed markers in a
specific spatial configuration (Figures 1E,F and Table 1). Robotic
arm motion allowed for precise movements with identical
trajectories, while parameters such as speed were altered under
defined conditions. With this approach two types of camera
lenses, two different marker dimensions, and two different

FIGURE 2 | Diagram depicting the flow of data during the processing of images which results in a 3D triangulated point of the markers being tracked. The variable S
is the set of markers as they exist in the real world with St=0 being the first time step in the image capture series. The information for initial point correspondence is
entered by the user, via the labeling GUI. The variable Vt,j is the image pixel position of the markers for time step t and camera j. Variables with a hat such as V̂t,j or Ŝt

represent calculated guesses as to the true values Vt,j and St, respectively. The arrow with the marking “KFP” is a Kalman filter prediction, and the boxes “Thresh,”
“HA,” “OC,” and “Tri” indicate the color thresholding algorithm, the Hungarian algorithm, the optimal correction algorithm, and the triangulation algorithm,
respectively.

Frontiers in Behavioral Neuroscience | www.frontiersin.org 7 August 2020 | Volume 14 | Article 11631

https://gwjensen.github.io/SnakeStrike/
https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


fnbeh-14-00116 August 3, 2020 Time: 11:18 # 8

Jensen et al. Low-Cost 3D Motion Capture System

FIGURE 3 | Experimental setting for capturing and analyzing snake strikes in study 2. (A–C) Raw images of a strike of an amazon tree boa (Corallus hortulanus) at
three different time steps: at a stationary position (A1), and approximately in the middle of the strike (B1,C1). The large black circle behind the snake is the horizontal
X-ray emitter, while the vertical X-ray emitter above the snake is out of view. Corresponding triangulation is plotted as output by the SnakeStrike software for the
corresponding images (A2–C2). The coordinate system has been rotated such that triangulated points and images have the same viewpoint. Each marker (1–5) on
the snake is depicted by a different color label in the triangulated data, starting with the red (1) point and ending with the yellow point (5) in (A2–C2); a red line
connects all points in the triangulation. This line corresponds to the marker positions on the snake from rostral to caudal and is not based on pose estimation. The
direction of the line is defined by the user during triangulation. The data shown in plots (B,C) are 86 images (114.7 ms) apart.

movement speeds were tested. The definition of the exact
distances between the points allowed calculating the error in 3D
triangulation between all points. The affixation of the points to a
plane allowed calculating the error of the points from the plane
that fits all points with the least error.

The basic experimental setting was as follows: placement of
three cameras, oriented around the robotic arm (Figure 1F).

Bright neon green markers (small: 10 mm × 10 mm; large:
22 mm × 22 mm) were attached at specific locations on a flat
piece of medium-density fiberboard to ensure that the markers
were aligned in the same spatial plane; the chosen marker color
was unique and did not occur on objects anywhere else in the
cameras’ field of view. For the Fujinon DV3.4x3.8SA-1 (Fujifilm,
Tokyo, Japan) lens, the distance between cameras and marker
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TABLE 1 | Distance between markers on the calibration object used for Study 1.

1 2 3 4 5

Small mark number

1 0 72.0 80.5 101.8 72.0

2 0 36.0 72.0 101.8

3 0 36.0 80.5

4 0 72.0

5 0

Big mark number

1 0 84.0 93.9 118.8 84.0

2 0 42.0 84.0 118.8

3 0 42.0 93.9

4 0 84.0

5 0

Measurements are all in mm.

plane was about 110 cm (Figure 1E). For the Ricoh FL-CC0614A-
2M (Ricoh, Tokyo, Japan) lens, the distance was increased to
∼175 cm, because of the longer focal length of the lens. As the
cameras had to be moved, calibration differences as well as lens
differences were tested. Each capture session was completed with
the cameras set to an image size of 640 × 480 pixels at a frame
rate of 750 Hz. For each capture, 6000 images were recorded. For
triangulation, the thresholding viewer tools of SnakeStrike were
used and set to a color range with the most correct detection of
the markers and minimum false-positive detections.

Procedures for Study 2: Strike Movement
of the Amazon Tree Boa (Corallus
hortulanus)
The tracking framework was applied for the first time ever on
living animals in combination with biplanar X-ray to capture
fast snake strikes. The field of view of the X-ray tubes was
too small to encompass the entire strike of the snakes while
still providing adequate resolution. Therefore, an additional data
capturing method was required to compare local information
obtained from the biplanar X-ray motion capture with global
snake movement information. This multi-modal data and the
analysis of the resulting data fusion is not a component of the
tracking system, and thus out of scope. Nevertheless, we were
able to assess the usage of the system with live animals and to
demonstrate that this stand-alone 3D motion tracking system can
easily be integrated in existing experimental set-ups to record
multi-modal data sets.

The experiment included four amazon tree boas (Corallus
hortulanus) with a snout-vent-length (SVL) of 100–120 cm.
Snakes of either sex and a body mass of 23–69 g were
obtained from the in-house animal breeding facility at the
Chair of Zoology at the Technical University of Munich. Snakes
were kept at a temperature of 22–30◦C on a 12 h:12 h
light:dark cycle. Permission for the experiments was granted
by the respective governmental institution for animal welfare
(Thüringer Landesamt für Verbraucherschutz; code: 15-003/16).
For the experiments, five cameras running at 750 Hz at a spatial
resolution of 640× 480 pixels were used resulting in 7500 images

per camera per capture sequence. This required ∼11GB RAM
(We used the Bayer BG8 image format) and ∼7 GB disk space to
record and store one capture, excluding any memory or storage
space to run SnakeStrike. The orientation of the snake in space
when anchored to a branch represented a difficult condition to
reliably capture images as snakes can coil back onto themselves,
thus potentially occluding markers. Additionally, the placement
of markers on the snake, though spaced out along the body
of the snake, can end up next to each other when the snake
forms its characteristic S-shaped curves. Therefore, multiple
cameras were necessary such that at least two cameras saw the
markers at any timepoint.

Avery No. 3320 multipurpose labels (Avery Dennison
Corporation, Glendale, CA, United States) were used as markers
as they can be stained with any suitable color, and have a good
adhesion, without irritating the skin. The labels were painted
in a light blue color as it would be the only incidence of that
color in the experimental setting. There were blue markers on the
body and an additional red marker on the head because the head
becomes obscured by the opening of the mouth as described by
Cundall and Deufel (1999) and the X-ray tubes did not allow for
setting up cameras directly above the snake (Figures 3A1,B1,C1).
To reduce errors and to avoid correspondence switching of
the markers, the body and head markers had different colors.
Accordingly, the two marker colors were triangulated separately
and then required post-processing to fuse the data manually
using a simple script.

RESULTS

Study 1: Measurement of Accuracy
The accuracy of the tracking system was determined by using a
robotic arm for the generation of a movement of the flat plane
through the visual field of the cameras (Figures 1E,F). Based
on the variations of the experimental protocol, it was possible
to determine the errors related to the different configurations.
To provide an intuitive understanding of the performance
abilities of the system, we also converted errors from absolute
3D world space measurements to approximate pixel space
equivalencies. Figure 4A (Supplementary Figure S1A) and
Figure 4B (Supplementary Figure S1B) illustrate the errors
resulting from running the same movement at two different
speeds, two different lenses, and two different marker sizes. The
faster robotic arm speed covered the same motion trajectory as
the slower speed, but also covered a slightly different motion
at the end due to the faster movement. This was expected
as it produces the same trajectory as the movement at the
slower speed, but over a shorter amount of time. Details of
the results with different marker size, lenses, and movement
speed were plotted in the various rows and columns in Figure 4
and Supplementary Figure S1. A major outcome of these
experiments was the observation that neither the change of lenses
nor the speed of the movement has a substantial effect on the
accuracy of the reconstruction. The latter finding was also not too
surprising given that the movement speed was far slower than the
camera frame rate (750 Hz) for these experiments.
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FIGURE 4 | Study 1: Error in marker location while the fiberboard with attached markers was moved through space by the Franka Emika Panda robotic arm.
Parameters: two marker sizes and two relative speeds of movement of the markers. Data is shown for one camera lens (Fujinon DV3.4x3.8SA-1) only. In
Supplementary Figure S1 additional data recorded with a second camera lens (Ricoh FL-CC0614A-2M) are presented. (A) Each boxplot refers to an interpoint
distance error between two points of known distance in the calibration object (Table 1); the numbers on the x-axis represent the points and are separated by a
hyphen. (B) Marker distance from the best-fitting plane for all markers.

The largest visibly observed differences were found for the
size of the markers, with an increase of ∼2–3 mm (∼2 pixels)
in the average error per point when using larger markers. This
was likely due to the fact that the larger the marker, the more the
center of the marker potentially shifts. This shifting can be caused
by parameters such as changes in illumination, color intensity,
or visibility. It is noteworthy, however, that the planar error did
not change between the two marker sizes. In order to better
understand the effect that aspects such as viewing angle, lighting,
or color intensity changes have on the accuracy, stationary images
were collected. Figures 5A,B show the respective distance errors
between points and the distance from the closest fitting plane,
respectively. During all captures, 6000 images were acquired at
a frame rate of 750 Hz. In this case, small markers were used and
each plot represented the position of the fiberboard relative to the
main camera. The positions were as follows: “facing downwards,”
“facing perpendicular,” “slanted right,” “slanted left,” “slanted
up,” and “slanted up with a sharper angle.” It is noticeable that
the error ranges for “slant right,” “facing downwards,” and for

“slanted up with a sharper angle” were considerably larger than
for the other capture angles. Variances for both of these positions
ranged mostly from 4 to 6 mm (∼3–4.5 pixels), while other
positions tended to have less than 4 mm (∼3 pixels) of variance.
The markers perpendicular to the camera as well as the “slant left”
capture error ranges were considerably smaller than reported for
moving markers. Markers at other angles relative to the camera
had error variances comparable to those during motion captures.

To better explain the source of these errors in the
triangulation, the original pictures were reanalyzed to potentially
discern differences between the positions that showed a smaller
error variance and those that showed a larger variance. The first
noticeable difference was that the angle of the marker board
relative to the camera was larger in the “slanted right” compared
to the “slanted left” capture configuration. A similarly sharp angle
was also present relative to one of the cameras in the “slanted up
with a sharper angle” capture condition. Thus, the sharper the
angle of the camera optical axis relative to the marker, the smaller
the marker from the view of the camera. The resultant smaller
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FIGURE 5 | Study 1: Error in marker location with a stationary fiberboard across 6000 time steps. (A) Stationary markers viewed from different angles by the center
camera. Each boxplot refers to an interpoint distance error between two points of known distance in the calibration object (Table 1). The numbers on the x-axis
represent the points and are separated by a hyphen. (B) Distance of markers from the best-fitting plane for all markers (left). Movement of triangulated points in 3D
from their mean while markers were stationary (right). (C,D) Same data as shown in (A,B) but post-processed with a Kalman filter. For plots of the remaining data
post-processed with a Kalman filter (see Supplementary Figure S2).

viewable marker size combined with color intensity differences
due to the angle relative to the camera caused the center point of
the marker to move with either the flickering of the light source or

the change in illumination caused by the angle. Part of the error
was likely due to the fact that the triangulated points provided
by SnakeStrike have not been filtered or smoothed through time.
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To demonstrate the effect that a filter would have on the error
variance, the data from Figure 5 were processed by a simple
Kalman filter (Kalman, 1960). As illustrated in Figures 5C,D and
Supplementary Figure S2, it was clear that the use of such a filter
drastically reduces the error variance for both the interpoint error
as well as the planar error, indicating the necessity to apply such
a simple and easy to implement post-processing to obtain even
more reliable motion tracking.

Analysis of the data collected from this experimental paradigm
showed that even though a high frequency fluorescent bulb was
used as the main light source, a minor oscillatory flicker occurred
in the image sequence. This introduced a noticeable effect on
the accuracy of marker positions as the flicker significantly
changed the color characteristics of the markers with respect to
saturation and hue. To precisely quantify the error, introduced
by the flickering light, a second test of the accuracy object was
performed in a new setup where the object remained stationary
in a position that was perpendicular to the center of three
cameras. In this second experimental setting, data was recorded
using a completely separate location with a bright light source
consisting of four AQ Aquaflora 54-watt fluorescent bulbs that
did not produce any light flickering, and the spacing of the
cameras was similar to the original setting. The respective data
are presented in Supplementary Figures S3B,C, S4B,C and give
a clear approximation of the error that the flickering of the light
has introduced in the originally collected data (Supplementary
Figures S3A, S4A), i.e. an average spatial error difference
of maximally 1 mm (∼1 pixel) with considerably increased
variances, 2–3 mm (∼2 pixels) for the flickering data error. As
the errors for both the flickering and the non-flickering light
condition show the same trends, there is still a systematic error
in the triangulation of the system. Given that the data obtained
in the flickering and non-flickering light condition used different
camera calibrations, it is more likely that the residual error
derived from inaccuracies in the calibration object, or an error
in the triangulation and rudimentary thresholding algorithms,
though it is nevertheless still small in magnitude.

Study 2: Strikes of the Amazon Tree Boa
(Corallus hortulanus)
In the framework of the experimental setting, 20 snake strikes
were recorded, out of which 15 were used to provide tracking
data that could be fully processed by SnakeStrike (Figure 6).
The meta-information regarding successful strikes is presented
in Table 2. Captures 19 and 20 derived from a smaller snake
and thus were not included. Captures 14 and 16 used a rather
strong heat element as infrared target to elicit the strike instead
of the IR emitter that was used for the other strikes. This strong
heat element produced visible light that affected the ability of
SnakeStrike to properly track the markers. Capture 11 did not
yield a consistent set of images, likely because of partially missing
data from one of the 5 cameras and therefore was excluded from
further analysis. Details regarding the velocity of each strike over
time is presented in Figure 6. The dots indicate the calculation of
the velocity for each timestep using 3D triangulation information.
The value for each individual dot was calculated as the change

in distance between two subsequent timesteps, where a timestep
was denoted by a captured image. There are two lines for each
capture plot with one showing the best fit for the trial data
and the other indicating the average best fit for all trials of a
particular snake. Data points that did not allow an analysis were
removed from the plot (red bars) based on a velocity threshold
of 2.5 ms−1. This omission of data typically occurred when the
identity of points was swapped for a few timesteps, or when
the thresholding process found a different reflection or source
of color than the marker in question and assigned a new – but
often only temporary – point as marker for that timestep. An
example for the velocity change of a snake strike is plotted at the
lower right of Figure 6 as the best fitting curve for all snake strike
trials in comparison to the best fitting curve for all trials of each
individual snake.

DISCUSSION

As indicated previously for machine vision in social interaction
studies (Robie et al., 2017), when individual animals are
visually indistinguishable, the task of tracking in the presence
of occlusions or partial overlap is an unresolved problem. For
snake motion tracking, a similar problem exists as positions
on the body surface of the snake are nearly identical, such as
when the snake skin consists of a repetitive pattern. This makes
markerless tracking methods, such as DeepLabCut (Mathis et al.,
2018), much harder to employ successfully on patterned snakes.
Markerless annotation programs such as DeepLabCut further
require a set of manually labeled images to train the software.
In the case of DeepLabCut, this training can require a couple
of hundred images per camera, though in practice a smaller
number can be sufficient, and if the camera is moved, it might
require re-labeling of a set of new images from that camera.
Furthermore, DeepLabCut does not provide 3D triangulations
of annotated points. On the other hand, non-patterned skin can
also be problematic as large sections of the snake surface look
very similar and indistinguishable causing specific positions to
be difficult to discern with sufficient spatial resolution. With the
snake moving and changing body shape in a very short period
of time, the labels assigned to these markers will be swapped in
most cases, unless the system is able to uniquely identify and
track a particular marker over time. This is implemented in many
systems by using multiple markers as a single marker and putting
them into a unique configuration scheme that is identifiable by
the system (Theunissen et al., 2017), thus filling up even more
skin space with markers. Unfortunately, the maintenance of the
spatial configuration can be also very problematic since some
animals (e.g. insects or small birds) are too small to carry an
extra payload or are able to remove these markers very easily
(e.g. snakes or squids). For example, a snake easily twists itself
and effortlessly removes even the smallest markers. This is the
major reason why studies such as that by Theunissen et al.
(2017) used rigid structures attached to the body and head of
the animal as markers. This method allows motion capturing of
the whole animal as body and head can be tracked even when
there is occlusion of some markers. In a large system with many
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FIGURE 6 | Study 2: Snake strike velocity over time (A) 3D positions in study 2 of each snake’s head for each trial are plotted to illustrate the velocity changes during
the strike. In some trials, e.g. Y4 markers were obscured from the view of at least one camera resulting in a loss of correspondence as a new and usually temporary
point was assigned to be the marker location. These time steps were removed using a velocity threshold of 2.5 ms-1 (red vertical bars). (B) Group aggregate velocity
statistics for all snakes individually and as mean across all snakes tested in this study.

cameras the triangulation is robust to marker loss through the
view of many cameras. Unfortunately, this method is not suitable
when attempting to capture the kinematics of the animal or the
kinematics of particular appendages.

SnakeStrike is a framework that allows researchers in animal
tracking to use one piece of software from experiment start
to finish and in combination with high-speed cameras to save
time in the processing of 3D triangulation data for animals
that can be difficult to track. Our preliminary data set on
boid snakes showed that this framework is suitable to track
even fast movements such as snake strikes and provides first
information about the instantaneous speed during the complete
strike of a boid snake. Although this data set primarily serves to
demonstrate potential applications of this framework, it already
showed that instantaneous strike speed has a similar magnitude,
when compared across different individuals. In addition, our data
on boid snakes shows similar strike profiles and trajectories as
described for strikes of viperid snakes (Kardong and Bels, 1998;
Herrel et al., 2011), suggesting the presence of a common motor
program for executing strike behavior. Similar experiments with

an increased number of markers placed on the snake body, would
also allow for a further, more detailed analysis of the contribution
of typical loop formations in strike progression.

The data presented in Study 2 shows that the new framework
presented here allows for collection of data even from vastly agile
animals without the necessity of purchasing costly commercial
systems or having to combine multiple other software solutions.
Despite room for further improvement, the system provides
scientists with new options and another alternative to existing
systems such as DLTdv (Hedrick, 2008) to record novel data
sets. Some drawbacks of the system derive from the necessity
to simultaneously save the images from multiple high-speed
cameras, which requires a large amount of memory for the initial
capture, high CPU load for processing, and a large amount of
hard drive space for long term storage. This requires a large
upfront cost for a computer, although the computer can also
be used for other tasks, and still costs only a fraction of a
commercial system. However, the storage of the raw data, allows
recalculations and reanalysis at any time (see below). Since
changes of light intensity, shadowing, and occlusion of markers
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TABLE 2 | Strike meta-data as calculated from initial forward movement of strike
until start of head retraction.

Trial Snake Duration (s) Distance
(m)

Speed
(ms−1)

Max Velocity
(ms−1)

1 Y4 0.0866458717 0.0958 1.1055 1.6393

2 Y4 0.1359673678 0.1731 1.2732 1.8036

3 Y4 0.1506305153 0.2136 1.4182 1.9968

4 Y4 0.0786477912 0.0829 1.0542 1.8137

5 Y2 0.1146391533 0.1461 1.2743 1.6408

6 Y2 0.1066410728 0.2192 2.0556 2.3136

7 Y2 0.1306353142 0.1472 1.1270 2.1715

8 Y2 0.1426324349 0.1567 1.0984 1.6513

9 Y2 0.1652936629 0.1419 0.8583 1.2661

10 Y2 0.1986189981 0.1573 0.7920 1.3873

12 B5 0.1959529713 0.1901 0.9700 1.4633

13 B5 0.1746247567 0.1695 0.9705 1.3763

15 B5 0.1093070996 0.0968 0.8854 1.4035

17 B5 0.1479644885 0.1462 0.9878 1.3030

18 B5 0.155962569 0.1468 0.9411 1.3333

All Mean 0.1396109378 0.1522 1.1208 1.6376

can occur within a given recording session, thresholding color
from the images can be complicated and time consuming. The
impact of this issue can be reduced, though not completely
eliminated, by pre-tests of the color(s) to be thresholded in the
actual setting, as well as by strict adherence to a consistent
experimental environment and regime.

The benefits of this framework considerably compensate for
the few disadvantages, also because in many experiments, the
latter can be at least partially circumvented. The reduced upfront
costs compared to commercial motion tracking systems allows
greater ability to incorporate motion tracking at high speed in
animal studies. As shown in Study 1, the error in the system
is small with regard to normally occurring sources of errors
such as flickering lights, color thresholding problems, or marker
identity swapping. For animals in which affixing large 3D markers
is impossible because the animal might remove the markers or
they do not remain affixed, this is a particular improvement.
In studies of animal behavior, the goal usually is to obtain the
largest amount of usable data as possible. Being able to store
and reassess all originally captured images, rather than having
to only rely on calculated 3D points is a very big advantage,
since various additional analyses can be performed offline. This
indicates that the acquired information can be used not only for
the initial, principal aim of a project, but also allows answering
novel questions without the necessity to perform a second
experiment. Since all 3D points are decoupled from the images,
the generation of the points in terms of decrease in error can be
improved by new methods in the future. The data generated from
older studies can therefore be re-interpreted or interpreted in
greater detail, when, for example, new algorithms for coping with
occlusion of tracking markers has been developed. Triangulation
of data collected today would suffer from this aspect of the
current state of the art in algorithms. However, if this problem
is improved, these data can be easily re-interpreted with new
algorithms and possible new insight can be obtained, without

having to re-run tedious and often difficult and time-consuming
experiments. SnakeStrike brings the functionality of several open
source projects together in a way that is highly beneficial to
researchers who have no access to expensive motion capture
systems. Researchers who work with non-standard and especially
fast-moving animals now have an affordable option to exploit
novel experimental ideas. In addition, those interested in testing
new algorithms for object correspondence over time can generate
real-world data sets very quickly and easily, or test ideas on
previously collected data.
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Parameters: two marker sizes and two relative speeds of movement of the
markers. Data is shown for one camera lens (Ricoh FL-CC0614A-2M) (A) Each
boxplot refers to an interpoint distance error between two points of known
distance (Table 1) in the calibration object; the numbers on the x-axis represent
the points and are separated by a hyphen. (B) Marker distance from the
best-fitting plane for all markers.

FIGURE S2 | Same data as shown in Figures 5A,B, but post-processed with a
Kalman filter to illustrate the improvement by filtering or smoothing of the
triangulated data for the analysis. (A) Each boxplot refers to an interpoint
distance error between two points of known distance in the calibration object
(Table 1). The numbers on the x-axis represent the points and are separated by a
hyphen. (B) Distance of markers from best-fitting plane for all markers (left).
Movement of triangulated points in 3D from their mean while markers were
stationary (right).

FIGURE S3 | Study 1: Effect of light-flickering on inter-marker distance error
variance. The markers were stationary and perpendicular to the cameras’ position.
Each boxplot refers to an interpoint distance error between two points of known
distance in the calibration object (Table 1). The numbers on the x-axis represent
the points and are separated by a hyphen. (A) Example of a trial where flickering
was present in the light source. (B) Example of a trial in a different setting where
light-flickering was absent. (C) Example of a trial in the same setup as in (B), but
with a different camera calibration.

FIGURE S4 | Study 1: Same data as in Supplementary Figure S3, but with the
error displayed as the distance of the marker from the best-fitting plane for all of
markers. (A) Example of a trial where flickering was present in the light source. (B)
Example of a trial in a different setup where light-flickering was absent. (C)
Example of a trial in the same setup as in (B), but with a different
camera calibration.
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effects of body size on strike performance in an arboreal viper Trimeresurus
(Cryptelytrops) albolabris. J. Exp. Zool. 315A, 22–29. doi: 10.1002/jez.645

Insafutdinov, E., Andriluka, M., Pishchulin, L., Tang, S., Levinkov, E., Andres,
B., and Schiele, B. (2017). “Articulated multi-person tracking in the wild” in
The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(Piscataway, NJ: IEEE), 6457–6465.

Insafutdinov, E., Pishchulin, L., Andres, B., and Andriluka, M., Schiele, B. (2016).
“DeeperCut: a deeper, stronger, and faster multi-person pose estimation model”
in Computer Vision – ECCV 2016. ECCV 2016. Lecture Notes in Computer
Science, vol 9910, eds Leibe B., Matas J., Sebe N., and Welling M (Cham:
Springer)

Kalman, R. E. (1960). A new approach to linear filtering and prediction problems.
Transact. ASME J. Basic Eng. 82, 35–45. doi: 10.1115/1.3662552

Kanatani, K., Sugaya, H., and Niitsuma, H. (2008). “Triangulation from two views
revisited: hartley-Sturm vs optimal correction”in Proceedings of the 19th British
Machine Vision Conference, Leeds, 173–182

Kanatani, K., Sugaya, Y., and Kanazawa, Y. (2016). Guide to 3D Vision
Computation: Geometric Analysis and Implementation, 1st Edn. Berlin: Springer
Publishing Company.

Kardong, K. V., and Bels, V. L. (1998). Rattlesnake strike behavior: kinematics.
J. Exp. Biol. 1998, 837–850.

Kuhn, H. W. (1959). Variants of the hungarian method for assignment problems.
Naval Res. Log. Q. 3, 253–258. doi: 10.1002/nav.3800030404

Li, B., Heng, L., Köser, K., and Pollefeys, M. (2013). “A multiple camera system
calibration toolbox using a feature descriptor-based calibration pattern,” in
Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots
and Systems. Intelligent Robots and Systems (IROS), Tokyo, 1301–1307.

Mathis, A., Mamidanna, P., Cury, K. M., Abe, T., Murthy, V. N., Weygandt Mathis,
M., et al. (2018). DeepLabCut: markerless pose estimation of user-defined body
parts with deep learning. Nat. Neurosci. 21, 1281–1289. doi: 10.1038/s41593-
018-0209-y

Moulon, P., Monasse, P., Marlet, R., and Perrot, R. (2013). OpenMVG. An
Open Multiple View Geometry library. Available online at: https://github.com/
openMVG/openMVG (accessed June 16, 2017).

Munkres, J. (1957). Algorithms for the assignment and transportation problems.
J. Soc. Indust. Appl. Mathem. 5, 32–38.

Patek, S. N., Korff, W. L., and Caldwell, R. L. (2004). Deadly strike mechanism of a
mantis shrimp. Nature 428, 819–820. doi: 10.1038/428819a

Penning, D., Sawvel, B., and Moon, B. (2016). Debunking the viper’s strike:harmless
snakes kill a common assumption. Biology Lett. 12:20160011. doi: 10.1098/rsbl.
2016.0011

Pereira, T. D., Aldarondo, D. E., Willmore, L., Kislin, M., Kislin, S. S.-M., Murthy,
M., et al. (2019). Fast animal pose estimation using deep neural networks. Nat.
Methods 16, 117–125. doi: 10.1038/s41592-018-0234-5

Rasband, W. S. (1997-2018). ImageJ. Bethesda, MD: U. S. National Institutes of
Health.

Robie, A. A., Seagraves, K. M., Egnor, S. E. R., and Branson, K. (2017). Machine
vision methods for analyzing social interactions. J. Exp. Biol. 220, 25–34. doi:
10.1242/jeb.142281

Rusu, R. B., and Cousins, S. (2011). “3D is here: Point Cloud Library
(PCL). Robotics and Automation (ICRA),” in Proceedings of the 2011 IEEE
International Conference on May (Shanghai: IEEE), 1–4.

Ryerson, W. G., and Tan, W. (2017). Strike kinematics and performance in juvenile
ball pythons (Python regius). J. Exp. Zool 327, 453–457. doi: 10.1002/jez.2131

Schroeder, W., Martin, K., and Lorensen, B. (2006). The Visualization Toolkit–
An Object-Oriented Approach To 3D Graphics, 4th Edn. Clifton Park, NY:
Kitware, Inc.

Frontiers in Behavioral Neuroscience | www.frontiersin.org 15 August 2020 | Volume 14 | Article 11639

https://doi.org/10.1073/pnas.0506590102
https://doi.org/10.1098/rspb.2009.2326
https://doi.org/10.1145/362919.362945
https://doi.org/10.1098/rspb.1984.0051
https://doi.org/10.1016/s0165-0270(00)00253-3
https://doi.org/10.1016/s0165-0270(00)00253-3
https://doi.org/10.1242/jeb.185991
https://doi.org/10.1242/jeb.036079
http://eigen.tuxfamily.org
http://eigen.tuxfamily.org
https://doi.org/10.1006/cviu.1997.0547
https://doi.org/10.1088/1748-3182/3/3/034001
https://doi.org/10.1002/jez.645
https://doi.org/10.1115/1.3662552
https://doi.org/10.1002/nav.3800030404
https://doi.org/10.1038/s41593-018-0209-y
https://doi.org/10.1038/s41593-018-0209-y
https://github.com/openMVG/openMVG
https://github.com/openMVG/openMVG
https://doi.org/10.1038/428819a
https://doi.org/10.1098/rsbl.2016.0011
https://doi.org/10.1098/rsbl.2016.0011
https://doi.org/10.1038/s41592-018-0234-5
https://doi.org/10.1242/jeb.142281
https://doi.org/10.1242/jeb.142281
https://doi.org/10.1002/jez.2131
https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


fnbeh-14-00116 August 3, 2020 Time: 11:18 # 16

Jensen et al. Low-Cost 3D Motion Capture System

Seid, M. A., Scheffrahn, R. H., and Niven, J. E. (2008). The rapid mandible strike of
a termite soldier. Curr. Biol. 18, R1049–R1050.

Stewenius, H., Schaffalitzky, F., and Nister, D. (2005). “How hard is 3-view
triangulation really?,” in Proceedings of the Tenth IEEE International Conference
on Computer Vision (ICCV’05), Vol. 1 (Piscataway, NJ: IEEE), 686–693. doi:
10.1109/ICCV.2005.115

Straw, A. D., Branson, K., Neumann, T. R., and Dickinson, M. H. (2011). Multi-
camera real-time three-dimensional tracking of multiple flying animals. J. R.
Soc. Interface 8, 395–409. doi: 10.1098/rsif.2010.0230

Sutherland, I. E. (1974). Three-dimensional data input by tablet. Proc. IEEE 62,
453–461. doi: 10.1109/proc.1974.9449

Theunissen, L. M., and Dürr, V. (2013). Insects use two distinct classes of steps
during unrestrained locomotion. PLoS One 8:e85321. doi: 10.1371/journal.
pone.0085321

Theunissen, L. M., Reid, T., and Troje, N. F. (2017). Pigeons use distinct stop phases
to control pecking. J. Exp. Biol. 220, 437–444. doi: 10.1242/jeb.147850

Tian, W., Cong, Q., and Menon, C. J. (2011). Investigation on walking and pacing
stability of german shepherd dog for different locomotion speeds. Bionic. Eng.
8:18. doi: 10.1016/s1672-6529(11)60002-4

Tobalske, B. W., Warrick, D. R., Clark, C. J., Powers, D. R., Hedrick, T. L., Hyder,
G. A., et al. (2007). Three-dimensional kinematics of hummingbird flight.
J. Exp. Biol. 210, 2368–2382. doi: 10.1242/jeb.005686

Toshev, A., and Szegedy, C. (2014). “Deeppose: human pose estimation via
deep neural networks,” in Proceedings of the 2014 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) (Piscataway, NJ: IEEE),
1653–1660.

Young, B. A. (2010). How a heavy-bodied snake strikes quickly: high-power
axial musculature in the puff adder (Bitis arietans). J. Exp. Zool. 313A,
114–121.

Conflict of Interest: GJ and PS were employed by Volkswagen Group, in the
Machine Learning Research Lab.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Copyright © 2020 Jensen, van der Smagt, Heiss, Straka and Kohl. This is an open-
access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Behavioral Neuroscience | www.frontiersin.org 16 August 2020 | Volume 14 | Article 11640

https://doi.org/10.1109/ICCV.2005.115
https://doi.org/10.1109/ICCV.2005.115
https://doi.org/10.1098/rsif.2010.0230
https://doi.org/10.1109/proc.1974.9449
https://doi.org/10.1371/journal.pone.0085321
https://doi.org/10.1371/journal.pone.0085321
https://doi.org/10.1242/jeb.147850
https://doi.org/10.1016/s1672-6529(11)60002-4
https://doi.org/10.1242/jeb.005686
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


fnbeh-14-576154 September 25, 2020 Time: 11:53 # 1

METHODS
published: 25 September 2020

doi: 10.3389/fnbeh.2020.576154

Edited by:
Ralf Heinrich,

University of Göttingen, Germany

Reviewed by:
Xiao-Dong Wang,

Zhejiang University, China
Sharlen Moore,

Johns Hopkins University,
United States

*Correspondence:
Michael Pecka

pecka@bio.lmu.de

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Individual and Social Behaviors,
a section of the journal

Frontiers in Behavioral Neuroscience

Received: 25 June 2020
Accepted: 27 August 2020

Published: 25 September 2020

Citation:
Ferreiro DN, Amaro D,

Schmidtke D, Sobolev A, Gundi P,
Belliveau L, Sirota A, Grothe B and

Pecka M (2020) Sensory Island Task
(SIT): A New Behavioral Paradigm

to Study Sensory Perception
and Neural Processing in Freely

Moving Animals.
Front. Behav. Neurosci. 14:576154.

doi: 10.3389/fnbeh.2020.576154

Sensory Island Task (SIT): A New
Behavioral Paradigm to Study
Sensory Perception and Neural
Processing in Freely Moving Animals
Dardo N. Ferreiro1,2†, Diana Amaro1,3†, Daniel Schmidtke4, Andrey Sobolev3,
Paula Gundi1,3, Lucile Belliveau1, Anton Sirota5, Benedikt Grothe1,3 and Michael Pecka1*

1 Division of Neurobiology, Department Biology II, Ludwig-Maximilians-Universität München, Munich, Germany, 2 Department
of General Psychology and Education, Ludwig-Maximilians-Universität München, Munich, Germany, 3 Graduate School
of Systemic Neurosciences, Ludwig-Maximilians-Universität München, Munich, Germany, 4 Institute of Zoology, University of
Veterinary Medicine Hannover, Hanover, Germany, 5 Faculty of Medicine, Bernstein Center for Computational Neuroscience
Munich, Munich Cluster of Systems Neurology (SyNergy), Ludwig-Maximilians-Universität München, Munich, Germany

A central function of sensory systems is the gathering of information about dynamic
interactions with the environment during self-motion. To determine whether modulation
of a sensory cue was externally caused or a result of self-motion is fundamental
to perceptual invariance and requires the continuous update of sensory processing
about recent movements. This process is highly context-dependent and crucial for
perceptual performances such as decision-making and sensory object formation. Yet
despite its fundamental ecological role, voluntary self-motion is rarely incorporated in
perceptual or neurophysiological investigations of sensory processing in animals. Here,
we present the Sensory Island Task (SIT), a new freely moving search paradigm to
study sensory processing and perception. In SIT, animals explore an open-field arena
to find a sensory target relying solely on changes in the presented stimulus, which is
controlled by closed-loop position tracking in real-time. Within a few sessions, animals
are trained via positive reinforcement to search for a particular area in the arena
(“target island”), which triggers the presentation of the target stimulus. The location of
the target island is randomized across trials, making the modulated stimulus feature
the only informative cue for task completion. Animals report detection of the target
stimulus by remaining within the island for a defined time (“sit-time”). Multiple “non-
target” islands can be incorporated to test psychometric discrimination and identification
performance. We exemplify the suitability of SIT for rodents (Mongolian gerbil, Meriones
unguiculatus) and small primates (mouse lemur, Microcebus murinus) and for studying
various sensory perceptual performances (auditory frequency discrimination, sound
source localization, visual orientation discrimination). Furthermore, we show that pairing
SIT with chronic electrophysiological recordings allows revealing neuronal signatures of
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sensory processing under ecologically relevant conditions during goal-oriented behavior.
In conclusion, SIT represents a flexible and easily implementable behavioral paradigm for
mammals that combines self-motion and natural exploratory behavior to study sensory
sensitivity and decision-making and their underlying neuronal processing.

Keywords: psychophysics, sensory feedback, chronic recording, go no-go, freely moving, sound localization,
frequency discrimination, orientation selectivity

INTRODUCTION

Understanding how specific behaviors (reflexes, motor patterns,
sensory representations, subjective perception, or cognitive
functions) arise from neural processing is a primary goal of
neuroscience. Pioneering research on sensory processing was
based on observations of organisms and their innate behavior in
their natural habitats (von Frisch, 1954; Tinbergen, 1963; Lorenz,
1981). This minimal-intervention approach laid the groundwork
for the study of natural behavior during ethologically adequate
sensory stimulation, yet left questions regarding the underlying
neuronal mechanisms and brain circuits largely unanswered. In
the last decades, experimental methods to study neural activity
in awake and behaving animals have been increasing in number
and complexity, providing previously unreachable insights into
processing capabilities of neural populations. However, the
great complexity of these techniques often requires highly
controlled experimental conditions, which in turn limit their
ecological relevance. Thus, they are prone to underestimate the
dimensionality of neuronal processing (Gao and Ganguli, 2015;
Krakauer et al., 2017).

A central evolutionary driving force acting on sensory systems
is the processing of environmental cues in relation to self-
motion: the interdependence of a motor action and the resulting
modulation of sensory information is a fundamental aspect of
both neural coding and decision making (Etienne et al., 1996;
Ma and Jazayeri, 2014; Case et al., 2015), because this reciprocal
interaction with the outside world allows for the continuous
update of the “internal framework” within which the sensory
inputs are interpreted (von Holst and Mittelstaedt, 1950; review:
Campbell and Giocomo, 2018). Accordingly, substantial neural
resources are dedicated to gathering and interpreting sensory
information in relation to one’s own voluntary actions (Keller
et al., 2012; Rancz et al., 2015; Vélez-Fort et al., 2018). A number
of studies recently demonstrated the impact of movement
on neuronal processing across sensory modalities, including
somatosensation (Fu et al., 2014; Kerekes et al., 2017), vision
(Chiappe et al., 2010; Niell and Stryker, 2010; Maimon et al., 2010;
Dadarlat and Stryker, 2017; Clancy et al., 2019), and audition
(Zhou et al., 2014; Schneider et al., 2014; for review see Schneider
and Mooney, 2018). Likewise, multisensory co-modulation of the
physical properties of the environment is crucial for inference
and sensory object formation (Noppeney et al., 2008; Diehl and
Romanski, 2014; Altieri et al., 2015; Atilgan et al., 2018) and,
thus, highlights the importance of active task engagement of the
experimental animals. This informational framework is highly
plastic and subject to context-dependent modulation (Chabrol
et al., 2015; Deneux et al., 2019).

However, despite the fundamental role of self-movement
during goal-oriented behavior and the resulting multisensory
co-modulation in complex sensory scenes, experimental
investigations including these aspects are still underrepresented
in the literature (Krakauer et al., 2017). While reports on
psychophysical measurements involving decision-making are
recently increasing (Carandini and Churchland, 2013; Saleem
et al., 2018; The International Brain Laboratory et al., 2020),
to this date, a flexible experimental paradigm to study sensory
processing during goal-oriented behavior in freely moving
animals is lacking. Here, we modified and expanded the existing
concept of using closed-loop free navigation assays (Polley
et al., 2004; Whitton et al., 2014). We present the Sensory
Island Task (SIT), a novel experimental paradigm to study
sensory processing of variable modalities during unrestricted
self-movement in actively engaged animals that also allows for
simultaneous neural recordings.

MATERIALS AND METHODS

In SIT, animals freely explore an arena in the presence of
sensory background stimulation. They are trained to search for
a hidden target island (a small circular sub-space in the arena,
see below). Upon entering the target island, the background
stimulus switches to the target stimulus. The animals are trained
to report the detection of the target stimulus by staying at this
position in the arena (i.e., within the target island). The position
of the target island is altered in each trial and, thus, can only
be found by detection of the change in sensory stimulation.
A trial is considered correct when the animal stays within the
target island for a specific duration (“sit-time,” typically 5–6 s).
After a correct trial, a food reward is dropped in the arena via
an overhead food dispenser. Trials have a time limit (typically
60 s) after which they are considered incorrect. Additionally,
in some experiments (multi-island, see section “Results” for
details), non-target islands were introduced simultaneously with
the target island. These islands triggered a different change
of stimulation than the target and no reward was provided
when sit-time was achieved. This design of the task renders
it a natural implementation of the NO-GO sensory change
detection task, which are typically used in head-fixed experiments
(Carandini and Churchland, 2013) and here is replaced by a
sit-in-place condition.

Animals and Housing: Gerbils
Here, SIT was used in two sensory modalities (auditory and
visual) and in two species. Mongolian gerbils (Meriones
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unguiculatus) were used to probe auditory frequency
discrimination and identification (aSITfreq) and sound source
localization (aSITloc) as well as visual orientation discrimination
(vSITori). All procedures involving gerbils were approved in
accordance with the stipulations of the German animal welfare
law (Tierschutzgesetz) (AZ 55.2-1-54-2532-74-2016 and AZ
55.2-1-54-2532-70-2016). The animals were from the breeding
colony of the Biocenter of the Ludwig-Maximilians University
Munich. Animals were housed in groups of 3–4 individuals with
12 h light/dark cycles.

Animals and Housing: Mouse Lemurs
Additionally, aSITfreq was conducted with two gray mouse
lemurs (Microcebus murinus). The non-invasive experiments
were in accordance to the NRC Guide for the Care and Use of
Laboratory Animals, the European Directive 2010/63/EU, and the
German Animal Welfare Act. They were approved by the Animal
Welfare Committee of the University of Veterinary Medicine and
approved and licensed by the Animal Welfare Committee of the
LAVES (AZ 33.19-42502-04-18/3050). The animals were from
the breeding colony of the Institute of Zoology of the University
of Veterinary Medicine Hannover. Maintaining and breeding
were permitted by the Landeshauptstadt Hannover and the
Landesamt für Verbraucherschutz und Lebensmittelsicherheit
(LAVES; AZ 42500/1H).

Setup and Stimulation During aSITfreq
and aSITloc With Gerbils
The aSITfreq and aSITloc (freq: sound frequency as target
indicator; loc: sound source location as target indicator) tests
with gerbils were conducted in a custom-made setup consisting
of a circular arena (diameter = 92 cm) within a sound attenuated
chamber (Figure 1A). The arena floor consisted of a black-
painted wood or PVC surface surrounded by perforated metal
walls (height: 16 cm). Additionally, PVC walls were mounted
on top of the metal wall around the entire arena up to a
height of 75 cm.

Stimuli were computer generated and transmitted through
an amplifier (AVR 445 Harman/Kardon, Germany). Stimulus
presentation was delivered through loudspeakers (Aurasound
NSW1-205-8A 1′′ Extended Range) mounted externally of the
arena (∼5 cm distance to the metal walls). Auditory stimuli
during aSITfreq were 57 ms long pure tones with frequency
according to task structure. Trial initiation elicited the playback
of the background frequency (20 kHz), and animal entrance into
an island triggered the switch of the frequency played to the target
frequency of 660 Hz or non-target frequencies of 460, 860, 1060,
or 1320 Hz (Figure 2 - see section “Results” for details). Stimuli
during aSITloc were 57 ms long harmonic complex sounds with a
fundamental frequency of 147±4 Hz and low-pass filtered below
1.5 kHz. Trial initiation triggered the playback of the above-
mentioned harmonic complex by the background loudspeaker,
and animal entrance into the island triggered the switch of the
playback to the target loudspeaker. Stimuli in either aSIT version
were played at a repetition rate of 4 Hz and their amplitude was
70 dB SPL roved ±5 dB, which rendered a stimulation of about

55 dB above background noise. The animal’s position was tracked
via images captured every 250 ms with a Flea3 camera (FL3-U3-
13Y3M-C, Point Grey Research Inc.), centered over the arena at a
height of 130 cm from the arena floor. Stimulation parameters
(i.e., sound frequency or source location) were updated online
according to the animals’ position within the arena (see section
“Results” for details). Custom-made software for animal tracking,
stimuli generation and food reward delivery was developed in
MATLAB. A custom-made overhead rotating food dispenser
positioned 100 cm over the arena was used for automatic reward
administration by dropping a food pellet (∼20 mg, TestDiet
LabTab AIN-76A) or part of a sunflower seed after every correct
trial. If the animal did not correctly report the target island within
the time limit, a low-pass filtered noise was presented to the
animal for 10 s, during which no new trial could be initiated.

Behavioral Training During aSITfreq and
aSITloc With Gerbils
Two gerbils were used for the behavioral testing of the aSITfreq
paradigms, and 11 gerbils were tested in the aSITloc version of the
task. Training of gerbils began at a minimum of 8 weeks of age. All
gerbils within this study were male. Water and food (pellets) were
provided ad libitum until training started, at which point food
was only available during training sessions as reward for correct
trials. No more than two training sessions were carried out per
day, lasting up to 60 min each for aSITfreq and up to 90 min
for aSITloc. Final parameters of island size (diameter = 25 cm,
∼7% of the arena surface) and sit-time (6 s) were identical for
both aSITloc and aSITfreq. For aSITfreq, animals were presented
with the final parameters from the beginning of training. For
aSITloc the training of the animals was performed by gradually
reducing island size (starting at diameter = 42 cm, ∼21% of the
arena surface) and increasing sit-time (starting with 2 s) over the
course of the training sessions. Additionally, for aSITloc, animals
were initially trained in a protocol with one slightly elevated,
peripheral, circular initiation platform (diameter = 12 cm), which
the animals had to visit in order to initiate a trial. For aSITfreq, an
additional configuration with multiple islands was tested, where
three non-target islands were available in the arena alongside the
aforementioned target island (see section “Results” for details).
All gerbils in the aSIT tasks underwent a general habituation
period in the SIT setup for 15 min per day for 5 days.

Setup and Stimulation During aSITfreq
With Mouse Lemurs
The aSITfreq experiments with mouse lemurs were conceptually
identical, yet with adapted parameters to accommodate to
species-specific exploration behaviors. Experiments were
conducted in a circular open field arena with a diameter of
80 cm and a height of 70 cm (Figure 1F). For online animal
tracking, a camera (Logitech C500 Webcam) with removed
infrared filter was positioned above the center of the maze and at
a distance of 92 cm from the floor plate, so that the arena floor
optimally fitted the vertical dimensions of the video picture. For
acoustic stimulation, a single broadband speaker (Visaton B200,
VISATON GmbH & Co., KG, Haan, Germany) was mounted
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above the arena at a distance of 165 cm from the arena floor.
The floorplate was made of frosted light-conducting acrylic
glass (Plexiglas R© LED, Evonik Industries, Darmstadt, Germany)
and illuminated with infrared diodes (peak wavelength at
940 nm) from below to provide optimal contrast between
background and experimental animal during tracking. The
sidewall of the circular arena was made of opaque, dark-gray
acrylic glass (Zimmermann + Collegen Kunststoff-Technik
GmbH, Hannover, Germany). Food rewards used as positive
reinforcement during the learning experiments (see below)
were provided on-top of the regular, ad libitum diet. To provide
food rewards (small peanut pieces of approximately 15 mg)
for correct behavioral responses during training, commercially
available aquarium feeders (Rondomatik 400, Grässlin GmbH,
St. Georgen, Germany) were modified to be controllable with
Arduino Uno microcontrollers via Arduino Uno motor shields
(v1). Two of these modified feeders were installed at opposing
positions on the arena wall (i.e., at a distance of approximately
70 cm from the floor) and their positions could easily be shifted
between sessions to reduce predictability of the reward location.
For online animal tracking as well as sound stimulation and
hardware control based on the animal’s behavior, we used
self-coded Python scripts, running on windows machines with
Windows 7 and Python 3.7.

Behavioral Training During aSITfreq With
Mouse Lemurs
Training of mouse lemurs was conducted in male individuals
aged 5 and 6 years that had previously participated in non-
auditory behavioral experiments unrelated to SIT. To avoid stress,
subjects were transported to the setup in their sleeping boxes
and experiments were conducted under low-light conditions (1–
5 lux). Each animal was trained once per day during workdays in
a single session of 60 min or 50 completed trials (depending on
which limit was reached first). Animals were trained in a protocol
with one slightly elevated, peripheral, circular initiation platform,
which the respective animal had to visit in order to initiate a trial,
and one circular target island. Once a trial had been initiated, a
background sound (pure tone of 10 kHz, 57 ms duration, sound
pressure level = 67.5 ± 2.5 dB) was played back at a repetition
rate of approximately 5 Hz while the geometric center of the
animal remained outside of the target island (pseudo-randomly
generated position without overlap with the initiation platform).
As soon as the animal entered the target island during a given
trial, stimulation switched to the target sound (pure tone of 4 kHz,
all other properties were identical to the background sound). The
frequency of the stimuli was chosen to lie within the range of
optimal hearing described for mouse lemurs (Schopf et al., 2014).
If the animal failed to find the target island or to remain within
it for the desired sit-time within a pre-defined trial duration,
the trial stopped, as did the acoustic stimulation, and the animal
had to revisit the initiation platform to start a new trial. During
the experiments, the setup was illuminated with dim red light,
comparable to the illumination of the housing rooms during the
daily activity phase of the nocturnal mouse lemurs. While the
location and size (diameter = 18 cm, 5% of arena surface) of

the initiation platform were fixed values, the size of the target
island, the sit-time, and the trial duration could vary between
sessions. In the first session, the size of the target island was set to
a diameter of 32 cm (∼16% of arena surface), the target duration
to 1 s, and the trial duration to 120 s. To increase the difficulty
with increasing training and to better differentiate behavioral
responses to the target sound from chance-level performance,
these variables were changed between sessions, depending on the
animal’s performance on the preceding training days. Values for
the final sessions were a target island diameter of 24 cm (∼9%
of arena surface) and a sit-time of 5 s. Animals were trained until
performance in three consecutive sessions under these conditions
was above chance level.

Setup and Stimulation During vSITori
With Gerbils
The vSITori experiments were conducted in a 3D virtual reality
setup called ratCAVE (Del Grosso et al., 2017), which was
designed for behavioral experiments in freely moving animals. To
this end, a large rectangular arena (dimensions 162 cm × 72 cm
and walls of 60 cm height, placed with a 70 degrees angle
to accommodate the visual projection), was used. A set of 7
cameras (Prime 13W 240 fps, OptiTrack, NaturalPoint Inc.,
United States) served to record the 3D position of reflective
markers fixed on the head of the animal. A projector with 240
fps frame rate (VPixx Technologies Inc., Canada), mounted
to the ceiling, was used to project the image of the virtual
environment on the walls of the arena depending on animal
position (Figure 3A). A food dispenser (Campden Instruments
Ltd.) positioned above the arena served for automatic reward
administration by dropping a food pellet (∼20 mg, TestDiet
LabTab AIN-76A) after every correct trial. A custom-written
python-based software was used to manage the projection,
animal rewarding, positioning, and data logging.

The virtual environment for the vSITori experiment consisted
of black and white square-wave grating patterns with stripes of
10 cm width, projected on all four walls of the arena. When
animals entered the target island, the projected grating pattern
on the walls changed its orientation from vertical to horizontal
(Figure 3B). A non-target island was additionally implemented
for one of the animals which, upon animal entrance, triggered
change from the vertical grating projection to oblique (45
degrees). Each successful trial was followed by an inter-trial
period of 15 s with only light projected on the arena floor
(no patterns on the walls) to allow the animal to find the
rewarded pellet. After the inter-trial interval, the new trial
started automatically.

Behavioral Training During vSITori With
Gerbils
Two male gerbils were trained in this version of vSITori. No
habituation was required, as they had previously participated
in another study within the same arena. Animals were food
restricted and kept at a minimum weight of 85% of the ad libitum
condition. Similar to the aSITloc experiments, training of the
animals was performed by gradually reducing island size (starting
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at ∼10% of the arena surface) and increasing sit-time (starting
at 2 s) over the course of the training sessions. At the end of
the training (15 and 24 sessions), a trial was considered correct
when the animal stayed within the target island of minimal size
(∼6% of arena surface area) for a sit-time of 6 s. For one of the
gerbils, the non-target island was introduced to the trials after
performance reached a level significantly different from chance
(see section “Results”).

Source Code Availability
Protocols to perform aSITfreq experiments are freely accessible for
download at https://gin.g-node.org/asobolev/runsit/.

Surgical Procedures and Chronic
Electrophysiological Recordings
One adult male Mongolian gerbil (∼70 g) that was trained
in aSITloc underwent tetrode implantation surgery. At the
beginning of the surgery, the animal was anesthetized with
an intraperitoneal injection of a mixture of metedomidin
(0.15 mg/kg), midazolam (7.5 mg/kg), and fentanyl (0.03 mg/kg).
The depth of the anesthesia was verified by lack of paw pinch
or eye lid reflexes. To maintain it at a constant level, the same
mixture was subcutaneously re-injected every 90 min. After
shaving and disinfecting the head, a local anesthetic (50 µl,
2% xylocaine) was injected under the scalp skin and below the
skin near the ears. For protection and to prevent dehydration,
the eyes were covered with an ophthalmic gel (Thilo-Tears SE,
Alcon Pharma GmbH). The animal was then transferred to the
stereotactic apparatus, where its head was securely fixed via a
bite and ear bars. Its internal temperature was monitored with
a rectal thermometer and kept constant at 37◦C throughout
the experiment by a feedback controlled electric heating pad
(Harvard Apparatus). After disinfection, a midline scalp incision
was performed to expose the skull. Subsequently, the connective
tissue on the skull was removed with a bone curette and the
skull was treated with 35% phosphoric acid (iBOND etch gel,
Kulzer), which was promptly washed away. Structural screws
were placed on top of the left frontal and right parietal bones
and the ground screw on the occipital bone, so that it gently
touched the brain. After stereotactic alignment, a 3 × 3 mm
craniotomy and durotomy were performed on top of the left
auditory cortex, followed by a very slow lowering (2 µm/s)
of a tetrode bundle to a maximum depth of 0.9 mm into the
cortex, using a micromanipulator (Scientifica). The craniotomy
was carefully filled with KY-jelly and immediately sealed with
dental cement (Paladur, Kulzer), which also fixated the bottom
of the microdrive and the outer cannula that protected the
tetrodes. 1 ml of Ringer’s solution was subcutaneously injected
at the end of the surgery and the anesthesia was reversed via
subcutaneous injection of the antagonist mixture composed of
naloxone (0.5 mg/kg), flumazenil (0.4 mg/kg), and atipamezol
(0.375 mg/kg). Analgesics (0.2 mg/kg, meloxicam) and antibiotics
(7.5 mg/kg, enrofloxacin) were orally administered post surgically
for five subsequent recovery days. During this time, the animals
had food and water ad libitum and were not trained.

The implant used in this experiment was a tetrode bundle
consisting of four tetrodes glued together, which, on their turn,
consisted of four insulated tungsten wires (12.7 µm diameter
each, tungsten 99.95%, California Fine Wire) twisted around each
other. Each wire was connected to a custom-made printed circuit
board with Omnetics connector (Axona), which was attached to
a lightweight microdrive (0.25 mm/turn, Axona). The tetrodes
were glued together and protected by an inner and outer cannula
that could slide by each other. On the day prior to the surgery,
the tip of all electrodes were cut with sharp scissors and gold
plated (Non-Cyanide Gold Plating Solution, Neuralynx) to reach
a desired impedance of 100–150 kOhm (at 1 kHz). The tetrode
bundle was implanted vertically in the following coordinates
from lambda: 6.2 mm lateral, 2.6 mm anterior. The recording
depicted in Figure 4 occurred at an electrode depth of∼1.3 mm.

Recorded signals were amplified and digitized (16-
bit resolution) in the wireless headstage (W2100-HS16,
Multichannel Systems), and transmitted to the receiver. Through
an interface board (W2100-System, Multichannel Systems), the
signal was then sent to the computer where it was acquired with a
sampling rate of 25 kHz via commercial software (Multi Channel
Experimenter). A digital signal for posterior alignment of the
sounds and video with the neural signal was simultaneously sent
to the interface board.

Data Analysis
All data analyses were performed in MATLAB (Mathworks)
and Python using custom scripts. To test the performance of
the animals, we compared the percentage of correct trials in
each session with surrogate runs based on random target island
shuffling. That is, for each trial (offline, a posteriori), 1000
surrogate (non-real) islands, non-overlapping with the target one,
were randomly set and the real trajectory of the animal was
used to calculate in how many of these islands the trial would
have been correct given the required sit-time (Supplementary
Figure S1). At each time point, we determined how many
trials were already finished and the respective uncertainty (95%
confidence interval) was calculated based on bootstrapping
(random sampling with replacement from all the trials of
the session). The median chance performance and confidence
interval at each time point was calculated based on bootstrapping
from the random target island shuffling data (random sampling
with replacement from the 1000 surrogate trials with number of
trials as size of the sample). The chance performance calculation
was based on trajectories from trials which were incomplete up
to the considered time point (real target island not yet found)
and trajectories in which the animal stayed longer than the sit-
time in the surrogate island before that time point. A trial which
had been finished by that time point and in which the animal did
not find the surrogate island cannot be used in the bootstrapping
of the time points posterior to the finishing time because it is
unknown whether the animal would have found the island if the
trial had been longer. This method allows obtaining an estimate
of the proportion of correct trials the animal would have gotten
just by chance given their locomotion trajectory and dynamics.

In the multi-islands version of SIT, the sit-time incidence was
calculated by assigning an island to each trial. This assignment
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corresponds to the first island in which the animal stayed longer
than the sit-time. For example, if the animal correctly finished
a specific trial but had been sitting for longer than the sit-time
in a non-target island prior to finishing, this trial is assigned
to the respective non-target feature and not to the target one,
even though the animal also remained sufficiently long in the
target island later. A trial in which the animal never remained
for longer than the sit-time in any island is assigned to “None.”
In the aSITfreq multi-island configuration, the target frequency is
always present but the non-target frequencies are not, as there are
4 non-target frequencies and only 3 non-target islands in each
trial. Therefore, for each session, we calculated the percentage
of trials assigned to each frequency, normalized by the total
amount of trials in which the respective frequency was available.
As a measure of uncertainty, the 95% confidence interval was
calculated by bootstrapping (the percentage calculation was done
on 1000 random samples with replacement from the assignment
to each frequency with number of trials as size of the sample).
The chance level (calculated per animal with data from the last
session of the single island version) was subtracted from this
percentage and the 95% confidence interval was calculated using
error propagation.

For the construction of the psychometric function, in each
session all the events in which the animal stayed at least 1s in the
island were identified. For those events, the percentage of times
the animal stayed in a specific frequency island for the designated
sit-time (6 s) was calculated. This allows the construction of
a perception curve by fitting a logistic function max

1+e−slope(x−x0) +

offset to these percentage values, with the frequency distance in
octaves of each island to the target frequency as x; the offset
in relation to zero describes the recurrent behavior of stopping
randomly, which occasionally can last longer than the sit-time.

For the analysis of the local field potential (LFP), the
recorded signal was low-pass filtered at 600 Hz. Auditory evoked
potential (AEP) was calculated per trial, by loudspeaker active.
Amplitude of the AEPs was calculated from peak to peak, that
is, the difference between the maximum and minimum voltage
recorded in the time window corresponding to the first 100 ms
after stimulus onset.

Statistics
Binomial tests were used to compare, on a given experimental
session, the percentage of correct trials with the ones expected by
chance, as calculated using the surrogate runs analysis.

All error bars correspond to the 95% confidence interval
as calculated via bootstrapping, except for the boxplots
in Figure 4D.

For the investigation of possible linear relationships between
the distance between islands in consecutive trials and the time
to completion in the latter trial (Figure 1E), we used Pearson
correlation analyses.

For comparisons of central tendencies on the group level,
we used two-tailed non-parametric tests: Wilcoxon signed-
rank tests for paired samples and Mann-Whitney U-test for
independent samples.

All hypotheses were tested at an alpha level of 0.05.

RESULTS

The Sensory Island Task (SIT) is an operant conditioning
foraging task in an open-field arena (Figure 1). We designed
SIT to allow for high flexibility regarding the implementation of
sensory modalities and parameters to address the desired specific
research question. Animals can roam freely in the arena, in search
for a sensory “target island” (in auditory versions of SIT, we used
a circular target area within the arena, area ∼5–9% of the arena
surface), relying solely on changes in the presented stimulus,
which is controlled in real-time via closed-loop position tracking.
They are trained via positive reinforcement to discover the target
island by detecting a change in stimulation from a “background”
to a “target” stimulus. Animals report this detection of the target
stimulus by remaining within the island for a defined time (sit-
time). Upon correct reporting, a food reward is administered
by dropping from an overhead dispenser, which ensures that
any association of the reward consumption with a specific
location in the arena is prevented (since the reward bounces
unpredictably on the arena floor). The location of the target
island is randomized across trials, making the stimulus feature
under investigation the only informative cue for task completion.
Multiple “non-target islands” (areas where the relevant stimulus
feature is changed into neither the target nor the background and
where the animal is not rewarded) can be incorporated in SIT to
test identification performance. Furthermore, SIT can readily be
adapted to the species and sensory system under investigation.
To demonstrate this high flexibility, here we present data from
Mongolian gerbils (Meriones Unguiculatus, rodents) and gray
mouse lemurs (Microcebus murinus, small primates) trained
in SIT to perform auditory frequency discrimination and
identification (aSITfreq). We further demonstrate the suitability of
SIT to study sound source localization (aSITloc), as well as visual
orientation identification and discrimination (vSITori).

Auditory Frequency Discrimination
(aSITfreq)
We trained animals to detect a change in the presented stimulus
frequency upon entering the target island. Throughout a trial, a
“background” frequency was played in repetitive pulses (duration
57 ms, repetition rate 4 Hz in rodents, 5 Hz in mouse lemurs)
through a single loudspeaker as long as the animal was outside
of the target island. Once (and if) the animal entered the
target island, the stimulation (played from the same loudspeaker)
switched to the “target” frequency (Figure 1B). Two gerbils and
two mouse lemurs (see below) were trained to perform this task
in this configuration.

For gerbils, background and target frequencies of 20,000 and
660 Hz were chosen, respectively (see Supplementary Video 1).
Both gerbils reached similarly high proportions of correct trials
within three training sessions (Figure 1D; see figure legend for
trial numbers). The percentage of successful trial completion
highly exceeded chance performance levels (i.e., random stopping
in the arena for > 6 s, Figures 1C,D, P = 6E-17 for gerbil 1
and P = 2E-27 for gerbil 2, binomial test, calculated for the
last session). Chance performances were calculated by the use
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FIGURE 1 | (A) Schematic of the experimental aSIT setup for gerbils. (B) Schematic representation (top view) of the aSITfreq arena in the single island version for
gerbils (background and target frequencies for gerbils were 20 kHz and 660 Hz). (C) Comparison for gerbil 1 of the percentage of trials finished with the percentage
of trials which would have been finished by chance at each time point after the beginning of a trial (shadow areas correspond to 95% confidence interval); Left panel:
1st half of the 1st session; Right panel: 3rd session. (D) Percentage of successful trials relative to the chance level (as calculated in C at 60 s) for each gerbil (error
bars correspond to the 95% confidence interval). Session 1: NGerbil 1 = 66 trials, NGerbil 2 = 55 trials; Session 2: NGerbil 1 = 72 trials, NGerbil 2 = 65 trials; Session 3:
NGerbil 1 = 56 trials, NGerbil 2 = 61 trials. Inset: duration of successful trials for each gerbil in the two last training sessions, horizontal lines denote median (solid) and
quartiles (dashed) of the distribution. Durations of correct trials per session are available in Supplementary Figure S2 (both for gerbils and for mouse lemurs).
(E) Time to success in two consecutive successful trials was not correlated with geometric island distance in either gerbil. Pearson correlation, NGerbil 1 = 89 pairs of
trials, NGerbil 2 = 68 pairs of trials. (F) Schematic of the experimental aSIT setup for mouse lemurs. Background and target frequencies for lemurs were 10 and
4 kHz, respectively. (G) Performance of two mouse lemurs in three consecutive days at the end of the training: percentage of successful trials relative to the daily
chance level (as calculated in C; error bars correspond to the 95% confidence interval). Session 1: NLemur 1 = 32 trials, NLemur 2 = 48 trials; Session 2: NLemur 1 = 43
trials, NLemur 2 = 43 trials; Session 3: NLemur 1 = 44 trials, NLemur 2 = 41 trials. For performance levels during intermediate training sessions (see Supplementary
Figure S3).

of bootstrapping methods with surrogate target locations and
the actual animal locomotion trajectories (see Supplementary
Figure S1A and section “Materials and Methods”). Thus, the
animals stopped and remained significantly longer in the portion
of the arena that triggered the appearance of the target frequency
compared to any other location. This behavior was independent
of the relative location of the target island position, within the
arena as the animals explored the arena uniformly (i.e., no
center avoidance was observed, Supplementary Figures S1B,C).
Indeed, performance levels of both gerbils was significantly above
chance level already for the second half of trials in the very first
session of exposure to the task, and further increased with more
training (Figure 1D, significance is denoted by the lower bound
of the confidence interval not extending to chance level).

In both animals, more than half of the correct trials had
durations of less than 30 s (half of the maximally allowed
duration, inset in Figure 1D), suggesting that the chosen
maximum trial length was adequate for the animals to complete
the task. As rodents may exhibit history-biased behavior in
operant conditioning paradigms (Busse et al., 2011), it raises
the question if the gerbils might preferentially re-visit (or

alternatively avoid) the locations in the arena which triggered
the target stimulus in the previous correct trial. To test if they
employed specific spatial bias in their search strategy based on
the successful detection of the target island location in the prior
trial, we plotted the linear distance between the target islands
in two consecutive successful trials as a function of the time to
completion in the latter of the two trials (Figure 1E). Across the
two animals, no significant correlation was observed (Figure 1E,
Pearson correlation, details in figure legend), demonstrating that
the animals’ exploration behavior was not influenced by the
short-term history of task success.

The results so far demonstrated the suitability of aSITfreq for
assessing frequency-change detection (discrimination) in gerbils.
Next we asked to what extent these results are qualitatively
specific to the innate locomotion behavior and learning
capabilities of the species/clade we used (gerbils/rodentia) or
generalizable across clades. To this end, we also trained two
gray mouse lemurs on aSITfreq. Gray mouse lemurs are primates,
yet comparable in size to gerbils. Notably, they exhibit a quite
distinct innate exploration behavior compared to gerbils, as they
usually show low levels of spontaneous exploration in an open
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field setting (Picq, 2016). Only once they learnt that active
exploration of the setup was occasionally rewarded, exploration
rate increased. Therefore, we adapted some SIT parameters
accordingly and started the training with a large target island
size (diameter = 32 cm), a short sit-time (1 s) and a long
maximum trial duration (120 s) to increase the initial likelihood
of rewarded trials. Once exploration activity of a given individual
had increased, parameters were successively changed toward the
target values (target diameter = 24 cm, SIT-time = 5 s, maximum
trial duration = 60 s). We further introduced an initiation
platform for the mouse lemurs, which allowed the animals to
decide when to start a trial by visiting the platform (Figure 1F,
see Supplementary Video 2, section “Materials and Methods”
and section on sound localization below). Mouse lemur 1 reached
the final target parameters in session 14 (after 438 trials), mouse
lemur 2 in session 19 (after 567 trials). Under these conditions,
both mouse lemurs achieved highly significant performance
levels in aSITfreq (Figure 1G, P = 2E-3 for mouse lemur 1 and
P = 1E-12 for mouse lemur 2, binomial test, calculated for the last
training session). Note that our surrogate island bootstrapping
method to obtain chance levels and to determine significant
performances (see section “Materials and Methods”) is sensitive
to a subject’s moving velocity as well as the specific parameter
settings of each trial and, thus, provides an objective evaluation.
Hence, SIT can readily be adapted to different species.

Multiple Island aSITfreq
The results so far imply that the animals’ behavior in SIT serves
to seek out the target sound. However, it is unclear whether
this behavior is based simply on change-detection (i.e., simply
stopping whenever the stimulation changed) or if SIT can also
be utilized to test the animals’ sensitivity for identification of
the target stimulus. To test this hypothesis in more detail, we
extended the paradigm design of SIT.

We implemented a version of aSITfreq with several islands
simultaneously offered in the arena (Figure 2A, see also
Supplementary Video 3). The same two gerbils that were tested
in the single-island task were used in this task. Four islands
were simultaneously and pseudo-randomly positioned in each
trial corresponding to different stimulus frequencies, including
the original target frequency (660 Hz). The frequencies of the
non-target islands were 460, 860, 1060, and 1320 Hz. The
background frequency “outside” of islands remained as before
(20,000 Hz). Importantly, in this SIT version, animals again
only received a reward for sit-time stays in the actual target
island (no reward was provided for sit-time stays in the non-
target islands, and trials were allowed to continue). Overall,
the animals showed high success rates (Figure 2B, comparable
to those in aSITloc, Figure 4B) already from session 1, yet
because non-target island sit-time stays did not trigger trial
termination, the animals could have stopped in any of the non-
target islands for 6 s before entering the target island and
finishing the trial. Such behavior would still correspond to a
non-selective searching behavior based on detection of a change
from the background frequency. Note that in this multiple island
configuration of SIT, it is not possible to compute the chance
level as the surrogate islands would overlap with the non-target

ones which correspond to a change in frequency. To address the
specificity of island preferences (and therefore the possibility of
oddball strategies) directly, we calculated “sit-time incidences”
a posteriori, that is, we determined the first island in which
the animal remained for longer than the sit-time for each trial.
Each recorded trial was assigned to only one island (if any at
all), namely the one where the animal first stayed for longer
than the sit-time. Afterward, we computed the proportion of
trials that corresponded to each island frequency relative to
the animal’s recurrent random sitting behavior calculated as the
chance level in the last single island session (i.e., a proxy for
the sit-time incidences outside of islands, see section “Materials
and Methods”). Notably, significantly high sit-time incidence
percentages for the target island were observed already after the
first session of exposure to the multi-island aSITfreq (Figure 2C,
significance is given by the fact that chance level lies outside
the 95% confidence interval for the target). Likewise, sit-time
incidences for non-target islands dropped in prevalence after
the first training session and reached baseline level for most
non-target frequencies besides 860 Hz (see below). These results
strongly indicate that the animals learn to specifically associate
the target island frequency with the reward. It is further evidence
that the animals were actively searching for the location of the
target island (i.e., the arena location that induces the appearance
of the target stimulus) and not simply awaiting a change in
stimulation that is independent of their own spatial behavior.
This assessment is further corroborated by the finding that gerbils
adapted their arena occupancy during exploration according to
target island location biases (see section on sound localization
and Supplementary Figure S5).

Interestingly, the proportion of sit-time incidences in non-
target islands was not uniform. We observed that sit-time
incidences for the 860 Hz island were significantly increased
relative to baseline for either animal for some of the training
sessions (for gerbil 1, the lower bound of the confidence interval
remained above chance level on all sessions, while for gerbil
2 it only did so on the second session). Gerbils are generally
capable of discriminating even smaller frequency differences
than used here (0.4 octaves) when presented in succession
(Klinge and Klump, 2009). However, Chen et al. (2019) have
recently shown that when confronted with a memory-based
frequency discrimination task, mice generalize auditory stimuli.
Therefore, one plausible explanation to the increased sit-time
incidences for 860 Hz is that the gerbils generalized the new
presented stimulus initially after introduction of the non-
target islands.

The data, thus, suggest that multi-island SIT might represent
an adequate behavioral readout of perceptual thresholds. This
premise is further supported by the observation that the sit-time
incidence percentage for the 860 Hz island of gerbil 2 decreased to
baseline at later training sessions, which is indicative of increased
frequency identification ability with experience (Figure 2C, lower
panel), which could be explained by an extinction of the prior
generalization (Chen et al., 2019). The reason why generalization
(and extinction) is seen at 860 Hz, but not 460 Hz might be related
to asymmetrical filter broadening and/or the closer logarithmic
spacing (Schnupp et al., 2011).
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FIGURE 2 | (A) Schematic representation (top view) of the aSITfreq in the multiple island version. Note that on a given trial, only three of the four possible non-target
frequencies were offered. (B) Performance of each gerbil per training session (error bars correspond to the 95% confidence interval). Session 1: NGerbil 1 = 64 trials,
NGerbil 2 = 68 trials; Session 2: NGerbil 1 = 58 trials, NGerbil 2 = 59 trials; Session 3: NGerbil 1 = 51 trials, NGerbil 2 = 49 trials; Session 4: NGerbil 1 = 62 trials,
NGerbil 2 = 52 trials. (C) Incidence of sit-time across sessions, relative to chance level per island (error bars correspond to the 95% confidence interval).
(D) Psychometric function: comparison between the first and last training session of the percentage of events the animal stayed the sit-time in each island
depending on the frequency distance in octaves of the island to the target frequency; results were fit with a logistic function (dashed line).
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To directly describe performance levels and their change
across training sessions, we next calculated the “conditional
sit-time incidences” for each of the tested island frequencies
(expressed in octave distance to the target frequency - Figure 2D).
For this analysis, we only considered trials where the animal
encountered at least 1 s of sound exposure in the respective
island, to ensure that the animal had the opportunity to evaluate
the nature of the frequency change (see section “Materials and
Methods”). The results of this analysis revealed two findings:
first, a clear dependence of the conditional sit-time incidences
on the octave-distance to the target frequency is apparent;
second, the peak performance values increased, while conditional
sit-time incidences of non-target frequencies decreased over
the training sessions. These results indicate that learning
occurred, which resulted in better identification of the different
frequencies. Hence, multi-island SIT in combination with
sit-time incidence analyses allows constructing psychometric
functions to determine perceptual learning progress.

So far, we established that SIT allows the investigation of
auditory frequency discrimination and identification in rodents
and in primates. Next, we tested the suitability of SIT to study
another sense, namely vision.

Visual Grating Orientation Discrimination
(vSITori)
Here, SIT was incorporated into an existing free-navigation visual
stimulation setup (from Del Grosso et al., 2017, 2019) and two
gerbils were trained to report when the orientation of the grating
projected on the walls of the arena changed from vertical to
horizontal (Figure 3B and Supplementary Video 4). Both gerbils
achieved a performance above chance level (Figure 3C, P = 2E-28
for gerbil 3 and P = 1E-4 for gerbil 4, binomial test, calculated for
the last training session) at the end of the training (gerbil 3 was
trained in a total of 24 sessions – 672 trials – and gerbil 4 in 15
sessions – 384 trials).

Gerbil 3 was additionally tested for stimulus feature specificity
by introducing a non-target island. The non-target island
corresponded to a 45◦ orientation of the grating (Figure 3B and
Supplementary Video 5). As in previous versions of SIT, this
island was not rewarded if the gerbil spent longer than the sit-
time inside and the trial continued. To analyze the specificity of
the gerbil’s behavior, we again calculated the sit-time incidence
percentage and assigned each trial to the island in which the
animal stayed first for the duration of the sit-time. Already in
the first session in which the non-target island was introduced,
the animal exhibited high selectivity for the target stimulus and
stayed for the sit-time almost exclusively in the target island
(Figure 3D). The sit-time incidence percentage for the non-target
island is not different from chance, which supports the hypothesis
that the gerbil learned that a specific grating orientation is
associated with reward and not any change in orientation. Thus,
SIT is readily adaptable to other sensory modalities, suggesting
that it is suitable for multi- or cross-modal investigations.

Next, we examined how SIT can be utilized to study another
fundamental auditory computation – sound localization – and
to what extent employing SIT (hence introducing its inherent

ecological relevance by allowing free exploration) in chronically
implanted animals may facilitate the identification of new neural
processing signatures.

Sound Localization (aSITloc)
We applied SIT to study sound localization in freely behaving
and engaged animals. Traditionally used paradigms to study
spatial sensitivity require a constant head position during
sound presentation (Wood et al., 2019), often in naïve or
anesthetized animals (Middlebrooks and Knudsen, 1984). In
contrast, aSITloc allows investigations in the locomoting animal
during active localization, providing more naturalistic conditions
and, thus, higher ecological relevance. We used the single-island
configuration, yet here the target island cue was a change in the
sound source location (i.e., the active loudspeaker). The arena
was equipped with two diametrically opposed loudspeakers (180◦
angle separation from the center of the arena), from which a
short (57 ms) harmonic complex sound (see section “Materials
and Methods”) was presented at 4 Hz repetition rate. Upon trial
initiation (see below), the sound was played by one of the two
loudspeakers (the background) until the animal entered the target
island, at which moment the stimulation switched to the second
loudspeaker (target) (Figure 4A and Supplementary Video 6).
The identity of the target and background loudspeaker was
maintained throughout training and testing yet catch-trials with
swapped identities were introduced in a subset of the animals (see
below). Since we combined this paradigm with neural recordings
in the auditory cortex (AC), we added an initiation platform
(∼1 cm in height) for the animals during training and testing
on aSITloc (similar to the mouse lemur paradigm in aSITfreq).
Voluntary trial initiation has been shown to reduce spontaneous
discharge and improve the detection of thresholds (Buran et al.,
2014) and task engagement sharpens spatial tuning of neurons
in AC in cats (Lee and Middlebrooks, 2011). The platform was
positioned near the wall of the arena and animals were required
to stay on it for one second to start a trial.

Locomotion and Sitting Behavior Are
Specific to Target Loudspeaker and to
Target Island Distribution Likelihood
We tested 11 gerbils in aSITloc, all of which reached highly
significant success rates (Figure 4B, P = 0.0033, N = 11 gerbils,
Wilcoxon signed-rank test). Swapping the identity of the target
and background loudspeakers in 1/8 of trials during the testing
phase (the identities of target and background loudspeakers
remained fixed during training) resulted in performance levels
that were significantly lower than chance level (Figure 4B,
P = 0.018, N = 7 gerbils, Wilcoxon signed-rank test). Given that
these catch-trials started with the presentation of the usual target
stimulus, the animals could potentially have just stopped moving
immediately after initiating a trial in anticipation of the reward,
which could explain the extremely low success rate. However,
further analysis revealed that the animals indeed encountered the
target-islands with similar prevalence in catch-trials as in normal
trials, but rarely remained in the island for the required sit-time
in catch-trials (Supplementary Figure S4). Thus, the animals
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FIGURE 3 | (A) Schematic representation of the ratCAVE setup (adapted from Del Grosso et al., 2017). (B) Schematic representation (top view) of the vSITori arena,
both in the single and in the multiple island version. Animal entrance to a target island and non-target island triggered the change of grating orientation from vertical
to horizontal or oblique, respectively. All gratings used only differed in orientation angle. Differences in appearance is due to visual angle from above. (C) Performance
of each gerbil in example sessions from the beginning, middle, and end of the training, in the single island task (error bars correspond to the 95% confidence
interval). First session: NGerbil 3 = 20 trials, NGerbil 4 = 42 trials; middle session: NGerbil 3 = 12 trials, NGerbil 4 = 20 trials; last session: NGerbil 3 = 40 trials, NGerbil 4 = 32
trials. (D) Incidence of sit-time across sessions relative to chance level per island, in the multiple island task (error bars correspond to the 95% confidence interval).
Gerbil 3 NSession 1 = 34 trials; NSession 2 = 41 trials; NSession 3 = 43 trials; NSession 4 = 39 trials; NSession 5 = 44 trials; NSession 6 = 39 trials.

actively avoided staying in the target island in these catch-trials,
revealing that they indeed associated the identity of the active
loudspeaker (target or background) with reward predictability.
Since the spatial location of the active loudspeaker was the only
parameter that allowed determination of loudspeaker identity,
these data validate that the animals were actively localizing the
sound source to achieve task performance. Hence, similar as for
frequency discrimination, the gerbils did not follow an oddball
strategy but specifically searched for the target stimulus.

We also tested to which extent the animals associate their
locomotive searching behavior with target detection success. To
this end, we employed a biased distribution likelihood of target
island locations in the arena. We found that after the animals
were trained on one specific distribution likelihood, their arena
occupancy was specific to this distribution (Supplementary
Figure S5). That is, the animals predominantly visited locations
in the arena that were most likely to contain the target island.
Thus, a clear association existed between the animals’ locomotive
behavior and their reward expectancy, i.e., they actively searched
for the target island position. Together, these data validate that
SIT allows the interrogation of different cues based on the
concept of a locomotive search for a target stimulus (i.e., island).

Electrophysiological Recording of Neural
Activity During SIT Performance
We were interested in combing SIT with chronic
electrophysiological recording techniques. Specifically, we
asked to what extent the unrestricted self-movement and task
relevance that are provided by SIT might facilitate exploring
neural signatures of spatial processing in AC. Therefore, we
implanted a tetrode bundle in AC of a previously trained gerbil
(see section “Materials and Methods”), and recorded brain

activity during task performance in aSITloc. We collected local
field potential (LFP), from which we calculated Auditory Evoked
Potentials (AEPs). Remarkably, although the acoustic stimulation
was identical from both loudspeakers (sound intensity was roved
throughout trials), AEPs were different between the two sound
sources (Figures 4C,D). Specifically, AEP amplitudes were
significantly larger during stimulation by the target loudspeaker
(P = 0.000049, Mann-Whitney U-test). A plausible reason for
this difference in AEP amplitude could be differences in the
intensity of the sounds presented from each loudspeaker, due
to the animal being closer to the target loudspeaker than to the
non-target, at the moment of respective sound presentation. This
does not seem to be the case, as the histograms of animal position
for target and non-target loudspeaker sound presentations do not
show such a bias (Supplementary Figure S6). More likely, these
data suggest that the learned relevance of each specific sound
source modulates neural response amplitude. Such differences
in sound-source-specific responses have – to our knowledge –
not previously been reported in studies on spatial processing and
thus demonstrate that the use of SIT may be beneficial to reveal
neuronal signatures of sensory processing under ecologically
relevant conditions.

DISCUSSION

SIT is a novel experimental paradigm for freely moving animals
that are actively engaged in a sensory processing task and
can be combined with simultaneous neural recordings. It
exploits voluntary exploratory self-motion – and its cessation
upon detection of a change in the sensory stimulation – for
testing psychophysical sensitivity in a variety of cues and
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FIGURE 4 | (A) Schematic representation (top view) of aSITloc, a sound source localization version of SIT. (B) Left-hand panel: Reporting of sound location was
highly significant (P = 0.0033, N = 11 gerbils, Wilcoxon signed-rank test) compared to their chance level given their actual locomotion behavior, calculated by
surrogate island computation. Right-hand panel: In 1/8 of the trials the identity of the target and background loudspeakers was swapped for a subset of the animals.
A significant decrease in the performance for the “swapped” trials below chance level (P = 0.018, N = 7 gerbils, horizontal lines depict the median, Wilcoxon
signed-rank test) suggests the animals were actively avoiding the target island under these conditions. (C,D) Response magnitude differences in auditory evoked
potential (AEP) recordings of auditory cortex neural populations. (C) Single session example traces. Dotted lines represent AEP per trial and active loudspeaker
identity. Thick traces represent the median of all trials. (D) Quantification of AEP amplitude. In this example session the AEP amplitude was significantly larger during
target loudspeaker activity (P = 0.000049; Ntarget = 19, Nbackground = 23; Mann-Whitney U-test). Boxplots depict the median (black line), 1st and 3rd quartile (filled
boxes), ± 2.7 σ (whiskers) and outliers (crosses).

sensory modalities. Self-motion occurs constantly under natural
conditions and, throughout evolution, neural processing has
adapted to the resulting continuous modulation of the sensory
input (Niell and Stryker, 2010; Zhou et al., 2014; McGinley
et al., 2015; Williamson et al., 2015; Willett et al., 2019). SIT
consequently captures ethologically relevant behavior that is
crucial for sensory processing and decision making. SIT was
inspired by existing closed-loop free navigation assays (Polley
et al., 2004; Whitton et al., 2014), but differs significantly in a
number of aspects. Most importantly, the introduction of discrete
sensory islands instead of a gradient fundamentally changes
the locomotion behavior toward free exploration of the entire
arena. Moreover, the introduction of multiple islands allows the
interrogation of animals about perception thresholds and the
construction of psychometric functions.

The last decade has seen a rise in the study of perceptual
decision making, particularly in rodents. Data from established
and commonly used paradigms, such as go/no-go tasks (G/NG)

and two alternative forced choice tasks (2AFC), can be difficult to
interpret. For example, in 2AFC designs, the animals are forced to
give an answer on every trial, which renders the disentanglement
between real decisions and guesses difficult (Carandini and
Churchland, 2013). The sensory environment in which rodents
are immersed while performing these tasks has been increasing
in complexity in recent years, from lever operation, to full 360◦
virtual reality with online locomotive update. However, animals
require substantial training to learn how to use and navigate these
setups. Moreover, a major drawback of many virtual reality setups
is a lack of vestibular feedback (due to head fixation) that is
naturally present during self-movement.

In contrast, SIT is characterized by shorter training periods
than many traditional behavioral paradigms or techniques
involving virtual reality (e.g., as little as one training session for
gerbils in aSITfreq), high flexibility to readily adapt parameters to
both the constraints of the scientific question at hand and to the
behavioral characteristics of the animal clade used. If required
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(e.g., depending on complexity and species), the motivational
state of the animals can be controlled by addition of an initiation
platform, which assures the willingness of the individual to
perform a trial. In essence, SIT represents a refined version of
a G/NG task. Nonetheless, the possibility to add multiple non-
target islands allows testing of cue identification and determining
psychometric functions. In its currently presented form with
pseudo-randomized island locations, SIT does not represent a
spatial association nor a long-term memory task. Nonetheless,
SIT can be easily transformed into such a task by maintaining the
target island location constant across trials or switching between a
limited number of target locations; e.g., a recent study by Rossato
et al. (2018) which used electromagnets to switch between
available islands in the Morris water maze could be performed
in SIT, with greater flexibility due to the amount and position
of the islands depending on software rather than hardware. In
addition, the lack of water in SIT facilitates maintenance of
the setup and coupling of experiments with interventions such
as electrophysiology. Although dry versions of the water maze
already exist, such as in Bast et al. (2005), where animals forage
for food in hidden compartments, SIT provides an easier, more
versatile alternative in which the search for food can be replaced
by the search for target island (to receive food reward). Thus,
spatial learning and memory studies in relation to sensory cuing
could be performed, a task of high ecological relevance in many
species (Sherry, 1985; Collett et al., 1986).

In any of its potential variants, combining SIT with specific
time points of electrode implantation (e.g., before/during
training), opens exciting possibilities to study aspects of learning
and plasticity of sensory processing during voluntary self-motion
and active sensing. We have exemplified some of this potential
here, as our AC recording during aSITloc revealed previously
unreported response modulation of spatial sensitivity based on
sound source identity. Previous reports had established that
neuronal responses in auditory cortex can be modulated by
“attention” (Hubel et al., 1959; Evans and Whitfield, 1964).
Our findings are related, but potentially more profound, as the
difference in responses to both loudspeakers is unlikely to be
due to the attentive state of the animal, but rather the relative
relevance of the two sound sources regarding reward expectancy
and experimental design. Multiple studies in AC have found
relevance-specific response modulation in animals if engaged in
the experimental task (Miller et al., 1972; Fritz et al., 2003, 2007;
Atiani et al., 2009; Otazu et al., 2009; Lee and Middlebrooks,
2011; Guo et al., 2019). Moreover, a recent study with macaque
monkeys that were trained to respond differentially to the same
auditory stimulation depending on the context reported larger
auditory cortex responses to the same stimulus when it required
a no-go response (Huang et al., 2019). Likewise, greater neural
responses during aSITloc were observed for target sounds that
required the animal to remain sitting.

In summary, SIT is a flexible and easily implementable
behavioral paradigm that uniquely incorporates self-motion and
natural exploratory behavior, which are essential for ecological
sensory processing. SIT is readily applicable across species and
sensory modalities and extendable to use for neurophysiological
investigations. Beyond the options we have exemplified here,

SIT is widely adaptable to a large variety of neuroscientific
and ecological fields. For example, besides the auditory and
visual cues probed here, we suggest that somatosensory cues
can be studied by dynamically changing the floor texture, or
olfactory sensitivity could be tested collocating the target island
and odor release valves beneath the arena. Similarly, decision-
making based on congruent or ambiguous combinations of
different sensory modalities is ecologically important and could
readily be applied in SIT. In the future, it would be particularly
interesting to use high yield recording devices, such as neuropixel
electrodes (Juavinett et al., 2019), to sample a wide range of
brain areas. Moreover, the ongoing miniaturization of technology
will allow precise stimulus control in various sensory modalities
and combinations (e.g., through wireless miniature cameras or
microphones). These new technologies coupled with SIT should
garner unprecedented insights to unravel ecologically relevant
sensory neural processes.
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FIGURE S1 | (A) Schematic representation of the surrogate island random
permutation. Colored line depicts a real trajectory of an animal in a trial color
coded with the time at which the animal was at each position, starting from the
initiation platform (filled gray circle). The real target island is where the animal ends
(open orange circle). The dots correspond to the position of the animal with 1s
interval between them. The chance level of task completion was calculated using
a posteriori surrogate island locations (open black circles, only a few shown here
from the 1000 actually used for each trial). (B) Trajectories of gerbil 1 and 2 during
the 2nd training session separated by correct and incorrect trials: no apparent
change in pattern of locomotion is seen when the animal did not succeed in the
task. (C) Comparison of the distance of the target island’s center to the center of
the arena between correct and incorrect trials for gerbil 1 and 2 in the same
session as in B. Gerbil 1: Ncorrect = 44, Nincorrect = 28, P = 0.12; Gerbil 2:
Ncorrect = 44, Nincorrect = 21, P = 0.63 (Mann-Whitney U test). Boxplots depict the
median (black line), 1st and 3rd quartile (filled boxes), ± 2.7 σ (whiskers) and
outliers (cross).

FIGURE S2 | Duration of correct trials in aSITfreq for gerbils (left panel) and for
mouse lemur (Right panel).

FIGURE S3 | Mouse lemur performance at intermediate training sessions, relative
to chance level. Target island diameter = 26.7 cm. For mouse lemur 1, x = 6 and
sit-time = 4 s. For mouse lemur 2, x = 5 and sit-time = 2 s.

FIGURE S4 | Comparison in the aSITloc version between the trials in which the
target loudspeaker was the one from the training, with catch-trials (1/8 of total
trials) in which the opposite loudspeaker was the target one. (A) The gerbils found
the target island as often in catch-trials as in normal target trials. (B) The gerbils
left the target island much more often (∼85% trials) in catch-trials than in normal
target trials (∼35% trials). Only situations where the gerbils stayed in the target
island for at least 1 s were used to assure the gerbil listened to the sound and did
not just run through the island. Number of sessions: 39; Number of normal target
trials: 1784; Number of catch trials: 285. Uncertainty was determined using a
bootstrapping method.

FIGURE S5 | Association between spatial position and stimulus change in the
aSITloc. (A) Distribution of the target islands for all the trials in a session where
there was not a target location bias (left) and in a session where there was a target
location bias (right). The filled gray circle corresponds to the initiation platform. The
dashed magenta circle radius is twice as large as that of a target island and
divides the target islands which were considered to be in the center (light gray
circles) from the target islands considered not to be in the center (dark blue
circles). In sessions without target location bias ∼59% of the islands occurred in
the center whereas, in sessions with target location bias, ∼78% occurred in the
center. (B) Difference in percentage of successful trials between trials in which the
target was in the center and trials in which the target was not in the center (error
bars correspond to the 95% confidence interval, calculated using a bootstrapping
method). Gerbil 1 and 2 (these are not the same gerbils that were trained in
aSITfreq) were first trained in an unbiased condition and the bias condition was
later introduced. Gerbil 3 was first trained in a biased condition, and the bias was
later removed. When the target location was biased to the center, the animals
spent more time in that region and their performance increased in relation to when
the target was outside the center.

FIGURE S6 | Histograms of gerbil position at sound presentation times for the
session during which LFP was recorded, reported on main (Figure 4). Left panel
shows the histogram for target stimulus presentations (orange loudspeaker). Right
panel shows the histogram for background stimulus presentations
(blue loudspeaker).
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We constructed a large projection device (the Antarium) with 20,000 UV-Blue-Green
LEDs that allows us to present tethered ants with views of their natural foraging
environment. The ants walk on an air-cushioned trackball, their movements are
registered and can be fed back to the visual panorama. Views are generated in a 3D
model of the ants’ environment so that they experience the changing visual world in
the same way as they do when foraging naturally. The Antarium is a biscribed pentakis
dodecahedron with 55 facets of identical isosceles triangles. The length of the base of
the triangles is 368 mm resulting in a device that is roughly 1 m in diameter. Each triangle
contains 361 blue/green LEDs and nine UV LEDs. The 55 triangles of the Antarium have
19,855 Green and Blue pixels and 495 UV pixels, covering 360◦ azimuth and elevation
from −50◦ below the horizon to +90◦ above the horizon. The angular resolution is 1.5◦ for
Green and Blue LEDs and 6.7◦ for UV LEDs, offering 65,536 intensity levels at a flicker
frequency of more than 9,000 Hz and a framerate of 190 fps. Also, the direction and
degree of polarisation of the UV LEDs can be adjusted through polarisers mounted on
the axles of rotary actuators. We build 3D models of the natural foraging environment of
ants using purely camera-based methods. We reconstruct panoramic scenes at any
point within these models, by projecting panoramic images onto six virtual cameras
which capture a cube-map of images to be projected by the LEDs of the Antarium. The
Antarium is a unique instrument to investigate visual navigation in ants. In an open loop,
it allows us to provide ants with familiar and unfamiliar views, with completely featureless
visual scenes, or with scenes that are altered in spatial or spectral composition. In closed-
loop, we can study the behavior of ants that are virtually displaced within their natural
foraging environment. In the future, the Antarium can also be used to investigate the
dynamics of navigational guidance and the neurophysiological basis of ant navigation in
natural visual environments.

Keywords: visual navigation, virtual reality, reconstructed visual reality, ants, LED arena

Abbreviations: FPGA, field-programmable gate array; PWM, pulse-width modulation; PCB, printed circuit board; SPI,
serial peripheral interconnect; UDP, user datagram protocol.
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INTRODUCTION

Ample experimental evidence now makes us confident that
central-place foraging insects, such as ants, bees, and wasps
navigate predominantly visually, relying on both scene memories
and celestial compass information (e.g., Reid et al., 2011;
Zeil, 2012; Collett et al., 2013; Wystrach et al., 2014; Graham
and Philippides, 2017; Wehner, 2020). Visual navigation is
supported by path integration (Heinze et al., 2018) which runs
in the background, providing a failsafe, and in some cases
and situations, also by olfactory, tactile and magnetic cues
(Buehlmann et al., 2012, 2015; Knaden and Graham, 2016;
Fleischmann et al., 2018). Evidence from behavioral studies and
increasingly detailed knowledge of neural circuits relevant for
navigation (e.g., Stone et al., 2017; Buehlmann et al., 2020;
Kamhi et al., 2020; Steinbeck et al., 2020) are beginning to
feed into neurally constrained and experimentally informed
models of navigation (e.g., Baddeley et al., 2012; Ardin et al.,
2016; Webb and Wystrach, 2016; Stone et al., 2017; Hoinville
and Wehner, 2018; Gkanias et al., 2019; Schulte et al., 2019;
Differt and Stürzl, 2020; Sun et al., 2020) and into robotic
implementations (e.g., Lambrinos et al., 2000;Möller, 2000; Stone
et al., 2016, 2017; Webb and Wystrach, 2016; Sabo et al., 2017;
Dupeyroux et al., 2018).

The predictions of these models will likely become
increasingly hard to test in behavioral experiments. The main
reason being that controlled manipulations of complex visual
cues, such as the full landmark panorama or conflict experiments
between different compass systems are difficult to perform in
natural navigation environments. Equally, investigations of the
real-life computational properties of navigation-relevant neural
circuits are currently hampered by limitations in the way visual
information can be presented in electrophysiology rigs (see e.g.,
Table 1). There are currently no projection devices that can
convey the full information content of the spatial, spectral, and
polarization signal patterns that characterize natural navigation
environments; and lastly the navigational competence of insects
is based on active learning processes (e.g., Collett and Zeil,
2018; Jayatilaka et al., 2018; Zeil and Fleischmann, 2019) and
relies on the active comparison between remembered and
currently experienced input patterns (e.g., Zeil, 2012; Le Möel
and Wystrach, 2020; Murray et al., 2020). It is thus likely that
the neural machinery underlying navigation is heavily state-,
context- and activity-dependent, requiring closed-loop control
of the visual scene by the insect and control by the experimenter
over the experience (What has been learned?), the motivation
(What is the navigational goal?) and the state of the animal
(Whether it holds information from path integration or not).

With this in mind, we designed the Antarium, a panoramic
projection device that would allow us to present ants walking
on a trackball with views of their known foraging environment
and to give the insects full control over the view transformations
by feeding their intended movements back onto the panorama.
Besides the engineering challenges of the device itself, there
are two pre-conditions for this to work: a need to know the
movements of the ants in their natural foraging environment
and a way of reconstructing the views they will have encountered

under natural conditions. To satisfy the first condition, we rely
on several years of tracking ant movements with differential GPS,
both during their normal foraging activity and after systematic
displacement experiments (e.g., Narendra et al., 2013; Reid et al.,
2013; Jayatilaka et al., 2014; Zeil et al., 2014). We second used
LIDAR and camera-based methods to build 3D models of the
ants’ foraging environment (e.g., Stürzl et al., 2015; Murray and
Zeil, 2017), which we now can use to render panoramic views
at any location within the foraging range of the ants and project
them in the Antarium.

The Antarium is not the first ‘‘Virtual Reality’’ device in insect
research but it is the first one that has been designed with the
specific aim of enabling the presentation of natural, in contrast to
synthetic, visual navigation environments (e.g., VanDe Poll et al.,
2015). We summarize the features of some devices described
in the literature in Table 1 and briefly describe their properties
below (see also Fry et al., 2004, 2008; Dombeck and Reiser, 2012;
Schultheiss et al., 2017; Stowers et al., 2017).

