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The backstepping technique is greatly effective for the integer-order triangular non-linear

systems. Nevertheless, it is dramatically challenging to implement backstepping

technique in the manipulation of fractional-order permanent magnet synchronous

motors (FOPMSMs), since the fractional derivatives of the composite functions are

deeply complex. In this paper, adaptive neural network (NN) backstepping-based

control scheme for FOPMSMs on the basis of fractional Lyapunov stability criterion is

established. First, we propose a novel adaptive synchronous controller for FOPMSMs by

coupling with NNs and backstepping technique. Then, we present a detailed stability

analysis in terms of FOPMSMs via the proposed controller. Finally, a simulation example is

given to reveal that the proposed controller can effectively eliminate or restrain the chaos

of FOPMSMs, and keep the tracking signals synchronous with the reference signals.

Keywords: adaptive control, backstepping technique, neural network, fractional-order chaotic system, permanent

magnet synchronous motor

1. INTRODUCTION

In late decades, fractional-order non-linear systems (FONSs) [1] have been widely studied, not only
owing to their accurate performance in modeling physical phenomena (e.g., chaos, oscillations,
impulses, diffusions, see [2–5]), but also owing to their successful applications in a variety of fields,
such as chemistry, medicine, biology, electronics, robotics, fuel cells, and so on [6–11]. Stability
analysis [12] is regarded as a fundamental and crucial task in the development of cybernetics.
Recently, more and more scholars have paid attention to stability analysis of fractional-order non-
linear systems [13–16]. It is not exaggerated to say that stability analysis of FONSs along with their
robust control have become a hot and promising research topic.

The researches on the control of chaotic systems are widely concerned due to its valuable
significance in both theoretical and practical aspects [17, 18]. Since Kuroe and Hayashi [19]
originally discovered chaotic phenomenon from the motor drive system in the late 1980’s, chaos
control has been one of the most popular research topics in cybernetics. There are several types
of chaotic motor drivers that capture widespread interests. For instance, DC motor drivers [20],
step motor drivers [21], single-phase induction motor drivers [22], synchronous reluctance motor
drivers [23], switched reluctance motor drivers [24] and so on. The extensive utilization of
permanent magnet synchronous motors (PMSMs) in industries mainly benefits from their merits
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of high speed, high efficiency, high power, low loss and low
temperature rise. Chaotic non-linear systems are very complex
due to the irregular and unpredictable behaviors. A remarkable
feature of chaotic systems is that they are very sensitive to
the initial conditions. The small change of initial state will
lead to great distinction. On the other hand, they have many
other desired properties, such as information processing, secure
communication and mechanical system. However, it may cause
unexpected oscillations and even destroy the system stability.
Therefore, such oscillations should be effectively suppressed. For
this reason, various methods have been developed to stabilize
non-linear chaotic systems, in which fractional order chaos
control has also been focused, such as OGY type [25], feedback
type [26–28], dynamic surface type [29], sliding mode type [30–
33], backstepping type [34, 35], etc.

Neural network (NN) control technique [36, 37] is an
intelligent method for controlling non-linear systems with
uncertainties. Analogizing to fuzzy control approach [38, 39], the
idea of NN control technique is to approximate unknown non-
linear functions by using radial basis function neural networks
(RBFNNs), which is a type of neuron-modeled structure formed
by the computation of some adjustable parameter vectors and
some specific continuous functions. As one of the most powerful
tools to realizing approximation of functions, NN control
technique is popular because it facilitates to control most of
many non-linear systems in which the data are too imprecise
or too complex to construct mathematical modeling. It provides
an available way for the control designs, and it is considerably
applicable in the field of control engineering.

Backstepping technique has engaged much attention due to
its efficient performance in handling mismatched uncertainties
of integer-order non-linear systems [40, 41]. Unfortunately, this
control method has an inherent drawback, namely “explosion
of complexity,” triggered by iteratively differentiating virtual
control inputs [42]. Additionally, it requires complicated analysis
to compute a so-called “regression matrix” [43]. Dawson
et al. [44] pointed out that the size of the regression matrix
displays too large when backstepping technique was applied
to manipulate DC motors in a conventional manner. Such
complexities might be augmented remarkably for fractional-
order non-linear systems.

It is well-known that the design of NN control is rarely
systematic, which is difficult to work for the control of complex
systems. It is also challenging to establish a systematic NN control
theory to solve a series of problems, such as themechanism of NN
control, stability analysis, systematic design, etc. Backstepping
control usually leads to the problem of “complexity explosion”
when it is applied in the processing of unknown functions, so
the methods of adaptive NN control [36], adaptive fuzzy control
[45] and adaptive NN backstepping control [35] are put forward
to address such a problem. These techniques enable systems to
be greatly adaptive and robust obeying the required performance
criteria for the control. However, the control performance is not
desired for the non-linear systems with triangular structures,
and the problem of “complexity explosion” will occur during
the control proceeding. Based on the above discussion, this
paper proposes an adaptive neural network control method of

chaotic fractional-order permanent magnet synchronous motors
using backstepping technique, which can improve the control
performance of non-linear systems.

To deal with the synchronization issue of fractional-
order permanent magnet synchronous motor (FOPMSM) with
triangular structure, we expect to construct an adaptive
NN controller combined with backstepping technique. This
enables every uncertain complex non-linear functions being
approximated by a radial basis function neural network (RBFNN)
during each control step. Themain contributions of this work can
be summarized as follows:

The synchronization control scheme design and the stability
analysis of FOPMSMs are investigated. In order to analyze the
stability of the controlled systems, firstly, some basic results
related to fractional calculus and RBFNN are recalled, including
a fractional differential inequality, which lays the foundation
for the application of the fractional Lyapunov function method.
Meanwhile, it lays a foundation for the stability analysis of
other types of FONSs. Secondly, an adaptive NN backstepping
recursive control method is proposed for a class of uncertain
FOPMSMs. The stability of FOPMSMs is analyzed based on
fractional Lyapunov criterion. NN control technique is employed
when dealing with the approximation of uncertain functions
of FOPMSMs, and the fractional adaptive law is designed
to update the parameters of NNs. The relevant properties of
Mittag-Leffler function and Laplace transform are applied when
the fractional Lyapunov function is defined to implement the
system control. Our proposed control method fully averts the
superfluous terms which are aroused by repeated derivation on
virtual control inputs, and facilitates to overcome the so-called
“complexity explosion” inherent drawback of the traditional
backstepping technique. Finally, we present a numerical example
to verify the main results. The simulation results show that our
method embodies a perfect control effect. This also reveals the
effectiveness of our control algorithm in another way.

The remainder of this work is arranged as below: In section 2,
we recall several fundamental preliminaries of fractional calculus
and RBFNN. Then, a brief overview of a class of FOPMSMs
is provided. In section 3, we propose a RBFNN-based control
scheme in three steps and present stability analysis. In section
4, we illustrate the effectiveness of the proposed synchronous
controller via a simulation example. Finally, in section 5, we
summarize the results of this work and put forward the prospect
for our further investigation.

2. PRELIMINARIES AND MODEL
DESCRIPTION

Some basic concepts, notations and lemmas, involved with
fractional calculus and radial basis function neural network
(RBFNN), need to be stated in this section before used. For
convenience, we adopt the symbol R (resp. Rn, C) to represent
the collection of all real numbers (resp. n-dimensional real
vectors, complex numbers). � ⊆ R

n is always assumed to be
compact. T = [0,+∞) means the time-variable domain. The
notation C1(T,�) stands for the collection of all continuous
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functions from T to � with continuous derivatives. Given a
vector x ∈ R

n, xT denotes its transpose, ‖ x ‖ denotes its
Euclidean norm.

Definition 1 ([8]). Let α ≥ 0. For a given function f :[0,∞) →
R, its α-th order integral is written as

0I
α
ψ f (ψ) =

1

Ŵ(α)

∫ ψ

0

f (η)

(ψ − η)1−α
dη, ψ > 0 (1)

where Ŵ(α) =
∫ +∞
0 sα−1e−sds.

Definition 2 ([8]). Let α ≥ 0. For a given function f :[0,∞) →
R, its α-th order Caputo derivative is expressed by

C
0D

α
ψ f (ψ) =

1

Ŵ(n− α)

∫ t

0

f (n)(η)

(ψ − η)α+1−n
dη, α ≥ 0, ψ > 0

(2)
where α ∈ [n− 1, n), n = 1, 2, · · · .

Definition 3 ([8]). Let α, γ > 0. TheMittag-Leffler function Eα,γ
on C is expressed as

Eα,γ (ζ ) =

∞
∑

k=0

ζ k

Ŵ(αk+ γ )
. (3)

Moreover, taking the Laplace transform on Eα,γ generates

L{tγ−1Eα,γ (−atα)} =
sα−γ

sα + a
. (4)

Lemma 1 ([1]). Let 0 < α < 1, γ ∈ C and ν ∈ R fulfilling the
following:

πα

2
< ν < min{π ,πα} (5)

If |ζ | → ∞, ν ≤ |arg(ζ )| ≤ π , then the following statement holds:

Eα,γ (ζ ) = −

n
∑

j=1

1

Ŵ(γ − αj)ζ j
+ o

(

|ζ |−n−1
)

, (6)

where n is a non-zero natural number.

Lemma 2 ([1]). Let α ∈ (0, 2), β ∈ R. If µ is a constant fulfilling

πα

2
< µ ≤ min{π ,πα}, (7)

then there exists C > 0 such that

|Eα,β (ζ )| ≤
C

1+ |ζ |
, ∀ζ ∈ C (8)

with | arg(ζ )| ∈ [µ,π].

Lemma 3 ([35]). Let z(t) be a smooth function. Then

1

2
C
0D

α
t (z

T(t)z(t)) ≤ zT(t)C0D
α
t z(t) (∀t ∈ T). (9)

Lemma 4 ([34, 46]). Let z = 0 be the equilibrium point of a
FONS, which is given by

C
0D

α
t z(t) = f (t, z(t)), (10)

where f :T × � −→ R is a function with the Lipschitz condition.
Suppose there exist a Lyapunov function V(t, z(t)) and a family of
class-K functions1 ĝi (i = 1, 2, 3) satisfying

ĝ1(‖z(t)‖) ≤ V(t, z(t)) ≤ ĝ2(‖z(t)‖), (11)

C
0D

α
t V(t, z(t)) ≤ −ĝ3(‖z(t)‖) (12)

Then system (10) is asymptotical stable, i.e., lim
t→∞

z(t) = 0.

Next, let us introduce some basic notions and notations about
the radial basis function NN (RBFNN) [43, 47]. The goal of the
control procedure is to establish a adaptive NN control scheme,
which enables the tracking signal x1(t) and the given reference
signal xd(t) are synchronized.

A RBFNN can be formed as

f̂ (z(t)) = θT(t)ϑ(z(t)). (13)

where z(t) = (z1(t), z2(t), · · · , zn(t))
T ∈ C1(T,�) and f̂ are

the input-variable and the output-variable, respectively, θ(t) =

(θ1(t), θ2(t), · · · , θm(t))
T is an adjustable parameter vector,

ϑ(z(t)) = (ϑ1(z(t)),ϑ2(z(t)), · · · ,ϑm(z(t)))
T with ϑj(z(t)) =

(ϑj(z1(t)),ϑj(z2(t)), · · · ,ϑj(zn(t)))
T (j = 1, 2, · · · ,m) being a

continuous function, called the regressor variable. To illustrate
its structure, we refer to Figure 1.

Suppose that all of the continuous functions
ϑ1(z(t)),ϑ2(z(t)), · · · ,ϑm(z(t)) in the above RBFNN are
chosen as Gaussian functions, that is, for j = 1, 2, · · · ,m,

ϑj(z(t)) = exp

(

−
‖z(t)− cj‖

2

σ 2
j

)

,

where cj = [cj1, cj2, ..., cjn]
T is the center vector and σj > 0 is

the width of the Gaussian function ϑj(z(t)). Then the next lemma
is obtained.

Lemma 5 ([35]). Let f :� −→ R be a Lipschitz function. For each
z ∈ C1(T,�) and for each ε > 0, there is a RBFNN fulfilling
Equation (13) and the following property:

sup
t∈T

|f (z(t))− θT(t)ϑ(z(t))| ≤ ε. (14)

1A function ĝ :[0,∞) −→ T is said to belong to class-K if it is strictly increasing,

continuous and ĝ(0) = 0.
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FIGURE 1 | The structure of RBFNN.

It is well-known that non-linear theory has yet
been widely applied in the stability analysis of integer-
order non-linear PMSMs. Yu et al. [48] investigated
a type of classical PMSMs, which are described
as follows:































dω

dt
= σ

(

iq − ω
)

,

diq

dt
= −iq − ωid + γω,

did

dt
= −id + ωiq + ud,

(15)

Yu et al. [48] also studied that when the parameters σ , γ
of a PMSM decrease in a certain range, chaos will appear
in the PMSM. To eliminate chaos in PMSM drive systems,
they treated ud as an adjustable variable, and proposed an
adaptive NN control method based on backstepping control
technique. It is well-known that backstepping technique usually
makes great efforts to the effective control of integer-order
triangular non-linear systems. Nevertheless, it is difficult
to incorporate backstepping control technique into FONSs
because of the complexities of fractional derivatives of
composite functions. Moreover, the applications of FONSs
broadly cover a great deal of fields, such as physics, chemistry,
mathematics, etc., which suggests that the mathematical
structures modeled by FONSs are more accurate and
more practical.

Based on the aforementioned facts, this paper concerns a
class of FOPMSMs. For simplicity, denote ω = x1, iq = x2,
id = x3 in system (15), and extend system (15) into the next

fractional-order form:











C
0D

α
t x1(t) = σ

(

x2(t)− x1(t)
)

,

C
0D

α
t x2(t) = −x2(t)− x1(t)x3(t)+ γ x1(t),

C
0D

α
t x3(t) = −x3(t)+ x1(t)x2(t)+ ud(t),

(16)

where 0 < α < 1, x(t) = [x1(t), x2(t), x3(t)]
T ∈

R
3 is a measurable state-variable, x1(t) ∈ R is an

output-variable, ud(t) ∈ R is an input-variable, σ and
γ are positive constants, both of them represent system
operating parameters.

3. ADAPTIVE NEURAL NETWORK
BACKSTEPPING CONTROL OF FOPMSMS

In this section, we will improve the conventional control method
combined with backstepping technique, by which the chaos
of FOPMSMs realizes to be eliminated or restrained in a
high effective manner. The design process includes three steps.
Each of them will construct a virtual control variable based
on a proper Lyapunov function. At the end, a controller in
real sense will be produced to manipulate FOPMSM. Assume
that xd(t) is a given reference signal. Our goal is to establish
an appropriate controller ud(t), ensuring that the tracking
error e(t) : = x1(t) − xd(t) will ultimately converge to
an arbitrarily small neighborhood of the origin. Next, we
present a recursive backstepping procedure to reach our goal in
three steps:

Step 1: From (16), we obtain

C
0D

α
t e(t) =

C
0D

α
t x1(t)−

C
0D

α
t xd(t)

= σ
(

x2(t)− x1(t)
)

− C
0D

α
t xd(t)

(17)
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The virtual control input α1(e(t), x1(t), xd(t)) is adopted as

α1(e(t), x1(t), xd(t)) = x1(t)−
1

σ

[

k11e(t)+ k21sign(e(t))

− C
0D

α
t xd(t)

]

(18)

where k11 > 0, k21 > 0 are design parameters, sign(·) denotes a
signum function.

Denote α1(t) = α1(e(t), x1(t), xd(t)). Let

e1(t) = x2(t)− α1(t). (19)

Introduce Equations (18) and (19) into Equation
(17) yields

C
0D

α
t e(t) = −k11e(t)− k21sign(e(t))+ σ e1(t). (20)

Multiplying e(t) with Equation (20) generates

e(t)C0D
α
t e(t) = −k21|e(t)| + σ e(t)e1(t)− k11e

2(t)

≤ σ e(t)e1(t)− k11e
2(t)

(21)

Let the Lyapunov function candidate V1(t) be taken as

V1(t) =
1

2
e2(t) (22)

By Lemma 3 and Equation (21), one obtains

C
0D

α
t V1(t) =

1

2
C
0D

α
t e

2(t) ≤ e(t)C0D
α
t e(t)

≤ −k11e
2(t)+ σ e(t)e1(t)

= −κ1V1(t)+ σ e(t)e1(t)

(23)

where κ1 = 2k11 is a positive constant.
Step 2: From Equations (16) and (19), we have

C
0D

α
t e1(t) =

C
0D

α
t x2(t)−

C
0D

α
t α1(t))

= −x2(t)− x1(t)x3(t)+ γ x1(t)−
C
0D

α
t α1(t)

= −x2(t)− x1(t)x3(t)+ γ x1(t)− F1(x1(t))

(24)

where F1
(

x1(t)
)

= C
0D

α
t α1(t) is an unknown function.

To approximate F1
(

x1(t)
)

, we adopt a RBFNN
formulated by

F̂1
(

x1(t), θ1(t)
)

= θT1 (t)ϑ1(x1(t)). (25)

Suppose θ∗1 is the optimal parameter, which is represented as

θ∗1 = argmin
θ1(t)

[

sup
x1(t)

∣

∣

∣
F1
(

x1(t)
)

− F̂1
(

x1(t), θ1(t)
)

∣

∣

∣

]

. (26)

Here, θ∗1 is presented for the purpose of analysis, in other words,
it is not required in the controller design procedure.

Define the parameter estimation error θ̃1(t) as

θ̃1(t) = θ1(t)− θ
∗
1 , (27)

Also, formulate the optimal approximate error
ǫ1
(

x1(t)
)

by

ǫ1
(

x1(t)
)

= F̂1
(

x1(t), θ
∗
1

)

− F1
(

x1(t)
)

, (28)

According to Tong and Li [49], we know that ǫ1
(

x1(t)
)

is
bounded. Therefore,

|ǫ1
(

x1(t)
)

| ≤ ǭ1, (29)

where ǭ1 is a known constant. Consequently,

F̂1
(

x1(t), θ1(t)
)

− F1
(

x1(t)
)

= F̂1
(

x1(t), θ1(t)
)

− F̂1
(

x1(t), θ
∗
1

)

+ F̂1
(

x1(t), θ
∗
1

)

− F1
(

x1(t)
)

= θT1 (t)ϑ1(x1(t))− θ
∗
1 ϑ1(x1(t))+ ǫ1(x1(t))

= θ̃T1 (t)ϑ1(x1(t))+ ǫ1(x1(t)).
(30)

Define the virtual control input by

α2(t) = −x−1
1

[

θT1 (t)ϑ1(x1(t))+ x2(t)− k12e1(t)

−k22sign(e1(t))− σ e(t)
]

+ γ
(31)

where k12 > 0 and k22 > ǭ1 are design parameters.
Implement the following fractional-order adaptation law:

C
0D

α
t θ1(t) = −e1(t)ϑ1(x1(t))− ρ1θ1(t), (32)

where ρ1 is a positive design parameters. Noting that the α-th
order derivatives of constants are equal to 0, by Equation (27), we
immediately get

C
0D

α
t θ̃1(t) =

C
0D

α
t θ1(t). (33)

Put

e2(t) = x3(t)− α2(t). (34)

Then Equations (24), (30), and (31) lead to

C
0D

α
t e1(t) = −x2(t)− x1(t)x3(t)+ γ x1(t)− F1(x1(t))

= −x2(t)− x1(t)x3(t)+ γ x1(t)+ θ̃
T
1 (t)ϑ1(x1(t))

+ ǫ1(x1(t))− θ
T
1 (t)ϑ1(x1(t))

= −x1(t)e2(t)− k12e1(t)− k22sign(e1(t))− σ e(t)

+ θ̃T1 (t)ϑ1(x1(t))+ ǫ1(x1(t)).
(35)
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By multiplying e1(t) with (35), we obtain

e1(t)
C
0D

α
t e1(t) =− x1(t)e1(t)e2(t)− k12e

2
1(t)

− k22|e1(t)| − σ e1(t)e(t)

+ e1(t)θ̃
T
1 (t)ϑ1(x1(t))+ e1(t)ǫ1(x1(t))

≤− x1(t)e1(t)e2(t)− k12e
2
1(t)− σ e1(t)e(t)

+ e1(t)θ̃
T
1 (t)ϑ1(x1(t))+ |e1(t)|ǭ1

≤− x1(t)e1(t)e2(t)− k12e
2
1(t)− σ e1(t)e(t)

+ e1(t)θ̃
T
1 (t)ϑ1(x1(t))

(36)
Adopt the next Lyapunov function candidate V2(t):

V2(t) = V1(t)+
1

2
e21(t)+

1

2
θ̃T1 (t)θ̃1(t) (37)

Applying Lemma 3 and Equation (23), ont gets

C
0D

α
t V2(t) =

C
0D

α
t V1(t)+

1

2
C
0D

α
t e

2
1(t)+

1

2
C
0D

α
t θ̃

T
1 (t)θ̃1(t)

≤ −κ1V1(t)+ σ e1(t)e(t)+ e1(t)
C
0D

α
t e1(t)

+ θ̃T1 (t)
C
0D

α
t θ̃1(t)

= −κ1V1(t)+ σ e1(t)e(t)+ e1(t)
C
0D

α
t e1(t)

+ θ̃T1 (t)
C
0D

α
t θ1(t)

(38)
Substituting Equations (36) and (32) into Equation (38) derives

C
0D

α
t V2(t) ≤ −κ1V1(t)− x1(t)e1(t)e2(t)− k12e

2
1(t)

+ e1(t)θ̃
T
1 (t)ϑ1(x1(t))+ θ̃

T
1 (t)

C
0D

α
t θ1(t)

= −κ1V1(t)− k12e
2
1(t)− x1(t)e1(t)e2(t)

− ρ1θ̃
T
1 (t)θ1(t)

= −κ1V1(t)− k12e
2
1(t)− x1(t)e1(t)e2(t)

− ρ1θ̃
T
1 (t)θ̃1(t)− ρ1θ̃

T
1 (t)θ

∗
1

≤ −κ1V1(t)− k12e
2
1(t)− x1(t)e1(t)e2(t)

−
ρ1

2
θ̃T1 (t)θ̃1(t)+

ρ1

2
θ∗T1 (t)θ∗1

≤ −κ2V2(t)− x1(t)e1(t)e2(t)+H1

(39)

where κ2 = min{κ1, 2k12, ρ1} and H1 =
ρ1
2 θ

∗T
1 θ∗1 are

positive constants.
Step 3: Using Equation (34), one has

C
0D

α
t e2(t) =

C
0D

α
t x3(t)−

C
0D

α
t α2(t)

= −x3(t)+ x1(t)x2(t)+ ud(t)−
C
0D

α
t α2(t)

= −x3(t)+ x1(t)x2(t)+ ud(t)− F2
(

x1(t), x2(t)
)

(40)

where F2
(

x1(t), x2(t)
)

= C
0D

α
t α2(t) is unknown. We approximate

F2
(

x1(t), x2(t)
)

via RBFNN as follows:

F̂1
(

x1(t), x2(t), θ2(t)
)

= θT2 (t)ϑ2(x1(t), x2(t)). (41)

Furthermore, Equation (40) can be reformulated by

C
0D

α
t e2(t) = −x3(t)+ x1(t)x2(t)+ ud(t)− F2

(

x1(t), x2(t)
)

= −x3(t)+ x1(t)x2(t)+ ud(t)− F2
(

x1(t), x2(t)
)

+ F̂2(x2(t), θ2(t))− F̂2(x2(t), θ2(t))

= −x3(t)+ x1(t)x2(t)+ ud(t)+ θ̃
T
2 ϑ2(x1(t), x2(t))

+ ǫ2(x1(t), x2(t))− θ
T
2 ϑ2(x1(t), x2(t)).

(42)
Let the virtual control input be expressed by

ud(t) = −k13e2(t)+ x1(t)e1(t)− k23sign(e2(t))+ x3(t)

−x1(t)x2(t)+ θ
T
2 ϑ2(x1(t), x2(t))

(43)
Design the fractional-order adaptation law as

C
0D

α
t θ2(t) = −e2(t)ϑ2(x1(t), x2(t))− ρ2θ2(t), (44)

where k13 > 0, k23 > ǭ2 (ǭ2 are design parameters with
‖ǫ2(x1(t), x2(t))‖ ≤ ǭ2), ρ2 > 0. Substitute it into Equation (43).
By multiplying e2(t) with Equation (42), we get

e2(t)
C
0D

α
t e2(t) =− k13e

2
2(t)+ x1(t)e1(t)e2(t)− k23|e2(t)|

+ e2(t)θ̃
T
2 ϑ2(x1(t), x2(t))+ e2(t)ǫ2(x1(t), x2(t)).

(45)
Choose the Lyapunov function V3(t) as

V3(t) =
1

2
e22(t)+

1

2
θ̃T2 (t)θ̃2(t)+ V2(t) (46)

Employing Lemma 3 with Equations (39), (44), and (45)
together gives

C
0D

α
t V3(t) =

C
0D

α
t V2(t)+

1

2
C
0D

α
t e

2
2(t)+

1

2
C
0D

α
t θ̃

T
2 (t)θ̃2(t)

≤ −κ2V2(t)− x1(t)e1(t)e2(t)+H1 + e2(t)
C
0D

α
t e2(t)

+ θ̃T2 (t)
C
0D

α
t θ̃2(t))

≤ −κ2V2(t)+H1 − k13e
2
2(t)− ρ2θ̃

T
2 (t)θ2(t)

= −κ2V2(t)+H1 − k13e
2
2(t)− ρ2θ̃

T
1 (t)θ̃1(t)

− ρ2θ̃
T
1 (t)θ

∗
1

≤ −κ2V2(t)+H1 − k13e
2
2(t)−

ρ2

2
θ̃T2 (t)θ̃2(t)

+
ρ2

2
θ∗T2 θ∗2

≤ −κ3V3(t)+H2

(47)
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where κ3 = min{κ2, 2k13, ρ2} and H2 = H1 +
1
2ρ1θ

∗T
2 θ∗2 are

positive constants.

Theorem 1. In system (16), if the control outputs are formulated
by Equations (18), (31), and (43), and the adaptation law is
designed as Equations (32) and (44), then the tracking error
e(t) must tend to a sufficiently small neighborhood of the
equilibrium point.

Proof: Applying (47), one gets

C
0D

α
t V3(t)+ Q̄(t) = −κ3V3(t)+H2 (48)

where Q̄(t) ≥ 0. By the implementation of the Laplace transform
on Equation (48), we obtain

V3(s) =
sα−1

sα + κ3
V3(0)+

H2

s(sα + κ3)
−

M(s)

sα + κ3

=
sα−1

sα + κ3
V3(0)+

sα−(1+α)H2

sα + κ3
−

M(s)

sα + κ3

(49)

whereV3(s) andM(s) are given by the Laplace transform onV3(t)
and Q̄(t), respectively.

By Equations (4), (49), V3(t) can be rearranged as

V3(t) = V3(0)Eα,1(−κ3t
α)+H2t

αEα,1+α(−κ3t
α)

− Q̄(t) ∗ t−1Eα,0(−κ3t
α)

(50)

where ∗ denotes the convolution between functions. Since Q̄(t)
and t−1Eα,0(−κ3t

α) are non-negative,

Q̄(t) ∗ t−1Eα,0(−κ3t
α) ≥ 0.

Additionally, we have

|V3(t)| ≤ |V3(0)|Eα,1(−κ3t
α)+H2t

αEα,1+α(−κ3t
α). (51)

Note that arg(−κ3t
α) = −π , | − κ3t

α| ≥ 0 for any t ≥ 0 and
α ∈ (0, 2). Employing Lemma 2, we deduce that there is a positive
constant C with

|Eα,1(−κ3t
α)| ≤

C

1+ κ3tα
. (52)

It follows from Equation (52) that

lim
t→∞

|V3(0)|Eα,1(−κ3t
α) = 0. (53)

Therefore, for an arbitrary positive constant ε, there exists a
positive constant t1 fulfilling that

|V3(0)|Eα,1(−κ3t
α) <

ε

3
, ∀t > t1. (54)

On the other hand, by employing Lemma 1, we get

Eα,α+1(−κnt
α) =

1

Ŵ(1)κntα
+ o

(

1

|κntα|1+1

)

. (55)

From Equation (55), for an arbitrary ε > 0, there is a positive
constant t2 with

H2t
αEα,α+1(−κ3t

α) ≤
H2

κ3
+
ε

3
, ∀t > t2. (56)

Note that the design parameter can be adjusted with H2
κ3

≤ ε
3 .

Thus, coupling of Equations (51), (54), and (56) yields

|V3(t)| < ε. (57)

In view of Equation (57) and the definition of V3(t), we conclude
that all signals and estimation errors are bounded in the closed-
loop system. Further, the tracking signal e(t) will ultimately tend
toward a sufficiently small neighborhood of the equilibrium point
with radius ε ≥ 1

2 e
2(t) for every t > min{t1, t2}.

Remark 1. Theorem 1 can be extended to the stability analysis of
many other FONSs. Employing fractional-order Lyapunov stability
criterion. we know that if there are two positive constants φ1,
φ2 such that C

0D
α
t V(t) ≤ −φ1V(t) + φ2, where V(t) =

1
2y

T(t)y(t) is a Lyapunov function, then y(t) ∈ R
n is globally

bounded and y(t) ≤
φ2
φ1

holds whenever the time variable t is

sufficiently large.

Remark 2. In practice, the system parameters σ and γ for the
model of FOPMSM are uncertain in general. Thereby, we can
take advantage of the RBFNNs and adopt the corresponding
adaptation law to estimate the unknown system parameters,
analogizing to our proposed estimation formula (25). For the
sake of simplicity, we assume that the system parameters
are constants.

Remark 3. In the proposed adaptive NN backstepping control
scheme, the designed controller determined by Equations (20), (31),
and (43) is apparently simpler than the ones without using NN
backstepping technique. Meanwhile, it is able to avert superfluous
terms aroused by repeated derivation on virtual control inputs.
This is beneficial especially for FONSs, in which there are a
larger amount of complicated terms of fractional derivatives.
For the detail, the readers may refer to Appendix B of the
literature [48].

4. NUMERICAL SIMULATION EXAMPLE

Let us consider the next non-linear FOPMSM by setting σ = 5.6,
γ = 230 and xi(t) = yi(t) (i = 1, 2, 3) in system (16):











C
0D

α
t y1(t) = 5.6(y2(t)− y1(t)),

C
0D

α
t y2(t) = −y2(t)− y1(t)y3(t)+ 230y1(t),

C
0D

α
t y3(t) = −y3(t)+ y1(t)y2(t)+ ud(t).

(58)
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FIGURE 2 | The radial basis functions for RBFNN.

system is proceeded under the initial condition y0 =

(−2,−0.8, 0.6). Given a reference signal yd(t) = sin t. The
chosen parameters k1i (i = 1, 2, 3) should be >0. However, if k1i
are too large, the control gain will increase, which will consume
more control energy. Therefore, in the simulation, the selected
parameters k1i are very small such that the synchronization
control performs perfectly. This also shows the effectiveness of
our control algorithm from another viewpoint. The adaptive
parameters change much faster when the parameters are selected
much larger. Based on the above considerations, The control
parameters are selected as k11 = k12 = 1, k13 = 3, ρ1 = ρ2 =

0.5, then we have κ1 = κ2 = κ3 = 0.5.
In the aforementioned settings, there are

two RBFNNs:
The first one, endowed with the input y1(t),

relies on the Gaussian radial basis functions
expressed by

ϑ1(y1(t)) = exp

[

−
1

2
(y1(t)+ 5)2

]

, ϑ2(y1(t)) = exp

[

−
1

2
(y1(t)+ 3)2

]

,

ϑ3(y1(t)) = exp

[

−
1

2
(y1(t)+ 1)2

]

, ϑ4(y1(t)) = exp

[

−
1

2
(y1(t)− 1)2

]

,

ϑ5(y1(t)) = exp

[

−
1

2
(y1(t)− 3)2

]

, ϑ6(y1(t)) = exp

[

−
1

2
(y1(t)− 5)2

]

,

respectively. The radial basis functions are shown
in Figure 2. The initial condition is taken as
θ1(0) = [1, 1, 1, 1, 1, 1]T ∈ R

6, uniformly distributed
on [−5, 5].

Another RBFNN utilizes y1(t) and y2(t) as its inputs.
Choose the Gaussian radial basis functions to be the same
as that of the previous RBFNN for every input. The
initial condition is fixed as θ2(0) = [1, 1, · · · , 1]T ∈

R
36.

On the basis of the above settings, the drive system of
FOPMSM is simulated as follows:

Firstly, when α = 0.98 and ud(t) = 0, the chaotic
phenomenon of the FOPMSM drive system is tested,
demonstrating that system (58) is not stable, as illustrated
in Figure 3.

Secondarily, we apply the proposed adaptive
RBFNN backstepping method in the control
procedure of chaotic FOPMSM, which is depicted
in Figure 4.

Finally, as a summary, it is evident that the
proposed controller makes an effective effort to
restrain the chaos of FOPMSM drive system, and
it embodies desirable performance during the
signal tracking.

5. CONCLUSION

This work provides a framework to study stabilization control of
chaotic FOPMSMs on the basis of extended Lyapunov stability
criterion. Our results as well as numerical simulations indicate
that when the proposed adaptive NN backstepping-based control
scheme is employed to control chaotic FOPMSMs, it indeed
facilitates to overcome the inherent drawback “explosion of
complexity.” It is demonstrated that chaos and oscillation
may appear apparently in the system when the system is
uncontrolled. Through the control proceeding, the variables
become regular, the chaos oscillation is suppressed, and the
task of signal tracking is perfectly accomplished. The problem
about how to further construct an adaptive NN backstepping
control scheme for generalized FOPMSMs with more input
uncertainties and non-linearities is open, which is one task of our
future works.
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FIGURE 3 | Dynamic behavior of FOPMSM.

FIGURE 4 | The simulation diagrams, (A) The signals y(t) and yd (t), (B) The tracking error, (C) The control input, (D) The parameter norms of RBFNN.
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In this paper, neural network (NN) control of the fractional-order Duffing system (FODS)

by using a backstepping method within finite time in the presence of input saturation has

been investigated. A fractional-order filter with an order lying on the interval (1,2) was

used to estimate the virtual input together with its fractional derivative, and this showed

that the estimation error tends to a small region in some finite time. Fractional-order law

is designed for the parameter of the NN, and an adaptive NN controller was given. The

proposed method drives the tracking error, tending to an arbitrary small region within a

finite time. The simulation results verify the validity of the proposed method.

Keywords: finite time control, fractional-order system, fractional filter, adaptive neural network control, chaos

control

1. INTRODUCTION

It is a well-known fact that classical differential operators are local operators and cannot describe
some complex properties. For example, Brownian motion, viscoelastic materials, anomalous
diffusion, and irregular fluctuations in the turbulent velocity field have memory problems.
Fractional-order differential operators are non-local and can well-characterize memory, genetic,
and global correlation in the real world. The physical process is an important tool for describing
physical processes and complex mechanics [1, 2]. In fact, fractional derivatives exhibit several
advantages over integer derivatives: (1) fractional derivatives have a global correlation and can
reflect the historical dependence of function development in the system; (2) the fractional derivative
model is more consistent with the experimental results when simulating some complex properties,
and the effect is better; and (3) when simulating complex mechanics and physical process problems,
the expression of fractional-order model is more concise and the meaning is clearer [3, 4]. In view
of these three advantages of fractional derivative, scholars have gradually used fractional differential
equations to describe some practical problems. In recent decades, fractional calculus and fractional
differential equations have developed rapidly and have gradually matured, and they have also
been applied in other disciplines, such as quantum mechanics, economics and finance, turbulence,
viscoelasticity theory, and superconductivity. A large number of papers on fractional calculus
and fractional differential equations and works and so on have appeared [5–10]. The research
contents include the theory and application of fractional calculus, the existence and uniqueness of
solutions to the Cauchy problem, stability, controllability, the existence and uniqueness of solutions
to boundary value problems, analytical solutions, and numerical algorithms. However, some
research methods in integer-order differential equations cannot be directly applied to the study
of fractional-order differential equations, and new theories and methods need to be sought. There
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are many research fields for integer-order differential equations,
and research fields for fractional-order differential equations
are limited, and the solution mapping of fractional-order
differential equations does not have a semigroup property.
Therefore, there are many difficulties in the study of fractional
differential equations.

On the other hand, it is well-known that chaos control is a
research hot topic and has some successful applications. With the
in-depth study of chaotic systems, people began to try to migrate
the synchronization method of integer-order chaotic systems to
the synchronization of fractional-order chaotic systems (FOCSs).
This natural idea is not easy to implement. For this reason,
some people try to use the Laplace transform method and time-
frequency domain transformation method. By solving the sα by
using the Laplace transform method, finite time control was
investigated in Tavazoei and Haeri [5]. Up to now, many control
methods have been used to control or synchronize FOCSs, for
example, adaptive robust control, adaptive fuzzy control (AFC),
adaptive neural network control (ANNC), sliding mode control
(SMC), command filtered control (CFC), etc. [11–18]. In Pham
et al. [19], a three-dimensional FOCS that had no equilibriumwas
introduced and investigated, and it was shown that the system
shows chaotic phenomenon when the order <2.7. In Zhang et al.
[20], the lag projective synchronization of FOCSs with time-
varying delays was considered by using a comparison principle
of linear fractional equation. In Liu et al. [16], the NN was used
to control FOCSs in the presence of input faults. It should be
mentioned that above works do not consider the finite time
stability is. Up to now, the finite time control of the FOCS has
rarely been investigated [21–23].

Inspired with above discussion, we will address the finite time
NN control of the fractional-order Deffuing system (FODS) with
input saturation. Take some related works, such as Liu et al.
[16] and Ha et al. [24, 25], the our work has included several
features: (1) a fractional-order filter whose order lies on (1,2),
designed to evaluate the immediate controller and its fractional
derivative within some finite time. However, a fractional filter
was also used in Liu et al. [16] and Ha et al. [25] whose order
lies on (0, 1), and, in addition, the finite-time stability cannot
be guaranteed; (2) to cancel the estimation error of the filter,
a fractional-order compensated signal was proposed. Compared
with the compensated signals proposed in Ha et al. [24], our
method can obtain a more rapid convergence; and (3) in the
FOCS’s mode, we have considered the case of input saturation.

2. PRELIMINARIES

2.1. Description of the NN
The NN with three layers is expressed as

yj(s,µj) =

h
∑

η=1

ωjηϕjη

(

n
∑

i=1

vηisi + γη

)

= µT
j χj(·), (1)

where n, h, andm ∈ N+ denote the amount of neurons three

layers (input, middle, and output), µj =







ωj1

...
ωjh






, and χj =







ϕj1

(
∑n

i=1 v1isi + γ1
)

...

ϕjh

(
∑n

i=1 vhisi + γh
)






. vji denotes a weight whose value is on

the interval [−1, 1]. Usually, ϕ(·) can be defined by

ϕ(h̄) =
eh̄ − e−h̄

eh̄ + e−h̄
. (2)

Then, the NN is given as

y = θTχ(h̄) (3)

with θ =











µT
1

µT
2
...

µT
m











, and χ(h̄) =











χ1(h̄) 0 · · · 0
0 χ2(h̄) · · · 0
...

...
. . .

...
0 0 · · · χm(h̄)











.

Suppose that f (h̄), h̄ ∈ Rn is unknown, then it can be
approximated by the NN as

f (x) = θ∗Tχ(h̄)+ ε(h̄), (4)

with ε(h̄) denoting the optimal approximation error, where

θ∗ = argmin
θ

[

sup |f̂ (h̄)− f (h̄)|
]

, (5)

with f̂ (h̄) = θT(t)χ(h̄).

2.2. Basic Lemmas
The q-th fractional integral for a function g(t) is defined as

I
qg(t) =

1

Ŵ(q)

∫ t

0

g(τ )

(t − τ )1−q
dτ , (6)

with Ŵ(·) representing Euler’s function, and the q-th fractional-
order derivative for a function g(t), which has a k-th continuous
derivative, is

D
qg(t) =

1

Ŵ(k− q)

∫ t

0

g(k)(τ )

(t − τ )q+1−k
dτ , (7)

where k− 1 ≤ q < k (k ∈ N). The following always assumes that
0 < q ≤ 1 for convenience. The fractional-order calculus has the
following properties.

Lemma 1. [16] For a smooth function x(t), it holds that

1

2
D

αx2(t) ≤ x(t)Dαx(t). (8)

Lemma 2. [22] Let V(ζ ) be a smooth function satisfying
D

q
t V(ζ ) + α1V

α2 (ζ ) ≤ 0, ζ ∈ �1 ⊂ Rn, α1 ∈ R+, and
0 < α2 < 1. Then, one can find �2 ⊂ Rn, which holds that
V(ζ ) begins within �2 will reach a sufficient small region in some
finite time T∗.

Lemma 3. [23] Assume g1, g2 > 0, 0 < g3 < 1, and

D
q
t V(ζ )+ g1V(ζ )+ g2V

g3 (ζ ) ≤ 0

where ζ ∈ Rn. Then, the system is finite time stable.
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Lemma 4. [23] Consider











D
q
t π1(t) = ̥(t),

̥(t) = −g4sign(π1(t)− ζ (t))+ π2(t)

D
q
t π2(t) = −g5sign(π2(t)−̥(t)),

where ζ (t) ⊂ R, g4, g5 ∈ R+. Let

ê1 = π1 − ζ , ê2(t) = ̥−D
q
t ζ .

Then, ê1 and ê2 are finite time stable.

3. MAIN RESULTS

The integer-order Duffing system is written as

ÿ(t)− y(t)+ aẏ(t)+ y3(t) = b cos(ωt) (9)

where a, b are parameters. Denote x1(t) = y(t), x2(t) = ẏ(t),
x(t) = [x1(t), x2(t)]

T and f (x(t)) = x1(t) − ax2(t) − x31(t) +
b cos(ωt). By putting the fractional calculus into system (9) and
considering the input saturation, the controlled FODS is written
as

{

D
q
t x1(t) = x2(t),

D
q
t x2(t) = sat(u(t))+ d(t)+ f (x(t)).

(10)

in which sat : u(t) → sat(u(t)) is called a saturator. It can be
expressed as:

sat(u(t)) =











ur , u ≥ ur

u(t), ul < u(t) < ur

ul, u ≤ ul,

(11)

with ur > 0, ul < 0. Denoting the term that exceeds the
saturation limiter as γ (t):

γ (t) =











ur − u(t), u(t) ≥ ur ,

0, ul < u(t) < ur ,

ul − u(t), u(t) ≤ ul.

(12)

For the target, let x1(t) track a known smooth signal xd(t) ∈ R in
finite time. In this paper, we have used the backstepping method.
Define e1(t) = x1(t) − xd(t), and let us construct a virtual input
α(t), giving us

D
q
t e1(t) = x2(t)−D

q
t xd(t)

= α(t)+ α̂(t)− α(t)+ x2(t)− α̂(t)−D
q
t xd(t)

= α(t)+ α̂(t)− α(t)+ e2(t)−D
q
t xd(t)

(13)

with e2(t) = x2(t)− α̂(t), and α̂(t) being α(t)’s estimation. Noting
the estimation error is hard to be canceled, we have designed a
compensated signal to solve this problem. Let

D
q
t β1(t) = −k1β1(t)+ α̂(t)−α(t)+β2(t)− c1sign(β1(t)), (14)

where β2(t) is given later, k1, c1 > 0, and β(0) = 0. Using Lemma
4, we can estimate α(t) and D

q
t α(t) as











D
q
t π1(t) = ̥(t),

̥(t) = −b1sign(π1(t)− α(t))+ π2(t)

D
q
t π2(t) = −b2sign(π2(t)−̥(t)).

(15)

Thus, (15) and Lemma 4 imply that α̂(t) = π1(t) and D
q
t α̂(t) =

̥(t) within finite time. Let

{

ẽ1(t) = e1(t)− β1(t),

ẽ2(t) = e2(t)− β2(t),
(16)

where e2(t) = x2(t)− α̂(t). Then the victual signal is designed as

α(t) = −k1e1(t)+D
q
t xd(t)− a1ẽ

ν
1(t), (17)

with k1 ∈ R+, ν ∈ (0, 1). Define V1 = 1
2 ẽ

2
1(t), according to

Lemma 1, and its fractional-order derivative is

D
q
t V1 ≤ ẽ1(t)D

q
t ẽ1(t)

= ẽ1(t)
[

α(t)+ ˆα(t)− α(t)+ e2(t)

−D
q
t xd(t)+ k1β1(t)− α̂(t)+ α(t)− β2(t)

+ c1sign(β1(t))
]

= ẽ1(t)
[

− k1ẽ1(t)− a1ẽ
ν
1(t)+ e2(t)+ k1β1(t)− β2(t)

+ c1sign(β1(t))
]

= −k1ẽ
2
1(t)− a1ẽ1(t)ẽ

ν
1(t)+ ẽ1(t)e2(t)− ẽ1(t)ẽ2(t)

+ c1ẽ1(t)sign(β1(t))

= −k1ẽ
2
1(t)− a1ẽ1(t)ẽ

ν
1(t)+ ẽ1(t)ẽ2(t)

+ c1ẽ1(t)sign(β1(t)).
(18)

It follows from (10), (11), (12), and (16) that

D
q
t ẽ2(t) = sat(u(t))+ d(t)+ f (x(t))−D

q
t α̂(t)−D

q
t β2

= u(t)+ γ (t)+ d(t)+ f (x(t))−D
q
t α̂(t)−D

q
t β2

= u(t)+ 2(t)−D
q
t α̂(t)−D

q
t β2

(19)
with2(t) = γ (t)+d(t)+ f (x(t)),D

q
t α̂(t) being driven from (15).

The unknown function 2(x) in (19) can be approximated by the
NN as

2̂(t) = θT(t)χ(x(t)). (20)

Let the optimal parameter of NN be θ∗ =

argmin
θ(t)

[

sup
x(t)

∣

∣

∣
2̂(t)− 2(t)

∣

∣

∣

]

. Define θ̃(t) = θ(t) − θ∗, and

ǫ(t) = 2̂(t)−2(t). In fact, according to universal approximation
theorem of the NN, we know that, for any continuous non-linear
function defined on a compact set, there is a NN in order for the
optimal to be as small as possible [16, 26, 27]. Thus, it is possible
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for us to assume the optimal estimation error is bounded, i.e.,
|ǫ| ≤ ǭ, where ǭ ∈ R+ is a constant. We then have

2̂(t)− 2(t) = θ(t)Tχ(x(t))− θ(t)∗Tχ(x(t))+ θ∗Tχ(x(t))

− 2(t) = θ̃T(t)χ(x(t))− ǫi(t).
(21)

To meet the control objective, we can design the compensated
signal as

D
q
t β2(t) = −k2β2(t)− β1(t)− c2sign(β2(t)) (22)

with k2, c2 > 0. Then, let us construct the final input as

u(t) = −k2e2(t)+D
q
t α̂(t)− θ̂T(t)χ(x(t))−σ sign(ẽ2(t))−a2ẽ

ν
2(t)
(23)

where σ , a2 > 0, and σ ≥ ǭ can be satisfied. It follows from (22)
and (23) into (19) that

D
q
t ẽ2(t) = −k2e2(t)− θ̂T(t)χ(x(t))− σ sign(ẽ2(t))

− a2ẽ
ν
2(t)+ 2(t)−D

q
t β2(t)

= −k2e2(t)− θ̃T(t)χ(x(t))+ ǫ(t)− σ sign(ẽ2(t))

− a2ẽ
ν
2(t)+ k2β2(t)

− β̃1(t)+ c2sign(β2(t))

= −k2ẽ2(t)− θ̃T(t)χ(x(t))+ ǫ(t)− σ sign(ẽ2(t))

− a2ẽ
ν
2(t)− β̃1(t)+ c2sign(β2(t)).

(24)

Then, (24) implies

ẽ2(t)D
q
t ẽ2(t) = −k2ẽ

2
2(t)− ẽ2(t)θ̃

T(t)χ(x(t))+ ẽ2(t)ǫ(t)

− σ ẽ2(t)sign(ẽ2(t))− a2ẽ2(t)ẽ
ν
2(t)

− ẽ2(t)ẽ1(t)+ c2ẽ2(t)sign(β2(t))

≤ −k2ẽ
2
2(t)− ẽ2θ̃

T(t)χ(x)(t)+ |ẽ2(t)|ǭ

− σ |ẽ2(t)| − a2ẽ2(t)ẽ
ν
2(t)− ẽ2(t)ẽ1(t)

+ c2ẽ2(t)sign(β2(t))

≤ −k2ẽ
2
2(t)− e2(t)θ̃

T(t)χ(x(t))− a2ẽ2(t)ẽ
ν
2(t)

− ẽ2(t)ẽ1(t)+ c2ẽ2(t)sign(β2(t)).
(25)

Define

V2(t) = V1(t)+
1

2
ẽ22(t). (26)

According to (18), (25), and (26), we have

D
q
t V2(t) = −k1ẽ

2
1(t)− a1ẽ1(t)ẽ

ν
1(t)+ c1ẽ1(t)sign(β1(t))

− k2ẽ
2
2(t)− ẽ2θ̃

Tχ(x(t))

− a2ẽ2(t)ẽ
ν
2(t)+ c2ẽ2(t)sign(β2(t)) = −

2
∑

j=1

kjẽ
2
j (t)

−

2
∑

j=1

ajẽj(t)ẽ
ν
j (t)+

2
∑

j=1

cjẽj(t)sign(βj(t))

− ẽ2θ̃
T(t)χ(x(t))

=

2
∑

j=1

[

− kjẽ
2
j (t)− ajẽ

ν+1
j (t)+ cjẽj(t)sign(βj(t))

]

− ẽ2(t)θ̃
T(t)χ(x(t)).

(27)
The fractional-order adaptation law is

D
q
t θ(t) = κ1ẽ2(t)χ(x(t))− κ1κ2θ(t) (28)

with κ1, κ2 > 0.
The following theorem provides a conclusion for the discussion.

Theorem 1. Let the immediate controller be (17) with the
fractional filter (15). Let the compensated signal be (14) and (22).
Then, the NN controller (23) with adaptation law (28) drive e1(t)
to be arbitrary small in finite time.

Proof. Let

V(t) = V2(t)+
1

2κ1
θ̃T(t)θ̃(t). (29)

Then, based on (27), (28), and (29), we obtain

D
q
t V(t) ≤

∑2
j=1

[

− kjẽ
2
j (t)− ajẽ

ν+1
j (t)+ cjẽj(t)sign(βj(t))

]

−e2θ̃
T(t)χ(x(t))+ 1

κ1
θ̃T(t)D

q
t θ(t)

=
∑2

j=1

[

− kjẽ
2
j (t)− ajẽ

ν+1
j (t)+ cjẽj(t)sign(βj(t))

]

−κ2θ̃
T(t)θ(t)

≤
∑2

j=1

[

−
2kj−cj

2 ẽ2j (t)− ajẽ
ν+1
j (t)

]

− κ2θ̃
T(t)θ(t)

+
∑2

j=1
cj
2

=
∑2

j=1

[

−
2kj−cj

2 ẽ2j (t)− ajẽ
ν+1
j (t)

]

− κ2θ̃
T(t)(θ̃(t)

+θ∗(t))+
∑2

j=1
cj
2

≤
∑2

j=1

[

−
2kj−cj

2 ẽ2j (t)− ajẽ
ν+1
j (t)

]

− 3κ2
4 θ̃T(t)θ̃(t)

+
∑2

j=1
cj
2 + κ2θ

∗Tθ∗(t). (30)
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FIGURE 1 | Chaotic phenomenon of uncontrolled FODS (10).

Then, (30) implies

D
q
t V(t) ≤

2
∑

j=1

[

−
2kj − cj

2
ẽ2j (t)− ajẽ

ν+1
j (t)

]

−
(κ2

2
θ̃T(t)θ̃(t)

)
1
2 (ν+1)

−
3κ2

4
θ̃T(t)θ̃(t)

+ κ2θ
∗Tθ∗i +

2
∑

j=1

cj

2
+
(κ2

2
θ̃T(t)θ̃(t)

)
1
2 (ν+1)

.

(31)

If
(

κ2i
2 θ̃Ti θ̃i

)
1
2 (ν+1)

≥ 1, it is easy to know that

(κ2i

2
θ̃T(t)θ̃(t)

)
1
2 (ν+1)

−
κ2

2
θ̃T(t)θ̃(t)+ κ2θ

∗Tθ∗

≤
κ2

2
θ̃T(t)θ̃(t)−

κ2

2
θ̃T(t)θ̃(t)+ κ2θ

∗Tθ∗

= κ2θ
∗Tθ∗.

(32)

On the contrary, if
(

κ2
2 θ̃T(t)θ̃(t)

)
1
2 (ν+1)

< 1, one has

(κ2

2
θ̃T θ̃

)
1
2 (ν+1)

−
κ2

2
θ̃T θ̃ + κ2θ

∗Tθ∗

< 1−
κ2

2
θ̃T(t)θ̃(t)+ κ2θ

∗Tθ∗ ≤ 1+ κ2θ
∗Tθ∗.

(33)
Thus, it follows from (32) and (33) that

(κ2

2
θ̃T(t)θ̃(t)

)
1
2 (ν+1)

−
κ2

2
θ̃T(t)θ̃(t)+ κ2θ

∗Tθ∗ ≤ 1+ κ2θ
∗Tθ∗.

(34)

Substituting (34) into (31) yields

D
q
t V(t) ≤

2
∑

j=1

[

−
2kj − cj

2
ẽ2j (t)− ajẽ

ν+1
j (t)

]

−
(κ2

2
θ̃T(t)θ̃(t)

)
1
2 (ν+1)

−
κ2

4
θ̃T(t)θ̃(t)

+
[

1+ κ2θ
∗Tθ∗

]

+

2
∑

j=1

cj

2

≤ −ς1V − ς2V
ν+1
2 + ς3

(35)

with ς1 = min
{

2k1−c1
2 , 2k2−c2

2 , κmin
2

}

, ς2 =

min

{

2
ν+1
2 a1, 2

ν+1
2 a2, κ

ν+1
2

min

}

, and ς3 = 1 + κ2θ
∗Tθ∗ +

2
∑

j=1

cj

2
,

and κmin = min{κ1, κ2}. As a result, (35) can be arranged as

D
q
t V(t) ≤ −

(

ς1 −
ς3

2V(t)

)

V(t)−

(

ς2 −
ς3

2V
ν+1
2 (t)

)

V
ν+1
2 (t).

(36)
According to (36) and Lemma 3, when k > 1

2 c, e1(t) will tend to
the region

|e1(t)| ≤ max











√

ς3

ς1
,

√

√

√

√

2

(

ς3

2ς2

)
ν+1
2











in some finite time. Since e1(t) = ẽ1(t) + β1(t), e2(t) = ẽ2(t) +
β2(t), if β1(t) and β2(t) are bounded, then all signals are bounded.
Let V3(t) =

1
2β

2
1 (t)+

1
2β

2
2 (t). Then, (14) and (22) imply

D
q
t V3 ≤ β1(t)D

q
t β1(t)+ β2(t)D

q
t β2(t)

= −k1β
2
1 (t)+ β1(t)( ˆα(t)− α(t))+ β1(t)β2(t)

− c1β1(t)sign(β1(t))− k2β
2
2 (t)

− β2(t)β1(t)− c2β2(t)sign(β2(t))

≤ −

2
∑

j=1

kjβ
2
j (t)−

2
∑

j=1

cjβjsign(βj(t))+ β1(t)(α̂(t)

− α(t)) ≤ −

2
∑

j=1

kjβ
2
j (t)−

2
∑

j=1

cj|βj(t)| +

2
∑

j=1

ρjβjα̃(t),

(37)
where α̃(t) = α̂(t)− α(t). Then, it follows from (15) and Lemma
4 that α̃(t) is bounded in finite time. As a result, we have

D
q
t V3(t) ≤ −

2
∑

j=1

kjβ
2
j (t)−

2
∑

j=1

cj|βj(t)| +

2
∑

j=1

ρjδ|βj(t)|

≤ kV3(t)− c
√

V3(t)+ ρ̄δ̄
√

V3(t)

= kV3(t)− (c− ρ̄δ̄)
√

V3(t),

(38)

where k = 2min{k1, k2}, c = min{c1, c2}, ρ̄ = max{ρ1, ρ2} and
δ̄ = max{δ1, δ2}. Thus, (38) and Lemma 3 imply that β1(t) and
β2(t) are finite time bounded. This concludes our proof. �
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FIGURE 2 | Simulation1 results in (A) e1 (t) and e2(t); (B) ẽ1(t) and ẽ2(t); (C) u(t) and sat(u(t)); (D) xd (t) and x1(t).

FIGURE 3 | Virtual input and NN parameters in (A) virtual inputs α1(t) and α2 (t); (B) NN parameters.

Remark 1. In this paper, the finite-control of fractional-order
Duffing system was considered. It can be seen from the system
model (10) that the non-linear function f (x) is Lipschitz
continuous. In addition, under the proposed controller (23), for
any initial condition, the solution to the fractional-order Duffing
system exists and is unique. In addition, from Theorem 1, it is
obvious that all the signals in the closed loop system keep bounded.
Thus, the solution of the controlled system (10) is stable.

Remark 2. In should be emphasized that the proposed fractional-
order finite-time filter has very convergence ability compared with
some related works, such as Liu et al. [16] and Ha et al. [25], where
only the following class of lower filter (the order of the filter lying
on (0,1)) is used:

D
q
t z(t) =

1

k
(z(t)− α(t)), (39)
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FIGURE 4 | Comparison results.

where k > 0. The fractional-order filter (39) can also guarantee
that the approximation errors of the virtual input and its fractional
converge to a small region of zero; however, the finite-time
convergence cannot be guaranteed. In addition, to drive the
approximation smaller, larger design parameter k should be used,
which usually results in the signal z(t) being too big. However, the
proposed filter (15) has no such problems. To show the effectiveness
of the proposed high order filter, some comparisons have been given
in the following section.

4. SIMULATION RESULTS

In system (10), let parameters a = 0.15, b = 0.23, and the initial
conditions be x1(0) = −1.2, x2(0) = 1.2. When d(t) = u(t) =

0, under above parameters and initial conditions, system (10)
exhibits chaotic phenomenon, as shown in Figure 1.

In the simulation, let x1(0) = 2, x2(0) = 0, and let the
reference signal be

xd(t) =

{

1, t ≤ 8,

0, t < 8.
(40)

The design parameters are k1 = k2 = 0.9; a1 = a2 = 1, c1 =

c2 = 1, κ1 = κ2 = 1, ν = 0.70, b1 = b2 = 1. The NN uses
x1(t), x2(t) as input variables with θ(0) = 0 ∈ R81. The saturation
parameters are ul = −5, ur = 5.

Then, the simulation results can be seen in Figures 2–4. The
tracking errors e1(t) and e2(t) are given in Figure 2A, and we can
see that the tracking error converges quickly. The compensated

tracking errors are given in Figure 2B, where the proposed filter

has very good approximation ability. The control input is given in
Figure 2C. The tracking performance is in Figure 2D. The virtual
input and its approximation is given in Figure 3A, and the NN
parameters are shown in Figure 3B.

To show the rapid convergence speed of the proposed high-
order filter, some comparative simulation results will be given
here. Noting that in Liu et al. [16] and Ha et al. [25], the
lower filter (39) was used. The simulation results under our
filter (15) and (39) are given in Figure 4; in order to make a
fair comparison, the design parameters in (39) are taken as 0.9
just the same as the value we took above. Obviously, compared
with the lower filter (39), our method can guarantee a quicker
convergence speed.

5. CONCLUSIONS

This paper addressed the finite time control of an unknown
disturbed FODS in the presence of input saturation. By using
the backstepping technique, a high order fractional filter with
the order lying on (1,2) is proposed, and thus, the virtual input
and its fractional derivative can be approximated. It is proven
that the filter’s approximation error can be enough small and
can converge to the small region in some finite time. Then, an
adaptive NN controller is given. The stability is proven strictly.
In addition, the robustness of the proposed method is shown in
simulation results. Our future research directions including how
to design sliding mode surface for FODS and how to construct a
high-order filter.
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This paper discusses the synchronization problem for a class of unknown fractional-order

chaotic systems (FOCSs) with indeterminate external disturbances and non-symmetrical

control gain. A paralleled adaptive fuzzy synchronization controller is constructed

in which indeterminate non-linear functions are approximated by the fuzzy logic

systems depending on fractional-order Lyapunov stability criteria and the fractional-order

parameter adaptive law is designed to regulate corresponding parameters of the fuzzy

systems. The proposed method guarantees the boundedness of all of the signals in

the closed-loop system, and at the same time, it ensures the convergence of the

synchronization error between the master and slave FOCSs. Finally, the feasibility is

demonstrated by simulation studies.

Keywords: adaptive fuzzy control, fractional-order chaotic system, fractional-order adaptation, chaos

synchronization, fuzzy logic system

1. INTRODUCTION

The fractional calculus appeared in the same era as the classical integer-order calculus, but due
to the facts that the fractional-order calculus lacks actual background and its theory is complex,
the fractional calculus has rarely been investigated by scholars. Recently, it has been shown
that fractional calculus not only provides new mathematical methods for practical systems but
also is especially well-suited for describing some dynamical behaviors of physical systems [1–5].
Consequently, the fractional-order calculus has been employed to describe phonology and thermal
systems, signal processing and system identification [6, 7], control and robotics [8–11], and many
other real-world systems. Since the fractional-order calculus has memory ability, in the description
of complex dynamic systems, a model built depending on fractional-order calculus is more accurate
than an integer-order one. The study for the fractional-order chaotic system (FOCS) has thus slowly
become a hot research topic.

It is well-known that chaotic systems (integer-order or fractional-order) are sensitive to initial
state values, i.e., the stability of systems will change obviously with small changes in initial values;
thus, the synchronization control of FOCSs is challenging work. Somemethods, such as PD control
[12], PID control [13–15], adaptive fuzzy backstepping control [16–20], sliding mode control
[21–25], and Lyapunov direct [26–28] and adaptive neural network control [29–32] have been
used to control or synchronize fractional chaotic systems. Chen et al. [21] investigated the adaptive
synchronization of FOCSs, where different structures of the master and slave FOCSs and the
existence of external disturbances are ignored. In Wang et al. [33], the synchronization of FOCSs
accompanied by external disturbances was studied. To handle the unmatched disturbances, in
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He et al. [30], a robust synchronization method with non-linear
input was proposed, but its control cost was very high. It should
be mentioned that, in the above literature, the stability analysis of
the synchronization of FOCSs still uses the ideal of linear systems.
Generally speaking, the synchronization of FOCS systems with
some unknown factors and external disturbances needs to be
further researched.

Motivated by the above discussion, this paper aims to design
a synchronization controller for a master and slave fractional-
order chaotic system (FOCS) subject to different structures
and external disturbances. The control gain matrix is assumed
to be unknown. Fuzzy logic systems are used to approximate
the unknown non-linear functions. Fractional-order parameter
adaptive laws are designed to update the fuzzy parameters. The
main contributions of this work are summarized as follows.
(1) The non-symmetrical control gain matrix and external
disturbances in FOCSs are considered. Besides, unlike some prior
works, such as Liu et al. [16] and Pan et al. [31], the sequence-
leading minor in the control gain matrix is not assumed to be
zero. (2) Based on the Lyapunov stability theorem, fractional-
order fuzzy parameter adaptive laws are designed.

2. PRELIMINARIES

The ν-th fractional-order integral is defined as:

C
0D

−ν
k

f (k) =
1

Ŵ(ν)

∫ k

0
(k− τ )ν−1f (τ )dτ , (1)

where Ŵ(·) function can be defined as

Ŵ(z) =

∫ ∞

0
kz−1e−kdk. (2)

The ν-th Caputo’s derivative can be defined as:

C
0D

ν
k f (k) =

1

Ŵ(n− ν)

∫ k

0
(k− τ )n−ν−1f (n)(τ )dτ , (3)

clearly, where n is an integer satisfying n− 1 ≤ ν < n.
The Laplace transform of Caputo’s fractional-order derivative

(3) can be expressed by Li et al. [2]

L(C0D
ν
k f (k)) =

∫ ∞

0
e−skC

0D
ν
k f (k)dk

= sνF(s)−

n−1
∑

t=0

sν−t−1f (t)(0). (4)

When 0 < ν < 1, L(C0D
ν
k
f (k)) = sνF(s)− sν−1f (0).

For simplicity, we suppose that ν ∈ (0, 1) in the rest of this
paper. The following conclusions will be given in advance.

Definition 1. Pudlubny [3] The Mittag-Leffler function can be
given by

Eν,ξ (z) =

∞
∑

t=0

zt

Ŵ(νt + ξ )
, (5)

where ν, ξ > 0, and z ∈ C, the Laplace transform of which is

L{kξ−1Eν,ξ (−bkν)} =
sν−ξ

sν + b
. (6)

Lemma 1. Pudlubny [3] If m(k) ∈ C1[0,T](T > 0) (the
symbol C1 means that a function has a continuous derivative),
the following equation satisfies:

C
0D

−ν
k

C
0D

ν
km(k) = m(k)−m(0), (7)

C
0D

ν
k
C
0D

−ν
k

m(k) = m(k). (8)

Lemma 2. (Lyapunov’s second fractional-order method [34])
Suppose that eee(k) = 0 is an equilibrium point of the
following FOCS:

C
0D

ν
keee(k) = hhh(k, eee(k)), (9)

where eee(k) ∈ Rn is a system variable, and hhh(eee(k)) ∈ Rn is a non-
linear function that has a Lipschitz local condition. If there exists
a Lyapunov function V(k, eee(k)) and positive parameters a1, a2, a3
such that

a1||eee(k)|| ≤ V(k, eee(k)) ≤ a2||eee(k)||, (10)

C
0D

ν
kV(k, eee(k)) ≤ −a3||eee(k)||, (11)

then system (9) is asymptotically stable.

Lemma 3. Aguila-Camacho et al. [35] Suppose that eee(k) ∈ Rn is
a continuous and derivable function, then

1

2
C
0D

ν
keee

T(k)eee(k) ≤ eeeT(k)C0D
ν
keee(k). (12)

Lemma 4. Costa et al. [36] and Liu et al. [37] Let matrix GGG ∈

Rn×n be the non-zero sequence-leading minor, then GGG can be
factorized asGGG = GGG1AAAgTTTg , whereGGG1 ∈ Rn×n is a positive matrix,
AAAg ∈ Rn×n is a diagonal matrix whose diagonal line is +1 or −1
(signal of each of its elements is determined by corresponding the
sequence-leading minor signal of GGG), and TTTg ∈ Rn×n is a upper
triangular matrix.

3. PROBLEM DESCRIPTION

3.1. System Dynamics
Suppose that the slave and respond FOCSs are separately
defined as

C
0D

ν
kxxx(k) = hhh(xxx(k)), (13)

C
0D

ν
kyyy(k) = ppp(yyy(k))+GGGuuu(k)+DDD(k), (14)

where xxx(k) = [x1(k), x2(k), · · · , xn(k)]
T ∈ Rn and yyy(k) =

[y1(k), y2(k), · · · , yn(k)]
T ∈ Rn are separately system measurable

state variables of the drive system and respond system,
hhh,ppp :Rn → Rn are uncertain non-linear continuous functions,
GGG ∈ Rn×n is an unknown constant matrix, DDD(k) ∈ Rn×n is
an indeterminate external disturbance, and uuu(k) ∈ Rn is the
control input.
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3.2. Introduction of a Fuzzy System
A fuzzy logic system includes the knowledge base, fuzzier, fuzzy
inference engine based on the fuzzy rules and defuzzier [38–41].
The form of the j-th fuzzy rule is

R
(j): If x1 is E

j
1, x2 is E

j
2, · · · , xn is E

j
n, then ĥ(xxx(k)) is Cj

(j = 1, 2, · · · ,N),

where xxx(k) = [x1(k), x2(k), · · · , xn(k)]
T ∈ R

n and ĥ(xxx(k)) ∈ R

are respectively the input and the output of fuzzy logic systems.
The output is

ĥ(xxx(k)) =

N
∑

j=1
θj(k)

[

n
∏

i=1
µ
E
j
i
(xi(k))

]

N
∑

j=1

[

n
∏

i=1
µ
E
j
i
(xi(k))

]
, (15)

where θj(k) is a value where the fuzzy membership function µCj

is maximum. Generally, we can consider that µCj (θj(k)) = 1, and

the fuzzy basic function is ϕj(xxx(k)) =

n
∏

i=1
µ
E
j
i
(xi(k))

N
∑

j=1

[

n
∏

i=1
µ
E
j
i
(xi(k))

]
. Let

ϕϕϕ(xxx(k)) = [ϕ1(xxx(k)),ϕ2(xxx(k)), · · · , ϕN(xxx(k))]
T , θθθ(k) = [θ1(k),

θ2(k), · · · , θN(k)]
T , then the output of fuzzy logic systems is

written as

ĥ(xxx(k)) = θθθT(k)ϕϕϕ(xxx(k)). (16)

Theorem 1. Suppose that p(xxx) is a continuous function defined
on compact set �. For any constants ε > 0, there exists a fuzzy

logic system approximating function ĥ(xxx) forming (16) such that

sup
�

|p(xxx)− θ̂θθ
T
ϕϕϕ(xxx)| ≤ ε, (17)

where θ̂θθ is an estimator of optimal vector θθθ∗.

3.3. Control Objective
The synchronization error can be defined as eee(k) = yyy(k) − xxx(k).
Our control objective is to design an adaptive controller such
that the synchronization error tends to zero asymptotically (i.e.,
lim
k→∞

||eee(k)|| = 0).

4. CONTROLLER DESIGN AND STABILITY
ANALYSIS

Assumption 1. The control gain matric GGG has a non-zero
sequence-leading minor whose signal is known.

Remark 1. Assumption 1 is not strict. In fact, the gain
matrix of some actual systems (such as a visual servo and
vehicle thermal management system [42]) is non-symmetrical.
According to Lemma 4, one can factorizeGGG asGGG = GGG1AAATTT, where
GGG1 is an unknown positive definite matrix, AAA is a known matrix
whose diagonal line is +1 or -1, AAAAAA = IIIn×n (IIIn×n is a n-order
unitary matrix), and TTT is an uncertain upper triangle matrix.

Assumption 2. The product of the external disturbance DDD(k) and
the positive definite matrix GGG−1

1 is a function that is bounded, i.e.,
there exists an uncertain constant Mi > 0 so that

|(GGG−1
1 DDD(k))i| ≤ Mi (∀k > 0). (18)

Remark 2. Assumption 2 is not restrictive, and it is used in some
similar literature, for example, in Liu et al. [9], Rahmani et al. [10],
and Ferdaus et al. [11]. In fact, most commonly used disturbances
satisfy Assumption 2.

The dynamic equation of synchronization error is expressed
as

C
0D

ν
keee(k) =

C
0D

ν
k

(

yyy(k)− xxx(k)
)

= C
0D

ν
kyyy(k)−

C
0D

ν
kxxx(k)

= ppp(yyy(k))− hhh(xxx(k))+GGGuuu(k)+DDD(k)

= ppp(yyy(k))− hhh(xxx(k))+GGG1AAATTTuuu(k)+DDD(k). (19)

LetQQQ = GGG−1
1 , then

QQQC
0D

ν
keee(k) = QQQppp(yyy(k))−QQQhhh(xxx(k))+ (AAATTT −AAA)uuu(k)

+AAAuuu(k)+QQQDDD(k). (20)

Denote γγγ (zzz(k)) = γγγ (xxx(k),yyy(k),uuu(k)) = QQQppp(yyy(k)) − QQQhhh(xxx(k)) +
(AAATTT − AAA)uuu(k) = [γ1(zzz(k)), γ2(zzz(k)), · · · , γn(zzz(k))]

T as an
indeterminate non-linear function; then, Equation (20) is
expressed as

QQQC
0D

µ

k
eee(k) = γγγ (zzz(k))+AAAuuu(k)+QQQDDD(k). (21)

The indeterminate function γγγ (zzz(k)) can be approximated by the
fuzzy logic system (16) as

γ̂i(θi(k),zzz(k)) = θi(k)
Tϕi(zzz(k)), i = 1, 2, · · · , n. (22)

Assume that the errors of the optimal parameter and the optimal
estimated errors be respectively

θ̃i(k) = θi(k)− θ∗i , (23)

εi(zzz(k)) = γi(zzz(k))− γ̂i(θ
∗
i ,zzz(k)). (24)

From Boulkroune et al. [42] and Tong et al. [43] and Theorem 1,
we assume that |εi(zzz(k))| ≤ ε∗i (ε

∗
i > 0 is an uncertain constant).

If we denote εεε(zzz(k)) = [ε1(zzz(k)), ε2(zzz(k)), · · · , εn(zzz(k))]
T and

εεε∗ = [ε∗1 , ε
∗
2 , · · · , ε

∗
n]

T , the estimated error of the indeterminate
non-linear function can be written as

γγγ (zzz(k))− γ̂γγ (θθθ(k),zzz(k)) = γγγ (zzz(k))− γ̂γγ (θθθ∗,zzz(k))+ γ̂γγ (θθθ∗,zzz(k))

− γ̂γγ (θθθ(k),zzz(k))

= εεε(zzz(k))+ γ̂γγ (θθθ∗,zzz(k))− γ̂γγ (θθθ(k),zzz(k))

= εεε(zzz(k))− (θθθ(k)− θθθ∗)Tϕϕϕ(zzz(k))

= εεε(zzz(k))− θ̃θθ(k)Tϕϕϕ(zzz(k)). (25)
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From the above discussion, the controlleruuu(k) can be designed as

uuu(k) = −AAA

[

LLLeee(k)+ θθθ(k)Tϕϕϕ(zzz(k))+HHHsign(eee(k))+ M̂̂M̂Msign(eee(k))

]

,

(26)

where LLL = diag[l1, l2, · · · , ln] ∈ Rn×n, l1, l2, · · · , ln > 0
are parameters that need to be designed, HHH =diag[ε̂∗1 (k),
ε̂∗2 (k), · · · , ε̂

∗
n(k)], ε̂

∗
i (k)(i = 1, 2, · · · , n) are estimated values of

uncertain constants ε∗i , and M̂MM =diag[M̂1(k), M̂2(k), · · · , M̂n(k)],

M̂i(k)(i = 1, 2, · · · , n) are estimated values of unknown constants
Mi. For the sake of achieving the synchronization objective,
this paper designs the following fractional-order parameter
adaptive laws:

C
0D

ν
kθi(k) = λiei(k)ϕi(zzz(k)), (27)

C
0D

ν
k ε̂

∗
i (k) = ξi|ei(k)|, (28)

C
0D

ν
kM̂i(k) = µi|ei(k)|, (29)

where λi, ξi,µi > 0, i = 1, 2, · · · , n are designed parameters.
To facilitate the coming stability analysis, let us display some

results in advance.

Lemma 5. Suppose that C0D
ν
k
e(k) ≤ 0, then we have e(k) ≤ e(0)

on [0,+∞). On the contrary, C0D
ν
k
e(k) ≥ 0 implies that e(k) ≥

e(0) on [0,+∞).

Proof. We only verify the first condition (the second
condition is the same). Because C

0D
ν
k
e(k) ≤ 0, there exists a

non-negative function h(k) = −[C0D
ν
k
e](k) satisfying

C
0D

ν
ke(k)+ h(k) = 0. (31)

Taking the Laplace transform on both sides of equation (31), we
get sνE(s)−sν−1e(0)+F(s) = 0, where E(s) and F(s) are separately
the Laplace transform of e(k) and h(k). It is simplified to

E(s) =
e(0)

s
−

F(s)

sν
. (32)

Taking the inverse Laplace transform on both sides of equation
(32), we obtain

e(k) = e(0)− [D−νh](k). (33)

By the fractional-order integral (1), we have [D−νh](k) ≥ 0.
Further, we have e(k) ≤ e(0) on [0,+∞).

Remark 3. Lemma 5 shows the difference between a fractional-
order derivative and an integer-order derivative, but it cannot
be described as: if C

0D
ν
k
e(k) ≤ 0, then e(k) is monotonically

decreasing on the interval [0,+∞); if C
0D

ν
k
e(k) ≥ 0, then e(k)

is monotonically increasing on the interval [0,+∞). To explain
this, a counterexample is given as follows.

Example 1. Consider that x(0) ≥ 0 is an initial value of the
differential equation: C0D

ν
k
x(k) = h(k, x) = µkµ−1, where 0 <

µ < 1, 0 < ν < 1, and k > 0. Obviously, h(k, x) ≥ 0,
and the solution of the differential equation is x(k) = x(0) +
µŴ(µ)kµ−1+ν

Ŵ(µ + ν)
. It is clear that lim

k→+∞
x(k) = x(0) when 0 < µ ≤

1−ν. Therefore, x(k) is not monotonically increasing, defined on
k ∈ [0,+∞).

Lemma 6. Suppose that eee(k) ∈ Rn be a continuous one-order
derivative, then

1

2
C
0D

ν
keee

T(k)QQQeee(k) ≤ eeeT(k)QQQC
0D

ν
keee(k), (34)

whereQQQ is an arbitrary n-order positive definite matrix.

Proof. SinceQQQ is a positive definite matrix, there exists an n-
order non-singular symmetric matrix BBB = BBBT so that QQQ = BBBTBBB.
From Lemmas 1, 2, and 3, we obtain

1

2
C
0D

ν
keee

T(k)QQQeee(k) =
1

2
C
0D

ν
keee

T(k)BBBTBBBeee(k)

=
1

2
C
0D

ν
k

(

BBBeee(k)
)T

BBBeee(k)

≤
(

BBBeee(k)
)T C

0D
ν
kBBBeee(k)

=
(

BBBeee(k)
)T

BBBC0D
ν
keee(k)

= eeeT(k)QQQC
0D

ν
keee(k). (35)

Lemma 7. Suppose that V(k) = 1
2xxx

T(k)xxx(k)+ 1
2yyy

T(k)yyy(k), where
xxx(k) and yyy(k) ∈ Rn are continuous one-order derivatives. If there
exists a constant q > 0 satisfying the following inequality

C
0D

ν
kV(k) ≤ −qxxxT(k)xxx(k), (36)

then ||xxx(k)|| and ||yyy(k)|| are both bounded, and xxx(k) tends to zero
asymptotically, where || · || represents the Euclidian norm.

Proof. According to inequality (36), the following
inequality holds:

C
0D

ν
kV(k) ≤ −qxxxT(k)xxx(k) ≤ 0. (37)

From Lemma 5, we know that V(k) ≤ V(0)(∀t ≥ 0) when
V(k) defines on [0,∞). So, ||xxx(k)|| ≤

√
2V(k) ≤

√
2V(0) and

||yyy(k)|| ≤
√
2V(k) ≤

√
2V(0). Thereby, ||xxx(k)|| and ||yyy(k)||

are bounded.
Taking the ν-th integral on both sides of inequality

C
0D

ν
k
V(k) ≤ −qxxxT(k)xxx(k), we have

V(k)− V(0) ≤ −qC0D
−ν
k

xxxT(k)xxx(k). (38)

From the structure of V(k), we have xxxT(k)xxx(k) ≤ 2V(k),
and furthermore,

xxxT(k)xxx(k) ≤ 2V(0)− 2qC0D
−ν
k

xxxT(k)xxx(k). (39)
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FIGURE 1 | Synchronization results of Case 1.

It follows from (39) that there exists a non-negative function
M(k) such that

xxxT(k)xxx(k)+M(k) = 2V(0)− 2qC0D
−ν
k

xxxT(k)xxx(k). (40)

Taking the Laplace transform on (40), we obtain:

XXXT(s)XXX(s) = 2V(0)
sν−1

sν + 2q
−

sν

sν + 2b
MMM(s), (41)

where XXX(s) and MMM(s) are respectively the Laplace transforms of
xxx(k) and M(k). Taking the inverse Laplace transform on both
sides of equation (41), the solution is

xxxT(k)xxx(k) = 2V(0)Eν,1(−2qkν)−M(k) ∗
[

k−1Eν,0(−2qkν)
]

,
(42)

where * is the convolution. Since k−1 and Eν,0(−2qkν) are both
non-negative functions, xxxT(k)xxx(k) ≤ 2V(0)Eν,1(−2qkν). From Li
et al. [2], we know that xxx(k) is M-L stable and xxx(k) tends to zero
asymptotically, i.e., lim

k→∞
||xxx(k)|| = 0.

Lemma 8. Suppose that V0(k) =
1
2zzz

T(k)QQQ1zzz(k)+
1
2ddd

T(k)QQQ2ddd(k),
where zzz(k),ddd(k) ∈ Rn and QQQ1,QQQ2 ∈ Rn×n are both positive
definite matrixes. If there exists a positive definite matrixQQQ3 and
a constant q0 > 0 satisfying

C
0D

ν
kV0(k) ≤ −q0zzz

T(k)QQQ3zzz(k), (43)

then ||zzz(k)|| and ||ddd(k)|| are bounded, and zzz(k) tends to zero
asymptotically (i.e., lim

k→∞
||zzz(k)|| = 0).

The main results of the paper are given as follows.

Theorem 2. Under Assumption 1 and Assumption 2, the
synchronization between the drive system (13) and the respond
system (14) can be achieved on the work of the adaptive fuzzy
controller (26) and fractional-order adaptive laws (27), (28),
and (29). In addition, all the signals of the closed-loop system
are bounded.

Proof. Since AAA = IIIn×n, substituting the controller (26) into the
error dynamic equation (21) gives

QQQC
0D

ν
keee(k) = −LLLeee(k)+ γγγ (zzz(k))− θθθT(k)ϕϕϕ(zzz(k))

−HHHsign(eee(k))− M̂MMsign(eee(k))+QQQDDD(k). (44)

It is simplified as

QQQC
0D

ν
keee(k) = −LLLeee(k)+ εεε(zzz(k))− θ̃θθ(k)Tϕϕϕ(zzz(k))

−HHHsign(eee(k))− M̂MMsign(eee(k))+QQQDDD(k). (45)

Let ε̃∗i (k) = ε̂∗i (k)− ε∗i and M̃i(k) = M̂i(k)−Mi, i = 1, 2, · · · , n.
Multiplying both sides of equation (45) by eeeT(k) yields

eeeT(k)QQQC
0D

ν
keee(k) = −eeeT(k)LLLeee(k)+ eeeT(k)εεε(zzz(k))+ eeeT(k)QQQDDD(k)
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FIGURE 2 | Synchronization results of Case 2.

− eeeT(k)θ̃θθ(k)Tϕϕϕ(zzz(k))− eeeT(k)HHHsign(eee(k))− eeeT(k)M̂̂M̂Msign(eee(k))

≤ −eeeT(k)LLLeee(k)+

n
∑

i=1

|ei(k)|ε
∗
i −

n
∑

i=1

ei(k)θ̃i(k)
Tϕi(zzz(k))−

n
∑

i=1

|ei(k)|ε̂
∗
i (k)−

n
∑

i=1

|ei(k)|M̂i(k)+

n
∑

i=1

|ei(k)|Mi

= −eeeT(k)LLLeee(k)−

n
∑

i=1

ei(k)θ̃i(k)
Tϕi(zzz(k))−

n
∑

i=1

|ei(k)|M̃i(k)

−

n
∑

i=1

|ei(k)|ε̃
∗
i (zzz(k)). (46)

Then, we have

V(k) =
1

2
eeeT(k)QQQeee(k)+

1

2

n
∑

i=1

1

λi
θ̃i(k)

T θ̃i(k)+

1

2

n
∑

i=1

1

ξi

(

ε̃∗i (k)
)T

ε̃∗i (k)+
1

2

n
∑

i=1

1

µi
(M̃i(k))

TM̃i(k). (47)

Because the ν-order Caputo derivative of a constant is zero,
we have C

0D
ν
k
θi(k) = C

0D
ν
k
θ̃i(k),

C
0D

ν
k
ε̂∗i (k) = C

0D
ν
k
ε̃∗i (k), and

C
0D

ν
k
M̂i(k) =

C
0D

ν
k
M̃i(k), i = 1, 2, · · · , n. By Lemma 3 and Lemma

6, taking the ν-order derivative of V(k) in equality (47) yields

C
0D

ν
kV(k) ≤ eT(k)QQQC

0D
ν
ke(k)+

n
∑

i=1

1

λi
θ̃i(k)

TC
0D

ν
k θ̃i(k)+

n
∑

i=1

1

ξi

(

ε̃∗i (k)
)T C

0D
ν
k ε̃

∗
i (k)+

n
∑

i=1

1

µi
(M̃i(k))

TC
0D

ν
kM̃i(k)

≤ −

n
∑

i=1

|ei(k)|ε̃
∗
i (k)−

n
∑

i=1

ei(k)θ̃i(k)
Tϕi(zzz(k))−

eeeT(k)LLLeee(k)−

n
∑

i=1

|ei(k)|M̃i(k)+

n
∑

i=1

1

λi
θ̃i(k)

TC
0D

ν
k θ̃i(k)

+

n
∑

i=1

1

ξi

(

ε̃∗i (k)
)T C

0D
ν
k ε̃

∗
i (k)+

n
∑

i=1

1

µi
(M̃i(k))

TC
0D

ν
kM̃i(k). (48)

Substituting (27), (28), and (29) into (48) gives

C
0D

ν
kV(k) ≤ −eeeT(k)LLLeee(k) ≤ −

l0

λmax
eeeT(k)QQQeee(k), (49)

where l0 = min{l1, l2, · · · , ln} and λmax is a maximal eigenvalue
in positive definite matrixQQQ. From Lemma 8 and inequality (49),
we know that the synchronization error satisfies lim

k→∞
||eee(k)|| =

0, and if C
0D

ν
k
θ̃i(k),

C
0D

ν
k
ε̃∗i (k), and

C
0D

ν
k
M̃i(k) are bounded, then

C
0D

ν
k
θi(k),

C
0D

ν
k
ε̂∗i (k), and

C
0D

ν
k
M̂i(k) are both bounded. Since
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FIGURE 3 | Control variables and fuzzy logic system parameters of Case 3.

FIGURE 4 | Control variables and fuzzy logic system parameters of Case 4.
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system (13) is a chaotic system, we know that xxx(k) is also
bounded. Thus, eee(k) is also bounded, which implies that yyy(k)
is bounded, too. Consequently, by using (26), we get that uuu(k)
is bounded. Thereby, all the signals in the closed-loop system
are bounded.

Remark 4. For respond system (14), when GGG = EEE, the
synchronization between the uncertain FOCSs was solved
in Liu et al. [44]. However, this solution cannot solve the
synchronization question for systems with uncertain non-
symmetrical control gain; when DDD(k) = 000, Ha et al. [45]
researched the synchronization of FOCSs with indeterminate
non-symmetrical control gain but also did not solve
the synchronization question of systems with unknown
disturbances. In contrast, by considering the above two
conditions, this paper addresses the synchronization question
for systems with uncertain non-symmetrical control gain and
unknown disturbances.

5. NUMERICAL SIMULATION

In the simulation, the effectiveness of the controller is tested
by researching the synchronization between the fractional-order
Newton-Leipnik system [46, 47] and the fractional-order Lü
system [48, 49].

The fractional-order Newton-Leipnik system is
given as follows.

hhh(xxx(k)) =





−0.4x1(k)+ x2(k)+ 10x2(k)x3(k)
−x1(k)− 0.4x2(k)+ 5x1(k)x3(k)

0.175x3(k)− 5x1(k)x2(k)



 . (50)

The fractional-order Lü system can be written as:

ppp(yyy(k)) =





−36y1(k)+ 36y2(k)
20y2(k)− y1(k)y3(k)
−3y3(k)+ y1(k)y2(k)



 . (51)

The gain matrixGGG (which is non-symmetric) and its factorization
(by Lemma 4) are as follows.

GGG =





1 a 0.3
0 −0.4 0.2
0 0 b



 = GGG1AAATTT

=





1 0 0
0 −0.2 0
0 0 −0.3









1 0 0
0 −1 0
0 0 1









1 −0.2 0.3
0 2 1
0 0 −3



 , (52)

where parameters a and b are separately a = −0.2 and b = 0.9.
The external disturbance is

DDD(t) =





0.15 sin(k)
0.05 cos(k)
0.1 cos(k)



 . (53)

It is easy to gather that the following inequality holds:

|GGG−1
1 DDD(k)| ≤





1
0.5
0.8



 . (54)

The initial values of the drive system and respond system can
be respectively xxx(0) = [−0.3, 1,−0.4]T and yyy(0) = [2,−2, 3]T .
When uuu(k) ≡ 000,DDD(k) = 000 and µ = 0.95, the above two systems
exhibit chaotic phenomena.

In the numerical simulation, the input variables of the
fuzzy system are xxx(k),yyy(k), and uuu(k). For inducing calculation
of the fuzzy logic system, we will replace xxx(k) and yyy(k) by
eee(k). For e1(k), e2(k), and e3(k), we can select five Gaussian
membership functions whose mathematical expectations are
respectively −4,−2, 0, 2, and 4 and whose parameters are
([1.2],[-4, -2, 0, 2, 4]), uniformly distributed in the interval
[−4, 4] for each input. Therefore, the number of the rules
that are produced by the fuzzy logic system approximating
function is 53 = 125. In order to better test the effectiveness
of the controller, we can chose adjustable parameters, which
are represented by θ1(0), θ2(0), and θ3(0), as random vectors in
125 dimensions.

The other parameters of the controller are defined as li =

5, λi = 500, ξi = 0.5, and µi = 0.5, and the estimated values of
the fuzzy logic system approximating error are ε̂∗1 (0) = ε̂∗3 (0) =
1.8 and ε̂∗2 (0) = 1.5. Estimators of the product between the
uncertain external disturbance and unknown constant matrix
are M̂1(0) = 1, M̂2(0) = 0.4, and M̂3(0) = 0.3. For the
sake of better showing the simulation results, the initial value
of the respond system is chosen as yyy(0) = [0.2,−2, 0.3]T ,
which is compared to yyy(0) = [2,−2, 3]T . The simulation results
are shown separately in Figures 1–4, detailed explanations of
which follow.

Case 1, in Figure 1, synchronization result: x(0) =

[−0.3, 1,−0.4]T and y(0) = [2,−2, 3]T . (Figure 1A) x1(k) (solid
line) and y1(k) (dotted line); (Figure 1B) x2(k) (solid line) and
y2(k) (dotted line); (Figure 1C) x3(k) (solid line) and y3(k)
(dotted line); (Figure 1D) synchronization error e1(k) (dotted
line), e2(k) (dashed line), and e3(k) (solid line).

Case 2, in Figure 2, synchronization result: x(0) =

[−0.3, 1,−0.4]T and y(0) = [0.2,−2, 0.3]T . (Figure 2A) x1(k)
(solid line) and y1(k) (dotted line); (Figure 2B) x2(k) (solid line)
and y2(k) (dotted line); (Figure 2C) x3(k) (solid line) and y3(k)
(dotted line); (Figure 2D) synchronization error e1(k) (dotted
line), e2(k) (dashed line), and e3(k) (solid line).

Case 3, in Figure 3, control variables and fuzzy logic
system parameters: x(0) = [−0.3, 1,−0.4]T and y(0) =

[2,−2, 3]T . (Figure 3A) u1(t); (Figure 3B) u2(k); (Figure 3C)
u3(k); (Figure 3D) ||θ1(k)|| (dotted line), ||θ2(k)|| (dashed line),
and ||θ3(k)|| (solid line).

Case 4, in Figure 4, control variables and fuzzy logic
system parameters: x(0) = [−0.3, 1,−0.4]T and y(0) =

[0.2,−2, 0.3]T . (Figure 4A) u1(k); (Figure 4B) u2(k); (Figure 4C)
u3(k); (Figure 4D) ||θ1(k)|| (dotted line), ||θ2(k)|| (dashed line),
and ||θ3(k)|| (solid line).

The simulation results clearly show that the convergence rate
of synchronization error is fast when li is reasonable. Figures 1,
4 give the error change trend that the error is large at first and
then gets smaller and smaller after a time, finally tending to
zero asymptotically. Furthermore, from case 1 and case 2, we
know that a minimal change in initial values can have obvious
effects on the error but cannot affect the eventual convergence of
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error. This implies that the fuzzy system proposed in this paper
has good approximation performance. Figures 3, 4 display the
changing situation of control variables and fuzzy logic system
parameters, and it conforms to our expectations. In addition,
from the above simulation results, we can see a chattering
phenomenon because a discontinuous sign function is used in
the synchronization controller.

6. CONCLUSION

In this paper, a robust adaptive fuzzy controller for indeterminate
FOCSs with uncertain external disturbances and non-
symmetrical control gain is proposed. The proposed
method has good ability on the condition that each
sequence-leading minor of the uncertain non-symmetrical
gain matrix is non-zero, and the upper bound of the
product of the positive definite matrix factorized by gain
matrix and external disturbance is known. The stability
of the closed-loop system is successfully discussed by
using a fractional-order Lyapunov method and quadratic
Lyapunov functions.
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An l1-graph is one in which the vertices can be labeled by binary vectors such that the

Hamming distance between two binary addresses is, to scale, the distance in the graph

between the corresponding vertices. This study was designed to determine whether the

gate-sum operation can inherit the l1-embeddability. The subgraph H of a graph G is

called a gate subgraph if, for every vertex v ∈ V (G), there exists a vertex x ∈ V (H) such

that for every vertex u of H, x lies on a shortest path from v to u. The graph G is defined

as the gate-sum of two graphs G1 and G2 with respect to H if H is a gate subgraph of

at least one of G1 and G2, such that G1 ∪ G2 = G, G1 ∩ G2 = H, and both G1 and G2

are isometric subgraphs of G. In this article, we have shown that the gate-sum graph of

two l1-graphs is also an l1-graph.

Keywords: hypercube, l1-embeddability, gate subgraph, gate-sum, convex cuts

1. INTRODUCTION

A computer network is a group of computer systems and other computing hardware devices
that are linked together through communication channels to facilitate communication and
resource-sharing among a wide range of users. Networks are usually visualized as a graph, with the
computers or devices being represented by vertices and the connections between vertices shown as
edges. Graham and Pollak [1] were concerned with message switching in interconnected loops of
computers, and they studied the problem of addressing graphs with a ternary alphabet {0, 1, δ} such
that any graphmay be addressed with an edge distance of unity for some address length n. Blake and
Gilchrist [2] restricted attention to the binary alphabet. They formulated a routing algorithm for
message switching in computer networks that simplifies the computation of the minimum-length
path between any two vertices. An l1-graph is one in which the vertices can be labeled by binary
vectors such that the Hamming distance between two binary addresses is, to scale, the distance in
the graph of corresponding vertices [3]. The graph operation can construct a new graph from a
given graph, and some properties can be inherited under these operations. Our motivation for this
study was to determine which operations can inherit the l1-embeddability. Thus, the purpose of
this work is to determine the l1-embeddability of the gate-sum graph of two l1-graphs.

Let G = (V ,E) be a connected simple graph. The distance between two vertices u and v of G,
denoted by dG(u, v), is the length of a shortest u–v path in G. Then [V(G), dG] is a graphic metric
space associated with G [3]. A subgraph H of G is an isometric subgraph if dH(u, v) = dG(u, v) for
any u, v ∈ H. A subgraph of G is convex if, for any two vertices, it includes all of the shortest paths
between them. Obviously, a convex subgraph of G is an isometric subgraph. Let S ⊂ V(G) be any
subset of vertices ofG. The induced subgraph G[S] is the graph that has the vertex set S and the edge
set consisting of all edges in E for which both ends are in S [4].

Bandelt and Chepoi [5] introduced the definition of a gate subgraph. A subgraphH of a graph G
is a gate subgraph if, for every vertex v ∈ V(G), there exists a unique vertex x ∈ V(H) such that x lies

34
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FIGURE 1 | Examples of a convex subgraph (A) and a gate subgraph (B).

on the shortest path between v and any vertex u ∈ V(H); x
is called the gate of v. Hammack et al. [6] showed that a gate
subgraph is convex, but that a convex subgraph may not be a
gate subgraph. For example, each subgraph induced by the black
vertices in Figures 1A,B is a convex subgraph in each graph. The
subgraph shown in Figure 1A is a gate subgraph, whereas that in
Figure 1B is not.

If u and v are two vertices of a path, the subsequence of this
path starting with u and ending with v is the segment of this path
from u to v. The shortest path Pxy is the path connecting x to y
that has the fewest edges. Clearly, the segment of a shortest path
is still a shortest path [7].

The l1-space is the metric space of sequences whose series is
absolutely convergent, denoted by (X, d1). Thus, X is the set of
all real sequences x = (x1, x2, . . .) such that

∑∞
k=1 |xk| < ∞,

and the distance function is defined as d1(x, y) =
∑∞

k=1 |xk − yk|
for any x, y ∈ X. A graph G is an l1-graph if (V(G), dG) is
isometrically embeddable into some l1-space. That is, there is
a distance-preserving mapping ϕ from V(G) into X such that
dG(x, y) = d1(ϕ(x),ϕ(y)).

The n-dimensional hypercube Qn is the graph whose vertices
are ordered n-tuples of 0s and 1s, two vertices being joined if and
only if they differ in exactly one coordinate.

Assouad and Deza [8] showed that a graph G is an l1-graph if
and only if G is scale-λ-embeddable into a hypercubeQn for some
positive integers λ and n, meaning that there exists a mapping
φ :V(G) → V(Qn) such that

λ · dG(x, y) = dQn (φ(x),φ(y))
for any x, y ∈ V(G). The integer λ is the scale of G. The smallest
such integer λ is called the minimum scale of G. According to
Shpectorov [9], the minimum scale λ of G is equal to 1 or is even.
In particular, if λ = 1, G is an isometric subgraph of Qn, also
called a partial cube.

Shpectorov [9] and Deza and Grishukhin [10] showed that a
graph G is an l1-graph if and only if it is an isometric subgraph
of the Cartesian product of cocktail party graphs and half-cubes.
The cocktail party graph Kn×2 is a complete multipartite graph
with n parts, each of cardinality 2, which is equivalent to a
complete graph K2n deleting a perfect matching, as shown in
Figure 2. The hypercubeQn is a bipartite graph, and the half-cube
1
2Qn is the graph defined on one of two parts of this hypercube,
with two vertices being joined if the distance between them inQn

is 2.

FIGURE 2 | The complete graph K4 and the cocktail graph K4×2.

An l1-rigid graph is an l1-graph that essentially admits a
unique l1-embedding. Shpectorov [9] showed that every l1-rigid
graph G is an isometric subgraph of a half-cube. He also proved
that every l1-rigid graph has scale 1 or 2. Deza and Laurent [11]
proved that the complete graphKn (n ≥ 4) and the cocktail graph
Kn×2 (n ≥ 4) are not l1-rigid, where the variety of l1-embeddings
of Kn×2 all come from that of the complete graph Kn. The half-
cube graph 1

2Qn (n = 3, 4) is l1-rigid. Hence, they claim that, if
G is not l1-rigid, the variety of its l1-embeddings arises from that
of the complete graph. Deza and Tuma [12] and Chepoi et al.
[13] studied the forbidden subgraphs of an l1-rigid graph. They
determined that an l1-graph is l1-rigid if and only if it is K4-free.

Deza and Laurent [11] proved that the graph obtained by
identifying single vertices from two l1-graphs is also an l1-graph.
Wang and Zhang [14] proved that the graph obtained by gluing
two l1-graphs along an edge is also an l1-graph if at least one of
the original graphs is bipartite. However, for two non-bipartite
graphs, this is not always the case. They also determined that
even for two bipartite l1-graphs, gluing a convex subgraph cannot
guarantee the l1-embeddability of the obtained graph. Naturally,
we wondered if this result could be generalized.

Suppose that Hi is a subgraph of Gi, i = 1, 2. If H1

is isomorphic to H2, their vertices can be identified under
some isomorphism as a new graph H such that the incidence
relationship between vertices and edges remains. The resulting
graph is called the H-sum of G1 and G2, denoted by G1 ∪H G2.
In particular, if H is a single vertex v or an edge e = uv, the H-
sum is called the 1-sum or the 2-sum, denoted by G1 ∪v G2 and
G1 ∪uv G2, respectively. Additionally, if G1 and G2 are isometric
in G1 ∪H G2, and H is a gate subgraph of at least one of G1 and
G2, then G1 ∪H G2 is called a gate-sum of G1 and G2, denoted by
G1 ∪

g
H G2. Both G1 and G2 are isometric subgraphs of G1 ∪H G2

if and only if dG1 (x, y) = dG2 (x, y) for any x, y ∈ H.
For example, see the graph in Figure 3, where the marked

K4 is an isomorphic subgraph of G1 and G2. The K4-sum graph
G1 ∪K4 G2, shown in Figure 3C, is obtained by identifying these
two marked K4 as the same subgraph. In particular, in Figure 3B,
the marked K4 is a gate subgraph of G2. Obviously, both G1 and
G2 are isometric subgraphs ofG1∪K4G2. Therefore, it can be seen
as a gate-sum graph G1 ∪

g
K4

G2 of G1 and G2 with respect to K4.
In this paper, we have shown that the gate-sum graph of two l1-

graphsG1 andG2 is also an l1-graph. The remainder of this article
is organized as follows. In section 2, we have introduced the
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FIGURE 3 | The gate-sum graph G1 ∪
g
K4
G2 of G1 and G2 with respect to K4.

concept of convex cuts of graphs, which are used to characterize
the l1-graphs. We have proven that the collection of convex cuts
of the gate-sum graph G1 ∪

g
H G2 can be expanded by those of G1

and G2. We have then proven the main theorem. For the sake
of brevity, we obtained the main result by omitting the proofs of
certain lemmas. In section 3, we have presented detailed proofs of
those lemmas that were not proved in section 2. Finally, we have
presented our conclusions to this study in section 4.

2. CONVEX CUTS AND MAIN RESULTS

Deza and Tuma [12] introduced the concept of convex cuts,
which can be used to characterize l1-graphs. A cut {A,B} of G
is a partition of V(G) into two nonempty parts. If both A and B
are convex sets, then the cut {A,B} is a convex cut. A cut {A,B} of
G cuts an edge uv if u ∈ A and v ∈ B. An edge cut of G is a subset
of E(G) of the form [S, S], where S is a nonempty proper subset
of V(G), S = V\S, and [S, S] is the set of edges with one end in S
and the other in S. Similarly, we say that a cut {A,B} of G cuts a
subgraph H if [A ∩ V(H),B ∩ V(H)] is an edge cut of H.

Deza and Tuma [12] and Deza et al. [15] proved the
following theorem.

Theorem 2.1. ([12, 15]) A graph G is scale-λ-embeddable into
a hypercube if and only if there exists a collection C(G) of (not
necessarily distinct) convex cuts of G such that every edge of G is
cut by exactly λ cuts from C(G).