Dickinson and Lighton (1995) built a cylindrical arena with
green LEDs which was limited to display a dark vertical bar
that could be rotated around the animal. The device could not
display an arbitrary scene. Similarly, Strauss et al. (1997) designed
a projector for walking Drosophila experiments. It is a cylindrical
device, with monochrome (green) LEDs. A full-color computer
projector with a hemispheric back-projected screen was built by
Gray et al. (2002) and combined with a wind tunnel for moth
research. The FliMax device (Lindemann et al., 2003) is an LED
projector designed for fly research. It delivers a monochromatic
(green) image for the tethered insect in its frontal visual field and
was used to present reconstructed, outdoor view-sequences in
electrophysiological experiments (Boeddeker et al., 2005). Reiser
and Dickinson (2008) designed a modular projection device
consisting of small identical square panels of monochromatic
(green) LEDs. Thesemodules can be used to tile a surface that has
curvature around at most one axis, for example a cylinder1. The
projection system designed by Takalo et al. (2012) is based on a
modified video projector with elaborate optics. Paulk et al. (2014)
used four LED panels to build a square well around the animal
on the trackball. The panels are approximately 20 cm squares,
with a 32 by 32 matrix of RGB LEDs on each. Only the green
channel was utilized and only vertical bars were shown to the
animal. Commercial projectors beamed onto a hemisphere were
used by Peckmezian and Taylor (2015) who presented artificial
3D environments to trackball mounted jumping spiders. Koenig
et al. (2016) projected simple shapes onto a rectangular array
of light-guides, the other ends of which lined the walls of a
cylindrical arena. More recently Kaushik et al. (2020) built an
arena where the tethered insect is placed in the geometric center
of a triangular prism formed by three high-speed commercial
computer monitors turned on their side, delivering full-color
video of a 3D modeled landscape.

The Antarium project aimed to design a projection system
for experiments on ant navigation which must be capable of

1A bi-colour (green and blue) version of that device is now commercially available
and a trichromatic (green, blue, and UV) device is being designed (Michael B.
Reiser, personal communication).
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presenting panoramic views of the natural foraging habitat of
ants in a way that addresses their spectral and polarization
sensitivities while also allowing the ants to interact with the scene
and the experimenter to modify it in arbitrary ways.

None of the existing projection systems could deliver on
all these points. The following constraints were considered at
the outset:

• Since ants have a panoramic vision (e.g., Zollikofer et al.,
1995; Schwarz et al., 2011), the arena must cover 360◦

azimuth and the whole celestial hemisphere. Similarly, the
arena must be able to project ground features down to −45◦

elevation.
• At the time the Antarium was designed, the spectral
sensitivities of Myrmecia ants were not known, but scattered
reports made it likely that ants, in general, possess UV, blue
and green receptors (see references in Ogawa et al., 2015).

• The Antarium must be able to deliver light of sufficient
intensities at these wavelengths. On a sunny day, the
brightness in a natural scene can vary by 5 log units. The
Antarium should be able to deliver a similar intensity range.

• Like most insects, ants possess a dorsal eye region with
UV and polarization-sensitive receptors that feed into
the skylight polarization compass system. The Antarium,
therefore, would need to provide adjustable polarization
covering the celestial hemisphere.

• We work with Australian bull ants. One of the largest bull
ants (Myrmecia pyriformis) has around 3,500 ommatidia per
eye (Narendra et al., 2011). Therefore, to avoid aliasing, the
number of pixels must be at least 20 000.

• The critical flicker fusion frequency (CFFF) has been
determined for two Myrmecia species, for the nocturnal M.
midas at 84.6± 3.2 Hz and the diurnal-crepuscularM. tarsata
at 154.0 ± 8.5 Hz (for review see Ogawa et al., 2019). For the
Antarium, we opted for a minimum flicker rate of 300 Hz.
The minimum frame rate for ants to observe continuous
motion is not known, but it cannot be higher than the critical
fusion frequency. Therefore, a frame rate close to 200 fps
should be sufficient.

• We decided to use the trackball system designed by Dahmen
et al. (2017) that records the rotations of a hollowed-
out, air-supported Styrofoam sphere using optical mouse
sensors. Besides a very high sampling rate, the advantages
of this system are that it can be used in two ways: with
the tethered animal free to rotate around the yaw axis and
the trackball recording the animal’s translational movements
only and with the tethered animal fixed, so that the
trackball movements reflect both the yaw rotations and the
translational movements of the animal.

• Finally, we had to operate within tight budgetary constraints.

The Antarium offers unique and crucial opportunities to
investigate visual navigation in ants and to test models of visual
navigation. It allows us to confront ants in both open and
closed-loop with familiar and unfamiliar views of their natural
environment, but also with completely featureless visual scenes,
or with scenes in which dominant objects have been removed or
displaced or that are altered in spatial or spectral composition.
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Most importantly, the Antarium can also be used in the future
to investigate the neurophysiological basis of ant navigation in
natural visual environments.

THE ANTARIUM DESIGN

Geometry
Although an ideal projector would be spherical, several practical
constraints make this untenable. For example, if LEDs were
drilled and glued to the inside surface of a sphere, the
optics would be ideal (see e.g., Koenig et al., 2016). However,
hand-soldering thousands of LEDs to their driver is error-prone
and extremely labor-intensive, and thus prohibitively expensive.
A faster and cheaper alternative is to have machine printed
circuit boards (PCB). PCBs can be any shape but must be flat,
which constrains the projector to be a polyhedral approximation
of a sphere. Since PCB manufacturing has a large NRE (non-
recurrent engineering) cost, it is significantly cheaper if the
polyhedron can be built from identical facets. Facet number is
then a trade-off between optical properties and cost, with larger
numbers leading to a better approximation of the sphere, but
higher printing and labor costs. To guarantee that each facet
has identical properties, i.e., that the LED arrangement can be
identical on them, all of the polyhedron’s vertices should lie on
a sphere.

We chose the biscribed pentakis dodecahedron (Figure 1A)
as our spherical approximation for the Antarium. It has 60 facets
of identical isosceles triangles. Five triangles form a pentagonal
pyramid and 12 of such pyramids comprise the solid. For the
Antarium one such pyramid is removed at the bottom, providing
an opening where a trackball with the tethered animal can
be inserted.

The physical size of the Antarium is constrained by electronic
circuit board density, mechanical limitations, and the need for
the opening at the bottom to be sufficiently large for the insertion
of the trackball apparatus. With all those factors considered, the
length of the base of the triangle was chosen to be 368 mm.
All other dimensions are determined by the geometry of the
pentakis dodecahedron, resulting in a roughly 1 m diameter
device (Figure 1D).

Pixel Arrangement
Ideally, the LEDs should be as evenly distributed on the surface
of the polyhedron as possible, which is challenging, because
the pattern continuity between adjacent panels needs to be
addressed. A pattern was found where the LEDs are on the vertex
points of a hexagonal lattice. A computer program was written
that calculated the pixel positions and minimized the inter-
pixel angle variation while taking the technological constraints
of manufacturing into account.

Two such hexagonal grids were calculated, one for the
GB (green/blue) pixels and another for the UV pixels. The
angular acceptance functions are much wider and the spacing
of ommatidia in the dorsal rim area is much higher than in
the rest of the eye. It was decided that the UV LED pattern
therefore should be made significantly sparser than the BG

FIGURE 1 | The Antarium. (A) Concept schematics of the biscribed pentakis
dodecahedron with 55 facets of identical isosceles triangles carrying LEDs
and control electronics and the trackball device. (B) Tethered ant on an
air-cushioned trackball. The ants are free to rotate around the yaw axis, but its
translational movements are registered by monitoring the rotations of the
Styrofoam ball. (C) The tethered ant as seen by the Antarium camera. (D) The
fully assembled Antarium. (E) The landscape panorama projected by the
Antarium LEDs seen at 1.5◦ resolution, about twice the average resolution
of ants.

pattern, especially because of the high cost of UV LEDs and the
need for their adjustable polarization.

Each triangle contains 361 blue/green pixels and nine UV
pixels (Figures 2A,B). Therefore, the 55 triangles that form the
Antarium all together have 19,855 GB pixels and 495 UV pixels.
Because no spectral sensitivity information was available at the
time, the LEDs were chosen based on their price, availability,
physical size, brightness, and beam angle. The selected LEDs
were LTST-C930KGKT (Lite-On, Inc), LTST-C930TBKT (Lite-
On Inc.,), and VLMU3100 (Vishay) for the green, blue, and UV,
respectively. As can be seen in Figure 2C, the current LEDs’
spectral emissions are ill-matched to the photoreceptor spectral
sensitivities that have since been determined in Myrmecia ants
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(Ogawa et al., 2015). This problem will be fixed in Antarium
Mark II, which is currently under construction (see ‘‘Outlook’’
section below).

Preliminary experiments revealed substantial internal
reflections within the Antarium, which were subsequently
minimized by fitting a low reflection black cardboard cover
to its internal surface. We measured the reflectance of the
black cardboard with a USB-4000 Ocean Optics spectrometer
against a certified reflectance standard reference from LabSphere
illuminated by natural light. For all wavelength points, the
cardboard intensity was divided by the reflectance standard’s
intensity. Between 400 and 700 nm, the cardboard reflects
between 5 and 7% of the light, without dips and peaks.

Polarization
The adjustable polarization of the UV LEDs is based on each
UV pixel being composed of two UV LEDs (Figure 2D). One
of them is not polarized at all. The other one is placed behind
a linear polarizer. The polarizer is a small disc mounted on an
axle of a rotary actuator. The actuator can rotate the disc and
therefore its plane of polarization can be at any angle. By varying
the relative intensities of the polarized and unpolarized LEDs, the
polarization depth can also be controlled.

The actuator needs to be fast as it must to be able to follow
scene changes. Stepper motors and servos are too slow. The
chosen actuator is an aircore, comprising of a small permanent
magnet rotor and a stator with two coils arranged orthogonally.
The combined magnetic fields of the two coils can have constant
strength but set in any direction by driving one coil with a
current that is proportional to the sine of the desired angular
position while the other with its cosine. The permanent magnet
rotor will always align with the magnetic field direction. Because
the rotor is a low mass, an aircore can be driven into a new
position quite fast. It has a tendency of oscillations while it settles,
but manufacturers also offer devices with a small droplet of
silicone oil in the rotor bearing. The oil acts as a damper and
the time constant of the damping depends on the viscosity of
the oil used. With the correct viscosity, the settling can approach
the theoretical optimum. The chosen aircore, MicroAirCore
2022-715 from Simco, Limited was tested in the laboratory and
it was fast settling, with very little oscillation. A 180◦ rotation can
be achieved in less than 200 ms.

LED Driving
To guarantee constant brightness the LEDs must be driven by a
constant current source. The brightness of an LED is a function of
the current flowing over it. LEDs are semiconductor diodes with
nonlinear I–V characteristics. Also, as with all semiconductor
devices, the characteristics are dependent on the temperature
of the chip. Although a laboratory is usually an air-conditioned
room, LEDs generate waste heat which warms them up. An LED
that was bright for a while will be significantly warmer than one
that ran at low intensity.

To mimic natural conditions, the intensity range of the arena
should span close to 5 log units. A 16-bit linearly spaced intensity
regime (65,536 levels) corresponds to 4.8 log units. We used
a commercially available LED driver chip, the MBI5040 from

Macroblock which satisfies all these criteria. It can drive 16 LEDs
with a constant current. It uses a 16-bit pulse-width modulation
(PWM) scheme to set the intensity of each LED individually.
It can also apply a correction scheme to compensate for LED
brightness variation. The correction scheme can vary the drive
current from 0 to the nominal maximum in 1% steps for each
LED separately. Also, it can detect and report short circuit and
open circuit LED failures. Furthermore, the chip can operate with
only a 0.5 V drop across its driving circuitry, an important feature
from a power consumption point of view. The maximum drive
current is 30 mA per LED; the LEDs used in the Antarium use
only 20 mA drive current, far below the chip’s limits.

There are 361 BG and 9 UV pixels on a triangle and the
MBI5040 can drive 16 LEDs (i.e., eight pixels), therefore each
panel contains 47 chips.

Flicker Considerations
Using PWM to set the LED brightness introduces flicker. PWM
works by turning the LED full brightness for a short time then
completely dark for some other time; the average intensity is the
ratio of the ON time and the PWM period (the sum of the ON
and OFF times). Thus, the LED flickers with the PWM period.
Using discrete-time increments, the number of levels that can
be displayed is the number of increments per PWM period. To
ensure ants do not see the flicker, the Antarium needs a flicker
frequency of 300 Hz or more. Thus, the PWM period needs
to be no more than 3.33 ms which with 65,536 levels gives an
elementary time increment of 50.86 ns, and a clock frequency of
19.7 MHz. We chose to run the PWM on a 20 MHz clock, even
though the MBI5040 chip could run on up to 30 MHz.

However, another method allows us to reach a much higher
flicker frequency far beyond what would be detectable by any
biological system. The MBI5040 implements what is called
scrambled PWM, a scheme designed to increase the flicker
frequency above the PWM period. Instead of turning the LED
on for the ON time then extinguishing it for the OFF time, the
scheme spreads those times around within the PWM period.
For example, if the period is 10-time units and the LED has a
brightness of 30%, a simple PWM will turn it on for 3 units
then off for 7 units. However, a scrambled PWM system might
turn the LED on for 1 unit, then off for 2 units, on for 1, off
for 2, on for 1, off for 3. Since the LED was on for 3 units and
off for 7 the average brightness is still 30%, but now the LED
blinked three times during the period instead of once. There
are various ways to perform spreading. The MBI5040’s method
becomes active when the brightness level increases above 32 units
out of the 65,536. The Antarium uses a 20 MHz clock, thus if
the LED brightness is higher than 0.05% of full scale, the flicker
frequency will be more than 9 kHz, while below this threshold,
for very dark LEDs, the flicker will be 305 Hz. Photodiode tests
using an oscilloscope confirmed flicker at 9 kHz.

Video Delivery and Frame Rate
Since the Antarium’s LED array is simply a display device, the
method of data delivery from the rendering computer must be
defined to understand all of the Antarium’s LED information.
All together the Antarium has 20,350 pixels, each of which
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FIGURE 2 | The design of individual Antarium panels. (A) Photograph of one of the panels with LEDs seen as white rectangles. (B) Detail of the panel LED locations
on the printed circuit board and the actuator axle location for polarizer disks. (C) Spectral sensitivities of Myrmecia ants compared with current LED emission
spectra. Continuous lines: normalized spectral sensitivities of the nocturnal Myrmecia vindex recorded intracellularly (redrawn from Ogawa et al., 2015). Dotted lines:
emission spectra of the LEDs used in the current version of the Antarium as per manufacturer specifications. (D) Schematic of how light polarization is achieved.
(E) The data path of the Antarium.

needs 2 × 16 bits of data to set the brightness, giving a total of
651,200 bits per video frame. The most common communication
links on a computer are USB and Ethernet. When the Antarium
was designed, the fastest USB was 450Mbps (USB-2.0 full speed),
the next step down was 12 Mbps (USB-2.0 high speed). The
most common Ethernet interface was the so-called 100BASE-
TX, delivering 100 Mbps over the ubiquitous "blue cable"

(officially named Category-5 twisted pair cable). Full-speed USB
interface chips were not readily available at the time and the
high-speed USBwas simply not fast enough.We, therefore, chose
the 100 Mbps Ethernet link as the delivery medium for the
video stream.

If a full-frame is 0.6512 Mbits, then the 100 Mbps link has
a theoretical limit of 153 frames per second. In reality, it is
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FIGURE 3 | The Antarium control electronics. (A) The distributor board and its major electronics. (B) The block diagram of the LED panel Field-Programmable Gate
Array.

less, as there are protocol overheads. That does not meet our
goal of 200 fps and so we needed to find ways to compress the
video stream.

The compression scheme must be relatively simple so that the
panels of the Antarium can decode it and so that any computer
can encode it without special hardware. The solution we chose
is to subsample the color information. Instead of delivering
16-bit resolution green and blue values for a pixel independently,

a 16-bit luminance value and an 8-bit chromaticity value can
be delivered. That saves 25% of the video bandwidth (24 bits
per pixel instead of 32). It does not compromise the 4.8 log
unit brightness range, however, it does limit each pixel to 256
available hues.

The simplest way of sending data from a computer over
an Ethernet link is by using a standard protocol that is
supported by any operating system. One of those is UDP
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(user datagram protocol), where blocks of data (packets) are
sent from one machine to another. UDP is advantageous
in that it has a smaller overhead than other protocols. On
the other hand, it does not guarantee delivery and gives no
feedback on whether the packet ever arrived. UDP is often
used in situations where the occasional loss of a packet is
acceptable, but the unpredictable delays arising from confirming
the reception of every packet and re-sending lost ones are
not. These strengths and limitations are well suited for video
streaming since if a single video frame gets lost, most of
the time the observer will not even notice. Whereas if the
streaming stopped while the sender and receiver negotiate the
retransmission of a single packet, the video quickly becomes
unwatchable. The Antarium, therefore, uses UDP for video
delivery, with a dedicated Ethernet link to ensure that packet loss
is rare.

An Ethernet frame contains up to 1,500 bytes of actual data
(usually called the payload) and a further 38 bytes of addressing
synchronization, and other ancillary information. Furthermore,
UDP adds 24 bytes of protocol information to the data portion
of the packet. The protocol overhead is thus 62 bytes for each
Ethernet frame with a UDP packet in it. In a full video frame,
a single Antarium triangle is represented by 1,110 bytes. Two
extra bytes are added to the raw data, for reasons explained later.
Therefore, the payload is 1,112 bytes. If each packet contains one
triangle’s worth of video information, then 1,174 bytes need to be
transferred per triangle. A video frame contains 55 such Ethernet
frames, resulting in a maximum theoretical video rate of 194 fps
over a dedicated Ethernet link. Indeed, in practice, the Antarium
sustains around 190 frames per second.

Architecture
Driving the nine polarisation actuators exceeds the capacity
of available microcontrollers, so the Antarium’s panels are
equipped with a field-programmable gate array (FPGA) instead.
The processing unit of each triangle must receive video frames
and send the brightness data to the 47 LED driver chips.
Also, it must control the drive current of the nine actuators
for the polarisers which each have two coils (18 total drive
lines). Using pulse-width modulation (PWM) to set the current
necessitates a device with 18 PWM units which no commercially
available microcontroller can support. Instead, we chose to
use an FPGA. An FPGA is just a large collection of simple
digital logic building blocks, which then can be connected
inside the chip to form a digital circuit that performs a specific
function. Microcontrollers are well suited for tasks that work
on fewer hardware signals at a time and where the decision
making logic or calculations are complex. For tasks where
there are many hardware signals and the calculations and
decision making are relatively simple but must be performed
at high speed and with precise timing, FPGAs are often a
better choice. A large number of PWM signals make the FPGA
a better solution for the Antarium. As such, each triangle
panel contains an XC3S50AN chip from Xilinx, Incorporation.
The chip has 50,000 logic gate’s worth of resources and
can handle more than 80 input/output digital signals at
high speed.

For our triangular panels, the FPGA needs to buffer a video
frame, decode the compressed chromaticity, send the decoded
data to the LED driver chips, and run 18 PWM controllers for the
actuators, which consumes about 60% of its gates. The remaining
40% is not sufficient to also run Ethernet and UDP protocols
as a logic circuit. While we could have used a more powerful
chip, the added cost for every 55 panels would have been a
significant expense. We instead chose to design a single interface
board, with an associated one-off cost, that receives the video
feed from the computer and distributes it to the triangles in a
simpler way.

When the FPGA on each triangle panel receives a frame,
it decodes the chromaticity encoding and collects the 16-bit
intensity values for each LED in a buffer. At the end of the video
frame, the buffer is sent to the LED driver chips. The drivers have
an SPI (serial peripheral interconnect) interface, a standardized
serial bus. The LED driver chips are designed to be daisy-
chained. Since very long SPI chains are technically problematic,
we divided the LED drivers into four chains. The FPGA delivers
the video data to the chips on the four SPI chains simultaneously,
which allows us to use a lower speed on the buses.

We use an H-bridge design for the PWM controller of the
polariser’s actuators, which provides a large reduction in energy
usage when the actuators are idle. To drive a single H-bridge
the FPGA needs to produce two signals, so for the two coils
of nine actuators each, 36 output signals are generated. This
design allows energy to be saved since the FPGA reduces the
current on both coils by the same factor (thus keeping their
ratio, and therefore the angle of the actuator intact) when
the actuator is stationary. This holding current is one-quarter
of the current used for moving the actuator. If the actuator
needs to be re-positioned, the FPGA switches the drive current
back to nominal and when the position has not changed for a
while, it slowly reduces the current to the one quarter holding
value.

Finally, we placed thermal sensors on each triangular panel
which are also controlled by the FPGA. The data from these
sensors can be sent back across the network, which is important
given the large amount of heat that can be produced when the full
device is running at maximum brightness.

Power Distribution
Since the Antarium consumes a significant amount of power,
ensuring adequate power supply was integral. Each LED needs
20 mA for full brightness. A typical blue or UV LED has a
voltage drop of around 3.4 V. The driver chip needs an extra
0.5 V, resulting in a minimum power supply voltage of 3.9 V.
To cater for variations and to provide a safety margin, the LED
driver circuitry operates from a 4.2 V supply. Due to the use of
the intensity/chromaticity encoding, a pixel never needs more
than 20 mA. Therefore, a triangle panel’s 370 pixels draw 7.4 A.
Besides, the driver chips themselves also consume approximately
30 mA from the same supply. With 47 driver chips per panel that
add 1.4 A to the load. The FPGA and its support circuitry need
to be supplied as well, although that supply current is negligible
compared to that of the LEDs and the drivers. The actuators run
from 12 V and the nominal coil current is 54 mA. Due to the
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sin/cos driving scheme, however, the two coils of an actuator
together have a maximum current consumption of 77 mA. The
maximum current therefore is 0.7 A.

All together the board needs about 9 A from 4.2 V and 0.7 A
from 12 V. The boards have two high-efficiency switch-mode
power supplies that generate the 12 V and 4.2 V from a 24 V
supply. The efficiency of these supplies is close to 90%, thus
the board draws a maximum of 2.13 A from 24 V. Since under
no circumstances will all LEDs of all triangles be on full power
while all actuators being also set to their most power-hungry
position, it was decided that a commercially available 24 V, 10 A
power supply unit fromMeanWell can safely power five triangles
forming a pentagon. Eleven such units power the Antarium.
Power losses on the cabling are minimized by using sufficiently
thick wires.

Thermal Considerations
The Antarium’s maximum power consumption is 2.5 kW,
making its heat generation roughly equivalent to a portable oil
radiator, enough to warm a small roomwith a volume of 16m3. If
that thermal energy were concentrated inside the Antarium’s less
than 1 m3 volume, the temperature would rise to uncomfortably
high levels for any subject very quickly. There are three ways to
mitigate that risk: reducing the dissipated power, ensuring heat
radiates outwards, rather than inwards, and ensuring convection
between interior and exterior spaces.

Consumption is minimized due to our use of natural
scenes, which are highly varied and contain many dark
objects, such as trees trunks, buildings, and shadows on the
ground (see Figure 1E). Furthermore, to compensate for the
intensity variation due to parallax arising out of the Antarium’s
geometry, the central area LEDs of each panel are artificially
darkened. Together these two factors more than halve the overall
power consumption.

Unfortunately, most of the heat is generated by the LEDs,
which are on the inside of each panel. To minimize the
amount of heat inside the Antarium we made use of the fact
that each LED is connected to a solid copper plane near the
outer surface of the PCB. While normally the thickness of
copper in PCBs is 35 µm we used 70 µm copper for the
Antarium to improve heat conductance. To further augment
each panel’s heat conduction, we added a large exposed copper
square to the exterior of each panel, which is thermally
connected to the inner plane. This allows us to attach a
Peltier cooling element with a heatsink and a fan, which
can even more effectively suck the heat out and dissipate it.
However, after testing the Antarium in its final form it turned
out that there was no need for such additional cooling of
the panels.

The lack of the need for a cooling element was perhaps
facilitated by ensuring good airflow between the interior and
exterior of the Antarium. This convection is assisted by a small
table fan placed under the Antariumwhen it is operational, which
supplies fresh air into the internal volume and forces the warm air
out. Besides, an air-conditioned room helps to keep the internal
temperatures at comfortable levels, and also ensures comfortable
working temperatures for operators when set to 19◦C.

We measured the temperature inside the Antarium at the
position where the ant would be on the trackball using a Kestrel
5500 Weather Meter (Kestrel Australia, East Melbourne, VIC,
Australia), the room air conditioning set at 19◦C and after
allowing temperatures to stabilize for 1 h. The temperature was
recorded when it stopped changing over a 3 min period. We
measured: Ambient room temperature: 20.5◦C on a 26◦C day;
all LEDs on maximum output, no fan: 61.3◦C; natural image,
no fan: 28.3◦C; natural image, with a fan: 25.1◦C; ambient room
temperature re-tested after the Antarium measurements: 20.5◦C.
This is well within natural foraging temperatures for both day-
and night-activeMyrmecia ants (Jayatilaka et al., 2011).

Figure 1D shows the fully assembled Antarium.

Distributor Board
The distributor board, as its name implies, distributes the
video signal to the triangles (Figures 2E, 3). It contains an
LPC1788 microcontroller from NXP, Inc. The microcontroller
has an ARM Cortex-M3 core running at 120 MHz, 512 KB
internal FLASH, and 96 KB internal RAM. It also has
built-in peripherals, including an Ethernet protocol engine, an
SD card protocol engine, several other serial communication
blocks, timers, and user-programmable digital I/O ports. Its
Ethernet engine, augmented with an external media access
controller (TLK110, Texas Instruments) provides the 100 Mbps
Ethernet interface.

The microcontroller shares its work with an XC3S500E
(Xilinx, Inc.) FPGA containing half a million gates worth of
logic. Between the microcontroller and the FPGA, there is a
128 KB dual-port static RAM chip (IDT70V28L, Integrated
Device Technology). All received Ethernet frames are written
into the dual-port RAM. Then the microcontroller decodes
the protocol and analyses the packets. Packets related to
connection maintenance are processed and responded to by
the microcontroller. If the packet contains video data, then the
microcontroller sends a message to the FPGA that the data
should be delivered to a triangle. The FPGA examines the packet
data, decides which pentagon it belongs to, and queues it for
transmission on one of its 11 output links to the pentagons. After
delivering the packet to the triangle the FPGA sends a message
to the microcontroller informing it that the data are out and the
given dual-port RAM region can be released.

If a triangle sends some data, then the FPGA holds the
message in temporary internal storage, and after signaling
the microcontroller that a message is available. When the
microcontroller indicates that it is ready, the message is passed
to it through the dual-port RAM.

The communication between the FPGA on the distributor
board and the FPGAs on the triangles uses differential signaling.
The data rate is 10 Mbps and the signal is subjected to
the so-called Manchester encoding. That data speed and
encoding are used by the 10BASE-T Ethernet standard, which
facilitates the use of low-cost Ethernet connectors, magnetics,
and cables. While the data speed and encoding method
are the same, the protocol which the Antarium uses is
much simpler than Ethernet. Each data frame starts with
a preamble, followed by a synchronization byte, followed
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by a byte that indicates the type of the packet and its
destination (or source) triangle within the pentagon. The next
byte contains additional information about the packet content.
The data follow and the packet is finished with a two-byte
long data integrity check. That protocol is simple enough
so that even the resource-limited FPGAs on the panels can
handle it.

The configuration bitstream of the distributor board’s FPGA
is stored on a micro-SD card. The board has an SD card socket
and the microcontroller drives it. The controller implements
the SD card protocol as well as the Microsoft FAT file-system,
thus the FPGA bitstream can be written to the card using any
computer. When the board is powered up, it first reads the SD
card and loads the bitstream into the FPGA.

From the TCP/IP network stack, the firmware of the
microcontroller also implements the UDP (user datagram
protocol), IP (internet protocol), and ARP (address resolution
protocol). Those are the necessary and sufficient components to
be able to communicate with a machine with a standard network
stack, regardless of the operating system it runs.

The distributor board also has a secondary function: to
program the FPGAs on the triangles. The FPGA on the
distributor board forgets its configuration when it is powered
down. When the board is turned on, the microcontroller
needs to load the configuration from the SD card. The FPGA
on the triangle has built-in non-volatile storage to hold its
configuration, thus it wakes up fully configured. However, the
configuration first needs to be programmed into the non-volatile
storage. Xilinx offers a free tool to do that, but the tool was slow
and unreliable. Fortunately, the programming algorithm could
be reconstructed from various application notes (engineering
advisory articles). We then created our implementation of the
algorithm on the distributor board and it can program the
triangle’s FPGAs in a few seconds, with 100% reliability.

The distributor board is powered from a commercially
available 12 V power module (plug-pack). The actual supply
voltages for the electronics are generated from that 12 V using an
LT3824 (Linear Technology) dual switch-mode regulator. To aid
software development and the initial programming of the board
also contains an RS-232 serial port.

Design Tools
All design work was performed on a computer running the
open-source GNU/Linux operating system. To aid engineering,
several programs were written in-house to calculate or optimize
certain parameters, to assist debugging, or to automate tasks.
These programs were all written either in the C or in the
Tcl language. Tcl/Tk is an open-source, interpreted scripting
language with graphical capabilities. C programs were compiled
using the open-source gcc toolchain. Building the final binary
image or bitstream was controlled by the open-source gmake
tool. The open-source Fossil distributed version control system
was used to keep track of changes during development.

The schematic entry and the PCB design for the triangles
and the distributor board were done using the commercial
Eagle EDA package from CadSoft GmbH (recently taken over
by Autodesk), version 6.4, professional edition, for Linux. The

PCB manufacturing files were visually checked using the gebv
open-source Gerber viewer tool.

The code for the FPGAs was written in the Verilog
hardware description language. The logic simulations utilized
the Icarus Verilog open-source simulator and the GtkWave
open-source waveform viewer programs. Logic synthesis,
technology mapping, place-and-route, and bitstream generation
were performed by the ISE 14.7 toolchain from Xilinx, Inc. The
tool is closed source but Xilinx provides it free of charge.

The firmware for the microcontroller on the distributor board
was written in the C language. The code was compiled using
gcc in a cross-compiler configuration. The open-source Armlib
library from Bendor Research Pty. Limited was used for most
low-level functions and the task scheduler. The Ethernet driver,
SD card driver, and the FAT filesystem utilized routines donated
by Arthur Digital Solutions Kft (Hungary).

The component sourcing, purchasing, PCB manufacturing,
and assembly were ordered from Albacom Kft (Hungary).
Quality control and thorough testing of the boards before
shipment to Australia was performed, gratis, by Arthur
Digital Solutions.

The mechanical design and the manufacturing of the
scaffolding were done by the ANU workshop. The power cables
were manufactured by hand; the Ethernet cables, wires, and
sundry electronics items were purchased from Jaycar, a local
electronics store.

3D Rendering and Driver Software
The software that generates the video stream for the projector
makes use of the commercially available three-dimensional
(3D) rendering engine Unity (Unity Technologies) running
in Microsoft Windows@. The primary market for the engine
is computer games and as such it is best suited for planar
projections. The Antarium has a low pixel count compared to
most commercial video games and it is, therefore, possible to
render six or more game views simultaneously at a high frame
rate, on modern graphics cards. The six views have the same
camera position in the 3D virtual world, but the cameras look
in six orthogonal directions (up, down, left, right, front, and
back), essentially creating a projection onto a cube. A custom
shader uses a spherical transformation known as cube-mapping
to map the pixels of our rendered cube onto any arbitrary 3D
model. By applying this shader to a 3D model that represents
each LED in the Antarium as an individual face, with the same
azimuth and elevation as the LED’s real-world coordinates, we
can render the scene as it would appear if projected onto the
Antarium. We then use a compute shader to sample each face of
our virtual Antarium using its normal as a lookup into the now
spherical cubmap (using DirectX SampleLevel function). Finally,
we encode and package these as pixel data to send over UDP to
the distributor board.

The Antarium aims to display views of the natural habitat of
the animals (Figure 1E). We, therefore, constructed a 3D model
of that habitat using camera-based reconstruction methods
(see Stürzl et al., 2015; Murray and Zeil, 2017). Thousands of
photographs were taken with a Panasonic Lumix DMC-FZ200
camera at 4,000 × 3,000 pixel resolution while walking around
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in the area surrounding the nests of the experimental ants.
Multiple voxel clouds were created from these photographs with
the software Pix4D (Pix4D SA) and exported as 3D models
before being combined into a single unified and aligned 3D
reconstruction of the ants’ foraging environment. Since the
very distant panorama does not have enough parallax to be
processed by the 3D reconstruction software, we added the
distant panorama later as a static background image at 1 km
(approximately infinite) distance. We captured this panorama
with a Ricoh Theta S panorama camera (Ricoh Company
Limited, Tokyo, Japan).

This procedure allows us to capture views from within our 3D
model, or from within projections of panoramic photographs, to
edit the 3D model (using Blender) or photographs to fix errors
(using Paint.net), and finally to generate experimental treatments
(using Unity3D). For example, Myrmecia ants regularly visit
trees for foraging (e.g. Narendra et al., 2013; Reid et al., 2013;
Jayatilaka et al., 2014) and we are now able to extract such
foraging trees from the photograph and the 3D model, allowing
us to move the foraging tree to any arbitrary location or bearing
in the model/photograph as an ant is viewing the scene inside
the Antarium. We can then ask, whether the ants treat trees as
individual landmark beacons, or get their bearing from the whole
landmark panorama.

The Trackball System
The ants are placed on an air-cushioned, light-weight, 10 cm
diameter trackball (Figures 1B,C) on which they are free to
rotate around the yaw axis but that allowed us to record
their intended translational movements as described in detail
by Dahmen et al. (2017; see also Murray et al., 2020). The
trackball sends the position data to the rendering computer using
USB. In a departure from the original, we now maintain and
compile the trackball code using Microsoft Visual Studio in the
C language (Microsoft Inc. 20XX). The USB connection relies on
the open-source usblib library. The system response is linear up
to speeds of 1.2 m/s (for detailed system properties see Dahmen
et al., 2017).

Since the trackball is connected to the computer running
the 3D engine, we can use the movement data it generates to
update the position of our virtual cameras in the 3D world, thus
providing our ant subjects with closed-loop control of the visual
scene. When running in an open-loop, 3D scenes or panoramas
can be presented either statically or in sequence. For closed-loop,
we use Kernel32 to share a file in shared memory between the
trackball program and the game engine. In this file, we write the
current offset of the trackball from its starting location and accept
commands to reset the starting location, such as when a new
treatment begins. In both modes, the human operator, or their
code, can arbitrarily change the ant’s virtual position and heading
at any time. However, in the closed-loop mode, this trackball
offset can be used to update the position of the six cameras inside
the 3D model, thus updating the view that is presented to the
ant subject, based on its movement on the trackball. It should
be noted that due to the complexity of this setup significant care
must be taken to ensure all real-world and virtual objects are

rotationally aligned so that the visual consequences of the ant’s
movements are accurately represented.

Antarium Camera
To record in addition to the ants’ intended paths also the
scanning movements of their head, we mounted a Raspberry-Pi
V1 camera at the apex of the Antarium. The camera is
connected to a Raspberry-Pi single-board computer (Raspberry
Pi Foundation, UK). It records a 1,280 × 960 pixel video at
30 fps to an external USB disk (Figure 1C). The recording
format cannot be played back with commercially available
software on Windows, thus the recorded footage is transcoded
to MP4 format using the open-source ffmpeg package on a
Linux computer.

Proof of Concept
To date, we have conducted several experiments demonstrating
that ants recognize familiar scenes in the Antarium and
derive navigational instructions from them. We will present
these behavioral results in a separate publication. In brief, we
confronted ants tethered on the trackball with four different
views (Figure 4A): a familiar view half-way toward a tree along
their normal foraging corridor (Familiar), the view from the nest
(Nest), an unfamiliar view from a location about 5 m offset from
the foraging corridor (Unfamiliar) and a scene that consisted
of a horizon line only (Unstructured). As the ants walked on
the trackball in these four situations, we instantaneously rotated
the scenes several times through 90 degrees randomly clock-
or counter-clockwise to test whether the insects took note of
panorama information. They indeed changed path direction in
response to such rotations when confronted with any of the
structured, but not the unstructured scenes as shown for two
examples of the Familiar scene in Figure 4B (Familiar) and
4C (Unstructured), with 15 s long segments before rotations
labeled red and 15 s segments after rotations labeled blue.
Instances of rotations are marked by a blue dot. Note that
the ants’ speed is not constant, but indicates that the ants
move in spurts (Figures 4B,C) and that their path direction
oscillates with smaller amplitudes when confronted with a
familiar scene and larger amplitudes when confronted with an
unstructured scene.

For another example of responses to the familiar scene
rotations (Figure 5), we extracted the head- and longitudinal
body axis orientation of the ant from the Antarium camera
footage 15 s before to 15 s after the rotation (Figure 5B).
Following rotation, the ant’s head- and body scanning
movements tend to increase (Figure 5B) as she changes
her heading direction in the three instances in which she
responded to the rotation.

OUTLOOK

The Antarium is a unique reconstructed visual reality arena for
ants. No projection system before it has offered a completely
panoramic projection tuned to an insect’s vision, including
arbitrary polarization patterns. Furthermore, the Antarium can
deliver accurate recreations of the visual reality of animals, by
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FIGURE 4 | Proof of concept experiments. (A) Four panoramic views from the ants’ foraging habitat. Familiar is located on the ants’ foraging corridor, half-way
toward their foraging tree; Nest is the view from the ants’ nest entrance; Unfamiliar if the view from a location about 5 m to the side of the foraging corridor and
Unstructured is a synthetic view without landmark panorama. (B) Two examples (left and right) of ants responding to familiar scene rotations. Instances of rotations
are marked by blue dots in the time course of path direction (top) panels and of speed (bottom panels). Fifteen seconds segments before (red) and after rotations
(blue) are also marked on the intended paths of the ants (shown on the left) and on the time course of path direction (top panels). Paths are shown in the trackball
coordinate system. (C) Same as (B), but in the presence of the unstructured scene. Note the difference in path direction oscillations in (B,C).

projecting imagery captured from their natural habitat rather
than artificially generated scenes (e.g., Stowers et al., 2017;
Kaushik et al., 2020). We see the ability to present natural
views that are familiar to an insect as an important condition
for answering many questions about the neural mechanisms
underlying visual navigation.

The Antarium not only allows us to compare responses to
familiar and unfamiliar natural scenes, but we can also add,
remove or dislocate landmarks, set up conflicts between different
visual information (i.e., celestial vs. terrestrial), and manipulate
the intensity, the color, or the spatial frequency composition
of scenes. In closed-loop, we can investigate the dynamics of
visual navigation, such as the relationship between navigational
decisions and scanning movements, or the frequency with which
ants check and update their heading direction.

Since the initial conception of the Antarium, many
advancements have been made, both in the development of

LEDs and in our knowledge of the neural and visual systems
of ants. These advancements combined with lessons from our
experiments with the Antarium, have led us to design a second
version, the AntariumMark II to improve upon the original. For
instance, we now know that the spectral sensitivities ofMyrmecia
photoreceptors in both day- and night-active species have peak
sensitivities around 375, 430, and 550 nm (Figure 2C; Ogawa
et al., 2015). As LEDs with expanded emission in the UV range
have become available and have dramatically decreased in cost,
we can now much more precisely match LEDs to ant spectral
sensitivities and increase the density of UV LEDs. Antarium
Mark II will thus provide much-improved UV contrast of
the landmark panorama, which has been shown theoretically
and in behavioral experiments to be important for providing
information on heading direction (e.g., Möller, 2002; Kollmeier
et al., 2007; Graham and Cheng, 2009; Stone et al., 2014, 2016;
Differt and Möller, 2015; Schultheiss et al., 2016).
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FIGURE 5 | Proof of concept experiments. (A) The path (left), the time course of path direction (right-top), and time course of speed (right bottom) for an ant in the
presence of the familiar view. Successive instances of scene rotation are marked by blue dots and numbered. Otherwise conventions as in Figure 4. (B) Top row:
gaze (head, orange) and longitudinal body orientation (blue) over time from 15 s before and 15 s after rotation 2–4. Bottom row: head orientation relative to
longitudinal body axis for the same segments. The vertical black line marks the moment of rotation.
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The post-embryonal development of arthropod species, including crustaceans and

insects, is characterized by ecdysis or molting. This process defines growth stages and

is controlled by a conserved neuroendocrine system. Each molting event is divided in

several critical time points, such as pre-molt, molt, and post-molt, and leaves the animals

in a temporarily highly vulnerable state while their cuticle is re-hardening. The molting

events occur in an immediate ecdysis sequence within a specific time window during the

development. Each sub-stage takes only a short amount of time, which is generally in

the order of minutes. To find these relatively short behavioral events, one needs to follow

the entire post-embryonal development over several days. As the manual detection of

the ecdysis sequence is time consuming and error prone, we designed a monitoring

system to facilitate the continuous observation of the post-embryonal development of

the fruit fly Drosophila melanogaster. Under constant environmental conditions we are

able to observe the life cycle from the embryonic state to the adult, which takes about 10

days in this species. Specific processing algorithms developed and implemented in Fiji

and R allow us to determine unique behavioral events on an individual level—including

egg hatching, ecdysis and pupation. In addition, we measured growth rates and activity

patterns for individual larvae. Our newly created RPackage PEDtracker can predict critical

developmental events and thus offers the possibility to perform automated screens that

identify changes in various aspects of larval development. In conclusion, the PEDtracker

system presented in this study represents the basis for automated real-time staging and

analysis not only for the arthropod development.

Keywords: monitoring, development, drosophila, larva, ecdysis behavior, tracking

INTRODUCTION

Ecdysis or molting is the most important feature of ecdysozoan species including arthropods,
nematodes and other relatives (Telford et al., 2008). The whole body surface of these animals is
surrounded by a chitinous cuticle which hardened, for example, to an exoskeleton in the whole
group of arthropods (Hadley, 1986; Ewer, 2005). Therefore, for a successful growth from juveniles
to adults the animals have to shed and renew their body surface throughout their post-embryonal
development (Nijhout, 2013). The renewing process is controlled by a highly conserved
neuroendocrine system which has been well described in several species, especially in arthropods
such as the crab Portunus trituberculatus, the butterfly Manduca sexta and the fly Drosophila
melanogaster (Rewitz et al., 2007; Xie et al., 2016, Riddiford et al., 1999). Beside the renewing of the
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cuticle, some insect groups further evolved a total re-organization
(metamorphosis) from the last larval stage to the adult
during a pupal stage (holometabolism). Consequently, the
post-embryonal development of holometabolous insects is
characterized by both, molting and metamorphosis (Weeks and
Truman, 1984; Truman, 1996).

Although the molecular pathway and regulation of molting-
related molecules are well understood, the question arises
whether different factors such as the physiological state of
the animals, food choice and environmental stimuli influence
the post-embryonal development and directly affect the larval
endocrine system and growth (Koyama et al., 2014). While
hormones such as 20-hydroxyecdysone, juvenile hormone and
insulin are well known to function in molting and growth
especially in insects (Chang, 1985; Riddiford et al., 2003;
Beckstead et al., 2005; Lin and Smagghe, 2019), the role and
importance of the critical weight especially for the initiation of
metamorphosis is still not fully understood (Robertson, 1963;
Nijhout and Williams, 1974; Davidowitz et al., 2003; Mirth et al.,
2005).

To get a better understanding of the physiological state,
molecular background and motivation of the individual animal
during specific developmental time points, such as molting or
metamorphosis, staging of juveniles, or larvae represents an
important approach. For example, larvae of holometabolous
insects can be manually classified into developmental stages
by morphological characteristics such as the differentiation of
the mouth hooks or anterior and posterior spiracles (according
to, e.g., Okada, 1963; Schubiger et al., 1998; Vaufrey et al.,
2018). Another approach for staging juveniles or larvae is to
allow females to lay eggs for some hours on a food media
and examine larvae after a set time interval, for example every
12 h (according to, e.g., Burmester et al., 1999). However, both
manual detection approaches are time-consuming. In addition,
specific larval stages and developmental time points are difficult
to catch as the main ecdysis behavioral sequence takes only a
comparatively short time window of a few minutes. The molting
cycle in general comprises four consecutive phases: (1) intermolt;
the time between two molting events, (2) pre-molt; the time-
window just before the main molt, (3) molt; the time-window
where larvae shed their cuticle, and (4) post-molt; the time-
window right after the main molt (Locke, 1970). In the fly
D. melanogaster the ecdysis behavioral sequence as part of the
molting cycle is described to last only 30min and is divided
in four parts—the occurrence of the double mouth hooks and
vertical plates, renewing of the tracheal system, pre-ecdysis and
ecdysis (Park et al., 2002).

Our long-term goal is the investigation of individual
molecular and behavioral changes during the molting cycle
of the animal. As the main ecdysis takes about 5min of a
single larval stage of D. melanogaster, the first aim was to find
a tool for precisely timing these stages for investigations on
development-associated processes such as sensation and food
choice. Using D. melanogaster, we established a monitoring
system throughout the whole post-embryonal development—
from egg to pupa—over 10 days (Dewhurst et al., 1970). Under
constant environmental conditions (25◦C and 65% humidity)

and a yeast-sugar diet, we observed the life cycle from egg to
pupa with a camera and a framerate of 3 frames/minute. We
subsequently analyzed the videos with the focus on the molting
cycle throughout the post-embryonal development such as the
main molting sequence on an individual level. Our results reveal
insights into larval behavior regarding activity and growth. We
clearly observe the specific activity pattern during the molting
cycle and the individual growth in size from young to old
larval stages. Consisting of a video recording set up and newly
developed analysis scripts (in Fiji and R), the PEDtracker (=post-
embryonal development tracker) forms the basis for a future
real-time tracking system for the prediction of developmental
stages which could also be used for various other insects and
their relatives.

MATERIALS AND METHODS

Animal Husbandry and Fly Strains
All experiments were performed with the wild-type Drosophila
melanogaster strain Canton-S. Flies were kept on standardized
cornmeal medium at 25◦C and 65% humidity under a 14:10
light:dark cycle. Adult flies were transferred to new food vials
every 72 h.

Egg Laying, Tracker Preparation and Data
Recording
For egg laying small Petri dishes (4 cm diameter) were filled with
a 3% agarose (VWR life science; type number: 97062-250), 3%
sucrose (Merck KGaA; type number: 107687), and 30% apple
juice (Edeka) mix. To entice female flies to oviposit one drop
of yeast was put on top of the plate. Flies were allowed to
lay eggs for at least 2 h and then, one egg per chamber was
transferred to the larval bed. The bed was prepared as previously
described (Szuperak et al., 2018) with the SYLGARD R© 184
Silicone Elastomer Kit (type number: 24001673921) and a size
of 8.3 cm in length and 5.7 cm in depth in a self-made 3D-
printed template (Renkforce 3D-printer RF1000; material PLA).
Each bed contains of 24 chambers (4 x 6) with each 1 cm in
diameter. For an optimal set-up, with the regard to humidity
and the camera resolution, maximal half of the chambers could
be filled. Before placing eggs, each chamber was filled with 100
µl food medium containing a mix of 2% agarose (VWR life
science; type number: 97062-250), 2% sucrose (Merck KGaA;
type number: 107687), and three drops of fresh yeast. To avoid
mold a mixture of 0.1% methylparaben-ethanol (methylparaben:
Carl Roth GmbH + Co. KG type number: 3646.4; ethanol:
CHEMSOLUTE R© type number: 2273.1000) was added to the
food medium. To avoid an escape of larvae, the bed was covered
with clear film and two layers of glass plates. The bed was
then placed in a custom-built climate chamber (workshop of the
University of Konstanz) on a glass table with constant LED-light
(KYG light-table) from below (Figure 1). The climate chamber
provided a constant temperature (23–25◦C) and humidity (60–
65%) for our experiments. Lower humidity (< 50%) led to a
stronger dehydration of the food, a higher humidity (>75%)
caused condensation on the clear film. Pictures were taken every
20 s over a period of at least 10 days with a 25mm lens using
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FIGURE 1 | Scheme of the experimental set-up. Larvae were observed over ten days under constant light in a climate chamber with constant abiotic conditions. For

observation three pictures per minute were recorded with a camera and saved with a custom-made software. Pictures were then combined to a video sequence and

analyzed with custom-made scripts in ImageJ and R.

TABLE 1 | Measurements used in ImageJ for video analysis (full description via

https://imagej.nih.gov/ij/docs/guide/146-30.html#toc-Subsection-30.7).

Measurements Description

Shape Parameters

Aspect ratio MajorAxis
MinorAxis

Circularity 4π* Area
Perimeter2

0 = no circle

1 = circle

Roundness 4* Area

π*Major Axis2

Solidity Area
Convex area

Other parameters

Area Selection in square pixels

Centroid Center of point in the selection

Fit ellipse Add ellipse to the selection by calculating

primary and secondary axis

a Basler camera (acA2040-25gm; type number: 105715) with a
resolution of 2048× 2048.

Data Analysis
We recorded 22 experiments (seven runs for finding optimal
conditions; 15 runs with optimal conditions) and examined
43 individuals for the hatching timepoint, 36 individuals for
the first molting event, 23 individuals for the second molting
event such as 33 wandering stages. For data analysis pictures

were processed as individual 6-h video sequences (1080 frames)
with a custom-made Fiji script (Schindelin et al., 2012; see
Supplementary Figure 1). We first defined regions of interest
(ROIs) marking the individual chambers. For each ROI a
median background image was created and subtracted from
the cropped video. The resulting images were thresholded and
then analyzed with specific measurement settings (Table 1)
in Fiji.

After image processing in Fiji (Figure 2), we followed
up with error correction and further in-depth analysis
in a custom-written R script using R version 3.6.1 (R
Core Team, 2019) in RStudio (R Studio Team, 2019; see
Supplementary Figure 2). For each larval stage, parameters for
size and shape of valid objects were defined (Table 1, Figure 3,
Supplementary Figure 3). To determine the length of each larva
the major axis of each object was scaled to the diameter of each
chamber (∼ 300 px= 10mm). Growth rates were then calculated
as follows:

rate =
lengthpupation − lengthhatch

lengthhatch

To determine larval movement, the Euclidian distance between
the centroids (X1, X2; Y1, Y2) in two successive frames was
calculated through Pythagorean function

dist =

√

(X1 − X2)
2 + (Y1 − Y2)

2
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FIGURE 2 | Image processing for tracking system. Larval stage three were

used for all imaged pictures. (A) Original section of a video sequence. Note

individual larva in the chamber. (B) Section of a video sequence. Picture were

smoothed using convolution with Gaussian function. (C) Median calculation of

an image shows the median intensity over all images in a stack. (D)

Implementation of an arithmetic and logical operation. We used the difference

between the source (img1) and destination image (img2)—imgX = |

img1—img2 |. (E) Set threshold dependent on the larval stage (L1, 10; L2, 20;

L3, 30). (F) Orange dashed line represents the silhouette of the object of

interest in the section.

Next, the relative movement over time was used to get an
activity pattern for the individual larvae. Data frames containing
analyzed particles were then sorted, merged and plotted. We
show examples of the molting behavior of two larval stages
in time lapse videos (recorded at 3 fpm; played back at 3
fps; see Supplementary Material 1, 2). Statistical analyses were
conducted with R version 3.6.1 (R Core Team, 2019) in RStudio
(R Studio Team, 2019) using the R Stats Package stats. For
evaluate the difference between manual and computational
object detection for place and length we used the paired t-test
[t.test(a,b, paired= TRUE)]; to evaluate the variances of different
developmental events for timing and size we used the F-test with
the greater alternative [var.test(a,b, alternative= “greater”)]. Final
figures were designed with R version 3.61 in R Studio using the
ggplot2 package and were then edited with Adobe Illustrator CS5
(San Jose, CA, USA).

FIGURE 3 | Stage-specific parameters for data sorting and evaluation. Three

values for shape description—solidity, circularity and roundness—are used in

combination with the area to differentiate between larval stages. (A) Arrow

indicates position of larval stage one. Surface of individual larva ranges from

50 to 300 square pixels. (B) Arrow indicates position of larval stage two.

Surface of individual larva ranges from 300 to 1500 square pixels. (C) Arrow

indicates position of larval stage three. Surface of individual larva ranges from

1500 to 3000 square pixels.

RESULTS AND DISCUSSION

For tracking adult Drosophila melanogaster there exist many
different approaches tomonitor activity over several days, usually
with the focus on circadian activity and sleep research. Some
of these approaches make use of infrared light beams (e.g.,
the Drosophila Activity Monitor; Pfeiffenberger et al., 2010)
or video tracking (e.g., Gilestro, 2012) to monitor the flies
but these setups are not designed to handle objects of varying
size and shape. As a basis for our tracking setup we used the
LarvaLodge (Szuperak et al., 2018) which itself is based on earlier
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TABLE 2 | Statistics of the system evaluation and the comparison of

developmental timepoints.

System Evaluation Total

Objects

Test Value Level

Object Detection

(Supplementary Figure 4)

X-Axis 51 p < 0.921 ns

Standard deviation manual 73.71

Standard deviation R t-test

(paired)

78.64
Mean difference 0.042

Y-Axis 51 p < 0.202 ns

Standard deviation manual 85.45

Standard deviation R 73.71

Mean difference 0.383

Object Detection L1

X-Axis 50 p < 0.473 ns

Standard deviation manual 62.40

Standard deviation R t-test

(paired)

62.03

Mean difference 0.203

Y-Axis 50 p < 0.560 ns

Standard deviation manual 64.91

Standard deviation R 65.04

Mean difference 0.134

Object Detection L2

X-Axis 50 p < 0.999 ns

Standard deviation manual 67.52

Standard deviation R t-test

(paired)

66.70
Mean difference 0.015

Y-Axis 50 p < 0.890 ns

Standard deviation manual 59.29

Standard deviation R 58.21

Mean difference 1.034

Object Detection L3

X-Axis 50 p < 0.697 ns

Standard deviation manual 61.99

Standard deviation R t-test

(paired)

59.60

Mean difference 0.880

Y-Axis 50 p < 0.452 ns

Standard deviation manual 93.38

Standard deviation R 91.92

Mean difference 1.728

Length 50 t-test

(paired)

p < 0.001 *

Standard deviation manual 0.834

Standard deviation R 0.843

Mean difference 0.242

Figure 4A Time of PED

Pupation Time > other

Timepoints

f-test

(hypothesis:

greater)Pupation—Hatch 33/42 p < 0.001 *

Ratio of Variances 74.22

Pupation−1st molt 33/36 p < 0.001 *

(Continued)

TABLE 2 | Continued

Total

Objects

Test Value Level

Ratio of Variances 24.17

Pupation−2nd molt 33/23 p < 0.001 *

Ratio of Variances 11.14

Figure 4 Larval Length

Pupation Size > other

Timepoints

Pupation—Hatch 19/19 f-test

(hypothesis:

greater)

p < 0.001 *

Ratio of Variances 50.30

Pupation−1st molt 19/19 p < 0.001 *

Ratio of Variances 9.01

Pupation−2nd molt 19/19 p < 0.001 *

Ratio of Variances 6.15

Significance level: *, significantly different; ns, not significantly different.

work in Caenorhabditis elegans (Churgin et al., 2017). In their
experiment up to 20 larvae can be monitored simultaneously for
several hours. For our even longer approach—monitoring the
whole post-embryonal development of D. melanogaster over the
course of several days—we had to overcome multiple challenges.
Our first task was to improve the setup to enable proper larval
development over several days. For this we had to address
humidity issues and prevent the growth of mold. We settled on
a frame rate of three frames per minute as a middle ground to
still be able to measure activity but also record for a timespan
of more than a week without generating a vast amount of data.
One typical experiment contains about 60,480 images (14 days;
lossless compression as .png-images). The first step of processing
was performed in ImageJ where the target objects (i.e., the larvae)
are extracted from the video. Here we had to address the problem
of the dramatic change in size of the larvae over the course of
their development as well as the change in the environment over
several days. Difficulties occurred with food drying out or larvae
digging into the food which have been solved to some extent
in ImageJ with the Gaussian Blur filter and by the application
of binary Close and Dilate functions. Further improvement of
the quality of our data was then performed in the secondary
processing implemented with R in RStudio. A evaluation of
the set up regarding the definition of larval parameters, object
detection and definition of larval length are shown in Table 2,
Supplementary Figures 3–5. Interestingly, during the review
process of this paper another system for tracking activity in
D. melanogaster has been published (DIAMonDS; Seong et al.,
2020). Their setup uses a flatbed scanner to monitor the animals
during their whole lifecycle from embryo to death. Their work
focuses on transitions between static (embryo, pupa, carcass) and
dynamic stages (larva, adult fly), but they do not discriminate
between different larval stages.

The characterization of specific developmental time points
and larval size are important parameters for the investigation
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FIGURE 4 | Activity patterns of two developmental stages and related molting events. (A) Activity pattern (in mm) and molting sequence of larval stage one. Insert

represents the activity pattern (in mm) of larval stage one during the main molting event. Note a time window of 150 fs of low activity of the larva. (B) Activity pattern

(in mm) and molting sequence of larval stage two. Insert represents the activity pattern (in mm) of larval stage two during the main molting event. Note a time window

of 100 fs of low activity of the larva. fs, frames; min, minutes.

of the body constitution as well as the behavior during the
development. Looking at an example of larval activity over a
period of about 3 h we can see that the larva crawls through
the chamber and stops at frame 213 (video position ∼ 1:20min,
see Supplementary Figures 6, 7) and then rests in the same
place for almost 30min. Interestingly, after 14min the larva
turns to the side and rests there for another 15min. During
both resting periods, the record indicates alternating phases
of resting, pulsation and contraction (frames 213–300, video
position 1:20–1:40min). After comparing the video to previous
studies we suggest that the observed resting phase in the video
sequence correspond to the ecdysis behavioral sequence of the
D. melanogaster larva (Park et al., 2002). Since the PEDtracker
can only detect low activity but not contractions so far, we
have examined several detected molting events manually and
assume that the first resting phase corresponds to tracheal molt
and air filling, and the second one with stronger pulsation

and contractions to pre-molt and main molt. The same pattern
occurs during the ecdysis behavioral sequence of L2 to L3
(see Supplementary Figures 8, 9). We analyzed both ecdysis
behavioral sequences for larval activity (Figure 4) and show that
the activity patterns for both larval stages reveal a decrease of
movement during molting events. Whereas, larvae move up to
5mm in the intermolt phases, they slow down to at least 0.5mm
in the pre-molt and main molt stage (Figure 4).

Our results reveal a mean hatching time point of 18 h after
egg laying and a nearly similar size of about 0.5 millimeter for
young L1 Canton-S larvae (Figures 5, 6). Interestingly, the later
the developmental stage the higher is the variability of the time
point of molting events and the respective body sizes of larvae
(Figures 5A,C, 6; Table 2). Our results indicate a mean lifespan
ofD. melanogaster Canton-S larvae of 7.8 days from egg hatching
to pupation (Figures 4A, 7). This result is in contrast to previous
studies which revealed that D. melanogaster larvae went under
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FIGURE 5 | Developmental time points and related growth in length. (A) Time after egg laying and corresponding developmental time points. Note the high variation

(five to ten days after egg laying) of the pupation event. (B) Time after egg laying and corresponding developmental time points for five single larvae as an example. (C)

Growth in length from egg hatching to pupation and related developmental time points. Note the high variation of larval length at the pupation event. Growth

ratemedian = 4.9. (D) Growth in length and related developmental time points for three single larvae as an example. Note the highest growth in length in larval stage

three. Growth rate 1(blue line) = 6.2; growth rate 2 (light red line) = 5.9; growth rate 3 (gray line) = 4.06. See table 2 for statistical tests and p-values.

pupation five days after egg laying (Table 3, Dewhurst et al., 1970;
Ashburner, 1989; Casas-Vila et al., 2017). Our results further
indicate less stringency in developmental time points and life
spans of single larval stages in comparison with the literature
(Figure 7). Whereas the mean hatching time after egg laying
is in line with previous studies (about 18 h; 0.7 days; Markow
et al., 2009), our results indicate the first molting event 2.6
days after egg laying (=1.9 days after hatching) and the second
molting event 4.2 days after egg laying (=3.5 days after hatching).
Previous studies indicated that larvae of the same age not pupated
at the same time (Casares and Carracedo, 1987). Thus, the life
cycle of D. melanogaster might be variable to some degree and

dependent on different life-history traits and not only on the
expression of molting related molecules such as ecdysone and
juvenile hormone.

Previous studies showed that the developmental period of
drosophilid species depends on environmental stimuli such
as temperature, humidity or light. The developmental period
successively decreases to seven days depending on the increase
of the temperature up to 28 degree (Ashburner and Thompson,
1978; Al-Saffar et al., 1996; Tochen et al., 2014). Moreover, the
highest survival rate (88–97%) for pupae of D. melanogaster
is described for 60 to 100% relative humidity (Elwyn et al.,
1917; Al-Saffar et al., 1996). But then, the sensitivity of larvae
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to temperature and humidity differ between drosophilid species
(Geisler, 1942; McKenzie and Parsons, 1974). In contrast to the
effect of temperature and humidity, the role of light on the
developmental period and larval circadian clock is still under
debate. Some studies indicated that permanent night has no effect
on the animals, but in other cases the culture in constant darkness
revealed a reduced longevity (Payne, 1910, 1911; Erk and Samis,
1970). Similar effects have been shown for culture in constant
light (Allemand et al., 1973).

Investigation of dietary influence on the developmental period
in larvae further implicated that the food composition has
a prevalent effect on the life span and body parameters of
drosophilids (Anagnostou et al., 2010; Ormerod et al., 2017).
The developmental period increases with the linear availability
of carbohydrates (negative correlation) and decreases (positive
correlation) with the linear availability of proteins. Consequently,
larvae are capable to differentiate their needs of nutrients and
regulate their dietary intake toward a minimal developmental
period (Rodrigues et al., 2015). In two drosophilid species
D. melanogaster and D. subobscura a correlation between the
metabolic rate, the developmental period and social parameters
was observed (Marinkovié et al., 1986; Cluster et al., 1987;
Hoffmann and Parsons, 1989; Sevenster and Alphen, 1993).
Additional investigation on larval life, mortality, and pupal
viability in D. melanogaster and D. simulans revealed a
correlation between the density of larval numbers and the
developmental period—high density and crowding of larvae in
culture leads to a longer developmental period in both species
(Powsner, 1935;Miller, 1964). To conclude, a decrease or increase
of the developmental period of D. melanogaster is caused by
different environmental stimuli and sociality. However, due to
our results and experimental set-up, the examination of a single
larva in one chamber on basic food medium with optimal
temperature (25◦C) and humidity (65%), we assume that the
metabolic rate might influences the developmental time rather
than social interactions or competition in their environment.

Our results further indicate a high variability of the size,
especially for L3 Canton-S larvae. Whereas, young L1 Canton-
S larvae showed a similar size (about one millimeter) until
the first molting event, late wandering L3 Canton-S larvae
(shortly before pupation) differ in size from about three to five
millimeters (Figure 5C, Table 4). Therefore, we plotted larvae on
an individual level to observe the time span and size between egg
hatching and pupation on an individual level. Our results indicate
that the pupation time point and the size of late L3 Canton-
S larvae are independent of the egg hatching time and size
(Figures 5, 6). We further expect that a specific size plays a key
role for the initiation of molting and is therefore more relevant
for younger larvae than for older (Figure 6). Our correlation
between the time after egg laying and larval size showed that
also small L3 larvae of the Canton-S strain went under pupation
after a relatively long developmental time (Figure 6A). Previous
studies inferred that larvae have to grow to a minimum size
before entering the next growth stage and that growth phases
before pupation can divided into two distinct phases which
are independently genetically regulated (Robertson, 1963). Our
results reproduce this finding that even smaller L3 larvae are

FIGURE 6 | Correlation between developmental time and size. (A) Y-axis

indicates time after egg laying in days; x-axis represents larval length in mm.

Light gray dots indicate larval stage one, light red dots indicate larval stage two

and blue dots indicate larval stage three. Ellipses represent 95% confidence

level. (B) Arrows indicate the length of a small late stage three larvae,

approximately one hour before pupation. (C) Arrows indicate the length of a

large late stage three larvae approximately one hour before pupation. AEL,

after egg laying; mm, millimeter.

able to pupate but due to individual variations we assume
that the size might not be the only initiator for pupation and
metamorphosis (Figures 6B,C). In comparison with other wild-
type strains the variability of size in Canton-S larvae is also higher
(Vaufrey et al., 2018).

In this study we followed D. melanogaster larva during several
stages of development from egg hatching to pupation over
up to 14 days (Figure 7). We defined tracking parameters to
identify the larva most consistently in our environment and
over a large range of body sizes. We found and analyzed critical
developmental events like molting while looking at the activity
and growth of the larva (Figure 7). With the combination of a
video-sequence and a particle analyzer we are able to manually
detect important developmental stages which will be the basis
for a future real-time tracking system. For future improvement
of the PEDtracker system, the analyzed particles regarding larval
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FIGURE 7 | Scheme of the post-embryonal development of D. melanogaster and related values generated by the PEDtracker. The given values represent the average

values of relevant developmental time points after egg laying such as the larval lifespan, the average length of all larval stages in length and the related growth rate.

AEL, after egg laying; d, days; EBS, ecdysis behavioral sequence; h, hours; L1, larval stage one; L2, larval stage two; L3, larval stage three; mm, millimeter.

TABLE 3 | Comparison of developmental time points.

PEDtracker Literature

Hatch 0.7 days AEL ∼ 0.8 days AEL

(see Markow et al., 2009)

1st molt 1.9 days AH ∼ 1 day AH

(see Parkin and Burnet, 1986)

2nd molt 3.5 days AH ∼ 2 days AH

(see Parkin and Burnet, 1986)

Pupation 7.8 days AH ∼ 3.5 days AH

(see Parkin and Burnet, 1986)

period of larval

development

(hatch–pupa)

7.8 days ∼ 4 days

(see Powsner, 1935)

AEL, after egg laying; AH, after hatching.

size and activity we presented in this methodology illustrate the
basis for a custom-made software program for the analysis of
insect larvae and prediction of behavioral events. Our focus was
on getting data for the future implementation of such a real-
time tracking system with an integrated molting detector for the
prediction of important development time points such asmolting
or metamorphosis.

Taken together, our PEDtracker system provides a
novelty in tracking systems for the observation of the
whole post-embryonal development on an individual level
which is not only suitable for insects but also for other

TABLE 4 | Comparison of larval body length.

PEDtracker

(larvae grew on

basic medium)

Literature

(larvae grew on wild-type yeast)

young L1 0.6mm ∼ 1mm

(see Parkin and Burnet, 1986)

Late L1 (1st molt) 1.3mm ∼ 1.5mm

(see Parkin and Burnet, 1986)

Late L2 (2nd molt) 2.5mm ∼ 3mm

(see Parkin and Burnet, 1986)

Late L3 (pupation) 3.8mm ∼ 4.5mm

(see Parkin and Burnet, 1986)

L1, larval stage one; L2, larval stage two; L3, larval stage three.

molting animals such as chelicerates, nematodes, and
other ecdysozoans. Besides the usage in the observation of
developmental time points, the PEDtracker represents a
useful tool for further molecular and behavioral experiment
such as the culture of different genotypes under different
food regimes.
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Supplementary Video 1 | Molting event larval stage one to larval stage two;

recorded at 3 fpm, played back at 3 fps.

Supplementary Video 2 | Molting event larval stage two to larval stage three;

recorded at 3 fpm, played back at 3 fps.

Supplementary Figure 1 | Scheme of the Fiji macro script. Frames were

distributed in packages of 1080 frames (equivalent to 6 h at 3 fpm) and then

cropped in regions of interest (ROIs). ROIs were analyzed with specific

parameters. Parameters for analyzed particles were saved in a csv-file. Batches at

the border of two developmental stages were analyzed with parameters of both

respective stages.

Supplementary Figure 2 | Scheme of the R script. Csv-files were loaded in R

and combined into a newly created list. Data were evaluated in two steps. First,

fitting settings where selected and then objects where analyzed with these

settings. After final evaluation of the data, new csv-files were saved and results

were plotted using ggplot2.

Supplementary Figure 3 | Definition of larval parameters for analyzing larval

objects in Fiji and R. Parameters (Area, Circularity, Aspect Ratio, Roundness,

Solidity) were defined for each larval stage with the objective to reliably sort out

non-larval objects. To distinguish one or more objects from a larval object we have

examined 60 cases (orange bar plot) for different parameters. In 56 cases (93%)

the parameter “solidity” was higher for larval objects. For this reason, we used the

value for solidity to distinguish larval from other objects in one frame.

Supplementary Figure 4 | Evaluation of the centroid of an object in a frame.

(A) Point cloud represents 51 cases of objects. X- and Y-Axis represents the width

of the larval bed in pixel. Red dots indicate manually detected objects every 10

frames, black triangles represent the analyzed objects with Fiji and R, respectively.

Note that the two-paired points are close together, except for non-detected

objects which shows that PEDtracker detects larval objects and avoids false

detections. (B) Bar plot indicates the detection probability for larval objects. Note

that the detection probability is highest for L2 and lowest for L3. (C) Bar plot

indicates the difference of the manual and computational detected object position

on the X-axis. The difference of the detection between manual and computational

detected object positions on the X-axis is below 5 pixels (lower than one larval

length). (D) Bar plot indicates the difference of the manual and computational

marked object position at the Y-Axis. The difference of the detection between

manual and computational marked object positions on the Y-axis is below 5 pixels

(lower than one larval length).

Supplementary Figure 5 | Comparison of larval length between manual and

computational detection. Note that the lengths of the computational detected

larvae are slightly higher than the manual values due to the more precise area

determination and resulting longitudinal axis.

Supplementary Figure 6 | Activity pattern from a period of about 1,000 frames

(∼ 5.5 h) of a molting event and a non-molting event of first instar larvae. Insert

compares the level of low activity of a molting event and the non-molting event.

Note the phases no activity (light blue and red line).

Supplementary Figure 7 | Molting events of individual first instar larvae. Note the

phases of low activity in all images. Low activity indicates ecdysis behavioral

sequence of D. melanogaster larvae.

Supplementary Figure 8 | Activity pattern from a period of about 1,000 frames

(∼ 5.5 h) of a molting and a non-molting event of second instar larvae.

Supplementary Figure 9 | Molting events of individual second instar larvae. Note

the phases of low activity in all images. Low activity indicates ecdysis behavioral

sequence of D. melanogaster larvae.
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Animals coordinate their various body parts, sometimes in elaborate manners to swim,

walk, climb, fly, and navigate their environment. The coordination of body parts is

essential to behaviors such as, chasing, escaping, landing, and the extraction of relevant

information. For example, by shaping the movement of the head and body in an active

and controlled manner, flying insects structure their flights to facilitate the acquisition

of distance information. They condense their turns into a short period of time (the

saccade) interspaced by a relatively long translation (the intersaccade). However, due to

technological limitations, the precise coordination of the head and thorax during insects’

free-flight remains unclear. Here, we propose methods to analyse the orientation of

the head and thorax of bumblebees Bombus terrestris, to segregate the trajectories of

flying insects into saccades and intersaccades by using supervised machine learning

(ML) techniques, and finally to analyse the coordination between head and thorax

by using artificial neural networks (ANN). The segregation of flights into saccades

and intersaccades by ML, based on the thorax angular velocities, decreased the

misclassification by 12% compared to classically usedmethods. Our results demonstrate

how machine learning techniques can be used to improve the analyses of insect flight

structures and to learn about the complexity of head-body coordination. We anticipate

our assay to be a starting point for more sophisticated experiments and analysis on

freely flying insects. For example, the coordination of head and body movements during

collision avoidance, chasing behavior, or negotiation of gaps could be investigated by

monitoring the head and thorax orientation of freely flying insects within and across

behavioral tasks, and in different species.

Keywords: bees, machine learning, random forest, decision tree, neural network, coordination, control,

active vision

1. INTRODUCTION

Animals travel in their habitat to chase prey, escape predators, find mates, or food. The motile body
parts, such as legs, wings, or fins, often differ from the sensory ones. For example, the eyes of most
sighted animals are placed on the head, away from wings or legs. The non-collocation of motile
and sensory body parts allows many animal species to decouple where to look and where to move.
Notably, animals frequently stabilize their head while traveling in their environment to compensate
for body motion (e.g., roll movements) that is required for steering (e.g., Van Hateren and Schilstra,
1999a; Ravi et al., 2016) or actively move their head to extract relevant information, for example the
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distance to a prey or landing site (Sobel, 1990; Kral, 2003, 2012).
Adequate motion of an animal in its habitat and perception of
its surrounding requires the well-coordinated orchestration of
sensory and motile body parts.

Flying insects orchestrate their flight similarly to ballet dancers
performing a chainé or a pirouette. They first start turning
their thorax at a slow speed, and then later turn their head
at a higher speed. Between such sharp head turns, the head
direction is mostly stabilized (VanHateren and Schilstra, 1999a,b;
Viollet and Zeil, 2013; Doussot et al., 2020b; Verbe et al., 2020)
allowing flying insects to estimate the distance to neighboring
objects (Srinivasan, 2011; Kern et al., 2012), traveled distance
(Srinivasan, 2011), perceive gaps (Ravi et al., 2019), or land
(Frasnelli et al., 2018) by using the apparent motion of nearby
objects on their retina (Egelhaaf et al., 2014). This active gaze
strategy requires excellent coordination between the head and
thorax, respectively. However, due to the small size of flying
insects, head-body coordination has been analyzed rarely and
most studies have focused on the insect’s thorax orientation.

The thorax orientation of insects gives only a poor proxy of the
viewing direction (Van Hateren and Schilstra, 1999a,b; Riabinina
et al., 2014; Doussot et al., 2020b). Therefore, recordings lacking
head orientation information limit our understanding of the
perception-behavior loop. However, in flying insects, one crucial
aspect of their perception takes place between sharp head turns,
i.e., during intersaccades (Egelhaaf et al., 2014). Therefore, by
predicting the occurrence of the head’s saccades from the time
course of thorax orientation, we could deepen our understanding
of the behavior of flying insects.

We used recordings of the head and thorax orientation of
free-flying bumblebees Bombus terrestis (Doussot et al., 2020a),
that include footage of high spatial and temporal resolution
and from different perspectives to develop methods to lessen
such limitations.

In most previous experiments, only the orientation of the
thorax could be determined, due to technological limitations. We
developed a method to locate the head intersaccades solely from
the time course of thorax orientation. We based our method
on classifiers (decision tree and random forest) and tested our
approach in two scenarios often encountered in experimental
design. First, many insect flights are recorded at frame rates
lower than 500 fps. Second, many recordings only report the
orientation along one axis of rotation (often the z-axis) (for
example, Kern et al., 2012; Lobecke et al., 2018; Robert et al., 2018;
Lecoeur et al., 2019; Ravi et al., 2019). However, the orientation
of an animal is defined around three axes. Thus, we tested our
classifier with only the orientation around the z-axis.

Our first method focused on the saccade/intersaccade
classification. We developed a second method to predict the
detailed time course of head and thorax orientation, elaborating
on an approach developed by Dürr and Schilling (2018) using
an artificial neural network to map the posture of one leg
of the stick insects to another. We extended their method by
adding a temporal component (forecasting or backcasting) and
applied it to our bumblebees’ flight. Our approach may serve
as a computational ground plan for investigating body part
coordination in other animals.

2. MATERIALS AND METHODS

2.1. Data Acquisition
2.1.1. Animal Preparation
Data were collected according to Doussot et al. (2020a). We
explain the procedure here for clarity. We used a healthy hive
of Bombus terrestris provided by Koppert B.V., The Netherlands.
Bumblebees were manually marked and transferred into a 30 ×

30 × 30 cm acrylic box. Marking the head was done by painting
three small dots (∼ 1 mm diameter each) with acrylic paint on
the bees’ heads: one above each eye and the one in between the
eyes at the height of the antenna scape insertion point. Special
attention was paid to not cover the ocelli and the eyes of the
bumblebees (Figure 1B). We marked the thorax by fixing an
equilateral triangle (side length of 5 mm) of black paper with a
white pearl dot (1 mm diameter) at each apex with wax.

The bumblebees entered a cylindrical flight arena with a radius
of 35 cm and a height of 50 cm through a 1 cm hole in the center
of the ground (Figures 1A,C). The flight arena was connected to
a foraging chamber.

2.1.2. Tracking of Head and Thorax Markers
Six learning flights of bees were recorded using three
synchronized high-speed cameras (Optronis CR3000x2)
with a resolution of 1,710 × 1,696 pixels. The three cameras
sampled a volume of ∼ 10 × 10 × 10 cm3 around the nest
entrance from different perspectives. The recording area was
restricted to a small part of the arena as we intended to monitor
the head and thorax orientation at a high spatial resolution. The
recorded volume was illuminated by four blocks of four LEDs
each (HIB Multihead LED, HS vision GmbH, Germany).

We started the recordings as soon as a marked bumblebee
took off. Recordings were made at a shutter speed of 1/2, 000
s, a frame rate of 500 frames per second, and for ∼ 11 s. The
three cameras were calibrated using the Matlab toolbox dltdv5
(Hedrick, 2008).

We developed and assessed our method based on six learning
flights of marked bees. Tracking of head and thorax markers was
achieved with a custom-made Python script, based on OpenCV.
The videos were then manually reviewed with the software
IVtrace (https://opensource.cit-ec.de/projects/ivtools) to ensure
correct detection. We then reconstructed the marker positions in
3D space using the Matlab toolbox dltdv5 (Figures 1D,E).

2.1.3. Orientation
Given a three dimensional space, one can infer the orientation
of any solid object in it, by defining an object-specific coordinate
system of three orthogonal unit vectors centered at a pivot point.
One then can describe the orientation of this object by the
relative orientation of this object-specific coordinate system with
respect to the world coordinate system. In order to describe the
orientation of the bees’ head and thorax at any given time, we
first chose an appropriate coordinate system for our arena and
then reconstructed the bee coordinate system from the markers
we placed on them.

The head (resp. thorax) coordinate system was defined as
follows. Its origin was defined as the center of mass of the three
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FIGURE 1 | Experimental setup and example flight. (A) Virtual setup of the arena. Bee enters the flight arena through the hole at the bottom, that connects to the hive.

(B) Marker positions on head and thorax. (C) Top view of real world arena. (D) Example of a learning flight in 3d space. (E) Temporal structure of a section of a leaning

flight as lollipop plot, with each sticks pointing direction indicating thorax orientation and color indicating movement classification (green = intersaccade;

purple = saccade).

markers placed on the head (resp. thorax). Two of the three
markers were aligned with from left to right in the head (resp.
thorax) coordinate system, and thus formed the y-vector. The
x-vector was orthogonal to the y-axis and passed by the third
marker. Finally, the z-vector being orthogonal to the two other
axes were computed as cross product between the x and y-vector.
In mechanics, the orientation of a solid object is often defined by
three rotational angles (Euler angles). Different conventions can
be used to define the rotational angles. The conventions differ by
the order of elementary rotations. Here, we used the yaw-pitch-
roll convention (Diebel, 2006). This convention is defined as
rotating first around the roll axis (x-axis in the world coordinate
system), then around the pitch axis (y-axis of a temporary
coordinate system), and finally around the yaw axis (z-axis in
the head or thorax coordinate system). This transformation was
performed at each instant of time, yielding the time courses of the
yaw, pitch, and roll angles for the head and the thorax.

2.2. Saccade and Intersaccade
Classification
2.2.1. Ground Truth: Thresholding on Head’s

Orientation
The YPR orientation was filtered with a one-dimensional-
cubic spline function (with smoothing parameter λ = 150)
(Scipy.signal). The smoothing parameter λ, interpreted as the

degree of freedoms, was estimated from a generalized cross-
validation criterion with R (see Supplementary Figure 1 for the
effect of lambda on our method). Cubic splines are often used
in biomechanics data filtering (Woltring, 1985), since abrupt
changes in the data are not smoothed out, in contrast to low
pass filtering. Based on the angular velocity of the head around
the z-axis ωz(t) in the bee coordinate system, intersacades and
saccades were extracted using a two-thresholds method. For
derivatives higher than 372.42◦/s (manually determined), the
time point was considered as being part of a saccade. The
neighboring time points were considered part of the same
saccade, if the derivative was higher than 200.54◦/s, and as part
of an intersaccade otherwise.

2.2.2. Benchmark: Thresholding on Thorax’s

Orientation
In numerous experiments, the orientation of the bee’s head
cannot be resolved. Thus, researchers usually segregate the
trajectories into saccades and intersaccades by using a threshold
on the thorax angular velocities. The threshold is usually chosen
by observing the variation of the thorax angular velocity over
time (Van Hateren and Schilstra, 1999a; Riabinina et al., 2014;
Mertes et al., 2015). Here, head orientation data was available.
Thus, instead of choosing the threshold by visually observing
the time course of the thorax’s angular velocity, we chose them
such that the accuracy of the classification is maximized i.e., the
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FIGURE 2 | Example of the decision process done by a decision tree. The thorax angular z-velocity (in blue) within a given time window 1t (e.g., red and green dotted

rectangle), is the input of the classifier. A decision tree is composed of nodes (circles), with input xi (gray arrows). If the input xi is greater or equal to a learned

threshold ǫ, the right node is selected, otherwise the left (see example in the gray square). The process is repeated until a decision saccade/intersaccade can be

drawn. The red (resp. green) node highlights the decision path for an intersaccade (resp. for a saccade).

number of true positives (a time point t, head and thorax are
saccade), and true negative (a time point t, head and thorax are
intersaccade). The thorax’s saccades extracted by this method are
the benchmark for our classifier method.

2.2.3. Classifier Based Method
We investigated whether non-single-threshold classifiers can
outperform the segregation based on hard thresholding of
the thorax’s angular velocity (i.e., our benchmark). Hence we
compared the established benchmark (Th) with two well-known
non-linear classifiers: a decision tree (DT) and a random forest
(RF). A decision tree can have a high variance in the optimal
tree. The use of a random forest, i.e., multiple trees, reduces the
variance in the optimal classifier. We define the learning task as
follows: Given a finite time series of angular z-velocities obtained
from the thorax, predict the binary class label associated with the
center measurement of this time series, where labels are “head
saccade” or “head intersaccade.”

More formally, the input of the classifier was thus
�thorax

z (t) = [ωz(t − 1t/2), · · · ,ωz(t + 1t/2)] with 1t being
the time window (a hyperparameter of our classifier). Hence, the
classifier yields a class C(t) ∈ C = 0, 1 by applying a function
f :R⋉ → C on the input �thorax

z (t). We have, thus, the equation:
C(t) = f (�thorax

z (t)) (Figure 2). C(t) = 0 [resp. C(t) = 1]
means that the angular velocity at the timepoint belongs to an
intersaccade (resp. saccade).

The classifiers were trained, validated, and tested using scikit-
learn (Pedregosa et al., 2011). The training was used to adjust

the parameters of the classifier. The training set consisted of the
first 70% of samples per learning flight for all 5 learning flights.
The validation was used to select hyperparameters: depth D (i.e.,
the number of layers in a Decision Tree) and the time window
1t, by varying the parameters systematically D ∈ [1, 20], and
1t ∈ [0, 50] ms. The validation set consisted of the remaining
30% of the five flights used for the training set. Since our classes
are sufficiently balanced, we used the accuracy of the classifier to
determine which classifier performed best on the validation/test
data set.

To test the performance of the best classifiers, we used one
learning flight that was neither used for training nor for the
test (i.e., forming the validation data set). The trained saccade-
intersaccade classifier was applied for every time point. The
prediction C(t), saccade, or intersaccade, at time t was compared
to the ground truth H(t) obtained by thresholding the head’s
angular velocity. Our goal was to outperform the classification
from a benchmark, namely the classification T(t) based on the
thresholding of the thorax’s angular velocity. We thus compared
the accuracy of the classifier ACCclassifier with the accuracy of
the benchmark ACCbenchmark. ACCclassifier and ACCbenchmark are
defined by:

ACCclassifier =

∑

t[C(t) == H(t)]

N

ACCbenchmark =

∑

t[T(t) == H(t)]

N

(1)
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Here [· · · ] are the Iverson brackets. The Iverson brackets is
a notation that takes a true/false input. Let P be a true/false
statement. [P] is defined to be 1 if P is true, and 0 otherwise. N
is the number of time points in the learning flights.

2.2.4. Extension: Often Encountered Situations
To further assess the validity of our method, we investigated the
accuracy of our classifier in two often encountered situations.
First, researchers are not always able to record at a high frame
rate. Second, some behavioral assays rely on single-perspective
recordings, and therefore the orientation of the thorax cannot
be determined entirely. Assumptions need to be made about
certain axis of rotations. For example, when the orientation
of the body long-axis is derived from a top view camera, it
is often assumed that the orientations pitch and roll are null.
To investigate the robustness of the classifier at a lower-frame
rate, we down-sampled our recordings and interpolated them
by using a cubic spline in order to recover the 500 fps on
which the classifiers are trained. The classification was then
performed on the angular velocities of the thorax derived from
downsampled and interpolated trajectories. To investigate the
impact of a null-pitch and null-roll assumption, we set the z
positions of the markers at a given frame to their average z
position (mimicking top view recordings). The orientation was
then calculated yielding only the variation of yaw. The accuracy
of the classifiers was then calculated on the angular velocities
(here equivalent to the derivative of the yaw orientation, because
pitch and roll are null).

2.3. Predicting Head Angular Velocity From
Thorax
The time course of the head and thorax position are tightly
linked. However, the head can be in a different orientation as the
body thanks to the neck muscles connecting the two. In flying
insects, the time course of the head angular velocity appears to be
loosely correlated with the thorax angular velocity. Indeed when
the head is rotating fast, the thorax is likely to turn quickly as
well (Kern, 2006). In other words, the head and thorax angular
velocities share some information that may be used to predict the
one from the other (e.g., predict the head angular velocity from
the thorax angular velocity).

Predicting head angular velocity from thorax angular velocity
in a reliable manner could allow researchers to record only the
thorax orientation to study the head orientation, alleviating the
need to mark the head and monitoring it with high-resolution
cameras. Our method focuses on predicting the angular velocity
around the z-axis, because the angular velocity is varying the
most around this axis during bee learning flights. The prediction
of the head angular velocity along the z-axis will be based on the
body angular velocity during a time interval 1t:

ω̂head
z (t) = g(ωthorax

z (t − 1t/2), · · · ,ωthorax
z (t − 1t/2)) (2)

Where ωthorax
z (t) is the instantaneous angular velocity of the

thorax around the z-axis at time t. ω̂head
z (t) is the prediction of

the instantaneous angular velocity of the head around the z-axis

at time t. g() :Rn → R is a function (e.g., a neural network) used
for prediction.

Predicting the motion of one body part from another (e.g.,
head angular velocity from thorax angular velocity), could inform
about the predictive causality between the two body-parts and
therefore the underlying control mechanisms (Granger, 1969).
Thus, we predicted the thorax angular velocity along the z-axis
based on the head angular velocity during a time interval 1t.
Our method will, therefore, be described for predicting the head
angular velocity from thorax angular velocity.

2.3.1. Neural Network Architecture
To predict the motion of one body part from another, we used
a feed-forward artificial neural network. The neural network
consisted of three layers. The input layer contained as many
neurons as measures of instantaneous angular velocity within
the time window 1t plus a bias neuron (acting in a similar
manner as the intercept in a linear fit). So for recording at
500 fps and 1t express in ms: 1 + 0.51t neurons. The second
layer, i.e., the hidden layer, contains N + 1 neurons with N ∈

1, 2, 4, 8, 16, 32, 64, 128. The activation functions of the units were
rectified linear (relu). A neuron with a relu activation function
will have an output proportional to its input when the input
is positive. However, when the input is negative, the neuron
will output zero. The last and third layer contained two output
neurons with a hyperbolic tangent activation function. A neuron
with an hyperbolic tangent activation with an input x will output
tanh x. The two neurons encoded the sine and cosine of the
predicted angular velocity around the z-axis, and their response
at time t will be referred to as Os(t) and Oc(t), respectively.

The neural network has two hyperparameters: the number of
neurons in the hidden layers N and the size of the time window
1t. To find the optimal N and 1t, we performed a grid search
over the parameter space with 1t ∈ {1, 3, 5, · · · , 53}ms and
N ∈ {1, 2, 4, 8, 16, 32, 64, 128} resulting in 40 neural networks.

2.3.2. Training
The neural networks were implemented and trained using
tensorflow API for python (Abadi et al., 2015). The weights of
the networks were randomly initialized. To train the network we
used the Adam optimizers (Kingma and Ba, 2015) with the loss
function that the training procedure aim at minimizing:

L =
∑

t

∣

∣

∣

∣

(

cos(ωhead
z (t))

sin(ωhead
z (t))

)

−

(

Oc(t)
Os(t)

)∣

∣

∣

∣

2

λ

∣

∣

∣

∣

(

cos(ωthorax
z (t))

sin(ωthorax
z (t))

)

−

(

Oc(t)
Os(t)

)∣

∣

∣

∣

2

+ ǫ

(3)

The numerator in the loss contains the euclidian norm of a
vectorial difference. The vector (cos(ωhead

z (t)), sin(ωhead
z (t)))T is

the direction of the bee’s head velocity expressed in Cartesian
coordinates. The vector (Oc(t),Os(t))

T is formed by the two
output neurons of our network. The euclidian norm of the
vectorial difference can therefore provide of a measure of the
network performance, because when the two vector match their
difference is a null vector. In the loss function, the numerator
(resp. denominator) decreases as the output of the network

Frontiers in Behavioral Neuroscience | www.frontiersin.org 5 January 2021 | Volume 14 | Article 61002988

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


Odenthal et al. Head-Thorax Choreography During Free-Flights

approaches the angular velocity of the head (resp. thorax). The
loss function is thus small when the prediction is close to the head
angular velocity and far from the thorax angular velocity. The
denominator, thus, guarantees that when the prediction is close to
the thorax angular velocity, the loss function is high, decreasing
the risk of the network learning the identity, i.e., predicting the
thorax from the thorax. λ is a regularization term and is equal to
0.5. ǫ is a small value to avoid division by zero and is equal to 0.1.
The networks were trained for 30 epochs on the first 70% of each
of the five learning flights.

2.3.3. Choosing Hyperparameters and Validation
To choose the hyperparameters 1t and N of our predictive
method, we evaluated the performance of the network on the
remaining 30% of the five learning flights (i.e., on the test data
set). From the 40 trained networks per hyperparameter tuple,
we calculated the unsigned error angle 1� between predicted
head angular velocity ω̂H

z (t) and the measured head angular
velocity ωH

z (t) over time. The hyperparameters yielding the
smallest median unsigned error angle were retained for validation
(Supplementary Figure 2 and Supplementary Table 1).

To assess the performance of our predictive method, we use
the previously trained neural networks on data never seen by the
networks. We use the sixth recorded learning flight. The thorax
to head prediction the optimal number of neurons is 32 and the
optimal window size is 29. For the head to thorax prediction we
have an optimal number of neurons of 4 and the optimal window
size is 45.

2.3.4. Temporal Shift
The share of information between head and thorax angular
velocities may be delayed. For example, the thorax angular
velocity until a time point t − τ may be used to predict the
angular velocity of the head at time point t. In that case,
the thorax angular velocity contains enough information to
forecast the head angular velocity. We apply the same procedure
described above, but with temporally shifted head and thorax
angular velocities.

The forecasting of the head angular velocity along the z-
axis will be based on the body angular velocity during a time
interval 1t:

ω̂head
z (t − τ ) = g(ωthorax

z (t − 1t), · · · ,ωthorax
z (t)) (4)

Here, τ is the time between the last observation used for
prediction and the time at which the angular velocity of the
head is predicted. Similarly, the backcasting of the head angular
velocity along the z-axis will be based on the body angular
velocity during a time interval 1t:

ω̂head
z (t − τ ) = g(ωthorax

z (t), · · · ,ωthorax
z (t + 1t)) (5)

τ is thus the temporal shift between observation and prediction.
For forecasting τ is negative. For backcasting τ is positive.

3. RESULTS

Flying insects are thought to coordinate their thorax and head
motion in order to maximize head stabilization. They segregate
their flights into saccade and intersaccade. We investigated
methods aimed at evaluating two different aspects of head-body
coordination during insect flight: (1) Head saccade identification
and (2) head angular velocity prediction based on the time
structure of thorax movements. We applied and tested these
methods to the learning flights of bumblebees, B. terrestris.

3.1. From Thorax Angular Velocities to
Head Saccades
In agreement with previous descriptions of flying insects’
behavior, we observed that the angular velocity ωz of the head
is segmented into segments of high velocity (called saccade) and
low velocity (called intersacade) Figure 3. The angular velocity
of the thorax shows a similar pattern, but with a less neat
segmentation between the intersaccades and saccades.

In the past, segmentation of insect flights into saccade and
intersaccade was based on thresholding the angular velocity:
angular velocities higher than the threshold are considered part
of a saccade. Recording the head orientation of flying insects
during free flights is technically demanding and has rarely been
done (Van Hateren and Schilstra, 1999a; Riabinina et al., 2014).
Thus, researchers have often only access to the orientation of the
insects’ thorax (Van Hateren and Schilstra, 1999a; Kern et al.,
2012; Philippides et al., 2013; Ravi et al., 2013, 2019; Riabinina
et al., 2014; Lobecke et al., 2018; Robert et al., 2018).

It thus raises the question: how well can we extract head
saccades based on the thorax angular velocity? The first set of
methods we investigated concerned the accurate classification of
head saccades from thorax angular velocities.

3.1.1. Decision Tree and Random Forest
Choosing a hard threshold to segment the time course of angular
velocity based on the thorax is challenging, due to slower
speeds during saccades and higher speeds during intersaccades.
Thanks to the segmentation based on the head angular velocity,
we can choose this threshold to maximize the accuracy
(i.e., the percentage of frame correctly classified as saccade
and intersaccade). Despite an optimally chosen threshold, we
observed that many frames are incorrectly classified (compare
misaligned red and blue stripes in Figure 3). The thresholding
approach uses the velocity observed at time t to classify it as either
saccade or intersaccade. However, head saccades have a time span
of several 10 ms; thus, using neighboring observations may help
classify the behavior.

Instead of choosing a single linear threshold, the field of
machine learning offers algorithms that classify data. Here, the
input is the angular velocity within a time window 1t around a
given time point t. The binary class to be predicted is either a head
saccade or not a head saccade (intersaccade).

Both classifiers DT and RD are classifying the thorax
angular velocity with higher AUC than our benchmark (i.e., the
thresholding method) Figure 4 on the test set. The Decision
Tree, and Random Forest yielded an error rate of 11.91
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FIGURE 3 | Time course of yaw angles and ωz (t) of the head and thorax of a learning flight. Head saccades (blue regions) are extracted with manually chosen

thresholds (red dotted line). Body saccades (red regions) are extracted with thresholds to best match the head saccades.

FIGURE 4 | Time course of head saccades (blue) and predicted head saccades (orange and green) from thorax angular velocity ωy ). Thorax saccades (in red) are

extracted with a double thresholds (as in Figure 3). Two trained classifiers (a decision Tree, in green, and a Random Forest, in orange) were applied to the learning

flight (which was not used for training) to predict head saccades.

and 11.26% (i.e., a 36.29 and 39.72% smaller error than the
benchmark), respectively.

3.1.2. Robustness at Low Sampling Rates
Our video footages were filmed at a relatively high frame-
rate (500 fps) and captured using multiple perspectives to
extract the 3D positions and orientations of the bee’s head
and thorax. However, recording at high frame rates and high
spatial resolution requires special hardware not always affordable
or available (for example during field experiments). Therefore,
many experiments have been performed with frame-rate between
50 and 100 fps (Kern et al., 2012; Philippides et al., 2013; Ravi
et al., 2013, 2019; Riabinina et al., 2014; Lobecke et al., 2018;
Robert et al., 2018). At such a frame rate, data can usually be
processed online (Straw et al., 2011; Stowers et al., 2017) or saved
requiring reasonable space on hard drives. To assess the ability
of our classifiers to identify saccades and intersaccades from
low temporal resolution thorax orientation, we down-sampled
our original recordings. We then interpolated the data with

cubic splines to retrieve the 500 fps on which our classifiers
were trained. The accuracy of the classifiers decreases with
decreasing temporal resolution. Still, for frame rates higher than
40fps our classifiers perform better than (or as good as) our
benchmark (Figure 5).

3.1.3. Robustness to Single Camera Recordings
Obtaining the 3D orientation of the thorax requires the
identification of at least three points on multiple views
or, when sufficient visual features are visible, use advanced
computer vision techniques for pose estimation from a single
perspective (Graving et al., 2019). The orientation can, however,
be approximated from a single perspective by making some
assumptions. For example, assuming a null pitch and roll, the
yaw orientation can be obtained from a single perspective view
at the flying insect from above (Kern et al., 2012; Philippides
et al., 2013; Lobecke et al., 2018; Robert et al., 2018; Ravi et al.,
2019). We replicated this assumption on our data and assessed
how well our classifiers could segment the flights into saccades
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FIGURE 5 | Area under the curve between saccade/intersaccade

classifications from classifier or double thresholds on thorax angular velocity

and head saccade/intersaccade classification as a function of frame rate. The

benchmark is the classification from ωz of the thorax based on the optimally

chosen double threshold at 500 fps. The classifier outperform the benchmark

for frame rates above 40 fps even when angular velocity of the thorax is

determined by assuming zero pitch and roll orientation (classifier followed

by 2D).

and intersaccades. The classifiers still performed better than our
benchmark for frame rates higher than 70 fps.

3.2. Predicting Head and Thorax Angular
Velocity
Flying insects orchestrate the movements of their head and
thorax in a timely manner, such that the head saccade and thorax
saccade temporally overlap. The neurons controlling the head
and thorax movements receive inputs from different brain areas
(Schröter et al., 2007; Ibbotson et al., 2017; Steinbeck et al., 2020)
One of these inputs could be an efference copy (i.e., a copy of an
outflowing movement-producing signal generated by the motor
system) of the head motion that affects the control of the thorax.
The reciprocal would be an efference copy of the thorax motion
affecting the control of the head. The efference copy signal needs
to be processed and transmitted to another part of the bee’s
body, to affect the control of the targeted movement. If this were
the case, we would expect two characteristics: (1) information is
shared between the head and thorax angular velocity, and (2) the
information at a given time t can be mapped to information at a
later time t + τ .

3.2.1. Predicting Head Velocity From Thorax Velocity

(τ = 0)
We observed that the head and thorax angular velocity
temporally overlap. It therefore seems likely that a mapping
between the movements of the two body parts at τ = 0
exists. Dürr and Schilling (2018) used an artificial neural network
(ANN) to investigate whether information from a given body
part can bemapped to another.We used anANN tomap the head
to the thorax angular velocity (and vice versa) without temporal
delays (i.e., τ ) Figure 6E. We observed that the predicted head
angular velocity co-varies with the bees’ head angular velocity
(Figures 6B,D). A similar observation is made for the prediction

of the thorax angular velocity from the head angular velocity
(Figures 6A,C). The errors between the prediction and target
are concentrated below 200 deg/s, i.e., below the variation of
angular velocity during intersaccades. However, we observed that
a prediction of the thorax angular velocity from the head angular
velocity yielded lower errors than the reciprocal prediction
(Figures 6F,G).

3.2.2. Forecasting and Backcasting Head Velocity

From Thorax Velocity (τ 6= 0)
We investigated the mapping of information between body
parts for different delays τ . Similarly to the τ = 0 case, we
used an ANN to map the angular velocity of one body part
to another. However, the observation (for example, the head
angular velocity) was temporally shifted relative to the target (for
example, the thorax angular velocity). When τ is negative, the
observation occurred before the target. Thus, this observation
could be used to control the behavior of the target. For example,
the thorax velocity at time t is sent as an efferent copy to the head
control arriving at t − τ . We will refer to this case as forecasting
(Figure 7D). If, τ is chosen to be positive, the observation
occurred after the target, hence we will speak of backcasting
(Figure 7F). This case mainly serves the purpose of avoiding
over-interpretation of the results and will be later discussed.

We observed that the prediction error varied as a function
of time (Figures 7A,B). By comparing the time course of the
errors (Figures 7A,B) and the observation (Figure 7C), we
observe higher errors during saccades. Such a pattern may be
observed, when the network predicts a zero angular velocity,
because during intersaccades the angular velocity is close to
zero. This may happen when the potential relationship between
the two body parts cannot be learned by the network. The
prediction from the network and the target are, in this case,
not correlated. Thus, we quantify the error as a function of
the time-shift by using the correlation between the target (e.g.,
head angular velocity) and its prediction (e.g., head from thorax
angular velocity).

The prediction of the head angular velocity correlates well
with the network prediction, but the correlation is lower for large
temporal time shifts. We observe a plateau between τ = −12ms
and τ = 0ms (i.e., for forecasting), and a sharp decrease for
τ > 0, and a smooth decrease for τ < −12ms (Figure 7E). In
contrast, the prediction of the thorax angular velocity correlates
poorly with the network prediction, except between τ = 0 and
τ = +12 ms, i.e., for backcasting.

It, therefore, seems that an efference copy of the head angular
velocity is sent to control the thorax angular velocity.

4. DISCUSSION

To understand how different body parts work together and
interact with each other, their kinematics must be recorded.
However, some small animals can move very fast (for example
a bee performing a saccade). Thus, the necessary equipment to
track such fast movements, is often not available. Hence, the
orientation of the thorax, which is relatively easy to track, is often
used as a proxy for head orientation. However, this proxy is prone
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FIGURE 6 | Predicting head and thorax angular velocity (without temporal shift) on a given flight not seen during training of the artificial neural network. (A) Prediction,

in blue, of the thorax angular velocity from head angular velocity (orange). (B) Prediction, in blue, of the head angular velocity from thorax angular velocity (orange).

(C,D) Zoom on (A,B), respectively. The prediction (blue line) follow the target (green line). (E) Schematic of a prediction at a given time point. (F,G) distribution of error

between predictions and targets.

to errors. We used data of head and thorax orientation during
learning flights of bumblebees and developed two methods
to reduce this error. The coordination of head and thorax
is of particular interest for understanding how information is
gathered and processed by the bee, for example, the estimation
of the distance to surrounding objects during intersaccades.
Our first method predicts the saccades of the bee’s head from
the time course of thorax movement. Usually head saccades
are identified by applying a threshold on the thorax angular
velocity. This method does not lead to optimal results. Therefore,
we trained a decision tree and a random forest classifier to
automatically determine when head saccades take place, given the
time course of thorax orientation. We were able to reduce the
mis-classifications made when choosing the threshold manually
from 39.72 to 11.26 %. A binary classification between saccades
and intersaccades is likely not sufficient to fully understand the
coordination between body parts in detail. Dürr and Schilling
(2018) showed that it is possible to use an ANN to map the
posture of one leg of a stick insect to the posture of another.
We successfully used this concept and applied it to predict the
orientation of a bee’s head angular velocity from that of its thorax.
Furthermore, we added a temporal component (forecasting or

backcasting) to analyse how head and thorax work together. Our
findings show that for a temporal shift of up to 10ms it is possible
to predict the head orientation from thorax orientation. If the
shift is bigger the error increases drastically.

4.1. Technological Aspects
Many moving animals and robots alike actively shape their
gaze to extract relevant information about their surroundings
(Egelhaaf et al., 2012; Wisniewska et al., 2012; Tuhkanen et al.,
2019). For example, during translation, the apparent motion of
an object informs the agent about its relationship in space to
the surroundings. If one can track the head of an animal during
its course of movement, one could pinpoint for example when
distance information is perceived. However, tracking the animal
as a whole might already pose a challenge, rendering the tracking
of specific body parts a nearly infeasible endeavor. For instance,
researchers have to restrict the space of the recording area and
use expensive recording devices to allow high spatio-temporal
resolution. The spatial limitations constrain research potentially
to only a part of the behavior. Additionally, researchers are often
obliged to manually track the body parts of interest, a labor-
intensive process which introduces a potential experimenter

Frontiers in Behavioral Neuroscience | www.frontiersin.org 9 January 2021 | Volume 14 | Article 61002992

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


Odenthal et al. Head-Thorax Choreography During Free-Flights

FIGURE 7 | Error for one flight (validation set) for thorax to head (A) and head to thorax (B) prediction. Time course of the head and thorax angular velocity (C) are

shown in blue and orange, respectively. (D,F) Example of a positive and negative shift of ±τ11 time steps of the observation. (E) Correlation between target and

prediction for different temporal shifts.

bias to the data. Our method solves this issue by allowing us
to infer the timing of head saccade/intersaccade from thorax
orientation at a rather low temporal resolution (40 fps) and
a spatial resolution sufficient to record only the thorax. For
example, in the case of bumblebee learning flights, by only
tracking body orientation, one could predict head orientation
and, thus, unravel when and how distance information might be
learned about the nest-hole environment to enable later returns
(Doussot et al., 2020a). Similarly, when bumblebees are crossing
a difficult passage such as a gap in a wall (Baird et al., 2016; Ravi
et al., 2019), head movements may be used to extract relevant
information. By studying head movements, one can interpret
the flight sequence performed at the entrance of this aperture.
We should note, however, that we cannot infer the complete
orientation (yaw, pitch, roll) of the head from thoraxmovements;
therefore, our method cannot account to assess roll and pitch
rotations in these behaviors.

4.2. Other Machine Learning Approaches
Our two methods are based on supervised machine learning
techniques. First, for our classification task, we used two different
classes of models. We decided to use an easily trainable Decision
Tree. However, this class of models brings several disadvantages,
of which one is its high variance, meaning small changes

in data can lead to drastically different optimal trees. We
therefore employed a more powerful class of models, Random
Forests, which extend the concept of Decision Trees, mitigating
the previously mentioned problem up to a certain amount.
Unfortunately, Random Forests often become very complex and
are not as clearly to be interpreted as Decision Trees. In any case,
both models have shown that classification is possible, indicating
two possibilities to pursue in future research.

First, one could utilize feature engineering. All our models
operated directly on the input data, but research shows that
feature engineering can improve performance (Wang et al.,
2016; Banerjee et al., 2019). Second, more sophisticated (but
potentially also data demanding) approaches could be employed.
An example, is the use of Convolutional Neural Networks, which
have been shown to work on time series classification with some
minor adjustments (Gamboa, 2017).

Second, for our prediction task, we used a feed forward
neural network inspired by the work of Dürr and Schilling
(2018) to predict head orientation from body orientation.
Alternative forecasting methods, such as ARIMA and Echo State
Networks, have been used to forecast thorax position from
previous observations (Meyer et al., 2018). These approaches
may also be used to study the coordination of multiple body
parts. Indeed, in the field of machine learning, the problem
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presented in this paper is coined time series classification,
which spawned an extensive research endeavor (for a review see
Bagnall et al., 2017).

4.3. Biological Implications
Our method to estimate the head angular velocity from the
thorax angular velocity relied on an artificial neural network.
The network can only relate the two angular velocities when a
function between them exists and the network design can capture
such function (Csáji et al., 2001). For example, by increasing
the number of neurons in the network more complex functions
can be found (Dürr and Schilling, 2018). The existence of such
a function, embedded in the network, implies that input and
output of the network share information. We applied this idea
to the head and thorax angular velocities and found that indeed
information is shared between the two.

Information in a dynamic system (such as the thorax and
head control) is transmitted through the system either directly
between subsystems or via another subsystem (for example
a brain region). Hence, the sharing of information between
subsystems in a dynamic system (e.g., between head and thorax)
can be due to a common source (e.g., a central pattern generator;
Guertin, 2013) or efference copies sent from one target to
another (Straka et al., 2018). In both cases, a signal needs to be
transmitted. Hence, generating a delay between the source and
the destination will occur. By temporally shifting the recorded
source (for example the head) relative to the target (for example
the thorax) and using an artificial neural network, we studied the
information flow. We found no evidence that the information
flows from the thorax to the head.

A unidirectional flow of information between head and thorax
can be observed when a source S (e.g., visual perception)
is coupled to the head control (H), and also drive to some
extent thorax control (T) in a way that the source can predict
thorax but not vice versa (Granger, 1969; Diebold, 2006). Then
due to transitivity of causality (if H → S and S → T,
then H → T), information flows uni-directionally from H
to T either directly (without a source) or indirectly (via the
source) (Sugihara et al., 2012; Ye et al., 2015). Whereas, a
direct flow implies biologically an efference copy, an indirect
flow implies common brain regions implicated in the control
of the two body parts. In addition, a source S (e.g., the
brain) could control the head H and thorax T movement. Our
method can not disambiguate between an efference copy or a
feedforward control from or via a common brain region, but
may be used to suggest how the information does not flow in
the system.

Our data suggests no efference copy sent to the wing motor
neurons to control head-yaw velocity during saccades. However,
in the context of roll stabilization, to align the field of view to the
horizon line (Raderschall et al., 2016), it has been suggested that
head stabilization in flight is controlled by a feed-forward signal,
where a copy of the command signals to the wing motorneurons
is sent with an opposite sign to the head position control system
(Viollet and Zeil, 2013)but also with the visual horizon (Goulard
et al., 2015). Interestingly, these observations suggest different
flows of information and pathways controlling the head and

thorax’ movements underlying roll stabilization and a saccadic
gaze strategy.

The use of an artificial neural network to test the predictability
of the output of one subsystem from the other informs not only
about the potential causal relationship between these systems, but
also provides a function relating the two. Thus, predictions can be
made based on this function when information about one of the
systems is not available.

5. CONCLUSIONS

We built our model on the bumblebee’s complex maneuvres
performed during learning flights. These flights are convoluted
and are significantly different from the flights shown by
bumblebees crossing a cluttered environment (Srinivasan, 2011),
for example. The saccadic flight and gaze strategy at high
temporal frequencies and high velocity is observed in multiple
species. Flies or honeybees, for example, perform saccades similar
to bumblebees. Flies’ saccades tend to be slightly faster ( 5000◦/s)
than the ones of bumblebees (Van Hateren and Schilstra, 1999a;
Braun et al., 2012). In contrast swimming seals turn their head
with an angular velocity of only up to 100◦/s in a saccadic
manner (Geurten et al., 2017). Our saccade-intersaccade classifier
based on the thorax angular velocity of bumblebees is likely
to require retraining before being applied to other species.
Nonetheless, because precise predictions could be made despite
the complexity of the learning flights, it is likely that the presented
methods can be adapted and extended to evaluate data from
different animals.

Similarly to the classifier, our method to study the
orchestration of movements of different body parts can be
used to study movements of different animals, but the resulting
trained networks are likely usable only for closely related
datasets. It would, therefore, be of interest to apply this
method to different species and behavioral assays to test its
broader applicability.
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Many animals establish, learn and optimize routes between locations to commute

efficiently. One step in understanding route following is defining measures of similarities

between the paths taken by the animals. Paths have commonly been compared

by using several descriptors (e.g., the speed, distance traveled, or the amount of

meandering) or were visually classified into categories by the experimenters. However,

similar quantities obtained from such descriptors do not guarantee similar paths, and

qualitative classification by experimenters is prone to observer biases. Here we propose

a novel method to classify paths based on their similarity with different distance functions

and clustering algorithms based on the trajectories of bumblebees flying through a

cluttered environment. We established a method based on two distance functions

(Dynamic Time Warping and Fréchet Distance). For all combinations of trajectories,

the distance was calculated with each measure. Based on these distance values, we

grouped similar trajectories by applying the Monte Carlo Reference-Based Consensus

Clustering algorithm. Our procedure provides new options for trajectory analysis based

on path similarities in a variety of experimental paradigms.

Keywords: bumblebee, clustering, route, classification, clutter, navigation

1. INTRODUCTION

Finding a location in an unknown environment can be a daunting time- and energy-demanding
task. In contrast, returning to a known location is much easier than finding it for the first time.
To return to an already known location, animals and artificial agents alike can move along
habitual routes. Forming and following of routes has been observed in numerous taxa; from insects
(Lihoreau et al., 2011; Woodgate et al., 2016; Buatois and Lihoreau, 2016; Woodgate et al., 2017)
to mammals (Hurlebaus et al., 2008; Pfeiffer and Foster, 2013); thus, it is a wide-spread strategy to
navigate in a familiar environment. Despite the large number of taxa following routes, it remains
little understood how routes are established and followed.

Thanks to the rise of miniature embedded tracking devices (Nagy et al., 2010; Genzel et al.,
2018; Greif and Yovel, 2019), and high-throughput computational methods, tracks of individual
animals in various natural habitats (Graving et al., 2019) have become more wide spread in recent
years. With this expanding collection of paths gathered by scientists, there is a growing need for
efficient data-analysis pipelines to identify, classify, and compare different paths across taxa, species,
or individuals.

There is a distinction to be made between an animal’s path and a route. A path specifically
describes the animal’s trajectory of movement, while the route can be visualized as a string around
which different paths meander. Depending of the consistency of the paths taken among different
runs, a potential route may not easily be recognizable to an observer. However, when many paths
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are observed and clearly show a common overarching structure,
one may conclude that the animals are following the same route.

To date, different paths were visually grouped into different
routes. However, this may lead to unintentional biases
toward a preferred hypothesis. Alternatively to a qualitative
assessment, one may cluster paths numerically. Paths belonging
to the same route would share similar descriptions, be they
their average speed, their sinuosity, or spatial similarity
among paths. Therefore, we aim at finding descriptions of
paths to group them into common routes. During the last
century, numerous methods comparing two paths have been
developed and refined (see for review Magdy et al., 2015),
yielding similarity measures between paths. Therefore, on
the one hand we will try to cluster paths based on their
characteristics (such as average speed, or positional spread);
on the other we will try to cluster paths based on paths
similarity measures. With both descriptions of paths (flight
characteristics and path similarities) we attempt to identify
clusters in the data.

Numerous techniques have been developed to identify clusters
in data. Many clustering techniques require to choose the
number of clusters beforehand. Others address this problem by
using metrics to determine an appropriate number of cluster
[e.g., Monti consensus clustering, (Senbabaoğlu et al., 2014),
Non-negative Matrix Factorization (Lee and Seung, 2001) or k-
means with Ward cost function (Braun et al., 2010)]. Such
algorithm may however bias the results toward higher or lower
number of clusters. A novel method, named Monte Carlo
reference-based consensus clustering (M3C), allows to cluster
the data and determine the number of clusters from the data
while avoiding a bias toward a higher number of clusters
(John et al., 2020). This is performed by statistically testing a
given number of clusters against the null hypothesis of having
only one cluster.

We propose to combine a clustering algorithm (here M3C)
and a number of features describing paths, be it flight
characteristics (e.g., average speed) or similarity measures, to
identify potential routes followed by animals. To illustrate this
combination, we use behavioral data of bumblebees, Bombus
terrestris, known for their route following skills (Lihoreau
et al., 2011), flying through a heavily cluttered environment.
We compare the trajectories of bees through an obstacle
parkour by using two similarity measures [Dynamic Time
Warping (Salvador and Chan, 2004) and Fréchet distance
(Fréchet, 1906; Magdy et al., 2015)], derive the number
of potential routes and associate the individual trajectories
to their corresponding route by using the M3C clustering
algorithm. Furthermore, we classify trajectories based on
flight characteristics, such as the average speed, to assess
whether several characteristics are sufficient descriptors to
identify routes from paths. The clustering algorithm may yield
ambiguous results. We complemented the clustering outcomes
with a method to visualize high dimensional data. Such
visualization allow to disambiguate between different clustering
outcomes. Finally, we discuss the potential use of alternative
similarity measures and how to place novel trajectories into an
existing classification.

2. MATERIALS AND METHODS

2.1. Data Acquisition
2.1.1. Animal and Hive
We used two healthy hives of Bombus terrestris provided by
Koppert B.V., The Netherlands. Bumblebees were transferred
into a 30 × 30 × 30 cm3 acrylic box. Inside the hive box,
bumblebees were provided with pollen. Before starting the
experiment, the bumblebees got 1 week of habituation time
to access the foraging chamber at any time. In the foraging
chamber, bumblebees were provided with feeders containing
sucrose solution (0.5kg/L). After habituation, we could usually
observe bumblebees flying in a direct manner between foraging
chamber and hive. These bees, likely to be foragers, were marked
to track their individual learning progress. To this end, the
animals were captured and restrained on their way back to the
hive. A small colored plastic tag was fixed with resin on the
animals’ thorax. After themarking procedure, the bumblebee was
placed close to the hive entrance.

2.1.2. Procedure
The habituated bees were allowed to travel through a foraging
tunnel (140 × 30 × 30 cm3) connected to the hive box and a
foraging chamber via 2.5 cm diameter tubes and acrylic boxes
(see Figure 1). The walls of the tunnel were covered with a red
and white 1/f noise pattern (as in (Ravi et al., 2019)). When
an individually marked bumblebee returned from the foraging
chamber, it was rerouted by using small acrylic gates into an
experimental tunnel, parallel to the foraging tunnel. Only one bee
at a time was permitted to cross the experimental tunnel.

The experimental tunnel, used for individual training and
recording, contained 49 vertical objects (29.5 × 1 cm2)
suspended from the ceiling and creating a cluttered environment.
The objects were made of red acrylic that blocks light below a
wavelength of 650 nm. Objects were placed as in Figure 1. Five
cameras (Basler acA2040-90umNIR) with red filters (Heliopan
RG715) viewed the tunnel from different perspectives, and
allowed recording the bee’s behavior.

A recording started as soon as the bee crossed the infrared-
light barriers placed before to the tunnel entrance, and stopped
as soon as the bee crossed the light barriers after the tunnel exit.
While recording, the tunnel was illuminated from below by light
filtered through 650 nm cutoff low-pass acrylic, so that the objects
were transparent for the cameras but were perceived as dark by
the bumblebees (Dyer et al., 2008).

2.1.3. Trajectories
Inbound flights of individually marked bumblebees were
recorded while they were flying through the clutter. The
calibrated cameras recorded at 60 frames per second. Each
bumblebee was recorded ten times. The frame-wise position of
the recorded bee was triangulated using flydra (Straw et al., 2011).

Afterwards, the trajectories were manually reviewed to check
for possible errors. Only trajectories after the fifth trial were
considered. In addition, since the setup was invariant along
the altitude (i.e., the z-dimension), we reduced the trajectories
to their planar projection. We selected trajectories during
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FIGURE 1 | Experimental setup shown from above. The hives were kept in an

acrylic box shown on the left. Bees were allowed to forage on sucrose solution

in the foraging chamber (to the right, not shown), which could be reached by

traveling through a tube and tunnel (top) system. Marked foragers could, upon

exiting the foraging chamber, be re-directed into the experimental tunnel

(bottom), where 49 vertical objects form a complex cluttered environment,

which they had to cross to return to their hive.

which bees entered, swiftly crossed, and exited the tunnel. We
used a total of 83 trajectories from 27 different individuals
(see Figure 2).

2.2. Path Clustering
Our aim was to group trajectories into distinct routes. The
trajectories were not directly grouped to each other based
on the time course of their x,y coordinates, but reduced
to a certain number of features, be it flight characteristics
(e.g., average speed) or similarity measures (see section 2.2.2
below). This grouping is akin to the problem of identifying
clusters, where each cluster of trajectories would correspond
to a route.

2.2.1. Flight Characteristics
Along a given route, the bee may fly slower than along another
route, because for example obstacles might be closer to the
bee Baird et al. (2005). The bee may also decide to follow one
wall of the tunnel or to center in it (Serres et al., 2008). Thus
the maximal, average, and standard deviation of lateral position
may be good predictors of a route. Finally the average and
standard deviation of the gaze direction, as well as the traveled
distance divided by the shortest distance between the start and
the end of the bee’s path (i.e., the sinuosity), inform about the
overall flight direction and how much the bee meandered in
the clutter.

Seven flight characteristics were used to describe each
bumblebee’s flight trajectory: the average speed µs, the lateral
position µy of the average trajectory, gaze direction µα in the
tunnel, the standard deviation of the lateral position σy and of
the gaze direction σα , the maximal lateral position max(y), and
the sinuosity.

2.2.2. Path Similarity
Our secondmethod to describe each path was based on similarity
measures of their structure. Several functions can evaluate the
similarity between two trajectories (Magdy et al., 2015; Su et al.,

2020). These functions yield a distance which is the inverse of the
similarity between the two trajectories.

Since animals may meander differently along a route,
the selected similarity measures between paths must take
into account divergent path lengths and keep the traversed
locations ordered along time. We considered two measures:
a variant of Dynamic Time Warping (DTW) and the Fréchet
distance. DTW minimizes the sum of absolute differences
between two trajectories, whereas Fréchet identifies the
shortest distance between two trajectories that is sufficient to
connect points along the trajectories. DTW and Fréchet thus
capture different similarities between trajectories, and can be
regarded as a global and local measures, respectively (see also
Supplementary Figure 1).

The two distance functions required numerous computations,
because they iterated through individual observations for each
trajectory pair. To reduce the computational cost for the
similarity measures, we re-sampled the trajectories as follows:
The trajectories were interpolated and afterwards down-sampled
to achieve equal distances between neighboring points, in order
to keep the shape of the trajectory. The distance between the
points was the median speed across all trajectories.

2.2.2.1. Dynamic Time Warping and FastDTW
Dynamic Time Warping (DTW) was one of the similarity
measures between two temporal sequences, here two trajectories
(Salvador and Chan, 2004). To illustrate this measure, we may
picture two strings with knots laid flat on a table. Our goal is
then to connect the knots from one of the strings to the other
one using the minimum amount of connecting materials. The
connections are not allowed to cross each other, we try to make
them as short as possible, and the first knots on the each of the
strings are connected to each other. DTW is an algorithm that
finds such connections between the strings. In our case, the knots
are the observed bee’s positions, and the strings are the time axes
of the trajectories (see also Supplementary Figure 1). Therefore,
DTW captured similarities by working on the full paths (i.e.,
global measure of path similarity).

The computational demands for this function scaled
quadratically with the length of the trajectories and was therefore
inefficient to use with long trajectories. FastDTW linearly
approximates DTW by using a multi-level approach that
recursively projects a solution from a reduced resolution and
then refines the projected solution (Salvador and Chan, 2007).

2.2.2.2. Fréchet Distance
The Fréchet distance is a spatial similarity measure that can be
best described intuitively as a person walking a dog (Fréchet,
1906). They are connected by a retractable leash and are walking
on different paths. Assuming that both the person and the dog
are allowed to travel with different speeds, but are not allowed to
backtrack their path, the Fréchet distance describes the minimal
length the leash would need to have to connect both throughout
their journey (see also Supplementary Figure 1). Therefore,
Fréchet captured similarities with an extremum function (i.e., a
local measure of path similarity). It took into account the location
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FIGURE 2 | Overview of the trajectories (A) and their descriptions, path similarity (B) and flight characteristics (C). (A) Top view of all unclassified trajectories that were

used. (B) Heatmap of normalized distance values of both similarity measures (DTW and Fréchet), where the columns represent the trajectories, and the rows the

respective paired trajectories for both measures. (C) Heatmap of normalized flight characteristic values. The columns represent the trajectories and the rows depict

the flight characteristic values.

of points, as well as their order, but did not shift points along their
time axis.

2.2.3. Monte Carlo Reference-Based Consensus

Clustering Algorithm
We clustered the path descriptions (either flight characteristics
or path similarity) by using the Monte Carlo Reference-based
Consensus Clustering algorithm (henceforth called “M3C”).
M3C solves a common problem of selecting a suitable number
of clusters and also introduces formal hypothesis testing, by
generating random data to get an estimate of a random
Gaussian distribution.

M3C runs the clustering algorithm multiple times, for each
number of clusterK, resulting in potentially different partitioning
of the data. A consensus is created based on the different runs
(Vega-Pons and Ruiz-Shulcloper, 2011). M3C builds a consensus
matrix showing the probability of two samples being part of
the same clusters. A very high and a very low probability
indicate a small ambiguity whether the cluster allocation is
correct. The consensus matrix is used to create the cumulative

distribution function (CDF) curve. An ideal CDF curve has
a flat shape, because ideally only very small and very high
probabilities are noted in the consensus matrix. A proportion
of ambiguous clustering (PAC) can be derived from the CDF
curve. The PAC score quantified the ambiguity of cluster
assignments between clustering runs based on the cumulative
distribution function (CDF) of the consensus matrix (see
Supplementary Figures 3A,B, Figures 1B,C in John et al., 2020).

The lower left portion of the CDF curve represents sample
pairs that are rarely clustered together, and the upper right
part represents those that are almost always clustered together,
whereas the middle segment represents sample pairs with
ambiguous assignments in different clustering runs. The PAC-
score quantified the middle segment of the CDF curve. It
was defined as the fraction of sample pairs with consensus
indices falling in an interval between U1 and U2, where U1

is a value close to 0, and U2 a value close to 1 (usually 0.1
and 0.9). Thus, a low PAC-score and therefore a flat middle
segment indicated a low rate of discordant assignments across
clustering runs.
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Furthermore, M3C assessed whether the PAC score for a given
number of K is significantly lower than that for a single cluster
K = 1. M3C simulated data sets to get null distributions of PAC
scores for K = 1 and tested the following hypothesis.

H0: the PAC score does come from a single Gaussian cluster
The alternative hypothesis was:
HA: the PAC score does not come from a single Gaussian cluster

This hypothesis testing was done for each K (here ranging from
2 to 10 routes) and thus provided a p-value for each K. When
a PAC score was at a low local minimum and its associated p-
value is below 0.05, the path descriptions significantly clustered,
indicating distinct group of paths (i.e., routes).

The procedure to decide on a suitable number of clusters
was not unambiguous. Indeed more than one K may have a low
PAC score associated with a p-value below 0.05. To disambiguate
between two K we visualized the cluster by projecting the data (a
high dimensional space) using t-distributed stochastic neighbor
embedding (t-SNE) on a 2D space. After projection, clusters
become visible and may allow to visually disambiguate between
clustering outcomes.

2.2.4. Comparison of Path Clustering
Our method used a free parameter: the re-sampling coefficient.
We investigated the effect of the free parameter for a range of
speeds s ∈ [2, 11] mm/frame. The choice of the re-sampling
coefficient may change the clusters of trajectories. Therefore,
we reran our clustering algorithm with different coefficients.
We, then, compared the clustering results from the re-sampling
coefficient s 6= 6 mm/frame to the one with s = 6 mm/frame.

The clustering results were compared by building a confusion
matrix with the reference being s = 6 mm/frame as follows. A
given pair of trajectories (A and B) belonged to the same cluster
when trajectories were re-sampled with s = 6 mm/frame and
also when the trajectories were re-sampled with s 6= 6mm/frame.
Hence, we had a true positive. Similarly, two trajectories (A and
C) did not belong to the same cluster with both re-sampling
coefficients. Thus, we had a true negative. Additionally, when
two trajectories (A and D) belonged to the same cluster with the
reference re-sampling (resp. the tested re-sampling) coefficient
but did not with the tested re-sampling (resp. reference re-
sampling) coefficient, we had a false negative (resp. false positive).

We used a precision score from the confusion matrix derived
from whether pairs of trajectories clustered or did not cluster
together. The precision score was the amount of true positives
divided by the sum of the true positives and false positives.

The resulting precision scoremay be due to chance. Therefore,
to interpret the precision scores statistically, we simulated 100
random clustering results. We randomly assigned trajectories
to a given cluster (from two to ten clusters). We calculated
the precision score for the 100 random clustering T and
derived from their distribution the probability that our observed
precision score (or a higher score) t came from this distribution
p = P(T ≥ t|H). In this case, the distribution served
as null hypothesis, where the critical value for α = 0.05
can be inferred from the precision score value at the 95th
percentile of the distribution. Consequently, the p-value for our
observed precision score was determined by the cumulative

probability of all values beyond that point, i.e., the area
under the graph between the 95th and 100th percentile of
the distribution.

3. RESULTS

We proposed a method to identify routes based on quantitative
descriptions of individual trajectories. To illustrate our
method, we used paths from bumblebees flying in a cluttered
environment. Our procedure consisted of four steps:

1. Describing the trajectory: path similarity or flight
characteristics

2. Deriving the number of routes
3. Validation of route number
4. Visualization of the routes.

3.1. Describing the Trajectories of
Bumblebees
We described the bumblebees’ paths (Figure 2A) by first using
flight characteristics. Each trajectory is thus described by seven
values. We observed that some trajectories share multiple
characteristics and thus may form clusters of paths (Figure 2C).

Second, we described the bumblebees’ paths by using path
similarities. We used two measures Fréchet distance and DTW
on 83 trajectories. Each trajectory is thus described by 83 values
for each measure. The path distances contain two diagonals with
zeros. These values correspond to the similarity of each trajectory
with itself. Blocks of similar values are present, thus potentially
different clusters (Figure 2B).

These two descriptions will be independently fed to the
M3C algorithm.

3.2. Determining a Significant Number of
Routes
When looking at bees’ trajectories in the clutter, it seems that
paths visually cluster along specific “routes” (Figure 2). Using
our descriptions of trajectories (flight characteristics or path
similarities) we applied the M3C algorithm to identify groups of
trajectories belonging to the same route.

When using flight characteristics, we found that two clusters
(K = 2) have a local minimum PAC-score and are significant.
When using DTW, Fréchet, or both path similarity measures,
we observed local minima of the PAC-score, at K = 2, at
K = 4, and at K = 2 and K = 4, respectively (for
single measure, see Supplementary Figure 2, for both measures,
see Figure 3). Furthermore, the p-values for these numbers of
clusters are below 0.05.

Thus, we found a significant number of clusters of trajectories
described by either flight characteristics or path similarities.
We have therefore different potential clustering outcomes.
To disambiguate between them we will visualize the clusters
with t-SNE.

3.3. Visualization of Clusters
We have grouped the trajectories of bumblebees into similar
routes by using the M3C method, yielding high dimensional
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FIGURE 3 | Output from the M3C algorithm based on similarity measures (left) and flight characteristics (right). (A) PAC-scores (Proportion of Ambiguous Clustering)

of different number of clusters (K) for similarity measures. (B) p-values of different numbers of clusters (K) for similarity measures. The red dotted line indicates the 0.05

significance level, where points (plotted in red) reach the significance level and points below the line (plotted in black) do not. (C) PAC-scores of different numbers of

clusters (K) for flight characteristics. (D) p-values of different numbers of clusters (K) for flight characteristics. The red dotted line indicates the 0.05 significance level,

where points (plotted in red) reach the significance level and points below the line (plotted in black) do not.

data. To visualize such high dimensional data, they can be
projected onto a 2D space by using linear (e.g., Principal
Component Analysis) or non-linear projection (e.g., t-distributed
stochastic neighboring embedding: t-SNE). Here, we used t-
SNE to visualize the two path similarity measures (a 166D
space) and the flight characteristics (a 7D space) in a 2D space,
respectively. The data points are then labeled according to
their corresponding clusters derived from the M3C. The path
similarities projected onto a 2D space formed four clusters
matching the clusters derived from the M3C (Figure 4C).
In contrast, the projection of the flight characteristics in a
2D space does not form such distinct and spatially apart
clusters (Figure 4D). One may observe two clusters, but
one of them contains points associated to the two routes,
hence the clustering outcome is not validated by t-SNE.
Visualization with t-SNE indicated K = 4 but not K =

2 clusters as the M3C for the path similarities and flight
characteristics, respectively.

Interestingly, the clustering outcome with K = 4 resulted
in a split of one of two clusters with K = 2. The partitioning
of the cluster was thus conserved between K = 2 and K = 4
(see Supplementary Figure 5).

3.4. Visualization of Routes
The last step of our method is to visualize the labeled paths
and an average route representing the derived route structure.
We plotted each cluster of trajectories, based on flight similarity.
We can see that the trajectories assigned to each cluster are
spatially closer to one another than to those of the other derived
routes (Figure 4A). When visualizing the routes obtained from
clustering based on flight characteristics (Figure 4B), the second
cluster contains dissimilar paths. Overall, the trajectories grouped
based on path similarity form visually coherent groups. The same
is not true for the grouping based on flight characteristics.

3.5. Effect of Re-sampling Trajectories
We re-sampled our trajectories to reduce the computational
demand while preserving the shape of the trajectories by using a
constant traveling speed (re-sampling coefficient). Nevertheless,
the re-sampling may impact the classification results. To
assess the impact of the re-sampling coefficient, we performed
clustering for different re-sampling coefficients.

We classified pairs of trajectories for two classification
methods (reference s = 6 mm/frame and alternative re-sampling
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FIGURE 4 | Comparison of classified trajectories between similarity measures and flight characteristics. The four different colors represent the different clusters. (A)

Top view of all trajectories classified with similarity measures. In each subplot, the trajectories belonging to their respective route are plotted, as well as their average

trajectory (in a thicker line). In addition, for each other route, the averaged trajectory is added with a lower opacity. (B) Top view of all trajectories classified with flight

characteristics. In each subplot, the trajectories belonging to their respective route are plotted, as well as their average trajectory (in a thicker line). In addition, for each

other route, the averaged trajectory is added with a lower opacity. (C,D) Visualization of M3C clustering with t-SNE (t-distributed stochastic neighboring embedding).

(C) t-SNE plot of trajectories classified by using similarity measures. (D) t-SNE plot of trajectories, classified by using flight characteristics.

s 6= 6 mm/frame). By building a confusion matrix from this
classification, we derived the precision of the alternative re-
sampling. A precision of one means that pairs of trajectories are
sorted in the same manner for both the ground truth and the
alternative re-sampling.

We observe that the precision is close to 1 across the tested
range of re-sampling parameters (Figure 5), especially for K = 4
clusters, the chosen reference number of clusters. However, this
precision score may have been obtained by chance. Therefore,
we statistically test how likely the precision comes from a
random clustering of paths. We observe that the simulated
precision scores are distinctly below our tested precision scores

(Supplementary Figure 6). Thus, the precision scores obtained
from the different re-sampling parameters, are significantly
different from a random clustering of trajectories. Since the
precision scores are close to 1 and significantly different from
random clustering, the re-sampling parameters do not strongly
impact the classification results.

4. DISCUSSION

We developed a quantitative method to derive routes from
groups of trajectories. The number of potential routes was
chosen based on the proportion of ambiguous clusters and
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FIGURE 5 | Effect of different re-sampling coefficients on the precision score.

For each re-sampling coefficient (x-axis), the precision score for each possible

number of clusters was tested. K = 6 serves as a reference (truth values) for

the other re-sampling coefficients.

statistical tests assessing the plausibility of multiple routes
among our collection of trajectories. We described trajectories
and then clustered them based on their descriptors using
Monte Carlo Reference-based Consensus Clustering (John et al.,
2020). Path similarity measures (DTW and Fréchet measures)
yielded meaningful clusters of trajectories (i.e., routes). In
contrast, clustering results based on DTW or Fréchet similarity
measures alone were not validated by the t-SNE visualization
(Supplementary Figure 2). The samewas observed for clustering
based on flight characteristics (e.g., average speed, and average
lateral position). Concluding only on the result of M3C may
lead to ambiguous results, as a low PAC-score and a rejection
of the null hypothesis (i.e., having only one cluster) may be
found for different numbers of clusters. By using M3C on
two path similarity measures and visualizing the results with t-
SNE, we could determine a potential number of routes in the
trajectories of bees.

Computing the path similarity between a pair of trajectories is
time consuming. The complexity of the algorithm often grows as
a product of the length of the two trajectories (L1 and L2). Since
we calculated the similarities between all pairs of Nt trajectories
of average length L̃, the complexity was in the order of (L̃ ×

Nt)
2. We reduced the computational demand by re-sampling

every trajectory to lower the number of observations. The re-
sampling parameter in our tested range did not strongly affect
the resulting classifications.

4.1. Alternative Uses of our Approach
The bees in the cluttered environments flew from one end of
the tunnel to the other. Our method already takes the distance
between the first observations between two paths into account
when computing similarity measures (due to a property of
DTW). However, in nature, animals will travel between two
locations in both directions. The route followed by the animal
may differ between an inbound and outbound journey (as was
observed in ants, Kohler and Wehner, 2005). Comparing an
inbound path with an outbound path withoutmirroring, will lead
to different routes, even if the paths visually overlay in space.
Clustering the animal’s inbound and outbound journey requires
to mirror either the inbound or outbound paths so that they start
at the same location.

In addition, in nature animals may slightly deviate from their
route, for example by being pushed by a gust of wind (Riley et al.,
1999; Wystrach and Schwarz, 2013; Ravi et al., 2016). The larger
the deviations are, the smaller the similarities between paths
become. Thus it may lead to classifications of such trajectories
into different routes. Using partial match measures such as the
LCSS distance (see Su et al., 2020 for review) lower the risk of
classifying several disturbed trajectories belonging to the same
route into different routes.

4.2. Associating Novel Trajectories to
Clusters
Understanding the underlying mechanisms driving animals
through their environment often involves building a model of
the perception-behavior loop and simulating an agent moving
in the environment. However, when the originally observed
trajectories are inherently variable (e.g., Lobecke et al., 2018), it
becomes difficult to assess whether an artificial agent mimics,
at least to some extent, the animal’s behavior. Furthermore,
simulated trajectories might differ between runs (for example due
to intrinsic noise in the model, e.g., Bertrand et al., 2015; Le Möel
and Wystrach, 2020), which might differ to some extent from
the animal’s behavior. For a route-following agent, one would be
satisfied, if the same number of routes can be derived from the
agent’s trajectories, as were derived from the animal’s trajectories.
Our clustering method can be used to address these aspects.
First, as we did here, routes can be extracted from a collection of
experimentally observed trajectories. Second, the same procedure
can be applied on modeled trajectories to assess whether the
descriptions of these simulated trajectories also cluster into the
same routes as the experimentally determined trajectories. Third,
we can map the trajectories of the modeled agent to the cluster of
the animal’s trajectories (or vice versa). Indeed, our method relies
on a classifier (e.g., partition around medoids) using trajectory
similarities. By calculating the similarity between an agent’s
trajectory (or any novel trajectory) and those of an animal, the
agent’s trajectory becomes a point in the input space of the
classifier. Thus, we can assign it to one of the clusters, i.e., one
of the routes of the animals. Therefore, we can compare an agent
path with the behavior by using our method.

4.3. Clustering Trajectories of Non-route
Following Behaviors
We developed our method to derive routes from trajectories.
However, we can extend it to trajectories that do not form routes.
For example, animals may steer in a given direction to go away
from a food source and hide its collected reward (e.g., dung
beetle, Dacke et al., 2013), move in a convoluted manners to
avoid a predator or chase prey (Boeddeker et al., 2003; Kane
and Zamani, 2014; Wardill et al., 2017) or perform complex
search behavior when searching for home (Doussot et al., 2020;
Schultheiss et al., 2015). In these examples, the animals are
not following a route. However, one may be interested in the
similarities between trajectories. One may seek to statistically
group the runs of multiple dung beetles or the convoluted paths
of chasing flies. The series of turns may be more important
than the actual position of the animal when comparing such
trajectories. Instead of using position based similarity measures
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(such as DTW and Fréchet), one may use similarity measures
based on the direction of movements of the animals (e.g., SPADE,
Chen et al., 2007).

Taken together, by combining trajectory similarities and a
clustering approachwithout knowledge of the number of clusters,
common path structures between the trajectories of walking,
flying or swimming animals can be identified. We illustrated
our method by using flights of bumblebees in cluttered terrain
and could extract four common routes. Trajectory classification
has applications in several fields (Wang et al., 2020) and is an
opportunity to identify common strategies in animal behavior,
from maintaining a given direction to following routes, or
chasing prey.
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Future anthropogenic climate change is predicted to impact sensory-driven behaviors.

Building on recent improvements in computational power and tracking technology, we

have developed a versatile climate-controlled wind tunnel system, in which to study

the effect of climate parameters, including temperature, precipitation, and elevated

greenhouse gas levels, on odor-mediated behaviors in insects. To establish a baseline for

future studies, we here analyzed the host-seeking behavior of the major malaria vector

mosquito, Anopheles gambiae sensu strico, to human odor and carbon dioxide (CO2),

under tightly controlled climatic conditions, and isolated from potential background

contamination by the presence of an experimenter. When presented with a combination

of human foot odor and CO2 (case study I), mosquitoes engaged in faster crosswind

flight, spent more time in the filamentous odor plume and targeted the odor source more

successfully. In contrast, female An. gambiae s. s. presented with different concentrations

of CO2 alone, did not display host-seeking behavior (case study II). These observations

support previous findings on the role of human host-associated cues in host seeking

and confirm the role of CO2 as a synergist, but not a host-seeking cue on its own. Future

studies are aimed at investigating the effect of climate change on odor-mediated behavior

in mosquitoes and other insects. Moreover, the system will be used to investigate

detection and processing of olfactory information in various behavioral contexts, by

providing a fine-scale analysis of flight behavior.

Keywords: Anopheles gambiae, host seeking, 3D tracking, carbon dioxide, olfaction, human odor, behavior

INTRODUCTION

Insects integrate cues of multiple sensory modalities to navigate in their environment in order
to locate suitable food sources, mating partners, or oviposition sites (Buehlmann et al., 2020).
Understanding insect flight behavior in response to their variable olfactory environment requires
an experimental system that is able to mimic the required climatic conditions in a precise manner,
while facilitating easy presentation of cues, observation, and analysis of flight behavior in detail. The
versatile climate chamber and wind tunnel system presented in this study provides these features,
and also facilitates tracking insect flight in 3 dimensions (3D).

Female mosquitoes rely predominantly on odors to find a blood meal, especially at longer
distances from the host, while also using visual and thermal cues when nearing the target (Takken
and Knols, 1999; Cardé, 2015; Raji and DeGennaro, 2017). Our understanding of host-seeking
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behavior in mosquitoes has expanded substantially due to
advancements in video capture, tracking technology and
computational power (Anderson and Perona, 2014; Spitzen
and Takken, 2018; Manoukis and Collier, 2019). In the recent
past, tracking mosquito behavior has allowed for analyses in
greater detail, and provided new levels of understanding in host-
seeking strategies, the different sensory cues involved and their
integration (Dekker and Cardé, 2011; Lacey and Cardé, 2011;
Lacey et al., 2014; McMeniman et al., 2014; van Breugel et al.,
2015; Hawkes andGibson, 2016).Moreover, behavioral responses
to mosquito vector control tools that are targeting host-seeking
behavior, such as insecticide-treated bed nets and baited traps,
have been analyzed to improve their efficiency (Cooperband
and Cardé, 2006; Spitzen et al., 2014; Parker et al., 2015, 2017;
Angarita-Jaimes et al., 2016; Cribellier et al., 2018, 2020; Amos
et al., 2020).

Based on tracking studies and behavioral observations, the
long-range flight strategy of female anthropophilic mosquitoes,
such as the African malaria vector, Anopheles gambiae sensu
lato, and the yellow fever mosquito, Aedes aegypti, in response
to human host odors has been characterized as “cast and
surge,” in which mosquitoes surge upwind upon contact with
an odor-laden filament of air and perform crosswind flight
if the trace is lost (Cardé and Willis, 2008; Dekker and
Cardé, 2011; Spitzen et al., 2013). At intermediate distances,
gated by the encounter of human-emanated carbon dioxide
(CO2) and body odors, mosquitoes approach high-contrast
visual features (van Breugel et al., 2015; Hawkes and Gibson,
2016) and initiate landing in the presence of short-range host
cues, such as body heat and humidity (McMeniman et al.,
2014). While these basic characteristics are common to all
host-seeking mosquito species, details, such as the relative
importance of the respective cues, differ in respect to, e.g.,
host preference and daily flight activity patterns (Cooperband
and Cardé, 2006; Dekker and Cardé, 2011; Spitzen et al.,
2013; Hawkes and Gibson, 2016). In An. gambiae, for instance,
the role of CO2 in regulating host seeking is controversial.
While some studies found CO2 on its own to be a host-
seeking cue, eliciting activation, orientation, or both (Healy
and Copland, 1995; Lorenz et al., 2013), others did not find
such an effect (de Jong and Knols, 1995; Takken et al., 1997;
Spitzen et al., 2008). This discrepancy can partially be explained
by differences in behavioral assays used and the mode of
presentation of CO2, but also contamination by odors from an
experimenter cannot be excluded in some studies (Webster et al.,
2015).

The improved wind tunnel system presented in this study
is equipped with a highly-versatile automated climate-control
that allows us to analyse the odor-mediated anemotaxis of
An. gambiae sensu stricto in response to human host odors
under stable and precise climatic conditions, while reducing
background odors to aminimum. The case studies presented here
investigate the role of human host cues in An. gambiae s. s. host
seeking. Case study I confirms that, when presented with a salient
odor, i.e., a combination of human odor and CO2, mosquitoes
spend more time in the filamentous odor plume, engage in faster
crosswind flight maneuvers and find the source more reliably.

Case study II supports previous findings that An. gambiae s. s.
likely does not use CO2 on its own as a cue in host seeking.

MATERIALS AND METHODS

Wind-Tunnel System
Hardware: Air Treatment, Climate Chamber, Wind

Tunnel
Air for the wind-tunnel system was supplied from the ventilation
system of the building, pre-filtered, with a low, constant pressure
and a temperature of 20–22◦C. Airflow within the wind tunnel
system was regulated by two circular duct fans (F2: K 315
sileo, F3: KV 315 sileo; Systemair, Skinnskatteberg, Sweden) and
a mechanical flow control valve (BDEP-4-025-1; FläktGroup,
Herne, Germany), equipped with a modulating damper actuator
(LM24A-SR; Belimo, Hinwil, Switzerland) that is adjusted from
the control panel of the wind tunnel (Figure 1; F2 and the flow
control valve are installed on the feeding line before the filter unit
and thus not shown). Incoming air to the wind-tunnel system
was pushed through a Camfil filter unit equipped with a pre-
filter and 16 activated carbon filters (pre-filter: EcoPleat Eco
3GPF ePM1 55% 592x592x48-F7 ISO; carbon filters: CamCarb
CM 2600 GC VOC; ducted filter housing: CamCube HF-CC
1010 1010AZ; Camfil, Stockholm, Sweden) before entering the
mixing unit. In the mixing unit, turbulent intermixing of the
fresh air from the filter unit and recirculating air from the climate
chamber occurs and mixed air is passed into the climate chamber
(Figure 1).

Within the climate chamber (stainless steel, l × w × h:
1,760mm × 2,000mm × 1,570mm; Figure 1), air temperature
and relative humidity (RH) can be adjusted up to 27.0◦C and
70 % RH, respectively, regulated from the control panel. The
lower limits of both parameters are determined by the air fed
into the wind-tunnel system from the ventilation system of the
building.Within the climate chamber, the air is humidified by five
humidifiers (B 1/4 ML-1.5; Spraying Systems Co, Wheaton, IL,
US) that are placed in the zone of recirculating air in the chamber
and fed by the warm water supply of the building (Figure 1B).
Connections for cold water, distilled water and pressurized air
are installed and can be used for future applications, e.g., to adjust
temperature and humidity to values different from those specified
above. The climate chamber with its large inner dimensions is
constructed such that it both facilitates turbulent intermixing of
the air and permits easy servicing, as well as placing of additional
equipment for e.g., raising ozone and CO2 background levels.
The climate chamber is built in a stainless steel tray (fold height
20mm) and placed on a waterproofing membrane (Biltema,
Helsingborg, Sweden) to protect the floor from humidity.
Climate chamber walls are thermally insulated with styrofoam
(thickness 40mm) and covered with a waterproofing membrane.
The recirculating duct, which is constantly passing a part of
the warm, humidified air from the climate chamber back to the
mixing unit (Figure 1B), is equipped with an in-line duct fan
(F1: KV 315 sileo; Systemair) and a circular electric duct heater
(H1: CV25-60-M; VEAB Heat Tech AB, Hässleholm, Sweden),
regulated by the control panel. The climate chamber and the
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FIGURE 1 | Schematic of the wind tunnel system (A) and climate chamber (B). Incoming air (blue) is filtered in the filter unit and passed on to the mixing unit where it

is mixed with warm air (red) from the recirculating duct. In the climate chamber, the air is humidified by five humidifiers (three shown) and passed on through an

equalizer toward the pre-chamber and flight arena. Both pre-chamber and flight arena can be accessed by doors. Air is removed by the exhaust. F1 and F3 indicate

the fans and H1 the heater. F2 and the flow control valve are placed on the feeding line to the wind tunnel system and thus not shown.

majority of other parts are made from stainless steel, except fans,
filter house and heater.

From the climate chamber to the pre-chamber and flight
arena, the air passes through an equalizer, in which variations
in temperature, humidity, and speed of the airflow are stabilized
(6 perforated metal sheet units; 1,000mm × 600mm × 600mm;
Figure 1A). The near-laminar airflow entering the pre-chamber
and flight arena is stable in temperature, RH, and speed (methods
see below; Figure 2). Within the pre-chamber (600mm ×

600mm × 600mm), the air passing toward the adjacent flight
arena (2,000mm× 600mm× 600mm) can be manipulated, e.g.,
by introducing an odor source as demonstrated in this study.
The bodies of both chambers are made from black polycarbonate
(thickness 5mm), each covered with a transparent, removable
acrylic glass roof (thickness 6mm). The matt surface of the black
polycarbonate body of the flight arena limits light reflections.
Three doors enable access to the setup with minimal disturbance
to the airflow (Figure 1A). The flight arena is closed off on

both sides by black mosquito netting (mesh size 1.4 × 1.6mm,
plastic-covered fiberglass; Biltema), set in a black metal frame.
Downwind of the wind tunnel, the air exits through an exhaust
equipped with an equalizer unit (3 perforated metal sheet units;
400mm × 610mm × 610mm, placed 280mm away from the
wind tunnel. The airspeed of the exhaust is adjusted to ca.
0.5m s−1, which removes air from both the wind tunnel and the
room in which it is placed.

Control Panel: Airspeed, Temperature and Relative

Humidity
The coarse setting for the air pressure was pre-set upon
installation of the wind tunnel system, where the fans F1, F2,
and F3 were individually adjusted via three five-step transformers
(Systemair 5000, type RE 1.5, Tuvfassons 7886-009; Tuvfassons,
Sigtuna, Sweden; Figure 1). Upon operation of the wind tunnel
system, wind speed can be finely regulated by an airflow damper,
which is operated from the control panel. With the fixed pre-set
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adjustment of F1, F2, and F3, the airspeed can then be adjusted to
up to 0.35 m s−1.

Temperature and RH are controlled via the control panel,
mainly by a custom-programmed PLC unit (Millenium
3 Essential CD20- 12I/8O S 24VDC; Crouzet, Valence,
France; Jörgen Lantz Engineering Consulting Firm;
Supplementary Figure 1). In short, the control panel is
integrating set points, actual values and input of e.g., time of
ventilation and drain flushing, limits for set points and actual
values, conditions for starting the wind tunnel (e.g., air flow from
the building), and the control of the flow adjustment damper.

Upon shutting down the wind tunnel, an ejector drain flush
is automatically activated by the control panel that flushes
remaining water from the climate chamber using pressurized air.
Then, the wind tunnel is dehumidified by running at maximum
speed (0.35m s−1) for 12 h. This removes the remaining water
from the climate chamber and humidity from associated parts of
the setup.

Quantification of Physical Parameters Within the

Flight Arena
Air temperature and RH were quantified using Tinytag Plus 2
TGP-4500 data loggers (Intab, Stenkullen, Sweden), set to 1Hz
sampling rate. Tinytags were arranged in an array (Figure 2A),
and placed 15 cm downwind of the upwind screen. Air speed
was measured using a ThermoAir3 hot wire anemometer
(Schiltknecht Messtechnik AG, Gossau, Switzerland), read every
5 s. The anemometer was placed mid-center in the flight
arena, 15 cm downwind of the upwind screen (Figure 2A).
Air temperature, RH and speed were recorded for an hour
(Figures 2B–D).

Case Studies
Mosquitoes
Anopheles gambiae sensu stricto (G3 strain) were reared as
previously described (Omondi et al., 2015). Adult mosquitoes
were maintained in Bugdorm cages (30× 30× 30 cm; MegaView
Science, Taichung City, Taiwan) at 27 ± 1◦C and 65 ± 5% RH
under a 12 h light: 12 h dark regimen, and provided with 10 %
sucrose ad libitum. For colony maintenance, adult females were
fed on donor sheep blood (Håtunalab, Bro, Sweden) using a
membrane feeding system (Hemotek Ltd, Blackburn, UK). For
oviposition, wet filter papers were provided, and eggs transferred
to larval trays (24 × 18 × 7.5 cm, filled with 2 cm of distilled
water) before hatching. Larvae were fed daily on Tetramin Baby
fish food (Tetra GmbH, Melle, Germany). For experiments,
pupae were collected and transferred to Bugdorm cages (17.5 ×

17.5 × 17.5 cm) prior to eclosion. Experiments were conducted
with non-blood-fed females at 4 days post-eclosion (4 dpe). Prior
to the experiment, females were sugar starved either for 4–16 h
without (case study II), or 15–23 h with ad libitum access to
water (case study I), and then transferred to individual release
cages (ø10 × 7 cm), at least 30min before the start of the
experiment, using a mouth aspirator. Host-seeking females were
pre-selected by placing a gloved hand on the netting of the cage.
All experiments were conducted within the peak activity period
of host seeking, i.e., the first 4 h of the scotophase (e.g., Jones and
Gubbins, 1978).

Flight Arena
Mosquito flight behavior was tracked in the wind tunnel setup
described above (Figures 1A, 3A). The wind tunnel was adjusted
to 27.0◦C and 70% RH, and the wind speed was set to 0.22 m s−1.
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(VOI) are indicated in dark red, whereas positions outside the VOI are in light blue. “Bouncing” at the upwind screen is denoted in gray.

Odor Stimuli
Odor stimuli were delivered from two different devices, a glass
hoop and a metal sock holder, placed within the pre-chamber
of the wind-tunnel system (Figures 3A,B). Carbon dioxide of
either ambient or elevated concentrations (1,200, 2,400, 4,800
ppm) were presented using a glass hoop with equidistant holes
to create a turbulent plume (Dekker et al., 2001), which was
positioned in the pre-chamber, 10 cm upwind of the upwind
screen. For elevated CO2 concentrations, pure, pressurized CO2

(Strandmöllen AB, Ljungby, Sweden) was mixed in different
proportions with carbon-filtered and humidified ambient air
at a resulting flow rate of 1 l min−1. The concentration of
the resulting mix was measured using a LI-820 CO2 analyser

(LICOR Biosciences, Lincoln, NE, US) and adjusted to the
desired concentration± 50 ppm prior to entering the glass hoop.
Compliance to a tolerance interval of ± 200 ppm was confirmed
after each trial, as the pressure of the pure CO2 showed minor
shifts over time. Addition of CO2 did not detectibly increase
the flow rate of the air passing toward the glass hoop (BA-4AR
flow meter; Kytola Instruments, Muurame, Finland). For the
presentation of human foot odor, socks worn by the experimenter
were used, in accordance with previous studies (e.g., Njiru et al.,
2006; Verhulst et al., 2011; Robinson et al., 2018). Black cotton
socks were worn for 19–21 h prior to the experiment, rolled up
and then suspended from a metal hook between the glass hoop
and the upwind screen (Figure 3A). Used socks provided an odor
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source for a maximum of 1 h, and were later washed with a low-
perfumed washing detergent (ICA Skona, Solna, Sweden) before
reuse. Here, cotton socks were chosen over nylon socks, as the
foot odor collected on the former elicited responsiveness from a
higher proportion of mosquitoes (enter the filmed volume; data
not shown).

Odor stimuli presented in case study I were combinations
of either air or 1,200 ppm CO2, and human foot odor or
corresponding controls, i.e., no sock and clean sock. The resulting
treatment combinations were “air/air,” “CO2/air,” “air/clean
sock,” “air/used sock,” and “CO2/used sock.” In case study II,
CO2 on its own was presented at either ambient (400 ppm to 445
ppm), or elevated concentrations (1,200, 2,400, 4,800 ppm). The
order of treatments was randomized over the experimental day.

Experimental Procedure
For each trial, a release cage containing a single female mosquito
was placed at the release point close to the upwind end of
the wind tunnel (Figure 3A). Mosquitoes were exposed to the
odor stimulus during acclimatization to avoid disturbing the
air current and the mosquitoes once the trial started. After an
acclimatization period of 2min, the video recording was started,
and the door of the release cage gently opened. Individuals that
did not enter the filmed volume of the flight arena (Figure 3A,
gray area) within 3min were removed from further analysis.
Flight behavior of responding mosquitoes was recorded until
landing on the upwind screen for at least 5 s, or for up to 10min
of continuous flight. After each trial, the response (“flight,”
“no flight”) and landing site (“upwind screen,” “other,” “not
landing”) was visually observed. Each mosquito was only tested
once. Surgical gloves were worn during the experiment, and
equipment and mosquitoes were handled with great care to avoid
contamination with human odor.

Video Capture and Flight Trajectory Reconstruction
Flight behavior was recorded from above the wind tunnel with
two infrared light (IR) sensitive GigE cameras (acA1300-60gm;
Basler AG, Puchheim, Germany; Figure 3A), equipped with 4.4–
11mm lenses (LMVZ4411; Kowa, Aichi, Japan), at 60 frames
s−1 using Media Recorder 4.0 (Noldus Information Technology,
Wageningen, The Netherlands). Illumination was provided by
six IR arrays (850 nm; VAR2-i2-1 IR illuminators; VAR-i2-
LENS-6025 diffuser lenses; Raytec, Ashington, UK) placed at
the downwind end of the flight arena (Figure 3A). Cameras
recorded the reflection of the IR light on the wings and body
of the mosquito. An LED array, shielded with a paper screen,
at the upwind end of the wind tunnel, provided diffuse visible
white light of low intensity (<1 lux; LX-101 lux meter; Lutron
Electronic Enterprises, Taiwan) for visual orientation of the
mosquito. Cameras were mounted at an angle above the wind
tunnel, resulting in a coverage of the entire volume of the upwind
120 cm of the wind tunnel. A narrow volume at the top of
the upwind screen (triangular intersection, 2.2 × 11.5 cm) was
shielded by the frame holding the netting, where mosquitoes
could only be observed by one camera and therefore not be
tracked in 3D (Figure 3A). Due to the mosquito’s protruding

abdomen and hind legs while sitting, landing could be tracked
except the top 5 cm of the upwind screen (Figures 4E, 5E).

EthoVision XT 14 (Noldus Information Technology) was used
to convert the video files from both cameras to 2D position data.
For all trials, the data was manually inspected during the process
to exclude frames with identification errors. Data was generated
without interpolation of missing samples or smoothing of the
flight path. The 2D position data was then combined into a
3D flight path using Track3D (Noldus Information Technology;
see Spitzen et al., 2013). The system was calibrated using
a customized calibration frame and CentroidFinder software
(Noldus Information Technology) at the start of the experimental
series and if required, i.e., when the daily mean intersection error
exceeded a threshold of 2.0 pixels. The following variables were
calculated by Track3D and used in subsequent analysis: position
in three dimensions (x, y, z), flight speed and heading angle in the
vertical plane.

Analysis of Response Rate and Flight Trajectories
A mosquito was considered responsive if it entered the filmed
volume within 3min. Treatment factor effects were tested using
a binomial generalized linear model (GLM), followed by a
Chi-square test (R, version 3.5.1; R Core Team, 2018). Post-
hoc pairwise comparisons of the treatment combinations were
tested with the “emmeans” package (R), corrected using the
Tukey method.

Obtained 3D trajectory data was processed and analyzed
using customized Matlab (version R2020a; MathWorks, Natick,
MA, US) and R scripts (version 3.5.1). In a first step, the
analysis window of individual trajectories was defined and
frames containing outliers were excluded. The start of the
analysis window was determined by the mosquito entering
the filmed volume, and the end by either the instance of
landing or a maximum flight duration of 10min. Landing
was identified by detecting the time point at which the
mean speed over 60 frames was below a threshold of 50mm
s−1 for three consecutive seconds, which was also confirmed
by visual observation. Landing coordinates were determined
for future analysis. In very few cases, the video recording
was ended before the above criteria were fulfilled, and in
these cases those files were excluded from further analysis.
Data points where the mosquito’s position was <6 cm away
from the upwind screen were excluded from most further
analyses since the physical boundary likely affected mosquito
flight (“bouncing”).

For analyzing mosquito flight in the volume where it may
encounter odor filaments, a volume of interest (VOI) was
defined, and approximated to be a cylinder in space, with a
diameter of 14 cm, centered within the flight arena (Figure 3C),
based on the shape and dimension visualized by smoke paper
(Günther Schaidt SAFEX Chemie GmbH, Tangstedt, Germany;
Supplementary Figure 2). The proportion of flight in the VOI
was calculated by the number of frames with a position within
the VOI divided by the total number of frames. A Dunn Kruskal-
Wallis multiple comparison post-hoc test with Benjamini-
Hochberg correction was used for pairwise comparison between
the treatments (“FSA” package; R, version 3.5.1).
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Crosswind flight was quantified using the mosquito’s heading
angle, which is defined as the angle between the x-axis (direction
of air movement) and the direction of mosquito flight in the
vertical plane, in which 180◦ corresponds to straight upwind
flight. The mean speed of crosswind flight per mosquito was
calculated for heading angles between 90◦ to 120◦ and 240◦

to 270◦. Only flight trajectories that were within the VOI at
least once were considered for analysis. For pairwise comparison
between the treatments, a Benjamini-Hochberg corrected Dunn
Kruskal-Wallis multiple comparison post-hoc test was used.

Mosquito-landing response was analyzed by determining
whether the landing coordinates were within a target area
on the upwind screen. The target area was circular, 15 cm in

diameter and centered downwind of the odor delivery devices.
Treatment factor effect was tested using a binomial GLM and
Chi-square test. For multiple pairwise comparisons between the
treatments, the “emmeans” package was used (corrected using
the Tukey method).

RESULTS

Case Study I—Human Host Cues
Response Rate
Of the 447 mosquitoes tested, 161 responded by entering the
filmed volume within 3min after opening the door of the release
cages. Human host cues had a significant effect on the number of
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mosquitoes responding, in which both factors, CO2 and human
foot odor, and their interaction, contributed significantly to the
observed effect (Chi-square test, p < 0.05). A significantly larger
proportion of mosquitoes (ca. 70%) entered the filmed volume
when exposed to both CO2 and human foot odor in comparison
to all other treatments (p < 0.05; Figure 4A). No significant
differences were observed among the other treatments.

Flight in Volume of Interest
When human host cues were present, mosquitoes spent a larger
proportion of flight within the VOI (p < 0.05; Figure 4B).
The highest proportion of flight within the VOI was elicited
by the combination of CO2 and human foot odor, which was
significantly different from all other treatments except human
foot odor alone (DunnKruskal-Wallis test, p< 0.05). Stimulation
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with either human host cue on its own resulted in a significant
increase of flight inside the VOI in comparison to the air control
(p< 0.05), whereas there was no difference between air and clean
sock control (p= 0.2).

Crosswind Flight
When analyzing the mean speed of mosquito crosswind flight
for mosquitoes that were in contact to the VOI at least once
(Figure 4C), a significant difference between the combination
of both human host cues and air control (Dunn Kruskal-Wallis
test, p = 0.01) and clean sock control (p = 0.01) was detected.
Mosquitoes that were exposed to both CO2 and human foot odor
flew on average 1.3× faster in comparison to the air control.
In addition, there was a tendency of increased crosswind flight
frequency for both the human foot odor and the combination
of human food odor with CO2 for larger distances to the source
when pooling all mosquitoes (Supplementary Figure 3).

Landing and Landing Location
Of the 161 mosquitoes responding to the different treatments,
108 landed within the maximum recording time of 10min. No
significant difference was observed when comparing between
treatments (p > 0.05; Figure 4D). However, the proportion of
mosquitoes landing on target was significantly affected by the
factors CO2 and human foot odor (Chi-square test, p < 0.001),
in which 57% of the responsive mosquitoes landed on the target
area on the upwind screen in response to CO2 and human foot
odor, compared to 3% for the air and 10% for the clean sock
control. These differences were significant among treatments
(p < 0.01; Figures 4D,E).

Case Study II—Carbon Dioxide
Response Rate
In response to the four CO2 treatments, 107 of 235 mosquitoes
responded by entering the filmed volume. No significant effect of
the concentration of CO2 was observed (GLM, Chi-square test;
p= 0.2; Figure 5A).

Flight in Volume of Interest
No effect of the concentration of CO2 on the proportion of
flight within the VOI was observed (Kruskal-Wallis test; p= 0.2;
Figure 5B). The proportion of flight inside the VOI was generally
low, ranging from 0.2% in response to 1,200 ppm to 2.9% for
2,400 ppm CO2.

Crosswind Flight
No significant difference in crosswind flight speed was
observed when comparing between the treatments (Kruskal-
Wallis test; p = 0.2; Figure 5C). There was no tendency of
increased crosswind flight frequency between the treatments
(Supplementary Figure 4).

Landing and Landing Location
Within the maximum recording time of 10min, 77 of 101
mosquitoes landed. No significant difference was observed for
the total proportion of mosquitoes landing (GLM, Chi-square

test; p= 0.4), nor for the proportion of mosquitoes landing “on
target” (p= 0.3; Figures 5D,E).

DISCUSSION

The two case studies presented here demonstrate the
functionality of the versatile climate-controlled wind tunnel
system as an experimental setup for analyzing insect flight.
Moreover, we provide new findings and confirm previous
observations on odor-mediated optomotor anemotaxis in An.
gambiae s. s. Case study I recapitulates the characteristics of
female An. gambiae s. s. host-seeking behavior in response to
human host cues, as previously described in other contexts
by 3D tracking studies (Spitzen et al., 2013; Hawkes and
Gibson, 2016). In the present study, the combination of
CO2 and human foot odor elicited a significant increase in
mosquito responsiveness and host seeking, as reflected by a
higher proportion of flight spent inside the volume where
mosquitoes were more likely to encounter odor filaments.
Moreover, mosquitoes tended to engage in more and faster
crosswind flight in response to human odor cues. In addition,
mosquitoes that responded to human host cues were also
more prone to localize the odor source. This is consistent
with previous studies on host seeking in both An. gambiae
(Spitzen et al., 2013; Hawkes and Gibson, 2016) and other
vector mosquito species (Cooperband and Cardé, 2006; Dekker
and Cardé, 2011; Lacey and Cardé, 2011; van Breugel et al.,
2015).

Similar to case study I, case study II took advantage of the
isolated, thus human-odor-free, environment of the wind tunnel
system and assessed the role of CO2 on its own as a host-seeking
cue in An. gambiae s. s. There is currently a lack of consensus
about the role of CO2 in eliciting activation, orientation and
landing in An. gambiae s. s. females (de Jong and Knols, 1995;
Healy and Copland, 1995; Takken et al., 1997; Spitzen et al., 2008;
Lorenz et al., 2013; Webster et al., 2015). The concentrations
of CO2 used in the present study are within the physiologically
dynamic range of the CO2-sensitive neurons (Majeed et al.,
2017), yet had no effect on responsiveness, crosswind flight,
i.e., a measure for host seeking, or the accuracy of landing
on the source. These findings are in accordance with previous
observations in large-volume flight arenas, which demonstrate
that An. gambiae do not rely on CO2 on its own to locate
a human host (de Jong and Knols, 1995; Takken et al., 1997;
Spitzen et al., 2008; see however Omondi et al., 2015; Majeed
et al., 2017). Carbon dioxide is emitted by all hosts and is thus
considered a general cue, signaling the presence of a host, but not
necessarily the presence of a human (e.g., Mboera and Takken,
1997). For the highly anthropophilic An. gambiae s. s., CO2

is hypothesized to only contain information in the context of
human odor (e.g., Takken and Verhulst, 2013). Such contexts
include, e.g., the identification of presently inhabited human
dwellings, by integrating CO2 with a persistent human odor-
laden background, or, in the presence of multiple breathing hosts,
the discrimination of host type, such as in dwellings shared
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by cattle and humans (Cardé and Willis, 2008; Webster et al.,
2015). The latter has also been shown in mosquito species that
demonstrate a wider breadth of host preference, in which the
general host signal, emitted CO2, can be used as a reliable cue for
host localization and discrimination (Dekker and Takken, 1998;
Majeed et al., 2017).

The two case studies demonstrate the potential of the climate-
controlled wind tunnel system to investigate the odor-mediated
behavior of insects, including species that are sensitive to
background odor contamination. The ability to finely adjust
temperature and humidity, and to maintain these physical
parameters at stable levels, provides the means to analyse
the impact of future changes in climatic conditions on insect
flight behavior. These parameters significantly affect population
dynamics and vectorial capacity (Reiter, 2001; Paaijmans et al.,
2010; Shapiro et al., 2017; Tang et al., 2018), but their effect on
host seeking and other odor-mediated behaviors has until now
not received any attention. The wind tunnel system provides
additional means to analyse the effect of future anthropogenic
changes in climate conditions on odor-mediated behaviors,
as it requires no major modification to, for example, elevate
background levels of greenhouse gasses, such as CO2 and
ozone, as well as other atmospheric pollutants (Agrell et al.,
2005; Majeed et al., 2014; Cook et al., 2020). Besides assessing
the impact of future climatic changes on mosquito behavior,
the future perspective for our laboratory is to evaluate the
effectiveness of synthetic blends as attractants in mosquito
control and monitoring devices. Moreover, we envision that fine-
scale analysis of behavior will provide valuable information on
how the peripheral and central olfactory systems detect and
integrate olfactory information.
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The Panopticon—Assessing the
Effect of Starvation on Prolonged Fly
Activity and Place Preference
Deepthi Mahishi†, Tilman Triphan†, Ricarda Hesse and Wolf Huetteroth*

Department of Genetics, Faculty of Life Sciences, University of Leipzig, Leipzig, Germany

Animal behaviours are demonstrably governed by sensory stimulation, previous
experience and internal states like hunger. With increasing hunger, priorities shift towards
foraging and feeding. During foraging, flies are known to employ efficient path integration
strategies. However, general long-term activity patterns for both hungry and satiated flies
in conditions of foraging remain to be better understood. Similarly, little is known about
how permanent contact chemosensory stimulation affects locomotion. To address
these questions, we have developed a novel, simplistic fly activity tracking setup—
the Panopticon. Using a 3D-printed Petri dish inset, our assay allows recording of
walking behaviour, of several flies in parallel, with all arena surfaces covered by a
uniform substrate layer. We tested two constellations of providing food: (i) in single
patches and (ii) omnipresent within the substrate layer. Fly tracking is done with FIJI,
further assessment, analysis and presentation is done with a custom-built MATLAB
analysis framework. We find that starvation history leads to a long-lasting reduction
in locomotion, as well as a delayed place preference for food patches which seems to
be not driven by immediate hunger motivation.

Keywords: Drosophila, feeding, foraging, place preference, tracking

INTRODUCTION

Flies show hunger-motivated ranging or foraging walks to find food; they also show explorative
walks (or local searching behaviour) after food encounter (Dethier, 1957; Bell et al., 1985; Bell,
1990; Corrales-Carvajal et al., 2016; Kim and Dickinson, 2017; Murata et al., 2017; Hughson et al.,
2018; Mahishi and Huetteroth, 2019), and much has been achieved in identifying the circuits and
dynamics involved in this behaviour (Corfas et al., 2019; Lin et al., 2019; Moreira et al., 2019; Sayin
et al., 2019; Seidenbecher et al., 2020; Behbahani et al., 2021). Most of these studies either used
hunger-motivated behaviour to focus on the underlying navigational strategy of the flies, or they
focussed on exploration–exploitation trade-offs under different motivational settings.

Interestingly, both hedonic and caloric value of the food source can influence explorative walks.
The perceived sweetness after ingestion correlates to the duration and path length of explorative
walking (Murata et al., 2017), and protein-sated flies venture further away from a yeast patch
than protein-deprived flies (Corrales-Carvajal et al., 2016). As satiation levels drop with ongoing
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post-prandial energy expenditure, finding food is becoming
increasingly important. An exploring fly constantly assesses
palatability with its tarsal chemosensors, supported by occasional
proboscis extension (Mahishi and Huetteroth, 2019). But how
much does a fly explore when nutritional homeostasis can be
achieved anywhere?

What are the locomotion dynamics independent of food
search? To overcome distorting foraging locomotion, driven
by constantly changing hunger levels, we provide an arena
with omnipresent food. Although these previous studies imply
foraging-independent explorative walking in sated flies (Bell
et al., 1985; Bell, 1990; Murata et al., 2017), no study exists to our
knowledge that studied prolonged intrinsic walking behaviour on
a homogenous food substrate, where any locomotion motivated
by food-seeking can be ruled out.

It is also not well understood how palatability and satiation
affect walking activity beyond the first 3–120 min after food
interaction; food-related responses can exert their physiological
and behavioural effects on longer timescales. Larval diet
composition impacts adult food choice (Davies et al., 2018), and
preference of a caloric diet over an equally palatable alternative
is only established after several hours (Dus et al., 2011; Stafford
et al., 2012). Similarly, a dietary imbalance between palatability
and nutritional content is leading to sustained physiological
changes much later (Wang et al., 2016, 2017; Musso et al.,
2017; Park et al., 2017; May et al., 2019). Apart from few
exceptions (Martin, 2004; Meunier et al., 2007), most existing
fly locomotion studies either examine short periods at high
temporal resolution (Kim and Dickinson, 2017; Murata et al.,
2017; Brockmann et al., 2018; Hughson et al., 2018; Landayan
et al., 2018), or sample for short recurring time windows to
cover longer periods (Green, 1964a,b; Connolly, 1966a; Barwell
et al., 2020). Automated circadian studies provide both temporal
resolution and timespan, but focus on changes in rhythmicity
(Guo et al., 2016; Pegoraro et al., 2020), and rarely include
location preferences or locomotion in a nutritional context
(Donelson et al., 2012; Dreyer et al., 2019).

We use uninterrupted video tracking (1 Hz) of pre-starved
and pre-fed flies to compare locomotion activity and location
probability for over 24 h in two conditions: (i) a foraging setting
with a single food patch or (ii) with homogenous food substrate
on all surfaces. Our assay comes with a data pipeline from
recording to analysis utilising custom-written camera recording
software, FIJI-based tracking, and MATLAB-based data analysis,
various sanity check functions and visualisation.

MATERIALS AND METHODS

Animals
All experiments were performed with 2–5 days old male OregonR

flies, maintained at the University of Leipzig at 25◦C and
60% humidity on a 14:10 LD cycle (light 7:00 to 21:00) on
standard fly food. Pre-starved animals were kept for 22–24 h in
empty vials with added wet tissue, pre-fed flies were allowed to
feed ad libitum on normal fly food, until placing them in the
Panopticon under constant dark conditions, with infrared LED

lighting (850 nm) from below (Figure 1A). The average starting
time of experiments was 12:00 ± 2 h for foraging experiments or
12:30 ± 3 h for omnipresent food experiments, respectively.

Panopticon Assay
Cold anesthetised pre-fed and pre-starved male flies were
alternately placed in individual sectors of the Panopticon and
then transferred onto the imaging rig (Figure 1A), which is
located inside a climate chamber (not shown) to maintain
constant levels of 60% humidity and a temperature of 25◦C.
The Panopticon consists of an opaque 3D-printed arena (.stl file;
Renkforce RF1000: Material PLA white), which is inserted in the
lid of a standard plastic Petri dish (85 mm, Greiner) partially
filled with substrate (1% agarose or 1% agarose containing
200 mM sucrose), separating it in eight sectors (5.5 cm2 each)
and prohibiting any sensory contact between flies (Figure 1B).
During insertion of the plastic arena into still viscous substrate
we assured homogenous coating of all inner walls before
solidification. For foraging experiments, small Eppendorf lids
were used to create individual food containers in each arena
(food patches, 0.2 cm2). The 1% agarose with 200 mM sucrose
in these food patches was levelled with the surrounding 1%
agarose to avoid confounding effects of negative geotaxis on place
preference (Robie et al., 2010). The Panopticon was closed with
another inverted Petri dish lid with a layer of substrate to provide
equal surface texture on all sides (Figure 1B). Data collection was
started as soon as all flies regained walking ability (within 1 min of
transfer). Images (1024 × 1024 px) were recorded with a camera
(Basler acA1300-200uc) at 1 frame/s for 24 h.

Tracking and Analysis
The recorded images were processed in batches using a custom-
written, FIJI-based macro. Object information was extracted and
saved as csv files. Results were then further handled using a data
analysis script written in MATLAB 2018a, which provides various
sanity check functions and visualisation. Some plots make use
of the “shadedErrorBar” function (Campbell, 2020). Activity and
place preference plots are either aligned according to start time
(1 h plots) or time of day (24 h plots). To exclude movements
caused by camera noise we set a minimum threshold of 2 pixels
(0.1 mm) and treated the fly as stationary in this case. Regions
of interest for place preference (food patches, same-sized virtual
food patches) were created in MATLAB. For further details on
analysis and plotting functions see Results and Code, and the
Readme file available on Github1. Fast and efficient data handling
allows for tracking and analyses of 24 h data (recorded at 1 Hz) in
about 4 h on a regular desktop PC (Ryzen 3 3200G, 16 GB RAM,
Intel SSD 660p 512GB).

flyPAD
Food sip measurements were performed on the flyPAD (Itskov
et al., 2014). Animals were pre-fed or pre-starved as before,
anesthetised on ice and then transferred into individual flyPAD
chambers with added wet tissue to allow for 24 h recordings. Data

1https://github.com/dmahishi/Panopticon.git
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FIGURE 1 | The Panopticon. (A) Entire recording setup for the Panopticon. The whole assay platform has an infrared light source placed in the bottom (grey box
with red LEDs), on top of which is a height-adjustable transparent glass platform with a small circular plastic layer acting as diffusor. The arena itself is placed on this
platform, positioned precisely in line with the light source, the diffusor and the recording camera fitted on top with a stable holder. (B) Top view of Panopticon, sagittal
view below. The arena consists of eight visually separated sectors, as indicated by sector-dividing walls of the 3D printed inset (black), which sits in substrate (blue)
inside a Petri dish lid (grey). Another Petri dish lid with a layer of substrate closes the arena. Two configurations are used: (i) food patch arena with 1% agarose as
substrate (depicted), which contains individual, centrally located food patch containers (teal blue) filled with 1% agarose with 200 mM sucrose (pastel pink) or (ii)
omnipresent food arena without food patches, but 1% agarose with 200 mM sucrose as substrate (not shown).

analysis took place with a customised version of the MATLAB
script for the flyPAD (Itskov et al., 2014).

Statistics
All statistical analyses were conducted using GraphPad Prism
8 R©. Mann–Whitney U-tests were performed between pre-fed
and pre-starved fly values in each bin for activity plots,
place preference plots, stop duration plots and flyPAD sip
plots. For displacement distribution plots, values for short-
distance walks (≤2 mm) and, where applicable, long-distance
walks (5–10 mm) of pre-fed and pre-starved flies were binned
and compared with a Mann–Whitney U-test. Horizontal lines
indicate significance levels between pre-fed and pre-starved flies
from a single group, curly braces represent identical significance
levels for multiple groups (∗ = significant difference, alpha = 0.05;
n.s. = not significant).

RESULTS

Paradigm and Data Pipeline for Image
Based Tracking of Fly Locomotion
We designed a novel, low-cost fly activity tracking setup, the
Panopticon (Figure 1). Walking behaviour of eight flies can be
recorded simultaneously for up to 24 h. All arena walls and the
top lid are covered in 1% agarose (with or without 200 mM
sucrose) to both provide equal surface texture on all sides and
to maintain humidity levels and avoid desiccation, allowing
continuous recordings for up to a week (data not shown).
Experiments were performed in constant darkness (DD) with IR
lighting (850 nm) to provide constant environmental conditions.

It has been previously shown that DD is less disruptive to fly
activity pattern than constant light (LL) (Green, 1964a).

We devised a complete data pipeline from recording to
analysis (Figure 2). Image recording utilises custom-written
camera recording software. Subsequently, the recorded images
are analysed in batches using a custom-written, FIJI-based macro
script. After background subtraction and pre-processing of the
images objects are extracted and saved. The results are further
analysed in a custom, MATLAB-based data analysis framework.
Here, basic quality control and error checking functions are
applied. At first, we calculated the rate of missed/failed detections,
and experiments with an error rate of more than 5% were
excluded from further analysis (Supplementary Figure 1A). In
the second step, we did a visual inspection of the walking traces
(shown with a temporal colour code) to check for obvious
detection errors (Supplementary Figures 1B,C). As the last step
we did a sector-wise plotting of particularly long frame-to-frame
movement events that could be associated with potentially false-
positive detections (Supplementary Figure 1D). After this initial
quality control, derived parameters like activity patterns and
location probabilities are calculated.

Pre-starved Flies Appear Sated Within
20–30 min of Food Provision
First we assessed how hunger impacts locomotion activity during
food search, and within which timescale the effect subsides
after provision of food. Finding a food patch is well studied,
and we know from existing data that locomotion increases
with starvation level (Connolly, 1966b; Knoppien et al., 2000)
and changes its dynamics after food patch encounter (Dethier,
1976; Corrales-Carvajal et al., 2016; Kim and Dickinson, 2017;
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FIGURE 2 | Data handling and workflow. Data acquisition (i) steps with the
Panopticon involve preparation of the arena with substrate media, collection
and loading of single flies in each of the sectors, followed by recording of fly
activity. Further processing and tracking (ii) of recorded data (in JPEG format)
is performed on FIJI to further divide collected frames into batches to facilitate
efficient image processing and subsequent detection of fly positions. Data
analysis (iii) was executed in MATLAB and consisted of pre-processing and
quality checks followed by in-depth analysis and plotting of the tracked data
(saved and loaded as.csv files).

Murata et al., 2017). Using the Panopticon with food patches, we
find that both pre-starved and pre-fed flies exhibit increased
activity for about 20–30 min in their new environment,
as reported before (Liu et al., 2007; Soibam et al., 2012).
This initial increased activity is significantly more pronounced
in pre-starved flies during the first 20 min (Figure 3A),
which correlates with compensatory overeating as soon as
food is available (Carvalho et al., 2005). Flies need to stop
to feed, and there is a reciprocal relation between the
two behaviours (Mann et al., 2013). Accordingly, there is a
significantly higher number of short duration stops (2–7 s)
on the food patch during the first 30 min (Figure 3B),
which soon shift during the subsequent 30 min towards less
frequent, longer breaks (Figure 3C). At this point, both pre-
starved and pre-fed flies reach equally low levels of activity
(Figure 3A). This pattern is reflected in sip numbers, as
independently determined on the flyPAD, which provides a
good estimate of actual food intake (Itskov et al., 2014). Pre-
starved flies exhibit a significantly higher sip number as pre-
fed flies at first, but sip numbers quickly reach equal baseline
levels (Figure 3D), suggesting comparable satiation in both
initially starved and fed flies. This is in accordance with
previous studies that demonstrated reduced activity after a meal
(Murphy et al., 2016).

Taken together, our data shows that during the first 20–30 min
pre-starved flies exhibit increased activity, and an increased
number of stops lasting between 2 and 7 s. These most
likely reflect feeding bouts, which soon disappear when they
presumably reach hunger motivation levels comparable to pre-
fed flies during the following 30 min.

Starvation State Affects 24 h Walking
Activity and Place Preference in a Food
Patch Assay
Interestingly, despite the quick compensation in feeding
motivation, we observe behavioural differences in locomotion
between experimental groups in the long term. Pre-fed
flies exhibit a characteristic evening activity peak before
the subjective night, which is missing in pre-starved flies
(Figure 4A). This elevated evening activity in pre-fed flies is
accompanied by a significantly higher number of short-stop
events in a representative 30 min time window (Figure 4B).
On the morning of the next subjective day, stop rates
decreased to comparably low levels in both experimental
groups (Figure 4C). To see if this bias during the subjective
evening is reflected in speed characteristics, we looked at
displacement between frames as a proxy for velocity. Indeed,
displacement up to 2 mm/s on the food patch in the
same time window (19:00–19:30) is significantly different
between pre-fed flies and pre-starved flies (Figure 4D). On
the subjective next morning (08:30–09:00), movement has
slowed down equally in both groups (Figure 4E). Whereas
locomotive differences between initially starved and fed flies
disappear on the subjective morning next day, another effect
in positional preference becomes more pronounced; initially
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FIGURE 3 | Pre-starved flies show higher activity and food intake within first 30 min. (A) Both pre-fed (deep purple) and pre-starved (orange) flies exhibit raised
activity on the food patch assay (inset schematic) during the first 20 min, with pre-starved flies showing significantly higher activity than pre-fed flies. Both groups
reach baseline levels subsequently. Data is presented as means ± SEM in 5 min bins. N values are given in brackets. (B) Initially starved flies make significantly more
stops of 2–7 s duration than pre-fed flies in the first 30 min, (C) but not in the next 30 min on the food patch (inset schematic). (D) Feeding rate, as measured on the
flyPAD, indicates that initially starved flies show higher initial sip rate than the pre-fed flies, which quickly decreases to a comparable sip rate. *Indicate significance
levels following Mann–Whitney U-tests (alpha = 0.05), n.s. = not significant. Horizontal lines represent comparison between pre-fed and pre-starved flies from a
single group. Curly braces represent identical significance levels across multiple groups. N values are given in brackets.

starved flies increasingly prefer to sit on or close to the food
patch (Figure 4F).

To summarise, we see that satiation state impacts locomotion
and place preference across the day. Within the first hour, pre-
starved flies are more active than pre-fed flies, and supposedly
compensate their caloric deficit in bouts of short stops until
they reach food intake homeostasis. Afterwards, pre-starved flies
show reduced activity, particularly during the subjective evening
as compared to their pre-fed control group. Interestingly—
and despite equivalent hunger motivation—initially starved flies
develop increased preference for the food patch over 24 h.

Initial Starvation State Impacts
Movement Speed Over 24 h
Initially starved flies are equally active as pre-fed flies for the
majority of the observed 24 h timespan (Figure 4A), yet they
increasingly confine themselves to the spatially restricted food
patch (Figure 4F). How does this impact the flies’ velocity? As
an approximation, we examined the displacement distribution
across 24 h between both experimental groups, and found
that short displacements of up to 2 mm in the arena were
significantly more common in pre-starved flies than in pre-
fed flies (Figure 5A). These short movements are mostly
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FIGURE 4 | Locomotion activity and food patch preference over 24 h on food patch assay. (A) Although initial activity levels on the food patch arena (inset
schematic) are comparable, pre-starved flies (orange, n = 34) continued to show significantly decreased activity levels during subjective evening and early night, as
compared to pre-fed flies (deep purple, n = 29). Subjective night indicated by grey-shaded area. There was no significant difference in activity across the rest of the
24 h. (B) Pre-fed flies showed significantly increased numbers of stops of shorter duration (2–7 s) on the food patch (inset schematic) than pre-starved flies during
peak activity time window of 19:00–19:30, (C) whereas no significant difference in food patch stops was observed between 08:30 and 09:00 the next morning
between the two groups. X-axis tick labels indicate duration of stops with a log 2 scale, where 21 = 2–3 s, 22 = 4–7 s, and so on. (D) Short-distance moves
(≤2 mm) between both groups were significantly different on the food patch (inset schematic) during the 19:00–19:30 time window, (E) but not during the
08:30–09:00 time window. (F) Pre-starved flies spent significantly higher fractions of time on the food patch (inset schematic) as compared to pre-fed flies, with
exception of the initial 3 h. *Indicate significance levels following Mann–Whitney U-tests (alpha = 0.05), n.s. = not significant. Horizontal lines indicate significance
levels between pre-fed and pre-starved flies from a single group. Curly braces represent identical significance levels between pre-fed and pre-starved from multiple
groups. N values are given in brackets.
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found to be associated with the food patch (movements on
patch itself, as well as movements onto patch or off the
patch) (Figure 5B), whereas short movements outside the patch
occur with equally low frequency in both experimental groups
(Figure 5C). This suggests that both pre-starved and pre-
fed flies have comparable internal drives to move, and the
location bias of pre-starved flies towards the food patch is

FIGURE 5 | Initially starved flies show more frequent short walks over 24 h.
(A) Higher probability of short-distance walks (≤2 mm) was observed in
pre-starved flies (orange) as compared to pre-fed flies (deep purple) within the
entire arena (including food patch area, inset schematic) across 24 h. (B) The
significantly increased short-distance moves for pre-starved flies than those of
pre-fed flies were even more pronounced if analysed on the food patch only
(inset schematic). (C) Probability of flies showing 0.1–2 mm movements were
not significantly different between the two groups as observed in the area
outside of the food patch (inset schematic). *Indicate significance levels
following Mann–Whitney U-tests (alpha = 0.05), n.s. = not significant.
Horizontal lines indicate significance levels between pre-fed and pre-starved
flies from a single group.

compensated by a significantly higher number of short distance
moves of up to 2 mm.

Non-foraging Conditions Reinstate
Evening Activity Dynamics in Initially
Starved Animals
A hungry fly has an intrinsic drive to forage and reach satiety.
But how does such a fly behave when we take away the
need for foraging altogether, when hunger can be satiated
anytime, anywhere? In such a context, we adjusted the assay
by removing the food patches and instead lacing all inner
surfaces with a homogenous layer of 1% agarose containing
200 mM sucrose. The raised initial activity in the food patch
assay (Figure 3A) was reduced by about 15% on omnipresent
food in pre-fed flies (Figure 6A); with about 50% this effect
was even more pronounced in pre-starved flies. The stop
lengths in the food-covered arena during the first 30 min are
comparable between both experimental groups (Figure 6B), but
there is a robust dichotomy in average speed distribution: pre-
starved flies preferably move at average speeds up to 2 mm/s,
wherein pre-fed flies travel substantial and significant distances
at average speeds between 5 and 10 mm/s during this time
window (Figure 6C).

During the subsequent 30 min, when initially starved
flies supposedly adjusted their caloric needs, stop lengths
remain similar (Figure 6D). But while pre-starved flies still
significantly prefer slow movements, the preference becomes
less pronounced and the shift towards higher average velocities
reaches comparable levels between 5 and 10 mm/s in both
groups (Figure 6E). The initially lower activity of pre-starved
flies as compared to that of pre-fed flies disappears during the
remainder of the 24 h experiment duration. In fact, this even
includes a reinstated evening activity peak in pre-starved flies
(Figure 6F). A virtual food patch (i.e., an area of equivalent size
to the food patch) in the omnipresent food arena shows no place
preferences for both groups (Figure 6G). It has been reported
that flies kept on sugar increase their locomotion in contrast to
flies kept on agarose (Lim et al., 2014). Indeed it appears as if
overall levels of activity in the omnipresent sucrose arena are
slightly elevated, in comparison with fly activity levels in the
food patch arena (Figures 4A, 6F). Taken together, ubiquitous
food presentation dampens initial hyperactivity during the first
30 min, and restores the activity peak during subjective evening
in pre-starved flies.

Pre-starved Flies Maintain Reduced
Walking Speed Across 24 h on
Omnipresent Food
As mentioned before, homogenous food distribution in the
Panopticon results in equivalent stop dynamics for both pre-
starved and pre-fed flies. Indeed, this holds true across all
examined time windows (Figures 6B,D,H,J), and is different to
what we observed on food patches before (Figures 3B,C, 4B,C).
Similar to before however, initially starved flies retain a
significant prevalence for slower average speeds up to 2 mm/s
(Figures 6C,E,I,K), just as seen in the food patch arena
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FIGURE 6 | Omnipresent food provision equalises activity levels but not speed. (A) Pre-starved (orange, n = 27) and pre-fed flies (deep purple, n = 34) show no
significant difference in activity across the first hour on a homogenous sucrose-covered arena (inset schematic), (B) together with no significant differences observed
for shorter stops (2–7 s). X-axis tick labels indicate duration of stops with a log2 scale, where 21 = 2–3 s, 22 = 4–7 s, and so on. (C) However, pre-starved flies did
show higher frequency of short feeding-related walks (0–2 mm) in the first 30 min than those of pre-fed flies, while pre-fed flies showed a significantly higher
frequency of longer distance walks (5–10 mm). (D) There was no significant difference observed again in the next 30 min for shorter stops (2–7 s) between the two fly
groups, but (E) pre-starved flies continued to show significantly increased short-distance moves as compared to pre-fed flies. (F) Pre-starved flies show comparable
activity levels to pre-fed flies, including during the evening activity peak, with no significant difference observed across the remaining 24 h. (G) Location probability
within virtual food patch-sized areas revealed no significant difference in place preference across 24 h for both pre-starved and pre-fed flies. (H) During the
19:00–19:30 time window, both groups showed equal number of short stops (2–7 s), with (I) consistent higher frequency of short-distance walks seen in pre-starved
flies than pre-fed flies. (J) No significant difference in short stops (2–7s) was observed during the 08:30–09:00 time window the next morning across both groups,
(K) and again a significant difference in short-distance moves. Data indicates higher walking speed in pre-fed flies as compared to pre-starved flies. *Indicate
significance levels following Mann–Whitney U-tests (alpha = 0.05), n.s. = not significant. Horizontal lines indicate significance levels between pre-fed and pre-starved
flies from a single group. Curly braces represent identical significance levels between pre-fed and pre-starved from multiple groups. N values are given in brackets.
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(Figure 5). This reduced average velocity persists even during
later time points when both experimental groups likely have
comparable satiety levels—and no carbohydrate restrictions
whatsoever. Due to its consistency across assays, the reduced
average speed seems to be a conserved feature of the flies’
nutritional history. Taken together, this implies a long-lasting
effect of starvation experience on average velocity independent
of localised food patches.

DISCUSSION

The Panopticon represents a cost-effective, Petri dish-based
locomotion assay which we utilise in two configurations: (i) a
classical foraging assay with a single food patch and (ii) an
omnipresent food configuration, where every surface in the
arena is uniformly covered by substrate. In such a scenario,
non-foraging explorative walking behaviour is dissociated from
foraging-related search and exploration walking; the flies’
tarsal chemosensors are permanently stimulated and every
arena location is equally suited to provide food. Due to
constant food provision and humidity buffering, longer-lasting
recordings (up and beyond 24 h) are possible. This special
layout of our locomotion assay will allow for the further
dissemination of activity motivations independent of food
localisation, i.e., the drive to find a mate (see below), or
initial startle response. This previously described increase
in activity leads to increased wall walking, is associated
with exploring a new environment and usually lasts for
only a very short period (Götz and Biesinger, 1985; Liu
et al., 2007). By comparing initial activity in the food
patch arena (Figure 3A) and omnipresent food conditions
(Figure 6A), it turns out that the startle response is indeed
minute in comparison to the foraging activity—or that
even fed flies abandon enhanced arena exploration when
encountering 200 mM sucrose.

One current caveat of our experiments is that the flies are
exclusively resupplied with a carbohydrate food source. Although
the flies’ intake target is heavily skewed towards carbohydrates
(Lee et al., 2008; Tatar et al., 2014) and flies can survive on sucrose
alone for weeks (Hassett, 1948), we cannot rule out additional
effects by ongoing protein deprivation or possible micronutrient
shortage as shown in other insects (Grund-Mueller et al., 2020).
Nonetheless, we only tested male flies which exhibit a more
pronounced skew towards sugars than females (Ribeiro and
Dickson, 2010). Also, female mating status, egg production
and oviposition can affect consumption, as well as food and
place choice (Joseph et al., 2009; Carvalho-Santos et al., 2020;
Hadjieconomou et al., 2020). Conversely, the drive to find a mate
might be the main motivation for the evening activity seen in
both pre-fed and pre-starved males in the omnipresent food assay
(Figure 6F), although courtship is thought to be associated with
activity at dawn (De et al., 2013). Usually, mating drive is assessed
as an incentive to engage in courtship (Rings and Goodwin,
2019), but to our knowledge the motivation to locate a female
hasn’t been studied in flies (Lee and Wu, 2020); our assay would
allow isolating such a locomotion incentive by interfering with

known mating motivation circuits (Zhang et al., 2019). If mating
drive is indeed the main motivation behind the evening activity,
it is superseded by the pre-starved flies’ preference to stay close to
a food source (Figure 4A).

Surprisingly, we do not see a pronounced morning activity
peak in our assay, as would be expected from circadian DAM
assay studies (i.e., De et al., 2013). We cannot entirely explain this,
although DAM assays provide higher sensitivity to crepuscular
activity (Garbe et al., 2015), and the morning peak can be a subtle
component of endogenous rhythmicity in DD lab conditions
(Silva et al., 2021). A DD paradigm ensures homogenous
illumination during tracking and is less disruptive for internal
rhythms than constant light (Green, 1964a). But permanent
dark lacks a distinct visual and thermal Zeitgeber signal for
morning onset, which, at least under seminatural conditions, has
been shown to be the major influence on the morning activity
peak, with little contribution from internal clock genes (Green
et al., 2015). Furthermore, individuals within a fly population
can exhibit crepuscular, diurnal and nocturnal activity pattern
(Pegoraro et al., 2020); the tested flies might be skewed in
their allele distribution for such circadian traits. The activity
peak during the subjective evening however is very robust.
Remarkably, this activity peak is only missing in one condition:
in pre-starved flies on the food patch Panopticon. Pre-starved
flies do ingest increased amounts of food immediately after
food is resupplied (Figure 3D). Under constant ad libitum
food conditions, flies tend to not eat to their maximal capacity
but rather maintain an almost empty crop (Edgecomb et al.,
1994). A full crop cannot only terminate feeding (Gelperin,
1971; Min et al., 2020; Wang et al., 2020a), but also limit
post-prandial explorations (Murata et al., 2017). However, it
is doubtful that this “rest-and-digest” effect would last very
long after the initial voracious re-feeding period. While pre-
fed flies always exhibit the evening activity peak, pre-starved
flies—which would be expected to have a ‘rest-and-digest’
period after re-feeding—have a reconstituted evening activity
peak under omnipresent food conditions (Figure 6F). This
rather indicates a crucial interplay between spatial availability
of nutrients and general locomotion motivation across the day
to explain the activity differences during the evening in pre-
starved flies.