For example, in the graph K4 in Figure 4, the cuts
{{a}, {b, c, d}}, {{b}, {a, c, d}}, {{c}, {a, b, d}}, {{d}, {a, b, c}} are
convex cuts. Every edge of K4 is cut by exactly 2 cuts of
{{a}, {b, c, d}}, {{b}, {a, c, d}}, {{c}, {a, b, d}}, and {{d}, {a, b, c}}. By
Theorem 2.1, the graph K4 is scale-2-embeddable into the
hypercube Q4.

Furthermore, Wang and Zhang [14] showed that the scale of
an l1-graph can be proportionally amplified.

Lemma 2.2. ([14]) If a graph G is scale-λ-embeddable into
a hypercube, then, for any positive integer r, G is scale-rλ-
embeddable into a hypercube.

Let G1 and G2 be two l1-graphs and G1 ∪
g
H G2 be a gate-

sum graph of G1 and G2. Without loss of generality, suppose
that G1 is scale-λ-embeddable into some hypercube and G2 is

FIGURE 4 | Convex cuts and binary address of K4.

scale-η-embeddable into some hypercube. By Theorem 2.1, there
are two collections C(G1) and C(G2) such that every edge of G1

and G2 is cut by exactly λ and η cuts, respectively. According
to Theorem 2.1 and Lemma 2.2, to prove G1 ∪

g
H G2 is an l1-

graph, it is sufficient to construct a collection C(G1 ∪
g
H G2) of

convex cuts of G1 ∪
g
H G2 such that every edge of G1 ∪

g
H G2 is

cut by exactly the same number of cuts. Now, we construct a
collection of convex cuts of G1 ∪

g
H G2 from the convex cuts of

C(G1) and C(G2).
We now define the expansion of convex cuts. Suppose that H

is a subgraph of G and {A,B} is a convex cut of H. If G has a
convex cut {A′,B′} such that A ⊆ A′ and B ⊆ B′, then we say that
the convex cut {A,B} of H expands the convex cut {A′,B′} of G.
We say that the collection C(H) expands a collection C(G) if every
convex cut of C(H) can expand a convex cut ofG. We also say that
the collection C(H) is the restriction of C(G) on the subgraph H.

To enhance the readability of this paper, we list the following
three lemmas without proofs. Their proofs have been given
in section 3.

Lemma 2.3. Suppose that G1 ∪
g
H G2 is a gate-sum graph of two

l1-graphs G1 and G2. Then, a convex cut of G1 (or G2) not cutting
H can expand a convex cut of G1 ∪

g
H G2.

Next, we will prove that two convex cuts of G1 and G2 can
expand a convex cut of G1 ∪

g
H G2 if they cut the same edges of

H. Suppose that the convex cut {A1,B1} of G1 is cutting H and
that the cut {A2,B2} is that of G2. Then, {A1,B1} and {A2,B2} cut
the same edges of H. If A1 ∩ A2 6= ∅, then A1 ∩ B2 = ∅. If not,
A1 ∩ A2 6= ∅ and A1 ∩ B2 6= ∅, which contradicts the assertion
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that {A1,B1} and {A2,B2} cut the same edges of H. Similarly, we
have B1 ∩ B2 6= ∅ and B1 ∩ A2 = ∅. Because Ai ∪ Bi = V(Gi)
(i = 1, 2) andV(G1)∩V(G2) = V(H), we know thatA1∩V(H) =
A1 ∩ (A1 ∪B1)∩ (A2 ∪B2) = A1 ∩A2 and A2 ∩V(H) = A1 ∩A2.
Similarly, B1 ∩ V(H) = B1 ∩ B2 = B2 ∩ V(H). Furthermore, we
have that V(H) = V(G1) ∩ V(G2) = (A1 ∪ B1) ∩ (A2 ∪ B2) =
[A1 ∩ (A2 ∪ B2)] ∪ [B1 ∩ (A2 ∪ B2)] = [A1 ∩ A2] ∪ [B1 ∩ B2].
We denote V(HA) = A1 ∩ A2 and V(HB) = B1 ∩ B2. Then,
V(HA) ∪ V(HB) = V(H), and we have the following lemma.

Lemma 2.4. Suppose that G1 ∪
g
H G2 is a gate-sum graph of two l1-

graphs G1 and G2. Assume that {A1,B1} is a convex cut of G1 and
{A2,B2} is that of G2. If H is l1-rigid, {A1,B1} and {A2,B2} cut the
same edges of H. Then, {A1,B1} and {A2,B2} can together expand
a convex cut {A1 ∪V(HA) A2,B1 ∪V(HB) B2} of G1 ∪

g
H G2.

IfH is not l1-rigid, then it has more than one kind of collection
of convex cuts. Any two collections C(G1) and C(G2) may not be
equal on H. Therefore, the convex cuts of C(G1) and C(G2) may
not cut the same edges of H.

To solve this problem, we have proven that any kind of
collection of convex cuts of H can expand two new collections
of convex cuts ofG1 andG2, respectively, such that they are equal
on H.

Lemma 2.5. Let H be an isometric subgraph of an l1-graph G. If
H is not l1-rigid, each collection C(H) of H can expand a collection
C(G) of G.

We will now prove the main theorem of this work.

Theorem 2.6. Suppose that G1 ∪
g
H G2 is a gate-sum graph of G1

and G2. If G1 and G2 are l1-embeddable, then G1 ∪
g
H G2 is also

l1-embeddable.

Proof: Without loss of generality, suppose that H is a gate
subgraph of G1. Because a gate subgraph is a convex subgraph,H
is a convex subgraph of G1. Then, H is an l1-graph. Suppose that
G1 is scale-λ-embeddable into some hypercube andG2 is scale-η-
embeddable into some hypercube. By Theorem 2.1, there are two
collections C(G1) and C(G2) such that every edge of G1 and G2 is
cut by exactly λ and η cuts, respectively.

If H is l1-rigid, H has only one kind of collection of convex
cuts. Then, C(G1) and C(G2) have the same restriction on H
(which means that λ = η).

If H is not l1-rigid, the restriction on H of C(G1) is not equal
to that of C(G2). Suppose that λ 6= η. By Lemma 2.2, G2 is scale-
λη-embeddable into some hypercube. Then, G2 has a collection
C
′(G2) such that every edge of G2 is cut by exactly λη cuts. By

Lemma 2.5, every C(H) can expand a collection C(G1). Obviously,
the restriction on H of C′(G2) is a kind of C(H). Thus, it can
expand a new collection C

′(G1) of G1 such that every edge of G1

is cut by exactly λη cuts.
Hence, there always are two collections C′(G1) and C

′(G2) for
which the restrictions of them on H are equal, and every edge of
G1 and G2 is cut by exactly λη cuts.

As C
′(G1) and C

′(G2) are equal on H, there are the
same number of convex cuts of C

′(G1) and C
′(G2) cutting

H. Denote the convex cuts of C
′(G1) that are cutting H as

{A1,B1}, ..., {Ah,Bh} and those of C′(G2) as {A
′
1,B

′
1}, ..., {A

′
h
,B′

h
}.

Because the restrictions on H of C′(G1) and C
′(G2) are equal,

each convex cut of {A1,B1}, ..., {Ah,Bh} must equal one of
{A′

1,B
′
1}, ..., {A

′
h
,B′

h
} on H. Without loss of generality, we assume

that each pair of {Ai,Bi} and {A′
i,B

′
i} cut the same edges of H

(1 ≤ i ≤ h). By Lemma 2.4, each pair of convex cuts {Ai,Bi}
and {A′

i,B
′
i} can together expand a convex cut {Ai ∪ A′

i,Bi ∪ B′i}

of G1 ∪
g
H G2 (1 ≤ i ≤ h). Then, every edge of H is cut by

{Ai ∪ A′
i,Bi ∪ B′i} to give exactly λη cuts (1 ≤ i ≤ h).

By Lemma 2.3, the convex cuts of C′(G1) and C
′(G2) that do

not cut H can expand the convex cuts of G1 ∪
g
H G2 that do not

cut H.
Now, the convex cuts {Ai ∪A′

i,Bi ∪B′i} for 1 ≤ i ≤ h, together
with the convex cuts of C′(G1) and C

′(G2) that do not cutH, form
a collection of convex cuts of G1 ∪

g
H G2, such that every edge of

G1 ∪
g
H G2 is cut by λη convex cuts. Therefore, by Theorem 2.1,

the graph G1 ∪
g
H G2 is scale-λη-embedded into some hypercube.

This completes the proof.

Note that, for any graph, a single vertex is a gate subgraph. A
cycle is a closed path that originates and terminates at the same
vertex. A graph is bipartite if and only if it contains no odd cycles
[4]. Therefore, for any edge e = uv of a bipartite graph, there is no
vertex a such that d(u, a) = d(v, a). The subgraph induced by an
edge is then a gate subgraph in a bipartite graph. Obviously, both
G1 and G2 are isometric subgraphs of the graphs G1 ∪v G2 and
G1∪uvG2. The following corollaries can be immediately obtained
from Theorem 2.6.

Corollary 2.7. ([11]). Let G1 and G2 be two l1-graphs. G1 ∪v G2

is an l1-graph.

Corollary 2.8. ([14]). Let G1 and G2 be two l1-graphs. If at least
one of them is bipartite, G1 ∪uv G2 is an l1-graph.

3. PROOFS OF LEMMAS 2.3–2.5

3.1. Proof of Lemma 2.3
First, we need the following lemma.

Lemma 3.1. Suppose that G1∪
g
HG2 is a gate-sum graph of G1 and

G2. If H is a gate subgraph of G1, then G2 is a convex subgraph of
G1 ∪

g
H G2.

Proof: If G2 is not a convex subgraph of G1 ∪
g
H G2, there are two

vertices x1 and x2 lying in G2 such that the shortest path Px1x2
passes through a vertex v3 of G1. As this shortest path must pass
through the vertices of the gate subgraph H of G1, there are two
vertices x′1 and x

′
2 ofH on the x1, v3-path and x2, v3-path of Px1x2 ,

respectively. Note that both G1 and G2 are isometric subgraphs
of G1 ∪

g
H G2. It is clear that the segment from x′1 to x′2 of Px1x2 is

a shortest path Px′1x
′
2
. Then, we have Px′1x

′
2
= Px′1v3 + Pv3x′2 .

As H is a gate subgraph of G1, there exists a unique gate a3 of
v3 inH such that Px′1v3 = Px′1a3 +Pa3v3 and Px′2v3 = Px′2a3 +Pa3v3 .
Then, we have that Px′1x

′
2
= Px′1v3+Pv3x′2 = Px′1a3+Pa3v3+Px′2a3+

Pa3v3 > Px′1a3+Pa3x′2 , which contradicts the assertion that Px
′
1x

′
2
is

a shortest path. Thus, G2 is a convex subgraph of G1 ∪
g
H G2.

Frontiers in Physics | www.frontiersin.org 4 June 2020 | Volume 8 | Article 14637

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Wang et al. l1-Embeddability Under Gate-Sum Operation

Proof of Lemma 2.3.Without loss of generality, suppose that
H is a gate subgraph of G1. We need only prove that a convex
cut of G1 or G2 that does not cut H can expand a convex cut of
G1 ∪

g
H G2.

Case 1. A convex cut of G1 that does not cut H can expand
that of G1 ∪

g
H G2.

Suppose {A,B} is a convex cut of G1 that does not cut H.
Without loss of generality, we assume that V(H) ⊆ B. We now
prove that {A,B ∪V(H) V(G2)} is a convex cut of G1 ∪

g
H G2 that

does not cut H and is expanded by {A,B}.
If A is not a convex set of G1 ∪

g
H G2, there are two vertices v1

and v2 belonging to A such that Pv1v2 of G1 ∪
g
H G2 passes through

a vertex v3 of G[B] ∪H G2. Therefore, Pv1v2 = Pv1v3 + Pv3v2 . If all
vertices of Pv1v2 lie entirely in G1, A cannot be a convex set of G1.
Without loss of generality, suppose that v3 lies in G2. Note that
H is a gate subgraph of G1. There are two gates x1 of v1 and x2
of v2 in H, and these two gates lie in Pv1v3 and Pv3v2 , respectively.
Then, we have that Pv1v2 = Pv1x1 + Px1v3 + Pv3x2 + Px2v2 . As G1

is an isometric subgraph of G1 ∪
g
H G2, there is some Px1x2 that

lies entirely in G1, and its length equals that of Px1x2 of G2. Then,
Pv1v2 = Pv1x1+Px1x2+Px2v2 , and Pv1v2 lies entirely inG1. As Pv1v2
passes through the vertices ofH, andH belongs to B, A cannot be
a convex set of G1. Therefore, A is a convex set of G1 ∪

g
H G2.

If B ∪V(H) V(G2) is not a convex set of G1 ∪
g
H G2, there are

two vertices v4 and v5 belonging to B ∪V(H) V(G2) such that
Pv4v5 passes through a vertex v6 in A and Pv4v5 = Pv4v6 + Pv6v5 .
Obviously, the path Pv4v6 does not intersect with Pv6v5 at any
internal vertices. The segment of a shortest path is still a shortest
path. This means that v6 has two internally disjoint paths Pv6v4
and Pv6v5 that connect with the vertices inH. Thus, v6 has at least
two gates, which contradicts the statement that the gate is unique.

Both A and B ∪V(H) V(G2) are convex sets of G1 ∪
g
H G2, and

they contain all vertices of G1 ∪
g
H G2. Thus, {A,B ∪V(H) V(G2)}

is a convex cut of G1 ∪
g
H G2. Furthermore, note that A = A and

B ⊆ B ∪V(H) V(G2), and so the convex cut {A,B ∪V(H) V(G2)} is
expanded by the convex cut {A,B} of G1.

Case 2. A convex cut of G2 that does not cut H can expand
that of G1 ∪

g
H G2.

Suppose that {C,D} is a convex cut of G2 that does not cut H.
Without loss of generality, we assume thatH ⊆ D. We now prove
that the cut {C,D ∪V(H) V(G1)} is a convex cut of G1 ∪

g
H G2 and

is expanded by {C,D}.
By Lemma 3.1, it is obvious that C is a convex set of G1 ∪

g
H G2

because C is a convex set of G2 and G2 a convex subgraph of
G1 ∪

g
H G2.

Suppose that the vertex set D ∪V(H) V(G1) is not a convex set

of G1 ∪
g
H G2. There will be two vertices v1, v2 of D ∪V(H) V(G1)

such that the shortest path Pv1v2 passes through a vertex v3 of C.
Let Pv1v3 and Pv3v2 denote the two segments of Pv1v2 divided by
v3. Because the vertices v1, v2 belong to D ∪V(H) V(G1), we can
find two vertices v′1, v

′
2 of D such that v′1 ∈ Pv1v3 and v′2 ∈ Pv3v2 .

Note that both G1 and G2 are isometric subgraphs of G1 ∪
g
H G2.

It is clear that the segment from v′1 to v′2 of the path Pv1v2 is a
shortest path, and it passes through the vertex v3 of C, which
contradicts the assertion that D is a convex set of G2. Therefore,
D ∪V(H) V(G1) is a convex set of G.

As C and D ∪V(H) V(G1) are convex sets of G1 ∪
g
H G2,

{C,D ∪V(H) V(G1)} is a convex cut of G and its two convex
sets contain C and D, respectively. It follows that the convex
cut {C,D} of G2 that does not cut H expands the convex cut
{C,D ∪V(H) V(G1)} of G1 ∪

g
H G2. This completes the proof.

�

3.2. Proof of Lemma 2.4
Proof: Let G1 and G2 be two l1-graphs and G1 ∪

g
H G2 be the

gate-sum graph of G1 and G2. By Theorem 2.1, there are two
collections C(G1) and C(G2) such that every edge of G1 and G2

is cut by exactly λ and η cuts, respectively, as H is l1-rigid, C(G1)
and C(G2) must be equal on H. For any convex cut {A1,B1} of
C(G1), we can find a convex cut {A2,B2} of C(G2) that cuts the
same edge of H.

Without loss of generality, suppose that H is a gate subgraph
of an l1-graph G1. Suppose that x1 of V(H) is the gate of v1 in G1.
If v1 and x1 belong to different convex sets, assume that v1 lies
in A1 and x1 belongs to B1 ∩ V(H). There will be a vertex u in
A1∩V(H) such that the shortest path Pv1u must pass through the
vertices of B1, which contradicts the assertion that A1 is a convex
set. Then, both v1 and x1 belong to the same convex set A1 or B1.

Without loss of generality, suppose that v1 and x1 belong to
A1. We now show that {A1 ∪V(HA) A2,B1 ∪V(HB) B2} is a convex

cut of G1 ∪
g
H G2. First, we prove that A1 ∪V(HA) A2 is a convex

set of G1 ∪
g
H G2. Consider two vertices v1 and v2 that belong to

A1 ∪V(HA) A2.
Case 1. Both v1 and v2 lie in A2.
As A2 is a convex subset of G2 and G2 is a convex subgraph of

G1∪
g
H G2, A2 is a convex subset ofG1∪

g
H G2. Obviously, Pv1v2 lies

entirely in A2.
Case 2. The vertex v1 lies in A1 and v2 lies in A2.
Because v1 lies in A1 and v2 lies in A2, the gate x1 of v1 belongs

to A1 ∩ V(H). As {A1,B1} and {A2,B2} cut the same edges of H,
we have that A1 ∩ V(H) = A2 ∩ V(H) and x1 also belongs to A2.
Therefore, the shortest path Pv1v2 must pass through the vertices
of H.

If Pv1v2 passes through the gate x1 of v1, we have that Pv1v2 =

Pv1x1 + Px1v2 . Note that both G1 and G2 are isometric subgraphs
of G1 ∪

g
H G2. As both v1 and x1 belong to A1 and A1 is a convex

set, the path Pv1x1 lies entirely in A1. Similarly, v2 and x1 belong
toA2, which is a convex set. Hence, Pv2x1 lies entirely inA2. Thus,
the shortest path Pv1v2 lies entirely in A1 ∪V(HA) A2.

If there is a shortest path Pv1v2 that does not pass through the
gate x1 of v1, Pv1v2 will pass through a vertex x3 of V(H), which is
not the gate of v1, and Pv1v2 = Pv1x3 + Px3v2 .

We now prove that x3 belongs to A1 ∩ V(H). If this is not the
case, then x3 lies in B1 ∩ V(H), and so Pv1x3 = Pv1x1 + Px1x3 and
Px1v2 < Px1x3+Px3v2 . Furthermore, Pv1x3+Px3v2 = Pv1x1+Px1x3+
Px3v2 > Pv1x1 + Px1v2 , which contradicts the assertion that Pv1v2
passes through x3, but does not pass through the gate x1.

As v1 and x3 belong to A1, and x3 and v2 belong to A2, we
have that Pv1x3 lies entirely in A1 and Px3v2 lies entirely in A2.
Therefore, Pv1v2 = Pv1x3 + Px3v2 lies entirely in A1 ∪V(HA) A2.

Hence, for any vertex v1 of A1 and any vertex v2 of A2, Pv1v2
lies entirely in A1 ∪V(HA) A2. This proves case 2.
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Case 3. Both v1 and v2 lie in A1.
If Pv1v2 does not pass through the vertices ofG2, then Pv1v2 lies

in G1. Note that A1 is a convex subgraph of G1, and Pv1v2 lies in
A1. If Pv1v2 passes through the vertices ofG2, it must pass through
a vertex v3 of A2. From case 2, we know that both Pv1v3 and Pv3v2
lie in A1 ∪V(HA) A2 and that Pv1v2 lies entirely in A1 ∪V(HA) A2.

Summarizing the above three cases, for any two vertices v1 and
v2 ofA1∪V(HA)A2, we have that the shortest path Pv1v2 lies entirely
in A1 ∪V(HA) A2. It follows that A1 ∪V(HA) A2 is a convex set of

G1 ∪
g
H G2.

A similar proof shows that the set B1∪V(HB)B2 is also a convex

set of G1 ∪
g
H G2. Then, {A1 ∪V(HA) A2,B1 ∪V(HB) B2} is a convex

cut ofG1∪
g
HG2, and its two convex sets contain vertex setsA1,A2

and B1,B2, respectively. Thus, {A1,B1} of G1 and {A2,B2} of G2

together expand the convex cut {A1 ∪V(HA) A2,B1 ∪V(HB) B2} of

G1 ∪
g
H G2.

3.3. Proof of Lemma 2.5
To study the expansion of the collection of convex cuts, we have
introduced a new characteristic of l1-graphs. Shpectorov [9] and
Deza and Grishukhin [10] characterized l1-graphs as follows:

Theorem 3.2. ([9, 10]) A graph G is an l1-graph if and only if it
is an isometric subgraph of the Cartesian product of cocktail party
graphs and half-cubes.

Suppose that H is an isometric subgraph of an l1-graph G; H
is also an l1-graph. By Theorem 3.2, H is an isometric subgraph
of the Cartesian product of some cocktail party graphs and half-
cubes, and G is that of larger cocktail party graphs and larger
half-cubes. To expand the collection of convex cuts of H to G,
we need only expand the collection of convex cuts of the cocktail
party graph and half-cube to a larger cocktail party graph and a
larger half-cube, respectively. As the half-cube is l1-rigid, it has
a unique collection of convex cuts. Note that 1

2Qm is a subgraph

of 1
2Qn. Thus, we have that any collection C( 12Qm) of

1
2Qm can

expand a collection C( 12Qn) of
1
2Qn (m ≤ n). We need only

examine whether any collection C(Km×2) can expand a collection
C(Kn×2) (m ≤ n).

We require the definition of a vertex-transitive graph. An
automorphism of a (simple) graph G is a permutation π of V(G)
that has the property that (u, v) is an edge of G if and only if
(π(u),π(v)) is an edge of G. The set of all automorphisms of G,
with the composition operation, is a group. This group is called
the automorphism group of G. A graph G is vertex-transitive if the
automorphism group of G acts transitively on V(G) [16, 17].

In other words, a vertex-transitive graph is a graph G such
that, given any two vertices v1 and v2 of G, there is some
automorphism f :V(G) → V(G) such that f (v1) = v2.

For a complete graph Kn, we constructed its collection of
convex cuts. Without loss of generality, assume that V(Kn) =

{v1, ..., vn}. From Theorem 3.2, Kn is an l1-graph. Suppose that
Kn is scale-λ-embeddable into a hypercube. Theorem 2.1 implies
that there is a collection C(Kn) such that every edge uv is cut
by λ cuts (u, v belong to Kn and λ is even). We assume that
{S1,V(Kn) − S1} is a convex cut of C(Kn), and that both S1 and

V(Kn)− S1 are convex sets of V(Kn) (|S1| = q). As the complete
graph is vertex-transitive, each Si constructs a convex cut of Kn of
the form Si ⊆ V(Kn), |Si| = q (1 ≤ i ≤

(n
q

)

). Then, we have that

all convex cuts {Si,V(Kn) − Si}, |Si| = q (1 ≤ i ≤
(n
q

)

), form a

collection of convex cuts of Kn such that every edge of Kn is cut
by the same cuts.

Obviously, there are
(n
q

)

different convex cuts, and each convex

cut acts on q(n − q) edges. Note that the complete graph Kn

has n(n−1)
2 edges and is vertex-transitive. Thus, we have that

λ =

(n
q

)

q(n−q)

n(n−1)
2

= 2
(n−2
q−1

)

.

For m ≤ n, we can now prove that the collection C(Km×2) of
Km×2 can expand a collection C(Kn×2) of Kn×2.

Theorem 3.3. Let Kn×2 be a cocktail party graph and Km×2 be a
cocktail party subgraph of Kn×2. Every collection C(Km×2) of Km×2

can expand a collection C(Kn×2) of Kn×2.

Proof: Obviously, the cocktail party graph Kn×2 has a
complete subgraph Kn. Without loss of generality, assume
that V(Kn) = {v1, ..., vn}, V(K ′

n) = {v′1, ..., v
′
n}, and

V(Kn×2) = {v1, ..., vn, v
′
1, ..., v

′
n} such that dKn×2 (vj, v

′
j) = 2

(1 ≤ j ≤ n), dKn×2 (vi, vj) = dKn×2 (vi, v
′
j) = 1 (i 6= j). If the vertex

set S is a subset of V(Kn×2), then the vertex set S′ = {x′|x ∈ S} is
a subset of V(K ′

n×2).
First, we prove that every convex cut of Kn×2 has only two

forms: {S ∪ (V(K ′
n)− S′), S′ ∪ (V(Kn)− S)} and {V(Kn),V(K

′
n)}.

Suppose that {A,B} is a convex cut of Kn×2. If x belongs to
A, x′ will belong to B. If not, both x and x′ belong to A, and A
is a convex subset of V(Kn×2); all vertices of V(Kn×2) will then
belong to A. Furthermore, B is an empty set, which contradicts
both A and B being nonempty. We now have that the vertex sets
S and S′ belong to different convex sets of {A,B}. Without loss of
generality, suppose that S ⊆ A and S′ ⊆ B. IfV(Kn)−S ⊆ A, then
V(K ′

n) − S′ ⊆ B and {A,B} = {V(Kn),V(K
′
n)}. If V(Kn) − S ⊆

B, then V(K ′
n) − S′ ⊆ A and {A,B} = {S ∪ (V(K ′

n) − S′),
S′ ∪ (V(Kn)− S)}.

Thus, the convex cut ofKn×2 has only two forms, {S∪(V(K ′
n)−

S′), S′ ∪ (V(Kn)− S)} and {V(Kn),V(K
′
n)}.

Second, we prove that the collection of convex cuts {Si ∪
(V(K ′

n) − S′i), S
′
i ∪ (V(Kn) − Si)}, |Si| = q (1 ≤ i ≤

(n
q

)

),

together with some {V(Kn),V(K
′
n)}make the cocktail graphKn×2

embeddable into some cubes.
For every edge uv in Kn, uv is cut by the convex cut {Si ∪

(V(K ′
n)−S′i), S

′
i∪ (V(Kn)−Si)}. We have that u ∈ (Si∪ (V(K ′

n)−
S′i))∩V(Kn) = Si and v ∈ (S′i∪(V(Kn)−Si))∩V(Kn) = V(Kn)−Si,
or u ∈ V(Kn)− Si and v ∈ Si. Note that |Si| = q and V(Kn) has n
vertices, so the number of convex cuts that cut edge uv is 2

(n−2
q−1

)

.

This is similar to each edge u′v′ of K ′
n.

If u ∈ Kn and v′ ∈ K ′
n, uv

′ is cut by the convex cut {Si ∪
(V(K ′

n)−S′i), S
′
i∪ (V(Kn)−Si)}. We have that u ∈ (Si∪ (V(K ′

n)−
S′i))∩V(Kn) = Si, v

′ ∈ (S′i ∪ {V(Kn)− Si})∩V(K ′
n) = S′i, u

′ ∈ S′i,
and v ∈ Si, or u ∈ (S′i ∪ {V(Kn) − Si}) ∩ V(Kn) = V(Kn) − Si,
v′ ∈ (Si ∪ (V(K ′

n)− S′i))∩V(K ′
n) = V(K ′

n)− S′i, u
′ ∈ V(K ′

n)− S′i,
and v ∈ V(Kn)− Si. Note that |Si| = |S′i| = q and |V(Kn)− Si| =

Frontiers in Physics | www.frontiersin.org 6 June 2020 | Volume 8 | Article 14639

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Wang et al. l1-Embeddability Under Gate-Sum Operation

|V(K ′
n)− S′i| = n− q, so the number of convex cuts that cut edge

uv′ is
(n−2
q−2

)

+
( n−2
n−q−2

)

=
(n−2
q−2

)

+
(n−2

q

)

.

As
n−

√
n

2 ≤ q ≤
n+

√
n

2 , 2
(n−2
q−1

)

≥
(n−2
q−2

)

+
(n−2

q

)

. If 2
(n−2
q−1

)

=
(n−2
q−2

)

+
(n−2

q

)

, every edge of Kn×2 is cut by 2
(n−2
q−1

)

cuts.

If 2
(n−2
q−1

)

>
(n−2
q−2

)

+
(n−2

q

)

, then
n−

√
n

2 < q <
n+

√
n

2 .

Obviously, {V(Kn),V(K
′
n)} is a convex cut of Kn×2, which only

cuts the edges with one end vertex in Kn and the other one in
K ′
n. Then, the collection {Si ∪ (V(K ′

n) − S′i), S
′
i ∪ (V(Kn) − Si)}

(1 ≤ i ≤
(n
q

)

) together with {V(Kn),V(K
′
n)} form a new collection

C
′(Kn×2) such that every edge of Kn×2 is cut by 2

(n−2
q−1

)

cuts.

Let 2
(n−2
q−1

)

<
(n−2
q−2

)

+
(n−2

q

)

. If n is even, choose Ti ⊆ V(Kn)

such that |Ti| = n
2 (1 ≤ i ≤

(n
n
2

)

). If n is odd, choose

Ti ⊆ V(Kn) such that |Ti| = n+1
2 (1 ≤ i ≤

( n
n+1
2

)

). Then,

{Ti ∪ (V(K ′
n) − T′

i ),T
′
i ∪ (V(Kn) − Ti)} is a convex cut of Kn×2.

Obviously, the number of edges with both vertices in V(Kn) (or
V(K ′

n)) that are cut by {Ti ∪ (V(K ′
n) − T′

i ),T
′
i ∪ (V(Kn) − Ti)}

is greater than the number of edges that are cut by the same cut
with one end vertex in Kn and the other vertex in K ′

n. Thus, the
collection {Si ∪ (V(K ′

n) − S′i), S
′
i ∪ (V(Kn) − Si)} (1 ≤ i ≤

(n
q

)

)

together with {Ti∪ (V(K ′
n)−T′

i ), T
′
i ∪ (V(Kn)−Ti)} (1 ≤ i ≤

(n
n
2

)

(or
( n
n+1
2

)

)) and {V(Kn),V(K
′
n)} form a new collection C

′(Kn×2)

such that every edge of Kn×2 is cut by 2
(n−2
q−1

)

+ 2a
(n−2
n
2−1

)

cuts. The

constant a is the minimal number such that 2
(n−2
q−1

)

+ 2a
(n−2
n
2−1

)

≥
(n−2
q−2

)

+
(n−2

q

)

+ a(
(n−2
n
2−2

)

+
(n−2

n
2

)

).

Third, we prove that every collection of convex cuts of Km×2

can expand that of Kn×2 (m ≤ n).
Similarly, each convex cut of Km×2 has only two forms: {A ∪

(V(K ′
m)− A′),A′ ∪ (V(Km)− A)}, and {V(Km),V(K

′
m)}.

Obviously, (V(Km) − A) ⊆ (V(Kn) − A) and (V(K ′
m) −

A′) ⊆ (V(K ′
n) − A′). Then, each convex cut {A ∪ (V(K ′

m) −
A′),A′ ∪ (V(Km) − A)} of C(Km×2) can expand a convex cut
{A ∪ (V(K ′

n)− A′),A′ ∪ (V(Kn)− A)} of C(Kn×2). Similarly, the
convex cut {V(Km),V(K

′
m)} expands the cut {V(Kn),V(K

′
n)}.

Assume that |Ai| = |Aj| is true for all convex cuts of C(Km×2)
except the convex cut {V(Km),V(K

′
m)}. This means that {Ai ∪

(V(K ′
m)−A′

i),A
′
i∪(V(Km)−Ai)}, |Ai| = q (1 ≤ i ≤

(m
q

)

). Then, all

of the cuts together with {V(Km),V(K
′
m)} expand a collection of

convex cuts ofKn×2, in the form {Ai∪(V(K
′
n)−A′

i),A
′
i∪(V(Kn)−

Ai)}, |Ai| = q (1 ≤ i ≤
(n
q

)

), together with {V(Kn),V(K
′
n)}. By

the second part, {Ai ∪ (V(K ′
n)−A′

i),A
′
i ∪ (V(Kn)−Ai)}, |Ai| = q

(1 ≤ i ≤
(n
q

)

), together with {V(Kn),V(K
′
n)} ensure that every

edge of the graph Kn×2 is cut by the same cuts.
Let |Ai| 6= |Aj| for some i and j of the convex cuts of C(Km×2).

Without loss of generality, suppose that C(Km×2) has three kinds
of convex cuts, formed as {Ai ∪ (V(K ′

n)−A′
i),A

′
i ∪ (V(Kn)−Ai)},

|Ai| = q (1 ≤ i ≤
(n
q

)

), and {Bi∪ (V(K ′
n)−B′i),B

′
i∪ (V(Kn)−Bi)},

|Bi| = p (1 ≤ i ≤
(n
p

)

), together with {V(Kn),V(K
′
n)}. By

the above discussion, all of the convex cuts {Ai ∪ (V(K ′
n) −

A′
i),A

′
i ∪ (V(Kn) − Ai)}, |Ai| = q (1 ≤ i ≤

(n
q

)

), together

with {V(Kn),V(K
′
n)} expand a collection C1(Kn×2) of convex cuts

of Kn×2 such that every edge of Kn×2 is cut by the same cuts.
Similarly, all of the convex cuts {Bi ∪ (V(K ′

n)−B′i),B
′
i ∪ (V(Kn)−

Bi)}, |Bi| = p (1 ≤ i ≤
(n
p

)

), together with {V(Kn),V(K
′
n)} expand

a collection C2(Kn×2) of convex cuts of Kn×2 such that every edge
of Kn×2 is cut by the same cuts.

Obviously, the collection C1(Kn×2) together with the
collection C2(Kn×2) is still a collection of convex cuts of Kn×2

such that every edge of Kn×2 is cut by the same cuts.
Therefore, every collection C(Km×2) of Km×2 can expand a

collection C(Kn×2) such that every edge ofKn×2 is cut by the same
number of cuts.

We have that, for each cocktail party graph and half-cube,
the collection C( 12Qm) can expand a collection C( 12Qn), and the
collection C(Km×2) can expand a collection C(Kn×2) (m ≤ n). By
Theorem 3.2, we can prove that the collection of convex cuts of
an l1-graph can expand that of a larger l1-graph.

Hammack et al. [6] introduced the Cartesian product G2H of
two graphsG andH as the graph whose vertex set is the Cartesian
productV(G)×V(H). Two vertices (u, v) and (u′, v′) are adjacent
inG2H if and only if u = u′ and v is adjacent to v′ inH, or v = v′

and u is adjacent to u′ in G. Thus,
V(G2H) = {(u, v)|u ∈ V(G) and v ∈ V(H)}
E(G2H) = {(u, v)(u′, v′)|u = u′, vv′ ∈ E(H), or uu′ ∈
E(G), u = u′}

The graphs G and H are called factors of the product G2H.
Hammack et al. proved the following lemmas.

Lemma 3.4. ([6]) A subgraph W of G = G1� · · ·�Gn is convex
if and only if W = W1� · · ·�Wn, where each Wi is convex in Gi.

Lemma 3.5. ([6]) If G = G1� · · ·�Gn and x, y ∈ V(G), then

dG(x, y) =
n
∑

i=1
dGi (pi(x), pi(y))

For any index 1 ≤ i ≤ n, pi is a projection map
pi :G1� · · ·�Gn → Gi, defined as pi(x1, x2, ..., xn) = xi.

We can now prove that the convex cut of a Cartesian product
can be represented by the convex cuts of all factors.

Theorem 3.6. The cut {A,B} is a convex cut of a graph G =

G1� · · ·�Gn if and only if {A,B} has the form {V(G1) × · · · ×

V(Gi−1)×Ai×V(Gi+1)×· · ·×V(Gn),V(G1)×· · ·×V(Gi−1)×
Bi × V(Gi+1) × · · · × V(Gn)} in which {Ai,Bi} is a convex cut of
Gi for 1 ≤ i ≤ n.

Proof: ⇐H Suppose that G = G1� · · ·�Gn. If {Ai,Bi}
is a convex cut of Gi, then Gi[Ai] and Gi[Bi] are convex
subgraphs of Gi (1 ≤ i ≤ n). By Lemma 3.4, G[Ai] =

G1� · · ·�Gi−1�Gi[Ai]�Gi+1� · · ·�Gn is a convex subgraph of
G. Similarly, G[Bi] = G1� · · ·�Gi−1�Gi[Bi]�Gi+1� · · ·�Gn is
also a convex subgraph of G.

Without loss of generality, suppose that

V(G) = {(x1, ..., xi, ..., xn)|xi ∈ V(Gi)}

V(G[Ai]) = {(x1, ..., xi−1, yi, xi+1, ..., xn)|xj
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∈ V(Gj), j 6= i, yi ∈ Ai}

= {V(G1)× · · · × V(Gi−1)× Ai × V(Gi+1)

× · · · × V(Gn)}

V(G[Bi]) = {(x1, ..., xi−1, yi, xi+1, ..., xn)|xj

∈ V(Gj), j 6= i, yi ∈ Bi}

= {V(G1)× · · · × V(Gi−1)× Bi

×V(Gi+1)× · · · × V(Gn)}.

As {Ai,Bi} is a convex cut of Gi and the vertex yi belongs to either
Ai or Bi, we have that the cut {V(G[Ai]),V(G[Bi])} = {A,B} is a
partition of V(G), and {A,B} is a convex cut of G.

H⇒ Suppose that {A,B} is a convex cut of G. Then, both G[A]
and G[B] are convex subgraphs of G, and B = Ā = V(G) − A.
By Lemma 3.4, G[A] = G1[A1]� · · ·�Gn[An] and each Gi[Ai] is
a convex subgraph of Gi (1 ≤ i ≤ n).

We now prove that only one Ai is a proper subset of V(Gi). If
there are two proper subsets, without loss of generality, suppose
that A1 is a proper subset of V(G1), A2 is that of V(G2), and
Ai = Gi (3 ≤ i ≤ n), V(Gj) − Aj = Bj (1 ≤ j ≤ n). Then,
we have that

A = {(x1, x2, ..., xn)|xi ∈ V(Gi), i 6= 1, 2, x1 ∈ A1, x2 ∈ A2}

= {A1 × A2 × V(G3)× · · · × V(Gn)}

and

Ā = B ={(x1, x2, ..., xn)|xi ∈ V(Gi), i 6= 1, 2, x1 /∈ A1, x2 ∈ A2,

or x1 ∈ A1, x2 /∈ A2, or x1 /∈ A1, x2 /∈ A2}

={[(B1 × A2) ∪ (A1 × B2) ∪ (B1 × B2)]× V(G3)

× · · · × V(Gn)}.

Suppose that x1 ∈ A1, x2 ∈ A2, y1 ∈ B1, y2 ∈ B2, and
xi ∈ Gi (3 ≤ i ≤ n). We have two vertices (y1, x2, x3, x4, ..., xn) ∈
B1 × A2 × V(G3) × · · · × V(Gn) and (x1, y2, x3, x4, ..., xn) ∈

A1 × B2 × V(G3) × · · · × V(Gn). By Lemma 3.5, the distance
between them is

dG((y1, x2, x3, x4, ..., xn), (x1, y2, x3, x4, ..., xn)) = dG1 (y1, x1)

+ dG2 (x2, y2)

= dG((y1, x2, x3, x4, ..., xn), (x1, x2, x3, x4, ..., xn))

+ dG((x1, x2, x3, x4, ..., xn), (x1, y2, x3, x4, ..., xn)).

However, vertex (x1, x2, x3, x4, ..., xn) belongs to A1 × A2 ×

V(G3) × · · · × V(Gn), which means that there are two vertices
in B and a shortest path between them through a vertex in A.
Therefore, B is not a convex subset of V(G), which contradicts
the assertion that {A,B} is a convex cut of G.

Thus, only one Ai is a proper subset of V(Gi), and we
have that

A = {(x1, ..., xi−1, yi, xi+1, ..., xn)|xj ∈ V(Gj), j 6= i, yi ∈ Ai}

= {V(G1)× · · · × V(Gi−1)× Ai × V(Gi+1)× · · · × V(Gn)}.

Similarly, note that V(Gj)− Aj = Bj (1 ≤ j ≤ n), and so

B = {(x1, ..., xi−1, yi, xi+1, ..., xn)|xj ∈ V(Gj), j 6= i, yi /∈ Ai}

= {V(G1)× · · · × V(Gi−1)× Bi × V(Gi+1)× · · · × V(Gn)}.

AsG[A] andG[B] are convex subgraphs ofG, by Lemma 3.4, both
Gi[Ai] and Gi[Bi] are convex subgraphs of Gi. Then, Ai and Bi
are convex subsets of V(Gi), and {Ai,Bi} is a convex cut of Gi

(1 ≤ i ≤ n).

Proof of Lemma 2.5. Let G be an l1-graph and H be an
isometric subgraph of G. By Theorem 2.1, there is a collection
C(G) such that every edge of G is cut by exactly λ cuts.

As H is not l1-rigid, H has another l1-embedding. By
Theorem 3.2, G is an isometric subgraph of the Cartesian
product of cocktail party graphs and half-cubes. Let Ĝ =

Km1×2� · · ·�Kmp×2�
1
2Qn1� · · ·� 1

2Qnq be a Cartesian product
that contains G as an isometric subgraph, such that each factor of
Ĝ is minimal and the number of factors is minimal. Without loss
of generality, we assume thatmi ≤ mj and ni ≤ nj (i < j).

Because H is an isometric subgraph of G and G is an l1-graph,
H is an l1-graph. By Theorem 3.2, H has a minimal Cartesian
product Ĥ = Km′

1×2� · · ·�Km′
s×2�

1
2Qn′1

� · · ·� 1
2Qn′t

.
As H is an isometric subgraph of G and G is an isometric

subgraph of Ĝ, H is an isometric subgraph of Ĝ. Because Ĥ may
not be equal to Ĝ, we have that s ≤ p, t ≤ q, andm′

i ≤ mi, n
′
j ≤ nj

(1 ≤ i ≤ s, 1 ≤ j ≤ t).
It is obvious that 1

2Qn′i
is a convex subgraph of 1

2Qni (1 ≤ i ≤

t) and Km′
i×2 is an isometric subgraph of Kmi×2 (1 ≤ i ≤ s).

As 1
2Qn is l1-rigid, the collection C( 12Qn′i

) can expand a

collection C( 12Qni ) for 1 ≤ i ≤ t.
By Theorem 3.3, every collection C(Km′

i×2) can expand a

collection C(Kmi×2) (1 ≤ i ≤ s).
Without loss of generality, suppose that every collection

of C(Kmj×2) (1 ≤ j ≤ s) and C( 12Qnk ) (1 ≤ k ≤ t)

cuts the edges of the corresponding factors Kmj×2 and 1
2Qnk

exactly λ1, λ2, ..., λs+t times, respectively. Take the least common
multiple λ = [λ1, λ2, ..., λs+t]. By Lemma 2.2, we have a list of
collections C′(Kmj×2) (1 ≤ j ≤ s) and C

′( 12Qnk ) (1 ≤ k ≤ t) such

that every edge of factors Kmj×2 and
1
2Qnk is cut by exactly λ cuts.

By Theorem 3.6, each convex cut {Aji ,Bji} of C
′(Kmj×2)

(1 ≤ j ≤ s) can expand a convex cut {A,B} of G such that
{pj(A), pj(B)} = {Aji ,Bji}. This is similar to any convex cut

{Aki ,Bki} of C
′( 12Qnk ) (1 ≤ k ≤ t).

All such {A,B} expanded by {Aji ,Bji} of C
′(Kmj×2) (1 ≤ j ≤ s)

and {Aki ,Bki} of C
′( 12Qnk ) (1 ≤ k ≤ t) form a collection C(G) and

every edge of G is cut by exactly λ cuts of C(G). This completes
the proof. �

4. CONCLUSION

In this study, we investigated the l1-embeddability of the gate-
sum graph of two l1-graphs. We have shown that the gate-sum
graph of two l1-graphs G1 and G2 is still an l1-graph.
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In this study, an adaptive neural network (NN) command filtered control (CFC) method

is proposed for a permanent magnet synchronous motor (PMSM) system with system

uncertainties and external disturbance by means of a backstepping technique. At every

backstepping step, a novel command filter is proposed, and the complicated virtual

input and its derivative together can be approximated by this filter. The “explosion of

complexity” problem in conventional backstepping design can be avoided because we

do not need to calculate the derivative of the virtual input repeatedly. NNs are used to

model system uncertainties and disturbances. Finally, an adaptive NN CFC is designed,

and the convergence of the tracking error and the boundedness of all signals involved

can be guaranteed. Finally, a simulation study is presented to verify the theoretical results.

Keywords: adaptive neural network control, command filtered control, backstepping, permanent magnet

synchronous motor, chaos control

1. INTRODUCTION

In the past several decades, adaptive backstepping control (ABC) has been used by more and more
scholars due to its powerful ability in controlling non-linear systems. The ABC approach has some
interesting properties. For example, it can achieve global ability and does not need a large amount
of control energy. To increase the robustness of ABC, some other control methods, such as adaptive
fuzzy control (AFC), adaptive neural network (NN) control, sliding mode control (SMC), etc., have
been developed; the research results can be seen in references [1–10], and the references therein.
However, the ABC approach has a drawback: the “explosion of complexity” problem, which is
generated by differentiating the immediate virtual input repeatedly. Some efforts have been made
to solve this problem, for example, in Liu et al. [6], virtual inputs were approximated by fuzzy
systems, and in Ahn et al. [2], a sliding surface was used to avert the repeated calculation of the
derivatives. Another approach, more powerful than these methods, is command filtered control
(CFC), which was introduced by Farrell et al. [11] and Dong et al. [12], where several interesting
results were presented to show that errors are of ◦

(

1
W

)

, with W being the frequency. To drive the
tracking error toward a sufficiently small value, one can use largeW. However, too large aW value
usually means that too much control energy is used. Thus, some other control methods based on
CFC have been developed, for example, in references [13–18], noting that the dimensions of the
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virtual signal should be enlarged to involve the desired signal and
its derivative. Yet, the above-mentioned literature only studied
the estimation of some command derivatives, i.e., the results do
not correspond to the ABC design. Thus, it is meaningful to
develop more approaches to solve the above problem.

For more than 30 years, the control of chaotic systems
has been paid increasing attention as an important field in
non-linear scientific research and has gradually become widely
used in engineering and other fields. The permanent magnet
synchronous motor (PMSM) has attracted widespread attention
due to its rapid dynamics, wide speed range, and simple structure.
However, because the PMSM is a multivariate non-linear system
and the system exhibits phenomena, such as Hope bifurcation,
limit cycles, and chaotic attractors when the system parameters
are in some ranges, the control of PMSM systems is still a
challenging problem. Chaos in the PMSM system can destroy the
stability of the system and even crash it, so it is very important
to control this chaos. At present, there are many methods to
control chaos in PMSM, such as the OGY method, delayed
feedback control method, sliding mode control method, ABC,
AFC, and so on [19–23]. In the actual application process,
the OGY method requires certain system parameters, some of
which cannot be achieved in actual control, whereas the delayed
feedback control method has achieved good results in the PMSM
chaos control, but the delay is very difficult. In Yu et al. [23], the
AFC method was used, and in each step, fuzzy systems were used
to model system uncertainties to avoid the repeated calculation
of the virtual signal and its derivative. In Sun et al. [24], an
internal motion model was used to control PMSM systems with
uncertainties. In Yang et al. [25], an AFC CFC method was used
where the system uncertainties are not considered. In Niu et al.
[26], an output feedback CFC method was proposed for PMSM.
In Zou et al. [27], command filtering-based AFC was introduced
for PMSM where input saturation is considered. Some related
work can be seen in references [28–32]. However, in these studies,
fully unknown system models are not considered.

Based on the above discussion, we will introduce an NN
CFC method for PMSM systems with fully unknown system
models. We combine ABC with CFC and propose a one-order
filter to approximate the virtual signal and its derivative at each
backstepping step. As the last step, a robust controller is designed,
and adaptation laws are also presented. Compared with related
works, our contributions are as follows. (1) A one-order filter is
introduced. In each step, it can be used to approximate the virtual
signal together with its derivative. In addition, the proposed filter
has very good approximation ability, and the error can be made
as small as possible. By doing this, the “explosion of complexity”
problem is avoided. Compared with some related methods, for
example, in references [23, 28, 31], our methods are simpler and
can be implemented earlier. (2) The proposed control signals
with adaptation laws have a very concise form relative to some
related methods, for example, dynamic surface control.

This paper is arranged as follows. The description of the
PMSM, the controller design, and the stability analysis are
presented in section 2. Section 3 gives the simulation results of
the proposed method. Finally, section 4 gives the conclusions of
this paper.

2. MAIN RESULTS

2.1. Problem Description
The mathematical model of a PMSM with a smooth air gap can
be expressed as [23]















dω
dt

= σ (iq − ω)− T̃L,

diq
dt

= −iq − idω + δω + ũq,
did
dt

= −id + iqω + ũd,

(1)

where ω, id, iq are system variables representing the angular

velocity and shaft current of the motor, respectively, and T̃L, ũq,
and ũd represent load torque and shaft voltage. When there are
no external inputs, denoting x = ω, y = iq, z = id, and putting
an input u(t) to the third equation, the PMSM system (1) can be
written as







ẋ = σ (y− x),
ẏ = −y− xz + δx,
ż = −z + xy+ u.

(2)

Let the tracking error be ǫ1 = x − xc, with xc ∈ R being a
referenced signal. Our purpose is to implement a suitable control
signal u such that ǫ1(t) becomes as small as possible.

2.2. Backstepping Control Signal Design
The backstepping control procedures can be divided into the
following three steps.

Step 1. It follows from (2) that:

ẋ = σy+ 1g1(x), (3)

where 1g1(x) = −σx is assumed to be unknown. Then, 1g1(x)
is estimated by using NN as

1g1 =WWWT
1ϑϑϑ1 =WWW∗T

1 ϑϑϑ1 + ε1 (4)

withWWWT
1 being the adjustable parameter of the NN,WWW∗T

1 being
the optimal parameter, and ε1 being the optimal estimation error
[33, 34]. Then, we can use the following virtual input

ρ1 = −
1

σ

[

k1ǫ1 +WWWT
1ϑϑϑ1(x)+ ε̂1 arctan

(

ǫ̃1

α1

)

− ẋc
]

(5)

with ε̂1 being the estimation of ε1, k1,α1 > 0, and ǫ̃1 being a
compensated tracking error. Thus, (3), (4), and (5) imply

ǫ̇1 = σy+ 1g1 − ẋc

= −k1ǫ1 + σ
(

y− ρ1
)

+WWW∗T
1 ϑϑϑ1(x)+ ε1 −WWWT

1ϑϑϑ1(x)

− ε̂1arctan

(

ǫ̃1

α1

)

= −k1ǫ1 + σ
(

yc − ρ1
)

− W̃̃W̃WT
1ϑϑϑ1(x)+ ε1

− ε̂1arctan

(

ǫ̃1

α1

)

+ σǫ2,

(6)
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with W̃̃W̃WT
1 = WWWT

1 − WWW∗T
1 being the NN approximation error

and ǫ2 = y − yc being filtered error. We can define the
following signal:

ǫ̃1 = ǫ1 − ζ1 (7)

where ζ1 can be obtained by solving:

ζ̇1 = −k1ζ1 + σ
(

yc − ρ1
)

+ σζ2 (8)

with ζ2 being defined in the next step and yc being the solution of
the following equation:

ẏc = −̟2(y
c − ρ1) (9)

with ̟2 > 0. To solve (9), we can set yc(0) = 0. We can use the
following adaptation law:

ẆWW1 = a11ǫ̃1ϑϑϑ1(x)− a11a12WWW1 (10)

and

˙̂ε1 = a41ǫ̃1 tanh

(

ǫ̃1

α1

)

− a41a42ε̂1 (11)

respectively, with a11, a12, a41, a42 > 0.
Step 2. According to the second equation of (2), we have

ẏ = −xz + 1g2 (12)

where 1g2 = −y + δx is unknown. We can use the NN to
approximate it as

1g2 =WWWT
2ϑϑϑ2 =WWW∗T

2 ϑϑϑ2 + ε2. (13)

Define
{

ǫ2 = y− yc,

ǫ̃2 = ǫ2 − ζ2,
(14)

with

ζ̇2 = −k2ζ2 + zc − ρ2 + ζ3 (15)

with ζ2(0) = 0,

żc = −̟3(z
c − ρ2), (16)

ρ2 = −k2ǫ2 −WWWT
2ϑϑϑ2 − ε̂2arctan

(

ǫ̃2

α2

)

+ ẏc − σ ǫ̃1, (17)

where k2,α2 > 0.WWW2 and ε̂2 are updated by

ẆWW2 = a21ǫ̃2ϑϑϑ2(x̄̄x̄x2)− a21a22WWW2 (18)

and

˙̂ε2 = a51ǫ̃2 tanh

(

ǫ̃2

α1

)

− a51a52ε̂2 (19)

with a21, a22, a51, a52 > 0. Then we know

ǫ̇2 = z + 1g2 − ẏc

= −k2ǫ2 + z − ρ2 +WWW∗T
2 ϑϑϑ2 + ε2 −WWWT

2ϑϑϑ2

− ε̂2arctan

(

ǫ̃2

α2

)

− σ ǫ̃1

= −k2ǫ2 + zc − ρ2 − W̃̃W̃WT
2ϑϑϑ2 + ε2 − ε̂2arctan

(

ǫ̃2

α2

)

− σ ǫ̃1 + ǫ3.

(20)

Step 3. According to the last equation of (2), we have

ż = 1g3 + u (21)

with 1g3(xxx) = −z + xy being unknown. It can be
approximated by

1g3 =WWWT
3ϑϑϑ3 =WWW∗T

3 ϑϑϑ3 + ε3. (22)

We can implement the controller as

u = −k3ǫ3 −WWWT
3ϑϑϑ3 − ε̂2arctan

(

ǫ̃3

α3

)

+ żc − ǫ2 (23)

with k3,α3 > 0. Define

{

ǫ3 = z − zc,

ǫ̃3 = ǫ3 − ζ3,
(24)

with

ζ̇3 = −k3ζ3 − ζ2. (25)

The parameters are updated by

ẆWW3 = a31ǫ̃3ϑϑϑ2 − a31a32WWW3, (26)

˙̂ε3 = a61ǫ̃3 tanh

(

ǫ̃3

α3

)

− a61a62ε̂3 (27)

with c31, c32, c61, c62 > 0. As a result,

ǫ̇3 = 1g3 − żc + u

= −k3ǫ3 +WWW∗T
3 ϑϑϑ3(x̄̄x̄x)+ ε3 −WWWT

3ϑϑϑ3(x̄̄x̄x)− ε̂3arctan
(

ǫ̃3

α3

)

− ǫ2

= −k3ǫ3 − W̃̃W̃WT
3ϑϑϑ3(x̄̄x̄x)+ ε3 − ε̂3arctan

(

ǫ̃3

α3

)

− ǫ2.

(28)

Let us give the following reasonable assumption and lemma.

Assumption 1. The NN approximate error is bounded, i.e., there
exists ε∗i such that εi ≤ ε∗i .

Lemma 1. [15] If α > 0 and κ = 0.27846, then we have

|y| − y tanh
( y

α

)

≤ κα.
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Then, we have

˙̃ǫ1 = −k1ǫ1 + σ
(

yc − ρ1
)

− W̃̃W̃WT
1ϑϑϑ1 + ε1 − ε̂1arctan

(

ǫ̃1

α1

)

+ σǫ2 − ζ̇1

= −k1ǫ1 − W̃̃W̃WT
1ϑϑϑ1 + ε1 − k1ζ1 − ε̂1arctan

(

ǫ̃1

α1

)

+ σǫ2 − σζ2

= −k1ǫ̃1 + σ ǫ̃2 − W̃̃W̃WT
1ϑϑϑ1 + ε1 − ε̂1arctan

(

ǫ̃1

α1

)

,

(29)

˙̃ǫ2 = −k2ǫ2 + zc − ρ2 − W̃̃W̃WT
2ϑϑϑ2 + ε2 − ε̂2arctan

(

ǫ̃2

α2

)

− σ ǫ̃1 + ǫ3 − ζ̇2

= −k2ǫ2 − W̃̃W̃WT
2ϑϑϑ2 + ε2 − ζ3 − ε̂2arctan

(

ǫ̃2

α2

)

− σ ǫ̃1 + ǫ3 − k2ζ2

= −k2ǫ̃2 − W̃̃W̃WT
2ϑϑϑ2 + ε2 + ǫ̃3 − ε̂2arctan

(

ǫ̃2

α2

)

− σ ǫ̃1,

(30)

˙̃e3 = −k3ǫ3 − W̃̃W̃WT
3ϑϑϑ3 + ε3 − ζ̇3 − ǫ2 − ε̂3arctan

(

ǫ̃3

α3

)

= −k3ǫ̃3 − W̃̃W̃WT
3ϑϑϑ3(x̄̄x̄x)+ ε3 − ǫ̃2 − ε̂3arctan

(

ǫ̃3

α3

)

.

(31)

Theorem 1. When |xci − zi| ≤ b with b > 0, then (8), (15), and
(25) imply

‖ζζζ‖ ≤
c

2k̂

(

1− e−2k̂t
)

(32)

with ζζζ = [ζ1, ζ2, ζ3]
T ∈ R

3, k̂ = 1
2 min{k1, k2, k3}, and c = b+σ .

Proof. LetV1 =
1
2‖ζζζ‖

2. It follows from (8), (15), and (25) that

V̇1 = −

3
∑

i=1

kiζ
2
i + σζ1

(

yc − ρ1
)

+ ζ2
(

zc − ρ2
)

≤ −2k̂‖ζζζ‖2 + A‖ζζζ‖

≤ −4k̂V1 +
√
2a

√

V1.

(33)

As a result, it follows from (33) that (32) satisfies. ���

Theorem 2. Consider (2) satisfying Assumption 1. Virtual inputs
are given by (5) and (17) under the filters (8), (9), (15), (16), and
(25). The adaptation laws are (10), (18), (26), (11), (19), and (27).
Then, the controller (23) ensures the convergences of ǫ̃1, ǫ̃2 and ǫ̃3
to a small region.

Proof. Define

V =
1

2

3
∑

i=1

ǫ̃2i +

3
∑

i=1

1

2ci1
W̃̃W̃WT

i W̃̃W̃Wi +

3
∑

i=1

1

2ci+3,1
ε̃2i (34)

with ε̃i = ε̂i − ε∗i . Then, (29), (30), (31), Assumption 1, and
Lemma 1 imply

3
∑

i=1

ǫ̃i ˙̃ǫi =

3
∑

i=1

ẽi

[

εi − ε̂iarctan

(

ẽi

αi

)]

− ǫ̃1W̃̃W̃W
T
1ϑϑϑ1 − ǫ̃2W̃̃W̃W

T
2ϑϑϑ2

− ǫ̃3W̃̃W̃W
T
3ϑϑϑ3 −

3
∑

i=1

kiẽ
2
i

≤

3
∑

i=1

[

|ẽi|ε
∗
i − ẽiε̂iarctan

(

ẽi

αi

)]

− ǫ̃1W̃̃W̃W
T
1ϑϑϑ1

− ǫ̃2W̃̃W̃W
T
2ϑϑϑ2 − ǫ̃3W̃̃W̃W

T
3ϑϑϑ3 −

3
∑

i=1

kiẽ
2
i

=

3
∑

i=1

[

|ẽi|ε
∗
i − ẽiε̂iarctan

(

ẽi

αi

)

− ẽiε
∗
i arctan

(

ẽi

αi

)]

− ǫ̃2W̃̃W̃W
T
2ϑϑϑ2 − ǫ̃1W̃̃W̃W

T
1ϑϑϑ1

+

3
∑

i=1

ẽiε
∗
i arctan

(

ẽi

αi

)

−

3
∑

i=1

kiẽ
2
i − ǫ̃3d

∗arctan

(

ǫ̃3

α3

)

− ǫ̃3W̃̃W̃W
T
3ϑϑϑ3

≤

3
∑

i=1

[

−ẽiε̂iarctan

(

ẽi

αi

)

+ ẽiε
∗
i arctan

(

ẽi

αi

)]

−

3
∑

i=1

kiẽ
2
i − ǫ̃2W̃̃W̃W

T
2ϑϑϑ2

− ǫ̃3W̃̃W̃W
T
3ϑϑϑ3 − ǫ̃1W̃̃W̃W

T
1ϑϑϑ1 + κ

3
∑

i=1

αiε
∗
i

= −

3
∑

i=1

ẽiε̃iarctan

(

ẽi

αi

)

−

3
∑

i=1

kiẽ
2
i − ǫ̃2W̃̃W̃W

T
2ϑϑϑ2

− ǫ̃3W̃̃W̃W
T
3ϑϑϑ3 − ǫ̃1W̃̃W̃W

T
1ϑϑϑ1 + κ

3
∑

i=1

αiε
∗
i .

(35)
It follows from (10), (11), (18), (19), (26), and (27) that

3
∑

i=1

1

ai1
W̃̃W̃WT

i
˙̃W˙̃W̃̇Wi = ǫ̃2W̃̃W̃W

T
2ϑϑϑ2 + ǫ̃3W̃̃W̃W

T
3ϑϑϑ3 + ǫ̃1W̃̃W̃W

T
1ϑϑϑ1

−

3
∑

i=1

ai2W̃̃W̃W
T
i WWWi

= ǫ̃2W̃̃W̃W
T
2ϑϑϑ2 + ǫ̃3W̃̃W̃W

T
3ϑϑϑ3 + ǫ̃1W̃̃W̃W

T
1ϑϑϑ1

−

3
∑

i=1

ai2W̃̃W̃W
T
i

(

W̃̃W̃Wi +WWW∗
i

)

≤ ǫ̃2W̃̃W̃W
T
2ϑϑϑ2 + ǫ̃3W̃̃W̃W

T
3ϑϑϑ3 + ǫ̃1W̃̃W̃W

T
1ϑϑϑ1

−

3
∑

i=1

ai2

2
W̃̃W̃WT

i W̃̃W̃Wi +

3
∑

i=1

ai2

2
WWW∗T

i WWW∗
i ,

(36)
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3
∑

i=1

1

2ai+3,1
ε̃i ˙̃εi =

3
∑

i=1

ε̃i

[

ẽi tanh

(

ẽi

αi

)

− ai+3,2ε̂i

]

=

3
∑

i=1

ε̃iẽi tanh

(

ẽi

αi

)

−

3
∑

i=1

ai+3,2ε̃i
(

ε̃i + ε∗i
)

≤

3
∑

i=1

ε̃iẽi tanh

(

ẽi

αi

)

−

3
∑

i=1

ai+3,2

2
ε̃2i

+

3
∑

i=1

ai+3,2

2
ε∗2i .

(37)
As a result, (35), (36), and (37) imply

V̇ ≤ −

3
∑

i=1

kiǫ̃
2
i + κ

3
∑

i=1

αiε
∗
i −

3
∑

i=1

ai+3,2

2
ε̃2i +

3
∑

i=1

ai+3,2

2
ε∗2i

−

3
∑

i=1

ai2

2
W̃̃W̃WT

i W̃̃W̃Wi +

3
∑

i=1

ai2

2
WWW∗T

i WWW∗
i

= −

3
∑

i=1

kiẽ
2
i −

3
∑

i=1

ai+3,2

2
ε̃2i −

3
∑

i=1

ai2

2
W̃̃W̃WT

i W̃̃W̃Wi + κ

3
∑

i=1

αiε
∗
i

+

3
∑

i=1

ai+3,2

2
ε∗2i +

3
∑

i=1

ai2

2
WWW∗T

i WWW∗
i

≤ −
d1

2

3
∑

i=1

ẽ2i − d2

3
∑

i=1

1

2ai1
W̃̃W̃WT

i W̃̃W̃Wi − d3

3
∑

i=1

1

2ai+3,1
ε̃2i + d4

(38)
with d1 = 2min{k1, k2, k3}, d2 = min{a11a12, a21a22, a31a32},
d3 = min{a41a42, a51a52, a61a62}, d4 = κ

∑3
i=1 αiε

∗
i +

∑3
i=1

ai+3,2

2 ε∗2i +
∑3

i=1
ai2
2 WWW

∗T
i WWW∗

i being non-negative constants.
Apparently, the constants d1, d2, d3, d4 are determined by design

parameters and some unknown constant variable (see, the

optimal NN parameter). Thus, (38) implies 1
2

∑3
i=1 ẽ

2
i ≤ d4

d1
,

∑3
i=1

1
2ai1

W̃̃W̃WT
i W̃̃W̃Wi ≤ d4

d2
,
∑3

i=1
1

2ai+3,1
ε̃2i ≤ d4

d3
. As a result, all

variables are indeed bounded, and ǫ̃1, ǫ̃2 and ǫ̃3 tend to a small
region determined by design parameters. �

Remark 1. It should be emphasized that the conclusion of
Theorem 1 is very representative, and it can be widely used in
the field of automatic control, finite-time control, and backstepping
control. However, the proposed method can only guarantee the that
tracking error tends to a very small region.

Remark 2. In the controller design, the proposed method is
different from some related methods, for example, those detailed
in references [4, 33, 34]. We introduce an auxiliary signal to
approximate the virtual input, and the approximation error can
be made as small as possible.

3. SIMULATION STUDY

In system (2), let σ = 5.45, δ = 20.0, x(0) = 0.5, y(0) =

−1, z(0) = 0. When u(t) ≡ 0, the chaotic behavior of (2) can
be seen in Figure 1.

Let the desired signal be xc, defined by

xc =

{

0 t ∈ [0, 8],

2 t > 8.

With respect to the NNs, the basic functions are chosen on
interval [-8 8], and five functions are used for each state. Their
initial conditions are WWW1(0) = 0001×2, WWW2(0) = 0001×25, and
WWW3(0) = 0001×125. The design parameters are k1 = k2 = k3 =

1.5, ai1 = 6, ai2 = 0.05, i = 1, 2, 3, 4, 5, 6, α1 = α2 = α3 = 1.
The simulation results are presented in Figure 2. It can be seen

in Figure 2 that the tracking error has rapid convergence and the

FIGURE 1 | Chaotic phenomenon of (2) in (A) x − y − z space, (B) x(t), (C) y(t), and (D) z(t).
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FIGURE 2 | Simulation results in (A) tracking performance, (B) control input, (C) compensated errors, (D) W1(t), (E) W2(t), and (F) W3(t).

FIGURE 3 | Simulation results with external disturbance in (A) tracking performance, (B) control input, (C) compensated errors, (D) ‖W1(t)‖, ‖W2(t)‖ and ‖W3(t)‖.
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signal x(t) tracks xc(t) tightly; the control input u(t) has a small
amplitude, and it fluctuates very gently; the compensated error ǫ3
converges to zero very quickly, but ǫ2 does not converge to zero
(in fact, in our method, it is not necessary for the compensated
error to converge to zero); the parameters of the NNs also
fluctuate gently.

To show the robustness of the proposed method, let us add
an external term 0.95 sin t into the third equation of the system
(2). The simulation results are presented in Figure 3. Comparing
Figures 2, 3, we can see that under the external disturbance, the
proposed method has very good robustness.

4. CONCLUSIONS

This paper presents an NN CFC method for PMSMs with fully
unknown systemmodels. To avoid the “explosion of complexity”
problem, we propose a one-order command filter. It has been
proven that the virtual input and its derivative can together
be approximated by the proposed filter, and the approximation
error can be made as small as possible. The proposed method is
performed by using a backstepping technique. It is also shown
that the proposed NN CFC can guarantee the boundedness of all

signals. Investigating CFC for PMSMs with input constraints will
be our future research direction.
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Quadratic rational Bézier curve transformation is widely used in the field of computational

geometry. In this paper, we offer several important characteristics of the quadratic rational

Bézier curve. More precisely, on the basis of proving its monotonicity, the necessary and

sufficient conditions for transforming a quadratic rational Bézier curve into a point, line

segment, parabola, elliptic arc, circular arc, and hyperbola are proved, respectively.

Keywords: Bézier curve, quadratic rational, necessary and sufficient conditions, geometry, computer aided

geometric design

1. INTRODUCTION

Bézier curves have wide application in computer-aided geometric design, being used to provide
precisely described points along a given curve [1]. Compared to other methods, such as the French
curve, Bézier-based approaches are more computationally affordable and reliable. Additionally,
the advantages of the Bézier curve in geometric design include its simple but clear mathematical
function [2]. For instance, it is capable of incorporating both conic sections and parametric cubic
curves as special cases [3]. As such, one can deal with two different curves simultaneously using
one unique computational procedure. Some preliminary studies and applications of Bézier curves
can be found in Lu et al. [4], Lee [5], and Han [6].

In this paper, to better understand the basic characteristics of Bézier curves, we conduct
some fundamental research. In particular, we discuss the necessary and sufficient conditions for
representing six different basic shapes, including a point, line segment, parabola, elliptic arc,
circular arc, and hyperbola, using Bézier curves [7, 8]. These results play a fundamental role in the
shape formulation and can help in facilitating any subsequent computer-based geometric design.

To begin with, we introduce the mathematical model of the quadratic rational Bézier curve [1].

Definition 1. The quadratic rational Bézier curve is defined as follows:

p(t) =
(1− t)2ω0P0 + 2t(1− t)ω1P1 + t2ω2P2

(1− t)2ω0 + 2t(1− t)ω1 + t2ω2
, t ∈ [0, 1], (1)

where

t =

√
ω0µ

√
ω0µ +

√
ω2(1− µ)

, µ ∈ [0, 1], (2)

and ω0 and ω2 are not zero values at the same time.
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The monotonicity of Formula (1.2) is discussed below. Let µ1 ∈

[0, 1],µ2 ∈ [0, 1], and µ1 ≤ µ2. Accordingly, in the case of
µ1 = 0, we have:

t1 =

√
ω0µ1

√
ω0µ1 +

√
ω2(1− µ1)

= 0. (3)

Note that 1 ≥ µ2 > µ1 ≥ 0, and t2 =
√

ω0µ2√
ω0µ2+

√
ω2(1−µ2)

≥ 0;

then it is easy to have t2 ≥ t1 = 0.
In the case of µ1 6= 0 and µ2 6= 0, according to Formula (1.2),

we have:

t1

t2
=

√
ω0µ1

√
ω0µ1 +

√
ω2(1− µ1)

/

√
ω0µ2

√
ω0µ2 +

√
ω2(1− µ2)

= (
√

ω0 +
√

ω2(
1

µ2
− 1)) / (

√
ω0 +

√
ω2(

1

µ1
− 1)) ≤ 1.

(4)

In other words, we have the conclusion that t is monotonically
increasing [9–11]. Furthermore, if we apply linear transformation
to Formula (1.1), it is easy to know

p(µ) =
ω0ω2(1− µ)2P0 + 2

√
ω0

√
ω2ω1µ(1− µ)P1 + ω0ω2µ

2P2

ω0ω2(1− µ)2 + 2
√

ω0
√

ω2ω1µ(1− µ)+ ω0ω2µ
2

= ((1− µ)2P0 + 2

√

ω2
1

ω0ω2
µ(1− µ)P1 + µ2P2)/((1− µ)2

+ 2

√

ω2
1

ω0ω2
µ(1− µ)+ µ2).

(5)

Let ω =

√

ω2
1

ω0ω2
and substitute µ with t in the standard form

of the quadratic rational Bézier curve. To this end, we have the
simplified version of the quadratic rational Bézier curve, which is
expressed as follows:

p(t) =
(1− t)2P0 + 2ωt(1− t)P1 + t2P2

(1− t)2 + 2ωt(1− t)+ t2
. (6)

2. SUFFICIENT AND NECESSARY
CONDITIONS FOR A QUADRATIC
RATIONAL BÉZIER CURVE TO
DEGENERATE INTO A POINT

Theorem 1. A quadratic rational Bézier curve degenerates into a
point if and only if three control points P0, P1, P2 coincide.

Proof: Assume that the quadratic rational Bézier curve
degenerates to a point PA. That is,

p(t) =
(1− t)2P0 + 2ωt(1− t)P1 + t2P2

(1− t)2 + 2ωt(1− t)+ t2
= PA ⇔

(1− t)2(P0 − PA)+ 2t(1− t)ω(P1 − PA)+ t2(P2 − PA) = 0.

(7)

As can be seen from Formula (7), when t ∈ (0, 1), we have
(1−t)2 6= 0, t2 6= 0, 2t(1−t) 6= 0, so P0 = PA, P1 = PA, P2 = PA.
That is, when the quadratic rational Bézier curve degenerates into
a point, P0, P1, P2 are the same point of PA.

On the other hand, when three control points coincide (say,
the same point PA), we know that:

p(t) =
(1− t)2PA + 2t(1− t)ωPA + t2PA

(1− t)2 + 2t(1− t)ω + t2
= PA. (8)

As can be seen from Formula (8), when three control
points P0, P1, P2 coincide, the quadratic rational Bézier curve
degenerates into a point [12, 13].

Algorithm 1: To degenerate a Quadratic Rational Bézier Curve
into a Point
Input: Control Points of Bezier Curve
Output: Points degenerated by Bezier Curve
1: Input Bézier Curve control points
2: Set coordinates of control points P1 = P0 and P2 = P0
3: Output coordinates of control points P0, P1, P2
4: if the number of control points < 3 then
5: goto Step 1.
6: end if

7: Initializing the independent variable t in the standard
formula of the quadratic rational Bezier curve to 0, Set t = 0

8: for t = 0; t ≤ 1; t+ = 0.00125 do

9: Calculate the standard formula of the quadratic rational
Bezier Curve.

10: x = (1−t)2x0+2t(1−t)ωx1+t2x2
(1−t)2+2t(1−t)ω+t2

, y =
(1−t)2y0+2t(1−t)ωy1+t2y2

(1−t)2+2t(1−t)ω+t2

11: end for

12: Output Bezier Curve.
13: Clear Bezier Curve, Bezier Curve control points. goto Step 1.
14: return

3. NECESSARY AND SUFFICIENT
CONDITIONS FOR DEGRADATION OF A
QUADRATIC RATIONAL BÉZIER CURVE
INTO A LINEAR SECTION

Theorem 2. The quadratic rational Bézier curve degenerates into
a straight line segment if and only if the control points P0, P2 do not
coincide, the weight factor ω = 0, or the control point P1 is on the
line segment [14–16].

Proof: First, we assume that one point is with two coordinates;
alternatively, we have P0 = (x0, y0), P1 = (x1, y1), and P2 =

(x2, y2). As such, for an arbitrary point p(t) = (x, y), according to
Formula (6) it is easy to have:

x =
(1− t)2x0 + 2t(1− t)ωx1 + t2x2

(1− t)2 + 2t(1− t)ω + t2
,

y =
(1− t)2y0 + 2t(1− t)ωy1 + t2y2

(1− t)2 + 2t(1− t)ω + t2
,

(9)
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On the other hand, a general form for a line function can be
expressed as: y = ax+ b, where a, and b is a constant [17]. Then,
substituting x and y using Formula (12), we can get:

(1− t)2y0 + 2t(1− t)ωy1 + t2y2

(1− t)2 + 2t(1− t)ω + t2

= a
(1− t)2x0 + 2t(1− t)ωx1 + t2x2

(1− t)2 + 2t(1− t)ω + t2
+ b,

(10)

If we simplify the above formula, it is easy to know:

(y0 − ax0 − b+ y2 − ax2 − b− 2y1ω + 2ax1ω + 2bω)t2 (11)

− 2(y0 − ax0 − b− y1ω + ax1ω + bω)t + y0 − ax0 − b = 0.

First, we assume that one point is with two coordinates;
alternatively, we have P0 = (x0, y0), P1 = (x1, y1), and P2 =

(x2, y2). As such, for an arbitrary point p(t) = (x, y), according to
Formula (6) it is easy to have:

x =
(1− t)2x0 + 2t(1− t)ωx1 + t2x2

(1− t)2 + 2t(1− t)ω + t2
,

y =
(1− t)2y0 + 2t(1− t)ωy1 + t2y2

(1− t)2 + 2t(1− t)ω + t2
,

(12)

Now, control points P0 and P2 are the first and last points of the
Bézier curve. As they are all on the Bézier curve, they will also be
on the straight line [18–20]. Alternatively, we have:

y0 = ax0 + b, y2 = ax2 + b. (13)

Therefore, Formula (11) is further simplified:

(y1 − ax1 − b)(ωt − ωt2) = 0. (14)

Next, Formula (14) is analyzed in the following aspects:

1. If the control point P1 is also on the Bézier curve (or on the
straight line), then y1 − ax1 − b = 0, and Formula (14)
clearly holds.

2. If the control point P1 is not on the Bézier curve (or not on
the straight line), then y1 − ax1 − b 6= 0, and Formula (14)
can be simplified as

− ωt2 + ωt = 0. (15)

Therefore, when t ∈ [0, 1], in order to make Formula (15) hold,
we have ω = 0.

As such, it is proved that when the quadratic rational Bézier
curve degenerates into a straight line segment, two conditions
are met: (1) the weight factor ω = 0, or (2) the control
point P1 is on the line segment with the control point P0, P2
as the end point. In the following, we discuss these two
conditions separately.

1. According to Formula (6), when the weight factor ω = 0,
we have:

p(t) =
(1− t)2P0 + 2ωt(1− t)P1 + t2P2

(1− t)2 + 2ωt(1− t)+ t2
=

(1− t)2P0 + t2P2

(1− t)2 + t2
,

(16)

and

x =
(1− t)2x0 + t2x2

(1− t)2 + t2
=

(1− t)2x0

(1− t)2 + t2
+

t2x2

(1− t)2 + t2
.

(17)

y =
(1− t)2y0 + t2y2

(1− t)2 + t2
=

(1− t)2y0

(1− t)2 + t2
+

t2y2

(1− t)2 + t2
.

(18)
To simplify the calculation process, let us assume that:

α =
(1− t)2

(1− t)2 + t2
. (19)

and

1− α =
t2

(1− t)2 + t2
. (20)

Now the following formula holds:

x = αx0 + (1− α)x2 → x− x2 = α(x0 − x2). (21)

y = αy0 + (1− α)y2 → y− y2 = α(y0 − y2). (22)

As the control points P0, P2 do not coincide, x0 6= x2, y0 6= y2,

α =
y− y2

y0 − y2
=

x− x2

x0 − x2
(23)

y

y0 − y2
−

x

x0 − x2
=

y2

y0 − y2
−

x2

x0 − x2
, (24)

where x0, x2, y0, y2 are constants. We assume that 1
y0−y2

=

A, 1
x0−x2

= B,
y2

y0−y2
− x2

x0−x2
= C (that is, A,B,C are all

constants). Accordingly, we know that Ay − Bx = C is a line
segment [21].

Algorithm 2: To Degenerate a Quadratic Rational Bézier Curve
into a Linear section
Input: Control Points of Bezier Curve
Output: Linear section degenerated by Bezier Curve
1: Set ω = 0
2: Input Bézier Curve control points P0, P1, P2
3: if the number of control points < 3 then
4: goto Step 2.
5: end if
6: Output coordinates of control points P0, P1, P2
7: Output line segment between control points P0, P1 and P1, P2
8: Initializing the independent variable t in the standard

formula of the quadratic rational Bezier curve to 0, Set t = 0
9: for t = 0; t ≤ 1; t+ = 0.00125 do
10: Calculate the standard formula of the quadratic rational

Bezier Curve.

11: x = (1−t)2x0+2t(1−t)ωx1+t2x2
(1−t)2+2t(1−t)ω+t2

, y =
(1−t)2y0+2t(1−t)ωy1+t2y2

(1−t)2+2t(1−t)ω+t2

12: end for
13: Output Bezier Curve.
14: Clear Bezier Curve, Bezier Curve control points. goto Step 1.
15: return
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2. Let the conditional control point P1 be the end point (on the
line segment with the control points P0 and P2) [22]; thus, it
can be seen that:

P1 = (1− v)P0 + vP2, v ∈ [0, 1], (25)

The Formula (25) can be substituted with Formula (6)
to have:

p(t) =
(1− t)2 + 2t(1− t)ω(1− v)

(1− t)2 + 2t(1− t)ω + t2
P0

+
(2t(1− t)ωv+ t2

(1− t)2 + 2t(1− t)ω + t2
P2. (26)

Then we set:

u =
(2t(1− t)ωv+ t2

(1− t)2 + 2t(1− t)ω + t2
. (27)

Comparing Formula (26) with Formula (27), it is easy to
find that

p(t) = (1− u)P0 + uP2. (28)

In conclusion, Formula (28) is the parametric formula
of the line segment. When the control point P1 is
on the line segment with the control point (P0, P2) as
the end point, Formula (26) can be written as the
parametric formula of the line segment of Formula (28).
As such, it is proved that it degenerates into a line
segment [23, 24].

Algorithm 3: To degenerate a Quadratic Rational Bézier Curve
into a Linear section
Input: Control Points of Bezier Curve
Output: Linear section degenerated by Bezier Curve
1: Set ωisaarbitraryvalue
2: Input Bézier Curve control points,P0, P1, P2
3: if the number of control points < 3 then
4: goto Step 2.
5: else
6: if the number of control points= 3 then
7: Set control point P3 on line segment with the control

points P1 and P2 as end points
8: end if
9: end if
10: Output coordinates of control points P0, P1,P2
11: Output line segment between control points P0, P1 and P1, P2
12: Initializing the independent variable t in the standard

formula of the quadratic rational Bezier curve to 0, Set t = 0
13: for t = 0; t ≤ 1; t+ = 0.00125 do
14: Calculate the standard formula of the quadratic rational

Bezier Curve.

15: x = (1−t)2x0+2t(1−t)ωx1+t2x2
(1−t)2+2t(1−t)ω+t2

, y =
(1−t)2y0+2t(1−t)ωy1+t2y2

(1−t)2+2t(1−t)ω+t2

16: end for
17: Output Bezier Curve.
18: Clear Bezier Curve, Bezier Curve control points. goto Step 1.
19: return

4. NECESSARY AND SUFFICIENT
CONDITIONS FOR A QUADRATIC
RATIONAL BÉZIER CURVE TO
REPRESENT A SECTION OF ARC

Theorem 3. Quadratic rational Bézier curves can be used
to represent an arc if and only if |P0P1| = |P2P1|
and 0 ≤ ω ≤ 1 [25].

Proof: The equation of a circle passing through three collinear
pointsQi(xi, yi), (i = 1, 2, 3), on a rectangular coordinate plane is:

∣

∣

∣

∣

∣

∣

∣

∣

x2 + y2 x y 1

x20 + y20 x0 y0 1

x21 + y21 x1 y1 1

x22 + y22 x2 y2 1

∣

∣

∣

∣

∣

∣

∣

∣

= 0. (29)

Given three points that are not collinear, we have:

P0(x0, y0, 0) = (−a, 0, 0),A(xA, yA, 0), P2(x2, y2, 0) = (a, 0, 0).
(30)

The arc curve starts from point P0 and passes through point A
to point P2. Now, let us find another control vertex P1. To do
so, P0, A, P2 are substituted into the three-point common-circle
equation 29, and we get

∣

∣

∣

∣

∣

∣

∣

∣

x2 + y2 x y 1

x20 + y20 x0 y0 1

x2A + y2A xA yA 1

x22 + y22 x2 y2 1

∣

∣

∣

∣

∣

∣

∣

∣

= 0. (31)

From Formula (30) to Formula (31), we can find that x0 =

−a, y0 = 0, x2 = a, y2 = 0. Furthermore, by expanding the
determinant 31 in the first row, we have

(x2 + y2)

∣

∣

∣

∣

∣

∣

−a 0 1
0 yA 1
a 0 1

∣

∣

∣

∣

∣

∣

+ (−1)x

∣

∣

∣

∣

∣

∣

a2 0 1

y2A yA 1
a2 0 1

∣

∣

∣

∣

∣

∣

+ y

∣

∣

∣

∣

∣

∣

a2 −a 1

y2A 0 1
a2 a 1

∣

∣

∣

∣

∣

∣

+ (−1)

∣

∣

∣

∣

∣

∣

a2 −a 0

y2A 0 yA
a2 a 0

∣

∣

∣

∣

∣

∣

= 0.

(32)

Among them,

∣

∣

∣

∣

∣

∣

−a 0 1
0 yA 1
a 0 1

∣

∣

∣

∣

∣

∣

= −2ayA,

∣

∣

∣

∣

∣

∣

a2 0 1

y2A yA 1
a2 0 1

∣

∣

∣

∣

∣

∣

= 0,

∣

∣

∣

∣

∣

∣

a2 −a 1

y2A 0 1
a2 a 1

∣

∣

∣

∣

∣

∣

= −a3 + ay2A + ay2A − a3,

∣

∣

∣

∣

∣

∣

a2 −a 0

y2A 0 yA
a2 a 0

∣

∣

∣

∣

∣

∣

= −a3yA − a3yA. (33)
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Finally, the above formula can be simplified as follows:

(−2ayA)(x
2 + y2)+ y(−a3 + 2ay2A − a3)+ 2a3yA = 0. (34)

Because yA 6= 0, it is easy to know

x2 +

(

y+
a2 − y2A
2yA

)2

= a2 +
(a2 − y2A)

2

4y2A
. (35)

On the other hand, as xA = 0, we can add xA to have

x2 +

(

y+
a2 − (x2A + y2A)

2yA

)2

= a2 +
(a2 − (x2A + y2A))

2

4y2A
. (36)

Summarizing the above formula, the coordinates of the center of
the circle O are:

xO = 0, yO =
a2 − (x2A + y2A)

2yA
. (37)

The radius of the circle is:

r =

√

a2 +
(a2 − (x2A + y2A))

2

4y2A
. (38)

The vertical lines of OP0 and OP2 are made from points P0 and
P2, respectively. According to the symmetry, if two vertical lines
intersect with the Y axis at point P1, then point P1 is the control
vertex of the arc curve. That is,

y1 =
2a2yA

a2 − (x2A + y2A)
. (39)

Accordingly, the coordinates of point P1 are:

x1 = 0, y1 =
2a2yA

a2 − (x2A + y2A)
. (40)

From the definition of the Bézier Curve in Formula (1), we have:

x(t) =
(1− t)2ω0x0 + 2t(1− t)ω1x1 + t2ω2x2

(1− t)2ω0 + 2t(1− t)ω1 + t2ω2
,

y(t) =
(1− t)2ω0y0 + 2t(1− t)ω1y1 + t2ω2y2

(1− t)2ω0 + 2t(1− t)ω1 + t2ω2
.

(41)

To simply Formula (41), we further introduce the
Quadratic Bernstein Basis Function (Bi,2(t)), which can be
expressed as follows:

B0,2(t) = (1− t)2, B1,2(t) = 2t(1− t), B2,2(t) = t2. (42)

As such, Formula (41) can be rewritten by applying Bi,2(t) in the
following format:

x(t) =
−aω0B0,2(t)+ aω2B2,2(t)

ω0B0,2(t)+ ω1B1,2(t)+ ω2B2,2(t)
,

y(t) =
2t(1− t)ω1y1

ω0B0,2(t)+ ω1B1,2(t)+ ω2B2,2(t)
.

(43)

On the other hand, note that the standard equation of curve arc
circle can be estimated as

x2(t)+ (y(t)+ a cot θ)2 = a2/ sin2 θ . (44)

Consequently, by substituting Formulas (43) into Equation (44),
the following results are obtained:

(

−aω0B0,2(t)+ aω2B2,2(t)

ω0B0,2(t)+ ω1B1,2(t)+ ω2B2,2(t)

)

2

+

(

ω1y1B1,2(t)

ω0B0,2(t)+ ω1B1,2(t)+ ω2B2,2(t)
+ a cot θ

)

2 =
a2

sin2 θ
,

(45)

Note that

a2

sin2 θ
− a2 cot2 θ = a2. (46)

As such, Formula (45) can be further simplified as

a2ω2
0B

2
0,2(t)+ a2ω2

2B
2
2,2(t)− 2a2ω0ω2B0,2(t)B2,2(t)+ ω2

1y
2
1B

2
1,2(t)

+(2ω1y1B1,2(t)a cot θ(ω0B0,2(t)+ ω1B1,2(t)+ ω2B2,2(t))

= a2(ω0B0,2(t)+ ω1B1,2(t)+ ω2B2,2(t))
2

(47)

Furthermore, according to Formula (38) and Formula (40), we
can have

y1 cot θ =
2a2yA

a2 − (x2A + y2A)
×

(a2 − (x2A + y2A))

2ayA
= a, (48)

and then,

(y21 + a2)ω2
1B

2
1,2(t)− 4a2ω0ω2B0,2(t)B2,2(t) = 0. (49)

Again, we consider the Quadratic Bernstein Basis Function,
and then the above formula (in Formula 49) can be simplified
as follows:

((y21 + a2)ω2
1 − a2ω0ω2)(1− t)2t2 = 0. (50)

Next, according to Formula (40), we know

(ω2
1 sec

2 θ − ω0ω2)(1− t)2t2 = 0, (51)

and t ∈ (0, 1), t2(1− t)2 6= 0. It is thus easy to know

ω2
1 = ω0ω2 cos

2 θ . (52)

According to the standard form of the quadratic rational Bézier
curve (see Formula 6), we can further estimate ω0 = ω2 =

1,ω1 = cos θ , and the value range of θ of the center angle of
the semicircle should be 0 ≤ θ ≤ π/2 [26].
In summary, the rational quadratic Bézier expressions of arc
curves passing through points P0,A, P2 are as follows,

C(t) =
(1− t)2P0 + 2 cos(θ)t(1− t)P1 + t2P2

(1− t)2 + 2 cos(θ)t(1− t)+ t2
. (53)
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Compared with the standard formula of a rational quadratic
Bézier, the following results are obtained,

ω = cos(θ), (54)

where 0 ≤ θ ≤ π/2, 0 ≤ ω ≤ 1. Consequently, the
necessary and sufficient conditions for a rational quadratic
Bézier curve to represent a circular arc are expressed
as follows:

|P0P1| = |P2P1| and 0 ≤ ω ≤ 1. (55)

Algorithm 4: For a Quadratic Rational Bézier Curve to Represent
a section of an Arc
Input: Control Points of Bezier Curve
Output: A section of Arc Represented by Bezier Curve
1: Set − 1 < ω < 1, and ω 6= 0
2: Input Bézier Curve control points,P0, P1, P2
3: if the number of control points < 3 then
4: goto Step 2.
5: else

6: if the number of control points= 3 then
7: Set |P0P1| = |P1P2|:
8: P2(y) = P0(y)

9: P1(x) =
P0(x)+P2(x)

2

10: P1(y) = P0(y)−
P2(x)−P0(x)

2 × tan(5
3 )

11: end if

12: end if

13: Output coordinates of control points P0, P1,P2
14: Output line segment between control points P0, P1 and P1, P2
15: Initializing the independent variable t in the standard

formula of the quadratic rational Bezier curve to 0, Set t = 0
16: for t = 0; t ≤ 1; t+ = 0.00125 do

17: Calculate the standard formula of the quadratic rational
Bezier Curve.

18: x = (1−t)2x0+2t(1−t)ωx1+t2x2
(1−t)2+2t(1−t)ω+t2

, y =
(1−t)2y0+2t(1−t)ωy1+t2y2

(1−t)2+2t(1−t)ω+t2

19: end for

20: Output Bezier Curve.
21: Clear Bezier Curve, Bezier Curve control points. goto Step 1.
22: return

5. NECESSARY AND SUFFICIENT
CONDITIONS FOR QUADRATIC RATIONAL
BÉZIER CURVES TO REPRESENT A
PARABOLA, ELLIPTIC ARC AND
HYPERBOLA

Theorem 4. Quadratic rational Bézier curve represents a
parabola, elliptic arc, and hyperbola if and only if ω = ±1,
−1 < ω < 1, and ω < −1 or ω > 1, respectively [27].

Proof: According to the second order Bernstein basis function of
Formula (42), Bézier curve from Formula (1) is written as follows,

p(t) =
ω0B0,2(t)P0
2

∑

j=0
Bj,2(t)ωj

+
ω1B1,2(t)P1
2

∑

j=0
Bj,2(t)ωj

+
ω2B2,2(t)P2
2

∑

j=0
Bj,2(t)ωj

=

2
∑

i=0

Ri,2(t)Pi,

(56)
where

Ri,2(t) =
ωiBi,2(t)
2

∑

j=0
Bj,2(t)ωj

. (57)

Next, we introduce the Local Oblique Coordinate System P1, S,T,
so that S = P0 − P1, T = P2 − P1. Since point P(t) is within
δP0P1P2 for arbitrary t ∈ [0, 1], P(t) can be rewritten as

P(t) = P1 + u(t)S+ v(t)T

= P1 + u(t)(P0 − P1)+ v(t)(P2 − P1)

= u(t)P0 + [1− u(t)− v(t)]P1 + v(t)P2.

(58)

Comparing the coefficients from both Formula (56) and Formula
(58), we know that

R0,2(t) = u(t),

R1,2(t) = 1− u(t)− v(t),

R2,2(t) = v(t).

(59)

Let k = ω0ω2/ω
2
1 , where k is the shape-invariant factor of a

conic, so

u(t)v(t) = R0,2(t)Ṙ2,2(t) =
1

4
k[1− u(t)− v(t)]2. (60)

Formula (60) is an implicit equation of a quadratic curve in
the local oblique coordinate system P1, S,T. The expansion of
Formula (60) further indicates that:

ku2(t)+(2k−4)u(t)v(t)+kv2(t)−2ku(t)−2kv(t)+k = 0. (61)

In the Cartesian coordinate system, the image of a binary
quadratic equation can represent a conic curve, and all conic
curves can be derived in the aforementioned way [1]. The
equation has the following forms [28]:

Ax2 + Bxy+ Cy2 + Dx+ Ey+ F = 0, A,B,C are not all zero,
(62)

where A,B,C,D,E, F are polynomial coefficients. If the following
conditions are satisfied,

B2 − 4AC < 0, (63)

then Formula (62) represents an ellipse; furthermore, under the
same condition, if the conic degenerates (that is, A = C,B = 0),
the equation represents a circle. Additionally, if the following
conditions are satisfied,

B2 − 4AC = 0, (64)
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Algorithm 5: For Quadratic Rational Bézier Curves to Represent

a Parabola, Elliptic Arc and Hyperbola

Input: Control Points of Bezier Curve

Output: A section of a Parabola, Elliptic Arc or Hyperbola

Represented by a Bezier Curve

1: if Quadratic Rational Bézier Curves to Represent a Parabola

then

2: Set ω = 1 or ω = −1

3: end if

4: if Quadratic Rational Bézier Curves to Represent an Elliptic

Arc then

5: Set − 1 < ω < 1, and ω 6= 0

6: end if

7: if Quadratic Rational Bézier Curves to Represent a

Hyperbola then

8: Set ω < −1 or ω > 1

9: end if

10: Input Bézier Curve control points P0, P1, P2
11: if the number of control points < 3 then

12: goto Step 2.

13: else

14: if the number of control points = 3, and Quadratic

Rational Bézier Curves to Represent an Elliptic Arc then

15: Set |P0P1| 6= |P1P2|

16: end if

17: end if

18: Output coordinates of control points P0, P1,P2
19: Output line segment between control points P0, P1 and P1, P2
20: Initializing the independent variable t in the standard

formula of the quadratic rational Bezier curve to 0, Set t = 0

21: for t = 0; t ≤ 1; t+ = 0.00125 do

22: Calculate the standard formula of the quadratic rational

Bezier Curve.

23: x = (1−t)2x0+2t(1−t)ωx1+t2x2
(1−t)2+2t(1−t)ω+t2

, y =
(1−t)2y0+2t(1−t)ωy1+t2y2

(1−t)2+2t(1−t)ω+t2

24: end for

25: Output Bezier Curve.

26: Clear Bezier Curve, Bezier Curve control points. goto Step 1.

27: return

then Formula (62) represents a parabola [29]. Finally, if the
following conditions are satisfied,

B2 − 4AC > 0 (65)

then Formula (62) represents an hyperbola. The coefficients from
Formula (61) and Formula (62) can be obtained as follows: A =

k,B = k − 2,C = k,D = −2k,E = −2k, F = k. As such, we
can get:

B2 − 4AC = 1− k. (66)

We then provide the discussion and judgment of Formula
(66). That is, from the condition of Formula (63), if the curve is
an ellipse, then in Formula (66) we have B2 − 4AC = 1− k < 0.
Therefore, when k > 1, the curve is an ellipse. From the condition
of (64), if the curve is a parabola, then B2 − 4AC = 1 − k = 0
(again see Formula 66). Therefore, when k = 1, the curve is a
parabola. From the condition of 65, if the curve is a hyperbola,
then B2 − 4AC = 1 − k > 0, so when k < 1, the curve
is a hyperbola.

Note that k = ω0ω2/ω
2
1 . In summary, under the standard

form of the quadratic rational Bézier curve, we have ω0 =

ω2 = 1, and ω = ω1. Consequently, we prove that when
−1 < ω < 1, the quadratic rational Bézier curve is a ellipse;
when ω = ±1, the quadratic rational Bézier curve is a parabola;
when ω < −1, or ω > 1, the quadratic rational Bézier curve
is a hyperbola.

6. CONCLUSION

In this paper, we discuss the necessary and sufficient
conditions for utilizing quadratic rational Bézier curves to
represent different shapes, such as a point, line segment,
parabola, elliptic arc, circular arc, and hyperbola. These
results can be further used to facilitate other computer-aided
geometric designs.
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Pebbling can be viewed as a model of resource transportation for networks. We use a

graph to denote the network. A pebbling move on a graph consists of the removal of

two pebbles from a vertex and the placement of one pebble on an adjacent vertex. The

t-pebbling number of a graph G is the minimum number of pebbles so that we can move

t pebbles on each vertex of G regardless of the original distribution of pebbles. Let ω be

a positive function on V (G); the ω-cover pebbling number of a graph G is the minimum

number of pebbles so that we can reach a distribution with at least ω(v) pebbles on v for

all v ∈ V (G). In this paper, we give the ω-cover pebbling number of trees for nonnegative

function ω, which generalized the t-pebbling number and the traditional weighted cover

pebbling number of trees.

Keywords: network, tree, path partition, pebbling, cover pebbling

Mathematics Subject Classification: 05C99, 05C72, 05C85.

1. INTRODUCTION

Pebbling in graphs was introduced by Chung [1]. It can also be viewed as a model of resource
transportation for networks. Let G be a simple connected graph; we use V(G) and E(G) to denote
the vertex set and edge set of G, respectively. d(u, v) is the distance of u and v, and we write u ∼ v
if they are adjacent. N(v) = {u|u ∼ v} is the neighbor of v, and d(v) = |N(v)| is the degree of v. Let
H be a subgraph of G; we use dH(v) to denote the degree of v in H.

A pebble distribution D on G is a function D :V(G) → N (N is the set of nonnegative integers),
where D(v) is the number of pebbles on v, |D| =

∑

v∈V(D) D(v) is the size of D.
A pebbling move consists of the removal of two pebbles from a vertex and the placement of one

pebble on an adjacent vertex. Let D and D′ be two pebble distributions of G. If so, we say that D
contains D′ if D(v) ≥ D′(v) for all v ∈ V(G), and D′ is reachable from D if there is some sequence
(probably empty) of pebbling moves (a pebbling sequence in short) starting from D and resulting
in a distribution, which contains D′. For a graph G and a vertex v, we call v a root (or target vertex)
if the goal is to place pebbles on v. If t pebbles can be moved to v from D by a sequence of pebbling
moves, then we say that D is t-fold v-solvable, and v is t-reachable from D. If D is t-fold v-solvable
for every vertex v, we say that D is t-solvable.

The t-pebbling number of a graph G, denoted by ft(G), is the smallest number m such that every
distribution with size m is t-solvable. While t = 1, we use f (G) instead of f1(G), which is called the
pebbling number of G.

For any two graphs G and H, we define the Cartesian product G × H to be the graph with
the vertex set V(G × H) and edge set the union of {((a, v), (b, v))|(a, b) ∈ E(G), v ∈ E(H)} and
{((u, x), (u, y))|u ∈ V(G), and(x, y) ∈ E(H)}.

To determine the pebbling number of a general graph G is difficult. The problem of whether a
distribution is v-solvable for some v ∈ V(G) was shown to be NP-complete [2, 3]. The problem of

59
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deciding whether the pebbling number of a graph G is less than
k was shown to be 5P

2 -complete [3]. The pebbling numbers of
trees [4], cycles [5], hypercubes [1], and so on are determined. A
conjecture called Graham’s Conjecture is given by Chung [1].

Conjecture 1.1. (Graham’s Conjecture) Let G and H be two
connected graphs; the pebbling number of the Cartesian product
of G and H satisfies:

f (G×H) ≤ f (G)f (H).

There are many results about Graham’s Conjecture [6–10], while
this conjecture is still open.

Definition 1.2. Let ω be a nonnegative function on V(G) and
D a distribution on V(G). We say D is ω-solvable (or D solves
ω) if we can reach a distribution D∗ from D, by a sequence of
pebbling moves, so that D∗(v) ≥ ω(v) for all v ∈ V(G). The ω-
cover pebbling number of G, denoted by γω(G), is the minimum
numberm so that every distribution D with sizem is ω-solvable.

Definition 1.3. Let ω be a positive function on V(G); define

sω(v) =
∑

u∈V(G)

ω(u)2d(u,v),

and

sω(G) = max
v∈V(G)

sω(v).

The ω-cover pebbling number of a graph G has been determined
for positive ω by [11].

Theorem 1.4. ([11]) Let ω be a positive weight function on V(G);
the ω-cover pebbling number of G is

γω(G) = sω(G).

From Theorem 1.4, we can get

Theorem 1.5. ([11]) Let ω1 be a positive function on G and ω2

be a positive function on H. The function ω on G × H is given by
ω((g, h)) = ω1(g)ω2(h), where g ∈ V(G) and h ∈ V(H), then
γω(G×H) = γω1 (G)γω2 (H).

Wefirst generalize the definition of sω(T) whileω is a nonnegative
function on a tree T. We will give the definition of path partition
in the next section.

Definition 1.6. Given a tree T and a nonnegative function ω for
each vertex v ∈ V(T), and let Tω(v) be the minimum subtree of
T containing v and W : = {u : ω(u) > 0}. We give each edge
in T\E(Tω(v)) a direction toward Tω(v) to get a directed graph,

which is denoted by
−→
T \E(Tω(v)), and (a1, . . . , an) is the size of

the maximum path partition of
−→
T \E(Tω(v)). We define

sω(v) =
∑

u∈W

ω(u)2d(u,v) +

n
∑

i=1

2ai − n.

and

sω(T) = max
v∈V(T)

sω(v).

Note that whileω is positive, then the two definitions of sω(T) are
the same. Definition 1.6 is thus a generalization of Definition 1.3.
In this paper, we generalize Theorem 1.4 while T is a tree and ω

is nonnegative. Thus, our main result is as follows

Theorem 1.7. Let T be a tree with a nonnegative weight function
ω on V(T). The ω-cover pebbling number of T is

γω(T) = sω(T).

Theorem 1.8. Let T be a tree with a nonnegative weight function
ω on V(T). If |W| = 1, then Theorem 1.7 is equivalent to
Theorem 2.2.