Along with the food patch location preference (Figure 4F),
the following picture emerges: it appears that the motivation
for pre-starved flies to sit on the food patch could be not to
stray too far from a feeding resource, which outcompetes the
motivation for raised activity during the subjective evening. As
soon as food is omnipresent, the location preference is gone,
and evening activity is reinstated. If the place preference in
previously starved flies is also triggered by gustatory activation
like local food search (Murata et al., 2017) remains to be shown,
for example by providing sweet-only food patches (i.e., arabinose)
to rule out caloric involvement. It also remains to be shown if
ongoing protein deprivation is involved; however, male flies only
seek a protein source after days of prolonged protein starvation
(Ribeiro and Dickson, 2010).

The second outcome is less obvious, but robust: independent
of food patch presence or omnipresent food, the pre-fed flies
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move faster than pre-starved flies during the course of the
experiments (Figures 5, 6C,E,I,K). This could be a delayed effect
of the experienced starvation stress; prolonged vibrational stress
can lead to reduced voluntary locomotion (Ries et al., 2017).
Another possibility could be a long-lasting or even persistent
effect on sensory perception (May et al., 2019; Vaziri et al., 2020).

Hunger is known to sensitise certain chemosensory and
other circuits at the expense of others, but such sensitisation
is usually reversed as soon as the caloric demand is met (Root
et al., 2011; Nishimura et al., 2012; Farhan et al., 2013; Inagaki
et al., 2014; Longden et al., 2014; Sachse and Beshel, 2016;
Grunwald Kadow, 2019; Lin et al., 2019; Wang and Wang,
2019). Habituation and sensitisation of tarsal sugar responses are
only described in the minute range (Duerr and Quinn, 1982;
Scheiner, 2004; Paranjpe et al., 2012). We assume that such
short-lasting effects in each flies’ recurring hunger/feeding/satiety
cycles are cancelled out by interindividual variance, since we do
not observe any obvious correlation in activity on the binned
level of start-synchronised 24 h data (not shown) that would
point towards a coordinated habituation effect. Adaptation of
taste-sensing neurons can occur over longer time frames, after
permanent dietary intervention (May et al., 2019; Wang et al.,
2020b). Exposure to high concentration sucrose might either
differentially desensitise gustatory sensilla in pre-fed and pre-
starved flies, or the prolonged hunger experience in pre-starved
flies leads to a permanent sensitisation of gustatory sensilla. In
either case, the threshold to sample the substrate would differ
between the two experimental groups, resulting in the observed
speed differences in the Panopticon.

The most striking phenotype however is the increasing bias of
pre-starved flies towards the food patch (Figure 4F). A similar
difference in food patch interaction (although not on that
timescale) has been observed for sitter and Rover alleles of
the foraging gene; while Rover flies show normal local search
behaviour after ingestion, sitter flies tend to stay close to the
food source (Pereira and Sokolowski, 1993). Flies are aware of
the food patch position within the arena. This is different from
learning the spatial arrangement pattern of food patches, which
houseflies seem to be not capable of (Fromm and Bell, 1987).
But flies can remember locations and learn to efficiently navigate
towards previously encountered targets like visual landmarks
(Neuser et al., 2008), safe spots (Ofstad et al., 2011), or food
sources (Navawongse et al., 2016), even in the dark and without
usage of visual or olfactory sense (Kim and Dickinson, 2017).

It appears that the biogenic amine serotonin (5-HT) is
involved in such place learning (Sitaraman et al., 2008, 2017;
Sitaraman and LaFerriere, 2020). Furthermore, different 5-
HT subsets or 5-HT regulation interfere with feeding (French
et al., 2014; Albin et al., 2015; Liu et al., 2015), food seeking
behaviour (He et al., 2020), locomotion (Yellman et al., 1997;
Howard et al., 2019), sleep architecture (Liu et al., 2019),
and quiescence (Pooryasin and Fiala, 2015). Thus, 5-HT
manipulation provides a good candidate for further studies in the
Panopticon (Tierney, 2020).

Similarly, octopamine (OA) and tyramine (TA) influence
locomotion in a state-dependent manner; starvation shifts
the OA/TA balance via TBH expression levels and leads to

hunger-induced hyperactivity (Yang et al., 2015; Schützler et al.,
2019). A single OA neuron signals satiation and stops food-
motivated search (Sayin et al., 2019), and the same neuron can
initiate feeding behaviour (Youn et al., 2018). Also, OA influences
AKH signalling for diurnal pattern generation (Pauls et al., 2020),
and might be affected in pre-starved flies during the blocked
evening activity peak. Given the pleiotropic actions of OA, place
preference may be impacted as well (Selcho and Pauls, 2019).

The food patch location is most likely associated with food
reward in both pre-fed and pre-starved flies, analogous to odour
associations with caloric value (Burke and Waddell, 2011; Fujita
and Tanimura, 2011; Huetteroth et al., 2015; Ichinose et al., 2015;
Musso et al., 2015; Yamagata et al., 2015; Zhang et al., 2015;
Das et al., 2016). Such long-lasting, food-related odour memories
are stored in the mushroom body (MB) (Krashes and Waddell,
2008), and it is clear that this structure, especially its zonal
dopaminergic modulatory innervation, has a central instructional
role in motivational foraging and feeding (Tsao et al., 2018; Musso
et al., 2019; May et al., 2020).

In the Panopticon experiment, the food-place association
could be enforced by two factors in pre-starved flies: First, the
absolute amount of food that is ingested by pre-starved flies
within the first 30 min is bigger, since they supposedly need
to cover their caloric deficit (Figure 3D). Secondly, the lack of
caloric signals during starvation renders food-associative MB
circuits particularly sensitive to the next food encounter (Hirano
and Saitoe, 2013; Hirano et al., 2013, 2016; Plaçais et al., 2017; Wu
et al., 2018). For example, starved flies, contrary to fed flies, do not
require additional sleep to consolidate a food-odour association
(Chouhan et al., 2020). It appears the subjectively perceived value
of food is higher in starved flies than in fed flies. So during
this time of transition in a new environment, both quantity and
perceived quality of the ingested food on the food patch would be
higher for pre-starved flies. These two effects together could lead
to a strong and long-lasting positive association with the food
patch location that influences location decision making beyond
nutritional demand for the subsequent 24 h.

However, some issues are not addressed by this explanation.
Retrieval of a food-associated memory depends on the
motivational incentive of hunger; a starved fly will utilise
an olfactory food association to increase its chances to feed,
whereas fed flies will only do so after being starved once more
(Krashes and Waddell, 2008). Similarly, starved flies would have
a higher incentive to retrieve and use their place memory of the
food patch location, and indeed, starved flies exhibit a higher and
more frequent return rate to a known food patch, be it real or
virtual (Corrales-Carvajal et al., 2016; Kim and Dickinson, 2017;
Murata et al., 2017; Corfas et al., 2019; Haberkern et al., 2019).

In this regard it is unlikely that the lasting food patch
preference in the Panopticon depends on concurrent hunger as
the motivational drive to retrieve spatial memory. All other food-
related behaviours like activity, stop distribution or sip number
are aligned between pre-starved and pre-fed flies within an hour,
indicating comparable hunger motivation from then onwards
(Figure 3), and protein hunger only starts to influence male food
choice much later (Ribeiro and Dickson, 2010). It also needs to
be taken into account that food association in the Panopticon is
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not formed with odours but with place, and associations of spatial
features involve the central complex (Liu et al., 2006; Stern et al.,
2019); it is equally possible that plastic changes in this structure
contribute to the observed location preference. In a place learning
assay, the unavoidability of an aversive heat stimulus can boost its
reinforcing propensities (Sitaraman and Zars, 2010); it is feasible
that the same is the case for unavoidable starvation.

But why does this effect appear to become stronger over time?
It might be possible that the pre-starved flies generalise from
the starvation experience, and hence seek proximity to the food
source. Increasing generalisation of an aversive stimulus over
time is not only observed for odour-shock learning and male
aggression in flies (König et al., 2017; Kim et al., 2018), but is
also a characteristic feature of post-traumatic stress disorders
in both animals and humans (Stam, 2007). A similar long-
lasting effect has been described for predator-induced oviposition
preference (Kacsoh et al., 2015). Here, gravid female flies are
exposed to parasitoid wasps for several hours. After removing
the wasps, the females choose ethanol-laced patches over control
patches for days (fly larvae have a higher ethanol tolerance
than wasp larvae). As in the Panopticon, prolonged exposure to
a distressing stimulus (hunger or parasitoid wasps) influences
a later choice (place preference) even after the stressor was
removed. Interestingly, MB inhibition and several memory
mutants abolished this long-lasting skew exclusively after wasp
removal, but not under immediate threat; it will be interesting
to see how MB function and memory genes impact the place
preference on the Panopticon.

OUTLOOK

We present here a new paradigm to examine locomotion
behaviour and place preference, under foraging conditions
(food patch Panopticon) or under permanent chemosensory
stimulation (omnipresent food Panopticon). The food patch
Panopticon will help to examine the neuronal circuits underlying
long-lasting effects of starvation on place preference, and
how this apparently non-associative process relates to known
associative long-lasting memory function.

In the omnipresent food Panopticon, we will be able to assess
the influence of state-modulating or state-mediating substances
like biogenic amines or neuropeptides and their receptors
on locomotion parameters, without interference of foraging-
motivated movement. Being able to do this over prolonged
periods will help to discern long-lasting pleiotropic effects of
these effectors (Martelli et al., 2017; Dreyer et al., 2019; Nässel
et al., 2019; Pauls et al., 2020).

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

DM, TT, and WH conceived and designed the experiments,
analysed the results, and wrote the manuscript. DM and
RH performed the experiments. DM and TT wrote the
MATLAB script. All authors provided comments and
approved the manuscript.

FUNDING

This work was supported by a grant to WH by the Deutsche
Forschungsgemeinschaft (HU2747/1-1). The authors further
acknowledge support from the German Research Foundation
(DFG) and Universität Leipzig within the program of Open
Access Publishing.

ACKNOWLEDGMENTS

We thank Ingo Kannetzky for expert help with 3D printing and
design. We also thank Andreas Thum, Bert Klagges, and Kathrin
Steck for their support and input on all levels.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnbeh.
2021.640146/full#supplementary-material

Supplementary Figure 1 | Representative plots for multi-step quality check. (A)
Temporal distribution of failed/missed detections with total error rate (%) indicated
on the right panel for individual flies/sectors across 24 h. (B) Walking path traces
for the entire arena divided by sectors, with (C) 3D representation, expandable on
the Z-axis representing walking traces across the total duration of activity
recording for 24 h. Time scales represented as frame numbers (@ 1 frame/s).
Blue-yellow-red colour transition represents walking traces from 0-n frame count
(across total duration of the experiment). (D) To visually identify long-distance
movements associated with potentially false-positive detections, corresponding
images for top ten frames with flies covering the longest distances can be
extracted (example image for Sector 8). Such images include up to 2 consecutive
long distance moves as indicated by individually coloured walking trace lines and
the fly itself encircled with the respective colour. Apart from the queried sector, all
the other sectors also indicate distances moves in corresponding frames.
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Motion capture of unrestrained moving animals is a major analytic tool in neuroethology
and behavioral physiology. At present, several motion capture methodologies have been
developed, all of which have particular limitations regarding experimental application.
Whereas marker-based motion capture systems are very robust and easily adjusted
to suit different setups, tracked species, or body parts, they cannot be applied in
experimental situations where markers obstruct the natural behavior (e.g., when tracking
delicate, elastic, and/or sensitive body structures). On the other hand, marker-less
motion capture systems typically require setup- and animal-specific adjustments, for
example by means of tailored image processing, decision heuristics, and/or machine
learning of specific sample data. Among the latter, deep-learning approaches have
become very popular because of their applicability to virtually any sample of video
data. Nevertheless, concise evaluation of their training requirements has rarely been
done, particularly with regard to the transfer of trained networks from one application to
another. To address this issue, the present study uses insect locomotion as a showcase
example for systematic evaluation of variation and augmentation of the training data.
For that, we use artificially generated video sequences with known combinations of
observed, real animal postures and randomized body position, orientation, and size.
Moreover, we evaluate the generalization ability of networks that have been pre-trained
on synthetic videos to video recordings of real walking insects, and estimate the
benefit in terms of reduced requirement for manual annotation. We show that tracking
performance is affected only little by scaling factors ranging from 0.5 to 1.5. As expected
from convolutional networks, the translation of the animal has no effect. On the other
hand, we show that sufficient variation of rotation in the training data is essential for
performance, and make concise suggestions about how much variation is required.
Our results on transfer from synthetic to real videos show that pre-training reduces the
amount of necessary manual annotation by about 50%.

Keywords: insect locomotion, machine learning, behavioral analysis, marker-less motion capture, deep neural
network, motion tracking
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INTRODUCTION

Several insect species are important study organisms in
neuroscience, perhaps particularly so in neuroethology.
Accordingly, new methodology for the quantitative analysis
of insect behavior through motion capture and pose estimation
has received a lot of attention. Owing to the computational
limitations in image processing, early approaches relied on
marker-based tracking algorithms, using kinematic models to
constrain the process of pose estimation, particularly if sampling
rates were low (Zakotnik et al., 2004) or if multiple body parts
had to be tracked (Petrou and Webb, 2012). Additional offline
optimization algorithms have been proposed to determine
the most likely movement sequence from a series of pose
estimates (e.g., Zakotnik and Dürr, 2005). As video hardware
improved and sampling rates increased, marker tracking became
reliable without an underlying model (Bender et al., 2010).
Similarly, current high-end commercial motion capture systems
are based on reliable, multi-view marker identification at
high frame rates, so as to allow the processing of labeled 3D
marker trajectories. Although these systems were developed
originally to capture human movement, they can be adapted
to track whole-body kinematics of large insects, too, achieving
high accuracy and precision even when tracking unrestrained
climbing behaviors (Theunissen and Dürr, 2013; Theunissen
et al., 2015). Nevertheless, all marker-based approaches are
limited by the necessity to equip the animal with an appropriate
set of reflective markers. This is not always possible (e.g., on
delicate or sensitive structures, for small species, or at locations
where markers restrain movement) and requires additional,
accurate measurement of all marker positions relative to the
body structures that are to be tracked (e.g., particular joints).

With increasing computational power of current image
processing systems and the application of machine learning
approaches, a number of marker-less motion-capture and
pose estimation systems have been developed. They are based
on either advanced machine vision techniques such as 3D
photogrammetry (Mündermann et al., 2006; Sellers andHirasaki,
2014) or artificial intelligence applications of deep neural
networks (for recent reviews, see Abbas and Masip, 2019; Datta
et al., 2019). The latter have been applied very successfully in
neuroethology, including insect species as small as Drosophila
melanogaster. For example, DeepLabCut (Mathis et al., 2018)
applies a deep architecture of stacked convolutional networks
with identity short-cuts, the so-called ResNet architecture (He
et al., 2016). This ResNet part of the system has been trained
on the large image data base ImageNet. For motion capturing
of arbitrary animal movement sequences, DeepLabCut appends
a stack of de-convolutional layers that can be trained in an
end-to-end manner. Other deep neural network applications
for motion analysis have focused on particular aspects of this
approach, such as iterative improvement by manual re-labeling
of pose estimates (Pereira et al., 2019), or exploiting movement
information from subsequent frames (Liu et al., 2020). In all
of these approaches, the output of the system is a 2D map of
probabilities—so-called score maps or confidence maps—that
indicate both the most likely position estimate of a particular

body part and a measure of confidence of that estimate. With one
score map per tracked feature, several features may be tracked in
parallel for pose estimation. In fact, training on multiple features
inDeepLabCut was shown to improve tracking performance over
dedicated single-feature trackers (Mathis et al., 2018).

Essentially, the training procedure of deep neural networks
is thought to form an internal representation of the feature to
be tracked, albeit one of unknown structure and properties.
Provided the training data is appropriate, the representation
helps to localize a particular instance of the feature regardless of
its position, orientation, size, texture or color. However, since the
representation is not an explicit geometric model, it is not clear
how well it transfers to new applications with setup- or species-
specific properties, particularly if these properties have not been
part of the training data.

Of course, it is always possible to re-train neural networks
to new data sets, but this requires time-consuming, manual
annotation. To further improve transfer of neural-network-based
motion capture systems to new experimental paradigms, we
propose pre-training on synthetically generated video sequences.
We argue that this may be particularly suitable for behavioral
experiments on arthropods because their exoskeleton and
segmented body structure experience little deformation (other
than mammals with wobbly masses and relative movement
between skin and skeleton). As a consequence, known animal
postures may be rendered for arbitrary experimental setups,
species-specific body features and animal sizes. Second, manual
annotation can be avoided because labels for joints and segments
can be generated in conjunction with the generation of each
video frame. Third, video frames can be generated in nearly
arbitrary sample sizes, allowing for ample feature variation.

The exploitation of tailored synthetic videos to improve
transfer learning across experimental paradigms and species
appears to be particularly promising in the study of natural
locomotion behavior. This is because natural locomotion
involves a wide range of manoeuvers such as turning and
climbing, the study of which requires the use of very different
experimental setups. Furthermore, the analysis of unrestrained
locomotion requires reliable and accurate tracking of posture
sequences that involve several parts of the body trunk, along
with four, six, or even more limbs, each one comprising multiple
joints and segments. Finally, animals not only come in different
sizes, they also walk or run at variable speed and orientation,
generating a lot more postural variation than may be observed
in constrained experimental setups.

Accordingly, the main goal of our study is to determine how
synthetic video training data may reduce the amount of manual
annotation. To this end, a first objective was to find out what
kind of and how much variation of geometric transformations is
required in the synthetic training data. Aiming at an application
to research on unrestrained insect locomotion, our second
objective was to demonstrate the efficiency of pre-training
on synthetic data in terms of reduced manual annotation of
experimental video data.

Our showcase study uses experimental data of walking and
climbing stick insects. We will be focusing on stick insects and,
in particular, on the Indian stick insect Carausius morosus in
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this study. It is an established organism for studying the neural
mechanisms and neuroethology of locomotion (Bässler, 1983;
Cruse, 1990; Büschges, 2012; Dürr et al., 2018). In drawing from
experimental samples of whole-body postures of C. morosus
(Theunissen et al., 2014a,b), we generate simplified multi-
cylinder models of instant 3D postures, including 22 annotated
3D coordinates of leg, head and thorax joints. Each posture
could be transformed by an arbitrary combination of rotation,
translation, and scaling.With one posture per frame, we rendered
synthetic top-view videos in VGA resolution (640 × 480 pixels)
to train DeepLabCut.

We show that tracking performance is affected only little
by scaling by factors 0.5–1.5. As expected from convolutional
networks, the translation of the animal has no effect. On the other
hand, we show that sufficient variation of rotation in the training
data is essential for performance, and make concise suggestions
about how much variation is required. Finally, we assess the
transfer performance of the synthetically pre-trained networks
on experimental video data from walking stick insects, showing
that pre-training reduces the amount of manual annotation by
some 50%.

MATERIALS AND METHODS

Video Recordings of Walking Animals
We used intact adult female stick insects of the species Carausius
morosus (de Sinéty, 1901) from an insect culture bred at
Bielefeld University. None of the animals had been used in
experiments before. Experimental videos were recorded as top
views of animals walking on a planar surface in a ‘‘gantry
setup.’’ This setup contained a circular arena with a plane,
black surface of 1.2 m diameter. A 200 mm high, dark vertical
bar was projected to a circular arena otherwise white arena
wall allowed for visual landmark orientation and, thus, induce
a directed walking behavior. A digital video camera (Basler
A602fc) equipped with a zoom lens (Pentax H6Z810) was
mounted on a gantry approximately 1.5 m above the arena.
The camera was operated at a resolution of 640 × 480 pixels
and a frame rate of 50 frames per second. The gantry allowed
to track the animal by moving the camera in two directions,
parallel to the walking surface. A total of 13 experimental training
videos were recorded: one video for each combination of the
four cardinal walking directions and three zoom settings (see
Supplmentary Table 1 for estimated intrinsic camera parameters
and the corresponding spatial resolution in mm per pixel)
with the camera held stationary above the center of the arena.
Additionally one extra video was recorded in which the animal
was tracked by moving the camera to keep the whole animal in
view for the entire video. No further digital processing of videos
was done. The intrinsic camera parameters were obtained with
the camera calibration functions of OpenCV1.

After recording, a set of 286 frames was selected at random
and manually annotated using the ImageJ software2. On each
one of the selected frames, we annotated the positions of

1http://opencv.org
2http://imagej.net

FIGURE 1 | Body geometry of the stick insect and tracked body features.
(A) Single rendered posture as used for training, with labels indicating the
body features that were to be tracked. The right front, middle and hind legs
are labeled R1 to R3. The three features per leg to betracked are shown for
the middle leg R2: these are the coxa-trochanter joint (R2 CxTr), the
femur-tibia joint (R2 FeTi), and the tibia-tarsus joint (R2 TiTa). (B) Example
frame of an experimental video with labels at the tracked body features. The +
symbols mark manually annotated positions; circles mark network estimates.
Note that trained networks can deal with motion blur. Despite motion blur of
the right front leg and left middle leg, leg postures may be estimated well.

22 body features: These were the coxa-trochanter, femur-tibia,
and tibia-tarsus-joints of all six legs, along with the anterior
and/or posterior part of the head, prothorax, mesothorax, and
metathorax. Apart from the abdomen, this set of features
corresponded to the segment boundaries used to generate the
synthetic videos (see Figure 1).

Synthetic Videos
Synthetic videos were generated from rendered body postures
acquired in whole-bodymotion capture experiments as described
by Theunissen and Dürr, 2013 and stored in an open-access
database (Theunissen et al., 2014a,b). Animated single walking
trials are available online3 (see samples for the species Carausius
morosus and obstacle height 0). From this data base, we used joint
angle time courses of the first 1,600 frames of the trial named
Animal12_110415_24_33. For each frame, the 3D locations of
22 body features were calculated, using forward kinematics in
Matlab (The MathWorks, Natick, MA, USA). The features of the
abdomen and the six tarsi of the legs were estimated as described

3http://movement.cit-ec.de/stick-insect-locomotion/animations.php
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by Dürr and Schilling (2018). Each posture could be subject to
scaling, translation and/or rotation so as to control the amount
of variation of these parameters in our training data (see below).

Each body segment was visualized as a cylinder with two
spheres at the end (Figures 1A, 2A). Individual video frames
were generated using Python4: individual frames were rendered
using the Vapory library5 and concatenated into video files using
the MoviePy library6. All videos were rendered with an image
size of 640 × 480 pixels, i.e., the same as in our experimental
videos. Rendering transformed the 3D postures of the body into
2D images of a virtual camera with fixed camera projection
matrix. The resulting spatial resolution was 0.28 mm/pixel at
a scaling factor of 1, resulting in 0.55 or 0.18 mm/pixel for
50% and 150% scaling. The virtual camera had a viewing angle
of 69.4◦ and was placed 200 units above the ground plane
with its line of sight pointing downward, i.e., resulting in a
top view video of the walking animal. The surface color as
well as the radii for the spheres and cylinders were chosen to
approximate the appearance of our experimental videos (for
details see Supplementary Material.) As all body features were
labeled prior to forward kinematics and rendering, each rendered
frame came with 22 labeled feature positions that were used as
annotations during training.

The Matlab code for calculating the forward kinematics, as
well as the Python code for rendering images (and videos) and
generating the corresponding training annotations are available
on request from the corresponding author.

Deep Neural Network Models
We used DeepLabCut (Deeplabcut github repository7, 2018)
to train and test all deep neural network models of our
study. All training was carried out at the compute cluster
of center for Cognitive Interaction Technology (CITEC) at
Bielefeld University. It provides several GPU cores of the
NVidia Tesla (Tesla P-100 and Tesla C2075) and GTX
(GTX 1080 Ti) architectures. We used the standard training
schedule of DeepLabCut. This schedule comprises training for
1,030,000 iterations with varying learning rates, depending on
iteration number. For a detailed description of DeepLabCut see
Mathis et al. (2018) and Nath et al. (2019).

The subsequent evaluation was performed on one GTX
1050 graphics card. To illustrate the output of such a trained
deep neural network, Figure 2B shows score-maps for three body
features, where the brightest point on the map indicates the most
likely location estimate.

Experiments
Experiment I: The Relative Effect of Scaling,
Translation and Rotation
The first experiment was designed to assess the degree of
invariance regarding scaling, translation and/or rotation of the
animal posture. To this end, we generated a total of seven
synthetic videos with a length of 1,600 frames each. In each

4http://www.python.org
5http://github.com/Zulko/vapory
6http://github.com/Zulko/moviepy
7http://github.com/alexemg/deeplabcut

video the animal was placed at the origin of the world coordinate
system and aligned along the x-axis. The virtual camera position
was adjusted to the position of the animal such that it appeared
to be held in place at the image center. We then used any
combination of the following three basic transformations to
render seven videos:

1. Random translation (T) of the animal in the image plane by
[−30, 30] px in either direction;

2. Random rotation (R) of the camera around its viewing axis by
[0, 2π] radians;

3. Random scaling (S) of all body segment lengths by a factor
drawn from the set {0.5, 0.7, 1.0, 1.3, 1.5}.

All transformations were drawn at random for each frame.
Apart from the three videos with single types of transformations,
further four videos were generated with combinations of two or
all three basic transformations:

4. Video 4 combined random translation with rotation (TR).
5. Video 5 combined random translation with scaling (TS).
6. Video 6 combined random rotation with scaling (RS).
7. Video 7 combined random translation, rotation and scaling

(TRS).

For each video frame we then calculated the respective
2D-positions of the annotated body features. Of each synthetic
video, we used 200 randomly selected frames (and the
corresponding, annotated 2D-positions) to train the neural
network model, whereas the total 1,600 frames were used to test
the model. The performance of each one of the resulting seven
models was evaluated by the accuracy of its position estimates
of the 22 body features. The benchmark for evaluation was the
TRS Video 7 that contained all possible random combinations
of transformation. For each one of the 1,600 frames and each
body feature, we calculated the Euclidean distance between the
position estimate and the ground truth. The mean of this error
measure will be referred to as the average pixel error. Frames for
which the model provided position estimates with a confidence
rating less than 10% were excluded from the subsequent analysis
of the body feature concerned. The latter occurred for frames
where the respective body feature was occluded or outside the
frame. On average, models which were trained on rotations gave
about 30 low-confidence estimates (for 22 features × 1,600 test
frames), whereas models which were not trained on rotations
gave about 700 low-confidence estimates.

Experiment II: How Much Rotation Is Required?
The second experiment was designed to determine a suitable
range of rotational variation in the training data. To do
so, we rendered eight artificial videos with 800 frames each
(corresponding to the first 800 frames of animal pose data).
Other than in Experiment I, we kept the position of the virtual
camera fixed and only varied its rotation in discrete steps, with
one fixed rotation for each video. Training videos were then
generated with a random selection of 200 frames drawn from
different subsets of these eight videos. Each of these was used
to train a separate neural network model. Training Video 1 had
no transformation applied. For training Videos 2—8, we used
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FIGURE 2 | Rendered frames and score maps of a synthetic video. (A) Top view of a stick insect whose posture was computed from experimental data, using
forward kinematics. The body segments are represented as cylinders and the joints as spheres. As no texture was applied, the animal body has a smooth, gray
surface. The above frames show the same posture modified by a rotation (90◦) and a scaling by 150%. (B) The color labels in the left frame correspond to the score
maps of the deep neural network output on the right. The color code shows the confidence score of the network for a particular body feature to be located at that
position. In the leftmost case the metathorax position was estimated (red dot in left frame). The middle and right images show score maps for the head (green dot in
left frame) and the tibia-tarsus joint of the right front leg (blue dot in left frame), respectively. The axes correspond to the image coordinates in bins of 8 × 8 pixels.
The score-map was log-transformed to improve visualization. Since the model outputs probability values in [0, 1], the log transformed values are negative. Warmer
colors indicate higher confidence.

an increasing number of discrete rotations of the virtual camera
with increments of 45◦. As a result, Video 2 had frames rotated
by 0 or 45◦, Video 3 had frames rotated by 0, 45◦ or 90◦, and
so on. As before, performance was evaluated on the TRS Video
7 of Experiment I, i.e., a video that included rotation angles
drawn from a continuous set rather than from a discrete set as
used for training. The average pixel error was calculated as in
Experiment I.

Experiment III: Transfer From Synthetic to Real
Videos
The third experiment was designed to evaluate the potential
of using synthetically generated video material to reduce the
amount of manual annotation of experimental video material.
For this experiment, we trained two distinct sets of neural
networks: A first set of models used the default networks of
DeepLabCut, i.e., ones that had been pre-trained on ImageNet
only. This set of models will be referred to as Experimental-
only models, and will be used to assess training performance on
regular experimental video material. A second set of models was
pre-trained on 8,000 randomly selected frames from a synthetic
video containing any combination of eight rotations in discrete
increments of 45◦ (0◦–315◦) and five scaling factors (0.5, 0.7,
1.0, 1.3, 1.5). Then, it was trained additionally in exactly the
same way as the Experimental-only models. This set of models
will be referred to as Synthetic+Experimental models, and will
be used to assess the benefit of pre-training with synthetic
video material.

For the training part on experimental data, we used our videos
of real walking animals. The amount of training data was varied
in four training fractions: 10, 20, 50 and 80%. The training
fraction is the fraction of the total 286 experimental video
frames that was used to train the models. The remaining frames
(i.e., 1-training fraction) were used as test frames to evaluate
the performance of the network. Five models were trained for
each training fraction, with each set of training frames drawn at
random. As in Experiments I and II, the average pixel error was
calculated for the position estimates of 22 body features.

RESULTS

With our overall goal being to improve marker-less motion
capture by use of synthetic video material, we expected the
following four aspects of the video generation process to be of
importance: (i) the availability of a suitable sample of natural
animal postures; (ii) the quality of the rendered image; (iii) the
correct choice of image view and scaling; and (iv) sufficient
combination and variation of geometric transformations of the
rendered animal. Owing to the availability of a database on
whole-body kinematics of walking and climbing stick insects
(Theunissen and Dürr, 2013; Theunissen et al., 2014a,b, 2015)
and the relevance of stick insects as a study organism in
locomotion research (e.g., Bidaye et al., 2018; Dürr et al., 2018)
we decided to use stick insect data to generate synthetic data.
Among the three stick insect species modeled by Theunissen
et al. (2014b), the Indian stick insect Carausius morosus
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(de Sinéty, 1901) has the most plain body geometry, allowing
us to render postures with a fair degree of realism despite
the simplicity of a multi-cylinder-model (see Figures 1A, 2A).
Finally, given the availability of high-quality and easy-to-use
camera calibration toolkits (e.g., the Matlab camera calibration
toolkit) it is reasonably simple to measure distance, orientation
and optical projection properties of arbitrary digital camera
setups. Accordingly, we decided to base all of our experimental
analyses of this study on top views of the Indian stick insect
C. morosus, assuming that most if not all results should easily
transfer to: (i) other data sets; and (ii) any other single-
camera setup. Instead of addressing (iii) the impact of rendering
procedures with different degree of realism of the entire video
frame, we decided to focus on the body geometry of the animal
model. Thus, the original problem was narrowed down to aspect
(iv), i.e., the question of which kind of combinations and how
much variation of geometric transformations were needed to
be contained in a synthetic training video in order to achieve
optimal motion capture performance.

Random Transformations
In order to judge the relative significance of geometric
transformations for motion capture performance, we tested
different combinations of linear translation, rotation of the
camera and scaling of the body. To do so, a total of seven
training videos were generated, using random transformations
with parameters drawn from the ranges given in ‘‘Experiments’’
section. The corresponding seven DeepLabCut models were
evaluated against a test video that comprised all three
transformations, again with parameters drawn from the same
ranges as the training videos. Figure 3 shows the mean Euclidean
distances between the position estimates of the network and
the ground truth. Each box plot comprises the errors from all
1,600 frames of the test video and all 22 tracked body features.
Clearly, models that were trained on data with variable rotation
outperformed the ones without rotation, with the median error
dropping from approximately 40 pixels to 3. The highest median
error of the models including rotations was 2 pixels and was
found for the ‘‘R’’ model, which was trained on rotations only. In
metric units, an error of 2 pixels corresponded to 0.36–1.1 mm,
depending on the scaling factor of the random transformations.
The lowest median error of the models which were trained
without variation of rotation was 40 pixels and was found for
the ‘‘TS’’ model which was trained on a video with variation of
translation only. Furthermore, the small differences among the
four models that were trained with variable rotation indicated
that models trained with variable scaling performed better than
those that were trained without. Translation appeared to have no
impact on the performance.

To test for statistical significance of these observations, we
reduced the distributions of error-per frame shown in Figure 3
(n = 35,200) to distributions of median errors per body feature
(N = 22). Since we had corresponding error measures for each
one of the seven models, we used a Friedman test to confirm
that at least one median value significantly differed from the
others (statistic: 119.3; p < 0.001). To reveal further performance
differences amongmodels we ran post hoc pair-wise comparisons

FIGURE 3 | Rotation matters. Average pixel error of seven models that were
trained with different combinations of scaling (S), rotation (R), and translation
(T). Models that were trained with variable rotation of the posture (left: R,
rotation with scaling (RS), translation, rotation and scaling (TRS), TR)
outperform models that were trained with one posture orientation only (right:
S, T, TS). Note that, for the sake of clarity, outliers beyond 1.5 times the
interquartile range are not shown. As yet, all data points were included in any
and all statistical computations. The scale factor converting pixels to mm was
in the range of 0.18–0.55 mm/pixel, depending on the scaling factor of the
random transformation.

using Wilcoxon’s test for matched pairs. The results are shown
in Table 1. Performance differences among models proved to
be statistically significant for all but four model pairs: These
include all comparisons among models trained without variation
in rotation (S, T, and TS) and the comparison of the models
R and TR. We conclude that models which were trained on
different animal sizes in addition to variable rotation showed
significantly better performance than models which were only
trained with variable rotation and/or translation. Translation,
on the other hand, had hardly any impact on performance as
variable translation resulted in a slight improvement only if
added to variation of rotation and scaling (TRS vs. RS). When
comparing the error distributions for different body features,
points which are close to the main body axis (e.g., segment
borders of the thorax, leg coxae) clearly had smaller errors than
those located further away (e.g., femur-tibia joints and tarsi).
The example shown in Figure 4 is the result of the RS model,
i.e., the network trained with variable rotation and scaling. The
color code emphasizes this apparent improvement of tracking
performance from distal tarsi (blue), to intermediate femur-
tibia joints (green), to proximal groups (red and yellow). The
latter were tracked very consistently and with high accuracy
and precision. To illustrate the striking improvement whenever
the training data varied in rotation, Supplmentary Figure 1
shows the same kind of graph as Figure 4 but for the TS
model, i.e., the model trained with variable translation and
scaling. Note how the error variance is about one order of
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TABLE 1 | p-values of pairwise Wilcoxon tests for the seven models of experiment I.

R RS S T TR TRS TS

R – ∗∗∗ ∗∗∗ ∗∗∗ 0.390 ∗∗∗ ∗∗∗

RS – ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗

S – 0.189 ∗∗∗ ∗∗∗ 0.783
T – ∗∗∗ ∗∗∗ 0.095
TR – ∗∗∗ ∗∗∗

TRS – ∗∗∗

p-values below 0.001 are indicated by ∗∗∗. Column and row labels refer to the kind of randomized transformation applied to the training data. R, Rotation only; S, Scaling only; T,
Translation only; RS, Rotation and scaling; RT, Rotation and translation; TS, Translation and scaling; TRS, Translation, rotation and scaling.

magnitude larger than that of the RS model shown in Figure 4,
irrespective of body feature. Moreover, the clear proximal-to-
distal ordering of error magnitude found for the RS model
is lost for the TS model. We conclude that optimal motion
capture performance requires sufficient variation of rotation in
the training data.

To illustrate the consistency of tracking across an entire
synthetic video, Figure 5 shows the error for each frame. The
tracking is not uniformly good as there appear to be more
‘‘difficult’’ episodes around frames 850 and 1,500. The top
inserts to Figure 5 show some selected frames from these
regions. For example, frames 861 and 862 show large tracking
errors of the right middle leg tarsus (blue circles). Typically
this seems to happen when the tarsus is occluded by the
tibia or when the right middle leg crosses the right hind leg.

FIGURE 4 | Proximal body parts have lower errors than distal ones.
Distributions show the pixel errors for 22 individual body features
(n = 1,600 per distribution). The error is the Euclidean distance between the
ground truth and the network prediction. This particular model has been
trained on a video which included random rotations and scaling (RS).
Distributions were sorted from top to bottom by increasing standard
deviation. The color code groups body parts according to a proximal-to-distal
gradient (red: thorax and head; orange: coxae; green: tibiae; blue: tarsi). The
scale factor converting pixels to mm was in the range of 0.18–0.55 mm/pixel,
depending on the scaling factor of the random transformation.

In this case the occlusion also has a detrimental effect on
the tracking.

Significance of Rotation by 180◦

Given the conclusion of the previous section, we wanted to
find out how much variation of rotation is sufficient. To this
end, we ran a second experiment in which eight models were
trained on videos that differed in the amount of variation in

FIGURE 5 | Test error is equally low for most frames. Median pixel errors of
all body features were included. The model was trained on video comprising
frames with five scaling factors and eight rotations (RS, as in Figure 4). The
pixel error varies around a common mean for most video–episodes with three
peak regions beyond 3.0 at frames 670, 800–900 and 1,500. These peaks
correspond to “difficult postures.” The dashed red line represents the median
and the two yellow lines are the first and third quartiles. The black line
represents the 1.5 times the interquartile range. The top row shows selected
frames from difficult regions. Colored points label the features tracked.
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FIGURE 6 | Rotation by at least 180◦ greatly improves performance.
Average pixel error for eight models with varying degree of rotation. Rotations
were applied in steps of 45◦, with model number indicating the cumulative
number of rotation steps. Model 5 is the first model that was trained on
postures with a rotation range larger than 180◦. Models that were trained on
videos with six or more rotation steps have the least error. Note that, for the
sake of clarity, outliers are not shown. As yet, all data points were included in
any and all statistical computations. The scale factor converting pixels to mm
was in the range of 0.18–0.55 mm/pixel, depending on the scaling factor of
the random transformation.

rotation angles. Instead of random variations, we added one
further rotation angle step by step, with increments of 45◦. As
a result, we obtained eight models, where the first had been
trained on animal postures with a single body orientation, the
second had been trained on postures with two orientations (0◦

or 45◦ rotation), the third had been trained on postures with
three orientations (0◦, 45◦, 90◦) and so on. Figure 6 shows
that the median error decreased with increasing number of
rotation angles added. The error dropped most strongly across
the first four models (0◦–135◦ rotation). Furthermore, we found
that a major drop in the error range occurs across the first
six models (0◦–225◦ rotation) with the addition of the fifth
rotation angle, i.e., including 180◦ rotation (opposite walking
directions), marking the steepest decrease in error range. Here
the median error dropped from 42 pixels (no rotation) to 3 pixels
(corresponding to 0.54–1.65mm, depending on the scaling factor
of the random transformations), and the inter-quartile range
of the error dropped from 69 (no rotation) to 37. Given the
bilateral symmetry of the animal, the significance of having at
least 180◦ of rotation range suggests that beyond this point
it may be easier to tell the front end from the rear end of
the animal.

Transfer to Experimental Data
Next, we tested how well training on synthetic video data
transferred to normal laboratory video material. Real animal

video material differs in many ways from our synthetically
created videos, for example with regard to noise, motion blur,
lens distortion and overall appearance of the animal. Our
experimental video comprised 286 manually labeled frames
taken from digital videos of a stick insect walking on a
horizontal surface in one of eight directions (∼45◦ rotation
steps). The image size of the animal was varied by zooming
in or out. In this third experiment, a first set of Experimental-
only models was trained from scratch. For comparison, a set
of Synthetic+Experimental models was trained using the most
advanced model from Experiment I (Figure 3) to start with,
i.e., a model trained on postures with variable rotation and
scaling. Further, to assess the amount of additional training with
manually annotated video material, the fraction of frames used
for training was varied in four steps. For example, a training
fraction of 20% means that 20% of the 286 annotated video
frames were used for training, while the remaining 80% were
used for testing. Finally, as the training fraction was drawn at
random, a total of 40 models was trained, with five instances
per combination of ‘‘model type’’ × ‘‘training fraction’’. Figure 7
shows representative output examples from four models,
two Experimental-only models and two Synthetic+Experimental
models, where each of these pairs (columns in Figure 7) shows
one example for a model trained with a training fraction
of 80% (top row in Figure 7) and another trained with a
training fraction of 10% (bottom row in Figure 7). The results
indicate that the performance of both the Experimental-only and
Synthetic+Experimental models are equally good when trained
with a training fraction of 80%. The smaller the training fraction,
the more frequent become the low-confidence position estimates
and mis-location errors.

We assessed whether we could achieve an error margin
of ≤4 px and determine how much training data variation
was needed to reach this error margin. The 4 px margin was
established because on the lower zoom settings this corresponds
to about 2.8 mm. As the adult females typically measure about
80 mm (Theunissen et al., 2015), this seemed reasonable. The
lower zoom setting was selected as benchmark because here
deviations and tracking inaccuracies were larger compared to the
size of the insect than on higher zoom settings.

Figure 8 summarizes the performance for all 40 models
(five per model type and training fraction). Both the
Experimental-only and the Synthetic+Experimental models
improved with increasing training fraction. Both kinds of model
performed similarly well when using a training fraction of 80%,
while the Experimental-only models performed considerably
worse than the Synthetic+Experimental models when trained
with a training fraction of only 10%. For both model types,
training errors were very similar, and generally very low,
irrespective of training fraction. Nevertheless median test errors
were always significantly lower for Synthetic+Experimental
models (e.g., Training fraction 10%; Wilcoxon’s U-test on
rank sums: U = 2.0, n1 = 5, n2 = 5, p = 0.0184), except for the
training fraction of 80%. At this training fraction median errors
of both the Experimental-only and Synthetic+Experimental
models converged to a similar level of performance and median
pixel errors are the same for both Experimental-only and
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FIGURE 7 | Synthetic training data can lead to good model performance. Selected frames illustrate performance of model variants that do (Synthetic +
Experimental, right panels) or do not (Experimental-only, left panels) include artificially generated frames, and differ in the fraction of training data (top panel: 80% of
frames were annotated for training; bottom panel: Only 10% of frames were annotated). Circles mark the position of high-confidence estimates of the network,
crosses mark low confidence estimates; + symbols mark manually annotated positions. (A) The Experimental-only model with a training fraction of 80% achieved
good performance (no mis-locations). (B) The Synthetic + Experimental model with 80% training fraction achieved similarly good performance as (A). (C) The
Experimental-only model with 10% training fraction showed some errors and low-confidence estimates. (D) The Synthetic + Experimental model with 10% training
fraction shows several errors.

Synthetic+Experimental models (three pixels, corresponding to
0.6–2.3 mm, depending on the zoom settings of the camera).
Only for this highest training fraction did the median error
of the Experimental-only models fall into the 95% confidence
bands of the Synthetic+Experimental model errors. Moreover,
the confidence cut-off appeared to improve the performance of
all models slightly. However, this difference tuned out to be not
significant, irrespective of model type (U = 169, n1 = 20, n2 = 20,
p = 0.205 for pooled Experimental-only models; U = 178.5,
n1 = 20, n2 = 20, p = 0.285 for pooled Synthetic+Experimental
models). Finally, the median error of the Synthetic+Experimental
models was <3 pixels with a training fraction as small as 50%.
We conclude that the use of synthetic videos for pre-training
of deep neural networks can reduce the amount of manual
annotation by at least 37.5% (3/8) without a decrement
in performance.

DISCUSSION

Requirements on Feature Variation
While deep neural networks have been repeatedly shown to
achieve very good performance in marker-less motion capture
(Datta et al., 2019), the choice of appropriate training data
remains crucial for their performance. Mathis et al. (2018)
showed that accuracy of DeepLabCut mainly depends on two
factors: the number of frames used for training and the number
of body parts to be tracked. They reported that 200 frames are
sufficient to reach a good performance level. Figures 3, 6 confirm
this. As yet, both of these figures also prove that the amount
of parameter variation has a profound impact on performance,
particularly the variation of rotation. As expected for a fully
convolutional neural network, translation has no impact on the
performance of DeepLabCut. In contrast, scaling has a small
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FIGURE 8 | Comparative evaluation of Experimental-only and
Synthetic + Experimental models. Individual points represent different
networks. Average pixel errors are plotted against the fraction of training
frames in the video. Training errors (lower lines) are nearly equal for all
networks. Performance of the Synthetic + Experimental models (red and
yellow lines with confidence bands) was better than that of models that were
trained on experimental data only (blue lines with error bars). Estimates with
and without a cut-off threshold of 10 reveal a small improvement if the cut-off
is applied, though this difference is not statistically significant. Each dot
represents one data point. The scale factor converting pixels to mm was in
the range of 0.202–0.771 mm/pixel, depending on the zoom setting of the
camera (see Supplementary Table 1).

but statistically significant effect (Figure 3 and Table 1), at least
within the tested range of 0.5× to 1.5×. It is possible that
larger deviations in size will affect the performance more. In
experiments on insects, the tested scaling range should cover
samples from three to five successive developmental stages. For
example, in stick insects of the species Carausius morosus, a
threefold increase in size would cover the size difference between
larval Stages 1 and 3 or between Stages 3 and 7 (assuming size
data of Ling Roth, 1916). The scale variation in the experimental
data set should exceed this range, synthetic generation of training
data would allow for arbitrary size variation during training.

Clearly the main problem of DeepLabCut concerns image
rotations, which have to be learnt entirely from rotational
variation in the training data. Although rotation equivariance has
been implemented in neural network applications (e.g., Cohen
and Welling, 2016; Chidester et al., 2018), it is not a property
of ResNet (He et al., 2016) nor of systems that are based on
it, including DeepLabCut. As a result, if rotational variation in
the training data was insufficient, the net will perform poorly
during the tracking task if it encounters small deviations in
body orientation.

Figure 6 shows that five rotations (0–180◦) are sufficient
for good generalization in our motion tracking showcase. This
makes sense because including the +180◦ rotation allows the
network to tell the rear from the front end of a bilaterally

FIGURE 9 | Occlusion of body parts. Here the tarsus of the left hind leg
(dark green cross) is occluded by the hind leg femur. The network mistakes
the tarsus of the middle leg (light green cross) as the tarsus of the hind leg
(dark green circle). The ground truth is marked by crosses, whereas circles
mark network estimates.

symmetric animal. Together with only three intermediate
rotational steps, the system can successfully track animals which
are oriented along angles that the network never experienced
during training. Data variation beyond 180◦ rotation further
reduced the tracking error, but to a much smaller degree.
Although our results suggest that five rotations in steps of 45◦

are enough to generalise across all rotations, the actual number
of rotational steps in the training data may not be crucial. Since
the average error dropped markedly only after the network had
been trained on the frameset including the 180◦ rotation, it may
be the range that is important, rather than the number of steps
comprised in it. At present, we cannot distinguish between these
two possibilities.

Benefits and Limits of Pre-training With
Synthetic Data
As shown by Figure 5, tracking accuracy is persistently accurate
for long test sequences. The inserts to Figure 5 also show that if
performance falls short of the average accuracy, the underlying
causes may not be clear. This may be because at least two
important properties of the deep neural network approach have
both advantages and disadvantages. For example, the ability
to learn features of 2D projections of 3D postures is a major
strength of deep convolutional networks. As yet this may cause
problems if 2D projections involve occlusions (e.g., see Figure 9)
because the learnt feature may be masked by a feature of the
occluding body part. Thus, if occlusions are frequent, they may
either have to be learnt as a separate feature as such, or else be
disambiguated by additional camera views. Combining multiple
views has been proposed in tracking systems such as DeepFly3D
(Günel et al., 2019) or Anipose (Karashchuk et al., 2020). With
multiple camera views, the utility of synthetic video data should
be potentiated by the number of cameras, n, as each posture of
the database is rendered (and automatically annotated) n times,
thus reducing the amount of manual labeling by (n − 1)×F for F
training frames.

Another property that comes with benefits and problems alike
is the use of score maps with probability estimates. Whereas
this has obvious advantages in case of motion blurring (e.g., see
right front leg R1 in Figure 1B), peak confidence values may
not always indicate the correct location of a feature. In case of
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motion blur, a feature may almost vanish but still be identified
by means of its most likely position estimate. Occasionally,
however, juxtaposed features may lead to score maps with
multiple local maxima of the confidence rating. In such cases,
the global maximum need not yield the most accurate estimate.
We argue that in both of these cases the use of synthetic
training data may improve performance on experimental data,
for example if motion blur reduces manual annotation accuracy,
or if rare ‘‘difficult postures’’ require particularly large training
data sets that are easy to synthesise but difficult to obtain through
manual annotation.

We had expected the Synthetic+Experimental models to
transfer features learned from synthetic data to real video frames,
such that experimental analysis could be run after additional
training with very small sets, e.g., 20–30 video frames. This was
not quite the case, despite the fact that Synthetic+Experimental
models performed significantly better than Experimental-only
models when trained with low frame numbers (see Figure 8;
training fractions of 10–50%). As shown in Figure 7D, a
Synthetic+Experimental model that was trained with additional
28 experimental video frames shows considerable errors. For
the corresponding Experimental-only model in Figure 7C this
was expected because 28 training frames were far less than the
minimal requirement on training data as determined by Mathis
et al. (2018).

Nevertheless, Figure 8 clearly shows that pre-training on
synthetic data reduces the amount of manually annotated
experimental training data by some 50%, thus effectively halving
human effort. Despite training errors were equally low for
all models, Synthetic+Experimental models outperformed all
Experimental-only models that were trained with <150 frames
(e.g., training fraction 50%). Since generating and annotating
synthetic frames is done automatically and considerably faster
than manual labeling, the reduction of human effort and work
time is considerable.

It should be noted that our synthetic data used a rather
simplistic multi-cylinder model, suggesting that increased
realism of the synthetic data may lead to further improvement.
In applications for automated human pose estimation, more
complex synthetic data sets have been used (e.g., Varol et al.,
2017). Our results show that pose estimation applications on
single insect species can achieve good performance with much
simpler body shape models. We attribute this to much smaller
inter-individual variation of body shape in insects than in
humans. Future work will need to test whether and how body
shape models have to becomemore sophisticated if single trained
networks were to be applied to multiple species and both
sexes. In classification problems involving composite images of
multiple, geometrically simple objects, synthetic training images
may not need to be rendered at all, but rather be generated by

image processing. For example, Toda et al. (2020) successfully
applied a technique called domain randomization to create
synthetic images of grains with a high degree of variation.
While such approaches nicely illustrate the power of modern
image processing techniques, it is unlikely that deep learning
applications tomotion capture and/or pose estimation of animals
could be trained successfully on synthetic images generated
without an underlying body model.

In summary, we have presented a show-case example of
unrestrained walking stick insects, showing that training with
synthetic data can effectively reduce the amount of manual data
labeling for DeepLabCut, a deep convolutional neural network
for motion tracking and pose estimation. Provided that the
synthetic training data includes sufficient variation of rotation,
even a simple multi-cylinder representation of the model animal
can reduce the amount of manual annotation by some 50%.
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As a canary in a coalmine warns of dwindling breathable air, the honeybee can indicate
the health of an ecosystem. Honeybees are the most important pollinators of fruit-bearing
flowers, and share similar ecological niches with many other pollinators; therefore, the
health of a honeybee colony can reflect the conditions of a whole ecosystem. The
health of a colony may be mirrored in social signals that bees exchange during their
sophisticated body movements such as the waggle dance. To observe these changes,
we developed an automatic system that records and quantifies social signals under
normal beekeeping conditions. Here, we describe the system and report representative
cases of normal social behavior in honeybees. Our approach utilizes the fact that
honeybee bodies are electrically charged by friction during flight and inside the colony,
and thus they emanate characteristic electrostatic fields when they move their bodies.
These signals, together with physical measurements inside and outside the colony
(temperature, humidity, weight of the hive, and activity at the hive entrance) will allow
quantification of normal and detrimental conditions of the whole colony. The information
provided instructs how to setup the recording device, how to install it in a normal bee
colony, and how to interpret its data.

Keywords: honey bee (Apis mellifera L.), social, electrostatic field, behavior, datalogger

INTRODUCTION

A honeybee colony is a well-organized unit of social life that is composed of highly interacting
groups of single organisms with different duties, age-dependent behavioral routines, and
experience. Many of the messages communicated between these organisms are accessible by
electric-field measurements. These are electrostatic signals that workers produce due to their body
movements, e.g., their dances, shivering to control temperature, fanning behavior to regulate hive
humidity and CO2, ‘‘stop’’ and ‘‘whooping’’ signals, and overall motor activities characteristic of
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arousal states, preparation for play flights of young bees,
and preparation for swarming. Dances are particularly rich in
information because they encode specific meaning in a symbolic
form (von Frisch, 1967). Rhythmic movements of bee bodies, in
whole or in part (e.g., the abdomen and the wings), are technically
easily observable because they produce characteristic patterns of
electrostatic fields (ESF; Greggers et al., 2013). This is because
the wax-covered body surface of bees charge up electrostatically
due to friction between body parts, between animals inside of the
crowded hive, and between the air and body during flight. We
used these signals to characterize and quantify the information
flow inside the hive. Here we describe how we measured the
relevant signals under undisturbed bee keeping conditions, how
we related these electrostatic signals to body movements of single
bees, and how we shall use these signals to identify biologically
meaningful states of the colony.

ESF data collected from whole colonies are relevant in
many respects. Honeybees are the most efficient pollinators
of economically and environmentally highly relevant plants
(Klein et al., 2007; Potts et al., 2016). Dance activities tightly
mirror foraging activities across an area of some 5 km radius
around a hive (von Frisch, 1967). Since a dance codes the
outbound component of a flight to the pollinated flowers or
other food sources, available information potentially allows
spatial tracking of pollination activities (Steffan-Dewenter and
Kuhn, 2003; Seeley, 2011; Couvillon et al., 2014). These efforts,
however, provided rather limited information because of the
experimental challenges to decode the large number of dances
necessary for ecological studies. ESF measurements allow for
a quantification of colony-related pollination activity and its
dynamics over time and space. The health of honeybee colonies,
and thus their pollination efficiency depends on multiple
components including season, environmental conditions, bee
keeping activities, infections by parasites (viruses, bacteria, fungi,
mites), and exposure of/to insecticides (Chauzat et al., 2010;
Moritz et al., 2010; Morawetz et al., 2019). The latter conditions
are particularly relevant in modern agricultures since many
insecticides (e.g., neonicotinoids) act directly on the nervous
system of honeybees (Eiri and Nieh, 2012; Casida and Durkin,
2013), and have been found to compromise not only foraging
activity and navigation, but also dance communication (Van der
Sluijs et al., 2015; Tison et al., 2020). Other insect pollinators
(butterflies, beetles, flies, solitary bee) are also affected by
insecticides, and thus monitoring the effect of insecticides on
honeybee communication may provide information beyond
honeybee pollination activities (Pisa et al., 2015). In this
sense, ESF measurements in honeybee colonies offer access to
biologically and environmentally relevant data about the health
condition of ecosystems.

Our approach aims to implement a robust ESF measuring
device that allows normal bee keeping activities and data
collection by beekeepers without sophisticated knowledge of
electronics or big-data management. The methods applied are
based on the discoveries by Greggers et al. (2013), which
require sophisticated laboratory instrumentation and are, thus,
not suited for typical bee-keeping activities. We found that ESF
signals tightly mirror biologically relevant conditions and will

allow unsupervised long-term monitoring of health conditions
in honeybee colonies.

MATERIALS AND METHODS

Hive
The bee hive contained 11 regular comb frames (Zander system,
Holtermann, Germany) and one frame for the measuring devices
(Figure 1A). The four vertical walls of the hive box were made
of two layers of wood glued together with a metal mesh between
them to act as a Faraday cage. The mesh layers were connected to
the ground. The floor consisted of a metal mesh for ventilation
and access of bees to the combs. In order to close the Faraday
cage, a roof made of tin was also connected to the mesh layers and
ground. The system was designed such that normal beekeeping
was combined with electric-noise shielding. The back of the hive
box was elongated to house the electronics and a car battery as
power supply.

Sensors
A plastic tube extending from the side-wall of the hive contained
a GPS module (UBX-G7020, u-blox, China, not shown), which
was used to synchronize time and spatial date information
from satellites. The hive weight was monitored with three load
cells (LC; 50 kg, AUTODA, China) connected to load cell
amplifiers (Avia Semiconductor, HX711 ADC, China). A sensor
for external temperature and humidity (HTU21D-F breakout
board, Adafruit, NY, USA) was located below the extension of
the hive (Figure 1A, TS/HS sensor outside). A second sensor for
internal temperature and humidity was located in the measuring
frame (Figure 1B, TS/HS sensor inside). The entrance consisted
of a plastic tube (diameter: 50 mm, length: 10 cm) with a landing
platform (Figure 1A, insert). The inside of the tube was equipped
with two metal rings (width: 1 cm) that were connected to a
capacity sensor (FDC1004, Texas Instruments, TX, USA). A brass
tube (diameter: 1 cm) was placed in the middle of the plastic
tube and served as a reference potential by being connected
to ground. These capacity sensors at the entrance served as an
activity measure of bees entering and leaving the hive. Changes
of capacitance depended on the numbers and frequencies of bees
traveling through the tube since the dielectric constant of the
bee body (mainly water) is approximately 80 times higher than
that of air. The high dynamic range of the sensor allowed nearly
single-bee resolution, and measurements from an absence of bees
to full bee beard and above.

The ESF measurements sensors were placed in a
box—referred to as measuring comb—(Figure 1C) made of
4 mm thick Plexiglas sheets which occupied a third of a standard
Zander frame with a thickness identical to regular combs. The
sensors pointed towards the neighboring comb in the region
of the dance ground close to the entrance (see double pointing
arrow in Figure 1C). The back of the measuring box was
shielded by a grounded metal mesh in order to prevent pickup
of ESF signals from comb on the other side. An open space
of 2 cm in the lower part of the box allowed bees to cross to
other combs. The six ESF sensors (CJMCU-9812 MAX9812L,
CJMCU, China; capacitive microphones with microphone
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FIGURE 1 | Hive construction and measuring devices. (A) Front and side view of the hive. A plastic tube containing a GPS receiver was fixed to a sidewall (not
shown). The weight of the hive was measured with three load cells (LC). The round entrance tube was equipped with a capacity sensor of the bee traffic (insert to A).
A sensor for external temperature and humidity was located below the extension of the hive box (arrow TS/HS outside). (B) The hive was built as a Faraday cage
with a metal mesh between two tightly attached wooden plates, a metal mesh as the ground floor and a metal plate as the roof. The middle comb close to the
entrance [blue double pointing arrow in (C)] contained the six ESF sensors. (C) Side view of the measuring comb with the six electrostatic field (ESF) sensors.

preamplifier board) were arranged in the lower part of the box
(Figure 1C). The microphone capsules were opened and their
dielectric membranes were removed, eliminating any sound
pressure effects and exposing the gate pin of the central J-FET.
The cut-off frequency was reduced to 5 Hz by replacing the
original capacitor at the entrance gate with a jumper wire. The
six altered sensors were arranged in two rows with three sensors
each, all facing the same direction towards the dance floor of
the opposing comb. The amplified and filtered (5–20,000 Hz)
analog signals are sent to a synchronous six channel delta-sigma
analog digital converter (MCP3903, Microchip, AZ, USA) on a
custom-designed printed circuit board (PCB) in the hive back
(Figure 2).

Central Recording Device
The board in the electronic device was a custom made
2-layer PCB (Figures 2,3) connecting all sensors and devices
to a microcontroller evaluation board (STM32F407VET,
STMicroelectronics, Geneva, Switzerland) attached to it on its
lower side (shield-arrangement). The custom board also housed
an ADC (analog-digital converter) and related analog-signal
conditioning circuits. The ADC digitized six signal channels
simultaneously with 5,000 samples per second with a 24-bit
resolution. The data from the six ESF sensors were saved from
06:00 to 23:59 UTC and stored on a 64 or 128 GB SD card.

In addition to the ESF data, data from the temperature and
humidity sensors inside and outside the hive, data from three
load cells acting as a scale for the mass of the whole hive,
and MCU-temperature (microcontroller-temperature), were
sampled and saved every 120 s all day long. The data from
both capacitance sensors at the entrance were sampled and
saved at 100 samples per second from 06:00 to 23:59 UTC.
Each of these three data streams were saved in binary files with
regular GPS timestamps. Additionally, a unique identifier for
each hive and a hardware identifier of the microcontroller was
saved as well. We chose to store all data in a binary format
to use the data storage on the SD cards efficiently. The whole
system was powered by a generic 12 VDC, 60–100 Ah car
battery, which provides electricity for more than 10 days. The
battery needed to be recharged approximately once per week,
at which time, the SD card was replaced by an empty one.
The binary data were converted into CSV (comma separated
values) files and processed by a custom program written in
Python 3.

Data Processing
The resulting CSV files were structured in the following way:
one file contained the data of the six ESF channels together with
the corresponding time stamps for a duration of 200 s per file,
another file contained all daily data on temperature, humidity
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FIGURE 2 | Central recording device. Inputs (ESF probes, Temperature, Humidity, Scale, GPS and entrance activity; Figure 1) were connected to the central board
as well as to a SD card writer to save all data. The custom-made board was plugged onto a STM32 developer board. (A) Photograph of one unit. Large pin rows left
and right connected to the STM32 board below. The green printed circuit boards (PCBs) on the bottom house the scale instrumental amplifiers and associated
ADCs (analog-digital converters). The central SMD chip (MCP3903, Microchip, AZ, USA) digitized the analog ESF signals (middle of PCB). (B) PCB schematic
diagram of the board in (A). Note the split ground plane along the horizontal middle axis. The lower segregated ground plan isolated the upper digital traces from the
sensitive analog ESF signals. (C) Circuit diagram of (A) and (B).
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FIGURE 3 | System overview: red connections show power connections
and blue data lines. The system is connected to a 12 V battery. A step down
boost converter generates 5 V which is also regulated by the MCU-PCB to
3.3 V for some sensors. The electric field sensors are connected to an ADC
(MCP3903, Microchip, AZ, USA) on the PCB. The STM32 reads out the ADC
data with a sample rate of 5,000 Hz via SPI in a timer triggered interrupt. The
activity sensor channels are read out at 200 Hz via I2C. The scales are
connected via a custom serial protocol and are, like the temperature and
humidity sensors (I2C) read out every 120 s.

and load cells, and a third file contained the two channels of
the capacitance sensors at the entrance and daily timestamps.
In addition, weather data were downloaded automatically via
the Darksky API1 for the hive’s location determined by the GPS
sensor and matching the data’s timestamp. The weather data
were used for analyses in addition to data from the temperature
and humidity sensors outside the hive. Example of the data can
be found in the article’s Supplementary Materials (raw data,
converted data of all types, one typical summary PDF and WAV
files). A summary PDF file for quick analyses was produced
together with optional WAV files (see Supplementary Materials).

A state machine, built with function pointers, was used to
make the code more structured (Figure 4A). At the start of the
monitoring unit the RTC (real time clock) was synchronized with
the GPS time (if no GPS time was available after waiting 5 min it
went into an error-state and rebooted), and then the load-cells
were initialized. When no error occurred in the initializing-
state it continued to the configuring-state. The configuration
instruction was loaded, verified that it was time for a recording,
total number of measurements was calculated and switched to
the execution-state. If debugging was needed the system could
be switched to the testing-state where the sensors may be tested.
When the desired number of electric-field measurements was
reached the system switched to the finalizing-state where the
microprocessor was set to the standby mode in order to save

1https://darksky.net/dev

power. After waking up from the standby mode it switched again
to the initializing-state. If an error occurred, the system switched
to the error-handling-state where an error message was printed
(via UART) and switched again to the initializing-state.

The converter and analyzer graphical user interface
(Figure 4B) created CSV-files (comma-separated values),
enriched it with online weather data, detected the social signals
and created a report. The user input needed for analysis was
as follows: first, the user chose the folder containing the raw
binary files. Next, the scope of conversion and analysis was
selected, including optional steps like the generation of WAV
files of the ESF traces for manual investigation in audio software.
The program allowed the generation of a PDF file summarizing
all results like temperatures and alike as well as dances over
time in a basic human-readable format (see Supplementary
Materials). The program also allowed for easy change of
important parameters e.g., relevant social signal frequencies
as well as minimum duration of such signals to be detected.
This tool was intended for use by non-data scientists. In cases
of incoherent inputs, the program prompted insightful error
messages to debug the error.

Validation
We related the recorded ESF signals to the animals behaviors
in multiple ways. Greggers et al. (2013) reported a method
that allowed to record simultaneously, dances by video and
ESF using a transparent potassium chloride electrode. Tison
et al. (2016, 2020) found correlations between waggle dances
related ESF signals and uptake of neonicotinoids. In addition,
the Supplementary Video shows a set-up with an observation
hive together with the voice recording of an experimenter during
simultaneous ESF, video recordings and visual inspection of
dancing, fanning and stop signal producing bees. As shown in
the video ESF were recorded via square-like wires that were
connected to the ESF sensors. Multiple other set-ups were used
to observe the behavior by eye together with a voice protocol that
allowed off-line comparison with ESF recordings. As described
below the ESF data stream was analyzed by the converter software
to identify and label waggle-dance-related signals (WRS), short-
pulse-related signals (SRS) and fanning-related signals (FRS). To
verify those signals we investigated 97 files from different systems
e.g., hives during different seasons and years. The classification
of WRS, SRS and FRS was compared between human eye based
labeling and that of converter based classification. To test the
system in the field we cooperated with 29 beekeepers spred
all over Germany besides our own 12 measuring devices. We
supported and supervised the use of the devices for up to
5 years. Our students cared for the systems and carried out their
experiments in our bee garden.

PCB plans, bill of materials, code on the STM
microcontroller, wiring diagram, converter code as well as
analysis code can be found in the Supplementary Files. The
Supplementary Files also contain example data, raw and
converted as well as a PDF summary. They are available
here: https://figshare.com/articles/dataset/The_electronic_
bee_spy_Eavesdropping_on_honeybee_communication_
via_electrostatic_field_recordings_-_Supplemental_Data_and
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FIGURE 4 | State machine and graphic surface of the converter and analyzer. (A) Schematic diagram of the state machine (see text). (B) The converter and
analyzer graphical user interface.

_Codes/3490973 and https://doi.org/10.6084/m9.
figshare.13490973.v1. The Supplementary Video and
its description is available here: https://figshare.com/
articles/media/The_electronic_bee_spy_Eavesdropping_on_
honeybee_communication_via_electrostatic_field_recordings_-
_Supplemental_Video/14140634 and https://doi.org/10.6084/
m9.figshare.14140634.v1.

RESULTS

Collected Data
Thirty-six systems were run by 29 cooperating bee keepers and
students over the last 5 years. We collected 46 TB of binary
data that correspond to ∼15 years’ worth of continuous EFS
recordings. Some devices failed during deployment, mostly due
to faulty solder connections. Meanwhile most of the devices
ran over a period of 4 years. Some errors occurred within
weeks, some after more than a year. Some of the beekeepers
had experience with electronic devices and a PC, but most of
them were naïve with respect to the devices and cared only
about standard bee keeping. The date came from different
country sides and about half of the systems also ran during
winter time.

ESF Signatures of Social Signals
The movements of the charged body of a forager bee led to
patterns of ESF that were characteristic of these movements.
We shall focus here on social communication signals as the
most characteristic and highly stereotypical movements inside
the colony. Three signals were distinguished on the basis of
their characteristic frequencies and time courses, waggle-dance-
related signals (WRS, Figure 5A), short-pulse-related signals
(SRS, Figure 5B) and fanning-related signals (FRS, Figure 5C).
WRS were composed of two frequency components, the low
frequency domain (5–25 Hz, WRS_L) of the abdomen waggling,
and the high frequency domain (190–230 Hz, WRS_H) of wing
vibrations—partially synchronized with abdominal movements.
Since the number of waggles per waggle run correlated with

the distance to the indicated food source one can read the
distance by counting the number of waggles and multiply
them with 75 m (Haldane and Spurway, 1954). SRS last
less than 1 s and were composed of high frequency signals
(>350 Hz) that usually occurred in the context of dance
communication. The origin and sources of these short pulses
were not further characterized as these are outside the article’s
scope. FRS originated from fanning behavior that led to
ventilation of air inside the hive box. Fanning lasted longer
than 15 s and was characterized by highly regular waves of
ESF (frequency 90–120 Hz). The characteristic frequencies and
temporal patterns allowed us to assign to each signal one of
the three labels (WRS, FRS, SRS). The labeling process was
validated by visually comparing the corresponding waveform
data created by a custom-written player program in multiple
example files. We found that 85% (in 97 files containing
484 dances) were classified correctly. However, the rate of missed
waggle runs (false negative) was much higher: 84% (102 from
645 visually identified dance rounds). These results indicate
that the number of dance rounds labeled by the converter
program is highly conservative as compared to the visually
labeled dance rounds.

Environmental Parameters
First, we examined whether the strength of the ESF depended
on outdoor humidity and/or UV radiation. Such an effect
would be expected if the body charge depends only on-air
friction leading to higher charge in dry air and under high
UV radiation. Furthermore, no ESF signals would be expected
during wintertime when bees do not leave the hive. Datasets
with large variation of outdoor humidity and UV radiation were
compared with ESF strengths in four frequency bands, 5–30 Hz,
190–230 Hz, and 380–400 Hz. No significant correlations
were found (Spearman’s correlation coefficients ranged from
−0.14 to +0.18, number of data pairs n = 85,737 for outdoor
humidity during summer periods ranging from 15% to 89% and
n = 52,422 for UV radiation; see also Figure 6B). Next, we
examined randomly selected datasets from colonies at winter
time and compared them with similar numbers of randomly
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FIGURE 5 | Representative examples of three classes of ESF signals.
(A) Waggle-dance-related signals (WRS). The electrograms show the
time/frequency diagram in false colors (signal power) for two frequency
bands, the low frequency of the abdomen waggling (WRS_L) and the high
frequency of the wing vibrations (WRS_H). (B) Short pulse related signals
(SRS) with the time courses and corresponding electrograms for two kinds of
SRS. (C) Fanning related signals (FRS). Note the different time scales.

selected datasets from summer colonies. Significantly higher
signal powers were found in all frequency bands during the
summer season (t-test, p < 0.001, n = 1.47*1010) but the
differences were small (1.3–1.4%).

Taken together we concluded that body charge resulted
predominantly from the friction of body parts of each animal and
that between the animals.

Next, we examined how social signals varied with
weather conditions, seasons of the year, time of day, and
internal conditions of the colony (temperature control
inside the hive, brood, honey store and health conditions).
Examples are shown in Figure 6. Multiple correlations were

examined and will be the subject of separate analyses of the
collected data.

DISCUSSION

Electrostatic fields (ESF) are meaningful signals to bees inside the
colony. They are received via deflections of mechanoreceptors
(antennae, possibly also mechano-sensory hairs), but not by an
electric organ (Greggers et al., 2013; Clarke et al., 2017). These
electrostatically induced mechanical stimuli can be learned and
discriminated by bees based on their frequency components
and their modulation over time. Since the frequency of
waggling reaches well below the range of acoustic microphones
(<30 Hz) it cannot be adequately recorded with sound-pressure
microphones. The temporal resolution of our ESF recordings
(5 Hz to 5 kHz) was sufficiently high to pick up characteristic
frequency modulations and harmonics even for high-frequency
short pulses. The short and high frequency pulses were labeled
as the same category in this work although they are most likely
used in different behavioral contexts and with different meaning
(Bell et al., 2019). Social signals in honeybee colonies have
been recorded with varying methods over the last 50 years.
Most of these recordings were based on human observations
or optical methods, procedures that excluded the possibility to
monitor these signals under natural beekeeping conditions. Also
microphone recordings relied majorly on single combs in an
observation hive (Esch et al., 1965; Nieh, 1993). More natural
conditions were possible in recordings of vibrational signals of
the wax surface (Ramsey et al., 2017) but these measurements did
not allow selective monitoring for different forms of social signals
and their meaning to bees is unknown.

The current version as published in this work is fully
operational, scalable, and may be adapted to various use cases.
Whilst the current setup is the least complex we note that it
was a time-consuming endeavor already. The high resolution of
24 bits at the ESF ADC allowed us to over-sample the signal,
an approach that was of high value during the early exploration
phase allowing us to analyze even minute signals. This procedure
will not be necessary in the future anymore as signal amplitude
and frequencies allow for lesser resolution in signal amplitude
(ADC bit depth) and sampling time. The capacity sensors
gathered reliable data on entrance activity with neither drift
nor interfering noise being observed. These entrance capacitance
data will be processed in the future in more detail (separating
between arriving and departing bees, classification of massive
movements) and will be related to other data either recorded
(temperature and humidity inside and outside the colony) or
downloaded from the weather service web site.

Classification and quantification of social signals have been
performed so far offline. We are working towards implementing
programs to run on the device’s MCU directly for online data
reduction. Thus far, the conversion of binary data as well as the
analyses of extraction and classifying the social signals did not
involve machine-learning approaches, an obvious goal for the
future. A further step will be to recharge the 12 V battery with
a solar charging device, allowing deployment in remote areas.
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FIGURE 6 | Examples of ESF signals and external as well as internal parameters. (A) Upper two graphs: daily rhythms of waggle dance related signals in both
frequency bands (WRS_L, WRS_H) between April 20 and April 26, 2020. The bin width of the upper graph is 1 h, that of the graph below 2 h. Lower graph: signals
from the two activity sensors on one day (April 17, 2020). (B) Examples for the five frequency bands of ESF signals recorded between August 14 and August 21,
2020 by the six ESF sensors. WRS_L: waggle dance related signal low frequency band, SRS: short pulse related signal, FRS: fanning related signal. The number of
the respective signals per hour were averaged for each day. Notice the different scale of the ordinate. (C) Humidity outside, temperature outside, UV index,
temperature inside and signal power during the time period August 14–21, 2020. Note the corresponding ordinates.

Overall, the system worked successfully. The device recorded
ESF signals as their related behaviors were observed. The
converter software and subsequent analysis could extract the

ESF signals sufficiently. However, early adaptations including
those described here, contained hundreds of hand-soldered
connections that caused instabilities and errors. The next
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generation, already in testing, is completely produced with
surface-mounted components (SMD) and can be built by
pick-and-place machines. This will drive the reliability to
commercial standards and lower cost compared to hand
soldered components. It will also allow for up-scaling the
number of devices by orders of magnitude. SMD populated
systems are produced fully automatically. Currently, for ease
of implementation, the system does not shut down peripheral
devices when they are not used. In particular, in future
systems, the GPS will be switched off most of the time
since it is only needed for synchronization once per day and
draws considerable current while active. Furthermore, certain
sensors will be switched off for periods of time leading to
reduced power consumption. We have estimated that the
device will run for 6 weeks with a standard lead-acid 12 V
100 Ah battery.

We found that the strength of ESF signals did not depend
on UV radiation in the environment suggesting that the amount
of charge in the air had only a minor or no effect on charging
the bee body by friction during flight. This conclusion is
supported by the finding that the strength of ESF did not
correlate with the humidity outside the hive. Since, we also
recorded ESF signal during wintertime we conclude that the body
charge of bees resulted predominantly from friction between
body parts of the same animal and between animals inside
the colony.

The methods applied to identify, separate and label social
signals were based on the characteristic frequency bands and
the time windows over which they appeared. We confidently
separated waggle-dance-related signals (WRS) from stop-signals
and fanning-related signals (FRS). However, measurement-
related electronic noise and, most probably, biological noise
from movements of many bees in front of the ESF sensors
limit the rate of correct labeling of WRS and likely caused
missing signals(false negatives) and detecting wrong signals
(false positives). We addressed this question by inspecting
WAV files by visually evaluating both the time course of
ESF recordings and the electrograms in two frequency bands
as shown in Figure 5A. Initially we characterized typical
WRS by observing dancing bees in an observation hive and
simultaneous recording of ESF. Contrary to our expectation,
false negatives were more frequent than false positives. Our
expectation was based on the fact that rather similar body
movements are known from other social signals like the buzzing
or jostling runs of bees performed in various contexts (before
a proper waggle dance is performed, arousing other bees and
motivating young bees to build wax cells for food store (von
Frisch, 1967; Hrncir et al., 2011). There are other forms of
body movements that may emanate ESF in the frequency
range of 5–30 Hz, e.g., dorso-ventral abdominal vibrations
known to lead to vibrations of 10–22 Hz (Gahl, 1975), or
so-called grooming dances consisting of vibrations of the entire
bee body at 4–5 Hz (Land and Seeley, 2004). Furthermore,
we also expected more false positives because our algorithm
labeled WRS at night and during wintertime. Although it
is known that bees may perform waggle dances at night
(von Frisch, 1967, p351ff, personal observations) we assumed

other signals than WRS may be produced by bees at times
when no foraging bees are active in the environment. Thus,
our current WRS labeling procedure has obvious limitations.
Improvements will take additional characteristics into account.
For example, the WRS_L of a single waggle run is modulated
in a characteristic time course of an initial increase, then
plateau followed by a decrease in frequency. In addition, waggle
dances occurred mostly not as single waggle run but with
bouts of waggle runs allowing improvement of the labeling
of waggle dances by enlarging the time window and taking
repetitive bouts of waggle run characteristic frequency bands
into account. The high-frequency component of the waggle
dance (WRS_H) is known to signal particularly attractive
food sources (Hrncir et al., 2011) and thus may be used
as indication of rich forage. Short-pulse signals (SRS) haven
been recorded in bees following a dance (begging signal; Esch,
1961), stop signal (Nieh, 1993) and during swarming (Seeley,
2011). We found SRS with different frequency characteristics
(basic and harmonic), durations, and frequency modulations.
It has not been possible, yet, to relate these ESF signals to
specific behaviors. Fanning behavior is involved in controlling
temperature, humidity and CO2 concentrations within the
colony (see below).

The recording of physical parameters both inside and
outside of the colony opens up opportunities to uncover links
between biological phenomena of the colony (e.g., brood cycles,
preparation for swarming, health conditions) and physical
parameters, a topic that will be addressed in subsequent
reports. The physical parameters measured were temperature
and humidity of the brood nest, the activity at the hive
entrance, the weight of the hive, and the weather conditions.
The controllability to regulate the brood temperature under
varying external weather conditions is a highly sensitive factor
of the colony’s health. For example, chalkbrood, a disease of
honeybee larvae caused by the fungus Ascosphaera apis, can be
restored if the brood temperature does not drop below 35◦C
(Maurizio, 1934). It has been argued that the colony responds
to bacterial and viral infections by raising its temperature,
also known as fever response of the colony (Seeley, 1985,
p. 111). Colonies not responding with a temperature increase
appear to suffer more from infections. Nosema infections are
accompanied by an increase in humidity. Thus, combined
measurements of the control of both temperature and humidity
may be indicative of such infections. Exposure to insecticides
compromise dance communication (Eiri and Nieh, 2012; Tison
et al., 2020), individual bee navigation (Henry et al., 2012;
Fischer et al., 2014; Tison et al., 2016) and learning (Tison
et al., 2017). Honeybee colonies can thus serve as monitors
of environmental hazards resulting from insecticide treatment
in agriculture.
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Grasping movements are some of the most common movements primates do every

day. They are important for social interactions as well as picking up objects or food.

Usually, these grasping movements are guided by vision but proprioceptive and haptic

inputs contribute greatly. Since grasping behaviors are common and easy to motivate,

they represent an ideal task for understanding the role of different brain areas during

planning and execution of complex voluntary movements in primates. For experimental

purposes, a stable and repeatable presentation of the same object as well as the variation

of objects is important in order to understand the neural control of movement generation.

This is even more the case when investigating the role of different senses for movement

planning, where objects need to be presented in specific sensory modalities. We

developed a turntable setup for non-human primates (macaque monkeys) to investigate

visually and tactually guided grasping movements with an option to easily exchange

objects. The setup consists of a turntable that can fit six different objects and can be

exchanged easily during the experiment to increase the number of presented objects.

The object turntable is connected to a stepper motor through a belt system to automate

rotation and hence object presentation. By increasing the distance between the turntable

and the stepper motor, metallic components of the stepper motor are kept at a distance

to the actual recording setup, which allows using a magnetic-based data glove to track

hand kinematics. During task execution, the animal sits in the dark and is instructed to

grasp the object in front of it. Options to turn on a light above the object allow for visual

presentation of the objects, while the object can also remain in the dark for exclusive

tactile exploration. A red LED is projected onto the object by a one-way mirror that serves

as a grasp cue instruction for the animal to start grasping the object. By comparing

kinematic data from the magnetic-based data glove with simultaneously recorded neural

signals, this setup enables the systematic investigation of neural population activity

involved in the neural control of hand grasping movements.

Keywords: electrophysiology, multi-sensory, non-human primate, grasping, object interaction
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1. INTRODUCTION

Primate hands are versatile tools that are used in a variety of
behaviors, starting from grasping objects to social interactions
(Terry, 1970; Dunbar, 1991). More so, hand movements are easy
to track and observe, making them a perfect candidate for trying
to understand how our brain generates these fine and complex
movements and reacts to the tactile and proprioceptive feedback
the hand provides at the same time (Munk, 1890; Penfield and
Boldrey, 1937; Jeannerod et al., 1995). For this reason, reach-
to-grasp tasks provide valuable insights in movement generation
and feedback processing.

To study the neuronal control of grasp movements, it is
important that the animal executes a variety of grasp types and
hand shapes, since behavior and neural activity can be properly
correlated only then. In previous studies, this was often achieved
by training the monkey to grasp a handle with different grasp
types, usually a precision grip, where the object is hold between
the index finger and thumb, and a power or side grip, where the
object is clasped with the whole hand (Napier, 1962; Baumann
et al., 2009). However, the low number of different grasps severely
limits how well we can understand how the brain truly moves
our hands. This led to different attempts of presenting a higher
number of objects to the monkeys in order to get them to display
a higher variety of different grasps. In different studies the objects
are either presented on a multijoint manipulator (Sakata et al.,
1995; Suresh et al., 2020) or even free hanging on strings (Vargas-
Irwin et al., 2010). While this indeed allows to present a higher
number of objects to the monkey it comes at the cost of a higher
interaction with the animal, as the object is changed regularly.
This means the experimenter either remains inside the setup or
needs to step into it whenever a change is needed. Since most
experiments aim to exchange the object after a few trials (ideally
after every trial) this means a high downtime where the animal
can not work and might be distracted.

We therefore wanted to automate this process, similarly as
previously described by Murata et al. (2000), Raos et al. (2006),
and Fattori et al. (2010). We used a round turntable with six
compartments for different objects that could be rotated by
computer control. To make usage of possible auditory cues
harder, the rotation direction (left or right) was chosen at
random. This allowed to present up to six objects automatically
in random order, without having to switch manually between
objects after each trial. Using this design, Schaffelhofer et al.
(2015) were able to present to themonkey a total of 48 objects that
were mounted on 8 turntables. The six objects on each turntable
were then presented in random order until enough trials per
object were collected, after which the turntable was manually
exchanged. This way, the animal could work consistently and
undisturbed by the experimenter, except for short breaks in the
recording session when a turntable was switched.

In this paper, we present the current version of our turntable
design. This setup features six objects on a turntable, allows for
attention control of the animal, and instructs the animal to use
visual or tactile object exploration to determine the appropriate
grip type for each presented object. Improvements include a
more accessible turntable plate to speed up the exchange process,

a more precise detection whether an object is fully lifted, and
projection of the cue LED for the animal directly onto the object
to avoid an attention split. The latter is achieved by shining a very
small red LED on a half-transparent mirror, giving the animal
the impression as if the cue LED would sit directly onto the
object without illuminating the object.We also present a new task
paradigm where objects are not only presented visually, but also
tactually, allowing to compare not only how the animal interacts
with multiple objects, but also how it does so using different
sensory information.

2. MATERIALS AND METHODS

2.1. Animals
Here we present behavioral and neural data from one monkey
that was trained on this setup. The monkey was a male, purpose-
bred rhesus macaque (Macaca mulatta), that was born 2011
at the German Primate Center (Deutsches Primatenzentrum
GmbH, Göttingen, Germany) and housed together with another
male monkey with a 12 h dark-light cycle. Fluid intake through
water bottles, the reward system (containing juice) or fruits and
vegetables was monitored on training days, since fluids were used
as main reward for successful trials. On days were the animal
was not trained or recorded, he had free access to water. Access
to food was never restricted. All experiments and housing were
performed in accordance with European and German law and in
agreement with the “Guidelines for the Care andUse ofMammals
in Neuroscience and Behavioral Research” (National Research
Council, 2003), as well as the NC3Rs “Guidelines for non-
human primate accommodation, care and use” (National Centre
for the Replacement, Refinement and Reduction of Animals in
Research). Authorization for conducting this experiment was
delivered by the Animal Welfare Division of the Office for
Consumer Protection and Food Safety of the State of Lower
Saxony, Germany (permit no. 14/1442 and 19/3132).

2.2. Implantation and Neuronal Signal
Acquisition
To investigate the neuronal activity during the task, one
animal was implanted with floating microelectrode arrays after
training was completed (FMA, Microprobes for Life Sciences,
Gaithersburg, MD, USA, see Musallam et al., 2007). Two arrays
eachwere implanted into four different brain areas (see Figure 1):
Anterior intraparietal cortex (AIP), primary somatosensory
cortex (S1, area 3b), Primary motor cortex (M1) and premotor
cortex (area F5). In this paper we present data from two example
units from M1 and F5. For data acquisition two neural signal
processors (Cerebus systems, Blackrock Microsystems Inc., Salt
Lake City, UT, USA) were synchronized and connected to the
implants. Data was recorded with 30 kHz and 16 bit and stored
together with behavioral data on a hard drive for offline analysis
(see Analysis methods, below).

2.3. Experimental Setup
In order to study how primates interact with different objects,
a turntable setup was build that can automatically present
up to six objects to the animals without human manual
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FIGURE 1 | Cortical implantation sites. (A) Intrasurgical picture, showing the floating microelectrode arrays (white rectangles) implanted in parietal and frontal cortex.

(B) Implantation schematic with implantation sites in parietal area AIP, somatosensory cortex (S1), primary motor cortex (M1), and premotor cortex (area F5). Black

lines indicate cortical sulci. Double arrows indicate the medio-lateral (M-L) and posterior-anterior (P-A) direction.

interaction. An earlier version of this setup has been employed
in previous studies (Schaffelhofer, 2014; Schaffelhofer et al., 2015;
Schaffelhofer and Scherberger, 2016).

Core parts of the setup include a turntable, which is a
round object plate featuring up to six 3D printed objects, a
stepper motor (NEMA 17, Nanotec Electronic GmbH & Co.
KG, Feldkirchen, Germany) that can rotate the turntable so
that the selected object is presented to the front, as well as a
stepper motor controller (SMCI33-2, Nanotec Electronic GmbH
& Co. KG, Feldkirchen, Germany). These parts are mounted on
a customized table so that the front object is reachable by the
animal sitting in its primate chair (see Figure 2). The table fits
the turntable plate on-top of a rotating axis (connected through
two custom made carbon bolts that fit in two holes inside the
turntable and axis) that fits a belt system connecting the turntable
with the stepper motor (see Figure 3). In order to use the setup
with a magnetic-based data glove (Schaffelhofer and Scherberger,
2012), the motor was positioned away from the turntable and
connected to the turntable shaft (3D printed, Material: Nylon
12 [Versatile Plastic], Electro Optical Systems GmbH, Munich,
Germany) with a toothed belt. Also, the setup was kept free
of metal as much as possible with usage of plastic screws and
fiberglass rods.

A capacitive-sensing touch button was fixed to the front of
the primate chair, serving as a handrest button. The monkey
was trained to place its hand on the button to initiate a trial.
This ensured a defined start position of the hand for each trial
and was also used as a safety measure during turntable rotation:
the motor was programmed to move only when the button was
pushed, ensuring an immediately stop of the rotating turntable
should the monkey ever try to interfere with it. Relative position
of the animal to the turntable was set by adjusting the height and
position of a pedestal box supporting the primate chair.

For this study, six different objects were designed (see
Figure 4): A sphere, a cube, a ring, a ring with edges, a bar
and a bar with edges. These objects were designed to look
and feel differently while each pair (each column in Figure 4)
is grasped with a similar hand shape and grasp. The idea
behind this design was to be able to disentangle the influence of
sensory information and hand shape. Each object was designed in

Autodesk Inventor (Autodesk, Inc.) and 3D printed out of plastic
(PA 2200, Electro Optical Systems GmbH, Munich, Germany) by
Shapeways (Shapeways Inc., New York, United States). We chose
a red design for contrast to the black background of the turntable.

Each object was fitted with a counterweight below the object
plate that was connected to the object with a carbon stick. The
total weight of the object and counterweight was 120 g for all
objects, independent of the object shape and size, to ensure a
similar force required for lifting. Lifting height was 1 cm, forcing
the monkey to actually lift the object, but with limited effort.
Objects were placed near the outer border of the turntable disk
(closest to the monkey) to avoid that the animal can rest his
hand in front of the object. Furthermore, the balance point was
placed as low as possible to ensure that the object is pulled
down by gravity and cannot get stuck in the “lifted” position.
The counterweight of each object doubled as trigger for a light
barrier that was positioned below the object plate (see Figure 5).
Whenever an object is lifted, the counterweight breaks the light-
beam and the computer detects a successful object lift. To ensure
a high sensitivity of the light barrier, a laser pointer with a small
diameter was used to point on a light sensitive photo transistor.

The front of the setup consists of long barriers out of black
plastic (see Figure 2B) that, together with small barriers next to
each object, ensure that the monkey can see and interact only
with the object currently facing him. This not only keeps the
object presentation more stable, since only one object is within
view at any time, but also doubles as a barrier to prevent the
animal from interacting with the other objects during grasping or
tactile object interaction. All plates are custom made out of black
plastic sheets. A black plastic tube was fitted into the middle of
the turntable to further obstruct view on other objects.

A one-way mirror on a Plexiglas plate was mounted to the
table using thick fiberglass bars, between the monkey and the
object (see Figure 6). This mirror serves multiple functions.
First, it reflects a red LED above the mirror onto the object.
This cue LED is used by the monkey to determine when to
interact with the object as either “explore cue” during tactile
trials or “grasp cue” in both trial types. Projecting the LED
light on the object prevents the animal from having to split
attention between the position of the object and the cue LED,
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FIGURE 2 | Overview over the experimental setup. (A) Monkey sitting in a primate chair on top of a plastic box. On the table an object plate (4) with six red objects

that can be rotated by a motor (1) and controller (2) positioned underneath the table. The animal can only see and interact with one object at a time. A strip of white

LED lights (3) is placed above the object for illumination. A photo-electric Laser barrier (6) is placed below the turntable and above the object counterweights, to

detect the lifting of an object. A one-way mirror (5) is placed between the monkey and the table, which projects, from the animal’s perspective, a red cue LED (7) onto

the front object. A handrest button in front of the primate chair sets a consistent start position of the monkey’s hand and an electromagnetic field generator of the

hand tracking system is placed below the object plate to track the monkey’s hand movements with a data glove (not shown). (B) Frontal view of the table. (C) Top

view with turntable in the setup.
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FIGURE 3 | Overview over the motor control and belt system. Below the tabletop an extra level of the table houses the belt and motor system. The turntable (not

shown) will be placed on top of the 3d-printed shaft and cogwheel, which fits the toothed belt connecting shaft and motor.

and also helps the animal not to move his eyes when the object
is illuminated. Furthermore, this prevents the LED light being
obscured by the monkey’s arm. While the cue LED was usually
turned off when the monkey’s arm interacted with the object,
this might be an important factor in other task paradigms.
Second, the mirror could also be used for video-based eye
tracking, without installing an additional eye-tracking mirror.
Finally, the mirror serves as a barrier, making it harder for the
animal to interfere with equipment, most notably the reward
tube, located above the mirror. Additional LED lights could
also be projected through the one-way mirror. We designed an
LED plate featuring four LEDs that were placed in a reversed
T shape that could be used to calibrate an eye tracker, and two

additional yellow LEDs that were used to inform the animal of
error trials.

3D printable STL files for the objects described above
as well as more information on assembly are available at:
https://github.com/NBL-DPZ/TurntableSetup.

2.4. Alignment of Collected Data
During the experiment, data from different sensors needed to
be integrated. We utilized a capacitive-sensing touch button to
detect whenever the animal was resting his hand at the start
position, two light barriers (one to detect turntable rotation and
one to detect lifting of the front object), and a data glove.
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FIGURE 4 | 3D renders of the six objects. These objects were designed in pairs, where the two objects in the same column require a similar hand shape and grasp

while looking and feeling differently. Top row: sphere, ring, and rounded bar. Bottom row: cube, edged version of the ring, and box.

FIGURE 5 | Function of the photoelectric Laser barrier. To determine whether an object has been lifted, a Laser and photoelectric element is placed below the object.

(A) The Laser can pass through as long as the object is not lifted. (B) The counterweight of the front object will block the Laser once the object is lifted.

The setup was controlled by a NI PXI realtime System
(National Instruments, Austin, TX, USA) with a clock rate
of 1 ms and custom written LabView-Software. This included
detection when the handrest button was pushed, the light
barriers were triggered, and control of the rotation motor.
Furthermore, the graphical user interface for the data glove
(named KinemaTracks) was implemented in Matlab, as first
described by Schaffelhofer and Scherberger (2012). As described

above, two synchronized neural signal processors (NSPs; Cerebus
systems, Blackrock Microsystems Inc., Salt Lake City, UT, USA)
were used to record neural data and behavioral events. For the
latter, the digital input port of the NSPs were used to record and
synchronize all collected data from the three machines (NSPs,
PXI-Box, and data glove PC).

The states of the sensors were encoded into numbers (e.g., 31
when the object was down, 32 when the object was lifted up)
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FIGURE 6 | Projection of the cue LED light. To superimpose the red cue LED

light onto the front object, from the monkey’s perspective, a one-way mirror is

placed, such that the angles α and α′ match. This avoids an attention split

between the object and the cue LED.

and written to the digital port of both NSPs as were numbers
to identify the different epochs during this task. Due to usage
of the same clock, this allowed to align neural data according
to different epochs (or in theory even sensor states). A similar
method was used to align additional data for the data glove.
While the exact magnetic sensor positions remained on the
dedicated data glove PC, a synchronization signal was sent to
the NSP using the serial input every time a new data point was
written onto the data glove PC, which was used to synchronize
the clock of the data glove PC with that of the NSPs during offline
analysis. Additional metadata were recorded during the intertrial
state using the digital input port, such as time and date, which
object was used during the current trial, and whether the trial
was successful. This “tailer” always started and stopped with a
specific sequence of numbers for easier data extraction during
offline analysis. This way, all necessary information needed to
synchronize the data of all sources was saved alongside the neural
data on the recording PC.

2.5. Behavioral Paradigm
Themonkey was trained in a delayed-grasping paradigm to grasp
objects that he had either seen or touched beforehand. The main
idea was to require the animal to either first look at an object and
then grasp it in the dark, or to first touch and tactually explore the
object in the dark before also grasping it in the dark. A diagram
of this task is shown in Figure 7.

The animal is comfortably seated in a primate chair and sits in
the dark during the whole experimental session. At the start of the
experiment, a pseudo-random sequence of object presentation
order is generated that ensures a uniform distribution of
object occurrences, but prevents the animal from predicting the
upcoming object in the next trial. The monkey can initiate a
trial by placing his hand on the handrest button, which will start
the turntable rotation. The turntable will stop at the appropriate
object according to the aforementioned presentation sequence.

Next, the object is presented either visually or tactually. For visual
presentation, the object is illuminated for 700ms, which instructs
the monkey to sit still and simply look at the object. During
tactile trials, however, the red cue LED above the object turns
off as an explore cue (tactile trial: tactile exploration), which
instructs the animal to reach out, touch, and lift up the object
briefly within 3,000 ms to confirm haptic object exploration.
This approach was chosen to encourage the monkey to actually
interact with the object and to ensure that an appropriate grip for
object lifting has been haptically explored. The animal then has
to return to the handrest button during this object presentation
period to ensure that the hand is always remaining still on the
handrest button during the complete memory period, ensuring
that the starting position of the hand is identical for visual and
tactile trials. Afterwards, a memory period (memorize object) of
random length (1,000–1,500ms) occurs to avoid prediction of the
grasp cue. As a last step, the red cue LED will turn off in both task
conditions as a grasp cue, and the animal is required to quickly
reach out, grasp and lift the object in the dark (within 870 ms).
If this grasp and lift action is successful, the red cue LED turns
on again and the animal has to return the hand to the handrest
button to receive a reward (small amount of the animal’s favorite
juice). In case the animal made an error during any point of the
task, two yellow error LEDs light up to indicate the error and the
next trial starts after some short delay.

2.6. Data Analysis
2.6.1. Movement Time Analysis
To evaluate whether or not the animal actually used object
information during the final grasp period, we measured the
reaction time and the movement time during visual and tactile
trials, independently of object shape. A shorter movement and
reaction time would indicate prior knowledge about the object,
since an optimal grasp can be chosen right away (Michaels et al.,
2018). If the monkey does not know the object’s identity, he will
need time to explore the object to find the best fit for his hand
and therefore take longer. Reaction time was defined as the time
between the appearance of the grasp cue and the release of the
handrest button. Movement time was defined as the time when
the monkey lost contact with the handrest button to explore (for
tactile object exploration) or to grasp the object (for both grasp
periods) until the object was fully lifted. Reaction and movement
times were plotted as a histogram (bins width: 5 ms for reaction
time; 10 ms for movement time; see Figures 8, 9).