Proof. If |W| = 1, assume that ω(v) = t, and ω(u) = 0 for u 6= v.
We will show that ft(T, v) = sω(T).

Assume the size of a maximum path partition of ETv is
(a0, a1, . . . , an), and d(v, v0) = a0, P0 is the longest directed path
from v0 to v. Then (a1, . . . , an) must be the size of a maximum
path partition in ETv\P0. So ft(T, v) = sω(v0) ≤ sω(T).

Assume sω(T) = sω(v1), and d(v1, v) = a0. Let P0 be the path
connected v1 and v, then Tω(v1) = P0; assume (a1, . . . , an) is the
size of the maximum path partition of T\E(Tω(v)) = T\E(P0),
so α = (a0, a1, . . . , an) is a path partition of ETv, and sα = sω(v1)
by Corollary 2.3 and ft(T, v) ≥ sω(v1) = sω(T).

Definition 1.9. ([12]) Given a sequence S of pebbling moves on
G, the transition digraph obtained from S is a directed multigraph
denoted T(G, S) that has V(G) as its vertex set. Each move s ∈ S
along edge uv (move off two pebbles from u and add one on v) is
represented by a directed edge uv.

The following lemma is useful in the following sections.

Lemma 1.10. ([12], No-Cycle Lemma) Let S be a sequence
of pebbling moves on G, reaching a distribution D. Then
there exists a sequence S∗ of pebbling moves, thus reaching a
distribution D∗ where

1. On each vertex v, D∗(v) ≥ D(v);
2. T(G, S∗) does not contain any directed cycles.

2. PRELIMINARIES

We first introduce the path partition and the pebbling number
of trees.

Definition 2.1. ([4]) Given a root v of a tree T, then we can

view T as a directed graph
−→
Tv with edges directed toward v. A

path partition is a set of nonoverlapping directed paths in which

the union is
−→
Tv . A path partition is said to majorize another if

the non-increasing sequence of the path size majorizes that of
the other (that is (a1, a2, . . . , ar) > (b1, b2, . . . , bt) if and only if
ai > bi, where i = min{j : aj 6= bj}). A path partition of a tree
−→
Tv is said to bemaximum if it majorizes all other path partitions.
Note that, in this paper, the sequence of the size of a path partition
is always non-increasing.
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Note: By the definition of the maximum path partition, we
can give a way to determine the size of the maximum path
partition. First, we choose the longest directed path P1 in
−→
Tv , with length a1. Then, we choose the longest directed

path P2 in
−→
Tv\E(P1), with length a2, and so on. Moreover,

it should be noted that the maximum path partition may not
be unique, but the size of the maximum path partition must
be unique.

Moews [4] found the t-pebbling number of trees by a
path partition.

Theorem 2.2. ([4]) Let T be a tree, v ∈ V(T), and (a1, . . . , an) be

the size of the maximum path partition of
−→
Tv . Then,

ft(T, v) = t2a1 +

n
∑

i=2

2ai − n+ 1,

ft(T) = max
v∈V(T)

ft(T, v).

Corollary 2.3. Let T be a tree, v ∈ V(T), and α = (a1, . . . , an)

be the size of a path partition of
−→
Tv , sα : = t2a1 +

∑n
i=2 2

ai −

n+1. Then,

ft(T, v) = max
α

sα .

Proof. Let α0 be the size of the maximum path partition of
−→
Tv .

Then, ft(T, v) = sα0 ≤ maxα sα .

Assume P1, P2, . . . , Pn is a path partition of
−→
Tv , and the length

of Pi is ai for 1 ≤ i ≤ n. Note that for each Pi we should
assume the two endpoints vi and v′i satisfy d(vi, v) > d(v′i, v).
We put t2a1 − 1 pebbles on v1 and 2ai − 1 pebbles on vi for
2 ≤ i ≤ n; it is clear that t pebbles cannot be moved to v from this
distribution. Thus, for each α, sα−1 < ft(T, v), so sα ≤ ft(T, v) so
maxα sα ≤ ft(T, v).

Definition 2.4. Let C be a generalized distribution on G, where
C(v) is an integer (may be negative) for all v ∈ V(G). A pebbling
move on G consists of the removal of two pebbles from a vertex
v (with C(v) ≥ 2) and the placement of one pebble on an
adjacent vertex.

In the following, a distribution D means that D(v) ≥ 0, and a
generalized distribution C means C(v) is an integer for all v ∈

V(G).

Definition 2.5. A pebbling move from u to v under a
distribution D is executable if D(u) ≥ 2. A pebbling sequence S
is a finite set of pebbling moves, assuming S = (S1, ..., Sk), where
Si is a pebbling move for 1 ≤ i ≤ k, and the pebbling move Si is
in front of Sj if 1 ≤ i < j ≤ k. We say the pebbling sequence S
executable, if Si is executable for 1 ≤ i ≤ k.

Definition 2.6. Let ω be a nonnegative function on V(G) and C
be a generalized distribution on V(G). We say C is ω-solvable, if
we can reach a distribution C∗ from C, by a sequence of pebbling
moves so that C∗(v) ≥ ω(v). In particular, if ω(v) = 0 for all
v ∈ V(G), then we say that C is 0-solvable.

Lemma 2.7. Let D be a distribution on a graph G and ω be a
nonnegative function on V(G), C : = D−ω. Then, D is ω-solvable
if and only if C is 0-solvable.

Proof. If C is 0-solvable, let δ be an executable pebbling sequence
that reaches a distribution D∗ so that D∗ > 0 from C. It is then
clear that δ is also an executable pebbling sequence that can reach
a distribution D′ so that D′ = D∗ + ω > ω from D. Thus D is
ω-solvable.

On the other hand, if D is ω-solvable, by Lemma 1.10, there
exists a pebbling sequence S reaching a distribution D∗ with
D∗(v) ≥ ω(v), and T(G, S) does not contain any direct cycle. We
can thus give a sequence of the vertices of G, as (v1, v2, . . . , vn),
so that each directed edge vivj in T(G, S) satisfies i < j. We can
thus rearrange the sequence of pebbling moves S along the order
(v1, v2, . . . , vn). It means we first choose all pebbling moves in S
that remove pebbles from v1, choose all pebbling moves in S that
remove pebbles from v2, and so on, and we denote this sequence
of pebbling moves by S′. We will show that S′ is an executable
pebbling sequence that reach D∗ − ω from C.

In S′, for each vertex v ∈ V(G), the pebbling moves that
move pebbles to v are in front of the pebbling moves that remove
pebbles from v. We may thus assume that, for each vertex vi, we
first move αi pebbles from other vertices to vi and then remove βi

pebbles from vi.
We only need to show that, for each vi ∈ V(G), the sequence

of pebbling moves that removes βi pebbles from vi in S′, denoted
by σi, is executable. We use induction on i. If i = 1, and we can
then getD(v1)−β1 = D∗(v1) ≥ ω(v1) ⇒ D(v1)−ω(v1) ≥ β1 ⇒

C(v1) ≥ β1, and so σ1 is executable.
Assume σh is executable for h < i. By induction, the pebbling

sequence that moves αi pebbles to vi is executable. Moreover, we
can get D(vi) + αi − βi = D∗(vi) ⇒ D(vi) + αi − ω(vi) − βi =

D∗(vi)−ω(vi) ≥ 0 ⇒ D(vi)−ω(vi)+αi ≥ βi ⇒ C(vi)+αi ≥ βi.
Thus σi is executable.

So S′ is an executable pebbling sequence that reaching D∗ −

ω from C. Note that D∗ − ω ≥ 0, and this completes
the proof.

Definition 2.8. Let D be a distribution on a tree T and ω be a
nonnegative function on V(T). C : = D− ω is called the induced
generalized distribution fromD andω of T. Let v be a leaf of T and
u be its neighbor in T. The induced generalized distribution C′ on
T \ v is given: if C(v) ≥ 0, then C′(u) = C(u) +

⌊

C(v)/2
⌋

, and
if C(v) < 0, then C′(u) = C(u) + 2C(v), keeping C′(x) = C(x)
unchanged for all x 6= u.

Lemma 2.9. Let D be a distribution on a tree T and ω be a
nonnegative function on V(T). C : = D − ω, v is a leaf of T,
and C′ is the induced generalized distribution from D and ω of
T\v. Then, C is 0-solvable in T if and only if C′ is 0-solvable
in T\v.

Proof. Firstly, we assume C is 0-solvable in T, and there is a
pebbling sequence σ reaching a distribution C∗ from C with
C∗(x) ≥ 0 for each x ∈ V(T).

Case 1.1. C(v) ≥ 0. By Lemma 1.10, we may assume that no
pebble has been moved from u to v; at most, therefore,

⌊

C(v)/2
⌋
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pebbles can be moved from v to u. We may assume the first step
of σ is to move

⌊

C(v)/2
⌋

pebbles from v to u, so the left steps
makes C′ solve 0 on T\v.

Case 1.2. C(v) < 0. By Lemma 1.10, we may assume that no
pebble has been moved from v to u. So we may assume the last
step of σ is to move −C(v) pebbles from u to v, and so the steps
before it makes C′ solve 0 on T\v.

Secondly, we assume C′ is 0-solvable in T\v, and there is a
pebbling sequence δ reaching a distribution C∗ from C′ with
C∗(x) ≥ 0 for each x ∈ V(T\v).

Case 2.1. C(v) ≥ 0. First, we move
⌊

C(v)/2
⌋

pebbles
from v to u, and the left steps are just δ; this sequence makes
C solve 0.

Case 2.2. C(v) < 0. After the pebbling sequence δ,
we move −C(v) pebbles from u to v; this sequence makes
C solve 0.
Notations: Assume T∗ is a subtree of T, then T∗ can be obtained
from T by deleting the leaves of the subtree of T (the vertex with
degree one) one by one. For each subtree T∗ of T, therefore, we
can get an induced generalized distribution C∗. In particular, for
each vertex v ∈ V(T), let Tv be a subtree containing v and all
of its neighbors. We use Cv to denote the induced generalized
distribution from D and ω of Tv and ̂C(v) to denote the induced
generalized distribution of {v}.

Corollary 2.10. Let D be a distribution on a tree T, ω be
a nonnegative function on V(T), and ̂C(v) be the induced
generalized distribution from D and ω of {v}. D is not ω-solvable is
equivalent tôC(v) < 0 for each v ∈ V(T).

Proof. From Lemma 2.7 and Lemma 2.9, the result follows
by induction.

Lemma 2.11. Let D be a distribution on a tree T, which is not ω-
solvable with |D| = γω(T)− 1. For each vertex x ∈ V(T), which is
not a leaf of T, there exists a vertex y ∈ N(x), so that Cx(y) ≥ 0.

Proof. If Cx(x
′) < 0, for all x′ ∈ N(x), assume y, z ∈ N(x)

with Cx(z) ≤ Cx(y) < 0. We delete all other vertices to the
left T1 = yxz and its induced generalized distribution C1. Then,
C1(y) = Cx(y), C1(z) = Cx(z) and ̂C(x) = C1(x) + 2C1(y) +
2C1(z) ≤ −1 by Corollary 2.10. Note that C1(x) = D(x) −
w(x) +

∑

x′∈N(x),x′ /∈{y,z} 2Cx(x
′). Thus, C1(x) − D(x) ≤ 0 and

C1(x)+ 2C1(z)− D(x) ≤ 0. Now, we remove D(x) pebbles from
x and put D(x)+ 1 pebbles on y to get a new distribution D′ with
|D′| = |D|+1. The induced generalized distribution fromD′ and
ω of {y} is denoted by ̂C′(y). Then, ̂C′(y) = (C1(y)+D(x)+ 1)+
2(C1(x)+2C1(z)−D(x)) = (C1(x)+2C1(y)+2C1(z))+ (C1(z)−
C1(y))+C1(z)+ (C1(x)−D(x))+ 1 ≤ −1+ 0− 1+ 0+ 1 = −1,
and so D′ is not ω-solvable by Corollary 2.10, a contradiction to
|D′| = γω(T), and we are done.

Theorem 2.12. Let ω be a nonnegative function on V(T) and D
be a distribution that is not ω-solvable with |D| = γω(T) − 1. All
pebbles are then distributed on the leaves of T.

Proof. If D(x) > 0 for some vertex x ∈ V(T), which is not a leaf,
then N(x) has at least two vertices. By Lemma 2.11, there exists a

vertex y ∈ N(x) with Cx(y) ≥ 0. We first show that there exists a
vertex z ∈ N(x) with Cx(z) < 0.

If not, that means for all v ∈ N(x), Cx(v) ≥ 0. Note that
D(x) > 0, and thus ̂C(x) = D(x) +

∑

v∈N(x)⌊Cx(v)/2⌋ > 0. By
Corollary 2.10,D isω-solvable, a contradiction. Thus, there exists
a vertex z ∈ N(x) with Cx(z) < 0.

Let T1 = yxz be the subtree of T, with induced generalized
distribution C1. Then, C1(z) = Cx(z), C1(y) = Cx(y), and
̂C(x) = C1(x)+ ⌊C1(y)/2⌋ + 2C1(z) < 0.

Now, consider the new distribution D∗, with D∗(y) = D(y)+
D(x) + 1, D∗(x) = 0, and D∗(v) = D(v); |D∗| = γω(T). The
induced generalized distribution from D∗ and ω of {x} is given
by ̂C∗(x) = (C1(x)− D(x))+ ⌊(C1(y)+ D(x)+ 1)/2⌋ + 2C1(z).

If D(x) = 1, then ̂C∗(x) = C1(x) + ⌊C1(y)/2⌋ + 2C1(z) =
̂C(x) < 0;

IfD(x) ≥ 2, then̂C∗(x) ≤ C1(x)−D(x)+⌊C1(y)/2⌋+D(x)/2+
1+ 2C1(z) = ̂C(x)+ 1− D(x)/2 ≤ ̂C(x) < 0.

By Corollary 2.10, D∗ is not ω-solvable, a contradiction to
|D∗| = γω(T). This completes the proof.
From Theorem 2.12, for a given integer p with p < γω(T),
there must exist a distribution D, which is not ω-solvable
with |D| = p, and all pebbles are distributed on the
leaves of T.

3. THE GENERALIZATION OF THE COVER
PEBBLING NUMBER ON TREES

Assume that sω(v0) = sω(T) for some v0 ∈ V(T); it should be

noted that
−→
T \E(Tω(v0)) is a directed graph.We define dω(u, l) to

be the length of the maximal path containing u in all maximum

path partitions of
−→
T \E(Tω(v0)). If ω is clear, then we use d(u, l)

for short (note that d(u, l) maybe 0). Let Pα be a maximal path

partition of
−→
T \E(Tω(v0)); then, dω(u, l) = maxPα

{|P| : u ∈

P, P ∈ Pα}.

Lemma 3.1. Assume that sω(v0) = sω(T) for some v0 ∈ V(T);
then for each vertex u ∈ V(T) and d(u, v0) ≥ d(u, l).

Proof. Assume u, v ∈ V(T). There is exactly one subpath of T
with endpoints u and v, and we denote this path by Puv. We thus
have Puv = Pvu.

If |W| = 1, we may assume that ω(v) = t, and ω(u) =

0 for u 6= v. By the proof of Theorem 1.8, we know that
ft(T, v) = sω(v0). Let (a1, a2, . . . , an) be the size of the maximum

path partition of
−→
Tv . Then d(v, v0) = maxu∈V(T) d(v, u) = a1.

Assume P1 is the maximal path containing u in
−→
Tv\Pv0 ,v, and

P1 ∩ Pv0v = v1. The length of Pv0v (P1) is thus a1 (d(u, l))
and d(v1, v0) ≤ d(u, v0). If d(u, v0) < d(u, l), then d(v1, v0) <

d(u, l), and we get a path P1 ∪ Pv1v with length a1 − d(v1, v0) +
d(u, l) > a1, a contradiction to the maximum of a1, and
thus d(u, v0) ≥ d(u, l).

If |W| ≥ 2, we only need to show it while u ∈ V(Tω(v0)).
If d(u, v0) < d(u, l) for some u ∈ V(Tω(v0)), there exists a leaf

v1 in
−→
T \E(Tω(v0)) so that d(u, l) = d(u, v1), and we will show

that sω(v1) > sω(v0).
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Let TC(v) be the component of T\u containing the vertex v.
We thus have TC(v1) ∩W = ∅.

Case 1. TC(v0) ∩W 6= ∅.
Assume w1 ∈ TC(v0) ∩W, then d(w1, v1) ≥ d(u, v1)+ 1 and

d(w1, v1)− d(w1, v0) ≥ d(u, v1)− d(u, v0)+ 2 ≥ 3.

Note that
−→
T \E(Tω(v0) ∪ Pv1u) ⊆

−→
T \E(Tω(v1)). So

sω(v1)− sω(v0)

≥
∑

x∈W

ω(x)(2d(x,v1) − 2d(x,v0))− 2d(u,v1)

≥ ω(w1)(2
d(w1 ,v1) − 2d(w1 ,v0))− 2d(u,v1)

≥ 2d(w1 ,v1) − 2d(w1 ,v0) − 2d(u,v1)

≥ 2d(w1 ,v1) −
2d(w1 ,v1)

8
−

2d(w1 ,v1)

2

=
3 · 2d(w1 ,v1)

8
> 0.

Hence, sω(v1) > sω(v0), which is a contradiction to sω(v0) =

sω(T).
Case 2. TC(v0) ∩W = ∅.
Let τω(v) =

∑

x∈W ω(x)2d(x,v). If so, then τω(v0) =

2d(u,v0)τω(u), and τω(v1) = 2d(u,v1)τω(u). For |W| ≥ 2, τω(u) ≥
20 + 21 = 3.

Note that
−→
T \E(Tω(v0) ∪ Pv1u) ⊆

−→
T \E(Tω(v1)). So

sω(v1)− sω(v0)

≥ 2d(u,v1)τω(u)− 2d(u,v0)τω(u)− 2d(u,v1)

= τω(u)(2
d(u,v1) − 2d(u,v0))− 2d(u,v1)

≥ 3(2d(u,v1) − 2d(u,v0))− 2d(u,v1)

≥ 3(2d(u,v1) −
2d(u,v1)

2
)− 2d(u,v1)

=
2d(u,v1)

2
> 0.

Hence, sω(v1) > sω(v0), which is a contradiction to sω(v0) =

sω(T), and this completes the proof.

Corollary 3.2. Let ω be a nonnegative function in V(T), for
some v ∈ W, and ω′ be a nonnegative function satisfying
ω′(v) = ω(v) − 1, ω′(u) = ω(u) for other vertices in T. If
so, then

sω(T) ≥ sω′ (T)+ 2dω(v,l).

Proof. Assume that there exist v1 and v2, so that sω(v1) = sω(T)
and sω′ (v2) = sω′ (T).

By the definition of sω(v), if ω(v) ≥ 2, then dω(v, l) = dω′ (v, l),
we have

sω(T) = sω(v1) ≥ sω(v2)

= sω′ (v2)+ 2d(v,v2)

≥ sω′ (v2)+ 2dω′ (v,l) (by Lemma 3.1)

= sω′ (T)+ 2dω(v,l).

If ω(v) = 1, the difference between
−→
T \Tω(v1) and

−→
T \Tω′ (v2) is

just the length of the maximal path containing v, we have

sω(T) = sω(v1) ≥ sω(v2)

= sω′ (v2)+ 2d(v,v2) + 2dω(v,l) − 2dω′ (v,l)

≥ sω′ (v2)+ 2dω(v,l) (by Lemma 3.1)

= sω′ (T)+ 2dω(v,l).

The proof of Theorem 1.7:

The lower bound holds clearly, as we put 2ai − 1 pebbles on
the leaf of each path for 1 ≤ i ≤ n (no pebble can then be moved
to Tω(v)), and

∑

u∈S w(u)2
d(u,v) − 1 pebbles on v, obviously it is

not ω-solvable.
For the upper bound, it holds if |ω| = 1 or |W| = 1 by the

proof of Theorem 1.8. It also holds for |T| ≤ 2 by Theorem 2.2
and Theorem 1.4. We may thus assume that |ω| ≥ 2, |W| ≥ 2,
and |T| ≥ 3.

If the result is false for some T and ω, then we choose one
counterexample T and its weight ω so that |T| and |ω| are both
minimal. It means the upper bound holds for T′ and its weight ω′

if |T′| < |T| or |ω′| < |ω|.
Let D be a distribution on T, which is not ω-solvable with

size sω(T). By Theorem 2.12, we may assume that all pebbles are
distributed on the leaves of T.

Assume sω(v0) = sω(T). There exists x ∈ W\v0 satisfying
dTω(v0)(x) = 1. If dT(x) 6= 1, we can get d(x, l) > 0, and
there exists a nonempty component in T\E(Tω(v0)), which is
connected with x. Say T1 and b1 ≥ b2 ≥ . . . ≥ bm is the size
of the maximum path partition of T1.

Case 1. D(T1) cannot move a pebble to x. |D(T1)| ≤
∑m

i=1 2
bi − m, and we consider D on T\T1, |D(T\T1)| ≥

sω(T) − D(T1) ≥ sω(T\T1), and D(T\T1) is not ω-solvable, a
contradiction to the minimum of |T|.

Case 2. D(T1) can move one pebble to x. It costs us at most
2b1 = 2dω(x,l) pebbles on T1. The left pebbles on T is not ω′-
solvable (ω′ satisfies ω′(x) = ω(x) − 1, and it is unchanged for
other vertices in T). From the minimum of |ω| and Corollary 3.2,
we thus have |D| < sω′ (T) + 2dω(x,l) ≤ sω(T), a contradiction to
|D| = sω(T).

We may therefore assume dT(x) = 1.
We claim that D(x) = 0. Otherwise, let ω′ satisfy ω′(x) =

ω(x) − 1 and ω′(v) = ω(v) for v 6= x. Regardless of one pebble
being on x, we know that |D| − 1 other pebbles cannot solve
ω′. From the minimum of |ω|, we have |D| − 1 ≤ sω′ (T) − 1.
By Corollary 3.2, sω′ (T) + 1 ≤ sω(T), so |D| ≤ sω(T) − 1, a
contradiction to |D| = sω(T), so D(x) = 0.

Assuming that x′ ∼ x in T, we then delete x. Let C′(x′) =

C(x′) + 2C(x) and C′(v) = C(v) otherwise. Note that all pebbles
are distributed on the leaves of T, so C′(x) = D(x′) − ω(x′) −
2(D(x) − ω(x)) = −ω(x′) − 2ω(x). By Lemma 2.9, D is not ω-
solvable in T is equivalent to D is not ω′-solvable in T\x, where
ω′(x′) = ω(x′) + 2ω(x) and ω′(v) = ω(v) for v 6= x. By the
minimum of |T|, we have |D| ≤ sω′ (T\x) − 1, note that x 6= v0,
we have sω′ (T\x) = sω(T), a contradiction to |D| = sω(T). This
completes the proof.
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Moreover, by Theorem 1.7, we can immediately get

Corollary 3.3. Let T be a tree, and letω be a nonnegative function
on V(T), W = {v ∈ V(T) : ω(v) > 0}, L = {v ∈ V(T) : d(v) = 1},
then if L ⊆ W,

γω(T) = max
v∈V(T)

∑

u∈V(T)

ω(u)2d(u,v).

Theorem 1.4 gives a sufficient condition of a nonnegative weight
function ω on V(G) for a graph G so that the ω-cover pebbling
number of G is

γω(G) = max
v∈V(G)

∑

u∈V(G)

ω(u)2d(u,v).

Corollary 3.3 gives a weaker sufficient condition of a nonnegative
weight function ω on V(T) for a tree T so that the ω-cover
pebbling number of T is

γw(T) = max
v∈V(T)

∑

u∈V(T)

ω(u)2d(u,v).

Here, we explore some problems.

Problem 3.4. Give a weaker sufficient condition of a nonnegative
function ω on V(G) for a graph G so that the ω-cover pebbling
number of G is

γω(G) = max
v∈V(G)

∑

u∈V(G)

ω(u)2d(u,v).

Problem 3.5. For a nonnegative function ω, determine the ω-
cover pebbling number of more graphs, such as cycles, hypercubes,
and so on.

We also give a conjecture which is similar to
Graham’s Conjecture.

Conjecture 3.6. Let ω1 be a nonnegative function on G and ω2 be
a nonnegative function on H. The function ω on G × H is given
by ω((g, h)) = ω1(g)ω2(h), where g ∈ V(G) and h ∈ V(H), then
γω(G×H) ≤ γω1 (G)γω2 (H).
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With the wide application of graph theory in circuit layout, signal flow chart and power

system, more andmore attention has been paid to the network topology analysis method

of graph theory. In this paper, we construct a graph transformation which can reflect the

monotonicity of coefficients and reduce the number of graphs. A sharp lower bound

for incidence energy in the tricyclic graphs is given and all the extremal structures are

characterized. The most interesting things that we find two different classes tricyclic

graphs have the same signless Laplacian characteristic polynomials and one of the

extremal graphs beyond all expectations.

Keywords: incidence energy, extremal graph, tricyclic graph, Laplacian matrix, signless Laplacian coefficients

1. INTRODUCTION

Graph theory is a branch of discrete mathematics, Its research object is abstracted from the actual
problem. For example, the geometric structure of an electrical network can be represented as a
corresponding line graph. In the graph, the properties of circuit elements are ignored, the length
and bending of edges are not important, but the connection between nodes and branches is
highlighted. Each element in the network is replaced by a line segment, which is called a branch,
and the endpoint of each element or the point connected by several elements is represented by an
origin, which is called a node. The set of points and lines is called a network graph and is represented
by G. Let G = (V ,E) be a simple connected graph with n vertices, m edges [1]. Let Pn,Cn and Sn
be the path, the cycle and the star with n vertices, respectively [1]. Let NG(v) = {u|uv ∈ E(G)},
denote by dG(v) = |NG(v)| the degree of the vertex v of G. We know that L(G) = D(G) − A(G)
is the Laplacian matrix of G, and A(G) is (0, 1) adjacency matrix, D(G) is degree diagonal matrix.
Corresponding to the Laplacian matrix,Q(G) = D(G)+A(G) is called the signless Laplacian matrix
of a graph [2]. The Laplacian characteristic polynomials and signless Laplacian characteristic are
defined as the following

L(G; λ) = det(λI − L(G)) =

n
∑

i=0

(−1)ici(G)λ
n−i,

Q(G; λ) = det(λI − Q(G)) =

n
∑

i=0

(−1)iϕi(G)λ
n−i.

For G,H, if ci(G) ≤ ci(H),i = 1, 2, . . . , n, we call that G �′ H. If ϕi(G) ≤ ϕi(H), i = 1, 2, . . . , n, we
call that G � H [3, 4].
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Denote by Gn,m the set of simple connected graphs of order
n and size m. If m = n − 1 + c, G denotes a c-cyclic graph.
If c = 0, 1, 2, and 3, G represents a tree, unicyclic graph,
bicyclic graph and tricyclic graph, respectively [1]. Recently, with
further research on the power system network, the study of the
structure and properties of the partial ordering sets (Gn,m,�

′)
and (Gn,m,�) have attracted much attention. For m = n − 1,
Mohar [5] proved that there is unique maximal element and
unique minimal element in (Gn,n−1,�

′). Since L(G; λ) = Q(G; λ)
for bipartite graph, then (Gn,n−1,�) has the same structure and
properties as (Gn,n−1,�

′). For m = n, Stevanović and Ilić [6]
showed that there is also unique maximal element and unique
minimal element in (Gn,n,�

′). But for (Gn,n,�), Li et al. [7] given
the extremal elements in (Gn,n,�). He and Shan [8] obtained the
unique minimal element in (Gn,n+1,�

′), and in Zhang and Zhang
[3], two minimal elements in (Gn,n+1,�) were determined by
Zhang and Zhang. For simplicity, denote the class of connected
tricyclic graphs order n, i.e., Gn,n+2 by Tn [9]. Pai et al. [10]
characterized the unique minimal element in (Tn,�

′). Based on
these works, we focus on the structure and properties of the
partial ordering sets (Tn,�).

2. PRELIMINARIES

In this section, we introduce some graphic transformations and
lemmas, which will be used to prove our main results.

If a connected graph has only one cycle whose length is odd,
the graph is odd unicyclic. If the components of a spanning
subgraph of G are trees or odd unicyclic graphs, the subgraph
is called a TU-subgraph of G [3]. Let H be a TU-subgraph of
G, which contains c odd unicyclic graphs and s trees T1, . . . ,Ts

of orders n1, . . . , ns, respectively. So the weight of H ω(H) =

4c
∏s

i=1 ni. If there contains no tree in H, so ω(H) = 4c.
If H is empty graph,there is no H, so ω(H) = 0. We can
express the signless Laplacian coefficients ϕi(G) by the weight of
TU-subgraphs of G [11].

Lemma 2.1. [12] Let Q(G; λ) = det(λI − Q(G)) =
∑n

i=0(−1)iϕi(G)λ
n−i be the characteristic polynomial of the

signless Laplacian matrix of a graph G of order n. Then ϕi(G) =
∑

Hi
ω(Hi), i = 1, . . . , n, where the summation runs over all

TU-subgraph Hi of G with i edges.

Definition 1. [8] Let G be a simple connected graph with n vertices
and uv be a non-pendent edge, which is not contained in any cycles
of G. Let Guv = G− {vx|x ∈ NG(v) \ {u}} + {ux|x ∈ NG(v) \ {u}}.
We say that Guv is an α-transformation of G.

Lemma 2.2. [3] Let G be a connected graph of order n ≥ 4, and
Guv be obtained from G by α-transformation. Then Guv � G,
i.e., ϕi(Guv) ≤ ϕi(G), i = 0, 1, . . . , n, with equality if and only
if either i ∈ {0, 1, n} when G is non-bipartite, or i ∈ {0, 1, n− 1, n}
for otherwise.

The proof of the following lemma can be found inmany places
in the literature (see, such as [13]).

Lemma 2.3. [14] L(G; λ) = Q(G; λ) if and only if the graph G
is bipartite.

Lemma 2.4. [15] Let f (λ) and g(λ) be two real polynomials
arranged according to decreasing exponents. If their coefficients
are alternate about positive and negative, then the coefficients of
f (λ)g(λ) also are alternate about positive and negative.

Let G be a connected graph with at least one cycle, the base of
G is represented by ̂G, which is the minimal connected subgraph
containing all the cycles of G [16]. SôG is the unique subgraph of
G, which contains no pendant vertex. G can be obtained from ̂G
by planting trees to some vertices of ̂G [17]. Hoffman and Smith
[18] define an internal path of G as a walk u0u1 . . . us(s ≥ 1),and
the vertices u0, u1, . . . , us−1 are distinct, d(u0) > 2, d(us) > 2,
and d(ui) = 2, whenever 0 < i < s. An internal path is closed, if
u0 = us.

Definition 2. [19] Let G = (V ,E) be a connected graph and the
base of G iŝG. Let u, v,w be three consecutive vertices in an internal
path of length at least 4 of ̂G, which satisfy NG(u) ∩ NG(v) = ∅,
NG(w) ∩ NG(v) = ∅ and NG(u) ∩ NG(w) = {v}. We can delete
all edges vz for z ∈ NG(v)\{u,w},wz for z ∈ NG(w) and add all
edges uz for z ∈ (NG(v) ∪ NG(w))\{u, v} from G and get the graph
G′(u, v,w). G to G′(u, v,w) is called a β-transformation of G.

Lemma 2.5. Let G = (V ,E) be a connected graph and the base
of G is ̂G. Let u, v,w be three consecutive vertices in an internal
path of length at least 4 of ̂G, and G′(u, v,w) be a graph obtained
from G by β-transformation [19]. So G′(u, v,w) � G, that is,
ϕi(G

′(u, v,w)) ≤ ϕi(G) for i ∈ {0, 1, 2, . . . , n}, with equality if and
only if i ∈ {0, 1} when G is non-bipartite, and i ∈ {0, 1, n} when G
is bipartite.

Proof: ϕ0(G
′(u, v,w)) = ϕ0(G) = 1 and ϕ1(G

′(u, v,w)) =
ϕ1(G) = 2|E|. Moreover, ϕn(G

′(u, v,w)) = ϕn(G) = 0
for bipartite graph. Now assume that 2 ≤ i ≤ n. Let
H and H be the set of all TU-subgraphs of G′(u, v,w) and
G with i edges, respectively. For an arbitrary TU-subgraph
H′ ∈ H, denote by the R′ connected component of H′

containing u [3]. Let f :H → H with H′ → H = f (H′),
where V(H) = V(H′) and

E(H) = E(H′)−{ux|x ∈ NR′ (u) ∩ NG(v)} −{ux|x ∈ NR′ (u) ∩ NG(w) \ {v}}

+{vx|x ∈ NR′ (u) ∩ NG(v)} + {wx|x ∈ NR′ (u) ∩ NG(w) \ {v}}.

Then f is injective from H → H.
Case 1. u, v,w belongs the component S′. So f (S′) is a

component of H, which in the same order as S′. Then ω(H) =

ω(H′).
Case 2. u, v,w belong to at least two components of H′.
Case 2.1. u is not in an odd unicyclic component of H′. Then

u is contained in a tree component of H′. Assume that there
exist x1 + 1 vertices in the connected component which contains
u in H − uv [3], x2 + 1 vertices in the connected component
which contains w inH −wv and x3 + 1 vertices in the connected
component which contains v inH−uv−vw, where x1, x2, x3 ≥ 0.
LetN indicate the weight of the components ofH′, which contain
no u, v,w.
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(i) If uv ∈ E(H′)anduw /∈ E(H′), then

ω(H′) = (x1 + x2 + x3 + 2) · 1 · N,

ω(H) = (x1 + x3 + 2)(x2 + 1) · 1 · N,

ω(H)− ω(H′) = x2(x1 + x3 + 1)N ≥ 0.

(ii) If uv /∈ E(H′)anduw ∈ E(H′), then

ω(H′) = (x1 + x2 + x3 + 2) · 1 · N,

ω(H) = (x2 + x3 + 2)(x1 + 1) · N,

ω(H)− ω(H′) = x1(x2 + x3 + 1)N ≥ 0.

(iii) If uv /∈ E(H′)anduw /∈ E(H′), then

ω(H′) = (x1 + x2 + x3 + 1) · 1 · 1 · N,

ω(H) = (x1 + 1)(x2 + 1)(x3 + 1) · N,

ω(H)− ω(H′) = (x1x2x3 + x1x2 + x1x3 + x2x3 − 1)N ≥ 0.

Case 2.2. u is in an odd unicyclic component S′ of H′. Let C′ be a
subgraph of S′, which corresponds to an odd cycle C in G.

(i) If uv /∈ E(H′), uw /∈ E(H′), and C = C′, let S be the
component containing C inH. So there are the same components
in H′ and H, except for S′, {v}, {w} in H′, which correspond to
the component S containing u, two components S1 containing
v and S2 containing w of order at least 1, respectively, in H. If
uv /∈ E(H′), uw /∈ E(H′), and C 6= C′. So there are the same
components in H′ and H, except for S′, {v}, {w} in H′, which
correspond to two tree components S1 containing u,w of order
at least 4 since u, v,w are three consecutive vertices in an internal
path of length at least 4 of̂G, and S2 containing v of order at least
1, in H. So

ω(H′) = 4 · 1 · 1 · N,

ω(H) ≥ 4 · 1 · 1 · N,

ω(H)− ω(H′) ≥ 0.

(ii) If uv /∈ E(H′), uw ∈ E(H′) or uv ∈ E(H′), uw /∈ E(H′), and
C = C′, So there are the same components in H′ and H, except
for S′, {v} or {w} in H′, which correspond to an odd unicyclic
component S containing C and a tree component S1 containing
v,w of order at least 2. So

ω(H′) = 4 · 1 · N,

ω(H) ≥ 4 · 2 · N,

ω(H)− ω(H′) ≥ 4N > 0.

If uv /∈ E(H′), uw ∈ E(H′) or uv ∈ E(H′), uw /∈ E(H′), and
C 6= C′, So there are the same components in H′ and H, except
for S′, {v} or {w} in H′, which correspond to a tree component S
containing u, v,w of order at least 5. So

ω(H′) = 4 · 1 · N,

ω(H) ≥ 4 · N,

ω(H)− ω(H′) ≥ 0.

Then by Lemma 2.1, we have ϕi(G
′(u, v,w)) =

∑

H′
i∈G

ω(H′
i) ≤

∑

Hi∈G
ω(Hi) = ϕi(G)

Hence the results hold.

Similarly, we can prove the following result.

Lemma 2.6. [19] Let G = (V ,E) be a connected graph with base
̂G. Let u, v,w be three consecutive vertices in an internal path P =

u1u2 . . . uk with k = 4 of ̂G and u1uk /∈ E(̂G). Let G′(u, v,w) be a
graph obtained from G by β-transformation, then G′(u, v,w) � G,
that is, ϕi(G

′(u, v,w)) ≤ ϕi(G) for i ∈ {0, 1, 2, . . . , n}, with equality
if and only if i ∈ {0, 1} when G is non-bipartite, and i ∈ {0, 1, n}
when G is bipartite.

By Li et al. [20], There are the following four types of
bases in tricyclic graphs(as shown in Figures 1–4): G3

j (j =

1, . . . , 7),G4
j (j = 1, . . . , 4),G6

j (j = 1, . . . , 3) and G7
1. Let

T
3
n = {G|̂G ∼= G3

j , j ∈ {1, . . . , 7}}; T
4
n = {G|̂G ∼= G4

j , j ∈ {1, . . . , 4}};

T
6
n = {G|̂G ∼= G6

j , j ∈ {1, . . . , 3}}; T
7
n = {G|̂G ∼= G7

1}.

Then Tn = T
3
n ∪ T

4
n ∪ T

6
n ∪ T

7
n.

Let T3
1 (n − 7, 0, 0, 0, 0, 0, 0),T4

1 (n − 6, 0, 0, 0, 0, 0),T6
1 (n −

5, 0, 0, 0, 0) and T7
1 (n − 4, 0, 0, 0) be the graphs as shown in

Figure 5.

Lemma 2.7. [10]

(i) If G ∈ T
3
n, then for every i = 0, 1, . . . , n, ci(G) ≥ ci(T

3
1 (n −

7, 0, 0, 0, 0, 0, 0)), with equality if and only if i ∈ {0, 1, n}.
(ii) If G ∈ T

4
n, then for every i = 0, 1, . . . , n, ci(G) ≥ ci(T

4
1 (n −

6, 0, 0, 0, 0, 0)), with equality if and only if i ∈ {0, 1, n}.
(iii) If G ∈ T

6
n, then for every i = 0, 1, . . . , n, ci(G) ≥ ci(T

6
1 (n −

5, 0, 0, 0, 0)), with equality if and only if i ∈ {0, 1, n}.
(iv) If G ∈ T

7
n, then for every i = 0, 1, . . . , n, ci(G) ≥ ci(T

7
1 (n −

4, 0, 0, 0)), with equality if and only if i ∈ {0, 1, n}.

For i = 3, 4, 6, 7, let T
i,e
n (resp., T

i,o
n ) be the set of bipartite

tricyclic graphs (resp., non-bipartite tricyclic graphs) in T
i
n, then

T
i
n = T

i,e
n ∪ T

i,o
n . From lemmas 2.3 and 2.7, we get

Corollary 2.8. [10]

(i) If G ∈ T
3,e
n , then for every i = 0, 1, . . . , n, ϕi(G) ≥ ϕi(T

3
1 (n −

7, 0, 0, 0, 0, 0, 0)), with equality if and only if i ∈ {0, 1, n}.
(ii) If G ∈ T

4,e
n , then for every i = 0, 1, . . . , n, ϕi(G) ≥ ϕi(T

4
1 (n −

6, 0, 0, 0, 0, 0)), with equality if and only if i ∈ {0, 1, n}.
(iii) If G ∈ T

6,e
n , then for every i = 0, 1, . . . , n, ϕi(G) ≥ ϕi(T

6
1 (n−

5, 0, 0, 0, 0)), with equality if and only if i ∈ {0, 1, n}.
(iv) If G ∈ T

7,e
n , then for every i = 0, 1, . . . , n, ϕi(G) ≥ ϕi(T

7
1 (n−

4, 0, 0, 0)), with equality if and only if i ∈ {0, 1, n}.

Theorem 2.9. [10] Let G be a connected tricyclic graph on n
vertices and i be an integer, 0 ≤ i ≤ n. Then ci(G) ≥ ci(T

7
1 (n −

4, 0, 0, 0)).

Repeated by lemmas 2.2, 2.5, and 2.6, we get the
following conclusion

Theorem 2.10. Let G be a graph in T
3,o
n ∪ T

4,o
n ∪ T

6,o
n ∪ T

7,o
n .

So there is a tricyclic graph G′ with order n, such that G′ � G,.
The base of G′ is one of graphs in {T3

i |j = 1, 2, . . . , 9} ∪ {T4
i |j =

1, 2, . . . , 20} ∪ {T6
i |j = 1, 2, . . . , 24} ∪ {T7

i |j = 1, 2, . . . , 7}(these
base graphs are as shown in Figures 7–9.
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FIGURE 1 | The graphs G3
i (i = 1, 2, . . . , 7).

FIGURE 2 | The graphs G4
i (i = 1, 2, . . . , 4).

FIGURE 3 | The graphs G6
i (i = 1, 2, 3).

3. THE SIGNLESS LAPLACIAN
COEFFICIENTS OF GRAPHS IN TN

Now we consider the minimal element in the partial ordering
set (Tn,�).

For i = 1, 2, . . . , 9, let T3
i (s1, s2, . . . , s|T3

i |
) be the graph

obtained from T3
i (as shown in Figure 6) by attaching sj pendent

edges at uj(j = 1, 2, . . . , |T3
i |), where n = s1+s2+· · ·+s|T3

i |
+|T3

i |.

Lemma 3.1. For j = 1, 2, . . . , 9, T3
j (s1+s2+· · ·+s|T3

j |
, 0, . . . , 0) �

T3
j (s1, s2, . . . , s|T3

j |
), that is, φi(T

3
j (s1+ s2+· · ·+ s|T3

j |
, 0, . . . , 0)) ≤

φi(T
3
j (s1, s2, . . . , s|T3

j |
)), i = 0, 1, . . . , n. The equality holds if and

only if s2 = · · · = s|T3
j |
= 0.

Proof: For convenience, let G = T3
j (s1, s2, . . . , s|T3

j |
) and G′ =

T3
j (s1 + s2 + · · · + s|T3

j |
, 0, . . . , 0) for j = 1, 2, . . . , 9. Note that

φ0(G) = 1 = φ0(G
′),φ1(G) = 2(n+ 2) = φ1(G

′). For 2 ≤ i ≤ n,

FIGURE 4 | The graph G7
1.

let H and H be the set of all TU-subgraphs of G′ and G with
exactly i edges, respectively [3]. Let

H
′(1) = {H′ ∈ H|H′ contains no odd cycle},

H
′(2) = {H′ ∈ H|H′ contains an odd cycle},

H
′(3) = {H′ ∈ H|H′ contains two odd cycles}.
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FIGURE 5 | The extremal graphs.

FIGURE 6 | The graphs T3
i (i = 1, 2, . . . , 9).

Similarly for H
(1),H(2), and H

(3). We only prove the case for
j = 1, the others can be proved similarly.

Let f :H → H with H′ → H = f (H′), where V(H) =

V(H′) and

E(H′) = E(H)− {u1x|x ∈ NR′ (u1) ∩ NG(u2) \ {u3}}

−{u1x|x ∈ NR′ (u1) ∩ NG(u3) \ {u2}}

−{u1x|x ∈ NR′ (u1) ∩ NG(u4) \ {u5}}

−{u1x|x ∈ NR′ (u1) ∩ NG(u5) \ {u4}}

−{u1x|x ∈ NR′ (u1) ∩ NG(u6) \ {u7}}

−{u1x|x ∈ NR′ (u1) ∩ NG(u7) \ {u6}}

+{u2x|x ∈ NR′ (u1) ∩ NG(u2) \ {u3}}

+{u3x|x ∈ NR′ (u1) ∩ NG(u3) \ {u2}}

+{u4x|x ∈ NR′ (u1) ∩ NG(u4) \ {u5}}

+{u5x|x ∈ NR′ (u1) ∩ NG(u5) \ {u4}}

+{u6x|x ∈ NR′ (u1) ∩ NG(u6) \ {u7}}

+{u7x|x ∈ NR′ (u1) ∩ NG(u7) \ {u6}}

for R′ being a component of H′ containing u1. Obviously, f is

injective and f (H
′(k)) ⊆ H

(k) for j = 1, 2, 3. From the procedure
of proof in Theorem 3.1 [10], we have

∑

H′∈H
′(1)

ω(H′) <
∑

H∈H
(1)

ω(H).

Note that H
′(3) = ∅ for j = 1. For H′ ∈ H

′(2), without loss
of generality, we assume that R′ contains C3 = u1u2u3u1 as a

subgraph. Let R be the component of H corresponding to R′,
obviously, R also contains C3 = u1u2u3u1. It is obvious that
H′,H have the same number of components and the product of
the order of components which contain no ui(i = 1, 2, . . . , 7) of
H′ is the same as H. The order of the tree components of H′,
which include at least one of ui(i = 4, . . . , 7) are no more than
the corresponding ones of H, then ω(f (H′)) ≥ ω(H′). Hence

φi(G) =
∑

H∈H
(1)

ω(H)+
∑

H∈H
(2)

ω(H)+
∑

H∈H
(3)

ω(H)

≥
∑

H′∈H
′(1)

ω(H′)+
∑

H′∈H
′(2)

ω(H′)+
∑

H′∈H
′(3)

ω(H′) = φi(G
′).

The equality holds if and only if s2 = · · · = s7 = 0.

For i = 1, 2, . . . , 20, let T4
i (s1, s2, . . . , s|T4

i |
) be the graph obtained

from T4
i (as shown in Figure 7) by attaching sj pendent edges at

uj(j = 1, 2, . . . , |T4
i |), where n = s1 + s2 + · · · + s|T4

i |
+ |T4

i |.

Similar to the proof of Lemma 3.1, we have

Lemma 3.2. For j = 1, 2, . . . , 20, T4
j (s1 + s2 + · · · +

s|T4
j |
, 0, . . . , 0) � T4

j (s1, s2, . . . , s|T4
j |
), that is, φi(T

4
j (s1+ s2+· · ·+

s|T4
j |
, 0, . . . , 0)) ≤ φi(T

4
j (s1, s2, . . . , s|T4

j |
)), i = 0, 1, . . . , n. The

equality holds if and only if s2 = · · · = s|T4
j |
= 0.

For i = 1, 2, . . . , 7, let T7
i (s1, s2, . . . , s|T7

i |
) be the graph

obtained from T7
i (as shown in Figure 8) by attaching sj pendent

edges at uj(j = 1, 2, . . . , |T7
i |), where n = s1+s2+· · ·+s|T7

i |
+|T7

i |.

Similar to the proof of Lemma 3.1, we have

Frontiers in Physics | www.frontiersin.org 5 June 2020 | Volume 8 | Article 20869

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Lu and Zhu Incidence Energy of Tricycle Graphs

Lemma 3.3. For j = 1, 2, . . . , 7, T7
j (s1+s2+· · ·+s|T7

j |
, 0, . . . , 0) �

T7
j (s1, s2, . . . , s|T7

j |
), that is, φi(T

7
j (s1+ s2+· · ·+ s|T7

j |
, 0, . . . , 0)) ≤

φi(T
7
j (s1, s2, . . . , s|T7

j |
)), i = 0, 1, . . . , n. The equality holds if and

only if s2 = · · · = s|T7
j |
= 0.

For i = 1, 2, . . . , 24, let T6
i (s1, s2, . . . , s|T6

i |
) be the graph

obtained from T6
i (as shown in Figure 9) by attaching sj pendent

edges at uj(j = 1, 2, . . . , |T6
i |), where n = s1+s2+· · ·+s|T6

i |
+|T6

i |.

Similar to the proof of Lemma 3.1, we have

Lemma 3.4. For j = 1, 2, . . . , 24, T6
j (s1 + s2 + · · · +

s|T6
j |
, 0, . . . , 0) � T6

j (s1, s2, . . . , s|T6
j |
), that is, φi(T

6
j (s1+ s2+· · ·+

s|T6
j |
, 0, . . . , 0)) ≤ φi(T

6
j (s1, s2, . . . , s|T6

j |
)), i = 0, 1, . . . , n. The

equality holds if and only if s2 = · · · = s|T6
j |
= 0.

Lemma 3.5. For n ≥ |T3
j |(j = 1, 2, . . . , 9),

(i) T3
2 (n− 7, 0, 0, 0, 0, 0, 0) � T3

1 (n− 7, 0, 0, 0, 0, 0, 0).

(ii) T3
j (n − 8, 0, 0, 0, 0, 0, 0, 0) � T3

5 (n − 8, 0, 0, 0, 0, 0, 0, 0, 0) for
j = 3, 4.

(iii)T3
j (n− 9, 0, 0, 0, 0, 0, 0, 0, 0) � T3

6 (n− 9, 0, 0, 0, 0, 0, 0, 0, 0) for
j = 7, 8, 9.

Proof: (i) We have

Q(T3
2 (n− 7, 0, . . . , 0))− Q(T3

1 (n− 7, 0, 0, 0, 0, 0, 0))

= (x− 1)n−8[2(n− 5)x6 − (18n− 90)x5 + (62n− 302)x4

−(102n− 462)x3

+(80n− 296)x2 − (24n− 24)x+ 32].

Further by Lemma 2.3, T3
2 (n− 7, 0, 0, 0, 0, 0, 0) � T3

1 (n− 7, 0, 0, 0, 0, 0, 0).

Q(T3
3 (n− 8, 0, 0, 0, 0, 0, 0, 0, 0))− Q(T3

5 (n− 8, 0, 0, 0, 0, 0, 0, 0, 0))

= (x− 1)n−9[(2n− 12)x7 − (22n− 132)x6 + (96n− 568)x5

−(212n− 1208)x4

+(250n− 1308)x3 − (150n− 628)x2 + (36n− 32)x− 48],

Q(T3
4 (n− 8, 0, 0, 0, 0, 0, 0, 0, 0))− Q(T3

5 (n− 8, 0, 0, 0, 0, 0, 0, 0, 0))

= (x− 1)n−9[(2n− 11)x7 − (23n− 125)x6 + (104n− 546)x5

−(233n− 1128)x4

+(266n− 1047)x3 − (140n− 219)x2 + (24n+ 200)x− 68],

Q(T3
7 (n− 9, 0, 0, 0, 0, 0, 0, 0, 0))− Q(T3

6 (n− 9, 0, 0, 0, 0, 0, 0, 0, 0))

= (x− 1)n−10[(2n− 14)x8 − (26n− 182)x7 + (138n− 958)x6

−(382n− 2594)x5

+(580n− 3748)x4 − (456n− 5608)x3 + (144n− 464)x2 − 192x],

Q(T3
8 (n− 9, 0, 0, 0, 0, 0, 0, 0, 0))− Q(T3

6 (n− 9, 0, 0, 0, 0, 0, 0, 0, 0))

= (x− 1)n−10[(2n− 14)x8 − (26n− 182)x7 + (138n− 948)x6

−(364n− 2512)x5

+(520n− 3520)x4 − (368n− 2400)x3 + (96n− 576)x2],

Q(T3
9 (n− 9, 0, 0, 0, 0, 0, 0, 0, 0))− Q(T3

6 (n− 9, 0, 0, 0, 0, 0, 0, 0, 0))

= (x− 1)n−10[(2n− 14)x8 − (26n− 182)x7 + (136n− 944)x6

−(364n− 2468)x5

+(522n− 3350)x4 − (378n− 2102)x3 + (108n− 300)x2 − 144x].

So (ii) and (iii) hold.

Lemma 3.6. For n ≥ |T4
j |(j = 1, . . . , 20),

(i) T4
j (n − |T4

j |, 0, . . . , 0) � T4
1 (n − 6, 0, . . . , 0) for j =

2, 5, 6, 10, 15, 16, 17
(ii) T4

j (n − |T4
j |, 0, . . . , 0) � T4

4 (n − 7, 0, . . . , 0) for j =

3, 7, 8, 9, 18, 19, 20.
(iii) T4

j (n−|T4
j |, 0, . . . , 0) � T4

14(n−7, 0, . . . , 0) for j = 11, 12, 13.

Proof:

Q(T4
2 (n− 6, 0, . . . , 0))− Q(T4

1 (n− 6, 0, . . . , 0))

= (x− 1)n−7[(n− 4)x5 − (8n− 32)x4 + (23n− 88)x3

−(28n− 92)x2 + (12n− 16)x− 16],

Q(T4
3 (n− 7, 0, . . . , 0))− Q(T4

4 (n− 7, 0, . . . , 0))

= (x− 1)n−8[(n− 5)x6 − (10n− 50)x5 + (38n− 188)x4

−(68n− 382)x3 +

(56n− 256)x2 − (16n− 64)x],

Q(T4
11(n− 8, 0, . . . , 0))− Q(T4

14(n− 7, 0, . . . , 0))

= (x− 1)n−9[(2n− 10)x7 − (24n− 120)x6 + (110n− 539)x5

−(241n− 1107)x4 +

(255n− 971)x3 − (111n− 161)x2 + (9n+ 144)x− 12],

By the results of Appendix, the results hold.

Lemma 3.7. For n ≥ |T7
j |(j = 1, . . . , 7), T7

j (n− |T7
j |, 0, . . . , 0) �

T7
1 (n− 4, 0, 0, 0).

Proof: We have

Q(T7
2 (n− 5, 0, . . . , 0))− Q(T7

1 (n− 4, 0, . . . , 0))

= (x− 1)n−6[(n− 3)x4 − (8n− 28)x3 + (18n− 68)x2

−(12n− 48)x],

Q(T7
3 (n− 6, 0, . . . , 0))− Q(T7

1 (n− 4, 0, . . . , 0))

= (x− 1)n−7[(2n− 7)x5 − (19n− 73)x4 + (55n− 213)x3

−(57n− 199)x2 + (19n− 40)x− 12],

Q(T7
4 (n− 7, 0, . . . , 0))− Q(T7

1 (n− 4, 0, . . . , 0))

= (x− 1)n−8[(3n− 12)x6 − (33n− 140)x5 + (126n− 536)x4

−(210n− 828)x3 + (151n− 432)x2 − (37n+ 48)x+ 60],

Q(T7
5 (n− 7, 0, . . . , 0))− Q(T7

1 (n− 4, 0, . . . , 0))

= (x− 1)n−8[(3n− 12)x6 − (33n− 140)x5 + (126n− 540)x4

−(210n− 858)x3 + (152n− 514)x2 − (39n+ 36)x+ 39],

Q(T7
6 (n− 8, 0, . . . , 0))− Q(T7

1 (n− 4, 0, . . . , 0))

= (x− 1)n−9[(4n− 18)x7 − (50n− 238)x6 + (233n− 1139)x5

−(521n− 2541)x4 + (584n− 2713)x3

−(301n− 1171)x2 + (50n− 40)− 32],

Q(T7
7 (n− 9, 0, . . . , 0))− Q(T7

1 (n− 4, 0, . . . , 0))

= (x− 1)n−10[(5n− 25)x8−(70n− 368)x7 +(385n− 2086)x6

−(1085n− 5938)x5+ (2684n−9039)x4− (1415n− 7004)x3

+(572n− 21122)x2 − (76n+ 128)x+ 80].

So the results hold.

Frontiers in Physics | www.frontiersin.org 6 June 2020 | Volume 8 | Article 20870

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Lu and Zhu Incidence Energy of Tricycle Graphs

Theorem 3.8. For G ∈ T
3
n ∪T

4
n ∪T

7
n, G � T7

1 (n− 4, 0, 0, 0). The
equality holds if and only if G ∼= T7

1 (n− 4, 0, 0, 0).

Proof: If G ∈ T
3,e
n ∪T

4,e
n ∪T

7,e
n , by Theorem 2.9, the results hold.

If G ∈ T
3,o
n ∪ T

4,o
n ∪ T

7,o
n , by direct calculation, we have

Q(T3
1 (n− 7, 0, . . . , 0))− Q(T7

1 (n− 4, 0, . . . , 0))

= (x− 1)n−8[3x6 − (3n+ 16)x5 + (16n+ 54)x4

−(30n+ 156)x3 + (24n+ 259)x2 − (7n+ 204)x+ 60]

Q(T3
5 (n− 8, 0, . . . , 0))− Q(T7

1 (n− 4, 0, . . . , 0))

= (x− 1)n−9[nx7 − (14n− 16)x6 + (66n− 84)x5

−(144n− 108)x4 + (157n+ 100)x3 − (82n+ 316)x2

+(16n+ 224)x− 48],

Q(T3
6 (n− 9, 0, . . . , 0))− Q(T7

1 (n− 4, 0, . . . , 0))

= (x− 1)n−10[(2n− 4)x8 − (28n− 70)x7 + (148n− 391)x6

−(393n− 994)x5 + (570n− 1221)x4

−(451n− 616)x3 + (180n+ 16)x2 − (28n+ 96)x+ 16],

Q(T4
1 (n− 6, 0, . . . , 0))− Q(T7

1 (n− 4, 0, . . . , 0))

= (x− 1)n−7[2x5 − (2n+ 8)x4 + (8n+ 26)x3

−(10n+ 68)x2 + (4n+ 80)x− 32]

Q(T4
4 (n− 7, 0, . . . , 0))− Q(T7

1 (n− 4, 0, . . . , 0))

= (x− 1)n−8[(n− 1)x6 − (12n− 22)x5 + (46n− 85)x4

−(75n− 96)x3 + (52n+ 16)x2 − (12n+ 64)x+ 16]

Q(T4
14(n− 7, 0, . . . , 0))− Q(T7

1 (n− 4, 0, . . . , 0))

= (x− 1)n−8[(n− 1)x6 − (12n− 24)x5 + (47n− 107)x4

−(80n− 176)x3 + (60n− 108)x2 − (16n− 16)x].

Further by Theorem 2.10 and lemmas 3.2–3.4, 3.6–3.8, we have
G � T7

1 (n− 4, 0, 0, 0).

Lemma 3.9. For n ≥ |T6
j |(j = 1, . . . , 9, 11, . . . , 24), T6

j (n −

|T6
j |, 0, . . . , 0) � T6

1 (n− 4, 0, 0, 0).

Proof: We have

Q(T6
2 (n− 6, 0, . . . , 0))− Q(T6

1 (n− 5, 0, . . . , 0))

= (x− 1)n−7[(n− 3)x5 − (9n− 29)x4 + (25n− 76)x3

− (26n− 56)x2 + (8n+ 16)x− 16]

By the results of Appendix, the results hold.

Theorem 3.10. For G ∈ T
6
n, G � T6

10(n − 5, 0, 0, 0) or G �

T6
1 (n − 5, 0, 0, 0). The equality holds if and only if G ∼= T6

1 (n −

5, 0, 0, 0, 0) or G ∼= T6
10(n− 5, 0, 0, 0).

Proof: If G ∈ T
6,e
n , by Theorem 2.9 and

Q(T6
1 (n− 5, 0, . . . , 0))− Q(T7

1 (n− 4, 0, . . . , 0)) = 0 (1)

we have G � T6
1 (n− 5, 0, 0, 0).

If G ∈ T
6,o
n , by Theorem 2.10, lemmas 3.5 and 3.9, we have

G � T6
10(n− 7, 0, . . . , 0) or G � T6

1 (n− 5, 0, 0, 0).

Remark: By (3.1), T6
1 (n − 5, 0, . . . , 0) and T7

1 (n − 4, 0, . . . , 0)
have the same signless Laplacian characteristic polynomials.

Theorem 3.11. T6
10(n − 7, 0, . . . , 0),T6

1 (n − 5, 0, 0, 0),T7
1 (n −

4, 0, 0, 0) are the only three minimal elements in the partial set
(Tn,�).

Proof: By (3.1), theorems 3.8 and 3.10, it is obvious that T6
1 (n −

5, 0, 0, 0),T7
1 (n−4, 0, 0, 0) are the minimal elements in the partial

set (Tn,�).
Note that if there is a graph G0 in T

3
n ∪ T

4
n ∪ T

6,e
n ∪ T

7
n such

that T6
10(n− 7, 0, . . . , 0) � G0, then by Theorem 3.8 and (3.1), we

have T6
10(n− 7, 0, . . . , 0) � T6

1 (n− 5, 0, 0, 0). But

Q(T6
10(n− 7, 0, . . . , 0))− Q(T6

1 (n− 5, 0, . . . , 0))

= (x− 1)n−8[(2n− 6)x6 − (22n− 76)x5 + (83n− 308)x4

−(137n− 542)x3

+(98n− 448)x2 − (24n− 192)x− 48],

it is a contradiction.
Hence the results hold.

4. THE INCIDENCE ENERGY OF
TRICYCLIC GRAPHS

The incidence energy IE(G) of a graph G is defined to be the sum
of the square root of all eigenvalues of Q(G)[3].

Theorem 4.1. [11] Let G and G′ be two graphs of order n, if
ϕk(G) � ϕk(G

′) for 1 ≤ k ≤ n, then IE(G) ≤ IE(G′). In particular,
if at least one of inequalities is strict, then IE(G) < IE(G′).

Theorem 4.2. If G ∈ Tn, then IE(G) ≥ IE(T6
1 (n− 5, 0, 0, 0, 0)) =

IE(T7
1 (n−4, 0, 0, 0)). The equality holds if and only if G ∼= T6

1 (n−
5, 0, 0, 0, 0), or G ∼= T7

1 (n− 4, 0, 0, 0).

Proof: By Theorem 3.11, we have
IE(G) ≥ min{IE(T6

10(n − 7, 0, · · · , 0)), IE(T6
1 (n −

5, 0, 0, 0, 0)), IE(T7
1 (n− 4, 0, 0, 0))}.

Note that

Q(T7
1 (n− 4, 0, . . . , 0)) = (x− 1)n−5[(x5 − (n+ 9)x4

+(9n+ 24)x3 − (24n+ 32)x2

+(20n+ 48)x− 48]

= (x− 1)n−5(x− 2)2[x3 − (n+ 5)x2

+5nx− 12],

Q(T6
10(n− 7, 0, . . . , 0)) = x(x− 1)n−8[(x7 − (n+ 12)x6

+(14n+ 48)x5 − (76n+ 56)x4 +

(203n− 83)x3 − (278n− 230)x2

+(182n− 128)x− 44n]

= x(x− 1)n−7(x− 2)[x5 − (n+ 9)x4

+(11n+ 19)x3 − (41n− 19)x2

+(58n− 64)x− 22n].
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FIGURE 7 | The graphs T4
i (i = 1, 2, . . . , 20).

FIGURE 8 | The graphs T7
i (i = 1, 2, . . . , 7).

Let α1 ≥ α2 ≥ α3 be the roots of x
3 − (n+ 5)x2 + 5nx− 12 = 0,

and β1 ≥ β2 ≥ β3 ≥ β4 ≥ β5 be the roots of x
5 − (n + 9)x4 +

(11n+ 19)x3 − (41n− 19)x2 + (58n− 64)x− 22n = 0, then

IE(T7
1 ) = (n− 5)+ 2

√
2+

√
α1 +

√
α2 +

√
α3

IE(T6
10) = (n− 7)+

√
2+

√

β1 +
√

β2 +
√

β3 +
√

β4 +
√

β5.

If n ≤ 40, by Matlab7.0 it is easy to see IE(T6
10) > IE(T7

1 ) holds.
If n ≥ 40, it is easy to see that n − 0.07 ≤ α1 ≤ n + 0.07,

4.93 ≤ α2 ≤ 5, 0 ≤ α3 ≤ 0.07 and n − 1.98 ≤ β1 ≤ n − 1.9,
4.58 ≤ β2 ≤ 4.62, 3.41 ≤ β3 ≤ 3.42, 2.37 ≤ β4 ≤ 2.39, 0.54 ≤

β5 ≤ 0.55.

6.261+
√
n− 1.98 ≤

5
∑

i=1

√

βi ≤ 6.286+
√
n− 1.9,

2.22+
√
n− 0.07 ≤

3
∑

i=1

√
αi ≤ 2.5+

√
n+ 0.07,

3.597 ≤

5
∑

i=1

√

βi −

3
∑

i=1

√
αi ≤ 3.92.

It is easy to see that

IE(T6
10)− IE(T7

1 ) =

5
∑

i=1

√

βi −

3
∑

i=1

√
αi − 2−

√
2

≥ 3.597− 2−
√
2 > 0.

So the assertions hold.
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FIGURE 9 | The graphs T6
i (i = 1, 2, . . . , 24).

5. CONCLUSION AND EXTENSION

This paper propose an appropriate graph transformation to
reflect the monotonicity of the coefficients, and give a sharp
lower bound for incidence energy in the class of tricyclic
graphs and characterize the extremal structures. The study on
boundary of the incidence energy and its extremum structure
of tricyclic graphs enriches and develops the study of the graph
structure, but also connects the mathematical branch with other
disciplines such as biology, physics and chemistry. It promotes
the development of some theories of graph theory. It promotes
the development of graph structure, the development of graph
theory, and the study of graph theory and its application. For
example, mathematical biology, application of graph theory
in power system, molecular structure based on graph theory.
Furthermore, similar to the graph energy, the incidence energy
also reflects some physical and chemical properties of conjugated
molecules, such as melting point and boiling point, this provides
a theoretical reference for the researchers of the synthesis of
new materials and new materials, and saves the cost for the
development of new materials and new materials to a certain
extent. Based on the extensive application of graph theory in
many fields, the findings of this study have many important
implications for future practice.
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In this paper, we propose a new class of set-valued coherent risk measures called the

set-valued weighted value at risk. Firstly, the “regulator” version is independent of other

market scenarios. The second version, which is called the market extension, is related

to different market scenarios. The proofs of the properties of both versions are given,

and equivalent representations are provided that enable us to compute the values of

both versions of set-valued weighted value at risk. Finally, we offer examples to illustrate

various features of the theoretical constructions of the set-valued weighted value at risk.
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1. INTRODUCTION

Weighted value at risk for one-dimension random variables may be one of the most popular
coherent risk measures (see [1]). Artzner et al. [2] initially introduced the first coherent risk
measure by proposing four axioms. Cherny [1] showed that weighted value at risk possesses some
desirable properties that are not shared by Expected Shortfall. For further details on Expected
Shortfall, we refer the reader to Föllmer and Schied [3]. Weighted value at risk first appeared in
Kusuoka [4]. Acerbi [5, 6] called it the spectral risk measure.

Jouini et al. [7] demonstrated that a set of set-valued risk measures are suitable for evaluating
multivariate risks in market models with transaction costs/bid-ask spreads. Additional set-valued
risk measures have since been introduced and studied (see [8–13], and the references therein).

Hamel et al. [11] introduced set-valued average value at risk, and reasons for using set-
valued functions as risk measures have been further addressed from both financial and
mathematical perspectives (see [14–17]), and the reference there in).

In this paper, we will extend the traditional weighted value at risk to a set-valued
version for multivariate random variables. Therefore, we demonstrate their core properties
and provide an alternative representation for computing their values. The first version is
called “regulator weighted value at risk” since it does not take trading opportunities into
account. The second version is called “the market extension” since it relates to a specific
market scenario. These two versions are set-valued coherent risk measures. Then, we derive
a benchmark when introducing set-valued weighted value at risk that can reflect the risk
tolerance of the trader/regulator; see Remark 2.2 below. Finally, we offer examples to
illustrate various features of the theoretical constructions of the set-valued weighted value
at risk.

The remainder of this article is organized as follows. Section 2 introduces a primal and an
equivalent representation of set-valued weighted value at risk, including the “regulator” and “the
market extension” cases. The essential properties of both cases are then proven. In section 3,
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examples are given to illustrate the theoretical construction of the
set-valued weighted value at risk.

2. SET-VALUED WEIGHTED VALUE AT RISK

2.1. The Regulator Case
Let (�, F, P) be a probability space and d ≥ 1 be a positive
integer. A multivariate random variable is an F-measurable
function X :� → Rd for d ≥ 2. Here, d = 1 represents a
one-dimension random variate. Denote by L0

d
:= L0

d
(�, F, P)

the linear space of the equivalence classes (with respect to the
probability P) ofRd-valued random variables. An elementX ∈ L0

d

has components X1, · · · ,Xd in L0 := L01. Denote by (L0
d
)+ the

set of Rd-valued random variables with P almost surely non-
negative components and by L1

d
:= L1

d
(�, F, P) the linear space

of all X = (X1, · · · ,Xd) ∈ L0
d
with

∫

�
XidP < +∞, 1 ≤

i ≤ d. We also define E[X] = (EX1, · · · ,EXd)
T for X ∈ L1

d
,

the transpose of row vector (EX1, · · · ,EXd). Define (L1
d
)+ =

L1
d
∩ (L0

d
)+. If d = 1, we write L0, L0+ and L1+ for L01, (L0

d
)+

and (L1
d
)+, respectively. For α ∈ Rd, the symbol diag(α) denotes

the d × d matrix with the components of the vector α as
entries on its main diagonal and zero entries elsewhere. x+

stands for max(x, 0) for x ∈ R [see [18–21]] and the reference
therein).

The next definition offers an essential representation for set-
valued weighted value at risk, which is an extension of the scalar
case given by Cherny [1] to the set-valued case. It involves a
linear subspace M ⊆ Rd, called the space of eligible assets,
which we adopt from Hamel et al. [11]. We will also employ
a benchmark level, which is one of the novelties of this article;
see Remark 2.2 below. A natural choice for M is M = Rm ×

{0}d−m, 1 ≤ m ≤ d, i.e., the first m of d assets are eligible
as deposits (see [7, 11, 22]). We denote M+ = M

⋂

Rd
+,

where Rd
+ stands for the class of elements in Rd with non-

negative components. We assume that M+ is non-trivial, i.e.,
M+ 6= {0}.

Generally speaking, a scalar multivariate risk measure is any
mapping from L0

d
to R. A set-valued risk measure is any mapping

ρ from L0
d
to a class of subsets of Rd. ρ(X) is interpreted as a

set of acceptable margins of portfolio X (see [23–27]) and the
reference therein).

Definition 2.1 Let θ ∈ (0, 1) and µ := (µ1, · · · ,µd) be a
probability on [θ , 1]d. For X ∈ L0

d
, the set-valued weighted value

at risk at X with respect to µ is defined as

WVaRµ(X) :=

{∫

[θ ,1]d
diag(α)−1E[Z]µ(dα)− z;

Z ∈ (L1d)+,X+ Z− z ∈ (L0d)+, z ∈ Rd
}

∩M,

(2.1)

where
∫

[θ ,1]d diag(α)
−1E[Z]µ(dα) − z :=

[

∫

[θ ,1]
1
αi
E[Zi]µi(dαi) −zi]

d
i=1 := (

∫

[θ ,1]
1
α1
E[Z1]µ1(dα1) −

z1, · · · ,
∫

[θ ,1]
1
α1
E[Zd]µd(dαd) − zd)

T for Z = (Z1, · · · ,Zd) ∈

(L1
d
)+ and z = (z1, · · · , zd) ∈ Rd.

Remark 2.1 If µ is a Dirac measure at some α ∈ (0, 1]d, that
is, µ({α}) = 1, then Definition 2.1 reverts to the definition of
the set-valued regulator average value at risk of Hamel et al. [11]
(Definition 2.1) because the benchmark level θ can be small
enough. Moreover, in Example 3.2 below, we show that the
WVaRµ is better suited to the change in the market than the
regulator average value at risk of Hamel et al. [11].

Remark 2.2 The financial interpretation of the benchmark
level θ is as follows. Initially, it stems from the confidence
level 1 − α of value at risk. Given a confidence level
1 − α ∈ (0, 1), the value at risk at X ∈ L0 is defined as
VaR1−α(X) := inf{t ∈ R; P(X > t) ≤ α}. From a practical
perspective, in reality, the parameter 1 − α can be very close
to but cannot be 1. Thus, α can be very close to but cannot be
zero, which motivates the introduction of the benchmark level
θ , which reflects the risk tolerance of the investor/regulator
in terms of probability. See Basel Committee [28–31] for the
reasonability of the benchmark level. Therefore, the benchmark
level θ can be very close to zero but cannot be exactly zero.
Examples 3.1 and 3.2 below take this perspective into account.

Remark 2.3 In definition 2.1, the intersection with M has the
following interpretation. To cancel the risk of portfolio X, we
would like to obtain a set of all margins when measuring the
risk of portfolio X. Intersecting with the set M, WVaRµ(X)
shows both the valid margins and the aggregated margins, which
aggregates the valid margins from the d-dimension to the m-
dimension. The other (d−m)-dimension ofWVaRµ(X) should be
zero. Aggregating themargin has plenty of financial explanations.
For example, each element of the vector represents the amounts
in a specific currency. Suppose thatm different currencies should
be taken into consideration. For the regulator, there is no need
to ask for a d-dimensional margin. They could aggregate d
elements of themargin intom elements that representm different
currencies. When considering the margin needed by a company
with different departments, this idea is also reasonable. The
decision-maker of a company may simply want to figure out the
sum of the margins of different departments. More details can be
found in Jouini et al. [7].

The next proposition provides another equivalent
representation ofWVaRµ under the conditionM = Rm×{0}d−m,
which is easier to compute than (2.1).

Proposition 2.1 Let M = Rm × {0}d−m (hence M+ = Rm
+ ×

{0}d−m). The set-valued weighted value at risk takes the following
equivalent representation:

WVaRµ(X) =

([

inf
zi∈R

{∫

[θ ,1]

1

αi
E[(−Xi + zi)

+]µi(dαi)− zi

}]m

i=1

+ Rm
+

)

× {0}d−m

for X = (X1, · · · ,Xd) ∈ L0
d
.

Proof Considering a component of the portfolio, we know that
the two conditions Zi ∈ L1+ and Xi + Zi − zi ∈ L0+ are
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equivalent to Zi ≥ (−Xi + zi)
+ for 1 ≤ i ≤ d. Therefore,

{
∫

[θ ,1]
1
αi
E[Zi]µi(dαi)− zi; Zi ∈ L1+,Xi + Zi − zi ∈ L0+, zi ∈ R} is

equal to infzi∈R{
∫

[θ ,1]
1
αi
E[(−Xi + zi)

+]µi(dαi)− zi} + R+. After
intersecting with the setM, we have that

WVaRµ(X) =

([

inf
zi∈R

{∫

[θ ,1]

1

αi
E[(−Xi + zi)

+]µi(dαi)− zi

}]m

i=1

+ Rm
+

)

× {0}d−m. (1)

Proposition 2.1 is proved.

The next proposition will show that whenM = Rm × {0}d−m,
the set-valued weighted value at risk is exactly a set-valued
coherent risk measure in the sense of Jouini et al. [7].

Proposition 2.2 Let M = Rm × {0}d−m. Then, the function
X −→ WVaRµ(X) meets the listed properties:

(a) Positive homogeneity: for any X ∈ L0
d
and any s > 0,

WVaRµ(sX) = sWVaRµ(X).
(b) Subadditivity: for any X1,X2 ∈ L0

d
, WVaRµ(X

1 + X2) ⊇

WVaRµ(X
1)+WVaRµ(X

2).
(c) M-translation invariance: for any X ∈ L0

d
and any u ∈ Rm,

WVaRµ(X+ ū) = WVaRµ(X)− ū, where ū = u× {0}d−m.
(d) Monotonicity with respect to (L0

d
)+: for any X

1,X2 ∈ (L0
d
)+

with X2 ≥ X1, which means that X2 − X1 ∈ (L0
d
)+, we have

WVaRµ(X
2) ⊇ WVaRµ(X

1).
(e) It satisfies thatWVaRµ(X)+M+ = WVaRµ(X) for X ∈ L0

d
.

Particularly,WVaRµ(0) is a convex cone.

Proof (a) For X = (X1, · · · ,Xd) ∈ L0
d
and s > 0,

WVaRµ(sX) =
([

inf
zi∈R

(

−zi +

∫

[θ ,1]

1

αi
E
[

(zi − sXi)
+
]

µi(dαi)

)]m

i=1

+ Rm
+

)

× {0}d−m

=

([

inf
zi∈R

(

−zi + s

∫

[θ ,1]

1

αi
E

[

( zi

s
− Xi

)+
]

µi(dαi)

)]m

i=1

+ Rm
+

)

× {0}d−m

=

([

s inf
zi∈R

(

−
zi

s
+

∫

[θ ,1]

1

αi
E

[

( zi

s
− Xi

)+
]

µi(dαi)

)]m

i=1

+ Rm
+

)

× {0}d−m

=

([

s inf
zi
s ∈R

(

−
zi

s
+

∫

[θ ,1]

1

αi
E

[

( zi

s
− Xi

)+
]

µi(dαi)

)

]m

i=1

+ Rm
+

)

× {0}d−m

= sWVaRµ(X).

(b) For X1 = (X1
1 , · · · ,X

1
d
), X2 = (X2

1 , · · · ,X
2
d
) ∈ L0

d
,

WVaRµ(X
1 + X2) =

([

inf
zi∈R

(

−zi +

∫

[θ ,1]

1

αi
E
[

(

zi − X1
i − X2

i

)+
]

µi(dαi)

)]m

i=1

+ Rm
+

)

× {0}d−m

⊇

([

inf
z1i +z2i =zi∈R

(

−zi +

∫

[θ ,1]

1

αi
E
[

(

z1i − X1
i

)+

+
(

z2i − X2
i

)+
]

µi(dαi)
)]m

i=1
+ Rm

+

)

× {0}d−m

=

([

inf
z1i ∈R

(

−z1i +

∫

[θ ,1]

1

αi
E
[

(

z1i − X1
i

)+
]

µi(dαi)

)

]m

i=1

+ Rm
+ +

[

inf
z2i ∈R

(

−z2i +

∫

[θ ,1]

1

αi
E
[

(

z2i − X2
i

)+
]

µi(dαi)

)

]m

i=1

+ Rm
+

)

× {0}d−m

=WVaRµ(X
1)+WVaRµ(X

2).

(c) For u = (u1, · · · , um) ∈ Rm,

WVaRµ(X+ ū) =
([

inf
zi∈R

(

−zi +

∫

[θ ,1]

1

αi
E
[

(zi − ūi − Xi)
+
]

µi(dαi)

)]m

i=1

+ Rm
+

)

× {0}d−m

=

([

inf
zi∈R

(

−(zi − ūi)+

∫

[θ ,1]

1

αi
E
[

(zi − ūi − Xi)
+
]

µi(dαi)− ūi

)]m

i=1

+ Rm
+

)

× {0}d−m

=WVaRµ(X)− ū.

(d) Given X1 = (X1
1 , · · · ,X

1
d
), X2 = (X2

1 , · · · ,X
2
d
) ∈ L0

d
with

X2 − X1 ∈ (L0
d
)+, we have (zi − X2

i )
+ ≤ (zi − X1

i )
+ for each

zi ∈ R, 1 ≤ i ≤ d. Hence,

inf
zi∈R

(

−zi +

∫

[θ ,1]

1

αi
E
[

(

zi − X2
i

)+
]

µi(dαi)

)

≤ inf
zi∈R

(

−zi +

∫

[θ ,1]

1

αi
E
[

(

zi − X1
i

)+
]

µi(dαi)

)

.

Therefore,

[

inf
zi∈R

(

−zi +

∫

[θ ,1]

1

αi
E
[

(

zi − X2
i

)+
]

µi(dαi)

)]m

i=1

≤

[

inf
zi∈R

(

−zi +

∫

[θ ,1]

1

αi
E
[

(

zi − X1
i

)+
]

µi(dαi)

)]m

i=1

.
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Consequently,

([

inf
zi∈R

(−zi +

∫

[θ ,1]

1

αi
E
[

(

zi − X2
i

)+
]

µi(dαi)

)]m

i=1

+ Rm
+

)

× {0}d−m

⊇

([

inf
zi∈R

(

−zi +

∫

[θ ,1]

1

αi
E
[

(

zi − X1
i

)+
]

µi(dαi)

)]m

i=1

+ Rm
+

)

× {0}d−m,

which implies thatWVaRµ(X
2) ⊇ WVaRµ(X

1).
(e) It is not difficult to verify that WVaRµ(X) + M+ =

WVaRµ(X) and thatWVaRµ(0) is a convex cone.

2.2. The Market Extension
The weighted value at risk from Definition 2.1 does not take
into account the investment preferences of investors. Therefore,
we define its market extension by replacing (L0

d
)+ with a

general closed convex cone K containing (L0
d
)+ (see [7] or [8]

for further motivation).

Definition 2.2 Let˜K be a closed convex cone that contains (L1
d
)+

and K be a closed convex cone that contains (L0
d
)+. The extended

version of the set-valued weighted value at risk is defined as

WVaRextµ (X) :=

{∫

[θ ,1]d
diag(α)−1E[Z]µ(dα)− z;

Z ∈ ˜K,X+ Z− z ∈ K, z ∈ Rd

}

∩M.

In the proof of Proposition 2.1, through the same argument,
we present the following proposition, which provides another
equivalent representation ofWVaRextµ (·).

Proposition 2.3 Let M = Rm × {0}d−m. WVaRextµ has the
following equivalent representation:

WVaRextµ (X) =

([

inf
zi∈R

(∫

[θ ,1]

1

αi
E
[

(−Xi + zi)
+
]

µi(dαi)− zi

)]m

i=1

+ C

)

× {0}d−m

where C is a closed convex cone that contains Rd
+.

The next proposition will show that when M =

Rm × {0}d−m, WVaRextµ is exactly a set-valued coherent
risk measure in the sense of Jouini et al. [7].

Proposition 2.4 Let M = Rm × {0}d−m. Then, the function
X −→ WVaRextµ (X) satisfies the following properties:

(a) Positive Homogeneity: for each X ∈ L0
d
and each s > 0,

WVaRextµ (sX) = sWVaRextµ (X).

(b) Subadditivity: for each X1,X2 ∈ L0
d
, WVaRextµ (X1 + X2) ⊇

WVaRextµ (X1)+WVaRextµ (X2).

(c) M-translation invariance: for each X ∈ L0
d
and each u ∈ Rm,

WVaRextµ (X+ ū) = WVaRextµ (X)− ū, where ū = u×{0}d−m.

(d) Monotonicity with respect to K: for any X1,X2 ∈ K and
X2 �K X1, which means that X2 − X1 ∈ K, we have
WVaRextµ (X2) ⊇ WVaRextµ (X1).

(e) For each X ∈ L0
d
, the set WVaRextµ (X) ⊂ M is convex

and satisfies that WVaRextµ (X) + CM = WVaRextµ (X), where
CM := C

⋂

M and C is as in Proposition 2.3. In particular,
WVaRextµ (0) is a convex cone that satisfies CM ⊆ WVaRextµ (0)

andWVaRextµ (0)
⋂

−CM = {0}.

Proof: (a) For X ∈ L0
d
and s > 0, we have

WVaRextµ (sX) =

{∫

[θ ,1]d
diag(α)−1E[Z]µ(dα)− z; Z ∈ ˜K, sX

+ Z− z ∈ K, z ∈ Rd

}

∩M

=

{∫

[θ ,1]d
diag(α)−1E[Z]µ(dα)− z;

Z

s
∈ ˜K, s(X+

Z

s
−

z

s
) ∈ K,

z

s
∈ Rd

}

∩M

=

{

s

(∫

[θ ,1]d
diag(α)−1E

[

Z

s

]

µ(dα)−
z

s

)

;

Z

s
∈ ˜K,X+

Z

s
−

z

s
∈ K,

z

s
∈ Rd

}

∩M

=sWVaRextµ (X).

(b) For X1,X2 ∈ L0
d
,

WVaRextµ (X1)+WVaRextµ (X2)

=

{∫

[θ ,1]d
diag(α)−1E[Z1]µ(dα)− z1

+

∫

[θ ,1]
diag(α)−1E[Z2]µ(dα)− z2 ;Z1,Z2 ∈ ˜K,X1

+ Z1 − z1 ∈ K,X2 + Z2 − z2 ∈ K, z1, z2 ∈ Rd

}

∩M

⊆

{∫

[θ ,1]d
diag(α)−1E[Z1 + Z2]µ(dα)− (z1 + z2) ;

Z1 + Z2 ∈ ˜K,X1 + X2 + Z1 + Z2 − (z1 + z2) ∈ K, z1

+ z2 ∈ Rd

}

∩M

=

{∫

[θ ,1]d
diag(α)−1E[Z]µ(dα)− z; Z ∈ ˜K,X1 + X2 + Z

− z ∈ K, z ∈ Rd

}

∩M

=WVaRextµ (X1 + X2).
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(c) It is straightforward.

(d) WVaRextµ is K-monotone because for Y ∈ K, we

have Y + K ⊆ K, and therefore, WVaRextµ (X − Y) =
{

∫

[θ ,1]d diag(α)
−1E[Z]µ(dα)− z; Z ∈ ˜K,X+ Z− z ∈ Y+ K, z

∈ Rd
}

∩M ⊆ WVaRextµ (X).

(e) It is straightforward. Proposition 2.4 is proved.

3. EXAMPLES

In this part, we give two examples of computing WVaRµ. In the
rest of the paper, we will consider a finite financial market, that
is, we assume that (�, F, P) is a finite probability space. Namely,
let |�| = N, F = 2�, P = (p1, p2, ..., pN) with

∑N
n=1 pn = 1

and P({ωn}) = pn, n = 1, 2, ...,N. Here, N is a strictly positive
number, and the probability measure P is given by N.

The first example is motivated by Hamel et al.
[11] (Example 3.1).

Example 3.1 Suppose that the elements of a portfolio are d = 2
and M = R2 (hence all the initial portfolios are eligible). In a
binarymodel withN = 2 and P = (0.4, 0.6), the potential income
is given by

X(ω1) = (12,−20)T , X(ω2) = (4,−6)T .

We set the benchmark level θ = 0.01 and let µ1 = µ2 := ν.
If ν is set to be uniformly distributed on [θ , 1], that is, for Borel
measurable set A ⊂ [θ , 1],

ν(A) :=

∫

A
f (x)dx,

where f (x) = 1
1−θ

for θ ≤ x ≤ 1. By a simple calculation, we
have that

WVaRµ(X) = (−4, 20)T + R2
+.

If we let ν be a (discrete) probability law with ν({0.01}) =

ν({0.02}) = 0.5, then calculation shows that

WVaRµ(X) = (−4, 20)T + R2
+

again. For the first and second assets, the margins that the
manager/regulator needs for compensating the risk are at least
4 units and−20 units, respectively.

In the above example, the value ofWVaRµ(X) is equal to that
of AV@R

reg
α (X), the set-valued regulator average value at risk (see

[11], Definition 2.1 and Example 3.1), where α = (0.01, 0.02)T .
The next example will show that the values of WVaRµ(X) and
AV@R

reg
α (X) are not necessarily the same and that WVaRµ(X)

is better suited to a market featuring extreme events than is
AV@R

reg
α (X).

Example 3.2 Let all the input parameters and the potential
incomes of X be as in Example 3.1 except for the probability law

P and the probability measure µ. Here, we set P = (0.99, 0.01).
If ν is set to be uniformly distributed on [θ , 1], then

WVaRµ(X) = (−11.628, 20)T + R2
+.

If ν is again a (discrete) probability law with ν({0.01}) =

ν({0.02}) = 0.5, then,

WVaRµ(X) = (−6, 20)T + R2
+.

In contrast to the above example, the probability measure
µ concerning the confidence levels does affect the risk
measure because the minimal margin to cancel the risk for a
manager/regulator covers the worst case only for the second asset,
which is−20 units.

On the other hand,

AV@R
reg
α (X) = (−4, 20)T + R2

+,

where α = (0.01, 0.02)T , which is the same as in Example 3.1.
From the above two examples, we observe that when all the

input parameters remain the same except for the change in
the (binary) probability law P from (0.4, 0.6) to (0.99, 0.01),
the minimal risk-compensating portfolio of WVaRµ(X) changes
from (−4, 20) to (−11.628, 20) and (−6, 20), respectively,
whereas theminimal risk-compensating portfolio ofAV@R

reg
α (X)

remains unchanged, which is (−4, 20). Thus, we conclude
that WVaRµ(X) can reflect the change in the market, that is,
the change in the (binary) probability P, whereas AV@R

reg
α (X)

cannot. In the case of P = (0.99, 0.01), the event with probability
0.01 could be regarded as an extreme event compared with the
other event with probability 0.99. Therefore, we conclude that
WVaRµ is better suited to a market featuring extreme events than
is AV@R

reg
α .

4. CONCLUSIONS

In this paper, we proposed two new classes of set-valued
coherent risk measures: the “regulator” version and “market”
version. Their essential properties are discussed, and equivalent
representations are given. Moreover, the coherency of the set-
valued weighted value at risk is characterized. These newly
introduced set-valued risk measures complement the study of
set-valued risk measures. Examples are also presented that show
that set-valued weighted value at risk is better suited to a market
featuring extreme events than is AV@R

reg
α .
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A novel relation between the Moore-Penrose inverses of two nullity-1 n × n Hermitian

matrices which share a common null eigenvector is established, and its application in

electrical networks is illustrated by applying the result to Laplacian matrices of graphs.
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1. INTRODUCTION

The Hermitian matrices are an important class of matrices arising in many contexts. A complex
squared matrix is called a Hermitian matrix if it is equal to its conjugate transpose, in other words,
for all i and j, its (i, j)-th element (i.e., the element in the i-th row and j-th column) is equal to the
complex conjugate of its (j, i)-th element. It is widely known that all the eigenvalues of a Hermitian
matrix are real. In addition, it is easily seen that Hermitianmatrices contain real symmetricmatrices
as special cases.

LetM be an n×mmatrix. Anm× nmatrix X is called theMoore-Penrose (generalized) inverse
ofM, if X satisfies the following equations:

MXM = M,XMX = X, (MX)H = MX, (XM)H = XM,

where XH represents the conjugate transpose of the matrix M. It is well-known [1] that for any
matrix M, the Moore-Penrose inverse of M does exist and is unique. For this reason, the unique
Moore-Penrose inverse ofM is denoted byM+.

We proceed to introduce a special class of Hermitianmatrices – the Laplacianmatrices of graphs,
which play a fundamental role in graph theory and electrical network theory. Let G = (V ,E) be a
connected weighted graph of order n. For each edge e of G, we assign a positive real number we to
e, and we call we the weight of e. Then the adjacency matrix of G, denoted by A, is a n × n matrix
such that the (i, j)-th element of A is equal to the weight of the edge ij if i and j are connected by
an edge and 0 otherwise. Suppose that D is the n × n diagonal matrix such that the i-th diagonal
element is equal to the sum of the weights of the edges incident to i. Then the Laplacian matrix L
of G is defined as L = D−A. It is easily seen that the Laplacian matrix is real and symmetric. Thus,
the Laplacian matrix is a Hermitian matrix. According to the definition of the Laplacian matrix, we
readily seen that the Laplacian matrix is singular and not invertible.

It is natural to consider a weighted graph G as a (resistive) electrical network N by viewing
each edge e as a resistor such that the conductance of the resistor is we, where we is the weight
on e. In this guise, the resistance distance [2] between any two vertices i and j of G, denoted by
�(i, j), is defined as the net effective resistance between corresponding nodes i and j in N . It
should be mentioned that resistance distance, as an important component of circuit theory, has
been studied for a long time, dating back to the classical work of Kirchhoff in 1847. It is amazing
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that the resistance distance turns out to have many purely
mathematical interpretations, although it comes from physics
and engineering, among which a fundamental one is the classical
result which is given via the Moore-Penrose inverse of the
Laplacian matrix [2]:

�(i, j) = L+ii − 2L+ij + L+jj , (1.1)

where L+ij denote the (i, j)-th element of L+. Since the

identification of resistance distance as a novel distance function
on graphs, the resistance distance has been extensively studied in
the literature of mathematics, physics, and chemistry. For more
information on resistance distances, we refer the readers to recent
papers [3–13] and references therein.

In this paper, a relation between the Moore-Penrose inverses
of two nullity-1 n × n Hermitian matrices which share a
common null eigenvector is established. Then its application
in electrical networks is illustrated by applying the result to
Laplacian matrices of graphs.

2. A RELATION BETWEEN
MOORE-PENROSE INVERSES OF TWO
HERMITIAN MATRICES

All the matrices considered in this section are square matrices
of order n. For an invertible matrix M, we use M−1 to denote
the inverse ofM. Let I andO denote the identity matrix and zero
matrix, respectively. This section is devoted to establish a relation
between Moore-Penrose inverses of two Hermitian matrices of
nullity-1 which share a common null eigenvector. To this end, we
first give some properties on nullity-1 Hermitian matrices, which
will be used in the later.

Lemma 2.1. LetM be a nullity-1 Hermitian n×nmatrix. Suppose
that 0 = λ1, λ2, . . . , λn are eigenvalues of M with corresponding
orthonormal eigenvectors u1, u2, . . . , un. Then

M+ = (M + u1u
H
1 )

−1 − u1u
H
1 . (2.1)

MM+ = M+M = I − u1u
H
1 . (2.2)

u1u
H
1 M

+ = O. (2.3)

Proof: Let U = (u1, u2, . . . , un) and 3 = diag{0, λ2, . . . , λn}.
Then

M = U3UH .

As u1u
H
1 = Udiag{1, 0, . . . , 0}UH , it follows that

M + u1u
H
1 = U3UH + Udiag{1, 0, . . . , 0}UH

= Udiag{1, λ2, . . . , λn}U
H .

ThusM + u1u
H
1 is invertible with

(M + u1u
H
1 )

−1 = Udiag

{

1,
1

λ2
, . . . ,

1

λn

}

UH .

Consequently,

(M + u1u
H
1 )

−1 − u1u
H
1 = Udiag

{

0,
1

λ2
, . . . ,

1

λn

}

UH .

Thus it is easily verified by the definition of the Moore-Penrose
inverse that

M+ = (M + u1u
H
1 )

−1 − u1u
H
1 .

To prove Equation (2.2), note first that

MM+ = U3UHU30H
H = U330H

H and

M+M = U30U
HU3UH = U303UH ,

where 30 = Udiag
{

1, 1
λ2
, . . . , 1

λn

}

UH . Then, note that

330 = 303 = diag{0, 1, . . . , 1}.

Thus we have

MM+ = M+M = U(diag{0, 1, . . . , 1})UH

= U(I − diag{1, 0, . . . , 0})UH

= UUH − Udiag{1, 0, . . . , 0}UH = I − u1u
H
1 .

For Equation (2.3), by the above arguments we have

u1u
H
1 M

+ = (Udiag{1, 0, . . . , 0}UH)

(

Udiag{0,
1

λ2
, . . . ,

1

λn
}UH

)

= Udiag{1, 0, . . . , 0}diag{0,
1

λ2
, . . . ,

1

λn
}UH = O,

as required. �

According to the properties given in Lemma 2.1, a relation
between Moore-Penrose inverses of two Hermitian matrices
of nullity-1 which share a common null eigenvector could be
established, as given in the following result.

Theorem 2.2. Let M and M′ be two nullity-1 Hermitian n × n
matrices which share a common null eigenvector. Then

(M′)+ = M+[I + (M′ −M)M+]−1. (2.4)

Proof. For the sake of simplicity, set 1 : = M′ − M and
∇ : = (M′)+ −M+. Then

M′(M′)+ = (M + 1)(M+ +∇) = MM+ +M∇ + 1M+ + 1∇ .
(2.5)

Let u1 be the common null eigenvector shared byM andM′. Then
by Lemma 2.1, we know that

M′(M′)+ = MM+ = I − u1u
H
1 .

Thus, Equation (2.5) gives

M∇ + 1M+ + 1∇ = O,
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that is,

M′∇ = −1M+.

Left-multiply both sides of the above equation by (M′)+, we get

(M′)+M′∇ = −(M′)+1M+.

Bearing in mind that (M′)+M′ = I − u1u
H
1 and that (M′)+ =

M+ +∇ , we arrive at

(I − u1u
H
1 )∇ = −(M+ +∇)1M+,

that is,

∇ − u1u
H
1 ∇ = −(M+ +∇)1M+. (2.6)

Since it is shown in Lemma 2.1 that

u1u
H
1 (M

′)+ = u1u
H
1 M

+ = O,

we have

u1u
H
1 ∇ = u1u

H
1 [(M

′)+ −M+] = O.

Hence Equation (2.6) becomes

∇ = −M+1M+ −∇1M+,

or equivalently,

∇(I + 1M+) = −M+1M+.

So if I + 1M+ is invertible, then by right-multiplying the above
equation by (I + 1M+)−1, we could obtain

∇ = −M+1M+(I + 1M+)−1,

which yields

(M′)+ = M+ +∇ = M+ −M+1M+(I + 1M+)−1

= M+
[

I − 1M+(I + 1M+)−1
]

= M+
[

I − (I + 1M+)(I + 1M+)−1 + (I + 1M+)−1
]

= M+
[

I − I + (I + 1M+)−1
]

= M+(I + 1M+)−1

It remains to verify that I + 1M+ is invertible. As

M+ = (M + u1u
H
1 )

−1 − u1u
H
1 ,

it follows that

I + 1M+ = I + 1[(M + u1u
H
1 )

−1 − u1u
H
1 ]

= I + 1(M + u1u
H
1 )

−1 − 1u1u
H
1

= I + 1(M + u1u
H
1 )

−1 − (M′ −M)u1u
H
1

= I + 1(M + u1u
H
1 )

−1 −M′u1u
H
1 +Mu1u

H
1 .

Noticing that u1 is an 0-eigenvalue eigenvector of M and M′, it
gives that

I + 1M+ = (M + u1u
H
1 )(M + u1u

H
1 )

−1 + 1(M + u1u
H
1 )

−1

= (M + u1u
H
1 + 1)(M + u1u

H
1 )

−1

= (M′ + u1u
H
1 )(M + u1u

H
1 )

−1.

As M + u1u
H
1 is non-singular, by the same reason we know that

M′ + u1u
H
1 is non-singular, so that I + 1M+ is invertible. The

proof is complete. �

Obviously, the Laplacian matrix is a Hermitian matrix. In
addition, all the Laplacian matrices of connected graphs of the
same order are nullity-1 and share the same eigenvector. Hence,
Theorem 2.2 can be directly applied to Laplacian matrices.
Let G and G′ be weighted connected graphs of order n. As a
straightforward consequence of Theorem 2.2, we have

Corollary 2.3. Let G and G′ be connected weighted graphs of order
n with Laplacian matrices L and L′, respectively. Then

(L′)+ = L+[I + (L′ − L)L+]−1. (2.7)

3. AN APPLICATION TO ELECTRICAL
NETWORKS

The Laplacian matrix, also known as the Kirchhoff matrix,
or admittance matrix, has wide applications in electrical
networks. As introduced in the first section, the resistance
distance could be computed in terms of the Moore-Penrose
inverse of the Laplacian matrix. Actually, the computation of
resistance distances is a classical problem in circuit theory and
electrical network theory. Besides, this problem is relevant to
a number of problems ranging from Lattice Green’s functions,
harmonic functions to random walks on graphs. For this reason,
many researchers devote themselves to the computation of the
resistance distance. With the development of more than 170
years, various formulae and techniques have been established,
such as the traditional techniques like series and parallel circuits,
Kirchhoff’s laws and star-triangle transformation, as well as
newly developed techniques like (algebraic, probabilistic, and
combinatorial) formulae, local and global sum rules, recursion
relations. In [14], a novel recursion formula for computing
resistance distance is obtained. It turns out that resistance
distances in some networks could be computed very easily by
the recursion formula. In addition, the recursion formula extends
the famous Rayleigh’s monotonicity law by giving quantitative
characterization to the law.

In this section, we use Corollary 2.3 to give a new proof to the
recursion formula on resistance distances proposed in [14].

Theorem 3.1. [14] Let G and G′ be two weighted graphs which are
the same except for the weights on an edge e = ij are we and w′

e.
For any two vertices p and q, denote the resistance distance between
them in G and G′ by �(p, q) and �′(p, q), respectively. Then

�′(p, q) = �(p, q)−
δ · [�(p, i)+ �(q, j)− �(p, j)− �(q, i)]2

4[1+ δ · �(i, j)]
,

(3.1)

Frontiers in Physics | www.frontiersin.org 3 July 2020 | Volume 8 | Article 23983

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Yang et al. A Relation Between Moore-Penrose

where δ ≡ w′
e − we.

Proof. Denote the Laplacian matrices of G and G′ respectively
by L and L′, and let e be the (column) vector of order n whose
components are 0 except the i-th and j-th components are
respectively 1 and−1. Then

L′ = L+ δ · eeH .

By Corollary 2.3, we have

(L′)+ = L+[I + (L′ − L)L+]−1 = L+(I + δ · eeHL+)−1.

To compute (L′)+, we first compute (I + δ · eeHL+)−1. Note that
the elements of I + δ · eeHL+ are given by

[I + δ · eeHL+]kl =



































1, if k = l 6= i, j,

δ · (L+
il
− L+

jl
), if k = i and l 6= i,

1+ δ · (L+ii − L+ji ), if k = l = i,

−δ · (L+
il
− L+

jl
), if k = j and l 6= j,

1− δ · (L+ij − L+jj ), if k = l = j,

0 otherwise.

Simple algebraic calculation leads to

det(I + δ · eeHL+) = 1+ δ · (L+ii + L+jj − 2L+ij ).

Then by the adjoint method, we could obtain the inverse of
I + δ · eeHL+, whose elements are given by

[(I + δ·eeHL+)−1]kl =














































































1, if k = l 6= i, j,

−
δ · (L+

il
− L+

jl
)

1+ δ · (L+ii + L+jj − 2L+ij )
, if k = i and l 6= i,

1−
δ · (L+ii − L+ji )

1+ δ · (L+ii + L+jj − 2L+ij )
, if k = l = i,

δ · (L+
il
− L+

jl
)

1+ δ · (L+ii + L+jj − 2L+ij )
, if k = j and l 6= j,

1+
δ · (L+ij − L+jj )

1+ δ · (L+ii + L+jj − 2L+ij )
, if k = l = j

0, otherwise.

Then, by algebraic calculation, we could obtain the product of L+

and (I+δ ·eetL+)−1. Thus, (L′)+ is obtained, whose elements are
given below. For 1 ≤ k, l ≤ n,

(L′)+
kl
= L+

kl
−

δ · (L+
ki
− L+

kj
)(L+

il
− L+

jl
)

1+ δ · (L+ii + L+jj − 2L+ij )
.