2.6.2. Neural Data Analysis
After raw data acquisition (see Implantation and neuronal signal
acquisition, above), data was prepared for detection of spikes
as previously described (Dann et al., 2016; Intveld et al., 2018;
Michaels et al., 2018; Buchwald, 2020). The data was filtered
with a median filter (window length: 3.33 ms) and the resulting
signal subtracted from the raw signal. Then, a 4th order non-
causal Butterworth filter (5,000 Hz) was applied as a low-pass
filter (Butterworth, 1930). Channels where noise was already
apparent during recording were excluded from the analysis.
To remove common noise sources present in all channels
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FIGURE 7 | Task paradigm. After an object has arrived in front of the animal, it has to wait in the dark for an object presentation period, in which the animal could

identify the object either visually or tactually. In the visual task, the object is illuminated for 700 ms. In the tactile task, however, the monkey remains in the dark and

instead has to reach out, touch and briefly lift the object (maximal duration: 3,000 ms). The animal is then required to memorize the object for 1,000–1,500 ms before

instructed to lift the object within 870 ms. All successful trials are rewarded with a fluid reward.

FIGURE 8 | Distribution of reaction time. Histograms illustrate how often a certain reaction time occurred during the grasp period in the tactile object exploration (A)

and during grasping in tactile (B) and visual trials (C). Bin width: 5 ms; cut off at 500 ms. For tactile exploration (A), the slightly higher mean and larger variation of

reaction time suggests hesitation, e.g., due to the unknown object, and less preparedness. For both tactile and visual grasping (B,C), a similar distribution of reaction

time was observed, indicating that the animal obtained in both tasks sufficient object information during the object presentation period to plan an appropriate grasp.
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FIGURE 9 | Distribution of movement times. Histograms illustrate how often a certain movement time occurred in both tasks. Bin width: 10 ms, cut off at 1,200 ms.

During tactile exploration (A) the object was unknown, leading to multiple and varying grasp attempts and on average a much longer movement time. For grasp

movement execution in the tactile (B) and visual grasps (C) a similar movement time can be observed, indicating that the animal was able to execute an appropriate

grasp for the object based on the object information gathered from the object presentation period.

(e.g., movement artifacts) a principal component analysis (PCA)
artifact cancellation procedure was performed, as described in
Musial et al. (2002). Only PCA dimensions with a coefficient
larger than 0.36 (with respect to normalized data) were kept to
avoid removing individual channels. Afterwards, data was spike-
sorted using a modified version of Wave_Clus (Kraskov et al.,
2004; Chaure et al., 2018). To demonstrate the feasibility of neural
recording with this setup, two representative single units are
presented below (see Results and Discussion).

For visualization of neuronal activity, we calculated a peri-
event time histogram for each single unit (see Figure 10). For
this, spike events were extracted and a Gaussian smoothing filter
applied (SD: 50 ms) for every trial. The resulting firing rate
curves where then aligned and averaged at three different time
points, so that the influence of specific trial events can be better
visualized. Data is presented 500 ms before object presentation
(representing the baseline period where the animal is not engaged
in any activity), followed by 700 ms after the onset of the
illumination or explore cue LED, reflecting the neuronal response
to seeing or touching the object. The second alignment point
is the start of the memory period (time interval from 100 ms
before until 500 ms after memory start), reflecting neural activity
after the object presentation period ended (either stop of object

illumination or a return to the handrest button) to ensure no
more tactile object information is perceived and all movement
ended. Third, data was aligned at movement start (500 ms before
and 1,000 ms afterwards), reflecting grasp-related neural activity.
To differentiate the 12 task conditions, six different colors were
chosen for the objects while solid and dashed lines represent
visual and tactile task trials, respectively.

To test for significant differences between task conditions,
a 2-way sliding ANOVA (Analysis of variance) was conducted
(sliding window: 100 ms, factors “objects” with six levels,
“sensory modality” with two levels and “interaction” between
factors) and Bonferroni-corrected for multiple comparison (p-
value: 0.0001). Horizontal lines above the histogram indicate
significant differences between the two sensory (visual vs. tactile)
task modalities (purple), between objects (green), and significant
differences caused by an interaction between objects and task
modality (cyan).

3. RESULTS AND DISCUSSION

3.1. Behavioral Analysis
Using this experimental setup, we have successfully trained one
rhesus monkey in this grasping task paradigm, and furthermore
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FIGURE 10 | Peri-event time histogram of two example units from primary motor cortex (M1 unit) and premotor area F5 (F5 unit). (A) Activity during the two tasks of

one M1 unit, showing higher activity during periods and task conditions that contain movement. (B) Activity of one F5 unit, showing activity during movement-related

epochs as well as during object illumination. Colored dashed or solid lines: mean firing rate across trials for the visual task (solid lines) and tactile task (dashed lines) and

the six objects: sphere, cube, round bar, block bar, ring, and block ring (different colors). Horizontal bars on top of the panels indicate periods with significant selectivity

for sensory modality (vision vs. tactile; purple), object conditions (green), and interaction (blue); 2-way ANOVA with Bonferroni correction (p < 0.0001), see Methods.

have recorded behavioral and neural data from this animal, which
we report in the following section.

For behavioral analysis of the recorded data, we analyzed
the reaction and movement times during both tasks. We tested
whether the monkey memorized the object information on
both tasks or tried instead to guess the object. It can be
assumed that the animal does recognize visually presented
objects since seeing objects will give all information needed
to grasp objects, especially for an animal that was trained on
these objects beforehand and had the chance to familiarize
itself with them (Gibson, 1958; Eimas, 1967; Dhawan et al.,
2019).

Tactile object information however involves more effort, since
the animal needs to move its hand around the object and match
known tactile features of the object (Camponogara and Volcic,
2020). However, it was a priori unclear whether the monkey
memorizes the object or instead prefers the easier but slower
approach, to try out different grasps during the final movement

epoch, until a fitting grasp is found for lifting up the object.
In order to control for this, we determined the reaction time
and movement time of the animal for all trials of both tasks
during five recording sessions. Reaction time gives an insight
into the preparedness of the animal, while movement time is
influenced also by how quickly the object can be grasped and
lifted, or whether grip adjustments were necessary (Michaels
et al., 2018).

For reaction times, time between the occurrence of the grasp
cue and the release of the handrest button, a broad distribution
of movement times can be seen during the object presentation
period of the tactile trials, when the animal is instructed to
tactually explore the object, with a mean reaction time of
309 ms (standard deviation: 142 ms). During the grasp period
of tactile and visual trials, however, we can see a more narrow
distribution that looks very similar for visual and tactile trials,
with a similar mean (mean: 256 and 269 ms, respectively, SD:
33 ms for both). This reflects very likely the state of knowledge
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of the monkey in these task epochs: during tactile exploration,
the animal has no prior knowledge about the object, which
might cause some hesitation and general unpreparedness. During
tactile grasping, the monkey is then informed, since he has
previously explored the object during the tactile exploration.
During visual grasp, the monkey has already seen the object
and knows which object he has to interact with, allowing him
to prepare an appropriate grip. For movement time, a similar
difference was observed for its distribution and mean (see
Figure 9). During tactile exploration the movement times were
generally longer and wider distributed with a mean of 754 ms
(SD: 250 ms), reflecting that the animal did not know the object
at this time point. Visual and tactile grasps showed a very
similar distribution with a mean of 312 and 304 ms (SD: 58
and 52 ms), respectively, indicating that in both cases the animal
was aware of the specific object it had to interact with. Reaction
and movement time analysis therefore both confirm that the
animal perceives the object identify prior to the final grasp of
the object and independent of the sensory modality (vision or
touch) and is able to use object information for the planning of a
suitable grasp.

3.2. Neuronal Activity
To show the suitability of our setup also for neuronal
recordings, we demonstrate the successful recording of neuronal
activity from two neuronal units, one from primary motor
cortex (M1) and one from premotor cortex (area F5) (see
Figure 10). A lot is known about the activity of motor
and premotor cortex during visually guided grasp conditions.
The premotor cortex is mainly known as an area where
movements are prepared, while motor cortex becomes active
mainly during grasp execution (Fritsch and Hitzig, 1870;
Penfield and Boldrey, 1937; Kakei et al., 1999; Hoshi and
Tanji, 2000; Fluet et al., 2010; Schaffelhofer and Scherberger,
2016). In line with this past work, we found that activity
in M1 and F5 were mainly active during epochs that
contained movement, i.e., during tactile exploration of the
object and during the actual grasp period in both tasks. This
is illustrated in two example neurons from M1 and F5 (see
Figure 10).

In both tasks (visual and tactile) the same six objects were
presented. When comparing the activity in M1 and F5 for
different objects during grasping, slight differences were observed
in M1, while larger differences were visible in F5 (sliding
ANOVA, Bonferroni corrected, p < 0.0001; see above: Data
Analysis). In F5, objects that require a similar grasp (sphere and
cube, round and blockbar, ring and blockring) elicit a similar
firing rate during the object presentation epoch in the tactile
task condition (dashed line), although significant differences
between different objects can be found during this epoch (gray
line above graph). When comparing visual (solid lines) vs. tactile
conditions, we found no significant difference during movement,
when the animal grasps the object, as signified by the lack of
the top purple line above the graph during most of this period.
In both areas the firing rate during grasping is similar for the
same objects. During object presentation, however, significant
differences are apparent (dark turquoise line on top of the graph).

In both areas, the units remain at a lower firing rate during
object illumination vs. tactile exploration. This was expected,
since the tactile object presentation period contains movement,
while the animal sits still during the object illumination in
visual trials. In M1 this difference carries over during memory
period, where a slightly higher firing rate can be observed, even
though themonkey is no longer moving and has already returned
to the handrest button. This is most likely remaining motor
activity until the biological system had enough time to return
to baseline (Evarts, 1968). This difference is significant during
early but not late memory. In F5, the opposite is true, where
object illumination seems to create a slightly higher firing rate
in early memory. Both units show a short moment of significant
difference after movement start, which might match findings
in human trials, where haptically guided grasps (although by
feeling an object in the other hand) lead to an earlier hand
shaping butmore cautiousmovement (Camponogara andVolcic,
2019).

3.3. Conclusion
In this paper, we presented a turntable setup that can be used
to investigate hand movements in primates under different
sensory conditions. The utilization of a motorized turntable
with up to six objects allows randomized object presentation,
where the monkey can work largely undisturbed from human
interactions. Since turntables can be easily exchanged, even
larger sets of objects can be presented in different blocks
of trials, if needed by the experiment (e.g., see Schaffelhofer

and Scherberger, 2016). Overall the number of objects can

be scaled up as much as an experiment requires. While this

setup was optimized for usage in non-human primates, it is

also possible to use a modified version for human subjects,

e.g., by scaling up the object size to allow for more natural

hand movements.
We used this setup to demonstrate reaction and movement

times between different task conditions, which can shed some

light on how the animal uses object information to make

informed decisions about the best hand grasp. Furthermore,
with implants in multiple brain areas, we have demonstrated the
suitability of this setup for investigating brain activity during
different grasps (with different hand shaping) and different
sensory conditions. This may serve for better understanding
of how the brain integrates sensory information to generate
meaningful movements.
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Studying the routes flown by long-distance migratory insects comes with the obvious
challenge that the animal’s body size and weight is comparably low. This makes it
difficult to attach relatively heavy transmitters to these insects in order to monitor
their migratory routes (as has been done for instance in several species of migratory
birds. However, the rather delicate anatomy of insects can be advantageous for
testing their capacity to orient with respect to putative compass cues during indoor
experiments under controlled conditions. Almost 20 years ago, Barrie Frost and Henrik
Mouritsen developed a flight simulator which enabled them to monitor the heading
directions of tethered migratory Monarch butterflies, both indoors and outdoors. The
design described in the original paper has been used in many follow-up studies
to describe the orientation capacities of mainly diurnal lepidopteran species. Here
we present a modification of this flight simulator design that enables studies of
nocturnal long-distance migration in moths while allowing controlled magnetic, visual
and mechanosensory stimulation. This modified flight simulator has so far been
successfully used to study the sensory basis of migration in two European and one
Australian migratory noctuid species.

Keywords: orientation, navigation, insects, sensory ecology, behavior

INTRODUCTION

Like the North American Monarch butterfly, many species of moths have been identified as
long-distance migrants (Williams, 1958). Naturalistic observations, and comprehensive recordings
of flight trajectories using vertical-looking radar, have demonstrated the migratory directions
of insects are not necessarily determined by the prevailing wind direction (Chapman et al.,
2008a,b, 2010). In fact many insects have some level of control over their desired migratory
route, an ability that implies the use of a compass that enables individuals to steer a course
during a migratory flight (Chapman et al., 2008a,b, 2015). While the compass systems of some
diurnal migratory Lepidopterans, such as the Monarch butterfly (Danaus plexippus) or the
Painted Lady (Vanessa cardui), are relatively well described (e.g., Mouritsen and Frost, 2002;
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Reppert et al., 2004; Stalleicken et al., 2005; Nesbit et al., 2009;
Mouritsen et al., 2013), little is known about the compass cues
and the navigational mechanisms that enable the migrations of
nocturnal migrants such as moths.

One such nocturnal migrant is the Australian Bogong moth
(Agrotis infusa), a remarkable nocturnal navigator (see portrait
in Figure 6A). After emerging from its pupa in early Spring,
somewhere within the semi-arid breeding grounds of inland
south-eastern Australia, an adult Bogong moth embarks on a long
migration toward the Australian Alps (Common, 1954; Warrant
et al., 2016). Because the breeding grounds of Bogong moths are
so vast, this journey will occur in one of many possible directions,
anywhere between the extremes of directly east (from western
Victoria) to southwest (from southeast Queensland), depending
on where the journey begins. Migratory flights may take many
nights or even weeks and cover over 1000 km. Once the Bogong
moths have arrived in the Alps (starting in early October), they
seek out the shelter of high ridge-top caves and rock crevices
(typically at elevations exceeding 1800 m). In their hundreds of
thousands, moths line the interior walls of each alpine cave where
they aestivate over the summer months, probably to escape the
heat of the Australian plains (Tomlinson et al., in preparation).
Toward the end of the summer (February and March), the
same individuals which arrived months earlier emerge from the
caves and begin their long return trip to their breeding grounds.
Once arrived, the moths mate, lay their eggs, and die. The next
generation of Bogong moths – hatching in the following Spring –
then repeat the migratory cycle afresh. Despite having had no
previous experience of the migratory route, these moths find their
way to the Australian Alps and locate the aestivation caves dotted
along the high alpine ridges of south-eastern Australia.

To navigate to a specific alpine destination, through unknown
territories or environments, Bogong moths need to rely on
external compass cues (Warrant et al., 2016; Dreyer et al.,
2018b). To study these cues, we modified a previously invented
system, the Mouritsen-Frost flight simulator (Mouritsen and
Frost, 2002; Minter et al., 2018). The original Mouritsen-
Frost flight simulator consists of a cylindrical behavioral arena
(placed on an experimental table) which is equipped with a
vertical axle to which a flying moth is tethered, and an optical
encoder. The encoder is connected to the top of the axle,
which continuously measures the flight direction of the moth
relative to geographic or magnetic North, thus allowing the
reconstruction of the moth’s virtual flight path. The modified
Mouritsen-Frost flight simulators we describe here added a
projector system, a clear Plexiglass tabletop, a mirror and control
software which enables the experimenters to simulate the optic
flow of the landscape beneath the moths. This optic flow
continuously adjusts its direction to match the direction the moth
is heading at any moment in time. The flight simulator’s simple
and compact design not only allows deployment in the field,
but also in the lab where it can be incorporated within more
sophisticated assemblies where stimulation can be controlled,
such as within a magnetic coil system, or even incorporated with
an electrophysiology rig (Beetz et al. in preparation).

In this paper we describe in detail how a modified Mouritsen-
Frost flight simulator is built, the various experiments it can be

used for and the types of data it can produce (and how these data
can be analyzed). This description will be largely based around
our ongoing work on the Australian Bogong moth, and various
European relatives, but the equipment and analyses are applicable
to a wide variety of flying insects.

The Modified Mouritsen-Frost Flight
Simulator
Since one of our main experimental goals was to investigate the
magnetic sense of night-flying insects, the entire setup was built
from non-magnetic materials.

The Behavioral Arena
A length of wide Plexiglass cylinder (or any other type of plastic
cylinder) can be used as an arena. The dimensions of this
cylindrical arena are more or less arbitrary, but we have achieved
good results using a cylindrical Plexiglass arena of diameter
500 mm and height 360 mm (8 in Figure 1; 5 mm material

FIGURE 1 | A schematic drawing of the flight simulator showing the encoder
(1), the encoder mount (2), the diffuser paper (3), the circular Plexiglass lid (4
and 7), the protective brass shaft (5), the tungsten axle (6), and the behavioral
arena (8). For explanation see text.
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FIGURE 2 | The experimental table. (A) Schematic drawing of the
experimental table showing the tabletop (9), the aluminum connectors (10),
the circular opening (11), and the telescopic legs (12). (B) A photograph
showing its deployment in the field at Col de Coux, Switzerland. For detailed
explanation see text.

thickness) placed vertically on an experimental table (Figure 2).
The interior design of the arena is of particular importance since
moths are extremely sensitive to visual landmarks and will steer
their course relative to any larger visible landmark on the inside
wall of the arena. We thus avoided having a glossy interior wall
(to reduce reflections) or a wall covered in paper or cardboard
which can buckle. In order to minimize landmarks, we covered
the interior wall of the arena with a uniform self-adhesive black
felt, where the visibility of the join was minimized.

The Encoder Mount
The optical encoder (described in detail below) is held within
an encoder mount at the center of the upper opening of
the cylindrical arena. The encoder-mount design is of equal
importance as the design of the inside wall of the arena since
this mount constitutes a very dominant landmark if a non-
symmetrical design is chosen. In earlier experiments, we used
a simple transparent Plexiglas beam as an encoder mount,
which was placed across the diameter of the open arena top.
Unfortunately this introduced a bipolar landmark. The easiest
way to avoid this is to place a circular lid on the arena with the
encoder mounted at its center. We used a circular sheet of UV-
transparent Plexiglass (4 and 7 in Figure 1 and 17 in Figure 3;
510 diameter × 4 mm thick) as the lid (and encoder mount).
Topped with Lee filter diffuser paper (3 in Figure 1), this mount
can also serve as a projection screen if dorsal visual stimulation
is desired (see below). In our setup, the cylindrical casing of the
encoder is held in place at the center of the lid by a custom-
machined plastic cylindrical mount equipped with a grub screw
to fix the encoder (2 in Figure 1). A hole drilled through the
center of the lid allows a 110-120 mm long brass tube (5 mm outer
diameter – 5 in Figure 1) to be inserted through this hole, and
fixed to the Plexiglass sheet with super glue. This thin cylindrical
tube surrounds and protects a long (130 mm) tungsten rod (6 in
Figure 1) connected to the rotational axis of the optical encoder
(1 in Figure 1). The tungsten rod serves as the axle of the optical
encoder and is attached to the dorsal thoracic surface of the moth
(see below for details).

The Experimental Table
The design of the table (Figure 2) is more or less arbitrary as
well, as long as it features a circular opening at the center of
the tabletop that has the same diameter as the circular arena and
has sufficient clearance underneath to position a suitable mirror
(see Figure 3). After testing many different table designs, we
settled on using custom-machined lightweight aluminum tables
(700 × 700 × 4 mm aluminum tabletop featuring a 490 mm
circular opening at the center) with telescopic legs (850 mm
length, if fully elongated) made out of two aluminum pipes (12
in Figure 2; pipe 1: 4 cm outer diameter, 50 cm length; pipe 2:
45 cm length) for maximum flexibility. The choice of aluminum
has the added advantage that it is non-magnetic and thus suitable
for experiments involving magnetic stimulation. The telescopic
legs were useful for leveling the table on uneven ground during
outdoor field experiments. The tabletop (9 in Figure 2) was
cut into two halves for easy transport (35 × 70 cm each) - it
can be easily re-assembled using aluminum connectors (10 in
Figure 2). The legs can be disassembled from the tabletop and
reconnected using screws. This table can easily be transported in
a large suitcase.

Projecting Optic Flow and the Starry
Night Sky
In our experiments, we have been interested in the use of
stars as compass cues during the long-distance migration of
Bogong moths. To create overhead starry night-sky stimuli we
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FIGURE 3 | A schematic drawing showing how optic flow (left) and an austral starry night sky (right) are projected onto the experimental arena. Moving optic flow (a
satellite image of the Australian countryside) is projected from a projector placed to the side of the table (15), via a 45◦ mirror (14), onto the underside of a diffusing
screen (13) placed on the tabletop under the behavioral arena. A local starry night sky (generated using the planetarium software Stellarium) is projected from a
projector mounted above the arena (16) onto a circular diffusing screen (17) placed on top of the arena (which also holds the encoder mount (18) at its center).

use a portable ASUS S1 LED projector situated 1.3 m above the
arena (located at 16 in Figure 3) and connected to a laptop
via a HDMI cable (3–5 m). To block any stray light from the
projector itself, the projector is enclosed within a 3D-printed
plastic box with air vents to allow cooling and featuring an
opening in front of the lens. This combination of box and
projector can be mounted on an adjustable tripod or a ball joint
mount (available from Thorlabs) using the typical 1/4" screw for
camera/projector mounts.

To simulate the starry sky over our experimental site on
the date and time of our experiments, we used the freeware
planetarium software Stellarium and created screenshots (screen
resolution 7480 × 720 pixels) of these simulated starry skies.
These were then cut into a circular shape using Corel Draw X5
and saved as PNG files (300 dpi) to create the stimulus images.
These circular images were then projected onto a screen placed on
top of the arena. This screen consists of a circular lid of clear UV-
transmissive Plexiglass topped with UV-transmissive diffusing
paper (Lee Filters 250 half-white diffuser) having a diameter of
50 cm (17 in Figure 3). Since the projector does not emit UV
light, and we wished to have the full spectrum of light available
from the night sky available within our stimulus, we installed a
custom-made LED-ring (built by Timothy McIntyre, University
of South Australia: outer diameter 120 mm, inner diameter
50 mm) featuring eight UV LEDs (LED370E Ultra Bright Deep
Violet LED; Thorlabs) centered over the exit opening of the 3D-
printed plastic box containing the projector. The brightness of
the LED-ring was controlled using custom software written in
MATLAB (Mathworks, Natick, MA, United States) together with
several layers of neutral density filters (Lee Filters) which were
fixed to the front of the LED-ring (thus allowing the intensity of
UV illumination to be adjusted to natural nocturnal levels).

We have found that the presence of dim, slowly moving optic
flow, projected beneath the moth and always moving from nose
to tail irrespective of the moth’s orientation in the arena, provides
extra motivation for the moths to fly (see below). A second ASUS
S1 LED projector (also encased within a 3D-printed plastic box
and located at 15 in Figure 3) projects ventral optic flow via a

45◦ mirror. This mirror (14 in Figure 3; IKEA model NISSEDAL,
65 × 65 cm) deflects the projection of the optic flow onto a
screen situated underneath the arena. This screen consists of a
transparent Plexiglas plate (11 in Figure 2; 60 × 60 × 0.5 cm)
covered with one layer of white opaque diffuser paper (Lee Filters
250 half-white diffuser). The intensity of the optic flow is dimmed
to nocturnal levels by using a combination of several neutral
density filters (Lee Filters) placed over the exit opening of the
3D-printed plastic box containing the projector.

The Recording System
Our recording system is based on optical encoder systems from
US Digital. Our preferred system is their E4T Miniature Optical
Kit Encoder (located at 18 in Figure 3) in combination with
their USB4 Encoder Data Acquisition USB Device, including
all necessary cables. The standard encoder software US Digital
Explorer shows the orientation of the encoder axle (or moth)
as a compass needle that rotates relative to North within a
circular compass rose. In order to fix the tungsten encoder axle
(6 in Figure 1) to the encoder and have it rotate freely without
jamming, a cylindrical piece of brass (14 mm diameter, 4 mm
height), equipped with a tiny hole (1 mm diameter) for the
tungsten axle, was glued to the underside of the encoder. The
encoder has an angular resolution of 3◦, so the output values
of the system (2 channel quadrature TTL square-wave outputs
which are converted into degrees by the software) range between
0 and 120 rather than 0◦ to 360◦. This means that each output
value in degrees has to be multiplied by 3 in the analysis to fit the
data into a full circle reference frame. During our experiments,
several Microsoft operating systems (Windows XP, Windows 7
and Windows 10) have been used as a platform for the recording
software. Since some of our experiments take place in the field,
we use a “semi-rugged” laptop model (Dell Latitude E6430 ATG)
for our recordings. The output file format is a standard text file
(.txt) in which the observed heading directions are saved in a
column together with a complementary timestamp. We measure
the heading directions at a sampling rate of 5 Hz. Thus, over
a period of typically 5 to 10 min, we are able to continuously
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record a tethered moth’s “virtual flight path,” that is, its heading
direction relative to (say) north monitored 5 times per second.
From this virtual flight path we are able to construct an average
vector representing the moth’s trajectory (Figure 4), the direction
and length of which, respectively, reveal the mean orientation
angle and directedness of the moth. The directedness of the moth
(i.e., its tendency to fly in the same direction) is captured in the
r value of its trajectory vector, a unitless value between 0 and
1. More directed moths have longer vectors and larger r values
(e.g., Figure 4A, compared to the less directed moth shown in
Figure 4B). How the trajectory vectors of tested moths are used
to understand their collective migratory flight behavior will be
explained in more detail later.

As mentioned above, we project dim optic flow below the
moth (13 in Figure 3) to simulate an apparent forward movement
similar to what a flying insect would experience in the wild, thus
promoting flight behavior. The encoder system, while recording
the virtual flight paths of the tethered moths, is coupled to
the ventral optic flow via a feedback loop. This feedback is
maintained by the software package "Flying" (custom written
software) that instantaneously adjusts optic flow direction in
response to changes in heading direction, thus ensuring that the
optic flow always moves backward beneath the tethered moth
(head to abdomen) as the moth apparently moves forward. The
speed of the optic flow can be adjusted in the "Flying" software,
and its illumination intensity (as described above) by neutral
density filters. The image we used to create the optic flow was
a screenshot taken from Google Earth (set to satellite view; see 13
in Figure 3) – the Earths’ surface near the town of Narrabri (New
South Wales, Australia) from an altitude of about 800 m. This
town lies close to one of the migratory routes of the Bogong moth.

Magnetic Stimulation
To test the effects of an Earth-strength magnetic field on the
flight behavior of moths, the behavioral arena can be placed
within a double-wrapped (Kirschvink, 1992; Mouritsen, 1998;
Schwarze et al., 2016), computerized 3D-Helmholtz coil system
consisting of three pairs of orthogonally mounted coils: the X-,
Y-, and Z-coils (Figure 5C). This computer-controlled Helmholtz
coil system enables us to send minute currents through the
paired X-, Y-, and Z- coils which result in changes in the
magnitude of the respective component vectors (measured in
nano Tesla, nT) and thus in changes in the resulting magnetic
field vector. By systematically changing the magnitude of the X
and Y components (while the Z-component is kept constant),
the orientation of the experimental magnetic field vector can
be rotated around the Z-axis (clockwise or counter-clockwise),
executing a motion pattern which is depicted as a shaded
orange cone in Figure 5A. The horizontal orientation of the
experimental magnetic field vector (which we define as pointing
to magnetic North, mN) can therefore be set to any desired
azimuth relative to geographic North (gN in Figure 5A) without
altering the total intensity (the magnitude) of the experimental
magnetic field vector or the inclination angle (γ in Figure 5A),
both of which are maintained at natural local values. Other
stimulus designs are also possible – one could for instance
include a change of γ without altering the azimuth of the
experimental magnetic field vector. In addition to accurately
producing and adjusting natural geomagnetic fields within the
flight arena, the coils are also able to create a "magnetic
vacuum" (i.e., a nulled, or zeroed field; Mouritsen, 1998) around
the moth (see Figure 5B). This stimulus (or rather, lack of

FIGURE 4 | Typical virtual flight tracks recorded by the encoder system. (A) The virtual flight track of a Red underwing moth (Catocala nupta, RU#11) recorded in
Illmitz (Austria) over 5 min of consecutive flight (each minute is represented by a different color), plotted relative to magnetic North (mN). In 1, the entire 5 min flight
track is shown with the moth’s flight direction recorded every 0.2 s (see enlargement), while in 2 the resultant vectors calculated for each minute of the same track
are shown. 3 shows the resultant flight trajectory vector of RU#11 (r = 0.48, α = 177◦), based on the 0.2 s samples recorded over 5 min of consecutive flight. (B) As
in A, but for the track of another Red underwing moth (RU#5) recorded at the same location. This particular individual was less oriented than RU#11, as seen in the
comparably shorter lengths (i.e., lower r values) of the resultant vectors in 2 and 3. Note that even though moth RU#5 flew in many loops (see enlargement in 1), it
was able to fly both clockwise and counter-clockwise (black arrows in 1), a good indicator that the stalk was attached symmetrically to the thorax of the moth and
that neither of the wings were damaged. (C) The vectors of 14 Red underwings are plotted as gray radial lines in a circular diagram [the vectors of RU#11 (1) and
RU#5 (2) are plotted in blue]. The radii of the concentric circles indicate the r value (from 0 to 1) at increasing step-size from the center toward the periphery. Based
on these 14 vectors, we can also investigate the orientation behavior of the moths as a single population by employing the Moore’s modified Rayleigh test (see
Figures 7, 8), which accounts not only for the direction of each moth (as in a classical Rayleigh test) but also for its directedness (i.e., its flight vector r value).
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FIGURE 5 | Magnetic stimuli generated by the Helmholtz coil system. (A) The
experimental magnetic field vector (thick black arrow) can be subdivided into 3
vectors (or component vectors) which are oriented perpendicular to each
other: the X- (red arrow), Y- (green arrow), and Z-component (blue arrow). The
orange cone indicates the rotational movement pattern of the resulting
magnetic field vector, which points toward magnetic North (mN). (B) The
magnitude of the X-component (red arrow), Y-component (green arrow), and
Z-component (blue arrow) of the experimental magnetic field vector,
measured at the center of our Helmholtz coil system, plotted as a function of
time for a specific magnetic stimulus sequence (shown here as an example).

(Continued)

FIGURE 5 | Continued
For the first 2 min of this stimulus sequence, the field was nulled to create a
"magnetic vacuum" (zero field). Following the 2-min magnetic vacuum, the
Helmholtz coil system was set to generate 3 clockwise (light gray) and 3
counter-clockwise (dark gray) 360◦ rotations (12 s each; resolution of
magnetic field changes: 1 step per 1◦) while keeping inclination γ constant (as
in A). The error bars give the SD around the means of 5 repetitions of the
stimulus. Note that the Z-component (and thereby γ) have negative values,
reflecting the fact that in the southern hemisphere the field lines of the Earth’s
magnetic field exit the Earth’s surface (i.e., inclination angle is defined as being
negative). (C) A Helmholtz coil system currently in use in Australia with an
arena positioned at its center.

stimulus) is useful for disabling the magnetic sense if one
wishes to test the responses of moths to other relevant compass
cues in isolation, such as visual cues or wind. Moreover, our
previous work (Dreyer et al., 2018b) has shown that altering
a compass cue in one modality (e.g., magnetic) without a
corresponding alteration in compass cues in other modalities
(e.g., visual), can introduce cue conflicts (see Figure 6). A nulled
field can avoid such conflicts if desired, although cue conflict
experiments can be a powerful tool for understanding the
interactions of different compass cues. A double-wrapped coil
system (Kirschvink, 1992) allows incorporation of an elegant
control configuration into the stimulus design. The parallel
connection of the coils can be switched to antiparallel connection,
supplying the now electronically separated neighboring copper
windings of the system with a current of a reversed sign. The
resulting local magnetic fields cancel each other out and no
magnetic field changes are generated, while the coil system
is still operated with electrical current. This results in a true
“sham-rotation” of the stimulus which is very useful as a
control in behavioral experiments, or to check if, for instance,
the coil system itself generates electrical artifacts into nearby
electrophysiological equipment. Additionally, the coil system
should be carefully grounded.

Our coil system (Figure 5C) – custom built by the workshops
of the University of Oldenburg – had outer diameters of 1245 mm
(X coils), 1300 mm (Y coils), and 700 mm (Z coils). The
coil system is powered by constant-current power supplies, one
for each coil axis (Kepco, model BOP 50-2M, 50V, 2A). The
current running through the coil systems was controlled via
High-Speed USB Carriers (National Instruments USB-9162) and
custom-written codes in MATLAB (Mathworks, Natick, MA,
United States). A Meda FVM-400 magnetometer, the probe of
which is placed at the position of the moth, is used to ensure
that the magnetic field is correctly set with the appropriate field
parameters for the experiment at hand.

EXPERIMENTAL PROCEDURES

Keeping Moths Prior to Experiments
In order to minimize stress, the moths should be stored in a
cool, shaded and quiet place, ideally at least one meter above
ground (because of ants which might be attracted to the samples).
This place should, however, not be totally dark but exposed to
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FIGURE 6 | Migratory orientation in Bogong moths is multimodal. (A) A male Bogong moth (Agrotis infusa). (B) Experimental procedure and results. Each tethered
moth was subjected to magnetic and visual cues during four 5-min phases (termed phases A–D) and their directions and directedness (orientation and length,
respectively, of gray vectors in circular plots) measured. When the positions of the magnetic field (heavy colored arrows) and visual landmarks (black triangular
‘mountain’ and overhead stripe) are correlated and turned together (Phases A,B,D), the moths (n = 42, gray vectors) remain significantly oriented near the landmarks
(as indicated by the long (highly directed) red population mean vectors; p < 0.001). When the two cues are set in conflict (Phase C), moths become disoriented (as
indicated by the short (undirected) red population mean vector; 0.5 < p < 0.9). The directedness (length) of the population mean vector is given by its R* value: the
greater the R* value, the more directed the population of moths it represents. The R* value also reveals the likelihood that the mean flight direction of a population of
moths – where each moth has its own direction and directedness (direction and length of gray vectors) – differs significantly from a random, undirected population
(according to the Moore’s modified Rayleigh test: Moore, 1980). Dashed circles: required α-level for statistical significance (i.e., the R* value required to reliably
distinguish the directedness of the population from a random, undirected population): p < 0.05, p < 0.01, and p < 0.001, respectively, for increasing radius. Outer
radius of plots: R* = 2.5. Red radial dashes: 95% confidence interval. gN, geographic North. mN, magnetic North. Data are from Dreyer et al., 2018b and diagram
from Johnsen et al., 2020. The photo of the Bogong moth in A is courtesy of Dr. Ajay Narendra, Macquarie University, Australia.

the natural light cycle so as not to disturb the moths’ circadian
rhythm. We housed our Bogong moths in individual plastic
containers which were equipped with cotton buds drenched
in honey solution (10%). We recommend using animals for
orientation experiments within 3 to 6 days of capture. The cotton
buds were replaced with new cotton buds drenched in fresh
honey solution every second day. We fed our animals prior to
every experiment with fresh honey solution.

Attaching Tethering Stalks to Moths
To prepare moths for tethering in the flight arena, we adopted
a method for attaching tethering stalks to moths that was first
established in the lab of Dr. Jason Chapman (University of Exeter,
United Kingdom, e.g., Minter et al., 2018). Moths were first
calmed by placing them in a freezer for a few minutes and then
positioned under a plastic gauze mesh (5 × 5 mm mesh holes)
secured to a table top on either side of the moth with weights
(anything heavy). The thick layer of scales is then removed from
the dorsal thoracic plate (the mesoscutum). This can simply be
achieved by using a regular small paint brush or a custom-made
micro-vacuum equipped with a pipette tip that sucks the scales
from the mesoscutum. The micro-vacuum has the advantage of
minimizing scale dispersion in the air. In any case, a dust mask
is recommended for this procedure. After the scales are removed
from the mesoscutum, a ca. 15 mm length of straight tungsten
wire (ca. 0.5 mm diameter) is used to make a tethering stalk
(this tungsten wire is identical to that used for the encoder axle:
6 in Figure 1). Tungsten wire is an ideal choice as it is non-
magnetic and sufficiently stiff. With a pair of needle-nosed pliers,

the final 3-5 mm of the tungsten wire is bent into a small loop
that is then bent 90◦ to the rest of the stalk. This loop is glued
to the mesoscutum of the moth using Evo-Stik Impact contact
adhesive (Evo-Stik United Kingdom), thus furnishing the moth
with a vertical tethering stalk. Great care should be taken to avoid
damaging/immobilizing the wings or antennae with adhesive,
and to position the tungsten stalk perfectly vertically. Once the
adhesive is dry, a stalked moth should be kept with fresh food
in a plastic container in a cool, shaded and quiet place. For
this purpose, we used containers made from UV-transparent
Plexiglass. At sunset, prior to the experiments, our stalked moths
were placed outside (in individual UV-transmissive Plexiglass
containers) on a somewhat elevated position to ensure they could
view the setting sun and the celestial rotation for at least 1 h
after sunset. Following this, moths were returned to the lab and
placed in darkness. Prior to each experiment the moths must be
totally dark adapted.

Insertion of Moths in the Flight Simulator
Even though the apparatus can (with some experience) be
operated by one person alone, it is wise to plan for two
experimenters to enable a smooth workflow. One person should
run the computer, while the other attaches the experimental
animals to the simulator prior to each test. Since the experiments
should be conducted in more or less absolute darkness, the
animals should be handled using a headlamp featuring a dim
red LED (invisible to most insects). The experimental moths
can easily be extracted from their containers by grasping the
tungsten tethering stalk using a pair of regular stainless-steel
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haemostats. Moths generally fly vigorously when held by the
tethering stalk. To tether the moth to the optical encoder, a
small length (ca. 10–15 mm) of tightly fitting thin rubber tubing
is partially pulled over the free end of the tungsten encoder
axle (6 in Figure 1), i.e., the end that is not connected to
the optical encoder. The other free end of the tubing is used
to receive the end of the tungsten tethering stalk, which is
inserted with the help of the haemostat. This is a very delicate
procedure since any permanent bending of the tungsten encoder
axle will lead to artifacts in the recorded heading directions –
the entire procedure should be practiced in daylight prior to
beginning experiments.

The encoder software needs to be calibrated to an external
reference direction prior to each experiment. This could be
magnetic or geographic North, depending on the experimental
design. A light-reflective sticker positioned at North somewhere
in the vicinity of the setup turned out to be very helpful for
locating this direction. Calibration is achieved by turning the
moth on its tether until it is oriented northward and then
holding it there until the software encoder direction is zeroed
(i.e., a readout of 0◦ = North). After the system is calibrated,
the animal should be given up to a minute to accustom itself
to the experimental environment and “settle down” before the
recording starts. During this time period the encoder software
should be used to check whether the animal can turn in
both directions, whether it spirals vigorously in one particular
direction (i.e., continuously turns around its tethering axis) or
if it stops permanently. If one of these behaviors is displayed
it likely indicates a stalking error and the animal should be
discarded. In an ideal recording situation, the animal will settle
down to a given flight direction after a short while and show
a typical behavior which we refer to as "scanning." This means
that the compass needle of the encoder software is hovering over
a particular direction on the compass rose, swinging back and
forth over a span of about 15◦–45◦. Using a spirit level, one
should occasionally check that the encoder is level since this
might influence the flight direction of the animal.

Experimental Precautions
A necessary first step when using a flight simulator to study the
migratory behavior of an insect species is to establish the insect’s
natural migratory direction during its migratory season – this
can then be used as a control direction for further orientation
experiments. While being tested, the animals must experience
an unobscured view of the sky and an undisturbed magnetic
field. The choice of the experimental location is probably equally
as important as the timing of the experiments. "Geographic
bottlenecks" along the migratory route, such as mountain passes
or valleys, usually concentrate insects during their migration
and are often good places for catching sufficient numbers for
these experiments.

Data Selection
It is reassuring when the recorded natural migratory
(control) direction coincides or overlaps with previously
established vanishing directions or natural observations, but
the experimenter should always be aware of his/her own

confirmation bias. The exclusion of a moth from either the
experiments or from the analysis should only occur according
to pre-determined rules, not according to rules created after the
experiments. In our experiments, if a moth performed under
ideal outdoor experimental conditions and was still unable to
steer a course (irrespective of the direction it chose to fly), and
its resulting trajectory had an r value less than 0.2, this moth
was excluded from the analysis. However, to compare indoor
orientation experiments under different stimulus conditions,
no lower threshold for the r value should be set because
disorientation might be a valid outcome of the experiment due
(say) to the presentation of a deliberate cue conflict between two
or more of the applied stimuli. Thus, in this case, a low r value
might be an expected outcome and filtering out this particular
moth might mask the effect of a natural behavior.

It sometimes happens that even a seemingly well-oriented
moth stops performing flight behavior before the previously
determined experimental time is over. If this occurred, we usually
tried to kick-start the animal by gently bumping the arena. If
a moth stopped 4 times during an experiment, we aborted it.
In particularly unsettled weather conditions, such as a looming
thunderstorm, we found that the moths were not eager to
perform in the arena and frequently stopped flying (and this
occurred both during indoor and outdoor experiments).

Moon Phase and Weather
Even if the moon’s disc is not directly visible to the animal,
the moonlight entering an outdoor arena can introduce an
intensity gradient on the wall of the arena situated opposite to the
physical direction of the moon’s disc. This uneven illumination
of the arena wall could provide unwanted (and confounding)
orientation cues for the flying moth. It is possible to shade
the arena from moonlight using a flat piece of plywood or
commercially available sunshades (e.g., a beach umbrella), but
this might block a considerable part of the sky which in turn could
interfere with the experimental design. Moreover, any top-heavy
structure with a large surface is very vulnerable to be blown over
by the wind. When choosing a suitable time window for outdoor
experiments, the current moon phase, prevailing winds, predicted
precipitation and temperature are important factors to account
for and to monitor. If possible, the dew point spread should also
be monitored during an experimental night as we found that
moths began to behave erratically in the arena if there was too
much moisture in the air (Dreyer et al., 2018a).

Putative Artifacts
Since many animal species are attracted to landmarks in
behavioral experiments, great care must be taken to avoid
unwanted landmarks, such as treetops in outdoor experiments,
being visible from the inside of the arena. The easiest way to check
for this is to set up the arena at the same height above ground as
it is intended to be located during an experiment and to visually
confirm that no outside landmarks are visible from the inside of
the arena by sticking one’s head through the bottom of the arena.

Any stray light generated by the equipment must be avoided
since this too could provide an unwanted orientation cue that
could affect the heading direction of a tested moth. This includes
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the screen of the recording computer and the reflection of the
screen light on the face of the experimenter. The computer
screen should be set to the lowest possible intensity setting and
covered with a thin sheet of red plastic filter to block out most
wavelengths visible to insects (such filter sheets can be obtained
from Lee Filters). The recommended use of red LEDs during
the experiments has already been mentioned. A red-light regime
will make it very difficult to read or identify handwritten notes
or markings which were made using a pen or marker with
red ink. To check if the walls of the arena are impermeable
to artificial stray light from the outside, it is very helpful to
put a very bright light source on the inside of the arena and
to look for stray light shining through cracks and irregularities
from the outside.

Experimental Design for Orientation
Experiments
In previous orientation experiments in which a migratory
behavior was convincingly demonstrated to be driven by the
animal’s orientation relative to a particular compass cue, the
animal’s orientation could be altered by changing the position
or orientation of that cue (e.g., Kramer, 1950; Wiltschko and
Wiltschko, 1972; Emlen, 1975; Lohmann, 1991).

One classic approach is the ABA stimulus configuration
(Figure 7). In an orientation experiment, this entails an animal
being asked to perform migratory orientation behavior relative
to a particular cue (condition A). In our illustrated example,
this cue is a weak wind stream provided by a small fan
mounted into the arena wall (Figure 7) – Bogong moths
respond to this wind stream by flying somewhat into it. In a
second experimental condition, the spatial orientation of this
cue is altered (e.g., the position of the fan is shifted by 180◦:
condition B). This experimental sequence is referred to as an
AB sequence (Figure 7A), and this can be used to determine
whether the moth truly responds to the cue (which in this
case means that the moth should turn roughly 180◦ from A
to B, as indeed it does: Figure 7D). Reversing the order of
the experimental conditions (i.e., a BA sequence) can be used
to confirm the orientation response (Figures 7B,E). An ABA
stimulus configuration (Figures 7C,E) is a classic configuration
which seeks to confirm that the behavior observed initially
can be restored and is thus truly related to the change in
spatial orientation of the compass cue. The results of a classic
ABA experiment become even more convincing when the ABA
sequence is exchanged for a BAB sequence in 50% of the
experiments without a noticeable change in the conclusions
that can be drawn from the results, and if control experiments
(e.g., AAA, BBB or a control condition featuring no relevant
orientation-related information, CCC), alternating with the
actual experiments, lack the previously observed changes in the
behavior of the animal.

In the case of Bogong moths, we discovered that most of the
animals are extremely sensitive to the presence of unintentionally
presented visual landmarks (an irregularity in the felt on the
wall of the arena, a scratch in the lid holding the encoder, etc.).
This becomes problematic if tested under condition B since any

compass cue which is systematically changed in condition B is
now set in conflict with the previously learned spatial relationship
of this cue with the unintentionally presented landmark, which
can confuse the moth. In our earliest experiments we discovered
that this led to clearly less oriented flight behavior during
condition B. We took advantage of this "sensitivity" toward
landmarks in later experiments by employing obvious and
intentional visual landmarks within the arena. This allowed us to
design cue conflict experiments which demonstrated that Bogong
moths are able to sense the Earth’s magnetic field and that they
learn the relationship between this magnetic field and visual
landmarks to steer migratory flight (Dreyer et al., 2018b).

ANALYSIS OF ORIENTATION DATA

The results of the cue conflict experiment on Bogong moths
mentioned above (Figure 6B) provide a good introduction to
the methods we have used to analyse data generated in the flight
arena (Dreyer et al., 2018b). In these experiments, 42 moths were
each allowed to fly for 5 min while exposed to a conspicuous
visual cue (a triangular black “mountain” above a lower black
“horizon” within the flight simulator arena, and a black stripe
on a rotatable circular UV-transmissive diffuser above the moth)
and an earth-strength magnetic field (Figure 6B). These two
cues – visual and magnetic – were either turned together while
maintaining their learned correlated arrangement (Figure 6B),
or one cue was turned without the other to create a cue conflict
(Figure 6B). Whenever the cue correlation was maintained, the
population of moths remained oriented, but when a cue conflict
was introduced, they became disoriented, implying that both
visual and magnetic cues are used for steering migratory flight
(Dreyer et al., 2018b).

These results were derived by analyzing the 42 moths as
a single population. For each of these moths, our recording
system, as previously mentioned, allows us to record the virtual
trajectory of each moth by sampling its orientation choices as
angles relative to gN at a frequency of 5 Hz (Figures 4A,B).
Based on these angles, custom-written software and the MATLAB
Circular Statistics Toolbox (Berens, 2009) were used to calculate
an average vector representing the moth’s trajectory, the direction
and length of which reveal the mean orientation angle and
directedness of the moth, respectively – these are the gray vectors
in the circular data plots for Red underwing moths shown in
Figure 4C (14 vectors for the 14 moths flown) and for Bogong
moths shown in Figure 7 (42 vectors for the 42 moths flown).
The length of the vector is reflected in its r value (a unitless value
between 0 and 1) – the longer the vector, the greater the r value
and the more consistently the moth flew in its chosen direction.

Once we have determined the average vectors for each of
the 42 moths, we can investigate the behavior of the moths
as a single population. To do this, we apply a non-parametric
Moore’s modified Rayleigh test (MMRT: Moore, 1980; Zar, 1999),
calculated using the circular statistics software Oriana (KCS,
Pentraeth, United Kingdom). The MMRT ranks the vectors
according to their length (i.e., r value) and weights them
according to these ranks, meaning that not only the mean
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FIGURE 7 | The modified Mouritsen-Frost flight simulator can be used to monitor changes in flight behavior in response to changes in putative orientation cues.
Since wind speed and direction influence the migratory behavior of moths (e.g., Chapman et al., 2008b), we exposed migratory Bogong moths to very weak air
streams (6 kph) from two different directions relative to magnetic North while they performed flight behavior in our arena. The air streams were generated by two
small fans. (A,D) The AB stimulation sequence. The fan located in the southwest was activated (red dashed arrow) and the animal flew for 5 min (condition A). We
found that moths fly roughly toward the direction of the wind stimulus (i.e., into the wind), as seen by the red flight trajectory vector shown in D. The upper vectors in
panels D–F indicate the entire average 5 min flight while the lower vector sequence indicates the flight behavior within each successive 1-min bin. The length of each
vector indicates the “directedness” of the flight, that is, the fidelity with which the moth kept to the same flight direction. Directly following condition A, the fan located
in the northeast was switched on and the animal flew for another 5 min (condition B), again into the wind as seen by the blue flight trajectory vector shown in D.
(B,E) The BA stimulation sequence. The same procedure as in A,D but with the wind stimulus presented in the reverse sequence. (C,F) The ABA stimulation
sequence. Here the fans were rotated by 45◦ to form an east-west axis. The fan located in the east was activated first (blue dashed arrow) and the animal flew for
5 min (condition A). Then the fan located in the west was activated for 5 min (condition B). Finally condition A (east fan activated for 5 min) was repeated.

direction of a moth’s vector, but also its directedness (length),
impacts the ultimate outcome of the test – the generation of
an average heading vector for the population as a whole (for a
detailed description of the statistics involved, see Dreyer et al.,
2018b). This average population vector – shown as the red
vector in each of the circular data plots of Figure 6 – has a
length that indicates the likelihood that the population is heading
in the specific direction indicated by the vector. This length
is represented by the vector’s R∗ value (see Figures 6B, 8 for
details). The greater the R∗ value, the more directed is the
population it represents.

A significant advantage of knowing the entire virtual flight
trajectory of each moth is that one has access to much
more information. In addition to knowing the moth’s average
heading direction (trajectory vector direction), one also knows
how well directed the moth was during its flight (trajectory
vector length).

When a trajectory exists, the advantage of the MMRT over
the regular Rayleigh test (Batschelet, 1981) becomes apparent
(Figure 8). An MMRT analysis of the flight trajectory vectors
of 23 Dark sword-grass moths (Agrotis ipsilon), recorded at Col
de Coux in Switzerland (Figure 8A), is compared to a classic
Rayleigh analysis of their heading directions alone (Figure 8B).
A significant average heading vector for the population only
appeared after accounting for the directedness of the 23 moths

by using the MMRT test (red vector in Figure 8A, p < 0.05).
A classic Rayleigh test (ignoring directedness) on the same data
indicates that the moths were instead disoriented (red vector in
Figure 8B, p = ns). The reason for the difference lies in the fact
that for this data set (and many other flight-simulator data sets
we have observed), more directed moths (i.e., moths with flight
trajectory vectors having larger r values) tend to cluster more
tightly around a single orientation direction (leading to a longer
average subpopulation vector, Figure 8E), whereas less directed
moths tend to have average heading directions that are somewhat
more random (Figures 8C,D). Since the MMRT gives greater
weight to more directed individuals, this test finds a significant
orientation direction for this population of Dark sword-grass
moths (Figure 8A).

Both the Rayleigh test and the MMRT operate on the
null hypothesis that the orientation choices are uniformly
distributed around a circle (Batschelet, 1981). However, in
the case of a rejection of the null hypothesis, both tests
assume a circular normal distribution, meaning that the
distribution of data is unimodal (i.e., possesses a single cluster
of orientation choices). If a bimodal distribution of orientation
choices is to be expected, the mean orientation angle of
each individual animal can first be transformed by doubling
this mean angle (if the resulting angle is greater than 360◦,
one must subtract 360◦ from this result). Once this is done,
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FIGURE 8 | A comparison of the non-parametric Moore’s modified Rayleigh test (MMRT) and the classical Rayleigh test, using the flight trajectories of 23 Dark
sword-grass moths (Agrotis ipsilon) recorded at Col de Coux in Switzerland. (A) Flight trajectories analyzed using the MMRT. The individual flight trajectory vectors of
each moth are shown as blue vectors and the average heading vector of the population (sample) derived from the test is shown as the red arrow. The dashed circle
indicates the required R* value for statistical significance (p < 0.05) and the red line on the outer circle marks the 95% confidence interval. The thin gray circles
indicate the r value (in steps of 0.2), which are applicable to the flight trajectory vectors of individual moths (blue vectors). (B) Same data as in A, but now evaluated
using the classic Rayleigh test. The mean flight directions of each moth are shown as blue dots around the periphery of the circle. According to the classic Rayleigh
test, which does not weight the orientation choices according to their r value (as does the Moore’s modified Rayleigh test, A), the population is not significantly
oriented. The dashed circle indicates the required α-level for statistical significance (p < 0.05). Note that the length of the red arrow in B encodes the r value, not the
R* value. (C–E) The mean flight directions of individual moths (from panel B) were ranked according to the lengths (r values) of their underlying flight trajectory vectors
(from panel A) and accordingly assigned to three bins: r values 0.20–0.33 (C, n = 8), r values 0.35–0.49 (D, n = 8), and r values 0.53-0.93 (E, n = 7). The mean
vectors for each of the three sub-populations were computed using only the mean flight directions of the moths (arrows in each plot). Moths with flight trajectory
vectors having larger r values (C) tend to cluster more tightly around a single orientation direction (leading to a longer mean sub-population vector).

one is free to test the modified dataset using the MMRT
or Rayleigh test.

Finally, in order to determine whether the distributions
of orientation choices made by two different populations
(or samples) are significantly different, we employ the non-
parametric Mardia-Watson-Wheeler uniform-scores test
(Batschelet, 1981), calculated using Oriana. This proved useful
in our studies of Bogong moths, where tested populations
of autumn and spring migrants were expected to migrate in
significantly different directions (and indeed did so: Dreyer
et al., 2018b). The Mardia-Watson-Wheeler test can also be
used for determining whether populations of two different
species possess the same or different migratory headings
(Dreyer et al., 2018a).

CONCLUSION

The Mouritsen-Frost flight simulator was initially designed
to record the orientation choices of diurnal insects during
their migration (Mouritsen and Frost, 2002). Relative to their
“natural orientation behavior,” a subpopulation of tethered
flying insects can then be tested under conditions in which
the spatial orientation of a putative compass cue (or several
cues) is altered, with the goal of determining whether
the insects compensate for this alteration. Apart from this
obvious application, one can also use the flight simulator to
investigate the influence of external “disturbance factors,” such
as an artificial light stimulus of certain intensity, polarization,
and/or wavelength, on the flight performance of insects.
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Such methods could for instance also be used to investigate the
influence of other stressors, such as light pollution on insect
migration, or to investigate the influence of various types and
concentrations of pesticides on the migratory flight capacities of
different insect species.

A technically more advanced application is to integrate the
flight simulator within an electrophysiology rig, as is being
successfully done to monitor the neuronal activity of brain areas
involved in navigation while an insect is tethered within the
arena (Beetz et al., in preparation). In these experiments, an
extracellular tetrode array (containing typically 4-5 electrodes)
can be inserted into the brain while the insect performs flight
behavior in the arena under controlled stimulation conditions.
The tetrode enables the experimenter to pick up neuronal
responses from several neurons at once (typically 2–5 per
electrode), increasing the chances of encountering neurons
involved in the processing of navigational information. Changes
in the firing rates of recorded neurons could subsequently be
correlated to changes in the spatial orientations of external
sensory stimuli and to changes in flight direction that these
may induce. Such methods would constitute powerful tools
for dissecting the function of neural networks responsible for
processing and acting on sensory information encountered
during migration and navigation.
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Reversal learning requires an animal to learn to discriminate between two stimuli but

reverse its responses to these stimuli every time it has reached a learning criterion. Thus,

different from pure discrimination experiments, reversal learning experiments require

the animal to respond to stimuli flexibly, and the reversal learning performance can

be taken as an illustration of the animal’s cognitive abilities. We herein describe a

reversal learning experiment involving a simple spatial discrimination task, choosing the

right or left side, with octopus. When trained with positive reinforcement alone, most

octopuses did not even learn the original task. The learning behavior changed drastically

when incorrect choices were indicated by a visual signal: the octopuses learned the

task within a few sessions and completed several reversals thereby decreasing the

number of errors needed to complete a reversal successively. A group of octopus

trained with the incorrect-choice signal directly acquired the task quickly and reduced

their performances over reversals. Our results indicate that octopuses are able to

perform successfully in a reversal experiment based on a spatial discrimination showing

progressive improvement, however, without reaching the ultimate performance. Thus,

depending on the experimental context, octopus can show behavioral flexibility in a

reversal learning task, which goes beyond mere discrimination learning.

Keywords: spatial learning, cognitive abilities, behavioral plasticity, cognition, cognitive flexibility

INTRODUCTION

A reversal learning experiment is a classic experiment to investigate the cognitive abilities of an
individual and was originally used by Bitterman and colleagues to compare the learning abilities
of different species (Bitterman, 1965). Studying the cognitive abilities of Octopus vulgaris is of
particular interest, as this species, although belonging to the mollusks, is usually considered to
possess extraordinary or “vertebrate-like” cognitive abilities (Mather et al., 2010) such as its ability
to learn from observing conspecifics (Fiorito and Scotto, 1992). Moreover, high cognitive abilities
are often inferred from the large size and organization of its brain (Young, 1971).

During a reversal learning task, the animal first has to learn to discriminate between two
stimuli to a predefined criterion during the acquisition phase. After passing the criterion,
the signs of the stimuli are reversed, and the previously positive stimulus is now changed
into the negative stimulus and vice versa. Usually, a number of reversals are conducted to
test whether the animal will show progressive improvement in such a serial reversal learning
experiment; progressive improvement is defined as a decrease in the number of errors per reversal
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over all reversals conducted. Some animals even achieve
the ultimate performance of one-trial learning; they need to
experience only one error to realize that a reversal has taken
place (see, for example, Mackintosh and Mackintosh, 1964;
Balderrama, 1980; Karson et al., 2003). Thus, over time, some
animals learn to learn (Harlow, 1949); they are forming a reversal
learning set. This learning ability illustrates that reversal learning
is going beyond mere discrimination learning during which an
animal learns stimulus specific responses (Shettleworth, 1998).
Reversal learning has usually been considered a good indicator
for behavioral flexibility. Species, especially those that inhabit
complex environments, profit from behavioral flexibility, as it will
allow them to adapt to changes in their environment and/or to
find suitable alternatives quickly (Day et al., 1999; Bond et al.,
2007; Lea et al., 2020).

Just recently, Bublitz et al. (2017) revisited visual reversal
learning in octopus in good tradition of work of the mid-
twentieth century (Boycott and Young, 1957; Mackintosh, 1962;
Young, 1962b; Mackintosh and Mackintosh, 1963, 1964). These
previous studies analyzed various aspects of visual reversal
learning such as the effect of reversing daily without prior
reaching a learning criterion, the effect of overtraing on reversals
with and without irrelevant cues, or the effect of vertical lobe
removal on reversal learning (for overview see Table 1 in
Bublitz et al., 2017) with the vertical lobe being an essential
neuronal structure for learning and memory (see for example,
Young, 1960, 1970). From these studies, it was concluded
that octupus can perform multiple reversals and can increase
its performance over reversals. Bublitz et al. (2017) refined
the general methodological approach of the previous visual
reversal learning studies by the elimination of pretraining or
the introduction of a secondary reinforcer, thereby conducting
a “classic” visual serial reversal learning experiment. The results
varied considerably between individuals. One of the individuals
participating in the study of Bublitz et al. (2017) showed a very
good reversal learning performance, reducing the number of
errors over four completed reversals. In contrast, the three other
individuals failed to reach the learning criterion already during
the first or second reversal. Moreover strong stimulus preferences
occurred that might have affected learning in general and reversal
learning in particular.

In many animals, the performance in a visual reversal learning
experiment is contrasted with the performance in a spatial
reversal learning task in which the individual either has to
choose the right or left side, a very simple spatial discrimination,
depending on the experimental stage. For a number of animals,
the performance in the latter is better than in a visual reversal
learning experiment (see, for example, skunks in Doty and
Combs, 1969; or painted turtles in Holmes and Bitterman, 1966).
In general, good spatial reversal learning performance including
progressive improvement has been documented for various
species ranging from bumblebees (Chittka, 1998), pigeons (see,
for example, Gonzalez et al., 1967; Ploog and Williams, 2010),
to dogs (Tapp et al., 2003) and horses (Potter and Fiske, 1979);
one-trial learning occurred in chimpanzees (Schusterman, 1964),
rats (Dufort et al., 1954), or cockroaches (Balderrama, 1980). One
explanation for this phenomenon is related to the fact that the

spatial discrimination does not involve irrelevant cues as does the
visual task during which the side, left or right, is the irrelevant
cue on which the animal should not focus on for making its
response. Consequently, in line with these previous studies,
octopus might also perform better in spatial discrimination tasks
and its reversals. In addition, orientation in space might be a
crucial ability for most mobile species, as the octopus, which
might consequently result in a better spatial than visual (reversal)
performance. Spatial orientation, in general, is also expected to
play a major role for octopus, which is a central place forager
(Mather, 1991b). The octopus individuals often hide themselves
in their dens. However, they leave their shelters to go for foraging.
Good spatial abilities are required to return to the den after
the foraging trip. These spatial abilities are also asked for if an
octopus decides to move into a new den. An additional factor
that might assert evenmore pressure on the development of good
spatial orientation skills is that octopus is a soft-bodied animal
that faces considerable predatory pressure (Mather and O’Dor,
1991). Thus, reducing the amount of time outside the shelter to
a minimum by good spatial knowledge seems to be critical for
survival. Besides these theoretical considerations deduced from
the octopus ecology, experimental evidence for good spatial skills
is already available for octopus: octopus species have been shown
to rely on landmarks for spatial orientation (Mather, 1991b),
some individuals successfully performed in detour experiments
(Wells, 1964, 1967, 1970), and they were able to (re)locate
burrows in arenas (Boal et al., 2000). Moreover indirect evidence
for good spatial skills results from the observations of Mather
(1991a) describing O. vulgaris as often moving to new places in
successive hunts, which again requires spatial knowledge to be
able to return to the den.

Among the cephalopods, spatial reversal learning has only
been addressed in O. maya (Walker et al., 1970) and Sepia
officinalis (Karson et al., 2003). In Walker et al. (1970), however,
the signs of the stimuli were only reversed twice, and finally,
training was stopped at the beginning of the second reversal.
In contrast, Karson et al. (2003) conducted a classic spatial
serial reversal learning experiment with common cuttlefish in
which one individual even completed eight reversals, and two
individuals met the learning criterion with one or two errors.

Spatial serial reversal learning has not been tested in O.
vulgaris yet, our model species for cognitive abilities. Thus, the
main goal of this study was to collect data on spatial reversal
learning in O. vulgaris to further elucidate on the reversal
learning abilities of octopus as a measure of their cognitive
flexibility. This data set might also allow comparing the visual
and spatial reversal performance of octopus. We hypothesized
that octopus performs better in the spatial serial reversal
learning experiment, as (1) stimulus preferences dominating
visual discrimination experiments do not play a role in spatial
tasks, and as (2) there is good theoretical as well as empirical
evidence that octopus possesses good spatial abilities.

During training of the original task, three octopus individuals
failed to improve their performances. In an attempt to overcome
stagnation, we introduced an incorrect-choice signal (ICS),
presented after an incorrect response. As after its introduction,
the octopus individuals easily reached the learning criterion and
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could complete several reversals successfully, we set out to study
the effect of this ICS. Thus, we trained a second group of octopus
individuals without prior training experience without ICS and
compared the learning performance of these two groups.

MATERIALS AND METHODS

Experimental Subjects
Seven subadult O. vulgaris (Ov1–Ov7), caught in the Tuscan
Archipelago of the Mediterranean Sea, served as experimental
subjects. The number of experimental animals compares well
with the sample size of previous reversal learning studies
including capuchin monkeys, turtles, lizards, crayfish, minks,
ferrets, and skunks (Holmes and Bitterman, 1966; Capretta and
Rea, 1967; Doty and Combs, 1969; Day et al., 1999; Beran et al.,
2008). Previous octopus reversal learning studies had trained
4–10 individuals per condition (Boycott and Young, 1957;
Mackintosh, 1962; Young, 1962b; Mackintosh and Mackintosh,
1963, 1964). The dorsal mantle length of the octopus of this
study was 5–8 cm. Sex could only be determined in Ov5, a male
octopus. Except for Ov3, all animals were experimentally naive.
Ov3 had already been trained for 1,160 trials to choose one out
of two target tubes (TT), the task of this study, however, using
two identical optical stimuli moving up and down close to the
TTs instead of the monitor lightening up as start signal (see
Experimental setup and Experimental procedure for details). Due
to differences in training, the data of Ov3will only be presented in
the Supplementary Material; however, they will not be included
in the analyses of this manuscript.

The animals were transported in containers containing
natural sea water. After transportation, under continuous
monitoring, the animals were adapted to the conditions of
the home tanks by adding water from the home tanks to the
containers slowly and dropwise before they were inserted in the
home tanks.

The animals were kept according to the recommendations
on maintenance, care, and welfare given for cephalopods (Smith
et al., 2013; Fiorito et al., 2014, 2015). All seven subjects were
housed individually in 250-L glass tanks (100 × 50 × 50 cm)
with a substrate of sand, coral, stones, and shells that allowed the
animals to hide and build a den. The tanks were filled with natural
sea water with a salinity of 35 g/kg at a water temperature of 19–
23◦C. These parameters of maintenance as well as all essential
parameters of water quality were regularly checked.With the help
of artificial illumination, a natural day/night cycle of 12 h/12 h
was achieved.

Food was usually provided to the subjects twice a day
exclusively during experiments and according to their
performance, however, overall assuring that the animal got
an adequate amount of food every day. On days, on which no
experiment was conducted, the animals were fed ad libitum.
The amount of food taken on these days allowed adjusting
the amount of food given during experiments to achieve good
satiation daily. The experimental animals were fed with either
bivalve or gastropod mollusks. The type of food was chosen
according to individual preferences as well as availability but was

kept constant for one individual over the entire experimental
period. Uneaten food was removed after feeding.

Depending on the individual and its motivation, a single
experimental session run with one octopus individual lasted from
90 min up to approximately 2 h. Experiments were conducted
5–7 days a week over a total period of up to 7 months of training.

The animals’ health status including, for example, its posture,
movements, changes in body pattern, vigilance, or feeding
behavior were controlled at least every morning and evening.
This study was conducted in accordance with the directive
2010/63/EU, and maintenance and the experiments (Permit
No. 6712GH00113, Staatliches Amt für Umwelt und Natur
Rostock, Landesamt für Landwirtschaft, Lebensmittelsicherheit
und Fischerei, Mecklenburg-Vorpommern) as well as transport
(EGVerordnung 1/2005, Reg.-Nr. 082120000714) were approved
by local authorities.

Experimental Setup
The general experimental setup is shown in Figure 1. The
components of the experimental setup were installed inside
the individual home tanks before starting an experimental
session. Outside the tank at one fare end, an LCD monitor
was permanently attached (21.5 in., 60 Hz, E2251 Full HD,
LG electronics, Inc., Seoul, South Korea). The monitor was lit
to signal the start and dimmed to signal the end of a trial.
As octopus is polarization sensitive (Hanke and Kelber, 2020),
the animals might have used either the polarization and/or the
luminance information as start or end signal. A vertical divider
separated the area in front of the monitor into equally large
left and right compartments, compartments A and B. Within
each compartment in the outer right, respectively, the outer left
corner and close to the LCD monitor, a transparent acrylic TT
(length, 55 cm; diameter, 3 cm) was inserted through the lid of
the aquarium. These TTs served as targets that the animals were
supposed to touch and provided the food reward to the subjects
in case of a correct response. As established by Bublitz et al.
(2017), the food reward was preceded by a secondary reinforcer,
a transparent acrylic rod with a black tip that was moved up and
down the respective tube. Upon an incorrect response, a black
plastic rod could be inserted into the aquarium, the incorrect-
choice signal (ICS; see Experimental procedure, Figure 1C and
Supplementary Video 2). At approximately 50 cm distance to
the monitor and aligned with the center of the monitor, a
terracotta flower pot served as a starting point for each single
trial during experiments and ensured that the subjects had
approximately the same viewing angle on the display and the TT,
subtending 50◦, and the same distance to the TTs at the beginning
of each trial. A feeding tube inserted right above the terracotta
flower pot was used to lure the animal back to the starting
point after its response, if necessary. For luring, the secondary
reinforcer was gently moved up and down this feeding tube,
which usually attracted the octopus’ attention.

During experiments, an opaque curtain around the aquarium
as well as an opaque cover on the lid of the tank kept the
experimenter out of sight of the octopus in order to avoid
unintentional secondary cueing. The experimenter observed the
experimental procedure via a camera (Genius WideCam 1050,
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FIGURE 1 | Experimental setup. (A) A liquid crystal display (LCD) monitor M was attached to the tank from outside to signal the start and the end of each single trial

by lighting and dimming the monitor, respectively. The area in front of the monitor was separated by a divider D into two compartments. In each compartment, a target

tube TT was inserted through the lid of the aquarium; the animals were required to touch the target tube for a response. Each single trial started with the animal

positioning itself on a flower pot P at approximately 50 cm distance to the monitor. The whole area was illuminated by a lamp L. To avoid secondary cues during

experiments, the top of the aquarium and the side walls were shielded with an opaque cover O (side cover not shown for clarity). Experiments were observed and

recorded with the help of a camera C. Not drawn to scale. (B) Photograph of the camera with which the aquarium could be overseen even if the aquarium was

covered from all sides. The octopus is sitting on the flower pot, and the two target tubes are on the left and right side in front of the monitor, which has already turned

bright signaling the start of the trial. A third tube close to the flower pot served to lure the octopus to the flower pot, if necessary. Please note that the divider can

hardly be seen due to the position of the camera with respect to it and as it is aligned with the third tube. (C) After an incorrect response, the octopus was presented

with an incorrect choice signal (ICS), a black rod, upon which the octopus initially/sometimes changed their body pattern to a broad mottle pattern—the ICS was

introduced when training stagnated (group 1) or right from the start of training (group 2).

KYE System Corporation 2011, Taipei, Taiwan) equipped with
a wide-angle lens. The whole experimental area was illuminated
with a lamp from above.

Experimental Procedure
After the insertion of the animals into the aquaria, they were first
allowed to adapt to the new environment. When they started
to take food from the experimenter, which usually happened
within 1–3 days after insertion into the home tanks, pretraining
started, which involved the establishment of the secondary
reinforcer (Bublitz et al., 2017), feeding from the feeding tube,
stationing on the terracotta flower pot, and luring the animal
five times to the left and right TT according to a pseudorandom
protocol (Gellermann, 1933). Once these pretraining steps were
completed, a preference test consisting of a maximum of 10
trials per individual was conducted to reveal whether the animals
had a preexisting preference for the left or right side of the
aquarium. The location in space marked by a TT preferred by
the individual was defined as negative stimulus (S–) during the
acquisition phase of the experiment (R0) in which the animal had
to learn to only choose one side/one TT (positive stimulus, S+)
to get a reward. Upon reaching the learning criterion defined as
a performance of≥80% correct choices (p < 0.01, χ2 test) in two
consecutive sessions of 20 trials, the signs of the stimuli and thus
the reward contingencies were reversed; reversal 1 (R1) started.
Now the animal had to move to the TT, which had been defined
as S– in the previous phase of the experiment, to get a reward. As
we conducted a serial reversal learning experiment, every time
the animal met the learning criterion, a new reversal (R2, R3–Rn)
was initiated until the animal stopped cooperation, most likely
due to senescence. Thus, the number of reversals conducted per
animal varied.

During all stages of reversal training, the animal started
a trial by approaching and sitting on the flower pot

(Supplementary Video 1). Subsequently, the monitor was
lit, and a 3-min time interval begun during which the animal had
to make a decision for the left or right TT. A decision was defined
as the animal touching a TT with at least one arm. Dimming of
the monitor served as end-of-trial signal upon which the animal’s
task was to return to the start location. If the animal did not
respond to the start signal in the 3-min time interval, the trial
was ended. If five trials had to be ended without any response
from the animal, the whole session was ended.

The feedback after a response was different for groups 1
and 2. It was varied to study the effect of the ICS. For group
1 including three individuals (Ov1–Ov3), training was started
without the ICS, but with positive reinforcement alone. Thus, a
correct response was signaled by the secondary reinforcer and
food, and an incorrect response was signaled by dimming the
monitor directly after the response. As training progressed, the
ICS was introduced during R0 in session 40 for Ov1 and Ov2;
just to mention for completion, training with the ICS started
during R1 in session 15 for Ov3 (see Supplementary Material).
At these experimental stages, the animals did not show any
sign of learning; moreover, their cooperation was very low. We
therefore started ICS signaling, predicting that the feedback after
an incorrect response would facilitate the learning process. For
group 2 including four individuals (Ov4–Ov7), trained after we
had worked with individuals of group 1, incorrect responses were
signaled by the immersion of the ICS from the first trial/session
during R0 on predicting that, with ICS signaling right from the
start of the training, the octopus individuals would continuously
learn. Octopus individuals were randomly assigned to one of the
two groups.

Analysis
We analyzed the performance of each animal regarding (1) the
number of errors (error referring to an incorrect trial) needed
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FIGURE 2 | Results of the spatial reversal learning experiment. Exemplary performance of experimental animal Ov1 as correct choices (in %) over time during the

acquisition phase (R0) in which it was trained only with positive reinforcement but without incorrect-choice signal (ICS). Ov1 did not reach the learning criterion defined

as a performance of ≥80% correct choices in two consecutive sessions (continuous line) in 40 sessions with 20 trials. After the introduction of the ICS indicating the

incorrectness of the response in session 41, Ov1, however, reached the learning criterion after five sessions.

to learn the original task in R0, (2) the number of reversals
conducted over the course of the study, (3) the minimum
number of errors reached within each group, and (4) the presence
of progressive improvement over reversals; these results are
reported descriptively. Furthermore progressive improvement
was also statistically assessed for every individual, and/or for
groups 1 and 2 by averaging the performance of the individuals.
For the analysis of progressive improvement, we conducted a
linear regression analysis, testing the null hypothesis that the
slope of the linear regression is zero. Statistical analyses were
run in R 3.3.3 (The R Foundation for Statistical Computing,
Vienna, Austria).

RESULTS

In group 1, trained with positive reinforcement alone initially,
Ov1 and Ov2 did not learn the basic task; the learning
criterion was not met within 40 sessions or after 272 and 346
errors, respectively. Learning stagnated, and the animals hardly
cooperated for experiments. With the introduction of the ICS, a
black rod signaling an incorrect response, in session 40, R0 could
be finished with Ov1 and Ov2 within five and seven sessions or
with 38 and 47 errors, respectively (Figure 2).

After the introduction of the ICS, all individuals finished a
number of reversals (Figure 3A and Table 1): Ov1 completed 13
reversals and Ov2, five reversals. Over reversals, Ov1 increased
its performance (F-statistics; Ov1 F = 44.1, df = 11, p <

0.01), making fewer errors per reversal the more reversals it
experienced. In contrast, Ov2 did not drastically improve its
performance over reversals (F-statistics; Ov2 F = 0.7, df = 3,
p = 0.46); the number of errors even increased during the last
reversal; as the animal stopped cooperating completely thereafter,
we assumed that its performance in its last completed reversal
had already been caused by a cease in motivation as usually
occurring at a late point in octopus’ training. Grouping all

results, the number of errors decreased significantly over reversal
for the individuals of group 1 (F-statistics; Ov1-2 F = 9.77,
df = 16, p < 0.01). The minimum number of errors reached
by Ov1 and Ov2 was 13 errors in R11. Please note that the
results of Ov3 are not included here but in the supplement (see
Supplementary Material) due to a slight deviation in training.

In group 2, trained with the ICS right from the beginning,
Ov4 and Ov7 completed R0 successfully after 10 sessions, Ov5
needed 7 sessions, and Ov6 13 sessions for the completion of
R0 (Figure 3B, Table 1). In this group, the individuals were also
able to finish numerous reversals thereafter: Ov4 completed nine
reversals, Ov5 five reversals, and Ov6 four reversals. Ov7 finished
two reversals, and its training had to be stopped in R3 due to
a cessation of cooperation from the side of the animal. In this
group, the best performance of seven errors per reversal was
shown by Ov4 in R7. In general, the performance of all animals
increased during R1 and, despite some fluctuations, tended to
generally decrease over reversals in the subsequent reversals
(F-statistics; Ov4–Ov7 F = 18.6, df = 18, p < 0.01).

DISCUSSION

In this study, we conducted a spatial serial reversal learning
experiment and could show that individuals of the species O.
vulgaris are able to reverse a simple spatial discrimination task
up to 13 times successfully. Some octopus individuals showed
clear progressive improvement reaching a performance of 20–
30 errors per reversal. The best performance achieved was seven
errors to complete a reversal (Ov4 in R7).

The number of errors reached during a reversal in this
serial reversal learning experiment including a simple spatial
discrimination task was in the same range as for other animals
(see, for example, Doty and Combs, 1969; Mackintosh and Cauty,
1971). At the same time, octopus is outperformed by some
species (see, for example, Doty and Combs, 1969) also including
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FIGURE 3 | Error curves of all individuals trained in the spatial reversal learning

experiment. (A) Results from individuals from group 1 trained with the

incorrect-choice-signal (ICS) at a later stage of training. The data points

indicate the number of errors made until the learning criterion was met during

a reversal including the errors made in the two sessions in which it achieved a

performance at or exceeding 80% correct choices. The number of errors

before ICS signaling was started is written as numbers in the graph allowing

the same scaling of the y-axis of the two graphs and thus a direct and better

comparison of the performance of groups 1 and 2. The data of Ov1 are

marked with filled diamonds and that of Ov2 with filled squares. (B) Results

from individuals of group 2 trained with the ICS from the beginning of the

experiment. The data of Ov4 are marked with filled diamonds, that of Ov5 with

open squares, that of Ov6 with open triangles, and that of Ov7 with filled

circles. Irrespective of the group, all animals learned the original task and

reversed multiple times completing 2–13 reversals, and their performance

showed a general trend to improve over time.

invertebrates such as the American cockroach (Balderrama,
1980); the cockroaches reached one-trial learning in a reversal
learning study including an olfactory discrimination. Among
those invertebrates, S. officinalis, another cephalopod species,
also reduced its errors to one or two errors (Karson et al., 2003),
thus to less errors than the octopus of this study. However,
these interspecific comparisons have to be made with caution,
as methodological differences between studies may strongly
influence these results. The cuttlefish, for example, were making
their responses when avoiding an unpleasant experimental
situation; they were fleeing from a chamber in which they could
not settle on the ground (Karson et al., 2003). The differences
in performance might thus reflect differences in experimental

designs as shown in previous studies (for review, Rayburn-Reeves
and Moore, 2018).

The results of this study clearly indicate that learning highly
depends on the experimental conditions, the context of learning.
Initially, the octopus individuals of group 1 did not learn the
spatial discrimination task (Ov1, Ov2) or failed to reverse in R1
(Ov3, see Supplementary Material). The application of the ICS
signaling an incorrect response changed the learning behavior
of octopus systematically; the individuals learned the respective
task with ease. In group 1, all individuals irrespective of the onset
of signaling with the ICS learned the original task within seven
sessions at maximum after the introduction of the ICS. We think
that the animals learned the task because the ICS signaled an
incorrect response clearly and not as a result of the intensive
training before. Our conclusion is based on several facts: prior
to signaling with the ICS, (1) no learning was observed, except
for one individual, (2) the animals showed a clear drop of
motivation and already started to cease or ceased cooperation,
and (3) usually, octopus is learning within a couple of sessions,
if they learn at all (Messenger et al., 1973). The last aspect
is supported by the learning performance of the individuals
of group 2; it took all four individuals trained with the ICS
right from the beginning only 13 sessions at maximum to solve
the original task, and the high variability documented in other
studies (see, for example, Bublitz et al., 2017) was not as apparent.
Moreover, we have clear evidence from the octopus behavior
that they have actually perceived the signal because, upon the
introduction of the ICS, they initially/sometimes changed their
body pattern to the broadmottle display (Figure 1C; Packard and
Sanders, 1971). In conclusion, we think that octopus learning is
positively affected by an ICS, an aspect that, however, needs to be
investigated in detail.

This conclusion, that learning is positively affected by the
ICS, is supported by previous octopus discrimination or learning
studies in which very strong feedback for incorrect responses
was provided (see, for example, Young, 1961, 1962b; Mackintosh
and Mackintosh, 1963). In these experiments, octopus also
performed well. The positive effect on learning might occur
because an ICS directly indicates an incorrect response. In
contrast, using positive reinforcement alone, the incorrectness of
a response is only indirectly signaled by the absence of positive
feedback or by the absence of food. However, some animals
might need an unambiguous feedback even after responding
incorrectly (see, for example, honey bees in Avarguès-Weber
et al., 2010). If we can generalize the effect of an ICS over
experiments, it is still unresolved why octopus training profits
from an ICS or, regarding the study at hand, why positive
reinforcement alone did not allow most octopus individuals
to learn the task. From an ecological perspective, food might
not be the sole or even the main driver of octopus behavior,
as prey is probably not a limiting factor for a generalist
under water (Mather, 1991a; Mather et al., 2012). Octopus
might initiate behavioral changes when an external event clearly
indicates the inappropriateness of its behavior just shown. Thus,
a combination of positive reinforcement and signaling with an
ICS might cause learning, as it mimics the natural situation
of octopus.
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TABLE 1 | Overview of the performance of the experimental animals during the various phases of the reversal learning experiment depicted as number of errors per

reversal.

R0 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13

Ov1 272b 28a 113 109 99 107 101 45 43 35 25 15 13 27 35

40 5 13 13 11 13 11 5 7 5 4 3 3 5 6

Ov2 346b 47a 47 31 39 35 62

40 4 6 6 5 6 10

Ov3 See Supplementary Material

Ov4 64 94 64 57 80 30 12 7 21 21

10 13 11 9 15 7 3 2 3 3

Ov5 37 60 29 29 39 33

7 8 5 5 5 6

Ov6 76 122 44 77 42

13 16 8 11 6

Ov7 76 91 46

10 10 7

The number of 20 trials-sessions are indicated below the number of errors for each octopus. For the octopus individuals of group 1 (Ov1–Ov2; results of Ov3 are not displayed here

but can be found in the supplements due to a slight difference in training) experiencing the incorrect-choice signal (ICS) marking an incorrect response at a later stage of training, the

number of trials conducted before (b) and after the introduction of the ICS signaling an incorrect response (a) are indicated separately for the phase in which the introduction of the ICS

took place.

In contrast to previous discrimination or learning studies in
octopus, we can show with our training results, that a neutral
signal, a black rod, can easily be associated with incorrect
responses causing no harm. Even to the contrary, the animals
simply detached from the TTs and moved toward the station
allowing the next trial to start. It is conceivable for future
experiments to use an alternative ICS, such as a looming stimulus
on a monitor as described in Pignatelli et al. (2011); however
the looming stimulus should be reduced in strength to avoid
the strong avoidance responses shown by the cephalopods.
Preliminary results from our training indicate that this signal
could be equally effective (unpublished results). A visual signal
on a monitor would allow standardizing the signal and might be
easier to apply depending on the experimental task or setup.

One of our motivations for this study was to contrast the
reversal performance of octopus in a visual (Bublitz et al.,
2017) versus a spatial discrimination task. Comparing the
performance during R0 during visual reversal learning with
the performance of group 1 prior to the introduction of the
new experimental tool, the ICS, it is directly evident that the
visual discrimination was acquired much faster than the spatial
discrimination. It took octopus individuals 60–459 trials to
learn a visual discrimination (Bublitz et al., 2017) or even
less in Mackintosh and Mackintosh (1964). However, only one
individual, Ov3, was able to reach the learning criterion within
this range of trials, after 100 trials, when trained for a spatial
discrimination most likely due to its previous experience (see
Experimental subjects and Supplementary Material). The other
two individuals of group 1 did not even learn the spatial
discrimination task within 800 trials. Moreover, compared to
the acquisition rates of most octopus in visual experiments,
the acquisition rate of the octopus from group 2, which were,
however, trained with the ICS, was slower than in the visual
experiments. In conclusion, a spatial discrimination task does

not seem to be easier to solve for an octopus than a visual
task. This finding is contrary to our expectation that was based
on theoretical and empirical considerations (see Introduction),
suggesting that octopuses have good spatial skills leading to
good spatial discrimination abilities. Good and maybe even
better visual abilities, on the other hand, fit to the well-
developed visual system and the high neuronal investment for
the processing of visual stimuli in the large optic lobes of
octopus (Young, 1962a; Maddock and Young, 1987; Budelmann,
1994).

Ultimately, spatial serial reversal learning could not be tested
with positive reinforcement alone rendering a comparison of
reversal performance with spatial versus visual cues difficult.
To allow direct comparison, future work should revisit
visual reversal learning with a methodology including positive
reinforcement and ICS signaling. However, despite differences
in experimental design, we can conclude that with both
types of tasks, most octopus can learn to reverse multiple
times in succession. Octopus can increase its performance
over reversals; however, the minimum number of errors per
reversal varies across studies (compare with, for example,
Bublitz 2017; Mackintosh and Mackintosh, 1964). As octopus
is responding flexibly to spatial as well as nonspatial cues,
such as visual cues, the selection might have favored behavioral
flexibility in octopus, in general, a thought raised by Day
et al. (1999). This finding is also in line with the hypothesis
that learning and flexibility in handling of previously learned
aspects are crucial from the point of view of octopus biology.
Factors that possibly require well-developed learning abilities
in general and reversal learning abilities in particular are
(1) the short lifespan of octopus during which long learning
phases can be fatal, thus learning from experience is vital;
(2) its active foraging mode during which the animals most
likely have to make decisions to familiar and novel stimuli
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in the same or a new context quickly; (3) competition for
niches with other animals; or (4) predator pressure, which
is particularly high in a soft-bodied animal (for a detailed
discussion, see Bublitz et al., 2017). Flexibility in behavior has
previously been shown regarding the presence of predators
(Meisel et al., 2013) or the construction of dens (Mather
and Dickel, 2017); thus, from an ecological perspective,
flexible responding to familiar conditions, as tested during
reversal learning, might be essential and indeed occurring in
octopus. An interesting avenue for future research could be
to test how vision supports spatial orientation allowing the
animal to construct a visuospatial map of its home range
(Mather, 1991a).

Overall, its cognitive abilities allow the octopus to not only
solve a discrimination problem but also to reverse previously
learned responses. Thus, octopus can learn more than during
discrimination learning, meaning more than the association
between a stimulus and its associated response.
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Drosophila Experiments
Frank Loesche † and Michael B. Reiser*†

Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United States

To pursue a more mechanistic understanding of the neural control of behavior, many

neuroethologists study animal behavior in controlled laboratory environments. One

popular approach is to measure the movements of restrained animals while presenting

controlled sensory stimulation. This approach is especially powerful when applied to

genetic model organisms, such as Drosophila melanogaster, where modern genetic

tools enable unprecedented access to the nervous system for activity monitoring or

targeted manipulation. While there is a long history of measuring the behavior of

body- and head-fixed insects walking on an air-supported ball, the methods typically

require complex setups with many custom components. Here we present a compact,

simplified setup for these experiments that achieves high-performance at low cost.

The simplified setup integrates existing hardware and software solutions with new

component designs. We replaced expensive optomechanical and custom machined

components with off-the-shelf and 3D-printed parts, and built the system around a

low-cost camera that achieves 180Hz imaging and an inexpensive tablet computer

to present view-angle-corrected stimuli updated through a local network. We quantify

the performance of the integrated system and characterize the visually guided behavior

of flies in response to a range of visual stimuli. In this paper, we thoroughly document

the improved system; the accompanying repository incorporates CAD files, parts lists,

source code, and detailed instructions. We detail a complete ∼$300 system, including a

cold-anesthesia tethering stage, that is ideal for hands-on teaching laboratories. This

represents a nearly 50-fold cost reduction as compared to a typical system used in

research laboratories, yet is fully featured and yields excellent performance. We report

the current state of this system, which started with a 1-day teaching lab for which we built

seven parallel setups and continues toward a setup in our lab for larger-scale analysis of

visual-motor behavior in flies. Because of the simplicity, compactness, and low cost of

this system, we believe that high-performance measurements of tethered insect behavior

should now be widely accessible and suitable for integration into many systems. This

access enables broad opportunities for comparative work across labs, species, and

behavioral paradigms.

Keywords: Drosophila melanogaster, optomotor response, tethered fly, walking behavior, sensorimotor behavior,

open-source, open-hardware
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1. INTRODUCTION

The fly Drosophila melanogaster is a powerful model system
for research in nearly all areas of organismal biology, and has
been especially central to major discoveries in the development
and function of the nervous system (Bellen et al., 2010).
Drosophila have long been champion species for a wide range
of behavioral experiments that are ideally suited to a controlled
lab setting (Götz, 1964; Benzer, 1967; Heisenberg and Buchner,
1977). The low cost, small size, wide availability, and ease of
breeding have made flies ideal for educational and outreach
settings, especially as the first or only hand-on introduction

to genetics for many students (Harbottle et al., 2016). One
important benefit of popularizing Drosophila methods for
educational settings is that cutting-edge research can become
directly relevant to the experience of the students. However,
it is challenging to bring modern methods in animal behavior

to teaching laboratories, since most setups developed for this
purpose are built from custom components that are often quite
expensive or difficult to obtain. Whereas, just a few years ago,
specialized components required custom machining or complex
procurement, the surge of “desktop manufacturing” and tools
like 3D printers and laser cutters, now enables quick prototyping
for low-cost fabrication. These tools support increasing interest

in citizen science and STEAM education, making it practical
for makers, especially those at research institutions, to assemble
even complex laboratory setups. Here we describe our efforts
to optimize the accessibility and cost of a complete system
for preparing and experimenting on flies using the preferred
method in our laboratory—precise behavioral measurements for
single, body-fixed (tethered) flies presented with controlled visual
stimuli (Reiser and Dickinson, 2008; Dombeck and Reiser, 2012).

Why would anyone want to build this accessible setup for
measuring visually guided fly walking behavior? We think there
are at least three very good reasons. First, these experiments have
been central to many recent discoveries. For example, the critical
role of T4 and T5 neurons as the primary source of direction
selective motion vision (Bahl et al., 2013; Strother et al., 2017),
and the discovery of a compass network that tracks heading in
the ellipsoid body (Seelig et al., 2010), were both discovered with
fly-on-ball setups. Second, the typically used setups for carrying
out these experiments are quite specialized, and therefore our
updated approach may be the first to bring this complicated
setup within reach for many labs. And finally, the rewards of
establishing such a setup are large and immediate, since this
setup produces reliable measurements of robust behaviors–many
of which can even be observed by eye. Consequently, fly-on-
ball setups enable efficient, quantitative experiments that are
ideal for exploring new stimulus regimes or replicating prior
results. We believe these experiments are also ideal for teaching
students about neurobiology, for an introduction into laboratory
instrumentation, and for a hands-on exposure to quantitative
animal behavior and the related opportunities for stimulus
designs and data analysis. We hope that the accessibility and
low cost of this system makes it suitable for a wide variety of
research laboratories, summer courses, undergraduate, and even
high-school teaching labs.

In what follows we describe the motivation and goals of the
project, then detail all the components of the system, characterize
the performance of the integrated setup, demonstrate its
performance inmeasuring rather sophisticated aspects of visually
guided behavior in flies, and finally estimate the cost of our
systems. While we favor a modular, adaptable approach to
instrumentation, we have endeavored to simplify the described
system, so we mainly detail one specific setup, but throughout
we describe some alternative solutions that we considered. The
manuscript describes the system that we have built and used
for data collection between November 2020–May 2021. We
thoroughly documented the system at https://reiserlab.github.io/
Component-Designs/ and will post updates on the repository
while we continue making improvements to this setup.

1.1. Motivation and Approach
The continual improvement of many commercial technologies
comes as a direct result of massive, iterative efforts, by thousands
of engineers, optimizing all aspects of the design of these
products (consider that smart phones are not quite 15 years
old). By comparison, even the most mature instruments used
for collecting laboratory data are essentially bespoke prototypes
benefiting from very few “generations” of development. For
that reason, many scientists prioritize designing their setups
to combine high flexibility with precise control, which often
requires using fairly expensive components capable of precision
that far exceeds the requirements (often overestimated since
never precisely specified) of any individual experiment. For
the fly behavioral setup we have sought to optimize, we now
benefit from several decades of methods development by many
laboratories, which means we understand the requirements
of this system rather well. Consequently, by eliminating
unnecessary precision and flexibility, and taking advantage of
desktop manufacturing tools, we could greatly simplify these
setups and can now replicate them at much lower cost.

The development of our inexpensive treadmill was initially
inspired by an invitation to run a hands-on trainingmodule at the
Drosophila Neurobiology: Genes, Circuits & Behavior course at
the Cold Spring Harbor Laboratory during the summer of 2019.
We wanted to give each participant the hands-on experiences of
anesthetizing and tethering flies and then positioning them on
a treadmill to observe walking behavior, but this required many,
independent setups. Therefore, when we started replicating the
typical walking fly-on-ball setup we favor in our lab (Seelig et al.,
2010; Strother et al., 2017), we focused on replacing the most
expensive components, one-for-one, with less costly commercial
parts and some 3D-printed components. At the time of the course
we had converted a setup that would cost > $16,000 to replicate,
to one that we built for < $500. The course was a success—we
assembled seven setups and provided rigs to small groups of
student who all learned to tether flies and to position them on
the treadmill. This success lead us ask whether this setup was
only suitable for demonstrations or could it fully replace our
typical setup? In the past year we have continued to simplify
and optimize the setup, achieving our goal of reproducing a
“gold-standard” data set, the “optomotor” response of walking
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flies (Götz and Wenking, 1973; Buchner, 1976), with its well-
studied dependence on the spatial and temporal properties of
the visual pattern. Due to the COVID-19 pandemic we could
not return to the course during the summers of 2020 or 2021,
but have continued to refine the setup, so that we can now
describe a complete, full-featured, low-cost implementation of
both a fly preparation setup and the experimental setup.We share
all component designs at https://reiserlab.github.io/Component-
Designs/, a repository we plan to update continuously.

2. MATERIALS AND METHODS

2.1. System Overview
We detail the major components of our system for preparing
(tethering) and measuring the walking behavior of flies. In
Figures 1A,B, we show the components of the experimental
setup. In this apparatus, a single fly is tethered to a rod that is
mounted on a manipulator allowing for precise positioning of
the animal along the three translational axes (all components
color-coded; manipulator in blue, Figure 1A). The fly is
positioned on top of an air-supported sphere, which serves as
an omnidirectional treadmill (sphere holder in green). A heat-
pad below the ball holder regulates the temperature near the
fly (in purple); a thermistor attached to the holder provides
the measurements for closed-loop control. Visual stimuli are
displayed on a tablet computer (in gray) and the camera (in red)
captures rotations of the ball in response to fly walking. Three
LED fixtures (in yellow) illuminate the ball. Figure 1C shows
signal flow for the system, including a computer that runs the
software for ball tracking (FicTrac, Moore et al., 2014) as well
as FlyFlix, the software we developed to generate stimuli and
log responses.

Experiment on body-fixed animals have many advantages,
including precise control of their sensory experience while
simultaneously measuring motor output, but can be complex
to implement, and often raise questions about whether the
behavior is “naturalistic” (Dombeck and Reiser, 2012). Within
insect behavior, there is a long history of body-fixed experiments,
together with many thoughtful comparisons to the behaviors
of freely moving animals. Here we describe our simplified
implementation of our preferred method (Figure 2) for gluing
flies to a thin rod, a process referred to as tethering. This
process can be straightforward, but requires a specialized setup
that is not widely available or particularly well-described in the
literature. The goal is to mount the flies as quickly as possible
and with minimal glue on a small portion of the thorax, such
that this process has a minimal effect on their behavioral vigor.
A good tethering strategy must enable the precision required
for positioning at the small scale of the fly body, as well as the
mechanical robustness required to be manipulated by human
hands. Essentially, a small fly needs to be carefully glued to
an object that people can routinely move from one device to
another. It is nearly impossible to tether a moving fly, and so
flies must first be immobilized. While there are multiple ways
to anesthetize flies, and CO2 is commonly used, this gas affects
behavior for many hours (Bartholomew et al., 2015). Instead, we
favor chilling flies, which causes insects to enter a chill coma

because of a transient failure of neuromuscular function, from
which they rapidly recover (Findsen et al., 2014). When chilled
to temperatures close to (but usually 2–4◦C above) freezing,
flies rapidly immobilize, but then rapidly recover upon warming
(Gibert and Huey, 2001; Gibert et al., 2001). We describe the
construction of the tethering station in section 2.2 and the
experimental setup in section 2.3. In section 2.4, we detail how
we used these components to run experiments.

2.2. Tethering Station
For maximal user convenience, we recommend physically
separating the tethering station from the experimental setup (as
in Figure 2A) and positioning it under a dissecting microscope.
However, users may wish to use a single micromanipulator
for both the tethering station and experimental setup (see
Supplementary Figure S3D), a slightly less convenient
configuration, but one that saves space and further reduces
the cost.

2.2.1. Magnification
In our experience, every student can learn to prepare well-
glued flies for behavioral experiments with only a few sessions
of practice. However, better results require learning to position
flies so they are glued with approximate symmetry—in the center
of the anterior notum and with minimal body rotation about
the roll and yaw axes, and with the tether glued at 90◦ to the
body long axis. This precision requires magnification. In our
current setup, we position the tethering stage below a salvaged
stereo microscope (Zeiss STEMI SV8). For confirmation we have
tethered flies with alternative magnification methods such as a
low-cost “toy” USB microscope and a magnifying glass typically
used for soldering electronics, however neither is as practical as a
stereo microscope. In particular, we find that the instantaneous
feedback of an all-optical system is ideal for mastering the
hand-eye coordination required, while the delays in the low-
cost digital microscope were quite challenging to work with. We
recommend a stereo microscope with a magnification of at least
10× (although 30× is even better) and a clearance of at least
170mm to support the height of the tethering station.