Now we are ready to prove Equation (3.1) according to the
formula given in Equation (1.1). By Equation (1.1), we have

�′(p, q) =(L′)+pp + (L′)+qq − 2(L′)+pq = L+pp + L+qq − 2L+pq

−
δ · (L+pi − L+pj)

2 + δ · (L+qi − L+qj)
2

1+ δ · (L+ii + L+jj − 2L+ij )

−
2δ · [(L+pi − L+pj)(L

+
qi − L+qj)]

1+ δ · (L+ii + L+jj − 2L+ij )

=L+pp + L+qq − 2L+pq −
δ · [(L+pi − L+pj)

2 + (L+qi − L+qj)
2]

1+ δ · (L+ii + L+jj − 2L+ij )

−
2δ · [(L+pi − L+pj)(L

+
qi − L+qj)]

1+ δ · (L+ii + L+jj − 2L+ij )

=L+pp + L+qq − 2L+pq −
δ · (L+pi − L+pj − L+qi + L+qj)

2

1+ δ · (L+ii + L+jj − 2L+ij )

=L+pp + L+qq − 2L+pq

−δ ·





(L+pi − L+pj − L+qi + L+qj)+
1
2 (L

+
pp − L+pp + L+ii

−L+ii + L+qq − L+qq + L+jj − L+jj )





1+ δ · (L+ii + L+jj − 2L+ij )

2

=L+pp + L+qq − 2L+pq

−δ·





(− 1
2L

+
pp + L+pi −

1
2L

+
ii )+ ( 12L

+
pp − L+pj +

1
2L

+
jj )

+( 12L
+
qq − L+qi +

1
2L

+
ii )+ (− 1

2L
+
qq + L+qj −

1
2L

+
jj )





1+ δ · (L+ii + L+jj − L+ij − L+ji )

2

= �(p, q)−
δ · [− 1

2�(p, i)+ 1
2�(p, j)+ 1

2�(q, i)− 1
2�(q, j)]2

[1+ δ · �(i, j)]

=�(p, q)−
δ · [�(p, i)+ �(q, j)− �(p, j)− �(q, i)]2

4[1+ δ · �(i, j)]
.

The proof is completed. �

4. CONCLUSION

The Moore-Penrose inverse of the Hermitian matrix has various
applications. In this paper, a relation between generalized
inverses of two nullity-1 n× nHermitian matrices which share a
common null eigenvector is established, and a simple application
in electrical networks is illustrated. Further applications of the
relation needs to be revealed in the future.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/supplementary material, further inquiries can be
directed to the corresponding author/s.

Frontiers in Physics | www.frontiersin.org 4 July 2020 | Volume 8 | Article 23984

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Yang et al. A Relation Between Moore-Penrose

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct and intellectual
contribution to the work, and approved it for publication.

FUNDING

This research was funded by National Natural Science
Foundation of China through grant number 116711347,

and Natural Science Foundation of Shandong Province through
grant number ZR2019YQ02.

ACKNOWLEDGMENTS

The authors would like to thank the reviewers
for their careful reading of the manuscript and
valuable suggestions.

REFERENCES

1. Ben-Israel A, Greville TN. Generalized Inverses: Theory andApplication. New

York, NY: Springer-Verlag (2003).
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Many previous studies have indicated that pinning control and adaptive feedback

control are two of most effective strategies for achieving synchronization. In this paper,

we present a mixed method integrating the two control strategies to realize cluster

synchronization in delayed networks with directed couplings. Based on Lyapunov

stability theory and matrix theory, several criteria on cluster synchronization are obtained.

Compared with the previous results on cluster synchronization, the obtained criteria

can be applied to delayed network with non-identical nodes, directed couplings, and

time-varying coupling strength. Finally, numerical simulations are performed to verify the

theoretical results.

Keywords: cluster synchronization, delayed network, pinning control, adaptive control, Lyapunov stability theory

1. INTRODUCTION

In the past decade, more and more attention has been attracted to the problem of complex
networks, which could be regarded as lots of dynamical nodes coupled with each other. As the
result of the complex coupling effect, many different types of collective dynamical behaviors can
be realized, such as complete synchronization [1, 2], cluster synchronization [3–5], exponential
synchronization [6, 7], intermittent synchronization [8, 9], etc. Cluster synchronization, which is
discussed in this paper, implies that the oscillators split into several clusters, and the oscillators
in the same cluster synchronize with one another. Many researches have shown that there is
a close interplay between cluster synchronization and network topologies. There are also some
networks which can not realize a particular type of synchronization only via the inherent coupling
effect of oneself. In order to realize cluster synchronization in networks without cluster structures,
many various control schemes have been proposed during the past decades, for instance, adaptive
feedback control [10, 11], pinning control [12, 13], intermittent control [14], and so on. The
control approaches concerned in this paper are the famous pinning control and adaptive feedback
control, both have been intensively investigated recently. First, we make a brief introduction to the
background and related work of pinning control. Generally speaking, the node number of each
complex network in the real world may be the massive level, and it is hard to control all nodes to
realize a particular type of synchronization. In order to reduce the control gain and the number of
controllers, pinning control is proposed as a more effective control approach [13]. The advantage
of the pinning control approach is that it is only necessary to control a significantly smaller number
of local controllers as compared to the randomly pinning scheme. Since the idea of pinning control
was first developed, researchers concentrate their efforts on the popularization and application of
the control approach [15–20]. For instance, by using the Schur complement and Lyapunov stability
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theory, several pinning schemes were designed to realize lag
synchronization between two coupled networks in [15]. It
is also shown that a directed network can realize pinning
synchronization in [17]. Pinning control scheme was also
applied to drive a directed dynamical network with non-identical
nodes to cluster synchronization [18]. Similarly, the intermittent
pinning-control problem of directed heterogeneous dynamical
networks has also been discussed in [19]. Second, it is worth to
point out that adaptive control scheme is a feasible approach
to avoid larger feedback control gains. Notice that the coupling
strength of many real network can not be arbitrarily large,
adaptive feedback control should be a valid method for achieving
synchronization. During the recent years, researchers have made
some great achievements on adaptive feedback control. In [21],
cluster synchronization of an adaptive dynamical network with
non-identical nodes was discussed.

Motivated by the discussions above, this paper aims to provide
several novel criteria on cluster synchronization of complex
networks with adaptive coupling strength via pinning control.
We carry out a new dynamical network model possessing
four characteristics, i.e., delayed dynamics, non-identical nodes,
directed topology and time-varying coupling strength. To the
best of our knowledge, there is no previous research discussing
the problem of cluster synchronization of such a network model.
However, the problem mentioned above should be an important
issue of complex networks because of its wide applications in
practical problems. Then we design proper pinning controllers
and adaptive coupling strength, and sufficient conditions are
derived to realize cluster synchronization by using Lyapunov
stability theory and matrix theory. In order to illustrate the
feasibility and validity of the obtained theoretical results, several
numerical simulations are presented.

The rest of this paper is designed as follows. The network
model is described and some necessary lemmas and assumptions
are stated in section 2. Via pinning and adaptive controls, cluster
synchronization in a delayed network is discussed and then some
sufficient conditions are given in section 3. Numerical examples
are obtained in section 4. Finally, in section 5, conclusions
are presented.

2. MODEL DESCRIPTION AND
PRELIMINARIES

Consider a network consisting ofN nodes, which are divided into
m communities C1,C2, . . . ,Cm, where 2 ≤ m ≤ N. It is easy
to see that there holds ∪m

i=1Ci = {1, 2, · · · ,N}. If the ith node
belongs to the jth cluster, then we define φi = j. The function
fφi

:Rn → Rn can be employed to describe the local dynamics of
each node in the ith cluster.

Now, we consider a delayed dynamic network described by the
following equations,

ẋi(t) = fφi (t, xi(t), xi(t − τ ))+ δi(t)

N
∑

j=1

aijŴxj(t), i = 1, 2, · · · ,N,

(1)

where xi(t) = (xi1(t), xi2(t), · · · , xin(t))
T ∈ Rn is the state

variable of node i; fφi is differentiable and capable of performing
abundant dynamical behaviors. If φi 6= φj, i.e., the ith node and
the jth node belong to different clusters, then fφi 6= fφj . δi(t) > 0 is
a time-varying coupling strength. τ > 0 is a constant. δi(t) is the
time-varying coupling strength. Ŵ ∈ Rn×n is an inner-coupling
matrix. For simplicity, we suppose that Ŵ is a positive definite
diagonal matrix, that is, Ŵ = diag(ρ1, ρ2, . . . , ρn) with ρi > 0.
The asymmetric matrix A = (aij)N×N

describes the topology
of the directed network, where aij ≥ 0, i 6= j, is the weight of
the edge from j to i. Here, the coupling matrix A is supposed

to be diffusive, that is, aii are defined as aii = −
N
∑

j=1,j6=i

aij, i =

1, 2, · · · ,N.
At first, we give an assumption about the function fφi , which

has been widely employed in the previous researches on the
problem of synchronization in complex networks. Most of the
previous researches pointed out that many well-known chaotic
systems have been checked to satisfy the following assumption,
such as cellular neural networks and Chua’s circuit [22].
Assumption 1 ([23]). For the vector-valued function fφi (t, z1, z̄1),
there exist a constant L such that

(z1 − z2)
T(fφi (t, z1, z̄1)− fφi (t, z2, z̄2))

≤ L((z1 − z2)
T(z1 − z2)+ (z̄1 − z̄2)

T(z̄1 − z̄2))

for any z1, z2, z̄1, z̄2 ∈ Rn, i = 1, 2, . . . ,N.
By introducing the control inputs ui(t) ∈ Rn(i = 1, 2, . . . ,N),

the controlled dynamical network with respect to the network (1)
can be rewritten as

ẋi(t) = fφi (t, xi(t), xi(t − τ )) + δi(t)

N
∑

j=1

aijŴxj(t)+ ui(t),

i = 1, 2, . . . ,N. (2)

Definition 1. Let sφi (t) = sφi (t, t0, s0) be the solution of the
following system

ṡφi (t) = fφi (t, sφi (t), sφi (t − τ )), i = 1, 2, ...,N. (3)

Defining the error variables by ei(t) = xi(t) − sφi (t),
i = 1, 2, . . . ,N, the oscillator network (2) is said to realize cluster
synchronization, if the synchronization errors satisfy

lim
t→+∞

ei(t) = 0, i = 1, 2, · · ·N.

The following error system can be concluded from the Equations
(2) and (3),

ėi(t) = fφi (t, xi(t), xi(t − τ ))− fφi (t, sφi (t), sφi (t − τ ))

+ δi(t)

N
∑

j=1

aijŴej(t)+ δi(t)

N
∑

j=1

aijŴsφj (t)+ ui(t) ,

i = 1, 2, · · ·N. (4)

According to the definition of the diffusive coupling matrix A,
one obtains that

∑N
j=1 aijŴsφj (t) = 0 for i ∈ Gφi − Ḡφi , where Gφi
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denotes the index set consisting of all nodes in the φith cluster
and Ḡφi represents the index set consisting of all nodes in the
φith cluster which have direct connections with some nodes in
other clusters. In view of this property, the pinning controller is
designed as

ui(t) = −θiδi(t)diŴ(ei(t)+ei(t−τ ))−θiδi(t)

N
∑

j=1

aijŴsφj (t), (5)

where θi = 1 for i ∈ Ḡφi , or θi = 0 for i ∈ Gφi − Ḡφi ,
and di > 0. The coupling strengths δi(t) are constructed by the
following adaptive laws

δ̇i(t) = γtσie
T
i (t)Ŵei(t), i = 1, 2, · · · ,N, (6)

where the constant σi > 0 is the control gain, δi(0) > 0, the 0− 1
switching function γt is defined as follows,

γt =

{

1, 0 < t ≤ T,
0, t > T,

T is a positive constant. Here, ui(t) and δi(t) are different
from the corresponding functions of the previous papers, such
as [3, 12, 14, 21]. It is easy to see that each node in the
network has a different coupling strength. By intuition, the
first term in the controller (5) is used to synchronize all
nodes in the same cluster, while the second term in the
controller (5) is to weaken the influences of the couplings among
different clusters.

Remark: The controller (5) only works on the nodes which
have direct connections with some nodes in other clusters
since ui(t) = 0 for i ∈ Gφi − Ḡφi . That is to say,
only the nodes which have direct connections with some
nodes in other clusters need to be pinned. In addition, the
coupling strengths δi(t) are constructed by the adaptive laws.
Therefore, the controller (5) is an pinning controller with
adaptive strength.

3. SUFFICIENT CONDITIONS ON
REALIZING CLUSTER SYNCHRONIZATION

In this section, the problem of cluster synchronization in delayed
networks will be investigated by designing proper pinning
controllers and adaptive coupling strength. Based on Lyapunov
functional method and matrix theory, the following theorem
is established.

Theorem 1. Let δi
1
= δi(t). Under Assumption 1, if there exists

a positive definite matrix Q, such that the matrix H1 is negative
definite for t ≤ T, and the matrix H2 is negative definite for
t > T, where

H1 =
(

LIN ⊗ In + (U − F)⊗ Ŵ + IN ⊗ Q−W ⊗ Ŵ − 1
2 (F ⊗ Ŵ)

− 1
2 (F ⊗ Ŵ) LIN ⊗ In − IN ⊗ Q

)

,

H2 =

(

LIN ⊗ In + (U − F)⊗ Ŵ + IN ⊗ Q − 1
2 (F ⊗ Ŵ)

− 1
2 (F ⊗ Ŵ) LIN ⊗ In − IN ⊗ Q

)

,

IN(In) is the N(n)-dimensional identity matrix, U = 1
2 (B+ BT),

B =







δ1a11 . . . 1
2 (δ1a1N + δNaN1)

...
. . .

...
1
2 (δNaN1 + δ1a1N) · · · δNaNN






,

F = diag(θ1δ1d1, θ2δ2d2, · · · , θNδNdN),

W = diag(δ1(T)− δ1, δ2(T)− δ2, · · · , δN(T)− δN),

then, by the local control (5) and the corresponding adaptive laws
(6), the solutions e1(t), e2(t), . . . , eN(t) of the system (4) satisfy
lim

t→+∞
ei(t) = 0, i = 1, 2, . . . ,N. That is, cluster synchronization

in the network system (2) is realized.
Proof. Let

V(t) =
1

2

N
∑

i=1

ei
T(t)ei(t)+

N
∑

i=1

∫ t

t−τ

ei
T(s)Qei(s)ds

+

N
∑

i=1

1

2σi
(δi(T)− δi(t))

2.

Apparently, V(t) = 0 if and only if ei(t) ≡ 0, t ∈ [t − τ , t] and
δi(T)− δi(t) = 0. Then, the derivate of V(t) along the solution of
error system (4) under control (5) is

V̇(t) =
1

2

N
∑

i=1

ėTi (t)ei(t)+
1

2

N
∑

i=1

ei
T(t)ėi(t)+

N
∑

i=1

ei
T(t)Qei(t)

−

N
∑

i=1

ei
T(t − τ )Qei(t − τ )−

N
∑

i=1

1

σi
(δi(T)− δi(t))δ̇i(t)

=

N
∑

i=1

ei
T(t)(fφi (t, xi(t), xi(t − τ ))− fφi (t, sφi (t), sφi (t − τ )))

+
1

2

N
∑

i=1

ei
T(t)

N
∑

j=1

(δi(t)aij + δj(t)aji)Ŵej(t)

−

N
∑

i=1

ei
T(t)θiδi(t)diŴei(t)−

N
∑

i=1

ei
T(t)θiδi(t)diŴei(t − τ )

+

N
∑

i=1

ei
T(t)Qei(t)−

N
∑

i=1

ei
T(t − τ )Qei(t − τ )

−

N
∑

i=1

γt(δi(T)− δi(t))e
T
i (t)Ŵei(t).

Denoting e(t) = (e1
T(t), e2

T(t), . . . , eN
T(t))

T
, we obtain

eT(t)(B⊗ Ŵ)e(t) = eT(t)(BT ⊗ Ŵ)e(t).

That is, for U = 1
2 (B+ BT), we have

eT(t)(B⊗ Ŵ)e(t) = eT(t)(U ⊗ Ŵ)e(t).
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According to Assumption 1, we have

V̇(t) ≤

N
∑

i=1

L(ei
T(t)ei(t)+ ei

T(t − τ )ei(t − τ ))

+eT(t)(B⊗ Ŵ)e(t)− eT(t)(F ⊗ Ŵ)e(t)

−eT(t)(F ⊗ Ŵ)e(t − τ )+ eT(t)(IN ⊗ Q)e(t)

−eT(t − τ )(IN ⊗ Q)e(t − τ )− eT(t)(γtW ⊗ Ŵ)e(t)

= eT(t)(LIN ⊗ In)e(t)+ eT(t − τ )(LIN ⊗ In)e(t − τ )

+eT(t)U ⊗ Ŵ)e(t)− eT(t)(F ⊗ Ŵ)e(t)

−eT(t)(F ⊗ Ŵ)e(t − τ )+ eT(t)(IN ⊗ Q)e(t)

−eT(t − τ )(IN ⊗ Q)e(t − τ )− eT(t)(γtW ⊗ Ŵ)e(t)

= eT(t)(LIN ⊗ In + (U − F)⊗ Ŵ+IN ⊗ Q− γtW ⊗ Ŵ)e(t)

−eT(t)(F ⊗ Ŵ)e(t − τ )+ eT(t − τ )(LIN ⊗ In)

(−IN ⊗ Q)e(t − τ ).

Denote ηT(t) = (eT(t), eT(t − τ )). For t ≤ T, γt = 1, that is
δ̇i(t) = σie

T
i (t)Ŵei(t). Therefore, we have

V̇(t) ≤ eT(t)(LIN ⊗ In + (U − F)⊗ Ŵ+IN ⊗ Q−W ⊗ Ŵ)e(t)

−eT(t)(F ⊗ Ŵ)e(t − τ )+ eT(t − τ )(LIN ⊗ In − IN ⊗ Q)

e(t − τ )

= ηT(t)H1 η(t).

Because of H1 < 0, we know that V̇(t) ≤ 0, and the equality
holds if and only if ei(t) = 0 and ei(t− τ ) = 0 for i = 1, 2, . . . ,N.
For t > T, γt = 0, that is δ̇i(t) = 0. Then we obtain

V̇(t) ≤ eT(t)(LIN ⊗ In + (U − F)⊗ Ŵ+IN ⊗ Q)e(t)

−eT(t)(F ⊗ Ŵ)e(t − τ )+ eT(t − τ )(LIN ⊗ In − IN ⊗ Q)

e(t − τ ).

= ηT(t)H2 η(t).

As H2 < 0, we know that V̇(t) ≤ 0, and the equality holds if and
only if e(t) = 0 and ei(t − τ ) = 0 for i = 1, 2, . . . ,N.

Therefore, the solutions e1(t), e2(t), . . . , eN(t) of the system
(4) satisfy lim

t→+∞
ei(t) = 0 for i = 1, 2, . . . ,N. Thus, cluster

synchronization in the network system (2) is realized under the
local control (5) and the corresponding adaptive laws (6).

Let Q = Ŵ = In, we obtain the following corollary.

Corollary 1. Let δi
1
= δi(t). Under Assumption 1, if Ŵ = I, H3

is negative definite for t ≤ T, and H4 is negative definite for
t > T, where

H3 =

(

(L+ 1)IN + U − F −W − 1
2F

− 1
2F (L− 1)IN

)

,

H4 =

(

(L+ 1)IN + U − F − 1
2F

− 1
2F (L− 1)IN

)

,

IN(In) is the N(n)-dimensional identity matrix, U = 1
2 (B+ BT),

B =







δ1a11 . . . 1
2 (δ1a1N + δNaN1)

...
. . .

...
1
2 (δNaN1 + δ1a1N) · · · δNaNN






,

F = diag(θ1δ1d1, θ2δ2d2, · · · , θNδNdN), W =

diag(δ1(T)− δ1, δ2(T)− δ2, · · · , δN(T)− δN), then, by the
local control (5) and the corresponding adaptive laws (6),
the solutions e1(t), e2(t), . . . , eN(t) of the system (4) satisfy

FIGURE 1 | A directed network consisting of 10 nodes with two communities.
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lim
t→+∞

ei(t) = 0, i = 1, 2, . . . ,N. That is, cluster synchronization

in the network system (2) is realized.

4. NUMERICAL SIMULATIONS

In this section, we give a numerical example to verify the theorem
given in the previous section.

Consider a directed network consisting of 10 nodes with two
communities, the topological structure of which is shown in
Figure 1. Choose the node dynamics of the five nodes in the first
cluster as the time-delayed Chua’s circuit, which is described by
the following equations,

ẋi(t) = f1(t, xi(t), xi(t − τ )) = V1xi(t)+ w(xi(t))+ v(xi(t − τ )),
(7)

where xi(t) = (xi1(t), xi2(t), xi3(t))
T , w(xi(t)) =

( 27xi1(t)−
3
14 (|xi1(t)+ 1| − |xi1(t)− 1|), 0, 0)

T
, and

FIGURE 2 | The time evolution of the first component xi1 in the ith oscillator,

i = 1, . . . , 10.

FIGURE 3 | The time evolution of E(t).

v(xi(t − τ )) = 0.3(xi1(t − τ ), 0, 0)T , i = 1, 2, . . . , 5. Choose
the node dynamics of the five nodes in the second cluster as
the time-delayed 3-D neural network which is described by the
following equations,

ẋi(t) = f2(t, xi(t), xi(t − τ )) = −I3xi(t)+V2g(xi(t))+h(xi(t − τ )),
(8)

where xi(t) = (xi1(t), xi2(t), xi3(t))
T , g(xi(t)) = ((|xi1(t) + 1| −

|xi1(t)−1|)/2, (|xi2(t)+1|−|xi2(t)−1|)/2, (|xi3(t)+1|−|xi3(t)−
1|)/2)T , h(xi(t − τ )) = 0.3(xi1(t − τ ), 0, 0)T , i = 6, 7, · · · , 10.

Matrices V1 and V2 are, respectively, defined by

V1 =





0 9 0
1 −1 1
0 −14.3 0



 ,V2 =





1.25 −3.2 −3.2
−3.2 1.1 −4.4
−3.2 −4.4 1



 .

Recalling that Ḡφi denotes the set consisting of all nodes
in the φith cluster which have direct connections to the
nodes in other clusters. It is easy to see that Ḡ1 = {1, 5},
Ḡ2 = {10} and

A =





































−4 1 1 0 1 0 1 0 0 0
1 −3 1 1 0 0 0 0 0 0
1 1 −3 1 0 0 0 0 0 0
1 1 1 −3 0 0 0 0 0 0
1 0 0 0 −2 1 0 0 0 0

0 0 0 0 0 −2 1 0 0 1
0 0 0 0 0 1 −3 1 1 0
0 0 0 0 0 0 1 −3 1 1
0 0 0 0 0 0 0 1 −2 1
0 0 0 1 1 0 0 1 0 −3





































.

According to the discussion in [18] and some simple calculations,
Assumption 1 is satisfied for systems (7) and (8). And then we
obtain L = 21. Let σi = 2, T = 2, δi(0) = 15, τ = 0.2, d1 =

d5 = d10 = 20, d2 = d3 = d4 = d6 = d7 = d8 = d9 = 0,Ŵ =

12I3,Q = 22I3. It is easy to verify that H1 < 0 for 0 ≤ t ≤ 2 and
H2 < 0 for t > 2.

FIGURE 4 | The time evolution of E58(t).
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Let the state of the Chua’s circuit under initial condition
be s1(t) = (−0.1,−0.2,−0.3)T , t ∈ [−0.2, 0], and the state
of the 3-D neural network under initial condition be s2(t) =

(0.1, 0.2, 0.3)T , t ∈ [−0.2, 0]. Initial states of all nodes are
constant functions on [−0.2, 0]. Here, the values of the initial
constant functions are randomly chosen on [−1, 1]. Now we

define E(t) =
10
∑

i=1
|xi(t)− sφi (t)|, Eij(t) = |xi(t)− xj(t)|, i =

1, 2, . . . , 5, j = 6, . . . , 10, where the norm | · | of vector x is defined
as |x| = (xTx)1/2. It is clear that the cluster synchronization is
achieved if E(t) converges to zero and Eij(t) do not converge to
zero as t → +∞.

By the aid of Matlab, we obtain Figure 2, which shows
the time evolutions of the component xi1, i = 1, . . . , 10. In
Figure 2, the red lines represent the first five nodes, and the
blue lines represent the latter five nodes. Figures 3, 4 show the
time evolutions of E(t) and E58(t), respectively. It is easy to
see that the error E(t) tends to zero, but E58 doesn’t tend to
zero when t → +∞. That is to say, 2-cluster synchronization
is achieved, and the effectiveness of the theoretic results
is verified.

5. CONCLUSIONS

In this paper, the problem of cluster synchronization in a
complex network via pinning control has been investigated, and
several novel criteria have been derived by utilizing the matrix
theory and the stability analysis technique. The object of this
research is a dynamical network possessing four characteristics,
delayed dynamics, non-identical nodes, directed topology and
time-varying coupling strength. And from the control schemes

of this research, we present a novel mixed method, which
integrated the pinning control and adaptive feedback control,
to design proper pinning controllers and adaptive coupling
strengths to realize cluster synchronization in such a dynamical
network. For convenience, we also carried out a succinct and
utilitarian corollary by simplifying the obtained conditions.
Finally, numerical simulations are provided to illustrate the
effectiveness of the proposed control methods.
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The problem of cancer risk analysis is of great importance to health-service providers

and medical researchers. In this study, we propose a novel Artificial Neural Network

(ANN) algorithm based on the probabilistic framework, which aims to investigate patient

patterns associated with their disease development. Compared to the traditional ANN

where input features are directly extracted from raw data, the proposed probabilistic

ANNmanipulates original inputs according to their probability distribution. More precisely,

the Naïve Bayes and Markov chain models are used to approximate the posterior

distribution of the raw inputs, which provides a useful estimation of subsequent disease

development. Later, this distribution information is further leveraged as additional input

to train ANN. Additionally, to reduce the training cost and to boost the generalization

capability, a sparse training strategy is also introduced. Experimentally, one of the largest

cancer-related datasets is employed in this study. Compared to state-of-the-art methods,

the proposed algorithm achieves a much better outcome, in terms of the prediction

accuracy of subsequent disease development. The result also reveals the potential

impact of patients’ disease sequence on their future risk management.

Keywords: cancer risk analysis, artificial neural network, Naïve Bayes, Markov chain, sparse training

1. INTRODUCTION

Cancer is a complex health problem worldwide, which is closely monitored by scientists and
authorities due to its high mortality rate. In the past decades, the pressure of cancer in public health
sectors has gradually increased. A lot of effort has been put into cancer-related studies (Loud and
Murphy, 2017), such as patient status monitoring, medical resource allocation, and survivability
prediction, to name a few. According to the GLOBOCANproject (Sasikala et al., 2019), there will be
more than 14.1 million new cancer-related cases (excluding skin cancer and melanoma) annually,
accounting for∼14.6% of global deaths. Even within developed countries, such as the United States,
there are more than 1.68 million new patients and 600,000 deaths per year. In particular, Table 1
shows the top eight cancer types from the United States in 2016, while the number of new cases
and relevant deaths are also illustrated. For instance, there are about 150,000 new cases diagnosed
with breast cancer and around 41,000 deaths, which contribute to a 16.4% ratio between new cases
and death numbers. On the other hand, there are ∼24,000 new patients and 16,000 deaths related
to brain and nervous system cancers, which leads to a significantly high ratio of 67.5%.
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TABLE 1 | Number of new cancer-related patients and deaths from the

United States in 2016.

Cancer types New cases New deaths

Digestive system 304,930 153,030

Respiratory system 243,820 162,510

Breast 149,260 40,890

Reproductive system 297,530 57,730

Urinary system 143,190 31,540

Lymphoma 81,080 21,270

Leukemia 60,140 24,400

Brain and other nervous systems 23,770 16,050

As such, the problem of how to monitor and predict
cancer-disease development (to reduce its incidence rate) has
attracted a lot of attention from different public and private
sectors, and has become a major challenge and research focus.
The last two decades have witnessed a huge development of
computer science and information technologies, which have
already taken on an important role in the cancer-related
domain. In particular, data mining and machine learning
approaches are more regularly employed due to their high
performance in simulation and modeling. For example, the work
in Heidari et al. (2018) proposed a machine learning based
model to identify mammographic image features for short-
term breast cancer prediction. Locally preserving projection
(LPP) based features were considered, and the experiment
was performed using a mammographic dataset collected from
500 women. The result further showed a huge improvement
from their work compared to standard methods, such as the
Liner Regression and Decision Tree methods. Additionally, a
comparison between the Naïve Bayes and K-Nearest Neighbor
(KNN) algorithms was provided in Amrane et al. (2018) for
breast cancer classification. The experiment was performed
using the Wisconsin dataset, while the result showed that
KNN outperforms Naïve Bayes with the higher accuracy of
97.51% compared to that of 96.19%. Another breast cancer
prediction work has been reported in Jamal et al. (2018),
in which authors utilized the hybrid technique of Extreme
Gradient Boosting technique and Support Vector Machine.
Furthermore, they also applied the Principle Component
Analysis (PCA) and K-Means Clustering method to reduce
the problem dimensionality. Experimental results illustrated
that the hybrid algorithm with a reduced-scale problem
indeed improved the prediction performance of diagnosing
breast cancer.

However, the majority of the existing research did not address
the sequential nature of the disease’s development. In other
words, less work has been performed to explore the relationship
between patients’ previous disease and sequential ones. As a
result, in this study our research aims to provide new insight
into how disease development can be influenced or predicted
based on patients’ previous medical information. In particular,
the Artificial Neural Network (ANN) algorithm is investigated
as the optimization tool in our study. ANN is one of the most

widely-used techniques for simulation and modeling, due to its
ability to learn from complex inputs and to produce accurate
outputs. Not surprisingly, we have observed a great number of
ANN-based applications in the medical domain. For example,
the work from Fakoor et al. (2013) developed a hybrid method
by combining ANN with the Support Vector Machine and it was
tested on several gene-expression datasets for cancer detection.
The results revealed that the ANN-based work outperformed
traditionalmethods via discovering intricate relationships behind
risk factors. More recently, a convolutional neural network
improvement for breast cancer classification was proposed in
Ting et al. (2019). To classify incoming medical images into
malignant, benign, and healthy patients, their work performed
effectively to localize and identify breast cancer tissue. Other
successful implementations of ANN-based models can be found
in the survey of Siddiqui et al. (2020).

Despite the general interest in developing the ANN
applications, several drawbacks still exist. Specifically, in
the context of the disease development, we aim to explore the
disease correlation and to identify related risk factors. The
majority of traditional ANN applications, however, consider
network inputs from the original data directly, while less work
has been offered in terms of the input amendment or augment.
On the other hand, the standard network training process is
usually time consuming, in particular with a large number
of inputs. Additionally, as for some real-world scenarios, the
generalization performance of the standard ANN is far from
being satisfactory.

To this end, in this study we propose a novel hybrid algorithm,
based on the idea of Artificial Neural Network, Naïve Bayes,
and Markov chain, to address the issue of predicting patients’
disease development. In the proposed study, the methods of
Naïve Bayes and Markov chain are first applied to estimate
posterior possibilities of subsequent development, according
to the patient’s historical data. The estimation of subsequent
possibility is able to establish a relationship model via capturing
the underlying correlation of the disease development. Next,
estimated possibilities are further leveraged as the input to the
neural network, in addition to original inputs. Lastly, we also
consider adopting a sparse training strategy for the network
training, which is able to optimize the network structure and
minimize the training error simultaneously. To the best of our
knowledge, this is the first investigation combining the models
of Bayesian Network and Markov chain to amend the input
of the Artificial Neural Network. The proposed algorithm is
further applied to one of the largest cancer-related datasets
worldwide, and the comparison with state-of-the-art approaches
is also considered.

The rest of this paper is organized as follows. Section 2
provides a review of literature in which several existing research
topics are examined, including applications of data-mining
techniques on the domain of cancer risk analysis, Artificial
Neural Network, Naïve Bayes and Markov chain model. Section
3 provides the basic information about the research background,
such as the description of the target dataset used in this study.
Section 4 describes the proposed hybrid approach, including the
input augment and sparse training. Then, section 5 discusses
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experiments and comparison results, and finally section 6
concludes the study.

2. LITERATURE REVIEW

In this section, we will provide a brief review about existing
cancer-related research. Then the fundamental work of Artificial
Neural Network, Naïve Bayes and Markov chain model is
also provided.

2.1. Cancer Risk Analysis
Cancer risk analysis is of great significance to healthcare
providers and medical researchers. Several research works have
attempted to provide a diverse range of the management and/or
prediction strategies for cancer risk analysis. The ultimate goal is
to provide precaution for people with a risk, as well as to monitor
the disease development (or survivability prediction).

For the risk prediction, the work from Hart et al. (2018)
employed a multi-parameterized neural network for lung cancer
risk prediction, based on putative risk factors as well as clinical
and demographic information. A comparison among Decision
Tree, Support Vector Machine, Naïve Bayes, and K-Nearest
Neighbors was conducted for a liver-cancer assessment. On the
other hand, cancer survivability prediction is also an interesting
topic that has been fervently researched throughout the years.
The prediction task of cancer survivability is to monitor the
possible survivability (the time span) based on the patient’s status.
For instance, Mayur et al. conducted a study on spinal cord
cancer survivability by performing statistical analyses and fitting
a Random Forest model (Mayur et al., 2019). The work from
Wang et al. (2019) investigated the use of a tree ensemble-
based two-stage regression model for advanced-stage lung cancer
survival prediction. In addition, a comparison among multiple
techniques, including Linear Regression, Decision Tree, Random
Forest and Generalized Boosting Machines, and Support Vector
Machine, was considered in Sharaf et al. (2015) to predict lung-
cancer patient survival.

Despite the great interest in the work of cancer risk
and survivability analysis, little research has been done in
terms of the relationship between patients’ past and current
diagnoses. In other words, existing studies fail to address the
possibility of subsequent diagnosis, given patients’ previous
medical conditions. Yet, this research question is of great
importance, as it helps in providing prior knowledge of patients’
future disease development. To gain an in-depth understanding
of potential risk for subsequent diseases also works in increasing
the healthcare quality and treatment services (Gupta et al., 2012;
Aolin and Maxim, 2017). To bridge this gap, we propose a
probabilistic model that takes into account the techniques of the
Artificial Neural Network, Naïve Bayes, andMarkov chainmodel.

2.2. Artificial Neural Network
The Artificial Neural Network (ANN) is one of the most
popular data-mining algorithms, which is capable of responding
to complex inputs and generating desired outputs. Due to its
satisfactory performance and high accuracy, ANN has found its
wide applications in numerous areas, such as pattern recognition,

prediction, and statistical simulation, and so on. The most
basic computing unit from ANN is the artificial neuron. Those
neurons are designed in a similar way to biological neurons
within the human brain. In general, input signals are transferred
to biological neurons, and then inputs are further processed
within their cell bodies. If a certain threshold is reached,
neurons are activated to transfer output signals to other neurons.
Accordingly, the artificial neuron follows the same procedure
of biological neurons: input receiving, threshold activation, and
output transferring. Mathematically, suppose the input signal to
the i-th neuron is a vector of xi, the connection strength to the
output is the weight wi, and its bias input is represented as b.
Given the activation function f (·), the output for this i-th neuron
can be expressed as follows:

y = f (xTi wi + b). (1)

In real-world applications, the selection of activation function
and network structure (the number of hidden layers and/or
neurons) is problematic. In general, there is no commonly-
accepted formula giving clear insight into how to choose the
activation function and/or to determine the network structure.
This is usually decided by trial-and-error experiments or cross
validation methods. Additionally, after deciding the activation
function and network structure, a training process is required
to update the internal network weights to minimize the error
between the actual network and desired output. Some typical
learning algorithms are Back Propagation, Resilient Propagation,
and so on.

2.3. Naïve Bayes and Markov Chain
Bayesian theory offers a computational framework for estimating
the conditional probability, which has proven to be effective for
a wide range of applications. Text classification, spam detection,
and sentiment analysis are just a few of their popular use cases.
Assume that we have one training sample x and n possible class
labels ci (∀i ∈ n). Then the posterior probability (for x) of
belonging to the i-th class [or prob(ci|x)] can be expressed as:

prob(ci|x) =
prob(x|ci)prob(ci)

prob(x)
,∀i ∈ n, (2)

where prob(ci) stands for the class prior probability, prob(x) is
the prior probability of x, and prob(x|ci) denotes the posterior
probability of x given the condition of the ci class.

Compared with other classification modes, Naïve Bayes
(NB) consumes much less training time, and it can effectively
solve small-scale learning problems. For instance, Kim et al.
(2018) introduced a Naïve Bayes based text classification in
a semantic tensor space model for document representation.
URL classification is another classification application of Native
Bayes, which is currently of research interest (Rajalakshmi and
Aravindan, 2018). In addition, evaluation of a hot-engine test
(Fan et al., 2018) and classification of impact damage on a rubber-
textile conveyor belt (Andrejiova and Grincova, 2018) are just
other use cases that have been investigated using the Naïve Bayes
method, respectively.

Frontiers in Computational Neuroscience | www.frontiersin.org 3 July 2020 | Volume 14 | Article 5895

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Yang et al. Improved Probabilistic Neural Network

On the other hand, the Markov chain model is usually utilized
to calculate the transition probability from one state to another.
In particular, the first order Markov chain operates under the
assumption that future states for one particular object (or event)
only depend on the current state, but not on other states that
occurred before. In other words, let xi (i = 1, 2, · · · , n) represent
a sequence of random variables. Then the probability of moving
to the next state (or xn+1) is estimated as:

prob(xn+1|(xn, xn−1, · · · , x1)) = prob(xn+1|xn). (3)

The Markov chain model proves to be effective in factoring
the sequential characteristics of events. Existing applications
of the Markov chain model are primarily in the domain of
recommendation, speech recognition, and so on. For instance,
Ye et al. (2015) and Lassoued et al. (2017) both discussed the use
of Markov models in driving route and destination predictions,
respectively. Krause and Zhang (2019) proposed a different
approach by employing a hierarchical Markov model for short-
term behavior prediction. Kurashima et al. (2013) had a slightly
different approach when employing not only the Markov Chain
model but also a topic model to represent the user interest.

2.4. Summary
In this section, we briefly review some existing research on
applying the data-mining techniques in the medical domain.
Additionally, we also offer a fundamental discussion on three
popular methods, including the Artificial Neural Network, Naïve
Bayes, and Markov chain model. Based on these three methods,
we will then propose a novel prediction algorithm tomonitor and
predict patients’ disease development, which is discussed in the
coming sections.

3. STUDY BACKGROUND

The National Cancer Institute (NCI) established the Surveillance,
Epidemiology and End Results (SEER) database in 19731.
This incidence database consists of de-identified patient data
with different types of cancer diseases. Additionally, for each
patient record, there are in total 124 features. These features
cover both the demographical and clinical information. For
example, demographics information include gender, ethnicity,
year of birth, month, and year of diagnosis, age, and marital
status of patients at diagnosis. Clinical information includes
tumor primary site, tumor marker, tumor size, the types of
treatment received, behavior codes, laterality, and histology.
In addition, the cancer types involved in the database can be
divided into nine categories: breast, colon and rectum, other
digestive systems, female reproduction, lymphoid and leukemia,
male reproduction, respiratory system, urinary system and other
unspecified types. By November 2013, there were more than
1 million data records in the SEER database. Currently, it is
the authoritative data source that provides reliable data support
for clinical research. A huge number of research efforts have
been conducted to utilize this database for different work, such

1Available online at: https://seer.cancer.gov.

FIGURE 1 | Percentage of selected patients from three cancer types in SEER.

as cancer survival prediction, correlation of medical factors,
management of diseases recurrence, and etc.

Again, the main purpose of this study is to investigate the
possibility of being diagnosed with cancers given a previous
medical condition. To model such a disease development, in
this study we focus on three types of cancer data from SEER,
including lung and bronchus cancer (C1), liver and intrahepatic
bile duct cancer (C2), and stomach cancer (C3), respectively.
Figure 1 shows the percentage of selected patient samples from
three types of cancers.

4. PROPOSED APPROACH

In this section, we propose a novel prediction algorithm by
combining three different methods, including the Bayesian and
Markov models, as well as the artificial neural network. Our
approach is based on the assumption that the occurrence of a
new type of cancer incidence is affiliated with the most recently
(or previously) diagnosed cancer incidence, as well as patients’
previous clinical details. Toward this end, Naïve Bayesian and
Markov chain models are first used to establish the connection
between the previous and current incidence, which offers a useful
estimation of patient’s future status. Then, the output from the
two probabilistic models will be cast as the network input for
the training process. Additionally, to improve the accuracy and
learning efficiency, we further leverage a sparse training strategy
for the target network. The pipeline of the proposed algorithm is
then illustrated in Figure 2. Next, we will discuss different stages
within our proposed algorithm.

4.1. Data Pre-processing
To begin with, the first stage is to preprocess the original SEER
data to meet certain criteria, such as removal of missing values
and data normalization. Among all 124 features, 19 independent
features that may have an impact on the cancer prediction tasks
were selected, including: gender, race, status, age, primary site,
etc. The detail description and value distribution of selected
attributes are provided in Table 2.
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FIGURE 2 | The workflow of the proposed algorithm for predicting patients’ disease development.

Among these features, four of them, namely SS_SURG,

CSLYMPHN, EOD10_SZ, and CSEXTEN, contain massive
amounts of missing values, ∼50% on average. One plausible

reason could be the patients’ refusal to provide adequate
information. On the other hand, due to the evolution of

SEER over time, some clinical features have only been

collected in recent years. This makes it very impractical
to backtrack those new features from previous records. For

simplicity, patients’ records with missing values will be removed
in this study. That is, only completed data samples will
be considered.

Next, we find that selected attributes can be divided into
discrete and continuous attributes. For discrete attributes, it is
easy to process compared to continuous ones. For example, the
marital status attribute is divided into seven categories, while the
gender one is cast into two categories. By contrast, for continuous
data, the minimum-maximum normalization is employed in a
way that the values from continuous features will be limited
within the range of [0, 1]. Mathematically, let v

p
j be the value

from the p-th sample and the j-th continuous feature, min(vj)
andmax(vj) is the minimal and maximal value of this j-th feature

from all samples. Accordingly, the normalized value v̂
p
j will be
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TABLE 2 | Variable descriptions and unique values.

Variable name Description Unique value count

PUBCSNUM Patient’s number 1,885,421

SEQ_NUM Sequence number of all reported incidence 15

YEAR_DX Year of diagnosis Continuous

MDXRECMP Month of diagnosis 12

SEX Patient’s gender 2

MAR_STAT Marital status at diagnosis 7

RACE1V Patient ethnicity 30

AGE_DX Patient’s age at diagnosis Continuous

PRIMSITE Primary site 51

LATERAL Laterality 6

FIRSTPRM First malignant primary indicator 2

HISTREC Histology 37

GRADE Histologic grading and differentiation 5

NO_SURG Reason no cancer-directed surgery 8

EOD10_SZ Tumor size Continuous

SS_SURG Site-specific surgery 30

CSLYMPHN Involvement of lymph nodes 63

CSEXTEN Extension of tumor Continuous

ERSTATUS Tumor marker 1–breast cancer 5

PRSTATUS Tumor marker 2–breast cancer 5

estimated as follows:

v̂
p
j =

v
p
j −min(vj)

max(vj)−min(vj)
. (4)

4.2. Estimation of Subsequent
Disease-Development
In this section, we will discuss the second stage of calculating
the possibility of the subsequent disease-development, using the
concept of Naïve Bayes and Markov chain model. Suppose we
have a set of cancer diagnoses {D

p
i , {v

p
ij }

K
j=1}

τ p

i=1, whereD
p
i is the i-

th new type of cancer disease of patient p, and v
p
ij is the j

th feature

of the i-th new cancer diagnosis of patient p, K is the number of
attributes of the set {v

p
ij }, and τ p is the total number of cancer

types occurring for patient p. Then the research question can
be reformulated as follows: given a patient’s most-recent cancer
diagnosis D

p
i and the set of patient health profile information

at the time of diagnosis {v
p
ij }

K
j=1, the task is to predict the next

most likely type of cancer to occur for that patient D
p
i+1. For

example, patient P had been diagnosed with liver cancer before.
In this case, we will investigate the following likelihood of patient
P having other types of cancers (such as lung or stomach cancer).
As a result, mathematically, our goal is to estimate the probability
that patient P with the i-th disease Di will also develop the
(i+ 1)-th disease Di+1, or the probability P(D

p
i+1|Di, v

p
i ).

To address the aforementioned problem, we introduce a novel
estimation method to calculate the posterior probability based
on Naïve Bayes and Markov chain models. More precisely, with
Naïve Bayes, we can investigate the dependence of the target

variable on a patient’s medical condition at the time they are
diagnosed with D

p
i . Let {v

p
ij } be the attribute list of the p-th

patient. Accordingly, in the Bayes theory, we will have:

P(D
p
i+1|v

p
i1, v

p
i2, ...v

p
iK) ∝

P(v
p
i1|D

p
i+1)P(v

p
i2|D

p
i+1)...P(v

p
iK |D

p
i+1)P(D

p
i+1), (5)

where K is the number of attributes. Alternatively, we have

P(D
p
i+1|v

p
i1, v

p
i2, ...v

p
iK) ∝ P(D

p
i+1)

K
∏

j=1

P(v
p
ij |D

p
i+1). (6)

The conditional probability P(v
p
ij |D

p
i+1) can be calculated using

the Laplace smoothing while avoiding the zero probability:

P(v
p
ij |D

p
i+1) =

N(D
p
i+1, v

p
ij )+ 1

N(D
p
i+1)+ K

. (7)

On the other hand, we assume that the next disease relies
primarily on the precedent disease, as well as the patient’s
current status. As such, the Markov chain model is accordingly
employed to capture the probabilistic information conveyed by
the sequence of diseases, that is identified from patients’ medical
history. In this study, we consider the first-order Markov model,
and accordingly we can estimate the probability of the next
disease as follows:

P(D
p
i+1|D

p
i ,D

p
i−1, ...,D

p
2 ,D

p
1 ) = P(D

p
i+1|D

p
i ). (8)

Furthermore, the probability of P(D
p
i+1|D

p
i ) is calculated

as follows:

P(D
p
i+1|D

p
i ) =

N(D
p
i+1,D

p
i )

N(D
p
i )

, (9)

where N(D
p
i+1,D

p
i ) is the number of patients with a disease Di+1

occurring right after the disease of Di, and similarly N(D
p
i ) is the

total number of patients with the disease D
p
i .

To incorporate both most-recent diagnosis and the patient’s
health condition into our proposed model, the above Markov
and Naïve Bayes models are combined. Operating under the
assumption that the patient’s health condition set v

p
i and D

p
i are

independently conditioned on D
p
i+1, the combination of the two

models can be performed using the following approximation:

P(D
p
i+1|D

p
i , v

p
i ) =

P(D
p
i+1|D

p
i )

C(D
p
i ,v

p
i )

P(D
p
i+1|v

p
i1 ,v

p
i2 ,...,v

p
iK )

P(D
p
i+1)

,

=
P(D

p
i+1|D

p
i )

C(D
p
i ,v

p
i )

∏K
j=1 P(v

p
ij |D

p
i+1),

(10)

where P(D
p
i+1|D

p
i ) and P(v

p
ij |D

p
i+1) can be estimated by the

Markov and Naïve Bayes models, respectively, and C(D
p
i , v

p
i ) is

the normalization factor to ensure all probabilities summed to 1.
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4.3. ANN Training
The previous section describes the details about the estimation
of subsequent disease development. In the third stage of our
proposed algorithm, the output from the previous stage will be
cast as the input to feed into a neural network. Figure 3 illustrates
the structured input for ANN, while the probability estimation,
together with the patient’s profile, such as gender and age, are
considered as a whole to train the network.

As for the network training process, internal weights will be
optimized in a way that the actual network output fits the desired
outputs well. Taken as an example, the backpropagation (BP)-
based method is a typical way to train ANN via calculating
gradients of the output error in relation to network weights.
However, the BP-based training could suffer from some
drawbacks, such as low convergence and poor generalization
capability, in particular with a huge number of input features.
In the context of our study, the network has 20 input features,
which could be time-consuming for implementing the BP-
based training.

To improve the training stability and the fast training speed,
we adopt a sparse training strategy in this study, similar to
our preliminary work in Yang and Ma (2016, 2019). The
general idea is to generate a sparse network structure and to
minimize the training error simultaneously. The concept of
sparse representation, on the other hand, is under the assumption
that a signal can be decomposed into a linear combination of
few elementary signals. Consequently, given the target matrix
Y ∈ R

M×L and a known dictionary matrix D ∈ R
M×N that

contains N columns, the sparse representation aims to minimize
the solution sparsity and the reconstruction error:

X∗ = argminM (X) subject to ‖Y −DX‖2 6 ǫ, (11)

where M (X) is a measure of the matrix sparsity, ‖Y − DX‖2
denotes the reconstruction error, and ǫ is the bound on the error.
One simple strategy for estimating M (X) is to consider the l2,1-
norm of X, or M (X) = ‖X‖2,1 =

∑

q ‖Xq‖2, where Xq denotes

the q-th row of X.
Suppose there are L pairs (xi, yi) of inputs xi and desired

outputs yi, while X = [x1, x2, ..., xL] represents the entire input
matrix and Y =

[

y1, y2, ..., yL
]

is the desired output matrix.
Additionally, assume that the target network is with a three-
layer structure, which consists of Q-input, N-hidden and M-
output neurons, respectively. Let W1 ∈ R

Q×N and W2 ∈ R
N×M

denote the weight matrices from the hidden and output layer,
respectively. As such, the output matrix from the hidden layer
(Z) can be expressed as:

Z = f1 (XW1) , (12)

where f1 (·) is the activation function of the hidden layer, and the
i-th column from Z is in relation to the output of the i-th hidden
neuron. Furthermore, the actual output from the entire network
Ŷ can be written as:

Ŷ = f2 (ZW2) , (13)

where f2 (·) is the activation function for the output layers.

The proposed sparse training is then used to optimize the
network structure, by selecting the most-important hidden
neurons, while minimizing the output error simultaneously.
Therefore, the neuron selection process is equivalent to finding
a sparse representation for all hidden neurons. Consequently,
the sparse training process is then cast as solving the
following problem:

min ‖W2‖2,1 subject to
∥

∥Ỹ − ZW2

∥

∥

2
≤ ǫ, (14)

where ‖W2‖2,1 is the l2,1-norm of the W2 matrix, Ỹ =

f−1
2 (Y), and ǫ is the bound on the network error. Note that
in the proposed sparse training, we only consider optimizing or
sparsifying the weight matrixW2 between the hidden and output
layer. As for the weight matrix W1 in the previous input-and-
hidden layer, we only randomly initialize once during the training
and fix them in the subsequent process. The reason is 2-fold: (1)
the training performance heavily depends on the output layer, so
we focus on the W2 optimization, instead of both layers; (2) W2

is trained or adjusted based on the given W1, as such a random
W1 matrix has a minimal impact on the final output.

4.4. Summary
In previous sections, we discuss three different stages from the
proposed algorithm. Overall, we apply the Naïve Bayes and
Markov chain model to estimate the probability of potential
disease development. We then consider this probability result
as the additional input, together with other original features, for
training a network. At last, to minimize the impact from the huge
number of input features, a sparse training strategy is further
leveraged to optimize the network structure and minimize the
training error simultaneously. Toward this end, Algorithm 1
summarizes the proposed method for investigating the cancer-
risk analysis.

Algorithm 1 : Proposed algorithm for cancer-risk prediction,
based on an improved probabilistic neural network.

Stage 1: Data preprocessing, in terms of feature selection,
removal of missing records, and perform data normalization.
Stage 2: Calculate the probability based on Equation (10).
Stage 3: Employ the probability result and original input
features for network training:
Stage 3.1: Randomly assign weights to the input-hidden layer;
Stage 3.2: Solve the optimization problem in Equation (14) to
obtain a spare weight matrix for the hidden-output layer;
Output the trained neural network.

5. EXPERIMENTAL RESULTS

This section describes experimental results by applying the
proposed algorithm to explore a patient’s disease development.
The experimental setup and evaluation metrics are presented
in section 5.1. In section 5.2, we discuss the probabilities based
on their historical information and individual profiles, while
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FIGURE 3 | Input structured data for ANN training.

the performance of the proposed method is then evaluated in
section 5.3.

5.1. Experimental Setup
The target dataset includes 10,500 patients with lung cancer,
13,500 with liver cancer, and 12,000 with stomach cancer,
respectively, which is a total of 36,000 samples. Each original
sample has 19 features, while the majority of chosen features
are categorical (or discrete), except for four attributes, such as
the patient’s age at diagnosis, year of diagnosis, tumor size,
and extension of tumor. Again, continuous features will be
normalized as described in section 4.1 during the pre-processing
stage. We further applied the 3-fold cross validation method
to randomly partition the entire dataset into two independent
sets: a training and testing set. The size of the training and
testing sets in all cases is 75 and 25%, respectively. The training
set is used for training the network while the testing set is for
evaluation purposes.

Additionally, for the employed neural network, we consider
the activation function of the hidden and output layer as the
Sigmoid function, which can be expressed as f (z) = 1

[1+exp(−z)]

(z is an arbitrary input). The layer between the input-and-
hidden is initialized with random weights in the range [-1,
+1]. The number of hidden neurons is set as 64. To solve the
optimization problem in Equation (14), the orthogonal matching
pursuit (OMP) algorithm is employed2, which first measures the
similarity between the residual error and the neuron outputs, and
then selects the neuron that minimizes the residual error at each
iteration. To halt the OMP solver, the termination criterion is
set either when the maximal iteration (K) is reached or when

the value of
‖ǫk−ǫk−1‖

2
2

‖ǫk‖
2
2

is less than a threshold α, where ǫk is

the output error at the k-th iteration, and α is a user-defined

2Available online at: https://scikit-learn.org.

value. Lastly, the following metrics are employed to evaluate
the performance:

Recall =
TP

TP + FN
, (15)

Precision =
TP

TP + FP
, (16)

F1 Score = 2×
Precision× Recall

Precision+ Recall
, (17)

where TP denotes the true positive rate, FN is false negative rate,
and FP represents the false positive, respectively.

5.2. Probabilities for Disease Prediction
In this section, we discuss the result of patients’ disease
probabilities using their previous medical information. As
mentioned before, this temporary result, obtained from Naïve
Bayes and Markov chain model, will be cast as the input to the
subsequent network training. Therefore, an accurate estimation
of posterior probabilities will certainly enhance the network
performance. Before we discuss the result, the detail of forming
the patients’ historical information is provided first. Again, we
are interested in three types of cancers in this study: lung, liver,
and stomach cancer. As such, the entire dataset is grouped by
the patient ID. These records are further sorted based on the
date of disease diagnosis, while records are indexed from 0, and
the maximum number of incidences from a patient is five. Note
that some patients could have the problem of recurrence, thereby
leading tomore than three records. Next, the following procedure
is considered:

1. If the patient only has one type of cancer, then her/his record
is added directly to the final dataset;
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TABLE 3 | Patient’s conditional probabilities.

N(Dp

i+1,D
p

i
) N(Dp

i
) P(Dp

i+1|D
p

i
, v p

ij
)

D
p
i+1 = C1,D

p
i = C2 10,864 24,085 0.4346

D
p
i+1 = C3,D

p
i = C2 13,726 26,421 0.5756

D
p
i+1 = C2,D

p
i = C1 6,821 16,548 0.3753

D
p
i+1 = C3,D

p
i = C1 10,889 17,009 0.6588

D
p
i+1 = C2,D

p
i = C3 2,112 6,981 0.3631

D
p
i+1 = C1,D

p
i = C3 3,219 6,811 0.6312

Note that we label lung and bronchus cancer as C1, liver and intrahepatic bile duct cancer

as C2, and stomach cancer as C3, respectively.

2. If the patient has a recurrence, then records with same type are
merged by maintaining only one sample with the latest date
of diagnosis.

Through the aforementioned process, redundant patients’
records are removed, and the sequence of disease development
is accordingly established for the following calculation. Lastly,
the estimation result of posterior probabilities, given the patients’
previous information, is presented in Table 3.

From the results presented in Table 3, there indeed exists
some connection between patients’ disease development. For
instance, we observe that the probabilities from 50% of cases
(three out of six) have exceed 57%, which indicates a potential
correlation among different diseases. The highest value is found
from patients with a type of lung cancer (C1), who have more
than a 65% possibility to develop stomach cancer (C3). On the
other hand, for patients who had stomach cancer (C3) previously,
the chance is much lower (only about 36%) to develop liver
cancer (C2). This preliminary result will then be cast as the input
for the subsequent network training, while the comparison with
other methods is discussed in the next section.

5.3. Comparison With Other Training
Algorithms
Note that again in our proposed algorithm, themain contribution
is 2-fold: (1) introducing the technique of Naïve Bayes and
Markov chain models to estimate the posterior possibilities; (2)
employing the sparse training strategy for the network training.
As such, the following experiments are designed to evaluate the
effectiveness of both the possibility result and the sparse training.

To begin, we consider comparing the performance of the
standard ANN, combination model with Bayes and Markov
(labeled as CBM), and the proposed models on the training and
test set, respectively. Note that in the standard ANN, original
features are directly fed into the network, while no additional
input is considered. In the CBM method, the estimation for
potential disease is considered but no additional neural network
is attached. We run the experiments 10 times, and average results
are summarized and presented in Tables 4, 5, respectively.

When it comes to the training performance, we realize that
the probability estimation for patients’ status indeed helps in
boosting the accuracy. For instance, both the CBM and proposed
algorithms achieve better training outcome compared to that of

TABLE 4 | Comparison of evaluation metrics from the training dataset.

ANN (%) CBM (%) Proposed (%)

Overall accuracy 73.55 76.07 75.63

RECALL (C1) 98.64 98.84 98.05

RECALL (C2) 86.29 87.48 87.42

RECALL (C3) 46.14 49.61 50.92

Precision (C1) 69.28 72.49 71.73

Precision (C2) 59.72 63.02 63.07

Precision (C3) 89.42 91.76 90.84

F1 score (C1) 80.46 83.74 82.57

F1 score (C2) 73.81 76.49 75.38

F1 score (C3) 58.21 61.18 60.72

Again, the labels of C1, C2, and C3 represent the lung and bronchus, liver and intrahepatic

bile duct cancer, and stomach cancer, respectively.

TABLE 5 | Comparison of evaluation metrics from the test dataset.

ANN (%) CBM (%) Proposed (%)

Overall accuracy 68.78 70.63 72.47

RECALL (C1) 77.44 77.34 78.11

RECALL (C2) 81.82 82.03 83.79

RECALL (C3) 58.19 65.83 66.64

Precision (C1) 65.37 67.12 69.75

Precision (C2) 63.81 65.72 67.91

Precision (C3) 75.93 77.56 78.37

F1 score (C1) 78.34 75.39 78.95

F1 score (C2) 65.23 65.17 65.06

F1 score (C3) 52.89 59.52 63.63

Again, the labels of C1, C2, and C3 represent the lung and bronchus, liver and intrahepatic

bile duct cancer, and stomach cancer, respectively.

the standard ANN method. Again, the major difference among
the three methods lie in the input; the results suggest that the
additional estimation of patients’ status (based on their previous
information) is capable of providing useful information that
facilitates the subsequent ANN training.

On the other hand, we also observe the best generalization
performance of the proposed algorithm from Table 5. The results
from the test dataset indicate that the ANN performs the
worst, while the CBM method comes second. However, we also
notice that the training performance of the proposed algorithm
(75.63%) is slightly lower than that of CBM (76.07%) from
Table 4. The reason could be the overfitting of CBM to the
training data, while the employed sparse neural network helps in
improving the testing accuracy while avoiding the overfitting. As
a result, the experimental results confirm the advantage of both
the additional input from posterior probability and the sparse
training in the proposed algorithm.

Next, the performance of our algorithm is compared with
conventional methods, and the aim is to evaluate the effectiveness
of the proposed method. More precisely, the Support Vector
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FIGURE 4 | Average training and testing accuracy obtained from different algorithms for prediction.

FIGURE 5 | Comparison of classification accuracy (ROC curves) from various

methods.

Machine and Random Forest algorithms are included in this
paper for comparison purposes:

1. Support Vector Machine (SVM) is one of the most popular
kernel-based approaches, which has been demonstrated
to perform well in various applications (Sharaf et al.,
2015). Usually, the decision boundary formed by SVM
is constructed by finding a hyperplane that achieves the
maximum separation between classes. In this study, the
implemented SVM is with the radial basis function (RBF)
kernel, while the penalty parameter C of the error term is set
as C = 0.01, and the Kernel coefficient γ is set as γ = 0.1;

2. Random Forest (RF) is one typical ensemble method, which
establishes a forest by constructing a collection of element

decision trees (Mayur et al., 2019). For each element tree,
RF allows them to randomly choose a subset of features
from the entire set, which enhances its flexibility and
stability. Key hyperparameters within RF include the number
of trees in the forest (n_estimators), the maximum depth
of a tree (max_depth), and the number of features for
splitting (max_features). In this study, we adopt the following:
max_depth = 5, n_estimators = 10, and max_features =
√

n_features (where n_features is the number of total features).
3. Extreme Learning Machine (ELM) is one typical network

training algorithm, which initializes the network weights
randomly and then update the weight matrix in the output
layer based on a least-square model (Wang et al., 2020).
Experiments have shown the advantage of ELM to have easy
implementation and better generalization ability, compared
to the traditional backpropagation training algorithm. As
such, ELM is introduced to make a comparison with the
proposed algorithm with a typical three-layer network, while
the number of hidden neurons is set as 64.

4. The weighted association rules algorithm (WCBA) aims to
generate association rules by combining a new attribute
evaluation and prioritization techniques (Alwidian et al.,
2018). More precisely, domain knowledge was employed to
identify attributes with high significance. Then the statistical
harmonic mean (HM) measurement was introduced to
prioritize generated rules at the pruning and generation
phases. Experimental results show its effectiveness by
comparing existing rule-based classification methods.

Note that for SVM, RF, ELM, and WCBA, their inputs are
from original data directly, without the additional posterior
possibility information. We ran the experiments 10 times to
obtain the average performance. As a result, both the training
and test classification accuracy from different methods are shown
in Figure 4, and the relevant ROC curves are also shown in
Figure 5. Although the SVM and RF method have performed
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better in the training cases, they seem to have problems with
overfitting. In particular, the RF method leads to the highest
accuracy of 78.93% from training, but with a poor testing
accuracy of 55.62%. A similar problem was observed in the SVM
method. By contrast, compared to those standard algorithms,
the proposed approach achieves a notable improvement in terms
of testing accuracy. For instance, our method leads to the best
testing result of 72.47%, which is significantly better than the
accuracy of SVM (69.70%), RF (55.62%), ELM (65.31%), and
WCBA (61.25%), respectively. Overall, it is empirically confirmed
that the proposedmethod outperforms existing trainingmethods
by improving the generalization capability.

6. CONCLUSIONS

Understanding patients’ cancer risks, using their historical
medical information, is of significant interest in healthcare
management. There are still many challenges that remain,
including high dimensionality and the heterogeneous structure
of data. In this study, a novel algorithm based on the improved
probabilistic neural network is proposed, with the ultimate
aim of providing decision support for cancer-risk management.
The main contribution of our work is 2-fold: (1) we factor
the sequential state information with the first-order Markov
chain and Naïve Bayes models; this sequential information
is then represented as the posterior probability and cast as
the additional input for training the neural network; (2) we
consider adopting the sparse training strategy to boost the
network performance, which is able to optimize the network

structure and minimize the training error simultaneously. We
test our method using one of the largest cancer-related datasets
worldwide. Experimental results suggest that our proposed
algorithm exhibits some potential for accurate predictions,
compared to other conventional methods. Future work can then
apply our method in a broader range of applications, or to
develop more sophisticated probability-based neural networks.
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With the rapid development of vehicle-mounted communication technology, GPS data is

an effective method to predict the current road vehicle track based on vehicle-mounted

data. GPS-oriented vehicle-mounted data position prediction method is currently a

hot research work and an effective method to realize intelligent transportation. In this

paper, an improvement scheme is proposed based on the problem of falling into

local optimization existing in the basic algorithm of teaching and learning optimization

algorithm. An interference operator is used to disturb teachers to enhance the kinetic

energy of the population to jump out of local optimization. By comparing the performance

of GA, PSO, TLBO, and ITLBO algorithms with four test functions, the results show that

ITLBO has efficient optimization effect and generalization ability. Finally, the ITLBO-ELM

algorithm has the best prediction effect by comparing the vehicle GPS data and

comparing the experimental algorithms.

Keywords: GPS, learning optimization algorithm, ITLBO algorithms, ELM, prediction method

INTRODUCTION

As a new swarm intelligence algorithm, Teaching Learning Based Optimization (TLBO) simulates
the process of teachers’ teaching to students and students’ learning and the process of students’
learning from each other. Through teachers’ teaching and students’ learning from each other,
students’ learning performance can be improved. Because TLBO has the advantages of few
parameters, simple thinking, easy understanding and strong robustness [1–4], it has attracted the
attention of many scholars since it was put forward and has been applied in many fields. Such as
reactive power optimization of power system [5], LQR controller optimization [6], IIR digital filter
design [7], steelmaking and continuous casting scheduling problem [8], PID controller parameter
optimization problem [9, 10], feature selection problem [11], HVDC optimization of voltage source
converter [12], extension of global optimization technology to constrained optimization [13],
analysis of financial time series data [14], neural network optimization [15], etc. Compared with the
existing swarm intelligence algorithm, the algorithm obtains better results. Firstly, the basic TLBO
algorithm is introduced, then the improved TBLO algorithm is studied, and then the performance
of ITLBO algorithm is tested by using F1–F4 four test functions. Finally, GPS data is used to verify
the advantages of ITLBO-ELM algorithm.
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IMPROVED TEACHING AND LEARNING
OPTIMIZATION ALGORITHM

Basic TLBO Algorithm
TLBO algorithm is an optimization algorithm proposed by
teachers’ teaching and students’ learning social activities in the
process of inspired teaching. Both teachers and students are
candidate solutions in TLBO algorithm population. Assuming
that there are a total of N individuals in the class, the individuals
with the best academic performance, that is, the best fitness,
are regarded as teachers, and the rest are students. The specific
implementation process of TLBO is described as follows:

A. Population initialization
Teachers and students are individuals in the class. Assuming

that the solution space of the optimization problem is S-
dimensional, any individual Xi in the population is initialized in
a random way:

Xi = L+ r(U − L), i = 1, 2, . . . , n (1)

In the formula, U = (u1, u2, , . . . , us) and L = (l1, l2, , . . . , ls) are
vectors formed by the upper and lower bounds of each variable,
respectively; r is a random number between [0, 1].

B. Teaching stage
The best individual in the population is the teacher, and

students improve their performance through the difference
between the average value of teachers and classes. The i-th
student Xi generates a new individual according to Equation (2):

Xnew
i = Xi + D (2)

Where Xnew
i is an updated individual, only if f (Xnew

i ) > f (Xi),
Xnew
i is accepted, i.e., Xi = Xnew

i , otherwise Xi is kept unchanged;
D is the difference between teacher Xt and student average Xm,
which is described as follows:

D = r(Xt − Tf × Xm) (3)

Where Xnew
i is the teacher; Xm = 1

n

n
∑

i=1
Xi is the mean individual

of the population; r is a random number between [0, 1]; the value
of Tf teaching is only 0 or 1, which means that students may have
learned all the knowledge of the teacher, or theymay have learned
nothing from the teacher. As a result, D may not be able to learn
teachers’ knowledge. Tf is a teaching factor and is generated by
Equation (4):

Tf = Round[1+ rand (0, 1)] (4)

Where Round represents the rounding function.
C. Learning Stage
In addition to learning from teachers, students also need to

communicate with each other and learn from each other’s strong
points. Randomly select a student Xk(i 6= k) from the class to
carry out communication learning according to Equation (5):

Xnew
i =

{

Xi + r(Xi − Xk), if f (Xi) < f (Xk)
Xi + r(Xk − Xi), otherwise

(5)

Where r is a random number between [0, 1]; f (·) is a fitness
function; Xnew

i is accepted only if f (Xnew
i ) > f (Xi).

ITLBO Algorithm
Aiming at the shortcomings of the original TLBO, which
is easy to fall into local optimization and low precision in
the optimization process, an improved TLBO algorithm is
proposed, which is recorded as ITLBO. In the process of TLBO
optimization, a remedial period for the worst students is added.
For the students with the worst academic performance in the
class, the teacher will guide the students alone to quickly improve
their knowledge. On this basis, an interference operator is used
to disturb the teacher to enhance the kinetic energy for the
population to jump out of the local optimal. The improvements
are described below:

D. Remedial period
Assuming that the worst student in the class is Xw, the

remedial process is as follows Equation (6):

Xnew
w = r1Xw + r2(Xt − Xw) (6)

Where r1 and r2 are random numbers between [0, 1]; Xnew
w is

an individual updated by Xw, only if f (Xnew
w ) > f (Xw), X

new
w

replaces Xw; Otherwise, a reverse solution is generated to replace
the original Xw, and the reverse solution is generated according
to the following Equation (7):

Xw = U + L− Xw (7)

Through tutoring or reverse learning for the worst students Xw,
TLBO calculation points are used to speed up convergence and
improve convergence accuracy. The strategy applied by Xw is
to coach the worst students, which can directly improve the
average value of the whole students. It is difficult to coach the
best students to improve the average value of the whole students.

When TLBO algorithm solves complex multi-dimensional
optimization problems, it is easy to fall into local optimization
under finite iteration times. In order to further improve the
global optimization capability of TLBO, interference operators
are added in the search process pert(t):

pert(t) = 0.1× r3 × (1− t/tmax) (8)

The effect of interference operator pert(t) on teacher Xt is as
follow Equation (9):

Xnew
t = Xt + pert(t)× (U − L) (9)

Where r3 is a random number between [0, 1]; pert(t) is the
disturbance coefficient of the t-th iteration process. With the
increase of t, pert(t) gradually decreases, and the disturbance
degree of interference operator to teachers gradually decreases.
In the early stage of the search, pert(t) is larger, which causes
greater disturbance to the update of teachers’ positions, increases
population diversity, and effectively enhances Xt to jump out
of the local optimization. In the later stage of search, pert(t)
gradually decreases to 0 to avoid affecting the local optimization
and convergence of TLBO algorithm in the later stage.
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The implementation process of ITLBO algorithm is shown in
follow steps.

Step 1: Initialization parameters: class size n, dimension
s, tmax, t = 1 and Initialize the population according to
Equation (1).

Step 2: CalculateXmax and calculate D according to Equation (3)
and calculate the new individual according to Equation (2) and
update Xi.

Step 3: Individual Xj is randomly selected, new individuals are
calculated according to Equation (5), and Xi is updated.
Calculate Xnew

w according to Equation (6); calculate the
Directional Solution of Xw by Equation (7).

Step 4: Update Xw with New Individual or Reverse Solution,
Choose the optimal individual Xw and calculate the
interference operator according to Equation (8); according to
Equation (9), update Xt .

Step 5: If t > tmax t = t+1; go to Step 2; or Output
optimal solution.

Extreme Learning Machine (ELM)
ELM has the advantages of simple structure, fast operation,
and strong generalization ability and so on, and avoids the
problem of local optimization. No matter in theoretical research
or in practical application, ELM has attracted the attention of
many machine learning researchers. However, ELM still has
some difficult problems to solve. The input weight thresholds
of ELM are given randomly. How to ensure that they are
the optimal model parameters? Appropriate number of hidden
layer nodes and hidden layer activation function can ensure
the generalization ability and running speed of ELM, but the
setting of hidden layer node number and selection of hidden layer
activation function of ELM are difficult problems.

Extreme Learning Machine (ELM) is a novel learning
algorithm for single-hidden layer feedforward neural networks
(SLFNs). Compared neural network learning methods (such as
BP neural network) have complicated parameter design in the
training model and are easy to fall into local optimization.
However, ELM only sets a reasonable number of hidden
layer neurons, and the algorithm execution process does not
need to iterate the hidden layer. Input weights and hidden
layer thresholds are randomly generated and do not rely on
training sample data. The weight matrix of the output layer is
obtained through one-step analytical calculation, which avoids
the complicated calculation process of repeated iteration of the
traditional neural network and greatly improves the training
speed of the network.

For any N random samples (xi, ti),xi = [xi1, xi2, ..., xin]
T ∈ Rn,

n is the number of input layer nodes, ti = [ti1, ti2, ..., tim]
T ∈ Rm

the number of hidden layer nodes is m, and the hidden layer
excitation function is g (x), then the mathematical model is
as follows:

L
∑

i= 1

βig(Wi · Xj + bi) = oj (10)

W =









w11 w12 ... w1n

w21 w22 ... w2n

... ... ... ...
wL1 wL2 ... wLn









L×n

(11)

β =









β11 β12 ... β1n

β21 β22 ... β2n

... ... ... ...
βL1 βL2 ... βLn









L×n

(12)

Where Xj and oj are the input and output of the extreme
learning machine, respectively, i.e., The input amount of location
information of geographic information; W and β are both
connection weight matrices; g (x) is the excitation function; b
is the bias matrix, b =

[

b1, b2, . . . , bL
]

, bi is the i-th neuron bias.
In order to minimize the output error, define the

learning objectives:

lim

N
∑

j=1

||oj − tj|| = 0 (13)

Through continuous learning and training, Wi˜, bi˜, βi˜ are
obtained, see as Equation (14)

||H(W˜
i , b

˜
i)β

˜
i − T′|| = min

W,b,β
||H(W˜

i , b
˜
i)β

˜
i − T′||, i = 1, 2, ..., L

(14)

Equation (14) is equal Equation (15).

E =

N
∑

j=1

[

L
∑

i=1

βig(Wi · Xj + bj)− tj

]2

(15)

The training process actually solves the linear process and is
realized by outputting weights.

β∼ = H∗T′′ (16)

Where H is the output matrix and H
∗ is the generalized inverse

matrix of Moore-Penrose.

SIMULATION TEST AND ALGORITHM
COMPARISON

Benchmark Test Function
In this paper, four benchmark functions are selected to test
the algorithm.

The test functions are as follows:
A. Ackley’s Function f 1:

f (X) = −20 exp(−0.2

√

√

√

√

n
∑

i=1

x2i /n)− exp(

n
∑

i=1

cos(2πxi)/n)

+ 20+ e, |xi| ≤ 32 (17)

The optimal values are: min (f (X∗)) = f (0, 0, ..., 0) = 0.
The function is a unimodal function with only one optimal

value, but the surface is uneven.
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B. Schweffel’s Problem 1.2 function f2:

f (X) =

n
∑

i=1





i
∑

j=1

xj





2

, |xi| ≤ 100 (18)

The optimal values are: min (f (X∗)) = f (0, 0, ..., 0) = 0
The function is a unimodal function, but the surface is smooth

near the optimal value.
C. Generalized Schweffel’s Problem 2.26 function f3:

f (X) = −

n
∑

i=1

xi sin(
√

|xi|)), |xi| ≤ 500 (19)

The optimal values are: .
The function is a multimodal function with multiple optimal

values and uneven surface.
D. Generalized Rastrigin’s function f 4:

f (X) =

n
∑

i=1

[

x2i − 10 cos(2πxi)+ 10
]

, |xi| ≤ 5.2 (20)

The optimal values are: min (f (X∗)) = f (0, 0, ..., 0) = 0.
The function is a multimodal function with multiple optimal

values and uneven surface.

Test Results
Verify the experimental results of TLBO-ELM algorithm, The
algorithm uses Python language to implement the server
Dell T610 operating system uses Ubuntu 64 bits, 2 CPU:
x5650 main frequency 2.6G with 12 cores and 24 threads,
memory 64G, The algorithm is run independently on four
commonly used Benchmark functions for 30 times, The
maximum number of iterations is 1,000, 100 iteration times

are recorded, respectively, 200,..., The average fitness value
obtained 1,000 times describes the fitness value curve, The
algorithms involved in the comparison include GA, PSO, TLBO
and three commonly used swarm intelligence algorithms. The
items to be compared include the average fitness value, the
optimal result value, the worst result value and the standard
deviation. The tested data are listed in detail in the test
result comparison table. In order to compare the convergence
performance of the four algorithms more vividly and clearly,
the above three test functions are selected, and the convergence
curves of the four algorithms on the selected functions are
drawn, respectively. The test results are shown in Table 1

for example:
Through the above test results and comparison tables, it can

be seen that when testing functions f 4 and f 1, the optimal
values found by ITLBO algorithm perform best and the curves
are relatively smooth, TLBO is better and the curves fluctuate
little, and PSO and GA perform poorly. The standard deviation
of TLBO algorithm is similar to that of ITLBO algorithm,
while the standard deviation of GA and PSO is larger, which
shows that TLBO algorithm performs better in convergence
stability. When testing f 3 function, ITLBO algorithm finds
the best optimal value, the curve is smoother, the standard
deviation is lower, TLBO curve is smoother, the standard
deviation is lower, but the convergence result value is not
accurate enough. PSO and GA algorithms find the best value,
the curve fluctuates greatly, and the standard deviation is higher.
When function f2 tests, ITLBO algorithm still shows better
optimization accuracy and convergence stability than the other
three algorithms.

On the four functions tested, ITLBO algorithm shows the
advantages of good convergence stability, high optimization
accuracy and so on, and shows good optimization ability. The
accuracy of the optimal solution found by the artificial fish swarm
algorithm is not high enough, but the stability is good. Genetic

TABLE 1 | Comparison of four function sequencing.

F Algorithm Optimal value Worst value Average value Standard deviation

f1 GA 3.012 3129.46 263.871 167.787

PSO 2.235 164.231 123.231 128.127

TLBO 2.765 783.298 50.239 77.797

ITLBO 0.732 813.956 23.321 72.712

f2 GA 2.818e−15 35.286 7.271 6.332

PSO 3.412e−18 9.7339 4.689 3.967

TLBO 9.731e−18 6.2443 3.228 2.567

ITLBO 1.182e−21 8.150 1.298 2.487

f3 GA −278.789 −90.877 −124.67 58.834

PSO −293.264 −151.18 −175.482 47.898

TLBO −302.179 −212.34 −217.178 34.238

ITLBO −398.038 −178.76 −234.156 29.727

f4 GA 3.988 1089.78 187.525 97.686

PSO 2.373 287.787 54.633 18.787

TLBO 2.722 276.676 41.842 14.778

ITLBO 2.229 123.178 8.653 10.231
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algorithm and particle swarm optimization algorithm have the
worst performance in finding the optimal solution value of the
four functions.

As we can see from that optimization graph, with the
increase of iteration times, the optimization results of the
algorithm also tend to be stable. The stable optimization values
of genetic algorithm and particle swarm optimization algorithm
are obviously higher than those of other algorithms. The curve
of TLBO algorithm is relatively smooth, but the solution results
are not very accurate. ITLBO algorithm has advantages in
optimization speed, optimization accuracy and optimization
stability compared with other three algorithms.

Random selection of iteration times is 100, 200, . . . , 1,000
times, respectively, to test the fitness value of the algorithm and
the relationship between iteration times. See as Figure 1.

Comparative Study on GPS Vehicle Data
Position Prediction
The data studied in this paper come from on-board GPS data.
The data include: road number, vehicle ID, time, longitude,
dimension, speed and position number. The data time is 15,000

on-board GPS data information from August 1, 2014 to August
31, 2014. Its data format is shown in Table 2 below:

Location numbering is based on the location range
represented by dimensions. Different numbers differ in
geographical locations. When the longitude and latitude of
different geographical positions are numbered at the same
number, it means that the two positions are identified as similar
or the same position, i.e., the correct position is predicted. Based
on the map division of this grid, different geographic location
information is divided into the same or similar geographic

TABLE 2 | Vehicle GPS data sheet.

ID Date Time Longitude Latitude Position

4231 2014/2/3 06:01:18 30.583802 104.034407 86

464 2014/8/4 14:21:00 30.624811 104.136587 68

1 2014/3/3 21:19:15 30.624809 104.136612 67

123 2014/7/12 11:23:06 30.615417 104.040228 79

234 2014/8/13 14:47:59 30.651394 103.984025 20

FIGURE 1 | Convergence comparison of four functions. (A) f1 Convergence. (B) f2 Convergence. (C) f3 Convergence. (D) f4 Convergence.
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FIGURE 2 | Comparison of prediction effect of 1-day location.

spaces. The size of the grid also determines the accuracy of the
prediction. When the grid is relatively large, the prediction effect
is ideal. When there are many grids, the prediction effect may
not be ideal. Under different grids, there may be two similar
positions to deal with different grids. As a result, the grid size can
also affect the accuracy of the experiment.

Through the processing and analysis of GPS data, this paper
uses TLBO, ITLBO-ELM algorithms to compare the prediction
results, and predicts different vehicle information from different
road sections within the numbered range of the next position or
related area. As shown in Figure 2.

Geographical locations are described by numerical numbers
and different area numbers express different locations. The closer
the data are, the shorter the distance between locations. As can
be seen from Figure 2, ITLBO-ELM is closer to the real position
than TLBO prediction method and ITLBO-ELM prediction
method for prediction comparison of different positions at
different time points. ITBLO combined with ELM algorithm is
mainly to improve the convergence speed and accuracy of the
algorithm. As can be seen from Figure 2, ITBLO-ELM algorithm
has obvious advantages corresponding to other algorithms.

Geographic location information is encoded with specific area
numbers and different area numbers express different geographic
location information. There may be the same area numbers
at different longitude and latitude. At this time, the location

representation is similar. When judging from the effect of the
actual position and the predicted position in Figure 2, there
are obvious differences between the actual position and the
TLBO prediction results, while in the whole prediction track
process, the actual position area number is consistent with
the ITLBO-ELM prediction results, and the two are relatively
close. The experimental results show that ITLBO-ELM has good
experimental results in overall performance.

CONCLUSION

In view of the poor prediction accuracy and effect in the
geographic location information prediction algorithm, a
prediction method based on improved teaching and learning
optimization algorithm and ELM algorithm is proposed. The
results show that ITLBO-ELM algorithm has high accuracy
in predicting positions. The method proposed in this paper
has good effect in predicting the position, considering
the representation of position information under different
coordinates. Further research work is carried out to predict the
position information from different coordinates so as to reduce
the prediction errors caused by coordinate differences. In the
conclusion, in the future research work, whether more tests are
considered in the algorithm to test the test effect of this paper.
In the future research work, the convergence speed and position
accuracy of the algorithm will be mainly considered.
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Computing the Mixed Metric
Dimension of a Generalized Petersen
Graph P(n, 2)
Hassan Raza and Ying Ji*

Business School, University of Shanghai for Science and Technology, Shanghai, China

Let Ŵ = (V,E) be a connected graph. A vertex i ∈ V recognizes two elements (vertices

or edges) j, k ∈ E ∩ V, if dŴ (i, j) 6= dŴ (i, k). A set S of vertices in a connected graph Ŵ is

a mixed metric generator for Ŵ if every two distinct elements (vertices or edges) of Ŵ are

recognized by some vertex of S. The smallest cardinality of a mixed metric generator for

Ŵ is called the mixed metric dimension and is denoted by βm. In this paper, the mixed

metric dimension of a generalized Petersen graph P(n, 2) is calculated. We established

that a generalized Petersen graph P(n, 2) has a mixed metric dimension equivalent to 4

for n ≡ 0, 2(mod4), and, for n ≡ 1, 3(mod4), the mixed metric dimension is 5. We thus

determine that each graph of the family of a generalized Petersen graph P(n, 2) has a

constant mixed metric dimension.

2010 Mathematics Subject Classification: 05C12, 05C90

Keywords: mixed metric dimension, metric dimension, edge metric dimension, generalized Petersen graph, exact

values

1. INTRODUCTION

The aim of robot navigation functionality is to attain the coveted position promptly whenever it is
desired. Let us imagine that robot navigation in a sensor network that can obtain the distances to
a collection of landmarks. A robot’s position is solely resolved by determining the subset of nodes
in the sensor network. It can be achieved by the concept of landmarks in the graphs introduced in
Khuller et al. [1]; this idea was later named the metric dimension. All the graphs considered here
have no loops and are simple, measurable, and undirected.

Let Ŵ = (V ,E) be the graph of the distance dŴ(a, b) (or d(a, b)) among the vertices a, b ∈ V(Ŵ)
the minimum length of paths between them. For a vertex a ∈ V , distinguish two vertices in a graph,
say b and c, if the condition dŴ(a, b) 6= dŴ(a, c) holds. A set R ⊂ V(Ŵ) is the metric generator if
some chosen vertices of the set R recognizes a pair of distinguished vertices. The metric basis with
the least number of elements is called the metric generator, and the cardinality of its metric basis
is termed the metric dimension. The notation employed here is β(Ŵ). The fundamental concept
of the metric dimension was instated by Slater [2], and the notation of the metric dimension was
initiated by Haray and Melter [3]. This concept was later studied by many researchers with unique
modifications; for reference, see [4–8]. Some of the recent results on metric dimension and its
further variations are studied in Shao et al. [9] and Raza et al. [10–13].

Lemma 1. Suppose R is the distinguishing set of Ŵ and the vertices a, b ∈ V(Ŵ). If dŴ(a, c) 6= dŴ(a, c),
for all vertices c ∈ V(Ŵ)\{a, b}, then {a, b}

⋂

R 6= ∅.
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Analogous to this definition, Kelenc et al. [14] introduced the
concept of edge metric dimension, and this was further studied
in Zubrilina [15], Peterin and Yero [16], and Zhu et al. [17]. This
distance between an edge e = ab and a vertex c is given as follows

d(e, c) = min{d(a, c), d(b, c)}

A vertex c ∈ V(Ŵ) distinguishes two edges of a graph e1, e2 ∈

E(Ŵ) if dŴ(e1, u) 6= dŴ(e2, u). The set Re ⊂ V is termed
as the edge metric generator if some distinct edges of Ŵ are
distinguished by the vertex set Re. The cardinality of an edge
metric generator is called an edge metric dimension, and it is
depicted as βe(Ŵ). Having defined the notion of an edge metric
generator, which distinctly recognizes every edge in a graph, a
common assumption would be that any edge metric generator
Re would be a metric dimension as well. This assumption is far
from reality, as indicated in Kelenc et al. [14], but there are several
families of graphs where this occurs, that is, β(Ŵ) = βe(Ŵ). Some
other distance related parameters are studied in Liu et al. [18–22].

In this paper, our focus is on mixed metric dimension, which
is a mixed version of metric and edge metric dimension. A set Rm
of vertices of a graph Ŵ is known as a mixed metric generator
if any two distinct elements (vertices or edges) of a graph are
recognized by some the vertex set of Rm. The least cardinality
of a mixed metric generator for a graph is termed as a mixed
metric dimension, denoted as βm(Ŵ). The idea is recently brought
forward by Kelenc et al. [23].

Lemma 2. Let for some vertex a ∈ V(Ŵ), and let Rm = V(Ŵ)\a,
and if there is an element b ∈ N(a), also for some c ∈ Rm,
dŴ(ab, c) 6= dŴ(b, c), then Rm is the mixed metric generator for
the graph Ŵ.

The notion of a mixed metric dimension clearly indicates that a
mixedmetric generator is also a standardmetric generator and an
edge metric generator, The following relationship is given in [23],

βm(Ŵ)max ≥ {β(Ŵ),βe(Ŵ)}

The following remark shows the structure of mixed
metric dimension:
Remark 1: [23] Suppose for some graph Ŵ we have 2 ≤ βm ≤ n.
Recently, this concept has attracted some attention, and it has
been studied by Raza et al. [24]. The authors discussed the mixed
metric dimension among the prism graphs, which are commonly
known as generalizes Petersen graphs P(n, 1), and two families
of convex polytopes An,Rn, further presenting the problem of
finding βm(P(n, 2)).

Some of the results regarding metric and edge metric
dimension are given:
Remark 2: [14] For n ≥ 2, the metric and edge metric dimension
are, β(Pn) = βe(Pn) = 1; for cycle graph, β(Cn) = βe(Cn) = 2;
for complete graph, β(Kn) = βe(Kn) = n − 1; and for any
complete bipartite graph (Kr,t) different from (K1,1), β(Kr,t) =

βe(Kr,t) = r + t − 2.

1.1. Known Results
Next, we present some already known results for βm,

Proposition 1: [23] For a path graph (Pn) order n ≥ 4,
we have βm(Pn) = 2.
Proposition 2: [23] Let us consider any two positive integers: e, f

βm(Ke,f ) =

{

e+ f − 1, if e = 2 or f = 2;
e+ f − 2, otherwise.

Proposition 3: [23] For a grid graphs, Pm2Pn, with
m ≥ n ≥ 2, βm = 3.

Proposition 4: [23] Let us assume cycle graph (Cn) of order
n ≥ 4, then βm(Cn) = 3.

Lemma 3. [24]The mixed metric generator Rm must contain
vertices from both the outer and inner cycle for the prism graph Dn.

Proof: For P(n, 1), this holds, and, by the same intuition,
this must be true for P(n, 2). The mixed metric resolving set
comprises of vertices from both the cycles, which contain vertices
of outer and inner cycle, respectively.

2. MAIN RESULT

The generalized Petersen graphs is introduced by Watkins [25].
The P(n, ℓ), where n ≥ 3 and 1 ≤ ℓ ≤ ⌊ n−1

2 ⌋ (see Figure 2),
which is the cubic graph consists of vertices and edges, is
shown below.

V(P(n, ℓ)) = {q0, q1, . . . , qn−1, p0, p1, . . . , pn−1}

E(P(n, ℓ)) = {qiqi+1, pipi+ℓ, qiqi|i = 0, 1, . . . , n− 1}

Example: We used the graph of P(n, 8), as can be seen
in Figure 1. The mixed metric generator for P(n, 8)
is βm = {q0, q1, p4, p5}, and it can been seen from
Table 1 that all the representation of vertices and edges
are distinct.

The graph of the generalized Petersen graph comprises of
three types of edges, external edges, internal edges, and spokes
between qi and qi+1, pi and pi+m, and qi and pi, respectively. The
vertices qi and pi (0 ≤ i ≤ n − 1) are termed as external and
internal vertices, respectively.

The prism graph Dn is known as P(n, 1) for m = 1. Some of
the already known results are given as

Theorem 1. [26] The metric dimension of Dn, for n ≥ 4:

β(Dn) =

{

2, n is odd;
3, n is even.

Theorem 2. [27]When, n ≥ 4, βe(Dn) = 3.

Theorem 3. [24] For n ≥ 5,

βm(P(n, 1)) =

{

3, n is even;
4, n is odd.
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FIGURE 1 | The generalized Petersen graph P(8, 2).

TABLE 1 | Codes for P(n, 8).

v rm(v) v rm(v) e rm(e) e rm(e) e rm(e)

q0 (0, 1, 3, 3) p0 (1, 2, 2, 4) q0q1 (0, 0, 3, 3) q0p0 (0, 1, 2, 3) p0p2 (1, 2, 1, 4)

q1 (1, 0, 3, 3) p1 (2, 1, 4, 2) q1q2 (1, 0, 2, 3) q1p1 (1, 0, 3, 2) p1p3 (2, 1, 3, 1)

q2 (2, 1, 2, 3) p2 (2, 2, 1, 4) q2q3 (2, 1, 2, 2) q2p2 (2, 1, 1, 3) p2p4 (2, 2, 0, 3)

q3 (3, 2, 2, 2) p3 (3, 2, 3, 1) q3q4 (3, 2, 1, 2) q3p3 (3, 2, 2, 1) p3p5 (3, 2, 3, 0)

q4 (4, 3, 1, 2) p4 (3, 3, 0, 3) q4q5 (3, 3, 1, 1) q4p4 (3, 3, 0, 2) p4p6 (2, 3, 0, 3)

q5 (3, 4, 2, 1) p5 (3, 3, 3, 0) q5q6 (2, 3, 2, 1) q5p5 (3, 3, 2, 0) p5p7 (2, 2, 3, 0)

q6 (2, 3, 2, 2) p6 (2, 3, 1, 3) q6q7 (1, 2, 2, 2) q6p6 (2, 3, 1, 2) p6p0 (1, 2, 1, 3)

q7 (1, 2, 3, 2) p7 (2, 2, 4, 1) q7q0 (0, 1, 3, 2) q7p7 (1, 2, 3, 1) p7p1 (1, 2, 2, 1)

The known results for P(n, 2) concerning metric and an edge
metric dimension are

Theorem 4. [28] For n ≥ 5, the metric dimension is
β(P(n, 2)) = 3.

Theorem 5. [27] For n ≥ 5, βe(P(n, 2)) = 3.

It is quite natural to investigate the mixed metric dimension
of P(n, 2). Now, we will find mixed the metric dimension of
(P(n, 2)), and for this the following lemmas are presented.

Lemma 4. Case 1: If n ≡ 0(mod)4, then βm(P(n, 2)) ≤ 4.

Proof: The proof is n = 4r, r ≥ 4, where r ∈ Z
+. The

distinguishing vertices that will distinguish the whole vertices and
edges of the graph are Rm = {q0, q1, p2r , p2r+1}. The following
representations are presented with respect to Rm.

Representation of external vertices:

CRm (q2s) =































(2s, 1, r − s+ 1, r + 1), 0 ≤ s ≤ 1;

(2s, s+ 1, r − s+ 1, r), s = 2;

(s+ 2, s+ 2, r − s+ 1, r − s+ 2), 3 ≤ s ≤ r;

(2r − s+ 2, 2r − s+ 3, s− r + 1, r + 1 ≤ s ≤ 2r − 2;

s− r + 1),

(2, 3, s− r + 1, s− r + 1), s = 2r − 1.

and,

CRm (q2s+1) =







































(2s+ 1, 2s, s− r + 1, r − s+ 1), 0 ≤ s ≤ 2;

(s+ 3, s+ 2, 2, r − s+ 1), 3 ≤ s ≤ r − 1;

(r + 2, r + 2, 2, 1), s = r;

(2r − s+ 2, 2r − s+ 2, r + 1 ≤ s ≤ 2r − 3;

s− r + 2, s− r + 1),

(3, 4, s− r + 2, r − s+ 1), s = 2r − 2;

(1, 2, s− r + 2, s− r + 1), s = 2r − 1.

Representation of internal vertices:

CRm (p2s) =















(s+ 1, 2, r − s, r + 2), 0 ≤ s ≤ 1;

(s+ 1, s+ 1, r − s, r − s+ 3), 2 ≤ s ≤ r;

(2r − s+ 1, 2r − s+ 2, r + 1 ≤ s ≤ 2r − 1.

s− r, s− r + 2),

and,

CRm (p2s+1) =















(s+ 2, s+ 1, r − s+ 2, r − s), 0 ≤ s ≤ r − 1;

(2r − s+ 1, r, s− r + 3, s− r), r ≤ s ≤ r + 1;

(2r − s+ 1, 2r − s+ 1, r + 2 ≤ s ≤ 2r − 1.

s− r + 3, s− r),

Representation of external edges:

CRm (q2sq2s+1) =























































(2s, s, r − s+ 1, r − s+ 1), 0 ≤ s ≤ 1;

(2s, s+ 1, r − s+ 1, s = 2;

r − s+ 1),

(s+ 2, s+ 2, r − s+ 1, 3 ≤ s ≤ r;

r − s+ 1),

(2r − s+ 2, 2r − s+ 2, r + 1 ≤ s ≤ 2r − 3;

s− r + 1, s− r + 1),

(3, 4, s− r + 1, s− r + 1), s = 2r − 2;

(1, 2, s− r + 1, s− r + 1), s = 2r − 1.

and,

CRm (q2s+1q2s+2) =































(2s+ 1, 2s, r − s, r − s+ 1), 0 ≤ s ≤ 2;

(s+ 3, s+ 2, r − s, r − s+ 1), 3 ≤ s ≤ r − 1;

(2r − s+ 1, 2r − s+ 2, r ≤ s ≤ 2r − 3;

s− r + 2, s− r + 1),

(2, 3, s− r + 2, s− r + 1), s = 2r − 2;

(0, 1, s− r + 2, s− r + 1), s = 2r − 1.

Representation of external and internal edges:
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FIGURE 2 | (A) The generalized Petersen graph P(5, 2), (B) The generalized Petersen graph P(6, 2).

CRm (q2sp2s) =















(2s, 1, r − s, r + 1), 0 ≤ s ≤ 1;

(s+ 1, s+ 1, r − s, r − s+ 2), 2 ≤ s ≤ r;

(2r − s+ 1, 2r − s+ 2, s− r, r + 1 ≤ s ≤ 2r − 1.

s− r + 1),

and,

CRm (q2s+1q2s+1) =































(2s+ 1, 2s, r − s+ 1, r − s), 0 ≤ s ≤ 1;

(s+ 2, s+ 1, r − s+ 1, r − s), 2 ≤ s ≤ r − 1;

(r + 1, r + 1, 2, 0), s = r;

(2r − s+ 1, 2r − s+ 1, r + 1 ≤ s ≤ 2r − 2;

s− r + 2, s− r),

(1, 2, s− r + 2, s− r), s = 2r − 1.

Representation of internal edges:

CRm (p2sp2s+2) =































(1, 2, r − s− 1, r − s+ 2), s = 0;

(s+ 1, s+ 1, r − s− 1, 1 ≤ s ≤ r − 1;

r − s+ 2),

(2r − s, r, s− r, 3), r ≤ s ≤ r + 1;

(2r − s, 2r − s+ 1, s− r, r + 2 ≤ s ≤ 2r − 1.

s− r + 2),

and,

CRm (p2s+1p2s+3) =







































(2, 1, r − s+ 1, r − s− 1), s = 0;

(s+ 2, s+ 1, r − s+ 1, 1 ≤ s ≤ r − 3;

r − s− 1),

(s+ 2, s+ 1, 3, r − s− 1), r − 2 ≤ s ≤ r − 1;

(2r − s, 2r − s, s− r + 3, r ≤ s ≤ 2r − 2;

s− r),

(2, 1, s− r + 3, s− r), s = 2r − 1.

Case 2: For n ≡ 2(mod)4, we have βm(P(n, 2) ≤ 4

Proof: Now we can see n = 4r + 2, r ≥ 4, where r ∈ Z
+.

The set of vertices that will distinguish the whole vertices and
edges of the graph are Rm = {q0, q1, p2r+1, p2r+2}. The following
representations are presented with respect to Rm.

Representation of external vertices:

CRm (q2s) =































(2s, 2− s, r − s+ 2, r + 1), 0 ≤ s ≤ 1;

(2s, 3, r − s+ 2, r − s+ 2), s = 2;

(s+ 2, s+ 2, r − s+ 2, r − s+ 2), 3 ≤ s ≤ r;

(2r − s+ 3, 2r − s+ 4, r + 1 ≤ s ≤ 2r − 1;

s− r + 1, s− r),

(2, 3, s− r + 1, s− r), s = 2r.

and,

CRm (q2s+1) =































(2s+ 1, 2s, s− r + 1, r − s+ 2), 0 ≤ s ≤ 2;

(s+ 3, s+ 2, r − s+ 1, r − s+ 1), 3 ≤ s ≤ r;

(2r − s+ 3, 2r − s+ 4, r + 1 ≤ s ≤ 2r − 2;

s− r + 1, s− r + 1),

(3, 5, s− r + 1, s− r + 1), s = 2r − 1;

(1, 3, s− r + 1, s− r + 1), s = 2r.

Representation of internal vertices:

CRm (p2s) =















(s+ 1, 2, r − s+ 3, r), 0 ≤ s ≤ 1;

(s+ 1, r + 1, r − s+ 3, r − s+ 1), 2 ≤ s ≤ r;

(2r − s+ 2, 2r − s+ 3, r + 1 ≤ s ≤ 2r.

s− r + 2, s− r − 1),

and,

CRm (p2s+1) =







(s+ 2, s+ 1, r − s, r − s+ 3), 0 ≤ s ≤ r;

(2r − s+ 2, 2r − s+ 3, r + 1 ≤ s ≤ 2r.

s− r, s− r + 2),
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Representation of external edges:

CRm (q2sq2s+1) =















































(2s, s, r − s+ 1, r + 1), 0 ≤ s ≤ 1;

(2s, s+ 1, r − s+ 1, r − s+ 2), s = 2;

(s+ 2, s+ 2, r − s+ 1, 3 ≤ s ≤ r;

r − s+ 2),

(2r − s+ 3, 2r − s+ 3, r + 1 ≤ s ≤ 2r − 2;

s− r + 1, s− r),

(3, 4, s− r + 1, s− r), s = 2r − 1;

(1, 2, s− r + 1, s− r), s = 2r.

and,

CRm (q2s+1q2s+2) =















































(2s+ 1, 2s, r − s+ 1, r − s+ 1), 0 ≤ s ≤ 2;

(s+ 3, s+ 2, r − s+ 1, r − s+ 1), 3 ≤ s ≤ r − 1;

(2r − s+ 2, r + 2, s− r + 1, r ≤ s ≤ r + 1;

s− r + 1),

(2r − s+ 2, 2r − s+ 3, s− r + 1, r + 2 ≤ s ≤ 2r − 2;

s− r + 1),

(2, 3, s− r + 1, s− r + 1), s = 2r − 1;

(0, 1, s− r + 1, s− r + 1), s = 2r.

Representation of external and internal edges:

CRm (q2sp2s) =















(2s, 1, r − s+ 2, r), 0 ≤ s ≤ 1;

(s+ 1, s+ 1, r − s+ 2, r − s+ 1), 2 ≤ s ≤ r;

(2r − s+ 2, 2r − s+ 3, r + 1 ≤ s ≤ 2r.

s− r + 1, s− r − 1),

and,

CRm (q2s+1q2s+1) =























(2s+ 1, 2s, r − s, r − s+ 2), 0 ≤ s ≤ 1;

(s+ 2, s+ 1, r − s, r − s+ 2), 2 ≤ s ≤ r;

(2r − s+ 2, 2r − s+ 2, r + 1 ≤ s ≤ 2r − 1;

s− r, s− r + 1),

(1, 2, s− r, s− r + 1), s = 2r.

Representation of internal edges:

CRm (p2sp2s+2) =























(s+ 1, 2, r − s+ 2, r − s), 0 ≤ s ≤ 1;

(s+ 1, s+ 1, r − s+ 2, r − s), 2 ≤ s ≤ r − 1;

(2r − s+ 1, r + 1, 3, 0), r ≤ s ≤ r + 1;

(2r − s+ 1, 2r − s+ 2, r + 2 ≤ s ≤ 2r.

s− r + 2, s− r − 1),

and,

CRm (p2s+1p2s+3) =







































(s+ 2, s+ 1, r − s− 1, 0 ≤ s ≤ r − 1;

r − s+ 2),

(2r − s+ 1, 2r − s+ 1, r ≤ s ≤ r + 1;

s− r, 3),

(2r − s+ 1, 2r − s+ 1, r + 2 ≤ s ≤ 2r − 1;

s− r, s− r + 2),

(2, 1, s− r, s− r + 2), s = 2r.

Now from lemma3, the resolving set Rm contains vertices from
external and internal cycles; that is, the resolving set cannot
comprise either external or internal vertices.

Lemma 5. When n ≡ 0, 2(mod4),then βm(P(n, 2)) ≥ 4.

Proof: Suppose that βm(P(n, 2)) = 3, the following
contradictions arises:

Case 1: This is when the two fixed vertices are in the external
cycle, {q0, q1}, and the other vertex lie in internal cycle pℓ, that
is, Rm = {q0, q1, pℓ}.
(i) If 0 ≤ ℓ ≤ 1 then, rm{q0|q0, q1, pℓ} =

rm{q0qn−1|q0, q1, pℓ} = (0, 1, ℓ + 1).
(ii) If ℓ = 2, 4, . . . , 2r, then rm{q0|q0, q1, pℓ} =

rm{q0qn−1|q0, q1, pℓ}.
(iii) If ℓ = 3, 5, . . . , 2r − 1, then rm{q0|q0, q1, pℓ} =

rm{q0qn−1|q0, q1, pℓ}.

Case 2: When internal cycle contains two fixed vertices that
is {p0, p1}, and the other vertex lie in external cycle qℓ. That
is Rm = {p0, p1, qℓ}.
(i) If 0 ≤ ℓ ≤ 3, then rm{q0|p0, p1, qℓ} =

rm{q0qn−1|p0, p1, qℓ} = (1, 2, ℓ).
(ii) If ℓ = 4, 6, . . . , 2r, then rm{q0|p0, p1, qℓ} =

rm{q0qn−1|p0, p1, qℓ}.
(iii)If ℓ = 5, then rm{q0|p0, p1, qℓ} =

rm{q0qn−1|p0, p1, qℓ} = (1, 2, ℓ).
(iv) If ℓ = 7, 9, . . . , 4r − 1, then rm{q1|p0, p1, qℓ} =

rm{q1q2|p0, p1, qℓ}.

Similarly, other contradictions can be assumed; all the cases
mentioned above suggest that βm(P(n, 2)) ≥ 4, which clearly
indicates that βm(P(n, 2)) = 4 for n ≡ 0(mod4). Similar kind
of contradictions can be proved for n ≡ 2(mod4).

Remark 3: From the above cases, it can be deduced that if the
mixed metric generator Rm for P(n, 2) contains two vertices of
one cycle, then Rm contain at least two vertices of another cycle.

Lemma 6. βm(P(n, 2) ≤ 5, for n ≡ 1(mod)4

Proof: Case 1: Now we can write, if n = 4r + 1, r ≥ 4, where
r ∈ Z

+. The set of vertices that will distinguish the whole vertices
and the edges of the graph are Rm = {q0, q1, p1, p2r+1, p2r+2}.
The following representations are presented with respect to Rm.

Representation of external vertices:

CRm (q2s) =







































(2s, 2− 2s, 2, r + 1, r + 1), 0 ≤ s ≤ 1;

(2s, s, s+ 1, r − s+ 2, r − s+ 2), s = 2;

(r + 2, r + 2, r + 1, 2, 1), s = r + 1;

(2r − s+ 3, 2r − s+ 4, r + 2 ≤ s ≤ 2r − 2;

2r − s+ 2, s− r + 1, s− r),

(3, 5, 3, s− r + 1, s− r), s = 2r − 1;

(1, 3, 2, s− r + 1, s− r), s = 2r.

and,

CRm (q2s+1) =























































(2s+ 1, 1, s+ 1, r − s+ 1, r + 1), 0 ≤ s ≤ 1;

(2s+ 1, s+ 1, s+ 1, r − s+ 1, s = 2;

r − s+ 2),

(s+ 3, s+ 2, s+ 1, r − s+ 1, 3 ≤ s ≤ r − 1;

r − s+ 2),

(2r − s+ 2, r + 2, r + 1, s− r + 1, 2), r ≤ s ≤ r + 1;

(2r − s+ 2, 2r − s+ 3, 2r − s+ 2, r + 2 ≤ s ≤ 2r − 2;

s− r + 1, s− r + 1),

(2, 4, 3, s− r + 1, s− r + 1), s = 2r − 1.
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Representation of internal vertices:

CRm (p2s) =







































(s+ 1, 2− s, 3, r + s, r − s+ 1), 0 ≤ s ≤ 1;

(s+ 1, s+ 1, s+ 2, r − s+ 3, 2 ≤ s ≤ r − 1;

r − s+ 1),

(r + 1, s, 2r − s+ 1, 3, r − s+ 1), r ≤ s ≤ r + 1;

(2r − s+ 2, 2r − s+ 3, 2r − s+ 1, r + 2 ≤ s ≤ 2r − 1;

s− r + 2, s− r − 1),

(2, 3, 1, s− r + 1, s− r − 1), s = 2r.

and,

CRm (p2s+1) =























(s+ 2, 2− s, s, r − s, r + s), 0 ≤ s ≤ 1;

(s+ 2, s+ 1, s, r − s, r − s+ 3), 2 ≤ s ≤ r − 1;

(2r − s+ 1, r + 2, s, s− r, 3), r ≤ s ≤ r + 1;

(2r − s+ 1, 2r − s+ 2, r + 2 ≤ s ≤ 2r − 1.

2r − s+ 3, s− r, s− r + 2),

Representation of external edges:

CRm (q2sq2s+1) =















































(2s, 1− s, s+ 1, r − s+ 1, r + 1), 0 ≤ s ≤ 1;

(2s, s, s+ 1, r − s+ 1, r − s+ 2), s = 2;

(s+ 2, s+ 1, s+ 1, r − s+ 1, 3 ≤ s ≤ r;

r − s+ 2),

(2r − s+ 2, 2r − s+ 3, r + 1 ≤ s ≤ 2r − 2;

2r − s+ 2, s− r + 1, s− r),

(2, 4, 3, s− r + 1, s− r), s = 2r − 1;

(0, 2, 2, s− r + 1, s− r), s = 2r.

and,

CRm (q2s+1q2s+2) =







































































(2s+ 1, s, s+ 1, r − s+ 1, 0 ≤ s ≤ 1;

ar − s+ 1),

(2s+ 1, s+ 1, s+ 1, r − s+ 1, s = 2;

r − s+ 1),

(2r − s+ 1, s+ 2, s+ 1, 3 ≤ s ≤ r − 1;

r − s+ 1, r − s+ 1),

(2r − s+ 2, r + 1, 2r − s+ 1, r ≤ s ≤ 2r − 4;

s− r + 1, s− r + 1),

(5, 6, 4, s− r + 1, s− r + 1), s = 2r − 3;

(3, 5, 3, s− r + 1, s− r + 1), s = 2r − 2;

(1, 2, 3, s− r + 1, s− r + 1), s = 2r − 1.

Representation of external and internal edges:

CRm (q2sp2s) =































(2s, 2− s, 2, r + s, r − s+ 1), 0 ≤ s ≤ 1;

(s+ 1, s, s+ 1, r − s+ 2, 2 ≤ s ≤ r;

r − s+ 1),

(2r − s+ 2, r + 1, 2r − s+ 1, r + 3 ≤ s ≤ 2r − 1;

s− r + 1, s− r − 1),

(1, 3, 1, s− r + 1, s− r − 1), s = 2r.

and,

CRm (q2s+1p2s+1) =























(2s+ 1, 1, s, r − s, r + s), 0 ≤ s ≤ 1;

(s+ 2, s+ 1, s, r − s, r − s+ 2), 2 ≤ s ≤ r − 1;

(r + 1, r + 1, 2r − s, 0, 2), s = r;

(2r − s+ 1, 2r − s+ 2, r + 1 ≤ s ≤ 2r − 1.

2r − s+ 2, s− r, s− r + 1),

Representation of internal edges:

CRm (p2sp2s+2) =































(s+ 1, 1, 3, r + s, r − s), 0 ≤ s ≤ 1;

(s+ 1, s, s+ 2, r − s+ 2, r − s), 2 ≤ s ≤ r − 1;

(2r − s+ 1, s, 2r − s, 3, 0), r ≤ s ≤ r + 1;

(2r − s+ 1, 2r − s+ 2, 2r − s, r + 2 ≤ s ≤ 2r − 1;

s− r + 2, s− r − 1),

(2, 2, 0, s− r, s− r − 1), s = 2r.

and,

CRm (p2s+1p2s+3) =































(s+ 2, 2, s, r − s− 1, r + s), 0 ≤ s ≤ 1;

(s+ 2, s+ 1, s, r − s− 1, 2 ≤ s ≤ r − 1;

r − s+ 2),

(2r − s, 2r − s+ 1, s, r − s, 3), r ≤ s ≤ r + 1;

(2r − s, 2r − s+ 1, 2r − s+ 2, r + 2 ≤ s ≤ 2r − 1.

s− r, s− r + 2),

Proof: Case 2: Now we can write, if n = 4r + 3, r ≥ 4, where
r ∈ Z

+. The set of vertices which will distinguish the whole
vertices, and edges of graph are Rm = {q0, q1, p1, p2r+3, p2r+4}.
The following representations are presented with respect to Rm.
Representation of external vertices:

CRm (q2s) =















































(2s, 2− 2s, 2, r + s+ 1, r + s+ 1), 0 ≤ s ≤ 1;

(s+ 2, 2s− 2, s+ 1, r − s+ 3, 2 ≤ s ≤ 3;

r − s+ 3),

(s+ 2, s+ 1, s+ 1, r − s+ 3, r − s+ 3), 4 ≤ s ≤ r + 1;

(2r − s+ 4, 2r − s+ 5, 2r − s+ 3, r + 2 ≤ s ≤ 2r − 1;

s− r, s− r − 1),

(3, 5, 3, s− r, s− r − 1), s = 2r;

(1, 3, 2, s− r, s− r − 1), s = 2r + 1.

and,

CRm (q2s+1) =







































































(2s+ 1, 1, s+ 1, r − s+ 2, 0 ≤ s ≤ 1;

r + s+ 1),

(s+ 3, 2s− 1, s+ 1, r − s+ 2, 2 ≤ s ≤ 3;

r − s+ 3),

(s+ 3, s+ 2, s+ 1, r − s+ 2, 4 ≤ s ≤ r;

r − s+ 3),

(2r − s+ 3, 2r − s+ 4, r + 1 ≤ s ≤ r + 2;

2r − s+ 3, s− r, 2),

(2r − s+ 3, 2r − s+ 4, r + 3 ≤ s ≤ 2r − 1;

2r − s+ 3, s− r, s− r),

(2, 4, 3, s− r, s− r), s = 2r.

Representation of internal vertices:

CRm (p2s) =























(s+ 1, 2− s, 3, r + s, r − s+ 2), 0 ≤ s ≤ 1;

(s+ 1, s, s+ 2, r − s+ 4, r − s+ 2), 2 ≤ s ≤ r;

(2r − s+ 3, s, 2r − s+ 1, 3, r − s+ 1), r + 1 ≤ s ≤ r + 2;

(2r − s+ 3, 2r − s+ 4, 2r − s+ 2, r + 3 ≤ s ≤ 2r + 1.

s− r + 1, s− r − 2),
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and,

CRm (p2s+1) =































(s+ 2, 2, s, r − s+ 1, r + s), 0 ≤ s ≤ 1;

(s+ 2, s+ 1, s, r − s+ 1, r − s+ 4), 2 ≤ s ≤ r;

(2r − s+ 1, 2r − s+ 3, 2r − s+ 5, r + 1 ≤ s ≤ r + 2;

s− r − 1, 3),

(2r − s+ 2, 2r − s+ 3, 2r − s+ 4, r + 3 ≤ s ≤ 2r.

s− r − 1, s− r + 1),

Representation of external edges:

CRm (q2sq2s+1) =































































(2s, 1− s, s+ 1, r + 1, r + s+ 1), 0 ≤ s ≤ 1;

(2s, s, s+ 1, r − s+ 2, r − s+ 3), s = 2;

(s+ 2, s+ 1, s+ 1, r − s+ 2, 3 ≤ s ≤ r;

r − s+ 3),

(2r − s+ 3, r + 2, 2r − s+ 3, r + 1 ≤ s ≤ r + 2;

s− r, s− r + 3),

(2r − s+ 3, 2r − s+ 4, 2r − s+ 3, r + 3 ≤ s ≤ 2r − 1;

s− r, s− r − 1),

(2, 4, 3, s− r, s− r − 1), s = 2r;

(0, 2, 2, s− r, s− r − 1), s = 2r + 1.

and,

CRm (q2s+1q2s+2) =























































(2s+ 1, s, s+ 1, r − s+ 2, r + 1), 0 ≤ s ≤ 1;

(s+ 3, 2s− 1, s+ 1, r − s+ 2, 2 ≤ s ≤ 3;

r − s+ 2),

(s+ 3, s+ 2, s+ 1, r − s+ 2, 4 ≤ s ≤ r;

r − s+ 2),

(2r − s+ 3, 2r − s+ 4, r + 1 ≤ s ≤ 2r − 2;

2r − s+ 2, s− r, s− r),

(3, 5, 3, s− r, s− r), s = 2r − 1;

(1, 3, 2, s− r, s− r), s = 2r.

Representation of external and internal edges:

CRm (q2sp2s) =















































(2s, 2− s, 2, r + s, r + 1), 0 ≤ s ≤ 1;

(s+ 1, s, s+ 1, r − s+ 3, 2 ≤ s ≤ r;

r − s+ 2),

(2r − s+ 3, s, 2r − s+ 2, 2, r + 1 ≤ s ≤ r + 2;

r − s+ 2),

(2r − s+ 3, 2r − s+ 4, 2r − s+ 2, r + 3 ≤ s ≤ 2r;

s− r, s− r − 2),

(1, 3, 1, s− r, s− r − 2), s = 2r + 1.

and,

CRm (q2s+1p2s+1) =















































(2s+ 1, 1, s, r − s+ 1, r + s), 0 ≤ s ≤ 1;

(s+ 2, s+ 1, s, r − s+ 1, 2 ≤ s ≤ r;

r − s+ 3),

(2r − s+ 2, 2r − s+ 3, r + 1, s = r + 1;

s− r − 1, 2),

(2r − s+ 2, 2r − s+ 3, 2r r + 2 ≤ s ≤ 2r + 1.

−s+ 3,

s− r − 2, s− r − 1),

Representation of internal edges:

CRm (p2sp2s+2) =































(s+ 1, 1, 3, r + s, r − s+ 1), 0 ≤ s ≤ 1;

(s+ 1, s, s+ 2, r − s+ 3, r − s+ 1), 2 ≤ s ≤ r − 1;

(r + 1, s, 2r − s+ 1, 3, 1), r ≤ s ≤ r + 1;

(2r − s+ 1, 2r − s+ 3, 2r − s+ 1, r + 2 ≤ s ≤ 2r;

s− r + 1, s− r − 2),

(2, 2, 0, s− r, s− r − 2), s = 2r + 1.

and,

CRm (p2s+1p2s+3) =























(s+ 2, 2, s, r − s, r + s), 0 ≤ s ≤ 1;

(s+ 2, s+ 1, s, r − s, r − s+ 4), 2 ≤ s ≤ r − 1;

(2r − s+ 1, r + 1, s, 0, 3), r ≤ s ≤ r + 1;

(2r − s+ 1, 2r − s+ 2, 2r − s+ 3, r + 2 ≤ s ≤ 2r.

s− r − 1, s− r + 1),

Now, from lemma3, the resolving set Rm must contain vertices
from both the external and internal cycles of graph.

Lemma 7. Suppose n ≡ 1, 3(mod4),then βm ≥ 5.

Proof: Suppose that βm = 4. If so, the following contradictions
are assumed.

Case 1: When the external cycle contain three fixed vertices,
{q0, q1, q2}, and other vertex lie in the internal cycle pℓ.
(i) If ℓ = 0, 2, 4, . . . , 2r, then rm{q0|q0, q1, q2, pℓ} =

rm{q0qn−1|q0, q1, q2, pℓ} = (0, 1, 2, ℓ + 1).
(ii) If ℓ = 1, 3, 5, . . . , 4r − 1, then rm{q0|q0, q1, q2, pℓ} =

rm{q0qn−1|q0, q1, q2, pℓ}.

Case 2: When {p0, p1, p2} lie in the internal cycle and the other
vertex lie in the external cycle qℓ.
(i) If ℓ = 0, 2, 4, . . . , 2r, then rm{q0|p0, p1, p2, qℓ} =

rm{q0qn−1|p0, p1, p2, qℓ}.
(ii) If ℓ = 1, 3, 5, . . . , 2r + 3, then rm{q0|p0, p1, p2, qℓ} =

rm{q0qn−1|p0, p1, p2, qℓ}.

We already proved that for n ≡ 1, 3(mod4), and the mixed
metric dimension is βm ≤ 5. From Remark2, we consider the
following cases where the external and internal cycles comprise
two vertices each.

Case 3: When two external vertices are fixed {q0, q1}, and the
internal vertices are {p0, pℓ}.
(i) If ℓ = 0, 2, 4, . . . , 2r, then rm{q0|q0, q1, p0, pℓ} =

rm{q0qn−1|q0, q1, p0, pℓ}.
(ii) If ℓ = 1, 3, 5, . . . , 4r − 1, then rm{q0|q0, q1, p0, pℓ} =

rm{q0qn−1|q0, q1, p0, pℓ}.

Because of the symmetry, other possible cases can also be derived.
From all the above cases, therefore, it is proven that, for n ≡

1, 3(mod4), the mixed metric dimension is βm ≥ 5. We can
therefore say βm = 5 when n ≡ 1, 3(mod4).

Theorem 6. For n ≥ 7, we have a mixed metric dimension

βm(P(n, 2)) =

{

4, n ≡ 0, 2(mod4);
5, n ≡ 1, 3(mod4).
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TABLE 2 | Mixed Metric generator βm for P(n, 2).

n Basis βm

5 {q0, q3, p1, p2, p4} 5

6 {q0, q3, p1, p2, p4} 5

7 {q0, q3, p1, p2, p4} 5

8 {q0, q1, p4, p5} 4

9 {q0, q3, p5, p6} 4

10 {q0, q1, p5, p6} 4

11 {q0, q2, p6, p7} 4

12 {q0, q1, p6, p7} 4

13 {q0, q2, p7, p8} 4

14 {q0, q2, p7, p8} 4

15 {q0, q2, p10, p11} 4

Proof: Case 1:When n ≡ 0, 2(mod4).
From lemma 4,5, we have βmP(n, 2) = 4.

Case 1:When n ≡ 1, 3(mod4).
From lemma 6,7, we have βmP(n, 2) = 5.

For the remainder of the cases, when n ≤ 15, the mixed
metric dimension βm(P(n, 2)) is calculated through the total
enumeration method, shown in Table 2, along with the mixed
metric basis.

3. CONCLUSION AND FURTHER
RESEARCH

The recently introduced mixed metric dimension is calculated
for P(n, 2). It has been shown that P(n, 2) has mixed metric
dimension equal to 4 for n ≡ 0, 2(mod4), and, for n ≡

1, 3(mod4), themixedmetric dimension is 5. This shows that each
graph of the family of generalized Petersen P(n, 2) has constant
mixed metric dimension.

Theorem 7. [29] For the graph of P(n, 3),

β(P(n, 3)) =

{

4, when n ≡ 0(mod6);
3, when n ≡ 1, (mod6).

and,

β(P(n, 3)) ≤

{

5, when n ≡ 2(mod6);
4, when n ≡ 3, 4, 5(mod6).

Theorem 8. [30] For n ≥ 17, we have,

β(P(n, 4)) ≤

{

3, when n ≡ 0(mod4);
4, when n ≡ 1, 2, 3(mod4).

Theorem 9. [31] The metric dimension of graph of P(2n, n) is

β(P(2n, n)) =

{

3, when n is even;
4, otherwise.

The standard metric dimension is examined for these as well
as other known classes of generalized Petersen graphs; the
mixed metric dimension for these as well as other graphs would
therefore be intriguing to investigate. If the other variants of
dimension are identified, a comparative study can be carried out;
this could evaluate the relationship between β(Ŵ), βe(Ŵ), and
βm(Ŵ) in the different families of graphs.
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In the present investigation, a novel neuro-swarming intelligence-based numerical

computing solver is developed for solving second order non-linear singular periodic

(NSP) boundary value problems (BVPs), i.e., NSP-BVPs, using the modeling strength

of artificial neural networks (ANN) optimized with global search efficacy of particle swarm

optimization (PSO) supported with the methodology of rapid local search by interior-point

scheme (IPS), i.e., ANN-PSO-IPS. In order to check the proficiency, robustness, and

stability of the designed ANN-PSO-IPS, two numerical problems of the NSP-BVPs have

been presented for different numbers of neurons. The outcomes of the proposed ANN-

PSO-IPS are compared with the available exact solutions to establish the worth of the

solver in terms of accuracy and convergence, which is further endorsed through results

of statistical performance metrics based on multiple implementations.

Keywords: singular periodic systems, particle swarm optimization, hybrid approach, interior-point scheme,

artificial neural networks, statistical analysis

INTRODUCTION

The singular differential equations have immense applications in a variety of areas of
mathematics and physics, such as dynamics, nuclear physics, chemical reactions and atomic
designs etc. The research investigations of non-linear singular periodic boundary value
problems (NSP-BVPs) are mainly based on differential equation models. Due to non-linearity,
singular points and the periodic nature of the mathematical models, only a few existing
analytical and numerical approaches are available in literature to present the solutions of
the NSP-BVPs [1–5]. A few problems are provided as Agarwal [6, 7] implemented a well-
known numerical shooting approach to solve NSP-BVPs. Geng and Cui [8] presented the
individuality and existence for solving the NSP-BVPs. Some other numerical techniques
are employed to analyze the significance of the proposed problem NSP-BVPs [9–11].
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Assadi et al. [12] exploited a fixed point iterative scheme, Xin
et al. [13] a non-trivial solution of NSP-BVPs, El-Syed andGaagar
[14] provided the existence of a solution for non-linear singular
differential equations, Wang et al. [15] and Wang and Ru [16] a
positive solution of periodic equations. The general form of the
second order non-linear NSP-BVPs is written as [8]:























d29(x)

dx2
+

p(x)

xβ1 (1− x)δ1

d9(x)

dx
+

q(x)

xβ2 (1− x)δ2
9(x)

+ N(9) = h(x), 0 < x < 1,

9(0) = 9(1),
d9(0)

dx
=

d9(1)

dx
,

(1)

where p(x) and q(x) are continuous, N(9) is a function of
9 . Moreover, β1, δ1, β2, and δ2 are the positive constant
values. All of the above cited analytical/numerical schemes have
their precise advantages, disadvantages, merits and demerits,
while a stochastic numerical solver based on the intelligent
computing approach by manipulating the strength of artificial
neural networks (ANNs), particle swarm optimization (PSO),
and interior-point scheme, i.e., ANN-PSO-IPS, has not been
implemented to solve second order NSP-BVPs.

Researchers have widely studied the meta-heuristic based
computing numerical approaches along with the neural network’s
strength for solving the linear/non-linear mathematical models
[17–24]. Some recent applications of heuristic computing are
corneal models for eye surgery [25], the non-linear Riccati
system [26], the Bagley-Torvik system [27], non-linear systems
of Bratu type [17], prey-predator non-linear models [28], non-
linear reactive transport models [29], non-linear optics models
[30], non-linear singular functional differential models [31],
singular non-linear systems arising in atomic physics [32],
non-linear doubly singular systems [33], nanofluidic systems
[34], micropolar fluid flow [35], the heartbeat model [36],
the singular Lane-Emden equation based model [37], the heat
conduction model of the human head [38], non-linear electric
circuit models [39], finance [40], and mathematical models in
Bioinformatics [41, 42]. These influences proved the value, worth
and consequence of the stochastic solvers based on robustness,
accuracy and convergence.

Keeping in view the value and worth of these applications,
the authors worked to exploit the strength and significance of
stochastic solvers for a reliable, efficient and stable approach to
solve the NSP-BVPs. The present analysis for NSP-BVPs given
in Equation (1) is performed via stochastic numerical solver
along with utilization of the strength of artificial neural networks
(ANNs) based on certain numbers of neurons, particle swarm
optimization (PSO) and interior-point scheme, i.e., ANN-PSO-
IPS. Some innovative influences of the presented solver are briefly
summarized as:

• Novel neuro-swarm intelligent/soft computing heuristics
ANN-PSO-IPS using different number of neurons are
accessible for the numerical behavior of the second order NSP-
BVPs.

• The overlapping outcomes of the designed ANN-PSO-IPS
with the referenced exact solutions for two different variants
of the second order non-linear NSP-BVPs establish the
convergence, correctness and reliability.

• Authorization of accurate performance is validated through
statistical observations on multiple runs of ANN-PSO-IPS in
terms of Theil’s Inequality Coefficient (TIC), Variance Account
For (VAF), and semi-interquartile range (S-IR) and Nash
Sutcliffe Efficiency (NSE) metrics.

• Besides practically accurate continuous outcomes on
input training interval, ease in the concept, the smooth
implementable procedure, robustness, extendibility, and
stability are other worthy declarations for the proposed
neuro-swarm intelligent computing heuristics.

The remaining parts of the paper are planned as: section
Design Methodology defines the explanation of the proposed
methodology for ANN-PSO-IPS, mathematical forms of the
statistic based operators are provided in section Statistical
Measures, the detailed results and discussions are given in section
Results andDiscussion, while the conclusions and future research
plans are provided in section Conclusions.

DESIGN METHODOLOGY

The design approach of ANN-PSO-IPS is divided into two
categories for a numerical solution of the non-linear second
order NSP-BVPs. In category 1, the error-based fitness function is
introduced, while in the second category, the combination of an
optimization scheme PSO with IPS, i.e., PSO-IPS, is provided in
the sense of introductory material, applications, and pseudocode.

ANN Modeling
Mathematical models for non-linear second order NSP-BVPs are
assembled with the feed-forward ANNs strength, 9̂(x) shows the
continuous mapping results, and its derivatives using the log-

sigmoid U(x) =
(

1+ exp(−x)
)−1

activation functions given as:

9̂(x) =

k
∑

i=1

aiU(wix+ bi) =

k
∑

i=1

ai
(

1+ e−(wix+bi)

) ,

d9̂

dx
=

k
∑

i=1

ai
d

dx
U(wix+ bi) =

k
∑

i=1

aiwie
−(wit+bi)

(

1+ e−(wit+bi)
)2
,

d29̂

dx2
=

k
∑

i=1

ai
d2

dx2
U(wix+ bi) (2)

=

k
∑

i=1

aiw
2
i

(

2e−2(wix+bi)

(

1+ e−(wix+bi)
)3

−
e−(wix+bi)

(

1+ e−(wix+bi)
)2

)

,

where the weights are a = [a1, a2, a3, ..., am], w =

[w1,w2,w3, ...,wm] and b = [b1, b2, b3, ..., bm]. In order to solve
the non-linear second order NSP-BVPs given in the system (1),
an error-based fitness formulation using the mean square error
sense is written as:

E = E1 + E2, (3)
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where E1 and E2 are the error functions related to the differential
system and the boundary conditions, respectively, written as:

E1 =
1

N

N
∑

m=1

(

d29̂m

dx2m
+

pm

x
β1(1−xm)

δ1

m

d9̂m

dxm
+

qm

x
β2(1−xm)

δ2

m

9̂m

+ N(9̂m)− hm

)

, 0 < xm < 1, (4)

E2 =
1

2

(

9̂0 − 9̂N

)2
+

1

2

(

d9̂0

dxm
−

d9̂N

dxm

)2

, (5)

where Nh = 1, pm = p(xm), qm = q(xm), hm = h(xm), 9̂m =

9̂(xm) and xm = mh., while 9̂ is the approximate solution of
9 of system represented in (1), N is total number of input grid
points and h is the step size.

Optimization Process: PSO-IPS
The parameter optimization for second order non-linear NSP-
BVPs is approved by the hybrid computing framework based on
PSO and IPS.

The PSO approach [43] is applied as an effective alternative
to the efficient global search mechanism of genetic algorithms
[44] that is used as an optimization apparatus for the
second order non-linear NSP-BVPs. Kennedy and Eberhart
proposed PSO, which is a famous algorithm for the global
search optimization strength, at the end of the 19th century.
PSO is considered as an easy implementation process with
low memory requirements [45]. This optimization algorithm
exploits mathematical modeling inspired bythe swarm pattern
of birds flocking as well as fish schooling. Recently, this global
optimization procedure is used in different applications, like
the fuel ignition model [46], non-linear physical models [47],
parameter approximation systems of control auto regressive
moving average models [48], balancing stochastic U-lines
problems [49], operation scheduling of microgrids [50], and
features classification [51].

In the search space theory, a single candidate solution is
called a particle using the optimization process. For the PSO
optimization approach, the prime swarms spread into the larger
and for the adjustment of the parameters of PSO, the scheme
delivers iteratively optimal outcomes Pδ−1

LB and Pδ−1
GB that indicate

the swarm’s position and velocity. The mathematical form is
given as:

Xδ
i = Xδ−1

i + Vδ−1
i , (6)

Vδ
i = ωVδ−1

i + δ1(P
δ−1
LB − Xδ−1

i )r1 + δ2(P
δ−1
GB − Xδ−1

i )r2,(7)

where the position and velocity areXi andVi, respectively, r1 and
r2 are the pseudo random vectors between 0 and 1, while δ1 and
δ2 are the acceleration constant values. The inertia weight vector
is ω ∈ [0, 1]. The scheme performance stops when the predefined
flights are obtained.

The dynamic of the optimization PSO rapidly converges by
the hybridization process with the suitable local search scheme
by taking PSO global best values as an initial weight. Therefore,
an efficient local search approach based on interior-point scheme
(IPS) is used for quick fine-tuning of the outcomes achieved by

TABLE 1 | Pseudo code of the optimization tool PSO-IPS to find the weights of

ANNs.

Start of PSO

Step-1: Initialization: Randomly generate the

initial swarm and adjust the parameters of [PSO] and

[optimoptions] routine.

Step-2: Fitness Calculation: Scrutinize the [fitness

value] for every particle in Equation (3).

Step-3: Ranking: Rank each particle of the minimum

criteria of the [fitness function].

Step-4: Stopping Criteria: Stop, if one of the below

condition attained.

• Selected flights/cycles

• Level of Fitness

When achieved the above standards, then move to Step-5

Step-5: Renewal: For the position and velocity, use

systems (6) and (7).

Step-6: Improvement: Repeat the 2-6 steps, until the

whole flights are achieved.

Step-7: Storage: Store the achieved best fitness values

and designate as the best global particle.

End of PSO

Start the PSO-IPS process

Inputs : Best global values of the particle

Output : WPSO−IPS are the best vectors of PSO-IPS

Initialize : Use [best global values] as a [start

point]

Termination : The process terminates, when [Fitness

= E= 10−20], [TolFun = TolCon = 10−21], [Generation =

700], [TolX = 10−20] {MaxFunEvals = 270000}

While: {Stop}

Fitness Evaluation : For the fitness E by using the

Equation (3).

Adjustments: Invoke the routine [fmincon] for the IPS

to modify the weight vector values.

Store to fitness step by using the simplified form of the

weight vector

Store : Save WPSO−IPS values, which are final adaptive

weight values, function count, time, E, and generations

for the present run.

End of the PSO-IPS

the designed optimization approach. Some recent submissions
of the IPS are mixed complementarity monotone systems [52],
active noise control systems [53], simulation of aircraft parts
riveting [54], the economic load dispatch model [55], and non-
linear system identification [56].

The pseudocode based on the combination of PSO-IPS trains
the ANN as well as the crucial setting of the parameters for both
PSO and IPS are provided in Table 1. The optimization method
become premature using a minor change in the parameter
setting, thus, it requires several experiences, replications and
information on essential optimization impressions of appropriate
settings for the hybrid of PSO-IPS.

STATISTICAL MEASURES

The present study aims to present the statistical performance for
solving both variants of second order non-linear NSP-BVPs. In
this respect, three performance operators are implemented based
on Theil’s inequality coefficient (TIC), Nash Sutcliffe Efficiency
(NSE), and Variance Account For (VAF). The mathematical
notations of these operators are given as:
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TIC=

√

1

n

n
∑

i=1

(

9i − 9̂i

)2

(√

1

n

n
∑

i=1
92

i +

√

1

n

n
∑

i=1
9̂2

i

) (8)



























NSE =1−

n
∑

i=1

(

9i − 9̂i

)2

n
∑

i=1

(

9̂i − 9̄i

)2
, 9̄i =

1

n

n
∑

i=1
9i

ENSE =1−NSE,

(9)















VAF =



1−
var

(

9i(x)− 9̂i(x)
)

var
(

9i(x)
)



 ∗ 100,

EVAF = |100− VAF| .

(10)

{

SIR = 0.5 (Q3 − Q1) ,

Q3 = 3rd quartile, Q1 = 1st quartile.
(11)

RESULTS AND DISCUSSION

In this section, the detailed results based on two variants of
the second order NSP-BVPs are presented using the ANN-PSO-
IPS and comparison of the proposed outcomes with the exact
solutions will also be discussed.
Example 1: Consider the second order SPBVP is written as:



























d29(x)

dx2
+

2

x4(1− x)1.5
d9(x)

dx

+
1

x3(1− x)1.5
9(x) = h(x), 0 < x < 1,

9(0) = 9(1),
d9(0)

dx
=

d9(1)

dx
.

(12)

The true solution of the Equation (12) is e10(x−x2)
2

and the fitness
function is written as:

E =
1

N

m
∑

i=1

(

d29̂m

dx2m
+

2

x4m(1− xm)
1.5

d9̂m

dxm
+

1

x3m(1− xm)
1.5

9̂m − hm

)2

+
1

2





(

9̂0 − 9̂N

)2
+

(

d9̂0

dxm
−

d9̂N

dxm

)2


 , (13)

Example 2: Consider the non-linear second order SPBVP is
written as:



















d29(x)

dx2
+

2

x2(1− x)

d9(x)

dx
+

1

x(1− x)
9(x)

+92(x) = h(x), 0 < x < 1,

9(0) = 9(1),
d9(0)

dx
=

d9(1)

dx
.

(14)

The exact solution of the above equation is e10(x−x2)
2

and the
fitness function is written as:

E =
1

N

m
∑

i=1

(

d29̂m

dx2m
+

2

x2m(1− xm)

d9̂m

dxm

+
1

xm(1− xm)
9̂m + 9̂2

m − hm

)2

+
1

2





(

9̂0 − 9̂N

)2
+

(

d9̂0

dxm
−

d9̂N

dxm

)2


 . (15)

In order to perform the solutions of the second order NSP-BVPs,
the optimization is accomplished using the hybrid of global and
local search capabilities, i.e., PSO-IPS. The process is repeated for
sixty trials to generate a large dataset parameter using the ANNs.
The best weight sets are provided to indicate the approximate
numerical outcomes of the model (1) using 5 and 10 numbers
of neurons. The mathematical formulations of the proposed
numerical outcomes for 5 neurons are shown as:

9̂1(x) =
5.8775

1+ e−(9.3350x−12.870)
+

7.3743

1+ e−(5.2745x−2.3623)

+
0.1197

1+ e−( −9.8796x+4.4603)
+

7.1505

1+ e−( −5.5221x+3.2724)

−
6.8433

1+ e−( 8.5033x+3.4988)
, (16)

9̂2(x) =
−7.2686

1+ e−(5.6952x−3.2662)
+

7.4887

1+ e−(6.7652x−9.3959)

+
11.9610

1+ e−( −5.7680x+3.3622)
+

9.0833

1+ e−( 4.5840x−2.2274)

−
4.0470

1+ e−( 3.2902x−4.1080)
. (17)

The mathematical formulations of the proposed numerical
outcomes for 10 number of neurons are written as:

9̂1(x) =
−0.3444

1+ e−(0.1021x−1.9508)
+

1.6234

1+ e−(−0.2443x+2.2795)
+ ...

+
7.3336

1+ e−( 9.9170x−13.6069)
, (18)

9̂2(x) =
−3.4763

1+ e−(5.7313x−3.7465)
+

1.0055

1+ e−(−0.0494x−0.1392)
+ ...

+
0.8568

1+ e−( −0.7378x−2.2455)
. (19)

The optimization of the relations (13) and (15) is carried out with
PSO-IPS for sixty trials and one set of trained weight of ANN
based on 5 and 10 neurons is plotted in the Figures 1A,B, 2A,B.
The comparison of the best, mean and exact solutions are drawn
in the Figures 1C,D, 2C,D for 5 and 10 numbers of neurons.
The best and mean results obtained by the designed approach
ANN-PSO-IPS are overlapped to the exact results for both of
the examples. This consistent overlapping of the results indicates
the exactness and correctness of the designed scheme. The plots
of absolute error (AE) for the 5 and 10 number of neurons are
drawn in Figures 1E,F, 2E,F. These AE values have been obtained
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FIGURE 1 | Best weight, results of the designed methodology, values of the AE, and performance measures of Examples 1 and 2 for 5 numbers of neurons. (A) ANN
best weights for Example 1. (B) ANN best weights for Example 2. (C) Result comparison for Example 1. (D) Result comparison for Example 2. (E) AE values for

Example 1. (F) AE values of for Example 2. (G) Performance measures for Example 1. (H) Performance measures for Example 2.
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FIGURE 2 | Best weight, results of the designed methodology, values of the AE, and performance measures of Examples 1 and 2 for 10 numbers of neurons. (A)
ANN best weights for Example 1. (B) ANN best weights for Example 2. (C) Result comparison for Example 1. (D) Result comparison for Example 2. (E) AE values of

10 neurons for Example 1. (F) AE values of 10 neurons for Example 2. (G) Performance measures for Example 1. (H) Performance measures for Example 2.
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FIGURE 3 | Statistical analysis for Fitness, EVAF, ENSE, and TIC values along with the histograms for 5 numbers of neurons. (A) Analysis through Fitness values. (B)
Analysis through EVAF values. (C) Fitness histogram for Example 1. (D) Fitness histogram for Example 2. (E) EVAF histogram for Example 1. (F) EVAF histogram for

Example 2. (G) Analysis through ENSE values. (H) Analysis through TIC values. (I) ENSE histogram for Example 1. (J) ENSE histogram for Example 2. (K) TIC
histogram for Example 1. (L) TIC histogram for Example 2.
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FIGURE 4 | Statistical analysis for Fitness, EVAF, ENSE, and TIC values along with the histograms for 10 numbers of neurons. (A) Analysis through Fitness values. (B)
Analysis through EVAF values. (C) Fitness histogram for Example 1. (D) Fitness histogram for Example 2. (E) EVAF histogram for Example 1. (F) EVAF histogram for

Example 2. (G) Analysis through ENSE values. (H) Analysis through TIC values. (I) ENSE histogram for Example 1. (J) ENSE histogram for Example 2. (K) TIC
histogram for Example 1. (L) TIC histogram for Example 2.
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TABLE 2 | Statistical measures of second order NSP-BVPs for 5 numbers of neurons.

x Example 1 Example 2

Min Median S-IR Min Median S-IR

0 4.3800E-10 2.4322E-05 5.8941E-05 4.1548E-09 2.7870E-05 4.0175E-05

0.1 1.0811E-04 7.7025E-04 8.6001E-04 1.2196E-04 1.0068E-03 1.0410E-03

0.2 3.6511E-05 5.6142E-04 6.2835E-04 1.1680E-04 7.2896E-04 6.7197E-04

0.3 8.7597E-05 6.4440E-04 5.9016E-04 8.0975E-05 5.2411E-04 3.5493E-04

0.4 2.9869E-05 6.4334E-04 7.4767E-04 7.8613E-05 5.7963E-04 6.0679E-04

0.5 4.8751E-05 5.6677E-04 6.4867E-04 8.1846E-05 4.9090E-04 4.7209E-04

0.6 6.9083E-05 6.0762E-04 7.6064E-04 3.3751E-05 2.7292E-04 3.2479E-04

0.7 1.9878E-05 5.8409E-04 5.8424E-04 5.4564E-05 2.6714E-04 2.3180E-04

0.8 3.2494E-05 5.0037E-04 6.1557E-04 1.4562E-08 8.5972E-05 1.0953E-04

0.9 1.2129E-05 6.6068E-04 8.2711E-04 1.9492E-05 1.8377E-04 2.5713E-04

1 6.2420E-06 3.2533E-04 2.7669E-04 3.7593E-05 1.6656E-04 2.0026E-04

TABLE 3 | Statistical measures of second order SPBVP for 10 numbers of neurons.

x Example 1 Example 2

Min Median S-IR Min Median S-IR

0 1.3750E-11 1.1115E-06 1.0015E-05 1.3497E-10 8.5111E-06 1.7554E-05

0.1 6.2531E-06 3.4802E-04 2.0725E-04 1.0887E-06 5.0029E-04 2.8479E-04

0.2 3.4460E-05 2.6909E-04 1.2230E-04 4.0212E-05 3.6106E-04 1.5219E-04

0.3 4.0693E-06 2.9278E-04 1.5321E-04 1.0086E-05 3.3328E-04 1.6158E-04

0.4 3.8667E-05 2.8024E-04 1.5726E-04 5.8796E-06 2.8468E-04 1.8934E-04

0.5 5.0393E-05 2.8371E-04 1.3840E-04 2.3541E-05 2.1966E-04 8.6765E-05

0.6 1.1706E-06 2.5999E-04 1.3755E-04 5.1929E-06 1.6256E-04 9.2463E-05

0.7 1.6981E-05 2.7881E-04 1.4362E-04 1.4313E-05 1.2823E-04 6.5314E-05

0.8 1.9865E-05 2.4636E-04 1.1779E-04 3.1422E-06 4.8243E-05 2.1416E-05

0.9 1.0978E-06 2.9394E-04 1.4451E-04 1.9040E-05 9.1881E-05 4.3721E-05

1 2.5240E-07 1.2135E-04 1.0572E-04 3.9770E-07 1.0216E-04 5.0242E-05

by using the proposed results obtained by ANN-PSO-IPS and
the exact solutions. It is clear in Figures 1E,F that most of the
best solutions lie around 10−04−10−05 for both examples, while
the mean values lie around 10−02−10−03 and 10−03−10−04 for
examples 1 and 2, respectively. The best AE values for 10 neurons
are plotted in Figures 2E,F lie around 10−04−10−06, while the
mean values lie around 10−03−10−04 for both examples. In order
to find the best and mean values of the performance indices
based on the VAF, ENSE, and TIC values, the Figures 1G,H,
2G,H have been plotted using the 5 and 10 number of neurons
for both examples. The best ENSE, TIC, and EVAF values for 5
neurons lie around 10−06−10−08 for both examples. Whereas,
for both examples using 5 numbers of neurons, the best ENSE
values lie around 10−02−10−04 and the best TIC and EVAF values
lie around 10−04−10−06. Furthermore, for the 10 numbers of
neurons, the best values of ENSE, TIC, and EVAF are close to
10−08 for example 1, while for example 2, these best values lie
around 10−08−10−09. The mean ENSE and EVAF values for
the example 1 and 2 lie around 10−06−10−07, while the mean
TIC values lie around 10−07−10−08 for both examples. It is

noticed that the results of AE and the performance measures
for 10 neurons are found to be better when compared to
5 neurons.

Statistical investigations of the present methodology for 60
independent trials using the 5 and 10 numbers of neurons for the
examples 1 and 2 are provided in Figures 3, 4. The Fitness, EVAF,
ENSE, and TIC values along with the histogram are plotted in
Figures 3A,B,G,H. These investigations show that around 70%
of independent trials of the designed approach ANN-PSO-IPS
achieved higher accuracy for all the statistical performances.

Statistics measures based on Minimum (Min), Median and
S-IR gages for solving the second order SPBVP using the
5 and 10 numbers of neurons are tabulated in Tables 2, 3.
The statistical measures are provided in order to check the
accuracy analysis of the presented scheme ANN-PSO-IPS. In
Table 2, the Min values for example 1 and 2 lie around
10−04−10−10 and 10−04−10−09, respectively, while the Median
and S-IR values lie around 10−04−10−05 for both examples.
In Table 3, the Min values for the examples 1 and 2 lie
around 10−05−10−11 and 10−05−10−10, respectively, while
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the Median and S-IR values lie around 10−04−10−06 for
both examples.

CONCLUSIONS

A novel application of a stochastic numerical solver based
on neuro-swarm intelligent computing is presented to solve
the singular non-linear second order periodic boundary value
problems using different numbers of neurons based on the
neural networks optimized with the global search capability of
particle swarm optimization supported with quick fine tuning of
decision variables bymanipulating the strength of local search via
interior-point scheme. The singular periodic model is efficiently
evaluated by the designed computing solver with the layer
structure based neural networks with 5 and 10 neurons and it
is found that the accuracy of numerical outcomes is enhanced
by large neurons-based networks. The precision of the stochastic
designed approach is verified by obtaining identical outcomes
with the exact solutions having 4–6 decimal places of accuracy
for solving both the singular periodic non-linear models. From
the plots of performance measures using the neuron analysis,
one can also conclude that the calculated accuracy is better
for 10 numbers of neurons. Statistical interpretation of findings
through performance indices of TIC, EVAF, and ENSE based on
60 executions/trials of the solver for obtaining the solution of
singular periodic non-linear model validate the trustworthiness,
accurateness and robustness. Moreover, the values of the mean,

median and semi interquartile range tabulated in Tables 1,
2 provide the precise and accurate values of the presented

scheme ANN-PSO-IPS.
In future, the designed approach is a promising alternate

solver to be exploited/explored to investigate the computational
fluid dynamics problems, especially thin film flow, wire coating
analysis, squeezing flow models, Jeffery Hamel flow, calendaring
problems, stretching flow problems, food processing models, and
related fields [57–62].
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Bifurcation and Numerical
Simulations of Ca2+ Oscillatory
Behavior in Astrocytes
Hongkun Zuo 1 and Min Ye 2*

1Department of Mathematics, Huainan Normal University, Huainan, China, 2 School of Education Science, Guangxi University

for Nationalities, Nanning, China

In this paper, the dynamical analysis of Ca2+ oscillations in astrocytes is theoretically

investigated by the center manifold theorem and the stability theory of equilibrium point.

The global structure of bifurcation and evoked Ca2+ dynamics are presented in a human

astrocyte model from a mathematical perspective. Results show that the difference in

appearance and disappearance of Ca2+ oscillations is partly due to two subcritical Hopf

bifurcation points. In addition, the numerical simulations are performed to further verify

the effectiveness of the proposed method.

Keywords: astrocyte, equilibrium, Hopf bifurcation, center manifold, stability

INTRODUCTION

Ca2+ as an important second messenger in the cytosol is critical for synaptic neurons and glia cells
in the brain [1]. The oscillatory changes in concentration of Ca2+ are called Ca2+ oscillations and
play an active part in the transmission of chemical and electrical signaling process [2]. Astrocytes
comprise approximately 50% of the volume of human brain and exhibit not only neuron-dependent
Ca2+ oscillations but also spontaneous Ca2+ waves [3]. It was demonstrated that the frequencies
and amplitudes of Ca2+ oscillations play key roles in Ca2+ signal transduction in the nervous
system [4]. Recent results from experiment calcium release-activated calcium channel (CRAC) have
shown that it is effective for the control in inhibiting neuronal excitability by enhancing calcium
release from astrocytes [5].

It was generally considered that Ca2+ oscillations in astrocyte take place in response to external
stimuli, inducing the release of neuro-active chemicals [6, 7]. This view began to change as several
lines of evidence indicate that these oscillations can also be formed spontaneously [8]. Nevertheless,
the mechanism and functional role involved in these stochastic spontaneous Ca2+ waves are still
not well-understood. Basically, Ca2+ signal transmission of astrocytes in the brain may vary owing
to certain bifurcation principles, and different chemical information is typically characterized by
frequency, amplitude, and spatial Ca2+ propagation [9]. Dynamical mechanisms that underlie
the Ca2+ waves have been investigated from both theoretical and experimental points of view in
recent years [10–18]. Therefore, the stability and bifurcation analysis are fundamental to investigate
the appearance and disappearance of spontaneous Ca2+ oscillations in astrocytes. In the last
decades, existing mathematical models helped explore the possible dynamical mechanism of these
oscillatory activities in neuronal excitability [19–23].
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STABILITY OF EQUILIBRIUM POINT AND
BIFURCATION ANALYSIS

In the present work, we apply an extension of the one-pool model
proposed by Lavrentovich and Hemkin as a specific example of
the stability of equilibrium point and the bifurcation scenario.
This model consists of three main variables: cytosol Ca2+

concentration (Cacyt), Ca
2+ concentration in the endoplasmic

reticulum (Caer), and IP3 concentration in cell (IP3). The
equations and meanings of each expression in the model are
given as follows:











dCacyt
dt

=vin−koutCacyt+vCICR−vserca+kf
(

Caer−Cacyt
)

,
dCaer
dt

=vserca−vCICR−kf
(

Caer−Cacyt
)

,
dIP3
dt

=vPLC−kdegIP3,

(1)

where

vserca = vM2

(

Ca2cyt

Ca2cyt + k22

)

,

VPLC = vp

(

Ca2cyt

Ca2cyt + k2p

)

,

vCICR = 4vM3





knCaACa
n
cyt

(

Cancyt + knCaA

) (

Cancyt + knCaI

)





×

(

IPm3
IPm3 + kmip3

)

(

Caer − Cacyt
)

.

The details of each parameter can be found in Table 1 and [4].

ANALYSIS OF STABILITY AND
BIFURCATION OF EQUILIBRIA

In the following, vin is chosen as the bifurcation parameter,
corresponding to Ca2+ inflow into the cytosol through the
astrocyte’s membrane.

For convenience, let x = Cacyt, y = Caer, z = IP3, and r = vin,
we first rewrite model (1) as the following form:











































ẋ = r − x+ 0.5y− 15x2

x2+0.01
−

3.466x2.02z2.2(x−y)
(x2.02+0.022)(z2.2+0.0063)

,

ẏ = 0.5x− 0.5y+ 15x2

x2+0.01
+

3.466x2.02z2.2(x−y)
(x2.02+0.022)(z2.2+0.0063)

,

ż = 0.05x2

x2+0.09
− 0.08z.

(2)

The equilibrium of system (2) meets the following equations:















x = r
kout

z =
vpx

2
(

x2+k2p

)

kdeg

y =
vserca−vCICR+kfx

kf

(3)

TABLE 1 | Model parameters for which all results are computed unless otherwise

stated.

vM2 15 µM/s vM3 40.0 s−1 kout 0.5 s−1

kdeg 0.08 s−1 k2 0.1µM m 2.2

kCaA 0.15µM kCaI 0.15µM n 2.02

kip3 0.1µM kp 0.3µM kf 0.5 s−1

Let x0, y0, and z0 be the roots of Equation (2) and
x1 = x – x0, y1 = y – y0, and z1 = z – z0, we have the
following representations:



























































ẋ1 = r − (x1 + x0) + 0.5
(

y1 + y0
)

− 15(x1+x0)
2

(x1+x0)
2+0.01

−

3.466(x1+x0)
2.02(z1+z0)

2.2(x1+x0−y1−y0)
(

(x1+x0)
2.02+0.022

)(

(z1+z0)
2.2+0.0063

) ,

ẏ1 = 0.5 (x1 + x0) − 0.5
(

y1 + y0
)

+ 15(x1+x0)
2

(x1+x0)
2+0.01

+
3.466(x1+x0)

2.02(z1+z0)
2.2(x1+x0−y1−y0)

(

(x1+x0)
2.02+0.022

)(

(z1+z0)
2.2+0.0063

) ,

ż1 =
0.05(x1+x0)

2

(x1+x0)
2+0.09

− 0.08 (z1 + z0) .

(4)

The corresponding equilibrium is (0, 0, 0), and system (4) has
the same properties with the equilibrium of system (2). With
simple calculation, it is easy to calculate the Jacobian matrix of
system (4),

A = (aij)3×3 =





a11 a12 a13
a21 a22 a23
a31 a32 a33



 ,

where

a11 =
30x3

(

x2 + 0.01
)2

−
30

x2 + 0.01
−

3.465966x2.02z2.2

σ

−
7.0012517x1.02z2.2

(

x− y
)

σ
+

14.002503x3.04z2.2
(

x− y
)

σ
(

x2.02 + 0.021622
) − 1,

a12 =
3.465966x2.02z2.2

σ
+ 0.5,

a13 =
7.6251256x2.02z3.4

(

x− y
)

σ
(

z2.2 + 0.00630957
) −

7.625125x2.02z1.2
(

x− y
)

σ
,

a21 = −
30x3

(

x2 + 0.01
)2

+
30

x2 + 0.01
+

3.465966x2.02z2.2

σ

+
7.0012517x1.02z2.2

(

x− y
)

σ
−

14.002503x3.04z2.2
(

x− y
)

σ
(

x2.02 + 0.021622
) + 0.5,
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a22 = −
3.465966x2.02z2.2

σ
− 0.5,

a23 = −
7.6251256x2.02z3.4

(

x− y
)

σ
(

z2.2 + 0.00630957
) +

7.625125x2.02z1.2
(

x− y
)

σ
,

a31 =
0.1x

x2 + 0.09
−

0.1x3

(

x2 + 0.09
)2
,

a32 = 0,

a33 = −0.8,

σ =
(

x2.02 + 0.02166228
)2 (

z2.2 + 0.0063095
)

.

And one can easily obtain the following characteristic equation:

λ3 + Q3λ
2 + Q2λ + Q1 = 0,

where

Q1 = − (a11 + a22 + a33) ,

Q2 = a11a22 + a11a33 + a22a33 − a13a31 − a12a21 − a32a23,

Q3 = a31a13a22 + a12a21a33 + a32a23a11 − a11a22a33

− a12a23a31 − a13a21a32.

After a simple calculation, we have the following equations:

Q1 =
30x

x2 + 0.01
−

30x3
(

x2 + 0.01
)2

+
6.93193x2.02z2.2

σ11

+
7.00125x1.02z2.2

(

x− y
)

σ11
−

14.0025x3.04z2.2
(

x− y
)

(

x2.02 + 0.02166
)3 (

z2.2 + 0.0063
)

,

Q2 = −

(

0.1x3

(

x2 + 0.09
)2

−
0.1x

x2 + 0.09

)(

7.62512x2.02z1.2
(

x− y
)

σ21

−
7.62512x2.02z3.4

(

x− y
)

σ22
(

z2.2 + 0.0063
)2

)

−
24x3

σ23
+ 0.5 (σ22 + 0.5)

+
0.55455x2.02z2.2

σ21
+

0.5601x1.02z2.2
(

x− y
)

σ22

−
1.1202x3.04z2.2

(

x− y
)

σ24
+

2.4x

x2 + 0.01
+ 0.12,

Q3 = 0.004

(

3.465966x2.02z2.2
(

x2.02 + 0.02166
)2 (

z2.2 + 0.0063
)

)

,

where

σ11 =
(

x2.02 + 0.02166
)2 (

z2.2 + 0.0063
)

,

Q21 =
(

z2.2 + 0.0063
)

σ22,

Q22 =
(

x2.02 + 0.02166
)2
,

Q23 =
(

x2 + 0.01
)2
,

Q24 =
(

x2.02 + 0.02166
)3 (

z2.2 + 0.006309
)

,

Owing to the meaning of x, y, z and r, special conditions meet
the needs whether there exists equilibrium of system (4) when
r ∈ [0.02, 0.06].

We consider the Hurwitz matrix using coefficients Qi of the
characteristic polynomial:

H1 = (Q1) , H2 =

(

Q1 1
Q3 Q2

)

, H3 =





Q1 1 0
Q3 Q2 1
0 0 Q3



 .

It is easy to verify that the eigenvalues of the linearized system
are negative or have a negative real part if the determinants of the
three Hurwitz matrices are positive:

det (Hi) > 0, i = 1, 2, 3,

Consider the stability and bifurcations of system (4) for varying
parameter vin in the case of the following Routh–Hurwitz criteria:

Q1 > 0, Q3 > 0, Q1Q2 > Q3.

The corresponding two values can be obtained:

r1 = 0.02383, r2 = 0.05944.

After the computation based on the Routh–Hurwitz criteria,
when we choose r1 = 0.02383,

Q1 = 68.4381 > 0, Q3 = 0.02838 > 0, Q1Q2

− Q3 = 0.775418 > 0.

As r2 = 0.05944,

Q1 = 60.5333804 > 0, Q3 = 0.64149 > 0, Q1Q2

− Q3 = 0.027890411 > 0.

It can be seen that all the two values satisfy the Routh–Hurwitz
criteria. After using the normal form method, one can easily
obtain the following conclusions:

(1) r < 0.02383, there is a stable node of system (4);
(2) r = 0.02383, and system (4) has a non-hyperbolic

equilibrium O1 = (0.04766, 3.96096098, 0.0153858);
(3) 0.02383 < r < 0.05944, system (4) has an

equilibrium (saddle);
(4) r = 0.05944, and there exists a non-hyperbolic equilibrium

O2 = (0.11886, 0.6665221778, 0.0847979);
(5) r > 0.05944, there is a stable node.

Let r = r0, x1 = x – x0, y1 = y – y0, z1 = z – z0, and r1 = r – r0,
the equilibrium of system (4) is (x0, y0, z0). In order to apply the
center manifold theorem with bifurcation parameter vin, a new
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variable r1 is introduced in the original model. On the basis of
dr1/dt = 0, we have the following:































































































ẋ1 = (r1 + r0) −
3.466(x1+x0)

2.02(z1+z0)
2.2(x1+x0−y1−y0)

(

(x1+x0)
2.02+0.02166

)(

(z1+z0)
2.2+0.00631

)

− 15(x1+x0)
2

(x1+x0)
2+0.01

− (x1 + x0) + 0.5
(

y1 + y0
)

,

ẏ1 =
15(x1+x0)

2

(x1+x0)
2+0.01

+
3.466(x1+x0)

2.02(z1+z0)
2.2(x1+x0−y1−y0)

(

(x1+x0)
2.02+0.02166

)(

(z1+z0)
2.2+0.00631

)

+0.5
(

x1 + x0 − y1 − y0
)

,

ż1 =
0.05(x1+x0)

2

(x1+x0)
2+0.09

− 0.08 (z1 + z0) ,

ṙ1 = 0.

(5)

r1 = 0, O(x1, y1, z1, r1) = (0, 0, 0, 0) is the equilibrium of system
(5), which has a same conclusion as the one of system (2) in
stability and bifurcations.

For r0 = 0.02383, the Jacobian matrix of system (4) has the
following form:









−67.6083 0.71022 115.6304 1
67.1083 −0.71022 −115.6304 0
0.05041 0 −0.08 0

0 0 0 0









.

We have the eigenvalues of equilibrium point O1 = (0, 0, 0, 0) of
system (5): ξ 1 =−68.3987, ξ 2 = 0.0204i, ξ 3 =−0.0204i, ξ 4 = 0,
and the eigenvectors have met the following matrix:









−0.7097 −0.0018− 0.0406i
0.7045 0.9989

−0.0018+ 0.0406i 0.1217
0.9989 −0.9877

0.0005 −0.0072− 0.0238i
0 0

−0.0072+ 0.0238i −0.0767
0 0.0608









.

Suppose









x1
y1
z1
r1









= U













u
v
w
s













,

where

U =









−0.7097 −0.0018 0.0406 0.1217
0.7045 0.9989 0 −0.9877
0.0005 −0.0072 0.0238 0.0767

0 0 0 0.0608









.

System (5) has the following form









u̇
v̇
ẇ
ṡ









=









−68.3987 0 0 0
0 0 −0.0204 0
0 0.0204 0 0
0 0 0 0

















u
v
w
s









+









g1
g2
g3
g4









, (6)

and









ẋ1
ẏ1
ż1
ṙ1









= U









u̇
v̇
ẇ
ṡ









⇒









u̇
v̇
ẇ
ṡ









= U−1









ẋ1
ẏ1
ż1
ṙ1









= U−1









f1
f2
f3
0









,

where

f1 = g14 − 15g211/
(

g211 + 0.01
)

− g11 + 0.5g12

− [3.465966222g11
2.02g13

2.2
(

g11 − g12
)

]

/

[

(

g11
2.02 + 0.02166228889

)2 (
g13

2.2 + 0.006309573445
)

]

,

f2 = 15g211/
(

g211 + 0.01
)

+ 0.5
(

g11 − g12
)

+ [3.465966222g11
2.02g13

2.2
(

g11 − g12
)

]

/

[

(

g11
2.02 + 0.02166228889

)2 (
g13

2.2 + 0.006309573445
)

]

,

f3 = 0.05g211/
(

g211 + 0.09
)

− 0.08g13,

g11 = x1 + x0 = −0.7097u− 0.0018v+ 0.0406w+ 0.1217s

+ 0.04766,

g12 = y1 + y0 = 0.7045u+ 0.9989v− 0.9877s+ 3.96096,

g13 = z1 + z0 = 0.0005u− 0.0072v+ 0.0238w+ 0.0767s

+ 0.01538,

g14 = 0.0608s+ 0.02383.

Furthermore,









g1
g2
g3
g4









= U−1









f1
f2
f3
0









−









−68.3987 0 0 0
0 0 −0.0204 0
0 0.0204 0 0
0 0 0 0

















u
v
w
s









,

where

U−1 =









−1.3929 0.0146 2.3761 0.0280
0.9824 0.9908 −1.6758 16.2432
0.3264 0.2994 41.4599 −48.0914

0 0 0 16.4474









.

Through calculation, we have the following equations:

g1 = −1.3928f1 + 0.0146f2 + 2.3761f3 + 68.3987u,

g2 = 0.9823f1 + 0.9907f2 − 1.6757f3 + 0.0204w,

g3 = 0.3264f1 + 0.2994f2 + 41.4599f3 − 0.0204v,

g4 = 0.
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On the basis of the center manifold theory, one can conclude that
there exists a center manifold of system (5), and its form can be
expressed as

Wc
loc (O1) =

{

(u, v,w, s) ∈ R4
∣

∣ u

= h
∗

(v,w, s) , h
∗

(0, 0, 0) = 0,Dh
∗

(0, 0, 0) = 0
}

. (7)

Substituting Equation (7) into Equation (6), the following
equations can be derived as:









˙h
∗
(v,w, s)
v̇
ẇ
ṡ









=









−68.3987 0 0 0
0 0 −0.0204 0
0 0.0204 0 0
0 0 0 0

















h
∗
(v,w, s)
v
w
s









+









g1
g2
g3
g4









.

Let h (v, w, s) = av2 + bw2 + cs2 + dvw + evs + fws + . . . , and
the center manifold of system (5) is

N(h) = Dh ·





v̇
ẇ
ṡ



+ 68.3987h− g1 ≡ 0. (8)

Using the method of high-order partial derivatives, one can
obtain the following equations:

















136.79775 0 0 0.0406996 0 0

0 136.7975 0 −0.04082 0 0

0 0 136.7973 0 −0.000102 −0.00002

−0.040825 0.040699 0 68.39882 0 0

−0.000102 0 0 −0.000011 68.3987 0.020349

0 −0.0000226 0 −0.000051 −0.02031 68.39873

































a

b

c

d

e

f

















= 0.

Based on the center manifold theory, one can compute
a = −0.00094, b = −0.12224, c = −1.15703,
d = 0.03634, e = 0.10863, and f = −0.75265. So
the system that is confined to this center manifold is
as follows:

(

v̇
ẇ

)

=

(

0 −0.0204
0.0204 0

)(

v
w

)

+

(

f 1 (v,w)

f 2 (v,w)

)

, (9)

where

f 1 (v,w) = 0.014915s− 0.004304v+ 0.00382w+ 0.037228sv

− 0.257924sw+ 0.012455vw+ · · · ,

f 2(v,w) = 0.017292v− 0.269399s− 0.086114w+ 0.014479sv

− 0.100315sw+ 0.004844vw+ · · · .

Hence, it is easy to verify that

a =
1

16

[

f 1vvv + f 1vww + f 2vvw + f 2www
]∣

∣

(0,0)

+
1

16× 0.0204
[f 1vw(f

1
vv + f 1ww)

− f 2vw(f
2
vv + f 2ww)− f 1vvf

2
vv + f 1wwf

2
ww)]

∣

∣

(v=0,w=0,s=0)

= 0.1014870557 > 0,

d =
d(Re(ξ (s))

ds

∣

∣

∣

∣

(v=0,w=0,s=0)

= −0.0189 < 0.

From the discussion above, we summarize the
following conclusions.

Conclusion 1: A subcritical Hopf bifurcation occurs when
r passes through r0 = 0.02383 of system (2). r < r0, and the
equilibrium O1 is stable. r > r0, and the equilibrium loses its
stability; meanwhile, a stable periodic solution occurs, and system
(2) begins to oscillate.

r0 = 0.05944, eigenvalues of equilibrium point O2 = (0, 0, 0,
0) of system (3) are ξ 1 =−60.5573, ξ 2 = 0.1029i, ξ 3 =−0.1029i,
and ξ 4 = 0, respectively. System (5) has the following form:









u̇
v̇
ẇ
ṡ









=









−60.5573 0 0 0
0 0 −0.1029 0
0 0.1029 0 0
0 0 0 0

















u
v
w
s









+









g1
g2
g3
g4









, (10)









u̇
v̇
ẇ
ṡ









= U−1









f1
f2
f3
0









,

where

U =









−0.71 0.0393 0.1915 0.1341
0.7042 −0.9695 0 −0.9748
0.0012 0.1328 0.0654 0.1654

0 0 0 0.067









,

f1 = g14 −
15g211

(

g211 + 0.01
) − g11 + 0.5g12

−

[

3.465966222g11
2.02g13

2.2
(

g11 − g12
)]

[

(

g112.02 + 0.02166228889
)2 (

g132.2 + 0.006309573445
)

] ,
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f2 =
15g211

(

g211 + 0.01
) + 0.5

(

g11 − g12
)

+

[

3.465966222g11
2.02g13

2.2
(

g11 − g12
)]

[

(

g112.02 + 0.02166228889
)2 (

g132.2 + 0.006309573445
)

] ,

f3 =
0.05g211

(

g211 + 0.09
) − 0.08g13.

And g1j
(

j = 1, . . . , 4
)

have the following different formulae:

g11 = x1 + x0 = −0.71u+ 0.0393v+ 0.1915w+ 0.1341s

+ 0.1189,

g12 = y1 + y0 = 0.7042u− 0.9695v− 0.9748s+ 0.6664,

g13 = z1 + z0 = 0.0012u+ 0.1328v+ 0.0654w+ 0.1654s

+ 0.0848,

g14 = 0.067s+ 0.05944,









g1
g2
g3
g4









= U−1









f1
f2
f3
0









−









−60.5573 0 0 0
0 0 −0.1029 0
0 0.1029 0 0
0 0 0 0

















u
v
w
s









,

(11)

which reduce to the following equations:

g1 = −1.0337f1 + 0.3727f2 + 3.0268f3 + 60.5573u,

g2 = −0.7508f1 − 0.7607f2 + 2.1985f3 + 0.1029w,

g3 = 1.5436f1 + 1.5379f2 = 10.7708f3 − 0.1029v,

g4 = 0.

The center manifold of system (5) is

N(h) = Dh ·





v̇
ẇ
ṡ



+ 60.5573h− g1 ≡ 0,

where

u = h
∗

(v,w, s), h
∗

(0, 0, 0) = 0,Dh
∗

(0, 0, 0) = 0.

And thus, the following equation can be obtained:

















105.4628 0 0 0.04089 0 0

0 105.462 0 0.04077 0 0

0 0 105.4628 0 0.00001678 −0.0001493

0.040771 −0.0408 0 52.7313 0 0

0.000067 0 0 −0.0000746 652.73142 −0.02044

0 −0.00014 0 0.0000339 0.0203859 52.7313498

































a

b

c

d

e

f

















= 0.

We compute a = 1.073869652, b = 0.3254214051,
c = 1.590904144, d = 0.8641549, e = 2.5838022, and
f = 1.1901543. So the system confined to the center manifold of
system (5) is

(

v̇
ẇ

)

=

(

0 −0.1029
0.1029 0

)(

v
w

)

+

(

f 1 (v,w)

f 2 (v,w)

)

, (12)

where

FIGURE 1 | (A) Bifurcation diagram of the equilibrium of system (2) in the (vin, Cacyt)-plane. (B) Bifurcation diagram of the equilibrium of system (2) in the (vin,

Caer)-plane. Points HB1 and HB2 are the Hopf bifurcation points.
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f 1 (v,w) = 0.079838w− 0.013612v− 0.034559 s−0.671091sv

− 0.309119sw− 0.224447vw+ · · · ,

f 2(v,w) = 1.423469sv− 0.168005v− 0.204689w− 0.145723s

+ 0.655680sw+ 0.476081vw+ · · · .

By computation, Conclusion 2 can be inferred as follows:

a =
1

16

[

f 1vvv + f 1vww + f 2vvw + f 2www
]
∣

∣

(0,0)

+
1

16× 0.1029
[f 1vw(f

1
vv + f 1ww)

−f 2vw(f
2
vv + f 2ww)− f 1vvf

2
vv + f 1wwf

2
ww)]

∣

∣

(v=0,w=0,s=0)

= 0.2483398204 > 0,

d =
d(Re(ξ (s))

ds

∣

∣

∣

∣

(v=0,w=0,s=0)

= −0.00069 < 0.

Conclusion 2: A subcritical Hopf bifurcation occurs when r
passes through r0 = 0.05944 of system (2). r< r0, the equilibrium
O2 is unstable, and system (2) begins to oscillate. r > r0, the
equilibrium O2 is stable, and the global oscillations of system
(2) vanish.

NUMERICAL SIMULATIONS

In order to investigate the bifurcation phenomenon in different
Ca2+ oscillation patterns, we study the generation process
with respect to the parameter vin. The bifurcation diagram
of the equilibrium of system (2) in the (Cacyt, vin)-plane
[(Cacyt, vin)-plane)] is shown in Figures 1A,B. Each point
of the curve (solid line) represents a stable equilibrium,
and the dashed line represents an unstable equilibrium. The
equilibrium undergoes the Hopf bifurcation twice, marked
by points HB1 and HB2 with respect to the bifurcation
parameter v1in = 0.0238 µM/s and v2in = 0.0594 µM/s.
When vin < v1in, there exists stable equilibrium of system
(2). As vin increases, the stable equilibrium loses its
stability at the point HB1 and returns to being stable
at HB2.

In Figure 2, we shall present the time evolutions of cytosol
Ca2+ concentration in this model for different values of
the parameter vin by numerical simulation. The left panels
represent time series of Cacyt comparison of parameter vin,
and the right panels are the corresponding Cacyt-Caer-IP3
phase portrait. For example, there is a single peak in this
type of oscillation for vin = 0.024 µM/s in Figure 2A, and
the corresponding 3D phase-space is shown in Figure 2B.
Around vin = 0.033 µM/s, it is seen that the number of
peak counts and peak magnitude begin to increase, as shown
in Figures 2C,D. Similarly, when vin = 0.052 µM/s, five
peaks were obtained (Figures 2E,F). Moreover, it should be
mentioned in Figures 2G,E, although the results for peak
magnitude look very similar and in agreement with the peak
counts, that the oscillatory vibration is significantly different
(Figures 2G,H).

FIGURE 2 | Spontaneous Ca2+ oscillations in astrocytes emerged at different

parts of the curve in Figure 1 relative to points HB1 and HB2. The left panels

denote the time evolution of Cacyt for different sets of parameter vin, and the

right panels denote the corresponding Cacyt-Caer-IP3 phase portrait. (A) vin =

0.024 µM/s, (B) portrait diagram as vin = 0.024 µM/s, (C) vin = 0.033 µM/s,

(D) portrait diagram as vin = 0.033 µM/s, (E) vin = 0.052 µM/s, (F) portrait

diagram as vin = 0.052 µM/s, (G) vin = 0.0593 µM/s, and (H) portrait diagram

as vin = 0.0593 µM/s.

CONCLUSION

In this paper, we have theoretically investigated the stability of
equilibrium and bifurcation of spontaneous Ca2+ oscillations
with a mathematical model in astrocytes. By choosing the
flow of Ca2+ from the extracellular vesicles through the
membrane and into the cytosol as the bifurcation parameter,
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we conclude that two subcritical Hopf bifurcation points play
an important role in the occurrence of Ca2+ oscillations.
By combining the theoretical analysis results in this paper,
we numerically gave the Hopf bifurcations, which agree with
the theoretical results. Our results may be instructive for
better understanding the role of spontaneous Ca2+ oscillations
in astrocytes. Because synchronization of different oscillatory
patterns may relate to bifurcation, we will give detailed research
in future.
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A topological index (TI) is a quantity expressed as a number that help us to catch

symmetry of network.With the help of quantitative structure property relationship (QSPR),

we can guess physical and chemical properties of several networks. A neural network is a

computer system based on the nerve system. There are numerous uses of these systems

in different fields of studies but their most critical use to date is in Neurochemistry. In this

paper, we will discuss thirteen irregularity indices for probabilistic neural networks (PNN).

Keywords: irregularity indices, probabilistic neural network, graph, topological index, Zagreb index

1. INTRODUCTION

PNN are likewise Parzen window pdf estimator. In last few years these networks are widely used
in different problems. With the help of these networks, we can solve email security problems, also
helpful in signature verification. A PNN network contain different sub networks. The input data is
from the set of measurements. The Gaussian functions produce the second layer with the help of
given set of data points. An average operation is perform by second layer which produce third layer.

Molecular structures can be studied by means of graph. A branch of mathematics thats deals
with the study of molecular graphs is know as chemical graph theory. With the help of different
tools of mathematics, we are able to identify the features that helps us in QSPR. Contaminate, TIs
are arithmetic value link with graph of PNN and has utilization in different fields of study. TIs stay
invariant of two isomorphic graphs and helpful to predict many properties of PNN [1–7]. Other
growing field is Cheminformatics, in which QSAR and QSPR relationship is used to figure out
properties of concerned network. In these investigation, a few Physico-chemical properties and TIs
are helpful to examine the behavior of compound structures [8–17].

The other primeval TI is Randić index, introduced by Randić [18] in 1975. Due to huge
applications of Randić index, the generalized Randić index was given in [12]. This variant develop
intrust for both the mathematicians and chemists [19–24].

After Randić index, the most examined TIs are Zagreb indices [25–27]. The different variants of
Zagreb index was studied in [28]. An other important topological invariant is a symmetric division
index which is an excellent descriptor of the aggregate surface area for polychlorobiphenyls [29].

2. TOPOLOGICAL INDICES

A special number, in graph theoretical term, representing a molecular structure, is known as
topological descriptor. A topological descriptor when correlates with a molecular property, it can
be determine as graph-theoretic index or topological index. The First and second Zagreb indices
are the oldest molecular descriptors invented in 1975 by Gutman [18] and their properties are
extensively investigated. They are defined as:
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FIGURE 1 | PNN(4, 2, 3).

M1(G) =
∑

uv∈E(G)

(du + dv).

M2(G) =
∑

uv∈E(G)

(du × dv).

The first genuine degree based TI was given by Randić in 1975
[18] as:

R(G) =
∑

uv∈E(G)

1
√
du.dv

.

The GRI known as General Randic Index [30] and is defined as:

GRI(G) =
∑

uv∈E(G)

(du.dv)
α .

where α is an arbitrary real number.
The TI is known as Irregularity index [31], if TI of graph is

greater equal to zero and TI of graph is equal to zero if and only
if graph is regular. The Irregularity indices are given below. All
these Irregularity indices are belong to degree based topological
invariants excluding IRM2(G). A simplified way of expressing the
irregularity is a irregularity index.

• VAR(G) =
∑

uǫV
(du −

2m
n )2 = M1(G)

n − ( 2mn )2

• AL(G) =
∑

uv∈E(G)

|du − dv|

• IR1(G) =
∑

u∈V
(du)

3 − 2m
n

∑

u∈V
(du)

2 = F(G)− 2m
n M1(G)

• IR2(G) =

√
∑

uv∈E(G)

dudv

m − 2m
n =

√

M2(G)
m − 2m

n

• IRF(G) =
∑

uv∈E(G)

(du − dv)
2 = F(G)− 2M2(G)

• IRFW(G) = IRF(G)
M2(G)

• IRA(G) =
∑

uv∈E(G)

(d
−1/2
u − d

−1/2
v )2 = n− 2R(G)

• IRB(G) =
∑

uv∈E(G)

(d
1/2
u − d

1/2
v )2 = M1(G)− 2RR(G)

TABLE 1 | E[PNN(n, k,m)].

(du,dv) Frequency

(km, n+ 1) kmn

(n+ 1,m) km

• IRDIF(G) =
∑

uv∈E(G)

| du
dv

− dv
du
| =

∑

i<j
mi,j(

j
i −

i
j )

• IRLF(G) =
∑

uv∈E(G)

|du−dv|√
(dudv)

=
∑

i<j
mi,j(

j−i√
ij
)

• IRLA(G) = 2
∑

uv∈E(G)

|du−dv|
(du+dv)

= 2
∑

i<j
mi,j(

j−i
i+j )

• IRD1(G) =
∑

uv∈E(G)

ln1+ |du − dv| =
∑

i<j
mi,jln(i+ j− 1)

• IRGA(G)
∑

uv∈E(G)

ln( du+dv
2
√
dudv

)
∑

i<j
mi,j(

i+j

2
√

ij
)

3. COMPUTATIONS OF PROBABILISTIC
NEURAL NETWORK

In this section, we will discuss irregularity indices for
probabilistic neural network. The molecular graph of
PNN(n, k,m) is given in Figure 1. The edge partition of
PNN(n, k,m) is given in Table 1. The total vertices in
PNN(n, k,m) are n+k(m+1) and number of edges are km(n+ 1).

Theorem 3.1. Consider G as graph for probabilistic neural
network PNN(n, k,m. Then,

1. VAR(G)

= km(K2m2−4kmn2+k2m+km2−5kmn−km+2kn+mn+2n2+2k+2n)
(km+k+n)2

2. AL(G) = k2m2n− kmn2 − km2 + 2kmn+ km
3. IR1(G) = 1

km+k+n
(km(k3m3+k3m2+k2m2n+2k2mn+km3+

2k2m + km2 + 2kn2 + m2n + 2mn2 + 2n3 + 4kn + 2mn +

4n2 + 2k+ 2n))
4. IR2(G) = 1

km+k+n
(
√
(k+ 1)mkm − 2kmn +

√
(k+ 1)mk +

√
(k+ 1)mn− 2km)

Proof:

1. VAR(G) =
∑

u∈V

(

du −
2m

n

)2

=
M1(G)

n
−

(

2m

n

)2

=
k2m2 + km2 + 2kmn+ 2km

km+ k+ n
− (

kmn+ km

km+ k+ n
)2

=
1

(km+ k+ n)2

(

km(K2m2 − 4kmn2 + k2m+ km2

−5kmn− km+ 2kn+mn+ 2n2 + 2k+ 2n))

2. AL(G) =
∑

uv∈E(G)

|du − dv|

= |km− n− 1|(kmn)+ |n+ 1−m|(km)

= k2m2n− kmn2 − km2 + 2kmn+ km.
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3. IR1(G) =
∑

u∈V

d3u −
2m

n

∑

u∈V

d2u = F(G)−

(

2m

n

)

M1(G)

= (k3m3 + 2k2m2n+ 2k2m2 + km3 + 2km2n

+2kmn2 + 2km2 + 4kmn+ 2km)

−
2(kmn+ km)

(km+ k+ n)
(k2m2 + km2 + 2kmn+ 2km)

=
1

km+ k+ n
(km(k3m3 + k3m2

+k2m2n+ 2k2mn+ km3 + 2k2m+ km2 + 2kn2

+m2n+ 2mn2 + 2n3 + 4kn+ 2mn

+4n2 + 2k+ 2n)).

4. IR2(G) =

√

∑

uv∈E(G) dudv

m
−

2m

n
=

√

M2(G)

m
−

2m

n

=

√

(kmn+ km)km+ km(mn+m)

kmn+ km

−

(

2(kmn+ km)

km+ k+ n

)

=
1

km+ k+ n
(
√

(k+ 1)mkm

−2kmn+
√

(k+ 1)mk

+
√

(k+ 1)mn− 2km).

Theorem 3.2. Consider G as graph for probabilistic neural
network PNN(n, k,m. Then,

1. IRF(G) = k3m3 + km3 + 2kmn2 + 4kmn+ 2km

2. IRFW(G) = k2m2+m2+2n2+4n+2
m(kn+k+n+1)

3. IRA(G) = 1√
kmn+km(mn+m)

km(n
√
mn+m+

√
kmn+ km)

4. IRB(G) = (−2k2m2n2 − 2k2m2n + k2m2 − 2km2n − km2 +

2kmn+ 2km)

Proof:

1. IRF(G) =
∑

uv∈E(G)

(du − dv)
2

= (km− n− 1)2(kmn)+ (n+ 1−m)2(km)

= k3m3 + km3 + 2kmn2 + 4kmn+ 2km.

2. IRFW(G) =
IRF(G)

M2(G)

=
k2m2 +m2 + 2n2 + 4n+ 2

m(kn+ k+ n+ 1)
.

3. IRA(G) =
∑

uv∈E(G)

(d−1/2
u − d−1/2

v )2

= n− 2R(G)

=
1

√
kmn+ km(mn+m)

km(n
√
mn+m+

√

kmn+ km).

4. IRB(G) =
∑

uv∈E(G)

(d1/2u − d1/2v )2

= M1(G)− 2RR(G)

= (km+ n+ 1)km+ km(m+ n+ 1)

−2k2m2n2 − 2k2m2n− 2km2n− 2km2

= (−2k2m2n2 − 2k2m2n

+k2m2 − 2km2n− km2 + 2kmn+ 2km).

Theorem 3.3. Consider G as graph for probabilistic neural
network PNN(n, k,m. Then,

1. IRDIF(G) = k2m2n−km2+kn2−n3+2kn−2n2+k−n
n+1

2. IRLF(G) = kmn(km−n−1)√
kmn+km

+ km(n−m+1)√
mn+m

3. IRLA(G) =
km(km2n+kmn2−km2+2kmn−mn2−n3+km−2mn−n2−m+n+1)

(km+n+1)(m+n+1)

4. IRD1(G) = k2m2n− kmn2 − km2 + km
5. IRGA(G) = 1√

(kmn+km)(mn+m)
(km(0.71ln)km + n +

1)n
√
mn+m+ 0.70ln(m+ n+ 1)

√
kmn+ km

Proof:

1. IRDIF(G) =
∑

uv∈E(G)

|
du

dv
−

dv

du
|

=

(

km

n+ 1
−

n+ 1

km

)

kmn

+

(

n+ 1

m
−

n+ 1

m
−

m

n+ 1

)

km

=
k2m2n− km2 + kn2 − n3 + 2kn− 2n2 + k− n

n+ 1
.

2. IRLF(G) =
∑

uv∈E(G)

|du − dv|
√
du.dv

=

(

|km− n− 1|
√
kmn

)

(kmn)+

(

|n+ 1−m|
√
mn

)

(km)

=
kmn(km− n− 1)

√
kmn+ km

+
km(n−m+ 1)

√
mn+m

.

3 IRLA(G) =
∑

uv∈E(G)

2
|du − dv|

(du + dv)

= 2

(

|km− n− 1|

km+ n+ 1

)

(kmn)

+2

(

|n+ 1−m|

n+ 1+m

)

(2km)
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=
1

(km+ n+ 1)(m+ n+ 1)
(km(km2n+ kmn2

−km2 + 2kmn−mn2 − n3

+km− 2mn− n2 −m+ n+ 1).

4. IRD1(G) =
∑

uv∈E(G)

ln{1+ |du − dv|}

= ln{1+ |km− n− 1|}(kmn)

+ln{1+ |n+ 1−m|}(km)

= k2m2n− kmn2 − km2 + km.

5. IRGA(G) =
∑

uv∈E(G)

ln

(

du + dv

2
√
dudv

)

= ln

(

km+ n+ 1

2

√

km(n+ 1)

)

(kmn)

+ln

(

m+ n+ 1

2
√
m(n+ 1)

)

(km)

=
1

√
(kmn+ km)(mn+m)

(km(0.71ln)km+ n+ 1)

n
√
mn+m+ 0.70ln(m+ n+ 1)

√

kmn+ km.

CONCLUSION

In this article, we have calculated degree-based irregularity
indices of probabilistic neural network. Our outcomes are
pertinent in material science and other applied sciences. It is
demonstrated certainty that TIs help to anticipate numerous
properties without setting off to the wet lab.
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In order to improve the performance of Particle Swarm Optimization (PSO) algorithm

in solving continuous function optimization problems, a chaotic particle optimization

algorithm for complex functions is proposed. Firstly, the algorithm uses qubit Bloch

spherical coordinate coding scheme to initialize the initial position of the population. This

coding method can expand the ergodicity of the search space, increase the diversity of

the population, and further accelerate the convergence speed of the algorithm. Secondly,

Logistic chaos is used to search the elite individuals of the population, which effectively

prevents the PSO algorithm from falling into local optimization, thus obtaining higher

quality optimal solution. Finally, complex functions are used to improve chaotic particles

to further improve the convergence speed and optimization accuracy of PSO algorithm.

Through the optimization tests of four complex high-dimensional functions, the simulation

results show that the improved algorithm is more competitive and its overall performance

is better, especially suitable for the optimization of complex high-dimensional functions.

Keywords: PSO algorithm, complex function, chaos search, convergence rate, improve chaotic particles

INTRODUCTION

Complex function optimization is an important research direction of optimization problems.
Generally speaking, the solving methods of optimization problems can be divided into analytical
method and numerical calculation [1]. The analytical method solves the problem according to
the relationship between the derivative of the objective function and the extreme value of the
function. This method is only suitable for optimization problems with relatively simple objective
function. According to the variation rule of objective function value, In appropriate steps along the
direction that optimizes the value of the objective function, An approximate calculation method
that approaches the optimal point of the objective function step by step, This method is good at
solving continuous differentiated convex optimization problems, With the continuous expansion
of engineering optimization problems, most of the objective functions are non-convex optimization
problems. The emergence of group intelligent optimization algorithms provides a limited way for
complex function optimization problems [2, 3].

Particle Swarm Optimization (PSO) algorithm is a kind of bionic intelligent optimization
algorithm based on population, which is proposed by Kennedy et al. [4]. Each particle in the PSO
algorithm represents a feasible solution; the location of food source is the global optimal location
point. PSO has strong search diversity, simple operation and few adjustment parameters. As soon
as it was proposed, it was widely used [5, 6], especially PSO has shown excellent optimization ability
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in complex optimization problems [7]. In reference [8], Eberhart
and Shi found that when the maximum velocity of the particle
is not too small (vmax > 3), The inertia weight ω=0.8 is
best. In addition, this conclusion has been confirmed on many
subsequent issues. Clert [9] when carefully studying a general
PSO system, the change of speed can be controlled by controlling
φ1 and φ2. In order to improve the calculation speed of
particle motion trajectory, Clert introduced contraction factorχ
to improve the basic model of PSO algorithm. PSO algorithm has
the following advantages:

First, the algorithm is easy to describe.
Second, there are few parameters to be adjusted in the algorithm.
Third, the number of functions to be evaluated in the algorithm
is small.
Fourth, the number of populations required by the algorithm in
the process of solving the problem is small.
Fifth, the algorithm converges quickly.

Because there are few parameters in PSO, PSO is easy to
Realize , there is also less demand for computing resources, the
gradient information of fitness function is not needed, only the
value of fitness function is needed. Although PSO algorithm
has various advantages, but the PSO algorithm itself also has
several limitations, its performance is as follows. First, PSO is
a probabilistic algorithm, without systematic and standardized
theoretical support, It is still difficult to verify the correctness
of PSO algorithm from a mathematical point of view so
far. Moreover, based on the theory of random events, it is
an extremely difficult task to analyze the particle trajectory
quantitatively in the search process of PSO algorithm. However,
this is also related to the key issues of convergence and parameter
selection of PSO algorithm. Althoughmost scholars are currently
verifying the convergence of its improved PSO algorithm, But
none of them has produced a set of mature and universal theories.
Second, the behavior and characteristics of complex systems are
the emergence of behaviors that are continuously superimposed
through interaction between individual individuals in the system.
Although the control of individual behaviors is relatively simple,
however, this does not mean that the control of the whole
system is an easy task. Third, as far as the whole algorithm
is concerned, due to the lack of balance mechanism, when
solving some complex or special problems, the algorithm is
easy to lose population diversity and fall into local extreme.
The structure and contents of the paper are as follows: (1)
Introduce the basic particle swarm optimization algorithm and
the algorithm flow; (2) Introduce the quantum chaotic adaptive
particle swarm optimization algorithm, explaining the quantum
Bloch coordinate coding, chaos optimization method, quantum
particle swarm optimization algorithm, adaptive inertia weight
and the improved algorithm flow, respectively; (3) Comparing
the convergence test through experiments.

BASIC PSO

Themathematical description of PSO algorithm is follow that the
population with dimension D and scale N can be expressed as

X = {X1,X2, ...,XD}, then at time t, the position of the ith particle
is Xi(t) = {Xi1(t),Xi2(t), ...,XiD(t)} and its velocity is Vi(t) =

{Vi1(t),Vi2(t), ...,ViD(t)}. The algorithm always maintains two
optimal positions: evolution process, the individual best position
pbesti(t) of particle i, expressed as pi(t) = {pi1(t), pi1(t), ..., piD(t)},
and gbest (t) of population a best location, expressed as pg(t) =

{pg1(t), pg1(t), ..., pgD(t)}. If the optimization model is max f (X),
the update formulas of pi(t) and pg(t) are as follows:

P(t+1)
i

=

{

X
(t+1)
i f (X(t+1)

i
> f (P(t)

i
);

P
(t)
i f (X(t+1)

i
≤ f (P(t)

i
)

(1)

p(t+1)
g

= max
1≤i≤N

p(t+1)
i

(2)

In the t-th iteration, pbest and gbest represent historical and global
optimal positions. Then the calculation formula for particle flight
update is expressed as follows:

vt+1
i,d

= wvti,d + c1r1(pbest
t
i,d − xti,d)+ c2r2(gbest

t
d − xti,d) (3)

xt+1
i,d

= xti,d + vt+1
i,d

(4)

Where vt+1
i,d

represents the flight speed of ith particle iterations

t + 1; XID represents the position of ith particle with iterations
t. w represents the inertia weight, which is taken here as 0.6; c1
and c2 represent learning factors, generally takingc1 = 2, c2 =

2; r1∈ [0, 1] r2 ∈ [0, 1].
The flow of the basic PSO algorithm is as follows:
(1) Set the parameters of PSO algorithm, such as population

size, problem dimension, inertia weight, maximum range
and maximum speed, etc. Randomly initialize group position
and speed.

(2) Judge whether the particle is beyond the search range, and
correct the position if it is beyond the range.

(3) According to the state of each particle, calculate the
corresponding fitness value.

(4) Update pbest according to the current fitness value.
(5) Update gbest according to the current fitness value.
(6) According to formulas (3) and (4), update the speed

and position.
(7) Judge the termination condition, and return to (2) if it is

not terminated, otherwise it will end.

QUANTUM CHAOS ADAPTIVE PSO
ALGORITHM

Initial Population of Quantum Bloch
Coordinate Coding
In quantum computation, the smallest information unit is
expressed by qubits, which are also called qubits. The state of a
qubit can be expressed as [10]:
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|ϕ〉 = cos (θ/2)
∣

∣0〉 + eiϕ sin(θ/2) |1〉 (5)

In Equation (5), numbers ϕ and θ define a point, Qubits establish
correlation with Bloch spherical points, and the conversion
formula is as follows:

|ϕ〉 =
[

cosϕ sin θ sinϕ sin θ cos θ
]T

(6)

Let pi be the i-th candidate solution in the group, and its coding
scheme is as follows:

pi =

∣

∣

∣

∣

∣

∣

cosϕi1 sin θi1
sinϕi1 sin θi1
cos θi1

∣

∣

∣

∣

∣

∣

· · ·

· · ·

· · ·

∣

∣

∣

∣

∣

∣

cosϕin sin θid
sinϕin sin θid
cos θid

∣

∣

∣

∣

∣

∣

(7)

Where ϕij = 2π × rnd, θij = π × rnd and rnd ∈ [0, 1];
Each candidate solution occupies three positions in the space, i.e.,
represents the following three optimization solutions:

Pix = (cosϕi1 sin θi1, · · · , cosϕid sin θid) ;

Piy = (sinϕi1 sin θi1, · · · , sinϕid sin θid) ;

Piz = (cos θi1, · · · , cos θid)
(8)

Note that the feasible solutions corresponding to Pix,Piy and Piz
are as follows:

xix = (x1i1, x
1
i2, . . . , x

1
in);

xiy = (x2i1, x
2
i2, . . . , x

2
in);

xiz = (x3i1, x
3
i2, . . . , x

3
in)

(9)

Transformation of solution space: Bloch coordinates of the i-th

qubit on candidate solution pi are
[

xix, xiy, xiz
]T
, and the value

of solution space is
[

aj, bj
]

, then the transformation formula

mapping Id = [−1, 1]d is follow:

x1ij =
1
2

[

bj (1+ xix) + aj (1− xix)
]

;

x2ij =
1
2

[

bj
(

1+ xiy
)

+ aj
(

1− xiy
)]

;

x3ij =
1
2

[

bj (1+ xiz) + aj (1− xiz)
]

(10)

Therefore, individuals with smaller fitness values are selected
as the initial population among all candidate solutions.
Bloch coding can enhance the ergodicity of the optimization
space, improve the population, and further improve the
optimization performance.

Chaos Optimization Method
Chaos has the characteristics of randomness, ergodicity and
regularity. In the field of optimization design, the ergodicity of
chaos phenomenon can be used as an optimization mechanism
to avoid falling into local minima in the search process. Chaotic
variables are used to search and this method is applied to the
optimization of continuous complex objects. The steps of chaos
optimization algorithm using Logistic mapping are as follows:

(1) Let k= 0, xkj , j = 1, 2, ..., n to chaotic variables xkj ∈ [0, 1].

skj =
xkj − xmin,j

xmax,j − xmin,j
j = 1, 2, ..., n (11)

In the formula, xmax,j is max bounds and xmin,j is the search min
bounds of the j-dimensional variable, respectively.

(2) Calculate next value sk+1
j .

Sk=1
j = 4skj (1− skj ) (12)

(3) The chaotic variable skj is transformed into the decision

variable xk+1
j . Using a certain chaotic mapping structure to

generate chaotic sequences, m is the length of chaotic sequences.
These sequences are inversely transformed to the original search
space through equation (13).

xk+1
j = xmin,j + sk+1

j (xmax,j − xmin,j) (13)

The new solution is taken as the result of chaotic optimization
K=K+1, otherwise, the new solution is transferred to (2) and the
iteration is continued.

(4) Calculate the fitness value F(Xi) of Xi and compare it with
the fitness value F(Xi) of Xi to retain the best solution;

(5) Updating Chaotic Search Space (xmin,j, xmax,j).

Quantum PSO Algorithm
In 2004, Sun studied the convergence behavior of absorption-
related particles and proposed a quantum PSO algorithm based
on the model of quantum mechanics. In quantum mechanics,
when each particle moves in the search space, there is a
DELTA potential well-centered on p. The properties of particles
in quantum space satisfying aggregated states are completely
different from those in classical mechanics. The particle with
quantum behavior has no definite trajectory when moving, i.e.,
The velocity and position are uncertain, and this uncertainty
makes the possible position of the particle “everywhere” (i.e.,
In the whole feasible solution region) full of possibilities, and
the particle has the possibility to get rid of the local optimal
value point with large interference. It can ensure the global
convergence of the algorithm and has only position vector, no
speed vector, few control parameters and strong optimization
ability in the optimization model.

Quantum PSO algorithm is described as follows: in D-
dimensional space, there are m particles, the individual extreme
point ispBesti = (pBesti1,pBesti2, ..., pBestiD), and the potential
center point is p; The current global extreme point searched
by the whole particle swarm is gBest=(gBest1, gBest2, .., gBestD).
Then, The position update operation for this particle is as follows:

p =
rand1()× pBestid + rand2()× gBestd

rand1()+ rand2()
(14)
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l = z × |Xid(t)− p| 0 < z < ln
√
2 (15)

Xid(t + 1)

{

p− l× ln[1/rand3()] rand3() > 0.5;

p+ l× ln[1/rand3()] rand3() ≤ 0.5
(16)

Where i = 1, 2, ...,m and Z ≤ ln
√
2, usually 0.5–1.0; The range

are (0, 1).

Adaptive Inertia Weights
The global exploration ability and local mining ability of PSO
algorithm are contradictory to each other, and it is hard to seek
a balance point. To balance the global exploration and local
development capabilities of PSO algorithm, an improved chaotic
particle optimization Algorithm is proposed to further modify
the optimization algorithm effect.

Accord to the particle position update formula (3), two
adaptive inertia weights wj and w′

j are introduced. Among
them, wj is used to control the influence degree of the original
particle position on the new particle position, and w′

j is used to
balance the influence weight of the particle flight speed on the
new position. The improved particle position update formula is
expressed as follows:

xt+1
i,d

= wjx
t
i,d + w′

jv
t+1
i,d

(17)

From above formula 17,wj and w
′
j can keep the fault tolerance of

particle population, and enhance robustness of the algorithm to
quit the local optimization in the optimization process.

The mathematical expressions for wj and w′
j are as follows:

wj = 1/(1+ exp (−f (j)/u)iter) (18)

w
′

j = 1− wj (19)

In the formula, f (j) express adaptive value of the j-th particle,
u express the best value in the particle population in the
first iteration calculation, and iter represents the current
iteration number.

Quantum Chaos Adaptive PSO Algorithm
Steps
The specific steps of QCPSO algorithm search are as follows:

(1) Initialize all parameters including N, c1, c2,M,v,D, t = 0;
(2) The current fitness value of each particle is calculated by

the optimization function and compared with the fitness value
corresponding to the individual historical optimal solution. If the
current fitness value is better than the fitness value corresponding
to the individual historical optimal solution, the current solution
is replaced by the individual optimal solution pbest, otherwise it
is not replaced.

(3)The optimal solution gbest of the current population
is determined by comparing the optimal fitness values of
all particles;

(4) Updating the flight speed of particles;
(5) Updating the weights wj and w′

j;
(6) Updating the position of particles;
(7) If t < M and not converge
t= t+ 1
Go to step (3);
Otherwise
Find the global optimal solution and go to step (8);
(8) Output the best value.

CONVERGENCE TEST COMPARISONS

The PSO algorithm is improved by parameter adjustment
strategy, and the search process is optimized by re-search and
reverse learning. In order to embody the effectiveness of the
improved PSO algorithm put forward in the research of test
case generation, it is relative to other algorithms, and has the
best effect. Based on existing problems that need to be studied,
this paper uses Matlab 2016a programming to implement the
above-mentioned algorithm, and evaluates the advantages and
disadvantages through fitness value, average coverage rate and
iteration times. To ensure the fairness and scientificity of
the performance comparison of all algorithms, each group of
experiments is run 100 times to obtain the average value.

The basic parameters of the whole experiment are seen as
follows: M = 1,000, N = 30, D = 30, and the range of values
is [0.4, 0.9]. To verify the superiority of QCPSO algorithm
put forward, four typical test functions Sphere, Rosenbrock,
Rastrigrin and Griewank are compared and tested. These four
functions include unimodal function, multimodal function and
trigonometric function, which are relatively comprehensive. The
specific formulas of the test functions are as follows.

f1(x) =

n
∑

i=1

x2i x ∈ [−100, 100] (20)

f2(x) =

n−1
∑

i=1

(100(xi+1 − x2i )
2
+ (1− xi)

2) x ∈ [−30, 30] (21)

f3(x) =

n
∑

i=1

(x2i − 10 cos(2πxi)+ 10) x ∈ [−5, 5] (22)

f4(x) = (

n
∑

i=1

x2i −

n
∏

i=1

cos(xi/
√
i)+ 1)/4000 x ∈ [−600, 600] (23)

In order to verify the performance advantages of the improved
PSO algorithm, it is necessary to judge the fitness values of four
typical test functions and compare them with the results of other
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TABLE 1 | Value for three Algorithms.

Algorithm Value D = 30, Iteration = 100 D = 50, Iteration = 100

F1 F2 F3 F4 F1 F2 F3 F4

PSO Optimal 2.397 5.761 1.986 1.238 1.987 4.679 1.658 0.832

Average 3.537 6.231 2.421 2.179 2.589 4.998 2.821 1.998

S.D 4.176 7.876 3.876 3.459 3.765 5.452 3.239 2.987

GA Optimal 2.568 6.324 2.451 1.591 2.512 5.311 1.981 1.287

Average 3.679 6.981 3.318 2.993 2.991 5.688 3.003 2.342

S.D 4.876 9.546 4.584 3.987 4.327 7.444 4.176 3.561

QCPSO Optimal 0.112 2.346 0 0 0.021 0.114 0 0

Average 1.543 3.378 1.2 × 10−3 1.6 × 10−9 1.221 1.557 1.1 × 10−18 1.2 × 10−25

S.D 2.129 4.127 0.0334 0.0564 1.967 2.227 0 0

The optimization experiments are carried out under the test (F1, F2, F3, and F4) functions from the PSO, GA, and QCPSO algorithm, and the experimental results are analyzed

and compared.

FIGURE 1 | Convergence Comparison of four Functions (D = 30).

algorithms. First of all, the inertia weight is used to improve the
learning factor. The relationship between the two can be divided
into three types: linear, non-linear and trigonometric functions.
In this paper, the non-linear relationship is used to carry out
the relationship of learning factors, so that the learning factor
changes non-linearly and gradually with the inertia weight, and
the equation is expressed as c = Aω2 + Bω + C; c2 + c1 = 2,
and the inertia weight adopts the commonly used exponential

function decreasing method, taking A = 0.45, B = 0.9, C =

0.45, ωmax = 0.9,ωmin = 0.4. Secondly, the optimal solution
and suboptimal solution in the current iteration are searched
again, and the particles outside the tabu region are optimized
by chaos. The improved algorithm is compared with PSO, GA
and QCPSO through four typical test functions. The comparison
of four typical test functions in four algorithms is shown
in Table 1.
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FIGURE 2 | Convergence Comparison of four Functions (D = 50). (A) F1 convergence, (B) F2 convergence, (C) F3 convergence, (D) F4 convergence.

For a variable dimension of 20, As can be seen from Table 1:
In 20 independent repetitions, For the test functions F3 and F4,
QCPSO algorithm result the best value, but for average value and
standard deviation of these two test functions, QCPSO is best
again, and QCPSO are obviously better than PSO algorithm and
GA algorithm. Accord to four functions, QCPSO is significantly
better than PSO and GA, accord to the average value, standard
deviation and the optimal value.

For the variable dimension of 50, it can be seen from Table 1

that for the test functions F1, F2, F3, and F4, the average
value and standard deviation of the optimal value of QCPSO
are significantly better than those of PS0 algorithm and GA
algorithm, and when the corresponding value ratio dimension is
20, it is smaller as a whole.

In order to verify the convergence, the following is verified
by iterations of the algorithm. The standard deviation value
increases with the number of iterations. The specific effect is
shown in Figures 1, 2.