2.2.2. Tether
The tether provides the critical interface between the humans-
scale and the fly-scale. We base the tethers in our laboratory on
the original three-part design of Michael Dickinson (Lehmann
and Dickinson, 1997). These parts are a metal connector, a
∼0.1mm diameter tungsten rod (that gets glued to the fly), and
hypodermic tubing to connect the two parts. The rod and tubing
are typically sold in longer units and need to be cut to length
before the assembly of the three parts. A special setup is required
to assemble these components reliably. Also, the tethers can be
easily bent and require regular repairs and replacement. Because
of the laborious assembly and other limitations of this design,
we tested many alternative options better suited to the needs of
a teaching course.

In our walking setup, we obtained excellent results using
unmodified blunt-tip dispensing needles. Dispensing needles
with Luer adapters are widely available, manufactured to tight
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FIGURE 1 | Inexpensive treadmill setup for walking fly experiments. The rendering in (A) highlights the major components. A fly is tethered to the thin syringe tip

(light-green cone) and positioned and held in place with the micromanipulator (in blue) facing the tablet (gray) while walking on the treadmill sphere (in white). The

treadmill holder (in green) floats the sphere on a steady stream of air supplied by the tubing (light blue). The camera (in red) is used to track the sphere rotations, while

adjustable lights (in yellow) illuminate the sphere. The temperature near the fly is controlled from below by the heat-pad (in purple). All components are mounted on a

breadboard laser-cut from an acrylic plate. (B) A photograph of the setup in the lab. (C) The flow of information between the major functional modules. For

closed-loop experiments, ball rotations from FicTrac are routed to FlyFlix for on-line stimulus updates.

tolerances, inexpensive, and easy to handle. We selected 34 ga
needles, featuring a stainless steel tube with an outer diameter of
0.25mm and about 12.5mm (0.5 in) in length (for a comparison
between this dispensing needle and the traditional tether design,
see Supplementary Figure S5H). This is the finest needle size
that is readily available from many vendors (e.g., AG-ABSS-
99D0, Bstean, China). Due to this fine size, these dispensing
needles are also suited for tethered flight experiments, but can
be easily bent and require careful handling. From observations of
students we estimate that up to 3 tethers might need replacement
during a week of experiments, even though we only had to

replace one during data collection for this study. We use the
inner sloped cone of the Luer lock to friction mount the tethers
to our setup, and have designed mount points on the arms of
the Micromanipulator in the preparatory and experimental setup
(Figure 2B). It is convenient to tether several flies one after
the other and hold them until the start of the experiment (see
Supplementary Figure S5I), for example on a strip of upward
facing M4 or 8-32 screws glued to a surface. We note that the
Luer adapter is keyed with a pair of plastic tabs that can be used
for alignment. We only use these as a visual aid, but this feature
could facilitate more automated alignment in future setups.
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FIGURE 2 | Chilled tethering station for preparing flies. (A) Photograph highlighting the major components of the tethering station: micromanipulator (in black),

sarcophagus (in red), Peltier-based chiller with heat-sink (silver and black), and a transparent laser-cut fixture with a hand rest. This setup is typically positioned under a

dissecting microscope, and a thermistor is used to measure the top surface of the chiller for closed-loop temperature control. (B) A compact, 3-axis micromanipulator

fabricated from 3D-printed parts and simple hardware components. Two different arms are shown, one for the tethering station and the other for the experimental rig.

Each axis consists of a rotating handle and screw (in yellow), a locking nut (in red) that fixes the location of the screw relative to the outer rail, and nuts within each

carriage (in green), that transfer the linear motion. The device is held together and mounted using additional screws (in purple). (C) A rendering of the sorting and

mounting plate, containing a series of indentation, each referred to as a sarcophagus, of different dimensions for different animal sizes. Cold-immobilized flies are

sorted on the top section of the plate, and single flies are positioned in one of the cavities for gluing to the tether. (D) A photograph of the plate mounted on top of the

chiller with a temperature sensor (yellow tape) and a fly glued to the tether (a dispensing needle). (E) The fly picker used to move anesthetized flies. The picker uses

suction controlled by the operator’s finger to pick up and deposit single flies.

2.2.3. Glue and Curing
To fix the tether to the fly thorax, we use resins that polymerize
upon intense illumination, conveniently converting from liquid
to solid within seconds. The standard glue used in our lab is
KOA 300 (Kemxert, Poly-Lite, York, PA, USA), that requires UV
(320–380 nm) light to cure. We typically use a commercial spot-
curing lamp, such as the SpotCure-B (Kinetic Instruments Inc.,

Bethel, CT, USA), as they supply high intensity illumination (that
cures the resin within seconds) and feature a convenient, audible
timer that allows us to achieve consistent curing. Throughout
the development of our setup, we tested different glue products
and have confirmed that Bondic UV liquid plastic (Bondic USA,
Niagara Falls, NY, USA) and Solarez Fly Tie UV Cure (Solarez
Wahoo International, Vista, CA, USA), which are both widely
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available, work well as the tethering glue. We have a slight
preference for the viscosity of the KOA 300 glue. Bondic and
the Solarez thick formula appeared to be more viscous, while the
Solarez flex formula (green package) is quite similar to KOA 300.
A single tube of glue typically lasts over a year and the cost
differences between these options are not significant. We used
KOA 300 in our experiments.

For teaching lab applications, we have used inexpensive UV-
LED mini flashlights (basically a CR2032 battery with a single
UV-LED) to cure KOA 300. Bondic and Solarez are available
in packages with battery-operated curing lights that work well
for our application. In the near future, we plan to integrate
automatically timed UV curing lights into the tethering setup.

2.2.4. Cooling
When cooled below 4◦C Drosophila are rapidly and reversibly
immobilized (Gibert et al., 2001), which makes it convenient
to align and tether the flies, and to perform further surgeries
and treatments, if so desired. While flies can be chilled on
a metal stage mounted on ice (or a frozen gel ice pack), a
temperature-controlled thermoelectric cooler provides a more
compact and precise solution. Using the Peltier effect, a powered
thermoelectric cooler moves heat from one side of the device to
the other. To cool one side continually below room temperature,
heat must be effectively carried away from the hot side. In our
lab, we use a recirculating water chiller to pump water through
a liquid-cooled Peltier assembly. This is quite reliable, but is
expensive, cumbersome due to the substantial tubing required,
and is occasionally very messy.

For our optimized setup we use an integrated, low-
cost Peltier assembly, labeled “Chiller” in Figure 2A, that is
a 40× 40mm2 thermoelectric module mounted between a
40× 60mm2 aluminum plate and a 90× 90mm2 aluminum
heat-sink with a fan for cooling (Adafruit Industries, New
York, NY, USA). When powered with a 12V 5A supply, the
top aluminum plate reaches temperatures below 0◦C while
operating under typical ambient room temperatures, confirming
that the device can adequately cool flies. In order to provide a
consistent temperature above freezing, we implemented closed-
loop temperature control using a W1209 module (multiple
vendors, e.g., MOD-78, ProtoSupplies, Lake Stevens, WA, USA)
that can regulate an electric load up to 10A based on input
from a 10 k� NTC thermistor attached to the top side of the
chiller’s aluminum plate (see Figure 2D). We mount the chiller
at 20◦ toward the experimenter, shown in Figure 2A. This angle
provides good airflow for cooling the module, while pushing air
away from the experimenter so as not to blow flies off of the
tethering station. By pitching the platform we ensure that flies
will always be visible from above while being inspected, aligned,
and tethered. This means that both the fly and tip of the tether are
seen throughout the process. For the simplest setup, we angled
the chiller by extending two screws at the corners of the fan
attached to the heat-sink (see Supplementary Figures S3A,D).
The integrated setup shown in Figure 2A is assembled from laser-
cut acrylic sheets, and the design also includesmounting holes for
the micromanipulator and a hand rest.

2.2.5. Sarcophagus
To position, hold, and sometimes dissect or manipulate cold-
anaesthetized flies during tethering, we typically use a movable
cylindrical cavity machined from solid brass. This design is
affectionately referred to as a sarcophagus and based on the
original design of Karl Götz (Max Planck Institute for Biological
Cybernetics) from the 1960s. The most important feature of
the cavity is that it should be smooth and slightly larger than
a fly, since sharp edges can easily injure fly legs. Beyond this
detail, many aspects of the elaborate Götz design are not required
for routine tethering of flies for walking experiments. For the
optimized tethering stage, we tested 3D-printed sarcophagus
components produced from different materials, including resin,
ABS, and TPA, and found all of them working similarly well.

We made the example plate in Figures 2A,D from red ABS.
3D printing allowed us to place cavities of different sizes on a
single plate, to accommodate experimenter preference for size
and depth, as well as to support tethering insects of differing
sizes. The inclined sorting area on the top section of the plate
effectively has different temperature zone depending on the depth
of material toward the Peltier element. We sanded the bottom
side of the sarcophagus plate and mounted it to the aluminum
plate of the chiller with thermal adhesive tape. We find that
setting the Chiller to a nominal temperature of −2◦C works
well for our setup but may need adjustment for different setups.
To maximize fly behavioral vigor, it is ideal if flies remain
immobilized while on the plate, at above freezing temperatures
(Gibert and Huey, 2001), but start moving within seconds once
taken off the plate.

2.2.6. Micromanipulator
Tethered fly experiments require precise and stable positioning
at two distinct steps: when gluing the tether to the fly and for
positioning the fly on the sphere. We typically use research-
grade three-axis linear stages with probe-clamps (from either
Thorlabs or Siskiyou) that are primarily used for microscopic
manipulation and are therefore called micromanipulators. These
essential components of a reliable setup, commercially available
for >$500, are too expensive for a teaching course. We found
lower-cost three-axis micromanipulators for <$100 (e.g., LD40-
LM, multiple manufactures available through Aliexpress, China)
that are a suitable replacement for linear stages from lab suppliers
(see Supplementary Figure S4A). However, we were interested
in exploring even less expensive options, and evaluated several
3D-printed alternatives, including the micromanipulator design
from Open Labware (Baden et al., 2015; Chagas et al., 2017).
We find this design to be quite workable, but the footprint
was challenging to incorporate into our setup. Based on these
explorations, we designed our own micromanipulator, optimized
for simplicity and cost, and with a compact footprint.

Our three-axis micromanipulator design (Figure 2B)
assembles from nine 3D-printed parts and standard screws. For
each axis, an outer rail surrounds the carriage on three sides.
Each rail features a screw held in place by a locking nut (red
in Figure 2B). Turning each yellow knob with the attached
red screw moves the corresponding green nut, and with it the
carriage. The arrangement of the three axes allows translational
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movement in any direction by up to 20mm. We printed the
parts from ABS on a F-170 (Stratasys Ltd, Eden Prairie, MN,
USA). This design requires slightly tighter tolerances than can
be relied on from the printer, so we sanded the outer faces of
the carriages with 200 grit sanding paper until they slide into
the rail. The rails did not require post-processing. Even though
this sanding can take up to 30min, we find this advantageous as
it allows us to produce a close fit across material and printers,
and thus high accuracy movement, without adapting the design.
We also recommend applying a plastic lubricant to the rails
(e.g., Dry-Film Lube, WD-40, San Diego, CA, USA) to increase
smoothness of movement. Gluing 3D-printed (or laser cut)
knobs to the screw heads allows comfortable handling of the
micromanipulator. The bottom rail has additional holes for
securely mounting the manipulator to the baseplate. For labs
with access to a 3D printer, our design of the micromanipulator
costs less than $5 in materials (including nuts and screws).
Ordering the parts through 3D printing services increases the
cost to around $15. In addition to printing time, ∼1 h of build
time is required.

We designed two arms for attaching to the z-axis carriage, as
shown in Figure 2B. For tethering flies we use the arm depicted
above the manipulator. It is slightly longer, and holds the tether
(by a friction fit) at 20◦ inclined from vertical, to match the
slope of the heat sink. The arm shown mounted on the carriage
holds the tether at a 10◦ angle in the opposite direction, and is
used for the experimental setup. The orientation and function of
these arms can be simply modified for other specific applications.
While a micromanipulator assembled from 3D-printed parts is a
low-cost functional substitute, it does not replicate all properties
of a commercial linear stage. In particular, the plastic parts are
somewhat compliant and cannot be used with heavy loads.

2.2.7. Fly Picker
Single flies need to be moved and carefully positioned on the
tethering platform. It is possible to do this with forceps, but
we do not recommend picking up flies destined for behavioral
experiments by either their legs or wings. In our laboratory we
use a commercial vacuum pump and wand with a fine tip that
is typically used for handling tiny electronic components during
assembly. With such a device, it is possible to gently lift a fly
before depositing her into the sarcophagus in nearly the ideal
position for tethering. One alternative would be to fit a standard
lab aspirator (or pooter) to use a fine tip. However, we find the
hand-held vacuum approach to be rather convenient and so we
have fashioned a version from standard components (Figure 2E).
We use a plastic transfer pipette with the bulb end cut off and
replaced by a tubing connector (we used Luer locks connectors,
but any tight connection would work). This connection is further
strengthened with heat shrink tubing. We connect the tubing
to our available lab vacuum (other suction pumps or sources of
negative pressure will work, Baden et al., 2015), and control the
suction from the picker with a roller clamp. We cut a hole in
the side of the pipette and glued in another adapter with a flat
surface. When covering this stub with a finger, the suction at
the tip substantially increases. Removing the finger from the stub
releases the fly. Since the opening at the tip of the transfer pipette

is too wide for a Drosophila, we added a one-way tip (F1732011
Pipetman Expert Tips EL10ST, Gilson, Middleton, WI, USA)
as in Supplementary Figure S5F or a piece of thin heat shrink
tubing, as in Supplementary Figure S5G. By bending a paper-
clip to a desired angle and using a heat gun on the shrink tube and
plastic pipette tip, we bent the tip to an angle that allowed more
convenient fly pickup. A pipette tip with an inner diameter of
0.25mm and an outer diameter of 0.65mm allows for convenient
manipulation of flies. Fly bodies are surprisingly robust, but we
nevertheless recommend adjusting the pressure (via the clamp)
to just above the threshold for reliably lifting flies.

2.3. Experimental Setup
The major components already introduced for the walking
fly-on-ball setup shown in Figure 1, are described in more
detail below.

2.3.1. Baseplate
Many lab setups are built on solid aluminium breadboards
with threaded mounting holes from specialized lab equipment
manufacturers. They are very stable and can be flexibly used
for many purposes. In place of these boards, we use a
300× 300× 10mm3 acrylic board into which we cut 144 holes of
6.35mm diameter in a 12× 12 grid with 2.54mm (1 in) spacing
using a laser cutter. To further simplify the design, we opted
not to tap threads into the holes. We position several of our
components, such as the LED lamps, with a friction fit. Other
parts are stably mounted with screws and nuts. We use adhesive
rubber feet at the corners to lift the baseplate and add some
vibration damping. This baseplate could be further simplified to
the minimal size and number of mounting holes required to fit
the components in the setup, but the additional holes allow for
future extensions to the apparatus. This simple design is both
light and stable, ideal for carrying to teaching labs and outreach
events. In the accompanying repository we provide files for laser
cutter, CNC-machines, or as a blueprint for hand-drilling.

2.3.2. Micromanipulator
To walk with a typical gait, the fly needs to be positioned
∼0.4mm from the surface of the sphere, and aligned to the
center of the ball (see Supplementary Figure S5J). We use a
second, identical micromanipulator, of our own design, described
in section 2.2.6, with the arm that positions a fly so they are
walking at 10◦, or slightly “uphill”—based on the observation that
this incline appears to improve walking performance (personal
communication, Shiuan-TzeWu). The tether is friction mounted
onto the arm and can be gently rotated to align the long axis of
the fly toward the screen.

2.3.3. Treadmill
The omnidirectional treadmill consists of a stem that holds an
air-supported sphere. Our simplified, 3D-printed design for the
sphere holder is a direct adaptation of an earlier design, which
was custom-machined out of aluminum (Seelig et al., 2010). The
original design made use of a straight inner shaft for airflow to
simplify themachining process, but this limitation does not apply
to 3D-printing. We implemented a more compact design where
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air enters via tubing with a 90◦ angle to the sphere-supporting
air column, as shown in Figures 1A,B. In addition, we provide
CAD files for alternative designs and also for different ball
sizes in the accompanying repository at https://reiserlab.github.
io/Component-Designs/. While, some 3D-printing methods will
produce a solid, airtight part, most printers that build up parts by
fusing filament in layers may result in parts that are not airtight
and will allow air to escape. Rather than require specific printing
methods, we achieve a quite satisfactory performance with simple
post-processing. Applying acetone to the surface of parts printed
from ABS seals these holes. We find that sealing only the outer
surface works well, while applying solvents to the thin inner
tubing could cause clogging of the air stream and might require
iterations of drilling out and applying solvents again.

The flow-rate of the air needs to be controlled: if too low, the
ball won’t reliably float, and if too high, the ball will be much
less stable (or fly off). In a previous fly-on-ball setup pressurized
air regulated by a commercial mass flow controller feeds the
airflow (Seelig et al., 2010). We find no loss of performance
when using an inexpensive flowmeter instead, so long as it allows
fine control over the appropriate range of airflow; for example,
VFA-22 (Dwyer, Michigan City, IN, USA) with a maximum of
1 Lmin-1 works well. An inexpensive roller-type tube clamp can
also work well. In practice, we adjust the flow rate by visually
inspecting a walking fly on the ball. In place of a pressurized
air supply, we have tested an aquarium-style air pump with a
maximum flow rate of 1.8 Lmin-1. We find that inexpensive
pumps induce some vibrations in the ball and are continuing to
investigate the ideal substitute for wall-supplied pressurized air.

2.3.4. Spheres
The sphere of the treadmill is the only moving part during the
walking experiment and is critical for good measurements of
behavior. The sphere needs to be nearly perfect in shape with a
surface not too smooth, light enough to float on the air stream
and be spun by the fly, but not so light that flies can pick it up, and
with low rotational inertia to enable mostly unrestricted walking
by flies. We have tested many alternatives, but our preferred
standard sphere is still based on the method of Seelig et al. (2010),
where the spheres are cut from foamwith either a file or by a CNC
machine (project further documented at https://wiki.janelia.org/
wiki/display/flyfizz). We find that flies walk best on a sphere
cut from Last-A-Foam FR-7120 (General Plastics Manufacturing
Company, Tacoma, WA, USA) to a diameter of 9mm (density
of 320 kgm-3, sphere weighs approx. 0.12 g). For optical tracking
(under near-infrared, NIR, illumination) of sphere rotations with
FicTrac (Moore et al., 2014), we paint this NIR-reflective foam
with BLK3.0 paint (Stuart Semple studio, Dorset, UK), which we
find to be less NIR-reflective than a black permanent marker,
and thus produces high contrast features. We continue to test
alternative sphere materials that will be more readily available
than a hand-filed foam ball. The results will be documented in
the accompanying project repository.

2.3.5. Sphere Tracking Camera
In tethered walking experiments the flies are fixed in space,
however their intended locomotion, as if walking on an infinite

virtual plane, can be estimated from the rotation of the
sphere they are turning. Several methods have been developed
for measuring relative rotations of the ball, for example
through optical mice sensors or via optical flow calculated with
camera-based systems (Lott et al., 2007; Seelig et al., 2010;
Vishniakou et al., 2019). Under ideal circumstances, these relative
measurements can be calibrated for excellent accuracy, but these
systems can be quite sensitive to the uniformity of the lighting
and focus of the sensors, etc. By estimating the absolute position
of the sphere in every frame, the tracking software FicTrac
(Moore et al., 2014) is an exciting alternative approach that offers
several advantages.

Fictrac maps individual camera frames of a patterned ball
to a previously constructed template of the sphere’s pattern to
estimate the instantaneous rotation of the sphere. From the
frame-by-frame estimates of the sphere’s orientation, FicTrac
reconstructs the animal’s virtual trajectory. The software works
best with sharp edges and high contrast, so Moore et al. (2014)
suggest to avoid motion blur by imaging with high frame rates
and short exposures. FicTrac supports industrial cameras from
Flir and Basler, as well as images through OpenCV, a library for
real-time machine vision with extensive support for a variety of
image sources.

As FicTrac operates on high-contrast, grayscale images,
downsampled to a resolution of 60× 60 px, we realize that
the ideal low-cost camera should support high frame rates at
low-resolution—a combination of requirements that are nearly
the opposite of most inexpensive camera sensors. We found
that the PlayStation Eye camera (Sony Entertainment Corp.),
developed as an input controller for action games, is an
excellent solution. Using open-source drivers for the low-latency
integrated video processor, we obtain access to a stable video
stream of 187 fps at a resolution of 320 × 240 px. The camera’s
sensor OV7720 (OmniVision Technologies) was developed for
low-light operations, and we found the sensor is sensitive to
NIR illumination once we removed the filter attached to the
lens housing. To effectively use this camera, we modified the
body for easier mounting and to accept S-mount lenses, as
shown in Supplementary Figures S1, S2. This modification takes
between 30 and 60min. For reliable imaging of the sphere at
a working distance of 10.5 cm we mount a macro lens with
25mm focal length and a fixed aperture (see Figure 1B and
Supplementary Figures S1, S2).

The PS Eye camera is our preferred high-performance and
low-cost solution. Since it is mass-produced as a toy, the camera
is available from different vendors and secondary markets for
around $5 to $20. The modularity of our setup and FicTrac’s
support for many cameras through OpenCV enables other
cameras with similar properties to work. To ensure that our
system works reliably on readily available PCs, we ran all tests
and collected all data on an older model, multi-core x86-64
system with a maximum frequency of 3GHz and a hard disk
drive running Lubuntu 20.4 LTS. This PC was powerful enough
to run two FicTrac instances as well as FlyFlix, the software we
developed for stimulus presentation, experiment control, and
data logging in parallel. We expect that most PCs will be able to
run these experiments.
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2.3.6. Lighting
An important consideration for measuring visually guided
behaviors is to use illumination that minimally interferes with
the animal’s vision. The most practical solution is to use
NIR illumination since fly vision is insensitive to these longer
wavelengths (Sharkey et al., 2020), but most camera sensors
measure it well. As we operate our camera at high frame rates
and with a fixed aperture lens, intense illumination is essential for
reliable sphere tracking, yet the light cannot be so intense that it
saturates regions of the image (due to the limited dynamic range
of any camera).

To achieve strong, but diffuse, NIR illumination, we use
three generic 840 nm LEDs placed between the camera and the
treadmill, pointing toward the sphere. We designed compact
3D-printed housings that allow flexible positioning of the light
sources at the top of posts that are friction fit into the holes on
the baseboard, as shown in Figures 1A,B. We used pieces of a
plastic bag as a diffuser in front of each lamp, attached with heat
shrink tubing. For our setup, we used a 5V power supply together
with a 470� current-limiting resistor. With these lamps in place
we adjust the lights until we obtain images of the sphere that are
bright, yet evenly lit. In our standard setup (our display set to 24%
brightness), we do not need to place a visible light blocking filter
on the camera, although this could improve robust ball tracking
with other displays.

2.3.7. Heat-Pad for Temperature Control
We typically run experiments in rooms that are climate-
controlled for the comfort of humans, yet these conditions are
often not ideal for flies. Walking experiments can often be
conveniently made more efficient by running them at increased
temperature, since flies walk more often and faster at elevated
temperatures (Soto-Padilla et al., 2018) and also for using
temperature-dependent genetic reagents such as Shits1 or TrpA1
(Owald et al., 2015). In our experience, flies walking at warm
temperatures, below 35◦C, which is considered noxious (Huey
et al., 1992), engage in the same walking behaviors that flies do at
room temperatures, but do so with much greater consistency, as
they are less likely to pause and groom. To inexpensively support
warming the fly, we installed a resistive heat-pad underneath
the sphere holder, controlled by a second W1209 temperature
controller (also see section 2.2.4). We attached a thermistor to
the sphere holder as close to the animal as possible. The actual
temperature at the animal position might be slightly different
(most likely lower and should be verified if critical), and we
consequently refer to theW1209 setting as the target temperature.
For the experiments detailed below, we use a target temperature
of 32◦C. Users of this setup could readily modify this temperature
setpoint depending on their experimental requirements, or may
wish to omit this temperature control subsystem.

2.3.8. Display
A surprisingly wide range of visual stimulus delivery strategies
have been used for insect behavioral neuroscience: from motor
operated moving objects like patterned drums, to projectors
and computer monitors, to custom-made LED displays (Palermo
and Theobald, 2019; Kaushik et al., 2020; Kócsi et al.,

2020). In our lab, we typically use custom-made, modular
LED displays configured as cylinders around the animals,
to deliver stimuli with excellent temporal precision (Reiser
and Dickinson, 2008 and future developments documented at
https:/reiserlab.github.io/Modular-LED-Display/). We have not
yet succeeded at producing an inexpensive, widely available
display using LEDs, and so we explored other options.

For the inexpensive treadmill setup, we used a widely available
tablet computer with an in-plane switching (IPS) liquid-crystal
display (LCD), an Amazon Fire 7 with a nominal screen size
of 7 in Figure 3A. We connected the tablet to a USB power
supply and to a local Wi-Fi network during all experiments
and displayed visual patterns through a web browser. To allow
replication across devices, we used Mozilla Firefox instead of the
pre-installed browser. We installed the most recent versions of
Firefox and kept the Android 9 based Fire OS updated with the
latest release (most recently Firefox 86.1.x and Fire OS-7.3.x).
We manually set the display brightness to 24%. IPS displays
are known for their relatively wide “viewing angle,” but from
the position of the fly 35mm in front of the center, there will
be an intensity gradient depending on the pixel position. For
the patterns we display, this effect partially reduced since we
compensate for the view-angle by increasing the physical width,
and therefore the brightness, of bars closer to the edge of the
screen (Figure 3B).

To our knowledge, inexpensive tablets have not been used to
test detailed behavioral responses of flies to moving stimuli, and
so we evaluated both the technical performance of the display
system (Figure 4) as well as the behavioral responses of flies to
tablet-displayed motion stimuli (Figure 5). Tablets featuring IPS
displays with 60Hz refresh rate are the most widely available
inexpensive option. It will be interesting to reevaluate new display
technologies (such as OLED) with higher refresh rates as these
become less expensive. Our existing system could be rapidly
adapted to using a student’s personal smartphone instead of
a tablet, further reducing cost (and probably distractions) in
teaching environments.

2.3.9. FlyFlix
By designing our inexpensive treadmill setup around a network-
connected tablet as the visual display, we remove the need for
any specialized devices for data acquisition or graphics cards for
stimulus generation, but we developed software we call FlyFlix,
to control experiments, generate stimuli, and log data. Figure 1C
shows a simplified flow of information through the experimental
setup. Our display connects through the web browser to the
local URL of the FlyFlix server. Upon connection, the web
server delivers the most recent version of the FlyFlix client
software (written in JavaScript) as an HTML5 web page. The
implementation follows an event-based approach with minimal
dependencies between client and server, so that any device
capable of displaying an HTML5 website can act as a client
without prior installation of client software.We have verified that
smartphones and computer monitors can be used to display the
stimuli, but all results reported in this paper are from experiments
using the tablet described in section 2.3.8.
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FIGURE 3 | Display used to present a range of visual stimuli. (A) In our typical experiment, a tethered fly walks on an air-supported foam sphere, while facing a tablet

computer that displays a moving grating pattern. (B) The FlyFlix software renders a virtual scene that simulates a cylindrical display onto the tablet’s flat screen. The

azimuthal span of each bar within a grating pattern is scaled to correct for the viewing angle—even though the dark bar on the left is ∼3× as wide as the bright one in

the center, they both span 10◦ from the perspective of the fly positioned 35mm in front of the display. The purple spot on the right marks the location where light

measurements reported in Figures 4A–C were made. (C) Space-time representations of the display during trials showing a moving grating pattern (spatial axis

displayed right-to-left, time axis is top-to-bottom). Each row of these images represents one horizontal slice through the displayed pattern, at the indicated point in

time. For these 3 s trials showing moving patterns with different spatial periods and temporal frequencies, clock-wise motion appears as space-time tilts that go down

and to the left. (D) Representation of displayed screen content during object following conditions for clockwise movement with the indicated speeds.

The FlyFlix client and server communicate over a
bidirectional, low-latency WebSocket connection. The server
can deliver different experiments at specific URLs, or different

views on the same experiment to different displays (a feature
not used in our standard setup). Once the client connects to
the server, it shows a “Fullscreen” and a “Start” button, the
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FIGURE 4 | Technical performance of the experimental setup. During the presentation of moving grating patterns we measured changes in display brightness at the

approximate location marked in Figure 3B. The measurements show a regular pattern that changes at the expected temporal frequency (A,B) and at the same

temporal frequency of 7.5Hz during conditions showing different spatial period grating motion (C). The apparent filtering for the patterns with the finest bars is due to

spatial averaging by the sensor. The traces show a small ripple of high frequency noise, this 60 Hz noise is in the sensor measurement and not due to the display. (D)

The percentage of frames that were rendered correctly and within the expected time interval (see text for further details) during open-loop and closed-loop

experiments. (E) Details of the frames that were not rendered within 1 frame interval shows a majority delayed by a single frame. A very small number of longer delays

occurred, and all were from the same, few experiments. (F) The measured network latency for a round-trip message between FlyFlix server and client through

WebSocket compared to a network ping (ICMP). The numbers mark the percentage of round-trips that would arrive within the 1st, 2nd, 3rd, or 4th ∼17ms display

frame (indicated by the vertical lines). Box plots show the first and third quartile for the box, median for the center line, the whisker extend to 1.5 of the inter-quartile

range (IQR). Panel (D) shows all data points, (E,F) only the outliers as individual points.

first changes the client to a full-screen mode, while the seconds
sends the request to the server to start the experiment. After the
protocol finishes or the WebSocket connection is interrupted,

the FlyFlix client displays a button to “Reconnect” to the server.
When the client starts the experiment, the server generates
a set of trials based on the pre-specified configuration. The
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FIGURE 5 | Visually guided turning behaviors measured with the optimized setup. Panels along the top row show walking behavior in response to a moving grating

pattern with a spatial period of λ = 90◦. (A) The forward walking speed of flies across the different conditions (n = 30). (B) The turning response of a single fly to

multiple presentations of 3 s rotational stimuli moving clockwise (CW, yellow) and counterclockwise (CCW, purple). Thin lines represent single trial responses and the

mean response across trials is in the thicker line. (C) The mean turning response across all 30 flies: the top row shows the responses to each direction of motion and

the combined responses are plotted below. (D) The tuning curve summarizes the combined response, averaged during the period of stimulus presentation. For

comparison, the data in blue is extracted from similar experiments on a different setup, from Figure 1H of Creamer et al. (2018). The mean turning responses for a

series of gratings with different spatial periods are plotted in (E) and summarized as a tuning curve in (F). (G) The mean turning responses to presentations of a single

45◦ bar sweeping across the display. The lightly colored stripes represent the expected position of the bar on the display. The box plot in (A) uses first and third

quartile to span the box, 1.5·IQR for the whiskers and outliers are plotted as individual points. The error bar in (D,F) are plotted as mean ±SEM. A consistent color

code for clockwise responses (yellow) and counterclockwise responses (purple) is used in panels (B,C,E,G).

FlyFlix client renders a scene based on its local representation
of the stimulus. The server sends updated parameters to change
the representation and the client continuously reports back
the actual state of the rendered stimulus. This bidirectional
communication happens throughout the experiments with
time-stamped messages. We implemented the FlyFlix server in
Python-3.9 using the Flask-1.1.2 web framework. Bidirectional
communication from the server-side is based on Flask-
SocketIO-5.x with concurrent networking through Eventlet-0.30.
The JavaScript client uses two external libraries: Socket.IO-3.1
for the communication and Three.js-r124 for rendering the
visual stimuli.

For our “gold-standard” visually guided behavioral
experiments, we wanted to present moving grating patterns
composed of vertical bars across the display. Depending on
the condition, we move distinct patterns at different speeds
through the frontal visual field of the fly. Using the 3D graphics
library Three.js, these stimuli are represented as segments
of a virtual cylinder surrounding a virtual camera. We set
the material of these segments to emits color but not be
affected by virtual lighting. The virtual cylinder is 305mm
in diameter, matched to the size of a typical LED arena used
in our lab, and a virtual height that exceeds the size of the
virtual camera frame. The virtual camera accounts for the
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physical distance between the animal and display (35mm), and
has the effect of correcting the displayed size of the cylinder
segments so that they span an equivalent azimuthal size from
the fly’s point of view, but span a different physical size on
the display (illustrated in Figure 3B for a grating made up of
10◦ bars). We achieve the movement of gratings on the tablet
by rotating the virtual camera although we can use FlyFlix to
modify the virtual world as well, for example in more complex
closed-loop conditions.

The FlyFlix server generates and controls experiments.
Depending on the experimental condition, the server
asynchronously sends parameters describing the virtual
scene to the client. These parameters primarily concern the scene
layout as well as rotational speed, orientation, and maximum
refresh rate of the camera. Based on the set of parameters, the
client continuously renders the current frame. This decouples the
timing of server and client: the server communicates changes to
the virtual world in real-time, but does not need to consider the
capabilities of the client such as the screen refresh rate. Similarly,
the client is independent from the server—if there is a lag in the
communication from the server to the client, the client renders
the previously communicated parameter instead of waiting
for instructions. The client sends its time-stamped state to the
FlyFlix server where they are stored in a log file together with
the time-stamped server status. This on-line stimulus tracking
allowed us to characterize the performance of our display and
the network latency (Figure 4) and should enable powerful
extensions of FlyFlix that we discuss below.

2.4. Experimental Protocol
To validate this new experimental setup we wanted to measure
flies carrying out a well-studied visually guided behavior, the
so-called syn-directional optomotor response, in which the flies
steer, by turning, in the direction of a rotating visual pattern
(Götz and Wenking, 1973; Seelig et al., 2010; Strother et al.,
2017; Creamer et al., 2018). We recorded responses to open-
loop stimulus presentations, in which the response of flies is
measured, but not used to control the trajectory of the stimulus.
To map the dependence of the turning response on the temporal
frequency and spatial period of the pattern, we used periodic
grating patterns moving at one of multiple (temporal) speeds,
and a series of patterns composed of different grating (spatial)
periods. In addition, we also measured object-following behavior,
by recording turning responses to single sweeps of bright bars
moving at different velocities.

For the temporal frequency tuning (14 conditions total), we
showed grating with a spatial period of λ = 90◦ composed
of pairs of alternating 45◦ bright and dark bars. The periodic
pattern moves either clockwise or counterclockwise with one
of seven angular velocities (ω = 22.5, 90, 180, 360, 675, 1350,
and 2700◦s-1). For a periodic pattern, the temporal frequency
is the angular speed divided by the spatial period (ω/λ) and so
the tested conditions include 0.25, 1, 2, 4, 7.5, 15, and 30Hz.
The 30Hz stimulus serves as a control condition. For the spatial
period tuning (14 conditions) we tested motion of gratings with
one of 7 spatial periods (λ = 5, 10, 20, 30, 60, 90, and 120◦) all
at a temporal frequency of 7.5Hz, spanning angular velocities

between 37.5 and 900◦s-1. At the beginning of each trial, the
display shows the initial position of the pattern stationary for
500ms, then moves for 3 s and shows the pattern stationary
again for another 500ms. Figure 3C shows some examples of the
patterns displayed in these conditions.

In the object-following conditions, a bright vertical 45◦ bar
moves across the screen, exactly once at one of 6 angular speeds
(ω = 22.5, 90, 180, 360, 675, and 1350◦s-1) in either the clockwise
or counterclockwise direction. Consequently, these trials have
different durations between 0.13 and 7.8 s. During the 500ms
pre- and post-trial period, the screen is fully dark. Diagrams in
Figure 3D illustrate these conditions.

Open-loop conditions were interleaved with 3 s closed-loop
trials, where the fly’s turning controlled the position of the
stimulus. We tested a variety of closed-loop conditions (data
from these trials are somewhat ambiguous and not part of
our analysis). For technical verification we extended closed-loop
trials to a length of 30 s and also bracketed these trials between
500ms pre- and post-trials. Within an experiment, each set of
conditions was presented as randomly ordered blocks. The blocks
repeated 6 times. The temporal frequency and spatial period
mapping experiments were performed as separate protocols.
At the beginning of each protocol there is a delay of 10 s
to allow the experimenter to shield the experimental setup
from the environment with a box, if desired. To minimize any
unintended visual stimulation from the room, including any
status lights on miscellaneous devices, we ran experiments in
a darkened room, and a cardboard box, painted with BLK 3.0
on the inside, was placed over the experimental setup. All
experiments were conducted on single tethered flies, with a target
temperature of 32◦C, to increase fly walking. Figure 5 presents
the behavioral results.

2.5. Fly Preparation
We used the Dickinson Lab (DL) wild-type strain of Drosophila
melanogaster for our behavioral experiments. This fly strain was
established by interbreeding the progeny of 200 wild caught
gravid females (Tammero and Dickinson, 2002). The original
laboratory culture was maintained in Michael Dickinson’s lab,
from which the Reiser lab established a copy at Janelia in 2007.
This strain has been used in dozens of behavioral studies and has
been referred to as “DL” starting with Ofstad et al. (2011). For this
study, we reared flies on standard cornmeal agar food at 21◦C and
50% humidity. We conducted the speed tuning (Figures 5A–D)
and object tracking (Figure 5G) experiments on 30 female flies
and the spatial period tuning experiments (Figure 5E) on 20 flies
(randomly selected 11 male, 9 female). All flies were raised in a
16:8 h light-dark cycle; experiments were run on flies between 5
and 6 days post-eclosion.

Prior to tethering, we moved groups of ∼4 flies from the fly
vial to a 5ml “Falcon”-style tube (12mm wide) using a transfer
funnel of our design (see Supplementary Figures S5A,B). The
vial containing flies was placed in an ice bucket (not shown).
After 5min on ice, the immobile flies were carefully tapped onto
the cold, temperature-controlled sorting platform (upper part of
the red structure in Figures 2A,C). We used the suction from the
fly picker (Figure 2E) to lift and then deposit each selected fly,
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one at a time, into one of the semi-cylindrical indentations in the
lower part of the platform (see Figures 2A,C,D). It is occasionally
possible to position a fly perfectly aligned into this “sarcophagus,”
but typically flies need to be adjusted using a paintbrush. With a
fine wire (see Supplementary Figures S5C,D) we placed a small
drop of glue toward the anterior side of fly’s notum, the dorsal
surface of the thorax. The hand rest (see Figure 2A) supports
the user’s arm during these fine-scale manual steps. We used
the three-axis linear stage Figures 2A,B to position the tether
to just contact the glue. Once the “glue” is cured with short
wavelength (UV) light, the micromanipulator was used to lift the
fly out of the sarcophagus (Figure 2D).

We recommend a brief procedure of chilling flies. In our
experiments, none of the tested flies were chilled for longer than
23min. A reliable sign of vigorous flies and minimal effects of
the chilling procedure is that flies should start moving within
seconds of being removed from the sarcophagus—something
we routinely observed. A body-fixed fly can be positioned in
the experimental setup immediately, but we followed a standard
practice of allowing for a 20–30min recovery. Specifically, we
placed the tethered flies upside down in a holding area for at
least 30min between tethering and the start of the experiment.
We provided a piece of ∼5× 5mm2 tissue to the flies, which
they readily manipulated with their legs. This fly tethering
procedure represents a practical compromise that works well in
our experience—long enough to tether a small group of flies,
while allowing them ample time to recover, but not so long as
to compromise behavioral vigor.

2.6. Data Analysis
FlyFlix and FicTrac store the data in rectangular data files. While
FicTrac follows a tidy data format, FlyFlix uses a key-value
based long format. A custom Python script loads these different
data formats into a consistent SQLite database. We use R-4.0
with the tidyverse-1.3 packages and ggplot-3.3 for data analysis
and plotting.

Flies were presented with paired visual stimuli that moved
in both the clockwise and counterclockwise direction. We
recorded the ball rotation via FicTrac. Out of the 25 recorded
variables, we used the “animal’s heading direction (lab)”
to estimate intended body yaw rotations and the “animal
movement speed” for the walking velocity. We used “delta
timestamp” to convert frame-based differences into time-based
rotational velocity and the physical diameter of the sphere
to calculate the movement velocity (Figures 5A,B). For time-
series data, the average turning response was calculated for
a sliding window of 5 camera frames across all trials of
a condition. These responses were averaged on a per-fly
basis (see Figure 5B), before being averaged across flies (top
of Figures 5C,E,G). Responses to counterclockwise stimulus
movement were scaled by −1 and averaged together with the
clockwise responses for the combined responses (Figures 5C,E,
bottom). The summary tuning curves (Figures 5D,F) showmean
turning velocity during stimulus presentation as mean ± SEM
across flies.

3. RESULTS

3.1. Characterizing the Technical
Performance of the Experimental Setup
As the inexpensive treadmill setup uses several components not
typically used in animal behavior experiments, we measured
many aspects of the system’s performance, and summarize
the results in Figure 4. To validate the tablet’s display of our
moving visual stimuli, we measured local brightness changes
on one side of the display (position indicated on the right
side of Figure 3B) with a mounted photo-diode (INL-3APD80,
Inolux Corporation, Santa Clara, CA, USA). We viewed and
logged the data on an oscilloscope (MDO3040, Tektronix Inc.,
Beaverton, OR, USA). Figures 4A,B shows typical measurements
of the brightness changes measured for the moving patterns
of the temporal frequency tuning conditions. Figure 4C shows
typical measurements for moving patterns during the spatial
period tuning conditions. These measurements suggest that
the Fire 7 tablet reliably displays these periodic patterns,
for example showing the expected periodic changes at the
indicated temporal frequency. We note that even at the 30Hz
condition, which is half of the display refresh rate (lower trace
in Figure 3B), the stimulus timing looks extremely reliable;
this condition is included as a stimulus control, since at
half of the display refresh rate, the display flickers, and thus
produces no net motion. The spatial period conditions show
a similarly reliable periodic pattern at 7.5Hz (Figure 3C).
The reduction in the sharpness of the edge transitions for
smaller bars is simply due to spatial averaging by the sensor
(and is a reasonable model for why the fly visual system
also sees smaller period, thin-bar, patterns as consisting of
lower contrast).

During experiments, the FlyFlix client records the rendering
status for each frame. By providing this on-line stimulus
tracking, not possible with many other display systems, a
record of successful and delayed frames can be stored and
incorporated into the post-hoc data analysis. Before the web-
browser displays a frame, the software asynchronously requests
an update of the rendered content based on the current set
of parameters. If this request times out before the frame is
rendered, then the previous content is shown again. Figure 4D
shows the percentage of frames that are rendered correctly
and within the allotted time, which is (on average) the inter-
frame-interval of ∼17ms. We plot the percentage of correct
frames for 33 open-loop experiments as well as from 9 closed
loop experiments (for which the behavioral data are not
shown). For both configurations, the average performance is
quite reliable, with more than 99.9% of the frames correctly
rendered. Figure 4E provides details of the ∼0.1% of cases
when frames were not rendered within this interval. We do
not find any systematic errors. On average one out of every
1,000 frames skips exactly one frame update. Higher numbers
of skipped frames are extremely rare, and tend to come in
clusters, mostly during conditions with the same animals.
Since FlyFlix records these measurements, trials above certain
relevant thresholds can be identified post-hoc and removed
from analysis.
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Since the FlyFlix server and FlyFlix client communicate via
a network, we characterized the latency of this asynchronous
bidirectional communication by sending time-stamped packages
from the server to the client, which immediately returns the
package. In Figure 4F, we plot this WebSocket latency (WS)
and also a ping using a lower network layer (ICMP). 97.9% of
the frames completed a round-trip within 1 inter-frame-interval
(∼17ms, indicated with horizontal magenta lines in the plot)
of the display, even though WebSocket based communication
takes slightly longer with the additional protocol overhead.
We expect that in our real application, the network reliability
is even higher, since only half of a round-trip is required
to update the display while the returned display state is not
time critical.

In our experiments, we used our institute’s infrastructure:
the FlyFlix server was connected to a wired network, the tablet
connected via Wi-Fi to a different subnet. Should the latency of
an available network become too high, a local network router
directly connecting FlyFlix server and client will improve the
timing of the communication.

Taken together, the results of Figure 4, demonstrate that
a low-cost tablet provides a reliable visual display producing
excellent stimulus control and timing over measured system
events. These technical measurements show that our low-
cost system replaces many components typically required
for precise experiment control (like data acquisition devices
or high-end PC graphics cards) without sacrificing any
performance, for the range of pattern speeds and network
latencies described here.

3.2. Visually Guided Turning Behaviors
Measured With the Optimized Setup
An important demonstration of our new, integrated system is
that “typical” fly behaviors can be measured from flies tethered
using our new tethering station and behavioral data collected
using the new experimental setup. We focused on the optomotor
responses, and present results from (30+20 =) 50 flies across
2 different protocols (detailed in sections 2.4 and 2.5). Figure 5A
shows the walking speed of flies during each trial of the temporal
frequency protocol. Across conditions, flies walk with a similar
speed, with a mean around 10mm s-1 which is slightly faster
than walking speeds measured in other fly-on-ball experiments
(Creamer et al., 2018), and is only slightly slower than the walking
speeds of freely walking flies at similar temperature (Ofstad et al.,
2011).

When presented with rotating patterns, flies tend to turn in the
direction of the patternmovement, a response seen in single trials
and across trials for the example condition shown in Figure 5B.
While there is some trial-to-trial variability, in nearly every trial,
the flies turned in the clockwise, or positive direction (in yellow)
for clockwise pattern motion and in the counterclockwise,
or negative direction (in purple) for counterclockwise pattern
motion, a pattern that is clearly seen across flies and stimulus
speeds (top of Figure 5C). The amplitude of the turning
velocity we measured depends on the temporal frequency of
the pattern movement (observable in the data combined from
both directions, in the lower row of Figure 5C). This is precisely

the expected result, since temporal frequency tuning is a well-
described aspect of fly motion vision—insects are most sensitive
to movement of periodic pattern with some temporal frequency
optimum, and are less sensitive to movements with both higher
and lower temporal frequency (Götz and Wenking, 1973). We
compare our results, plotted using the mean responses during
the period of stimulus presentation as a tuning curve, to the
most relevant, recent independent measurement from another
lab using a different setup (Figure 5D contains an overlay of data
from Creamer et al., 2018). We find that in our experiments, for
most conditions, flies turned more overall, and we see similar,
monotonically increasing response levels up to 4Hz motion. At
the highest temporal frequencies we see an interesting difference,
where our responses were reduced, the responses from Creamer
et al. (2018) remain much larger. We attribute this difference
to limitations of our display. As previously discussed, the tablet
refreshes the screen content with 60 fps; at this refresh rate, a
30Hz temporal frequency motion grating will appear as flicker—
containing no net motion, and so it is expected that our flies
cannot turn to follow motion that is not there. Similarly, the
responses to 7.5 and 15Hz pattern motion are reduced since the
illusion of smooth motion is weaker at these speeds. Aside from
these technical limitations of the display at very fast speeds, we
find excellent concordance between our measurements and those
of previous experimenters.

The optomotor turning response is also expected to depend on
the spatial period of the grating pattern (Buchner, 1976; Creamer
et al., 2018). We presented a series of grating patterns with
different spatial periods at a fixed temporal frequency of 7.5Hz.
The flies responded with large, consistent turning to patterns
with a grating period above λ = 20◦ (Figures 5E,F). For narrower
stripes, the responses were reduced, and in fact no consistent
turning was measured for the pattern with λ = 5◦. This result
is expected based on prior work, and is remarkably similar to
the measurement of Buchner (1976), who used a very different
stimulus strategy.

Finally, we tested the flies’ ability to track a moving bar,
a behavior that is known to depend on both the motion and
position of the moving object (Poggio and Reichardt, 1973; Bahl
et al., 2013). As with the rotating grating patterns, we found
that flies turned so as to follow the direction of the rotating
bar (Figure 5G). The peak turning velocity was similar between
different rotational velocities of the stimulus, and quite similar to
peak turning during the grating motion. To casually explore the
position-dependence of the turning response, it suffices to note
that most of the turning reaction occurs once the object (position
indicated by the diagonal lines) crossed themidline (most notable
for ω = 90, 180, and ∼360◦s-1). It is as if the flies don’t attempt
to orient toward an object they are likely to intercept as it
approaches their midline, but once an object is getting away
(as measured by its progressive, or front-to-back motion), their
attempted tracking behavior rapidly increases. This response
profile matches the recent measurements of walking flies (Bahl
et al., 2013), but differs somewhat from the behavioral reactions
of tethered flying flies that respond to both the regressive and
progressive motion of the object (Reiser and Dickinson, 2010).
For the fastest speeds tested, the flies were unable to track, that is
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“catch up to” the spinning bar, and the responses are seen to lag
the position of the stripe by more than 100ms. In the condition
with ω = 1,350◦s-1, the object moved across the 60 fps display in
less than 8 frames with displacements of over 20◦ between frames,
which are too large for the fly to smoothly integrate as motion,
and as expected the flies barely turned to this condition.

In Figure 5, we summarize the behavior of Drosophila in
our optimized, inexpensive treadmill setup, in a sophisticated
range of stimulus conditions. We show clear symmetric turning
responses to all symmetric stimulus conditions. The temporal
frequency and spatial period tuning as well as the object
tracking behaviors are highly similar to previously published
measurements from other labs using different experimental
setups, for all but the fastest stimulus conditions. Based on these
results, we unreservedly recommend this low-cost setup, not only
for teaching purposes, but for nearly any research application.

4. DISCUSSION

In this paper, we have described our re-implementation of
a complete system for tethering flies and the accompanying
experimental setup for measuring tethered fly walking behavior
to controlled visual stimuli (Figures 1, 2). Our spherical treadmill
setup takes a fresh look at the fly-on-a-ball paradigm. While the
design is guided by several decades of experimental methods
development, we have been optimizing the setup by simplifying
the components, reducing costs, and ensuring availability. Since
many of the components have not previously been deployed
in animal behavior setups, we validated their performance
(Figure 4). We found excellent reliability for the low-cost display
and low network latencies, which combine to establish a highly
reliable new method for experimental control. This system
comes with other advantages such as a flexible stimulus control
software that can dynamically correct for the viewing angle
(Figure 3). Finally, we measured the walking behavior of flies
to a range of moving visual stimuli and confirmed, in exquisite
detail, that our new setup is capable of reproducing nearly all
relevant prior measurements using similar visual stimuli for
wide-field gratings and small moving objects. Therefore we now
have a low-cost setup that is a quite reliable instrument, and
consequently find that it produces highly reliable open-loop
behavioral measurements. Based on this experience, we believe
our setup will be ideal for teaching courses and for a wide range
of laboratory uses.We sincerely hope that the reduced complexity
and enhanced accessibility of these setups will excite many young
scientists about quantitative animal behavior, and will increase
the reproducibility of research observations. In the following
sections we discuss cost savings of our system, the cost of cost
savings in the form of limitations, some possible extensions, and
future work.

4.1. Costs and Availability
We have endeavored to reduce the cost of the system at each
step, often with considerable cost savings relative to alternative
contemporary setups. We estimated the costs based on building
a single setup, using parts available in the U.S., during the spring
of 2021. Many of the components are available as generic parts

TABLE 1 | Price estimation of parts for experimental setup.

Part Description Link Price

Sphere Milled or filed generalplastics.com

Display Amazon Fire Tablet amazon.com $50.00

Baseplate Acrylic Material only mcmaster.com $13.00

Rubber feet for Baseplate amazon.com $11.00

Heat-pad 70mm amazon.com $15.00

Temperature control Heat-pad thermostat amazon.com $5.00

Camera PS3 Eye ebay.us $15.00

Micromanipulator 3D-printed (ABS) reiserlab.github.io $20.00

Screw M3x0.5 40mm mcmaster.com $0.49

Locking nuts M3x0.5 mcmaster.com $0.11

Nuts M3x0.5 mcmaster.com $0.06

Washer M3 mcmaster.com $0.23

Sphere holder 3D-printed (ABS) reiserlab.github.io $6.00

Sphere holder post 3D-printed (ABS) reiserlab.github.io $5.00

Lamp post and shade 3D printed (ABS) reiserlab.github.io $15.00

IR LED 940 nm 5 mm LED digikey.com $0.90

Power supply Any 5V power source adafruit.com $8.00

Tube Clamp Keck Roller Clamp usplastic.com $5.00

Lens 25mm M12 Lens m12lenses.com $24.25

Lens holder M12 Lens holder m12lenses.com $3.00

Lens extension M12 Macro Extension m12lenses.com $3.00

Tablet holder any amazon.com $17.00

Usually one item per line is required, but commodities like nuts are available in packages

that will supply components for several setups. For package prices and more details refer

to the text and Supplementary Tables S1–S4.

from multiple vendors, and most will also have comparable
alternative, if not identical, components available world-wide.
We selected example sources to illustrate the price range for
potential cost savings and overall costs and provide website links
for the same purpose. We give examples and not endorsements
for or against particular vendors. We estimate the prices for 3D-
printed components using the online instant quote at https://
craftcloud3d.com. For the laser cutting, we use estimates from
https://ponoko.com.We base our cost estimation of consumables
and commodities like glue, tethers, and screws on a projected
weekly consumption. In Tables 1, 2, we link to packages that will
last for longer periods of time. Those with access to a 3D printer, a
laser cutter, or a selection of screws can expect overall lower costs.

For the comparison to a contemporary setup, we surveyed
several groups and specified a system that would realistically
represent the type of setup we would build in our lab today for
ongoing research projects. Belowwe detail a few key components,
and summarize the systems’ cost in Tables 1, 2, and in Figure 6).
Figure 6 shows we can assemble both complete systems for
∼$330, whereas the standard, yet very nice, pair of setups would
cost∼$17,000, a remarkable∼50-fold cost reduction.

One simple way to reduce costs and increase access
is to exclusively use Free Software and other open-source
components. From GNU/Linux as the operating system,
to FicTrac, camera drivers, FlyFlix, and Firefox, all are
available without paying software license fees. Furthermore, the
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TABLE 2 | Suggestion for components in an inexpensive treadmill tethering

station.

Part Description Link Price

microscope any dissecting scope

glue glass to glass adhesive kemxert.com $0.58

UV protective glasses Different manufacturers amazon.com $11.00

Fly picker wand Transfer Pipette amazon.com $0.03

Temperature control Chiller thermostat amazon.com $5.00

Tether Dispensing needle 34GA bstean.com $0.96

Funnel 3D-printed (PLA, ABS) reiserlab.github.io $3.00

Micromanipulator 3D-printed (ABS) github.com $20.00

Screw M3x0.5 40mm mcmaster.com $0.49

Locking nuts M3x0.5 mcmaster.com $0.11

Nuts M3x0.5 mcmaster.com $0.06

Washer M3 mcmaster.com $0.23

Heat pump Peltier on heat sink adafruit.com $35.00

Power Supply 12V 5A (Heat Pump) adafruit.com $25.00

Sarcophagus 3D-printed (ABS) reiserlab.github.io $3.00

Thermal Tape for Sarcophagus adafruit.com $0.95

Tether Station holder Laser cut (acrylic) reiserlab.github.io $15.00

UV Curing light UV Keychain light amazon.com $1.33

Paintbrush Fine tip amazon.com $7.00

Round bottom tube Chilling tube mcmaster.com $0.06

Heat sink holder Hand rest ponoko.com $18.00

Hollow Body Pin Vise Flyhook holder mcmaster.com $16.00

Usually one item per line is required, but commodities like nuts are available in packages

that will supply components for several setups. For package prices and more details refer

to the text and Supplementary Tables S1–S4.

majority of the components in the Component-Designs GitHub
repository are constructed using Free Software such as FreeCAD,
KiCAD, and Inkscape. As a direct consequence, the software
necessary to modify our designs is available without hidden
costs and for all major operating systems in the foreseeable
future. Communities around these software packages provide
good documentation, tutorials, and support for any type of
questions. In the long term, open standard file formats used by
Free Software also ensure unrestricted exchange of design files,
beyond the specific software packages we used.

4.2. Trade-Offs and Limitations
The flexibility and modularity of our proposed system is also a
limitation: it takes more time and effort to make and assemble
the systems based on components from multiple vendors,
rather than ordering ready-made products. We sought to
replace all custom parts with commercially available inexpensive
components wherever possible, such as the display system or the
tethers, but in many cases, no alternative existed and we turned
to custom designs.

Many components of our setup are produced in a 3D printer
or a laser cutter. This may increase access compared to custom-
machined metal parts, but it is still a limitation. Nevertheless, we
see threemain alternatives to produce these parts: (1) high quality
3D printers are becoming more affordable and easier to use,

(2) maker spaces provide access to 3D printers in communities
across the world, and (3) many companies offer 3D printing as a
service. We used the third (and most expensive) option in our
cost estimates (Figure 6). We consider access to a laser cutter
as nice, but unnecessary for building this setup (alternatives
discussed throughout). The factors regarding price, maker spaces,
and online services also apply to laser-cutting acrylics. Building
a new experimental setup is always a time-consuming endeavor,
but even more so when the components need to be built from
scratch. We estimate∼5 h of printing time on the Stratasys F-170
printer, but could take considerably longer on the more common,
less expensive printers. Potentially the use of 3D printing services
is an option to reduce print time and the initial expertise and
equipment required. We further estimate that another ∼5 h are
necessary for assembling the first setup. In the near future, we
will provide printing and assembly advice on our accompanying
repository based on feedback from early adopters.

FlyFlix, the system of a single server providing stimuli for
network connected display clients, is extensible to multiple tablet
displays. For the low-cost implementation described here, we
have only used a single display in front of the fly covering
∼130◦ in azimuth and 100◦ in elevation. Our lab’s standard
cylindrical displays cover 270◦ in azimuth, and this larger field of
view is critical for some visually guided behaviors. Virtually any
display will present non-uniform brightness from the perspective
of the fly. In our current implementation, we do not correct
for this, as there is little evidence to suggest that optomotor
behaviors with large-field, high-contrast gratings are sensitive
to these local brightness variations. Nevertheless, the brightness
of the display as viewed by the fly, at each location on the
screen, can be measured and corrected for by non-uniformly
masking the local brightness of the display. This step should
be seriously considered if users wish to use such a display
for measurements of neuronal responses within small receptive
fields. Furthermore, the tablet we chose only supports refresh
rates of 60 fps. This limits the speed of stimuli that can be
shown, including to motion speeds that the fly can perceive (see
Figure 5D). Many apparent motion stimuli—including most of
the moving gratings and the small moving objects shown in
Figure 5—can be very well-approximated at this display refresh
rate, but this illusion of smooth motion breaks down for stimuli
defined by very fast motion. Newer handheld displays with higher
refresh rates and gaming monitors used in other experimental
setups overcome this limitation, but at significantly increased cost
(Kaushik et al., 2020). The FlyFlix software is agnostic to the
display and should work “out of the box” with higher refresh rate
displays. Nevertheless, network latency will be a limiting factor
for high-speed closed-loop systems, but there is little reason to
believe that flies (or just about any animal) required closed loop
latencies that are less than∼10ms.

4.3. Extensions and Future Work
The challenge of setting up multiple rigs in a teaching lab
to provide hands-on experience with Drosophila’s fascinating
walking responses to visual stimuli initially inspired the
inexpensive treadmill project. Since then, we optimized the setup
and so far only tested it with fruit flies. Nevertheless, we expect
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FIGURE 6 | Estimated cost savings for each setup. The price of each functional unit is a comparison between the standard setups and the optimized, inexpensive

tethering station (A) and experimental (treadmill) setup (B). The diagonal line in each of (a), (b) represents an equal price in both setups. In (C,D), we list the

components (or functional units) represented by the labels in (A,B). We use a projected maximum of weekly consumptions for expendables (e.g., glue and tethers).

Between the two versions of these systems, we estimate a ∼50-fold cost saving. Further details are provided in the text and in Tables 1, 2, detailing these

components.

that adapting the setup to other insects should be straightforward.
The Sarcophagus already accommodates many body sizes and
could be modified for others. A much larger insect may require a
larger ball size, but fortunately, the nature of our manufacturing
process and the availability of our 3D designs allows any
components to be scaled to adapt to specific animal sizes.

While we have focused on visually guided behaviors with this
setup, it would be very exciting to implement other types of
sensory stimulation: wind, humidified air, sounds, odors, or even
polarized light (Mathejczyk and Wernet, 2020). The inexpensive
treadmill setup could readily be applied to longer duration
observational studies of individual flies, for example in sleep
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studies or starvation experiments. All of these can be integrated
into our experimental design with little to no modification to the
existing components.

While we have achieved all of our initial goals, we continue
working to improve the system. In the near future, we plan
to provide more accessible alternatives to our hand-filed balls
and a suitable replacement for laboratory wall air to float the
ball. On the software side, we will continue to expand the
capabilities of FlyFlix. One exciting direction is to use the on-line
stimulus tracking to allow instant verification, and for example,
to automatically repeat any trials during which stimuli were not
successfully presented. Another important improvement for the
combination of FlyFlix and specific tablets will be incorporating
stimulus calibration information. One important goal will be
to compensate for the brightness of the display, at different
locations, and possibly for different color channels, to achieve a
more uniform luminance distribution from the fly’s perspective.

The open-loop experiments detailed in Figure 5 show that
our new system is capable of replicating a wide range of
visually guided behaviors in walking flies. In addition, we have
implemented closed-loop protocols and confirmed that they are
technically working. So far we have not been impressed with the
behavioral results from this subset of closed-loop trials and so
we continue to optimize these experiments and hope to report
robust closed loop behaviors in the near future. Finally, we will
implement a low-cost solution for optogenetic stimulation of
walking flies, and will adapt the setup as needed so that we can
mount it under a microscope to accommodate electrophysiology
or calcium imaging measurements. We will post all updates on
the accompanying repository and we welcome all feedback, ideas,
and contributions.
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Navigating animals combine multiple perceptual faculties, learn during exploration,

retrieve multi-facetted memory contents, and exhibit goal-directedness as an expression

of their current needs and motivations. Navigation in insects has been linked to a

variety of underlying strategies such as path integration, view familiarity, visual beaconing,

and goal-directed orientation with respect to previously learned ground structures.

Most works, however, study navigation either from a field perspective, analyzing purely

behavioral observations, or combine computational models with neurophysiological

evidence obtained from lab experiments. The honey bee (Apis mellifera) has long been

a popular model in the search for neural correlates of complex behaviors and exhibits

extraordinary navigational capabilities. However, the neural basis for bee navigation has

not yet been explored under natural conditions. Here, we propose a novel methodology

to record from the brain of a copter-mounted honey bee. This way, the animal experiences

natural multimodal sensory inputs in a natural environment that is familiar to her. We

have developed a miniaturized electrophysiology recording system which is able to

record spikes in the presence of time-varying electric noise from the copter’s motors

and rotors, and devised an experimental procedure to record from mushroom body

extrinsic neurons (MBENs). We analyze the resulting electrophysiological data combined

with a reconstruction of the animal’s visual perception and find that the neural activity

of MBENs is linked to sharp turns, possibly related to the relative motion of visual

features. This method is a significant technological step toward recording brain activity

of navigating honey bees under natural conditions. By providing all system specifications

in an online repository, we hope to close a methodological gap and stimulate further

research informing future computational models of insect navigation.

Keywords: honeybee (Apis mellifera L.), neuroethology, navigation, mushroom body, naturalistic condition, quad

copter, electrophysiology
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1. INTRODUCTION

Honey bees are remarkable navigators. Foragers learn to orient
in complex environments and perform accurate goal-directed
flights in areas several square kilometers in size (Collett, 1996;
Menzel and Greggers, 2015). A range of experimental evidence
and computational models regarding which strategies bees may
employ have been put forward (Srinivasan et al., 1996). Path
integration, visual guidance using view memories or structured
landmark memories may play a role. However, it is still unknown
whether and how those components are combined and at which
level of computation they may be available to a navigating bee
(Collett, 2019; Webb, 2019). In most animal models, the search
for the neural correlates of navigation has made considerable
progress through experiments in which the recorded animal was
able to move freely in close-to-natural environments (O’Keefe
and Nadel, 1979; Bingman and Able, 2002; Hafting et al., 2005;
Rubin et al., 2014; Eliav et al., 2021).

In insects, we can identify two main approaches: animals
may either move freely in small confined arenas, such that their
brain is accessible with wire electrodes or imaging techniques
(Jin et al., 2014, 2020; Kim et al., 2017), or they are tethered in
virtual reality setups moving stationarily (Harrison et al., 2011;
Zwaka et al., 2019). Early evidence showed that bees accept
virtual stimuli (Abramson et al., 1996), and virtual reality arenas
in which bees can explore artificial environments “afoot” have
been established (Schultheiss et al., 2017; Buatois et al., 2018).
However, while other insects have been shown to readily fly
in virtual environments (Kaushik et al., 2020), so far only one
virtual reality arena for bees reported flights just over one minute
long (Luu et al., 2011). No neurophysiological data has yet been
obtained from bees flying in virtual reality. Recording from
neurons using a backpack of miniaturized hardware as proposed
in dragonflies (Harrison et al., 2011) is still infeasible due to size
and weight constraints in bees. As a result of this technological
gap, little is known about the neural correlates of flight navigation
in bees.

Substantial previous research in various insect species
has identified potential candidate neuropils that may play
a role in navigation. Recent work, however, suggests that
even minor differences between the connection patterns of
different insect species may yield a significantly different
functionality of these circuits (Pisokas et al., 2020), underlining
the necessity of neurophysiological access to navigating honey
bees in flight.

Where should we look for neuronal correlates of navigation?
The central complex was found to house neurons essential
for sun compass related navigation (Homberg et al., 2011).
Body direction cells were found in the cockroach’s central
complex under conditions that allowed testing of immediate
memory effects as they appear under dynamic spatial object-
body relations. They thus may play a role in guiding walking
trajectories under natural conditions (Varga and Ritzmann,
2016). Ring neurons in the Drosophila central complex were
found to code body direction in relation to simulated visual
objects (Kim et al., 2017), and these neurons are thought to play
a role in the directional component of path integration (Seelig

and Jayaraman, 2015). However, the central complex is difficult
to access in honey bees. It lies below the mushroom bodies
(MBs), another important neuropil that integrates multi-modal
sensory input and is involved in memory formation (Menzel,
2014). Particularly in the context of navigation, the MB has
been previously hypothesized to store view memories that the
navigating insect could match with its current observations
(Menzel, 2012; Webb and Wystrach, 2016; Müller et al., 2018;
Webb, 2019) and would then continue moving into directions
of highest familiarity. Previous work confirmed detrimental
effects on higher-order forms of learning (Komischke et al., 2005;
Devaud et al., 2007) when interfering with the mushroom body’s
functioning (Buehlmann et al., 2020; Heinze, 2020; Kamhi et al.,
2020). Mushroom body extrinsic neurons (MBENs), neurons
at the output of the mushroom body, are likely involved in
memory formation and retrieval (Menzel, 2014) and have been
successfully recorded in freely walking honey bees (Duer et al.,
2015; Paffhausen et al., 2020). Moreover, a subset of MBENs
can be targeted precisely under visual control after exposing
only a fraction of the brain (Menzel, 2013). This increases the
animal’s survival rate over extended recording durations, and
hence, we here decided to target MBENs. The MBs multimodal
and learning-related properties make it a much more suitable
target in the context of real-world vs. virtual reality. It seems
more likely to trick the central complex with a VR stimulation to
process meaningful information related to navigation. The MB,
however, has the potential to be more sensitive to the integration
of multimodal stimulation. The synchrony, resolution, and
comprehensiveness of the real world may be particularly
helpful when investigating the involvement of the MB
during navigation.

We propose a novel methodology to record neuronal
activity from MBENs of honey bees on a quadcopter. The
animal can be flown automatically along predefined routes
presenting natural stimuli in all sensory modalities. We
performed behavioral experiments to verify that bees show
flight behavior when tethered on the copter and can integrate
visual information perceived on the copter in subsequent
episodes of autonomous navigation. Supported by these
results, we developed a miniaturized recording system that
is capable of amplifying and digitizing neural activity while
reducing motor and rotor noise to acceptable levels. In
this paper, we specify all system components and show the
results of our behavioral experiments. We provide a detailed
account of experiments in which we successfully recorded
neurophysiological data in flight and present an analysis that
confirms that the recorded activity is linked to the sequence
of stimuli perceived along the flown routes. This is the first
work that proves that this alternative to virtual environments
is indeed feasible. By opening all system specifications, code
and data, we hope to encourage the community to continue
these efforts to identify the neural correlates of navigation in
honey bees1.

1Code and schematics: www.github.com/BioroboticsLab/

neuronal_correlates_honeybee_navigation.
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FIGURE 1 | Map of the field site for the behavioral experiments. For the

homing experiment, honey bees from the hive (Red) where trained to forage at

the indicated feeder location (Orange). Individuals caught at this site were

attached to the quadcopter and transported to the release site (Yellow).

2. METHODS

2.1. Behavioral Experiments
Behavioral experiments were conducted in a grassland east of
Großseelheim, Germany. A two-frame observation hive was set
up at the western border of the field (50◦ 48’ 51.1452" N, 8◦ 52’
20.9928" E). The field site was rich in visual landmarks, both
on the ground (irrigation channels, footpaths, hedges, etc.) and
the horizon (see the map in Figure 1 and panoramic images in
Supplementary Material).

2.1.1. Do Tethered Bees Show Flight Behavior on a

Drone?
Honey bee (Apis mellifera) workers from three groups
(hovering—H, forward flying—F, and control—C) were
attached to a quadcopter (Matrice 100, DJI, Shenzhen, China)
via an extension arm (50 cm in length, see Figure 2). A number
tag with a small metal pin was glued to the animal’s thorax, and
the pin was clipped to the extension arm. The arm positioned the
bee such that it had an almost unoccluded view. The copter was
placed in the field, and the animal was allowed to grab a light
foam ball (∼8 mm in diameter) attached to the ground via a
string. A camera behind the animal recorded video at 25 Hz to an
SD card. At the start of the experiment, the copter lifted off from
the ground (groupsH and F), pulling the bee from the foam ball.
For the control group C, the ball was pulled manually, without
any motor activity of the copter. Due to the tarsis reflex, the
bees started beating their wings instantaneously. Bees in group
H were lifted upwards to ∼2 m altitude (natural altitude during
short foraging trips with a distance of 30 m), with negligible
rotatory or horizontal movement. Bees in group F were flown
forwards, continuously gaining altitude (up to 2 m) and distance
to the lift-off point. The copter was controlled manually and
brought back after no wing beating was observed anymore or a
maximum of oneminute of flight time had passed. Flight forward
velocity was 10 m/s (natural flight speed observed during radar
experiments, Riley et al., 2005). Videos were analyzed after the
fact, and the duration of continued wing beating was extracted.
Each of the 47 bees was tested with all treatments in randomized
order with resting intervals of 1 min.

2.1.2. Homing After Copter Flight
We investigated if bees extract information relevant for homing
when being transported on the copter. Bees were trained to a
sugar dish 400m east of their hive (50◦ 48’ 56.25" N, 8◦ 52’ 38.766"
E, see Figure 1) and caught after drinking ad libitum. A small
plastic marker with a metal pin was glued to the number tag they
already had affixed to their thorax. The animal was then either
clipped to the copter’s extension arm (treatment group T, N =
54) or put in an opaque box on the top face of the copter (control
group C, N = 18) such that it could not perceive the flight path
visually. The animal was tethered with a small clamp in the box,
similar to the mechanism depicted in Figure 2. The procedure
took ∼1 min. The copter was then started manually, ascending
vertically to 15 m altitude, and was then set to reach the target
location automatically (400mnorth of the feeder location: 50◦ 49’
6.4632" N, 8◦ 52’ 30.5616" E). Both lift-off and landing procedures
were performed manually because automatic lift-off and landing
were implemented with a slow rate. Flight velocity was 10 m/s.
Upon arrival at the target location, the bee was untethered and
released. The time and ID of the bee were noted upon release
and arrival at the hive. Some bees landed in the grass shortly after
taking off. For these bees, we noted the time they resumed their
return flight.

2.2. Neuronal Correlates of Navigation
2.2.1. Miniaturized Recording System
To record neural activity from the bee’s brain, we developed a
lightweight, battery-driven amplifier, and a data acquisition and
storage system. The custom solution consisted of a two-channel
extracellular amplifier, two analog-digital converters (ADC), and
a microcontroller board with an SD card for data storage. The
amplifier (see Figure 3) was based on a suitable one-channel
amplifier (Budai, 2004). The circuit board (PCB) contained two
of those amplifiers, a shared power supply, and two electrically
isolated ADCs that were read out simultaneously by a dedicated
microcontroller. The head stages were laid out on a separate PCB,
located close to the bee. This way, the weak neural signals had to
travel only a few centimeters. The electrode bundle (Duer et al.,
2015) consisted of two enameled copper wires and a bare silver
wire as reference. The reference wire was bent 90◦ relative to
the copper wires, 80 µm above the electrodes’ tip, to indicate the
desired depth of electrode placement in the brain. The two input
channels were measured and amplified in reference to the shared
ground electrode. The resulting signals were later subtracted
from each other in the digital domain to form a differential pair.
The impedance of each electrode was highly dependent on the
final recording site, i.e., the surrounding tissue and their electric
properties. An offline impedance matching allowed for the most
accurate noise cancelation (see section 2.3).

Electric noise reduction was of particular importance due
to the disproportionately small voltage and current of the
brain signals and the noise emanating from the copter. In-
flight, the copter generates strong electric and electromagnetic
fields. The plastic rotors generate electric fields by statically
charging due to the air friction, and the four motors driving
the rotors generate strong electromagnetic fields. Each motor
is connected to a motor controller that generates strong
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FIGURE 2 | Behavioral field experiments. (A) Honey bee attached to a quadcopter via an extension arm. (B) Still image of a video recording showing flight behavior

defined as continuous wing beating, with raised abdomen and hind legs.

FIGURE 3 | Extracellular amplifier and data flow. (A) Photograph of the custom two-channel extracellular amplifier. The design contains two head stages to convert

the impedance. They are located close to the bee’s head. Each analog signal is then processed separately by amplifiers (amplification factor: 1,000x) and active filters

(bandpass: 300 Hz–10 kHz). The resulting analog signals were then digitized by two synchronized delta-sigma analog to digital converters (16 bit, 20 kHz sampling

frequency). Two galvanic isolators isolated the digital signals to not pick up any noise from the data storing microcontroller (STM32F4). (B) Schematics of the system

with a STM32F4 as on-board computer. Diagram of all electrical components of the neurocopter system and the used buses additionally to the components which

are parts of the DJI Matrice 100 quadcopter. The blue arrows represent data transfer. The direction of an arrow symbolizes the direction of the information flow. The

red arrows show power supplies and their respective voltages. To make the code hardware independent, the STM32 cube hardware abstraction layer was used for

hardware access.

switching noises, interferes with the copter’s battery voltage,
and generates electric field changes. All those influences were
considered when the amplifier’s power supply was designed and
isolators were chosen. The cables transmitting analog signals
were particularly susceptible to noise. Copper tape was used to
shield all cables from electric field interference. The recorded
signals were amplified such that the biological signals were
detailed enough for sufficient spike sorting, but the large voltage
changes would not saturate the input range of the amplifier
(see Figure 8). The amplified and filtered (100–20,000 Hz)
signals were digitized and read out by a microcontroller board
(see Figure 3). This component acquires timestamps from a
connected GPS module and stores the data on an SD card.
The neural data, therefore, was synchronized to the copter
telemetry data.

2.2.2. Quadcopter
A quadcopter (Matrice 100, DJI, Shenzhen, China) was equipped
with the miniaturized recording system and an extension arm to
attach the animal and recording equipment. A camera observed
the tip of the arm from below and provided a view of the
environment (Yi 4k, YI Technologies, Singapore, see Figure 4).
The battery case was retracted slightly to balance the weight of
the extension arm for best flight stability. A custommetal cage on
top of the copter contained the amplifier board. It was shielded
with copper tape that was connected to the copter battery’s
negative terminal. The microcontroller board was located on
top of the cage. The extension arm also separated the bee from
the motors as far as possible without interfering with the flight
properties and the center of mass of the copter. The potential
pickup of electromagnetic fields emerging from the motors and
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FIGURE 4 | Environment of the navigation experiments. (A) View of the onboard video camera. The frame shows the experimental environment while the copter is en

route to the feeder (see marked location in B). (B) Trajectory of the trefoil flight pattern. Flights started at the south-west corner of the field, ∼180 m from the hive.

FIGURE 5 | Preparation setup and recording site. (A) Preparations for electrophysiological experiments were performed in a controlled environment with the honey

bee already attached to the quadcopter. (B) A small rectangular incision into the head capsule revealed the bee brain’s alpha lobe after the trachea and glands were

pushed aside. The electrode bundle visible in the microscope was attached to a micromanipulator with dental wax. Once the electrode bundle was implanted, it was

connected to the head stage on the copter via a custom connector jack. Finally, the electrodes and incision were sealed with silicone. Before the animal was moved to

the field, the electrode holder was detached to allow for a free anterior view.

propellers is decreased this way. The bee stage was connected to
the extension arm by rubber dampeners to reduce vibrations.

2.2.3. Field Site and Photogrammetry
A hive was set up at Free University Berlin (52◦ 27’ 25.3116" N,
13◦ 17’ 45.7584" E), and bees were trained to collect sucrose from
a feeder on a field (∼50,000 m2) at Julius-Kühn-Institute Berlin,
Germany (52◦ 27’ 39.7008" N, 13◦ 17’ 48.3288" E). All inflight
neurophysiological recordings were conducted at this site.

In the post-experimental data analysis, we studied the
link between neural activity and the animal’s visual input,
reconstructed from the copter’s position and a realistic 3-
dimensional map of the field site. Prior to the experiments, the
field was mapped using photogrammetry from aerial imagery
(using a DJI Inspire, Pix4D), resulting in a surface depth
map. Due to regulations, we were not allowed to fly over the
surrounding areas. We extracted freely available image data
(Google Earth) in virtual flyovers for the surrounding field
(in total 220 km2) and reconstructed the depth map in high-
resolution (12 cm/pixel) for a close neighborhood around the
field and in low resolution (∼4 m/pixel) for a larger surrounding

area. The three maps were combined in Blender (Blender
Online Community, 2018). This way, the high-res map of the
field (resolution: ∼13 cm/pixel) provided detailed and up-to-
date ground structures, while the two other models provided
horizon information.

2.2.4. Experimental Procedure
Honey bees were trained to a feeder on the experiment site, 420
m north of the hive. The feeder (0.5 M sucrose solution) was
positioned in the middle of the field (see Figure 4, standing on a
bright yellow box (80 cm wide, 35 cm long, and 40 cm high). All
bees visiting the site were marked. The marking color changed
every day to distinguish how many days a bee was foraging at the
site.

In preparation for an experiment, one of the marked honey
bees with at least three days of visiting the feeder was caught at
the hive. The bee was transferred into a glass vial and anesthetized
on ice. The bee, once immobilized, was carefully harnessed in
a bee holder with fabric tape and mounted to the recording
stage on the copter (see Figure 5). Under stereomicroscopic
vision, the head was opened, and the glands and trachea were
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pushed aside until the alpha lobe was visible (see Figure 5). Two
electrodes were implanted into the region of interest. The ground
electrode would then rest on the surface of the brain. Once
stable neuronal signals were occurring, the electrodes and head
aperture were sealed with silicone (Kwik-Sil, WPI, Sarasota, FL,
US). The bee and copter were then transported to the field site.
A preflight check assured that neural activity was present after
light stimulation (acoustic monitoring) and that the recording
system was running properly. After the preflight check, the bee
was flown automatically on a predefined path resembling a trefoil
(see Figure 4). The flight path was chosen such that it includes
feeder flyovers from different directions and a flight stretch into
the hive’s direction. This way, we would be able to explore several
hypotheses, e.g., that MBENs respond to familiar views. Bees
can see ∼300◦ horizontally on the body plane with low spatial
resolution for peripheral ommatidia (Seidl and Kaiser, 1981).
The bee holder may thus have blocked a small portion of the
posterior view (see Figure 5). Otherwise, the bee had an almost
unobstructed view of the environment.

Flights started in the southwest corner of the field,
approximately on the line connecting hive and feeder, into the
direction of the feeder. The copter lifted off manually to an
altitude of 15 m and was then switched to automatic waypoint
following. Flight velocity was set to 5.5 m/s. The speed and
altitude were chosen because of the legal requirement tomaintain
line of sight. The copter described a linear path to the feeder and
beyond and then executed a right turn ∼80 m behind the feeder.
The turn reoriented the copter back to the feeder, now facing
it from a different bearing. The sequence (feeder overflight and
turn) was repeated twice, and the copter then flew back to the
start location to repeat this flight pattern until the battery of the
copter was too low to continue (3–5 repetitions depending on
wind conditions, e.g., head- or tailwinds). The copter was then
landed manually at the start site for battery replacement, with
consistent rest times between trials. Each time, we downloaded
the data to a laptop and then performed the preflight check again.
The process was repeated until either the animal died or no spikes
could be registered anymore.

2.3. Data Analysis
2.3.1. Behavioral Experiments
Statistical hypothesis testing was performed to analyze the
behavioral data. For the wing duration experiment (section 2.1.1),
a one-sided Mann-Whitney U-test was used to test the null
hypothesis that there are no significant differences in observed
flight behavior duration between the three groups (hovering—H,
forward flying—F, and control—C).

For the homing experiment (section 2.1.2), a one-sidedMann-
WhitneyU-test was used to test the null hypothesis that there are
no significant differences in the duration of homing flights after
the release from the copter between the two groups (treatment
group—T, control group—C).

2.3.2. Neuronal Correlates of Navigation

2.3.2.1. Spike Sorting
The recorded data consisted of two channels of neuronal signals
timestamped by GPS signals. The GPS signal was also used to

timestamp the telemetry of the copters flight path, which would
be used to synchronize the data with sub-millisecond accuracy.
The telemetry data was saved with 100 samples per second,
including the speed, height, GPS coordinates, acceleration, and
orientation of the copter. The data were then merged using the
GPS timestamps.

The electrophysiological recordings were analyzed using the
Python scientific software stack (Walt et al., 2011; Virtanen
et al., 2020). We developed a data processing and spike sorting
procedure similar to Quiroga et al. (2004) but adapted to
high levels of non-homogeneous noise in the data caused by
the motors and rotors of the copter. A robust normalization
was applied to both channels separately: xt = [xt −

median(X)]/mad(X), where xt is the amplitude of the signal at
time t andmad is themedian absolute deviation of the signal. The
differential of the two recordings was then computed to improve
the signal-to-noise ratio in the data. Furthermore, a local robust
normalization was applied with a sliding window size of one
second to reduce the effect of the time-varying signal-to-noise
ratio caused by the quadcopter’s motors and rotors on the quality
of the extracted signal.

Spikes were then extracted using thresholding. A robust
estimate of the standard deviation was calculated as n =

median(X) ·k (k = 1.4826). The threshold for spike detection was
set to Thr = 4 ·n (Quiroga et al., 2004). Spike positions were then
extracted using local minima detection on the thresholded data.

For each detected spike, a window around the peak of the
signal of length 1.44 ms was extracted for spike sorting. Haar
wavelet coefficients were calculated using PyWavelets (Lee et al.,
2019). The dimensionality of these features was reduced using
the PCA implementation of scikit-learn such that each remaining
feature explains at least one percent of the variance of the wavelet
coefficients (Pedregosa et al., 2011). Anomaly detection was
performed using the Local Outlier Factor (Breunig et al., 2000)
on the PCA features, and detected outliers were not used in
further analyses. Spikes were then clustered using the HDBSCAN
algorithm (McInnes et al., 2017) on the PCA features using a
minimum cluster size of 100.

To increase the method’s sensitivity in periods of high noise
(e.g., during acceleration of the quadcopter), for each detected
neuron, the median spike shape was determined, and the
sliding Pearson correlation of this shape with the normalized
input signal was computed. The spike detection steps were
then repeated on the correlation coefficient, i.e., a threshold
was computed, and local minima beyond this threshold were
detected. This pattern matching spike detection increased the
number of detected non-outlier spikes from 13,861 to 17,106 in a
recording of∼14 min.

Spike trains were binned in intervals of 100ms, and spike rates
were calculated as the sum of detected peaks during each interval.
For the visualization of the rates in Figure 8, a rolling mean with
a window size of 3 s was used to smoothen the trajectory.

2.3.2.2. Autocorrelation of Spike Rates
The trefoil path was repeated multiple times per flight, and it
seems possible that the neuronal signals reflect these repetitions,
irrespective of which sensory properties the units we record
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FIGURE 6 | Mapping of a honey bee’s vision at one position. (A) 3D rendering from the photogrammetric model of the experimental landscape. (B) The reconstructed

honey bee’s perception of the field. To draw this perspective onto a map, the location of each pixel in the photogrammetric model is calculated. (C) Only pixels that

show a part of the field are used for mapping, which are marked as green in image Red pixels show parts of the environment outside the field. They are not used for

mapping as well as blue pixels which lead to artifacts after mapping. (D) Ray casting is used to model the locations in the field perceived by the individual and placed

on a map of the field. Each mapped pixel is assigned the same color as in the bee image.

from encode. To verify that hypothesis, we calculated the
Pearson correlation coefficient of the spike rate time series that
corresponds to a single repetition of the trefoil trajectory in a
sliding window over the whole flight’s recording. If the bee’s brain
signals reflect the repetitive flight patterns, we expect to see peaks
denoting the beginning of every trefoil pattern.

2.3.2.3. Realistic Model of the Honey Bee Compound Eye
In the data analysis, the copter telemetry data (GPS and compass
readings) were used to reconstruct the flight path in the 3-D map
of the environment. We previously published a software package
to reconstruct bees’ visual perception (Polster et al., 2019). These
bee viewsmimicked the field of view of the compound eye and the
distribution and sampling properties of individual ommatidia.
For each 3D position and orientation in the virtual environment,
the software casts rays for individual ommatidia and provides a
sample of the texture color at the intersection with the 3D model
(see Figure 6). To explore whether specific ground or horizon
structures may have given rise to repeatable spike activity, we
used the software to project spike rates back to the virtual surface.

3. RESULTS

3.1. Forward Motion Induces Tethered
Flight
The forward flight group F showed significantly longer wing
beating compared to both control and hover groups (median
[min, max]; group F: 13 s [0 s, 64 s]; F vs. group C: 2 s [0 s, 16
s], U = 279.5, P < 0.001; F vs. group H: 3 s [0 s, 14 s]; U = 468, P
< 0.001). Groups C and H did not differ significantly (U = 2329,
P = 0.089). See Figure 7 for boxplots of the data.

3.2. Copter Transfer Allows Faster Homing
Bees in the treatment group T returned home after a significantly
shorter amount of time (median [min, max]; group T: 149.5 s [75
s, 1,070 s]; T vs. group C: 200 s [105 s, 875 s]; U = 326, P = 0.019).
See Figure 7 for boxplots of the data.

FIGURE 7 | Individuals show more natural flight behavior while being attached

to a flying drone and can navigate faster when they can perceive their

environment while being transported to a new location. (A) The total time of

wing beating on the ground, in stationary flight, and during forward movement

of the drone. Wing beat behavior occurs for longer durations during a forward

movement of the drone (N = 47). (B) Individuals were caught at a feeding site

and replaced to a new location using the drone before being released (N = 54).

Bees in the control group (N = 18) were contained in an opaque container and

could not visually perceive their environment during flight. Return times to the

hive were measured, and control bees were found to take significantly longer

to return.

3.3. Recording Neural Activity Is Feasible
on a Flying Copter
Before using the new recording system on the copter, we
tested its functionality with artificial signals and signals from
a honey bee brain under laboratory conditions. Activity
from the same source was recorded with both the copter’s
amplifier system and a commercial system (amplifier: EXT,
npi, Tamm, Germany; digitization: 1401micro, Cambridge
Electronics Design, Cambridge, UK). We found no significant
differences in the data obtained by these two systems when
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FIGURE 8 | Spike train evaluations for bee A. (A) The neuronal activity recorded during a flight from two channels exhibited high noise levels, most of which was

eliminated by subtracting the two channels in the digital domain. (B) The differential raw trace shows spikes above residual noise. (C) Recording from (B) zoomed in

on two individual spikes (exceeding the horizontal threshold potential). The recording was spike sorted to extract single-unit activity. (D) Spike shape template of units

shown in (C). (E) Inter-spike interval (ISI) distribution showing a single mode at 21 ms and very few instances below 5 ms. (F) Spike rate over time per flight (see

Figure 4). Each graph represents a repetition of a continuous flight path from start to finish for the same trefoil trajectory. The repetitions share similar features

synchronized to the time (and therefore place) of the flown path.

FIGURE 9 | Spike rates are strongly autocorrelated for multiple repetitions of the same flight trajectory. Sliding-window autocorrelations were computed for all rounds

of six (a–f) flights. For all flights, particularly for flights a, b, and d, strong correlations of spike activity were observed for several rounds of the same flight trajectory.

Gaps between rounds and the starting and landing periods were removed, and the sliding Pearson correlations were computed. Gray lines indicate the start of

a round.

comparing spikes from bee brains as well as sweeping through
frequencies generated artificially.

In-flight, we successfully recorded uninterrupted single-unit
activity from MBENs for multiple repetitions of the flight
trajectory. The electrodes picked up significant amounts of EM
noise produced by motor controllers, motors, and propellers. We
observed that the noise levels differed between channels, probably
due to differences in impedance. However, the differential

recording allowed removing much of it when carefully adjusting
the respective digital gain factor for one of the channels. For
each experiment, the factor was set manually after the fact. Once
this tuning was complete, spike shapes emerged. The amplitude
of the monopolar input channels was around 100 times larger
than the resulting spikes from the differentiated channel. These
recordings were then sorted. We calculated interspike intervals
and confirmed that the refractory period of 4 ms was rarely
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FIGURE 10 | (A) Spike rate of mushroom body output neurons of an individual bee and angular velocity during flight. (B) A strong time-lagged correlation between

spike rate and rotational speed (yaw) was found with a lag of 0.7 s (Pearson’s r 0.27, p ≪ 0.001).

undercut, indicating the successful sorting of single spike sources.
For more details, see Figure 8.

3.4. Neuronal Activity During Flight Is
Repeatable
Experiments with neuronal recordings on the copter took place
during the fall of 2018 and summer of 2019. Starting with
around 200 animals, we successfully implanted electrodes into
∼50 animals, all producing neural activity upon light stimulation.
However, only 10 animals continued to provide spike data after
transport to the field, and only three of these recordings passed
the post-experiment quality control check. Half of the recordings
showed too much noise over the entire flight list with doubtful
spike sorting results, and two recordings were excluded due to
variable signal-to-noise ratios throughout the experiment.

The neural recordings are consistent for repeated
environmental stimuli. We find strong autocorrelation of
the spike rates for single trefoil flight patterns in individual bees
(see Figure 9). This indicates a relationship between the phase of
the trajectory and the spike rate.

We found that episodes with high spike rates coincide with
turning maneuvers (see Figure 10), though high spike rates do
not exclusively appear in turns, and some turns do not show
higher spike activity. These findings are consistent for repetitions
of the same trajectory in one animal but also between individuals.
We found a strong correlation of the spike rates with the copter’s
turning velocity at a latency of 0.7 s. In some recordings, straight
flight paths showed spike rate variations as well, yet we did not
find any explanation for this behavior (see Figure 11).

Visual inspection of the spike rates revealed no apparent
correlation to the bee’s spatial relation toward the feeder or the
hive. We used a model of the bee compound eye to map the spike
rate back to the map of the area for each position along the flight
path (see Figure 12). While blobs of activity are visible on the
resulting maps, they are likely due to single bursts and not due to
distributed activity summing up over repeated overflights.

The mapping of spike rate activity to the field of view of the
individuals in general revealed regions associated with high spike

rates that were varying over multiple repetitions of the same
trajectory, even within one individual. Interestingly, even when
excluding the turns in this mapping, the regions near the turning
maneuvers tended to show the strongest activity (see Figure 11).
We found no clear evidence of consistent associations of spike
rate with specific landmarks in the data analyzed here.

4. DISCUSSION

We propose a novel methodology in the search for the neural
correlates of navigation in bees. In contrast to reproducing
realistic conditions in virtual environments, we propose moving
the lab to the field. While this approach comes with its own
challenges, we show that recording neural activity from MBENs
in honey bees is feasible on a quadcopter in flight.

We miniaturized the recording hardware, and substantially
reduced motor noise picked up by the electrodes with
various strategies, from grounding and shielding to differential
recordings and respective hardware design decisions.

Those bees that survived the implant and were transported
to the field survived multiple repetitions of the flight trajectory.
The bees that entered analysis showed no baseline shifts
indicating electrode movement nor subsequent loss of units. The
electrophysiological data are of high quality, and the spikes and
their properties are close to those recorded under lab conditions
(Zwaka et al., 2019).

While continuous wing-beating behavior was observed for
only a fraction of natural navigational flight durations, forward
flight induces longer wing beating compared to the control
groups. It is possible that tethered bees, even those that do not
fly, perceive their environment as indicated by their significantly
shorter homing flights as compared to compromised vision.

Data from three successful neurophysiological experiments
may not be conclusive evidence that bees fully retrieve
their navigational experience when tethered on a copter, the
reproducible neural activities during their trefoil paths, however,
suggest that MBENs encode visual features possibly related to
the environment. The most prominent correlation we found
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FIGURE 11 | Flight trajectories and spike rate. Each plot shows the spike rate as false color on top of the coordinates of the flown trajectory. The plots are in

consecutive order for the first three flights of each bee [(A) Bee A, (B) Bee B]. The following flights are depicted in the supplementary. At the center of the flower

formation, the trained feeder is located. The spike rate in Bee B is more heterogeneous and higher at the corners. The flown corners in the experiments of bee B are

sharper than for bee A.

FIGURE 12 | Mapping of the spike rates on the field of view of the individuals during flights. At each position, all pixels in the field of view of the bee on the map are

assigned the corresponding spike rate value at that time. The mean is calculated of pixels with multiple assigned spike rate values during mapping. Turns were

excluded to highlight spike activity during parts of the rounds without high angular velocity. See the Supplementary Material for the mapped spikes rates

including turns.

confirms earlier findings of body turning encoded in MBENs of
the cockroach (Mizunami et al., 1998). A similar relationship was
found during flight turns in cockroaches (Guo and Ritzmann,
2013). The spike rate correlation could also be related to non-
visual stimuli like antennal deflection or changes in inertia.

Before continuing these recording experiments, a few
additional key challenges have to be overcome. We need to
increase the success rate (currently only 5%) and survival time
of the animal. The success rate under laboratory conditions
varies between 30% in bees mounted to a tube (Filla and
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Menzel, 2015) and 10% in bees moving stationary in a virtual
environment (Zwaka et al., 2019). The recording electrodes
require improvement, particularly the ground electrode that
appears to transfer too much mechanical stress onto the brain.
One failure case may be attributed to the silicon we used to
seal the head access window. In some animals, the signal quality
decreased over the time the silicon was set to dry, and we suspect
the electrode position to have changed due to shrinkage of the
silicone seal. A strong seal that limits electrode movement also
throughout the copter flights appears as a crucial element in
increasing recording quality.

To reduce post-experiment rejection rates (so far at 70%),
we need to further improve the signal-to-noise ratio. On the
one hand, this could be accomplished with better shielding and
adaptive impedance matching for the channel subtraction. On
the other, the assessment procedure that determined whether
spike magnitudes are sufficient would benefit from a realistic
simulation of anticipated copter noise in the lab.

The main problem for interpreting the results is that spike
rates can only be meaningfully compared within the same animal
due to potential differences in the neuronal connectivity and
electrode implant locations between individuals. Unfortunately,
only a finite amount of data can be recorded from one
individual, making the interpretation of the results difficult.
It may be possible to assess the exact recording location via
imaging techniques. To improve the repeatability of the implant
and reduce variability in the resulting signals, the electrode
production, insertion, and sealing process could be automated in
future studies.

An important question to be addressed more accurately in
future work will be to relate the localization of the recording
electrodes to subsets of MBEN or brain structures such as
the central complex. Extracellular recording techniques come
with the unavoidable limitation of spatial location. Therefore,
the preparatory steps during the selection of the recorded
neurons become extremely important. Technical improvements
that allow extending the recording time substantially will help
characterize the selected neurons physiologically by probing
batteries of more complex stimulus conditions before the
preparation is fixed to the copter. So far, we selected for stable
responses to simple movement stimuli before the bee was fixed
to the copter. Thus, it is not surprising that the MBENs analyzed
here correlate with turning motions.

Our data analysis includes the reproduction of the bee’s
visual perception using a three-dimensional map created before
the experiments. In contrast to recording synchronized video
approximating the field of view of honey bees directly on the
copter, our approach drastically reduces the amount of data
recorded in each experimental run. However, our model of
the honey bee vision using a photogrammetric model of the
environment can not simulate the dynamic nature of vegetation,
celestial cues, and weather conditions.

Bees have shown flight behavior in a virtual reality setup
(Luu et al., 2011), on average even longer than on our copter,
despite lacking realism and completeness of the stimulation.
While the experimental protocols are not comparable between
this and our study, a question still remains for both the drone

and the VR approach in general: do bees require a closed feedback
channel, i.e., some control over their sensory input, for prolonged
flight? Closed-loop bee flight in virtual arenas has not been
accomplished yet, possibly due to a lack of realistic multimodal
stimulation. Still, while the drone approach offers exactly that, it
comes with the challenge of sensing the bee’s desired change in
body pose under muchmore noisy conditions—likely a challenge
the lab approachmay overcomemore readily.Why then continue
developing the copter system? A likely use-case in the future may
be the verification of specific results concerning navigation and
neuronal correlates that emerged from VR setups or other lab
based experimentations. Functionally relevant claims from such
experiments could be put to the test by ourmethod. A verification
of results from VR experiments should be valid even with low
numbers of bees if the results are consistent. On the other hand,
open-loop VR experiments can now investigate whether similar
repeatable neuronal activity as shown here can be found in virtual
trefoil flights of harnessed bees as well. We will gladly share
all relevant data for this comparison (3D map, flight paths and
neural recordings).

Our system complements the toolkit for studying the
neural correlates of natural navigation in bees. While future
developments of lab-based setups may need to focus on a
realistic, multimodal reproduction of the environment, drone-
based setups are confronted with more complex control tasks.
Since, to our knowledge, there is not yet a virtual reality
system capable of recording brain activity in flying bees,
our system can serve as an alternative starting point. To
encourage the continuation of this effort, we are sharing
this proof of concept, as presented here, in its entirety with
the community.
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Despite considerable advances, studying electrocommunication of weakly electric fish,

particularly in pulse-type species, is challenging as very short signal epochs at variable

intervals from a few hertz up to more than 100Hz need to be assigned to individuals.