Figures 1, 2 is a 30-dimensional optimization curve of 4
benchmark test functions in QCPSO, PSO, and GA (semi-
logarithmic curve, and the optimization curve is drawn by
semilogy function). The 30-and 50-dimensional optimization
curves obtained in the experiment are similar to those in Figure 2
and will not be given here due to limited space.

As can be seen from Figures 1, 2, when QCPSO algorithm
optimizes F2 and F4 functions, there are many inflection points,

indicating that QCPSO’s ability to jump out of local optimization
is enhanced. As can be seen intuitively from Figure 1, QCPSO
algorithm is more effective than the PSO and GA algorithms for
most of the four functions in Table 1 with dimension 30. Among
them, QCPSO algorithm obtains the optimal values in four test
functions (F1, F2, F3, F4). The convergence speed of QCPSO is
best than other three algorithms. As can be seen from Figures 1,
2, QCPSO quickly searches for satisfactory solutions for most
optimization problems.

In short, QCPSO algorithm has greatly improved its
optimization capability compared with standard PSO. For most
optimization problems, QCPSO algorithm is better than GA and
standard PSO algorithms.

CONCLUSION

In our research, an improved chaotic PSO algorithm based
on complex functions are proposed. By comparing the
convergence of four complex functions, the proposed QCPSO
algorithm has high convergence and stable performance.
The convergence of complexity functions is verified to
illustrate the advantages of the algorithm, and more
complexity functions are used to verify the advantages of
the algorithm in the later period. It is proved in different
dimensions that the reliability of the algorithm is verified by
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the population of higher dimensions, and the universality
of the algorithm is better explained. In the future research
work, the improved particle swarm optimization algorithm for
complex functions will be applied in other fields to improve
the actual effect of the existing work [11–14]. For example,
geographic location prediction, GPS trajectory prediction, flow
prediction, etc.
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For the graphs G1, G2, and G, if every 2-coloring (red and blue) of the edges of G results

in either a copy of blue G1 or a copy of red G2, we write G → (G1,G2). The size Ramsey

number R̂(G1,G2) is the smallest number e such that there is a graph G with size e

satisfying G → (G1,G2), i.e., R̂(G1,G2) = min{|E(G)| :G → (G1,G2)}. In this paper, by

developing the procedure and algorithm, we determine exact values of the size Ramsey

numbers of some paths and cycles. More precisely, we obtain that R̂(C4,C5) = 19,

R̂(C6,C6) = 26, R̂(P4,C5) = 14, R̂(P4,P5) = 10, R̂(P4,P6) = 14, R̂(P5,P5) = 11,

R̂(P3,P5) = 7 and R̂(P3,P6) = 8.

Keywords: size Ramsey number, 2-coloring, connected graphs, connectivity, paths, cycles

1. INTRODUCTION

We use standard notions and symbols from the field of graph theory, see [1]. By G = G(V ,E), we
denote a simple graph with vertex and edge sets V and E having cardinalities |V(G)| and |E(G)|,
respectively. For S1, S2 ⊆ V(G), we denote E(S1) = {uv ∈ E(G)|v, u ∈ S1} and E(S1, S2) = {uv ∈

E(G)|u ∈ S1, v ∈ S2}. Moreover, we denote: the degree of a vertex v in G by d(v|G) (or d(v)), the
minimum degree among the vertices of G by δ(G), a path and a cycle having i vertices by Pi and
Ci, respectively. For the graphs G1, G2, and G, if every 2-coloring (red and blue) of the edges of G
results in either a copy of blue G1 or a copy of red G2, we call it Ramsey property of G and write
G → (G1,G2). The size Ramsey number R̂(G1,G2) is the smallest number e such that there is a
graph G with size e satisfying G → (G1,G2), i.e., R̂(G1,G2) = min{|E(G)| :G → (G1,G2)}. For
k ∈ N, a non-complete graph G is called k-connected if |V(G)| > k and G − X is connected for
every set X ⊆ V with |X| < k. The greatest integer k such that G is k-connected is the connectivity
κ(G) of G. For the complete graph Kn, we define κ(Kn) = n− 1.

In 1978, Erdös et al. initiated the study of the size Ramsey number, and later it was continued
by Faudree [2, 3], Lortz and Mengersen [4], and Pikhurko [5]. From these studies, we can see
that the size Ramsey number R̂(G1,G2) exists for the graphs G1 and G2. Su and Shao applied a
backtracking algorithm to find some upper bounds for the size Ramsey numbers. The study of
the size Ramsey numbers based on the graph coloring is implicitly connected to several branches of
science, such as: the energies of the status level “fully functional nodes,” “partially functional nodes,”
and “non-functional nodes” can be interpreted by the way of graph coloring [6], frequency channel
assignment [7, 8], time tabling [9], and CAD problems [10, 11]. For more literature regarding the
Ramsey numbers, we refer [12–16] to the readers. This paper is devoted to study the properties of
the graphs G with the smallest size for which G → (G1,G2) for given graphs G1 and G2. Moreover,
by developing the procedure and algorithm, we determined size Ramsey numbers of some paths
and cycles.
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2. THE APPROACH

LEMMA 1. Let G be a graph with the smallest size for which
G → (G1,G2). Then any G′, obtained by removing all the isolated
vertices of G, is connected.

PROOF: By the definition of G′, we have G′ → (G1,G2). Suppose
to the contrary that there are at least two components H1,H2 in
G′. Let G′ = H1 ∪ H2 ∪ . . . ∪ Hn with n ≥ 2. Since Hi is not
an isolated vertex for any i, we have |E(Hi)| < |E(G′)| for any i.
Then there is a 2-coloring (red and blue) fi of the edges ofHi such
that Hi contains neither red G1 nor blue G2. Now, consider a 2-
edge coloring f of the edges of G′ with f (e) = fi(e) for any e ∈ Hi

for i = 1, 2, · · · , n. Then G contains neither red G1 nor blue G2

under f , and so G′ 9 (G1,G2), a contradiction.

Remark 1: Given the graphs G,G1,G2 with G → (G1,G2),
by the Lemma 1, we only need to consider the connected
graphs for G.

LEMMA 2. If G is a graph with the smallest size for which
G → (G1,G2), and G is a connected graph, then κ(G) ≥

min{κ(G1), κ(G2)}.

PROOF: Assume on contrary that we have κ(G) < min{κ(G1),
κ(G2)}. Let S ⊆ V(G) such that |S| = κ(G) and G − S is
disconnected and assume G − S = H1 ∪ H2 ∪ . . . ∪ Hn with
n ≥ 2. Let V(Ti) = V(Hi)∪S and E(Ti) = E(Hi)∪E(Hi, S). Since
G is a graph with the smallest size for which G → (G1,G2), there
is a red-blue coloring fi of the edges of Ti such that Ti contains
neither red G1 nor blue G2 for any i. Let E(S) = {e1, e2, · · · , ek}
for some k. Now consider a 2-edge coloring f of the edges of G
with f (e) = fi(e) for any e ∈ Hi for i = 1, 2, · · · , n, f (e1) = red,
f (ei) = blue for any i = 2, 3, · · · , k. Then G contains neither red
G1 nor blue G2 under f , and so G

′ 9 (G1,G2). Now, we consider
the following two cases:
Case 1: If there is a red copy of G1 as a subgraph of G.
Subcase 1.1: E(G1) ⊆ E(Ti) ∪ E(S) with i ∈ {1, . . . , n}.
Since fi is a red-blue coloring of the edges of Ti such that Ti

contains no red G1. Then E(G1) ∩ E(S) 6= ∅. Since G1[E(G1) ∩
E(S)] is not a clique with |S| vertices, there is a cut-set S1
of G1 with S1 ⊆ S. Then |S1| ≤ |S| < κ(G1) by the
assumption, a contraction.
Subcase 1.2: E(G1) ∩ E(Hi) 6= ∅,E(G1) ∩ E(Hj) 6= ∅ with i 6= j.
Then S is a cut-set of G1 with |S| < κ(G1) by the
assumption, a contraction.
Case 2: If there is a blue copy of G2 as a subgraph of G.
Subcase 2.1: E(G2) ⊆ E(Ti) ∪ E(S) with i ∈ {1, . . . , n}.
Since fi is a red-blue coloring of the edges of Ti such that Ti

contains no blue G2. Then E(G2) ∩ E(S) 6= ∅. Since G2[E(G2) ∩
E(S)] is not a clique with |S| vertices, there is a cut-set S2
of G2 with S2 ⊆ S. Then |S2| ≤ |S| < κ(G2) by the
assumption, a contraction.
Subcase 2.2: E(G2) ∩ E(Hi) 6= ∅,E(G2) ∩ E(Hj) 6= ∅ with i 6= j.
Then S is a cut-set of G2 with |S| < κ(G2) by the
assumption, a contraction.

LEMMA 3. For the graphs G, G1 and G2, if there exist vertices
v1, . . . , vt for some 1 ≤ t ≤ |V(G)| satisfying that d(vi|G

i−1) <

δ(G1) + δ(G2) − 1 for any i = 1, 2, · · · , t and Gt 9

(G1,G2), where Gi = G − {v1, . . . , vi} and G0 = G.
Then G 9 (G1,G2).

PROOF: We apply induction on t to prove it. Firstly, it is clear
that the lemma holds if t = 1. Now, we suppose the stated
result holds for t = i, we need to prove it for t = i + 1.
Since the lemma holds if t = i, we have G1 9 (G1,G2).
Then there is a red-blue coloring g of the edges of G1 such
that there is neither a red copy of G1 nor a blue copy of
G2 in G1. Let E(w) = {uv ∈ E(G)|u = w or v = w}.
Since d(v1|G

0) < δ(G1) + δ(G2) − 1, we can divide E(v1)
into E1,E2 with |E1| < δ(G1), |E2| < δ(G2). Let f be a
coloring of G obtained by assigning red to E1, blue to E1
based on g.
Case 1: If there is a red copy of G1 as a subgraph of G under
f , then v1 ∈ V(G1). Since |E1| < δ(G1), then d(v1|G1) <

δ(G1), a contraction.
Case 2: If there is a blue copy of G2 as a subgraph of G under
f , then v1 ∈ V(G2). Since |E2| < δ(G2), then d(v1|G2) <

δ(G2), a contraction.
There is neither a red copy ofG1 nor a blue copy ofG2 inG under
f . Therefore, G 9 (G1,G2).

The contrapositive of the Lemma 3 for t = 1 produces the
following corollary:

COROLLARY 1. For any graphs G1 and G2, if G is any graph
with the smallest size for which G → (G1,G2), then δ(G) ≥

δ(G1)+ δ(G2)− 1.

LEMMA 4. For any graphs G1 and G2, if G is any graph with
order n and size m such that G 6→ (G1,G2), then for any graph

G′ with order at most n and size m − 1 <
n(n−1)

2 , we have
G′ 6→ (G1,G2).

PROOF: First, we have G′ is not a complete graph, then there are
two vertices u, v with uv /∈ E(G′). Now, we insert the edge uv
to obtain a graph G′′ based on G′. Then G′′ is a graph with m
edges and n vertices and so G′′ 6→ (G1,G2). Therefore, there is a
red − blue coloring f of G′′ such that there is neither a red copy
of G1 nor a blue copy of G2 in G′′ under f . Then, there is also
neither a red copy of G1 nor a blue copy of G2 in G′ under f |G′ .
Then G′ 6→ (G1,G2).

By applying the Lemma 1 and the Corollary 1, we only
need to consider the connected graphs, and then propose
the following algorithm (FindSizeRamseynumber) to find the
size Ramsey number of G1 and G2. We will use the
software nauty [17] to generate non-isomorphic graphs with
necessary properties. If G1 and G2 are k-connected graphs,
we further apply the Lemma 2 to reduces the number
of graphs needed to be processed. For testing if G →

(G1,G2), we applying the backtracking procedure proposed
in [18].

Procedure Find(m,n,G1,G2);
input:m, n be integers;

graphs G1 and G2.
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TABLE 1 | Exact values R̂(G1,G2) of the size Ramsey numbers of some paths and

cycles.

G1 G2 (n,m) #A(n,m) #B(n,m) result

C4 C5 (7,19) 2 1 R̂(C4,C5) = 19

C6 C6 (8,26) 2 1 R̂(C6,C6) = 26

P4 C5 (7,14) 59 1 R̂(P4,C5) = 14

P4 P5 (6,10) 14 4 R̂(P4,P5) = 10

P4 P6 (7,14) 64 30 R̂(P4,P6) = 14

P5 P5 (6,11) 9 3 R̂(P5,P5) = 11

P3 P5 (5,7) 4 2 R̂(P3,P5) = 7

P3 P6 (6,8) 22 1 R̂(P3,P6) = 8

begin

generate the family G of all the non-isomorphic connected
graphs with sizem and
order n with minimum degree δ(G1) + δ(G2) − 1; (Apply

Lemma 1 and Corollary 1);
foreach G in G

if (G → (G1,G2))
return true;

end if

end for

return true;

end.

Algorithm FindSizeRamseynumber(G1,G2);

input: graphs G1 and G2.
begin

1 : Find a graph G such G → (G1,G2);
2 : m = |E(G)| − 1;
3 : n = min{⌊ 2m

δ(G1)+δ(G2)−1
⌋,m+ 1};

4 : while Find(m, n,G1,G2) do;
5 : n = n− 1;
6 : ifm >

n(n−1)
2 do

7 : m = m− 1;
8 : n = min{⌊ 2m

δ(G1)+δ(G2)−1
⌋,m+ 1};

9 : end if

10: end while

11: returnm+ 1.
end.

3. RESULTS

EXAMPLE 1. R̂(C4,C5) = 19.

PROOF: Consider G1 = C4, G2 = C5. By Algorithm
FindSizeRamseynumber, we first find the graphH satisfyingH →

(C4,C5) (line 1). Therefore, R̂(C4,C5) ≤ 19. Then, we consider
the edge number less than 19 (i.e., m ≤ 18, by line 2), and the
order of graph at most min{⌊ 2m

δ(G1)+δ(G2)−1
⌋,m + 1} ≤ 12. Now,

the procedure will check if there is no graph G with minimum
degree 3, size at most and order from 7 to 12 satisfying G →

(C4,C5) (line 3-10). In this case, by applying Procedure Find, we
find that there is no such graph. Therefore, R̂(C4,C5) ≥ 19.

By applying Algorithm FindSizeRamseynumber, we obtain
many size Ramsey numbers presented in Table 1, where #A(n,m)
denote the number of non-isomorphic connected graphs with
minimum degree δ(G1)+ δ(G2)− 1 with sizem and order n, and
#B(n,m) denote the number of such graphsGwithG → (G1,G2).
An application of the algorithm can be used in some other graph
problems, see [19].

4. CONCLUSION

It is a very hard task to determine the size Ramsey number
even for small graphs. Faudree and Sheehan gave a table of
the size Ramsey numbers for graphs with order not more than
four [3]. Su and Shao [18] provide upper bounds for the size
Ramsey numbers of some paths and cycles. Until now, very
limited results on the size Ramsey numbers are known. In
this paper, we have developed some computational techniques
to determine many of those size Ramsey numbers. There are
numerous variants of the Ramsey numbers such as ordered
Ramsey numbers, size Ramsey numbers and zero-sum Ramsey
numbers, see [20]. It is also very difficult to compute each variant
of these Ramsey numbers. In order to compute some possible
Ramsey numbers, we need to obtain the structure of the graphs
by studying their mathematical properties. So, the approach of
this paper may be considered to compute some challenging
Ramsey numbers.
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High-frequency firing activity can be induced either naturally in a healthy brain as

a result of the processing of sensory stimuli or as an uncontrolled synchronous

activity characterizing epileptic seizures. As part of this work, we investigate how logic

circuits that are engineered in neurons can be used to design spike filters, attenuating

high-frequency activity in a neuronal network that can be used to minimize the effects of

neurodegenerative disorders such as epilepsy. We propose a reconfigurable filter design

built from small neuronal networks that behave as digital logic circuits. We developed

a mathematical framework to obtain a transfer function derived from a linearization

process of the Hodgkin-Huxley model. Our results suggest that individual gates working

as the output of the logic circuits can be used as a reconfigurable filtering technique.

Also, as part of the analysis, the analytical model showed similar levels of attenuation

in the frequency domain when compared to computational simulations by fine-tuning

the synaptic weight. The proposed approach can potentially lead to precise and tunable

treatments for neurological conditions that are inspired by communication theory.

Keywords: neuron, Hodgkin-Huxley, linear model, transfer function, systems theory, epilepsy, filter

1. INTRODUCTION

Seizure dynamics with either spontaneous and recurrent profiles can occur even in healthy patients
during the processing of sensory stimuli or it could manifest itself as an uncontrolled synchronous
neural activity in large areas of the brain (Jirsa et al., 2014). Any disruption to the mechanisms
that inhibit action potential initiation or the stimulation of processes that facilitate membrane
excitation, can prompt seizures. Tackling this disease efficiently is an existing clinical issue where
new approaches are constantly being investigated in order to provide precise and reliable strategies
in inhibiting or disrupting seizure-triggering populations of neurons. For example, controlling
neuron firing threshold can most likely prevent seizure activity, which can often be achieved at
a single neuron level (Scharfman, 2007).

The development of techniques for the treatment of this type of neurodegenerative disorder is
challenging not only due to the complexity of the brain function and structure but also as a result
of the invasiveness and discomfort caused by today’s most common neurostimulation or surgery
approaches (Rolston et al., 2012). However, due to the lack of success in non-invasive approaches,
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the immediate future epilepsy treatment will still see invasive
methods. This approach must achieve population-level control
with state-of-the-art technology in not only neuroengineering
but must also integrate other disciplines. Recent advancements
in nanotechnology, for instance, have been enabling the
development of novel devices at the nano-scale that are capable of
improving bio-compatibility. Nanotechnology-based treatment
also includes advantages in the treatment precision, patient
comfort as well as longer treatment lifetime. However, there
still remain numerous challenges in the use of nanotechnology.
For example, the passage of chemicals through the blood-brain
barrier (BBB) is among the many challenges that disrupt the
efficiency of nanoparticles-mediated drug delivery functioning.
Challenges still remain as to how nanoparticles that pass
through the BBB will diffuse toward specific neural populations.
However, if the drug-loaded nanoparticles can be delivered at
sufficient concentrations and accurately to a specific location,
this can influence neural activities (Bennewitz and Saltzman,
2009; Veletić et al., 2019). As an example, drug delivery
targets specific neurodegeneration promoting factors (Feng et al.,
2019) by performing a drug-induced control over intracellular,
extracellular and synaptic properties that regulate spiking
activity (Blier and De Montigny, 1987).

Previous studies on the firing response of neurons have
investigated the filtering capabilities either due to realistic
synaptic dynamics (Brunel et al., 2001; Moreno-Bote and Parga,
2004) or by naturally manipulating the resting potential of
voltage-dependent active conductances of a neuron enhancing its
temporal filtering properties (Fortune and Rose, 1997; Motanis
et al., 2018). On the other hand, existing analyses do not account
for the many molecular control mechanisms that may influence
the synaptic activity, e.g., drug. In the case of seizures, the
understanding of the drug-induced firing response may allow
further analysis on the impact of high-frequency firing on
the neural tissue as well as how to desynchronize or slow it
down. Frequency-domain analysis has been performed on top
of linear models of the Hodgkin-Huxley (HH) formalism to
investigate not only the transmission of information through
the use of subthreshold electrical stimulation (Khodaei and
Pierobon, 2016) but also the influence of axonal demyelination
on the propagation of action potentials (Chaubey and Goodwin,
2016). Although Hodgkin-Huxley is not the only neuron model
available in the literature, it is one of the most plausible models
for computational neuroscience (Long and Fang, 2010). Other
proposed models are, for example, integrate-and-fire, Izhikevich
and Fitzhugh-Nagumo models (Mishra and Majhi, 2019).

FIGURE 1 | Engineered neuronal digital logic circuit, where each gate is composed of three neurons and each blockWi (s) represents one neuron as a transfer

function to enable communication metric analysis.

The manipulation of cellular activity, such as neuronal
spiking activity, using molecules complexes to mimic logic gates
and transistors has also been proposed in the literature. One
example is the work of Vogels and Abbott (2005), in which the
propagation of neuronal signals in networks of integrate-and-fire
models of neurons was investigated and they found that different
types of logic gates may arise within the network by either
strengthening or weakening specific synapses. Goldental et al.
(2014) used identical neurons to propose dynamic logic gates that
work based on their historical activities, interconnection profiles,
as well as the frequency of stimulation at their input terminals. In
our previous works (Adonias et al., 2019; Adonias et al., 2020),
we developed several logic gates arranged in groups of three
heterogeneous models of neurons, with two working as inputs
and one as the output, and performed a queueing-theoretical
analysis aiming at the study of such a complex network as a single
element behaving as the collective of those cells. Irrespective
of the tremendous efforts from the scientific community, these
works do not provide a framework of reconfigurable circuits that
could pave the way for more sophisticated approaches for neuron
control. Further investigation of novel neuronal electronic
components constructions is needed to develop bio-compatible
and reliable solutions that can address defective neuronal
networks. While the scientific community has been witnessing
remarkable progress in the manipulation and engineering of the
behavior of mammalian cells (Lienert et al., 2014), the existing
models do not yield analytical expressions that could be used
to model drug-induced filtering capabilities of a neuron and,
in particular, incorporating computing paradigms. The main
focus of this work is to lay the ground-work of analytical
models for digital filters that are designed and engineered
into neurons, potentially leading to the development of novel
epilepsy treatments.

In this work, we propose a mathematical framework aiming
at the interpretation of the filtering capabilities in small
populations of neurons that are engineered into a logic circuit
(Figure 1). The circuit aims to reduce the firing rates from its
inputs by performing the binary logic as well as integrating
reconfigurability, where the different logic circuit arrangements,
as well as logic gate types, can be tuned to change the filtering
properties. To achieve that in our mathematical framework,
we modify parameters on the logic circuit transfer function,
derived from the linear interpretation of the Hodgkin-Huxley
neuronal model. These parameters are related to neuronal
and synaptic properties of a neuro-spike communication, such
as conductances and weight, and can potentially be achieved
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through the sustained administration of a specific drug. Our
mathematical framework is, from an application point-of-view, a
design platform for neuroscientists in creating filtering solutions
for smoothing out the effects of neurological diseases that require
the minimization of firing activity. The framework models the
effects of drug-induced molecular changes in models of neurons
aiming to control the neuronal activity of a synthetic engineered
cell, however, the fabrication and specifications of such a drug are
out of the scope of this paper. The contributions of this paper are
as follows:

• Neuronal logic circuits are built using computational models
of neurons and this arrangement is expected to be capable
of acting as digital filters, converging four inputs into one
output with a shift in attenuation driven by modifications to
the synaptic weight.
• A mathematical framework is proposed paving the way

for the design of neuronal digital filters to help suppress
the destructive effects of neurodegenerative diseases. This
framework should enable the relationship between biophysical
models and drug design, facilitating scientists control over the
behavior of the filters.
• Analysis of the performance of the neuronal filters in terms

of accuracy and of signal power attenuated by the circuit. This
analysis gives an insight into how parameters such as weight
or frequency at the input would affect the performance of
such filters.

The remainder of this paper is as follows, section 2.1 briefly
describes how neurons differ between each other and how they
communicate with one another. In section 2.2, we explain how
neurons can function as non-linear electronic circuits based
on the seminal work of Hodgkin and Huxley (1952) and we
also describe the process of linearization aiming to derive
a transfer function of the filter model. The filter design is
explained in section 2.3 which also covers how neurons are
represented as compartments and connected to form logic gates
and, consequently, to form logic circuits. In section 3, we present
the results that are discussed in section 4 and, finally, the
conclusions are presented in section 5.

2. MATERIALS AND METHODS

2.1. Neuronal Communication
To be able to synthetically implement complex functions
inside the brain, we must control how the neurons exchange
information using the propagation of action potentials inside a
network of neurons. The number of excitatory and inhibitory
connections between neurons determines the spatio-temporal
dynamics of the action potentials propagation (Zhou et al.,
2018). Efficient coding and modulation of neuronal information
have been used to implement bio-computational approaches
in our previous work (Adonias et al., 2020). Bio-computing
can be created from neuronal networks that are engineered to
function as logic circuits through controlling the neuro-spike
communication and curbing the signal propagation dynamics
between the neurons.

We aim to investigate the neuronal and synaptic properties
in constructing logic circuits that perform the filtering of spikes
in small populations from the somatosensory cortex. The cortex
is responsible for most of the signal processing performed by
the brain and comprises a rich variety of morpho-electrical types
of neuronal and non-neuronal cells. We will take into account
these characteristics in the construction of our mathematical
framework that is used to design the circuits.

2.1.1. Properties of a Neuron
Neurons are divided into three main parts: dendrites, soma, and
axon. Dendrites receive stimuli from other cells and the way
these dendritic trees are projected onto neighboring neurons in
a network helps to classify neuron morphological types. The
axon passes stimuli forward to cells connected down the network
through its axon terminals and the soma is the main body of
the neuron. Each neuron’s response to a stimulus will dictate
the electrophysiological neuron type. The soma is where most
proteins and genes are produced and where stimuli are generated
and fired down the axon.

Besides the way dendrites are projected, the proteins
and genes that neurons express and their morphological
and electrophysiological characteristics are important for the
classification of different types of neurons. One of the most
comprehensive works on neuronal modeling, by Markram et al.
(2015), classifies the neurons from the rat’s somatosensory cortex
based on their morpho-electrical properties (morphological and
electrical characteristics) as well as the cortical layer they belong
(columnar and laminar organization).

2.1.1.1. Morpho-electrical characteristics
Even though all neurons used in this work can assume different
morphological structure, it is exactly by analyzing their axonal
and dendritic ramification that we can have a good enough
categorization of their respectivemorphological types. Regardless
of their types, neurons in the cortical layer are considered of small
sizes (8 - 16µm). Furthermore, inhibitory neurons can be better
identified by their axonal features while excitatory neurons can be
more easily classified based on their dendritic features (Markram
et al., 2015). Each morphological type (m-type) can fire different
spiking patterns and this may affect the gating capabilities of
neurons due to the fluctuations on precise spike timing.Markram
et al. (2015) categorized 11 different electrical types (e-types) of
neurons, hence, 11 different ways of firing a spike train generated
in response to an injected step current.

2.1.1.2. Cortical organization
The cerebral cortex comprises six distinguished horizontal layers
of neurons, with each layer having particular characteristics such
as cell density and type, layer size, and thickness. This horizontal
configuration is also known as a “laminar” organization, where
the layers are identified as (1) Molecular layer, which contains
only a few scattered neurons and consists mostly of glial cells
and axonal and dendritic connections of neurons from other
layers; (2) External granular layer, containing several stellate
and small pyramidal neurons; (3) Pyramidal layer, contains
non-pyramidal and pyramidal cells of small and medium sizes;

Frontiers in Computational Neuroscience | www.frontiersin.org 3 October 2020 | Volume 14 | Article 556628159

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Adonias et al. Reconfigurable Synthetically Engineered Neuronal Filters

(4) Inner granular layer, predominantly populated with stellate
and pyramidal cells, this is the target of thalamic inputs; (5)
Ganglionic layer, containing large pyramidal cells that establish
connections with subcortical structures; and (6) Multiform layer,
populated by just a few large pyramidal neurons and a good
amount of multiform neurons, which sends information back to
the thalamus. All layers may contain inter-neurons bridging two
different brain regions.

The neurons are not just stacked one on top of another
suggesting a horizontal organization, indeed vertical connections
are also found in between the neurons from either the same or
different layers. This allows another type of classification known
as mini-columns (also called, micro-columns) with a diameter of
30–50µmandwhen activated by peripheral stimuli, they are seen
as macro-columns, with a diameter of 0.4–0.5 mm (Peters, 2010).
This will create network topologies with intrinsic characteristics,

e.g., connection probabilities between neurons, that influence
the signal propagation to converge into either a specific pattern
or flow.

2.1.2. Neuron-to-Neuron Communication
The communication between a pair of neurons is done
through the diffusion of neurotransmitters in the synaptic
cleft; this process is triggered by an electrical impulse reaching
the axon terminals of the transmitting cell characterizing
an electrochemical signaling process known as the synapse.
Action potentials propagate down the axon of the pre-synaptic
cell, which is the sender cell, and when reaching the axon
terminals also known as pre-synaptic terminals, it triggers the
release of vesicles containing neurotransmitters into the synaptic
cleft, which is the gap between a pre- and a post-synaptic
terminal, as illustrated in Figure 2. Those neurotransmitters

FIGURE 2 | Schematic of a synapse; action potentials traveling down the axon trigger the release of neurotransmitters into the cleft between pre- and post-synaptic

terminals, traveling toward neuroreceptors on the other end leading to changes on membrane conductance that can either excite or inhibit the post-synaptic neuron.
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will probabilistically bind to neuro-receptors located at the
post-synaptic terminals, i.e., dendrites (Balevi and Akan, 2013),
triggering the exchange of ions through the membrane that
can either excite or inhibit the cell, depending on the type of
neurotransmitters that were received. In our work, we focus
on the synaptic weight between the pre- and post-synaptic
terminals. The synaptic weight is a measure of how much
influence the pre-synaptic stimuli have on the post-synaptic
cell and it is known to have its value best approximated to
the time integral of the synaptic conductance (Gardner, 1989).
Furthermore, the value of synaptic conductance in the post-
synaptic terminal is driven by the number of neurotransmitters
bound to neuroreceptors (Guillamon et al., 2006). We illustrate
the synaptic weight, in Figure 2, as red neurotransmitters which
should have their release from the pre-synaptic terminals induced
by the administration of a specific drug.

In an excitatory synapse, the membrane potential of the
post-synaptic cell, which rests at approximately −65 mV, will
start depolarizing itself until it reaches a threshold, th, for
action potential initiation. On the other hand, if the synapse
is inhibitory, the membrane should get even more polarized
making it nearly impossible for the cell to fire a spike and not
allowing the propagation of any signal down the network from
the inhibited cell. After reaching th, the membrane potential
should increase toward a maximum peak of depolarization, and
then the cell will start the process of repolarization toward
its resting potential. For a brief moment, the potential inside
the cell will cross the level of potential when at rest making
the membrane hyperpolarized, which is a period known as the
refractory period and it can be further subdivided as absolute and
relative. The absolute refractory period (ARP) lasts around 1–
2 ms during which the neuron is unable to fire again regardless
of the strength of the stimuli; then, it is followed by the relative
refractory period (RRP) during which a response in the potential
of the cell may be evoked depending on the strength of the
stimuli (Mishra and Majhi, 2019).

2.2. Electronic Interpretation of a Neuron
Model
The main structures of a neuron, previously mentioned in
section 2.1.1, can assume different shapes and spatial structures

that play an important role in determining its input and output
relationship. By sectioning the neuron into several compartment
models, we are able to account for the influence that individual
compartments have on the communication process of the
neuron. Even though we consider the same value of resting
potential for all compartments of the cell, there is some
discussion on whether different compartments have different
potentials when at rest (Hu and Bean, 2018).

We aim to develop a transfer function for the neuron-
spike response, or output [V(s)], to a particular spike input
[I(s)]. Using a transfer function for each neuron which is
represented as a single compartment, we are able to efficiently
associate the configuration of the filters with the structure of
the neural network as well as the individual characteristics
of each neuron. On top of that, we also are able to focus
on frequency domain for an effective spike firing filtering.
We rely on the electronic interpretation of the Hodgkin-
Huxley model of neuron action potentials, which is made
based on the neuronal cable theory assumptions on the static
ionic channels conductance. In this section, we provide the
details of the development of the transfer function, which
is built on the linearization process of the Hodgkin-Huxley
neuron model.

2.2.1. Hodgkin-Huxley Formalism
As aforementioned in section 1, neurons can perform spike
filtering tasks either by manipulating ionic conductances,
such as sodium and potassium conductances, from within
the cell (Fortune and Rose, 1997) or by working on the
extracellular environment where the synapse occurs (Brunel
et al., 2001;Moreno-Bote and Parga, 2004). Furthermore, filtering
capabilities may vary according to the non-linearities of the
neuron’s activity and action potential propagation. In order to
design an efficient filtering process, we will need to eliminate
the non-linearities so we can directly link neurons properties to
the filtering behavior and adjust these properties according to
a desired filtering performance level. We consider the Hodgkin
and Huxley non-linear model (Pospischil et al., 2008) as our
basic model since it perfectly describes the influence of ionic
conductance and synaptic conductance in the propagation of
the action potentials. We assume that parts of the neuron
will constitute a compartment, which results in the electric

FIGURE 3 | Hodgkin-Huxley (HH) model: (A) Electronic circuit representation and (B) Equivalent biological HH compartment; the lipid bilayer is modeled as C, the

conductances g represent how open or close the ionic gates are and the gradient of ions between the intra- and extra-cellular space define the reversal potentials E.
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circuit in Figure 3A when applying the conventional neural
cable theory.

Figure 3 depictsC as themembrane capacitance, each voltage-
gated ionic channel represented by its respective conductances
gNa and gK and the leak channel by the linear conductance
gl. The membrane capacitance is proportional to the surface
area of the neuron and, along with its resistance, dictates how
fast its potential responds to the ionic flow. The ratio between
intra- and extra-cellular ions define the reversal potentials ENa,K, l
establishing a gradient that will drive the flow of ions (Barreto and
Cressman, 2011).

When an external stimulus, Iext , is presented, it triggers
either the activation or inactivation of the ionic channels that
allow the exchange of ions that result in depolarization (or
hyperpolarization when inhibitory) of the membrane of the cell.
These dynamics are modeled as

C
dV

dt
= −Il − INa − IK + Iext , (1)

where V is the membrane potential and Ix are the ionic currents
where x represents either a specific ion (Na,K) or the leak channel
(l). Those currents are described as

Il = gl(V − El), (2)

INa = gNam
3h(V − ENa), (3)

IK = gKn
4(V − EK), (4)

where m and h are the activation and inactivation variables of
the sodium channel, respectively, and n is the activation variable
of the potassium channel, following the conventional approach
described by Hodgkin and Huxley (1952) and stated as

dm

dt
= αm(V)(1−m)− βm(V)m, (5)

dh

dt
= αh(V)(1− h)− βh(V)h, (6)

dn

dt
= αn(V)(1− n)− βn(V)n, (7)

in which the values of the rate constants αi and βi for the i-th
ionic channel can be defined as

αm =
0.1(V + 40)

1+ e−(V+40)/10
, (8)

βm = 4e−(V+65)/20, (9)

αh = 0.07e−(V+65)/20, (10)

βh =
1

1+ e−(V+35)/10
, (11)

αn =
0.01(V + 55)

1− e−(V+55)/10
, (12)

βn = 0.125e−(V+65)/80. (13)

The membrane capacitance is proportional to the size of the cell,
and on the other hand, the bigger the cell diameter, the lower the
spontaneous firing rate (Sengupta et al., 2013). Furthermore, each

ionic channel can be studied as containing one or more physical
gates which can assume either a permissive or a non-permissive
state when controlling the flow of ions. The channel is open when
all gates are in the permissive state, and it is closed when all of
them are in the non-permissive state (Baxter and Byrne, 2014).

2.2.2. Hodgkin-Huxley Linear Model
In order to derive a transfer function for the Hodgkin-Huxley
model, we must consider each neuron as a system that is
linear and time-invariant (LTI). If the system is non-linear, then
a linearization process should be done before any frequency
analysis is performed. For a more detailed analysis on the
procedures for linearization of the Hodgkin-Huxley model, the
reader is referred to Koch (2004), Mauro et al. (1970), Sabah and
Leibovic (1969), and Chandler et al. (1962).

The linearization process requires that we reconsider
the electronic components in each neuron compartment to
adequately eliminate trivial relationships. Membranes with
specific types of voltage- and time-dependent conductances can
behave as if they had inductances even though neurobiology
does not possess any coil-like elements. This modification
will transform the behavior of non-linear components toward
linearization, resulting in a proportional relationship between the
voltage and current changes (Koch, 2004).

Every linearization process is performed for small variations
around a fixed point, hereafter denominated by δ, and in the
case of the Hodgkin-Huxley model, this fixed point should
be the steady-state (resting state) of the system. Because the
sodium activation generates a current component that flows in
an opposite direction compared to that of a passive current,
the branch concerning the sodium activation should have
components with negative values while the branches regarding
potassium activation and sodium inactivation should have
components with positive values (Sabah and Leibovic, 1969). The
linear version of the circuit of Figure 3A is illustrated in Figure 4,
where C is the membrane capacitance, gn, gm, and gh are the
conductances of the inductive branches connected in series with

FIGURE 4 | Hodgkin-Huxley linear circuit model representation.
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their respective inductances Ln, Lm, and Lh derived from the
linearization process and GT = GL + GK + GNa is the total pure
membrane conductance.

Let us consider the membrane potential deviation, δV , around
some fixed potential. Thus, we can express the response of the
circuit to small-signal inputs as

C
dδV

dt
= Iext − δIl − δIK − δINa, (14)

where δIl,Na,K are current variations at any given steady-state and
can be defined as

δIl = glδV , (15)

δIK = GKδV + 4gKn
3
∞(V − EK)δn, (16)

δINa = GNaδV + 3gNam
2
∞h∞(V − ENa)δm

+ gNam
3
∞(V − ENa)δh, (17)

whereGK,Na are pure conductances of potassium and sodium and
GL the pure leak conductance expressed as

GL = ḡl, (18)

GK = ḡKn
4
∞, (19)

GNa = ḡNam
3
∞h∞, (20)

where ḡK,Na are the maximum attainable conductances, and δn,
δm, and δh are small variations around the steady-state of the
activation and inactivation variables n,m, and hwhich are written
as

dδn

dt
=

dαn

dV
δV − (αn + βn)δV − n∞

(

dαn

dt
−

dβn

dt

)

δV ,

(21)

dδm

dt
=

dαm

dV
δV − (αm + βm)δV −m∞

(

dαm

dt
−

dβm

dt

)

δV ,

(22)

dδh

dt
=

dαh

dV
δV − (αh + βh)δV − h∞

(

dαh

dt
−

dβh

dt

)

δV ,

(23)

as a function of the derivative of the rate constants αn,m,h and
βn,m,h, and n∞, m∞, and h∞ are the steady-state values of m, n,
and h defined as

n∞ =
αn

αn + βn
, (24)

m∞ =
αm

αm + βm
, (25)

h∞ =
αh

αh + βh
, (26)

and the conductances, gn,m,h, and inductances, Ln,m,h, of the
inductive branches are defined as

gn =

4ḡKn
3
∞(V − EK)

[

dαn

dV

∣

∣

∣

∣

r

− n∞
d(αn + βn)

dV

∣

∣

∣

∣

r

]

αn + βn
, (27)

Ln =
1

gn(αn + βn)
, (28)

gm =

3ḡNam
2
∞h∞(V − ENa)

[

dαm

dV

∣

∣

∣

∣

r

−m∞
d(αm + βm)

dV

∣

∣

∣

∣

r

]

αm + βm
,

(29)

Lm =
1

gm(αm + βm)
, (30)

gh =

ḡNam
3
∞(V − ENa)

[

dαh

dV

∣

∣

∣

∣

r

− h∞
d(αh + βh)

dV

∣

∣

∣

∣

r

]

αh + βh
, (31)

Lh =
1

gh(αh + βh)
. (32)

Each channel has a probability of being open which represents
the fraction of gates in that channel that are in the permissive
state (Gerstner et al., 2014). The gating variables are described
by the coupling of the conductances gn,m,h and their respective
inductances Ln,m,h which are functions of the rate constants
representing the transition from permissive to non-permissive
state, α(V), and vice-versa, β(V) which should take a short period
of time, τ = [α(V)+ β(V)]−1, to eventually reach a steady-state
value, α∞ and β∞ (Koslow and Subramaniam, 2005).

Borrowing concepts from systems theory such as frequency
analysis of LTI systems, as a standard procedure for the analysis
of linear differential equations as simpler algebraic expressions
(see Nise, 2015), and the linearization of non-linear systems
for the reason previously mentioned at the beginning of this
section, we derived a transfer function in the Laplace domain for
the linear system from Figure 4. The relationship between the
different elements of the circuit and their respective impedance
and admittance values from the Laplace transforms are depicted
in Table 1.

Therefore, the relationship between the output and the
input of the system in the frequency domain is expressed as

TABLE 1 | Impedance relationships for capacitors, resistors, and inductors.

Component Impedance Admittance

Capacitor

1

Cs
Cs

Resistor

R G =
1

R

Inductor

Ls
1

Ls
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V(s)

I(s)
=

s3LnLmLh
{LnLmLh[s

4C + s3(GT + gn + gm + gh)]+ s2(LmLh + LnLh + LmLh)}

(33)

where s = σ + jω is a complex variable; j =
√
−1 and ω = 2π f ,

where f is the frequency in Hertz. Let us rewrite Equation (33) as

W(s) = C−1
s

s2 + sC−1(GT + gn + gm + gh)+ C−1(L−1m + L−1n + L−1
h

)
.

(34)

Now, denoting γ = GT+gn+gm+gh and λ
−1 = L−1n +L

−1
m +L

−1
h

and performing a few algebraic manipulations, we end up with
the following transfer function for the filter model

W(s) = γ−1
C−1γ s

s2 + C−1γ s+ λ−1C−1
. (35)

For frequency response analysis, we observe the behavior of
W(jω), i.e., substitute s = jω. For ω → 0, W(jω) behaves
like ω; for ω → ∞ it behaves like 1

ω+1 , i.e., in both cases it
tends to zero, and hence demonstrates the behavior of a second-
order band-pass filter (BPF). It corresponds to the canonical form

K(ω0/Q)s

s2+(ω0/Q)s+ω
2
0
where K = γ−1 is the gain, Q = γ−1

√
Cλ−1 is

the selectivity and ω0 =
√
λ−1C−1 is the peak frequency of the

filter. This agrees with findings from previous literature on the
matter (Plesser and Geisel, 1999) that concluded the periodicity
of a stimulus is optimally encoded by a neuron only in a specific
spectral window.

2.3. Transfer Function Filter Design
Given the transfer function for a neural compartment in the
previous section, we now progress toward a transfer function
for the spike filter. The filter is comprised of neurons that are
particularly chosen to have a network that will behave as a digital
gate and a small population that will behave as a circuit that
implements the filter. Our aim is to capture the relationship
between compartments as well as neuron connections so we
can build a transfer function for the filter while considering
neuron connection variables (synaptic conductance and synaptic
weight) that allow easy reconfiguration of the filtering process.
The linearization process combined with the analysis of the
neuron communications is the driver of the filtering process,
which also allows the derivation of a filter transfer function which
is detailed below.

2.3.1. Biological Logic Gates and Circuits
Synthetic biology is the technology that allows the control of
the neurons’ internal process in order to construct non-natural
activity and functioning of neurons, e.g., logic gates (Larouche
and Aguilar, 2018). Synthetic logic operations inspire scientists
to address the challenges posed by novel synthetic biomedical
systems, such as biocompatibility and long-term use.

Figure 5A shows the three types of the circuit we have built
and analyzed in this work. From circuits A to C, the number
of OR gates is decreased; when compared to AND gates, OR
gates are quite permissive. In our previous study (Adonias et al.,
2020), we present an analysis on how signals from two input
neurons will need to be close to each other to amplify the action
potential of the output neuron in order to achieve maximum
AND-gating accuracy. The transformation from a purely OR-
formed logic circuit to a purely AND-formed one leads to the
confirmation of what the truth-tables suggest, i.e., fewer states
evoke spikes in the output and, consequently, the attenuation of
higher frequencies in the inputs. Figure 5B shows the connection
of AND gates in cascade, and this analysis is further discussed
in the section 4. Each of the circuits was analyzed with one
and two AND’s in cascade, hence the nomenclature of a letter
followed by a number, the letter refers to the type of circuit and
the number accounts for how many AND gates are connected
in cascade. Only two types of logic gates were used to build
the circuits, an AND composed of the cells L23-MC (Layer 2/3
Martinotti Cell), L23-NBC (Layer 2/3 Nest Basket Cell), and L1-
HAC (Layer 1 Horizontal Axon Cell); and an OR composed of
the cells L23-MC, L23-NBC, and L1-DAC (Layer 1 Descending
Axon Cell). These cells were picked because they showed the
best performance in our previous analysis on their individual
gating capabilities.

Given that several factors such as connection probability,
type of cell, and different numbers of compartments (as
discussed in section 2.3.2) among different types of neurons may
influence its gating capabilities. This variation on the quantity of
compartments could also lead to variations on periods for the
action potential to reach the post-synaptic terminals and start
the synapse process. Furthermore, cells with bigger sizes of soma
may take more time and amount of stimuli to reach threshold
for action potential initiation (Sengupta et al., 2013), thus, also

FIGURE 5 | (A) Schematic of circuits A, B, and C and (B) The connection of

AND gates in cascade to circuit A. A1 refers to the arrangement described by

a single AND gate connected to the output of the circuit A and A2 refers to

another AND gate connected to the output of A1 arrangement, i.e., two AND

gates in cascade with circuit A. Analogous nomenclature is employed for both

circuits B, as in B1/B2 and C, as in C1/C2.
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affecting the way a neuronal logic gate would work regarding
a specific morphological neuronal type. For that reason, it is
safe to keep two cells fixed as inputs (as illustrated in Figure 1)
and then deploy an arrangement with which its performance
has been previously assessed, allowing us to be fairly certain
about how the synthetic gate or circuit should behave. Each
neuron is represented by a block, Wi(s) for the i-th neuron,
and its representation in the frequency domain is proposed in
Equation (35) and further detailed in section 2.3.2.

2.3.2. Compartmental Modeling
Neurons are very complex structures with numerous
ramifications and several factors that contribute to their highly
non-linear dynamism. Aiming to make the comprehension
of such a complex electrical behavior easier, one employs a
widely used technique called “compartmental modeling.” Since
different neurons have different morphologies, the mechanism
of determining the number of compartments will be based
on estimating the length of a specific neuronal structure. For
instance, a varying length of axon, which will reflect in different
quantities of compartment in series, where we will have a fixed
size for each segment of the axon representing one compartment.
This is a very natural and elegant way to model dynamic
systems as multiple interconnected compartments where each
compartment is described by its own set of equations, carrying
the influence of one compartment to the next reproducing the
behavior of the whole neuron.

Observing the neuron as a set of compartments described
by transfer functions equivalent to that of (35), the neuronal
morphology of a pyramidal cell, as illustrated in Figure 6A, (or
any cell for that matter) can be modeled as an electrical circuit as
shown in the topology of Figure 6B; the dendritic ramifications
are modeled as a combination of serial and parallel connections
terminating in the soma which is connected to the axon modeled
as a series of compartments; its interpretation in terms of filtering
is given in Figure 6C. The effect of a serial connection of two
compartments is one of set-intersection when observed in the

frequency domain: two bandpass filters in series pass only the
frequencies that exist in both of their passbands. On the other
hand, a parallel connection has a set-union effect, a parallel
connection of filters will pass all the frequencies in both their
passbands. As such, a large network (tree) of such compartments
with similar bands combined in a cell, and cells combined in a
group of cells will exhibit asymptotic bandpass behavior as well.

Every single compartment, each represented by one transfer
function, is grouped in trees of three cells (Figure 1) forming a
logic gate; the three gates are connected into a tree of their own,
as illustrated in Figure 5A, forming a logic circuit. All of the cells
are represented with the same form of the transfer function,

Wi(s) = ζiγ
−1
i

C−1i γis

s2 + C−1i γis+ λ
−1
i C−1i

, i = 1, . . . , 9 (36)

with symbols defined previously, and a new parameter ζi
describing the synaptic weight for the ith cell; ζi acts as a tunable
gain for the neurons.

Using the parameters from (Mauro et al., 1970) aiming to
keep them within the physically sensible orders of magnitude,
we obtain the reference values of γ̄ = 0.0024, λ̄ = 119, C̄ = 1
and ζ̄ = 1, and the values for 9 cells were generated multiplying
these reference values by a uniformly distributed random variable
in the range (0, 1). This kind of distribution is widely used to
describe experiments where an arbitrary result should lie between
certain boundaries, and in our case boundaries are defined by
reasonable orders of magnitude around values made available by
previous studies; keeping exactly the same parameters for all cells
in the cascade is not realistic. The total transfer function of this
system is

W = ((W1 +W2)W3W7 + (W4 +W5)W6W8)W9, (37)

FIGURE 6 | Compartmental neuron representation: (A) Natural topology of a pyramidal cell, (B) Electronic circuit compartments, and (C) Effects of serial and parallel

connections between compartments.
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and its frequency response (Bode plot) for the relevant range of
frequencies in our applications (Wilson et al., 2004) is shown
in Figure 7B.

Let us now observe three cases concerning the choice of
ζi values. In the first case, we keep all of them at unity and
consider it our base case for this part of the analysis (and to
keep it aligned with the rest of the paper, we call it Circuit B).
In the second case, we double the values of ζ3 and ζ6, which
corresponds to the manipulation of the output cell for the two
input gates in Circuit A. In our linear model, this is equivalent
to doubling ζ9 and leaving everything else intact. Finally, in
the third case, we manipulate the output cell of the last gate
by halving its synaptic conductance (Circuit C). This effectively
means that the three cases are ζ9B = 1, ζ9A = 2, and ζ9C =
1/2, respectively. Since the tunable gain ζ9 of the gate W9, is
the tunable gain of the whole system W according to (37), its
change would offset the frequency response along the ordinate
axis, i.e., lower gains (lower conductance) would suppress the
unwanted frequencies in a better way, while higher gains would
do the opposite. This is demonstrated in Figure 7A. The process
of the analysis is summarized in Algorithm 1 and a summary
with all elements from both the original and linearized versions
of the Hodgkin-Huxley as well as the transfer function model is
presented in Table 2.

Alternatively, as we suggested earlier, a single transfer function
of a compartment serves as an approximation of the entire system
due to the effects of repeated bandpass filtering in Figure 6C.
In such case, we observe 20 dB/decade slope in the Bode plot
shown in Figure 7A (as compared to 80 dB/decade slope in
Figure 7B) and the same offset of 20 · log10 2 ≈ 6 dB in case
of halving/doubling the synaptic weight. Since the filter is of a
band-passing nature, it is only natural that, around the resonant
frequency, lower and higher frequency amplitudes should be
ideally attenuated toward zero. Thus, it is worth mentioning that
in both cases depicted here, the part of the frequency response
with the cusp is at very low frequencies, so it is not visible in the

relevant part of the spectrum. As such, the filter behaves as a low
pass filter for all practical considerations.

3. RESULTS

In this section, we discuss the simulation results concerning
the reconfigurable logic gates as well as the circuits. For all
simulations, intrinsic parameters of the cell were kept at their
default values (such as the length and diameter of each of
their compartments) meaning that nothing concerning their
morphological properties was changed, the spike trains fed to
the input of the circuits followed a Poisson process and the
threshold for spike detection and data analysis was 0 mV where
any potential higher than that in a specific time slot would be
considered a bit “1,” characterizing the use of a simple On-
Off Keying (OOK) modulation which was implemented where
a spike is considered as a bit “1” and its absence a bit “0”
in each time slot. The cell models and information on their
respective connection probabilities between different pair of

Algorithm 1 | Linear model filter analysis

Initialize:

Ŵ = {γ1, . . . , γ9} ∈ (0, γ̄ )
3 = {λ1, . . . , λ9} ∈ (0, λ̄)
C = {C1, . . . ,C9} ∈ (0, C̄)
Z = {ζ1, . . . , ζ9} ∈ (0, ζ̄ )
for 1 ≤ i ≤ 9 do

Wi ← ζiγ
−1
i

C−1i γis

s2+C−1i γis+λ
−1
i C−1i

end

WB ← ((W1 +W2)W3W7 + (W4 +W5)W6W8)W9

WA ← 2WB

WC ← 0.5WB

Plot frequency response:WA,WB,WC

FIGURE 7 | Bode plots: (A) Single second-order bandpass filter approximation and (B) Filter structure from Equation (37).
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TABLE 2 | Summary of elements described in the proposed model.

Element Description

C Membrane capacitance

gNa, gK ,gl Sodium, potassium, and leak conductances

ENa,EK ,El Sodium, potassium, and leak reversal potentials

Iext External stimulus

INa, IK , Il Ionic current for the sodium, potassium, and leak channels

V Membrane potential

m, h Sodium activation and inactivation variables

n Potassium activation variable

α,β Rate constants for m, h, and n from permissive to

non-permissive state and vice-versa

δ Small variation around the steady-state

GT Total pure conductance

GNa,GK ,GL Sodium, potassium, and leak pure conductances

ḡNa, ḡK , ḡl Maximum attainable sodium, potassium and leak

conductances

m∞, h∞, n∞ Steady-state values of m, h, and n

gm, gh, gn Conductances of the inductive branches

Lm, Lh, Ln Inductances of the ionic paths

W Transfer function of the filter

K,Q,ω0 Gain, selectivity, and peak frequency of the filter

ζ Synaptic weight

neurons were obtained from the work of Markram et al. (2015),
and then we used NEURON and Python for simulation and
data analysis (Carnevale and Hines, 2009; Hines et al., 2009).
The source-code of our simulations is publicly available on a
GitHub repository1.

3.1. Reconfigurable Logic Gates
In this work, we call “reconfigurable” logic gates, the gates that
work by changing the synaptic weight between the connections
of both input cells with the output cell in a neuronal logic gate
structure. Aiming to measure individual gate accuracy, the spike
trains in the inputs were randomly produced but we control
their frequency variation, in other words, for each simulation,
the frequency at all inputs was the same and any change in the
frequency was performed for all inputs of the gates meaning that
none of the simulations account for different frequency values
between different inputs in a single simulation. The accuracy is a
simple but powerful measure for the performance of the gates,
with which we intend to analyze the effects of the dynamics
of the cell on the output of the circuit when comparing this
output with the ideal response of the circuit derived from its
truth-table. The accuracy is calculated according to the following
equation (Hanisch and Pierobon, 2017):

A(E[Y];Y) =
P1,1 + P0,0

∑

Y

∑

E[Y]

PY ,E[Y]
, (38)

1https://github.com/gladonias/neuronal-filters

where PY ,E[Y] is the probability of Y given E[Y] in which Y is the
actual output and E[Y] is the expected output and Y &E[Y] ∈
{0, 1}. PY ,E[Y] resembles the conditional probabilities in a binary
symmetric channel (BSC). Thus, P0,0 = 1 − P1,0, and P0,1 =
1 − P1,1. It is possible to calculate P1,1, for instance, by counting
the number of bits there are for each input-output combination.
In other words, considering #Bi,j the number of times a bit i was
received when bit j was sent knowing that i& j ∈ {0, 1}, then
P1,1 = #B1,1/(#B1,1 + #B0,1).

Given the objective of obtaining a behavior similar to an OR
gate, the synaptic weight should be set to 0.06µS, meaning that
the pre-synaptic stimuli will drive a higher influence on the
depolarization of the post-synaptic cell. On the other hand, for
an AND behavior, the weight is set to 0.03µS, which reduces the
influence of a single spike and look to a response of the post-
synaptic neuron only when two spikes arrive very close to each
other in terms of time. This is conducted so we have acceptable
levels of accuracy when compared to the expected outputs of
the gate.

Figure 8 show similar responses when gates originally built to
be of a specific kind. This means either OR or AND gates can
change their configurations that drives their gating capabilities
by modifying the synaptic weight between the connections of the
input cells and the output cell. Although there is quite a visible
difference between the performance of AND and OR gates, even
at high frequencies (150 Hz), the accuracy of the reconfigurable
logic gates remains above 80%.

3.2. Neuronal Logic Circuits
Once the reconfigurable behavior of the gates is assessed, they are
connected to other gates to form a logic circuit. The performance
is measured employing a ratio (frequency response), i.e., the
number of spikes (bits “1”) in the output divided by the
nominal input frequency, in Hertz. This ratio is also known as
the magnitude, or gain when evaluating the data in decibels.
Following the approach for individual gates, the inputs are
random and the frequency is increased uniformly. Since the gates
showed similar accuracy when increasing the input frequency,
we picked the one analyzed in Figure 8A for our circuit analysis
with a reconfigurable logic gate, modifying only the output gate’s
synaptic properties.

Figure 9A show the results for the circuits in Figure 5A. As
expected, Circuit C has a stronger attenuation of the signals
passing through it, and this is mainly due to the fact it is an
arrangement with three AND gates and, based on the truth table,
an AND gate only responds to stimuli if all its inputs are active
at the same time. The magnitude in decibels shown in Figure 9B

follow a standard presentation of the response of digital filters.
In the non-linear case of the system, the filtering is even better

than what the linear model would promise, i.e., the suppression
of unwanted frequencies is better due to superexponential decay.
Let us compare Figures 7B, 9B. The linear model suggests that
a constant difference of 6 dB is to be expected if the synaptic
weight of the output cell is halved (or doubled), and a linear,
constant amplitude drop. In the nonlinear model, we do observe
a 20 dB/decade drop and 6 dB difference at relevant frequencies,
but instead of a linear trend, we observe a convex response, which
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FIGURE 8 | Analysis on reconfigurable logic gates with neurons of types (A) L23-MC, L23-NBC, and L1-DAC and (B) L23-MC, L23-NBC, and L1-HAC.

FIGURE 9 | Effects of dynamic changes to the synaptic weight in circuits A, B, and C; (A) Frequency response and (B) Magnitude in decibels.

helps in attenuating high frequencies faster than we would expect
from the linearmodel. This is because the linearmodel is accurate
in a neighborhood of the point at which it was linearized.

Now, let us considerH(ν) as the response of an ideal low-pass
filter, and W(ν) the response of the proposed neuronal filter, the
counter-efficiency ofW given H is calculated as

ψ(W|H) =

∫ νc

0
|W(ν)−H(ν)| dν +

∫ νf

νc

|W(ν)| dν (39)

where νc is the cut-off frequency and νf is the last evaluated
frequency (in this relationship, the lower the value, the more
efficient the filter is). Since, in terms of magnitude, a frequency
band when cut by an ideal filter should be attenuated toward
negative infinity (−∞), we have to pick a limit for the calculation
of the area under the curves. In our case, after a visual inspection,
the baseline for calculation chosen was −25 dB, because this is
the closest integer value to the lowest values of magnitude.

Figure 10 depicts the counter-efficiency analysis performed
for the three circuits. As it is shown, for different frequency bands
we have some circuits performing better than others. Also, each

circuit has a preferable frequency band for achieving maximum
efficiency. For frequencies lower than or equal to 80 Hz, Circuit
C seems the most efficient, especially at 60 Hz, while frequencies
around 100 Hz show Circuit B as the most efficient which is also
the band where it performs the best. Circuit A, on the other hand,
has its best performance for 120 Hz, and probably for higher
frequencies as well if the trend continues.

This shift in performance may allow us to control which
type of circuit we want to activate inside the brain depending
on which activity the subject is performing at the time, e.g.,
being awake or being asleep. These changes may be induced by
the intake of specific drugs that alter synaptic properties in a
neuronal connection.

Figure 11 shows a parallel analysis between the magnitude in
dB and the accuracy of the filters with AND gates in cascade. Each
circuit is identified by a pair of characters, the first is the letter
referring to the circuit analyzed, the second is how many AND
gates were connected in cascade. For example, A2 means Circuit
A with two AND gates in cascade, as illustrated in Figure 5B.

The results suggest that, by increasing the number of gates in
cascade, we have to deal with attenuation in the network due to
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FIGURE 10 | Counter-efficiency of the circuits when compared to ideal filters (the lower the value, the better the filter’s performance).

FIGURE 11 | Parallel between Magnitude (dB) and accuracy of circuits (A) A, (B) B, and (C) C, with AND gates in cascade.

propagation caused by specific characteristics of the cell, such as
the connection probability; hence, the more gates in cascade the
worse the performance of the circuit. Also, even though the ratio
keeps going downwards, at some point, the accuracy will start to
shoot up. With careful evaluation, the dip in the accuracy along
mid-range frequencies is very low in terms of scale, showing a
difference of only around 0.03 on the values of accuracy.

4. DISCUSSION

Synaptic weight plays a role in the influence of the pre-synaptic
stimuli and its impact on the post-synaptic neuron and has a
value proportional to the synaptic conductance (Gardner, 1989)
which is driven by the amount and type of neurotransmitters that
are being bound to the post-synaptic terminals. The higher the
connection probability between pairs of neurons, the stronger

the influence of a specific synaptic weight. This is due to
the proportional relationship that the weight has with each
synaptic connection that individually releases a certain amount
of neurotransmitters, hence, different neuron types may affect
the influence of a fixed value of synaptic weight. This explains
how the accuracy values fluctuate between different types of gates
and circuits as shown in Figure 11. Within a larger network
spatial dimension, the types of neurons may drive a higher
accuracy fluctuation since the network connection exhibits
different synaptic weights between each other.

With our model, we have mainly investigated the attenuation
on the spiking frequency for three different types of circuits in
which we decrease the number of OR gates by replacing them
with AND gates. We were also able to have the fine-tuning
synaptic properties showing a difference of around 5 dB in
performance between the curves in Figure 9B. Changes in the
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synapse are also considered (Vogels and Abbott, 2005), either by
strengthening or weakening specific synaptic connections, logic
gates were built within a homogeneous network of integrate-and-
fire neurons. Moreover, the experiments conducted by Goldental
et al. (2014) followed a procedure that enforced stimulations
on neuronal circuits within a network of cortical cells in-vitro
and they do propose other types of gates such as XOR and
NOT. Furthermore, we increased the number of AND gates in
a cascade-like manner in order to confirm that the longer the line
of cascade gates, the more attenuated the signal should be if none
of those elements receives any kind of external stimuli despite
the spike coming from the circuit, and this result is depicted
in Figure 11. A peak value in the difference of around 8 dB
occurs in Circuit A, decreasing to around 5 dB in Circuit B and
there is a small difference in Circuit C. The transfer function
derived from the Hodgkin-Huxley linear model suggests a band-
pass behavior of the system (Plesser and Geisel, 1999) for very
low frequencies leaving us with a low-pass filter acting on higher
frequencies ranging from 5 to 150 Hz. Considering the time for
a spike to be fired that comprises depolarization, repolarization,
and refractory period, higher frequencies will lead to saturation
and non-realistic behavior of neuronal firing.

Our results, therefore, suggest that neuronal logic circuits
can be used to construct also digital filters, filtering abnormal
high-frequency activity which can have many sources including
neurodegenerative diseases. A metric of counter-efficiency was
also proposed, which should show how far apart the real results
are from the ideal cases. We found that frequency bands were
found to be of optimal value for different types of circuits such
as 60 Hz for circuit C, 100 Hz for circuit B, and 120 Hz for
circuit A, as shown in Figure 10. Based on the presented results,
we demonstrate that by reconfiguring the gates inside the digital
filters we can shift the intensity with howwe attenuate the spiking
frequency allowing an on-the-fly adaptation of the filtering tasks
depending on the activity that is being performed by the subject
where, for instance, circuit C should outperform both A and B for
frequencies lower than or equal to 80 Hz.

The envisioned application of the proposed mathematical
framework is for in-silico pharmacology and how it can be
used to provide advanced prediction supporting computational
strategies to test drugs. Since drug design and discovery
in neuroscience are very challenging, especially due to the
complexity of the brain and the significant impediment of the
blood-brain barrier (BBB) imposes on the delivery of therapeutic
agents to the brain. The success rate for approval by competent
authorities of such drugs is <10%. Such a low rate is attributed
not only to factors related to the disease itself, such as complexity,
slow development, and gradual onset but also, to the limited
availability of animal models with good predictive validity
and the limited understanding of the biological side of the
brain (Geerts et al., 2020). The system model derived from a
set of coupled neuron compartments can help push forward the
design of these neuronal filters and provide a platform for in silico
drug-induced treatments on top of engineered biological models
of neurons. A platform that could lead to cost-effective drug
development and analysis of potential bio-computational units
capable of enhancing signal processing in the brain, as well as

predicting long-term effects of using a specific drug are potential
uses of the proposed mathematical framework.

5. CONCLUSION

In this work, we proposed a reconfigurable spike filtering design
using neuronal networks that behave as a digital logic circuit.
This approach requires the cells to be sensitive to modifications
through chemicals delivered through several proposed methods
available in the literature. From the Hodgkin-Huxley action
potential model we developed a mathematical framework to
obtain the transfer function of the filter. This required a
linearization of the Hodgkin-Huxley model that changes the
cable theory simplification for each cell compartment. To
evaluate the system, we have used our transfer function as well as
the NEURON simulator to show how the frequency of operation,
logic circuit configuration as well as logic circuit size can affect the
accuracy and efficiency of the signal propagation. We observed
that all-ANDs circuit produces more accurate results concerning
their truth-table when compared to all-ORs. In addition, the
results show that each digital logic circuit is also reconfigurable
in terms of cut-off frequency of the filter, by manipulating the
types of gates in the last layer of the circuit.

We believe the proposed filter design and its mathematical
framework will contribute to synthetic biology approaches for
neurodegenerative disorders such as epilepsy, by showing how
the control of cellular communication inside a small population
can affect the propagation of signals. For future work, we plan
the use of non-neuronal cells, e.g. astrocytes, for the control
of gating operations and the assessment of neuronal filtering
capabilities at a network level. Treatment techniques based on
this method can be a radical new approach to reaching precision
and adaptable outcomes, inspired from electronic engineering as
well as communication engineering. Such techniques could tackle
at a single-cell level, neurons affected by seizure-induced high-
frequency firing or bypass neurons that have been affected by a
disease-induced neuronal death and degeneration, thus keeping
the neuronal pathway working at a performance as optimal
as possible.
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In this paper, the synchronizability of multilayer K-nearest-neighbor networks is studied by

using the master stability function method. The analytical expressions for the eigenvalues

of the supra-Laplacian matrix are given for two-layer and multilayer K-nearest-neighbor

networks. In addition, the impacts of various topological parameters (such as the network

size, the node degree, the number of layers, the intra-layer and the inter-layer coupling

strengths) on the network synchronizability are discussed. Finally, the theoretical results

are verified through numerical simulation.

Keywords: multilayer network, K-nearest-neighbor topology, synchronizability, master stability function method,

supra-Laplacian matrix

1. INTRODUCTION

Since the appearance of small-world networks and scale-free networks [1, 2], complex networks
have attracted much attention due to their pervading through various scientific fields. Till now,
complex networks have been applied in nature and society, such as scientific cooperation networks,
information networks, biological networks, power grids, social networks, and so on [3, 4]. Recently,
a new description of the complex network called the multilayer network, where nodes interact with
more than one type of links, was put forward and gradually became an important branch of complex
networks [5–8].

Synchronization, as a significative collective behavior on complex networks, has been widely
and extensively discussed during the past two decades [9–14]. Further, there has been an increasing
interest focusing on the finite-time synchronization, especially when the synchronization is
required to be realized in finite time because of practical need [15, 16]. On the other hand,
scholars have done a lot of work to analyze the synchronization of multilayer networks. A general
framework for studying the diffusion processes on multiplex networks was proposed in [17, 18].
In 2014, Aguirre et al. revealed that the connector nodes between layers play an important role
in the synchronizability of interconnected networks [19]. Further, intra-layer synchronization,
inter-layer synchronization, counterpart synchronization, and generalized synchronization in
multiplex networks have been investigated [20–24]. Tang et al. proposed three necessary regions
to describe the different types of coherent behaviors (such as complete synchronization, intra-layer
synchronization, and inter-layer synchronization) in multiplex networks based on the master
stability function method [25].

However, most of the existing works focused on the effects of network structures on the
synchronizability of multilayer networks through numerical simulation. To better understand the
relationships between topological parameters and synchronizability, it is necessary to give a more
rigorous theoretical analysis. Recently, the analytical expressions for the eigenvalues of multilayer
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fully-connected networks, star networks, chain networks, and
star-ring networks were derived to analyze the synchronizability
[26–30]. To the best of our knowledge, very little work has
been devoted to studying the synchronizability of multilayer
K-nearest-neighbor networks. Due to the complexity of the
multilayer networks, it is still a real challenge to derive the
analytical expressions for the eigenvalue spectrum of the supra-
Laplacian matrix.

Motivated by the above discussion, we study the
synchronizability of multilayer networks with K-nearest-
neighbor topologies. The present study uses the master stability
function method to investigate the relationships between various
topological parameters and network synchronizability. With
this framework, we strictly derive the analytical expressions for
the eigenvalues of two-layer and multilayer K-nearest-neighbor
networks. Analytical and numerical results show that the network
size, the node degree, the number of layers, the intra-layer and
the inter-layer coupling strengths can have important effects on
the synchronizability of multilayer K-nearest-neighbor networks.

The structure of this paper is organized as follows. The
model of multilayer networks and some preliminaries are
given in section 2. Section 3 studies the synchronizability
of two-layer and multilayer K-nearest-neighbor networks.
Numerical examples in section 4 illustrate the effectiveness
of theoretical results. The conclusion is finally drawn
in section 5.

2. PROBLEM FORMULATION AND
PRELIMINARIES

The dynamics of multilayer networks consisting of M layers are
described as follows [25]:

dXi
α

dt
= f

(

Xi
α
)

− a

N
∑

j = 1

wij
αH

(

Xj
α
)

− d

M
∑

β=1

di
αβŴ

(

Xi
β
)

, (1)

where Xα
i ∈ Rn is the state of the i-th node in the α-th layer,

1 ≤ i ≤ N, 1 ≤ α ≤ M. f :Rn → Rn is a smooth non-
linear vector function. The continuous function H : Rn → Rn

and a are the intra-layer coupling function and coupling strength,
respectively. Ŵ : Rn → Rn and d are the inter-layer coupling
function and coupling strength, respectively. For simplicity, let
H(Xj

α) = HXj
α , Ŵ(Xi

α) = ŴXi
α and H = Ŵ. In the α-th layer, if

the i-th node is connected with the j-th (j 6= i) node, wij
α= − 1,

otherwise, wij
α=0, and wii

α = −
∑N

j = 1,j 6=i wij
α (i, j = 1, 2, ...,N

and α = 1, 2, ...,M). L(α) = (awij
α) ∈ RN×N is the Laplacian

matrix of the α-th layer. Similarly, if the i-th node, in the α-th
layer, is connected with its replica in the β-th (α 6= β) layer,

d
αβ
i = −1, otherwise d

αβ
i = 0, and di

αα = −
∑M

k = 1,k6=α di
αk

(α,β = 1, 2, ...,M (α 6= β)). It is obvious that LI = (dd
αβ
i ) ∈

RM×M is the interlayer Laplacian matrix.

Denote

X(α) =











X1
α

X2
α

...
XN

α











,X =











X(1)

X(2)

...

X(M)











,

f̃ (X(α)) =











f (X1
α)

f (X2
α)

...
f (XN

α)











, F(X) =













f̃ (X(1))

f̃ (X(2))
...

f̃ (X(M))













,

then we can rewrite the evolution of the multilayer network (1)
as following form:

dX

dt
= F(X)−

(

(LL + L
I)⊗ Ŵ

)

X, (2)

where

L
L =











L(1) 0 · · · 0

0 L(2) · · · 0
...

...
. . .

...

0 0 · · · L(M)











=
M
⊕

α=1
L(α), (3)

L
I = LI ⊗ IN . (4)

Here,⊗ is the Kronecker product,⊕ is the direct sum operation,
IN is the N × N identity matrix. Then we can get the supra-
Laplacian matrix of multilayer networks (1),

L= L
L + L

I . (5)

The decomposition of the supra-Laplacian matrix given in
Equation (5) is fundamental for the discovery of several
spectral performances of themultilayer networks [17]. According
to the master stability function (MSF) framework [31], the
synchronized regions of dynamical systems can be classified
into four classes: empty, bounded, unbounded and the
union of some bounded and unbounded regions. Here, we
only focus on the bounded and unbounded synchronized
regions. If the synchronized region is unbounded, the network
synchronizability is positively correlated to the non-zero
minimum eigenvalue (λ2) of the supra-Laplacian matrix. On
the other hand, if the synchronized region is bounded, the
eigenratio of the maximum eigenvalue and the non-zero
minimum eigenvalue (r = λmax/λ2) characterizes the network
synchronizability. A smaller r value means that there is a stronger
synchronizability of the network.

Throughout the rest of this paper, a useful lemma is presented
as follows.

Lemma 1. (see [28]) Let A and B are two square matrices with the
same size, then

∣

∣

∣

∣

∣

∣

∣

∣

∣

A B · · · B
B A · · · B
...

...
. . .

...
B B · · · A

∣

∣

∣

∣

∣

∣

∣

∣

∣

M×M

= |A− B|M−1 · |A+ (M − 1)B| , (6)

where M is a positive integer greater than 1.
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FIGURE 1 | Two-layer networks with K-nearest-neighbor topologies, where d

is the inter-layer coupling strength and a is the intra-layer coupling strength.

3. SYNCHRONIZABILITY OF MULTILAYER
NETWORKS

In this section, analytical results are presented for
the synchronizability of multilayer networks with
K-nearest-neighbor topologies.

3.1. Two-Layer K-nearest-neighbor
Networks
We consider a two-layer model, each layer is a K-nearest-
neighbor network with N nodes (K is an even number) and
every node in one layer is connecting with its counterpart in
the other layer. The corresponding structure can be shown
in Figure 1.

So the supra-Laplacian matrix can be written
as follows:

L =

(

A+ dIN −dIN
−dIN A+ dIN

)

, (7)

where

A =



















































Ka

K
2

︷ ︸︸ ︷

−a · · · − a 0 · · · 0

K
2

︷ ︸︸ ︷

−a · · · − a

−a Ka

K
2

︷ ︸︸ ︷

−a · · · − a 0 · · · 0

K
2 −1

︷ ︸︸ ︷

−a · · · − a

−a −a Ka

K
2

︷ ︸︸ ︷

−a · · · − a 0 · · · 0

K
2 −2

︷ ︸︸ ︷

−a · · · − a

.

.

.
. . .

. . .
. . .

. . .
.
.
.

K
2 −1

︷ ︸︸ ︷

−a · · · − a 0 · · · 0

K
2

︷ ︸︸ ︷

−a · · · − a Ka −a
K
2

︷ ︸︸ ︷

−a · · · − a 0 · · · 0

K
2

︷ ︸︸ ︷

−a · · · − a Ka



















































.

TABLE 1 | Change of a, d, K, N for λ2, r = λmax/λ2 of two-layer

K-nearest-neighbor networks.

Increase of a d K N

λ2

d <
aπ2K(K+1)(K+2)

12N2 λ2 ≈ 2d — ↑ — —

d >
aπ2K(K+1)(K+2)

12N2 λ2 ≈ aπ2K(K+1)(K+2)

6N2 ↑ — ↑ ↓

r = λmax
λ2

d <
aπ2K(K+1)(K+2)

12N2 r ≈ a(K+1)(3π+2)+6πd
6πd

↑ ↓ ↑ —

d >
aπ2K(K+1)(K+2)

12N2 r ≈ 2aN2 (K+1)(3π+2)+12πdN2

aπ3K(K+1)(K+2)
↓ ↑ ↓ ↑

↑, increase; ↓, decrease; —, unchange.

According to Lemma 1, we can get the characteristic polynomial
of L:

|λI2N −L| =

∣

∣

∣

∣

λIN − (A+ dIN ) dIN
dIN λIN − (A+ dIN )

∣

∣

∣

∣

= |(λ − 2d)IN − A| · |λIN − A| . (8)

Let |λIN − A| = 0, the eigenvalues of the K-nearest neighbor
network can be written as [32]:

λl = Ka− 2a

K/2
∑

j = 1

cos

(

2π
(

l− 1
)

j

N

)

, l = 1, 2, ...,N.

Let |(λ − 2d)IN − A| = 0, it follows that

λl − 2d = Ka− 2a

K/2
∑

j = 1

cos

(

2π
(

l− 1
)

j

N

)

, l = 1, 2, ...,N.

Then, the eigenvalues of L are

0,Ka − 2a

K/2
∑

j = 1

cos

(

2π
(

l− 1
)

j

N

)

, 2d,Ka

+ 2d − 2a

K/2
∑

j = 1

cos

(

2π
(

l− 1
)

j

N

)

,

l = 2, 3, ...,N. (9)

When 1≪K≪N, we can obtain the smallest non-zero eigenvalue
λ2 and the largest eigenvalue λmax based on the series expansion,

λ2 ≈ min

{

aπ2K (K + 1) (K + 2)

6N2
, 2d

}

, (10)

λmax ≈ a (K + 1)

(

1+
2

3π

)

+ 2d. (11)

The relationships between λ2, r = λmax/λ2 and the network
parameters are shown in Table 1.

Remark 1. When K = 2, the eigenvalues of single networks

are λl = 2a − 2a cos
(

2π(l−1)
N

)

= 4a sin2
(

(l−1)π
N

)

, l =

1, 2, ...,N. Then, the eigenvalues of supra-Laplacian matrix L

are 4a sin2
(

(l−1)π
N

)

, 2d + 4a sin2
(

(l−1)π
N

)

, l = 1, 2, ...,N. In

[26], synchronizability of duplex ring networks was investigated.
Obviously, the network model of this paper is more general.
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3.2. Multilayer K-nearest-neighbor
Networks
Similarly, we consider the multilayer network with M layers, the
corresponding structure is shown in Supplementary Figure 1.

We obtain the supra-Laplacian matrix L,

L =











A+ (M − 1)dIN −dIN · · · −dIN
−dIN A+ (M − 1)dIN · · · −dIN

.

.

.
.
.
.

. . .
.
.
.

−dIN −dIN · · · A+ (M − 1)dIN











M×M

,

(12)
where A is given in section 3.1.
According to Lemma 1, the characteristic polynomial of L is:

|λIMN −L|

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(λ − (M − 1)d)IN − A dIN · · · dIN
dIN (λ − (M − 1)d)IN − A · · · dIN
.
.
.

.

.

.
. . .

.

.

.

dIN dIN · · · (λ − (M − 1)d)IN − A

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= |(λ −Md)IN − A|M−1 · |λIN − A| . (13)

Then, the eigenvalues of L are

0,Ka− 2a

K/2
∑

j = 1

cos

(

2π
(

l− 1
)

j

N

)

,Md, ...,Md
︸ ︷︷ ︸

M−1

,

Ka + Md − 2a
K/2
∑

j = 1
cos

(

2π(l−1)j
N

)

, ...,Ka+Md

−2a
K/2
∑

j = 1
cos

(

2π(l−1)j
N

)

︸ ︷︷ ︸

M−1

,

l = 2, 3, ...,N. (14)

When 1≪K≪N, we can obtain the smallest non-zero eigenvalue
λ2 and the largest eigenvalue λmax based on the series expansion,

λ2 ≈ min

{

aπ2K (K + 1) (K + 2)

6N2
,Md

}

, (15)

λmax ≈ a (K + 1)

(

1+
2

3π

)

+Md. (16)

The relationships between λ2, r = λmax/λ2 and the network
parameters are shown in Supplementary Table 1.

Remark 2. When M = 2, the smallest non-zero eigenvalue λ2 ≈

min
{

aπ2K(K+1)(K+2)
6N2 , 2d

}

and the largest eigenvalue λmax ≈

a (K + 1)
(

1+ 2
3π

)

+ 2d, which are equal to the eigenvalues in
Equations (10) and (11). Actually, the two-layer network is a
special case of the multilayer network.

4. NUMERICAL SIMULATIONS

In this section, numerical examples are presented to study the
synchronizability of the multilayer K-nearest-neighbor networks.

4.1. The Synchronizability of Two-Layer
Networks
(1) Let N = 200, K = 50, d = 1, the impact of the

intra-layer coupling strength a on network synchronizability
is shown in Figures 2A,B. When the synchronized region
is unbounded, Figure 2A displays that λ2 increases with

small a (a < a0 = 12N2d
π2K(K+1)(K+2)

≈ 0.3668), and

then reaches a certain value λ2 = 2d = 2. This implies
that the synchronizability of two-layer networks is first
enhanced with small values of increasing a and then held
constant with ever-increasing a. When the synchronized
region is bounded, it can be observed from Figure 2B

that the eigenratio r = λmax/λ2 first decreases with
small a (a < a0) and then increases monotonically.
It means that the synchronizability is enhanced firstly,
then gets weakened after reaching the maximum. The
synchronizability of two-layer networks is maximized

at a0 =
12N2d

π2K(K+1)(K+2)
.

(2) Let N = 200, K = 50, a = 0.5, the impact of the
inter-layer coupling strength d on network synchronizability
is shown in Figures 2C,D. When 0.5 < d < d0 =
aπ2K(K+1)(K+2)

12N2 ≈ 1.3632, Figure 2C depicts that λ2
increases linearly with small d. When d > d0, it reaches
a certain value λ2 = 2d0. This implies that, with an
unbounded synchronized region, the synchronizability is
first enhanced with small d and then kept invariant. In
Figure 2D, it can be observed that the eigenratio r =

λmax/λ2 first decreases with small d (d < d0) and then
increases slowly. It means that, with a bounded synchronized
region, the synchronizability is enhanced firstly and then
slowly gets weakened after reaching the maximum. The
synchronizability of two-layer networks is maximized

at d0 =
aπ2K(K+1)(K+2)

12N2 .
(3) Let N = 200, d = 5, a = 0.5, the relationship between

the synchronizability and the node degree K is shown in
Figures 3A,B. When the synchronized region is unbounded,
as shown in Figure 3A, λ2 increases sharply with increasing
K (50 < K < K0 = 77), and then reaches a λ2 =

2d = 10. This implies that the synchronizability of two-
layer networks is first enhanced and enhanced and then
kept invariant. When the synchronized region is bounded,
it can be observed from from Figure 3B that the eigenratio
r = λmax/λ2 first decreases with increasing K (50 < K <

K0 = 77) and then increases monotonically. It means that
the synchronizability is enhanced sharply with increasing K,
then reaches its maximum, and finally gets weakened. The
two-layer networks is maximized at K0 = 77.

(4) Let K = 50, a = d = 1, the relationship between
the synchronizability and the network size N is shown in
Figures 3C,D. When 300 < N < 330, it depicts that λ2 and
the eigenratio r = λmax/λ2 remain invariant with increasing
N. When N > 330, λ2 decreases with increasing N, and
the eigenratio r = λmax/λ2 increases with increasing N.
This implies that, with unbounded or bounded synchronized
regions, the synchronizability is first kept invariant and then
gets weakened with increasing the network size N.
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FIGURE 2 | Synchronizability of two-layer K-nearest-neighbor networks. Panels (A,B) display λ2 and r = λmax/λ2 vs. the intra-layer coupling strength a (N = 200,

K = 50, d = 1). Panels (C,D) display λ2 and r = λmax/λ2 vs. the inter-layer coupling strength d (N = 200, K = 50, a = 0.5).

4.2. The Synchronizability of Multilayer
Networks
Here, we investigate the synchronizability of
multilayer K-nearest-neighbor networks. As shown in
Supplementary Figures 2,3, the impact of the intra-layer
coupling strength a, the inter-layer coupling strength
d, the node degree K and the network size N on
network synchronizability are similar to the two-layer
K-nearest-neighbor networks.

It can be seen from Supplementary Figure 2 that λ2 increases
nearly linearly at the beginning and then reaches a upper
bounded value, the eigenratio r = λmax/λ2 first decreases and
then increasesmonotonically. It reveals that the synchronizability
is enhanced firstly, and then reaches its maximum. Furthermore,

the optimal parameters a0 = 6MN2d
π2K(K+1)(K+2)

≈ 1.8339,

d0 = aπ2K(K+1)(K+2)
6MN2 ≈ 0.2726 and K0 = 133 are obtained

to maximize the synchronizability of multilayer networks.
Supplementary Figures 3A,B depict that λ2 and the eigenratio
r = λmax/λ2 remain invariant with increasing N (100 <

N < 147). When N > 147, λ2 decreases and the eigenratio

r = λmax/λ2 increases with increasing N. This implies that, the
synchronizability is first kept invariant and then gets weakened
with increasing the network size N. Let N = 200, K =

50, a = d = 0.5, Supplementary Figures 3C,D show that
λ2 increases at the beginning and then keeps invariant, the
eigenratio r = λmax/λ2 first decreases and then increases
slowly with increasing the number of layers M. The observation
reveals that the synchronizability of multilayer networks is
maximized atM0 = 6.

5. CONCLUSION

This paper aims to investigate the synchronizability of multilayer
networks with K-nearest-neighbor topologies. The master
stability function method allows one to analyze how various
topological parameters influence network synchronizability.
Here, the analytical expressions for the eigenvalues of two-
layer and multilayer K-nearest-neighbor networks have been
obtained. Further, we have discussed the impacts of the network
size, the node degree, the number of layers, the intra-layer
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FIGURE 3 | Synchronizability of two-layer K-nearest-neighbor networks. Panels (A,B) display λ2 and r = λmax/λ2 vs. the node degree K (N = 200, d = 5, a = 0.5).

Panels (C,D) display λ2 and r = λmax/λ2 vs. the network size N (K = 50, a = d = 1).

and the inter-layer coupling strengths on the synchronizability
of multilayer K-nearest-neighbor networks. Recently, network
coherence [33, 34] is an interesting but challenging topic, and
coherence analysis of multilayer networks is a part of our
future work.
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In this paper, we study network coherence characterizing the consensus behaviors with

additive noise in a family of book graphs. It is shown that the network coherence is

determined by the eigenvalues of the Laplacian matrix. Using the topological structures

of book graphs, we obtain recursive relationships for the Laplacian matrix and Laplacian

eigenvalues and further derive exact expressions of the network coherence. Finally, we

illustrate the robustness of network coherence under the graph parameters and show

that the parameters have distinct effects on the coherence.

Keywords: consensus, coherence, book graph, Laplacian spectra, recursive

1. INTRODUCTION

With the discovery of deterministic small-world [1] and scale-free [2] networks, deterministically
growing networkmodels have gained increasing attention because they can provide exact results for
topology and dynamics. As a special type of deterministic networks, fractal networks constructed by
fractal structures, such as Koch fractals [3], Sierpinski fractals [4], and Vicsek fractals [5], have been
widely studied. Presently the main issues that require consideration in fractal networks include
random walks [6–9], consensus dynamics [10, 11] and percolation [12]. It is proved that fractal
networks are good candidate network models for verifying the results of random graphs.

Calculating the Laplacian spectrum of a network plays an important role in the study of network
characteristics. For example, the Kirchhoff index and global mean first-passage time of a network
are related to the sum of reciprocals of non-zero eigenvalues [13–15]. The synchronizability [16]
of a network refers to the ratio of the second smallest eigenvalue to the largest eigenvalue of
the Laplacian matrix. In addition, the effective graph resistance is connected with the Laplacian
spectrum [17]. Recently, network coherence [10] was introduced to characterize the extent of
consensus of coupled agents under the noisy circumstance and was determined by the Laplacian
spectrum in an H2 norm. This concept of the network coherence helps to study the relationship
between the Laplacian eigenvalues and network consistency. Great progress has been made for
some special networks such as Vicsek fractals [10], tree-like networks [11], Sierpiński graphs [18]
and weighted networks [19]. Many works have been devoted to studying the network coherence.
Hong et al. studied the role of Laplacian energy on the coherence in a family of tree-like networks
with controlled initial states [20]. Patterson and Bamieh investigated the leader-follower coherence
and proposed optimal algorithms to select the leaders [21]. Later, Sun et al. proposed a leader
centrality to identify more influential spreaders using the optimal coherence [22].

It is known that the topology of a graph dominates the Laplacian eigenvalues [23]. Thus,
calculating the Laplacian eigenvalues is a technical challenge and it is theoretical and practical
interest to find new ways to calculate them. In this paper, a family of book graphs is chosen as our
network models. The topological indices, e.g., randic index, sum connectivity index, geometric-
arithmetic index, fourth atom-bond connectivity index, and edge labeling, have been analytically
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FIGURE 1 | Book graphs Bm.

FIGURE 2 | Stacked book graphs Bm,n with m = 3, n = 6.

obtained [24, 25]. However, the dynamics of the book graphs
remains less understood, in spite of the facts that studying the
dynamical processes leads to a better understanding of how the
underlying systems work.

The rest of this paper is organized as follows. Book graphs
and network coherence are presented in section 2. Section 3
gives detailed calculations of network coherence. Conclusions are
given in section 4.

2. MODEL PRESENTATION AND
NETWORK COHERENCE

2.1. Book Graphs
Book graphs Bm are defined as the graph Cartesian product [26],
i.e., Bm = Sm+1�P2, where Sm(m ≥ 1) is a star graph and
P2 is the path graph on two nodes, see Figure 1. The stacked
book graphs Bm,n of order (m, n) are Bm,n = Sm+1�Pn, where
Pn(n ≥ 2) is the path graph on n nodes, see Figure 2.

2.2. Network Coherence
The network coherence was introduced to characterize the
steady-state variance of the deviation from consensus. The
relationship [10] between network coherence and Laplacian
eigenvalues was established. The consensus dynamics with the
additive noise are given by

ẋi(t) = −
∑

j∈�i

Lijxj(t)+ ηi(t),

where xi(t) is the state of node i and subject to the stochastic noise
ηi(t). L is the Laplacian matrix. �i is the neighboring node set of
node i, and ηi(t) is a delta-correlated Gaussian noise.

Then, the first-order network coherence is defined as the
mean, steady-state variance of the deviation from the average of
all node values, i.e.,

H : =
1

N

N
∑

i=1

lim
t→∞

var







xi(t)−
1

N

N
∑

j=1

xj(t)







,

where var is the expectation of the squared deviation of a random
variable from its mean.

Let 0 = λ1 < λ2 ≤ . . . ≤ λN be the Laplacian eigenvalues.
The network coherence is given by

H =
1

2N

N
∑

i=2

1

λi
. (1)

When the network has a smaller variance, it has a higher network
coherence, meaning that it is more robust to the noise.

3. CALCULATIONS OF NETWORK
COHERENCE

In this section, we present the detailed calculations of the sum
of reciprocals of the Laplacian eigenvalues and obtain exact
expressions of network coherence. According to the structure of
Bm,n, its Laplacian matrix reads as

Lm,n =





















Lm + Im+1 −Im+1 0 · · · 0 0

−Im+1 Lm + 2Im+1 −Im+1 · · · 0 0

0 −Im+1 Lm + 2Im+1 · · · 0 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

0 0 0 · · · Lm + 2Im+1 −Im+1

0 0 0 · · · −Im+1 Lm + Im+1





















,

where Lm is the Laplacian matrix of a star graph Sm, that is,

Lm =











m −1 · · · −1
−1 1 · · · 0
...

...
...

...
−1 0 · · · 1











.

Then, we need to solve the characteristic equation Lm,nx = λx,
which is given by

(Lm + Im+1)x1 − Im+1x2 = λx1,
−Im+1x1 +(Lm + 2Im+1)x2 − Im+1x3 = λx2,

...
...

...
−Im+1xn−1 + (Lm + Im+1)xn = λxn,

(2)

where x = (xT1 , x
T
2 , . . . , x

T
n )

T and the dimension of xi(1 ≤ i ≤ n)
ism+ 1.
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Suppose Lmxi = λjxi, i = 1, 2, . . . , n, where
λj(j = 1, 2, . . . ,m + 1) are the eigenvalues of Lm. Then,
Equation (2) becomes

(

λj + 1
)

x1 − x2 = λx1,
−x1 +

(

λj + 2
)

x2 − x3 = λx2,
...

...
...

−xn−1 + (λj + 1)xn = λxn.

(3)

We then rewrite Equation (3) as

(

R
j
n(λ)− λj

)

x1 = 0, n ≥ 2,

where

R
j
n(λ) = λ − 1−

1

λ −
(

λj + 2
)

−
1

λ −
(

λj + 2
)

−
1

· · · λ −
(

λj + 2
)

−
1

λ − (λj + 1)

.

Further, we have

R
j
n(λ) = λj, j = 1, 2, . . . ,m+ 1. (4)

We rewrite R
j
n(λ) in a recursive form as



























R
j
n(λ) = λ − 1−

1

R
j
n−1(λ)−

(

λj + 1
)

,

R
j
2(λ) = λ − 1−

1

λ − (λj + 1)
=

λ2 − (2+ λj)λ + λj

λ − (λj + 1)
.

From Equation (4), each eigenvalue λj produces to n eigenvalues
and Bm,n has n(m+1) eigenvalues, denoted by3n = {λni |1 ≤ i ≤
n(m + 1)} = 31

n ∪ 32
n . . . ∪ 3m+1

n . For convenient calculations,
we denote the smallest eigenvalues λn1 = 0. In the following
subsections, we divide λj into two cases: λj 6= 0 and λj = 0 to
obtain the network coherence.

3.1. When λj 6= 0, j = 2, . . . ,m+ 1
Let R

j
n(λ) = T

j
n(λ)/P

j
n(λ), where T

j
n(λ) and P

j
n(λ) are two

polynomials satisfying gcd[T
j
n(λ), P

j
n(λ)] = 1, the term gcd is the

greatest common divisor. Then, we obtain the following recursive
relationships as

T
j
n(λ) = [T

j
n−1(λ)−

(

λj + 1
)

P
j
n−1(λ)]λ − T

j
n−1(λ)+ λjP

j
n−1(λ),

P
j
n(λ) = T

j
n−1(λ)−

(

λj + 1
)

P
j
n−1(λ), (5)

where the initial conditions are

T
j
2(λ) = λ2 − (2+ λj)λ + λj ,

P
j
2(λ) = λ − (λj + 1).

From Equation (5), we have

{

t
j
n(0) = −t

j
n−1(0)+ λjp

j
n−1(0),

p
j
n(0) = t

j
n−1(0)−

(

λj + 1
)

p
j
n−1(0).

(6)

where t
j
n(0) and p

j
n(0) are the constant terms of T

j
n(λ) and P

j
n(λ).

It follows from Equation (6) that

p
j
n(0)+

(

λj + 2
)

p
j
n−1(0)+ p

j
n−2(0) = 0. (7)

Solving Equation (7) with initial conditions of p
j
2(0) = −(λj + 1)

and p
j
3(0) = λ2j + 3λj + 1 yields

p
j
n(0) = c

j
1(r

j
1)

g + c
j
2(r

j
2)

g , (8)

where r
j
1 and r

j
2 are the roots of the characteristic equation λ2 +

(λj + 2)λ + 1 = 0. The constants r
j
1, r

j
2, c

j
1 and c

j
2 are































r
j
1 =

−(λj+2)+
√

λj(λj+4)
2 ,

r
j
2 =

−(λj+2)−
√

λj(λj+4)
2 ,

c
j
1 = 1

(r
j
1)

2−1

[

(λj)
2 + 3λj + 1+ (λj + 1)r

j
2

]

,

c
j
2 = 1

(r
j
2)

2−1

[

(λj)
2 + 3λj + 1+ (λj + 1)r

j
1

]

.

Substituting Equation (8) into Equation (6) yields

t
j
n(0) = −

[

c
j
1(r

j
1)

n−2
(

1+ r
j
1

)

+ c
j
2(r

j
2)

n−2
(

1+ r
j
2

)]

.

Next, we need to calculate the first-order terms t
j
n(1), p

j
n(1) of

T
j
n(λ) and P

j
n(λ). Using the relationship between T

j
n(λ) and P

j
n(λ)

of Equation (5) gives

t
j
n(1) = t

j
n−1(0)−

(

λj + 1
)

p
j
n−1(0)− t

j
n−1(1)+ λjp

j
n−1(1),

p
j
n(1) = t

j
n−1(1)−

(

λj + 1
)

p
j
n−1(1),

where the initial values are t
j
2(1) = −(λj + 2), p

j
2(1) = 1, p

j
3(1) =

−(2λj + 3). Then, we obtain

t
j
n(1) =

{

ej(r
j
1)

2 +
[

ngj +
(

λj + 1
)

ej
]

r
j
1

+ (n− 1)
(

λj + 1
)

gj
}

(r
j
1)

n−2

+
{

fj(r
j
2)

2 +
[

nhj +
(

λj + 1
)

fj
]

r
j
2

+ (n− 1)
(

λj + 1
)

hj
}

(r
j
2)

n−2,

p
j
n(1) = ej(r

j
1)

n−1 + fj(r
j
2)

n−1 + (n− 1)
[

gj(r
j
1)

n−2 + hj(r
j
2)

n−2
]

,
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where














































gj = −
c
j
1

[

(λj+2)r
j
1+1

]

2(r
j
1)

2+(λj+2)r
j
1

,

hj = −
c
j
2

[

(λj+2)r
j
2+1

]

2(r
j
2)

2+(λj+2)r
j
2

,

ej =
[1−(gj+hj)]r

j
2+2(gjr

j
1+hjr

j
2)+(2λj+3)

1−(r
j
1)

2
,

fj =
[1−(gj+hj)]r

j
1+2(gjr

j
1+hjr

j
2)+(2λj+3)

1−(r
j
2)

2
.

We introduce a new polynomial as

D
j
n(λ) = T

j
n(λ)− λjP

j
n(λ),

=
(

λ − λn(j−1)n+1

) (

λ − λn(j−1)n+2

)

. . .

(

λ − λnjn

)

. (9)

Using the Vieta’s formula [26, 27] for D
j
n(λ) = 0, we obtain its

constant and first-order terms, denoted by d
j
n(0), d

j
n(1), that is,















































d
j
n(0) = t

j
n(0)− λjp

j
n(0)

= −c
j
1(r

j
1)

n−2
[

1+
(

1+ λj
)

r
j
1

]

− c
j
2(r

j
2)

n−2
[

1+
(

1+ λj
)

r
j
2

]

,

d
j
n(1) = t

j
n(1)− λjp

j
g(1)

= (r
j
1)

n−2
[

ej(r
j
1)

2 +
(

ngj + ej
)

r
j
1 + (n− 1)gj

]

+(r
j
2)

n−2
[

fj(r
j
2)

2 +
(

nhj + fj
)

r
j
2 + (n− 1)hj

]

.

(10)
3.2. When λj = 0

When λj = 0, R1n(λ) = 0 has only one root λn1 = 0. To

obtain all the non-zero roots of R
j
n(λ) = 0, we introduce a new

polynomial, i.e.,

Z1
n(λ) =

1

λ
R1n(λ).

Further,

T1
n(λ) = (λ − 1)T1

n−1(λ)− P1n−1(λ),

P1n(λ) = λT1
n−1(λ)− P1n−1(λ),

where the initial conditions are T1
2 (λ) = λ − 2, P12(λ) = λ − 1.

In the same way, we obtain the following coefficients, which are
given by

{

t1n(0) = (−1)n−1n,

t1n(1) = (−1)n−2 · n(n2−1)
6 ,

{

p1n(0) = (−1)n−2,

p1n(1) = (−1)n−2 · n(n−1)
2 ,

It follows from Equation (9) that























d1n(0) = (−1)n−1λn2λ
n
3 . . . λnn,

= (−1)n−1n,
d1n(1) = (−1)n−2

[

λn3λ
n
4 . . . λnn + λn2λ

n
4 . . . λnn + . . .

+ λn2λ
n
3 . . . λnn−1

]

,

= (−1)n−2 · n(n2−1)
6 .

(11)

3.3. Exact Solution of Network Coherence
for Bm,n

We introduce a polynomial Dn(λ) to obtain the exact solution
of the network coherence, i.e.,

Dn(λ) =

m+1
∏

j=1

D
j
n(λ) =

n(m+1)
∏

i=2

(λ − λni ).

According to Equations (10) and (11), the constant and first-
order terms of Dn(λ) are

dn(0) =

m+1
∏

j=1

d
j
n(0),

dn(1) = d1n(1)d
2
n(0) . . . d

m+1
n (0)

︸ ︷︷ ︸

m+1

+ d1n(0)d
2
n(1) . . . d

m+1
n (0)

︸ ︷︷ ︸

m+1

+ . . . + d1n(0)d
2
n(0) . . . d

m+1
n (1)

︸ ︷︷ ︸

m+1

.

Based on the Vieta’s theorem [26, 27], the network coherence
reads as

H =
1

2N

N
∑

i=2

1

λi
= −

1

2N

dn(1)

dn(0)
.

When m = 3, the Laplacian matrix Lm has four eigenvalues,
that is, λ1 = 0, λ2 = λ3 = 1, λ4 = 4. Using the above-
mentioned calculations, we obtain the analytical expression of
network coherence, i.e.,

H(n) =
1

8n

{ n2 − 1

6

− 20
[α1 + g2(nr

2
1 + n− 1)](r21)

n−2 + [α2 + h2(nr
2
2 + n− 1)](r22)

n−2

β1(r
2
1)

n−2 + β2(r
2
2)

n−2

− 2
[θ1 + g4(nr

4
1 + n− 1)](r41)

n−2 + [θ2 + h4(nr
4
2 + n− 1)](r42)

n−2

η1(r
4
1)

n−2 + η2(r
4
2)

n−2

}

,

(12)

where α1 = − 5−2
√
5

25 , α2 = − 5+2
√
5

25 , β1 = 15 − 7
√
5,β2 =

15 + 7
√
5, θ1 = − 10−7

√
2

32 , θ2 = − 10+7
√
2

32 , η1 = 24 − 17
√
2,

η2 = 24 + 17
√
2, g2 = −

(5−
√
5)(3r21+1))

10r21(2r
2
1+3)

, h2 = −
(5+

√
5)(3r22+1))

10r22(2r
2
2+3)

,

g4 = −
(2−

√
2)(6r41+1))

8r41(r
4
1+3)

, h4 = −
(2+

√
2)(6r42+1))

8r42(r
4
2+3)

, r21 = −3+
√
5

2 ,

r22 =
−3−

√
5

2 , r41 = −3+ 2
√
2, r42 = −3− 2

√
2.

3.4. Exact Solution of Network Coherence
for Bm

To investigate the effect of the parameters m on the network
coherence, we propose another method to obtain the solution
regarding the parametersm. When n = 2, the Laplacianmatrix is

Lm,2 =

(

Lm −Im+1

−Im+1 Lm

)

.
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FIGURE 3 | Network coherence regarding the parameters n and m.

Then, the characteristic polynomial P(λ) of Lm,2 is

P(λ) =

∣

∣

∣

∣

Lm − λIm+1 −Im+1

−Im+1 Lm − λIm+1

∣

∣

∣

∣

=
∣

∣Lm − (λ + 1)I
∣

∣ ·
∣

∣Lm − (λ − 1)I
∣

∣

= λ(λ − 2)(λ −m− 1)(λ −m− 3)(λ − 1)m−1(λ − 3)m−1.

The roots of this polynomial P(λ) are as follows,







0, 2,m+ 1,m+ 3, 1, . . . , 1
︸ ︷︷ ︸

m−1

, 3, . . . , 3
︸ ︷︷ ︸

m−1







.