In this study, we show that supervised learning approaches offer a promising tool to

automate or semiautomate the workflow, and thereby allowing the analysis of much

longer episodes of behavior in a reasonable amount of time. We provide a detailed

workflow mainly based on open resource software. We demonstrate the usefulness by

applying the approach to the analysis of dyadic interactions of Gnathonemus petersii.

Coupling of the proposed methods with a boundary element modeling approach,

we are thereby able to model the information gained and provided during agonistic

encounters. The data indicate that the passive electrosensory input, in particular,

provides sufficient information to localize a contender during the pre-contest phase,

fish did not use or rely on the theoretically also available sensory information of the

contest outcome-determining size difference between contenders before engaging in

agonistic behavior.

Keywords: supervised learning, agonistic behavior, weakly electric fish, passive electric image, active electric

image

INTRODUCTION

Weakly electric fish are active at night and are frequently found in dark and turbid environments
(Moller et al., 1979). The specialized electric sense enables weakly electric fish well adapted to cope
with the specific challenges imposed by this lifestyle (Carlson and Sisneros, 2019). They produce
electric signals for both, electrolocalization and electrocommunication with conspecifics (Möhres,
1957; Lissmann, 1958; Lissmann and Machin, 1958; Moller, 1970). These signals are generated
through an electric organ (EO) distributed along the trunk (South American weakly electric fish)
or the tail (African weakly electric fish). The synchronous discharge of these organs [electric organ
discharge (EOD)] is used to emit either intermittent or continuous electric fields (Gallant, 2019).
EODs are low in amplitude (often in the order of 1mV) and, in addition, these signals attenuate
steeply with distance from the emitting fish (Rasnow, 1996; Sicardi et al., 2000; Chen et al., 2005;
Nelson and MacIver, 2006).

With respect to electrolocation, it is known that weakly electric fish electrically locate
objects in the dark and even discriminate between objects relying on various object features
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(von der Emde, 1990, 1999; von der Emde and Bleckmann, 1998;
Schwarz and von der Emde, 2000). Furthermore, it has been
investigated that electric fish also use their electric sense for
spatial navigation (Jun et al., 2016; Jung et al., 2019). The role of
EODs in electrocommunication has also been studied although
these studies until recently were constrained to lab conditions
(Moller, 1970; Walz et al., 2013). Recent (costly) advances have
made it possible to now also study electric communication (of
wave-type species) in the wild (Henninger et al., 2018, 2020;
Madhav et al., 2018; Raab et al., 2021).

Weakly electric fish are either a wave type, i.e., emitting
EODs continuously, or a pulse type, i.e., emitting short EOD
pulses with variable intervals between pulses. Wave-type weakly
electric fish emit with relatively stable EOD frequencies (Walz
et al., 2013; Henninger et al., 2020) and this continuous
discharge at stable and individual-specific frequencies makes
the attribution to individuals comparatively easy (Madhav
et al., 2018). In pulse-type electric fish, however, the inter-
discharge time is typically larger than the EOD duration,
making a frequency-based assignment of EODs impossible.
Furthermore, the EODs of pulse-type species typically show
relatively small intrasexual individual differences (Carlson and
Arnegard, 2011; Krahe, 2019). In Gnathonemus petersii, the role
of androgens and estrogen on the EOD waveform has been
demonstrated (Landsman et al., 1990). In captivity, without any
hormonal treatment, interindividual EOD differences are rather
small. This holds specifically true for individuals of the same
sex (Landsman et al., 1990; Landsman, 1993). The study of
electrocommunication in pulse-type species is still limited by
the laborious manual analysis of very short behavioral sequences
(Moller and Bauert, 1973; Gebhardt et al., 2012). A successful
workaround has been the use of artificial fish that emit pre-
defined EOD sequences. This has proven as a successful means to
study the impact of the defined EOD sequences on the behavior
groups of fish and individuals (Donati et al., 2016; Pannhausen
et al., 2018; Worm et al., 2018).

Our study aims to provide tools to facilitate the assignment
of EOD in pulse-type fish. While we establish a workflow for the
interaction of dyads, the approach in principle can be scaled up to
larger groups. In contrast to the aforementioned techniques that
allow purely electrical tracking and identification of individuals,
the workflow established in this study aims to facilitate offline and
lab-oriented work and requires the extraction of fish locations
using common visual tracking methods.

In brief, our approach employs supervised learning methods
to first track fish individuals and then use the position data to
assign EODs to the individuals. The position tracking is based
on open-source software (https://sleap.ai/, version: 1.016) that is
used for estimating the positions of animal body parts (Pereira
et al., 2019, 2020). It supports multianimal pose estimation and
tracking and includes an advanced labeling/training graphical
user interface (GUI) for active learning and proofreading.
Implementing a decision-tree model that was trained with
prerecorded data, we then used the position data to attribute
EODs to individuals. The model is part of the Scikit-learn
package, implemented in Python, and also freely available
(Pedregosa et al., 2011). The combination of visual tracking and

supervised learning resulted in high performances and accuracy
of position estimation and the attribution of EODs to individuals.
Error rates were below 5% and could be reduced further with a
small to an intermediate effort by using the interactive social leap
estimates animal poses (SLEAP) GUI and resorting to themanual
assignment of EODs in a small and automatically identified
subset of the data.

To demonstrate the suitability of the proposed workflow,
we applied it to study the aggressive behavior in G. petersii
during dyadic interactions. These fish are territorial and often
live in fixed groups with social ranking. In residence-intruder
interactions, the aggression of the resident fish toward an
intruder has been described (Crockett, 1986). The outcome of
such encounters can depend on the body size, meaning that
the larger fish has a higher probability to win the fight (Bell
et al., 1974; Terleph, 2004). As agonistic behavior can be costly,
we now ask if the electric sense contributes to a precontest
assessment of the quality of a potential contender before engaging
in agonistic interactions. The resource holding potential (RHP),
i.e., the ability to win a possible fight, is frequently assessed
based on far-ranging sensory input (Nelson, 2006), but these
are unavailable or unreliable during the nocturnal encounters of
weakly electric fish. Therefore, we ask if G. petersii can evaluate
the outcome of a fight before the first physical contact: We
hypothesized that fish would not initiate an aggressive contact
if they can determine beforehand that they are likely to lose.
If so, the electrosensory information may either be passive
and/or active. The former modality allows the perception of
external electric fields created by inanimate or living organisms,
including the EODs of other weakly electric fish. In contrast,
the active electrosensory modality relies on the perceptions of
the self-generated electric field. Here, the modulation of this
field through nearby objects having a different conductivity or
capacity from the surrounding water provides environmental
information used by these fish to reconstruct their surrounding
(Knudsen, 1975; von der Emde, 1999). A previous study on the
South American weakly electric fish Gymnotus omarorum tested
the RHP of the contender through modeling of the sensory input
(Pedraja et al., 2016). We do a follow up on this study using an
evolutionary distinct weakly electric fish lineage to demonstrate
the power of supervised learning methods for research on weakly
electric fish communication. Passive and active electroreception
is mediated through different electroreceptors that both occur
and are distributed over the animal skin. The electric pattern,
i.e., the distribution of local field intensities, provides the relevant
input to both modalities. This spatial distribution is referred to as
the electric image (EI) (Caputi and Budelli, 2006). To distinguish
between active and passive sources, we will refer to the sensory
images generated by the presence of external electric fields as
passive EI and to those images generated by the distortions
through elements in the electrosensory scenery as active EI.

MATERIALS AND METHODS

Setup
The experimental tank had a size of 66× 72 cm and was filled up
to a water level of 12 cm. Seven pairs of electrodes were mounted
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on the tankwalls. Electrodes weremade of coated thin silver wires
attached to plastic rods, the tips of the wires were exposed for
about 1–2mm and placed 5 cm above the tank floor. The floor
of the tank was filled with small glass beads to allow illumination
from below.

Electric organ discharges were recorded with an Axon
Instruments amplifier (Foster City, CA, USA; Cyber Amp
380), digitized at 125 kHz (National Instrument, Austin, TX,
USA; PCI-6251M, 24 bit). Amplification and filter settings
(high-pass 300Hz and low-pass 10 kHZ) of the amplifier were
controlled through the software (National Instruments, Austin,
TX, CyberControl, 1.1.0.12).

IR-LEDs (880 nm) were placed below the tank to illuminate
the tank from below. G. petersii has been reported to not
perceiving IR light of this wavelength (Ciali et al., 1997). Videos of
fish were captured from above (Mako 130B mono, AVT imaging,
frame rate: 30 or 10Hz, stored in an AVI format). Each exposure
also triggered a transistor-transistor logic (TTL) pulse that was
recorded alongside the EOD data (125 kHz sampling rate, 12 bit,
audio card). These pulses were used to synchronize video and
EOD data. EOD and video recordings were initiated through
custom written MATLAB scripts (32 bit; R2013, MathWorks,
Natick, MA, USA).

Animals
Fish (n = 6) were housed in a large tank with partitions to keep
individuals from physical interactions outside the experimental
time. The light/dark cycle was 12/12 h, and all experiments were
conducted during the subjective night time of the fish. Water
conductivity in the experimental tanks was 120 ± 5 and 160 ±

20 µS/cm in the holding tanks. Water temperature was regulated
to 22 ± 2◦C by heating the experimental room to avoid electric
noise through aquarium heaters.

Data Sets
Two different data sets were acquired. Data set I is based on two
fish of equal size, where we obtained 20 60 s recordings of each
of these fish exploring the tank individually. This data set was
used to train supervised learning models such as the random
forest regressor (RFR) model and multilayer perceptron (MLP)
models (see section Types of Supervised Learning Models for
Regression). To estimate the performance of EOD allocation, we
also recorded and analyzed 10 60-s long videos with both fish
interacting in the tank. The performance of EOD allocation was
analyzed by contrasting this automated allocation to a human-
observer-based allocation of EODs (see section Using Supervised
Learning to Predict the Fish Position of Real Fish).

With data set II, we then further evaluate the suitability of
the workflow by addressing aggressive behavior during dyadic
interactions of fish of different sizes (n = 6). Size difference and
thus the differences in EOD amplitude could in theory influence
the accuracy of the EOD allocation, thus this data set also served
to test for the robustness of the used model. Our behavioral
analysis focuses on the first approach between two fish. With the
6 individuals, we could have tested 15 possible pairings. However,
we excluded the interaction of the two fish used in the first data
set to make sure that fish had not a chance to have a priori

knowledge about their contender. Of the remaining 14 pairings,
we needed to exclude 1 pairing, where fish approached each other
swimming backward making it impossible to determine who
initiated the contact.

Two-Dimensional Representation of
Electric Potentials
Python (Version 3.7) was used to simulate the potential at the
electrodes in the horizontal plane of the experimental setup.
For this, virtual electric dipoles (virtual fish) were randomly
positioned and oriented in this plane (2,500 positions tested). To
minimize border effects, virtual fish were at least 10 cm from the
walls of the tank. In total, 20 virtual fish of 8–15 cm length were
simulated. Thus, the used data set contained the variables fish
length, x and y coordinates of the fish center, and the sine and
cosine of the angle, the virtual fish was oriented at and the seven
potentials of the electrodes.

The electric field of the virtual fish was modeled based on
a simple dipole, i.e., point charges of equal amplitude and
opposite polarity located in the tail and the head of the animals,
respectively. The potential at the electrodes was calculated using
the equation for an electric dipole potential:

V = k∗q∗(1/R1− 1/R2) (1)

where V is the resulting voltage, k is the Boltzmann constant, and
R1 and R2 are the distances of the head and tail position to the
electrodes of interest, respectively.

We were only interested in the relative differences between
electrode pairs. Therefore, charge q was set to 1/k throughout
all simulations, this resulted in electrode voltages within the
range of ±1V irrespective of the position of the fish in
the tank. For the electrodes, we simulated both differential
and single-ended recordings against the ground. Differential
recordings were simulated as the potential difference of electrode
pairs, whereas single-ended recordings were simulated with the
reference potential in the center of the tank.

Types of Supervised Learning Models for
Regression
We tested several types of supervised learning models to predict
fish position and orientation based on the electric potentials. We
now describe the twomodels that we determined as suitable from
pretests. To compare their performance, we used the estimation
errors of the models when allocating EODs for real fish (data set
I) (Figure 1).

Random Forests Regressor
A nonparametric supervised learning method, decision trees, is
used for classification and regression (Figure 1A). The objective
of a decision tree is to establish a model for predicting the value
of a target from the input data features through learning simple
decision rules. Each decision tree has branches and three types
of nodes: the root node is the initial node, which represents
the entire sample (in this case electrode potentials). The interior
nodes represent the features of a data set, and the branches
represent the decision rules. Finally, the leaf nodes represent the
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FIGURE 1 | Supervised learning methods for regression. (A) A decision tree comprises a root node containing all input data features, interior nodes containing

subsets of the data, and leaf nodes containing the final target values. A decision tree can have different numbers of interior nodes and leaf nodes. The goal of a

decision tree is to create a model that predicts the value of a target variable (x and y position of the six fish skeleton coordinates) by learning the decision rules derived

from the data (electrode potentials). (B) A multilayer perceptron (MLP) model can learn a nonlinear function approximation from a set of features and a target. The

input layer comprises a set of neurons representing these input features (electrode potentials). Each neuron in the hidden layer transforms the values from the previous

layer through a weighted linear summation followed by a nonlinear activation function. However, in case of a regressor model, the activation function is omitted (set to

the identity function). The output layer receives the values from the last hidden layer and transforms them into output values (x and y positions of the fish skeleton). (C)

Comparison of the regression performance of the random forest regressor (RFR) and MLP models with different numbers of hidden layers. The spatial error is defined

as the average distance between true and the model-estimated head position (anchor point, see also Figure 2).

outcome (in this case x and y positions of the fish skeleton).
Decision-tree models are prone to overfitting. Random forests
are an ensemble learning method for classification, regression,
and the other tasks that operate by constructing a multitude
of decision trees at training time. They provide a solution to
the problem of overfitting. In random forests, each tree in
the ensemble is built from a sample drawn with replacement
(i.e., a bootstrap sample) from the training set. For random
forest regression tasks, the average/median/most common vote
prediction of the individual trees is returned.

Multilayer Perceptron Model for Regression
This type of model can learn a function approximation from
a set of features and the target (Figure 1B). The input layer
comprises a set of neurons representing the input features (in
this case: electrode potentials). Each neuron in the hidden layer
transforms the values from the previous layer with a weighted
linear summation. In a classification model, this is followed by
a nonlinear activation function. However, in case of regression,
the activation function is set to an identity function. The output
layer receives the values from the last hidden layer and transforms
them into output values (in this case: x and y positions of the
fish skeleton).

Using Supervised Learning to Predict Fish
Position and Orientation of Simulated Data
A supervised learning algorithm was applied to predict fish
position and orientation based on the simulated potentials.
Specifically, we used the RFRmodel from the Scikit-learn package
(Version 0.22.2) with default settings and the number of trees
in the forest set to 25 (Pedregosa et al., 2011). The electrode
potentials to the model were provided as independent variables
from which the location, orientation, and size of the fish had to

be predicted. A grid search optimization (“GridSearchCV” from
the Scikit-learn package) was used with 25 iterations to tune the
RFR. To evaluate the learning, the data set was split into a training
(75% of the data) and a test set (25% of the data) that was not
included in the learning phase. The supervised learning success
was verified by a built-in metric (“score” function in the Scikit-
learn package). The score function returns the coefficient R² that
is defined as (1-u/v), where u is the residual sum of squares: sum
[(true position–predicted position)2], and v is the total sum of
squares: sum [(true position–mean (true position))2]. Thismetric
thus ranges between zero and one for optimal performance.

To verify the suitability of different electrode configurations
in more detail, the deviation between the predicted values of the
test set and the true virtual fish size, position, and orientation was
calculated. In the following, we focus on the position error as we
only used this in the behavioral experiments. Matplotlib (Version
3.2.1) was used for visualizing the results (Hunter, 2007).

Using Supervised Learning to Predict Fish
Position of Real Fish
We used supervised learning methods to predict fish position
based on the recorded EOD data with the aim to assign EODs
to individual fish. The workflow (Figure 2) consisted of several
interacting steps as described in detail in the following.

The RFR model was used again for the behavioral data; in
addition, we also tested different MLP models. There were a
few changes with respect to the setup and the data estimated.
Fish were allowed to move freely within the experimental tank,
including tank boundaries. Furthermore, we did not estimate the
virtual fish position and orientation, but rather the position of the
six nodes of the skeleton of an animal (Schnauzenorgan, head1,
head2, mid1, mid2, and tail) as previously defined in SLEAP (see
section Fish Position Tracking). We used the default parameter
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FIGURE 2 | An Illustration of the workflow. Electric organ discharge (EOD) detection was done in Matlab (white background), whereas fish tracking and pose

estimation were based on Python (gray). The tracking in the open-source package social leap estimates animal poses (SLEAP) is based on deep neuronal networks

that are computational demanding. Therefore, we relayed the training and final tracking of the data onto the CoLab platform (medium gray). The RFR (dark gray) was

trained using the EOD waveform vectors as an input and the tracked (single fish) position data as the target. After training, the EOD waveform vectors were used to

estimate fish position. This estimate from the RFR then was compared to the tracked fish position to assign the EOD identity in Matlab (see also Figure 7). The later

behavioral analysis of agonistic behavior relied on the data set generate in this way to analyze the electrosensory information provided by the active and passive

electrosensory system during the observed behavior (blue background).

settings of the RFR model from the Scikit-learn package, also the
“n_estimators” was set to 100.

We used an MLP model from the Scikit-learn package
(Version 0.22.2) with default settings (except for the two

parameters) to construct neuronal networks of different size.
The size of the hidden layer was 50, 100, or 200, respectively.
The number of iterations was 10,000 to ensure that all models
converged (Pedregosa et al., 2011).
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To train the supervised learning models, 40 videos from the
data set I with single fish swimming in the area were used (58.385
EODs and corresponding fish positions). The EOD waveform
vectors [see section EOD Detection; Figure 3A(iii)] were used
as the input, and the positions of the six skeleton nodes of
the fish midline (Figure 4) were the target to be learned. The
performance between models and model configurations was
assessed using 25% of the data previously not included in the
model training. From the four options, the RFR model was the
best in localizing the position of the emitting fish as verified using
the head position of an animal now (Figure 1C). This model thus
was used on data set I with both fish swimming together (15.763
EODs and positions). While the network estimated the position
of six nodes for each individual, we are primarily interested in
the identity of the EOD-emitting fish. Therefore, we calculated
the root mean square (RMS) error (summed over all six nodes)
between the model estimated fish positions of the true fish
positions (Figure 7A). The fish with the smallest RMS error was
labeled as the EOD-emitting fish.

To compare this automated identification to the human-
observer identification, we first manually assigned all 15.763
EODs based on visual inspection to the individual fish. To
estimate the precision of this human-observer approach, the
process was conducted a second time after 3 months, and a
disagreement in about 1% of the cases was found. Because the
error rate using the network was substantially larger than 1%, we
manually corrected those EODs presumably wrongly assigned by
the model.

EOD Detection
For EOD detection, a custom written Matlab program was used
(Figures 2, 3). To obtain the EOD vector later used for EOD
assignment in the supervised learningmodels, the following steps
were taken (Figure 3A):

i) Electric organ discharge threshold detection: EODs were
detected using a separate threshold for each of the seven
channels. The thresholds were set such that they were clearly
above the noise level and low enough that each EOD was
detected at least from one channel.

ii) Waveform extraction: to temporally align the EODs, we
took the average of the absolute values on all channels
[Figure 3A(ii)]. Then, the original EOD channels were aligned
to the maximum peak of the mean absolute trace. We cut
individual EODs using a temporal window of 272 µs before
and 128 µs after the peak.

iii) Waveform vector normalization: a row vector was created
containing the data of an EOD of all seven electrodes. This row
vector was then normalized by the absolute maximum peak
resulting in a voltage range of±1V [Figure 3A(iii)]. This step
was taken to make the EOD assignment more robust against
variable fish sizes.

Temporally overlapping EODs of two fish were detected in the
following way (Figure 3B):

iv) EOD doublet detection: each normalized EOD waveform
was automatically compared to the average normalized

EOD [Figure 3B(iii) top]. To obtain the normalized average
EOD waveform, the absolute values of the EOD recordings
were averaged across all detections and channels and then
normalized by dividing the average by the peak amplitude.
Correspondingly, the normalized EOD was obtained by
averaging the absolute values of the seven EOD channels and
then normalized by the maximum.

The histogram of the difference between the normalized single
EODwaveforms and the normalized average EODwaveform was
long-tailed in each data set. The majority of EOD doublets was
found in this tail of the histogram [Figure 3B(i,ii)], allowing
to focus the manual correction to a fraction of the actual
data: if the absolute deviation exceeded a threshold, EODs were
visually inspected by the user to determine if doublets occurred
[Figure 3B(iii)]. We stored the time point of the doublet and
reassigned the EOD to both fish after the automatic assignment
of the EODs with the RFR model.

Fish Position Tracking
For video-based tracking of the fish positions, we used SLEAP
(Pereira et al., 2019, 2020; Figures 2, 4). SLEAP is a framework
for multi-animal body part position estimation via deep learning.
It is written in Python and comes with a labeling and training
GUI that supports active learning. We used the multi-animal
top-down approach because an initial comparison showed better
results than the bottom-up approach also available in this
framework. The top-down approach complements two different
models: the centroid model first predicts the location of each
animal in a given frame. Then, the instance centered confidence
map model is used to predict the locations of all the nodes
(“posture”) for each animal separately.

The use of SLEAP is well documented elsewhere (https://sleap.
ai) (Pereira et al., 2019, 2020). However, in short, our workflow
consisted of the following steps (Figure 2; light and medium
gray panels).

i) Creating the skeleton: the skeleton consisted of six user defined
nodes (e.g., Schnauzenorgan, head positions 1 and 2, mid
positions 1 and 2, and tail) and the corresponding edges (e.g.,
connection between Schnauzenorgan and head position 1).

ii) Initial labeling: about 50 randomly chosen frames out of 10
videos (data set I, two interacting fish) were used for the
initial labeling. To account for a variation in the setup, we
chose the videos where the background differed, i.e., the glass
beads covering the floor were manually shuffled, resulting in a
heterogeneous distribution of the background intensity.

iii) Creating a custom training profile: the SLEAP-label GUI
was used to create a custom training profile for the multi-
animal top-down model. The profile must be adjusted to
match the animal under investigation. Specifically, we adjusted
the anchor part and the input scaling. The anchor part is
an important parameter as it is used to estimate where each
animal is located. We chose head position 2 as the anchor part
as it was in a relatively central position and can be precisely
located as the midpoint between the pectoral fins. The input
scaling of the centroid model was set to 0.5, which enabled
matching of the receptive field size to the actual fish size. In
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FIGURE 3 | (A) Extracting EOD input vector for the RFR model. (i) EODs were extracted by a threshold operation. The threshold was defined differently for each

channel. It could be set way above noise level as EODs had to be detected only in one of seven electrode recordings. If two EODs were separated in time by less than

400 µs, the later EOD was deleted. Interfering EODs of two fish were detected in an additional step. (ii) To align EODs, we took the absolute values and averaged

across all electrodes. EODs were cut 272 µs before and 128 µs after the EOD peak. (iii) The concatenated EODs were stored as a vector. (B) Detection of interfering

EODs. (i) Histogram of the residual errors of single EOD waveforms from an average EOD waveform. EODs were normalized to the absolute maximum peak

beforehand. Inset: enlargement of the histogram including the threshold above which EOD waveforms were checked. (ii) Percentage of EOD doublets of the total

number of EODs checked (blue) and the absolute number of EOD doublets found (red) plotted against the number of EODs checked. With the threshold shown in red

in the inset in [B(i)], 119 EODs needed to be inspected. Of these 98% are doublet EODs, which accounts for almost 90% of all doublets in the data set. Thus, the

manual re-analysis can be made very efficient by concentrating on this “suspicious” fraction of the total data. (iii) Example of two overlapping EODs. EOD doublet can

be easily identified by visual inspection. Upper panel: normalized average EOD waveform (black) and single EOD waveform (red); middle panel: EOD recordings

aligned to the maximum peaks. Lower panel: EOD recordings including the EOD detection surrounding the current “doublet” EOD (green).
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FIGURE 4 | An example of single video frames shows the superimposed skeletons tracked using SLEAP. In the majority of cases (see i,ii), the tracking using SLEAP

was sufficiently precise. When tracking a single fish, the error rate was low and errors occur when fish took unusual postures (see iii). For dyadic interactions, errors

were more frequent and dependent on the distance between animals (see iv).

addition, the input scaling of the centered instance model was
set to 1.25, to obtain a smaller receptive field than for the
centroid model.

iv) Training: the customized training profile and the training
data set were transferred to Google Colab. Training was then
run in Google Colab using a Python script based on the
example notebooks for top-down models (function: SLEAP-
train; profiles: centroid.json and centered_instance.json). We
used “flow” as the tracking method. Here, SLEAP takes
instances from the prior frames. Then, points in the instance
are shifted based on the use of optical flow (Xiao et al., 2018).
These shifted points are used as the candidate instances.

v) Retraining: after training, the network was used to predict
the skeleton positions of the fish for 5 of the previous 10
videos. These predictions were transferred back to our local
PC. We manually picked 10 frames per video where the
quality of the labeling was low. Incorrect labels were corrected,
and a new training data set was created, including the
previously randomly chosen 50 data frames and now selected
and corrected 50 data frames. In this way, the network got
randomly chosen data as an input as well as the data that were
specifically hard to allocate correctly. This data set was again
transferred to Google Colab, and the model was retrained.
Afterward, following the abovementioned procedure, the

remaining five videos were used to add more labels to the
training data set. In a total of 150 frames that were used to train
the network, 50 of those were randomly chosen, and 100 were
chosen based on the detection performance of the neuronal
networks from the different training iterations.

vi) Analyzing videos: following steps i–v, we analyzed all videos
(single- and multi-animal videos) using Colab. The obtained
videos were then further processed using the SLEAP-label GUI
to correct the remaining errors on local PCs (Figure 4). The
results were then saved in hdf5-format for further processing
in Matlab.

Dyadic Interactions
To study dyadic interactions, fish were placed on opposite sides
of the experimental setup. A gate prevented them from entering
the inner part of the arena, and the gates were operated remotely
and opened simultaneously after an acclimatization time of
10min. Behavior was videotaped at 30 frames/second for the first
min following gate opening, and the first contact behavior was
analyzed based on these videos. First contact was defined as the
first time fish touched each other. EIs were calculated from the
simultaneously recorded EODs.
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FIGURE 5 | The transition from the fish skeleton estimated by SLEAP to a three-dimensional (3D) model was used to model the electric images (EIs). The skeleton

obtained from the tracking procedure is shown in the upper panel and is fitted by a third-order polynomial. A set of pre-defined ellipses that form the body of the 3D

fish are then distributed along the polynomial (middle). Note that the ellipses can be scaled in size and distance to match the true size of the fish. The points of the

ellipses represent the nodes that are connected to form a total of 1,666 triangles for which we then calculated the EIs using a well-established boundary element

method (BEM) (bottom).
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FIGURE 6 | (A) Performance of the tracking with respect to six different electrode configurations. Electrode pairs are marked with different colors, where +

corresponds to the positive and – to the negative pole. With the exception of the arrangement shown in (iii), all recordings were differential (refer to matching colors of

electrodes, depicted as circles). In the setup shown in panel (iii), the ground electrode was situated in the middle of the tank. The top view of the arena shows where

tracking errors larger than 3 cm occurred. The magnitude of these errors is color coded (see bar). (B) Box-and-whisker plots of the spatial error for the six electrode

configurations. The configurations 1, 3, and 4 had the best performance and configuration 1 was further used in the behavioral experiments on dyadic interactions

(see text for details).

FIGURE 7 | (A) Estimation error calculation. The distance between each skeleton node of the predicted fish (based on the RFR) and the tracked fish (based on

SLEAP) was measured. The predicted fish location that had the smallest sum of distances from either of the two tracked fish (estimation error) was considered as the

EOD producing fish. (B) Histogram of correct (black) and incorrect (red) identity assignments as a function of the difference in estimation error of both fish

(abs(errorID1-errorID2, red)). (C) We tested different parameters to assess the likelihood that the model erroneously assigned EODs to individuals. The first parameter

used was the distance between individual fish (black), the second the estimation error (blue), and the third the difference between the estimation errors of both fish

(red). The percentage of mislabeled EOD-IDs found during manual re-inspection of the data is plotted against the percentage of data that had to be checked for

different measurements. Reading example: checking 5% of the data using a threshold criteria based on the difference between both fish resulted in a capture of 30%

of all errors, or in other words the 5% of the data that had the smallest difference between both fish contained 30% of all mislabeled EODs. When checking 5% of the

data using a threshold criteria relying on the estimation error alone allowed an identification of only 18% of all errors. However, when checking 5% of the data using the

threshold criteria based on the difference in estimation error, 40% of all errors could be found. Hence, using the threshold criteria based on the difference in the

estimation error is the most efficient way to find wrongly assigned EODs.

Within the first 10min after the first contact, a 5-min
video was recorded at 10 frames/second. This video was
used to evaluate the fight resolution. Fight resolution

was determined by counting the number of attacks and
observing the chasing behavior from these videos. An
attack was defined as a contact between both animals in
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which at least one individual changed body posture as
a result of the contact. Chasing was defined as one fish
being followed by the other fish using approximately the
same trajectory.

Modeling the EIs
Passive and active electroreception is mediated through different
electroreceptors that both occur and are distributed over the skin
of an animal. The electric pattern, i.e., the distribution of local
field intensities, provides the relevant input to both modalities.
This spatial distribution is referred to as the EI (Caputi and
Budelli, 2006). To distinguish between active and passive sources,
we will refer to the sensory images generated by the presence of
external electric fields as passive EI and to those images generated
by the distortions through elements in the electrosensory scenery
as active EI.

Electric images were computed with the software originally
developed by Rother (2003). This approach was verified and
utilized in previous studies (Rother et al., 2003; Migliaro et al.,
2005; Sanguinetti-Scheck et al., 2011; Hofmann et al., 2013, 2017;
Pedraja et al., 2014). The model estimates the transcutaneous
current density for each of the points on the surface of the animal
and is based on the following assumptions:

(1) All media are ohmic conductors. This means that the vector
representing the current density at the point x (J(x)) is
proportional to the vector electric field at the same point
E(x). Then,

J(x) = σ(x)E(x), σ(x) > 0. (2)

The proportionality constant σ (x) is the volumetric
conductivity at the point x.

(2) The model neglects capacitive effects, that is, we assume that
there is no accumulation of charge p(x) at any point in space.

δp(x)/δ(t) = 0. (3)

(3) Given that the dielectric relaxation of the media in general
is shorter than the minimum significant period of the
EOD Fourier components, the model is an electrostatic
approximation (Bacher, 1983).

(4) The space is divided into volumes of homogeneous
conductivity. The fish and the different objects are defined
as the zones of different conductivity immersed in an infinite
water medium. Each object is covered by a thin resistive layer
(the skin in the case of the fish), which can be homogeneous or
heterogeneous (magnitudes specified as desired).
The model is based on the charge density equation which,
under the above assumptions, implies that the charge
generated by the sources f (x) is equal to the charge diffusion:

δp(x)/δ(t) = f(x)−∇ · J(x) (4)

Using Equation (3) and then Equation (2)

∇·J(x) = f(x) H⇒ σ∇·E(x) = f(x) (5)

The electric field E(x) can be expressed as E(x) = –
∇ϕ, therefore,

σ∇2ϕ(x) = −f(x), (6)

where ϕ(x) is the local potential at point x.

Equation (6) is a partial differential equation known as the
Poisson equation and can be solved for every point in space,
in our case the fish boundaries by using the boundary element
method (BEM) as proposed by Assad (1997). For a formal
explanation of the BEM (please see Assad, 1997; Hunter
and Pullan, 2001; Rother, 2003; Brebbia et al., 2012). Briefly,
this method determines the boundary conditions by solving
a linear system of M · N equations for M poles and N
nodes, with the unknown variables being the transepithelial
current density and potential at each node (Pedraja et al.,
2014). The transepithelial current density and potential are
calculated for each node and linearly interpolated for the
triangles formed by the nodes. The choice of nodes allows for
an approximation of the shape of objects and fish, and by
scaling the number of nodes the spatial resolution of the EIs
can be chosen to match the computational power available.
We based our model on a set of 49 ellipses composed of
17 nodes each (835 nodes forming 1,666 triangles) (Rother,
2003). The size of the fish can be scaled by changing the
two diameters of each ellipse and changing the distance
between ellipses.

To adjust the model to the actual fish posture, a third-
order polynomial was fitted to the six skeleton points of the
actual fish (see above). The fish-body ellipses were realigned
according to the first derivative of the fitted polynomial to
match the rotation of the ellipses to the curvature of the
posture of the fish. From this, nodes and surfaces are produced
to result in the final three-dimensional (3D) reconstruction
for which the electric current and the transcutaneous voltage
were calculated (Figure 5, Hofmann et al., 2014; Pedraja et al.,
2020).

For our analysis, we separated passive and active EI
information. This basically means that for each EOD we
calculated the resulting EI perceived by the EOD-emitting fish
(active EI) and the EI provided to the non-emitting receiving
fish (passive EI). This was done for all EODs up to the first
physical encounter of the fish. Active EIs were calculated as the
difference between the electrosensory stimulus (scene with both
fish) and the basal field (scene with just the discharging fish) at
the discharging fish sensory surface. Passive EIs were obtained
by using the electrosensory stimulus at the sensory surface of the
nondischarging fish (Pedraja et al., 2016). Based on the EIs, we
estimated which fish could have obtained sufficient information
to detect the other fish first. For this, we consider the moment
where the EI amplitude of one fish exceeded that received
by the other fish by a factor of two. This was independently
determined for both passive and active EI. This analysis was
limited to inter-fish distances where EI amplitudes exceeded
currents above 0.1 µA as this is the internal noise range of
the model.
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RESULTS

In the following, we will first detail the steps we took in
optimizing the EOD recording setup using supervised learning
methods to then demonstrate how two different models
performed in automatically localizing an EOD-emitting fish in
the setup.

To further demonstrate the robustness of the approach we
found to be best suited, we then will report data where the RFR
model approach is being used on dyadic interactions of fish to
investigate if and how the RHP may be perceived and used in
conflict resolution between dyads of G. petersii.

Using Supervised Learning to Predict Fish
Position and Orientation of Simulated Data
The positioning of the electrodes in the experimental arena
is important to obtain suitable coverage of the EODs and
sufficient resolution to distinguish EODs between individual
fish. By combining a simulated electric field to mimic a
swimming electric fish with a supervised learning-based
algorithm that predicted the position of this fish mimic, we
compared six different electrode arrangements, including
both differential and unipolar recordings (Figure 6). For
this, electrode arrangement along the tank walls was
altered. We did not test electrodes on the floor as this
would have interfered with the video recordings, but the
methodology of optimizing the electrode arrangement described
here is applicable to arbitrary experimental layouts and
electrode configurations.

The degree to which the supervised learning model was
able to correctly locate the fish mimic was used to obtain the
best of the six arrangements tested. Configurations 1–6 are
shown on Figure 6A(i–vi), respectively. With one exception,
the model performance was good, as indicated by R² scores
>0.9. The exception is the arrangement two. Here, the axis
of neighboring (differential) recording pairs was continuously
rotated from one pair to the next, leading to a comparatively
good resolution in the middle of the tank, while positioning
was poor toward the tank walls. A similar arrangement
(configuration 3) with the reference in the center of the tank
improved the performance, particularly avoiding errors between
fish positions at opposite electrodes, but still mislocating the
mimicked fish toward the walls. Similar problems occurred
for the configurations 5 and 6. Configuration 6 used the five
electrode pairs that form a perpendicular net, whereas two
electrodes pair have a different angle by crossing from corner
to corner. This resulted in satisfactory spatial resolution at the
corners and the center of the tank but in larger errors in the
remaining arena.

In summary, configurations 1, 3, and 4 are determined
as suitable electrode configurations, in the majority of mimic
positions and orientations, the mislocation of the mimic EOD
was below 2 cm (Figure 6B). Given that the fish are at least
10 cm in length, an error of this magnitude was considered
acceptable. Fish tend to spend much time at the tank walls and
corners (personal observation; Teyke, 1989), configuration 3,
where errors were particularly high for the corners of the tank,

was also discarded. Configurations 1 and 4 were comparable, we
chose configuration 1 for all the following experiments. With
seven electrodes, we assumed (though we did not test this) that
we might have a slightly better performance close to the borders
of the setup when working on real data as there is a higher spatial
sampling of EOD data.

EOD Detection
The analysis of EOD data involved detecting the time point of
the event and extracting the EOD waveform in a standardized
manner (Figure 3A). Both are needed as an input for our RFR
model to estimate fish position from the field geometry. As the
initial training of the network was based on the data with a single
fish in the tank, it could not correctly assign EODs of two fish that
occurred simultaneously within the time window of 400 µs used
during the training. EOD doublets were reliably found by looking
at the deviation of the EOD waveforms from the average EOD
waveform (Figure 3B). False EOD doublet detections typically
occurred when the electric potentials were low on all electrodes.
This process could also be fully automated in the future. Note,
however, that the used algorithm is limited to dyadic interactions.

Tracking With SLEAP
The performance of the tracking model was different for single-
(n = 72,000 frames) vs. multi-animal videos (n = 18,000
frames) (Figure 4). Tracking of single animal was efficient. The
fish was detected in all frames but one and the body posture
needed to be corrected in <2% of the frames (Figure 4, bottom
left). Corrections to the tracking were thus limited and mainly
restricted to situations where the fish made unusual movements,
e.g., tried jumping. With two fish in the arena, one of either fish
was not detected in less than 1% of the frames. This was typically
the case when fish were very close to each other or partially
overlapped (Figure 4, bottom right). The posture, i.e., the six
nodes of the midline of the animal needed adjustment in about
5% of the frames.

Using Supervised Learning to Predict Fish
Position of Real Fish
We tested an RFR model and different MLP models of various
numbers of hidden layers to predict the fish position from the
EOD data. Using the single fish recordings from data set I, we
could establish how well the models fared in predicting the fish
position. For simplicity, we now only considered the error in the
anchor point (second head node, see Figure 7). The error that
is the distance between the tracked anchor point and the EOD
predicted anchor point was the smallest (median: 1.48 cm) for
the RFR model but the MLP model with 200 hidden layers had
an almost comparable performance (median: 2.18 cm). Given its
performance, we chose to continue with the RFR model only.

Indeed, the RFR model was further found to be valuable in
identifying the EOD-emitting fish in dyadic interactions (data
set I). Here, the performance that is correctly labeling EOD-IDs
(and the localization of the emitting individual) was around 95%.
Errors mainly occurred for short distances between individuals
(Figure 7C) and are also dependent on fish positions.
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With this, it was possible to further improve the performance
focusing on the data most likely to cause problems. Therefore,
we calculated the difference of the estimation error for both
fish (see Figure 7A). By focusing on the 5% of the data where
the difference in the estimation error was the smallest, 40%
of all wrong assignments were found, enabling us to manually
improve the total error to <3%. The inclusion of 10% of the data
with the lowest difference in the estimation error resulted in an
assignment error of 2%.

Given the performance of the model and the enormous
reduction of observer-based annotation time, we applied the
workflow established now to dyadic interactions of new fish
pairs that differed in size from the fish used in training the
network (data set II). In addition, the interactions studied now
were limited to the initial approach phase, where the inter-fish
distances and relative orientations presumably will be different
from the training conditions. Despite these differences, the
performance was found to be robust: less than 6% (n = 348) of
the EODs (n = 5,848) were wrongly assigned (in 6% of all EODs
a human observer chose a different EOD-emitting fish).

Dyadic Interactions
About 13 pairings of fish that had not physically encountered
each other before were analyzed. In five pairings, the difference
in body size was 23–28%, whereas in the remaining eight pairings
the size difference was between 2 and 17%. We found no
dependency between the fish size and the animal that initiated the
first encounter (binomial test; for all pairings 7 (larger) fish in 13
pairings initiated an attack, p = 0.5; for length difference <20%
5 (larger) fish in 8 fish pairings initiated an attack, p = 0.36, and
for length difference >20% 2 (larger) fish in 5 pairings initiated
an attack, p > = 0.5; Figure 8A).

Based on the number of attacks initiated by an individual,
we determined the dominance status within each pairing
(Figure 8B). In pairings with a large size difference (>20%),
the larger fish was always the dominant individual, whereas the
outcome of the encounter was not predictable in the smaller
size difference pairings (binomial test; 5/5, p = 0.031 for length
difference >20% and 4/8, p = 0.636 for length difference <20%,
Figure 8B). Considering all pairings, no significant relation
between size difference and dominance was found (binomial test;
9/13, p= 0.133). We also measured the time individuals spent in
chasing each other. Aggression, as now measured by the number
of attacks a fish does, overall was higher in dyadic interaction of
low size differences (Figure 8C), whereas in interactions of larger
size differences there were fewer attacks that were predominantly
executed by the larger fish (Figure 8C).

Initial Approach Phase
Regardless of the size difference, the approaching fish always
initiated the first contact. In 9 of the 13 interactions, these
contacts were directed toward the tail of the opponent, in
the remaining 4 cases, the head was targeted. To understand
if the electric sense contributes to the behavior and whether
active or passive electrolocation is used, we next modeled the
electrosensory input for each first-approach trajectory. Figure 9
shows the results of the EI reconstruction for two exemplary

dyadic interactions. While Figures 9A,C depict the data for a
dyad with a large size difference, Figures 9B,D show the result
for a small size difference interaction. Although the trajectories
leading to a contact varied between fish, we frequently observed
that the passive and active EIs peaked on the head and tail
regions, almost irrespective of the relative orientation between
contenders (e.g., Figures 9A,B right).

Independent of the size differences, the passive EI could best
explain which fish approached first. In 10 of the 13 cases, the
fish initiating the attack is predicted to having perceived the
contenders passive EI before the contender would have detected
the approaching fish (binominal test; p = 0.046). In contrast, the
active EI was only more intense in the approaching fish in 6 of 13
cases (binomial test; p> = 0.71). With respect to size differences,
the passive EIs were the largest for the attack leading fish in
all cases for the >20% group (binominal test; 5/5, p = 0.031).
Meanwhile, this was not the case in the smaller size difference
pairings (binomial test; 5/8, p = 0.363). This indicates that the
information obtained from the passive EI guides the approach
leading to the first contact.

DISCUSSION

We now introduced the use of supervised learning models to aid
in the study of (pulsatile) weakly electric fish and applied the
methodology to investigate the role of electrosensory information
in the dyadic interactions of G. petersii. Our initial objective
was to introduce a workflow to overcome the bottleneck that
the time-consuming human-observer-based allocation of EODs
to individual fish poses to the study of electrocommunication,
especially in pulse-type species. For this, we first optimized the
recording configuration by combining a simple electric field
model that mimicked the electric field of the fish with an
RFR model from the open Scikit-learn package. By combining
the open-source tracking tool SLEAP with an RFR model, we
then showed that the EOD data recorded using the recording
configuration we had determined as the best for our setup
can be used to automatically assign EODs to two fish. As
expected, this automatic procedure was not free from errors.
However, by reanalyzing a well-defined subset of the data (frames
where the difference in the estimation error of two individuals
was low), the precision used for identifying EOD-emitting fish
was significantly improved without requiring substantial user
interference (Figure 7). Based on the automated EOD-labeling
and tracking of individuals, we were then able to model the
sensory input that each fish experiences by applying a BEM.

The obtained data revealed that in agonistic interactions
between fish of different sizes, the attack initiation appears to
be mediated by electrosensory information of the contender’s
direction (Figure 9). Specifically, the fish that finds the electric
field generated by the other fish first will initiate the approach
that leads to the first contact. However, despite the finding that
larger fish dominate in agonistic encounters (Figure 8), we found
no clear relation of the probability to lead the attack with respect
to the size difference between dyads. This makes it plausible that
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FIGURE 8 | Effect of fish size on first contact initiation and dominance status. (A) The first contact was initiate independent of fish size (binomial test, p = 0.5, 0.5, and

0.36 for all, >20%, and <20% size differences, respectively). (B) The dominance status dependent on fish size for size differences >20% (binomial test, p = 0.031).

No difference in dominance was found for small size differences (binomial test, p = 0.636). (C) Aggression level also was dependent on size difference. Big fish

attacked significantly more during dyadic interactions of large size differences while more aggressive behaviors (number of attacks) were found in an interaction among

fish of small size differences. Red and blue symbols represent the large and small fish, respectively.

the RHP of the contender is not available from either passive or
active images during first encounters.

Taken together, the supervised learning methods and the
workflow established now should prove valuable for future
studies of electrocommunication in weakly electric fish.

Supervised Learning Algorithms to Study
Interactions of Weakly Electric Fish
In this study, we used SLEAP to track individual fish from low-
resolution video recordings. Compared to DeepLabCut, another
open-source environment, which is capable of tracking multiple
individuals (Mathis et al., 2018; Nath et al., 2019), our choice
was based on the comparative ease to install SLEAP on local PCs
and the stability of the GUI on our PC (Windows 10, processor:
Intel R©Xeon R©CPU E3-1270 v5 @ 3.60GHz 3.60 GHz, working
memory: 32GB RAM). However, our approach could also be
implemented in DeepLabCut or similar constantly evolving
tracking toolboxes (Lauer et al., 2021). To enhance the efficiency
of model training and tracking, we decided to move to Colab.
As the data storage size is limited in Colab, video material
should not be too big and we would recommend to rely on local
high-performance clusters of PCs if possible.

The EOD allocation to fish-ID was implemented based on
an RFR model within the Scikit-learn package implemented
in Python (Pedregosa et al., 2011). This is just one of many
supervised learning methods. As an example, we tested an MLP
model on the single fish recording of data set I (Figure 1). The
RFR model outperformed the MLP models even for hidden layer
sizes of 200 (median estimation error: RFRmodel: 1.48 cm; MLP:
2.18 cm). Nevertheless, both approaches were comparable with
respect to their accuracy.

Our workflow was based on a laboratory condition in which
visual tracking is easy. We thus used actual fish recordings for
the training of the RFR model. Using real fish data instead
of simulated data has the advantage that we did not have to
model the boundary effects. However, more refined electric
field modeling (e.g., Comsol-based simulations) could also be
used.We would envision, however, that ourmeasurement-driven
approach will be swifter to implement, particularly for more
complex setups than the comparatively reduced arena used here.

Once trained, the RFR model could also be used to predict
the fish location without the need for additional video tracking if
precision must not be very high. The median error of the model-
tracked head position was about 1.48 cm, which is comparable
to the data reported for other electrical fish tracking algorithms
(Jun et al., 2013; average accuracy: 2.5 cm for eight-channel
configuration). A more refined electrode array would further
improve the precision attainable. Jun et al. (2013) used a dipole
model to create a lookup table that was later used to localize fish.
A dipole model can be used as a suitable approximation of the
electric field of the weakly electric fish in simple environments
but performance will degrade in a more complex environment as
model performance is reduced near objects (Jun et al., 2013). Our
approach is less sensitive to the complexity of the environment
as long as the complexity is already introduced during the
training sessions.

The tracking precision of the attack data set was reduced as
compared to the single fish tracking data (single fish: 1.48 cm and
dyadic interaction: 3.2 cm). This reduction in performance likely
has several causes: the trajectories may have covered different
parts of the experimental setup compared to the training data
set; secondly, fish in the attack group were more heterogeneous
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FIGURE 9 | Analysis of electrosensory input calculated for the initial approach phase during the agonistic encounter of dyads of Gnathonemus petersii. (A,B) Left:

approach trajectories of two fish of large (A) and small size differences (B). Points indicate the fish positions and gray lines indicate their orientations. Time from start

to the first physical encounter is depicted by the gray gradient of the orientation labels (light gray = start). Middle: color-coded RMS of the active EIs of the sequences

are shown on the left. Here, zero on the y-axis indicates the start of the experiment (see black arrow), and the images end with the first contact. Right: same as data

on the left but for passive EIs. (C,D) The maxima of active (left) and passive (right) EI of both fish are plotted against time. The distance between individuals is shown in

the color-coded bar above the plot. Blue colors indicate close distances, whereas yellow colors represent larger distances. Note that in C the distance does not

constantly reduce over time. The black arrows indicate the time point at which the EI of both fish start to diverge. The fish perceiving the strongest EI is shown in a

color-coded fashion. The data in C corresponds to the approach depicted in (A), whereas the data in (D) refer to the approach depicted in (B). Red and blue symbols

represent the large and small fish, respectively.

in size than the pair used in training, and finally, the pose of
animals during the dyadic interactions might have differed from
the training conditions. Most likely, the different spatial coverage
had the most significant effect. Even though we had split the
data for the initial training into training and a test set, both still
were taken from the same trajectories. Thus, the spatial coverage
along these trajectories was higher than that over the remaining
area of the setup. We did not attempt to quantify the magnitude
of this effect. One possibility to overcome it in the future is to
sample the training data set to achieve equal spatial sampling
of the arena. Furthermore, similar to the retraining approach
already applied for the pose estimation tracking using SLEAP,
it might be useful to add the corrected EOD assignments to the

training data set. Another option that would improve localization
performance would be to substantially enlarge the data set used
to train the model.

In principle, the training of the RFR model could also
be performed with the simulated data. For this, we would
recommend more sophisticated methods that incorporate a
boundary effect. Alternatively, one could exclude the data
obtained close to walls or close to electrodes (Jun et al., 2013).
Because the fields in our case can be viewed as static and no
capacitive properties needed to be included, the prior solution
could be achieved using analytically methods like the finite
element method or the boundary element method as used in
this case to model the EIs (Gómez-Sena et al., 2014). With
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the improvement (even sampling during training) as mentioned
earlier, we consider the training of the model with real fish data as
a suitable and fast approach, as demonstrated here. For laboratory
work conducted in large tanks, using an RFR model might also
be a promising approach. However, it seems advisable in such a
scenario to use the modeled and calibrated data as an input for
training, as equal spatial coverage of larger arenas would require
long sampling periods. For fieldwork, it appears questionable
whether reasonably small localization errors can be achieved. At
present, there are few methods available to track weakly electric
fish in the field. One particularly interesting study in this regard
was to estimate the position and orientation of fish (up to three
animals at a time) by solving an inverse problem based on
the known sensor geometry and an electrostatic dipole model
through Bayesian interference (Madhav et al., 2018). The spatial
precision is not sufficient to enable the resolution of directly
interacting fish, but certainly the approach will be of great interest
for investigating locomotor behavior on larger scales, such as
territorial or foraging movements and excursions in the field.

Although we now evaluated and studied the suitability of
the proposed methods and workflow for dyadic interactions, no
major constraints for working with more animals exist. The RFR
model estimates fish position based on the electric potentials
at the electrode. The number of fish in the tank does have
an influence on the precision of that measurement as they
usually have a different conductivity as the water. However, as
the position estimation of the RFR model is based on several
electrodes, it is likely relatively robust against this interference.
However, the likelihood of fish being close together and of similar
or identical orientation also increases with the number of fish in
the setup. Thus, the fraction of frames that will require manual
inspection is expected to scale up with the number of individuals.
A partial remedy to this would be a denser coverage of the arena
by using more electrodes. This will be of particular relevance for
setups with more water depth.

In conclusion, we are confident that our approach is also
suitable to track small groups of animals. However, the limitation
on the number of animals being tracked together will need to be
tested for each experimental setup.

The Role of the EI During Dyadic
Interactions
Agonistic behavior is one of a variety of behaviors that are
considered to be important in conflict resolution between
members of the same species (Lorenz, 1963; King, 1973).
It can include the emergence of individual aggression that
often occurs during the formation of hierarchical relationships
within populations (Kudryavtseva, 2000). The rank within
a group itself is often directly related to the access to
resources, including territories, sexual partners, or food.
Studying social interaction that shapes this access, in this
case, agonistic encounters, in electric fish is particularly
advantageous: Their social behavior includes both electric
and locomotor displays that in part depend on a well-
known and an experimentally accessible neural circuit.
Furthermore, the ability to computationally reconstruct the

electrosensory information that contenders could obtain in (or
prior to) agonistic encounters can provide access to a deeper
understanding of behavioral choices (and their outcomes) in
social interactions.

As expected from previous work with the same species as the
one investigated in our work, fish length was a good predictor
of the outcome of an aggressive encounter (Terleph, 2004). The
larger fish always dominated the encounter by showing a higher
number of attacks (Figure 8). However, when the size difference
between the two fish was smaller than <20%, the dominance
status could not be predicted by size alone. Furthermore, in
these encounters, the aggression level was higher as revealed by
the more frequent attacks (determined for 5min after the first
encounter). While size difference was predictive of the outcome
of the agonistic interaction, it did not correlate with the decision
which fish initiated the first approach. This may be explained in
two ways: either fish cannot infer the relative size difference based
on the active or passive electrosensory information received,
or the size difference is ignored in the decision to attack.
Meanwhile, more research is required to decide this question,
our analysis of the electrosensory input allowed us to conclude
that the passive electrosensory information rather than the active
electrosensory information would be the source most likely to
be of importance in this behavior. We found that indeed the
magnitude of the passive electrosensory image perceived by the
approaching fish was a suitable predictor of attack initiation.
This suggests that, while passive electrolocation mediates the
information about the position of a contender, the RHP (size)
is either ignored or not perceived at this stage. The finding
that EIs, both passive and active, were mainly focused on the
head in part is explained through the anatomy rather than the
trajectories. As a consequence of the tapering off of the body
thickness toward the tail, which reduces the cross-sectional area
and thereby increases the internal resistivity, current (generated
either by the fish itself or by external sources) is funneled to
the head region. As a result, the maximal current densities
(and transcutaneous voltages) occur at the head region. This
could aid in the detection of contenders and the assessment of
their RHP. While the latter was not found in our study, the
finding that passive EIs likely provide (spatial) information to
the fish initiating the first contact agrees well with the results
of dyadic interactions in G. omarorum, a South American
weakly electric fish species (Pedraja et al., 2016). The similarity
suggest that the role of the EI in agonistic encounters may
be shared between different independently evolved electric fish
species. With respect to the methodological aspect, the methods
established now seem suitable to further our understanding
of the role of active and passive electroreception in different
situations: agonistic contest, courtship display, exploration of
objects, and determination of different perceptual parameters in
collective behavior.
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Knowledge about body motion kinematics and underlying muscle contraction dynamics

usually derives from electromyographic (EMG) recordings. However, acquisition of such

signals in snakes is challenging because electrodes either attached to or implanted

beneath the skin may unintentionally be removed by force or friction caused from

undulatory motion, thus severely impeding chronic EMG recordings. Here, we present a

reliable method for stable subdermal implantation of up to eight bipolar electrodes above

the target muscles. The mechanical stability of the inserted electrodes and the overnight

coverage of the snake body with a “sleeping bag” ensured the recording of reliable and

robust chronic EMG activity. The utility of the technique was verified by daily acquisition

of high signal-to-noise activity from all target sites over four consecutive days during

stimulus-evoked postural reactions in Amazon tree boas and Western diamondback

rattlesnakes. The successful demonstration of the chronic recording suggests that this

technique can improve acute experiments by enabling the collection of larger data sets

from single individuals.

Keywords: EMG, electromyography, locomotion, reptile, snake, strike

INTRODUCTION

Acquisition of long-term chronic EMG data is well-established in many animal species ranging
from fish (Cooke et al., 2004), to mammals such as mouse (Tysseling et al., 2013), monkeys (Park
et al., 2000), and even humans (Kern et al., 2001). However, electromyography (EMG) in reptiles
employing invasive intramuscular electrode implantation is often limited to acute experiments
extending over a few hours or a single day. Alternatively, multi-unit activity from muscle fibers
can be recorded over a wider area with non-invasive surface electrodes (sEMG; Staudenmann
et al., 2010), although with variable success in reptiles, given their generally rather solid, scaled
skin. Thus, sEMG recordings in snakes are technically challenging because the signal is lost when
the animals remove electrodes and/or recording devices while rubbing their body against objects.
Since this affects the reliability of chronic data acquisition, sEMGs are rarely used formuscle activity
recording in reptiles. Instead, bipolar hook wire electrodes are mostly implanted directly into the
muscle tissue. In this case, electrode fixation is achieved through the barbed hook of the electrodes.
Cyanoacrylate glue, vet-wrap adhesive bandage, and plastic cement is mostly used to additionally
secure the electrode wires on the outside skin and to tie the wires to each other to form a single
strand of wires (for a detailed description of this classic technique see: Jayne, 1988; Sharpe et al.,
2013). This technique of intramuscular EMG recordings has been used previously to shed light on a
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variety of snake behaviors from locomotion (Jayne, 1988;
Newman and Jayne, 2018) to feeding and drinking (Cundall
and Ganz, 1979; Cundall, 1983; Berkhoudt et al., 1994) but
also on more specific behaviors such as strikes (Young, 2010)
or venom spitting (Young et al., 2004, 2009). There has even
been a study on how epaxial muscles of the snake are activated
during reaching tasks (Jorgensen and Jayne, 2017). In all these
studies, 1–12 electrodes were inserted into locally restricted body
segments either percutaneously or by surgically opening the
skin to expose the muscles of interest. In general, animals were
sacrificed after finishing EMG recordings, which was mostly
on the same day as the electrode implantation, classified this
approach as an acute experiment. However, Moon (2000) was
successful in keeping bipolar hook electrodes in place within
snake axial muscles for up to 1 week performing chronic
EMG recordings.

Instead of using barbed bipolar electrodes, surface patch
electrodes have been used in studies on salamanders
(Carrier, 1993), iguanas (Carrier, 1989), and snakes (Moon
and Gans, 1998). This type of electrodes facilitates the
recording of EMG signals from muscles that are too thin
to accommodate barbed bipolar electrodes (Carrier, 1989)
or when muscles are in close proximity to adjacent, larger
muscles that potentially generate cross-talk of the activity
pattern (Loeb and Gans, 1986). In order to solve this
issue, a patch, made of silicone rubber sheet was used to
provide electrical insulation from the larger muscles, while
electrical activity from the surface of the small muscle was
recorded by the bipolar electrodes attached to the other side of
the patch.

The main drawback of classic sEMG recordings, is the limited
spatial precision, because this technique precludes a precise
identification of the recorded muscle or the exact vertebral
location during the actual experiments. However, in studies, such
as our present investigation, in which spatio-temporal muscle
activation patterns of larger body segments (e.g., loops) with
respect to relative body position (inside vs. outside, rostral vs.
caudal) or type of muscle activation (tonic vs. phasic) is the
major goal, a high spatial resolution would be desirable but is not
essential to obtain the respective information. To overcome the
technical limitations of sEMG recordings in snakes and to allow
for chronicmulti-site muscle activity analyses, we have developed
a new technique for collecting multi-channel EMG data from
multiple body segments during the execution of a natural snake
behavior. Our technique resembles the use of patch electrodes,
with the skin providing electric insulation from one side, while
electric activity is recorded from the surface of large epaxial
muscles with bipolar electrodes. This recording technique avoids
surgical exposure of the muscle or the use of barbed electrodes
and is thus less invasive. This technique permits stable EMG
recordings with a high signal-to-noise ratio. Both, individual
spikes and local muscle group dynamics, normally associated
with sEMG data, were robustly and consistently acquired in
two species of snakes. Furthermore, this technique is suitable
for the recording of high-quality data over several days and
can thus be employed for chronic recording of EMG data
in snakes.

MATERIALS AND METHODS

Experimental Animals
In this study, five semi-adults [snout-vent length (SVL), range:
85–106 cm; body weight range: 79–174 g] Amazon tree boas
(Corallus hortulanus) and two semi-adult Western diamondback
rattlesnakes (Crotalus atrox, Baird and Girard, 1853) (SVL,
range: 42–45 cm; body weight range: 112–122 g) were used.
In addition, four carcasses of Amazon tree boas were used
to establish the electrode implantation prior to the actual
animal experiments. Snakes were bred at the Chair of Zoology
(Technical University of Munich) and maintained on a 12
h:12 h light:dark regime, 22–33◦C temperature range, and a
diet of pre-killed rodents with water ad libitum. Permission for
the experiments was granted by the respective governmental
institution for animal welfare (Regierung von Oberbayern,
Gz.: ROB-55.1-2532.Vet_02-19-115).

Presurgical Preparation
Electromyography electrodes and implantation needles were
prepared 1 h before application of the anesthetic drugs to
minimize the time required for the implantation process. For
this procedure, thin flexible cables were used to avoid an
impairment of the natural motility and to support the large
number of implanted electrodes. The absence of any impact of the
inserted recording electrodes on natural motion dynamics and
pattern was verified by a qualitative estimation of the locomotion
capacity before and after the implantation. For connecting the
electrodes, Omnetics Neuro NanoStrip connectors (A79021-001,
Omnetics, Minneapolis MN, USA) were used, which consisted of
a miniaturized connector (7.4 × 4.4 × 1.8mm), pre-wired with
18 cables [gold plated copper alloy, length: 46 cm; ø 0.160mm;
0.3mm including polytetrafluoroethylene (PTFE) coating]. Each
cable was electrically shielded with an individually colored layer
of biologically compatible PTFE coating and was thus protected
from producing a short-circuit with other wires. The total weight
of the wires including the connector was 2.8 g which equals
1.6–3.5% of the snakes’ bodyweight and was thus easily supported
even by the smallest snakes employed for the study. The cables
were used in pairs, such that the cut ends formed a bipolar
EMG electrode (Figures 1A–F). Using a connector with 18 cables
generated eight bipolar electrodes with one of the two remaining
electrodes used as ground wire, and the other as backup in
case the ground electrode becomes damaged or removed during
the recordings.

In order to secure the EMG electrodes in a close and constant
relative position to each other, cables were affixed to each other
using a small drop of cyanoacrylate glue (Figures 1A,B). To
prevent the cables from undesired, accidental removal (discussed
below) a solid spherical object was formed from additional
drops of glue, whereupon the drying process was accelerated
through application of small granules of sodium bicarbonate
(Supplementary Video 1). The distance between the sphere and
the tip of the EMG electrode determined the extent of the cable
section that was subdermally implanted and served to ensure
a consistent length of all cables within a given animal. In our
experiments on both species of snakes, implanted cables with
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FIGURE 1 | Custom-built items required for chronic mounting and anchorage of multiple EMG electrodes. (A1) Shortened injection needle and EMG electrodes with

attached cyanoacrylate sphere that ties two cables to form a bipolar electrode. (A2,B) Needle with cables inserted up to the cyanoacrylate sphere (A2) and higher

magnification of the cyanoacrylate sphere (B); position of the sphere and needle length is adjusted such that the electrode tips remain inside the needle during the

implantation process. (C,D) Schematic depicting the first implant position, with the needle, containing the bipolar electrode, located subdermally (dotted lines)

between the entry and exit hole (C); after removal of the needle, the bipolar electrode remains in the tunnel between the skin and epaxial muscles (D) invariably fixed in

place by the suture (blue circle); schematic of the second, more caudal implant position (E) with cables of the first bipolar electrode pair (light red and beige) affixed to

the skin with the suture that also holds the second implanted electrode pair in place. (F) Photograph of the second implant site in an Amazon tree boa depicting the

wiring, cyanoacrylate sphere and suture as shown schematically in (D,E); the inset depicts the connector at higher resolution. (G1,G2) Inside (G1) and outside view

(G2) of the “snake sleeping bag” for Amazon tree boas used to prevent accidental removal of cables by the snake; brown silicone stripes increase friction and when

closed prevent the snake from exiting the bag; black and beige hook and loop fasteners allow for easy and fast closing/opening of the bag. (H) Photograph of an

Amazon tree boa inside the “snake sleeping bag”.

a length of 40mm were employed, allowing a robust fixation
without affecting natural movement capabilities.

The steps for producing an electrode were as follows: the
position of the sphere on the cable was visually marked while
aligning the two cables. At the same time a small drop of glue was
applied to both cables at themarked position. Both cables’ relative
length was ensured to remain invariant relative to each other,
as this would have caused problems with cable management
during the experiments. After application, while the small drop
of glue hung from both cables in a half-spherical form, a pinch

of sodium bicarbonate was sprinkled from above onto the glue to
facilitate solidification and drying. This caused the downwards
hanging glue to be pulled upwards into a half-spherical form,
due to the combination of surface tension and instantaneous
fixation. Rotation of the cable and repetition of the procedure
ensured a small but strong hold that was spherical in form
(Figure 1B). Care was taken to avoid creating an excessively large
sphere (>3mm) since an oversized sphere causes a configuration
where an undesired space between the snake’s body and the cable
might be formed. This would allow another object to insert itself
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between the cable and the snake and to generate sufficient force
to remove the cable. A sphere diameter of ∼2–3mm was found
to be most suitable for stable cable implantation. Any rough
edges were removed from the sphere by careful sanding with
high-grit sandpaper. The soldered connectors for the cables were
oriented in relation to the snake such that the cable bundles were
directed toward the caudal end of the snake to daisy-chain the
implanted electrodes with the amplifier through a connecting
cable approaching from the caudal part of the animal. This
helped preventing an entanglement and minimized cable tension
potentially caused by animal movements as the caudal part of
the snakes generally showed less displacements in space during
provoked movements compared to the rostral part of the body.
To prevent bundles of excess cable to extend caudally, the length
of the cables was trimmed according to the distance between
the different electrode insertion points: if the electrodes were
directed from rostral to caudal at a distance of 6 cm from each
other with a bipolar electrode on the left and right side of the
axial column, respectively, then cables 1–4 remained at a length
of 46 cm, cables 5–8 were trimmed to 40 cm, and cables 9–12
were trimmed to 34 cm, etc. For the shorter rattlesnakes, the
same cable lengths were used. Excess stretches of cable were fused
together behind the caudal most implantation site and wrapped
in parafilm. The insertion of the cables was performed with a
hypodermic needle (Figure 1A). The diameter (outer diameter:
1.2mm) of the needle was just wide enough to accommodate
the two cables that formed a bipolar electrode pair. The plastic
Luer-lock connector was cut off with a sanding disk attached to
a rotary tool preventing a closure of the internal canal, such that
the needle approximated a hollow sewing needle.

Anesthesia
Prior to the electrode implantation, snakes were placed in an
induction chamber and pre-anesthetized with 2ml isoflurane
(Isothesia, Henry Schein Vet, Hamburg, Germany). As soon
as the tail-pinch reflex ceased, snakes were intubated with a
cat catheter (diameter: 1.2mm) connected to an isoflurane
vaporizer (Isotec-3, Völker GmbH, Kaltenkirchen, Germany).
The isoflurane concentration provided by the vaporizer was set
to 2.0–2.5%, to ensure adequate surgical anesthesia throughout
the entire duration of the implantation process. Additionally,
Carprofen (Carprosol, cp-pharma, Burgdorf, Germany) was
administered (2 mg/kg body weight, i.m.) for analgesic treatment
1 h before the start of the implantation and once thereafter every
following day throughout the entire period of EMG recordings.

Electrode Implantation
Before electrode implantation, all surgical tools, needles and
wires were sterilized through submersion in a disinfectant
(Perfektan TB, Dr. Schumacher, Malsfeld, Germany) for at least
5min. For the electrode implantation, the sharp end of the needle
was used to penetrate the skin of the snake at predetermined
positions at the side of the body and was subdermally guided over
a distance of 4.5 cm (Supplementary Video 2). Great care was
taken to prevent undesired penetration of muscles. The needle
was then pushed from caudal to rostral along the longitudinal
axis of the snake’s body. After insertion of the needle for 4.5 cm,

the sharp end was pushed outwards again to exit the skin.
Thereby the needle entered and exited the skin simultaneously
at two points to form a subdermal tunnel. Using a stereo
microscope, the bipolar electrodes were inserted through the cut
end of the needle until the sphere was flush with the end of
the needle (Figure 1C; Supplementary Video 2). At this point,
the sharp end of the needle was grabbed with small surgical
hemostats and was fully pulled through the rostral penetration
site. The inserted cables remained underneath the skin as the
sphere was unable to traverse through the caudal penetration
entrance generated by the needle (Figure 1D). The electrodes
were thus precisely positioned underneath the skin at a distance
of 4 cm from the initial penetration site through the skin
following the tunnel created by the needle. Overall, this process
was performed 10 times to insert the bipolar electrodes (eight
penetrations with two cables implanted at each penetration site)
and the two single, separate ground electrodes (two penetrations
with one cable implanted at each penetration site) resulting
in a total of 16+2 (18) implanted cables (Figures 1E,F). In
this proof-of-principle, study the electrodes were approximately
placed on the surface of the semispinalis-spinalis (SSP) muscles.
If necessary, precise electrode positions could be determined by
dissection or X-ray imaging.

Cable Fixation
In order to prevent cable removal, a suture (Daclon Nylon,
Monofilament Non-absorbable, USP 2/0, SMI AG, St. Vith,
Belgium) binding skin and cables was placed at the side of the
glue sphere opposite to the cable’s entry hole to tightly hold the
two cables in place (Figures 1D–F). We used non-absorbable
nylon monofilaments, because of its high tensile strength,
manageability, and good tissue compatibility. The suture needle
was inserted laterally from the center of the cyanoacrylate sphere
such that it appears that the suture will bisect the sphere. Before
the initial knot of the suture was tightened, the suture thread was
positioned to the side of the sphere, such that the sphere was
centered between the electrode penetration site and the suture
loop (Figure 1D). The suture thereby applied a slight pressure
against the sphere, which facilitated a tight arrest of the open end
of the cable underneath the skin and minimized the likelihood
of cable removal. Such an unfortunate circumstance would occur
when an open space would form between the skin and the end of
the cable separated by the sphere. Cables from rostrally implanted
electrodes were bundled and affixed to the body (Figures 1E,F).
Further intermediate sutures were placed at locations between
adjacent bipolar electrodes to form bundles of cables from several
target sites. Care was taken to create sufficient slack, such that
the cables allowed sufficient mobility when the snake formed
pronounced body loops. This was determined during anesthesia
by laterally bending the body of the snake in both directions. At
the end of the implantation process, extending cables proximally
to the connectors were coiled and carefully wrapped in parafilm
(Figure 1F, inset).

Postsurgical Recovery
Following implantation, the isoflurane concentration was set
to 0%, which caused complete recovery of the snakes from the
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anesthesia within a few minutes. During the experimental
procedure each snake was regularly and systematically
monitored. There was no alteration of the health of the
snakes nor any obvious inflammatory signs at the site of the
implanted electrodes. It was important that during the recovery
period and prior to the experimental trials on successive days the
snake’s movements remained restricted to prevent the occurrence
of forces onto the implanted cables. This measure assisted in
preventing accidental removal of cables and consequential
damage of the skin. In chronic experiments that lasted for
several days, snakes were kept overnight in quarantine cages. A
particular challenge during the overnight rest was the prevention
of the cables from becoming entangled in cage enrichments,
e.g., branches. A major advancement for the performance of
chronic measurements across several days was therefore the
reliable and faithful affixation of recording electrodes and cables
at all times. This was particularly challenging at night in the
home cage when the animals were essentially unobserved.
Instrumental for successfully maintaining all electrodes in
place and functionally intact was the use of an individually
adjusted “snake sleeping bag,” which prevented impairment
and deterioration of electrode placements and thus ensured the
continuity of the recording condition over the experimental
period of up to 4 days (Figures 1G,H). The maximum temporal
extent for EMG recordings of 4 days was determined by the
maximal duration that the legal body approved for these
experiments and thus was not based on technical limitations of
the described method.

The “sleeping bag” was made out of fabric and securely
covered the segment of the body where the cables were inserted.
The “sleeping bag” tightly kept the electrodes and cables in place
but still allowed the animal to perform undisturbed locomotor
movements. For arboreal species with a more elongated and
slender body such as the Amazon tree boa (Corallus hortulanus)
employed in our study, the use of such a bag was highly beneficial
as these snakes generally use their prehensile tail to wrap around
objects, as well as around their own body. The “sleeping bag” was
constructed from a stretchy jersey fabric. Critical for the stable
positioning of the bag was the extension of the snake out of the
fastened shut bag on both sides (Figure 1H). If only the head
were to come out of the bag, then the snake could still insert
the highly flexible tail through loops that would form with the
inserted cables, potentially removing the latter.

At the points where the head and tail exited the bag, hook
and loop fasteners were attached to the outside of the bag
(Figure 1G2). On the inside of the bag in relation to the hook and
loop fasteners were silicone stripes (Figure 1G1). These stripes
helped to hold the bag in place around the body such that the
snake was unable to slither out. The middle section of the bag
consisted of a large compartment that was closed by a long strip
of hook and loop fasteners running parallel to the extent of the
compartment. The size of the bag was adjusted to the size of the
snake (0.9–1.4m SVL) such that the animal was not able to fully
extend its individual body segments. This prevented the snake
from forming several S-shaped curves at body midsection and to
pull the tail in through the bottom of the bag. As the diameter of
the body directly behind the head of Amazon tree boas is smaller

than that of themidsection, a well-fastened hook and loop closing
mechanism prevented the animal from slithering out of the bag
during forward movements. The diameter constriction of the
body behind the head also prevented the snake from pulling
the latter back into the closed containment. Besides ensuring a
strong and uniform closing mechanism, hook and loop fasteners
facilitated a quick and easy opening and closing of the bag to
insert and remove the snakes. For terrestrial and more heavy
bodied snake species such as Western diamondback rattlesnakes,
also employed in this study, the use of a “sleeping bag” was
not necessary. These snakes lack an extensive tail region that
allows being wrapped around objects or the own body. During
the post-surgical period, we noticed in fact that these snakes
remained rather coiled-up overnight, therebyminimizing the risk
of electrode impairment.

Data Collection
In the current pilot study, eight bipolar electrodes and two
additional ground electrodes were implanted as described above
to demonstrate the constant quality of EMG recordings over
several days. The bipolar electrodes were inserted in a pairwise
fashion on the left and right side of the axial column at a
dorso-lateral position (Figure 1F). To identify each electrode
pair, electrodes were referred to a particular “position,” as
shown in Figure 2. The insertion points for the four rostro-
caudal positions were determined by the following distances
along the axial column starting from directly behind the skull
(0 cm): 6, 17, 28, and 39 cm. Since the rattlesnakes used in this
study were about half the length of the boas, the respective
distances for the corresponding rattlesnake implantations were
5, 10, 15, and 20 cm. The two monopolar ground electrodes
were inserted at ∼45 cm in Amazon tree boas (∼25 cm in
rattlesnakes) behind the head on both sides of the body. After
implantation, each snake was allowed to recover overnight, and
EMG data were collected over a period of four consecutive days.
Recorded EMG signals were amplified by a factor of 192 and
digitized (20 kHz) by a 16-channel amplifier board with bipolar
(differential) inputs (RHD2216, Intan Technologies, Los Angeles,
California). Digitized EMG signals were forwarded to a USB-
interface board (RHD2000, Intan Technologies, Los Angeles,
California) and stored on computer using the USB interface
board software provided by Intan Technologies. The recorded
signals were processed by a 50Hz notch filter followed by further
processing with a fourth order Butterworth band-pass filter with
a lower end of 20Hz and upper end of 850Hz. Recordings were
down-sampled by the intan software to 4KHz to ease plotting
of the data, though the original data were stored for further
analysis. To calculate the envelope of the recorded EMGs, the
data was rectified and a fourth order Butterworth low-pass filter
(8Hz) was applied. Bias caused by rectification was removed by
using the data before the start of the motion stimulus device (see
below) to calculate a mean. This mean was then subtracted from
the full data range. Subsequently, the values were normalized
between 0 and 1 to facilitate comparison between electrodes
and individuals.

A custom-built motion stimulus device (turntable) was
used to provoke compensatory postural reactions driven by
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FIGURE 2 | Reliability of multi-electrode EMG recordings during stimulus-provoked changes of the snake’s (Amazon tree boa) body formation. Representative

recordings at four rostro-caudal positions (P1–P4 in the top scheme) on the left (red) and right side (blue) of an individual snake; the scheme of the body formation

before (top left) and during turntable movement (top right) was reconstructed from videos recorded simultaneously with the 8-channel EMG 3 days after electrode

implantation; dashed lines indicate time steps of the video frames used for reconstruction of the body formation. The envelope of the recorded EMGs was normalized

to the maximum value, per channel, respectively, and was plotted as gray overlay onto the raw data.

stereotypic muscle activity for the assessment of EMG quality.
Accordingly, the snake was placed on a branch that was
positioned in the vertical rotation center of the turntable. The
turntable had a dimension of 30 × 30 cm and was driven
by a brushless DC motor (Model:3268G024BX4 CS, Faulhaber,
Schönaich, Germany). AMATLAB script (MATLAB ver. R2016a,
Mathworks, Natick, Massachusetts, USA) was used to control
turntable movements. The standard stimulus consisted of a
sinusoidal rotation in the horizontal plane with a positional
excursion of ±60◦ and a frequency of 0.1Hz (period of 10 s).
A spatially invariable infrared stimulus (IR-Emitter, Steady State
IR Source, Model EK-5270, Laser Components GmbH, Olching,
Germany) was presented in front of the snakes to attract the

attention of this infrared-sensitive species. Since the snakes
focused on the position of the IR-Emitter, the head remained
relatively stable in space during turntable rotation. This was
achieved by the snakes through an activation of compensatory
movements of the head/body involving the most rostral body
loops. Thus, turntable motion caused the snake to decrease or
increase the diameter of its S-shaped body loops, which resulted
in a relatively stereotyped motor behavior, ideally suited to
assess the quality of the EMG recordings. To reconstruct the
change in body shape, a video camera (Basler Ace acA1300-
200uc, Basler AG, Ahrensburg, Germany) was mounted above
the turntable and was temporally synchronized with the EMG
recording device.
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To verify that the described chronic recording technique is
also applicable to other snake species with a different body
shape and lifestyle, we performed EMG recordings in the
Western diamondback rattlesnake—a heavier bodied species
with a ground-based lifestyle. This species, however, turned out
to be unsuitable for turntable experiments, because of a lack
of robust postural stabilization as performed by the Amazon
tree boa. We therefore designed a different task and recorded
EMGs during aggressive strikes from both, Amazon tree boas and
from Western diamondback rattlesnakes. This highly dynamic
behavior was chosen, because it could be easily provoked in
both species and due to the high kinematic profile posed a
particular challenge for the stability of the implanted electrodes.
In these experiments, the Amazon tree boas rested on the same
branch as in the turntable experiments. To account for the
ground-based lifestyle, Western diamondback rattlesnakes were
placed directly on the flat surface of the stationary turntable. An
infrared stimulus (IR-Emitter, Steady State IR Source, Model EK-
5270, Laser Components GmbH, Olching, Germany) in front
of the animals at a distance of 10–20 cm was used to attract
their attention and to elicit aggressive targeted strikes. The
video camera (see above), mounted above the turntable and
synchronized with the EMG recordings, was used to capture
the strikes for offline analysis. To determine when strike activity
started in the EMG signal a measure of 1.5 standard deviations
above the mean of the total signal capture was used. This metric
alone has many false positive correlations. To mitigate these
aspects, a sliding window of 35ms was used. The start of EMG
activity of the strike was only marked once all timesteps in
the window were above threshold. Furthermore, the search for
the strike start was started 250ms prior to the time of visual
strike start. The data set obtained during the strike behavior
of Amazon Tress Boas (N = 4) was chosen for the evaluation
of the electrode performance across successive recordings days.
Accordingly, the data on the strikes recorded at the first day after
electrode implantation was compared with those recorded 4 days
after implantation. To differentiate data that consisted mostly
of noise from data with actual strong EMG activity, the first
second of each recording without stimulation or movement was
selected and referred to as “noise” (Figure 3B). In comparison,
the time period from the visual start of the strike until the time
of maximal extension of the snake during a strike was referred as
“signal” (Figure 3C). The mean amplitude of these time periods
was calculated separately for each individual animal. The mean
amplitude of the “noise” (respectively, “signal”) from day 1 was
compared to the data obtained on day 4 by normalizing to the
maximal value. Normalized data was then averaged across the
four tested individuals.

At the end of both types of experiments over a period of 4 days,
snakes were decapitated under deep isoflurane anesthesia (5%)
using an animal decapitator (Small Animal Decapitator, Stoelting
Co., Wood Dale, IL, USA).

RESULTS

The success of simultaneous EMG recordings from eight bipolar
electrodes along the snake body was initially demonstrated by
data sets of muscle activity recorded from two different Amazon

tree boas 1 day after electrode implantation (Figures 2–4). When
resting on the branch prior to horizontal turntable movements,
the recorded EMG showed only weak activity of units with
small amplitudes, which sometimes was difficult to discriminate
from concurrent noise (Figures 2, 4A1). However, following
initiation of the sinusoidal rotational movement, snakes actively
changed their body formation (Figures 2, 4A1), accompanied
by a patterned axial muscle activity with a high signal-to-noise
ratio (Figure 3A). There was no substantial change in the signal
quality during the entire experiments, even when the recording
electrodes were confronted with high forces that occur during
fast strikes of Amazon tree boas (Figure 3B) that cover long-
distances. The EMG revealed a bilaterally side-specific pattern,
which consisted of an asynchronous muscle activity on the
left (Figures 2, 4A1, red traces) and right side (Figures 2, 4A1,
blue traces) at any one of the four rostro-caudal recording
positions. The side-specific activity pattern was accompanied
by a phase-difference of the respective myogenic potentials.
When different individuals were positioned in the center of the
rotation axis, such that a comparable body form was assumed,
the recorded activity was similarly patterned (Figures 2, 4A1,A2;
Supplementary Figure 1).

Likewise, EMG data, collected from a given animal at
two separate days (day 1 and day 4 after the implantation)
were used to evaluate the temporal consistency of the
recordings during the experimental period (Figures 4A,B;
Supplementary Figures 1A,B). Recorded EMG signals from
the same channels appeared to be qualitatively very similar
on the 2 days (Figures 4A,B; Supplementary Figures 1A,B).
During the separate recording sessions, the muscle activity
exhibited recording-site-specific high signal-to-noise ratios with
variations across channels, nevertheless allowing a detailed
pattern analysis by calculation of the envelope of the recorded
EMGs. The variations in the activity pattern between day 1
and day 4 were larger at the caudal recording sites (P3 and
P4, Supplementary Figure 1) as compared to the more rostral
recording positions (P1 and P2, Figure 4) and were likely related
to the more variable anchoring positions of the snake at the latter
body positions.

The data sets, obtained from simultaneous EMG
recordings of eight bipolar electrodes during snake strikes
(Supplementary Video 3) showed that the employed
technique is sufficiently stable to also capture the muscle
activity during highly dynamic movements (Figures 5A–H;
Supplementary Figure 2) in a comparative approach in different
snake species. In total, 199 strikes of the Amazon tree boa (N =

5) and 71 strikes of the Western diamondback rattlesnake (N =

2) were recorded. In contrast to the slow compensatory postural
reactions provoked by a turntable rotation, the EMG activity
during snake strikes was considerably shorter with the maximum
activity at the time when the actual strike was launched
(Figures 5A,D,F,G). Recorded EMGs did not differ across
species and showed a strong activation with high amplitude
EMGs at strike start. However, temporal activation of epaxial
muscles did not occur simultaneously when the recordings of
the left and right side at a particular positional configuration
were compared. In the example shown in Figures 5A,B, high
amplitude EMGs at strike start were only recorded on the left
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FIGURE 3 | Evaluation of EMG quality. (A) Selected period of EMG activity (top trace) and at higher temporal resolution (bottom traces). (B,C) Evaluation of the

electrode performance at day 1 (black) and day 4 (red) after implantation. Data that consisted mostly of noise (B) was analyzed separately from data with actual strong

EMG activity (C). The analyzed data was recorded from muscle activity during strikes of an Amazon tree boa; note the similarity of the values at day 1 and 4 for both

parameters.

side of the snake (Figure 5A), The activation of the right side
(Figure 5B) was considerably weaker with a delayed appearance
of EMG activity at higher amplitude. This activation pattern
was neither species- nor side-specific and appeared to be rather
related to the specific loop-formation of the snake body. If the
loop was formed in a mirror-image fashion, as the illustrated
example of a rattlesnake strike in Figures 5E,F, the temporal
activation sequence was inversed.

For further analysis, the recording positions on both sides
of the snake were classified as fast-activation side or slow-
activation side. The side (left or right) at which for a given
recording position, EMG activity was encountered earlier than
the corresponding activity on the other side was signified
as fast activation side (Figures 5A,D,F,G) and the other side
accordingly as slow activation side (Figures 5B,C,E,H). This
classification scheme simplified the analysis and comparison of
the spatio-temporal activation of strikes by both the Amazon tree
boa (Figures 5L,J) and the Western diamondback rattlesnake
(Figures 5K,L). Differently colored bars indicate the order
in which EMG activity was recorded. Accordingly, e.g., for

recording position 1 the blue bar indicates the number of strikes
in which the first EMG activity occurred at this position. The
purple bar, likewise, represents the sum of all strikes in which
the EMG activity was recorded subsequently and so on. Since
at each position bipolar electrodes were implanted on both sides
of the snake, the differentiation between fast-side activation and
slow-side activation was taken into account. The summation
of the data obtained from all strikes of an Amazon tree
boa (Figures 5L,J) and the Western diamondback rattlesnake
(Figures 5K,L) demonstrated a high variability without a clear
temporal activity pattern. Thus, we found no clear pattern that
could be related to a wave-like activation either from rostral to
caudal or vice versa. This would be the case when the firing
order is strongly correlated with electrode position. Since such
a correlation is absent in the distribution of fast-side and slow-
side activation positions, there is no fixed sequential activation of
consecutive body positions.

However, a noticeable difference emerged when the
distribution of fast-side activation and slow-side activation
was compared between the strikes of the Amazon tree boa and
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FIGURE 4 | Temporal robustness of multi-electrode EMG recordings during stimulus-provoked changes of the snake’s body formation. (A) Muscle activity of an

Amazon tree boa other than the one from which the data were presented in Figure 2 at day 1 (A1) and day 4 after implantation (A2); recordings derived from the two

most rostral positions (P1 and P2 in the top scheme) on the left (red) and right side (blue); the scheme of the body formation before (top left) and during turntable

movement (top right) was reconstructed from videos recorded simultaneously along with the eight-channel EMG; the recordings from P3 and P4 are illustrated in

Supplementary Figure 1; dashed lines indicate time steps of the video frames used for reconstruction of the body formation. The envelope of the recorded EMGs

was normalized to the maximum value, per channel, respectively, and was plotted as gray overlay onto the raw data. (B) Overlays of the normalized envelopes of each

channel at position P1 (channel 1 and 2) and P2 (channel 3 and 4) at day one (dashed black lines) and day four (solid green lines).

the Western diamondback rattlesnake. In the data obtained
from the Amazon tree boa, there was hardly any correlation
between the fast-side activation and the slow-side activation
(Figures 5I,J). In contrast, a clear correlation was present in
the data obtained from the strikes of the Western diamondback
rattlesnake (Figures 5K,L). This was most evident, when looking
at recording position 1 and 4 or the colored bars for the first
(blue) and fourth (gray) electrode position. Thus, in the Western
diamondback rattlesnake, the slow-side activation was spatio-
temporally more linked to the fast-side activation than in the
Amazon tree boa (see discussion below).

DISCUSSION

Following stable subdermal implantation of up to eight bipolar

electrodes directly above epaxial target muscles, robust EMG

activity with high signal-to-noise ratio was reliably recorded from

all sites. The overnight coverage of the snake body ensured a

position-invariant arrangement of all electrodes throughout the
recording period, without loss or deterioration of the signals.
The recording of comparable EMGwaveforms across consecutive
daily sessions confirmed the suitability of multiple subdermally
implanted electrodes for the chronic acquisition of large sets
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FIGURE 5 | Multi-electrode EMG recordings during stimulus-provoked aggressive strikes. (A–H) Representative recordings from an Amazon tree boa at two

rostro-caudal positions [(A,B): Position 1; (C,D): Position 2]. (E–H) Similar recordings as in (A–D), from a Western diamondback rattlesnake. (I–L) Distribution of

spatio-temporal muscle activation patterns along the body axis of all recorded strikes from the Amazon tree boa (I,J) and the Western diamondback rattlesnake (K,L).

The left and right sides of the body was classified for each recording position as fast-activation side (I,K) or slow-activation side (J,L) based on the temporal sequence

of the activation. The order of activation is depicted by colored bars (blue = first, purple = second, red = third, gray = fourth). Green vertical bar in (A–H) indicates

start of the snake strikes.
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of myogenic activity during natural motor behaviors in snakes.
The robust recording of EMGs in rattlesnakes demonstrated
the suitability of this method also for snakes with a different
body shape.

Electromyography recordings from different individuals with
comparable body formation and curvatures revealed similar
activity patterns in response to turntable stimulation, suggesting
1) the presence of comparable task-dependent muscle activation
patterns and/or 2) the recording of similar groups of muscle
fibers. This indicates that the established method represents a
suitable technique to reliably record and compare the contraction
dynamics and temporal pattern of multiple equivalent groups
of axial muscles across individual snakes. However, snakes
assumed slightly different body configurations, when placed
on the positioning branch during repetitive recording sessions.
Thus, the recorded EMGs naturally showed variations across
individuals and subsequent days of data collection related to the
specific body loop formation.

The different body loop formation is also relevant for the
interpretation of the fast aggressive strike of snakes. Since in
our EMG data no clear fixed sequential activation of consecutive
body positions became apparent, it is unlikely that the snake
strike is activated by a fixed motor pattern. This would require
that the snakes repetitively strike from identical positions with
generalized loop formations. However, from our experience,
especially with rattlesnakes, strikes can be initiated from any
position independent from the actual loop formation. Thus, we
hypothesize that the activation order is rather related to the
distance that each loop adds to the strike, with larger loops
being activated before smaller ones. This might also explain the
difference, between fast-side and slow-side activation in both the
Amazon tree boa and theWestern diamondback rattlesnake. The
comparison of the coordination of the slow- and fast-sides of
the strikes provides information about how the first (fast-side)
activity is being counteracted by the delayed (slow-side) activity
of the other side. First activation of the outside of a loop pushes
the snake into a more linearly aligned position. If that would not
be counteracted by an opposing force, the snake would be unable
to maintain this linear position and this particular section of the
body would go past themidline to form a new loop at the opposite
side of the body. Thus, the delay of the slow-side activation
would depend on the actual loop size. This indicates that it takes
more time for the body to straighten a big loop in comparison
to a small loop. Therefore, counteraction by slow-side activity
would be delayed when a big loop has to be straightened during
a strike. Thus, the difference between the Amazon tree boa and
the Western diamondback rattlesnake might be explained by the
loop size before launching a strike. Smaller loops cause a slow-
side activation with a shorter delay and therefore result in a
stronger correlation between fast-side and slow-side activation.
However, a more detailed study design that includes high-speed
video acquisition from multiple cameras for a detailed analysis
of loop formation would be necessary to confirm this hypothesis
considering the actual strike model (gate vs. tractor tread) as
described by Kardong and Bels (1998). This would also allow for
a comparative investigation of snake motor patterns with other
neuromechanical models such as the undulatory sand-swimming

of sandfish lizards, that has been analyzed in greater detail (e.g.,
Ding et al., 2013; Sharpe et al., 2013).

Nonetheless, independent of all activity details, the overall
robustness of the recordings suggests that chronic compound
EMG recordings of axial muscles for at least up to 4 days in snakes
are possible and allow reliable acquisition of myogenic potentials
of similar sets of muscle fibers at particular body positions in both
employed species of snakes. It must be pointed out, however,
that recordings of sEMGs, either using surface electrodes (e.g.,
in mammals; Staudenmann et al., 2010) or by placing electrodes
directly onto the surface of the muscle (Biedermann et al.,
1999, 2000; Scholle et al., 2001) as used here, will not yield
sufficiently precise data to allow linking the recorded compound
activity with individual muscle fiber bundles. Such an alignment
clearly requires the implantation of electrodes into surgically
exposed and thereby identified muscles, however, with likely
detrimental consequences for motion patterns and trajectories. If
locally restricted recordings from specific muscles or even from
deep muscle tissue is required, classic hook electrodes should
be preferentially employed (Loeb and Gans, 1986). However,
implanting electrodes deep into muscular tissue impairs the
mobility of the animals and thus the undisturbed execution of
natural motor repertoires. Therefore, the specifically used EMG
acquisition technique is generally a trade-off between muscle
specificity and interference-free motor performance. Thus, our
approach for electrode insertion, cable fixation, and potential
snake movement restriction is therefore an elegant compromise
that allows a considerable extension of the experimental period
without undesirable loss of recording electrodes. This proof-of-
concept study thus successfully demonstrated the possibility to
faithfully record high-quality EMG signals over the course of
several days at multiple sites along the body with a comparable
suitability in two species of snakes with different body structures
and life styles. Moreover, the occasional presence of distinctive
large-amplitude single-units in the EMG recordings even allows
sporadic identification of individual muscle fibers and thus the
potential detection of task-specific differential contributions of
muscle fibers with specific dynamic properties.

CONCLUSION

The establishment of an improved multi-electrode implantation
technique to record the EMG of snake axial muscles was highly
successful and proved to be excellently suited for collecting high-
quality muscle activity data for several days. Most instrumental
for chronic recordings were the durable subdermal insertion of
the recording electrodes as well as the use of the “snake sleeping
bag” that efficiently prevented the loss of wires and ensured
safe resting of the animal overnight. The latter invention also
kept the cables unimpaired while the animal recovered from
anesthesia and allowed multiple recording sessions over several
days with the same configuration, likely recording the same
muscle fiber bundles. In addition, the method caused no visible
detriments of the health, vitality or mobility of the animal over an
extended recording period. Thus, larger data sets can be recorded,
which potentially reduces the number of experimental animals
used in future studies. While this technique has less accuracy
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for the determination of muscle specificity in comparison to
intramuscular EMG, it is more than sufficient to provide vital
information on muscle activity that can be used to investigate
muscle coordination in combination with concurrent high-speed
video recordings of snake locomotion or strike movements.
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The mechanism of psychiatric drugs (stimulant and non-stimulant) is still unclear.
Precision medication of psychiatric disorders faces challenges in pharmacogenetics and
pharmacodynamics research due to difficulties in recruiting human subjects because of
possibility of substance abuse and relatively small sample sizes. Drosophila is a powerful
animal model for large-scale studies of drug effects based on the precise quantification
of behavior. However, a user-friendly system for high-throughput simultaneous tracking
and analysis of drug-treated individual adult flies is still lacking. It is critical to quickly
setup a working environment including both the hardware and software at a reasonable
cost. Thus, we have developed EasyFlyTracker, an open-source Python package that
can track single fruit fly in each arena and analyze Drosophila locomotor and sleep
activity based on video recording to facilitate revealing the psychiatric drug effects.
The current version does not support multiple fruit fly tracking. Compared with existing
software, EasyFlyTracker has the advantages of low cost, easy setup and scaling,
rich statistics of movement trajectories, and compatibility with different video recording
systems. Also, it accepts multiple video formats such as common MP4 and AVI
formats. EasyFlyTracker provides a cross-platform and user-friendly interface combining
command line and graphic configurations, which allows users to intuitively understand
the process of tracking and downstream analyses and automatically generates multiple
files, especially plots. Users can install EasyFlyTracker, go through tutorials, and give
feedback on http://easyflytracker.cibr.ac.cn. Moreover, we tested EasyFlyTracker in a
study of Drosophila melanogaster on the hyperactivity-like behavior effects of two
psychiatric drugs, methylphenidate and atomoxetine, which are two commonly used
drugs treating attention-deficit/hyperactivity disorder (ADHD) in human. This software
has the potential to accelerate basic research on drug effect studies with fruit flies.
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INTRODUCTION

Drosophila is a powerful genetic animal model for studies
of complex phenotypes such as circadian rhythms, sleep,
movement, and diseases (Sokolowski, 2001; Bier, 2005; Bellen
et al., 2010). With lower costs and higher yields than mammalian
models, Drosophila has contributed to revealing the genetic and
neuroscientific basis of autism spectrum disorders (ASDs) (Tian
et al., 2017; Coll-Tane et al., 2021), attention-deficit/hyperactivity
disorder (ADHD) (van Swinderen and Brembs, 2010; van der
Voet et al., 2016), and other disorders (Ries et al., 2017).
In particular, large-scale studies of target genes and drug
effects of the stimulants such as amphetamine, methylphenidate
(MPH), and cocaine have greatly accelerated the basis of future
pharmacogenomic and pharmacodynamic research (Heberlein
et al., 2009; Rohde et al., 2019; Philipsen et al., 2020). Sleep
and locomotor activity are crucial behaviors in the study of
neurological disorders in Drosophila, since certain psychiatric
disorders cause deficits in these behaviors. Different devices
and accompanying software have been proposed for Drosophila
sleep/locomotor tracking and downstream analyses, but they
are not designed for the simultaneous independently tracking
of multiple individual flies in drug effect studies. For example,
pySolo (Gilestro and Cirelli, 2009), ShinyR-DAM (Cichewicz and
Hirsh, 2018), and “tracker” (Donelson et al., 2012) software have
been widely used, but limited to the infrared-detected Drosophila
Activity Monitor (DAM) system (TriKinetics, Waltham, MA,
United States). It records the frequency of fruit flies crossing
infrared beams in a tube to study the locomotor, sleep, and
circadian rhythms. The high cost of the single tube device
limits its usage for high-throughput studies. Other well-known
commercial tracking software, such as EthoVision XT from
Noldus (Wageningen, Netherlands), is also expensive.

The Ctrax (Slawson et al., 2009) and the IowaFLI Tracker
(Scaplen et al., 2019) are all camera-based software based on
grouped individual tracking in the defined area. However, such
group-based activity can interfere (e.g., with social behavior) with
sleep/locomotor activity after drug treatment. Furthermore, some
software was developed in MATLAB (Barwell et al., 2021), which
is also an expansive commercial solution. In addition, it is slow
when dealing with large videos using an artificial intelligence
approach to track large fruit fly behaviors such as idtracker.ai
(Romero-Ferrero et al., 2019).

Thus, we developed EasyFlyTracker, which uses affordable
and easy-to-build equipment to track and analyze the
sleep/locomotor activities of individual adult fruit flies for
the study of drug effects, especially psychiatric drugs. To
avoid interference of social behaviors, each arena contains
only single fruit fly. EasyFlyTracker can track the activities
of up to 72 individuals simultaneously with current settings
and scale up to any number of individuals theoretically.
After evaluating the tracking accuracy of EasyFlyTracker,
we used it to track and quantify the locomotor activities of
Drosophila treated with two commonly used psychiatric drugs
such as MPH (a stimulant) and atomoxetine (ATX) (a non-
stimulant) for ADHD symptoms in humans and finally identified
hyperactivity-like behavior.

MATERIALS AND METHODS

Our tracking system consists of two parts, software and hardware
setup, of which software (named EasyFlyTracker) development
is our focus. All the hardware can be purchased directly
online and installed easily and we provided product lists on
our website http://easyflytracker.cibr.ac.cn/#/document. Next,
for convenience of users, hardware setup is introduced first.

Hardware Setup Requirements
We built the customized recording environments, which are
easily rebuilt and cost-effective compared with commercial
equipment. The setup (cartoon diagram is shown in Figure 1)
consists of the following parts: a standard commercial video
camera, a background light, a computer, and polycarbonate
(PC) antistatic transparent flat chambers. An example of up to
72 individuals were tracking simultaneously with our current
settings (diameter of each circle is 16 mm) and it can scale up
to any number and any circle size of individuals theoretically.
However, as the number and circle size increase, the equipment
settings should upgrade accordingly to maintain the performance
of the system. The minimum size of the fruit fly body needs to
be at least 4 pixels otherwise it will be treated as noise rather
than a fruit fly. Active video of flies was obtained by recording
the video directly above the activity areas of fly. Any camera
with a resolution of 640 × 480 or better will work and we used
1,280 × 720 and 30 frames per second (fps). In addition, users
need to ensure that the camera is still, the light (or infrared light)
is constant, so that the background image is stable and stationary,
and the background should be a clean and bright environment.

Development of EasyFlyTracker for
Locomotor and Sleep Activity Analysis
EasyFlyTracker is written in the open-source Python 3.61

programming language and can be used to understand the
tracking process, thanks to the user-friendly interface. The
schematic plot of EasyFlyTracker is shown in Figure 2. General
flow of the software (Figure 2A) contains read input data,
track position of fly, define and analyze behavior, and output
files. Details (Figure 2B) of tracking algorithm, behavior
definition, outputs and visualization, and detailed information
are provided below.

Tracking Algorithm
It calculates the trajectory of each fly (center position and
orientation in each frame) after importing the stored video
sequence. Sample videos,2 which were recorded with our
aforementioned customized shooting environments, were
used to develop EasyFlyTracker. Tracking is achieved through
four steps (a graphical example of the tracking algorithm
is shown in Figure 2B): background modeling, foreground
segmentation, coordinates calculation, and orientation
estimation of Drosophila.

1https://www.python.org/
2http://easyflytracker.cibr.ac.cn/#/document
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FIGURE 1 | Hardware setup of video recording system. A cartoon schematic of our shooting setup, which consists of the following parts: a standard commercial
video camera, a background light, a computer, and polycarbonate (PC) antistatic transparent flat chambers. The minimum size of the fruit fly body needs to be at
least 4 pixels otherwise it will be treated as noise rather than a fly.

FIGURE 2 | The schematic plot of EasyFlyTracker. (A) General flow of the software. (B) Details of input data, tracking algorithm, behavior definition, output, and
visualization.

Background Modeling
A total of 800 frames or available number of frames when
it is smaller than 800 are randomly selected from video and
the pixel value with the highest number of occurrences in the
time dimension is kept for each pixel. The background image
is obtained after traversing all the pixel points. It should be
noted that a random factor is used here, which will lead to the
probability of inconsistency in the results of multiple operations

on the same video. However, this deviation is extremely small and
belongs to the normal range.

Foreground Segmentation
A pixel is determined to be a foreground pixel (fruit fly) if
it satisfies the following conditions: its own pixel value is less
than 120 and the difference with the background pixel is greater
than 70 (Piccardi, 2004). In general cases, it works very well
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to separate fruit flies from the background with the threshold
setting as 120. However, when the background is not clean such
as there are some black impurities, we need another parameter
to remove the noisy pixels with the requirement that difference
between the foreground and the background is greater than 70.
By combining these two parameters, we can efficiently separate
fruit flies from the background.

Coordinate Calculation of Drosophila
The coordinate values were calculated based on the barycenter
method of the region [connectedComponentsWithStats()]
function of OpenCV (version 4.5.2) package in Python 3.6.

Orientation Estimation of Drosophila
The minimum area boundary rectangle of the segmented fruit fly
region was calculated to determine the tail-to-head orientation.
We further combined the velocity direction to determine the
exact location of head and tail. Due to the low resolution, we did
not consider the difference between head and abdomen velocity
directions as previously reported (Geurten et al., 2014).

Behavior Definition
Based on the trajectory matrix of each fly (center position and
orientation in each frame), EasyFlyTracker quantifies behavioral
patterns of locomotor and sleep activity. Average distances every
10 min per fly (10 min is commonly used in the published
literature and actually users can set any customized values) are
used to define locomotor activity (Rohde et al., 2019). Sleep is
defined as more than 5 min complete inactivity (Shaw et al.,
2000); then, statistics of average sleep time and proportion of
sleeping flies of each treatment group are used to show the
status of sleep activity. The treatment group information is
user defined and provided in the file “group.xlsx.” The example
file can be found online (see text footnote 2), which includes
treatments (drugs, control, or others) and the corresponding
fruit fly number. Moreover, statistics of average angle change
per second per fruit fly, the frequency of the fly passage at each
position, and the regional preference of Drosophila movements
are also defined to describe the locomotor activity of fruit fly. All
these statistics are provided in different formats for users.

Software Outputs
The software provides different outputs. The first outputs are
the plots of different behaviors including the locomotor activity
plot, sleep status plot, heatmap plot, angle change plot, and
regional preference plot. The locomotor activity plot shows
average distances of the different Drosophila treatment groups
during different time intervals (default every 10 min). The sleep
status plot displays the statistics of sleep fly (default every 30 min).
The heatmap plots show the relative frequency of the fly passage
at each position and both the frequency per flies and grouped
heatmaps are provided. Sleep intervals can be removed from
the heatmap plots with the “heatmap_remove_sleep” parameter
defined in the “config.yaml” file. The angle change plots show
the statistics of average angle change per second per fruit fly
and the regional preference of Drosophila movements more
visually shows the regional bias of Drosophila movement. About
the details of visualization parameters, please refer to our

Supplementary Material. The second outputs are Excel files,
which provide analysis results of different behaviors among
the different groups and users can easily perform statistical
analysis or plot by themselves according to their preference.
The third is .npy files, which contain more output information
and intermediate result information such as the position of
the activity of fly at every frame; thus, users can reload and
reanalyze at any time. The fourth output is the config file related
to user configurations, which can be used to modify or further
develop in the future.

System Evaluation
To ensure the usage of different platforms and users, we evaluated
the tracking accuracy rate of location and orientation (manually
checked random frames of different videos) of EasyFlyTracker.
Images of frames were randomly generated from three different
videos taken at random (November 17, 2020, December 1,
2020, and December 4, 2020). For the location evaluation, we
have used 100 random frames for each video. Each frame is a
picture recording location of each fruit fly at the corresponding
time point. Then, three different people manually judged the
accuracy rate of tracking of each fruit fly. We distinguished
the consistency of tracking location and location of fly in each
randomly generated image and numbers of mistracked flies
were recorded. Tracking errors were defined as those without
recognizable location or where the cross was obviously not in
the center of the fly. Finally, the average accuracy of location
of three videos evaluated by three people was calculated as the
accuracy of the tracking rate. For the orientation evaluation, we
have used 600 random frames for each video and checked one
fruit fly per frame. In total, three people manually checked the
same 1,800 fruit flies and recorded three types of evaluation result
including correct, wrong, and indistinguishable. After removing
the indistinguishable cases, the average accuracy of orientation
was then calculated.

Other Information
Statistical analysis was performed using Python (version 3.8.3).
The Kruskal–Wallis H-test (SciPy, version 1.5.0) was used for
comparisons of groups. A value of p < 0.05 was considered
to indicate statistical significance. The website was built mainly
using VUE version 2.6 and Spring Boot version 2.4.0.

RESULTS AND DISCUSSION

Overview of EasyFlyTracker
EasyFlyTracker is an open-source package based on video
tracking to analyze locomotor and sleep activity of fruit
fly that can be run interactively through a graphical user
interface. The software can be easily customized to accept
most of the common video formats such as MP4, AVI,
MOV, FLV, and so on. It can track single adult individual
flies in parallel and quantify their locomotor and sleep
activity. The main function of EasyFlyTracker includes two
aspects (Figure 2): (1) track the position of each fly and
store it. Tracking is achieved through four steps: background
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FIGURE 3 | The website of EasyFlyTracker. (A) Home page. (B) Feedback page where users can add comments and suggestions for better upgrade interaction.
(C) Detailed usage example. (D) Step-by-step video tutorials.

modeling, foreground segmentation, coordinates calculation,
and orientation estimation of Drosophila. The average tracking
accuracy rate of location and orientation are 99.89 and 87.75%
separately, which were manually evaluated random frames of
different videos by three people (summary of tracking accuracy
rate can be found in Supplementary Table 1) and (2) define,
analyze, and visualize locomotor activity and sleep behaviors
from various aspects including average distances every 10 min
per fly (or other customized time interval), statistics of sleep
status, statistics of average angle change, and the frequency of the
fly passage at each position, and so on. It has been successfully
installed and ran at the cross-platform level (Supplementary
Table 2) by different person. More details on behavior definitions,
outputs, and plot parameters can be found in the methods.

Online Website and Usage of
EasyFlyTracker
We provide the special website http://easyflytracker.cibr.ac.cn
(home page, see Figure 3A) with feedback page (Figure 3B),
where users can add comments and suggestions for better
upgrade interaction and detailed usage example (Figure 3C)

and step-by-step video tutorials (Figure 3D). In short, users
can run EasyFlyTracker by the following steps: (1) download
or install the EasyFlyTracker package; (2) download demo
files from our website including example video, config.yaml,
and group.excel file; (3) modify config.yaml file according to
the personal video path of user or example video provided
by us, group information and time duration, and so on; (4)
track the position of Drosophila at each frame by running the
command line: easyFlyTracker config.yaml; and (5) run other
command lines to analyze and statistically track information:
easyFlyTracker_analysis config.yaml. More detailed tutorials
(such as installation, personalized settings, and customized
downstream analyses) are available from our website. Technical
comments and suggestions can also directly add to GitHub.3

Psychiatric Drug Treatment Study of
EasyFlyTracker
We applied EasyFlyTracker to 3-h videos recorded of Drosophila
treated with wild-type (WT) w1118 control, MPH (a stimulant),

3https://github.com/azzhu/EasyFlyTracker/issues
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FIGURE 4 | An example of psychiatric drug treatment study using EasyFlyTracker. (A) Drug treatment by modified capillary feeder (CAFE) assay. (B) Example of
activity assay and size of chambers for the three treatments. Panels (C–E) plots are output examples of our real drug treatment video, which was taken on March 30,
2021. (C) Heatmap plot of the frequency of each fly. The relative frequency of the fly passage at each location was plotted (red indicates the highest frequency in the
area; dark blue indicates that no flies ever transitioned through this position). (D) The average distance every 10 min per fly was significantly increased in the
methylphenidate (MPH) (M-1.5)- or atomoxetine (ATX) (A-0.25)-exposed group compared to the control (C) group throughout the 3-h video. (E) Grouped-heatmap
plots of three treatments. The color legend is the same as in (C).

and ATX (a non-stimulant) (Sigma-Aldrich, Shanghai, China).
MPH and ATX are two commonly used drugs to treat ADHD
symptoms of inattention, hyperactivity, and impulsivity in
humans (Cortese, 2020). Drosophila breeding and modified
capillary feeder (CAFE) assay (Diegelmann et al., 2017) for drug
feeding (a cartoon example is shown in Figure 4A) can be
found in Supplementary Material. After drug feeding, we placed
one adult fruit fly in each arena and engaged in simultaneous
tracking (24 flies per treatment and 72 flies in total, Figure 4B).
Based on EasyFlyTracker, the locomotor activity of fruit fly was

monitored by video and short-term distances were quantified.
Our software reported that when WT male flies were exposed
to MPH, the behavior of the flies produced hyperactivity-like
behavior (higher locomotor activity) compared to controls (van
der Voet et al., 2016; Rohde et al., 2019). We observed a
significant increase in average distances over time per fly in
MPH- (Kruskal–Wallis H-test: p = 1.93e-03) or ATX-exposed
individuals (Kruskal–Wallis H-test: p = 4.48e-06) (Figure 4D),
which is in agreement with published results (Rohde et al., 2019).
Meanwhile, the corresponding average sleep time per 30 min was
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shown (Supplementary Figure 1), but no clear pattern observed
during the length of the video. In addition, the heatmap plot of
the frequency per fly (Figure 4C) showed the preferential status
of each fly among our 3-h videos and grouped heatmaps of the
three treatments were also provided (Figure 4E). They clearly
show that flies moved continuously along the edges. This may
be due to edge preference or repetitive stereotyped movements.
We also provided angle change plot (Supplementary Figure 2)
and movement plots of different treatments (Supplementary
Figure 3) to help illustrate more details of the activities of
fruit flies. It turned out that increased angle change activities
associated with the treatment groups (Supplementary Figure 2)
similar as that of moving activities (Figure 4D). It makes sense
that angle change represents one form of routine activities.
The above results indicate that EasyFlyTracker can help users
to reveal the effects of adult Drosophila locomotor activity
after drug treatment.

As a bonus, EasyFlyTracker can be easily transferred to
other Drosophila-like animals or even other animal models
such as worm and mouse, as we provide detailed tutorials
and open-source code on the website.4 If users wish to
extend to other animal models, we still recommend testing
the accuracy of tracking first. In addition, this study has some
limitations. We did not conduct a real-time tracking function
of the software because during our development process, it
was considered more important to prove the offline accuracy
rather than real-time tracking and analysis. Also, in order to
maintain an open development for better expansion by others,
we provided all source code rather than developing it as a
fixed-format program. Tracking of group behaviors was not
considered in current version, since we have not figured out
a solution at a low cost. Finally, our software is designed
for adult fruit fly, thus we did not test its applicability to
larval fruit fly. In the future, we will optimize and upgrade
the software taking into account the above elements and
incorporating user comments. In summary, we developed a
Python package, called EasyFlyTracker, which is simple, stable,
and reliable for analyzing the locomotor activity of fruit flies
and it is easy to rebuilt equipment, which is suitable for
the software. We hope that this system can achieve large-
scale screening of drug response and even target genes in the
future, thereby providing clues for psychiatric research and is
expected to provide precision medicine research and new drug
development models for its drug treatment in Drosophila as well
as other animals.
4 http://easyflytracker.cibr.ac.cn
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Accurate tracking is the basis of behavioral analysis, an important research method in
neuroscience and many other fields. However, the currently available tracking methods
have limitations. Traditional computer vision methods have problems in complex
environments, and deep learning methods are hard to be applied universally due to the
requirement of laborious annotations. To address the trade-off between accuracy and
universality, we developed an easy-to-use tracking tool, Siamese Network-based All-
Purpose Tracker (SNAP-Tracker), a model-free tracking software built on the Siamese
network. The pretrained Siamese network offers SNAP-Tracker a remarkable feature
extraction ability to keep tracking accuracy, and the model-free design makes it
usable directly before laborious annotations and network refinement. SNAP-Tracker
provides a “tracking with detection” mode to track longer videos with an additional
detection module. We demonstrate the stability of SNAP-Tracker through different
experimental conditions and different tracking tasks. In short, SNAP-Tracker provides
a general solution to behavioral tracking without compromising accuracy. For the user’s
convenience, we have integrated the tool into a tidy graphic user interface and opened
the source code for downloading and using (https://github.com/slh0302/SNAP).

Keywords: behavioral tracking, deep learning, model-free, universality, Siamese network

INTRODUCTION

Living organisms receive cues from external environments, process the information internally, and
finally output the processing outcomes in the form of behavior. Therefore quantitatively modeling
and analyzing behavior is vital to help understand the motivations and underlying mechanisms
of animals and is thus widely used in neuroscience (Frye and Dickinson, 2004; Krakauer et al.,
2017) and other animal-related disciplines, such as psychology (Snowdon, 1983; Dewsbury, 1992),
ecology (Nathan et al., 2008; Dall et al., 2012). The recent decades have witnessed the application
of technology in recording and observing animal behavior, which has greatly liberated human
labor in behavioral data acquisition, and yielded large amounts of data with unprecedented spatial
and temporal resolutions (Gomez-Marin et al., 2014). These explosive animal behavioral data

Frontiers in Behavioral Neuroscience | www.frontiersin.org 1 March 2022 | Volume 16 | Article 759943262

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/journals/behavioral-neuroscience#editorial-board
https://www.frontiersin.org/journals/behavioral-neuroscience#editorial-board
https://doi.org/10.3389/fnbeh.2022.759943
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnbeh.2022.759943
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbeh.2022.759943&domain=pdf&date_stamp=2022-03-04
https://www.frontiersin.org/articles/10.3389/fnbeh.2022.759943/full
https://github.com/slh0302/SNAP
https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


fnbeh-16-759943 February 28, 2022 Time: 19:35 # 2

Su et al. Model-Free Animal Behavioral Tracking

bring significant challenges to analysis. Fortunately, automated
image-based processing methods offer opportunities to solve
the challenges in behavioral analysis (Dell et al., 2014) and
open up a new field called computational ethology that aims to
quantify animal behavior (Anderson and Perona, 2014). Accurate
trajectory tracking is the first and most crucial step of behavioral
analysis (Pereira et al., 2020).

Recent advances in computer vision (CV) and deep learning
have inspired many well-behaved tracking methods. Among
different algorithms developed on traditional CV techniques,
background subtraction is the earliest and most commonly
used by software such as ToxTrac (Rodriguez et al., 2017).
There are also software packages that apply other efficient
object segmentation methods, such as the adaptive thresholding
in Tracktor (Sridhar et al., 2019). To track individuals in
groups, which can be disturbed by the touching and crossing
among individuals, idTracker (Pérez-Escudero et al., 2014) uses
regressive features of all individuals and successfully tracks
multiple individuals simultaneously. The above-mentioned
methods have shown successful tracking performance in
particular conditions. However, they still have some limitations,
of which the most critical one is that these methods work fine
only in constrained environments because of the relatively simple
features extracted by their segmentation methods. Deep learning,
which is the most popular method in image processing (LeCun
et al., 2015), has provided significant breakthroughs in designing
video-based animal behavior tracking algorithms (Mathis
and Mathis, 2020). Representative examples are idTracker.ai
(Romero-Ferrero et al., 2019) for multiple individual tracking
and DeepLabCut (DLC; Mathis et al., 2018), LEAP (Pereira
et al., 2019), and DeepPoseKit (Graving et al., 2019) for
high-dimensional postures tracking. The outstanding feature
extraction ability of deep learning significantly improves the
performance of tracking tools in complex environments.
However, a common problem for both traditional and deep
learning methods is their performance loss in “open” conditions,
in which the statistical distributions of test datasets are different
from those of training datasets (Goodfellow et al., 2014; Nguyen
et al., 2015). The most effective solution for deep learning
methods is enough training samples. Thus when applying deep
learning methods in practice, researchers have to manually
annotate a certain number of video frames to collect enough
training samples, a well-known difficult task in biological fields
requiring expertise and time. Besides, researchers should also be
equipped with professional knowledge to train or fine-tune the
neural networks. Therefore, solving practical problems by taking
advantage of deep learning while bypassing its overdependence
on data is a hot topic in the deep-learning field. We think
SNAP-Tracker is a successful attempt to implement this idea in
animal behavioral tracking.

To alleviate the burden of researchers and promote the
development of behavioral analysis, in this article, we present an
accurate, universal, and easy-to-use tracking software, Siamese
Network based All-Purpose Tracker (SNAP-Tracker). As its
name suggests, we develop SNAP-Tracker upon a pretrained
Siamese network, consisting of two identical subnetworks to
extract features and make comparisons (Bromley et al., 1993).

Although developed upon deep learning methods, SNAP-
Tracker works in a model-free way to track the object without
premodeling it first. Thus, it no longer requires refinements
after network pretraining. A region-of-interest (ROI) align and
distractor learning protocol has been applied to the Siamese
network to help overcome the disturbance from background
information (Su et al., 2020). Briefly, the ROI-aligned operation
can promise a smaller data loss/data gain ratio than the
ordinary ROI pooling operation, so it is set before ROI
pooling in the template branch to generate more accurate
target features. SNAP-Tracker’s graphic user interface (GUI) is
tidy and easy to operate (Supplementary Figure 1). In most
cases, users only need to define the tracking target with a
bounding box at the beginning of the videos, just like taking
a “snapshot” of the target, and SNAP-Tracker will use the
“snapshot” as the beginning template to finish the following
tracking procedure. Experimental results displayed that SNAP-
Tracker can accomplish tracking tasks across various species and
environmental conditions without compromising performance.
With an additional detection module, SNAP-Tracker can behave
in the “tracking with detection” mode, suitable for dealing with
larger datasets or more complicated tracking tasks. However,
different from other “tracking by detection” software, the
detection module of SNAP-Tracker is only activated when
tracking failures might happen, which can improve the overall
accuracy but will not affect processing speed too much. To sum
up, with SNAP-Tracker, accurate tracking, can become more
accessible and more efficient.

MATERIALS AND METHODS

Datasets
Mouse Freely Running Dataset
The dataset describes the freely running behavior of mice with
their heads fixed. It consists of seven raw videos, provided
by Jun Ding’s Lab from Stanford University. The videos
were captured from the side, and each one recorded 5,000
frames (896 × 600 pixels) for about 3 min. All experimental
procedures were conducted in accordance with protocols
approved by Stanford University’s Administrative Panel on
Laboratory Animal Care. We separated the seven videos into
four groups according to foot illumination, roller color, and
head direction (Table 1). Throughout all the seven videos, the
forefoot and hindfoot on the closer side to the camera were
manually annotated with bounding boxes and served as the
ground truth to test the performance of the tracking tools.
The dataset is available at https://drive.google.com/file/d/1k0w_
lgIBd5xIY0f63J8VfuccvHZ7spsD/view?usp=sharing.

Other Datasets
The zebrafish dataset is a video of five freely swimming zebrafish
recorded from the top. An example video of idTracker is
available from Perez-Escudero et al. (2014), and we downloaded
it from http://www.idtracker.es/. The mouse pupil dataset
displays the abnormal pupil constriction behavior in the absence
of intrinsic photosensitive retinal ganglion cells glutamate
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TABLE 1 | Groups of the mouse freely running dataset.

Groups Video characteristics Examples

Foot illumination Roller color Head direction

1 No Dark Left

2 Yes Dark Left

3 No Light Left

4 No Light Right

(Keenan et al., 2016). The chimpanzee dataset is a video about the
tapping behavior of a chimpanzee on a keyboard we downloaded
from Hattori et al. (2013). The peacock spider dataset displays the
courtship body behavior of peacock spiders (Girard et al., 2011).
The blue-capped cordon-bleu dataset records the multimodal
courtship of birds (Ota et al., 2015).

Siamese Network-Based
All-Purpose-Tracker
Overview
Siamese Network-based All-Purpose-Tracker was written in
Python 3 and implemented with PyTorch 0.4.0. We develop the
GUI with Qt 5.13.0. We have tested its availability on Ubuntu
16.04 and Windows 10. More detailed information, including the
executable file, the master code, and others, can be found in the
GitHub repository: https://github.com/slh0302/SNAP.

The basic structure of SNAP-Tracker follows the framework
of the Siamese network (Bertinetto et al., 2016), which consists
of twin-deep convolution networks sharing the same set of
parameters. The first essential module of SNAP-Tracker is the
feature extractor pretrained on ImageNet, which can be either a
5-layer AlexNet (Krizhevsky et al., 2012) or a 50-layer ResNet-
50 (He et al., 2016). Experiments in this paper were all performed
with the faster AlexNet. Another essential module is the similarity
metric module used for calculating the cross-correlation between
the template and target frames. The area with maximum
similarity will be decided as the tracking location. To decrease the
disturbance of background information, we have developed an
ROI align and distractor learning protocol (Su et al., 2020). Briefly
speaking, the ROI align layer is placed after the feature extractor
to maintain the template scale with more accurate features and
exclude the disturbance from marginal background information.
Further distractor learning is performed after cross-correlation
calculation to increase the Euclidian distance between the target
and distractors.

We have also implemented a “tracking with detection”
mode with an additional detection module, a Faster-
RCNN with a 50-layer ResNet that can be trained with
the primary tracking results offered by the basic tracking
module. When the detection module is activated, if the output
confidence of SNAP-Tracker is below 0.3, it will help guide the
tracking procedure.

Network Training
We have used AlexNet (Krizhevsky et al., 2012) and stride-
reduced ResNet50 (He et al., 2016) as the backbone network
to perform proposal classification and bounding box regression
with five anchors as in Li et al. (2018). The backbone network
of our architecture was pretrained on ImageNet (Russakovsky
et al., 2015). Then we further trained the whole neural network
of SNAP-Tracker on COCO (Lin et al., 2014), ImageNet DET
(Deng et al., 2009), ImageNet VID (Russakovsky et al., 2015),
and YouTube-Bounding Boxes Dataset (Real et al., 2017) to
learn a general measurement of similarities between objects for
visual tracking. In both training and testing, we used single-scale
images with 127 pixels for template patches and 255 pixels for
searching regions. We applied stochastic gradient descent with
the momentum of 0.9 and a weight attenuation of 0.0005 as the
optimizing method. We warmed up ResNet50 with a learning
rate of 0.005 for the first five epochs. For AlexNet, we fixed the
parameters of its first three layers, and AlexNet did not need a
warm-up at the beginning of the training. Then we set 0.001 and
0.0001 as the learning rate of the backbone network and the rest
of the network (Zhu et al., 2018; Li et al., 2019). The learning rate
decayed exponentially to one-tenth of the original value.

The detection module of SNAP-Tracker is a pretrained
50-layer ResNet-based Faster-RCNN. For the retraining of
the detection module, we kept all of the parameters default.
We collected 10–50K frames by the basic SNAP-Tracker for
retraining, the initial learning rate was 0.001, and the batch size
was 32. For DLC and LEAP, the initial learning rate was 0.005 and
0.0001, and the batch size was 16 and 8, correspondingly.

Output Confidence
Output confidence represents the confidence level of the model
about results. It is used in the “tracking with detection” mode to
activate the detection module. As we can regard object tracking
as a binary classification problem between the tracking target and
background information, we used the classification probability of
the tracking target as the output confidence.

Experimental Design
Evaluation Criteria
Overlap rate (OR) is the ratio of intersection area to union
area between tracking results and human annotations. We used
OR to evaluate the tracking accuracy of software using bound
boxes as the tracking results. We set the threshold of success at
0.5. If the OR value of the result is higher than the threshold,
we can consider that the tracking is successful, and the success
rate means the ratio of successful frames. We ran a test on the
first 1,300 frames of mouse freely running video 1 and found
out that the bounding box size in the first frame could affect
the final successful rate (Supplementary Figure 2); and in our
results, we chose circumscribed rectangle as the bounding box
size by our experience.

We also used pixel error (PE) to evaluate the accuracy of
tracking software when the tracking results of the software are
points. PE is the Euclidean distance between the tracking results
of software and human annotations. Positions of tracking points
or bounding boxes centers refer to the tracking results of the
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software. We set the successful threshold at 20 pixels. If the
PE value is lower than the threshold, we can consider that
successful tracking and the accuracy rate means the ratio of
successful frames.

Experiments Description
To reveal that few human corrections are helpful to maintain high
accuracy (Figure 2), feet tracking was performed on different
continuous frames (up to 3,000) of three videos from the mouse
freely running dataset (Table 1). We used OR as the evaluation
criterion for calculating error rates, which were the ratios of
the number of failing frames to total frames (Figure 2B). Label
efforts under different tracking frames mean the ratio of human
correcting frames to total frames (Figure 2C).

To illustrate the stability of SNAP-Tracker in open conditions,
we used PE as the evaluation criterion to demonstrate the
performance of SNAP-Tracker and two representative deep
learning tracking tools, DLC (Mathis et al., 2018) and LEAP
(Pereira et al., 2019; Figure 3). Test frames and training frames
were from the same video in the close condition test, while
from different videos or under different conditions in the open
condition tests. We fixed the length of the testing frames at
1,000 and repeated each test session with randomly selected
clips three times.

To test the applicability of SNAP-Tracker in broader
situations, we used five other videos coming from published data
(Figure 4). We validated and converted the tracking results to
other indexes for further analysis, such as moving distance in
pixel (px), moving speed in pixel per frame (px/f), area size
in pixel square (px2), and angle in degree. We also recorded
the times needed for human correction and exhibited it in the
percentage of total frames.

To compare the efficiency of the “tracking with detection”
mode of SNAP-Tracker with other “tracking by detection”
methods, such as DLC, we applied PE as the evaluation criterion
to evaluate their success rates under different training frames
(Figure 5B). In this experiment, we used all the seven mouse
running videos as a whole to test both packages. We randomly
selected 60% of the seven video frames to constitute the whole
training set and evenly used 2–100% in the training sessions.
For the working pipeline of DLC, training frames were precisely
the handed-labeled ground truth annotations. So the label efforts
equaled its training samples. For the working pipeline of the
detection mode of SNAP-Tracker, the training frames were from
its immediate automatic tracking results and occasional human
corrections; and we took the human corrections as the label
efforts it needed.

RESULTS

Framework and Workflow of Siamese
Network-Based All-Purpose-Tracker
We developed SNAP-Tracker on a deep Siamese neural network,
one of the deep neural networks widely used in visual tracking.
SNAP-Tracker is a model-free tracker and thus can complete
tracking tasks without modeling the object priorly, different

from other model-based deep learning methods. There are
two critical compositions in the basic framework of SNAP-
Tracker (Figure 1). The feature extraction module (the orange
part in Figure 1) is thoroughly pretrained first and then used
for feature extraction from the bounding box of the template
frame and the searching areas in target frames. The similarity
metric module (the blue part in Figure 1) determines the
object’s location by calculating the cross-correlation between the
extracted features from the template and the target frames. To
start a realistic tracking procedure, users can label the object in
the first frame as the template and then give hands to SNAP-
Tracker, which will automatically label-size adaptive bounding
boxes outside the tracking object according to the maximum
feature similarity to the template. With the sliding of video
frames, SNAP-Tracker annotates each frame continuously and
finally produces the trajectory of the tracking object through
the video. Supplementary Video 1 shows a practical case of
the workflow, which is easy to operate. As described above,
throughout the whole tracking procedure, usually the only thing
users have to do is define their interested tracking objects at the
first frame with a bounding box and then handing over the task to
SNAP-Tracker by simply clicking the starting button in the GUI
(Supplementary Figure 1).

Few Human Corrections Are Helpful to
Keep High Accuracy
Tracking failure is a common problem for tracking tools, which
can happen when the tracking object moves too fast or when
another similar object occurs nearby. In these cases, the software
would accumulate errors without human interference. Therefore
we integrated a manually auxiliary correction module into the
basic operation panel of SNAP-Tracker (the dashed box E in
Supplementary Figure 1). Users can rescue tracking failures
by stopping the tracking and correcting the error with a new
bounding box, which will change the original template into
a new annotation of the current frame. After this, we can
restart tracking from the breaking point (Supplementary Video 2
shows a practical case). We have shown the efficiency of human
correction in preventing tracking errors with the first video of
the mouse dataset (Figure 2A). In this experiment, we used
OR as the evaluation criteria and set the threshold at 0.5;
tracking failure meant the OR was below the threshold. The
OR of the 1,145th frame dropped suddenly below the threshold
of 0.5, indicating a tracking failure might happen, which was
the tracking drift to the other forefoot (the bottom middle
inset of Figure 2A). Without human correction, SNAP-Tracker
regarded the wrong foot as the tracking object, and tracking
failure could happen (the bottom right inset of Figure 2A).
Sometimes, it was probable for SNAP-Tracker to automatically
relocate the target if the correct foot appeared again in the
searching region of SNAP-Tracker. However, if we could timely
correct the shifted bounding box at the 1,145th frame where
the tracking drift started, the continuous tracking failures could
be avoided to a large degree. Intuitively, failures would increase
with the length of the video being longer. To reveal that few
human corrections are helpful to keep high accuracy in this
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FIGURE 1 | An illustration of the workflow for SNAP-Tracker. In the typical workflow of SNAP-Tracker, users should make the only annotation at the first frame of the
video by dragging a bounding box out of the tracking object, which will serve as the template for the second and other later frames. In the search region of a target
frame, the image feature is extracted by the pretrained feature extractor simultaneously with the template. After comparing the cross-correlation between the
template and target frame feature, the similarity metric module will select the location with maximum similarity and generate an adapted bounding box outside the
tracking object. Connecting the bounding boxes of all frames in series can form the object’s trajectory. ∗ Denotes the similarity function (i.e., cross correlation) to be
computed for target and template feature.

situation, we performed feet tracking on the mouse dataset with
different continuous frames clips (up to 3,000). As expected,
error rates, indicating the ratio of failed tracking frames to
total frames, increased with longer clips (Figure 2B). But a
certain number of label efforts, representing the ratio of human
correcting frames, were enough to keep the OR of each frame
steady above the threshold, which we identified as 100% tracking
accuracy (Figure 2C). It must be noted that the OR value and
final successful/error rate can be influenced by the bounding
box size, as we tested on the first 1,300 frames of the video
used in Figure 2A (Supplementary Figure 2). Our paper used
circumscribed rectangle as the bounding box covering the target
while the size was as small as possible. In short, SNAP-Tracker

can complete much better tracking with acceptable times of
timely corrections by humans.

Stable Performance of Siamese
Network-Based All-Purpose-Tracker in
Open Conditions
Siamese Network-based All-Purpose-Tracker is a model-free
tracking package. Unlike the popular model-based methods,
model-free methods do not need to learn the prior knowledge
of the tracking object in advance. Therefore SNAP-Tracker does
not require model retraining or parameters fine-tuning, which
significantly alleviates the need for manual annotation before
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FIGURE 2 | Few human corrections are helpful to increase accuracy. (A) In a practical auto-tracking procedure (the gray line in the top plot), the tracking result (the
green box) can match the ground truth (the red box) most of the time (the bottom left inset). Tracking drift may occasionally happen due to the fast movement of the
object or another similar object nearby (the bottom middle inset). The tracking drift can evolve to tracking failure without a correction (the bottom right inset).
However, a single correction on the earliest tracking drift frame can successfully rescue the subsequent tracking failure (the black line in the top plot). X-axis: Frame
number of the video; Y-axis: overlap rate with the evaluation threshold of 0.5. (B) The tracking error rates of forefoot and hindfoot increased with video frame length’s
elongation. Error rate: the percent ratio of failed frames in the total frames. N = 3 videos. (C) Fewer human corrections than error frames are enough to fix the
tracking failures and achieve 100% accurate tracking results. A 100% accuracy: all the frames’ OR values are above 0.5; label effort: the percent ratio of frames
needs to be corrected to keep 100% accuracy. N = 3 videos.

applied. The manual annotation needed in the first frame will
not modify the model parameters but will tell SNAP-Track what
the tracking target is. In this way, SNAP-Tracker can express
much more stable performance in open conditions compared
with other model-based tracking methods. To demonstrate the
stable performance of SNAP-Tracker in open-conditions without
enough training samples, we tested SNAP-Tracker and two other
representative deep learning methods, DLC (Mathis et al., 2018)
and LEAP (Pereira et al., 2019), on the mouse dataset (Figure 3).
We used PE as the evaluation criterion of accuracy in this
experiment and set the successful threshold at 20 pixels. The
accuracy was the ratio of successful frames. When tested in
close conditions, where the test dataset came from the same
video as the training dataset (Figure 3A), SNAP-Tracker and
the other two deep learning methods showed good performance
(Figure 3B). It is worth noting that the two model-based
deep learning methods displayed increasing accuracies with the
increment of training data. However, the performance of SNAP-
Tracker was independent of training due to the model-free
tracking strategy, and we expressed its accuracy with a horizontal
red dashed line in the figure for a better comparison. When
it came to open conditions, test datasets had different feature
distributions from the training dataset, such as different videos
under similar environments or different videos with different
conditions (foot illumination, roller colors, and head directions)
(Figure 3C). It is evident in Figure 3D that the performance of
model-based deep learning methods dropped sharply due to the
lack of model fine-tuning with test data; only DLC did not show
bad accuracy in the first situation in which the test dataset was
the most similar to the training dataset. However, SNAP-Tracker
could exhibit better and stable performance in different open

conditions (Figure 3D). Furthermore, to clearly tell DLC and
LEAP what to be tracked in the test video, we have added the
first annotation of test videos, and the SNAP-Tracker was used
for tracking, in each corresponding DLC and LEAP training
session (Supplementary Figure 3). Compared with before (line
with dots in Supplementary Figure 3), by training with one
additional frame, the first annotation of test videos (smooth
line in Supplementary Figure 3) could improve the accuracy
but slightly. Therefore, SNAP-Tracker can be used directly with
relatively stable performance, offering a choice for tasks with
varying conditions.

Broader Applicability of Siamese
Network-Based All-Purpose-Tracker
Siamese Network-based All-Purpose-Tracker can have good
applicability across different behavioral tracking paradigms. To
demonstrate the broader applicability of SNAP-Tracker, we
applied it in five other videos with different species and tasks
coming from published data and made further analyses based
on the primary tracking results (Figure 4). In this experiment,
we used PE and the threshold of 20 pixels as the evaluation
criterion of accuracy and defined the accuracy as the ratio
of successful frames. We showed the averaged accuracy of 10
trails on each dataset (Supplementary Figure 4) and typical
cases demonstrating the corresponding comparison with the
ground truth (Supplementary Videos 3–7). In the individual
tracking task of zebrafish, SNAP-Tracker can accurately track
one of a collective of 5 zebrafish (the cyan bounding box
and blue trajectory in Figure 4A), and we could obtain the
swimming speed of the animal according to the tracking
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FIGURE 3 | Stable performance of SNAP-Tracker in open conditions. (A) In the close condition, training and test frames come from the same video. (B) The
accuracy of three methods in the close condition with different scales of the training set. The tracking accuracy of DLC (dare blue) and LEAP (light blue) increases
with more training frames. SNAP-Tracker (red) is independent of training, and its performance is comparable to the other two. Accuracy: the ratio of frames with PE
value lower than the threshold of 20 pixels. (C) In four kinds of open conditions, the test video can be a different one with similar environmental conditions (the first
row) or has different illumination (the second row), different roller colors (the third row), different head directions (the last row). (D) In open conditions, the accuracies
of DLC and LEAP both drop significantly even trained with the highest number of training frames. However, SNAP-Tracker can still keep relatively good performance
due to its independence to training.
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FIGURE 4 | Broader applicability of SNAP-Tracker. (A) Top: In the case of individual tracking among five zebrafish, the cyan box indicates the target fish, and the
blue line shows its moving trajectory. Bottom: The plot shows the variation of swimming speed (in pixel per frame) of the zebrafish. (B) Top: In the case of mouse
pupil tracking, the box shows the pupil of a glutamate knockout mouse. Bottom: The plot reveals the variation of pupil area (in pixel2). (C) Top: In tracking the
chimpanzee finger with complex background information, it is easy to locate the finger position accurately. Bottom: Tapping behavior can be observed in the
movement speed plot (in pixel per frame). (D) Top: When analyzing the courtship behavior of a peacock spider, we tracked the tips of the pair of third legs and head.
Bottom: The open angle between two third legs, a sign of the “Fan” dance, is speculated. (E) Top: In tracking two blue-capped cordon-blues, we tracked the
positions of their heads with different color boxes. Bottom: The plot represents the movement of heads with corresponding colors, which exhibits the interactive
bobbing behaviors of birds. (F) The bar plot shows the ratios of human correction in tasks. Percentages of human correction (black) in the five tasks are 0.2, 0.4, 3.6,
3.8, and 1.1% respectively. The average human correction is 0.9 ± 1.7%.

trajectory (Figure 4A). Besides individual tracking, tracking
particular body parts of an animal, such as the contraction and
dilation of pupils, is also essential in neuroscience. In the tracking
of mouse pupils (Keenan et al., 2016), we could quickly identify
the state of the pupil via the area of the inscribed ellipse of
each bounding box, which could reveal the role of glutamate
by comparing the difference between wild type and glutamate
knockout mouse (Figure 4B). In another case of tracking the
finger of a chimpanzee with a more complex background (Hattori
et al., 2013), we could also get an accurate trace of the finger and
infer the tapping frequency between alternative keys (Figure 4C).
More than that, SNAP-Tracker could also be used for more
sophisticated behavioral analysis, for example, the courtship
behavior of peacock spiders (Girard et al., 2011) and blue-capped
cordon-bleu (Ota et al., 2015). By tracking the pair of third
legs and the head of a peacock spider, we could speculate the
open angle between two third legs, which served as a constituent
of “Fan” dance, a representative courtship posture of peacock
spiders (Figure 4D). Similarly, by tracking the positions of the

heads of two blue-capped cordon-bleu, we could extract out
the interactive bobbing behavior between them from the video
(Figure 4E). We recorded the number of corrections needed to
keep 100% accuracy during tasks and found that none of the
human corrections in five tasks was larger than 4% (Figure 4F).
On average, human correction only occupied a tiny portion
(0.9 ± 1.7% on average). Taken together, with a reasonable
number of human corrections, users can apply SNAP-Tracker
widely in various tracking tasks.

Tracking With Detection Mode
As shown above, the need for human correction will increase
with the elongation of tracking frames (Figure 2B). A strategy
that can liberate human efforts is required in longer videos with
more complex conditions. Therefore we developed a “tracking
with detection” mode by providing SNAP-Tracker with an
additional detection module. In its brief framework (Figure 5A),
the automatic tracking results from the basic SNAP-Tracker
serve as the training dataset for the detection module, and the
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FIGURE 5 | Tracking with detection mode. (A) In the tracking with detection mode, a video can be tracked by the auto-tracking mode first, as described above.
Then the detection module can be trained by these annotation results and help improve the automatic tracking with higher accuracy. Iteratively, it is possible to track
a long video stably with the well-trained detection module. We set the threshold at 0.3 for output confidence activating the detection module to avoid compromising
processing speed. (B) The comparison of labeling efforts between the tracking with detection mode of SNAP-Tracker (red) and DLC (blue). The accuracy of DLC is
positively related to the number of training images, which requires manual annotation. While for the detection module of SNAP-Tracker, the primary tracking module
can provide most annotations, achieving similar accuracy with fewer human laborious by almost two magnitudes. Accuracy: the ratio of frames with PE value lower
than the threshold of 20 pixels. (C) An example of autocorrection by the detection module. The tracking with detection mode can (the black line) prevent failures that
happen in the tracking-only mode (the gray line). X-axis: Frame number of the video; Y-axis: overlap rate with the evaluation threshold of 0.5.

detection module can help improve the accuracy of the basic
auto-tracking module. After iterative training, the well-trained
detection module can take the place of human correction when
a tracking shift happens. Notably, the detection module only
functions when the output confidence level of SNAP-Tracker
is lower than the predefined threshold; users can set a higher
threshold for better accuracy or a lower threshold for faster
processing. In our experiment, we set the activation threshold
at 0.3. A significant difference of the “tracking with detection”
mode of SNAP-Tracker from DLC compared with a “tracking by
detection” deep learning method is that SNAP-Tracker itself can
offer tracking results as training data, saving much hand-labeling
efforts. To demonstrate the efficiency of the “tracking with
detection” mode of SNAP-Tracker, we tested the performance
(with the criterion of PE) of SNAP-Tracker and another “tracking
by detection” method with a synthetic free-running mouse video
consisting of the seven videos (Figure 5B). We found that
the “tracking with detection” mode can perform well with few
label efforts (red lines in Figure 5B). However, the “tracking
by detection” method (blue lines in Figure 5B) needed two
magnitudes higher label efforts to achieve comparable accuracy.
It should be clarified here that label effort has a different source
in each method. Specifically, the label efforts of DLC equaled its

training samples, while we took the human correction numbers as
the label efforts for SNAP-Tracker. The “tracking with detection”
mode can improve tracking efficiency compared with the basic
SNAP-Tracker. In a typical tracking case of mouse foot, the
“tracking with detection” mode (the black line in Figure 5C)
could avoid tracking errors that happen under the regular mode
(the gray line in Figure 5C). To sum up, the “tracking with
detection” mode can replace the role of human intervention to
complete more complex tracking tasks, which are suitable for
dealing with larger datasets.

DISCUSSION

This article presents a model-free tracking software, SNAP-
Tracker, which shows robust performance under various
conditions. The software has already been pretrained with
publicly available datasets and requires no more parameter fine-
tuning when used in practical tasks, which greatly reduces the
burden of users. Considering the user communities with different
backgrounds, we have integrated the software into a compact
and easy-to-use GUI. The “tracking with detection” mode of
SNAP-Tracker is more automated with the help of a detection
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module, and we can apply it in more complex conditions. In a
word, SNAP-Tracker can be a practical choice in different kinds
of behavioral tracking analysis. We will discuss the characteristics
of SNAP-Tracker from the following aspects.

Benefits and Drawbacks of Deep
Learning
The benefits of using deep learning in behavioral analysis are
apparent as those in other CV fields. Compared to traditional
CV methods, deep learning methods can achieve much more
accurate performance at the human level and even beyond. So
deep learning is the current trend in many fields, and popular
tracking software packages use deep learning. Nevertheless, we
should notice problems such as high computational consumption
and overfitting in deep learning methods cautiously (Mathis
and Mathis, 2020). Researchers have made contributions to
decreasing training efforts and increasing processing speed. DLC
(Mathis et al., 2018) was built in the way of transfer learning upon
DeeperCut (Insafutdinov et al., 2016), a previously established
model. Soon after, LEAP tried to improve the processing speed
by applying a network with much fewer layers at the price of
accuracy (Pereira et al., 2019). The more recent DeepPoseKit
made considerable progress in both speed and robustness by
using a multiscale deep-learning model (Graving et al., 2019).
Even so, laborious annotations and network fine-tuning are
inevitably needed, which can be much severe if the tracking
task contains multiple individuals (Graving et al., 2019). With
enough training samples, deep learning methods can perform
very well. However, if there are not enough training samples,
the performance of deep learning methods will be affected. The
situation in practical neuroscience research could be much more
challenging. The annotation of biological samples is a well-
known arduous task, requiring expertise and much time. For
example, when observing the courtship behavior of songbirds
(Ota et al., 2015), scientists are interested in only a tiny portion of
the whole video frames. Making annotation is time-consuming,
and training in this few-shot situation is challenging. Another
problem we have to resolve is the performance loss in “open”
conditions. Environmental conditions, such as illumination, in
practice can change during the task, but we cannot label a training
set including all possibilities. In some particular tasks, such as
screening mutant mice (Brown et al., 2000), the animal’s behavior
is complex to be predefined. Thus, training in this situation will
be a challenge. The idea of model-free tracking is a recently
introduced solution to circumvent these drawbacks, which is the
designing strategy of SNAP-Tracker.

Model-Based and Model-Free Tracking
The model-based and model-free dichotomy is familiar in the
CV tracking field. Although idTracker (Pérez-Escudero et al.,
2014), idTracker.ai (Romero-Ferrero et al., 2019) were used in
individual tracking, and DLC (Mathis et al., 2018), LEAP (Pereira
et al., 2019), and DeepPosekit (Graving et al., 2019) were designed
for pose estimation, all of them and many other tracking tools in
ethology belong to model-based tracking (Worrall et al., 1991),
which require prior knowledge of the objects before tracking.

For model-based tracking, targets in the frames of a video are
detected first by object detection or segmentation methods and
then connected along the temporal series to generate the moving
trajectory. We call this pipeline “tracking by detection”; the
strategy of tracking by detection can increase tracking accuracy,
but at the cost of processing speed and generalization. Differently,
model-free tracking (Zhang and Van Der Maaten, 2013) is
independent of the target’s prior modeling, and users can apply
the method directly to broader tasks. Without premodeling, users
can define the tracking target’s template in the first frame and
then let the software finish tracking to the end frame by frame.
In this way, SNAP-Tracker can be a universal method suitable for
various behavioral missions.

Individual Tracking and Pose Tracking
According to the analyzing resolution, we can classify behavioral
analysis into different stages, from coarse to fine (Pereira et al.,
2020), which can be summarized into two classes, individual
tracking and pose tracking. They are the critical consideration
for users to decide the options of tracking tools. In general,
the spatiotemporal trajectory of single or multiple individuals
is enough to answer questions (Berdahl et al., 2013; Mersch
et al., 2013; Seibenhener and Wooten, 2015). To simplify the
tracking of multiple individuals in a group, researchers usually
labeled the targets with artificial markers (Ohayon et al., 2013;
Shemesh et al., 2013), which might potentially affect animal
behaviors (Dennis et al., 2008). By defining the model of each
individual, idTracker (Pérez-Escudero et al., 2014) and its deep
learning version idTracker.ai (Romero-Ferrero et al., 2019) make
tracking unmarked targets possible. In more complex situations,
researchers have to extract detailed pose information of the
targets (Khan et al., 2012; Guo et al., 2015; Ota et al., 2015), which
raises the difficulty of tracking. Representative methods, DLC
(Mathis et al., 2018), LEAP (Pereira et al., 2019), and DeepPoseKit
(Graving et al., 2019), display exemplary performance in pose
estimation by utilizing the outstanding feature extraction ability
of deep-learning network. However, the amount of tracking
individuals is still limited due to the increased computation time.
Moreover, it requires exhaustive annotating efforts to establish
a training dataset with the growing individuals (Graving et al.,
2019). Individual tracking and pose tracking are closely related.
On the one hand, tracking an individual or a local body is always
performed to crop active areas of the object to achieve better pose
tracking. On the other hand, pose tracking can be regarded as
high dimensional individual tracking in some ways, tracking key
points of animals (Dell et al., 2014). Therefore, accurate tracking
is the foundation of behavioral analysis, and this is the theoretical
basis for SNAP-Tracker to be applied in broader tasks.

Overall, SNAP-Tracker perfectly achieves a balance between
applicability and accuracy. The pretrained deep Siamese network
makes SNAP-Tracker track the object accurately by comparing
the similarity between the template and the target. The
model-free tracking strategy equips SNAP-Tracker with broader
applicability demonstrated by the experiments above in this
article. Strictly speaking, the problem of manual annotation is
not thoroughly solved, but the most attractive characteristic of
SNAP-Tracker is that it requires only one annotation to start the
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tracking procedure. Users can correct accidental tracking failures
by hands in regular mode or by the detection module in the
“tracking with detection” mode. For the convenience of users, we
designed the detection module is in a close loop, in which the
tracking module offers elementary results as training data to the
detection module, and the latter can help increase the accuracy of
tracking. There is still some weakness of the SNAP-Tracker that
should be solved to improve further the usability and accuracy
of SNAP-Tracker, such as the setting of optimal hyperparameters
(Dong et al., 2021) and the tracking failures when the target is
occluded (Dong et al., 2017). We have considered some of these
in the subsequent improvement of SNAP-Tracker.

CONCLUSION

In conclusion, we provide a tracking method in a model-free
fashion. Users can easily apply it to various tasks without heavy
data annotations. We hope that our tool can lower the barrier to
using deep learning methods in animal behavioral analysis and
help solve practical tracking problems in related fields.
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The analysis of kinematics, locomotion, and spatial tasks relies on the accurate detection

of animal positions and pose. Pose and position can be assessed with video analysis

programs, the “trackers.” Most available trackers represent animals as single points in

space (no pose information available) or use markers to build a skeletal representation of

pose. Markers are either physical objects attached to the body (white balls, stickers, or

paint) or they are defined in silico using recognizable body structures (e.g., joints, limbs,

color patterns). Physical markers often cannot be used if the animals are small, lack

prominent body structures on which the markers can be placed, or live in environments

such as aquatic ones that might detach the marker. Here, we introduce a marker-free

pose-estimator (LACE Limbless Animal traCkEr) that builds the pose of the animal de

novo from its contour. LACE detects the contour of the animal and derives the body

mid-line, building a pseudo-skeleton by defining vertices and edges. By applying LACE to

analyse the pose of larval Drosophila melanogaster and adult zebrafish, we illustrate that

LACE allows to quantify, for example, genetic alterations of peristaltic movements and

gender-specific locomotion patterns that are associated with different body shapes. As

illustrated by these examples, LACE provides a versatile method for assessing position,

pose and movement patterns, even in animals without limbs.

Keywords: animal tracker, zebrafish, Drosophila larva, gender dimorphism, Hough transform, intermittant

locomotion, saccades, undulatory swimming

1. INTRODUCTION

Neuroethology encompasses many behavioral paradigms ranging from complex tasks such as
learning and communication (Von Frisch, 1974; Brown, 1976; Dubnau and Tully, 1998; Riley
et al., 2005) to more basic activities such as reflexes or locomotion (review: Corthals et al.,
2019). Regardless of the complexity of the behavior, behavior is inherently noisy. This noise arises
from different internal states of each individual, such as hunger, thirst, or reproductive needs
(Abbott, 2020). The noise of the internal states neccessitates repeated measurements and authentic
quantification of the examined behavior. Quantifying behavior started with simple observations
and written description of animal’s behavior (e.g., Yerkes, 1903; Jensen, 1909; Turner and Schwarz,
1914) and developed into artificial intelligence (AI) assisted video analysis (Mathis et al., 2018;
Pereira et al., 2018; Werkhoven et al., 2019; Gosztolai et al., 2020).

Most computer assisted methods of video analysis rely on either marker recognition or
difference image tracing. Marker recognition filters out physical markers (white balls, stickers,
or paint) attached to the animal based on marker properties such as contrast, luminescence, or
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color (Zakotnik et al., 2004; Spence et al., 2010). Alternatively,
marker recognition can exploit the ability of AIs to recognize
markers in complex scenes (Mathis et al., 2018; Pereira et al.,
2018, 2020; Gosztolai et al., 2020). AIs are able to use visual
structures (e.g., limbs, joints, etc.) as markers, obviating the
need to attach physical markers. Lightweight animals, however,
may neither be able to carry physical markers nor may their
bodies bear prominent features that can be recognized by AIs.
Markers are also difficult to attach to aquatic or ground-dwelling
animals as they might easily be removed by the substrate through
which these animals move. In such animals, difference image
analysis provides an alternative. Difference image analysis is
the basis of LACE, a motion tracker that is presented here.
LACE derives the posture from the contour of the animal and
is therefore independent of markers. We illustrate the workings
and versatility of LACE using two different examples.

In example I, we analyse the peristaltic movement of
Drosophila late 3rd instar larvae. The ion channel mutants
nan36a and iav1 display disturbed chordotonal neuron function
(Kim et al., 2003; Gong et al., 2004; Zhang et al., 2013),
causing locomotion and contraction defects (Zanini et al., 2018;
Katana et al., 2019). We use these mutants and the wild-type
to illustrate the ability of LACE to detect genetic alterations in
the body movements of small limbless animals. LACE is also
able to differentiate between contraction anomalies and course
changes of the animal. This ability relies on the mathematical
reconstruction of the antero-posterior axis, which sets LACE
apart from other insect motion trackers (Branson et al., 2009;
Fontaine et al., 2009; Donelson et al., 2012; Kain et al., 2013; Risse
et al., 2013).

In example II, we use LACE to analyse the undulatory
swimming movements of zebrafish (Danio rerio). Undulatory
movement is the principal mode of locomotion in a wide range
of limbless animals whose body propagates train of waves that,
running laterally from head to tail, propels the animals forward
(Gray, 1939). To track such locomotion behaviors, a number
of computer-based videography methods have been developed
over the past few decades (Fontaine et al., 2008; Green et al.,
2012;Maaswinkel et al., 2013; Pittman and Ichikawa, 2013; Pérez-
Escudero et al., 2014; Kim et al., 2017; Zhiping and Cheng, 2017;
Husson et al., 2018; Walter and Couzin, 2021). These trackers
all faithfully report the animal’s locomotion behavior, but with
variations in focus on larvae (Fontaine et al., 2008; Green et al.,
2012), individuals in shoals (Maaswinkel et al., 2013; Pérez-
Escudero et al., 2014; Zhiping and Cheng, 2017), single (Geng
et al., 2004; Tsibidis and Tavernarakis, 2007; Leifer et al., 2011;
Stirman et al., 2011, 2012) and multiple worms (Liewald et al.,
2008; Ramot et al., 2008; Swierczek et al., 2011; Wang andWang,
2013; Brosnan et al., 2021) simultaneous physiological recordings
(Kim et al., 2017) or available hardware (Geng et al., 2004; Tsibidis
and Tavernarakis, 2007; Ramot et al., 2008; Leifer et al., 2011;
Stirman et al., 2011, 2012; Swierczek et al., 2011; Brosnan et al.,
2021).

Especially the aforementioned worm trackers (Geng et al.,
2004; Tsibidis and Tavernarakis, 2007; Liewald et al., 2008; Ramot
et al., 2008; Leifer et al., 2011; Stirman et al., 2011, 2012; Swierczek
et al., 2011; Wang and Wang, 2013; Brosnan et al., 2021) are

quite similar to our software and surpass its functionality by
being able to control lights, camera and in some cases even the
x,y-stages of a microscope (compare Table 1). The bodysize of
Caenorhabditis elegans (ca. 1 mm) makes microscopic recordings
necessary. One of the major benefits of behavioral recordings
under a microscope is that the background is usually clear and
uniformly illuminated. LACE is also capable to detect animals in
more complex backgrounds (see Supplementary Material), but
has no hardware control integrated.

BEEtags are lightweight, their handling and application
can significantly affect stress levels and behavior in animals.
To overcome these obstacles, many other trackers have been
developed which are automated and markerless. For instance,
Deeplabcut is one such automatic and markerless pose estimator
which works on the principle of transfer learning. Though, it
provides outstanding results with minimal training data and has
been proved successful on multiple species, it does not prove
to be equally good for tracing the undulatory movement in
limbless animals.

Here, we introduce a tool (LACE) for automated, markerless
detection of wave-like movement in limbless animals. The
importance of this approach lies in the very fact that it does not
consider the organism as a point source or uses any marker to
track the pose of the animal, but instead builds a pseudo-skeleton
from the contour of the animal. This increases the flexibility
of the pose description and circumvents occlusion problems.
We illustrate the versatility of LACE by tracking the peristaltic
movement of Drosophila melanogaster larvae and undulatory
swimming in adult zebrafish.

2. MATERIALS AND METHODS

2.1. LACE Limbless Animal TraCkEr
LACE consists of nine toolboxes that solve different tasks: file I/O,
background calculation, image manipulation, ellipse detection,
ad-hoc correction, post-hoc evaluation, animal-pose detection,
image to world coordinate transformation, and computational
load management (see Figure 1). Each of these tasks can be run
via the integrated command-line-interface (CLI) of MATLAB or
custom graphical-user-interfaces (GUIs).

2.1.1. File Input/Output
LACE can read most video formats through MATLAB’s own
VideoReader and uses the image manipulation toolbox to load
image series, stacks, or single images. We also included a small
toolbox (LACE_norpix toolbox) that can read in the NorPix
Sequence video format (NorPix, Inc., 1751 Richardson Street,
Suite 2203, Montreal, Quebec H3K 1G6 Canada), based on the
script developed by Brett Shoelson (Mathworks). There is a newer
implementation available by Paul Siefert1.

2.1.2. Background Calculation
After loading the image sequences or videos, images are prepared
to detect the animal. First, one needs to acquire a background

1Paul Siefert (2020). ReadCompressedJpegSEQ https://www.mathworks.com/

matlabcentral/fileexchange/68341-readcompressedjpegseq, MATLAB Central File

Exchange. Retrieved November 9, 2020.
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TABLE 1 | Comparison table of LACE to some prominent Caenorhabiditis elegans trackers.

Tracker Representation Code No of organisms Hardware control License Reference

CoLBert O,S Matlab 1 C,T Free Leifer et al., 2011

LACE C,O,S Matlab 24+ None Free -

Multi worm tracker O,S C++ <120 C,L Free Swierczek et al., 2011

Multimodal illumination O,S LabVIEW 1 C,T Free Stirman et al., 2011, 2012

Nemo O,S Matlab 1 C Free Tsibidis and Tavernarakis, 2007

Opto C Matlab <50 C,L Free Liewald et al., 2008

Parallel worm tracker C Matlab <50 C Free Ramot et al., 2008

Track-a-worm S Matlab 1 C,T Free Wang and Wang, 2013

Worm tracker O,S Matlab 1 C,T Free Geng et al., 2004

Wormlab C,O,S Closed source 1+ C,L Comercial Brosnan et al., 2021

The representation column shows the type of tracking the software can produce: C notes a single xy point coordinate per animal and frame, called a centroid. S notes a skeleton

representation. O notes that the outline of the animal is available. The Hardware Control column shows the ability of the tracker to directly control cameras (C), lighting (L), and

microscope x-y-tables (T).

FIGURE 1 | The analysis flow of LACE. The user interacts with most toolboxes through a graphical user interface (GUI). The GUI results in an execution script that

holds all information and file positions to run an analysis on the entire video. By testing the script inside the GUI, the system is able to calculate the analysis duration,

which is used in the computational load management. The bash scripts can be run over night.

image, as a subtrahend for the difference image. The background
image can be acquired in different ways: A) If the background
is monotone or very stable between recordings (lighting, color,

position, etc.), one can record an image without an animal
being present. B) In a temporal sequence of images, in which
the recorded animal moves through the scene, one can use the
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differences over time in each pixel to calculate images without
the animal being present.

For example, if the animal is dark on a bright background,
a maximum intensity projection over time will produce an
image without the animal. If the animal is white against
a dark background, a minimum intensity projection will
provide an empty background. In cases in which the
background changes mildly, due to e.g., lighting changes,
an average intensity projection might yield the best contrast
between animal and background and provide an image of
the background without animal. Regardless of the type of
projection, these calculations only function as long as the animal
does not occupy a subset of pixels all the time, that is when
it moves.

LACE offers all three options to calculate your background
using the LACE_bg toolbox. The LACE_bg toolbox includes
functions for all image and video formats and is usually
called through the LACE_GUI_script GUI. As the calculation
of the background takes up most computational time,
the LACE_GUI_script GUI plays a chime at the end of
the calculation.

2.1.3. Image Manipulation
After LACE has executed the file I/O and background calculation
steps, it performs image manipulation, ellipse detection, and
ad-hoc corrections frame by frame (see Figure 1). The image
manipulation functions are collected in the LACE_im toolbox.
The purpose of LACE_im toolbox is to derive candidate edges of
the animal from a given frame and the background. Each frame
of the image data is analyzed in 6 steps:

1. subtracting the background from the frame -> difference

image

By subtracting the background (see Figure 2A) from the
frame (see Figure 2B) all structures of the footage that are
not moving (background) are removed while moving objects
remain (see Figure 2C).

2. normalization of the difference image

Provided that the animal clearly contrasts with the
background, it should be the brightest object in the difference
image. The image is normalized to the maximum, assigning
pixel values close to 1.0 to the brightest regions of the animal.

3. binarisation of the difference image -> binarised image

The user defines a threshold above which all pixel information
is treated as 1 and below which as zero. The resulting image
can be seen at Figure 2D.

4. optional: removal of information outside the region of

interest (ROI)

The user can define the region in which the animal resides
during the video footage. This region is called a ROI (region
of interest). All pixels outside the ROI are set to zero (see
Figure 2D).

5. erosion of the binarised image When tracking multiple
animals or objects, two moving areas may collide. In such
cases, LACE might wrongly recognize two objects as a single
one. To avoid this, we use image erosion to remove contact
sites of the two animals.

FIGURE 2 | Image Manipulation. (A) Raw footage of a zebrafish video. The

animal is depicted on the right border of the area. (B) Respective difference

image. (C) Binarised image with a threshold of 0.25 (D) Binarised image after

erosion and dilatation (image morphology).

6. Find edges The edge detection of each animal is done
by the Matlab implementation of Canny’s edge detector
bwboundaries (Canny, 1986).

The toolbox also encompasses some simple GUIs for ROI
definition. Some standard procedures (e.g., image dilatation,
erosion, and rotation) wrap functions of the MATLAB Image
Manipulation toolbox (Gonzalez et al., 2004). This allows the
user to adjust the procedures without having to interfere with the
MATLAB standard toolboxes.

2.1.4. Animal Detection via the Hough Transform
The Hough transformation is a method to test if a given pixel
in an image is a part of a certain geometrical shape, such as
lines (Duda and Hart, 1972), circles (Yuen et al., 1990), or
ellipses (Tsuji andMatsumoto, 1978). The Hough transformation
algorithm is fed with a black and white image that only contains
bright edges of objects (animals) in a given picture. The Hough
transform creates a new image (the accumulator image) in which
each pixel of an edge is tested to be a part of one of the
aforementioned geometrical shapes. If many points on the given
edge belong to the geometrical shape, they will render a bright
spot in the accumulator image. The brightness of the spot is
relative to the number of pixels that participated in this shape.
This allows us to find multiple geometrical shapes inside a given
image and rank them by the quality of their detection (brightness
of the spot).

Many animals feature a torpedo like body shape, due to
aero- or aquadynamic friction. This torpedo like shape can
be approximated by an ellipse, which can be detected in the
Hough transform (Duda and Hart, 1972; Xie and Ji, 2002).
The ellipse detection in LACE (LACE_HTD toolbox) wraps the
MATLAB implementation by Martin Simonovsky2 (Xie and Ji,
2002; Basca et al., 2005). As Hough transform detection is a brute
force approach and therefore computational intensive, we use a

2Martin Simonovsky (2020). Ellipse Detection Using 1D Hough Transform

(https://www.mathworks.com/matlabcentral/fileexchange/33970-ellipse-

detection-using-1d-hough-transform), MATLAB Central File Exchange.

Retrieved November 9, 2020.
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common simplification: We split the frame into smaller images
that only encompass one set of boundaries.

Although the Hough transformation is computational
intensive, it offers many advantages over classic difference image
analysis. Conditions such as maximum and minimum size of the
geometrical shape (in our case, the major axis of an ellipse) are
already implicit to the detection mode and do not have to be
applied post-hoc. The orientation of the shape is part of the output
of the accumulator space. Even partially occluded geometrical
shapes are found, as they still produce a substantially bright spot
in the accumulator image. Especially animal interaction often
leads to problematic detection situations as the animals occlude
each other (see Figure 3) or align so that they become a double
wide ellipse (Figure 3). In normal difference image analysis, this
needs to be solved manually. The Hough transform results in
multiple candidates for these situations, that can be used to solve
this problem automatically via ad-hoc corrections.

2.1.5. Ad-hoc Corrections
Video observations that include multiple individuals can lead
to occlusion problems. One major problem is to decide if two
animals overlay and therefore create overlaying ellipses or if
one animal can be fitted by two overlaying ellipses. Some of
these issues can be solved with a prior information that the user
provides, e.g., the number of animals present in the observation.
This allows LACE to categorize occlusion problems into seven
standard problems that the LACE_ac toolbox tries to solve.

1. Problem 1: Too many overlaying instances of detection

The Hough transform detection found too many ellipses.
The number of ellipses exceeding the user defined number
of animals is identical to the number of ellipses with largely
overlaying surface area. This indicates a case in which one or
more animals are fitted withmore than one ellipse. In this case,
we keep the ellipse with the best quality of detection from the
group of overlaying ellipses.

2. Problem 2: Toomany non-overlaying instances of detection

The Hough transform found too many ellipses but none of
them overlay. This is rather easy to solve, the ellipse with the
lowest detection quality, is deleted.

3. Problem 3: Problem 1 and 2 occur at the same time

First we reduce the overlaying ellipses, if needed, the ellipses
featuring the lowest detection quality are deleted afterwards.

4. Problem 4: Too few ellipses are found

In this case, there are no overlaying ellipses but not enough
detection was preformed. TheHough transform detection also
keeps detection below the quality threshold. We fill up the
detection until we reach the number of predicted animals with
the best sub threshold quality instances of detection.

5. Problem 5: Too few ellipses are found but few are larger

than a single animal - Chaining

We call this problem chaining. If one individual attaches itself
to the extremes of the body long axis and aligns itself roughly
to the body long axis, this produces a figure eight shape that
can be mis-detected as one large animal. From the Hough
ellipse detection (see Section 2.1.4), we can estimate if one of
the detections is at least 1.5 times larger than a single animal.
If this is the case, we split the chain by splitting the oversized

FIGURE 3 | These are illustrations of five standard problems LACE_ac toolbox

can automatically detect and solve. Problem 1 and 2 are superfluous

detections of either the same animal (Problem 1) or other contrast areas in the

video frame like shadows (Problem 2). Both are solved by deleting the

detection with the lower quality rating. Problem 4 results from one of the

detection ellipses not passing all criteria (size, eccentricity, last position) and is

solved by taking the detection with the highest quality from the sub-threshold

detection list. Problem 5 to 7 are all due to a miss-detection in which two or

more animals are lumped together, because of their proximity. These are

mainly solved by deleting detections that are too large and choosing from the

sub-threshold detection list (Problems 5 and 6) or by splitting up the chain in

animal long regions (Problem 7).

detection and refitting ellipses to it with the mean size between
minimum and maximum major axis length.

6. Problem 6: Chaining and not enough instances of detection

In this case, solving the chaining problem still can not deliver
enough ellipses. In this case, we again fill up the ellipses with
the best sub-threshold instances of detection.

7. Problem 7: The correct number of animals were found, but

there is chaining

In this case, the chains are refitted as in Problem 5 and the
algorithm chooses from all ellipses, the one with the lowest
detection value and deletes it until the correct number of
ellipses is reached.

Whenever an ellipse-detection is corrected via an ad-hoc
algorithm, its detection quality is set to –1 to help identify
weak instances of detection for later analysis. With the exception
of the user provided information, ad-hoc corrections employ
only information about the current detection frame. Some
problems, however, are solved more reliably with information
from the detection results before and after the frame in which the
problem occurred. These problems are solved by LACE’s post-hoc
evaluation toolbox.

2.1.6. Post-hoc Evaluation
After LACE detected ellipses via the LACE_HTD toolbox and
performed ad-hoc corrections (see Figure 1), there might be still
some problematic frames left. In nearly all problematic frames,
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we have a number of candidate ellipses for the animal either
above or below the detection threshold. If, for example an animal
is not detected in framex, there are usually a large number of sub-
threshold candidate instances of detection to choose from. The
LACE_eva toolbox uses information from framex−1 and framex+1

to choose the best sub-threshold candidate in framex.
The LACE_eva toolbox uses three estimators, which evaluate

the detection based on position, surface area, and contour, and
then score instances of detection on the basis of their parameter.
The user can weigh the scores with factors: For example, if the
user wants problematic instances of detection mainly solved via
the position of previous instances, he sets the weight of the pose
estimator to 1.0 (highest value) and all other estimator weight to
relatively low values. Setting the estimator weight to zero omits
this estimator for scoring.

1. Position estimator

The position estimator scores possible ellipse detections by
the euclidean distance between them and the last detection
of the animal.

2. Surface estimator

This estimator scores the candidates by their surface area.
Candidates with similar surface area to the detected animal,
score higher than those candidates with vastly different
surface area.

3. Contour estimator

The contour estimator scores candidates in a similar fashion
to the surface estimator, but for the length of the contour.

The evaluation runs automatically and allows so for detection
rates of more than 99% during optimal lighting environments
(FTIR, Case study I) and over 96% in more difficult lighting
environments (Case study II).

2.1.7. Pose Detection
After LACE detected the animal in the first round via the
LACE_HTD toolbox and executed automated corrections and
evaluations, LACE calculate the pose of the animal de novo. The
pose detection is performed by the function LACE_ana_getPose
of the LACE_ana toolbox. We return to the edge picture derived
from Canny’s edge detector (see subsubsection 2.1.3 step 6).
LACE_ana_getPose selects 100 evenly spaced pixels from border
between the detection object and its background. These pixels
are the centers of Voronoi cells (see Figure 1, line 3), which
encompass all space that is closer to its center than to the other
centers (Dirichlet, 1850; Voronoi, 1908). As a consequence, many
new borders and vertices are created inside the silhouette of the
object. The vertices are mainly distributed around the mid-line of
the object (see Figure 4, line 4).

A Dijkstra shortest path algorithm3 is then used on the points
inside the detection object (Figure 4, line 4) (Dijkstra, 1959). The
start and the end of the path are determined via the closeness
to the boundary. LACE_ana_getPose then choose shortest path
between the start and the end of the mid-line vertices (line

3Joseph Kirk (2021). Dijkstra’s Shortest Path Algorithm (https://www.mathworks.

com/matlabcentral/fileexchange/12850-dijkstra-s-shortest-path-algorithm),

MATLAB Central File Exchange. Retrieved February 22, 2021.

FIGURE 4 | Schematic overview of the pseudo skeleton calculation. The figure

illustrates the general procedure used to derive a pseudo-skeleton, therefore

all vertices, contours, etc. are schematic drawings and not based on data or

results of the algorithms. The pose detection uses the center of the ellipse

detected by LACE_HTD toolbox as the center for a simple contour detection

(solid orange line) via Canny’s edge detector. One hundred evenly spaced

pixel-coordinates (translucent orange dots) on the contour are chosen. Note

that these contour-coordinates are not evenly spaced in the schematic

drawing. These contour-coordinates are used as seeding coordinates for

Voronoi cells (teal colored lines and dots). A Voronoi cell encompasses all

space that is closer to its contour coordinate than to the other contour

coordinates. Each cells is enclosed by a number of edges. The Voronoi

calculation also generates edges of the Voronoi cells outside the contour of the

animal, which are ignored in the algorithm and therefore not drawn here. These

Voronoi-edges (teal lines) are represented by their vertices (teal dots). The

algorithm selects the vertices that are inside the animal’s contour for further

computation. Those central Voronoi-edge vertices are now used in Dijkstra’s

path algorithm to select (teal dots with orange border) the central line along the

anteroposterior-axis (dashed orange line).

Figure 4, line 5). This concludes the detection part of LACE as
we detect the animal and know its mid-line.

2.1.8. Coordinate Transformation
Upon this point in the LACE analysis pipeline, all instances
of detection and analysis are kept in a pixel coordinate
system. In most cases, biologist are more interested in physical
measurements. To converge our measurement from pixels
to meters, LACE offers two distinctly different types of
conversions and a number of measurements. Functions for this
transformation can be found in the LACE_p2m toolbox.

In all cases, an object of known size is marked inside a frame.
These objects can be circular, rectangular or a simple line. In cases
of the circles and rectangles, the LACE_p2m toolbox interpolates
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the position of the animal inside the circle or rectangle. Thereby,
the coordinate system in which the animal moves, not only
changes dimensionality from pixel to meter, but also changes the
origin of the coordinate system. For example, if one of the corners
of the rectangle is set to (0,0), it becomes the actual coordinate
origin. The line measurement only shifts the dimensionality from
pixels to meters, but keeps the original coordinate system origin.

2.1.9. Computational Load Management
LACE includes many simple but computational intensive steps
such as ellipse detection via Hough transformation (Tsuji and
Matsumoto, 1978) or minimal cost matching via the Hungarian
algorithm (Kuhn, 1955). Also, it is programmed for CPU usage
and therefore has no option to be used on faster and available
GPU processors. To avoid blocking a workstation for hours, we
have developed a scheduler system.

The general idea is that the user is guided through a graphical
user interface (GUI) to define an executable detection script.
During the definition of the detection script, the user performs
test detection on single images which are later used by LACE to
benchmark the computation duration for the whole data set (e.g.,
a complete movie or image stack). In the second step, the user
uses the LACE_scriptBalancer to divide the executable scripts on
the different CPU cores. As soon as the user does not need the
PC anymore, the user can start the detection process and all cores
will process the detection scripts. Thereby, you can spend the day
recording and defining scripts and run the detection over night.

In a GUI, the user can open the image data (movie, sequence,
or image stack) and test the different parameters of image
manipulation, such as binarisation threshold, erosion radius,
etc. Furthermore, the user has the option to define a ROI and
calculate different backgrounds. In the next step, the user can
define the parameter of the Hough ellipse detection, such as
minimum and maximum length of the major axis of the ellipse
or the number of animals depicted in the image data.

The GUI tests the detection parameters and provides the
user with an example result on which further refinement can
be attempted. In the last step, the user is asked to define a line,
rectangle or circle to transform the data from pixel values to
meter. Finally, the user needs to define where the detection results
should be saved.

Now, the user can save all these parameters as well as the
background, file position of the image data, etc., for later use.
Also, the GUI writes out a ASCII formatted Matlab script which
can be run to analyse the data. As LACE already run several
test detections while the user optimized the parameters, it can
estimate the computation time per frame. This computation
is multiplied by the number of frames in the image data
and saved to a MatLab variable called the toDoManager. The
toDoManger is a simple cell matrix containing the file position
of the executable detection script, the time it has estimated to
run (float) and a Boolean variable flagging if the script has
already run. The LACE_scriptBalancer GUI employs a simple
greedy optimisation algorithm (Krumke and Noltemeier, 2009),
to balance the computational load of all executable scripts on the
available CPU cores. The user can then activate the start script
which will activate the executable script for the different cores.

2.2. Case I - Larval Locomotion
LACE has been used to study the effect of opsins on the
locomotion in Drosophila larvae (Zanini et al., 2018; Katana
et al., 2019), revealing that these animals require visual
opsins for proper locomotion and body contractions. The here
published data set illustrates LACE’s ability to faithfully track the
contractions and locomotion of Drosophila larvae.

2.2.1. Locomotion Recordings
An FTIR assay (Risse et al., 2013) was used to assess the
locomotory body contractions. Single 3rd instar wandering
larvae were recorded crawling on 1% agar with a CCD camera
(OptiMos, QImaging, Germany) at 34 frames per second for
up to 45s with Micro-Manager. An inverted microscope (IX73,
Olympus, Germany) with 1.25X magnification was used for
recordings. To keep the larva in frame, the microscope stage
was adjusted manually. All larvae were reared at 25◦C at
60% humidity in a 12h/12h light-dark cycle on standard fly
food (Corthals et al., 2017). CantonS and w1118 larvae were
used to study wild-type control animal peristaltic contractions
during locomotion, and nan36a and iav1 mutants that lack the
mechanosensory channels NAN and IAV, respectively, and play a
proprioceptive role in larval chordotonal neurons, were used to
study abnormal locomotion.

2.2.2. Locomotion Analysis
To assess the body contractions, we detected the larva with LACE.
Contraction amplitude was calculated as the minimal body long
axis (Dijkstra path length from subsubsection 2.1.7) divided by
their maximal length (see Equation 1).

A =

(

1−
bodylengthmin

bodylengthmax

)

× 100% (1)

The curvature index is calculated as follows: The pseudo-skeleton
is rotated so that the x-coordinate of both ends equals zero. In a
second step, we calculate the integral of the y-coordinates and of
the absolute y-coordinates. If both values are large, the animal is
performing a turn. If only the absolute value is high, the pseudo-
skeleton is in an s-shape form. The integral is subtracted from
the absolute integral and therefore the resulting value is always
positive. To indicate if it is a left or a right turn, we just multiply
the value with the sign of the middle y-coordinate.
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All calculations were performed with MATLAB.

2.3. Case II - Zebrafish Locomotion
Recordings
We tested the versatility of our tracker by studying the undulatory
locomotion in adult zebrafish. This study was performed to
evaluate if there are any sex specific locomotion differences
between male and female zebrafish. Locomotion videos of 59
adult male and 43 adult female zebrafish were recorded in two
different experiments: baseline and startle induced swimming, to
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make a comparison between their locomotion. For both trials,
zebrafish were filmed in a 24.9 x 11.4 cm Plexiglas aquarium
with 1.6 cm water depth from above with a high speed camera
(Genie HM1024, Dalsa, Imaging Solutions GmbH, Eningen u.
Achalm, Germany) linked with a lens system (OptemZoom 125C
12.5:1Micro-Inspection Lens System). The setup was illuminated
with a LED light plate (Lumitronix) and aquarium light control
(Elektronik-Werkstatt SSF, University of Göttingen) from below.
For startle induced swimming, a 474 g metal weight was dropped
on the setup table, which elicits the recording by closing an open
electrical circuit. The fall of the weight was guided by a 13 cm
plastic tunnel and produced an impact force of 18.7 N on the
surface of the table. The weight collision on the setup table creates
a mechanical stimulus which would elicit a certain behavior
among individuals. Every trial lasted for 30 s and was filmed with
200 fps. The baseline trials were started 30 s after transferring
a fish to the setup tank. Startle induced swimming trials were
started immediately after the baseline trials. The recordings were
conducted in the diurnal rhythm between 10 a.m. and 8 p.m.
For both trials, sequences of the experimental individual without
movement for more than 2.5 s were excluded from analysis.

2.3.1. Locomotion Analysis
LACE was used to automatically extract the mid-line position
from every single frame. LACE was run on MATLAB R2012b
(The MathWorks Inc., Natick, Massachusetts, USA).

3. RESULTS

3.1. Ad-hoc Corrections
We analyzed 1,318 movies of zebrafish for the occurrence of
ad-hoc corrections. In 1,176 (89%) of the videos there was not a
single correction needed (see Figure 5). In 107 (8% of all videos)
videos, less than 0.5% of their frames needed to be corrected.
Whenever the fish made a sharp turn that resulted in a circular
form, the algorithm discarded the detection, as it did not fit the
expected animal length, this was usually solved by triggering the
ad-hoc correction from Problem 4. In the remaining 42 movies,
up to 80% of the frames needed to be corrected (see Figure 5).
The overwhelming reason for this high percentage were wrong
user entries. The expected organisms size (in pixel) was set too
large or too small so that the detection was dismissed in the
first approach. Again the ad-hoc correction for Problem 4 was
triggered and the correct detection was used.

3.2. Case I - Larval Locomotion
To assess the efficacy of our tracker, we first studied locomotion
in Drosophila larvae (Zanini et al., 2018; Katana et al., 2019).
When a larva crawls, peristaltic contractions of the body wall
muscles lead to shortening and elongation of the body that allows
for forward movement (Berrigan and Pepin, 1995; Heckscher
et al., 2012). We measured the change in body length during
forward locomotion. Phases of turning could easily be detected
by the turn detector (Equation 2) (see Figure 6A). The body
length over time of wild-type larvae forms a regular wave pattern,
whereas the body length of the nan36a shows an irregular pattern
(Figure 6C). The same effect can be seen in the eccentricity of

FIGURE 5 | A histogram of the correction frequency per frame for 1,318

different zebrafish video. 1,176 videos needed no correction at all. In 107

videos, less than 5% of the frames were corrected. Note that the counts are

depicted on a logarithmic scale. Above the histogram bars, a rug plot (similar

to a scatter plot) of the occurrences is given. Each vertical marker represents a

video at the given correction frequency on the x-axis.

both larvae Figure 6B). Our data revealed that the wildtype and
control strains tested have similar body contraction amplitudes
(Equation 1). Additionally, our analysis showed a significant
reduction in the contraction amplitudes in the mechanosensory
mutants (see Figure 6D). These effects are in agreement with
previous reports of the role of NAN and IAV in Drosophila
chordotonal organs (Kim et al., 2003; Gong et al., 2004; Zhang
et al., 2013) and the role of these organs in controlling locomotion
(Caldwell et al., 2003).

3.3. Case II - Zebrafish Locomotion
To further test our tracker, we used adult zebrafish, which
propagates undulatory waves along its body during locomotion.
Several studies demonstrate sex-specific differences in the
activity, anxiety, aggressive and exploratory behavior of zebrafish
(Tran and Gerlai, 2013; Ampatzis and Dermon, 2016; Rambo
et al., 2017), which all involves locomotion. We thus wondered
whether female andmale zebrafishmight differ in their respective
locomotion. To assess this possibility, we analyzed translational
and rotational movements during baseline and startle-induced
swimming. Figure 7 shows an example of how LACE traces the
trajectory of a freely moving fish for 30 seconds. Like many other
animals (Kramer and McLaughlin, 2001; Geurten et al., 2017;
Helmer et al., 2017), zebrafish move intermittently (compare
Figure 7C). Intermittent motion alternates between phases of
active propulsion and gliding, which seems to be energy efficient
(Kramer and McLaughlin, 2001).
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FIGURE 6 | Quantification of body peristaltic contractions of freely crawling Drosophila larvae. The results of two trajectories traced with LACE are shown in (A–C): (A)

the curvature, (B) eccentricity, and (C) normalized body length of a wild-type (CantonS) larva (orange) and a nan36a mutant larva (blue). The curve finder (A) detects

portions of the video where turning is detected. The turns appear as gray shaded areas (point 2 for CantonS and points 2 and 3 for nan36a). The white background

shows peristaltic contractions during forward crawling (points 1 and 3 for CantonS and 1 for nan36a). Above (wildtype) and below (nan36a ) still frames from the

corresponding times (1,2,3) are depicted. The pseudo-skeleton is superimposed as a light blue line, the contour of the animal is shown as solid green line, the central

contour as a dashed green line, and the gut as a red line. Both markers (gut, central contour) were not used in this analysis. In (D) the contraction amplitude is

quantified for wildtype,w1118, nan36a and iav1 mutant larvae. The nan36a and iav1 mutants have significantly lower body contraction amplitudes compared to wildtype

CantonS and w1118. The dataset consists of 30 wildtype larvae (CantonS), 26 w1118 larvae, 8 nan36a larvae, and 12 iav1 larvae. Statistical significance was tested with

Fisher’s permutation test on different medians. ***p < 0.001, **p < 0.01.

In the example shown in (Figure 7A), the zebrafish separates
its movements into rotations and translations (review on the
strategy: Corthals et al., 2019). Apparently, zebrafish change
their heading when rotating but they also use the rotations for
propulsion, as can be seen for the two example turns (segment
1 and 3) in (Figures 7B,C). Each of the orientation turn elicits a
spike in thrust velocity (Figure 7C). These spikes are coincidental
with pronounced changes in the body yaw (Figure 7D)
and bending angle of the pseudo-skeleton/body of the fish
(Figure 7E). In addition to this turn-propulsion, zebrafish exploit
an s-shaped undulating movement for propulsion shown in
(Figure 7B2). The analysis of the pseudo skeleton reveals that
although the undulating propulsion elicits similar bending and
thrust (Figures 7C,E), there is only negligible change in the
orientation of the fish (Figure 7D).

The quantification of many trajectories revealed significant
differences between female and male zebrafish locomotion. We
analyzed their translational and rotational movements separately
and used the peaks in yaw velocity to calculate a triggered
average of turning maneuvers (velocity threshold 200◦ ∗ s−1 |
see Figures 8A,B). Female fish achieved significantly lower peak
turning velocities than males (Figures 8B,D), while they turned

as often as males (Figure 8E). The lower peak turn velocities
seen in female trajectories might have an influence on the thrust
velocity given that turns are also used for thrust-propulsion.

As the fish only accelerates during the propulsion phase of
the intermittent motion, the time velocity plot of a trajectory
shows distinct peaks (compare Figure 8C). To test for differences
in thrust-propulsion, we calculated a triggered average for
every peak in the thrust velocity exceeding 10 cm ∗ s−1. The
mean of these velocity peaks was very similar in male and
females (Figure 7C), yet females moved significantly slower
than males, as can be seen in the median thrust and slip
velocities (Figures 8F,G). This gender dimorphism might reflect
differences in body shape and, thus, hydro-dynamic drag. If
so, we expected to see differences in the gliding phase after a
thrust stroke (Figure 8C), but gliding velocities were the same
for females and males. Differences in body shape might cause
difference in body bending, yet also bending seemed to be
the same (Figure 8H). The significantly different thrust velocity
is caused by a significantly different thrust stroke frequency
(Figure 8I). As the turn frequency is similar between the
sexes, we can deduct that the significant thrust-stroke-frequency
difference is caused by a higher frequency of s-shape propulsion.
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FIGURE 7 | An example trajectory of an adult zebrafish traced with LACE. (A) Top view of the trajectory. The body’s pseudo-skeleton is plotted as a line every 50 ms.

Time is color coded by the color-bar. Three segments of the trajectory were chosen for a close up representation in B. 1 and 3 depicts fast turns and 2 shows a phase

of undulatory body wave propulsion. (B) Enlarged view of the three segments from A. The pseudo-skeleton is now plotted every 5 ms. Time is encoded by the color

bar. (C–E) show quantification of the trajectory over time. The gray areas mark the time in which the 3 segments (subplot B) occurred. (C) Thrust velocity in m ∗ s−1.

(D) is a YY-plot. The dark blue axis presents the yaw angle in degrees (shown in the same color). The light blue axis shows the yaw velocity in ◦ ∗ s−1 (shown in the

same color). (E) depicts the mean angle of the pseudo-skeleton parts to each other. If the pseudo-skeleton is a perfect line, the angle is 180◦ and should decrease the

more the skeleton is bent.

4. DISCUSSION

The detection of animals in videos is the basis for many
neuroethological studies, ranging from locomotion analysis
(Muybridge, 1882) to learning tests (Barth et al., 2014). Methods
that facilitate the tracking of animals are evolving constantly,
facilitating the analysis of large sets of behavioral data. Currently,
most trackers fall into two categories: trackers that treat the
animal as a solid object with an orientation (Branson et al., 2009;
Donelson et al., 2012; Pérez-Escudero et al., 2014; Geissmann
et al., 2017; Mönck et al., 2018; Rodriguez et al., 2018;Werkhoven
et al., 2019; Krynitsky et al., 2020) and trackers that represent
the animal as a skeleton (Fontaine et al., 2009; Kain et al.,
2013; Nath et al., 2013; Mathis et al., 2018; Pereira et al.,
2018; Gosztolai et al., 2020). The application of such trackers
to limbless or rather featureless animals is sub-optimal because
skeleton representations are based on readily identifiable body
parts that can be used as visualmarkers (e.g., joints,legs,antennae)
or require the attachment of physical markers, which is not
always possible. The representation of animals as solid lines or
single points also discards important features of the trajectory,
as limbless animals generate propulsion by deformation of
their bodies.

The tracker LACE has been specially designed for tracking
limbless animals, though it can be applied to other organisms as
well. Since limbless animals usually lack clear markers such as
color patterns or joints, arms, and legs, pose estimation requires
information about the mid line of the body. LACE estimates this

mid-line from the contour of the animal and treats this mid-line
as a pseudo-skeleton that allows to quantify body deformations
without using physical or visual markers. To our knowledge, the
only available tracker that represents animals in a similar fashion
is FIM-track (https://github.com/i-git/FIMTrack) which allows
to analyze animal trajectories using frustrated total internal
reflection (FTIR) (Risse et al., 2013). FIM-track was developed
specifically for analyzing FTIR trajectories and we found it to be
less efficient under different lighting conditions. For example our
fish tanks were back lit and therefore the signal to noise ratio, was
significantly lower than in an FTIR experiment.

LACE consists of nine toolboxes that can be used as a stand-
alone software or can be combined with other existing trackers.
The pseudo-skeleton generator, for example, can be used in
combination with other trackers that can detect the contour
of the animal (Fontaine et al., 2009; Nath et al., 2013; Risse
et al., 2013). The video loading module of LACE can read
nearly any standard file format and works for different lighting
conditions. This LACE_bg toolbox offers the advantage of
calculating background images for varying light-dark conditions.
LACE also allows one to define the region of interest (ROI),
allowing to discard irrelevant information. Although already
available software (e.g., Fiji Schindelin et al., 2012, 2015)
could have been used to create ROIs, we wanted to integrate
everything into one GUI for ease of use. The ad-hoc and post-hoc
evaluation toolboxes allow to record multiple animals or objects
together, automatically solving many occlusion problems. LACE
provides the LACE_p2m toolbox to convert pixel coordinates
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FIGURE 8 | Analysis of multiple trajectories by female and male zebrafish during motivated trials. The median yaw angle (A) and velocity (B) of turn triggered averages

plotted against time. The solid line represents the median of all individuals, shaded areas represents 95% confidence interval. Females are represented by the orange

color, males by a blue color. Yaw to the left/right is indicated by positive/ negative numbers, respectively. The yaw angle over time is equal between male and female.

Males exhibit higher maximal velocities compared to females. (C) The triggered average of all spikes of propulsion is plotted against time. The shaded area represents

standard deviation from the mean. There is no significant difference in the propulsion and gliding motion of male and female. (D–I) show the quantification of different

types of locomotion in the form of box plots. The black line represents the median of all individuals, the box displays the upper and lower quartile, the whiskers denote

1.5 times the interquartile distance and the plus-signs mark the outliers. Color is coded as in A. (D,E) The saccadic peak velocity of females as compared to males is

significantly lower, while there is no significant difference in the saccade frequency between the two. (F,G) The median thrust and slip velocities of male fish are

significantly higher as compared to the females. (H) There is no difference in the body-bending angle during acceleration. (I) There is a significant decrease in the

frequency of thrust stroke of females as compared to males. The data set consists of 59 males and 43 females. Statistic significance was tested with Fisher’s exact

permutation test on different medians. ***p < 0.001, **p < 0.01.

into arena-based SI coordinates. Normally, these computational
intensive steps takes hours. To speed up analysis, LACE is
equipped with a scheduler system that allows for a division of
labor between different CPU cores, allowing users to record data
and define scripts during the day and run the analysis overnight.
Many of those features can be found in other tracking software,
but not in the same combination.

The most comparable trackers to LACE are trackers of the
model worm Caenorhabditis elegans (see comparison Table 1)
(Geng et al., 2004; Tsibidis and Tavernarakis, 2007; Ramot
et al., 2008; Leifer et al., 2011; Stirman et al., 2011, 2012;
Swierczek et al., 2011; Brosnan et al., 2021). This is not
surprising as Caenorhabditis is a limbless organism with very few
distinguishable anatomical markers. Although recording videos

from a microscope has disadvantages (e.g., moving the stage,
low photon yield, etc.) which many of the mentioned trackers
overcome elegantly, there are certain advantages. Two of those
advantages are uniform background and iso-illumination across
the field of view. LACE handles more complex lighting situations
as well (see Supplementary Material).

The most comparable fish tracker is idTracker (Pérez-
Escudero et al., 2014; Romero-Ferrero et al., 2019). idTracker
shares most of LACEs features and has a much more
sophisticated detection of individual organisms in a group.
LACE identifies individuals via their position, direction,
and posture. In contrast to LACE, idTracker identifies the
individuals by the eigenvalues of their Gestalt. To our
knowledge idTracker does not however derive a pseudo-skeleton

Frontiers in Behavioral Neuroscience | www.frontiersin.org 11 March 2022 | Volume 16 | Article 819146284

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


Garg et al. Markerless Pose-Estimation for Limbless Animals

for the identified individuals, which is crucial to most of
our analysis.

LACE is rather computational intensive and therefore cannot
track multiple animals in real-time. Many of the aforementioned
worm trackers and the TRex tracker (Walter and Couzin, 2021)
have real time capabilities. Whereas the worm trackers can rely
on slim algorithms due to bright and uniform backgrounds, TRex
achieves this computational speed by using a non interpreted
language (C++). LACE is written in a less efficient but more
accessible programming language (Matlab), which allows the user
to customize the source code directly.

We have illustrated the versatility of LACE using crawling
Drosophila larvae and swimming adult zebrafish as examples.
Studying peristaltic contractions during locomotion of
Drosophila larvae allows to screen for genes, neurons, and
networks involved in proprioception, mechanosensation,
and locomotion (Caldwell et al., 2003; Hughes and Thomas,
2007; Zanini et al., 2018; Katana et al., 2019). In Zanini
et al. (2018) we used LACE to analyse the role of opsins
in mechano-transduction. We used LACE instead of the
FIM-Track because we needed to analyse locomotion under
infrared-light and visible light conditions. Although FIM-
Track worked well with infrared light, it did less so in the
presence of visible light. A costly infra-red pass filter would
have solved this problem. Another option seemed to express
green-fluorescence protein (GFP) in the larval muscles, as was
done to study the roles of mechanosensory neurons during
peristalsis (Hughes and Thomas, 2007). Our tracker bypasses
the need for GFP expression and can be used to track many
animal species. Its ability to detect turning events during
locomotion allows to analyse exclusively, for example, periods of
forward locomotion. LACE can precisely track this locomotion
and distinguish turns from normal peristaltic movements.
It also allowed us to identify subtle changes in locomotory
body movements in mechanosensory mutants (Zanini et al.,
2018).

By using LACE to track zebrafish, we tested for differences
in locomotion between adult females and males. Several studies
had indicated sex specific differences in different forms of
zebrafish behavior (Philpott et al., 2012; Tran and Gerlai,
2013; Ampatzis and Dermon, 2016; Rambo et al., 2017), yet
whether these differences extend to locomotion, had, to the
best of our knowledge, not been explored. Using LACE, we
found that females swim slower than males and turn less fast
(Figures 8D,F,G). Possibly, the ovary makes it more difficult for
the females to bend their body during turning. We did not find
any sex-specific differences in the bendability (Figure 8H), yet
visual inspection of fish revealed that females with full ovaries are
larger than males. The more slender body of males presumably
experience less drag in water, but thrust strokes and declines
were virtually identical for the two sexes, arguing against pure
effects of drag (Figure 8C). The same argument holds true for
a difference in inertia caused by a difference in weight between
both sexes [males 0.23 g, females 0.36g (Eaton and Farley, 1974)].

Even though a female has to overcome a higher inertia
to change its velocity (2nd law of motion Newton, 1833) the

resulting velocity profile is nearly identical (Figure 8C). When
we analyzed the frequency of thrust strokes, we found that males
perform more thrust strokes in a given time period, allowing
them to swim faster than the females.Moreover, while the turning
frequency is nearly identical for the two sexes, males more often
perform s-shape thrust strokes, propelling them forward with
higher speed. LACE has the potential to reveal such minute but
crucial information from the video data without a need for any
markers or AI-training. Overall, by this study, we have shown
that LACE has the capability to differentiate between different
aspects of locomotion ranging from fast turns to bendability
and forward motion, revealing a hitherto undescribed behavioral
sexual dimorphism in zebrafish.

LACE is a simple, markerless, and fully automated tracker
for studying undulatory locomotion in limbless animals.We have
demonstrated that this tracker can be used to study different
aspects of locomotion behavior in different types of limbless
organisms and in more complex lighting environments. Our
results indicate that LACE has the potential to reveal novel
aspects of locomotion behavior in a variety of larger organisms.
We hope that our tracker will facilitate the study of movements
and pose in various animals species.
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