By the definition (1), we finally obtain the network coherence
with regard to the parametersm, which is given by

H(m) =
1

4m+ 4

[

1

2
+

1

m+ 1
+

1

m+ 3
+

4(m− 1)

3

]

. (13)

From the expressions (12) and (13), we plot the relationships
between network coherence and the parameters m and n, see
Figure 3. It shows that the values of network coherence linearly
increase with n, while the network coherence will achieve a steady
constant state for a large m, i.e., H(m) → 1

3 , meaning that the
consensus displays worse with increasing values of n. In a word,
the number of nodes n in the path graph has more influence than
the number of nodesm in the star graph.

4. CONCLUSIONS

In this paper, we have studied the consensus problems in
noisy book graphs. Using the graph’s constructions, we have

obtained the recursive relationships for the Laplacian matrix and
Laplacian eigenvalues and proposed a method to derive exact
expressions of the sum of reciprocals of these eigenvalues. We
then have presented exact solutions of network coherence with
regard to graph parameters and investigated their effects on the
coherence. It is shown that the larger size of star graphs results
in better consensus, while the larger size of path graphs leads to
worse consensus. The obtained results showed that the structure
difference produces distinct performance on the coherence. Our
method for the book graphs could be applied to study their
random walks and Kirchhoff index.
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Unicyclic Graphs
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The Wiener polarity indexWP(G) of a graphG is the number of unordered pairs of vertices
{u, v} where the distance between u and v is 3. In this paper, we determine the third
smallest Wiener polarity index of unicyclic graphs. Moreover, the corresponding extremal
graphs are characterized.

Keywords: wiener polarity index, minimum, unicyclic graph, extremal graph, electrical networks

1. INTRODUCTION

Graph theory is one of the most special and unique branches of mathematics. Recently, it has
attained much attention among researchers because of its wide range of applications
in computer science, electrical networks, interconnected networks, biological networks,
chemistry, etc.

The chemical graph theory (CGT) is a fast-growing area among researchers. It helps in
understanding the structural properties of a molecular graph. There are many chemical
compounds that possess a variety of applications in the fields of commercial, industrial, and
pharmaceutical chemistry and daily life and in the laboratory.

In a chemical graph, the vertices represent atoms and edges refer to the chemical bonds in the
underlying chemical structure. A topological index is a numerical value that is computed
mathematically from the molecular graph. It is associated with the chemical constitution
indicating the correlation of the chemical structure with many physical and chemical properties
and biological activities [1–3].

Let G be a simple and connected graph with |V(G)| � n and |E(G)| � m. Sometimes we refer to
G as a (n,m) graph. For any u, v ∈ V(G), the distance dG(u, v) between the vertices u and v of G is
equal to the length of (number of edges in) the shortest path that connects u and v. Ni

G(u) �
{v ∈ V(G)|dG(u, v) � i} is called the ith neighbor vertex set of u. Especially, if i � 1, then N1

G(u)(or
NG(u) for short) be the neighbor vertex set of u, and dG(u) � |NG(u)| is called the degree of G. If
dG(u) � 1, then we call u a pendant vertex of G.

A unicyclic graph of order n is a connected graph with n vertices and m edges. It is well-known
that every unicyclic graph has exactly one cycle. Let Un denote the class of unicyclic graphs on n
vertices. As usual, let K1,n−1, Cn, and Pn be the star, cycle, and path of order n, respectively.

Let c(G, k) denote the number of unordered vertices pairs of G, each of whose distance is equal to
k. The Wiener polarity index, denoted byWP(G), is defined to be the number of unordered vertices
pairs of distance 3, i.e., WP(G) � c(G, 3).

There is another important graph-based structure descriptor, called Wiener index, based on
distances in a graph. The Wiener index W(G) is denoted by [4]
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W(G) � 1
2

∑
u,v ∈ V(G)

d(u, v) � ∑
k≥ 1

c(G, k).

The name Wiener polarity index is introduced by Harold
Wiener [4] in 1947. In Ref. [4], Wiener used a linear formula of
W(G) and WP(G) to calculate the boiling points tB of the
paraffins, i.e.,

tB � aW(G) + bWP(G) + c,

where a, b, and c are constants for a given isomeric group.
If G1,/,Gt are the connected components of a graph G, then

WP(G) � ∑t
i�1WP(Gi). Therefore, it will suffice to consider the

Wiener polarity index of connected graphs.
In 1998, Lukovits and Linert [5] demonstrated quantitative

structure-property relationships in a series of acyclic and cycle-
containing hydrocarbons by using the Wiener polarity index. In
2002, Hosoya [6] found a physicochemical interpretation of
WP(G). Du et al. [7] obtained the smallest and largest Wiener
polarity indices together with the corresponding graphs among
all trees on n vertices, respectively. Deng [8] characterized the
extremal Wiener polarity indices among all chemical trees of
order n. Hou [9] determined the maximumWiener polarity index
of unicyclic graphs and characterized the corresponding extremal
graphs. Lei [8] determined the extremal trees with the given
degree sequence with respect to the Wiener polarity index. In a

previous study [10], the authors obtained the first and second
smallest Wiener polarity indexes of unicyclic graphs. In this
paper, we determine the third smallest Wiener polarity index
of unicyclic graphs. Moreover, all the corresponding extremal
graphs are characterized.

2. THE THIRD SMALLEST WIENER
POLARITY INDEX OF UNICYCLIC GRAPHS

The girth g(G) of a connected graph G is the length of a shortest
cycle in G. Let S(n, 1) be the unicyclic graph obtained from K1,n−1
by adding one edge to two pendant vertices of K1,n−1.

A non − pendant vertex of G is a vertex of G which is not a
pendant vertex. Suppose U is a unicyclic graph with unique
cycle Ct , in the sequel, we agree that V(Ct) � {v1, v2, . . . , vt}
and E(Ct) � {v1v2, v2v3, . . . , vt−1vt , v1vt}. For 1≤ i≤ t, let li �
max{d(vi, x), where w is a non-pendant vertex and there is
exactly one path connecting vi with x}.

Lemma 2.1. [10] Let U ∈ Un, thenWP(G)≥ 0, where equality
holds if and only if U ∈ S(n, 1) or U � C4 or U � C5 (S(n, 1) is
shown in Figure 1).

Lemma 2.2. Let G ∈ Un and
∣∣∣∣N2

G(u)
∣∣∣∣≥ k for any u ∈ V(G).

G + w be the new graph obtained from G by adding one vertex w
and one edge adjacent to u in G. Then,WP(G + w)≥WP(G) + k.

FIGURE 1 | Graphs S(n, 1),S1,T 1, T 2, and T 3.

FIGURE 2 | Graphs G1i(1≤ i ≤ 4).
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Proof. SinceNG+w(w) � {u} and ∣∣∣∣N2
G(u)

∣∣∣∣≥ k, thenWP(G + w) �
WP(G) +

∣∣∣∣N3
G(w)|� WP(G)+|N2

G(u)
∣∣∣∣≥WP(G) + k.

Lemma 2.3 [10]. Suppose U ∈ Un\{S(n, 1)}. If g(U) � 3 and
n≥ 5, then WP(U)≥ n − 4, where equality holds if and only if
U � S1 (S1 is shown in Figure 1).

Lemma 2.4. Let U ∈ Un. If g(U) � 3, then the third smallest
Wiener polarity index WP(U) � n − 3, the equality holds if and
only if U � T i, 1≤ i≤ 3 (T 1, T 2, and T 3 are shown in Figure 1).

Proof. Let C3 � {v1, v2, v3}; we consider the next cases.
Case 1. max{l1, l2, l3} � 0.
This implies that U is a unicyclic graph obtained by attaching

ki ≥ 0 pendant vertices to vi, where 1≤ i≤ 3. Without loss of
generality, let k1 + k3 ≥ k2. The graph G1i(1≤ i≤ 4) is shown in
Figure 2; by the definition of Wiener polarity index, we have

WP(G11) � k1k2 + k2k3 + k1k3;
WP(G12) � k1k2 + k2k3;
WP(G13) � (k1 + k3 + 1)(k2 − 1)

� k1k2 + k2k3 − (k1 + k3 + 1 − k2);
WP(G14) � 2(n − 5)≥ n − 4(n≥ 6);
WP(S1) � n − 4(n≥ 5).

Obviously, WP(G11)≥WP(G12)>WP(G13); the equality
holds if and only if G11 � G12. Then the third smallest Wiener
polarity index is WP(T 1) � 4 � n − 3.

Case 2. max{l1, l2, l3}≥ 1.
G15 is the subgraph of U and WP(G15) � 2,

∣∣∣∣∣N2
G15

(u)
∣∣∣∣∣≥ 1, the

equality holds if and only if u≠ v4 by Lemma 2.2; we have

WP(U)≥WP(G15) + n − 5 � n − 3,

the equality holds if and only if T 2 or T 3.
By combining the above arguments, the result follows.
Lemma 2.5 Let U ∈ Un. If g(U) � 4, then the third smallest

Wiener polarity index WP(U) � n − 3, the equality holds if and
only if U � T 4 or T 5 (T 4 and T 5 are shown in Figure 3).

Proof. Let C4 � {v1, v2, v3, v4}, we consider the next cases.
Case 1. max{l1, l2, l3, l4} � 0.
This implies that U is a unicyclic graph obtained by

attaching ki ≥ 0 pendant vertices to vi, where 1≤ i≤ 4.
Without loss of generality, let k1 + k3 ≥ k2 + k4. The graph
G2i(1≤ i≤ 4) is shown in Figure 4; by the definition of
Wiener polarity index, we have

FIGURE 3 | Graphs S2, T 4, and T 5.

FIGURE 4 | Graphs G2i(1≤ i ≤ 4).
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WP(G21) � k1k2 + k2k3 + k3k4 + k1k4 +∑
4

i�1
ki,

WP(G22) � k1k2 + k2k3 + k3k4 + k1k4 +∑
4

i�1
ki,

WP(G23) � k1k2 + k2k3 + k3k4 + k1k4 +∑
4

i�1
ki,

WP(G24) � (k1 + k3 + 1)(k2 + k4 − 1) +∑
4

i�1
ki.

Obviously, WP(G21) � WP(G22) � WP(G23)>WP(G24)≥ n − 3;
the equality holds if and only if G24 � T 4. Then the third
smallest Wiener polarity index is WP(T 4) � 3 � n − 3.

Case 2. max{l1, l2, l3, v4}≥ 1.
S2(k1 � 1 and k2 � 0) is the subgraph ofU andWP(S2) � 1(k1 �
1 and k2 � 0), by Lemma 2.2, we have

WP(U)≥ 1 + n − 5 � n − 4,

the equality holds if and only ifU � S2(k1 � 1, k2 � 1). If S2(k1 �
1, k2 � 1) is the induced subgraph of U, by Lemma 2.2, we have

WP(U)≥ 2 + n − 5 � n − 3,

the equality holds if and only if U � T 5.
By combining the above arguments, the result follows.
Lemma 2.6 Let U ∈ Un. If g(U) � 5, then the third smallest

Wiener polarity index WP(U) � n − 3, the equality holds if and
only if U � T i, (i � 6, 7, 8) (T 6, T 7, and T 8 are shown in
Figure 5).

Proof. Let C5 � {v1, v2, v3, v4, v5}, we consider the next cases.
Case 1. max{l1, l2, l3, l4, l5} � 0.
This implies that U is a unicyclic graph obtained by attaching

ki ≥ 0 pendant vertices to vi, where 1≤ i≤ 5.

If n � 5, then there exists only one graph C5 and WP(C5) � 0.
If n � 6, then there exists only one graph S3 and WP(S3) �

2 � n − 4.
If n � 7, then there exists three graphs G31, T 6, and T 7,

WP(G31) � 5 � n − 2, WP(T 6) � WP(T 7) � 4 � n − 3.
If n> 7, then G31 or T 6 or T 7 is the subgraph of U and

min{
∣∣∣∣∣N2

G31
(u)

∣∣∣∣∣,
∣∣∣∣∣N2

T 6
(u)

∣∣∣∣∣,
∣∣∣∣∣N2

T 7
(u)

∣∣∣∣∣}≥ 2. By Lemma 2.2, we have
WP(U)≥ 4 + 2 + n − 8 � n − 2.

Case 2. max{l1, l2, l3, l4, l5}≥ 1.T 8(n � t � 7) is the subgraph of
U and WP(T 8) � 4(n � t � 7); meanwhile,

∣∣∣∣∣N2
T 8
(u)

∣∣∣∣∣≥ 1, the
equality holds if and only if u � v7. By Lemma 2.2, we have
WP(U)≥ 4 + n − 7 � n − 3, the equality holds if and only if U �
T 8.

By combining the above arguments, the result follows.
Lemma 2.7 Let U ∈ Un and g(U) � 6. If n � 6, then

WP(C6) � n − 3; if n> 7, then WP(U)≥ n − 2.
Proof. When g(U) � 6 and n � 6, then there exists only one

graph C6 and WP(C6) � 3 � n − 3.
When n≥ 7, C6 is the subgraph of U and

∣∣∣∣∣N2
C6
(u)

∣∣∣∣∣≥ 2, by
Lemma 2.2, we have WP(U)≥ 3 + 2 + n − 7 � n − 2.

Lemma 2.8 Let U ∈ Un, if g(U) � s≥ 7, then WP(U)≥ n, the
equality holds if and only if U � Cs.

Proof. If U � Cs, then by the definition of Wiener polarity
index, we have WP(U) � n.

If UmCs, then Cs(s≥ 7) is the subgraph of U and
∣∣∣∣∣N2

Cs
(u)

∣∣∣∣∣≥ 2.
By Lemma 2.2, we have WP(U)≥WP(Cs)+2+(n− s−1) � n+1.

By combining the above arguments, the result follows.
Theorem 2.9. Let U ∈ Un; then the third smallest Wiener

polarity index WP(U) � n − 3, the equality holds if and only if
U � C6 or T i, 1≤ i≤ 8 (T 1,T 2, and T 3 are shown in Figure 1; T 4

and T 5 are shown in Figure 3; T 6,T 7, and T 8 are shown in
Figure 5).

Proof. By Lemma 2.4–2.8, the result follows.

FIGURE 5 | Graphs S3,G31,T 6,T 7, and T 8.
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3. CONCLUSIONS

Chemical graph theory is an important area of research in
mathematical chemistry which deals with topology of molecular
structure such as the mathematical study of isomerism and the
development of topological descriptors or indices. In this
paper, we first introduce some useful graph transformations
and determine the third smallest Wiener polarity index of
unicyclic graphs. In addition, all the corresponding extremal
graphs are characterized.
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Some Properties of Relative
Bi-(Int-)Γ-Hyperideals in Ordered
Γ-Semihypergroups
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In this article, we study the concept of relative bi-Γ-hyperideals (J -bi-Γ-hyperideals) in
ordered Γ-semihypergroups and present some related examples of this concept.
Especially, characterization of J -simple ordered Γ-semihypergroups in terms of J -bi-
Γ-hyperideals is given. Furthermore, we define the notion of J -(bi-)int-Γ-hyperideals in
ordered Γ-semihypergroups and investigate its related properties. We show that J -int-
Γ-hyperideals and J -Γ-hyperideals coincide in a J -regular ordered Γ-semihypergroup.

Keywords: ordered Q -semihypergroup, J -bi- Q -hyperideal, J -(bi-)int- Q -hyperideal, J -regular AMS mathematics
subject classification: 16Y99, 20N20, 06F99

1. INTRODUCTION

One of the motivations for the study of hyperstructures comes from biological inheritance and
physical phenomenon as the nuclear fission. Another motivation for the study of hyperstructures
comes from chemical reactions and redox reactions. Dehghan Nezhad et al. [1] provided a physical
example of hyperstructures associated with the elementary particle physics: leptons. As we know, the
Higgs boson is an elementary particle in the standard model of particle physics. In [2], it is shown
that the leptons and gauge bosons along with the interactions between their members construct an
H]-structure. Yaqoob et al. [3] studied some properties of (fuzzy) Γ-hyperideals in involution
Γ-semihypergroups. In [4], the concepts of uni-soft Γ-hyperideals and uni-soft interior Γ-hyperideals
of ordered Γ-semihypergroups are investigated.

Algebraic hyperstructures are a suitable generalization of classical algebraic structures. In a
classical algebraic structure, the composition of two elements is an element, while in an algebraic
hyperstructure, the composition of two elements is a set. The concept of hyperstructures was first
introduced by Marty [5] at the eighth congress of Scandinavian Mathematicians in 1934. Nowadays,
we can easily find well-written books for the introduction to hyperstructures, which include Corsini
[6], Corsini and Leoreanu [7], Davvaz [8], Davvaz and Leoreanu-Fotea [9], Davvaz and Vougiouklis
[10], and Vougiouklis [11]. For the information about hyper rings, we refer the reader to Ref. 9.

The study of ordered semihypergroups began with the work of Heidari and Davvaz [12]. In 2015,
Davvaz et al. [13] discussed the notion of a pseudo-order in an ordered semihypergroup. The focus of
the study was to find out if there is a relationship between ordered semihypergroups and ordered
semigroups by using pseudo-orders. In 2016, Gu and Tang [14] answered to the open problem given
by Davvaz et al. [13]. In [15], Tipachot and Pibaljommee introduced the concept of fuzzy interior
hyperideals on ordered semihypergroups. Recently, Mahboob et al. [16] studied the concept of
(m, n)-hyperideals on ordered semihypergroups. Recall, from Ref. 12, that an ordered
semihypergroup (S,+, ≤ ) is a semihypergroup (S) together with a (partial) order relation ≤
that is compatible with the hyperoperation +, meaning that, for any x, y, z ∈ S,
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x ≤ y0z+x ≤ z+y and x+z ≤ y+z.

Here, A≤B means that for any a ∈ A, there exists b ∈ B such
that a≤ b, for all nonempty subsets A and B of S.

Good and Hughes [17] introduced the notion of bi-ideals of a
semigroup as early as 1952. In 1962, Wallace [18] introduced the
notion of relative ideals (J -ideals) on semigroups. In 1967,
Hrmová [19] generalized the notion of J -ideal by introducing
the notion of a (J 1,J 2)-ideal of a semigroup S. Recently, Khan
and Ali [20] introduced the concept of relative bi-ideals in ordered
semigroups. The notion of Γ-semigroup was introduced by Sen and
Saha [21] in 1986, which is a generalization of semigroups. In 2011,
Anvariyeh et al. [22] introduced the notion of Γ-hyperideal of a
Γ-semihypergroup. Later on, Yaqoob and Aslam [23] studied prime
(m, n) bi-Γ-hyperideals of Γ-semihypergroups. Omidi et al. [24, 25]
discussed some important properties of bi-Γ-hyperideals of an
ordered Γ-semihypergroup. Bi-Γ-hyperideal is a special case of
(m, n)-Γ-hyperideal [26]. In 2017, Tang et al. [27] considered and
proved some theorems on fuzzy interior Γ-hyperideals in ordered
Γ-semihypergroups. Pseudo-orders are the bridge between ordered
Γ-semigroups and ordered Γ-semihypergroups, see Ref. 28.

After an introduction, in Section 2, we introduce some notation
and terminologies. Section 2 aims for summarizing the fundamental
materials on ordered Γ-semihypergroups. Section 3 is devoted to the
study of relative Γ-hyperideals (J -Γ-hyperideals) and relative bi-
Γ-hyperideals (J -bi-Γ-hyperideals) of an ordered Γ-semihypergroup.
In this section, our main results are stated and proved. J -simple
ordered Γ-semihypergroups are characterized by using the notions of
J -Γ-hyperideals and J -bi-Γ-hyperideals. Finally, in Section 4, the
notion of J -(bi-)int-Γ-hyperideals (J -(bi-)interior-Γ-hyperideals)
are studied and their related properties are discussed. It is shown
that, in J -regular ordered Γ-semihypergroups the J -Γ-hyperideals
and the J -int-Γ-hyperideals coincide.

2. PRELIMINARIES

Let S and Γ be two nonempty sets. Then, S is called a
Γ-semihypergroup [22] if every c ∈ Γ is a hyperoperation on S,
i.e., xcy4S, for every x, y ∈ S, α, β ∈ Γ, and x, y, z ∈ S, we have

xα(yβz) � (xαy)βz.

If every c ∈ Γ is an operation, then S is a Γ-semigroup. LetA and
B be two nonempty subsets of S. We define

AcB � ∪{acb
∣∣∣∣ a ∈ A, b ∈ B}.

Also,

AΓB � ∪{acb
∣∣∣∣ a ∈ A, b ∈ B and c ∈ Γ} � ∪

c ∈ Γ
AcB.

In the following, we recall the notion of an ordered
Γ-semihypergroup, and then we present basic definitions and
notations, which we will need in this article. Throughout this

article, unless otherwise specified, S is always an ordered
Γ-semihypergroup (S, Γ, ≤ ).

Definition 2.1 (see [29]). An algebraic hyperstructure
(S, Γ, ≤ ) is called an ordered Γ-semihypergroup if (S, Γ) is a
Γ-semihypergroup and (S) is a partially ordered set such that
for any x, y, z ∈ S and c ∈ Γ, x ≤ y implies zcx ≤ zcy and xcz ≤ ycz.
Here, if A and B are two nonempty subsets of S, then we say that
A≤B if, for every a ∈ A, there exists b ∈ B such that a≤ b.

Let S be an ordered Γ-semihypergroup. By a sub
Γ-semihypergroup of S, we mean a nonempty subset A of S such
that acb4A for all a, b ∈ A and c ∈ Γ. A nonempty subset A of S is
called idempotent if A � (AΓA].

Example 1. (See Ref. 25.) Let (S,+, ≤ ) be an ordered
semihypergroup and Γ a nonempty set. We define acb � a+b
for every a, b ∈ S and c ∈ Γ. Then, (S, Γ, ≤ ) is an ordered
Γ-semihypergroup.

Let J be a nonempty subset of an ordered Γ-semihypergroup
(S, Γ, ≤ ). If H is a nonempty subset of J , then we define

(H]J :� {j ∈ J
∣∣∣∣ j≤ h for some h ∈ H}.

Note that if J � S, then we define

(H] :� {x ∈ S
∣∣∣∣ x ≤ h for some h ∈ H}.

If A and B are nonempty subsets of S, then we have

(1) A4(A]J for all A4J
(2) ((A]J ]J � (A]J
(3) If A4B4J , then (A]J4(B]J
(4) (A]J Γ(B]J4(AΓB]J

An element a of an ordered Γ-semihypergroup (S, Γ, ≤ ) is
regular [25] if there exist x ∈ S and α, β ∈ Γ such that a≤ aαxβa.
This is equivalent to saying that a ∈ (aΓSΓa], for each a ∈ S. An
ordered Γ-semihypergroup S is said to be regular if every element
of S is a regular element.

Definition 2.2. Let (S, Γ, ≤ ) be an ordered Γ-semihypergroup.
A nonempty subset A of S is called a left (resp. right) Γ-hyperideal
[24] of S if it satisfies the following conditions:

(1) SΓA4A (resp. AΓS4A)
(2) If x ∈ A, y ∈ S, and y ≤ x, then y ∈ A

If A is both a left Γ-hyperideal and a right Γ-hyperideal of S,
then it is called a Γ-hyperideal (or two-sided Γ-hyperideal) of S.

3. BASIC PROPERTIES OF RELATIVE
BI-Γ-HYPERIDEALS
(J -BI-Γ-HYPERIDEALS)
Let (S, Γ, ≤ ) be an ordered Γ-semihypergroup and I and J be the
nonempty subsets of S. Then, I is called a left J -Γ-hyperideal of S
if it satisfies the following conditions:

(1) J ΓI4I
(2) When x ∈ J and y ∈ I such that x ≤ y, it implies that x ∈ I
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A right J -Γ-hyperideal of an ordered Γ-semihypergroup S is
defined in a similar way. By two-sided J -Γ-hyperideal or simply
J -Γ-hyperideal, we mean a nonempty subset of S which is both
left and right J -Γ-hyperideal of S.

Definition 3.1. LetJ 1 andJ 2 be the nonempty subsets of S. A
nonempty subset I of S is said to be an (J 1,J 2)-Γ-hyperideal of
S if it satisfies the following conditions:

(1) J 1ΓI4I and IΓJ 24I
(2) When x ∈ J 1∪J 2 and y ∈ I such that x ≤ y, it implies that

x ∈ I

Example 2. Let S � {a, b, c, d, e, f } and Γ � {c, β} be the sets of
binary hyperoperations defined as follows:

Then, S is a Γ-semihypergroup [23]. We have (S, Γ, ≤ ) as an
ordered Γ-semihypergroup, where the order relation ≤ is defined
by

≤ :� {(a, a), (b, a), (b, b), (b, c), (b, f ), (c, c), (d, d), (e, e), (f , f )}.

The covering relation and the figure of S are given by

3 � {(b, a), (b, c), (b, f )}.

Let J 1 � {a, b, c},J 2 � {b, d, f }, and I � {a, b, f }. One can check
that I is a (J 1,J 2)-Γ-hyperideal of S.Here are some elementary
properties of these concepts.

Lemma 3.2. Let (S, Γ, ≤ ) be an ordered Γ-semihypergroup. If
J is a sub Γ-semihypergroup of S, then (J ΓaΓJ ]J is a
J -Γ-hyperideal of S for each a ∈ S.

Proof. Let a ∈ S. We show that (J ΓaΓJ ]J is a J -Γ-hyperideal
of S. We have

J Γ(J ΓaΓJ ]J � (J ]J Γ(J ΓaΓJ ]J
4(J Γ(J ΓaΓJ )]J
� (J ΓJ (ΓaΓJ )]J
4(J ΓaΓJ ]J .

Similarly, we have (J ΓaΓJ ]J ΓJ4(J ΓaΓJ ]J . Now, let x ∈ J
and y ∈ (J ΓaΓJ ]J such that x ≤ y. Then, x ≤ y ≤ z for some
z ∈ J ΓaΓJ . Hence, x ≤ z and so x ∈ (J ΓaΓJ ]J . Therefore,
(J ΓaΓJ ]J is a J -Γ-hyperideal of S.

Theorem 3.3. Let I be a left Γ-hyperideal of an ordered
Γ-semihypergroup (S, Γ, ≤ ) and ∅≠J4S such that I4J . If
M is an idempotent left J -Γ-hyperideal of I, then M is a left
Γ-hyperideal of S.

Proof. Clearly, I is an ordered sub-Γ-semihypergroup of S. We
have

SΓM � SΓ(MΓM]
� (S]Γ(MΓM]
4(SΓ(MΓM)]
� ((SΓM)ΓM]
4((SΓI)ΓM]
4(IΓM]
4(J ΓM]
4(M]J
� M.

If m ∈ M4I and x ∈ S such that x ≤m, then we have x ∈ I4J .
SinceM is a left J -Γ-hyperideal of I, it follows that x ∈ M. Hence,
M is a left Γ-hyperideal of S. ∎

Theorem 3.4. Let I be a Γ-hyperideal of a regular ordered
Γ-semihypergroup (S, Γ, ≤ ) and J 1, J 24S such that
I4J 1∩J 2. Then, any (J 1,J 2)-Γ-hyperideal of I is a
Γ-hyperideal of S.

Proof. Let I be a Γ-hyperideal of S. Then, IΓI4SΓI4I. So, I is
an ordered sub-Γ-semihypergroup of S. Let A (A4I) be a
(J 1,J 2)-Γ-hyperideal of I. We prove that A is a Γ-hyperideal
of S. Let i ∈ I4S. Then, there exist x ∈ S and α, β ∈ Γ such that

i≤ iαxβi≤ iαxβ(iαxβi) � iα(xβiαx)βi.

Since I is a Γ-hyperideal of S, it follows that

xβiαx4(SΓI)ΓS4IΓS4I.

Hence, i≤ t, for some t ∈ iα(xβiαx)βi4iΓIΓi. This means that
i ∈ (iΓIΓi]I . Therefore, I is a regular ordered sub-Γ-semihypergroup
of S.

Let a ∈ A (A4I) and s ∈ S. Then, acs4I where c ∈ Γ. Now,
suppose that v ∈ acs4I. Then, there exist y ∈ I and λ, μ ∈ Γ
such that

v ≤ vλyμv 4(acs)λyμ(acs)
4AΓ(SΓIΓI)ΓS
4AΓIΓS
4AΓI
4AΓ(J 1∩J 2)
4AΓJ 2

4A.
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Similarly, we have sca4A.
If u ∈ A4I and v ∈ S such that v ≤ u, then we have

u ∈ I4J 1∩J 24J 14J 1∪J 2. Since A is a (J 1,J 2)-Γ-
hyperideal of I, it follows that v ∈ A. Hence, A is a
Γ-hyperideal of S.

Let a be an element of an ordered Γ-semihypergroup (S, Γ, ≤ ).
We denote by L1(a) (resp. R2(a), IJ (a)) the left (resp. right, two-
sided) relative Γ-hyperideal of S generated by a. The intersection
of all (J 1,J 2)-Γ-hyperideals of S containing the element a is
denoted by IJ (a), where J � J 1∪J 2.

Lemma 3.5. Let a be an element of an ordered
Γ-semihypergroup (S, Γ, ≤ ) and J 1 and J 2 be two sub-
Γ-semihypergroups of S. Then,

(1) L1(a) � (a∪J 1Γa]J 1

(2) R2(a) � (a∪aΓJ 2]J 2

(3) IJ (a) � (a∪J 1Γa∪aΓJ 2∪J 1ΓaΓJ 2]J , where J � J 1∪J 2

Proof. Since a ∈ L1(a) and J 1Γa4L1(a), it follows that
(a∪J 1Γa]J 1

4L1(a). We have

J 1Γ(a∪J 1Γa]J 1
4(J 1]J 1

Γ(a∪J 1Γa]J 1

4(J 1Γ(a∪J 1Γa)]J 1

4(J 1Γa]J 1

4(a∪J 1Γa]J 1
.

On the contrary, we have (L1(a)]J 1
� L1(a). Thus,

L1(a) � (a∪J 1Γa]J 1
is a left J 1-Γ-hyperideal of S containing

a. This means that L1(a)4(a∪J 1Γa]J 1
.

Now, we show that L1(a) is the smallest left J 1-Γ-hyperideal
of S containing a. Suppose that A is a left J 1-Γ-hyperideal of S
containing a. We have

L1(a) � (a∪J 1Γa]J 1
4(A∪J 1ΓA]J 1

4(A]J 1
4A.

This proves that (1) holds. Conditions (2) and (3) are proved
similarly.

Let (S, Γ, ≤ ) be an ordered Γ-semihypergroup and J 1 and J 2

be nonempty subsets of S. Then, S is said to be left J 1-simple if it
has no proper left J 1-Γ-hyperideal. In the same way, we can
define a right J 2-simple ordered Γ-semihypergroup. If S is a left
J 1-simple and right J 2-simple) ordered Γ-semihypergroup, then
S is a (J 1, J 2)-simple ordered Γ-semihypergroup.

Lemma 3.6. Let (S, Γ, ≤ ) be an ordered Γ-semihypergroup and
J 1 and J 2 be sub-Γ-semihypergroups of S such that
J � J 1∪J 2. Then, the following assertions hold:

(1) S is left J 1-simple if and only if (J 1Γa]J � S for each a ∈ S
(2) S is right J 2-simple if and only if (aΓJ 2]J � S for each a ∈ S
(3) S is (J 1, J 2)-simple if and only if (J 1ΓaΓJ 2]J � S for each

a ∈ S

Proof. The proof is straightforward.
We continue this section with the following definition.
Definition 3.7. Let (S, Γ, ≤ ) be an ordered Γ-semihypergroup

and J a nonempty subset of S. A sub-Γ-semihypergroupB of S is
called a relative bi-Γ-hyperideal (J -bi-Γ-hyperideal) of S if the
following conditions hold:

(1) BΓJ ΓB4B
(2) When a ∈ J and b ∈ B such that a≤ b, it implies that a ∈ B

Example 3.We come back to Example 2 and consider ordered
Γ-semihypergroup (S, Γ, ≤ ). LetB � {a, b, c} andJ � {b, f }. It is a
routine matter to verify that B is a J -bi-Γ-hyperideal of S.

Lemma 3.8. The intersection of any family of J -bi-
Γ-hyperideals of an ordered Γ-semihypergroup (S, Γ, ≤ ) is a
J -bi-Γ-hyperideal of S.

Proof. This proof is straightforward.
Let (S, Γ, ≤ ) be an ordered Γ-semihypergroup and J be any

nonempty subset of S. Then, S is said to be J -regular if, for each
j ∈ J , there exist x ∈ J and α, β ∈ Γ such that j≤ jαxβj.

Theorem 3.9. Let (S, Γ, ≤ ) be an ordered Γ-semihypergroup
and J a sub-Γ-semihypergroup of S. Then, the following
assertions are equivalent:

(1) S is J -regular
(2) B � (BΓJ ΓB]J for every J -bi-Γ-hyperideal B (4J ) of S

Proof. (1)0(2) Assume that (1) holds. Since B is a J -bi-
Γ-hyperideal of S, we get BΓJ ΓB4B. Thus,
(BΓJ ΓB]J4(B]J � B. Now, let b ∈ B (4J ). Since S is
J -regular, there exist x ∈ J and α, β ∈ Γ such that

b≤ bαxβb4BΓJ ΓB.

Hence, b ∈ (BΓJ ΓB]J and so B4(BΓJ ΓB]J . Therefore, B �
(BΓJ ΓB]J .(2)0(1) Let R be a right J -Γ-hyperideal and L a
left J -Γ-hyperideal of S. By routine checking, we can easily verify
thatR andL are J -bi-Γ-hyperideals of S. By Lemma 3.8,R∩L
is a J -bi-Γ-hyperideal of S. By hypothesis, we have

R∪L � ((R∪ L)ΓJ Γ(R∪ L)]J
4(RΓJ ΓL]J
4(RΓL]J .

Let a ∈ J . Since a ∈ R2(a) and a ∈ L1(a), it follows that
a ∈ R2(a)∪L1(a). By (1) and (2) of Lemma 3.5, we have

a ∈ (R2(a)ΓL1(a)]J � ((a∪ aΓJ ]J Γ(a∪J Γa]J ]J
� ((a∪  aΓJ )Γ(a∪  J Γa)]J
4(a Γ a∪  a ΓJ Γa]J .

Then, a≤w, for some w ∈ aΓa∪aΓJ Γa. If w ∈ aΓa, then
a≤ aca≤ ac(aca). So, a ∈ (aΓJ Γa]J . Therefore, S is J -regular.
If w ∈ aΓJ Γa, then a≤ aδxλa, for some x ∈ J and δ, λ ∈ Γ. Thus,
a ∈ (aΓJ Γa]J . Therefore, S is J -regular.

Definition 3.10. Let (S, Γ, ≤ ) be an ordered Γ-semihypergroup
and J 1 and J 2 be the nonempty subsets of S. A sub-
Γ-semihypergroup B of S is said to be a (J 1,J 2)-bi-
Γ-hyperideal of S if it satisfies the following conditions:

(1) BΓ(J 1∪J 2)ΓB4B
(2) When a ∈ J 1∪J 2 and b ∈ B such that a≤ b, it implies that

a ∈ B

Example 4. Let S � {e, a, b, c, d} and Γ � {c, β} be the sets of
binary hyperoperations defined as follows:
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Then, S is a Γ-semihypergroup [23].We have (S, Γ, ≤ ) as an ordered
Γ-semihypergroup, where the order relation ≤ is defined by

≤ :� {(a, a), (b, a), (b, b), (c, c), (d, c), (d, d), (e, e)}.
The covering relation and the figure of S are given by

3 � {(b, a), (d, c)}.

LetB � {e, a, b}, J 1 � {c}, and J 2 � {d}. It is easy to see thatB is
a (J 1,J 2)-bi-Γ-hyperideal of S.

The concept ofJ -bi-Γ-hyperideals of an ordered Γ-semihypergroup
is a generalization of the concept of J -Γ-hyperideals (left
J -Γ-hyperideals and right J -Γ-hyperideals) of an ordered
Γ-semihypergroup. Obviously, every left (right) J -Γ-hyperideal
of an ordered Γ-semihypergroup S is a J -bi-Γ-hyperideal of S, but
the following example shows that the converse is not true in the
general case.

Example 5. Consider the ordered Γ-semihypergroup (S, Γ, ≤ )
given in Example 2. It is easy to check that B � {a, b, c} is a
J -bi-Γ-hyperideal on S, where J � {b, f }, but it is not a right
J -Γ-hyperideal on S. Since c ∈ B and f ∈ J , but
ccf � {a, f }?{a, b, c}which implies thatBΓJ4B does not hold.

Theorem 3.11. Let (S, Γ, ≤ ) be an ordered Γ-semihypergroup
and J 1 andJ 2 be two sub-Γ-semihypergroups of S. Then, S is left
J 1-simple and right J 2-simple if and only if S does not contain
proper (J 1,J 2)-bi-Γ-hyperideals.

Proof. Let S be a left J 1-simple and right J 2-simple ordered
Γ-semihypergroup and B a (J 1,J 2)-bi-Γ-hyperideal of S. It is
sufficient to prove that S4B. Consider s ∈ S and b ∈ B. Since S is
left J 1-simple, we obtain

S � L1(b) � (b∪J 1Γb]J 1
,

by Lemma 3.5. We need to consider only two cases:

Case 1. Let s≤ b. As B is (J 1,J 2)-bi-Γ-hyperideal, we have
s ∈ B.

Case 2. Let s≤ j1cb, for some j1 ∈ J 1 and c ∈ Γ. By assumption,
S is a right J 2-simple ordered Γ-semihypergroup. Therefore,

S � R2(b) � (b∪bΓJ 2]J 2
,

by Lemma 3.5. Since j1 ∈ J 14S, we have j1 ≤ b or j1 ∈ (bλj2]J 2

for some j2 ∈ J 2 and λ ∈ Γ. By Lemma 3.6, we have

S � (bΓJ 2]J � (J 1Γb]J ,
and so

b ∈ (bΓJ 2]J4bΓ(J 1Γb]J ]J
4(bΓJ 1Γb]J
4(bΓJ Γb]J ,

where J � J 1∪J 2. Hence, S is a J -regular ordered
Γ-semihypergroup. So, there exist x ∈ J and α, β ∈ Γ such that
b≤ bαxβb. We now turn to the case j1 ≤ b. From this, we conclude
that j1cb≤ bcb. So, we obtain

(j1cb]J 4(bcb]J
4(bc(bαxβb)]J
4(bcbα(xβb)]J
4(BΓJ ΓB]J
4(B]J
� B.

Since s≤ j1cb, it follows that s ∈ B. This gives S4B. If
j1 ∈ (bλj2]J 2

, then

(j1cb]J4((bλj2]J 2
cb]J

4(BΓJ ΓB]J
4(B]J
� B,

and so s ∈ B. We thus get S4B.
Conversely, suppose that S does not contain proper

(J 1,J 2)-bi-Γ-hyperideals. Let M be a left J 1-Γ-hyperideal and
right J 2-Γ-hyperideal of S. We have

MΓ(J 1∪J 2)ΓM � MΓJ 1ΓM∪MΓJ 2ΓM
4MΓM
4M.

Hence, M is a (J 1,J 2)-bi-Γ-hyperideal of S. By assumption, we
have S � M. Therefore, S is a left J 1-simple and right J 2-simple
ordered Γ-semihypergroup.

4. RELATIVE (BI)-INT-Γ-HYPERIDEALS
(J -(BI)-INT-Γ-HYPERIDEALS)

Definition 4.1. Let (S, Γ, ≤ ) be an ordered Γ-semihypergroup and
J a nonempty subset of S. A sub-Γ-semihypergroup CI of S is
called a J -int-Γ-hyperideal of S if the following conditions hold:

(1) J ΓCIΓJ4CI
(2) If x ∈ J , y ∈ CI , and x ≤ y, then x ∈ CI
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It is not difficult to see that every J -Γ-hyperideal of an ordered
Γ-semihypergroup S is a J -int-Γ-hyperideal of S. The following
example shows that the converse is not true in general.

Example 6. Let S � {a, b, c, d} and Γ � {c}. We define

Then, S is a Γ-semihypergroup. We have (S, Γ, ≤ ) is an ordered
Γ-semihypergroup, where the order relation ≤ is defined by

≤ :� {(a, a), (a, b), (a, c), (a, d), (b, b), (c, c), (d, d)}.
The covering relation and the figure of S are given by

3 � {(a, b), (a, c), (a, d)}.

Let CI � {a, c} and J � {b, d}. Here, CI is a J -int-Γ-hyperideal of
S, but not a J -Γ-hyperideal of S. Indeed, since J ΓCI � {a, b}?CI ,
it follows that CI is not a J -Γ-hyperideal of S.The following
example shows that a J -regular ordered Γ-semihypergroup is not
regular in general.

Example 7. Consider the Γ-semihypergroup (S, Γ) given in
Example 6. Let ≤ be the relation on S defined as follows:

≤ :� {(a, a), (b, a), (b, b), (b, c), (c, c), (d, d)}.
Then, (S, Γ, ≤ ) is an ordered Γ-semihypergroup. The covering
relation and the figure of S are given by:

3 � {(b, a), (b, c)}.

Let J � {a, b} ⊂ S. An easy computation shows that S is a
J -regular ordered Γ-semihypergroup, but it is clearly not regular.

Theorem 4.2. Let (S, Γ, ≤ ) be a J -regular ordered
Γ-semihypergroup, where J is a nonempty subset of S. Then,
every J -int-Γ-hyperideal CI (CI4J ) of S is a J -Γ-hyperideal
of S.

Proof. Let CI be a J -int-Γ-hyperideal of S. Then, CI is a sub-
Γ-semihypergroup of S and (CI]J � CI . Let a ∈ CI4J . Since S is

J -regular, there exist x ∈ J and α, β ∈ Γ such that a≤ aαxβa. Now,
let j ∈ J and c ∈ Γ. Then,

jca ≤ jc(aαxβa)
� (jcaαx)βa
4(J ΓCIΓJ )ΓCI

4CIΓCI

4CI .

Thus, J ΓCI4(CI]J � CI . By a similar argument, we have
CIΓJ4CI . Hence, the result follows.In the following, we
introduce the notion of J -bi-int-Γ-hyperideals as a
generalization of J -Γ-hyperideals, J -bi-Γ-hyperideals, and
J -int-Γ-hyperideals of ordered Γ-semihypergroups.

Definition 4.3. Let (S, Γ, ≤ ) be an ordered Γ-semihypergroup
and J a nonempty subset of S. A sub-Γ-semihypergroupDb−i of S
is called a J -bi-int-Γ-hyperideal of S if the following conditions
hold:

(1) J ΓDb−iΓJ∩Db−iΓJ ΓDb−i4Db−i
(2) If x ∈ J , y ∈ Db−i, and x ≤ y, then x ∈ Db−i

Lemma 4.4. Let (S, Γ, ≤ ) be an ordered Γ-semihypergroup
and J a nonempty subset of S. Then, the following statements
hold:

(1) Every J -Γ-hyperideal of S is a J -bi-int-Γ-hyperideal of S
(2) The intersection of J -bi-int-Γ-hyperideals of S is a J -bi-int-

Γ-hyperideal of S
(3) If B is a J -bi-Γ-hyperideal and C a J -int-Γ-hyperideal of S,

then Db−i � B∩C is a J -bi-int-Γ-hyperideal of S

Proof. (1) Let A be a J -Γ-hyperideal of S. Then, J ΓA4A and
AΓJ4A. We have

J ΓAΓJ ∪AΓJ ΓA 4AΓJ ΓA
4AΓA
4A,

and

J ΓAΓJ∪AΓJ ΓA 4J ΓAΓJ
4AΓJ
4A.

Therefore, A is a J -bi-int-Γ-hyperideal of S.
(2) The proof is similar to the proof of Lemma 3.8.
(3) Clearly, Db−i � B∩C is a sub-Γ-semihypergroup of S. We

have

Db−iΓJ ΓDb−i � (B∩C)ΓJ Γ(B∩C)
4BΓJ ΓB
4B,

and

J ΓDb−iΓJ � J Γ(B∩C)ΓJ
4J ΓCΓJ

4C.
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Hence, J ΓDb−iΓJ ∩Db−iΓJ ΓDb−i4B∩C � Db−i. Therefore,
Db−i � B∩C is a J -bi-int-Γ-hyperideal of S.

Example 8. Let S � {a, b, c, d, e} and Γ � {c}. We define

Then, S is a Γ-semihypergroup. We have (S, Γ, ≤ ) as an ordered
Γ-semihypergroup [29], where the order relation ≤ is defined by

≤ :� {(a, a), (b, b), (c, c), (d, d), (e, e), (a, c), (b, a), (b, c),
(d, a), (d, c), (e, a), (e, c)} .

The covering relation and the figure of S are given by

3 � {(a, c), (b, a), (d, a), (e, a)}.

Let Db−i � {a, b, d} and J � {c, d}. Then, J ΓDb−iΓJ � {a, c, d}
and Db−iΓJ ΓDb−i � {a, b, d}, so {a, c, d}∩{a, b, d} � {a, d}4Db−i.
Hence, Db−i is a J -bi-int-Γ-hyperideal of S. It is easy to see that
Db−i (Db−iΓJ?Db−i) is not a J -Γ-hyperideal of S.

5. CONCLUSION

In this article, we studied some properties of J -(bi-)Γ-hyperideals of
ordered Γ-semihypergroups. In particular, we introduced and studied
J -int-Γ-hyperideals and J -bi-int-Γ-hyperideals. Furthermore, we
proved that J -int-Γ-hyperideals and J -Γ-hyperideals coincide in
J -regular ordered Γ-semihypergroups. When we deal with J -(bi-
)Γ-hyperideals of ordered Γ-semihypergroups, it is natural to talk
about fuzzy J -(bi-)Γ-hyperideal. According to the research results, it
is suggested to define and investigate some properties of fuzzy J -(bi-
)Γ-hyperideals, rough prime J -bi-Γ-hyperideals, fuzzy prime J -bi-
Γ-hyperideals, and uni-soft J -int-Γ-hyperideals in ordered
Γ-semihypergroups. As an application of the results of this article,
the corresponding results of ordered semihypergroups can be also
obtained by moderate modification.
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The paper analyzes the two theories of conducted light signal for Bragg fiber with

high-index core, namely total internal reflection and photonic bandgap. From the

perspective of the wave equation, the distribution of the electromagnetic field and

the conditions for forming the guided mode when the optical signal is transmitted in the

core of fiber are explained. The analysis of photonic bandgap adopts the band structure

principle of natural crystals for analogy. Then, the formation process of the photonic

bandgap is elaborated on.

Keywords: optical communication, fiber mode, wave theory, photonic band-gap, finite difference time domain,

Bragg fiber

INTRODUCTION

The concept of Bragg fiber has been proposed for a long time. With a periodic refractive index
distribution along the radial direction, it belongs to a one-dimensional bandgap photonic crystal
fiber. Generally speaking, Bragg fiber is of a cylindrical hollow structure, which is difficult in
production and practical application, so the application of this fiber is slow after being proposed
for many years. In recent years, it has been proposed to fill the hollow structure of Bragg fiber
with a high refractive dielectric material to make it the Bragg fiber with high-index core [1–3].
Figures 1, 2 show the schematic diagram of the sectional drawing and refractive index of Bragg
fiber with high-index core, respectively. It combines ordinary hollow Bragg fiber with traditional
fiber. In this way, the problem in processing is solved. More importantly, two binding mechanisms
for fiber transmission are provided, namely total internal reflection and photonic bandgap effect.
Besides, more controllable structural parameters in the design can be obtained, making it free to
choose to strengthen or weaken certain non-linear optical effects. Also, dispersion flattened of the
specific band, and the extremely high non-linear coefficient can be obtained [2, 4–6].

ANALYSIS OF WAVE THEORY FOR BRAGG FIBER WITH
HIGH-INDEX CORE

The optical signal should satisfy the wave equation derived fromMaxwell’s equations [7]

∇2E+ (
nω

c
)
2
E = 0. (1)

∇2H + (
nω

c
)
2
H = 0. (2)

Generally speaking, the vector solution to the earlier mentioned vector wave equation is very
complicated. Therefore, the scalar effective indexmethod is adopted for the solution of fiber inmost
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FIGURE 1 | Sectional drawing of Bragg fiber with high-index core.

FIGURE 2 | Refractive index of Bragg fiber with high-index core.

FIGURE 3 | Schematic diagram of the coordinates of the fiber in the cylindrical

coordinate system.

cases [8]. Our concern is the optical power distribution of the
optical field in the cross-section of the optical fiber during the
transmission of an optical signal in optical fiber. To know the
distribution, it is necessary to find the solution for the scalar
field of the optical fibers of Equations (1) and (2) that satisfy the
core-cladding boundary conditions. In the cylindrical coordinate
system (r, φ, z) shown in Figure 3, Equation (1) can be expanded
into a wave equation [5, 6, 9].

∂2EZ

∂r2
+

1

r

∂EZ

∂r
+

1

r2
∂2EZ

∂φ2
+
∂2EZ

∂z2
+ (

nω

c
)2EZ = 0 (3)

The following parameters can generally be provided in the field
of optical fiber communication k = 2π/λ = 2π f /c = ω/c. λ and
f are wavelength and frequency, β is propagation constant. As it
is shown in Figure 3, core (0 ≤ r ≤ a) refractive index n(r) = nc,
cladding (r ≥ a) refractive index n(r) = n1.

Ez(z) in Equation (3) is set as Ez(r, φ, z) = Ez(r)Ez(φ)Ez(z)
with the method of separation of variables. The optical signal
transmitted along the z-axis Ez(z) is of the form of exp(-jβz).
As optical fiber is of circular symmetry, Ez(φ) is the periodic
function for φ. As a result, it can be set as exp(jmφ) in which
m is an integer. Because Ez(r) is unknown, it can be expressed as

Ez(r,φ, z) = Ez(r)e
j(mφ−βz). (4)

In the core and cladding, substituting Equation (4) into Equation
(3) yields two m-order Bessel equations

d2Ez(r)

dr2
+

1

r

dEZ(r)

dr
+ (

u2

a2
−

m2

r2
)EZ(r) = 0(r ≤ a). (5)

d2Ez(r)

dr2
+

1

r

dEZ(r)

dr
− (

w2

a2
−

m2

r2
)EZ(r) = 0(r ≥ a). (6)

Among them, u, v, and w are three dimensionless
variables namely

u2 = a2(n2ck
2 − β2).

w2 = a2(β2 − n21k
2).

v2 = u2 + w2 = a2k2(n2c − n21).







(7)

Therefore, the specific distribution of the electromagnetic in
the fiber can be obtained through analysis of the solution to
Equations (5) and (6) [5, 6].

In the core (r ≤ a), the light wave produces total internal
reflection, so the transmission of the light wave in the Z direction
is slower than the transmission of a plane wave in the medium
nc, namely β < knc. Where r = 0, the electromagnetic field
should be a finite real number. According to these characteristics,
the solution to Equation (5) should be m order Bessel function
Jm(ur/a), so the expression of the electric field Ez(r, φ, z) and the
magnetic field Hz(r, φ, z) in the core is as follows

Ezc(r,φ, z) = A Jm(ur/a)
Jm(u)

ej(m8−βz)(0 ≤ r ≤ a).

Hzc(r,φ, z) = B Jm(ur/a)
Jm(u)

ej(m8−βz)(0 ≤ r ≤ a).

}

(8)

In the cladding (r ≥ a), the light wave decays in the r direction.
Where r → ∞, the electromagnetic field should decay to zero,
namely β > kn1. The solution to Equation (6) should take the
m-order-corrected Bessel function Km(ur/a), so the expression
of the electric field Ez(r, φ, z) and the magnetic field Hz(r, φ, z) in
the cladding is as follows

Ez1(r,φ, z) = AKm(wr/a)
km(w)

ej(m8−βz)(r ≥ a).

Hz1(r,φ, z) = BKm(wr/a)
km(w)

ej(m8−βz)(r ≥ a).

}

(9)

In the equation, A and B are constants determined by the
excitation conditions. It can be concluded from two types
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of Bessel function curves of the principle of optical fiber
communication that Jm(u) is similar to a sine curve with
analogous amplitude attenuation, and Km(w) is similar to an
index curve of attenuation. It can be learned from Equation (7)
that where such parameters as nc, n1, a, and k are determined,
u and w are only determined by β. Therefore, deriving the
characteristic equation, satisfying β can obtain the value of β

and u,w. The boundary condition of the electromagnetic in the
core-cladding surface is as follows

Ezc = Ez1Hzc = Hz1.
Eφc = Eφ1Hφc = Hφ1.

}

(10)

It can be learned from Equations (8) and (9) that Ez and Hz

satisfy the requirement of the boundary condition. The boundary
condition satisfied by Eφ and Hφ can derive the characteristics
equation satisfied by β

[ J
′
m(u)

uJm(u)
+ K′

m(w)
wKm (w)

][
n2c
n21

J′m(u)
uJm(u)

+ K′
m(w)

wK(w)
]

= ( β
nk
)2m2( 1

u2
+ 1

w2 )(
n2c
n21

1
u2

+ 1
w2 ).

(11)

The equation is combined with the characteristic parameters v
defined by Equation (7); the value of β can be obtained with the
numerical solution and thus determine the electromagnetic field
distribution of light wave in the core.

ANALYSIS OF PHOTONIC BANDGAP
THEORY FOR BRAGG FIBER WITH
HIGH-INDEX CORE

A photonic crystal is a new type of optical material that emerged
in recent years. The regular microstructure is introduced onto
ordinary optical material artificially to form the microstructural
material with a periodically changing refractive index. Generally
speaking, the size of the microstructure is sub-micron and of the
same order of magnitude to the wavelength of the light wave. This
material with a periodical distribution of refractive index shows
the special optical property for selecting different wavelengths of
light. In other words, the light of some wavelengths could not
exist or be transmitted in the photonic crystal but be reflected.
For these wavelengths, photonic crystal is like a mirror to stop
and reflect the incident light. This phenomenon is similar to the
energy band structure of semiconductor physics [7, 10–12].

According to solid-state physics, the motion of electrons in
its periodic potential field satisfies the Schrödinger equation in
natural crystal

[

− h̄2

2m∇2 + V(
⇀
r )

]

ψ = Eψ .

V(
⇀
r ) = V(

⇀
r +

⇀

R).







(12)

In Equation (12), V(
⇀
r ) represents the potential energy, and

⇀

R
represents the lattice constant in the crystal. The electron wave
can exhibit the energy band structure in the periodic potential
field and form a forbidden band due to the scattering of atoms of

the crystal [11]. The formation mechanism of the energy band in
the photonic crystal is similar to the earlier mentioned process.
The propagation of the electromagnetic wave in medium satisfies
Maxwell equation [13–16]

∇ ·
⇀

D = ρ.

∇ ·
⇀

B = 0.

∇ ×
⇀

E = − ∂
⇀
B
∂t .

∇ ×
⇀

H =
⇀

J + ∂
⇀
D
∂t .































(13)

In Equation (13)
⇀

J = σ
⇀

E
⇀

D = ε
⇀

E
⇀

B = µ
⇀

H. Among them, σ ,
ε, andµ represent conductivity, permittivity, and permeability,
respectively. If there is no free charge and current while the

medium is also a non-magnetic and isotropic material, ε = ε(
⇀
r )

should be a periodic function considering the periodicity of the

photonic crystal [14, 15]. ε(
⇀
r ) = ε0εr(

⇀
r ), µ = µ0, where εr(

⇀
r )

is the relative permittivity of the medium. It can be obtained
through substituting the discussed parameters into Equation (13)

∇ · ε0εr(
⇀
r )

⇀

E = 0.

∇ · µ0
⇀

H = 0.

∇ ×
⇀

E + µ0
∂
⇀
H
∂t = 0.

∇ ×
⇀

H − ε0εr(
⇀
r ) ∂

⇀
E
∂t = 0.































(14)

Considering that the incident light signal is a harmonic

electromagnetic wave, if
⇀

E =
⇀

E(
⇀
r )ejωt ,

⇀

H =
⇀

H(
⇀
r )ejωt , then it

can be obtained through substituting into Equation (14)

∇ · ε0εr(
⇀
r )

⇀

E(
⇀
r ) = 0.

∇ · µ0
⇀

H(
⇀
r ) = 0.

∇ ×
⇀

E(
⇀
r )+ jωµ0

⇀

H(
⇀
r ) = 0.

∇ ×
⇀

H(
⇀
r )− jωε0εr(

⇀
r )

⇀

E(
⇀
r ) = 0.



























(15)

After simplifying Equation (15), it can be obtained for TE mode
(Hx =Hy =Ez =0) [2, 5, 6]

∇ ×

[

1

ε(
⇀
r )
∇ ×

⇀

H(
⇀
r )

]

=
(ω

c

)2⇀
H(

⇀
r ). (16)

It can be obtained for TMmode (Ex = Ey =Hz = 0)

∇ × ∇ ×
⇀

E(
⇀
r ) =

(ω

c

)2
ε(
⇀
r )

⇀

E(
⇀
r ). (17)

In Equations (16) and (17), c = 1√
ε0µ0

is the velocity of light

in vacuum. Equations (16) and (17) are the Helmholtz equations
obtained through Maxwell’s equations. The permittivity in
photonic crystal shows a periodical change. The permittivity is

set as the sum of two parts ε(
⇀
r )=ε′(

⇀
r )+ε̄, where ε′(

⇀
r ) is the
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changing permittivity and ε̄ is the average permittivity. It can be
obtained through substituting the discussed parameter in respect
to Equation (17)

[

−∇2 −
(

ω
c

)2
ε′(

⇀
r )

]

⇀

E(
⇀
r )+∇

[

∇
⇀

E(
⇀
r )

]

=
(

ω
c

)2
ε̄
⇀

E(
⇀
r ).

ε′(
⇀
r ) = ε′(

⇀
r +

⇀

R).























(18)

Where
⇀

R is the lattice constant of the photonic crystal. If we use
Equations (18) and (12) to make the following analogy [17–19]

−
(

ω
c

)2
ε′(

⇀
r ) ∼ V(

⇀
r ).

(

ω
c

)2
ε̄ ∼ E.

}

(19)

The two are extremely similar. It is discovered in further

comparison that Equation (18) has onemore item∇ [∇
⇀

E(
⇀
r )] and

is a vector, whereas Equation (12) is scalar. However, if vertical
incidence or one-dimensional conditions are considered, then∇

[∇
⇀

E(
⇀
r )] = 0. In this way, there is almost no difference between

the two. As a result, Equation (18) can also use the Bloch theorem
to calculate the energy band or bandgap. It can be seen from the
previous analysis that the movement of a photon in a photonic
crystal is similar to the movement of electrons in a periodic
potential field, which could cause energy band structure with
bandgap. The solution to Equations (16) and (17) show that there
is no solution in some frequency bands. It means that photonic
crystal stops the transmission of an electromagnetic wave in these
frequency bands, resulting in the photonic bandgap. This method
to constrain optical transmission is sometimes more efficient
than total reflection [6, 20–23]. Because photonic crystal has
the special property to control light, researchers introduced this
microstructure into the cladding of fiber in the 1990s to form a
forbidden band to stop light signal from entering the cladding
and constrain it in the core to form a guided mode.

CONCLUSION

Bragg fiber with high-index core can provide two kinds of
light-guiding modes for optical signal transmission, namely full

reflection effect and photonic bandgap effect. The specific process
of optical signal transmission in optical fiber is analyzed and
calculated from the wave equation. The transmission constant
is obtained by numerical solution to the equations β, and the
distribution of the electromagnetic field and the conditions for
forming the guided mode when the optical signal is transmitted
in the core of fiber are determined [24, 25]. The photonic
bandgap is a kind of special structure obtained by the analogy
of photonic crystal and natural crystal, which is similar to
the energy band structure of the natural crystal. By analogy
with the equation established in the transmission of optical
signals in photonic crystal and the Schrodinger equation of
solid-state physics, it is learned that the optical signals of certain
frequency bands in photonic crystals cannot be transmitted, thus
forming the forbidden band, that is, the principle of photonic
bandgap effect.
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The purpose of this research study is to present and explore the key properties of

some new operations on vague graphs, including rejection, maximal product, symmetric

difference, and residue product. This article introduces the notions of degree of a vertex

and total degree of a vertex in a vague graph. As well, this study outlines the specific

conditions required for obtaining the degrees of vertices in vague graphs under the

operations of maximal product, symmetric difference, and rejection. The article also

discusses applications of vague sets in medical diagnosis.

Keywords: vague set, maximal product, rejection, symmetric difference, residue product, application

1. INTRODUCTION

Graph theory is an extremely useful tool for solving combinatorial problems in a wide range of
fields, including geometry, algebra, number theory, topology, operations research, biology, and
social systems. Graph theory also has many applications of great scope, such as in networking,
image capture, clustering, handling uncertainty, image segmentation, finding communities in
networks, bioscience, information technology, operations research, and social science networks
consisting of points connected by lines. In fact, graph theory studies connections between objects,
such as vertices and edges and the various relations between them. Fuzzy graph theory is finding an
increasing number of applications inmodeling real-time systems, where the amount of information
inherent in the system varies with different levels of precision. In 1965, Zadeh [1] first proposed the
theory of fuzzy sets. The fuzzy graph, with the approximate reasoning, enables many combinatorial
problems in fields, such as topology and algebra to be solved more easily. The concept of fuzzy
graphs is discussed by Rosenfeld [2] as well as by Bhattacharya [3, 4]. Fuzzy graphs date back to the
nineteenth century, and their use has grown tremendously in recent years [5, 6]. Gau and Buehrer
[7] proposed the concept of vague set in 1993, which replaces the value of an element in a set
with a subinterval of [0, 1]. Specifically, a true-membership function tv(x) and a false-membership
function fv(x) are used to describe the boundaries of the membership degree. Descriptions of real-
world problems can be improved by using the theory of vague sets. Researchers have applied this
theory to several real-world situations, such as decision-making and fuzzy control. The theory of
vague sets is also helpful for fault diagnosis and knowledge discovery. Interval-valued fuzzy sets
have a case vague set, which has been applied in different fields of mathematics. Ramakrishna
[8] introduced the concept of vague graph and also studied related properties. Vague graphs
have numerous applications in geometry and operations research and are also useful in many
areas of computer science. Rashmanlou and Borzooei [9] studied new concepts relating to vague
graphs, product vague graphs [10], regularity of vague graphs [11], and vague competition graphs
[12]. Krishna and Lavanya [13] developed new concepts of coloring in vague graphs. Besides the
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membership degree, the non-membership degree has been
introduced as well, which is presented by Atanassove [14] in an
intuitionistic fuzzy set, a type of extension of a fuzzy set. Parvathi
and Karunambigai [15] discussed intuitionistic fuzzy graphs.
Devi et al. [16] presented new concepts regarding intuitionistic
fuzzy labeling graphs.

In this study we outline and explore the key properties
of some new operations on vague graphs, including rejection,
maximal product, symmetric difference, and residue product.
We introduce new notions, such as degree of a vertex and total
degree of a vertex in a vague graph. We also outline specific
conditions for obtaining the degrees of vertices in vague graphs
under the operations of maximal product, symmetric difference,
and rejection. Furthermore, we explore applications of vague sets
in medical diagnosis.

2. PRELIMINARIES

In this section we introduce the key preliminary notions and
definitions that are used in this study.

Definition 2.1 ([17]). A graph is an ordered pair G = (V ,E),
where V is the set of vertices of G and E is the set of all edges,
arcs, or lines, which are two-element subsets of V (that is, an
edge is related to two vertices and the relation is represented as
an unordered pair {m, n} of those vertices).

Note that for an edge {m, n}, graph theorists usually use the
somewhat shorter notation mn. Two vertices m and n in an
undirected graph G are said to be adjacent in G if mn is an edge
of G. An edge whose endpoints are the same is called a loop. A
graph without loops is called a simple graph.

Definition 2.2 ([7]). A vague set M is a pair (TM; FM) of
functions on a set V , where TM and FM are real-valued V →

[0, 1] functions such that TM(m) + FM(m) < 1 for all m ∈ V .
The interval [TM(m), 1− FM(m)] is known as the vague value of
m inM.

In this definition, for m in M, TM(m) is the lower bound for
the degree of membership and FM(m) is the lower bound for the
negative of the degree of membership. Therefore, the degree of
membership of m ∈ M is given by the interval [TM(m), 1 −

FM(m)].

Definition 2.3 ([8]). Let G = (V ,E) be a crisp graph. A pair G =

(M,N) is called a vague graph defined on the crisp graph G =

(V ,E) if M = (TM , FM) is a vague set on V and N = (TN , FN) is
vague set on E ⊆ V×V such that TN(mn) ≤ min(TM(m),TM(n))
and FN(mn) ≥ max(FM(m), FM(n)) for each edgemn in E.

Definition 2.4 ([9]). A vague graph G is said to be strong
if TN(mn) = min(TM(m),TM(n)) and FN(mn) =

max(FM(m), FM(n)) for allm, n ∈ V .

Definition 2.5 ([9]). A vague graph G is said to be
complete if TN(mn) = min(TM(m),TM(n)) and
FN(mn) = max(FM(m), FM(n)) for allmn ∈ E.

FIGURE 1 | The vague graph G in Example 2.7.

Definition 2.6 ([11]). A vague graph G is said to be connected if
T∞
N (mimj) > 0 and F∞N (mimj) < 1 for all mi,mj ∈ V . Also,

we have

T∞
N (mn) = sup{TN(mn1) ∧ TN(n1n2) ∧ TN(n2n3) ∧ . . .

∧TN(nk−1n) | m, n1, n2, . . . , nk−1, n ∈ V}

and

F∞N (mn) = inf{FN(mn1) ∨ FN(n1n2) ∨ FN(n2n3) ∨ . . .

∨FN(nk−1n) | m, n1, n2, . . . , nk−1, n ∈ V}.

Example 2.7. Consider a vague graph G such that V = {a, b, c},

E = {ab, bc, cd, ad}, M = 〈( a
0.3 ,

b
0.4 ,

c
0.3 ,

d
0.6 ), (

a
0.6 ,

b
0.4 ,

c
0.5 ,

a
0.2 )〉,

and N = 〈( ab0.2 ,
bc
0.2 ,

cd
0.2 ,

ad
0.2 ), (

ab
0.7 ,

bc
0.6 ,

cd
0.6 ,

ad
0.7 )〉.

By routine computations, it is easy to show that G is a
vague graph (Figure 1).

3. OPERATIONS ON VAGUE GRAPHS

In this section we define four new kinds of operations on
vague graphs: the maximal product, residue product, rejection,
and symmetric difference. We show that the maximal product,
residue product, or rejection of two vague graphs is again a
vague graph.

Definition 3.1. The maximal product G1 ∗G2 = (M1 ∗M2,N1 ∗

N2) of two vague graphs G1 = (M1,N1) and G2 = (M2,N2) is
defined by

(i) (TM1 ∗ TM2 )((m1,m2)) = max{TM1 (m1),TM2 (m2)},

(FM1 ∗ FM2 )((m1,m2)) = min{FM1 (m1), FM2 (m2)}

∀ (m1,m2) ∈ (V1 × V2);

(ii) (TM1 ∗ TM2 )((m,m2)(m, n2)) = max{TM1 (m),TN2 (m2n2)},

(FM1 ∗ FM2 )((m,m2)(m, n2)) = min{FM1 (m), FN2 (m2n2)}

∀m ∈ V1 andm2n2 ∈ E2;

(iii) (TM1 ∗ TM2 )((m1, z)(n1, z)) = max{TN1 (m1n1),TM2 (z)},

(FM1 ∗ FM2 )((m1, z)(n1, z)) = min{FN1 (m1n1), FM2 (z)}

∀ z ∈ V2 andm1n1 ∈ E1.
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Example 3.2. Consider the two vague graphs G1 and G2 shown
in Figures 2, 3. Their maximal product G1 ∗ G2 is shown
in Figure 4.

For the vertex (a, d), we find the membership and non-
membership values as follows:

(TM1 ∗ TM2 )((a, d)) = max{TM1 (a),TM2 (d)}

= max{0.4, 0.1} = 0.4,

(FM1 ∗ FM2 )((a, d)) = min{FM1 (a), FM2 (d)}

= min{0.5, 0.3} = 0.3,

for a ∈ V1 and d ∈ V2.

For the edge (a, d)(a, e), we find the following membership and
non-membership values:

(TM1 ∗ TM2 )((a, d)(a, e)) = max{TM1 (a),TN2 (de)}

= max{0.4, 0.1} = 0.4,

(FM1 ∗ FM2 )((a, d)(a, e)) = min{FM1 (a), FN2 (de)}

= min{0.5, 0.6} = 0.5,

for a ∈ V1 and de ∈ E2.

Now, for edge (a, g)(b, g) we have

(TM1 ∗ TM2 )((a, g)(b, g)) = max{TN1 (ab),TM2 (g)}

= max{0.2, 0.3} = 0.3,

(FM1 ∗ FM2 )((a, g)(b, g)) = min{FN1 (ab), FM2 (g)}

= min{0.7, 0.4} = 0.4,

for g ∈ V2 and ab ∈ E1.

Similarly, we can find the membership and non-membership
values for all the remaining vertices and edges.

Proposition 3.3. The maximal product of two vague graphs G1

and G2 is a vague graph.

Proof: Let G1 = (M1,N1) and G2 = (M2,N2) be two vague
graphs on crisp graphs G1 = (V1,E1) and G2 = (V2,E2),
respectively, and let ((m1,m2)(n1, n2)) ∈ E1 × E2. Then by
Definition 3.1 we have two cases:

(i) Ifm1 = n1 = m, then

(TN1 ∗ TN2 )((m,m2)(m, n2)) = max{TM1 (m),TN2 (m2n2)}

≤ max{TM1 (m), min{TM2 (m2),TM2 (n2)}}

= min{max{{TM1 (m),TM2 (m2)}, max{{TM1 (m),TM2 (n2)}}

= min{(TM1 ∗ TM2 )(m,m2), (TM1 ∗ TM2 )(m, n2)},

(FN1 ∗ FN2 )((m,m2)(m, n2)) = min{FM1 (m), FN2 (m2n2)}

≥ min{FM1 (m), max{FM2 (m2), FM2 (n2)}}

= max{min{{FM1 (m), FM2 (m2)}, min{{FM1 (m), FM2 (n2)}}

= max{(FM1 ∗ FM2 )(m,m2), (FM1 ∗ FM2 )(m, n2)}.

(ii) Ifm2 = n2 = z, then

(TN1 ∗ TN2 )((m1, z)(n1, z)) = max{TN1 (m1n1),TM2 (z)}

≤ max{min{TN1 (m1n1),TM2 (z)}

= min{max{{TN1 (m1),TM2 (z)}, max{{TM1 (n1),TM2 (z)}}

= min{(TM1 ∗ TM2 )(m1, z), (TM1 ∗ TM2 )(n1, z)},

(FN1 ∗ FN2 )((m1, z)(n1, z)) = min{FN1 (m1n1), FM2 (z)}

≥ min{max{FN1 (m1n1), FM2 (z)}

= max{min{{FM1 (m1), FM2 (z)}, min{{FM1 (n1), FM2 (z)}}

= max{(FM1 ∗ FM2 )(m1, z), (FM1 ∗ FM2 )(n1, z)}.

Therefore, G1 ∗ G2 is a vague graph.

Theorem 3.4. The maximal product of two strong vague graphs
G1 and G2 is a strong vague graph.

Proof: Let G1 = (M1,N1) and G2 = (M2,N2) be two strong
vague graphs on crisp graphs G1 = (V1,E1) and G2 = (V2,E2),
respectively, and let ((m1,m2)(n1, n2)) ∈ E1 × E2. Then, by
Proposition 3.3,G1∗G2 is a vague graph. Now we have two cases:

(i) Ifm1 = n1 = m, then

(TN1 ∗ TN2 )((m,m2)(m, n2)) = max{TM1 (m),TN2 (m2n2)}

= max{TM1 (m), min{TM2 (m2),TM2 (n2)}}

= min{max{{TM1 (m),TM2 (m2)}, max{{TM1 (m),TM2 (n2)}}

= min{(TM1 ∗ TM2 )(m,m2), (TM1 ∗ TM2 )(m, n2)},

(FN1 ∗ FN2 )((m,m2)(m, n2)) = min{FM1 (m), FN2 (m2n2)}

= min{FM1 (m), max{FM2 (m2), FM2 (n2)}}

= max{min{{FM1 (m), FM2 (m2)}, min{{FM1 (m), FM2 (n2)}}

= max{(FM1 ∗ FM2 )(m,m2), (FM1 ∗ FM2 )(m, n2)}.

(ii) Ifm2 = n2 = z, then

(TN1 ∗ TN2 )((m1, z)(n1, z)) = max{TN1 (m1n1),TM2 (z)}

= max{min{TN1 (m1n1),TM2 (z)}

= min{max{{TN1 (m1),TM2 (z)}, max{{TM1 (n1),TM2 (z)}}

= min{(TM1 ∗ TM2 )(m1, z), (TM1 ∗ TM2 )(n1, z)},

(FN1 ∗ FN2 )((m1, z)(n1, z)) = min{FN1 (m1n1), FM2 (z)}

= min{max{FN1 (m1n1), FM2 (z)}

= max{min{{FM1 (m1), FM2 (z)}, min{{FM1 (n1), FM2 (z)}}

= max{(FM1 ∗ FM2 )(m1, z), (FM1 ∗ FM2 )(n1, z)}.

Therefore, G1 ∗ G2 is a strong vague graph.

Example 3.5. Consider the strong vague graphs G1 and G2 as in
Figure 5.

It is easy to see that G1 ∗ G2 is a strong vague graph too.

Remark 3.1. If the maximal product of two vague graphs G1 =

(M1,N1) and G2 = (M2,N2) is a strong vague graph, G1 and G2

need not be strong in general.
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FIGURE 2 | G1.

FIGURE 3 | G2.

FIGURE 4 | G1*G2.
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FIGURE 5 | Vague graphs G1, G2, and G1*G2.

FIGURE 6 | G1.

FIGURE 7 | G2.

FIGURE 8 | G1 ∗G2.

Example 3.6. Consider the vague graphs G1 and G2 as in
Figures 6, 7. Themaximal product ofG1 andG2 isG1∗G2 shown
in Figure 8.

We can see that G1 and G1 ∗ G2 are strong vague
graphs, but G2 is not strong: since TN2 (m2, n2) = 0.1 but

min{TM2 (m2),TM2 (n2} = min{0.2, 0.2} = 0.2, we have
TN2 (m2, n2) 6= min{TM2 (m2),TM2 (n2}.

Theorem 3.7. The maximal product of two connected vague
graphs is a connected vague graph.

Proof: Let G1 = (M1,N1) and G2 = (M2,N2) be two connected
vague graphs on crisp graphs G1 = (V1,E1) and G2 =

(V2,E2), respectively, where V1 = {m1,m2, . . . ,mk} and V2 =

{n1, n2, . . . , ns}. Then T∞
N1
(mimj) > 0 for all mi,mj ∈ V1 and

T∞
N2
(ninj) > 0 for all ni, nj ∈ V2 (or F∞N1

(mimj) < 1 for all
mi,mj ∈ V1 and F∞N2

(ninj) < 1 for all ni, nj ∈ V2). The maximal
product of G1 = (M1,N1) and G2 = (M2,N2) can be taken
as G = (M,N). Now, consider the k subgraphs of G with the
vertex set {(mi, n1), (mi, n2), . . . , (mi, ns)} for i = 1, 2, . . . , k. Each
of these subgraphs of G is connected, since the mi’s are the same
and G2 is connected, so that each ni is adjacent to at least one of
the vertices in V2. Also, since G1 is connected, each xi is adjacent
to at least one of the vertices in V1.

Hence, there exists at least one edge between any pair of the
above k subgraphs. Thus, we have T∞

N ((mi, nj)(mm, nn)) > 0
(or F∞N ((mi, nj)(mm, nn)) < 1) for all ((mi, nj)(mm, nn)) ∈ E.
Therefore, G is a connected vague graph.

Remark 3.2. Themaximal product of two complete vague graphs
is not a complete vague graph in general. This is because we do
not include the case where (m1,m2) ∈ E1 and (n1, n2) ∈ E2 in the
definition of the maximal product of two vague graphs.

Remark 3.3. Themaximal product of two complete vague graphs
is a strong vague graph.

Example 3.8. Consider the complete vague graphs G1 and G2 in
Figure 5. A simple calculation yields that G1 ∗ G2 is a strong
vague graph.
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FIGURE 9 | Vague graphs G1, G2, and G1 ∗G2.

Definition 3.9. Let G1 = (M1,N1) and G2 = (M2,N2) be two
vague graphs. For any vertex (m1,m2) ∈ V1 × V2 we define

(dT)G1∗G2 (m1,m2) =
∑

(m1,m2)(n1,n2)∈E1×E2

(TN1 ∗ TN2 )((m1,m2)(n1, n2))

=
∑

m1=n1 ,m2n2∈E2

max{TM1 (m1),TN2 (m2n2)}

+
∑

m1n1∈E1 ,m2=n2

max{TN1 (m1n1),TM2 (m2)},

(dF)G1∗G2 (m1,m2) =
∑

(m1,m2)(n1,n2)∈E1×E2

(FN1 ∗ FN2 )((m1,m2)(n1, n2))

=
∑

m1=n1 ,m2n2∈E2

min{FM1 (m1), FN2 (m2n2)}

+
∑

m1n1∈E1 ,m2=n2

min{FN1 (m1n1), FM2 (m2)}.

Theorem 3.10. Let G1 = (M1,N1) and G2 = (M2,N2)
be two vague graphs. If TM1 ≥ TN2 , FM1 ≤ FN2 ,
TM2 ≥ TN1 , and FM2 ≤ FN1 , then (dT)G1∗G2 (m1,m2) =

(d)G2 (m2)TM1 (m1) + (d)G1 (m1)TM2 (m2) and
(dF)G1∗G2 (m1,m2) = (d)G2 (m2)FM1 (m1)+ (d)G1 (m1)FM2 (m2).

Proof: From the definition of a vertex in the cartesian product,
we have

(dT)G1∗G2 (m1,m2) =
∑

(m1,m2)(n1,n2)∈E1×E2

(TN1 ∗ TN2 )((m1,m2)(n1, n2))

=
∑

m1=n1 ,m2n2∈E2

max{TM1 (m1),TN2 (m2n2)}

+
∑

m1n1∈E1 ,m2=n2

max{TN1 (m1n1),TM2 (m2)}

=
∑

m2n2∈E2,m1=n1

TN2 (m2n2)+
∑

m1n1∈E1,m2=n2

TN1 (m1n1)

= (d)G2 (m2)TM1 (m1)+ (d)G1 (m1)TM2 (m2),

(dF)G1∗G2 (m1,m2) =
∑

(m1 ,m2)(n1,n2)∈E1×E2

(FN1 ∗ FN2 )((m1,m2)(n1, n2))

=
∑

m1=n1 ,m2n2∈E2

min{FM1 (m1), FN2 (m2n2)}

+
∑

m1n1∈E1 ,m2=n2

min{FN1 (m1n1), FM2 (m2)}

=
∑

m2n2∈E2 ,m1=n1

FN2 (m2n2)+
∑

m1n1∈E1 ,m2=n2

FN1 (m1n1)

= (d)G2 (m2)FM1 (m1)+ (d)G1 (m1)FM2 (m2),

as claimed.

Example 3.11. Consider the vague graphs G1, G2, and G1 ∗ G2

as in Figure 9. Since TM1 ≥ TN2 , FM1 ≤ FN2 , TM2 ≥ TN1 , and
FM2 ≤ FN1 , by Theorem 3.10 we have

(dT)G1∗G2 (a, c) = (d)G2 (c)TM1 (a)+ (d)G1 (a)TM2 (c) = 1 · (0.3)

+ 1 · (0.2) = 0.5,

(dF)G1∗G2 (a, c) = (d)G2 (c)FM1 (a)+ (d)G1 (a)FM2 (c) = 1 · (0.4)

+ 1 · (0.3) = 0.7.

(dT)G1∗G2 (a, d) = (d)G2 (d)TM1 (a)+ (d)G1 (a)TM2 (d) = 1 · (0.3)

+ 1 · (0.3) = 0.6,

(dF)G1∗G2 (a, d) = (d)G2 (d)FM1 (a)+ (d)G1 (a)FM2 (d) = 1 · (0.4)

+ 1 · (0.4) = 0.8.

(dT)G1∗G2 (b, c) = (d)G2 (c)TM1 (b)+ (d)G1 (b)TM2 (c) = 1 · (0.2)

+ 1 · (0.2) = 0.4,

(dF)G1∗G2 (b, c) = (d)G2 (c)FM1 (b)+ (d)G1 (b)FM2 (c) = 1 · (0.3)

+ 1 · (0.3) = 0.6.
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(dT)G1∗G2 (b, d) = (d)G2 (d)TM1 (b)+ (d)G1 (b)TM2 (d) = 1 · (0.2)

+ 1 · (0.3) = 0.5,

(dF)G1∗G2 (b, d) = (d)G2 (d)FM1 (b)+ (d)G1 (b)FM2 (d) = 1 · (0.3)

+ 1 · (0.4) = 0.7.

By direct calculations we obtain

(dT)G1∗G2 (a, c) = 0.3+ 0.2 = 0.5,

(dF)G1∗G2 (a, c) = 0.4+ 0.3 = 0.7,

(dT)G1∗G2 (a, d) = 0.3+ 0.3 = 0.6,

(dF)G1∗G2 (a, d) = 0.4+ 0.4 = 0.8,

(dT)G1∗G2 (b, c) = 0.2+ 0.2 = 0.4,

(dF)G1∗G2 (b, c) = 0.3+ 0.3 = 0.6,

(dT)G1∗G2 (b, d) = 0.3+ 0.2 = 0.5,

(dF)G1∗G2 (b, d) = 0.3+ 0.4 = 0.7.

It is clear that the degrees of vertices calculated using the formula
in Theorem 3.10 and by the direct method are the same.

Definition 3.12. Let G1 = (M1,N1) and G2 = (M2,N2) be two
vague graphs. For any vertex (m1,m2) ∈ V1 × V2 we define

(tdT)G1∗G2 (m1,m2) =
∑

(m1 ,m2)(n1 ,n2)∈E1×E2

(TN1 ∗ TN2 )((m1,m2)(n1, n2))

+ (TM1 ∗ TM2 )(m1,m2)

=
∑

m1=n1 ,m2n2∈E2

max{TM1 (m1),TN2 (m2n2)}

+
∑

m1n1∈E1 ,m2=n2

max{TN1 (m1n1),TM2 (m2)}

+max{TM1 (m1),TM2 (m2)},

(tdF)G1∗G2 (m1,m2) =
∑

(m1 ,m2)(n1,n2)∈E1×E2

(FN1 ∗ FN2 )((m1,m2)(n1, n2))

+ (FM1 ∗ FM2 )(m1,m2)

=
∑

m1=n1 ,m2n2∈E2

min{FM1 (m1), FN2 (m2n2)}

+
∑

m1n1∈E1 ,m2=n2

min{FN1 (m1n1), FM2 (m2)}

+min{FM1 (m1), FM2 (m2)}.

Example 3.13. In this example we find the degree and the total
degree of vertices (a, c) and (a, d) in Example 3.2:

(dT)G1∗G2 (a, c) = (d)G2 (a)TM1 (c)+ (d)G1 (c)TM2 (a)

= 1(0.2)+ 4(0.4) = 0.2+ 1.6 = 1.8,

(dF)G1∗G2 (a, c) = (d)G2 (a)FM1 (c)+ (d)G1 (c)FM2 (a)

= 1(0.5)+ 4(0.5) = 0.3+ 1.2 = 1.5.

Therefore, dG1∗G2 (a, c) = (1.8, 1.5). In addition, by the definition
of the total vertex degree in the maximal product,

(tdT)G1∗G2 (a, c) = (d)G2 (a)TM1 (c)+ (d)G1 (c)TM2 (a)

+max{TM1 (a),TM2 (c)}

= 1(0.2)+ 4(0.4)+max(0.2, 0.4) = 2.2,

(tdF)G1∗G2 (a, c) = (d)G2 (a)FM1 (c)+ (d)G1 (c)FM2 (a)

+min{FM1 (a), FM2 (c)}

= 1(0.5)+ 4(0.5)+min(0.3, 0.4) = 1.8.

Therefore, tdG1∗G2 (a, c) = (2.2, 1.8).
We also have

(dT)G1∗G2 (a, d) = (d)G2 (a)TM1 (d)+ (d)G1 (d)TM2 (a)

= 1(0.1)+ 4(0.4) = 0.1+ 1.6 = 1.7,

(dF)G1∗G2 (a, d) = (d)G2 (a)FM1 (d)+ (d)G1 (d)FM2 (a)

= 1(0.3)+ 4(0.5) = 0.3+ 2 = 2.3,

(tdT)G1∗G2 (a, d) = (d)G2 (a)TM1 (d)+ (d)G1 (d)TM2 (a)

+max{TM1 (a),TM2 (d)}

= 1(0.1)+ 4(0.4)+max(0.4, 0.1) = 2.1,

(tdF)G1∗G2 (a, d) = (d)G2 (a)FM1 (d)+ (d)G1 (d)FM2 (a)

+min{FM1 (a), FM2 (d)}

= 1(0.3)+ 4(0.5)+min(0.5, 0.3) = 2.6.

Hence, dG1∗G2 (a, d) = (1.7, 2.3) and tdG1∗G2 (a, d) = (2.1, 2.6).
Similarly, we can find the degree and the total degree of all

vertices in G1 ∗ G2.

Theorem 3.14. Let G1 = (M1,N1) and G2 = (M2,N2) be two
vague graphs. If TM1 ≥ TN2 , FM1 ≤ FN2 , TM2 ≥ TN1 , and
FM2 ≤ FN1 , then (tdT)G1∗G2 (m1,m2) = (d)G2 (m2)TM1 (m1) +
(d)G1 (m1)TM2 (m2) + max{TM1 (m1),TM2 (m2)} and
(tdF)G1∗G2 (m1,m2) = (d)G2 (m2)FM1 (m1)+(d)G1 (m1)FM2 (m2)+
min{FM1 (m1), FM2 (m2)}.

Proof: From Definition 3.12 we have

(tdT)G1∗G2 (m1,m2) =
∑

(m1,m2)(n1 ,n2)∈E1×E2

(TN1 ∗ TN2 )((m1,m2)(n1, n2))

+ (TM1 ∗ TM2 )(m1,m2)

=
∑

m1=n1 ,m2n2∈E2

max{TM1 (m1),TN2 (m2n2)}

+
∑

m1n1∈E1,m2=n2

max{TN1 (m1n1),TM2 (m2)}

+max{TM1 (m1),TM2 (m2)}

=
∑

m2n2∈E2 ,m1=n1

TN2 (m2n2)+
∑

m1n1∈E1,m2=n2

TN1 (m1n1)

+max{TM1 (m1),TM2 (m2)}

= (d)G2 (m2)TM1 (m1)+ (d)G1 (m1)TM2 (m2)

+max{TM1 (m1),TM2 (m2)}
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and

(tdF)G1∗G2 (m1,m2) =
∑

(m1,m2)(n1,n2)∈E1×E2

(FN1 ∗ FN2 )((m1,m2)(n1, n2))

+ (FM1 ∗ FM2 )(m1,m2)

=
∑

m1=n1 ,m2n2∈E2

min{FM1 (m1), FN2 (m2n2)}

+
∑

m1n1∈E1,m2=n2

min{FN1 (m1n1), FM2 (m2)}

+min{FM1 (m1), FM2 (m2)}

=
∑

m2n2∈E2 ,m1=n1

FN2 (m2n2)+
∑

m1n1∈E1 ,m2=n2

FN1 (m1n1)

+min{FM1 (m1), FM2 (m2)}

= (d)G2 (m2)FM1 (m1)+ (d)G1 (m1)FM2 (m2)

+min{FM1 (m1), FM2 (m2)},

as asserted.

Example 3.15. Consider the vague graphsG1,G2, andG1 ∗G2 in
Figure 9. The total degree of the vertex in the maximal product is
calculated by the following formula:

(tdT)G1∗G2 (m1,m2) = (d)G2 (m2)TM1 (m1)+ (d)G1 (m1)TM2 (m2)

+max{TM1 (m1),TM2 (m2)},

(tdF)G1∗G2 (m1,m2) = (d)G2 (m2)FM1 (m1)+ (d)G1 (m1)FM2 (m2)

+min{FM1 (m1), FM2 (m2)}.

Using the formula we find that

(tdT)G1∗G2 (a, c) = (d)G2 (c)TM1 (a)+ (d)G1 (a)TM2 (c)

+max{TM1 (a),TM2 (c)}

= 1 · (0.3)+ 1 · (0.2)+max{0.2, 0.3}

= 0.3+ 0.2+ 0.3 = 0.8,

(tdF)G1∗G2 (a, c) = (d)G2 (c)FM1 (a)+ (d)G1 (a)FM2 (c)

+min{FM1 (a), FM2 (c)}

= 1 · (0.4)+ 1 · (0.3)+min{0.3, 0.4}

= 0.4+ 0.3+ 0.3 = 1.

(tdT)G1∗G2 (a, d) = (d)G2 (d)TM1 (a)+ (d)G1 (a)TM2 (d)

+max{TM1 (a),TM2 (d)}

= 1 · (0.3)+ 1 · (0.3)+max{0.3, 0.3}

= 0.3+ 0.3+ 0.3 = 0.9,

(tdF)G1∗G2 (a, d) = (d)G2 (d)FM1 (a)+ (d)G1 (a)FM2 (d)

+min{FM1 (a), FM2 (d)}

= 1 · (0.4)+ 1 · (0.4)+min{0.4, 0.4}

= 0.4+ 0.4+ 0.4 = 1.2.

(tdT)G1∗G2 (b, c) = (d)G2 (c)TM1 (b)+ (d)G1 (b)TM2 (c)

+max{TM1 (b),TM2 (c)}

= 1 · (0.2)+ 1 · (0.2)+max{0.2, 0.2}

= 0.2+ 0.2+ 0.2 = 0.6,

(tdF)G1∗G2 (b, c) = (d)G2 (c)FM1 (b)+ (d)G1 (b)FM2 (c)

+min{FM1 (b), FM2 (c)}

= 1 · (0.3)+ 1 · (0.3)+min{0.3, 0.3}

= 0.3+ 0.3+ 0.3 = 0.9.

(tdT)G1∗G2 (b, d) = (d)G2 (d)TM1 (b)+ (d)G1 (b)TM2 (d)

+max{TM1 (b),TM2 (d)}

= 1 · (0.2)+ 1 · (0.3)+max{0.2, 0.3}

= 0.2+ 0.3+ 0.3 = 0.8,

(tdF)G1∗G2 (b, d) = (d)G2 (d)FM1 (b)+ (d)G1 (b)FM2 (d)

+min{FM1 (b), FM2 (d)}

= 1 · (0.3)+ 1 · (0.4)+min{0.3, 0.4}

= 0.3+ 0.4+ 0.3 = 1.

On the other hand, by direct calculations we obtain

(tdT)G1∗G2 (a, c) = 0.3+ 0.2+ 0.3 = 0.8,

(tdF)G1∗G2 (a, c) = 0.4+ 0.3+ 0.3 = 1,

(tdT)G1∗G2 (a, d) = 0.3+ 0.3+ 0.3 = 0.9,

(tdF)G1∗G2 (a, d) = 0.4+ 0.4+ 0.4 = 1.2,

(tdT)G1∗G2 (b, c) = 0.2+ 0.2+ 0.2 = 0.6,

(tdF)G1∗G2 (b, c) = 0.3+ 0.3+ 0.3 = 0.9,

(tdT)G1∗G2 (b, d) = 0.3+ 0.2+ 0.3 = 0.8,

(tdF)G1∗G2 (b, d) = 0.4+ 0.3+ 0.3 = 1.

It is thus clear that the total degrees of vertices calculated using
the formula and by the direct method are the same.

Definition 3.16. The rejection G1|G2 = (M1|M2,N1|N2) of two
vague graphs G1 = (M1,N1) and G2 = (M2,N2) is defined as
follows:

(i) (TM1 |TM2 )((m1,m2)) = min{TM1 (m1),TM2 (m2)},

(FM1 |FM2 )((m1,m2)) = max{FM1 (m1), FM2 (m2)}

∀ (m1,m2) ∈ (V1 × V2);

(ii) (TN1 |TN2 )((m,m2)(m, n2)) = min{TM1 (m),TM2 (m2),TM2 (n2)},

(FN1 |FN2 )((m,m2)(m, n2)) = max{FM1 (m), FM2 (m2), FM2 (n2)}

∀m ∈ V2 andm2n2 6∈ E2;

(iii) (TN1 |TN2 )((m,m2)(m, n2)) = min{TM1 (m),TM2 (m2),TM2 (n2)}

(FN1 |FN2 )((m,m2)(m, n2)) = max{FM1 (m), FM2 (m2), FM2 (n2)}

∀m ∈ V2 andm1n1 6∈ E1;

(iv)(TN1 |TN2 )((m1,m2)(n1, n2)) = min{TM1 (m1),TM1 (n1),TM2 (m2),TM2 (n2)},

(FN1 |FN2 )((m1,m2)(n1, n2)) = max{FM1 (m1), FM1 (n1), FM2 (m2), FN2 (n2)}

∀m1n1 6∈ E1 andm2n2 6∈ E2.

Example 3.17. Consider the vague graphs G1 and G2 in
Figures 10, 11. The rejection of G1 and G2, i.e., G1|G2, is shown
in Figure 12.
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FIGURE 10 | G1.

FIGURE 11 | G2.

For the vertex (a, e), we find the membership and non-
membership values as follows:

(TM1 |TM2 )((a, e)) = min{TM1 (a),TM2 (e)}

= min{0.4, 0.3} = 0.3,

(FM1 |FM2 )((a, e)) = max{FM1 (a), FM2 (e)}

= max{0.4, 0.4} = 0.4

for a ∈ V1 and e ∈ V2.
For the edge (e, c)(e, a), themembership and non-membership

values are given by

(TN1 |TN2 )((e, c)(e, a)) = min{TM1 (e),TM2 (c),TM2 (a)}

= min{0.3, 0.3, 0.4} = 0.3,

(FN1 |FN2 )((e, c)(e, a)) = max{FM1 (e), FM2 (c), FM2 (a)}

= max{0.4, 0.4, 0.4} = 0.4

for e ∈ V2 and ac /∈ E1.

For the edge (e, c)(e, g) we have

(TN1 |TN2 )((e, c)(e, g)) = min{TM1 (e),TM2 (c),TM2 (g)}

= min{0.3, 0.3, 0.3} = 0.3,

(FN1 |FN2 )((e, c)(e, g)) = max{FM1 (e), FM2 (c), FM2 (g)}

= max{0.4, 0.4, 0.2} = 0.4

for e ∈ V2 and cg /∈ E2.
Similarly, we can find the membership and non-membership

values for all the remaining vertices and edges.

Proposition 3.18. The rejection of two vague graphs G1 and G2

is a vague graph.

Proof: Let G1 = (M1,N1) and G2 = (M2,N2) be two vague
graphs on crisp graphs G1 = (V1,E1) and G2 = (V2,E2),
respectively, and let ((m1,m2)(n1, n2)) ∈ E1 × E2. Then by
Definition 3.16 we have the following:
(i) Ifm1 = n1 andm2n2 6∈ E2, then

(TN1 |TN2 )((m1,m2)(n1, n2)) = min{TM1 (m1),TM2 (m2),TM2 (n2)}

= min{min{TM1 (m1),TM2 (m2)}, min{TM1 (n1),TM2 (n2)}}

= min{(TM1 |TM2 )(m1,m2), (TM1 |TM2 )(n1, n2)},

(FN1 |FN2 )((m1,m2)(n1, n2)) = max{FM1 (m1), FM2 (m2), FM2 (n2)}

= max{max{FM1 (m1), FM2 (m2)}, max{FM1 (n1), FM2 (n2)}}

= max{(FM1 |FM2 )(m1,m2), (FM1 |FM2 )(n1, n2)}.

(ii) Ifm2 = n2 andm1n1 6∈ E1, then

(TN1 |TN2 )((m1,m2)(n1, n2)) = min{TM1 (m1),TM1 (n1),TM2 (m2)}

= min{min{TM1 (m1),TM2 (m2)}, min{TM1 (n1),TM2 (n2)}}

= min{(TM1 |TM2 )(m1,m2), (TM1 |TM2 )(n1, n2)},

(FN1 |FN2 )((m1,m2)(n1, n2)) = max{FM1 (m1), FM1 (n1), FM2 (m2)}

= max{max{FM1 (m1), FM2 (m2)}, max{FM1 (n1), FM2 (n2)}}

= max{(FM1 |FM2 )(m1,m2), (FM1 |FM2 )(n1, n2)}.

(iii) Ifm1n1 6∈ E1 andm2n2 6∈ E2, then

(TN1 |TN2 )((m1,m2)(n1, n2)) = min{TM1 (m1),TM1 (n1),TM2 (m2),TM2 (n2)}

= min{min{TM1 (m1),TM2 (m2)}, min{TM1 (n1),TM2 (n2)}}

= min{(TM1 |TM2 )(m1,m2), (TM1 |TM2 )(n1, n2)},

(FN1 |FN2 )((m1,m2)(n1, n2)) = max{FM1 (m1), FM1 (n1), FM2 (m2),TM2 (n2)}

= max{max{FM1 (m1), FM2 (m2)}, max{FM1 (n1), FM2 (n2)}}

= max{(FM1 |FM2 )(m1,m2), (FM1 |FM2 )(n1, n2)}.

Therefore, G1|G2 = (M1|M2,N1|N2) is a vague graph.

Remark 3.4. The rejection of two complete vague graphs
G1 = (M1,N1) and G2 = (M2,N2) is a complete
vague graph.
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FIGURE 12 | G1|G2.

Definition 3.19. Let G1 = (M1,N1) and G2 = (M2,N2) be two
vague graphs. For any vertex (m1,m2) ∈ V1 × V2 we define

(dT )G1|G2
(m1,m2) =

∑

(m1 ,m2)(n1 ,n2)∈E1×E2

(TN1 |TN2 )((m1,m2)(n1, n2))

=
∑

m1=n1 ,m2n2 6∈E2

min{TM1 (m1),TM2 (m2),TM2 (n2)}

+
∑

m2=n2 ,m1n1 6∈E1

min{TM1 (m1),TM1 (n1),TM2 (m2)}

+
∑

m1n1 6∈E1 andm2n2 6∈E2

min{TM1 (m1),TM1 (n1),TM2 (m2),TM2 (n2)},

(dF)G1|G2
(m1,m2) =

∑

(m1 ,m2)(n1 ,n2)∈E1×E2

(FN1 |FN2 )((m1,m2)(n1, n2))

=
∑

m1=n1 ,m2n2 6∈E2

max{FM1 (m1), FM2 (m2), FM2 (n2)}

+
∑

m2=n2 ,m1n1 6∈E1

max{FM1 (m1), FM1 (n1), FM2 (m2)}

+
∑

m1n1 6∈E1 andm2n2 6∈E2

max{FM1 (m1), FM1 (n1), FM2 (m2), FM2 (n2)}.

Definition 3.20. Let G1 = (M1,N1) and G2 = (M2,N2) be two
vague graphs. For any vertex (m1,m2) ∈ V1 × V2 we define

(tdT )G1|G2 (m1,m2) =
∑

(m1 ,m2)(n1 ,n2)∈E1×E2

(TN1 |TN2 )((m1,m2)(n1, n2))

+ (TM1 |TM2 )(m1,m2)

=
∑

m1=n1 ,m2n2 6∈E2

min{TM1 (m1),TM2 (m2),TM2 (n2)}

+
∑

m2=n2 ,m1n1 6∈E1

min{TM1 (m1),TM1 (n1),TM2 (m2)}

+
∑

m1n1 6∈E1 andm2n2 6∈E2

min{TM1 (m1),TM1 (n1),TM2 (m2),TM2 (n2)},

(tdF)G1|G2 (m1,m2) =
∑

(m1 ,m2)(n1 ,n2)∈E1×E2

(FN1 |FN2 )((m1,m2)(n1, n2))

+ (FM1 |FM2 )(m1,m2)

=
∑

m1=n1 ,m2n2 6∈E2

max{FM1 (m1), FM2 (m2), FM2 (n2)}

+
∑

m2=n2 ,m1n1 6∈E1

max{FM1 (m1), FM1 (n1), FM2 (m2)}

+
∑

m1n1 6∈E1 andm2n2 6∈E2

max{FM1 (m1), FM1 (n1), FM2 (m2), FM2 (n2)}.

Frontiers in Physics | www.frontiersin.org 10 November 2020 | Volume 8 | Article 357213

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Shao et al. Certain Concepts of Vague Graphs

Example 3.21. In this example we find the degree and total
degree of the vertex (e, a) in Example 3.17:

(dT)G1|G2 (e, a) = min{TM2 (e),TM1 (a),TM1 (c)}

+min{TM2 (e),TM1 (a),TM2 (g)}

= min{0.3, 0.4, 0.3} +min{0.3, 0.4, 0.3}

= 0.3+ 0.3

= 0.6,

(dF)G1|G2 (e, a) = max{FM2 (e), FM1 (a), FM1 (c)}

+max{FM2 (e), FM1 (a), FM2 (g)

= max{0.4, 0.4, 0.4} +max{0.4, 0.4, 0.2}

= 0.4+ 0.4

= 0.8.

Therefore, dG1|G2 (a, c)= (0.6,0.8).
In addition, by the definition of the total vertex degree in the

maximal product,

(tdT)G1|G2 (e, a) = min{TM2 (e),TM1 (a),TM1 (c)}

+min{TM2 (e),TM1 (a),TM2 (g)}

+min{TM2 (e),TM1 (a)}

= min{0.3, 0.4, 0.3} +min{0.3, 0.4, 0.3}

+min{0.3, 0.4}

= 0.3+ 0.3+ 0.3

= 0.9,

(tdF)G1|G2 (e, a) = max{FM2 (e), FM1 (a), FM1 (c)}

+max{FM2 (e), FM1 (a), FM2 (g)}

+max{FM2 (e), FM1 (a)}

= max{0.4, 0.4, 0.4} +max{0.4, 0.4, 0.2}

+max{0.3, 0.4}

= 0.4+ 0.4+ 0.4

= 1.2.

Therefore, tdG1|G2 (a, c)= (0.9,1.2).
Similarly, we can find the degree and the total degree of all

vertices in G1|G2.

Definition 3.22. The symmetric difference G1 ⊕ G2 = (M1 ⊕
M2,N1 ⊕ N2) of two vague graphs G1 = (M1,N1) and G2 =

(M2,N2) is defined as follows:

(i) (TM1 ⊕ TM2 )((m1,m2)) = min{TM1 (m1),TM2 (m2)},

(FM1 ⊕ FM2 )((m1,m2)) = max{FM1 (m1), FM2 (m2)}

∀(m1,m2) ∈ (V1 × V2);

(ii) (TN1 ⊕ TN2 )((m,m2)(m, n2)) = min{TM1 (m),TN2 (m2n2)},

(FN1 ⊕ FN2 )((m,m2)(m, n2)) = max{FM1 (m), FN2 (m2n2)}

∀m ∈ V1 andm2n2 ∈ E2;

(iii) (TN1 ⊕ TN2 )((m1, z)(n1 , z)) = min{TN1 (m1n1),TM2 (z)},

(FN1 ⊕ FN2 )((m1, z)(n1 , z)) = max{FN1 (m1n1), FM2 (z)}

∀ z ∈ V2 andm1n1 ∈ E1;

(iv)(TN1 ⊕ TN2 )((m1,m2)(n1, n2)) =























min{TM1 (m1),TM1 (n1),TN2 (m2n2)}

∀m1n1 6∈ E1 andm2n2 ∈ E2,

min{TM2 (m2),TM2 (n2),TN1 (m1n1)}

∀m1n1 ∈ E1 andm2n2 6∈ E2,

(FN1 ⊕ FN2 )((m1,m2)(n1, n2)) =























max{FM1 (m1), FM1 (n1), FN2 (m2n2)}

∀m1n1 6∈ E1 andm2n2 ∈ E2,

max{FM2 (m2), FM2 (n2), FN1 (m1n1)}

∀m1n1 ∈ E1 andm2n2 6∈ E2.

Example 3.23. Consider the vague graphs G1 and G2 as in
Figures 13, 14. The symmetric difference of G1 and G2, i.e.,
G1 ⊕ G2, is shown in Figure 15.

For the vertex (a, f ), we find the membership and non-
membership values as follows:

(TM1 ⊕ TM2 )((a, f )) = min{TM1 (a),TM2 (f )}

= min{0.2, 0.3} = 0.2,

(FM1 ⊕ FM2 )((a, f )) = max{FM1 (a), FM2 (f )}

= max{0.4, 0.3} = 0.4

for a ∈ V1 and f ∈ V2.
For the edge (a, d)(a, e), the membership and

non-membership values are given by

(TN1 ⊕ TN2 )((a, d)(a, e)) = min{TM1 (a),TN2 (de)}

= min{0.2, 0.1} = 0.1,

(FN1 ⊕ FN2 )((a, d)(a, e)) = max{FM1 (a), FN2 (de)}

= max{0.4, 0.6} = 0.6

for a ∈ V1 and de ∈ E2.
For the edge (a, d)(b, d) we have

(TN1 ⊕ TN2 )((a, d)(b, d)) = min{TN1 (ab),TM2 (d)}

= min{0.2, 0.2} = 0.2,

(FN1 ⊕ FN2 )((a, d)(b, d)) = max{FN1 (ab), FM2 (d)}

= max{0.7, 0.4} = 0.7

for ab ∈ E1 and d ∈ V2.
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FIGURE 13 | G1.

FIGURE 14 | G2.

FIGURE 15 | G1 ⊕G2.

For the edge (a, c)(b, f ), the membership and
non-membership values are

(TN1 ⊕ TN2 )((a, c)(b, f )) = min{TM2 (c),TM2 (f ),TN1 (ab)}

= min{0.4, 0.3, 0.2} = 0.2,

(FN1 ⊕ FN2 )((a, c)(b, f )) = max{FM2 (c), FM2 (f ), FN1 (ab)}

= max{0.5, 0.3, 0.7} = 0.7

for ab ∈ E1 and cf /∈ E2.

In the same way, we can find the membership and non-
membership values for all remaining vertices and edges.

Proposition 3.24. The symmetric difference of two vague graphs
G1 and G2 is a vague graph.

Proof: Let G1 = (M1,N1) and G2 = (M2,N2) be two vague
graphs on crisp graphs G1 = (V1,E1) and G2 = (V2,E2),
respectively, and let ((m1,m2)(n1, n2)) ∈ E1 × E2. Then by
Definition 3.22 we have the following cases:
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(i) Ifm1 = n1 = m, then

(TN1 ⊕ TN2 )((m,m2)(m, n2)) = min{TM1 (m),TN2 (m2n2)}

≤ min{TM1 (m), min{TM2 (m2),TM2 (n2)}}

= min{min{TM1 (m),TM2 (m2)}, min{TM1 (m),TM2 (n2)}}

= min{(TM1 ⊕ TM2 )(m,m2), (TM1 ⊕ TM2 )(m, n2)},

(FN1 ⊕ FN2 )((m,m2)(m, n2)) = max{FM1 (m), FN2 (m2n2)}

≥ max{FM1 (m), max{FM2 (m2), FM2 (n2)}}

= max{max{FM1 (m), FM2 (m2)}, max{FM1 (m), FM2 (n2)}}

= max{(FM1 ⊕ FM2 )(m,m2), (FM1 ⊕ FM2 )(m, n2)}.

(ii) Ifm2 = n2 = z, then

(TN1 ⊕ TN2 )((m1, z)(n1, z)) = min{TN1 (m1n1),TM2 (z)}

≤ min{min{TN1 (m1n1),TM2 (z)}

= min{min{TM1 (m1),TM2 (z)}, min{TM1 (n1),TM2 (z)}}

= min{(TM1 ⊕ TM2 )(m1, z), (TM1 ⊕ TM2 )(n1, z)},

(FN1 ⊕ FN2 )((m1, z)(n1, z)) = max{FN1 (m1n1), FM2 (z)}

≥ max{max{FN1 (m1n1), FM2 (z)}

= max{max{FM1 (m1), FM2 (z)}, max{FM1 (n1), FM2 (z)}}

= max{(FM1 ⊕ FM2 )(m1, z), (FM1 ⊕ FM2 )(n1, z)}.

(iii) Ifm1n1 6∈ E1 andm2n2 ∈ E2, then

(TN1 ⊕ TN2 )((m1,m2)(n1, n2)) = min{TM1 (m1),TM1 (n1),TN2 (m2n2)}

≤ min{TM1 (m1),TM1 (n1),min{TM2 (m2)TM2 (n2)}}

= min{min{TM1 (m1),TM2 (m2)}, {TM1 (m1),TM2 (n2)}}

= min{(TM1 ⊕ TM2 )(m1,m2), (TM1 ⊕ TM2 )(n1, n2)},

(FN1 ⊕ FN2 )((m1,m2)(n1, n2)) = max{FM1 (m1), FM1 (n1), FN2 (m2n2)}

≥ max{FM1 (m1), FM1 (n1), max{FM2 (m2)FM2 (n2)}}

= max{max{FM1 (m1), FM2 (m2)}, {FM1 (m1), FM2 (n2)}}

= max{(FM1 ⊕ FM2 )(m1,m2), (FM1 ⊕ FM2 )(n1, n2)}.

(iv) Ifm1n1 ∈ E1 andm2n2 6∈ E2, then

(TN1 ⊕ TN2 )((m1,m2)(n1, n2)) = min{TM2 (m2),TM2 (n2),TN1 (m1n1)}

≤ min{TM2 (m2),TM2 (n2), min{TM1 (m1)TM1 (n1)}}

= min{min{TM1 (m1),TM2 (m2)}, {TM1 (n1),TM2 (n2)}

= min{(TM1 ⊕ TM2 )(m1,m2), (TM1 ⊕ TM2 )(n1, n2)},

(FN1 ⊕ FN2 )((m1,m2)(n1, n2)) = max{FM2 (m2), FM2 (n2), FN1 (m1n1)}

≥ max{FM2 (m2), FM2 (n2), max{FM1 (m1)FM1 (n1)}}

= max{max{FM2 (m2), FM1 (m1)}, {FM2 (m2), FM1 (n1)}

= max{(FM1 ⊕ FM2 )(m1,m2), (FM1 ⊕ FM2 )(n1, n2)}.

Hence G1 ⊕ G2 is a vague graph.

Remark 3.5. The symmetric difference of two connected vague
graphs G1 = (M1,N1) and G2 = (M2,N2) is connected, because
we include the case where (m1,m2) ∈ E1 and (n1, n2) ∈ E2 in the
definition of the symmetric difference of two vague graphs.

Definition 3.25. Let G1 = (M1,N1) and G2 = (M2,N2) be two
vague graphs. For any vertex (m1,m2) ∈ V1 × V2 we define

(dT )G1⊕G2 (m1,m2) =
∑

(m1 ,m2)(n1 ,n2)∈E1×E2

(TN1 ⊕ TN2 )((m1,m2)(n1, n2))

=
∑

m1=n1 ,m2n2∈E2

min{TM1 (m1),TN2 (m2n2)}

+
∑

m1n1∈E1 ,m2=n2

min{TN1 (m1n1),TM2 (m2)}

+
∑

m1n1 6∈E1 andm2n2∈E2

min{TM1 (m1),TM1 (n1),TN2 (m2n2)}

+
∑

m1n1∈E1 andm2n2 6∈E2

min{TN1 (m1n1),TM2 (m2),TM2 (n2)}

and

(dF)G1⊕G2 (m1,m2) =
∑

(m1 ,m2)(n1 ,n2)∈E1×E2

(FN1 ⊕ FN2 )((m1,m2)(n1, n2))

=
∑

m1=n1 ,m2n2∈E2

max{FM1 (m1), FN2 (m2n2)}

+
∑

m1n1∈E1 ,m2=n2

max{FN1 (m1n1), FM2 (m2)}

+
∑

m1n1 6∈E1 andm2n2∈E2

max{FM1 (m1), FM1 (n1), FN2 (m2n2)}

+
∑

m1n1∈E1 andm2n2 6∈E2

max{FN1 (m1n1), FM2 (m2), FM2 (n2)}.

Theorem 3.26. Let G1 = (M1,N1) and G2 = (M2,N2) be
two vague graphs. If TM1 ≥ TN2 , FM1 ≤ FN2 , TM2 ≥ TN1 ,
and FM2 ≤ FN1 , then for every (m1,m2) ∈ V1 × V2 we have
(d)G1⊕G2 (m1,m2) = q(d)G1 (m1)+ s(d)G2 (m2), where s = |V1| −

(d)G1 (m1) and q = |V2| − (d)G2 (m2).

Proof: Using Definition 3.25,

(dT )G1⊕G2 (m1,m2) =
∑

(m1 ,m2)(n1 ,n2)∈E1×E2

(TN1 ⊕ TN2 )((m1,m2)(n1, n2))

=
∑

m1=n1 ,m2n2∈E2

min{TM1 (m1),TN2 (m2n2)}

+
∑

m1n1∈E1 ,m2=n2

min{TN1 (m1n1),TM2 (m2)}

+
∑

m1n1 6∈E1 andm2n2∈E2

min{TM1 (m1),TM1 (n1),TN2 (m2n2)}

+
∑

m1n1∈E1 andm2n2 6∈E2

min{TN1 (m1n1),TM2 (m2),TM2 (n2)}

=
∑

m2n2∈E2

TN2 (m2n2)+
∑

m1n1∈E1

TN1 (m1n1)

+
∑

m1n1 6∈E1 andm2n2∈E2

TN2 (m2n2)} +
∑

m1n1∈E1 andm2n2 6∈E2

TN1 (m1n1)

= q(dT )G1 (m1)+ s(dT )G2 (m2),
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FIGURE 16 | G1 ⊕G2 of the vague graphs in Figure 9.

(dF)G1⊕G2 (m1,m2) =
∑

(m1 ,m2)(n1 ,n2)∈E1×E2

(FN1 ⊕ FN2 )((m1,m2)(n1, n2))

=
∑

m1=n1 ,m2n2∈E2

max{FM1 (m1), FN2 (m2n2)}

+
∑

m1n1∈E1 ,m2=n2

max{FN1 (m1n1), FM2 (m2)}

+
∑

m1n1 6∈E1 andm2n2∈E2

max{FM1 (m1), FM1 (n1), FN2 (m2n2)}

+
∑

m1n1∈E1 andm2n2 6∈E2

max{FN1 (m1n1), FM2 (m2), FM2 (n2)}

=
∑

m2n2∈E2

FN2 (m2n2)+
∑

m1n1∈E1

FN1 (m1n1)

+
∑

m1n1 6∈E1 andm2n2∈E2

FN2 (m2n2)} +
∑

m1n1∈E1 andm2n2 6∈E2

FN1 (m1n1)

= q(dF)G1 (m1)+ s(dF)G2 (m2),

and hence the result is proved.

Example 3.27. Consider the two vague graphs G1 and G2

in Figure 9 and their symmetric difference in Figure 16. In
Figure 9, TM1 ≥ TN2 , FM1 ≤ FN2 , TM2 ≥ TN1 , and FM2 ≤ FN1 .
Then, the total degree of a vertex in the symmetric difference is
calculated by the following formula:

(dT)G1⊕G2 (m1,m2) = q(dT)G1 (m1)+ s(dT)G2 (m2),

(dF)G1⊕G2 (m1,m2) = q(dF)G1 (m1)+ s(dF)G2 (m2).

Using the formula we find that

(dT)G1⊕G2 (a, c) = 1 · (0.2)+ 1 · (0.2) = 0.4,

(dF)G1⊕G2 (a, c) = 1 · (0.4)+ 1 · (0.5) = 0.9,

(dT)G1⊕G2 (a, d) = 1 · (0.2)+ 1 · (0.2) = 0.4,

(dF)G1⊕G2 (a, d) = 1 · (0.4)+ 1 · (0.5) = 0.9.

Hence, (d)G1⊕G2 (a, c) = (0.4, 0.9) and (d)G1⊕G2 (a, d) =

(0.4, 0.9).

In the same way, we can show that (d)G1⊕G2 (b, c) =

(d)G1⊕G2 (b, d) = (0.4, 0.9). Direct calculations give

(dT)G1⊕G2 (a, c) = 0.2+ 0.2 = 0.4,

(dF)G1⊕G2 (a, c) = 0.4+ 0.5 = 0.9,

(dT)G1⊕G2 (a, d) = 0.2+ 0.2 = 0.4,

(dF)G1⊕G2 (a, d) = 0.4+ 0.5 = 0.9,

(dT)G1⊕G2 (b, c) = 0.2+ 0.2 = 0.4,

(dF)G1⊕G2 (b, c) = 0.4+ 0.5 = 0.9,

(dT)G1⊕G2 (b, d) = 0.2+ 0.2 = 0.4,

(dF)G1⊕G2 (b, d) = 0.4+ 0.5 = 0.9.

It is obvious from the above that the degrees of vertices calculated
using the formula and by the direct method are the same.

Definition 3.28. Let G1 = (M1,N1) and G2 = (M2,N2) be two
vague graphs. For any vertex (m1,m2) ∈ V1 × V2 we define

(tdT)G1⊕G2 (m1,m2) =
∑

(m1 ,m2)(n1 ,n2)∈E1×E2

(TN1 ⊕ TN2 )((m1,m2)(n1, n2))

+ (TM1 ⊕ TM2 (m1,m2)

=
∑

m1=n1 ,m2n2∈E2

min{TM1 (m1),TN2 (m2n2)}

+
∑

m1n1∈E1,m2=n2

min{TN1 (m1n1),TM2 (m2)}

+
∑

m1n1 6∈E1 andm2n2∈E2

min{TM1 (m1),TM1 (n1),TN2 (m2n2)}

+
∑

m1n1∈E1 andm2n2 6∈E2

min{TN1 (m1n1),TM2 (m2),TM2 (n2)}

+min{TM1 (m1),TM2 (m2)}

and

(tdF)G1⊕G2 (m1,m2) =
∑

(m1 ,m2)(n1,n2)∈E1×E2

(FN1 ⊕ FN2 )((m1,m2)(n1, n2))

+ (FM1 ⊕ FM2 (m1,m2)

=
∑

m1=n1 ,m2n2∈E2

max{FM1 (m1), FN2 (m2n2)}

+
∑

m1n1∈E1 ,m2=n2

max{FN1 (m1n1), FM2 (m2)}

+
∑

m1n1 6∈E1 andm2n2∈E2

max{FM1 (m1), FM1 (n1), FN2 (m2n2)}

+
∑

m1n1∈E1 andm2n2 6∈E2

max{FN1 (m1n1), FM2 (m2), FM2 (n2)}

+max{FM1 (m1), FM2 (m2)}.

Example 3.29. In this example we find the degree and total
degree of the vertex (a, e) in Example 3.23. We have

s = |V1| − (d)G1 (a)

= 2− 1 = 1
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and, similarly,

q = |V2| − (d)G2 (e)

= 5− 2 = 3.

Therefore

(dT)G1⊕G2 (a, e) = q(dT)G1 (a)+ s(dT)G2 (e)

= 3(0.2)+ 1(0.1+ 0.1) = 0.6+ 0.2 = 0.8,

(dF)G1⊕G2 (a, e) = q(dF)G1 (a)+ s(dF)G2 (e)

= 3(0.4)+ 1(0.6+ 0.5) = 1.2+ 1.1 = 2.3.

So

(d)G1⊕G2 (a, e) = (0.8, 2.3).

In addition, by Definition 3.28 we have

(tdT)G1⊕G2 (a, e) = q(tdT)G1 (a)+ s(tdT)G2 (e)

− (s− 1)TG2 (e)− (q− 1)TG1 (a)

−max{TG1 (a),TG2 (e)}

= 3(0.2+ 0.2)+ 1(0.1+ 0.1+ 0.1)

− (1− 1)(0.1)− (3− 1)(0.2)−max{0.2, 0.1}

= 3(0.4)+ 0.3− 0.4− 0.2 = 0.9,

(tdF)G1⊕G2 (a, e) = q(tdF)G1 (a)+ s(tdF)G2 (e)

− (s− 1)FG2 (e)− (q− 1)FG1 (a)

−min{FG1 (a), FG2 (e)}

= 3(0.2+ 0.2)+ 1(0.4+ 0.5+ 0.6)

− (1− 1)(0.4)− (3− 1)(0.4)−min{0.4, 0.4}

= 3(0.4)+ 1.5− 0.8− 0.4 = 1.5.

Therefore,

(td)G1⊕G2 (a, e) = (0.9, 1.5).

Similarly, we can find the degree and total degree of all vertices in
G1 ⊕ G2.

Theorem 3.30. Let G1 = (M1,N1) and G2 = (M2,N2) be two
vague graphs.

(i) If TM1 ≥ TN2 and TM2 ≥ TN1 , then for all (m1,m2) ∈

V1 × V2,

(tdT)G1⊕G2 (m1,m2) = q(tdT)G1 (m1)+ s(tdT)G2 (m2)

− (q− 1)TG1 (m1)−max{TG1 (m1),TG2 (m2)}.

(ii) If FM1 ≤ FN2 and FM2 ≤ FN1 , then for all (m1,m2) ∈

V1 × V2,

(tdF)G1⊕G2 (m1,m2) = q(tdF)G1 (m1)+ s(tdF)G2 (m2)

− (q− 1)FG1 (m1)−min{FG1 (m1), FG2 (m2)}.

Here s = |V1| − (d)G1 (m1) and q = |V2| − (d)G2 (m2).

Proof: For all (m1,m2) ∈ V1 × V2 we have

(tdT)G1⊕G2 (m1,m2) =
∑

(m1,m2)(n1,n2)∈E1×E2

(TN1 ⊕ TN2 )((m1,m2)(n1, n2))

+ (TM1 ⊕ TM2 )(m1,m2)

=
∑

m1=n1 ,m2n2∈E2

min{TM1 (m1),TN2 (m2n2)}

+
∑

m1n1∈E1,m2=n2

min{TN1 (m1n1),TM2 (m2)}

+
∑

m1n1 6∈E1 andm2n2∈E2

min{TM1 (m1),TM1 (n1),TN2 (m2n2)}

+
∑

m1n1∈E1 andm2n2 6∈E2

min{TN1 (m1n1),TM2 (m2),TM2 (n2)}

+max{TM1 (m1),TM2 (m2)}

=
∑

m2n2∈E2

TN2 (m2n2)+
∑

m1n1∈E1

TN1 (m1n1)

+
∑

m1n1 6∈E1 andm2n2∈E2

TN2 (m2n2)} +
∑

m1n1∈E1 andm2n2 6∈E2

TN1 (m1n1)

+max{TM1 (m1),TM2 (m2)}

=
∑

m2n2∈E2

TN2 (m2n2)+
∑

m1n1∈E1

TN1 (m1n1)

+
∑

m1n1 6∈E1 andm2n2∈E2

TN2 (m2n2)}

+
∑

m1n1∈E1 andm2n2 6∈E2

TN1 (m1n1)+ TM1 (m1)+ TM2 (m2)

−max{TM1 (m1),TM2 (m2)}

= q(tdT)G1 (m1)+ s(tdT)G2 (m2)

− (q− 1)TG1 (m1)−max{TG1 (m1),TG2 (m2)},

(tdF)G1⊕G2 (m1,m2) =
∑

(m1,m2)(n1,n2)∈E1×E2

(FN1 ⊕ FN2 )((m1,m2)(n1, n2))

+ (FM1 ⊕ FM2 )(m1,m2)

=
∑

m1=n1 ,m2n2∈E2

max{FM1 (m1), FN2 (m2n2)}

+
∑

m1n1∈E1,m2=n2

max{FN1 (m1n1), FM2 (m2)}

+
∑

m1n1 6∈E1 andm2n2∈E2

max{FM1 (m1), FM1 (n1), FN2 (m2n2)}

+
∑

m1n1∈E1 andm2n2 6∈E2

max{FN1 (m1n1), FM2 (m2), FM2 (n2)}

+min{FM1 (m1), FM2 (m2)}

=
∑

m2n2∈E2

FN2 (m2n2)+
∑

m1n1∈E1

FN1 (m1n1)

+
∑

m1n1 6∈E1 andm2n2∈E2

FN2 (m2n2)}
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+
∑

m1n1∈E1 andm2n2 6∈E2

FN1 (m1n1)

+min{FM1 (m1), FM2 (m2)}

=
∑

m2n2∈E2

FN2 (m2n2)+
∑

m1n1∈E1

FN1 (m1n1)

+
∑

m1n1 6∈E1 andm2n2∈E2

FN2 (m2n2)}

+
∑

m1n1∈E1 andm2n2 6∈E2

FN1 (m1n1)+ FM1 (m1)+ FM2 (m2)

−min{FM1 (m1), FM2 (m2)}

= q(tdF)G1 (m1)+ s(tdF)G2 (m2)

− (q− 1)FG1 (m1)−min{FG1 (m1), FG2 (m2)},

where s = |V1| − (d)G1 (m1) and q = |V2| − (d)G2 (m2).

Example 3.31. In this example, we calculate the total degree of
the vertices in Example 3.27.

The total degree of a vertex in the symmetric difference is
given by

(tdT)G1⊕G2 (m1,m2) = q(tdT)G1 (m1)+ s(tdT)G2 (m2)

− (q− 1)TG1 (m1)−max{TG1 (m1),TG2 (m2)},

(tdF)G1⊕G2 (m1,m2) = q(tdF)G1 (m1)+ s(tdF)G2 (m2)

− (q− 1)FG1 (m1)−min{FG1 (m1), FG2 (m2)}.

Using the above formula, we calculate

(tdT)G1⊕G2 (a, c) = 1 · (0.5)+ 1 · (0.4)− (1− 1) · (0.3)

−max{0.2, 0.3} = 0.6,

(tdF)G1⊕G2 (a, c) = 1 · (0.8)+ 1 · (0.8)− (1− 1) · (0.4)

−min{0.3, 0.4} = 1.3,

(tdT)G1⊕G2 (a, d) = 1 · (0.5)+ 1 · (0.5)− (1− 1) · (0.3)

−max{0.3, 0.3} = 0.7,

(tdF)G1⊕G2 (a, d) = 1 · (0.8)+ 1 · (0.9)− (1− 1) · (0.4)

−min{0.4, 0.4} = 1.3,

(tdT)G1⊕G2 (b, c) = 1 · (0.4)+ 1 · (0.4)− (1− 1) · (0.2)

−max{0.2, 0.2} = 0.6,

(tdF)G1⊕G2 (b, c) = 1 · (0.7)+ 1 · (0.8)− (1− 1) · (0.2)

−min{0.3, 0.3} = 1.2,

(tdT)G1⊕G2 (b, d) = 1 · (0.4)+ 1 · (0.5)− (1− 1) · (0.2)

−max{0.2, 0.3} = 0.6,

(tdF)G1⊕G2 (b, d) = 1 · (0.7)+ 1 · (0.9)− (1− 1) · (0.2)

−min{0.3, 0.4} = 1.3.

By direct calculations, we find

(tdT)G1⊕G2 (a, c) = 0.2+ 0.2+ 0.2 = 0.6,

(tdF)G1⊕G2 (a, c) = 0.4+ 0.5+ 0.4 = 1.3,

(tdT)G1⊕G2 (a, d) = 0.2+ 0.2+ 0.3 = 0.7,

(tdF)G1⊕G2 (a, d) = 0.4+ 0.5+ 0.4 = 1.3,

(tdT)G1⊕G2 (b, c) = 0.2+ 0.2+ 0.2 = 0.6,

(tdF)G1⊕G2 (b, c) = 0.4+ 0.5+ 0.3 = 1.2,

(tdT)G1⊕G2 (b, d) = 0.2+ 0.2+ 0.2 = 0.6,

(tdF)G1⊕G2 (b, d) = 0.4+ 0.5+ 0.4 = 1.3.

It is clear that the total degrees of vertices calculated using the
formula and by the direct method are the same.

Definition 3.32. The residue product G1 • G2 = (M1 •M2,N1 •

N2) of two vague graphs G1 = (M1,N1) and G2 = (M2,N2) is
defined as follows:

(i) (TM1 • TM2 )((m1,m2)) = max{TM1 (m1),TM2 (m2)},

(FM1 • FM2 )((m1,m2)) = min{FM1 (m1), FM2 (m2)}

∀ (m1,m2) ∈ (V1 × V2);

(ii) (TN1 • TN2 )((m1,m2)(n1, n2)) = TN1 (m1n1),

(FN1 • FN2 )((m1,m2)(n1, n2)) = FN1 (m1n1)

∀m1n1 ∈ E1, m2 6= n2.

Example 3.33. Consider the vague graphs G1 and G2 in
Figures 17, 18. The residue product of G1 and G2, i.e., G1 • G2,
is shown in Figure 19.

For the vertex (b, e), we find the membership and non-
membership values as follows:

(TM1 • TM2 )((b, e)) = max{TM1 (b),TM2 (e)}

= max{0.2, 0.2} = 0.2,

(FM1 • FM2 )((b, e)) = min{FM1 (b), FM2 (e)}

= min{0.7, 0.6} = 0.6

for b ∈ V1 and e ∈ V2.
For the edge (a, c)(b, d), we calculate the membership and

non-membership values to be

(TN1 • TN2 )((a, c)(b, d)) = TN1 (ab) = 0.1,

(FN1 • FN2 )((a, c)(b, d)) = FN1 (ab) = 0.8

for ab ∈ E1 and c 6= d.
Similarly, we can find the membership and non-membership

values for all the remaining vertices and edges.

Proposition 3.34. The residue product of two vague graphs G1

and G2 is a vague graph.

Proof: Let G1 = (M1,N1) and G2 = (M2,N2) be two vague
graphs on crisp graphs G1 = (V1,E1) and G2 = (V2,E2),
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FIGURE 17 | G1.

FIGURE 18 | G2.

respectively, and let ((m1,m2)(n1, n2)) ∈ E1 × E2. If m1n1 ∈ E1
andm2 6= n2, then

(TN1 • TN2 )((m1,m2)(n1, n2)) = TN1 (m1n1)

≤ min{TM1 (m1),TM1 (n1)}

≤ max{min{TM1 (m1),TM1 (n1)}, min{TM2 (m2),TM2 (n2)}}

= min{max{TM1 (m1),TM1 (n1)}, max{TM2 (m2),TM2 (n2)}}

= min{(TM1 • TM2 )(m1,m2), (TM1 • TM2 )(n1, n2)},

(FN1 • FN2 )((m1,m2)(n1, n2)) = FN1 (m1n1)

≥ max{FM1 (m1), FM1 (n1)}

≥ min{max{FM1 (m1), FM1 (n1)}, max{FM2 (m2), FM2 (n2)}}

= max{min{FM1 (m1), FM1 (n1)}, min{FM2 (m2), FM2 (n2)}}

= max{(FM1 • FM2 )(m1,m2), (FM1 • FM2 )(n1, n2)},

which completes the proof.

Definition 3.35. Let G1 = (M1,N1) and G2 = (M2,N2) be two
vague graphs. For any vertex (m1,m2) ∈ V1 × V2 we define

(dT)G1•G2 (m1,m2) =
∑

(m1 ,m2)(n1 ,n2)∈E1×E2

(TN1 • TN2 )((m1,m2)(n1, n2))

=
∑

m1n1∈E1 ,m2 6=n2

TN1 (m1n1)

= (dT)G1 (m1),

(dF)G1•G2 (m1,m2) =
∑

(m1,m2)(n1,n2)∈E1×E2

(FN1 • FN2 )((m1,m2)(n1, n2))

=
∑

m1n1∈E1,m2 6=n2

FN1 (m1n1)

= (dF)G1 (m1).

Definition 3.36. Let G1 = (M1,N1) and G2 = (M2,N2) be two
vague graphs. For any vertex (m1,m2) ∈ V1 × V2 we define

(tdT)G1•G2 (m1,m2) =
∑

(m1 ,m2)(n1 ,n2)∈E1×E2

(TN1 • TN2 )((m1,m2)(n1, n2))

+ (TM1 • TM2 )(m1,m2)

=
∑

m1n1∈E1,m2 6=n2

TN1 (m1n1)+min{TM1 (m1),TM2 (m2)}

=
∑

m1n1∈E1,m2 6=n2

TN1 (m1n1)+ TM1 (m1)+ TM2 (m2)

−max{TM1 (m1),TM2 (m2)}

= (tdT)G1 (m1)+ TM2 (m2)−max{TM1 (m1),TM2 (m2)},

(tdF)G1•G2 (m1,m2) =
∑

(m1,m2)(n1,n2)∈E1×E2

(FN1 • FN2 )((m1,m2)(n1, n2))

+ (FM1 • FM2 )(m1,m2)

=
∑

m1n1∈E1,m2 6=n2

FN1 (m1n1)+max{FM1 (m1), FM2 (m2)}

=
∑

m1n1∈E1,m2 6=n2

FN1 (m1n1)+ FM1 (m1)+ FM2 (m2)

−min{FM1 (m1), FM2 (m2)}

= (tdF)G1 (m1)+ FM2 (m2)−min{FM1 (m1), FM2 (m2)}.

Example 3.37. In this example we find the degree and total
degree of the vertex (b, e) in Example 3.33:

(dT)G1•G2 (b, e) = (dT)G1 (b)

= 0.1+ 0.1 = 0.2,

(dF)G1•G2 (b, e) = (dF)G1 (b)

= 0.8+ 0.8 = 1.6.

Therefore,

(d)G1•G2 (b, e) = (0.2, 1.6).
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FIGURE 19 | G1 •G2.

TABLE 1 | The vague relation L(P → S).

L Heartburn Coughing Pain during swallowing Weight loss

Shahbaz (0.8, 0) (0.6, 0.2) (0.2, 0.3) (0.1, 0.6)

Faisal (0.3, 0.1) (0.3, 0.5) (0.3, 0.6) (0.2, 0.6)

Shoaib (0.5, 0.2) (0.1, 0.2) (0.1, 0.8) (0.3, 0.4)

Danish (0.4, 0.4) (0, 0.3) (0.5, 0.4) (0.5, 0.3)

The total degree of (b, e) is given by

(tdT)G1•G2 (b, e) = (tdT)G1 (b)+ TM2 (e)−max{TM1 (b),TM2 (e)}

= (0.2+ 0.2)+ 0.2−max(0.2, 0.2)

= 0.4,

(tdF)G1•G2 (b, e) = (tdF)G1 (b)+ FM2 (e)−min{FM1 (b), FM2 (e)}

= (0.8+ 0.8)+ 0.6−min(0.7, 0.6)

= 1.6.

Therefore,

(td)G1•G2 (b, e) = (0.4, 1.6).

Similarly, we can find the degree and total degree of all vertices in
G1 • G2.

TABLE 2 | The vague relation R(S → D).

R Cancer of

kidney

Cancer of

colon

Cancer of

breast

Cancer of

bladder

Heartburn (0.1, 0.3) (0.6, 0.1) (0.2, 0.3) (0.7, 0.1)

Coughing (0.5, 0.4) (0.3, 0.4) (0.3, 0.5) (0.2, 0.6)

Pain during

swallowing

(0.3, 0.6) (0.5, 0.2) (0.6, 0.1) (0.7, 0.1)

Weight loss (0.2, 0.3) (0.6, 0.3) (0.5, 0.2) (0.7, 0.1)

4. APPLICATION OF VAGUE SETS TO
MEDICAL DIAGNOSIS

Following the approach outlined by De et al. [18], we will
apply vague sets to medical diagnosis by using a max-min-max
composition in terms of vague relations. First, we use vague
sets to define the disease symptoms. Then, we describe medical
knowledge in terms of vague relations. Finally, we determine a
diagnosis on the basis of vague relations. Consider four patients
named Shahbaz, Shoaib, Faisal, and Danish, and define the set
of patients P = {Shahbaz, Shoaib, Faisal, Danish}. Let the set of
symptoms under consideration be S = {heartburn, coughing,
pain during swallowing, weight loss}. A vague relation L is
available from set P to set S, and this is summarized in Table 1.

Cancer is a group of dangerous and prevalent diseases, and
represents one of humankind’s greatest medical challenges. Many
people are diagnosed with late-stage cancer that is difficult or
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TABLE 3 | The composition M(P → D) of vague relations L and R.

M Cancer of

kidney

Cancer of

colon

Cancer of

breast

Cancer of

bladder

Shahbaz (0.5, 0.3) (0.6, 0.1) (0.2, 0.3) (0.7, 0.1)

Faisal (0.3, 0.3) (0.3, 0.1) (0.3, 0.3) (0.3, 0.1)

Shoaib (0.2, 0.3) (0.5, 0.2) (0.3, 0.3) (0.5, 0.2)

Danish (0.5, 0.3) (0.5, 0.3) (0.5, 0.3) (0.5, 0.3)

TABLE 4 | SR, the best version of R determined by the formula SR = TR − FRπR.

SR Cancer of

kidney

Cancer of

colon

Cancer of

breast

Cancer of

bladder

Shahbaz 0.44 0.57 0.05 0.68

Faisal 0.18 0.24 0.18 0.24

Shoaib 0.05 0.44 0.18 0.44

Danish 0.44 0.44 0.44 0.44

impossible to treat because of a lack of awareness of the disease
symptoms. Mathematical models involving vague sets can be
used to determine the most likely diagnosis given a set of
symptoms that a patient presents with.

There are many different types of cancers; here we focus
on a few of the more life-threatening kinds: (1) kidney cancer,
(2) colon cancer, (3) breast cancer, and (4) bladder cancer. We
define the set of diagnoses to be D = {cancer of kidney, cancer
of colon, cancer of breast, cancer of bladder}. The vague relation
R(S → D) from the set of symptoms to the set of diagnoses
is given in Table 2. The composition M(P → D) of the vague
relations L and R is shown in Table 3; it gives the diagnosis for
each patient via the formulas

TM(pi, dk) =
∨

s∈S

[TL(pi, s) ∧ TR(s, dk)],

FM(pi, dk) =
∧

s∈S

[FL(pi, s) ∨ FR(s, dk)],

where pi denotes the patients, dk denotes the different diagnoses,
∧ = min, and ∨ = max.

Shown inTable 4 is SR, the best version of diagnosis for this set
of patients, which is determined by the formula SR = TR−FRπR.
It is very important because the max-min-max rule alone fails to
provide exact information.

5. CONCLUSION

Compared with fuzzy models, vague models offer greater
compatibility and flexibility. A vague graph is a type of
extension of a fuzzy graph, and is used widely in the field
of computer science. We have defined four new operations
of a vague graph, called the maximal product, rejection,
symmetric difference, and residue product. We have discussed
their properties and provided examples on finding the degree
of a vertex and the total degree of vertices of graphs that meet
specific conditions. We have formulated and proved theorems
for these graphs by using the concept of degree of a vertex
and total degree of a vertex of a graph. Furthermore, we
have presented an application of vague sets to the medical
diagnosis of four types of cancer. In future work we will
explore further properties relating to vague graphs and bipolar
vague graphs.
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The Maximum Principle for
Variable-Order Fractional Diffusion
Equations and the Estimates of Higher
Variable-Order Fractional Derivatives
Guangming Xue1,2, Funing Lin1,2 and Guangwang Su1,2*

1College of Information and Statistics, Guangxi University of Finance and Economics, Nanning, China, 2Guangxi Key Laboratory
Cultivation Base of Cross-Border E-Commerce Intelligent Information Processing, Nanning, China

In this paper, the maximum principle of variable-order fractional diffusion equations and the
estimates of fractional derivatives with higher variable order are investigated. Firstly, we
deduce the fractional derivative of a function of higher variable order at an arbitrary point.
We also give an estimate of the error. Some important inequalities for fractional derivatives
of variable order at arbitrary points and extreme points are presented. Then, the maximum
principles of Riesz-Caputo fractional differential equations in terms of themulti-term space-
time variable order are proved. Finally, under the initial-boundary value conditions, it is
verified via the proposed principle that the solutions are unique, and their continuous
dependance holds.

Keywords: maximum principle, fractional diffusion equation, fractional derivative with variable order, extreme point,
boundary value problem

1. INTRODUCTION

Fractional calculus Podlubny [1]; as a natural extension of traditional integer calculus, has become
a classical and essential branch of mathematics through a long historical development. Recently
Al-Refai and Baleanu [2], obtained the estimates of fractional derivatives with higher order for
extreme points, providing an approach to the establishment of the maximum principles, as well as
the results of the existence and uniqueness of solutions for the fractional differential equations
(FDEs). As a kind of well-known technique for handling FDEs, the maximum principle may
facilitate to acquire the key access to the solutions in the absence of any prior detailed knowledge
about the solutions Protter and Weinberger [3]. Liu et al. [4] derived a maximum principle for
fractional differential equations (VOFDEs, for short) with multi-term time variable order
0< α(ζ, τ)≤ 1 and space variable orders 0< c(ζ, τ)≤ 1 and 1< β(ζ, τ)≤ 2 in the sense of Riesz-
Caputo, and showed the uniqueness of solutions as well as continuous of VOFDEs via the
dependance. Ye et al. [5] investigated the solutions maximum principle. More researches in this
area can be consulted in Luchko [6–8]; Li et al. [9]; Al-Refai and Luchko [10]; Yang et al. [11];
Coronelescamilla et al. [12]; Hajipour et al. [13].

However, the restriction for most of the aforesaid fractional diffusion equations is that their orders
are constant. Such a restriction was relaxed by Samko andRoss [14] via a proposed variable-order (VO)
operator to describe the diffusion process. In fact, VOFDEs are widerly used as powerful tools in many
research topics, such as visco-elasticity Coimbra [15]; oscillation Ingman and Suzdalnitsky [16];
anomalous diffusion Sun et al. [17]; etc. For more applications of fractional differential equations,
please refer to Cooper and Cowan [18]; Liu [19]; Sun et al. [20]; Liu and Li [21]; Yang [22], etc.
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The contributions of this paper can be summarized as follows:

(1) The higher derivative of fractional function with variable order
is given. On the basis of it, three useful theorems are given,
which provide theoretical guarantee for the applications.

(2) The maximum principle for one-dimensional multi-term
space-time higher VOFDEs is given.

(3) Based on the proposed method, a concrete example is given
for the practical applications.

The paper is structured as the following. In Section 2, we
recall some fundamental definitions that will be used in this
paper. In Section 3, we derive some equalities and inequalities
of the higher VOFDEs at arbitrary points and extreme points.
We also give an estimate of the error. In Section 4, by virtue of
these important inequalities, we establish the maximum
principle for Riesz-Caputo FDEs with multi-term time
variable order and space variable orders. In Section 5, based
on the given principle, the uniqueness of solutions with their
continuous dependance in the present of initial-boundary value
conditions are strictly proved.

Notations: Throughout this paper, ζ denotes the space variable
and τ denotes the time variable. ΩT :� (0, L) × (0,T], ΩT and zΩT

are the closure and the boundary of ΩT , respectively. α(·, ·), c(·, ·)
and β(·, ·) represent binary VO functions. It is supposed that the
VO functions α, α1, . . . , αn, β and c satisfy that

1< αn(ζ , τ)</< α1(ζ , τ)< α(ζ , τ)≤ 2, (ζ , τ) ∈ ΩT ,

where (ζ, τ) ∈ ΩT , β(ζ, τ) ∈ (1, 2] and c(ζ, τ) ∈ (0, 1]. Also, the
functions e(ζ, τ), m(ζ, τ), n(ζ, τ) and ai(ζ, τ), i � 1, 2, . . . , n are
supposed to be all continuous on ΩT with m(ζ, τ)> 0, n(ζ, τ)≥ 0
and e(ζ, τ)≤ 0.

2. PRELIMINARIES

Throughout this paper, R+ denotes the set of all positive real
numbers. Let Cn[0,T] � {f : f (n) ∈ C[0,T]} be a Banach space
with the norm fCn � maxt∈[0,T][

∣∣∣∣ f (t)∣∣∣∣, ∣∣∣∣ f ′(t)∣∣∣∣, . . . , ∣∣∣∣ f (n)(t)∣∣∣∣]. For
more details about the relevant concepts and results, please see
Podlubny [1]; Liu et al. [4]; Kilbas et al. [23].

Definition 1. Let f ∈ C[0,T] and α : (0, L) × (0,T)→R+ be a
VO function. The Riemann-Liouville fractional integrals of left-
side VO and right-side VO are defined as

Iα(ζ ,τ)0,τ f (τ) �
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
Γ[α(ζ , τ)] ∫

τ

0
(τ − ϑ)α(ζ ,τ)−1f (ϑ) dϑ, α(ζ , τ)> 0,

f (τ), α(ζ , τ) � 0,

Iα(ζ ,τ)τ,T f (τ) �
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(− 1)[α(ζ ,τ)]
Γ[α(ζ , τ)] ∫

τ

0
(τ − ϑ)α(ζ ,τ)−1f (ϑ) dϑ, α(ζ , τ)> 0,

f (τ), α(ζ , τ) � 0,

respectively, where Γ[α(ζ, τ)] � ∫∞
0

θα(ζ,τ)−1e−θdθ and [α(ζ, τ)] is the
smallest integer not less than α(ζ, τ).

Definition 2. Let f ∈ Cn[0,T] and α : [0, L] × [0,T]→R+ be a
VO function. The Caputo fractional derivatives of left-side VO
and right-side VO are defined respectively as

C
Dα(ζ ,τ)

0,τ f (τ) � In−α(ζ ,τ)0,τ

dn

dτn
f (τ)

�
⎧⎪⎪⎨
⎪⎪⎩

1
Γ[n − α(ζ , τ)] ∫

τ

0
(τ − ϑ)n−α(ζ ,τ)−1f (n) (ϑ)dϑ, n − 1< α(ζ , τ)< n,

f (n)(τ), α(ζ , τ) � n,
C
Dα(ζ ,τ)

τ,T f (τ) � In−α(ζ ,τ)τ,T

dn

dτn
f (τ)

�
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(−1)n
Γ[n − α(ζ , τ)] ∫

τ

0
(τ − ϑ)n−α(ζ ,τ)−1f (n) (ϑ)dϑ, n − 1< α(ζ , τ)< n,

f (n)(τ), α(ζ , τ) � n.

Definition 3. The VO Riesz-Caputo fractional operator
C
Rβ(ζ,τ)

ζ of
VO β(ζ, τ) with n − 1< β(ζ, τ)≤ n and 0≤ ζ ≤ L is defined as

C
Rβ(ζ ,τ)
ζ w(ζ , τ) :� −ρβ(ζ ,τ)(

C
Dβ(ζ ,τ)

0,ζ + C
Dβ(ζ ,τ)

ζ ,L )w(ζ , τ),
where Γ[α(ζ, τ)] � ∫∞

0
θα(ζ,τ)−1e−θdθ, ρβ(ζ,τ) � 2−1cos− 1[β(ζ, τ)π/2] is

the coefficient with β(ζ, τ)≠ 1, 2, 3, . . . , and
C
Dβ(ζ ,τ)

0,ζ w(ζ , τ) � 1
Γ(n − β(ζ , τ)) ∫

ζ

0
(ζ − ϑ)n− β(ζ ,τ)− 1z

nw(ϑ, τ)
zϑn

dϑ,

C
Dβ(ζ ,τ)

ζ ,L w(ζ , τ) � (−1)n
Γ(n − β(ζ , τ)) ∫

L

ζ
(ϑ − ζ)n− β(ζ ,τ)− 1z

nw(ϑ, τ)
zϑn

dϑ.

Moreover, if β(ζ, τ) � n,
C
Rβ(ζ,τ)

ζ w(ζ, τ) � [znw(ζ, τ)/zζn].
In this paper, we are interested in the following VOFDEs:

Pα,α1 ,...,αn(C0Dτ)w(ζ , τ) � −[m(ζ , τ)CRβ(ζ ,τ)
ζ w(ζ , τ)

+ n(ζ , τ)CRc(ζ ,τ)
ζ w(ζ , τ)

+ e(ζ , τ)w(ζ , τ)]
+ F(ζ , τ,w), (ζ , τ) ∈ ΩT , (1)

where Pα,α1 ,...,αn(C0Dτ) denotes the multi-term time VO Caputo
fractional derivative operator, i.e.,

Pα,α1 ,...,αn(C0Dt)w(ζ , τ) � C

0D
α(ζ ,τ)
t w(ζ , τ)

+∑
n

i�1
ai(ζ , τ)C0Dαi(ζ ,τ)

t w(ζ , τ). (2)

3. THE VARABLE-ORDER FRACTIONAL
DERIVTIVES AT ARBITRARY POINTS AND
EXTREME POINTS
In this section, we are in position to give some basic results.

Theorem 1. Let f ∈ Cn[0,T]. and ηn(·, ·) be a VO function. If ηn
satisfies

n − 1< ηn(ζ , τ)< n, ∀(ζ , τ) ∈ ΩT ,
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then for any arbitrary point τ0 ∈ (0,T), the following equation holds

C
Dηn(ζ ,τ0)

0,τ0 f (τ0) � −∑
n−1

k�0

1
Γ[k + 1 − ηn(ζ , τ0)]

τ
k−ηn(ζ ,τ0)
0 h(k)n−1(0)

+ 1
Γ[ − ηn(ζ , τ0)]

∫
τ0

0
(τ0 − s)− ηn(ζ ,τ0)− 1hn−1(s)ds,

where hn−1(τ) � f (τ) − ∑
n−1

k�0
[f (k)(τ0)(τ − τ0)k/k!].

PROOF. We shall prove this by induction argument. If
0< η1(ζ, τ0)< 1, the result has been obtained in Liu et al. [4].
Assume that this is true for n − 1< ηn(ζ, τ0)< n. Now we check
that it still holds whenever n< ηn+1(ζ, τ0)< n + 1.

Let ηn+1(ζ, τ0) � δ(ζ, τ0) + n, where 0< δ(ζ, τ0)< 1. Then n −
1< n − 1 + δ(ζ, τ0)< n. Define ηn(ζ, τ0) � n − 1 + δ(ζ, τ0). Then.
n − 1< ηn(ζ, τ0)< n.

By the induction hypothesis, one obtains

C
Dn−1+δ(ζ ,τ0)

0,τ0
f (τ0) � −∑

n−1

k�0

1
Γ[k + 2 − n − δ(ζ , τ0)]τ

k+1−n−δ(ζ ,τ0)
0 h(k)n−1(0)

+ 1
Γ[1 − n − δ(ζ , τ0)] ∫

τ0

0
(τ0 − s)− n− δ(ζ ,τ0)hn−1(s)ds.

Substituting f ′(τ) for f (τ) in the preceding equation, one has

C
Dn−1+δ(ζ ,τ0)

0,τ0
f ′(τ0) � −∑

n−1

k�0

1
Γ[k + 2 − n − δ(ζ , τ0)]τ

k+1−n−δ(ζ ,τ0)
0 z(k)n−1(0)

+ 1
Γ[1 − n − δ(ζ , τ0)] ∫

τ0

0
(τ0 − s)− n− δ(ζ ,τ0)zn−1(s)ds,

where zn−1(τ) � f ′(τ) − ∑
n−1

k�0
[f (k+1)(τ0)(τ − τ0)k/k!].

Obviously, we have:

(1) h′n(τ) � zn−1(τ),
(2) hn(τ0) � h′n(τ0) � h′′n(τ0) � / � h(n)n (τ0) � 0.

Hence,

hn(τ) � (τ0 − τ)n+1μn(τ),
where μn(τ) ∈ C[0,T] and h(k+1)n (0) � z(k)n−1(0).

Integrating by parts, we have

∫
τ0

0

(τ0 − s)− n− δ(ζ ,τ0)zn−1(s)ds � (τ0 − s)− n− δ(ζ ,τ0)hn(s)|τ00

− (n + δ(ζ , τ0)) × ∫
τ0

0

(τ0 − s)− 1− n− δ(ζ ,τ0)hn(s)ds.

So

lim
s→ τ0

hn(s)
(τ0 − s)n+δ(ζ ,τ0) � lim

s→ τ0
(τ0 − s)1− δ(ζ ,τ0)μn(τ) � 0,

∀ζ ∈ [0, L],
and

1
Γ(1 − n − δ(ζ , τ0)) ∫

τ0

0
(τ0 − s)− n− δ(ζ ,τ0)zn−1(s)ds

� − τ−n−δ(ζ ,τ0)0 hn(0)
Γ(1 − n − δ(ζ , τ0)) −

n + δ(ζ , τ0)
Γ(1 − n − δ(ζ , τ0))

∫
τ0

0
(τ0 − s)− n− δ(ζ ,τ0)− 1hn(s)ds

� − τ−n−δ(ζ ,τ0)0 hn(0)
Γ(1 − n − δ(ζ , τ0)) +

1
Γ( − n − δ(ζ , τ0))

∫
τ0

0
(τ0 − s)− n− δ(ζ ,τ0)− 1hn(s)ds.

Thus,

C
Dn−1+δ(ζ ,τ0)

0,τ0
f ′(τ0) � −∑

n−1

k�0

1
Γ(k + 2 − n − δ(ζ , τ0))τ

k+1−n−δ(ζ ,τ0)
0

h(k+1)n (0) − τ−n−δ(ζ ,τ0)0 hn(0)
Γ(1 − n − δ(ζ , τ0))

+ 1
Γ( − n − δ(ζ , τ0)) ∫

τ0

0
(τ0 − s)− n− δ(ζ ,τ0)− 1hn(s)ds

� −∑
n

k�1

1
Γ(k + 1 − n − δ(ζ , τ0))τ

k−n−δ(ζ ,τ0)
0 h(k)n (0)

− τ−n−δ(ζ ,τ0)0 hn(0)
Γ(1 − n − δ(ζ , τ0))

+ 1
Γ( − n − δ(ζ , τ0)) ∫

τ0

0
(τ0 − s)− n− δ(ζ ,τ0)− 1hn(s)ds

� −∑
n

k�0

1
Γ(k + 1 − n − δ(ζ , τ0))τ

k−n−δ(ζ ,τ0)
0 h(k)n (0)

+ 1
Γ( − n − δ(ζ , τ0))∫

τ0

0

(τ0 − s)− n− δ(ζ ,τ0)− 1hn(s)ds

� −∑
n−1

k�0

1
Γ(k + 1 − ηn+1(ζ , τ0))

τ
k−ηn+1(ζ ,τ0)
0 h(k)n (0)

+ 1
Γ( − ηn+1(ζ , τ0)

∫
τ0

0

(τ0 − s)− ηn+1(ζ ,τ0)− 1hn(s)ds.

Hence
C
Dn−1+δ(ζ,τ0)

0,τ0 f ′(τ0) � C
Dn+δ(ζ,τ0)

0,τ0 f (τ0) � C
Dηn+1(ζ,τ0)

0,τ0 f (τ0).
This complete the proof.

Remark 1. If ηn(ζ, τ) ≡ α in ΩT (n − 1< α≤ n) and τ0 is an
extreme point, then Theorem 1 coincides with Al-Refai and
Baleanu [2]’s result. Thus, our result generalizes AL-Refai and
Baleanu’s original idea.

Theorem 2.

Let f ∈ Cn[0,T]. Suppose that the VO function ηn(ζ, τ)
satisfies
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n − 1< ηn(ζ , τ)< n, ∀(ζ , τ) ∈ ΩT .

For any arbitrary point τ0 ∈ (0,T), one gets

(1) For any nonnegative f (n)(τ) with τ ∈ [0, τ0], then

C
Dηn(ζ ,τ0)

0,τ0 f (τ0)≥ −∑
n−1

k�0

1
Γ(k + 1 − ηn(ζ , τ0))

τ
k−ηn(ζ ,τ0)
0 h(k)n−1(0)

(2) For any non-positive f (n)(τ) with τ ∈ [0, τ0], then

C
Dηn(ζ ,τ0)

0,τ0 f (τ0)≤ −∑
n−1

k�0

1
Γ(k + 1 − ηn(ζ , τ0))

τ
k−ηn(ζ ,τ0)
0 h(k)n−1(0)

where hn−1(τ) � f (τ) − ∑
n−1

k�0
(f (k)(τ0)(τ − τ0)k/k!).

PROOF. Employing the Taylor series expansion, we know that
there is some τ0 with τ < ϑn(τ)< τ0 such that

hn−1(τ) � f (τ) −∑
n−1

k�0

f (k)(τ0)(τ − τ0)k
k!

� f (n)(ϑn(τ))(τ − τ0)n
n!

So, we have

mn � 1
Γ( − ηn(ζ , τ0))

∫
τ0

0
(τ0 − s)− ηn(ζ ,τ0)− 1hn−1(s)ds.

� 1
Γ( − ηn(ζ , τ0))

∫
τ0

0
(τ0 − s)− ηn(ζ ,τ0)− 1 f

(n)(ϑn(τ))(τ − τ0)n
n!

ds.

� (−1)n
n!Γ( − ηn(ζ , τ0))

∫
τ0

0
(τ0 − s)n− ηn(ζ ,τ0)− 1f (n)(ϑn(s))ds.

(3)

Note that n − 1< ηn(ζ, τ0)< n, and

Γ( − ηn(ζ , τ0)){ > 0, if n is even,
< 0, otherwise.

Therefore, we get ((−1)n/Γ(−ηn(ζ, τ0)))> 0, and
mn � { ≥ 0, if f (n)(τ)≥ 0,

< 0, otherwise.

Theorem 3. Let f ∈ Cn[0,T], and
∣∣∣∣f (n)(τ)∣∣∣∣≤M, for all

τ ∈ [0,T]. If the VO function ηn(ζ, τ) satisfies
n − 1< ηn(ζ , τ)< n, ∀(ζ , τ) ∈ ΩT ,

then for any arbitrary point τ0 ∈ (0,T), the following equation
holds:

C
Dηn(ζ ,τ0)

0,τ0 f (τ0) � −∑
n−1

k�0

1
Γ(k + 1 − ηn(ζ , τ0))

τ
k−ηn(ζ ,τ0)
0 h(k)n−1(0) +mn,

where hn−1(τ) � f (τ) − ∑
n−1

k�0
(f (k)(τ0)(τ − τ0)k/k!), and

|mn| ≤ Mtn−ηn(ζ ,τ0)0

n!(n − ηn(ζ , τ0))
∣∣∣∣Γ( − ηn(ζ , τ0))

∣∣∣∣
.

PROOF. According to Eq. 3, one has

mn � (−1)n
n!Γ( − ηn(ζ , τ0))

∫
τ0

0
(τ0 − s)n− ηn(ζ ,τ0)− 1f (n)(ϑn(s))ds.

As a result,

|mn|≤ M

n!
∣∣∣∣Γ( − ηn(ζ , τ0))

∣∣∣∣
∫

τ0

0
(τ0 − s)n− ηn(ζ ,τ0)− 1ds

� Mtn−ηn(ζ ,τ0)0

n!(n − ηn(ζ , τ0))
∣∣∣∣Γ( − ηn(ζ , τ0))

∣∣∣∣
.

Theorem 4. Given a VO function α : [0, L] × [0,T]→R+ with
1< α(ζ, τ)< 2 for all (ζ, τ) ∈ ΩT . If f ∈ C2[0,T] attains its
maximum at τ0 ∈ (0,T), then it holds that

C
Dα(ζ ,τ0)

0,τ0
f (τ0)≤ α(ζ , τ0) − 1

Γ(2 − α(ζ , τ0))τ
−α(ζ ,τ0)
0 [f (0) − f (τ0)]

− τ1−α(ζ ,τ0)0

Γ(2 − α(ζ , τ0))f
′(0).

Moreover, if f ′(0)≥ 0 , then
C

0
Dα(ζ,τ0)
0,τ0 f (τ0)≤ 0,∀ζ ∈ [0, L].

PROOF. Let ϕ(τ) :� f (τ) − f (τ0) ∈ C2[0,T].Obviously, we have

(1) ϕ(τ)≤ 0, τ ∈ [0,T];
(2) ϕ(τ0) � ϕ′(τ0) � 0 and ϕ′′(τ0)≤ 0;
(3) ϕ(τ) � (τ0 − τ)2 · v(τ) where v ∈ C[0,T] and v(τ)≤ 0,

∀τ ∈ [0,T].

It can be easily verified that

C
Dα(ζ ,τ)

0,τ ϕ(τ) � C
Dα(ζ ,τ)

0,τ f (τ),∀(ζ , τ) ∈ Ω

By Theorem 1, we obtain

C
Dα(ζ ,τ0)

0,τ0
ϕ(τ0) � − τ1−α(ζ ,τ0)0

Γ(2 − α(ζ , τ0))ϕ
′(0)

+ α(ζ , τ0) − 1
Γ(2 − α(ζ , τ0))τ

−α(ζ ,τ0)
0 ϕ(0)

+ (α(ζ , τ0) − 1) · α(ζ , τ0)
Γ(2 − α(ζ , τ0)) ∫

τ0

0
(τ0 − s)− α(ζ ,τ0)− 1ϕ(s)ds

Since for all τ ∈ [0, τ0], ϕ(τ)≤ 0 and ϕ(τ) � (τ0 − τ)2v(τ), it
follows that M :� maxτ ∈ [0,τ0]v(τ)≤ 0.

Hence,

∫
τ0

0
(τ0 − s)− α(ζ ,τ0)− 1ϕ(s)ds

� ∫
τ0

0
(τ0 − s)1− α(ζ ,τ0)v(s)ds

≤M ∫
τ0

0
(τ0 − s)1− α(ζ ,τ0)ds

� M
−1

2 − α(ζ , τ0)(τ0 − s)2− α(ζ ,τ0)
∣∣∣∣∣∣∣∣

τ0

0

� M
τ2−α(ζ ,τ0)0

2 − α(ζ , τ0)≤ 0,∀ζ ∈ [0, L].
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Therefore

C
Dα(ζ ,τ0)

0,τ0
f (τ0) � − τ1−α(ζ ,τ0)0

Γ(2 − α(ζ , τ0))ϕ
′(0)

+ α(ζ , τ0) − 1
Γ(2 − α(ζ , τ0))τ

−α(ζ ,τ0)
0 ϕ(0)

+ (α(ζ , τ0) − 1) · α(ζ , τ0)
Γ(2 − α(ζ , τ0)) ∫

τ0

0
(τ0 − s)− 1− α(ζ ,τ0)v(s)ds

≤ − τ1−α(ζ ,τ0)0

Γ(2 − α(ζ , τ0))ϕ
′(0) + α(ζ , τ0) − 1

Γ(2 − α(ζ , τ0))τ
−α(ζ ,τ0)
0 ϕ(0)

� α(ζ , τ0) − 1
Γ(2 − α(ζ , τ0))τ

−α(ζ ,τ0)
0 [f (0) − f (τ0)] − τ1−α(ζ ,τ0)0

Γ(2 − α(ζ , τ0)) f
′(0).

Consequently,
C
Dα(ζ,τ0)

0,τ0 f (τ0)≤ 0 for all ζ ∈ [0, L] whenever
f ′(0)≥ 0,

4. THE MAXIMUM PRINCIPLE

In this section, we will display and show the maximum principle
for one-dimensional multi-term space-time higher VOFDEs.

For convenience, the symbol Qβ,c is used to denote the
operator given by

Qβ,cw(ζ , τ) � m(ζ , τ)CRβ(ζ ,τ)
ζ w(ζ , τ) + n(ζ , τ)CRc(ζ ,τ)

ζ w(ζ , τ)
+ e(ζ , τ)w(ζ , τ).

It is easy to see that Qβ,c is a space VO operator on ζ.
Theorem 5. Suppose w(ζ, τ) ∈ C2,2(ΩT) and
Pα,α1 ,...,αn(CD0,t)w(ζ , τ) + Qβ,cw(ζ , τ)≥ 0, ∀(ζ , τ) ∈ ΩT .

If (zw/zζ)|ζ�0 ≥ 0 but (zw/zζ)|ζ�L ≤ 0 whenever 0≤ τ ≤T , then

max
(ζ ,τ)∈ΩT

w(ζ , τ)≤max{ max
(ζ ,τ)∈zΩT

w(ζ , τ), 0},

PROOF. We prove this by contradiction. Assume that there exits
(ζ0, τ0) ∈ ΩT such that

w(ζ0, τ0)>max{ max
(ζ ,τ)∈zΩT

w(ζ , τ), 0} � M ≥ 0.

Let wp(ζ, τ) � w(ζ, τ) + (ϵ/2)((T − τ)/T)2 for all (ζ, τ) ∈ ΩT ,
where ε � w(ζ0, τ0) −M > 0.

Precisely, we have

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

C
Dα(ζ ,τ)

0,τ wp(ζ , τ) � C
Dα(ζ ,τ)

0,τ w(ζ , τ) + ε

T2

τ2−α(ζ ,τ)

Γ(3 − α(ζ , τ)),

C
Dαi(ζ ,τ)

0,τ wp(ζ , τ) � C
Dαi(ζ ,τ)

0,τ w(ζ , τ) + ε

T2

τ2−αi(ζ ,τ)

Γ(3 − αi(ζ , τ)), i � 1, 2, . . . , n,

and

⎧⎨
⎩

C
Rc(ζ ,τ)
ζ wp(ζ , τ) � C

Rc(ζ ,τ)
ζ w(ζ , τ),

C
Rβ(ζ ,τ)
x wp(ζ , τ) � C

Rβ(ζ ,τ)
ζ w(ζ , τ).

This implies that

wp(ζ , τ) � w(ζ , τ) + ε

2
(
T − τ

T
)
2

≤w(ζ , τ) + ε

2
, (ζ , τ) ∈ ΩT ,

Thus,

wp(ζ0, τ0)>w(ζ0, τ0) � M + ε≥ ε + w(ζ , τ)≥wp(ζ , τ) + ε

2
,

(ζ , τ) ∈ zΩT .

This meanswp fails to reach the maximum value on the boundary
zΩT . Assume that wp obtains the maximum value at (ζ1, τ1) ∈ ΩT .
It follows that

wp(ζ1, τ1)≥wp(ζ0, τ0)> ε +M ≥ ε> 0.

Trivially, one has

Pα,α1 ,...,αn(CD0,τ)wp(ζ , τ) � Pα,α1 ,...,αn(CD0,τ)w(ζ , τ)

+ ε

T2
⎡⎣ τ2−α(ζ ,τ)

Γ(3 − α(ζ , τ)) +∑
n

i�1

ai(ζ , τ) · τ2−αi(ζ ,τ)
Γ(3 − αi(ζ , τ))

⎤⎦. (4)

and

Qβ,cw
p(ζ1, τ1) � p(ζ1, τ1)CRβ(ζ1 ,τ1)

x wp(ζ1, τ1)

+ q(ζ1, τ1)CRc(ζ1 ,τ1)
x wp(ζ1, τ1) + e(ζ1, τ1)wp(ζ , τ)

� p(ζ1, τ1)CRβ(ζ1 ,τ1)
x w(ζ1, τ1) + q(ζ1, τ1)CRc(ζ1 ,τ1)

x w(ζ1, τ1)
+ e(ζ1, τ1)wp(ζ1, τ1) � Qβ,cw(ζ1, τ1) − e(ζ1, τ1)w(ζ1, τ1)

+ e(ζ1, τ1)wp(ζ1, τ1) � Qβ,cw(ζ1, τ1) + e(ζ1, τ1) ε2(
T − t1
T

)
2

.

(5)

Note that q(ζ1, τ1)≥ 0 and p(ζ1, τ1)> 0, which follow by applying
Theorem four in this paper along with Theorems 3.2 and 3.3 in
Liu et al. [4]. By virtue of Eqs 4 and 5, we have

Pα,α1 ,...,αn(CD0,τ)w(ζ1, τ1) + Qβ,cw(ζ1, τ1)

� Pα,α1 ,...,αn(CD0,τ)wp(ζ1, τ1) − e(ζ1, τ1) ε2(
T − τ1
T

)
2

− ε

T2
⎡⎣ τ2−α(ζ1 ,τ1)1

Γ(3 − α(ζ1, τ1)) +∑
n

i�1

ai(ζ1, τ1) · τ2−αi(ζ1 ,τ1)1

Γ(3 − αi(ζ1, τ1))
⎤⎦

+ Qβ,cw
p(ζ1, τ1)≤ − ε

T2
⎡⎣ τ2−α(ζ1 ,τ1)1

Γ(3 − α(ζ1, τ1))

+∑
n

i�1

ai(ζ1, τ1) · τ2−αi(ζ1 ,τ1)1

Γ(3 − αi(ζ1, τ1))
⎤⎦ + e(ζ1, τ1)ε[1 − 1

2
(
T − τ1
T

)
2

]< 0.

This is a contradiction to our assumption that

Pα,α1 ,...,αn(CD0,τ)w(ζ , τ) + Qβ,cw(ζ , τ)≥ 0, ∀(ζ , τ) ∈ ΩT .

This completes the proof.
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If we substitute −w for w in Theorem 5, the minimum
principle is obtained as follows.

Theorem 6. Suppose w(ζ, τ) ∈ C2,2(ΩT), and
Pα,α1 ,...,αn(CD0,τ)w(ζ , τ) + Qβ,cw(ζ , τ)≤ 0, ∀(ζ , τ) ∈ ΩT . (6)

If (zw/zζ)|ζ�0 ≤ 0 and (zw/zζ)|ζ�L ≥ 0, for all τ ∈ [0,T], then

min
(ζ ,τ)∈ΩT

w(ζ , τ)≥min{ min
(ζ ,τ)∈zΩT

w(ζ , τ), 0},

where zΩT is the boundary of ΩT .

5. APPLICATIONS

In this section, we discuss multi-term space-time higer VOFDEs
in the one-dimensional case:

Pα,α1 ,...,αn(C0Dτ)w(ζ , τ) + Qβ,cw(ζ , τ) � f (ζ , τ), (ζ , τ) ∈ ΩT , (7)

with the initial conditions

w(ζ , 0) � Θ(ζ), ζ ∈ [0, L]. (8)

The boundary conditions are taken into consideration as below:

{w(0, τ) � k1(τ), τ ∈ [0,T],
w(L, τ) � k2(τ), τ ∈ [0,T]. (9)

By Theorems 5 and 6, we can get the following theorems.
Theorem 7. Suppose f (ζ, τ)≥ 0, (ζ, τ) ∈ ΩT ; Θ(ζ)≤ 0, ζ ∈

[0, L]; k1(τ)≤ 0, k2(τ)≤ 0, τ ∈ [0,T]. If w(ζ, τ) ∈ C2,2(ΩT ) is a
solution of the problem Eqs 7–9 with (zw/zζ)|ζ�0 ≥ 0 and
(zw/zζ)|ζ�L ≤ 0 for all τ ∈ [0,T], then w(ζ, τ)≤ 0, (ζ, τ) ∈ ΩT .

Theorem 8. Suppose f (ζ, τ)≤ 0, (ζ, τ) ∈ ΩT ; Θ(ζ)≥ 0, ζ ∈ [0, L];
k1(τ)≥ 0, k2(τ)≥ 0, τ ∈ [0,T]. If w(ζ, τ) ∈ C2,2(ΩT) is a solution of
the problem Eqs 7–9 with (zw/zζ)|ζ�0 ≤ 0 and (zw/zζ)|ζ�L ≥ 0 for
all τ ∈ [0,T], then w(ζ, τ)≥ 0, (ζ, τ) ∈ ΩT ,.

Remark 2. If f (ζ, τ) � 0, then, according to Theorem 7 and 8,
we know that the diffusion problem Eqs 7–9 with zero initial and
boundary conditions permits only zero solution in C2,2(ΩT).

Consider the next nonlinear diffusion equation

Pα,α1 ,...,αn(C0D0,τ)w(ζ , τ) � −[m(ζ , τ)CRβ(ζ ,τ)
ζ w(ζ , τ)

+ n(ζ , τ)CRc(ζ ,τ)
ζ w(ζ , τ) + e(ζ , τ)w(ζ , τ)]

+ F(ζ , τ,w), (ζ , τ) ∈ ΩT .

(10)

Theorem 9. Assume that the partial derivative zwF �
zwF(ζ, τ,w) exists and satisfies zwF(ζ, τ,w) − e(ζ, τ)≤ 0 for all
(ζ, τ,w) ∈ ΩT ×R. If (zw/zζ)|ζ�0 � 0 and (zw/zζ)|ζ�L � 0 for all
τ ∈ [0,T], then the problem Eqs 8–10 has at most one solution
w � w(ζ, τ), (ζ, τ) ∈ ΩT in C2,2(ΩT).

PROOF. Suppose that w1,w2 ∈ C2,2(ΩT) are two solutions of the
problem Eqs 8–10. Let w � w1 − w2. Then

Pα,α1 ,...,αn(CD0,τ)w(ζ , τ) � −[m(ζ , τ)CRβ(ζ ,τ)
x w(ζ , τ)

+ n(ζ , τ)CRc(ζ ,τ)
x w(ζ , τ) + e(ζ , τ)w(ζ , τ)] + F(ζ , τ,w1)

− F(ζ , τ,w2).

Since the homogeneous initial and boundary conditions are
fulfilled by w, one has

w(ζ , τ) � 0, (ζ , τ) ∈ zΩT .

Owing to the existence of zwF � zwF(ζ, τ,w), it holds that

F(ζ , τ,w1) − F(ζ , τ,w2) � zF
zw

(wp)(w1(ζ , τ) − w2(ζ , τ))

for all (ζ, τ) ∈ ΩT , where wp � (1 − 9)w1 + 9w2 for some 0≤ 9≤ 1.
Consequently,

⎧⎪⎪⎨
⎪⎪⎩

Pα,α1 ,...,αn(CD0,τ)w(ζ , τ) � −[m(ζ , τ)CRβ(ζ ,τ)
ζ w(ζ , τ)+

+n(ζ , τ)CRc(ζ ,τ)
ζ w(ζ , τ)] + h(ζ , τ)w(ζ , τ),

w(ζ , τ) � 0, (ζ , τ) ∈ zΩT ,

(11)

where h(ζ, τ) � (zF/zw)(wp) − e(ζ, τ)≤ 0 for all (ζ, τ) ∈ ΩT .
By Theorem 7, w(ζ, τ)≤ 0 holds for all (ζ, τ) ∈ ΩT . Conversely,

w(ζ, τ)≥ 0 is also true by using Theorem 8. So, w(ζ, τ) � 0, i.e.,

w1(ζ , τ) � w2(ζ , τ), ∀(ζ , τ) ∈ ΩT .

This completes the proof.

6. CONCLUSIONS

This paper serves as a survey on the maximum principle and the
estimates of time higher VOFDEs. The proposed maximum
principle contributes to verify some important properties of
solutions, including the uniqueness and the continuous
dependance with initial-boundary value conditions being taken
account. In the future, we will put attention to the solutions for
problem Eq. 1 in more general forms, and investigate the
numerical solutions with their applications.
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Polyacene Graphs
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China

The resistance distance between any two vertices of a connected graph is defined as the
net effective resistance between them in the electrical network constructed from the graph
by replacing each edge with a unit resistor. In this article, using electric network approach
and combinatorial approach, we derive exact expression for resistance distances between
any two vertices of polyacene graphs.
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1 INTRODUCTION

LetG � (V(G), E(G)) be a connected graph. It is interesting to consider distance functions onG. The
most natural and best-known distance function is the shortest path distance. For any two vertices
i, j ∈ V(G), the shortest path distance between i and j, denoted by dG(i, j), is defined as the length of a
shortest path connecting i and j. Two decays ago, another novel distance function, named resistance
distance, was identified by Klein and Randić [1]. The concept of resistance distance originates from
electrical circuit theory. If we view G as an electrical network N by replacing each edge of G with a
unit resistor, then the resistance distance [1] between i and j, denoted byΩG(i, j), is defined as the net
effective resistance between the corresponding nodes in the electrical network N. In contrast to the
shortest path distance, the resistance distance has a notable feature that if i and j are connected by
more than one path, then they are closer than they are connected by the only shortest path. So it is
suggested that resistance distance is more appropriate to deal with wave-like motion in the network,
like the communication in chemical molecules. In addition, it turns out that the resistance distance
has some pure mathematical interpretations, which could be expressed in terms of the generalized
inverse of the Laplacian matrix [1], the number of spanning trees and spanning bi-trees [2], and
random walks on graphs [3, 4].

Besides being an intrinsic graph metric and an important component of electrical circuit theory,
resistance distance also turns out to have important applications in chemistry. For this reason,
resistance distance has been widely studied in the mathematical, chemical, and physical literature. In
the study of resistance distance, the main focus is placed on the problem of computation of resistance
distance. This problem has been a classical problem in electrical network theory studied by numerous
researchers for a long time. Besides, it is also relevant to a wide range of problems ranging from
random walks, the theory of harmonic functions, to lattice Green’s functions. Consequently, this
problem has attracted much attention, and many researchers have devoted themselves to it. Up to
now, resistance distances have been computed for many interesting (classes of) graphs, with
emphasis being placed on some highly concerned electrical networks and chemical interesting
graphs. For example, resistance distances have been computed for Platonic solids [5], and for some
fullerene graphs including buckminsterfullerene [6], circulant graphs [7], distance-regular graphs [8,
9], pseudo–distance-regular graphs [10], wheels and fans [11], Cayley graphs over finite abelian
groups [12], complete graphminusN edges [13], resistor network embedded on a globe [14], Möbius
ladder [15],m × n cobweb network [16], complete n-partite graphs [17],m × n resistor network [18],
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ladder graph [19], n-step network [20], Cayley graphs on
symmetric groups [21], Apollonian network [22], Sierpinski
Gasket Network [23], generalized decorated square and simple
cubic network lattices [24], self-similar (x, y) -flower networks
[25], almost complete bipartite graphs [26], straight linear 2-trees
[27], and path networks [28].

It is interesting to note that a good deal of attention has been
paid on resistance distances in plane networks, such as Platonic
solids, fullerene graphs, wheels, fans, ladder graphs, Apollonian
network, Sierpinski Gasket Network, m × n resistor network,
and straight linear 2-tree. Motivated by this fact, we are devoted
to considering other interesting plane networks. In this article,
we take the linear polyacene graphs into consideration. It is well
known that the linear polyacene graphs are graph
representations of an important class of benzenoid
hydrocarbons, and it is an interesting class of plane
hexagonal networks. We use Ln to denote the linear
polyacene graph with n − 1 benzenoid rings (i.e., hexagons),
as shown in Figure 1. Using electrical network approach and
resistance distance local rules, we derive exact expression for
resistance distances between any two vertices of Ln.

2 RESISTANCE DISTANCES IN LINEAR
POLYACENE GRAPHS

Let Ln be the linear polyacene graph with n − 1 benzenoid rings.
Obviously, Ln has 4n − 2 vertices and 5n − 4 edges. For
convenience, we label the vertices in Ln as in Figure 1. We
partite the vertex set of Ln into two classes: V1 �
{p1, p2, . . . , pn, q1, q2, . . . , qn} and V2 � {s1, s2, . . . , sn−1,
t1, t2, . . . , tn−1}. To compute resistance distances between any
two vertices of Ln, we take two steps. In the first step, we
compute resistance distances between vertices in V1. To this
end, we first view Ln as a weighted ladder graph L*n by simply
replacing all the paths pisipi+1 and qitiqi+1 (1≤ i≤ n − 1) by edges
of resistance 2. Then, by making use of the electric network
approach as inspired in [19], we obtain resistance distances
between vertices in V1. Next, for the second step, using the
results obtained in the first step together with resistance
distance local rules, we derive expressions for resistance
distances between the remaining pairs of vertices.

Before stating the main result, we introduce the elegant
resistance distance local rules, which will be frequently used
later. For any vertex a ∈ V(G), we use nG(a) to denote the set
of neighbors of a. Then, we have the following sum rules for
resistance distances.

Lemma 2.1 [29]. Let G � (V(G), E(G)) be a connected graph
with n(n≥ 2) vertices. Then,

1) For any a, b ∈ V(G) (a≠ b) (a≠ b)
ΔaΩG(a, b) + ∑

i∈nG(a)
(ΩG(i, a) − ΩG(i, b)) � 2, (1)

where Δa denotes the degree of the vertex a.
2) For any three different vertices a, b, c ∈ V ,

Δc(ΩG(c, a) −ΩG(c, b)) + ∑
i∈nG(c)

(ΩG(i, b) −ΩG(i, a)) � 0. (2)

Now, we are ready for the main theorem. For simplicity, we let
α � 3 − 2

�
2

√
, and define f (x, y) and g(x, y) as follows:

f (x, y) � (1 − αx− y)(2 − αx+y−1 + α2y−1 + α2n−2x+1(1 − αx−y − 2αx+y−1)),
g(x, y) � (1 + αx− y)(2 + αx+y−1 + α2y−1 + α2n−2x+1(1 + αx−y + 2αx+y−1)).

Then, the main result is given in the following.
Theorem 2.2. The resistance distances between any two vertices

in the linear polyacene graph Ln can be computed as follows.

ΩLn(pi, pj) � i − j + f (i, j)
4

�
2

√ (1 − α2n), (2.1)

ΩLn(qi, pj) � i − j + g(i, j)
4

�
2

√ (1 − α2n), (2.2)

ΩLn(si, pj) � i − j + 3
4
− f (i + 1, i)
16

�
2

√ (1 − α2n) +
f (i, j) + f (i + 1, j)
8

�
2

√ (1 − α2n) ,

(2.3)

ΩLn(si, qj) � j − i − 1
4
+ f (j + 1, j)
16

�
2

√ (1 − α2n) +
g(j, i) + g(j, i + 1)
8

�
2

√ (1 − α2n) ,

(2.4)

ΩLn(si, sj) �
1
2
− i + j

− f (i+1, i) + f (j+1, j)+f (j, i)+f (j+1, i)+f (j, i+1)+f (j+1, i+1)
16

�
2

√ (1 − α2n) ,

(2.5)

FIGURE 1 | Linear polyacne graph Ln and its vertex labeling.
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ΩLn(si, tj) �
1
2
+ i − j

+ g(i, j) + g(i, j + 1) + g(i + 1, j) + g(i + 1, j + 1) − f (i + 1, i)
16

�
2

√ (1 − α2n)
− f (i + 1, i) + f (i + 2, i + 1)

32
�
2

√ (1 − α2n) .

(2.6)

Proof. We divide the proof into two steps.
Step 1. Computation of resistance distances between any two

vertices in V1.
To compute resistance distances between vertices in V1, we

view Ln as a weighted ladder graph L*n by simply replacing all the
paths pisipi+1 and qitiqi+1 (1≤ i≤ n − 1) by edges of resistance 2,
see Figure 2 (left). Clearly, ΩL*n(p, q) � ΩLn(p, q) holds for all
p, q ∈ V(L*n).

First, we compute resistance distances between the end
vertices p1, pn, q1, and qn. let xn :� ΩL*n(pn, p1),
yn :� ΩL*n(pn, q1), and zn :� ΩL*n(pn, qn). Clearly, L*n can be
obtained from L*n−1 by adding two vertices pn and qn, and
the three edges with end vertices {pn−1, pn}, {pn, qn}, and
{qn, qn−1}, as shown in Figure 2 (right). Hence, according
to rules for series and parallel circuits, zn could be expressed
in term of zn−1 as

zn � zn−1 + 4
zn−1 + 5

, ∀n≥ 2, (2.7)

with initial condition z1 � 1. Solving the recurrence relation by
Mathematica [30], we obtain

zn � −2(1 + �
2

√
) + 4

�
2

√

1 − (3 − 2
�
2

√
)2n

, n≥ 1. (2.8)

Specially, we have z1 � 1, z2 � 5
6, z3 � 29

35, and z4 � 169
204. It is easily

checked that zn can also be expressed as

zn � −2(1 + �
2

√
) + 4

�
2

√
(3 + 2

�
2

√
)n

(3 + 2
�
2

√
)n − (3 − 2

�
2

√
)n
, n≥ 1. (2.9)

We proceed to use zn to find explicit formulas for xn and yn.
To this end, we make circuit reduction to the subgraph L*n of
L*n+1 with respect to pn, qn, and p1, where n≥ 1. Precisely
speaking, we reduce L*n to a Y-shaped graph which has outer
vertices pn, qn, and p1. We use A, B, and C to denote the
effective resistances between end vertices of those edges of the
Y-shaped graph. Then, we have B + C � yn, A + C � xn, and
A + B � zn. Solving these equations, we get

A � xn − yn + zn
2

,B � −xn + yn + zn
2

,C � xn + yn − zn
2

.

On the other hand, by parallel and series connection rules, we
have xn+1 � (A+2)(B+3)

zn+5 + C and yn+1 � (B+2)(A+3)
zn+5 + C. So, it follows

that

xn+1 � (xn − yn + zn + 4)( − xn + yn + zn + 6)
4(zn + 5)

+ xn + yn − zn
2

, n≥ 1,
(2.10)

yn+1 � ( − xn + yn + zn + 4)(xn − yn + zn + 6)
4(zn + 5)

+ xn + yn − zn
2

, n≥ 1,
(2.11)

with initial conditions x1 � 0 and y1 � 1. Eq. 2.10minus Eq. 2.11
yields

xn+1 − yn+1 � xn − yn
zn + 5

.

Set tn :� xn − yn. It follows that

tn+1 � tn
zn + 5

, n≥ 1 and t1 � −1. (2.12)

Thus, we have

tn+1 � −∏
k�1

n 1
zk + 5

. (2.13)

Since 1
zk+5 � (3+2 �

2
√ )k−(3−2 �

2
√ )k

(3+2 �
2

√ )k+1−(3− 2
�
2

√ )k+1, using Eq. 2.9 and doing some
algebraic calculations, we get

tn � −4 �
2

√
(3 + 2

�
2

√
)n − (3 − 2

�
2

√
)n
, n≥ 1. (2.14)

This could also be rewritten as tn � −4 �
2

√ (3−2 �
2

√ )n
1−(3− 2 �

2
√ )2n , for all n≥ 1.

Now, we come back to solve xn and yn. By using xn � tn + yn, Eqs
2.8–2.14 and doing some algebra, Eq. 2.11 becomes

FIGURE 2 | Weighted ladder graph L*n (left) and the circuit reduction of
L*n−1 with respect to pn−1 and qn−1 (right).
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yn+1 � yn + 2
�
2

√

1 − (3 − 2
�
2

√
)n+1

− 2
�
2

√
1 − (3 − 2

�
2

√
)n

+ 1, n≥ 1 and y1 � 1.

(2.15)

Solving the recursion relation, we get

yn � n − 2 − �
2

√ + 2
�
2

√
1 − (3 − 2

�
2

√
)n
, n≥ 1. (2.16)

Now, by Eqs 2.14–2.16, together with the relation xn � tn + yn,
we get

xn � n − 2 − �
2

√ + 2
�
2

√
1 + (3 − 2

�
2

√
)n
, n≥ 1. (2.17)

Next, we proceed to compute ΩL*n(pn, pi), ΩL*n(pn, qi), and
ΩL*n(pi, qi), where n> i> 1. To achieve our goal, we consider L*n
as the union of three graphs: the upper part of pi+1 and qi+1, the
lower part of pi and qi, and the middle part consisting of pi+1, qi+1,
pi, and qi, as shown in Figure 3. Note that the upper and the lower
graphs are corresponding to the graphs L*n−i and L*i , respectively.
We make circuit reductions as illustrated in Figure 3. First, make
the circuit reduction of the upper part with respect to pn, pi+1, and
qi+1 to obtain a Y-shaped graph, and assume that resistances along
its edges areM,N, andK. Then, reduce the lower part of pi and qi to
be edge with resistance ΩL*n(pi, qi) � zi. We could find that

M + N � xn−i,M + K � yn−i,N + K � zn−i. (2.18)

Note that

xn + yn − zn � 2n − 2,

xn − yn + zn � −2 − 2
�
2

√ + 4
�
2

√
1 + (3 − 2

�
2

√
)n
,

−xn + yn + zn � −2 − 2
�
2

√ + 4
�
2

√
1 − (3 − 2

�
2

√
)n
.

(2.19)

Solving M, N, and K, we obtain

M � xn−i + yn−i − zn−i
2

� n − i − 1,

N � xn−i − yn−i + zn−i
2

� −1 − �
2

√ + 2
�
2

√

1 + (3 − 2
�
2

√
)n−i

,

K � −xn−i + yn−i + zn−i
2

� −1 − �
2

√ + 2
�
2

√

1 − (3 − 2
�
2

√
)n−i

.

(2.20)

Then, applying parallel and series connection rules to the reduced
circuit in Figure 3, we obtain

ΩL*n(pn, pi) �
(N + 2)(K + zi + 2)

zn−i + zi + 4
+M,

ΩL*n(pn, qi) �
(K + 2)(N + zi + 2)

zn−i + zi + 4
+M,

ΩL*n(pi, qi) �
zi(zn−i + 4)
zn−i + zi + 4

.

(2.21)

FIGURE 3 | L*n and circuit reduction to find ΩL*n
(pn ,pi), ΩL*n

(qn ,pi), and ΩL*n
(pi ,qi).
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Substituting Eqs 2.8–2.20 into Eq. 2.21, we have

ΩL*n(pn, pi) � n − i

+ (1 − αn−i)(2 − 2αn+i − αn+i− 1 − αn− i+1 + α2i− 1 + α)
4

�
2

√ (1 − α2n) ,

ΩL*n(pn, qi) � n − i

+ (1 + αn−i)(2 + 2αn+i + αn+i− 1 + αn− i+1 + α2i− 1 + α)
4

�
2

√ (1 − α2n) ,

ΩL*n(pi, qi) �
1 + α2i−1 + α2n−2i+1 + α2n

�
2

√ (1 − α2n) . (2.22)

Finally, we compute ΩL*n(pi, pj) and ΩL*n(qi, pj) (n> i≥ j≥ 1). To
this end, we consider L*n as the union of two graphs: the upper
part and the lower part with respect to pi and qi, as illustrated in
Figure 4. Note the lower part is the graph L*i , and the upper part is
the graph L*n−i. Next, we make circuit reduction to L*n−i so that it is
reduced to an edge pi+1qi+1 with resistance zn−i. Then, we reduce
L*i to a Y-shaped graph with end vertices pi, qi, and pj, and
resistances D, E, and F along its edges. These reductions are
illustrated in Figure 4. Then, we have

D + E � ΩL*i
(pi, pj),D + F � ΩL*i

(pi, qi) � zi, E + F � ΩL*i
(qi, pj).
(2.23)

It follows that

D � ΩL*i
(pi, pj) + zi −ΩL*i

(qi, pj)
2

,

E � ΩL*i
(pi, pj) − zi +ΩL*i

(qi, pj)
2

,

F � −ΩL*i
(pi, pj) + zi + ΩL*i

(qi, pj)
2

.

(2.24)

On the other hand, by the series and parallel connection rules,
we have

ΩL*n(pi, pj) �
D(zn−i + F + 4)
zn−i + zi + 4

+ E,

ΩL*n(qi, pj) �
F(zn−i + D + 4)
zn−i + zi + 4

+ E.

(2.25)

By Eqs. (2.8), Eqs 2.22–2.25, and doing some algebra using
Mathematica [30], we obtain

ΩL*n(pi, pj) � i − j

+ (1 − αi−j)(2 − αi+j− 1 + α2j− 1 + α2n− 2i+1(1 − αi− j − 2αi+j− 1))
4

�
2

√ (1 − α2n) ,

(2.26)

ΩL*n(qi, pj) � i − j

+ (1 + αi−j)(2 + αi+j− 1 + α2j− 1 + α2n− 2i+1(1 + αi− j + 2αi+j− 1))
4

�
2

√ (1 − α2n) .

(2.27)

It is easily verified that Eq. 2.27 is valid for i � j.
Step 2. Computation of resistance distances between p, q ∈ V2

and between p ∈ V1 and q ∈ V2.
First, we compute ΩLn(si, pi) and ΩLn(si, pi+1). Applying

Lemma 2.1 to pairs of vertices {si, pi} and {si, pi+1}, we obtain

2ΩLn(si, pi) +ΩLn(pi, si) −ΩLn(pi, pi) +ΩLn(pi+1, si)
−ΩLn(pi+1, pi) � 2,

(2.28)

2ΩLn(si, pi+1) +ΩLn(pi, si) −ΩLn(pi, pi+1) +ΩLn(pi+1, si)
− ΩLn(pi+1, pi+1) � 2.

(2.29)

Multiplying Eq. 2.28 by 3 and then minus Eq. 2.29, we get

FIGURE 4 | L*n and circuit reductions to find ΩL*n
(pi ,pj) and ΩL*n

(qi ,pj).
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ΩLn(si, pi) �
1
8
(4 + 2ΩLn(pi, pi+1)). (2.30)

Then, substituting the value of ΩLn(pi, pi+1) as obtained in Step 1
into Eq. 2.30, we could obtain

ΩLn(pi+1, pi) � 1

+ (1 − α)(2 − α2i + α2i− 1 + α2n− 2i− 1(1 − α − 2α2i))
4

�
2

√ (1 − α2n) .
(2.31)

Substituting Eq. 2.31 into Eq. 2.30, we have

ΩLn(si, pi) �
3
4
+ (1 − α)(2 − α2i + α2i− 1 + α2n− 2i− 1(1 − α − 2α2i))

16
�
2

√ (1 − α2n) .

(2.32)

In the same way, we could obtain that

ΩLn(si, pi+1) �
3
4

+ (1 − α)(2 − α2i + α2i− 1 + α2n− 2i− 1(1 − α − 2α2i))
16

�
2

√ (1 − α2n) .

(2.33)

Second, we calculate the resistance distance between si and pj.
Again, applying Lemma 2.1 to {si, pj}, we obtain

2ΩLn(si, pj) +ΩLn(pi, si) −ΩLn(pi, pj) + ΩLn(pi+1, si)

−ΩLn(pi+1, pj) � 2.
(2.34)

By Eqs 2.32, 2.33, it follows that

ΩLn(pi, si) + ΩLn(pi+1, si) �
3
2

+ (1 − α)(2 − α2i + α2i− 1 + α2n− 2i− 1(1 − α − 2α2i))
8

�
2

√ (1 − α2n) . (2.35)

For the sake of simplicity, we define

f (x, y) � (1 − αx− y)(2 − αx+y−1 + α2y−1 + α2n−2x+1(1 − αx−y

− 2αx+y−1)).
(2.36)

Then, Eq. 2.35 can be rewritten as

ΩLn(pi, si) +ΩLn(pi+1, si) �
3
2
+ f (i + 1, i)
8

�
2

√ (1 − α2n). (2.37)

On the other hand, by Eq. 2.26, we have

ΩLn(pi, pj) + ΩLn(pi+1, pj) � 2i − 2j + 1 + f (i, j) + f (i + 1, j)
4

�
2

√ (1 − α2n) .

(2.38)

SubstitutingEqs. 2.37, 2.38 intoEq. 2.34, we draw the conclusion that

ΩLn(si, pj) � i − j + 3
4
− f (i + 1, i)
16

�
2

√ (1 − α2n) +
f (i, j) + f (i + 1, j)
8

�
2

√ (1 − α2n) .

(2.39)

Third, we calculate the resistance distance between sj and qi.
Apply Lemma 2.1 to {sj, qi} to obtain

2ΩLn(sj, qi) +ΩLn(pj, sj) −ΩLn(pj, qi) + ΩLn(pj+1, sj)

− ΩLn(pj+1, qi) � 2.
(2.40)

By Eq. 2.37, we have

ΩLn(pj, sj) +ΩLn(pj+1, sj) �
3
2
+ f (j + 1, j)
8

�
2

√ (1 − α2n). (2.41)

For simplicity, we define

g(x, y) � (1 + αx− y)(2 + αx+y−1 + α2y−1 + α2n−2x+1(1 + αx−y

+ 2αx+y−1)).
(2.42)

On the other hand, by Eq. 2.27, we have

ΩLn(qi, pj) + ΩLn(qi, pj+1) � 2i − 2j − 1 + g(i, j) + g(i, j + 1)
4

�
2

√ (1 − α2n) .

(2.43)

Substituting Eqs. 2.41–2.43 into Eq. 2.40, we get

ΩLn(sj, qi) � i − j − 1
4
+ f (i + 1, i)
16

�
2

√ (1 − α2n) +
g(i, j) + g(i, j + 1)
8

�
2

√ (1 − α2n) .

(2.44)

Fourth, we calculate the resistance distance between si and sj.
Applying Lemma 2.1 to {si, sj}, we have

2ΩLn(si, sj) +ΩLn(pi, si) −ΩLn(pi, sj) + ΩLn(pi+1, si)

− ΩLn(pi+1, sj) � 2.
(2.45)

As ΩLn(pi, si), ΩLn(pi, sj), ΩLn(pi+1, si), and ΩLn(pi+1, sj) have
been given by Eq. 2.39, simple calculation leads to

ΩLn(si, sj) �
1
2
− i + j

− f (i+1, i)+f (j+1, j)+f (j, i)+f (j+1, i)+f (j, i+1)+f (j+1, i+1)
16

�
2

√ (1 − α2n) .

Fifth and finally, we calculate the resistance between si and tj.
Applying Lemma 2.1 to {si, tj}, we have

2ΩLn(si, tj) +ΩLn(pi, si) −ΩLn(pi, tj) +ΩLn(pi+1, si)

− ΩLn(pi+1, tj) � 2
(2.46)

Note by the symmetry of Ln that we have ΩLn(pi, tj) �
ΩLn(qi, sj) and ΩLn(pi+1, tj) � ΩLn(qi+1, sj). Using the results
obtained in Eqs. 2.39–2.44, simple algebraic calculation
yields
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ΩLn(si, tj) �
1
2
+ i − j

+ g(i, j) + g(i, j + 1) + g(i + 1, j) + g(i + 1, j + 1) − f (i + 1, i)
16

�
2

√ (1 − α2n)

− f (i + 1, i) + f (i + 2, i + 1)
32

�
2

√ (1 − α2n) . (2.47)

3 CONCLUSION

The computation of resistance distances is a classical problem in
electrical circuit theory, which has attracted much attention. It is
of special interest to investigate resistance distances in plane
networks. Along this line, we have considered the linear
polyacene network, with exact expression for resistance
distances in this network being given. It is a primary attempt
for the computation of resistance distances in plane hexagonal
lattice. Resistance distances in more and more plane hexagonal
lattices are greatly anticipated.
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	5. Necessary and Sufficient Conditions for Quadratic Rational Bézier Curves to Represent a Parabola, Elliptic Arc and Hyperbola
	6. Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References

	Generalization of the Cover Pebbling Number for Networks
	1. Introduction
	2. Preliminaries
	3. The Generalization of the Cover Pebbling Number on Trees
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

	On the Boundary of Incidence Energy and Its Extremum Structure of Tricycle Graphs
	1. Introduction
	2. Preliminaries
	3. The Signless Laplacian Coefficients of Graphs in Tn
	4. The Incidence Energy of Tricyclic Graphs
	5. Conclusion and Extension
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References

	Set-Valued Weighted Value at Risk and Its Computation
	1. Introduction
	2. Set-Valued Weighted Value at Risk
	2.1. The Regulator Case
	2.2. The Market Extension

	3. Examples
	4. Conclusions
	Data Availability Statement
	Author Contributions
	Funding
	References

	A Relation Between Moore-Penrose Inverses of Hermitian Matrices and Its Application in Electrical Networks
	1. Introduction 
	2. A Relation Between Moore-Penrose Inverses of Two Hermitian Matrices
	3. An Application to Electrical Networks
	4. Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

	Cluster Synchronization in Delayed Networks With Adaptive Coupling Strength via Pinning Control
	1. Introduction
	2. Model Description and Preliminaries
	3. Sufficient Conditions on Realizing Cluster Synchronization
	4. Numerical Simulations
	5. Conclusions
	Data Availability Statement
	Author Contributions
	Funding
	References

	Cancer Risk Analysis Based on Improved Probabilistic Neural Network
	1. Introduction
	2. Literature Review
	2.1. Cancer Risk Analysis
	2.2. Artificial Neural Network
	2.3. Naïve Bayes and Markov Chain
	2.4. Summary

	3. Study Background
	4. Proposed Approach
	4.1. Data Pre-processing
	4.2. Estimation of Subsequent Disease-Development
	4.3. ANN Training
	4.4. Summary

	5. Experimental Results
	5.1. Experimental Setup
	5.2. Probabilities for Disease Prediction
	5.3. Comparison With Other Training Algorithms

	6. Conclusions
	Data Availability Statement
	Author Contributions
	Funding
	References

	Research on Geographic Location Prediction Algorithm Based on Improved Teaching and Learning Optimization ELM
	Introduction
	Improved Teaching and Learning Optimization Algorithm
	Basic TLBO Algorithm
	ITLBO Algorithm
	Extreme Learning Machine (ELM)

	Simulation Test and Algorithm Comparison
	Benchmark Test Function
	Test Results
	Comparative Study on GPS Vehicle Data Position Prediction

	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References

	Computing the Mixed Metric Dimension of a Generalized Petersen Graph P(n,2)
	1. Introduction
	1.1. Known Results

	2. Main Result
	3. Conclusion and Further Research
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

	A Neuro-Swarming Intelligence-Based Computing for Second Order Singular Periodic Non-linear Boundary Value Problems
	Introduction
	Design Methodology
	ANN Modeling
	Optimization Process: PSO-IPS

	Statistical Measures
	Results and Discussion
	Conclusions
	Data Availability Statement
	Author Contributions
	Funding
	References

	Bifurcation and Numerical Simulations of Ca2+ Oscillatory Behavior in Astrocytes
	Introduction
	Stability of Equilibrium Point and Bifurcation Analysis
	Analysis of Stability and Bifurcation of Equilibria
	Numerical Simulations
	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References

	Computing Irregularity Indices for Probabilistic Neural Network
	1. Introduction
	2. Topological Indices
	3. Computations of Probabilistic Neural Network
	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References

	Research on Improved Chaotic Particle Optimization Algorithm Based on Complex Function
	Introduction
	Basic PSO
	Quantum Chaos Adaptive PSO Algorithm
	Initial Population of Quantum Bloch Coordinate Coding
	Chaos Optimization Method
	Quantum PSO Algorithm
	Adaptive Inertia Weights
	Quantum Chaos Adaptive PSO Algorithm Steps

	Convergence Test Comparisons
	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References

	Exact Values for Some Size Ramsey Numbers of Paths and Cycles
	1. Introduction
	2. The Approach
	3. Results
	4. Conclusion
	Author Contributions
	References

	Reconfigurable Filtering of Neuro-Spike Communications Using Synthetically Engineered Logic Circuits
	1. Introduction
	2. Materials and Methods
	2.1. Neuronal Communication
	2.1.1. Properties of a Neuron
	2.1.1.1. Morpho-electrical characteristics
	2.1.1.2. Cortical organization

	2.1.2. Neuron-to-Neuron Communication

	2.2. Electronic Interpretation of a Neuron Model
	2.2.1. Hodgkin-Huxley Formalism
	2.2.2. Hodgkin-Huxley Linear Model

	2.3. Transfer Function Filter Design
	2.3.1. Biological Logic Gates and Circuits
	2.3.2. Compartmental Modeling


	3. Results
	3.1. Reconfigurable Logic Gates
	3.2. Neuronal Logic Circuits

	4. Discussion
	5. Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References

	Synchronizability of Multilayer Networks With K-nearest-neighbor Topologies
	1. Introduction
	2. Problem Formulation and Preliminaries
	3. Synchronizability of Multilayer Networks
	3.1. Two-Layer K-nearest-neighbor Networks
	3.2. Multilayer K-nearest-neighbor Networks

	4. Numerical Simulations
	4.1. The Synchronizability of Two-Layer Networks
	4.2. The Synchronizability of Multilayer Networks

	5. Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References

	Network Coherence in a Family of Book Graphs
	1. Introduction
	2. Model Presentation and Network Coherence
	2.1. Book Graphs
	2.2. Network Coherence

	3. Calculations of Network Coherence
	3.1. When λj≠0,j=2,…,m+1
	3.2. When λj=0
	3.3. Exact Solution of Network Coherence for Bm,n
	3.4. Exact Solution of Network Coherence for Bm

	4. Conclusions
	Data Availability Statement
	Author Contributions
	Funding
	References

	Third Smallest Wiener Polarity Index of Unicyclic Graphs
	1. Introduction
	2. The Third Smallest Wiener Polarity Index of Unicyclic Graphs
	3. Conclusions
	Data Availability Statement
	Author Contributions
	Funding
	References

	Some Properties of Relative Bi-(Int-)Γ-Hyperideals in Ordered Γ-Semihypergroups
	1. Introduction
	2. Preliminaries
	3. Basic Properties of Relative Bi-Γ-Hyperideals (-Bi-Γ-Hyperideals)
	4. Relative (Bi)-Int-Γ-Hyperideals (-(Bi)-Int-Γ-Hyperideals)
	5. Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References

	Research on the Theory of Optical Transmission for Bragg Fiber With High-Index-Core
	Introduction
	Analysis of Wave Theory for Bragg Fiber With High-Index Core
	Analysis of Photonic Bandgap Theory for Bragg Fiber With High-Index Core
	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

	Certain Concepts of Vague Graphs With Applications to Medical Diagnosis
	1. Introduction
	2. Preliminaries
	3. Operations on Vague Graphs
	4. Application of Vague Sets to Medical Diagnosis
	5. Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References

	The Maximum Principle for Variable-Order Fractional Diffusion Equations and the Estimates of Higher Variable-Order Fraction ...
	1. Introduction
	2. Preliminaries
	3. The Varable-Order Fractional Derivtives at Arbitrary Points and Extreme Points
	4. THE Maximum Principle
	5. Applications
	6. Conclusions
	Data Availability Statement
	Author Contributions
	Funding
	References

	Resistance Distances in Linear Polyacene Graphs
	1 Introduction
	2 Resistance Distances in Linear Polyacene Graphs
	3 Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

	Back Cover�



