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Editorial on the Research Topic

The Immunomodulatory Roles of Adipocytes

Obesity is a global epidemic (1) associated with a state of low-grade, chronic inflammation that
enhances the risk of numerous complications, including type 2 diabetes (T2D), non-alcoholic fatty
liver disease (NAFLD) and cirrhosis, cardiovascular disease (CVD), cancer, and Alzheimer’s
Disease, among others (2–7). A major driver of these conditions is the profound inflammatory
changes that occur within the adipose tissue (AT) microenvironment, at the heart of which is the
adipocyte. Our understanding of the role of the adipocyte in initiating and propagating innate
(Blaszczak et al.) and adaptive (Song and Deng) immune responses in lean and obese states has
expanded beyond its classical role in energy storage. The adipocyte produces over 600 cytokines and
hormones, collectively called adipokines that modulate chronic inflammation, secretes extracellular
matrix proteins that impact metabolism (8, 9), and serves as an immunomodulatory and antigen
presenting cell to activate or suppress immune responses within AT and systemically (10).
Therefore, the current Research Series “The Immunomodulatory Roles of the Adipocyte”
highlights a wide range of critical factors originating from the adipocyte that mediate immunity
and the metabolic syndrome including extracellular vesicle crosstalk (Huang and Xu), lipid
metabolites (Park et al.) and ceramides (Chaurasia et al.), adipocyte fatty acid-binding protein
(A-FABP) (Lee et al.), TANK-binding kinase 1 (TBK1) (Zhao and Saltiel), the oncostatin M
(Sanchez-Infantes and Stephens), clusterin (Wittwer and Bradley), and leptin (Kiernan and
MacIver), illustrating the multi-faceted role of the adipocyte (Figure 1). Taken together, this
series underscores the much underappreciated role of the adipocyte in the instigation and
perpetuation of local and systemic inflammation, leading to the multiple inflammatory-induced
complications of obesity.

An increasingly recognized means of cell-cell communication is through extracellular vesicles
(EVs). Huang and Xu nicely summarize the mechanisms by which AT extracellular vesicles
(exosomes, microvesicles, and apoptotic bodies) mediate intercellular communications and inter-
organ crosstalk, particularly focusing on adipocyte-derived EVs (ADEVs). Exosomes (30-100nm in
diameter) arise frommultivesicular bodies and are either degraded by the lysosomal pathway or fuse
with the plasma membrane and are released from the cell, while microvescicles (MVs, 100-1000 nm
is diameter) are pinched off from the plasma membrane and released. EV cargo consists of
microRNAs (miRs), mRNAs, proteins, and lipids and are taken up by cells to influence cell
development, metabolism, function, and other activities. ADEV production is markedly increased
in human and mouse obesity (11). ADEVs impact local immune cells and have been shown to
org December 2021 | Volume 12 | Article 82728114
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activate AT macrophages (11) and promote monocyte to
macrophage conversion (12–14). Adipocytes have been
suggested to contribute substantially to miRs in circulating
EVs, since adipocyte-specific loss of miR production resulted
in a 4-fold drop in EV miR cargo (15). However, it remains
unclear how many ADEVs enter the bloodstream (11). Figure 2
of the Huang and Xu review illustrates how ADEVs and their
cargo act upon distal organs (including liver, skeletal muscle,
pancreas, and brain) to influence the immune system as well as
systemic metabolism, while Table 1 summarizes specific
functions of various cargo. Finally, this review suggests
modified EVs can be used as therapy for metabolic and
other diseases.

Activation of a pro-inflammatory pathway leads to the
secretion of numerous cytokines (16, 17) that enhance
adipocyte lipolysis (18–20), leading to toxic fatty acid species
(Chaurasia et al.) and impaired insulin sensitivity (21, 22).
Chaurasia et al. review the wide-ranging effects of adipocyte-
derived lipotoxicity on inflammation and peripheral tissue
dysfunction. Specifically, ceramides, which are sphingolipids
located in the cell membrane and within the cell cytosol,
associate not only with pro-inflammatory cytokines and
circulating free fatty acids, but many obesity-related conditions
including insulin resistance, T2D, NAFLD, chronic kidney
disease, and adverse CV events including mortality. Inhibition
of ceramide synthesis specifically within the adipocyte improves
insulin resistance and several of these metabolic derangements in
mice, underscoring the role of the adipocyte in providing toxic
lipids to incite inflammation (23). Inhibiting ceramide synthesis
may be a useful therapeutic strategy for metabolic syndrome.
Park et al. further discuss an integrated view of how adipocytes
communicate with adipose immune cells using lipid metabolites.
Invariant natural killer T (iNKT) cells and g/d T cells, rapidly
respond to changes in lipid metabolism through sensing lipid
antigens loaded on antigen presenting cells (APCs). iNKT cells
secrete IL-2, IL-4 and IL-10 which support immunosuppressive
Frontiers in Immunology | www.frontiersin.org 25
regulatory T cells (Tregs), while IL-4 and IL-10 promote anti-
inflammatory macrophage M2 polarization (24). However, the
lipid antigen is unknown and whether lipid-activated iNKT cells
are anti- or proinflammatory remains controversial (25, 26).
Similarly, g/d T cells are abundantly present in AT and actively
interact with adipocytes, but their role in inflammation is also
unclear. Nevertheless, iNKT cells and g/d T cells are models by
which adipocytes can present a lipid antigen to activate an
immune cell.

Song and Deng further define the adipocyte as a novel APC,
substantially contributing to adaptive immunity in AT. The
adipocyte major histocompatibility II (MHCII) pathway is
markedly enhanced in obesity during which it is stimulated
primarily by interferon-g (IFNg) (10, 27). Adipocyte antigen
presentation to naïve T cells promotes inflammatory Th1 effector
cell activation, while further production of IFNg fosters more
adipocyte MHCII production, resulting in an escalating cycle of
AT inflammation. Mice with genetic depletion of adipocyte
MHCII, gain the same amount of weight as control mice, but
are protected from AT inflammation and insulin resistance.
Within obese AT, adipocytes also activate innate immune cells
including macrophages and neutrophils to promote
inflammation, while innate lymphoid cells type 2 may be
metabolically protective, as reviewed by Blaszczak et al. They
highlight the central role of the adipocyte in linking the innate
and adaptive immune systems through the secretion of
adipokines and cytokines; exosome release of lipids, hormones,
and microRNAs; and contact interaction with other immune
cells. During diet-induced obesity, a negative feedback loop
involving the non-canonical IKK family member TBK1
regulates both innate immunity and glucose and energy
metabolism within the adipocyte, as reviewed by Zhao and
Saltiel. Upon activation by inflammatory cytokines and lipids,
TBK1 suppresses NFkB signaling and attenuates AMP kinase-
mediated metabolic activity. They suggest the potential of a
TBK1/IKK inhibitor as a new therapy for metabolic diseases.
FIGURE 1 | The Innate and Adaptive Immune Functions of the Adipocyte.
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Adipocytes secrete a multitude of factors that have either pro-
or anti-inflammatory functions that impact systemic metabolism.
Leptin, one of the most well-known hormones secreted by
adipocytes in obesity, in addition to its metabolic function, has
important pro-inflammatory actions as comprehensively
summarized by Kiernan and MacIver. They provide data
suggesting that nearly every immune cell is activated by leptin.
Oncostatin M (OSM) is a proinflammatory cytokine, elevated in
human obesity and metabolic disease, which inhibits preadipocyte
differentiation and enhances the proinflammatory response of
adipocytes in a paracrine manner (Sanchez-Infantes and
Stephens). However, loss of this system by genetic ablation of
the OSM receptor in adipocytes, in contrast to these findings, also
aggravates glucose homeostasis, so Sanchez-Infantes and Stephens
argue that some adipocyte inflammation is necessary for normal
metabolic function. Lee et al. focus on A-FABP, a lipid chaperone
abundantly secreted from adipocytes and macrophages, as a key
player mediating adipose-vascular cross-talk. A-FABP, in part via
its activation of c-Jun NH2-terminal kinase (JNK) and activator
protein-1 (AP-1), forms a positive feedback loop to perpetuate
inflammatory responses. In mice, selective JNK inactivation in the
AT significantly reduced expression of A-FABP and circulating A-
FABP levels and alleviated high fat high cholesterol diet-induced
atherosclerosis (28). In humans, raised circulating AFABP levels
are associated with incident metabolic syndrome, T2D and CVD,
as well as nonalcoholic steatohepatitis, diabetic nephropathy and
adverse renal outcomes, all conditions closely related to
inflammation and enhanced CV mortality (Lee et al.; 29–34).
They suggest that A-FABP may be a therapeutic target in obesity-
related complications. Finally, various extracellular matrix
proteins (ECM) are secreted by adipocytes, which in turn,
determines the AT architecture, enhances inflammation, and
regulates systemic metabolism. As discussed by Wittwer and
Frontiers in Immunology | www.frontiersin.org 36
Bradley (8), adipocyte ECM production is amplified in obesity,
resulting in AT fibrosis and adipocyte hypoxia. Clusterin
(apolipoprotein J), an ECM-related protein whose expression
and secretion in adipocytes is higher in human obesity, is
associated with multiple metabolic syndrome components and
CV risk and has key effects centrally to modulate amyloid-beta in
Alzheimer’s Disease. The insulin antagonizing effects of clusterin
appear to be in the liver (8).

In summary, the adipocyte exerts immunomodulatory
functions via multiple novel mechanisms to regulate
inflammation and contribute to obesity-related disease. The
original research articles and review papers included in this issue
present a range of topics under active investigation.
Understanding this function and how it impacts other AT
immune cells and obesity-related complications is critical to
prevention and treatment. Yet, despite a recognition of the
importance of adipocytes in inflammatory dysregulation, the
mechanisms underlying the inflammatory regulation of these
disorders are not fully understood and should remain a critical
focus for future investigation.
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Adipose depots are heterogeneous tissues that store and sense fuel levels. Through the

secretion of lipids, cytokines, and protein hormones (adipokines), they communicate with

other organ systems, informing them of the organism’s nutritional status. The adipose

tissues include diverse types of adipocytes (white, beige, and brown) distinguished

by the number/size of lipid droplets, mitochondrial density, and thermogenic capacity.

Moreover, they include a spectrum of immune cells that modulate metabolic activity

and tissue remodeling. The unique characteristics and interplay of these cells control

the production of ceramides, a class of nutrient signals derived from fat and protein

metabolism that modulate adipocyte function to regulate glucose and lipid metabolism.

The excessive accumulation of ceramides contributes to the adipose tissue inflammation

and dysfunction that underlies cardiometabolic disease. Herein we review findings on this

important class of lipid species and discuss their role at the convergence point that links

overnutrition/inflammation to key features of the metabolic syndrome.

Keywords: ceramide, inflammation, insulin, diabetes, adipocyte

INTRODUCTION

Obesity increases one’s risk for metabolic diseases such as diabetes, coronary artery disease,
non-alcoholic steatohepatitis, and heart failure. The condition promotes (a) the accumulation
of deleterious lipid metabolites in non-adipose tissues (i.e., lipotoxicity) and (b) chronic low-
grade inflammation, which in turn produces the tissue dysfunction that fuels these disorders.
The lipotoxicity is secondary to adipose dysfunction, such that excessive lipids are delivered to
peripheral tissues rather than being safely stored as triglycerides within the healthy adipocyte
(1–5). The inflammation results from the increased recruitment of pro-inflammatory macrophages
into the expanded adipose depots, leading to increased secretion of inflammatory cytokines such
as tumor necrosis factor-α (TNF-α), interleukins (IL), and chemokines (6–8). Together, these
lipotoxic and inflammatory pathways account for virtually all of the features of the metabolic
syndrome including insulin resistance, dyslipidemia, and hypertension.

Lipids, in addition to being major fuel reservoirs (e.g., triglycerides), have important roles in the
regulation of nutrient storage. In particular, sphingolipids such as ceramides are metabolic signals
that accumulate in obesity and trigger evolutionarily conserved cellular responses to lipid overload
(9). Such mechanisms include inhibiting the uptake of glucose and amino acids, leading to the
preferential utilization of free fatty acids (FFAs) for energy; slowing rates of triglyceride lipolysis;
and impairing mitochondrial respiration (9). At higher concentrations, ceramides induce apoptosis
(9). These sphingolipid actions contribute to the tissue dysfunction that underlies non-alcoholic
steatohepatitis, diabetes, and heart disease. Inflammatory cytokines, including TNF-α and IL-1,
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reinforce this signal by accelerating ceramide production (10).
Ceramides thus function at the nexus of lipid metabolism
and inflammation.

Studies in mice reveal that inhibition of ceramide synthesis
resolves hepatic steatosis and improves insulin-stimulated
glucose disposal to slow the progression of cardiometabolic
diseases (11). These ceramide-lowering interventions also alter
adipose tissue metabolism and morphology, enhancing glucose
utilization, and energy expenditure. These manipulations also
decrease adipose tissue inflammation and alter macrophage
polarization, converting them from pro-inflammatory M1-
macrophages into anti-inflammatory M2-macrophages (12).
Herein we will review the synergy between the free fatty
acids (FFAs) and ceramides that accumulate in obesity and
inflammation that accompanies adipose tissue expansion for
the development of cardiometabolic diseases. In addition, we
will discuss the potential therapeutic approaches for targeting
ceramides to reduce inflammation and improve adipose health.

EXCESS FREE FATTY ACIDS INDUCE
METABOLIC DISORDERS

Elevations in circulating FFA resulting from increased nutrient
consumption or unchecked lipolysis have been implicated in
metabolic disorders including insulin resistance, type 2 diabetes,
and cardiovascular disease (13). Emerging studies suggest that
these fatty acids fuel production of deleterious lipid metabolites
such as ceramides while inducing chronic inflammation (3, 6, 14,
15). To this end, FFA, particularly saturated fatty acids such as
palmitate which is a key substrate for ceramide production while
also modulating innate immune cells to elicit a proinflammatory
response, have important roles at the origin of metabolic disease
(16, 17).

PATHWAYS CONTROLLING CERAMIDE
SYNTHESIS AND METABOLISM

Ceramides are precursors of complex sphingolipids (e.g.,
sphingomyelin) that are integral components of cell membranes.
The sphingolipid content of the adipose depots is influenced
by nutrient availability (e.g., increased levels of sphingolipid
precursors such as serine and palmitate), inflammatory signals,
adiponectin, and other factors that control global stress
responses. Ceramides can thus serve as metabolic messengers
that integrate input from a variety of factors associated
with obesity and metabolic disease. Their cellular levels are
determined by three enzymatic pathways: de novo synthesis,
sphingomyelin hydrolysis, and the salvage pathway (Figure 1)
(18, 19).

The de novo synthesis pathway comprises four sequential
enzymatic steps (20). Serine palmitoyltransferase (SPT) catalyzes
the first reaction, condensing palmitoyl-CoA (CoA) and serine to
produce 3-ketosphinganine. This transient intermediate doesn’t
accumulate in cells, as it is rapidly converted to sphinganine
by 3-ketosphinganine reductase (3Ksn). Ceramide synthases
(CERS1-6) then add a fatty acid, ranging in chain length

FIGURE 1 | Schematic depicting the enzymatic pathways involved in cellular

ceramide synthesis. CERS, Ceramide synthase; DES, Dihydroceramide

desaturase; KDSR, 3-ketodihydrosphinganine reductase; SMS, Sphingomyelin

synthase; SMase, Sphingomyelinase.

from 14-carbon to 34-carbon atoms, to sphinganine to produce
dihydroceramides. The CERS enzymes have variable substrate
specificity and unique tissue distributions and account for much
of the diversity in sphingolipids (21). In the fourth and final step,
dihydroceramide desaturase (Degs1 and 2) introduces a critical
double-bond into dihydroceramide, generating ceramides (22).

The second pathway involves the hydrolysis of sphingomyelin
by neutral or acid sphingomyelinase to produce phosphocholine
and re-form ceramide (23).

The third pathway, termed the salvage pathway,
allows for the reformation of ceramides from
sphingolipids after they are degraded in late endosomes
or lysosomes (24). The liberated sphingoid base can
be re-acylated by the aforementioned CERS enzymes,
re-synthesizing ceramides.

PLASMA AND ADIPOSE CERAMIDES
CORRELATE WITH FREE FATTY ACIDS,
MARKERS OF INFLAMMATION, AND THE
SEVERITY OF CARDIOMETABOLIC
DISEASES

Within the last decade, advances in mass-spectrometry
have allowed researchers to confidently assess whether
plasma and tissue ceramide levels correlate with indices
of metabolic diseases. Numerous groups have found that
circulating ceramides and FFAs are elevated in subjects
with insulin resistance, type 2-diabetes, non-alcoholic fatty
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liver diseases, chronic kidney diseases and major adverse
cardiovascular events including mortality (25–35). In parallel,
researchers have shown that circulating inflammatory cytokines
also positively associate with these metabolic outcomes
(36, 37). Interestingly, circulating FFAs, ceramides and
inflammatory cytokines also correlate with one another in
human subjects with coronary artery disease, hepatic steatosis,
or insulin resistance (10, 33, 38–40). These studies suggest
that they may have interrelated roles in the etiology of
metabolic disorders.

Adipose tissue ceramide content and inflammation
have also been evaluated in subjects with obesity, insulin
resistance and/or diabetes. One such study, by the Yki-
Jävinen group, demonstrated that ceramide levels are
elevated in the adipose tissues of individuals with insulin
resistance, independent of obesity (41). In this study, the
tissue also showed increases in inflammatory markers.
The Brüning laboratory also found that ceramides,
particularly C16-ceramides, were elevated in individuals
with obesity (42). They also observed dramatically
increased expression of ceramide synthase 6 (CERS6), the
enzyme that is responsible for generating C16-ceramides.
Additionally, CERS6 expression positively correlated with
insulin resistance.

CERAMIDES ARE MODULATED BY
SEVERAL INFLAMMATORY AND
ANTI-INFLAMMATORY SIGNALING
MOLECULES

The oversupply of precursors such as palmitate and serine
undoubtedly account for much of the ceramide accumulation
that occurs in obesity. Indeed, a small number of dietary
studies have shown that dietary fat intake influences
ceramide synthesis and accumulation (43, 44). As outlined
below, inflammatory modulators also influence the rate of
ceramide production.

Tumor Necrosis Factor-Alpha (TNF-α)
Produces Ceramides to Contribute to
Insulin Resistance
In obesity, the recruitment of macrophages to the expanding
adipose depots can induce an inflammatory state characterized
by increased expression and secretion of inflammatory cytokines
such as TNF-α, IL-6, and IL-1β (6, 15, 45–50). Some of these
cytokines have been shown to produce ceramides (51–53).
In particular, serum and adipose TNF-α are often elevated in
individuals with obesity and/or type 2 diabetes and correlate
with the severity of insulin resistance (54–56) and with levels
of ceramides (33). In cultured cells, the cytokine stimulates
ceramide accumulation by inducing expression of ceramide
synthesis genes [e.g., serine palmitoyltransferase (SPT)]
and increasing expression and activity of sphingomyelin
hydrolyzing enzymes (e.g., sphingomyelinase) (51, 57–62).
Similar effects on ceramide synthesis have been demonstrated
with certain cytokines such as the TNF-α in vivo (63),

which antagonize insulin-stimulated glucose disposal in
rats and humans (64, 65). In cultured adipocytes and
myeloid cells, researchers confirmed that it inhibits insulin
signaling and action via receptor-mediated activation of
sphingomyelinase (66).

In mice, genetic manipulations to ablate TNF-α or its
receptors ameliorate obesity-induced insulin resistance (46, 67).
However, clinical trials targeting TNF-α have generally shown
little or no beneficial effect on systemic insulin sensitivity (68, 69),
indicating that TNF-α lowering is insufficient to combat insulin
resistance in humans.

Toll-Like Receptors Induce Ceramide
Biosynthesis to Contribute to Insulin
Resistance
The lipotoxic environment in obesity increases the supply of
saturated fatty acids that either directly or indirectly activate
toll-like receptor (TLR)-4 (70–74). These pattern recognition
receptors, which are typically involved in innate immune
responses, have been implicated in inflammation and insulin
resistance that accompanies obesity and underlies metabolic
disease. For example, Flier et al. found that mice lacking TLR-
4 were protected from lipid or high fat diet-induced insulin
resistance (17, 75). They also found that long-chain fatty
acids signal via TLR-4 to induce transcription of inflammatory
cytokines (e.g., TNF-α and IL-6), thus reinforcing and enhancing
the inflammatory state. Using similar approaches with various
loss-of-function TLR-4 mouse models, four other laboratories
described essential roles for TLR-4 in obesity and/or insulin
resistance (76–79). Curiously, Shulman et al. found the opposite
result, concluding that TLR-4 was not required for lipid-induced
insulin resistance (80).

Activation of toll-like receptor (TLR)-4, via
lipopolysaccharides (LPS) or a more specific ligand Kdo(2)-lipid
A, induces ceramide accumulation by increasing the expression
of several ceramide synthesis enzymes (77, 81–84). In cultured
myotubes, nuclear factor kappa B (NFκB) was found to be
an obligate intermediate in these TLR-4 mediated effects on
ceramide production (77). In contrast, ablation of TLR-4 in
mice reduces ceramides, and even prevents their synthesis in
models of lipid oversupply (i.e., mice fed a high fat diet or
infused with lipid cocktails) (77). These findings indicate that
TLR-4 enhances ceramide production and reveal the interplay
between TLR-4 and ceramides in the metabolic dysfunction that
accompanies obesity.

The mechanisms controlling TLR-4 activation in obesity have
been controversial. Though saturated fatty acids were initially
speculated to be TLR-4 ligands (70–73), some have argued that
fatty acids signal through indirect signaling mechanisms (74).
Others have argued that this observation is an artifact, likely
due to contamination of the saturated fatty acid preparations
with lipopolysaccharide (85). In an elegant study, Lancaster et al.
found that saturated fatty acids do not bind directly to the TLR-
4 receptors, but rather prime TLR-4 to induce lipid-mediated
inflammatory signaling (74). These authors found that activating
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TLR-4 led to a marked upregulation of ceramides and ceramide-
synthesizing genes (74).

Ceramides Activate the NLRP3
Inflammasome to Increase Cytokine
Secretion
Inflammasomes are large, multiprotein complexes that form
in response to endogenous stress signals, initiating a wide
range of cellular activities that include production of the pro-
inflammatory cytokines (e.g., IL-1β). The best characterized
inflammasome is termed NLRP3 because of the presence of
NOD-, LRR-, and pyrin domain-containing protein 3 within
the complex. Other components include the adapter ASC
and pro-caspase-1. Saturated FFAs were recently found to
induce inflammasome activation in macrophages, prompting
speculation that lipotoxic intermediates such as ceramides might
drive inflammasome activation (49). In both macrophages
and adipocytes, ceramides activate the NLRP3 inflammasome,
promoting cleavage of caspase-1 and subsequent stimulation
of cytokine secretion (86). Subsequent studies found roles for
inflammasomes as a downstream ceramide effector in other
cell types (87–89), Within adipocytes, this ceramide interaction
with the NLRP3 inflammasome may contribute to the adipose
inflammation that contributes to insulin resistance. Interestingly,
inhibiting de novo ceramide biosynthesis in macrophages did
not influence the inflammasome (90), nor did it impact glucose
tolerance (11, 12, 90). Moreover, palmitate has been shown to
elicit activation of inflammasome by modulating the AMPK-
ROS-autophagy pathway, suggesting alternativemechanisms link
FFAs to this immune complex (49).

Plasminogen Activator Inhibitor-1 Has a
Bidirectional Relationship With Ceramides
Plasminogen activator inhibitor-1 (PAI-1) is a glycoprotein that
is synthesized in endothelial cells, liver, adipose tissue, and
other tissue types. It inhibits the serine proteases that covert
plasminogen into the active fibrinolytic enzyme plasmin (91,
92). Plasma PAI-1 concentrations are elevated in obesity and
diabetes and correlate with the severity of insulin resistance (93–
95). Pharmacological inhibition or genetic ablation of PAI-1 in
mice protects them from both obesity and insulin resistance
while improving adipocyte health and decreasing adipose
inflammation (96–99). PAI-1 ablation ensures this protection,
at least in part, by reducing accumulation of ceramides in
adipocytes, which it accomplishes by decreasing expression
of ceramide synthesis genes (96). Conversely, ceramides were
reported to induce PAI-1 expression in adipocytes (100),
revealing bidirectional interplay between PAI-1 and ceramides
that modulates adipose tissue inflammation and function.

Adiponectin Receptors Are Ligand
Activated Ceramidases
The adipokine adiponectin attenuates many features of diabetes
and heart disease, including insulin resistance, dyslipidemia,
inflammation and cardiomyocyte, endothelial cell and beta-cell
apoptosis (101–106). Holland, Scherer et al. were intrigued by

the fact that adiponectin and ceramides have such oppositional
roles in biology. Moreover, they observed a sequence similarity
between adiponectin receptors (AdipoRs) and a family of
ceramidases. They thus tested the provocative idea that
adiponectin elicited its broad spectrum of actions by reducing
(via diacylation) ceramides. They confirmed that the receptor
had ceramidase activity that is activated by ligand binding
(105). In mice, the cardioprotective and anti-diabetic actions
of adiponectin were accompanied by reductions in ceramides
(105). Moreover, they identified key residues in AdipoRs that
were required for ceramidase activity and for all of adiponectin’s
downstream actions (105). These findings were then validated
by Vasiliauskaite-Brooks et al. who crystalized the AdipoRs in
presence of short-chain ceramide analogs, discovering it bound
to the liberated sphingoid base (107, 108). They also confirmed
that the purified receptors possess ceramidase activity (107, 108).
These studies suggest yet another key regulatory mechanism that
controls cellular ceramides in order to modulate inflammation
and other features of the metabolic syndrome.

CONVERGENCE OF ADIPOSE CERAMIDES
AND INFLAMMATION TO CONTROL
INSULIN RESISTANCE

Insulin resistance is a defining attribute of the metabolic
syndrome that increases one’s risk for diabetes and heart disease.
As noted above, numerous studies have described correlational
relationships between insulin resistance, circulating cytokines,
and ceramides in clinical populations (9, 21, 22). Studies in
rodents further indicate that ceramides play causative roles in
insulin resistance, often linking inflammatory agonists to their
deleterious effects on glucose uptake and utilization.

The earliest studies evaluating the role of ceramides in
insulin resistance analyzed their effects in 3T3-L1 adipocytes,
a murine cell line that shows many of the hallmark metabolic
attributes of human adipose tissue. Those studies revealed that
ceramides inhibit glucose uptake by inhibiting activation of
Akt/PKB (109), a serine/threonine kinase that is an obligate
intermediate in insulin-stimulated glucose transporter GLUT4
translocation, as well as glycogen and protein synthesis and
protection from apoptosis. Curiously, ceramides did not inhibit
the signaling events that precede Akt/PKB activation, such as
the activation of PI3-kinase or generation of its product, 3’-
polyphosphoinositides (110). Moreover, they blocked activation
of the enzyme by numerous other stimuli, including those that
don’t utilize the signaling scaffold insulin receptor substrate-
1 (110), which had recently been identified as a putative site
of insulin resistance (111). This observation prompted a flurry
of studies seeking to elucidate the signaling mechanisms that
linked elevations in ceramides to the inhibition of this important
enzyme. These studies revealed that ceramides inhibit Akt/PKB
by two known mechanisms, which impact different portions of
the enzyme (112). Ceramides dephosphorylate key activating
residues through protein phosphatase 2A(PP2A) (112), which
is an established ceramide effector (113). Through an alternate
mechanism, ceramide blocks the translocation of Akt/PKB to
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FIGURE 2 | Schematic depicting interactions between ceramides and inflammatory agonists in adipose tissue. Ceramide accumulation elicits deleterious effects on

adipose tissue function by activating Nlrp3 inflammasome that induces inflammation, inhibition of Akt via PKCζ to abrogate insulin signaling, and promoting excessive

lipid storage by inhibiting HSL. The immunomodulatory adiponectin exhibits some of its beneficial effects by stimulating ceramidase activity that converts ceramides to

sphingosine. Akt, Protein Kinase B; CD-36, cluster of differentiation 36; AdipoR, Adiponectin receptor; CDase, Ceramidase; IKK, Ikappa kinase; IL, interleukin; IR,

insulin receptor; LPS, lipopolysaccharide; NF-κB, Nuclear factor kappa-light-chain-enhancer of activated B cells; Nlrp3, NLR family, pyrin domain containing 3; PAI-1,

Plasminogen activator inhibitor 1; PKC, protein kinase C; PP2A, Protein phosphatase 2A; sFFA, Saturated fatty acids; TLR4, Toll like receptor-4; TNF-α, Tumor

necrosis factor alpha; TNFR, Tumor necrosis factor alpha receptor; uPAR, Urokinase-type plasminogen activator receptor.

the plasma membrane (112). Studies by the Hundal laboratory
subsequently revealed that the translocation effect was due to
ceramide actions on atypical protein kinase C (PKCζ), which
phosphorylates a key residue in the pleckstrin homology domain
of Akt/PKB to block its recruitment to the plasma membrane
(114–117). These disparate ceramide mechanisms are clearly
separable, as they impact different protein domains and are
responsive to distinct inhibitors (112). They also vary by cell type,
seeming to be contingent on the relative quantity of caveolar
membranes. Adipocytes that have a high abundance of caveolae
favor the PKCζ-Akt/PKB axis rather than the PP2A-Akt/PKB axis
(118) (Figure 2).

These studies suggested that ceramides, induced by either the
oversupply of fatty acid substrates or the inflammation-induced
upregulation or activation of ceramide-producing enzymes,
might drive insulin resistance in vivo. Data in rodents support
this hypothesis. For example, a pharmacological inhibitor of SPT
(i.e., myriocin) prevents and/or reverses insulin resistance in
high fat diet fed mice (12, 77, 119–121), lipid-infused rats (121),
fructose-fed hamsters (122), and leptin-deficient mice and rats
(i.e., Zucker fa/fa rats and ob/ob mice) (121). It also resolves
steatosis, decreases adipocyte size, and enhances recruitment of
M2 macrophages into subcutaneous adipose tissue (12). Similar
findings were obtained with pharmacological (i.e., fenretinide) or
genetic (i.e., gene knockout) inhibition of DES1 (11, 123, 124).
Many of these actions could be explained by ceramide actions
within the adipocyte. Adipocyte-specific depletion of SPTLC2,
a critical subunit within the SPT complex, or DES1 improved
insulin sensitivity, resolved hepatic steatosis, and decreased

inflammation of the adipose beds (12). A comparable spectrum
of effects was obtained using adipose-specific over-expression of
acid ceramidase (125).

While the mechanisms that allow ceramide to modulate lipid
and inflammation-induced insulin resistance are fairly clear, the
means by which adipocyte ceramides induce the recruitment of
macrophages are not. Of note, most of the protective actions of
ceramide depletion are unlikely to be driven by ceramides within
the macrophage, as depleting SPTLC2 or DES1 from myeloid
cells did not influence glucose homeostasis (11, 12, 90).

CONVERGENCE OF ADIPOSE TISSUE
CERAMIDES AND INFLAMMATION TO
CONTROL ENERGY EXPENDITURE

In mice, myriocin also increases energy expenditure via a
mechanism that involves changes to the adipose depot. The
SPT inhibitor increased the allotment of adipocytes that express
uncoupling protein 1 (UCP1) (12), a mitochondrial protein that
dissipates the proton gradient generated by the electron transport
chain. This uncoupling reduces mitochondrial membrane
potential and leads to high rates of substrate oxidation, heat
production and energy expenditure (126). Similar observations
were obtained following the adipocyte-specific depletion of the
SPTLC2 subunit (12).

Myriocin also caused a shift in macrophage polarization from
M1 to M2, which has been shown to induce adipose “browning”
characterized by the upregulation of UCP1. Given these data,
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we profiled macrophage content in adipose tissue following
a myriocin intervention. This revealed a recruitment of M2-
macrophages in the adipose tissue that was associated with
a reduction in expression of key pro-inflammatory cytokines
(e.g., IL-6, MCP-1, and TNF-α) and an induction of a crucial
anti-inflammatory cytokine IL-10 (11). To resolve whether
these improvements were due to cell-autonomous ceramide
actions within the adipocytes or macrophages, we depleted the
Sptlc2 gene from both adipocytes and macrophages. Adipocyte-
specific depletion recapitulated the effects of myriocin and
increased the recruitment of M2-macrophages and expression of
thermogenic genes (e.g., Ucp1, Pgc1a, and Prdm16). These data
indicated that adipocyte sphingolipids likely drove the cellular
responses that increased energy expenditure. By comparison,
depleting Sptlc2 from macrophages failed to impact energy
expenditure. Moreover, ectopic ceramides were also shown
to inhibit mitochondrial respiration and block activation of
hormone-sensitive lipase by β-adrenergic agonists. The effects on
lipolysis were mediated by the aforementioned ceramide effector
PP2A (Figure 2).

Beyond the effects on UCP1 and HSL, ceramides seem to
slow energy expenditure by inhibiting mitochondrial respiration.
Indeed, addition of ceramides to cells is sufficient to inhibit
mitochondrial activity (12). Hammerschmidt et al. (127)
elucidated one mechanism that underlies this effect, determining
that ceramides bind to mitochondrial fission factor (MFF) to
alter mitochondrial morphology and reduce respiratory capacity
(127). This effect is specific for the C16-ceramides produced by
CERS6 (127).

Two other studies have evaluated the effects of reducing
ceramides in white adipocytes. Curiously, while these studies
did find that depleting ceramides from adipose tissue influenced
glucose and lipid homeostasis, neither intervention induced
adipose browning. One was the aforementioned study evaluating
the consequence of acid ceramidase expression, while the other
was our study involving DES1 depletion (11). While these
interventions affected mitochondrial respiration, they did not
induce UCP1 expression. We thus conclude that the effect on
UCP1 is not due to direct ceramide actions, but rather to another
intermediate in the pathway. One attractive hypothesis is that the
browning effects are mediated by the CERS enzymes (128, 129),
which have been shown to be transcriptional repressors that
move to the nucleus and regulate lipase expression following
encounters with fatty acids. By comparison, we conclude that
the effects on mitochondrial fission and lipolysis (i.e., HSL)
are due to direct actions of the sphingolipid analogs on

MFF and PP2A, respectively. The effects on mitochondrial
morphology/respiration and HSL were observed in all of the
interventional studies described.

CONCLUSION

Inflammation has long been known to be a hallmark of
obesity, owing to the recruitment of macrophages to adipose
depots and the enhancement of TLR-4 signaling by saturated
fatty acids. Herein we discussed how the impact of chronic
inflammation on host metabolism are linked to ceramide-driven
lipotoxicity. Ceramides, which are universally upregulated
by inflammatory stimuli, inhibit insulin-stimulated glucose
disposal and mitochondrial respiration. They thus provide
a convergence point that links overnutrition/dyslipidemia
and inflammation to drive many of the key features of the
metabolic syndrome. Curiously, manipulating ceramides
in adipose tissue also influences the inflammatory state of
the organ, suggesting the existence of feedback mechanisms
that involve ceramide-dependent, adipocyte autonomous
signals that control the immune cell population (e.g., via the
NLRP3 inflammasome). Additional research on ceramides
and their inflammatory regulators thus holds great promise
as a means to combat metabolic disease and improve adipose
tissue health.
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Adipocytes and adipose tissue play critical roles in the regulation of metabolic
homeostasis. In obesity and obesity-associated metabolic diseases, immune cells
infiltrate into adipose tissues. Interaction between adipocytes and immune cells re-
shapes both metabolic and immune properties of adipose tissue and dramatically
changes metabolic set points. Both the expression and activity of the non-canonical
IKK family member TBK1 are induced in adipose tissues during diet-induced obesity.
TBK1 plays important roles in the regulation of both metabolism and inflammation in
adipose tissue and thus affects glucose and energy metabolism. Here we review the
regulation and functions of TBK1 and the molecular mechanisms by which TBK1
regulates both metabolism and inflammation in adipose tissue. Finally, we discuss the
potential of a TBK1/IKKe inhibitor as a new therapy for metabolic diseases.

Keywords: TBK1, IKK, inflammation, metabolism, obesity, adipose tissue, overnutrition, undernutrition
INTRODUCTION

Obesity has reached a pandemic (1). The complications of obesity, including type 2 diabetes,
cardiovascular diseases, neurodegenerative diseases, non-alcoholic fatty liver diseases, and cancer,
have become leading health threats. Obesity is caused by a positive energy balance, leading to excess
lipid accumulation in adipose and other tissues (2–5). In addition to being an inert site for energy
storage, adipose tissues play essential roles in metabolic homeostasis (6, 7). As the major cell type
within adipose tissue, adipocytes are responsible for lipid storage and mobilization in response to
insulin and sympathetic activation respectively. However, these cells can also sense their nutrient
status, and respond by secreting a series of hormones known as “adipokines” (6–8). Upon food
intake, the resulting elevation of nutrients in the circulation stimulates insulin production. Insulin in
turn lowers glucose and fatty acid levels in part by instructing fat and muscle tissue to increase
glucose uptake and storage, while reducing lipolysis in fat, glycogenolysis in muscle and liver and
gluconeogenesis in liver (9, 10). In adipocytes, nutrients are largely stored as triglycerides. Upon
reaching a threshold of lipogenesis, adipocytes trigger the production of adipokines such as leptin, to
suppress food consumption and activate the sympathetic nervous system, thus closing a loop to
ensure energy homeostasis (9, 11–15). Excessive energy intake or low energy expenditure could lead
to a sustained positive energy balance and consequently cause increased adiposity in obesity (3–5).

Obesity is associated with low-grade chronic inflammation in adipose tissue, featured by an increased
number of macrophages and an elevated ratio of proinflammatory macrophages (16–20). Although the
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immediate trigger for obesity-associated inflammation in adipose
tissue remains unclear, multiple factors, including hypoxia,
mechanical stress, lipotoxicity, adipocyte death, and bacterial
toxins may contribute to this process (9, 21–27). Inflammation
has been reported to affect several properties of adipocytes. The
activation of proinflammatory pathways has been shown to disrupt
glucose uptake and insulin responsiveness and alter adipokine
production (28–31), suggesting that inflammation plays an
essential role in the pathological response to obesity.

The nuclear factor kappa B (NFkB) is a widely expressed
transcription factor that mediates inflammatory responses in
numerous tissues. The NFkB signaling pathway plays a key role
in the development of inflammation and insulin resistance in
adipose tissue (32–34). Transcription through NFkB is mainly
controlled by the phosphorylation of inhibitor of NFkB (IkB) by
the upstream IkB kinases (IKKs). The canonical IKKs, IKKa, and
IKKb, phosphorylate IkB, and other NFkB subunits to induce the
expression of NFkB target genes (35). Besides IKKa and b, the IKK
family also includes two non-canonical members, IKKϵ and TANK-
binding kinase 1 (TBK1). Interestingly, despite their sequence
similarity to the canonical IKK isoforms, TBK1 and IKKe do not
appear to play important roles in NFkB activation in response to
proinflammatory cytokines (36). However, expression of Ikke and
Tbk1 mRNAs are induced by NFkB (37). Moreover, IKKϵ and
TBK1 are activated by protein phosphorylation in response to
proinflammatory cytokines or other substances that bind to Toll-
like receptors 3 and 4 (38). It was reported that activities of IKKϵ
and TBK1 are significantly increased in adipose tissue of obese mice
(37). We review here the functions of the noncanonical IKKs in
inflammation and metabolic regulation in adipose tissue, with a
major focus on the roles of TBK1 in crosstalk between inflammation
and metabolism.
NON-CANONICAL IKKs

NFkB plays a central role in the transcriptional response to
proinflammatory stimuli. In the absence of stimuli, IkB binds to
NFkB to sequester the transcription factor in the cytoplasm (39).
Inflammatory stimuli increase the phosphorylation and
activation of IKKs, which in turn phosphorylate IkB and NFkB
to activate the expression of NFkB target genes (35, 39, 40). An
IKK complex formed by IKKa, IKKb, and the NFkB essential
modifier (NEMO) directly phosphorylates IkB at Ser32 and Ser36

to induce ubiquitin-associated degradation. Consequently, NFkB
is released to activate gene expression. This pathway represents
the canonical NFkB signaling pathway (41, 42). Both IKKa and
IKKb possess a kinase domain (KD), a scaffold dimerization
domain (SDD), and a NEMO-binding domain (NBD). A
ubiquitin-like domain (ULD) is found in IKKb but not in
IKKa. In contrast to the canonical IKKs, IKKϵ and TBK1 have
similar SD, ULD, and SDD, but lack the NBD. Human TBK1
shares 49% identity and 65% similarity to IKKϵ, but only 27%
identity with IKKa and IKKb (43–45). Unlike the canonical
IKKs, the roles of IKKϵ and TBK1 in the NFkB signaling
pathways remain uncertain. Early studies demonstrated that
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TBK1 phosphorylates IKKb to increase its activity, while IKKϵ
phosphorylates RelA at Ser468 to induce its nuclear translocation
(44, 46, 47). However, subsequent studies found that TBK1 or
IKKϵ deficiency has no effect on LPS, TNFa, interleukin-1b, or
poly(I:C)-induced activation of NFkB (38, 48). Thus, it appears
that IKKϵ and TBK1 are not required for the activation of NFkB
in response to proinflammatory cytokines (36). Instead, studies
showed that the expression of Ikke and Tbk1 are induced by
NFkB under proinflammatory conditions (37). Interestingly, two
separate studies demonstrated that TBK1 and IKKϵ mediate
NFkB activation downstream of the cGAS-STING pathway in
response to cytosolic DNA or STING ligand (49, 50).

Multiple studies demonstrated that non-canonical IKKs play
important roles in metabolic regulation. The expression of Ikke
was upregulated in the liver, adipocytes, and adipose tissue
macrophages during diet-induced obesity (34). Knockout of
Ikke reduced inflammation and improved insulin sensitivity in
adipose tissue and liver. Hepatic steatosis was largely attenuated
by IKKϵ deficiency as well. Ikke knockout mice gained less
weight and were resistant to high fat diet-induced obesity due
to the increased energy expenditure and thermogenesis (34). The
expression of Uncoupling protein 1 (Ucp1), a major uncoupler
utilizing the mitochondrial proton gradient to generate heat, was
significantly upregulated in white adipose tissue in these
mice (34).

Energy expenditure is largely controlled by sympathetic signals.
Catecholamines induce Ucp1 expression and increase
thermogenesis in both brown and subcutaneous white fat (51,
52). During high fat diet-induced obesity, adipose tissue becomes
resistant to catecholamines, resulting in decreased energy
expenditure (9, 53–55). Mowers et al. demonstrated that IKKϵ
directly phosphorylates and activates phosphodiesterase 3B
(PDE3B) to reduce intracellular cAMP levels and thus represses
cAMP-mediated b-adrenergic signaling (55). Ikke knockout
restored catecholamine sensitivity, leading to an upregulation of
Ucp1 expression and an increase of thermogenesis (34, 55, 56).
Therefore, during obesity, the inflammation-induced expression
of Ikke represses sympathetic signal and further promotes energy
storage (Figure 1). IKKϵ mediates the interaction between
inflammatory and catecholamine signals, representing one
example of how inflammation modulates metabolism in
adipose tissue.
TBK1

Although the role of TBK1 in NFkB activation remains unclear, its
function in the innate immune response has been well-recognized.
In response to infection, pattern recognition receptors (PRRs)
sense the pathogen-associated molecular patterns (PAMPs) on
bacteria or viruses to activate TBK1-mediated signaling pathways
(57, 58). Two major types of PRRs participate in this action. Toll-
like receptors (TLRs), especially TLR3 and TLR4, are cell surface
receptors that utilize adaptor proteins such as TIR-domain-
containing adaptor-inducing interferon-b (TRIF) and Myeloid
differentiation primary response 88 (MyD88). Ligands of TLRs,
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such as lipopolysaccharides (LPSs), bind to their receptors to
induce the activation of TBK1. Retinoic acid-inducible gene I
(RIG-I)-like receptors, NOD-like receptors (NLRs), and cytosolic
DNA sensors are the PRRs in the cytoplasm (36, 59, 60). Cyclic-
GMP-AMP (cGAMP) synthase (cGAS) is a cytosolic DNA sensor.
cGAS utilizes cytosolic DNA to generate cGAMP, which in turn
binds to the adaptor protein Stimulator of interferon genes
(STING). Consequently, STING interacts with and activates
TBK1 (61). Besides pathogen infection, proinflammatory
cytokines such as tumor necrosis factor a (TNFa) also produces
TBK1 activation (62, 63). Upon activation, TBK1 directly
phosphorylates interferon regulatory factor 3 (IRF3) and IRF7 at
multiple serine and threonine residues to induce their nuclear
translocation (64–67). Consequently, these transcription factors
upregulate the expression of type I interferon (Ifna, Ifnb) genes in
the innate immune response. TBK1 is indispensable for the
antiviral immune response (61, 68).

The activity of TBK1 is acutely controlled by phosphorylation
on Ser172 within the kinase domain (63, 69, 70). However, the
molecular mechanism by which this activating phosphorylation
occurs is still unclear. Structural studies suggest that TBK1
undergoes multi-order oligomerization. While the kinase
usually exists as a homodimer, the kinase domains face
outward and are generally not capable of phosphorylation in
this configuration (70). However, adapter proteins bring together
these homodimers in larger heteromeric complexes, leading to
Ser172 phosphorylation via transautophosphorylation (70).
Moreover, recent investigations demonstrated that Unc-51 like
autophagy activating kinase 1 (ULK1) can directly phosphorylate
Ser172 (63). This is consistent with the observations that both
ULK1 and TBK1 play essential roles in autophagy (71–75). TBK1
regulates autophagy via phosphorylating optineurin on Ser177

and SQSTM1/p62 on Ser403 to clear pathogen or damaged
mitochondria (76, 77). Interestingly, the activation of NFkB
Frontiers in Immunology | www.frontiersin.org 320
also upregulates the expression of Sqstm1/p62 to induce
mitophagy in response to LPS (78, 79). These studies suggest
that NFkB and TBK1 may function synergistically to promote
the clearance of damaged mitochondria and pathogens
during infection.

Understanding the functions of TBK1 in vivo have been
hampered by the lethality of global Tbk1 knockout. Whole-
body knockout of Tbk1 leads to enhanced apoptotic liver
degeneration and embryonic lethality at approximately E14.5
(80). In this regard, TBK1 directly phosphorylates receptor-
interacting serine/threonine-protein kinase 1 (RIPK1) on
Thr189 to prevent cell death. TBK1 deficiency substantially
increases RIPK1-mediated cell death, resulting in embryonic
lethality between embryonic day 13.5 and embryonic day 14.5
(81). In line with this finding, another study found that both
TBK1 and IKKϵ phosphorylate RIPK1 on multiple sites,
including Thr189, to prevent TNF-induced cell death (62, 81).
To conduct in vivo studies on the roles of TBK1 in inflammation,
Marchlik et al., generated (Tbk1D/D) mice expressing a TBK1
inactive mutant with the deletion of exon 2 (82). Tbk1D/D C57BL/
6J mice were still embryonic lethal. However, Tbk1D/D 129S5
mice were fertile and viable, but born at a decreased Mendelian
frequency. Tbk1D/D mice had increased mononuclear and
granulomatous cell infiltration into multiple tissues, along with
elevated circulating monocytes. This is consistent with another
study reporting that Tbk1D/D mice die faster and in larger
numbers in response to LPS (82).

Regulation of the Crosstalk Between
Metabolism and Inflammation by TBK1
Although it was reported that TBK1 expression and activity are
induced in adipose tissues during obesity and insulin resistance
(34, 37, 63), the role of TBK1 in the pathogenesis of metabolic
disease was unclear. A recent study revealed that TBK1 mediates
FIGURE 1 | IKKϵ inhibits adrenergic signaling to repress thermogenesis. IKKϵ activity is induced by proinflammatory stimuli. Active IKKϵ directly phosphorylates and
activates PDE3B to reduce cAMP levels. Consequently, IKKϵ inhibits cAMP-mediated adrenergic signaling pathway and represses energy expenditure in adipocytes.
PDE3B, phosphodiesterase 3B; cAMP, cyclic AMP; PKA, protein kinase A; HSL, hormone sensitive lipase; UCP1, uncoupling protein 1.
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crosstalk between inflammation and metabolism in adipose
tissue (Figure 2) (63). During high fat diet-induced obesity,
chronic inflammation leads to an increase of proinflammatory
cytokines in the adipose tissue (9, 30, 83). Consequently, these
cytokines, such as TNFa, produce the activation of TBK1 (63).
At the same time, the inflammatory environment also results in
enhanced NFkB activity, resulting in an increase in Tbk1
expression (34, 63). Thus, high fat diet feeding substantially
induces TBK1 activity in the adipose tissue through both
transcriptional and posttranslational regulation (34, 37, 63).
Upon activation, TBK1 attenuates adipose tissue inflammation
via repressing the atypical NFkB pathway (63). In this pathway,
the NFkB-inducing kinase (NIK) phosphorylates Ser176 to
activate IKKa, which largely resides as a homodimer (84).
IKKa in turns phosphorylates the RelB (NFkB2) precursor
p100, resulting in the cleavage and maturation of RelB (85).
Thus, NIK is responsible for activation of the atypical NFkB
pathway, which induces the expression of target genes, such as
Ccl2 (C-C motif chemokine ligand 2), to promote macrophage
infiltration and inflammation (86–88). Interestingly, TBK1
directly phosphorylates NIK, leading to its degradation (62,
63). Tbk1 knockout causes hyperactivation of the atypical
NFkB pathway and exacerbates macrophage infiltration and
inflammation in adipose tissue of obese mice (63). Moreover,
the loss of TBK1 in adipocytes attenuates HFD-induced obesity
via increasing mitochondrial biogenesis and energy expenditure.
TBK1 inhibits AMP-activated protein kinase (AMPK) by
catalyzing phosphorylation on inhibitory sites in AMPKa
subunit, Ser459 and Ser476. Tbk1 knockout thus ameliorates
AMPK repression in adipose tissues of high fat diet-fed mice
Frontiers in Immunology | www.frontiersin.org 421
(63), revealing that TBK1 mediates crosstalk from inflammation
to energy metabolism. The inflammation-induced TBK1 activity
produced during obesity represses energy expenditure and
promotes anabolism, which further enhances obesity through a
feedforward loop.

In addition to inflammation-induced TBK1 activation, it has
also been reported that TBK1 Ser172 phosphorylation is induced in
adipocytes during glucose deprivation, which creates an energy
shortage condition (63). Thus, TBK1 is activated not only during
overnutrition, but also during undernutrition. Mechanistically,
energy shortage leads to an increase of AMP/ATP ratio, which in
turns activates AMPK. AMPK directly phosphorylates ULK1 at
multiple residues to induce its activity (89, 90). ULK1 is able to
phosphorylate Ser172 to activate TBK1 (63). Similar observations on
AMPK-dependent TBK1 activation have been reported in
myotubes and Hela cells as well (91). Furthermore, prolonged
fasting induced Tbk1 expression in different depots of white
adipose tissues (63). However, the molecular mechanism of this
transcriptional regulation is still unknown. Studies on animal
models and human subjects reported that fasting or
undernutrition leads to a reduction of basal metabolic rate and
energy expenditure (92, 93). Given the effects of TBK1 on energy
metabolism, fasting likely activates a TBK1-mediated feedback loop
to repress energy expenditure in response to undernutrition. The
activation of TBK1 could be a protective mechanism to attenuate
the loss of body weight during fasting. Moreover, reduced caloric
intake has been demonstrated to attenuate adipose tissue
inflammation in obesity (94–97). The anti-inflammatory function
of TBK1 at least partially contributes to this effect and mediates
crosstalk from undernutrition to inflammation.
FIGURE 2 | TBK1 regulates inflammation and energy metabolism in adipocytes. TBK1 activity is induced by proinflammatory stimuli and undernutrition. Although
TBK1 is not directly involved in TNFa-induced activation of NFkB, active TBK1 phosphorylates NIK to induce its degradation and thus attenuates atypical NFkB
pathway in a negative feedback loop. Moreover, TBK1 inhibits AMPK to repress energy expenditure in adipocytes. AMPK, AMP-activated protein kinase; NIK, NFkB
inducing kinase.
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In summary, TBK1 plays a central role in the regulation of
both inflammation and energy metabolism in adipose tissue. It is
activated during both overnutrition and undernutrition and
mediates a negative feedback loop to repress inflammation and
energy expenditure under certain conditions (63). More
importantly, TBK1 is responsible for the bidirectional crosstalk
between energy metabolism and inflammation. The deficiency of
TBK1 in adipocytes leads to the attenuation of high fat diet-
induced obesity, but the exaggeration of adipose tissue
inflammation (63), indicating a loss of the positive correlation
between adiposity and adipose tissue inflammation.

Furthermore, in response to proinflammatory stimuli, TBK1
has been shown to affect metabolic reprogramming in different
cell types. Upon the activation of TLRs, active TBK1 was
recruited to the myddosome and thus promotes glycolysis in
macrophages (98). Another two studies also reported that
TBK1 activation mediates TLR ligand-induced glycolytic
reprogramming (99, 100). The rapid induction of glycolysis is
critical for the production of succinate and inflammatory
cytokines in the immune response (99). These findings
demonstrate another TBK1-mediated pathway that regulates
the crosstalk between inflammation and metabolism. However,
further studies are needed to compare the cell type specific roles
of TBK1.

Inhibition of TBK1 and IKKϵ
in Metabolic Diseases
Insights into the critical roles of the noncanonical IKKs in the
pathogenesis of obesity and insulin resistance led to a screen of
chemical inhibitors, identifying amlexanox as an inhibitor for
both TBK1 and IKKϵ (37). Daily gavage of amlexanox in obese
mice prevents genetic and high fat diet-induced obesity. The
inhibition of weight gain by amlexanox is reversible after
withdrawal of the drug. Amlexanox improved insulin
sensitivity, reduced adipose tissue inflammation, increased
energy expenditure, and attenuated hepatic steatosis in these
obese animal models (37). Considering the phenotypes observed
in Ikke knockout mice and adipose Tbk1 knockout mice, the
beneficial effects of amlexanox is likely the combined outcomes
from the inhibition of both kinases. The inhibition of IKKϵ
increases cAMP and catecholamine sensitivity to upregulate
thermogenesis and attenuates adipose tissue inflammation (34).
On the other hand, loss of TBK1 activity de-represses AMPK to
increase mitochondrial biogenesis and other catabolic functions
(63). The TBK1 deficiency-induced adipose tissue inflammation
is likely compensated by the anti-inflammatory effects of
IKKϵ inhibition.

In a proof-of-concept randomized, double-blinded clinical
study, 42 obese and diabetic patients received placebo or
amlexanox treatment for 12 weeks. Amlexanox significantly
reduced hemoglobin A1c levels (101), indicating an
improvement of glucose metabolism. Further study found that
patients with higher serum C-reactive protein (CRP) levels and
higher adipose tissue inflammation were more responsive to the
drug. In the responder group, amlexanox improved insulin
sensitivity and hepatic steatosis. The expression of thermogenic
Frontiers in Immunology | www.frontiersin.org 522
genes, including Ucp1, Dio2 and Fgf21, was upregulated by the
treatment as well in these patients. Within the responders, a
transient increase of serum Interleukin 6 (IL-6) within 2–4 weeks
of amlexanox treatment was reported (101). This observation is
consistent with a previous mouse study showing that amlexanox
upregulated Il6 expression and secretion via cAMP/Mitogen-
activated protein kinase (MAPK) p38 pathway in inguinal white
adipose tissue. The increase of circulating IL-6 activates Signal
transducer and activator of transcription 3 (STAT3) in the liver
to inhibit the expression of the gluconeogenic gene Glucose-6-
phosphatase (G6pc). As a result, amlexanox represses hepatic
glucose output and thus improves glucose tolerance (102).
CONCLUDING REMARKS

Although the causal relationship between inflammation and
obesity-associated metabolic disorders remains uncertain, there
is little doubt that adipose tissue inflammation correlates well with
the occurrence of insulin resistance and type 2 diabetes (16, 17, 19,
20). The crosstalk between inflammation and metabolism in
adipose tissue plays a critical role in the pathogenesis of
metabolic diseases. Overnutrition causes metabolic stress, which
induces the initiation of inflammation to restore the metabolic
homeostasis (9). The activation of proinflammatory signaling
pathways attenuates insulin responsive signals to prevent further
energy storage in adipocytes (103, 104). Both of these effects are
the physiological/adaptive responses to overnutrition. However,
along the progression of obesity, sustained inflammation causes a
shift of homeostatic setpoints, leading to hyperglycemia,
hyperinsulinemia, and reduced energy expenditure (9). At this
stage, the inflammation causes a pathological/maladaptive
response that further exaggerates obesity and obesity-associated
metabolic disorders. Therefore, sustained inflammation results in
a transition from an adaptive response to a maladaptive response
that accelerates the progression of metabolic disorders.

NFkB signals mediate inflammatory responses and interact
with metabolic pathways in adipose tissue (33, 105, 106). The
activities of non-canonical IKKs, TBK1, and IKKϵ are induced
during inflammation (34, 37, 63). TBK1 represses energy
expenditure via inhibiting AMPK, while IKKϵ desensitizes
sympathetic signals (34, 55, 63). The activation of these kinases
exacerbates adiposity accumulation and promotes obesity. A
recent study reported that escaped mitochondrial DNA
activates TBK1 and IKKϵ to repress energy expenditure during
metabolic stress (56). Amlexanox, a drug with outstanding safety
record, was identified as an inhibitor of TBK1 and IKKϵ. Thus
far, multiple studies on both experimental mouse models and
human subjects suggest its potential as a new treatment for
metabolic diseases (37, 101).

In addition to modulating metabolic pathways in adipocytes,
metabolic and inflammatory signals interact at systemic level in
other cell types. Metabolic stress has the potential to increase the
production of adipokines, including leptin, adiponection, and
others (28–31). It has been reported that leptin induces
inflammation, while adiponectin attenuates inflammation
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(107–110). Moreover, metabolic status could affect the functions
of immune cells. Caloric restriction has exhibited systemic anti-
inflammatory effects, along with attenuated terminal
differentiation of immune cells (111). Given the energy sensing
properties of AMPK, the AMPK–ULK1–TBK1 axis may also
function in immune cells to mediate anti-inflammatory effects.
Nonetheless, the precise roles of adipose tissue inflammation in
the progression of obesity and obesity-associated insulin
resistance remains unclear. Indeed, more efforts are needed to
understand the systemic interactions between immune and
metabolic responses, which are essential for the maintenance
of homeostasis.
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Not only do Adipocytes have energy storage and endocrine functions, but they also play
an immunological role. Adipocytes are involved in adaptive immunity to mediate the
pathological processes of a variety of chronic inflammatory diseases and autoimmune
syndromes. The adaptive immune response consists of T cell-mediated cellular immunity
and B cell-mediated humoral immunity. Obese adipocytes overexpress MHC class II
molecules and costimulators to act as antigen-presenting cells (APCs) and promote the
activation of CD4+ T cells. In addition, various adipokines secreted by adipocytes regulate
the proliferation and differentiation of T cells. Adipokines are also involved in B cell
generation, development, activation, and antibody production. Therefore, adipocytes
play an important role in B cell-mediated adaptive immunity. This review describes how
adipocytes participate in adaptive immunity from the perspective of T cells and B cells, and
discusses their role in the pathogenesis of various diseases.

Keywords: adipocyte, adaptive immunity, adipokine, T cell, B cell
INTRODUCTION

Adaptive immunity is characterized by specificity, immunological memory, and self/nonself
recognition (1). The function of the adaptive immune system is to recognize, remember and
destroy invading pathogens through their antigens, and relieve pathogen-associated toxicities. There
are two main mechanisms in the adaptive immune system—humoral immunity and cellular
immunity, which are mediated by antibodies and cells respectively. The T and B cells are the major
components of adaptive immunity. T cells play a large role in the cellular immune response, while B
cells are intimately involved in the humoral immune response.

Adipocytes are the main constituent cells of adipose tissue. Their main function is to store energy
in the form of lipid droplets when there is excess energy and to supply energy when the body
demands it. In addition to their main functions, adipocytes have endocrine functions and can
secrete a variety of adipokines such as leptin, adiponectin, and resistin (2–4). Recently, an increasing
number of studies have shown that adipocytes have immunological functions capable of recruiting
and activating immune cells. The adipocyte was reported as an antigen-presenting cell (APC) which
expresses CD1d and MHC class I and II molecules. Several studies have shown that adipocytes
highly express CD1d, which presents lipid antigens to invariant natural killer T (iNKT) cells and
stimulates the activation of iNKT cells (5–7). Moreover, like other nucleated cells, adipocytes
express MHC class I molecules. However, there is no clear evidence that adipocytes interact directly
org November 2020 | Volume 11 | Article 593058126

https://www.frontiersin.org/articles/10.3389/fimmu.2020.593058/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:dengtuo@csu.edu.cn
https://doi.org/10.3389/fimmu.2020.593058
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2020.593058
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2020.593058&domain=pdf&date_stamp=2020-11-27


Song and Deng The Adipocyte and Adaptive Immunity
with CD8+ T cells through antigen:MHCI complex. In our recent
research, we observed that adipocytes express MHC class II
molecules and co-stimulatory molecules CD80/CD86, and that
their expression significantly increases in response to high fat
diet (HFD) challenges (8). Adipocytes can directly activate CD4+

T cells through antigen:MHCII complex in a contact-dependent
manner. Simultaneously, adipocytes secrete various cytokines
including leptin, resistin, TNF-a and IL-6 to regulate the
differentiation and function of T and B lymphocytes.

Adipocytes can regulate adaptive immunity, which is involved
with various metabolic diseases. Since there have been many
reports on the regulation of metabolic diseases through adaptive
immunity (9–11), we focus on how adipocytes regulate adaptive
immunity in this review. First, we introduce adipocytes as APCs
to participate in T cell-mediated adaptive immune response.
Next, we summarize various cytokines produced by adipocytes
that regulate the survival, activation and differentiation of B cells.
Adaptive immunity mediates the pathological processes of a
variety of chronic inflammatory diseases, autoimmune
syndromes and cancers. Thus, we discuss the role of adipocytes
in adaptive immunity in the context of inflammatory and
autoimmune diseases.
THE ROLE OF ADIPOCYTES IN T CELL-
MEDIATED ADAPTIVE IMMUNITY

The activation and differentiation of T cells require three signals:
antigen presentation, costimulation, and cytokine stimulation.
APCs are required for T cell activation. They can process and
present antigens to T cells in the form of antigen peptide:MHC
molecular complexes, which are recognized by TCR on T cells to
provide the first signal for T cell activation. Moreover, APCs
highly express co-stimulatory molecules and pair with the
corresponding receptor or ligand molecules on the surface of T
cells, constituting the second signal for T cell activation. After T
cells are fully activated, the further proliferation and
differentiation of T cells depends on a variety of cytokines,
including IL-2, IL-4, IL-6, IL-10, IL-12, and IFN-g. In this
section, we will describe how adipocytes act as APCs to
provide all three signals for T cells activation and differentiation.

Adipocyte-Mediated Antigen Presentation
Adipocytes express both MHC classes I and II molecules. MHCI
molecules are expressed in all nucleated cells and mediate CD8+

T cell activation, while MHCII molecules are restricted to
antigen-presenting cells (APCs) and induce CD4+ T cell
activation by antigen presentation. APCs are divided into
professional APCs and non-professional APCs. The former
includes dendritic cells (DC), monocytes/macrophages, and B
lymphocytes, and the latter comprises endothelial cells, epithelial
cells and fibroblasts (12). In our previous studies, we found that
adipocytes also express MHCII molecules, and that their levels
are significantly increased in adipocytes of HFD fed mice (8). In
contrast, MHCI-related genes in adipocytes remain unchanged
during obesity.
Frontiers in Immunology | www.frontiersin.org 227
Adipocyte MHCII begins to increase at 2 weeks of HFD, and
the expression of pro-inflammatory Th1 marker genes Tbx21
and Ifng in adipose tissue resident T cells (ART) increase at 2–3
weeks following HFD, suggesting that adipocyte MHCII may
mediate Th1 cell activation and trigger obesity-induced adipose
inflammation. In vitro adipocyte-T cell co-culture experiments
show that the activation of T cells by adipocytes is dependent on
direct contact between adipocytes and T cells and the MHCII
expression in adipocytes (8). Large adipocytes (diameter >25
mm) express higher levels of MHCII than small adipocytes
(diameter <25 mm) in both ND (normal diet)- and HFD-fed
mice. In obesity, large adipocytes are accumulated in adipose
tissues and they overexpress MHCII molecules. These
hypertrophic adipocytes can function as APCs to activate
CD4+ ART and instigate adipose tissue inflammation, which
could cause many obesity-related medical complications (13).
Adipocyte-specific MHCII deficient (aMHCII−/−) mice are
significantly more sensitive to insulin and glucose tolerant than
their wild type (WT) littermates when fed with HFD (14). In
addition, adipocytes of HFD-fed aMHCII−/− mice exhibit
reduced capacity to activate CD4+ T cells, as manifested by
attenuated secretion of IFN-g, a major Th1 cytokine (14).
Furthermore, adipocyte MHCII has an indirect effect on Tregs
in visceral adipose tissue (VAT). aMHCII−/− mice show
increased Treg abundance in VAT, compared with WT mice
under HFD. In vitro experiments show that IFN-g dose-
dependently inhibits Treg differentiation (14). Thus, in the
HFD-fed aMHCII-/- mouse model, the drop of IFN-g may
explain the increase of Tregs in VAT. Given that VAT Treg is
a negative regulator of adipose inflammation and insulin
resistance (15–17), the improved adipose inflammation and
insulin resistance in HFD-fed aMHCII−/− mice may result
from the increase of Tregs in VAT. Indeed, the preserved
insulin sensitivity of HFD-fed aMHCII−/− mice is attenuated
by ablation of Tregs in adipose tissue (14). These results indicate
that adipocyte MHCII can promote adipose inflammation and
insulin resistance. Consistently, adrenomedullin 2 improves
adipose insulin resistance by inhibiting the adipocyte MHCII
expression in the early stage of obesity (18). HFD-fed adipocyte
HIF-1a KO mice show decreased expression of MHCII genes,
and can protect themselves from obesity-induced adipose
inflammation (19). In summary, the adipocyte can function as
APCs to induce CD4+ T cell activation and polarization in
MHCII and antigen dependent pathway.

Current research on adipocyte MHCII antigen presentation
and co-stimulation focuses on obesity and type 2 diabetes (T2D).
Therefore, the metabolic diseases we have discussed in this
review are obesity and T2D. Since adipocyte-mediated antigen
presentation promotes adipose inflammation, which is strongly
associated with a variety of metabolic diseases, including
nonalcoholic fatty liver disease (NAFLD), atherosclerosis, heart
disease, etc., adipocyte-mediated antigen presentation may
contribute to these metabolic diseases indirectly.

Co-Stimulatory Molecule in Adipocyte
TCR recognition of antigen peptide/MHCII provides the
primary signal for CD4+ T cell activation, while the full
November 2020 | Volume 11 | Article 593058
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activation of CD4+ T cells requires the costimulation signal.
Costimulatory molecules on the surface of T cells and APCs bind
to each other in a receptor– ligand pairing manner.
Costimulatory molecules expressed by T cells interacts with its
ligands or receptors on the membrane of APCs, resulting in the
activation of these cells and thus triggering immune
response (20).

Recent studies have reported the role of T cell costimulators
in HFD-induced obesity (21), but the contribution of adipocytes
in T cell costimulation is still unclear. CD40 (22), CD80 (B7-1),
CD86 (B7-2) (8, 23) and HVEM (24, 25) are induced in
adipocytes of obese human or mice, and may costimulate
adipose resident T cells (ARTs) in obesity. However, studies
show that both CD40 knockout mice and CD80/CD86 double
knockout mice under HFD feeding exhibit exacerbated adipose
tissue inflammation and metabolic disorders. To understand
these unexpected results, investigators explored the
involvement of other factors that can also influence the
phenotype of these mice. After binding with CD40L, CD40
triggers the recruitment of adaptor proteins, the TNFR-
associated factors (TRAFs), to activate intracellular signaling
(26). The cytoplasmic region of CD40 contains a proximal
binding site for TRAF6 and a distal binding site for TRAF2/3/
5. Mice that are deficient in CD40-TRAF2/3/5 signaling in
MHCII+ cells display a similar phenotype as CD40−/− mice
under HFD, whereas mice with disrupted CD40-TRAF6
signaling in MHCII+ cells are protected against obesity-
induced metabolic dysfunction (27). CD40-TRAF2/3/5 and
CD40-TRAF6 signaling have opposite effects in obesity-related
metabolic disorders. This may explain the unexpected phenotype
of CD40−/− mice. In addition, CD80/CD86 double knockout
mice have congenital defects in the development of Tregs, which
may explain the aggravated adipose inflammation in these mice.
Indeed, using antibodies to block both CD80 and CD86 can
alleviate adipose inflammation, insulin resistance and fatty liver
of diet-induced obese mice (23, 28). Another costimulatory
receptor–ligand pair, HVEM-LIGHT, is also involved in the
ART activation of DIO mice. LIGHT is expressed in both
Frontiers in Immunology | www.frontiersin.org 328
activated and resting T cells in mice (29). LIGHT binds to
HVEM on adipocyte, and promotes the secretion of pro-
inflammatory cytokines and chemokines in adipocytes by
activating the NF-kB signaling pathway in human and mice
(30, 31), thereby inducing the recruitment of T cells and
macrophages in adipose tissue. Both HVEM genetical deletion
and treatment of HVEM blocking antibodies in HFD-fed mice
ameliorates obesity-induced adipose tissue inflammation and
metabolic deterioration (24, 32).

These studies have suggested that T cell costimulatory
molecules may be involved in the obesity-induced activation of
ART and the development of adipose tissue inflammation.
However, it is still uncertain whether adipocytes provide the T
cell costimulatory signal to activate ARTs during obesity, because
no studies have used adipocyte-specific costimulator knockout
mice to confirm the function of adipocytes in T cell
costimulation. Moreover, several costimulatory molecules have
been linked to obesity-induced adipose inflammation and insulin
resistance, but it is still unclear which costimulator plays the
central role. Further studies are warranted to address these
unanswered questions.

Adipokines That Regulate Activation
and Polarization of T Cell
A variety of cytokines secreted by adipocytes can regulate the
activation and differentiation of T cells and B cells, and
participate in various metabolic and non-metabolic diseases.
Since the topic of how adipokines contribute to metabolic
diseases has been extensively described in many reviews (33–
36), in this review, we focus on non-metabolic diseases.

Leptin
Leptin is basically a pro-inflammatory adipokine that directly or
indirectly regulates T cells proliferation and differentiation (Table
1). As early as 1998, Lord et al. found that leptin promotes the
proliferation of naïve and memory T cells and increases the
secretion of Th1 cytokines, but suppresses the production of Th2
cytokines (37). Subsequently, it has been reported that leptin
TABLE 1 | The effects of adipokines on T lymphocytes.

Adipokines Naïve CD4+ T Th1 Th2 Th17 Treg Tfh CD8+ T

Leptin Proliferation↑ Differentiation↑
Cytokines
secretion ↑

Differentiation↓
Cytokines
secretion ↓

Differentiation↑
Cytokines
secretion ↑

Differentiation↓ Differentiation↑
Cytokines secretion ↑

Activation↑

Adiponectin Proliferation↓
Apoptosis↑

Differentiation↑↓
Cytokines
secretion ↑↓

Differentiation↑
Cytokines
secretion ↑

Differentiation↑↓
Cytokines
secretion ↑↓

Differentiation↑ Activation↑ Development↑

IL-6 Proliferation↑
Apoptosis↓

Differentiation↓
Cytokines
secretion ↓

Differentiation↑
Cytokines
secretion ↑

Differentiation↑
Cytokines
secretion ↑

Differentiation↓ Differentiation↑ Differentiation↑
Activation↑

TNF-a Proliferation↑ Differentiation↑
Cytokines
secretion ↑
Migration↑

Differentiation↓
Cytokines
secretion ↓

Differentiation↑
Cytokines
secretion ↑
Migration↑

Differentiation↓ — Activation↑
Proliferation↑
Migration↑

Resistin Migration↑ — — — Differentiation↑ — —

Visfatin Activation↑ — — — — — —
Nov
ember 2020 | Volume 11 |
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constrains the activation and proliferation of Treg cells (38).
Mechanism studies have shown that leptin activates the mTOR
pathway, thereby exerting a positive effect on CD4+ CD25−

FOXP3− effector T cells (Teffs), but inhibiting Foxp3 expression
and the proliferation of Treg cells (39, 40). Leptin also promotes
Th17 responses by inducing the transcription of retinoid-related
orphan receptor gt (RORgt), the key transcription factor for Th17
differentiation (41). In addition, leptin has positive effects on the
generation, maturation and survival of thymic T cells by reducing
their apoptosis (42). Furthermore, leptin increases the secretion
of inflammatory cytokines (e.g. IL-6, IL-12 and TNF-a) as well as
the expression of chemokine ligands (e.g. CCL3, CCL4 and
CCL5) by activating the JAK2–STAT3 pathway in monocytes/
macrophages from human or mice (43, 44), thereby indirectly
promoting differentiation and adaptive immune response of
T cells.

Due to its strong effects on T cells, leptin participates in the
pathological processes of a variety of inflammatory and
auto immune diseases . In obes i ty- induced ad ipose
inflammation, leptin stimulates IFN-g secretion from ART,
which leads to an increase in pro-inflammatory Th1 cells and
a decrease in anti-inflammatory Tregs in adipose tissue (8).
Leptin gene expression in adipocytes is elevated within 1 week
of HFD, suggesting that leptin plays a role in initiating the
cascade of adipose inflammation. Moreover, because leptin can
promote the proliferation of autoreactive T cells and
differentiation of pro-inflammatory Th1 and Th17 cells in
human and mice, it has been reported to be involved in the
induction and progression of IBD (45, 46), multiple sclerosis
(47–49), rheumatoid arthritis (50, 51) and systemic lupus
erythematosus (41, 52)

Adiponectin
Adiponectin has dual effects on T cell function. Several studies
have shown that adiponectin is a negative regulator of T cell
activity. It has been reported that adiponectin inhibits the
proliferation and cytokine production of T cells, and promotes
their apoptosis (53). Recent data indicates that adiponectin
inhibits Th1 and Th17 differentiation through the upregulation
of SIRT1 and PPARg and inhibition of RORgt (54). It also
suppresses IL-17 production from gd-T cells (55). Therefore,
adiponectin ameliorates Th17 cell-mediated autoimmune
diseases, including experimental autoimmune encephalomyelitis
(EAE) (54) and psoriasiform skin inflammation (55). In a mouse
model of abortion, adiponectin increases Treg cell population via
enhancing Foxp3 expression, thereby improving the pregnancy
rate of this model (56). Furthermore, the immunomodulatory
effect of adiponectin on T cells is partially mediated by its ability
to suppress the allostimulatory capacity of dendritic cells (DCs)
(57). Adiponectin suppresses the expression of MHCII and co-
stimulators CD80 and CD86, and induces the expression of co-
inhibitor PD-L1 in DCs. Adiponectin-treated DCs show a
reduced capacity to promote CD4+ T cell proliferation and an
enhanced capacity to induce Treg expansion in DC-T cell
cocultures (57).

However, some studies showed opposite results that
adiponectin is a pro-inflammatory adipokine. In human
Frontiers in Immunology | www.frontiersin.org 429
polyclonally activated CD4+ T cells, adiponectin treatment
results in the increased secretion of IFN-g and IL-6,
phosphorylation of p38 MAPK and STAT4 and expression of
T-bet, which indicates a potential function of adiponectin
promoting Th1 differentiation (58). Moreover, adiponectin
aggravates collagen-induced arthritis (CIA) via enhancing
Th17 cells and T follicular helper (Tfh) cells response (59).
Adiponectin also reduces the apoptosis of lamina propria T
lymphocytes (LPL-T) in IBD patients by inducing expression of
anti-apoptotic proteins Bcl-xL and Bcl-2, leading to T cell-
mediated inflammation (46). Adiponectin also indirectly
promotes Th1 and Th17 polarization by activating DCs
through PLCg/JNK/NF-kB signaling pathway (60).

The reason for the discrepancy in effects of adiponectin on T
cells is unclear. Adiponectin circulating in plasma has three
major forms: trimer, hexamer, and high molecular weight
(HMW) multimer (61). Different oligomers activate different
intracellular signaling pathways, resulting in significantly
different effects (62). It is possible that different oligomers of
adiponectin were used in different studies, which results in
this discrepancy.

IL-6
IL-6 is a pro-inflammatory cytokine that is secreted by various
immune cells. Adipocytes also express IL-6. Although adipocytes
are not the main source of IL-6 in adipose tissue, IL-6 has been
considered as an adipokine (63). IL-6 has different effects on
different CD4+ T cell subsets. It was reported that IL-6 inhibits
Th1 differentiation by upregulating the expression of a
suppressor of cytokine signaling,(SOCS)-1, a potent inhibitor
of IFN-g signaling (64). IL-6 also inhibits TGF-b-induced Treg
cell’s differentiation (65, 66). However, IL-6 induces the
production of IL-4, resulting in increased Th2 polarization
(67). In addition, IL-6 is a crucial cytokine for lineage
commitment to Th17 cells. IL-6 promotes Th17 differentiation
by activating STAT3, which upregulates the expression of RORgt
and RORa (68, 69). Furthermore, IL-6 is a positive regulator of
Tfh cells (70), which is supported by the observation that the
early differentiation of Tfh cells is severely impaired in IL-6
deficient mice (71).

Although the regulatory effect of IL-6 on CD4+ T cells has
been extensively studied, the effect of IL-6 on CD8+ T cells is still
poorly understood. IL-6 may positively regulate CD8+ T cell
function. IL-6 was found to promote the generation of CD8+

cytotoxic T cells (72). It was reported that IL-6 induces the
differentiation of naïve CD8+ T cells into IL-21-producing CD8+

T cells, which improve IgG isotype switching in B cells during
influenza virus infection (73). This is a new function for IL-6 in
the prevention of viral infection. Furthermore, IL-6 promotes the
differentiation of IL-22-producing CD8+ T cells, a CD8+ T cell
subset with antitumor function (74).

Other Adipokines
In addition to the adipokines mentioned above, some other
secreting factors of adipocytes, including resistin, visfatin, and
TNF-a, also regulate T cell function. Resistin induces activation of
Src and PI3K in human CD4+ T lymphocytes and serves as a
November 2020 | Volume 11 | Article 593058
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chemokine for these cells (75). Moreover, resistin indirectly
enhances Treg expansion through the regulation of DCs, in
which interferon regulatory factor (IRF)-1 pathway is
suppressed by resistin (76). Visfatin is an adipokine that
upregulates the activation of T cells. It promotes the production
of IL-1b, IL-1Ra, IL-6, IL-10, and TNF-a and the expression of
costimulatory molecules CD80, CD40 and ICAM-1 (CD54) in
monocytes, thereby stimulating the activation of T cells (77). It is
worthy to note that although visfatin is expressed in adipose
tissue, its expression is higher in bone marrow, the liver and
muscles (78). Additionally, in the adipose tissue, visfatin is not
only expressed in adipocytes. Studies have found that visfatin is
mainly produced and released by macrophages in white adipose
tissues (79). Therefore, adipocytes may not be the major source of
visfatin expression. TNF-a is an important immunomodulatory
cytokine, which plays a critical role in regulating the proliferation,
differentiation, and apoptosis of T cells, the generation of memory
T cells, and maintenance of immune tolerance (80). It has been
reported that TNF-a is secreted by adipocytes and other immune
cells (81, 82). However, whether adipocytes produce TNF-a is
still controversial.
THE ROLE OF ADIPOCYTES IN B CELL-
MEDIATED ADAPTIVE IMMUNITY

Similar to T cell activation and differentiation, B cell activation
and differentiation also requires three signals. But unlike T cells
that recognize antigens presented by APCs, B cells recognize free
antigens through B cell receptor (BCR). B cells specifically
recognize antigens through BCR, generating the first signal for
B cell activation. B cells are per se professional APCs. B cells
internalize the antigen bound by BCR and process the antigen to
form an antigen peptide–MHCII complex, which is presented to
antigen-specific Th cells. After Th cells are activated, they express
high levels of co-stimulatory molecules and combine with
matched ligands or receptors on the surface of B cells, which
provides the second signal for B cell activation. Activated B cells
express multiple cytokine receptors, and proliferate and
differentiate into antibody-forming cells under the action of
Frontiers in Immunology | www.frontiersin.org 530
cytokines that are secreted by activated T cells or other cells.
For B cell activation, the role that adipocyte plays on the two key
signals, antigen recognition and costimulation has not yet been
reported, but some studies have reported that several adipokines
play a role in the development and differentiation of B cells. Here
we discuss the role that adipocytes play in regulating B cell-
mediated adaptive immune responses through secreted cytokines
(Table 2).

Leptin
In addition to regulating T lymphocytes mediated immune
responses, leptin plays an important role in the regulation of B
cell development and function. Deficiency of leptin signaling in
ob/ob and db/db mice leads to the decrease of B cells in bone
marrow and peripheral blood, while intraperitoneal injection of
leptin in ob/ob mice restores the number of bone marrow B cells
(83), suggesting that leptin plays a critical role in supporting B
cell development. Fasted mice, characterized by low serum leptin
levels, show decreased pro-B and immature B cells and increased
mature B cells in bone marrow (84). Leptin receptor is expressed
on B cells, suggesting a direct effect of leptin on B cells (85).
However, the fasting-induced atrophy of bone marrow B cells is
reversed by intracerebroventricular leptin injection, indicating
that leptin may indirectly regulate B cell development through
the central nervous system (86). In addition to its effects on the
regulation of B cell development, leptin suppresses apoptosis and
induces cell cycle entry of B cells by upregulating the expression
of Bcl-2 and Cyclin D1 (87). Moreover, leptin stimulates human
B cells to secrete proinflammatory (TNF-a and IL-6) and anti-
inflammatory (IL-10) cytokines, via activation of JAK2/STAT3
and p38MAPK/ERK1/2 signaling pathway (88). Interestingly,
leptin-induced production of TNF-a, IL-6 and IL-10 in B cells
from aged individuals are significantly higher than that in B cells
from young individuals (89). Furthermore, leptin promotes
immunosenescence of human B cells. Leptin treatment results
in declined immunoglobulin class switch and influenza vaccine-
specific IgG production in human B cells (90).

Adiponectin
Adiponectin has two receptors, ADIPOR1 and ADIPOR2. Both
are abundantly expressed on the surface of circulating B cells (91).
TABLE 2 | The effects of adipokines on B lymphocytes.

Adipokines Pro-B Pre-B Immature B Mature B Plasma B

Leptin Development↑ Development↑ Development↑ Development↓
Cytokines secretion↑

Antibody production↑

Adiponectin Development↓ Development↓ — Cytokines secretion↑ —

IL-6 — — — Differentiation↑
Proliferation↑

Antibody production↑

Visfatin — Colony formation↑ — Activation↑
Migration↑

—

BAFF — — — Survival↑
Maturation↑
Proliferation↑

Antibody production↑

Other soluble factors Development↓ Development↓ — — —
November 2020 | Volum
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However, the immunomodulatory effects of adiponectin on B
lymphocytes are not very clear. It has been reported that
adiponectin inhibits B lymphopoiesis in long-term bone marrow
cultures. This effect is highly dependent on the presence of both
stromal cells and early B lineage precursors in the cultures (92).
Adiponectin deficient mice treated with dextran sulfate sodium
(DSS) present more significant B cells infiltration in colons and
appear more severe colitis than WT littermates, indicating that
adiponectin may suppress B cell-mediated inflammatory response
in DSS-induced colitis (93). Moreover, adiponectin stimulates B
cells to secret a peptide, PEPITEM, which specifically inhibits the
migration of CD4+ and CD8+ memory T cells (94). Further studies
are guaranteed to address the detailed role of adiponectin in
regulating B lymphocytes function.

Other Adipokines
Leptin and adiponectin are exclusively expressed in adipocyte.
Some other adipokines that are secreted by both adipocytes and
other types of cells also have regulatory effects on B cells. These
adipokines include visfatin, B cell activation factor (BAFF), and
IL-6. Visfatin was previously called ‘pre-B cell colony-enhancing
factor (PBEF)’, since it enhances pre-B-cell colony formation in
the presence of both IL-7 and SCF (78). Visfatin is a potent
chemotactic factor for B cells and promotes B cell migration in
vitro cell culture (77). BAFF, also known as ‘B lymphocyte
stimulator (BlyS)’, promotes B cell proliferation, survival,
maturation and immunoglobulin secretion (95, 96). The
production of BAFF is upregulated in obese human adipocyte,
and it may activate B cells in adipose tissue during obesity (97).
IL-6 was originally named ‘B-cell stimulatory factor 2 (BSF-2)’.
This name reflects its function to induce differentiation of
activated B cells into antibody (Ab)-producing cells (98). IL-6
is abundantly secreted by adipocytes during obesity, and
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aggravates obesity-induced insulin resistance (99). In addition,
some unidentified soluble factors secreted by adipocytes inhibit B
lymphopoiesis (100, 101). These factors may mediate the decline
of B lymphopoiesis in aged and obese individuals, and both
conditions are characterized by increased fat accumulation in
bone marrow.
CONCLUSION AND FUTURE DIRECTIONS

Recently, the immunological function of adipocytes has received
increasing attention. Mounting evidence indicates that
adipocytes play an important role in adaptive immunity
(Figure 1). Adipocytes can serve as APCs to regulate T cell-
mediated adaptive immunity. The MHCII molecules are
expressed in adipocytes and their expressions are upregulated
during obesity, providing the first signal for CD4+ T cell
activation. Simultaneously, adipocytes of obese mice and
humans overexpress several costimulatory molecules, including
CD40, CD80 (B7-1), CD86 (B7-2) and HVEM. Those
constimulators are associated with obesity-induced adipose
inflammation and metabolic disorders. However, studies
exhibited conflicting results and did not provide convincing
data from adipocyte-specific knockout mouse models.
Therefore, it is too early to draw a conclusion that adipocytes
provide the key costimulatory signal for ART activation. In
addition, adipocytes secrete various cytokines, such as leptin,
adiponectin, IL-6, resistin, visfatin and TNF-a, which regulate
the proliferation and differentiation of T cells and are involved in
many chronic inflammatory and autoimmune diseases. In B cell-
mediated humoral immunity, adipocytes regulate B cell
development, proliferation, differentiation, activation and
antibody production through secreted adipokines.
FIGURE 1 | The role of adipocytes in adaptive immunity. Adipocytes express MHC class II molecules and several T cell costimulators to act as antigen-presenting
cells (APCs), and induce the activation of CD4+ T cells in visceral adipose tissue during obesity. In addition, adipocytes secrete various adipokines, including leptin,
adiponectin, IL-6, TNF-a, resistin, and visfatin, to regulate the proliferation and differentiation of T cells. In B cell-mediated humoral immunity, adipocytes modulate B
cell generation, development, aging, activation and antibody production mainly by secreting adipokines, including leptin, adiponectin, IL-6, visfatin, and BAFF.
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In the past few years, although great progress has been made
in understanding the mechanism and function of adipocytes in
adaptive immunity, there are still many imperative questions
remaining to be answered in this emerging field. Many studies
have implied the existence of specific antigens to activate T cells
in adipose tissue, but up until now, no any adipose antigen has
been reported. In addition, although many T cell costimulators
have been linked to obesity-induced adipose inflammation and
insulin resistance, the key co-stimulator(s) in obesity-induced
ART activation are not known. Identifying of antigen(s) which
are recognized by ART in obesity and the key co-stimulatory
signaling in ART activation may provide new targets for
specifically block obesity-induced adipose inflammation. We
found that obesity induces MHCII expression in adipocytes
and causes adipocytes to become APCs. But it is still unclear
whether all adipocytes or just a subset of adipocytes are
converted to APC in obesity. If the latter is true, further
studies are warranted to investigate the origin and features of
this special adipocyte subpopulation. Finally, compared with the
number of studies which concern adipocytes regulating the
function of T cells, there are far fewer studies on adipocytes
Frontiers in Immunology | www.frontiersin.org 732
regulating the function of B cells. Except for adipokines, we know
little about how adipocytes regulate the B cell-mediated adaptive
immune response. Future studies on the mechanisms by which
adipocytes regulate B cell function will help us better understand
the physiological and pathological functions of adipocytes in B
cell-mediated humoral immunity.
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Accumulating evidence reveals that adipose tissue is an immunologically active organ that
exerts multiple impacts on the regulation of systemic energy metabolism. Adipose tissue
immunity is modulated by the interactions between adipocytes and various immune cells.
Nevertheless, the underlying mechanisms that control inter-cellular interactions between
adipocytes and immune cells in adipose tissue have not been thoroughly elucidated.
Recently, it has been demonstrated that adipocytes utilize lipid metabolites as a key
mediator to initiate and mediate diverse adipose tissue immune responses. Adipocytes
present lipid antigens and secrete lipid metabolites to determine adipose immune tones.
In addition, the interactions between adipocytes and adipose immune cells are engaged in
the control of adipocyte fate and functions upon metabolic stimuli. In this review, we
discuss an integrated view of how adipocytes communicate with adipose immune cells
using lipid metabolites. Also, we briefly discuss the newly discovered roles of adipose
stem cells in the regulation of adipose tissue immunity.

Keywords: adipocytes, lipid metabolite, invariant natural killer cell, adipose tissue remodeling, adipose
tissue inflammation
Abbreviation: a-GC, Alpha-galactosylceramide; APC, Antigen presenting cell; ASC, Adipose stem cell; ATM, Adipose tissue
macrophage; CD1dAKO, Adipocyte-specific CD1d depletion; ChREBP, Carbohydrate response element binding protein; ER,
Endoplasmic reticulum; FALC, Fat-associated lymphoid cluster; FFA, Free fatty acid; GABA, Gamma-aminobutyric acid;
HFD, High-fat diet; HIV, Human immunodeficiency virus; IFN, Interferon; IKKb, IkB kinase; IL, Interleukin; ILC, Innate
lymphoid cell; iNKT, Invariant natural killer T; KD, Ketogenic diet; KO, Knock out; LD, Lipid droplet; MAOA, Monoamine
oxidase; NLRP3, NLR family pyrin domain containing 3; NO, Nitric oxide; PAHSA, Palmitic acid esters of hydroxy stearic
acid; PGE2, Prostaglandin E2; Plin, Perilipin; scRNA-seq, Single cell RNA-sequencing; SREBP1c, Sterol regulatory element-
binding protein 1c; SVC, Stromal vascular cell; sWAT, Subcutaneous white adipose tissue; TCR, T cell receptor; TNF, Tumor
necrosis factor; Treg, Regulatory T cell; VLDLR, Very-low-density-lipoprotein receptor; vWAT, Visceral white adipose tissue;
WAT, White adipose tissue.
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INTRODUCTION

Adipose tissue is a specific type of loose connective tissues
present in various anatomical locations. For energy
homeostasis and survival, adipose tissue contributes to
numerous physiological roles: it provides structural support
and protective padding for major organs, it serves as an
insulating layer that prevents cutaneous heat loss, it stores
extra energy source for longer periods of fasting, and it is a
dynamic endocrine system crucial in the regulation of energy
homeostasis (1). Among the various cell types residing in adipose
tissue, adipocytes are the major cell type that is specialized to
synthesize and store large globules of fat (2). When energy level is
low, adipocytes break down stored lipid metabolites into fatty
acids and glycerol and release them into circulation, which are
used for fuels in most organs. This function of adipocytes enables
adipose tissue to function as the major energy reservoir.
Moreover, adipocytes act as a key component of endocrine
activity through secreting a variety of signaling molecules such
as adipokines, lipokines, and exosomes (3). These adipocyte-
derived factors are involved in the maintenance of systemic
energy homeostasis through crosstalk with other tissues such
as muscle, liver, and brain (2).

Adipose tissue harbors diverse innate and adaptive immune
cells. Dynamic interactions between these innate and adaptive
immune cells are closely associated with alterations of adipose
tissue function and integrity upon metabolic changes (4–6). For
example, adipose tissue immunity shifts toward pro-
inflammatory state in response to chronic energy surplus such
as obesity, leading to dysregulation of adipose tissue homeostasis
(7–10). Among various adipose immune cells, adipose tissue
macrophages (ATMs) occupy about 50% and are largely
classified into pro-inflammatory M1-type and anti-
inflammatory M2-macrophages (11, 12). In obesity, M1-type
macrophages are abundantly accumulated and secrete pro-
inflammatory molecules such as tumor necrosis factor (TNF)-
a, nitric oxide (NO), and interleukin (IL)-6 (13–15). In addition,
neutrophil, Th1, Th17, CD8 T cells, and group 1 innate
lymphoid cell (ILC1) secrete pro-inflammatory cytokines
including interferon (IFN)-g, IL-6, and IL-17 (16, 17). These
pro-inflammatory molecules suppress insulin action in
adipocytes by inhibiting phosphorylation of insulin receptor
and insulin receptor substrate 1, which provokes insulin
resistance. On the other hand, there are numerous anti-
inflammatory immune cells that downregulate pro-
inflammatory responses, improving insulin sensitivity in
adipose tissue. Eosinophil, regulatory T cell (Treg), invariant
natural killer T (iNKT), and group 2 innate lymphoid cell (ILC2)
stimulate to polarize macrophages towards anti-inflammatory
M2-type macrophages through secretion of Th2 type cytokines,
including IL-4, IL-5, IL-10, and IL-13, attenuating adipose
inflammatory responses and improving insulin sensitivity (11).

Recently, emerging evidence indicates that adipocyte-derived
lipid metabolites would function as a crucial regulator of adipose
tissue immunity (18–21). In obese adipocytes, aberrant lipid
metabolism promotes lipid spillover, which activates NF-kB
pathways in ATMs and consequently induces TNF-a secretion
Frontiers in Immunology | www.frontiersin.org 236
(22). Also, dysregulation of lipokines and lipid antigens is
manifested in dysfunctional adipocytes, which has been linked
to changes in characteristics of adaptive immune cells in adipose
tissue. It has been recently shown that adipocyte-derived lipid
antigens could alter inter-cellular interactions between innate
and adaptive immune cells, followed by alterations of function
and fate of adipocytes (23). Despite the close association of lipid
metabolism in adipocytes with adipose tissue immunity has been
reported for over a decade, the molecular mediators and
mechanisms linking adipocyte-derived lipid metabolites to
adipose tissue immunity remain poorly understood. In
previous reviews, the importance of the crosstalk between
innate and adaptive immune cells in adipose tissue on energy
metabolism has been well addressed (1, 11, 12). Thus, in this
review, we cover the processes by which adipocytes communicate
with adipose immune cells using lipid metabolites. Furthermore,
we discuss the new concept that adipocytes cooperate with
adipose immune cells to protect adipose tissue integrity from
metabolic stresses. In addition, we briefly propose the novel roles
of adipocyte stem cells in the regulation of adipose
tissue immunity.
IMMUNOMODULATORY ROLES OF
ADIPOCYTES USING LIPID ANTIGENS

There are distinct types of immune cells that recognize lipid
antigens. These immune cells, such as iNKT cells and gd T cells,
rapidly respond to changes of lipid metabolism through sensing
lipid antigens loaded on antigen presenting cells (APCs). It has
been reported that iNKT cells and gd T cells are abundantly
present in adipose tissue and actively interact with adipocytes,
contributing to the regulation of systemic energy metabolism
(24–27). For example, in obesity, adipose iNKT cells are activated
by adipocyte-derived lipid antigens and modulate the interaction
between innate and adaptive immune cells (24, 28, 29).
Moreover, activation of iNKT cells by hypertrophic adipocyte-
derived lipid antigens stimulates adipocyte turnover in obesity,
contributing to adipose tissue remodeling (23). Similarly, gd T
cells regulate adipose tissue immune responses and adipocyte
functions (26, 27, 30). Given that gd T cells recognize CD1-
loaded lipid antigens, it has been suggested that adipocytes would
control gd T cell activity (31, 32). In this section, we discuss
detailed mechanisms by which adipocytes regulate adipose tissue
immune cells via lipid antigen presentation.

Lipid Antigen Presentation
In adipose tissue, there are several APCs such as dendritic cells,
macrophages, B cells, and adipocytes (24, 25, 33). It has been
demonstrated that adipocytes highly express MHC-I like protein,
CD1d, and present lipid antigens (24, 34). CD1d belongs to the
CD1 family with isoforms such as CD1a, CD1b, CD1c, and CD1e
(35). CD1d is a transmembrane protein with two alpha-helices
forming an antigen-presenting pocket above and a hydrophobic
pocket below (28). This structure encapsulates hydrophobic
portion of lipid antigens into the CD1d binding groove, and
January 2021 | Volume 11 | Article 598566
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the polar portion of the antigen is exposed outside APCs to be
recognized by T cell receptor (TCR) (28).

With an antigen-presenting molecule CD1d, adipocytes
express high levels of lipid antigen loading and presentation-
associated genes (28). There are two major pathways involved in
antigen loading and presentation. The first one is endoplasmic
reticulum (ER) and Golgi pathway, and the second one is
endosomal and lysosomal pathway. In ER and Golgi pathway,
the newly synthesized CD1d binds to b2-microglobulin in ER,
and lipid antigens are loaded onto CD1d in Golgi by chaperone
proteins, including microsomal triglyceride transfer protein (36,
37). Then, CD1d enters the transport step and fuses with the
membrane to be exposed to cell surface of APCs. In endosomal
and lysosomal pathway, CD1d is internalized in the form of
endosome from plasma membrane. Chaperone protein and lipid
transport protein replace low-affinity lipid antigens with high
affinity lipid antigens (36, 37).

Although the clue for lipid antigen source has been suggested
in several studies (38–41), the identity of endogenous lipid
antigens in adipocytes has not been clearly elucidated. In the
blood, circulating lipid metabolites are potentially subjected to
behave as lipid antigens through scavenger receptor and very-
low-density-lipoprotein receptor (VLDLR) (42). In VLDL-
associated apoprotein APOE-deficient mice, the number of
iNKT cells is altered (40). Also, fatty acid amide hydrolase
enhances the presentation of lipid antigens by facilitating
transport of serum lipids into APCs (41).

Anti-Inflammatory Roles of Adipocytes via
Lipid Antigen Presentation
The roles of CD1d in adipocytes have been investigated in
genetically or diet-induced obesity models. Studies using
adipocyte-specific CD1d knockout (CD1dAKO) mice have shown
that adipocytes are crucial for the regulation of adipose iNKT cell
activity (Figure 1A) (34, 43). In CD1dAKO mice, the number of
iNKT cells is decreased. Moreover, the levels of IL-4 secretion and
FasL expression are downregulated in iNKT cells of CD1dAKO

mice compared to wild type (WT) mice, leading to aggravation in
adipose tissue inflammation and insulin resistance (23, 34). The
interaction between adipocytes and iNKT cells has been also
examined in Ja18 knockout (KO) mice and CD1d KO mice in
which iNKT cells are deficient in whole body (24, 25). In the case
of the above animal models lacking iNKT cells, body weight gain
and adipocyte size are increased, and pro-inflammatory ATMs are
more accumulated in obesity. Stimulation of iNKT cell activity by
alpha-galactosylceramide (a-GC), a synthetic lipid antigen for
iNKT cell and supplementation of iNKT cells into obese mice
downregulate body weight gain and adipocyte size and upregulate
secretion of anti-inflammatory adipokines. These metabolic
changes are accompanied with restoration of insulin sensitivity
(23, 25).

One of the major regulatory mechanisms for adipose tissue
inflammation by adipose iNKT cell is through diverse cytokine
secretion. For instance, adipose iNKT cells secrete IL-4 and IL-10
which promote M2 macrophage polarization (44). In obese mice,
inhibition of IL-4/IL-10 signaling diminishes iNKT cell-
Frontiers in Immunology | www.frontiersin.org 337
dependent glucose homeostasis (25). Also, short-term HFD
feeding induces the expression of arginase 1, one of the M2
marker genes, in adipose tissue of WTmice, but not in CD1d KO
and IL-4 KO mice, indicating that adipose iNKT cells rapidly
respond to HFD and produce IL-4 to suppress inflammatory
responses via induction of M2 macrophages (45). Moreover, it
has been shown that IL-2 secreted by adipose iNKT cells is
involved in immunosuppressive function of Treg cells through
promoting IL-10 production of Treg cells in adipose tissue (29).
Upon short term HFD feeding, the number of adipose Treg cells
is elevated in WT mice, but not in CD1dAKO mice, underscoring
the crucial roles of adipocyte CD1d in the regulation of the anti-
inflammatory responses (33). Furthermore, it has been very
recently reported that IFNg produced by adipose iNKT cells
in lean adipose tissue can serve to limit the expansion of
ATMs by killing pro-inflammatory macrophages via NK cell
stimulation (46).

These findings propose that activity control of iNKT cells by
adipocytes and lipid antigens appears to be the key for adipose
tissue immune balance (Figure 1A). In contrast, Satoh et al. has
reported that adipose iNKT cells would exhibit pro-
inflammatory characteristics by secreting IFN-g because
CD1dAKO mice show adipose tissue inflammation and insulin
resistance in obesity (43). Although there is no clear answer to
explain opposite phenotypes in CD1dAKO mice above, it has been
suggested that these differences are probably due to different
types of control mice (CD1dflox/+ vs CD1dflox/flox) and differences
in high-fat diet (HFD) composition (tallow and safflower oil of
high oleic type vs lard) (33). Moreover, it has been shown that
adipose iNKT cells can be classified into several subpopulations
that reveal either pro-inflammatory responses or anti-
inflammatory responses (46), implying that characteristics of
adipose iNKT cells might be affected by multilateral relationships
between lipid antigen species and iNKT cell subtypes. Thus, it
seems that veiled traits of adipose iNKT cells could be further
uncovered when lipid antigens loaded on adipocytes and
subtypes of adipose iNKT cells are identified in future studies.

Adipocyte Turnover Control by Lipid
Antigen(s)
Yearly, 10% of human adipocytes are dead and replaced
with new adipocytes (47). Patients with cachexia, human
immunodeficiency virus (HIV) or lipodystrophy syndrome
show drastic loss of adipocytes (48–51). In obese mice, dead
adipocytes are frequently found in epididymal adipose tissue (23,
52). Although adipocyte death is associated with adipose tissue
inflammation in obesity, the causal factors that would induce
adipocyte death have not been fully elucidated. Recently, it has
been reported that, in hypertrophic adipocytes, the expression of
Fas (CD95) is upregulated and is positively correlated with the
degree of adipocyte death (Figure 1B) (23). Apoptotic pathway is
induced in Fas-positive cells when Fas is bound to FasL (53). In
obese adipose tissue, the portion of FasL-positive iNKT cells is
significantly elevated, but not in CD4 and CD8 T cells, indicating
that iNKT cells would be a major killer cell type to induce
hypertrophic adipocyte death in obesity (23). Through in vitro
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and in vivo experiments, it has been shown that hypertrophic
adipocytes with pro-inflammatory characteristics stimulate
iNKT cells by lipid antigen presentation via CD1d (23). Then,
the activated iNKT cells selectively kill hypertrophic and pro-
inflammatory adipocytes (23). iNKT cell-mediated hypertrophic
adipocyte death is consistently observed in both diet-induced
obese mice and genetically obese db/db mice (23). After iNKT
cell-mediated adipocyte death, adipocyte stem cells proliferate
and differentiate into new and small adipocytes exhibiting
elevated insulin sensitivity (Figure 1B) (23, 54). Together, it
has been suggested that, in obesity, activity control of iNKT cells
Frontiers in Immunology | www.frontiersin.org 438
by adipocytes is crucial for adipocyte turnover, contributing to
the improvement of insulin sensitivity.

Adipocyte Death and Adipose Tissue
Inflammation
Although adipocyte death and ATMs surrounding dead
adipocytes are frequently observed in obesity, the relationship
between adipocyte death and inflammation remains elusive.
Activation of iNKT cells by a-GC administration into HFD-
fed obese mice induces apoptosis of hypertrophic adipocytes,
accompanied by the increase in the portion of M2 macrophages
FIGURE 1 | Immunomodulatory Roles of Adipocytes using Lipid Antigens. Adipocytes modulate activities of adipose immune cells via lipid antigen presentation.
iNKT cells and gd T cells are activated by lipid antigens and involve in the regulation of adipose tissue immunity and adipocyte functions. (A) In obesity, adipose iNKT
cells activated by adipocyte-derived lipid antigens secret large amounts of anti-inflammatory cytokines such as IL-2, IL-4, IL-10, and IL-13. These cytokines stimulate
Treg cells and polarize monocytes into anti-inflammatory M2 macrophages, thereby ameliorating pro-inflammatory responses in obese adipose tissue. (B) Adipose
iNKT cells mediate hypertrophic and pro-inflammatory adipocyte death in obesity. Long-term HFD (over 8 weeks) upregulates CD95L (FasL) and CD95 (Fas) in
adipose iNKT cells and damaged adipocytes, respectively. Interaction between CD95L and CD95 selectively stimulates damaged adipocyte death. After
macrophage-mediated efferocytosis, adipose stem cells proliferate and de novo adipogenesis is promoted, leading to the generation of insulin-sensitive new
adipocytes. (C) Given that gd T cells recognize CD1-loaded lipid antigens, it has been suggested that adipocytes might regulate gd T cell activity. gd T cells secrete
several cytokines such as IL-17 and TNF-a, controlling beige adipocyte formation and innervation. In addition, gd T cells activate stromal cells to secrete IL-33,
resulting in Treg cell recruitment.
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compared to that of M1 macrophages (23). Similarly, the number
of CD206 and CD301-positive M2-macrophages increases when
adipocyte-specific apoptosis is induced in FAT-ATTACK mice
(55). It seems that transient induction of apoptosis in adipocytes
would upregulate anti-inflammatory responses. On the other
hand, continuous adipocyte death resulted from chronic
inflammation or deficiency of key enzymes involved in
sphingolipid synthesis and mevalonate pathway often causes
systemic pro-inflammatory responses (56, 57). Furthermore, if
apoptotic cells are not rapidly and properly cleared by
efferocytosis, the membrane of apoptotic cells is ruptured and
transformed into necrosis-like cells, provoking inflammation.
Thus, it is likely that controversial results of adipocyte death on
adipose tissue inflammation would be due to several factors:
whether types of adipocyte death are apoptotic or necrotic,
whether adipocyte death is transient or persistent, and whether
debris of dead adipocytes are well cleared.

The clearance of apoptotic cells by professional and non-
professional phagocytes is essential for maintenance of tissue
homeostasis (58). In response to apoptotic cells, macrophages
suppress production of pro-inflammatory cytokines and enhance
secretion of molecules that dampen inflammation, and mediate
resolution and repair. Thus, defective efferocytosis leads to
inflammation and impaired resolution, underlying various
chronic inflammatory diseases such as atherosclerosis, obesity,
diabetes, cardiovascular diseases, and cancer (58). In obese mice,
macrophages appear to exhibit impaired efferocytosis, which is
associated with higher number of apoptotic cells and greater
expression of pro-inflammatory cytokines within wounds (59,
60). It has been proposed that defects of omega-3 fatty acids,
erythropoietin, and MER proto-oncogene tyrosine kinase would
suppress efferocytosis of dying/dead cells in atherosclerotic
lesions, skin, and heart in obesity (58). However, to date, most
studies have not focused on clearance of dead adipocytes,
although dead adipocytes and ATMs surrounding them are
abundantly observed in obesity. Future studies are required to
unravel complex relationships between adipocyte death,
efferocytosis, and adipose tissue inflammation.

gd T Cells: Potential Target Cells of
Adipocytes
gd T cell is one of the innate lymphocytes that are not restricted
to MHC molecules but recognize CD1 molecules. In adipose
tissue, gd T cells exhibit resident characteristics and occupy 5–
15% of total T cells (26). Upon HFD, the number of gd T cells
increases and they promote accumulation of pro-inflammatory
macrophages, worsening adipose tissue inflammation and
insulin resistance (30). In contrast, it has been shown that IL-
17A-producing gd T cells are involved in the maintenance of
adipose Treg population by promoting secretion of IL-33 from
stromal cells, contributing to suppression of adipose tissue
inflammation (Figure 1C) (26). In addition, under short term
ketogenic diet (KD) which contains high fat and low
carbohydrate, gd T cells suppress adipose tissue inflammation
and protect metabolic dysregulation through increasing
expression of genes related to tissue repair (61). Conversely,
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long-term KD drastically decrease the number of gd T cells and
aggravates obesity and glucose intolerance (61). Although it
remains to be clarified whether adipose gd T cells would
upregulate or downregulate inflammatory responses in adipose
tissue, it seems that gd T cell could play certain roles in
inflammatory responses in adipose tissue. In addition to the
regulation of adipose tissue inflammation, gd T cells modulate
adipocyte functions such as lipolysis and thermogenesis (26). In
brown and subcutaneous adipose tissue, gd T cells boost
thermogenic programs by stimulating IL-33 secretion in
stromal cells or promoting innervation in adipose tissue
(Figure 1C) (26, 27). Given that gd T cells could recognize
lipid antigens loaded on CD1 family, it is plausible to speculate
that adipocytes would function as potential APCs in
adipose tissue.
RELATIONSHIP BETWEEN LIPID
METABOLISM IN ADIPOCYTES AND
ADIPOSE TISSUE IMMUNITY

In adipose tissue, lipid metabolism is dynamically regulated upon
diverse physiological conditions such as fasting, HFD, and aging.
If lipid metabolism is dysregulated in adipocytes due to
environmental or genetic factors, adipose tissue immunity and
whole body energy metabolism are distorted. It has been
suggested that endogenous lipids such as free fatty acids
(FFAs) and eicosanoids modulate innate and adaptive immune
cells (62). Furthermore, HFD provokes uncontrolled basal
lipolysis and promotes unnecessary release of FFAs, causing
imbalanced immune responses in adipose tissue. Also, when
lipid storage capacity of adipocytes is defective by ablation of
lipid droplet (LD) binding proteins such as Perilipin1 (Plin1), the
levels of triglyceride and FFAs are elevated in adipose tissue and
serum, which is accompanied by adipose tissue inflammation
and insulin resistance (63). In this section, we cover how
adipocytes regulate adipose immune responses by controlling
lipid metabolism.

Regulation of Adipose Immune Responses
by Lipid Metabolites
Lipid metabolites are associated with numerous human diseases,
including atherosclerosis, rheumatoid arthritis, and other
inflammation-linked metabolic diseases (64). While it has been
considered for a long time that lipid metabolites are key energy
sources, the importance of lipid metabolites as signaling
molecules has been accumulated (65–67). Eicosanoids, certain
FFAs, and FFA derivatives are able to act as signaling molecules
in the regulation of immune responses (64). Among them,
several lipid metabolites are produced by adipocytes or adipose
tissues (19–21). Palmitoleate (C16:1n7), a long-chain
monounsaturated FA, is produced through de novo lipogenesis
in adipose tissue and downregulates pro-inflammatory gene
expressions in macrophages (68–71). Also, in adipocytes,
palmitic acid esters of hydroxy stearic acids (PAHSAs)
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synthesized by carbohydrate response element binding protein
(ChREBP) regulate adipose tissue inflammation. While
adipocyte-specific ChREBP knockout (ChREBPAKO) mice exhibit
decreased PAHSA levels and increased ATMs in adipose tissue,
PAHSAadministrationamelioratespro-inflammatory responses in
adipose tissue of ChREBPAKO mice (72).

In addition to de novo lipogenesis, certain lipid metabolites
which regulate adipose tissue inflammation are produced by
lipolysis. Recently, it has been shown that Plin1 inhibits futile
prostaglandin secretion to restrict pro-inflammatory responses
in adipose tissue (63). Plin1 deficiency in adipocytes impairs lipid
storage into LDs and stimulates lipolysis, causing adipose tissue
loss and unnecessary leakage of pro-inflammatory lipid
metabolites. In adipose tissue of Plin1 KO mice (Figure 2),
pro-inflammatory gene expression and M1-type ATM
accumulation are increased. Suppression of lipolysis by
knockdown or inhibition of lipases attenuates the effects of
Plin1-deficient adipocytes on monocyte migration. Moreover,
lipidomic analysis and administration of cyclooxygenase
Frontiers in Immunology | www.frontiersin.org 640
inhibitor indicate that enhanced adipose tissue inflammation is
mediated by excessive prostaglandin E2 (PGE2) secretion in
Plin1-deficient adipocytes (62). Thus, it has been proposed that
reducing futile lipolysis in adipocytes could downregulate
adipose tissue inflammation through the control of pro-
inflammatory lipid metabolite secretion (63).

Circulating FFAs are elevated in obesity and lipodystrophy,
which is closely related to metabolic disorders including type 2
diabetes and atherosclerosis. FFAs including palmitic acids are able
to activate inflammatory responses and also used to produce
ceramides. Ceramides are one of important metabolites whose
levels are elevated in obesity (73). Increased ceramides contributes
to adipose tissue inflammation and dysregulation of energy
homeostasis. In macrophages, ceramide initiates p38 MAPK and
JNK signaling pathways, polarizing ATMs towards M1
macrophages (74). Moreover, ceramides activate NLR family
pyrin domain containing 3 (NLRP3) inflammasome and promote
secretion of IL-1b and IL-18 in macrophages, aggravating adipose
tissue inflammation and glucose intolerance in obesity (75).
FIGURE 2 | Relationship between Lipodystrophy and Adipose Tissue Inflammation. In adipocytes, lipid metabolism is well balanced by several genes, including
Srebp1c, Atgl, Hsl, Cgi-58, Plin1, and Fsp27. However, lean subjects with lipodystrophy show dysregulated lipid metabolism with increased inflammation and insulin
resistance. Evidence suggests that dysregulation of lipid metabolism could influence adipose tissue inflammation in lipodystrophy. aP2-nuclear form of SREBP1c
transgenic (aP2-nSREBP1c Tg) mice and Caveolin1 KO mice show significantly reduced fat mass and display metabolic dysregulation including insulin resistance
and dyslipidemia. In addition, Plin1 deficiency induces partial fat loss, leakage of FFAs, ATM accumulation, dyslipidemia and systemic insulin resistance. In these
lipodystrophic models, several lipid metabolites such as FFA and PGE2 recruit monocytes into adipose tissue and worsen adipose tissue inflammation.
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Lipodystrophy and Adipose Tissue
Inflammation
Although lipodystrophy and adipose tissue expansion such
as obesity are somewhat opposite in terms of adipose
tissue mass, both pathological states often exhibit similar
metabolic dysregulation (76–78). Obesity-induced low-grade
and chronic inflammation is one of the major factors to
promote insulin resistance (12, 79). Also, severely lean patients
with lipodystrophy or cachexia reveal enhanced inflammation
with insulin resistance even though underlying mechanisms are
not fully uncovered. Nonetheless, it has been suggested that
immune responses in adipose tissue could be involved in the
development of insulin resistance in lipodystrophy (80, 81). Pro-
inflammatory gene expression and ATM accumulation are
promoted in adipose tissue of lipodystrophic animal models
even with less adipose tissue mass. For instance, aP2-nuclear
form of sterol regulatory element-binding protein 1c (SREBP1c)
transgenic (aP2-nSREBP1c Tg) mice and Caveolin1 KO mice
show significantly reduced fat mass and display metabolic
dysregulation including insulin resistance and dyslipidemia
(82–84). In these lipodystrophic models, increases in pro-
inflammatory cytokine and ATM accumulation are observed in
adipose tissue (Figure 2) (84). In addition, Plin1 deficiency
reveals partial fat loss, ATM accumulation, dyslipidemia and
systemic insulin resistance in both mouse and human (63, 85). In
aP2-nSREBP1c Tg mice, anti-inflammatory strategies such as
salicylate treatment or crossing with myeloid cell-specific IkB
kinase (IKKb) KOmice do not ameliorate insulin resistance (83).
On the other hand, in Plin1 KO mice, macrophage depletion by
clodronate treatment or inhibition of synthesis of pro-
inflammatory lipid metabolites in adipocytes mitigates systemic
insulin resistance (63). These results indicate that the precise
relationship between adipose tissue inflammation and systemic
energy homeostasis remains to be thoroughly elucidated under
lipodystrophic conditions.

Aging-Related Decrease in Lipolysis
Aging is a chronic and complex physiological process that
gradually deteriorates energy homeostasis (86). Dysfunction of
adipose tissue is one of the major factors to provoke aging-
related metabolic disorders including type 2 diabetes and
cardiovascular diseases. In the elderly, the processes of lipolysis
and lipid storage in adipose tissue are not properly controlled. As
a result, mobilization of FFAs is dysregulated, causing visceral
adiposity, lower exercise capacity, and cold intolerance. These
alterations of adipose tissue are closely associated with adipose
tissue immunity (87). Adipose macrophages and B cells are
involved in age-related reduction of lipolytic activity. In aged
mouse model, macrophages degrade catecholamine in a NLRP3
inflammasome-dependent manner in adipose tissue, driving
lipolysis resistance in adipocytes (88). When NLRP3
inflammasome is activated in aged macrophages, the
expression of monoamine oxidase (MAOA) which is known to
degrade noradrenaline is increased by growth differentiation
factor-3 (88). Moreover, aging stimulates expansion of adipose
B cells in fat-associated lymphoid clusters (FALC), which is
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mediated by activation of NLRP3 inflammasome and IL-1
signaling (89). It has been shown that inhibition of MAOA in
macrophages or depletion of B cell reverses the age-related
decline in lipolysis and restore age-associated adipose tissue
impairment (89). However, in human adipose tissue, the major
cell type expressing MAOA is different from mice. In human
adipose tissue, MAOA is mainly expressed in mature adipocytes,
unlike mice, contributing to aging-associated reduction in
lipolysis (90).
THE NOVEL ROLES OF ADIPOSE STEM
CELLS IN THE REGULATION OF ADIPOSE
TISSUE IMMUNITY

ASCs are composed of heterogeneous populations and each
population has unique characteristics. ASCs are largely divided
into adipogenic and non-adipogenic subtypes (91). Adipogenic
ASCs preferentially differentiate into adipocytes in response to
excess energy, which increases energy storage capacity of adipose
tissue. This process, called hyperplasia, mediates healthy adipose
tissue expansion and attenuates adipose tissue inflammation in
obesity. On the other hand, non-adipogenic ASCs secrete various
pro- and anti-inflammatory cytokines, lipokines, and collagens,
which could affect activity and recruitment of adipose immune
cells. In addition, it appears that non-adipogenic ASCs would be
key players for distinct immune responses between subcutaneous
white adipose tissue (sWAT) and visceral white adipose tissue
(vWAT). As the roles of adipogenic ASCs have been well
discussed in previous reviews (92, 93), we cover the novel roles
of non-adipogenic ASCs in the regulation of adipose
tissue immunity.

Novel Roles of ASCs in the Regulation of
Adipose Tissue Immunity
Adipose tissue is divided into adipocyte and stromal vascular cell
(SVC) fraction, and SVC fraction is further classified into ASCs
(CD45-CD31-), immune cell (CD45+), endothelial cell (CD31+),
and red blood cell. In the last several years, single cell RNA-
sequencing (scRNA-seq) has been used to reveal subpopulation
and characteristics of ASCs, providing compelling evidence that
ASCs would exhibit molecular heterogeneity and functional
diversity (94, 95). Interestingly, it has been proposed that ASCs
not only have adipogenic potential, but also exhibit anti-
adipogenic and immunomodulatory roles (96).

ASCs secrete pro-inflammatory cytokines (e.g., IL-6, IL-8, IL-
11, TNF-a), anti-inflammatory cytokines (e.g., TGF-b, IL-10),
growth factors, chemokines (Cxcl5), and lipokines (PGE2) (97).
Upon HFD, the number of fibro-inflammatory stem cells
( l in−Pdgfrb+Ly6c+ cel ls , l in−Pdgfra+Gp38+CD9+) is
upregulated and they highly express pro-inflammatory
cytokines (e.g., IL-6, Ccl2, Cxcl2, Cxcl10) and extracellular
matrix components (e.g . , Col1a1, Col3a1), causing
adipose tissue inflammation (Figure 3) (98–100). In human
and mou s e , CXCL1 + me s o t h e l i a l c e l l s ( CD45 -

CD31−Ter119−CD41−PDPN+/−) recruit neutrophils into the
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FALC via protein arginine deiminase 4 during peritonitis and
promote the aggregation of neutrophils, providing first layer of
immunological defense in vWAT (101). On the other hand,
another population of ASCs that suppress adipose tissue
inflammation has been also reported (102–104). Lin-

Pdgfra+Sca1+ population is a major source of IL-33 in vWAT
(Figure 3) (102). IL-33+ ASCs recruit anti-inflammatory Treg
and ILC2 cells in lean subjects, contributing to suppression of
adipose tissue inflammation (102).

It has been shown that ASCs would be the key cell type that
explains distinct inflammatory patterns between sWAT and
vWAT in obesity (Figure 3) (100, 103, 104). In obese mice,
vWAT shows the higher number of infiltrated macrophages and
crown-like structures, whereas sWAT is less prone to
inflammation. However, it is still unknown which factors make
the differences in inflammatory responses between the two major
fat depots in obesity. Very recently, it has been demonstrated that
SVCs of sWAT secrete certain factors to repress monocyte
recruitment, and that transplantation of ASCs derived from
sWAT into vWAT suppresses ATM infiltration in vWAT (103,
104). Interestingly, gamma-aminobutyric acid (GABA) signaling
is one of the most differentially expressed pathways between
Frontiers in Immunology | www.frontiersin.org 842
sWAT and vWAT in obesity. In HFD-induced obese mice,
GABA treatment inhibits ATM infiltration in sWAT-selective
manner, but not in vWAT (102). Thus, it has been proposed that
GABA signaling in ASCs might be one of the potential pathways
that could selectively suppresses inflammatory responses in
sWAT (103).

Given that ASCs have high proliferation rate, adipogenic
potential, and immunomodulatory roles, they have been
considered therapeutic target for recovery of adipose tissue
homeostasis. Recently developed scRNA-seq analysis dissects
ASCs into three or more subpopulations with their own
distinct functions. Proliferative and stem cell-like ASCs can be
used in tissue repair and regenerative processes. Adipogenic and
anti-adipogenic subpopulations of ASC can increase or decrease
buffering capacity of adipose tissue, respectively. In addition,
ASCs that exhibit immunomodulatory properties can be used to
control inflammatory responses of adipose tissues. Although
complicated networks between ASCs and adipose tissue
constituent cells need to be further investigated, recent
approaches equipped with high techs would provide new
therapeutic targets against adipose tissue dysfunction,
particularly, in obesity.
FIGURE 3 | Fat Depot-specific Roles of Adipocyte Stem Cells (ASCs) in the Regulation of Adipose Tissue Immunity. White adipose tissues consist of major two fat
depots; visceral adipose tissue and subcutaneous adipose tissue. These two fat depots exhibit several differences in inflammatory responses, fibrosis, and
adipogenesis. ASCs are major cell types comprising of adipose tissue, and they are largely divided into adipogenic and non-adipogenic clusters. In visceral adipose
tissue, there are fibro-inflammatory ASCs (lin−Pdgfrb+Ly6c+ cells or lin−Pdgfra+Gp38+CD9+). The number of fibro-inflammatory ASCs increases in obesity and they
secret pro-inflammatory cytokines (e.g., IL-6, Ccl2) and ECM components (e.g., Col1a1, Col3a1), promoting fibrosis. Moreover, it has been reported that IL-33
producing non-adipogenic ASCs (lin−Pdgfra+PPARg−) are involved in recruitment of Treg and ILC2 via IL-33 secretion, which suppresses inflammation in visceral
adipose tissue. Recently, it was reported that, in subcutaneous adipose tissue, ASCs (CD31−CD34+Sca1+) suppress monocyte infiltration, which is potentially
regulated by GABA signaling. However, the secretory factors that inhibit monocyte infiltration in subcutaneous adipose tissue have not been elucidated yet.
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LIMITATIONS AND FUTURE DIRECTIONS

There are several points to be solved in future studies. First, it
remains elusive which kinds of endogenous lipid antigens would
be presented by adipocyte CD1d in obesity. Even though a-GC
has been used as an activator for iNKT cells, a-GC is an
exogenous and quite potent activator, which might be different
from patho-physiologic conditions. Second, it is required to
identify antigen presenting cells and lipid antigens that
regulate the activity of gd T cells in adipose tissue. Third, the
mechanisms of ATM recruitment by lipid metabolites such as
PGE2 should be elucidated in future studies. Lastly, while recent
technical advances (e.g., scRNA-seq) have proposed novel
subpopulations of adipocytes and discovered new relationships
between adipocyte subpopulations and immune cells, it remains
to be validated with proper in vivomodels (105–108). Also, there
are still huge technical obstacles in the analysis of lipid profiles
from each adipocyte subpopulations as well as immune cells.
CONCLUSION

Lipids are key energy sources and primary building blocks for
plasma membranes and intracellular organelles. Moreover, lipid
metabolites participate in numerous signal transduction and
regulate multiple cellular functions. Recently, it has been
suggested that lipid metabolites are crucial bioactive molecules
in immune system (18–20). Here, we have discussed the
immunomodulatory roles of lipid metabolites of adipocytes
upon metabolic stimuli. In response to altered metabolic
environments, adipocytes sensitively and dynamically control
lipid metabolism and present or secrete lipid metabolites to
Frontiers in Immunology | www.frontiersin.org 943
modulate characteristics of adipose immune cells. Thus, it is
plausible to speculate that adipocytes not only use lipid
metabolites to maintain their structures and functions, but also
actively utilize lipid metabolites as key messengers to
communicate with adipose immune cells. The interplay
between adipocytes and adipose immune cells leads to fine-
tuning adipose tissue immunity and adipose tissue remodeling,
which eventually contributes to maintenance of systemic energy
metabolism. Nonetheless, there are remaining issues to be solved
in future studies. For instance, the lipid antigen presented by
adipocytes and lipid metabolites secreted by adipocytes are not
fully identified. There have been technical difficulties such as
extraction of lipids, identification of specific lipid species, and
quantitation of the vast array of lipids. Thus, solving these issues
will enhance our insights about the mechanisms by which
adipocytes govern adipose tissue immunity, and further suggest
new therapeutic approaches on metabolic complications caused
by adipose tissue inflammation.
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Leptin is a critical mediator of the immune response to changes in overall nutrition. Leptin
is produced by adipocytes in proportion to adipose tissue mass and is therefore increased
in obesity. Despite having a well-described role in regulating systemic metabolism and
appetite, leptin displays pleiotropic actions, and it is now clear that leptin has a key role in
influencing immune cell function. Indeed, many immune cells have been shown to respond
to leptin directly via the leptin receptor, resulting in a largely pro-inflammatory phenotype.
Understanding the role of adipose-tissue derived mediators in inflammation is critical to
determining the pathophysiology of multiple obesity-associated diseases, such as type 2
diabetes, autoimmune disease, and infection. This review, therefore, focuses on the latest
data regarding the role of leptin in modulating inflammation.

Keywords: leptin, obesity, inflammation, adaptive immunity, adipose tissue
INTRODUCTION

Obesity is associated with a chronic, low-grade systemic inflammation that has been shown to
promote the development of multiple disorders of health including type 2 diabetes, autoimmunity,
nonalcoholic fatty liver disease, asthma, and cardiovascular disease (1, 2). This obesity-associated
inflammation is characterized by increased circulating inflammatory cytokines such as tumor
necrosis factor (TNF)and interleukin 6 (IL-6) as well as an increase in pro-inflammatory immune
cells, particularly macrophages and lymphocytes (3–9).

The etiology of obesity-associated inflammation is complex. While many tissues demonstrate
obesity-associated inflammation, adipose tissue is considered to be the central or key site of
inflammation, responsible for driving systemic inflammation and disease (10, 11). Adipose tissue is
altered in obesity, leading to increased adipocyte volume and lipid content. These alterations are
associated with changes in adipose tissue-resident immune cells, characterized by an increase in
immune cell number, particularly pro-inflammatory macrophages and lymphocytes (12–20).
Inflammatory immune cells found within adipose tissue in obesity in turn promote adipocyte
production of inflammatory molecules (21). Adipose tissue production of the pro-inflammatory
hormone leptin, and the role of leptin in mediating obesity-associated inflammatory disease, is the
subject of this review.

Leptin can be produced by multiple cells in the body, including immune cells, but is primarily
produced by adipocytes in proportion to adipocyte mass, such that increasing adiposity leads to
org January 2021 | Volume 11 | Article 622468147
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increased systemic concentrations of leptin (22, 23). Although
leptin is produced in a diurnal manner (24), it is not a fast-acting
signal or cytokine, but rather communicates stable nutritional
status to the body as a whole. Leptin has a well-defined role as a
metabolic mediator and communicator of nutritional status at
the level of the hypothalamus where leptin receptors are highly
expressed. Increased leptin signaling at the hypothalamus
regulates appetite and leads to decreased nutrient intake and
increased energy expenditure. Studies of leptin deficiency and
fasting have demonstrated that leptin signaling is also required
for normal reproductive hormone production, as well as thyroid
hormone. Therefore, leptin plays a critical role in controlling
energy homeostasis, metabolism, and neuroendocrine function.
These functions of leptin have been thoroughly reviewed
(25–27).

Over the last two decades, it has become apparent that leptin
also has a critical role as an immune modulator. This was initially
observed in individuals with rare mutations in leptin or the leptin
receptor, who are obese from lack of leptin signaling at the
hypothalamus, but were also found to have an increased risk of
intracellular infections secondary to immune cell deficiencies
(28). Leptin has subsequently been shown to act on several
different immune cell types and can affect both immune cell
development and function. Through that mechanism, increased
systemic leptin levels in diet-induced obesity directly promote
obesity-associated inflammation.

Leptin receptor is expressed by most cells of the immune
system and many immune cells have been shown to be leptin
responsive to varying degrees. In general, leptin receptor
expression is important for hematopoietic cell development,
immune cell proliferation and survival, and pro-inflammatory
function (29, 30). In this review, we will characterize the effects of
leptin on innate and adaptive immune cells, with a particular
focus on CD4+ T cells, which are known to be highly leptin
responsive, as summarized in Table 1. We will explore the
mechanisms by which leptin is proposed to act on these cells,
both through traditional signaling pathways and through altering
cellular metabolism, much of which has been discovered in the
mouse model. Finally, we will review the effects of leptin in
human studies and identify the clinical relevance of this
adipokine in the setting of both health and disease. Although
leptin may have a role as a nutritional regulator of immunity in
the setting of both under- and overnutrition, we will focus here
on the effects of leptin on the immune system in the context
of obesity.
ADAPTIVE IMMUNE CELLS

The effect of leptin on immune cells has been best studied in the
context of adaptive immunity, particularly its effects on CD4+ T
cells. Leptin has been shown to have a role in modulating T cell
development, as well as T cell function and metabolism.
Moreover, distinct functional CD4+ T cell subsets respond to
leptin in different ways that reflect their function. CD8+ T cell
and B cell responses to leptin have also been studied, but to a
lesser extent.
Frontiers in Immunology | www.frontiersin.org 248
T Cells
Leptin plays an important role in T cell development. Leptin
deficiency has been shown to result in thymic atrophy and
decreased circulating T cell numbers (31, 33, 34). Interestingly,
leptin receptor has been found to be expressed on double
negative, double positive and CD4 single positive thymocyte
subsets, but not on CD8 single positive thymocytes (32).
Moreover, leptin treatment rescued CD4+ T cell development
in leptin mutant (ob/ob) mice, but did not rescue CD8+ T cell
development (32). Together this suggests that leptin is required
for early T cell development and for later development of CD4+

T cells, but not CD8+ T cells.
CD4+ T cells express high levels of the long isoform of the

leptin receptor (Ob-Rb), which is significant because it is the only
isoform that can signal through the Janus kinase (JAK)-signal
transducer and activator of transcription (STAT) pathway (55),
as shown in Figure 1. Leptin receptor signaling in T cells has
been shown to promote survival, proliferation, cytokine
production, and differentiation. In vivo, leptin treatment of
wildtype (WT) mice was shown to inhibit steroid-induced
apoptosis of lymphocytes (59). In response to leptin treatment,
naïve CD4+ T cells, but not memory T cells, showed an increase
in proliferation in a mixed lymphocyte reaction (35). In an older
study of human cells, monocyte-depleted peripheral blood
mononuclear cells (PBMCs) stimulated with phytohemagglutinin
(PHA) and Concanavalin A (ConA) and treated with leptin had
TABLE 1 | Distinct effects of leptin across immune cell types.

Immune cell Leptin Effect

CD4+ T cells Required for T cell development in the thymus (31–34)
Increases proliferation of naïve T cells (35, 36)
Promotes Th1 cytokine production (35)
Promotes Th17 differentiation and cytokine production (34)
Promotes increased glycolytic metabolism (31, 34)

B cells Reduces apoptosis (37)
Promotes cell cycle entry (37)
Increases inflammatory cytokine production (38)
Reduces class switching and IgG production (38)

Macrophages Promotes bacterial clearance and phagocytosis (39, 40)
Monocytes Increases TLR2 expression (41)

Promotes inflammatory cytokine production (42)
Mast Cells Promotes mast cell phenotype that drives inflammatory M1-like

macrophage cell phenotype (43)
Dendritic
cells

Reduces apoptosis by increasing expression of Bcl-2 and Bcl-xL
(44)
Promotes DC maturation and function (45)
Increases inflammatory cytokine production (44)

Neutrophils Inhibits apoptosis (46)
Acts as chemoattractant (22, 47)
Increases oxidative species production (48)

Basophils Inhibits apoptosis (49, 50)
Acts as chemoattractant, promotes trafficking toward other
chemo attractants such as eotaxin (49)
Increases IL-4 and IL-13 production (49)

Eosinophils Inhibits apoptosis (49, 50)
Acts as chemoattractant, promotes trafficking toward other
chemo attractants such as eotaxin (51)

NK cells Brief exposure promotes increased cytotoxicity (52)
18-h exposure increases IFN-g and perforin production (52, 53)
72-h exposure inhibits IFN-g and cytotoxicity (52)

ILCs Promotes type-2 cytokine production (54)
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increased proliferation compared to untreated cells (60). More
recent studies have demonstrated that CD4+ T cells from leptin
receptor mutant (db/db) mice have reduced proliferation when
compared to WT CD4+ T cells, suggesting that leptin signaling on
CD4+ T cells is required for proliferation (31).

JAK-STAT signaling is downstream of many lymphocyte
receptors that promote the production of various cytokines.
Thus, as one would predict, leptin treatment of bulk, non-
differentiated T cells influenced cytokine production by these
cells. Leptin treatment of CD4+ T cells increased pro-
inflammatory cytokine production, namely T helper 1 (Th1)
cytokines interferon gamma (IFN-g)and IL-2, while decreasing
production of the T helper 2 (Th2) cytokine IL-4 (35). Moreover,
activated CD4+ T cells generated from T cell specific leptin
receptor conditional knockout mice were found to produce less
IFN-g than WT CD4+ T cells (31). Together, these data suggest
that leptin promotes pro-inflammatory cytokine production in
CD4+ T cells.

Leptin has also been shown to play a role in the differentiation
of T cells into functional subsets. Hypoleptinemia induced by
fasting has been shown to suppress the number of effector T cells,
but not regulatory T cells (Treg cells) in mice. In fact, the same
study found that while Treg proportions were increased in
Frontiers in Immunology | www.frontiersin.org 349
fasting, absolute numbers of Treg cells were unchanged,
suggesting that leptin promotes the differentiation of effector T
cells, but not Treg cells, and that any change in Treg cell
proportions were indirect (34). In contrast, CD4+ T cells
isolated from fasted hypoleptinemic mice had decreased
differentiation into T helper 17 (Th17) cells in vitro compared
to CD4+ T cells isolated from ad lib fed mice. When the fasted
mice were given leptin injections twice daily, Th17 differentiation
was restored, suggesting that leptin is critical for differentiation
into Th17 cells (34). In support of this, Th17 differentiation in
vitro was decreased in CD4+ T cells isolated frommice with T cell
specific knockout of leptin receptor compared to WT controls
(34). Furthermore, T cell specific leptin receptor knockout mice
had decreased frequency of Th17 cells and increased frequency
of Treg cells in the lamina propria (61).

The mechanism by which leptin promotes Th17
differentiation has been investigated. Leptin signaling promotes
transcription of RAR-related orphan receptor gamma (RORgt),
which is the critical transcription factor for Th17 fate. When
RORgt-deficient CD4+ T cells were retrovirally transfected with a
plasmid containing the Rorc gene, which encodes for RORgt,
leptin treatment was shown to increase transcription of RORgt in
these cells (62). This mechanism could also explain the inhibition
A B

FIGURE 1 | Leptin receptor isoforms and intracellular signaling. (A) Leptin receptor is composed of an extracellular domain, a transmembrane domain, and a
cytoplasmic domain. All variants of the leptin receptor include the extracellular domain. The extracellular domain is composed of several protein motifs: the N terminal
domain (NTD), two cytokine receptor homology (CRH) domains that make up the leptin binding site, an immunoglobulin-like domain (IGD), and two fibronectin type 3
(FN III) domains. The cytoplasmic domain of leptin receptor varies between isoforms. LRb, the long form receptor, includes two box domains and several tyrosine
residues important for leptin receptor signaling. The other leptin receptor variants are labeled LRa, LRc, LRd, LRf and they all have the complete extracellular binding
domain, but their intracellular tails differ; however, they all contain the two box domains. There is also a soluble form of leptin receptor in both humans and mice
called LRe. In mice, LRe is directly secreted, while in humans, LRe is generated by ectodomain shedding (metalloproteases cut the receptor off the surface).
(B) Leptin receptor isoforms are generated by alternative splicing or processing at the cell membrane. The long form of leptin receptor, also known as LRb, is the
only known receptor variant that is capable of signaling through the JAK-STAT pathway. LRb has a long intracellular tail that includes several tyrosine residues that
are phosphorylated for signal transduction by JAK2. LRb signaling primarily occurs through the JAK2/STAT3 pathway, with STAT3 translocating to the nucleus to
modify gene expression. LRb also signals through the PI3K/Akt pathway and the MAPK pathway. These pathways in immune cells have been shown to lead to
metabolic and functional changes, which could account for the pleiotropic effects of leptin on different immune cell types (56–58).
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of Treg differentiation by leptin, because Th17 and Treg cells
have an antagonistic developmental program, where expression
of the Th17 transcriptional program inhibits Treg development
and vice versa, so that leptin promotion of Th17 fate by
increasing RORgt transcription also directly inhibits Treg
differentiation (63, 64). Given the pro-inflammatory effect of
leptin on T cells, leptin is being investigated for use in cancer
treatment to enhance the tumor-fighting action of T cells (65).

Interestingly, Treg cells express high amounts of leptin
receptor, and have been shown to be capable of secreting
leptin (66, 67). However, Treg cells are decreased in diet-
induced obesity, which is consistent with the role of leptin in
inhibiting Treg cell proportions, given that leptin levels are
elevated in this setting (68). Treg cell proportions are also
specifically decreased in the adipose tissue in diet-induced
obesity, where leptin levels are expected to be highest (69). On
the other hand, leptin mutant ob/ob mice were shown to have
increased peripheral Foxp3+ CD4+ Treg cells compared to WT
mice, further supporting the role of leptin, and not obesity alone,
in decreasing Treg cell proportions (67). Leptin has also been
shown to inhibit Treg cell proliferation in primary human cells,
and blockade of leptin binding to Treg cells using anti-leptin
antibodies led to increased Treg cell proliferation (67).

B Cells
Leptin has been shown in both ob/ob mice and in fasting
hypoleptinemic mice to be critical for normal B cell
development in the bone marrow (70). Fasted mice and ob/ob
mice both exhibited reduced proportions of pre-B, pro-B and
immature B cells in bone marrow, which could be rescued by
either intraperitoneal or intracerebroventricular injections of
leptin (70). These findings demonstrate a possible central
(neurological) mechanism as well as a peripheral mechanism
by which leptin may promote B cell development (70).

Additionally, leptin has been shown to promote B cell
homeostasis by inhibiting apoptosis and promoting cell cycle
entry. B cells from db/db mice showed increased apoptosis
compared to B cells from WT mice (37). Moreover, leptin
treatment of WT B cells in vitro reduced apoptosis when B
cells were treated with anti-IgM, CD40L, or LPS (37). Bcl-2
expression was upregulated upon leptin treatment, while anti-
apoptotic members of the Bcl-2 family such as Bax, Bim and Bad
were decreased, suggesting a possible mechanism for leptin’s
effect on B cell survival (37). Leptin also promoted cell cycle entry
by increasing the transcription of genes that regulate cell cycle,
particularly in the presence of co-stimulation (37).

Human B cells stimulated with leptin in vitro were shown to
exhibit a more pro-inflammatory phenotype characterized by
increased expression of inflammatory cytokines IL-6 and TNF, as
well as toll-like receptor 4 (TLR4), a pattern recognition receptor
that recognizes lipopolysaccharide (LPS) found on gram-
negative bacteria (71). These B cells also showed reduced class
switching and IgG production in response to leptin, suggesting
that while they may be more inflammatory, they do not
necessarily have increased function (71). These findings are
supported by another study that showed human peripheral
blood B cells have increased IL-6, TNF, and IL-10 production
Frontiers in Immunology | www.frontiersin.org 450
when treated with leptin in vitro (72). This study further
demonstrated that leptin signaling in B cells activated JAK2,
STAT3, ERK1/2, and p38 MAPK pathways (72). Inhibiting these
signaling molecules decreased IL-6, TNF, and IL-10 production
following leptin treatment, demonstrating that signaling through
JAK2, STAT3, ERK1/2 and p38 MAPK is required to increase
cytokine production in response to leptin (72). Similar findings
were described in B cells from obese patients, suggesting that the
phenotype of inflammatory B cells in obesity may be mediated, at
least in part, by leptin signaling (38, 73).
INNATE IMMUNE CELLS

Leptin has been shown to have a generally pro-inflammatory
effect on innate immune cells, but with distinct effects on each
innate immune cell type, as discussed below.

Macrophages and Monocytes
Macrophages are key regulators of adipose tissue inflammation in
obesity and, therefore, the effects of leptin on macrophages is
highly relevant in the setting of diet-induced obesity. Bonemarrow
derived macrophages from leptin receptor mutant db/db mice
showed decreased phagocytosis and decreased inflammatory
cytokine production in response to LPS treatment in vitro (39).
In leptin mutant ob/ob mice, bone marrow derived macrophages
were shown to have decreased phagocytic ability in vitro, and ob/
ob mice failed to clear infections such as Escherichia Coli and
Klebsiella pneumonia in vivo (39, 74). Obese Zucker (fa/fa) rats
with a leptin receptor mutation, had reduced ability to clear the
fungal infection Candida albicans in vivo, as measured by colony-
forming units in lung, liver, spleen, heart, and kidney (75).
Furthermore, mice with macrophage-specific deletion of the
leptin receptor had impaired clearance of Streptococcus
pneumoniae in the lungs and spleen (40). The same macrophage
specific leptin receptor knockout mice also had elevated
pulmonary IL-13 and TNF compared to WT mice 48 h after
infection with S. pneumoniae (40). Complementary in vitro studies
of alveolar macrophages from macrophage specific leptin receptor
knockout mice likewise showed decreased macrophage killing and
phagocytosis (40). Thus, leptin acts specifically on macrophages
via the leptin receptor to promote both phagocytosis and cytokine
production (40).

Monocytes are innate immune cells that can differentiate into
tissue-specific macrophages and myeloid-derived dendritic cells.
Primary human monocytes from PBMCs and THP-1 monocytes,
a human monocyte cell line, have been shown to increase toll-
like receptor 2 (TLR2) expression in response to leptin treatment
in vitro (41). TLR2 is a pattern recognition receptor that allows
innate immune cells to recognize pathogens. By promoting TLR2
expression on monocytes, leptin is able to promote the innate
immune response to pathogens such as E. coli. In human studies,
leptin treatment of monocytes isolated from PBMCs increased
the production of type 1 cytokines, including IL-1b, IL-6, and
TNF, and resistin (42). Like in T cells, leptin appears to promote
an inflammatory phenotype in monocytes.
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Mast Cells
Another innate immune cell that has been shown to respond to
leptin is the mast cell. Mast cells are best known for their roles in
allergic response and protecting against helminth infection. Leptin
mutant ob/ob mice showed decreased percentage of mast cells in
inguinal adipose tissue, but did not show mast cell deficiencies in
other tissues (76). Several studies have proposed a role for mast cells
in polarization of macrophages by secretion of cytokines (77). For
example, IL-33 treatment of mast cells causes production of IL-6
and IL-13, which are cytokines known to promote alternatively
activated macrophages that suppresses T cell inflammation (77).
One group has investigated the role of leptin in mast cell function
and the subsequent effect on macrophages in the context of obesity
(43). In this study, mast cells derived from WT bone marrow
(BMMCs) were co-cultured with bone marrow-derived
macrophages (BMDMs) from leptin receptor mutant db/db mice,
in the presence or absence of leptin. Leptin treatment of the mast
cells led to increased macrophage production of IFN-g (43). In the
same study, leptin inhibited the anti-inflammatory M2-like
macrophage phenotype by decreasing arginase-1 and IL-10
expression (43). Mast cells from leptin mutant ob/ob mice, on the
other hand, promoted maturation of WT macrophages to an M2-
like anti-inflammatory phenotype when they were co-cultured in
vitro, suggesting that leptin production by mast cells may be
important in promoting a pro-inflammatory macrophage
phenotype (43). Mast cells are also known to play a role in
adipose tissue remodeling in obesity, promoting the inflammatory
phenotype of adipose tissue by secreting inflammatory molecules
such as TNF and pro-angiogenesis molecules such as chymase (78).

Dendritic Cells
Dendritic cells (DCs) function at the interface of the innate and
adaptive immune system by uptaking, processing, and presenting
antigens to T cells. DCs were shown to express leptin receptor,
both at the protein and mRNA level, which signals through
STAT3 upon stimulation (44). Furthermore, leptin was found to
have an anti-apoptotic effect on DCs in vitro by increasing
expression of the anti-apoptotic proteins Bcl-2 and Bcl-xL (44).
Mature DCs are more capable of stimulating an appropriate and
strong T cell response; at homeostasis, leptin promoted DC
maturation and function (45). Leptin treatment of DCs
increased production of IL-1b, IL-6, IL-12, TNF, and MIP-1a
(44). DCs generated from the bone marrow of leptin mutant ob/
ob mice (BMDCs) showed reduced expression of MHC-II,
CD80, CD86, and CD40 (45). MHC-II and CD80/86, in
particular, are critical for activating CD4+ T cells, and CD4+ T
cells stimulated in co-culture by BMDCs from ob/ob or db/db
mice produced less IFN-g and proliferated less than CD4+ T cells
stimulated by BMDCs from WT mice (45). Furthermore,
BMDCs from ob/ob mice produced less IL-6, IL-12, and TNF
after two days of maturation (45).

Neutrophils, Basophils, and Eosinophils
Neutrophils are some of the best studied innate immune cells
with regard to leptin response. Interestingly, neutrophils only
express the short form leptin receptor, which lacks JAK-STAT
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signaling (79), as shown in Figure 1. Leptin has been shown to
inhibit neutrophil apoptosis, suggesting that leptin acts as a
survival factor for neutrophils (46). Leptin also acts like a
chemoattractant for neutrophils in the wildtype setting (47). In
vitro, WT neutrophils from bone marrow (isolated by density
gradient) were shown to exhibit chemotaxis toward leptin,
whereas neutrophils from mice with a leptin receptor variant
(Q223R) show reduced chemotaxis toward leptin (22, 47). In
various infection models, leptin receptor deficiency (db/dbmice)
was shown to reduce neutrophil trafficking to the site of infection
(80, 81). In a model of LPS-induced lung injury, neutrophil
trafficking to the lungs was impaired in db/db mice, as
demonstrated by reduced numbers of neutrophils in the
airways (BAL), while there was increased neutrophilia in the
blood (81). In a model of Clostridium difficile colitis, leptin
receptor STAT3 mutant mice (S1138) showed decreased
neutrophil numbers in the lamina propria following infection
(80). Furthermore, leptin administration by oropharyngeal
aspiration was shown to promote neutrophil trafficking to the
lungs after E. coli infection as determined by neutrophil numbers
in bronchoalveolar lavage fluid (47). Overall, it appears that
leptin primarily acts as a chemoattractant for neutrophils,
particularly during infection in the lung. Polymorphonuclear
neutrophils (PMNs) isolated from human blood were shown to
increase their production of oxidative species after leptin
treatment in vitro, which the authors propose would promote
bacterial clearance (48). This data points to leptin promoting
neutrophil function as well as chemotaxis.

Basophils and eosinophils have also been shown to express
leptin receptor (49, 50). Leptin has been shown to be a survival
factor for both eosinophils and basophils (49, 50). Similar to
neutrophils, leptin has also been shown to act as a
chemoattractant for both basophils and eosinophils. Basophils
and eosinophils isolated from human blood migrated in a dose
dependent manner toward leptin in vitro in a transwell system or
similar experimental setup (49, 51, 82). Additionally, leptin
promoted basophil and eosinophil trafficking toward other
chemoattractants, such as eotaxin (49, 82). Specifically, human
basophils exposed to leptin demonstrated increased migration in
vitro toward eotaxin (49). Human eosinophils were pre-treated
in vitro with leptin for 1 h prior to assessing the migration of
eosinophils toward eotaxin; more leptin treated eosinophils
migrated toward eotaxin than untreated eosinophils (51).
Given that leptin promotes type 1 cytokine production in other
immune cells, leptin treatment of basophils had a slightly
counter-intuitive result in that basophils increased type 2
cytokine production, including IL-4 and IL-13 (49).

NK Cells and ILCs
At the interface between adaptive and innate immunity sit
natural killer (NK) cells and innate lymphoid cells (ILCs).
These cells are able to respond to pathogens with rapid
cytokine production and, in the case of NK cells, killing of
infected cells. NK cells and ILCs are part of a complex family
of lymphocytes that have phenotypic characteristics that mirror
CD4+ and CD8+ T cell families, and are currently under intense
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study. In the leptin receptor mutant db/dbmouse, NK percentage
and number were found to be decreased in spleen, liver, lung,
and blood (83). This indicates that leptin receptor is required for
normal NK cell development. When NK cells from db/db mice
were activated by poly I:C, fewer NK cells expressed CD69, an
early NK cell activation marker. This indicates that leptin
receptor is required for rapid activation of NK cells (83). The
nuances of NK cell response to leptin treatment appear to be
extremely dependent on dose and length of exposure. Brief
treatment (20 min) of human NK cells with leptin increased
NK cell cytotoxicity as measured by a chromium release assay
(52), and 18-h leptin treatment increased human NK cell IFN-g
and perforin production, as well as inflammatory markers, such
as TRAIL (52, 53). Long exposure (72 h) to leptin, however,
inhibited NK cell production of IFN-g, as measured by ELISA,
and cytotoxicity, as measured by chromium release assay (52).

Leptin was shown to promote ILC2 and Th2 cytokine
production in allergic airway disease, demonstrating that
increased leptin levels associated with obesity could be driving
the increased risk for allergy/asthma that is observed in obesity
(54). While a Th2-type phenotype is not considered pro-
inflammatory, this is another example of how leptin can
license immune cells to perform their functions, even in tissues
outside of adipose.
MECHANISMS OF LEPTIN EFFECTS ON
IMMUNE CELLS

The downstream effects of leptin receptor signaling have been
best studied in CD4+ T cells, where leptin signaling promotes a
measurable and direct effect on cellular metabolism.

Leptin Receptor Signaling
The mechanism of leptin’s actions on immune cells is complex,
in part because leptin receptor has several isoforms generated
though alternative splicing, which each have differing signaling
capacities (84), as shown in Figure 1. For example, T cells
express the long form of the leptin receptor, particularly after
activation, while neutrophils only express the short form, and
NK cells express both the short and long form receptors (85).
These isoforms differ primarily in the intracellular domain
responsible for downstream signaling. While both the short
and long receptor isoforms are capable of transmitting some
signals inside the cell, it is believed that only the long form has
complete signaling capabilities.

The long form of the receptor contains fully functional JAK2
binding sites, and upon leptin binding, the leptin receptor has
been shown to homodimerize, bind to, and phosphorylate JAK2
(84). STAT proteins are then recruited to the receptor complex
and phosphorylated, which leads to STAT dimerization,
translocation to the nucleus, and binding to promoter sites.
The system is highly regulated, as this signaling also leads to
transcription of SOCS3, which is a negative regulator of the JAK/
STAT signaling cascade. Leptin receptor can also signal through
the PI3K/Akt and MAPK pathways through IRS-1/2 and SHP-2
recruitment, respectively (86).
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Leptin Effects on Cellular Metabolism
It is now clear that leptin signaling through leptin receptor
promotes a metabolic change in CD4+ T cells. Since immune
cell metabolism and function are intimately related, recent work
has investigated if leptin-induced changes in CD4+ T cell
function are mediated by changes in T cell metabolism (87).
This was first explored in a fasting model of hypoleptinemia.
CD4+ T cells isolated from fasted mice and activated in vitro
showed decreased glucose uptake and decreased glycolytic rate
compared to CD4+ T cells isolated from ad lib fed control mice,
suggesting that leptin signaling promotes glycolytic metabolism
in CD4+ T cells (31). As glycolytic metabolism is strongly
associated with inflammatory function, this fits with the
previously discussed role of leptin in promoting inflammatory
cytokine production in CD4+ T cells (31, 34). CD4+ T cells
isolated from leptin receptor mutant db/db mice also showed
reduced glucose uptake, in part secondary to decreased glucose
transporter Glut1 expression, and decreased glycolytic rate
compared to WT CD4+ T cells when activated in vitro.
Additionally, CD4+ T cells from db/db mice were less
metabolically active with decreased extracellular acidification
rate (ECAR), a measure of lactate production downstream of
glycolysis, as well as decreased oxygen consumption rate, a
measure of mitochondrial oxidation (31). These studies
indicate that leptin receptor signaling in T cells leads to
changes in cellular metabolism.

The functional subsets of CD4+ T cells have distinct metabolic
characteristics, and leptin influences the metabolism of these subsets
in different ways. CD4+ T cells were isolated from WT mice that
were either fed ad lib, fasted for 48 h to promote hypoleptinemia, or
fasted while receiving twice daily intraperitoneal leptin injections,
and differentiated in vitro into Th17 or Treg cells. Th17 cells
generated from fasted mice showed decreased ECAR and oxygen
consumption rate (OCR), but this was rescued when fasted mice
received leptin injections (34). In contrast, Treg cell metabolism was
not impacted by fasting (34). To investigate the direct role of leptin
signaling on T cell metabolism, CD4+ T cells were isolated from T
cell specific leptin receptor conditional knockout mice or WT
controls and differentiated into Th17 or Treg cells in vitro (34).
Th17 cells from leptin receptor knockout mice, but not Treg cells,
showed decreased expression of key metabolic genes Glut1 and
hexokinase 2 (HK2), which is a rate-limiting enzyme of glycolysis
(34). Th17 cells from leptin receptor knockout mice also had
decreased glucose uptake and lactate production compared to
Th17 cells from WT controls, suggesting that leptin signaling
promotes appropriate Th17 cells glycolytic signaling to fuel Th17
cell function (34). Combined, these data suggest that leptin has a T
cell intrinsic effect on metabolism that promotes glycolytic and
oxidative metabolism necessary for proper T cell function.
ROLE OF LEPTIN IN IMMUNE-MEDIATED
DISEASE

Leptin has been implicated in a number of immune-mediated
diseases, many of which are also associated with obesity. These
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range from type 2 diabetes to autoimmune disease to infection.
In this section, we will explore the role that leptin plays in
mediating the immune response in obesity-associated disease.

Metabolic Disease: Type 2 Diabetes
The incidence of type 2 diabetes mellitus (T2DM) is increasing in
parallel with the prevalence of obesity. Obesity-associated
inflammation has been shown to drive insulin resistance,
leading to T2DM (56). Methods that eliminate the
inflammatory T cell or macrophage response in obesity
prevent insulin resistance and progression to T2DM. For
example, several immunocompromised mouse models (NOD
and SCID mice) have been found to be resistant to the
development of obesity and insulin resistance when fed high
fat diet (88). Elimination of CD11c+ macrophages in a mouse
model of obesity resulted in increased insulin sensitivity (89),
and a less specific macrophage deletion strategy using
chlodronate liposomes leading to apoptosis of phagocytic cells
also resulted in increased insulin sensitivity and improved
systemic glucose tolerance (90). T cell-deficient TCR-knockout
mice that lack CD4+ and CD8+ T cells had decreased obesity-
induced macrophage infiltration and decreased insulin resistance
on high fat diet compared to wildtype controls (91), and obese
mice that lack IFN-g had improved insulin sensitivity compared
to obese wildtype controls (92). Similarly, knockout of the Th1-
associated transcription factor T-bet improved insulin sensitivity
in high-fat diet fed mice (93). Based on the pro-inflammatory
effect of leptin on immune cells as described above, it is possible
that obesity-associated hyperleptinemia is responsible, at least in
part, for promoting the obesity-associated inflammation that
leads to insulin resistance and diabetes in obesity.

Autoimmunity
In addition to metabolic syndrome and T2DM, obesity
predisposes patients to select autoimmune and inflammatory
diseases such as multiple sclerosis (MS), rheumatoid arthritis,
and systemic lupus erythematosus (1, 2). Leptin deficiency has
been shown in mice to protect against experimental autoimmune
encephalomyelitis (EAE) (94), colitis (95), T cell mediated
hepatitis (96), and glomerulonephritis (97). One key example
is the well-studied autoimmune model EAE, a mouse model of
MS. Leptin has been shown to play a critical role in EAE
progression, and leptin mutant ob/ob mice are protected from
development of EAE (94). Furthermore, EAE disease scores were
reduced when anti-leptin antibodies were administered either
before or after the induction of EAE in mice (98).

Since inflammatory Th17 cells play an important role in the
pathogenesis of EAE, and leptin is known to promote Th17 cell
differentiation, the role of leptin signaling on T cells in EAE was
investigated. T cell specific leptin receptor knockout mice were
protected from EAE compared to WT mice, with lower disease
scores (61). Furthermore, the cytokine profile of mice treated
with anti-leptin antibodies was changed to a non-inflammatory
Th2/Treg cytokine profile (IL-4, IL-10) instead of the pro-
inflammatory Th1/Th17 cytokine profile typically seen in EAE
(98). Blocking leptin also decreased proliferation of antigen
specific T cells in this autoimmune model (98). These studies
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indicate a specific role for leptin in promoting inflammatory T
cel l proliferation and function that promotes EAE
disease progression.

In a model of fasting-induced hypoleptinemia, C57BL/6 mice
fasted for 48 h had lower disease scores than ad lib fed mice
following EAE induction, but this effect was reversed by
exogenous leptin treatment administered during the fasting
period (34). This demonstrates that leptin alone is sufficient to
license the development of autoimmunity in undernourished
mice that were otherwise protected against disease. In the same
study, Th17 cells from fasted mice undergoing EAE induction
had decreased expression of the key glycolytic protein HK2 as
well as decreased expression of the glycolysis-promoting
regulator HIF-1a, and both HK2 and HIF-1a levels were
normalized when fasted mice were treated with leptin. In
human studies, serum leptin levels were found to be increased
prior to onset of clinical symptoms in relapsing-remitting MS,
indicating that leptin may both contribute to the pathogenesis of
MS and be a useful marker of disease (99, 100).

Infection
The link between leptin and susceptibility to infection has been
studied in animal models. Leptin mutant ob/obmice were shown
to be more susceptible to death by LPS stimulation, and leptin
treatment was shown to partially reverse this effect (101, 102).
Interestingly, LPS and other inflammatory signals have been
shown to induce leptin production from adipose tissue (103–
106). It is possible that this increase in leptin can then stimulate
the inflammatory response necessary to fight the infection that
LPS is modeling.

Many studies have examined the effect of leptin treatment on
various bacterial models of infection in mice. Leptin universally
decreased bacterial load and improved survival or immune
response to infection with Mycobacterium tuberculosis, Klebsiella
pneumonia, and Pneumococcal pneumonia (107). These data
indicate that leptin is important for promoting the proper
immune response to clear bacterial infections.

Leptin receptor mutant db/db mice also had reduced survival
and impaired viral clearance when infected with influenza virus,
as well as reduced IFN-g production in the lungs following
infection (108). Interestingly, when lung epithelium or alveolar
macrophages, specifically, were deficient in leptin receptor, the
mice cleared virus better than global leptin receptor knock out
mice (108). These data indicate that in influenza infection, the
response to leptin of other immune cells, such as T cells, B cells
or NK cells, is key to clearing virus.
LEPTIN STUDIES IN HUMANS

Congenital leptin deficiency in humans, while rare, can provide
important information regarding the role of leptin. Genetic
mutations in both the leptin gene and the gene for leptin
receptor have been described, and these genetic variants cause
similar phenotypes in terms of immune response. Mutations in
leptin or the leptin receptor gene cause early onset extreme
obesity, hyperphagia, hypogonadism, and metabolic disorders
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(109). Furthermore, these patients develop repeat infections, and
humans with leptin deficiency are at increased risk of death due to
intracellular infections (28). Leptin replacement therapy has been
shown in humans to increase CD4+ T cell numbers and reverse
defects in CD4+ T cell proliferation and cytokine production (110).
These data clearly underscore the importance of leptin in normal
immune function and protection from infection. Consistent with
this, fasting reduces leptin levels and leads to reduced lymphocyte
counts in the blood (111).

On the other hand, obesity is also associated with increased
morbidity and mortality in response to select infections such as
bacterial cellulitis (112), influenza (113–117), and coronavirus
(118–124), although the role for leptin in this setting has not
been determined. While the etiology of obesity is complex, it is
possible that increased leptin signaling promotes excessive
inflammation and potentially cytokine storm.
CONCLUSION

Leptin is a pleiotropic adipokine with diverse effects on cell types
throughout the body. Its role in neuroendocrine signaling,
homeostasis, and metabolism has been well studied. More
recently, leptin has been identified as an important immune
modulator with a wide range of functions, many of which are
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pro-inflammatory. The complexity of leptin receptor signaling,
as well as the several variants of the receptor with unique
signaling capabilities likely allows for the diversity of effects
that are mediated on distinct immune cells, sometimes located
within the same tissues. Overall, it is clear that leptin plays a
critical role in obesity-associated inflammation by promoting
pro-inflammatory immune phenotypes. While leptin has not
been successful in treating obesity as a weight loss drug, it is
possible that targeting leptin or leptin signaling could be
therapeutic for autoimmune disease or the low-grade, chronic
inflammation associated with obesity and metabolic syndrome.
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Adipose tissue (AT) is a highly heterogeneous and dynamic organ that plays important

roles in regulating energy metabolism and insulin sensitivity. In addition to its classical

roles in nutrient sensing and energy storage/dissipation, AT secretes a large number

of bioactive molecules (termed adipokines) participating in immune responses and

metabolic regulation through their paracrine and/or endocrine actions. Adipose-derived

extracellular vesicles (ADEVs), including exosomes, microvesicles (MVs), and apoptotic

bodies, have recently emerged as a novel class of signal messengers, mediating

intercellular communications and inter-organ crosstalk. In AT, ADEVs derived from

adipocytes, immune cells, mesenchymal stem cells, endothelial cells are actively

involved in modulation of immune microenvironment, adipogenesis, browing of white

adipose tissue, adipokine release and tissue remodeling. Furthermore, ADEVs exert

their metabolic actions in distal organs (such as liver, skeletal muscle, pancreas and

brain) by sending genetic information (mainly in the form of microRNAs) to their target

cells for regulation of gene expression. Here, we provide an updated summary on the

nature and composition of ADEVs, and their pathophysiological functions in regulating

immune responses, whole-body insulin sensitivity and metabolism. Furthermore, we

highlight the latest clinical evidence supporting aberrant production and/or function

of ADEVs as a contributor to obesity-related chronic inflammation and metabolic

complications and discuss the opportunities and challenges in developing novel

therapies by targeting ADEVs.

Keywords: exosome, microRNA, adipose tissue macrophage, metabolic homeostasis, inflammation, cell-cell

communication

INTRODUCTION

Obesity, characterized by excessive accumulation of adipose tissue (fat), is a highly complex
multifaceted chronic disease and one of the major risk factors for a cluster of cardio-metabolic
diseases, including type 2 diabetes (T2D), dyslipidemia, non-alcoholic fatty liver disease (NAFLD),
hypertension, coronary heart disease and stroke (1). Furthermore, obesity-related complications
are the most commonly reported underlying conditions that predispose individuals with viral
infections, including the current coronavirus disease (COVID-19) to severe outcomes (2).
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Adipose tissue is a complex metabolic organ with
profound effects on the regulation of systemic metabolism
and maintenance of energy homeostasis. In addition to its
classical role in nutrient handling, including energy storage in
the form of triglycerides during feeding and releasing of free
fatty acids (FFAs) during fasting, adipose tissue also serves as an
active endocrine organ secreting a variety of adipokines, which
are bioactive peptides including cytokines, peptide hormones
and enzymes acting in an autocrine, paracrine or endocrine
manner to regulate energy metabolism, immune responses and
cardiovascular homeostasis. Adipokines have been shown to
modulate adipogenesis, adipocyte metabolism, and immune
cell infiltration locally within adipose tissue. Additionally, they
can exert their biological effects in distal organs to maintain
systemic energy homeostasis and insulin sensitivity (3, 4).
However, during obesity, adipose tissue undergoes unhealthy
expansion leading to numerous detrimental consequences,
including dysregulated secretion of adipokines, hypoxia, cell
death and altered immune microenvironment which give rise
to adipose inflammation (5). Unresolved chronic inflammation
in adipose tissue is a major contributor to systemic low-
grade inflammation and has been reported as a culprit in
obesity-related comorbidities. The first evidence for adipose
inflammation at the interface between obesity and metabolic
dysregulation was provided by studies demonstrating increased
production and secretion of the inflammatory cytokine tumor
necrosis factor alpha (TNFα) from adipose tissues in obese
rodents and human subjects (6, 7). Neutralization of TNFα
in obese rats counteracted diet-induced insulin resistance
and glucose intolerance (7). Subsequent studies reported that
selective inactivation of pro-inflammatory signaling pathways
in adipose tissue by inhibition of key signaling molecules,
including c-Jun N-terminal kinase (JNK) and nuclear factor-κB
(NF-κB) disrupted the link between obesity and metabolic
dysregulation (8–10).

In addition to the classical polypeptide adipokines and
cytokines, various types of cells in adipose tissue also produce
and release extracellular vesicles (EVs) including exosomes
with a diameter of 30–100 nm originated from cytoplasmic
multivesicular bodies that fuse with the plasma membrane
and microvesicles (MVs) that are 100–1000 nm in diameter
and released directly from the plasma membrane into the
extracellular space. Both types of such adipose-derived
extracellular vesicles (ADEVs) are similar to the original
cells in composition, transporting bioactive molecules,
including proteins, lipids, and nucleic acids to their target
cells within adipose tissue or in distant organs, therefore
mediating intercellular and interorgan crosstalk. A growing
body of evidence suggest that ADEVs play important
roles in the regulation of metabolic inflammation, energy
metabolism and insulin sensitivity (11–15). Altered abundance
or content of ADEVs may be causally linked to obesity-related
metabolic complications.

In this review, we summarize the nature and compositions
of ADEVs derived from different cellular origins in adipose
tissue and their roles as local and/or distal signaling mediators in
regulating metabolic homeostasis. Furthermore, we highlight the

latest evidence for the clinical association of aberrant production
and/or functions of ADEVs with various obesity-related
metabolic disorders, and discuss the therapeutic potentials of
targeting ADEVs for the treatment of obesity-related metabolic
complications and challenges in this field.

ADIPOSE TISSUE IN HEALTH AND
METABOLIC DISEASES

Heterogeneity of Adipose Tissue
Adipose tissue in mammals is categorized into two main types,
white adipose tissue (WAT) and brown adipose tissue (BAT).
WAT mainly consists of white adipocytes, which contain a single
large lipid droplet (referred to as unilocular lipid structure) and
few mitochondria, thus is a primary site for energy storage.
White adipocytes are highly responsive to hormones such as
insulin to take up and store nutrients in the form of triglycerides
after food ingestion. They also respond to biogenic amines such
as catecholamines to supply energy in the forms of FFAs and
glycerol during nutrient deprivation (5). WAT is distributed
throughout the body. Main depots include subcutaneous adipose
tissue (SAT), which is beneath the skin storing more than 80% of
total fat in the body and is mainly located in the abdominal and
gluteofemoral regions in humans or between the scapulae and in
the inguinal region spreading from the dorsolumbar to the gluteal
region in rodents, and visceral adipose tissue (VAT), which stores
5–20% of total body fat and is associated with internal organs
mainly in perigonadal, mesenteric, retroperitoneal, epicardial
and periadventitial regions in rodents and humans (16, 17). In
addition, there are also small adipose depots including epicardial
and intermuscular adipose tissue with specialized functions
related to cardiovascular system or skeletal muscle (17). While
the major function of SAT is to store excess energy in response
to energy surplus and is therefore considered as beneficial,
VAT is more closely linked to adverse metabolic profile and
inflammation in obese subjects (18, 19).

BAT mainly consists of brown adipocytes with multilocular
lipid droplets and a large number of highly oxidative, naturally
uncoupled mitochondria, and is important for the regulation
of body temperature through non-shivering thermogenesis.
The thermogenic capacity of brown adipocytes is primarily
attributed to the mitochondrial inner membrane protein,
uncoupling protein-1 (UCP1), which catalyzes a proton leak
across the inner mitochondrial membrane, thus uncouples
oxidative phosphorylation from ATP synthesis, and converts
chemical energy to heat (20, 21). Brown adipocytes are located
in the well-defined anatomical BAT depots such as interscapular,
peri-aortic, intercostal and mediastinal regions of rodents. In
addition to the classical brown adipocytes, beige adipocytes
also contribute to thermogenesis. Although beige adipocytes
share similar morphological characteristics and thermogenic
capacity with classical brown adipocytes, they arise from different
precursor cells (22, 23). In humans, although early studies
suggested that BAT is present only in neonates to prevent from
hypothermia resulted from high body surface area-to-mass ratio,
recent positron emission tomography coupled with computer
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tomography (PET/CT)-based approaches have identified the
existence of metabolically-active BAT in the supraclavicular,
ventral cervical and thoracic regions of adults (24–26). While the
predominant form of the interscapular BAT in human neonates
is classical brown adipocytes, BAT in human adults share more
molecular features with beige adipocytes (23). Furthermore, both
amount and activity of BAT in adults is negatively correlated
with body weight, T2D and cardiovascular events, but positively
correlated with energy expenditure (24, 25, 27).

Cellular Composition of Adipose Tissue
Although adipocytes are the dominant cell type in adipose
tissue, there are also non-adipocyte compartment named as
stromal vascular fraction (SVF), which include preadipocytes,
adipose tissue-derived stem cells (ADSCs), endothelial cells,
pericytes, and various immune cells. Preadipocytes can be
differentiated into mature adipocytes to regulate adipogenesis
and WAT expansion (28). ADSCs undergo self-renewal and are
multipotent, with the potential to differentiate into numerous
cell types, including adipogenic lineages, endothelial cells,
osteoblasts, chondrocytes and myocytes (29). Endothelial cells
and pericytes provide vasculature to adipose tissue by forming
capillaries (22, 30–33). Presence of immune cells was not realized
till discovery of adipose-resident macrophages responsible for
producing pro-inflammatory cytokines in obese mice and
humans in the early 2000s (34, 35). It is now known that adipose
tissue is home to both innate immune cells such as macrophages,
neutrophils, eosinophils and dendritic cells and adaptive immune
cells, including T cells and B cells, which collaboratively play
important roles in clearance of apoptotic cells, maintenance of
adipose tissue function and homeostasis (36).

Adipose Tissue Inflammation as a Culprit
in Obesity-Related Disorders
A growing body of evidence suggests that chronic inflammation
in adipose tissue, characterized by infiltration of pro-
inflammatory immune cells and aberrant production of
adipokines, is a major contributor to obesity-induced systemic
inflammation, insulin resistance and metabolic dysregulation
(37, 38). Obesity leads to an expansion of adipose tissue driven
by adipocyte hyperplasia and hypertrophy. The lipid-laden
adipocytes in obesity undergo necrosis and/or apoptosis, leading
to aberrant production of adipokines and altered cellular
composition in adipose tissue (39). In obesity, the hypertrophic
adipocytes exhibit impaired secretion of anti-inflammatory
adipokines such as adiponectin, but augmented secretion of
a large number of pro-inflammatory mediators, such as IL-6,
C-C motif chemokine ligand 2 (CCL2), IL-1β and resistin
that lead to a chronic inflammatory state linking obesity to its
cardiometabolic comorbidities including insulin resistance, T2D
and cardiovascular events (40).

During the progression of obesity, expansion of adipose
tissue also causes infiltration and activation of immune cells
involved in both innate and adaptive immunity, which in
turn trigger a series of inflammatory responses within the
tissue. Among adipose-resident immune cells, macrophages
are the most abundant cell type, accounting for 40–50%

of total cells of adipose tissue in obese humans (41). In
obese adipose tissues, macrophages form crown-like structures
(CLSs) surrounding dying or dead adipocytes. The number
of adipose tissue–resident macrophages (ATMs) is closely
associated with the magnitude of insulin resistance and
metabolic perturbance, whereas selective depletion of ATMs by
genetic or pharmacological approaches is sufficient to prevent
obesity-related insulin resistance and metabolic complications
in obese mice (34, 42). Macrophages are highly plastic
in nature, exhibiting different phenotypes ranging from the
classically activated, pro-inflammatory M1 to alternatively
activated, anti-inflammatory M2 in response to changing
environment (41). The lean adipose tissue is dominated
by M2 macrophages which plays an important role in
maintaining the tissue homeostasis through phagocytosis of
dead adipocytes, secretion of anti-inflammatory cytokines and
other regulatory factors for angiogenesis, adipogenesis, and
regulation of adaptive thermogenesis (43). However, obesity
causes a striking phenotypic change of ATMs from the anti-
inflammatory M2 toward the pro-inflammatory M1, the latter
of which produce pro-inflammatory cytokines to exacerbate
metabolic inflammation and insulin resistance (41, 43). However,
the precise mechanisms whereby adipocyte and various immune
cells crosstalk with each other to aggravate obesity-induced
adipose inflammation and metabolic dysregulation remain
poorly defined.

CELLULAR ORIGIN OF ADEVs AND THEIR
ROLES IN CELL-CELL COMMUNICATIONS

EVs are enclosed by a lipid bilayer and classified into three main
classes, including exosomes, MVs and apoptotic bodies (44).
Exosomes are a homogenous population of EVs at 30–100 nm
in diameter. Biogenesis of exosomes begins from endocytosis-
mediated invagination of the plasma membrane, resulting
in endocytotic vesicles, which are subsequently transported
to the early endosomes. Membranes of the endosomes are
budded into the lumen to form intraluminal vesicles (ILVs) or
multivesicular bodies (MVBs). MVBs can fuse with lysosomes
for degradation or with the plasma membrane to release the
internal vesicles into extracellular space as exosomes (45).
Exosomes show the same orientation with the plasma membrane
composed of a lipid bilayer with extracellular domains of
proteins exposed at the surface. The lipid bilayer of exosomes
encloses a droplet of cytoplasm containing various types of
molecules including nucleic acids, proteins and lipids (45).
Cells can also produce MVs with heterogenous populations
ranging from 100 to 1,000 nm in diameter. In contrast to
exosomes derived from the endolysosomal pathway, MVs are
formed by direct budding and shedding from the plasma
membrane (44). EVs released from cells undergoing apoptosis
are referred to as apoptotic bodies with a diameter of 1,000–5,000
nm (44).

Multiple types of cells in adipose tissue, including adipocytes,
macrophages, ADSCs and endothelial cells are known to secrete
EVs, which in turn, act in a paracrine or endocrine manner to
mediate intercellular and inter-organ crosstalk in modulation
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FIGURE 1 | ADEVs-mediated intercellular communication in adipose tissue. Adipocytes mediate the polarization and immunomodulatory responses of

adipose-resident macrophages (ATMs) in a paracrine manner via various vesicular components. ATMs reciprocally regulate adipocyte insulin sensitivity by releasing

miRNA-containing EVs to adipocytes. Adipocytes also delivery exosomal proteins to neighboring preadipocytes and adipocytes in both a paracrine and an autocrine

manner, respectively, to modulate lipogenesis. Adipose-derived stem cells (ADSCs) confer EV-mediated paracrine effects on both adipocytes and ATMs to regulate

adipocyte reprogramming and macrophage polarization, respectively. Endothelial cells in adipose tissue transfer EVs containing proteins and lipids capable of

modulating cellular signaling pathways to adipocytes. ACC, acetyl-CoA carboxylase; FASN, fatty acid synthase; G6PD, glucose-6-phosphate dehydrogenase; PPARγ,

peroxisome proliferator activated receptor gamma; RBP4, retinol binding protein 4; α-KG, α-ketoglutarate; SOCS1, suppressor of cytokine signaling 1; KLF4,

krüppel-like factor 4; STAT3, signal transducer and activator of transcription 3; NF-κB, nuclear factor kappa B; ARG1, arginase 1.

of adipose tissue and systemic homeostasis (Figure 1), as
detailed below.

Adipocytes
The presence of EVs in the culture medium of adipose tissue
explants has been demonstrated in both mouse and human
studies (46, 47). Further analysis of EVs isolated from ex
vivo human adipose tissue explant cultures has identified
both adiponectin-positive and adiponectin-negative subsets by
differential ultracentrifugation combined with immunoblotting
analysis (47). Since adiponectin is expressed predominantly in
adipocytes, the adiponectin-positive EVs were suggested to be
derived from adipocytes. In agreement with this notion, certain
portion of exosomes isolated from mouse serum has also been
demonstrated to contain adiponectin and low level of resistin
(48). However, as detection of adiponectin in EVs was achieved
by immunoblotting, whether adiponectin is located on the
surface or inside of adipocyte-derived EVs remains unknown.

The secretion of EVs from adipocytes has been further confirmed
by in-vitro cultures of rat primary adipocytes or adipocytes
differentiated from mouse 3T3-L1 pre-adipocytes and human
Simpson Golabi Behmel Syndrome (SGBS) pre-adipocytes (47,
49). In addition to adiponectin and resistin, there are several
other adipocyte-specific proteins have been identified as the
markers of adipocyte-derived EVs, including perilipin A and fatty
acid binding protein 4 (FABP4) (50, 51).

Although adipocyte-derived exosomes account for a
minority of circulating exosomes under normal condition (52),
production of ADEVs can vary under different conditions. For
example, the circulating level of lipid-filled vesicles derived
from adipocytes was increased by approximately 2-folds
in obese mice vs. lean animal (52). Similarly, the number
of exosomes isolated from VAT was elevated in human
patients with insulin resistance (47). Under chronic cold
exposure, the number of exosomes released from explants
isolated from both interscapular BAT and inguinal WAT
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of mice was significantly induced. In-vitro studies showed
that release of exosomes from beige and brown adipocytes
was increased by treatment with cAMP, which is the second
messenger induced by cold exposure or beta-adrenergic
stimulation (53).

Adipocyte-derived EVs confer in part the paracrine
interaction between adipocytes and macrophages. EVs
released from human adipocyte culture were able to induce
differentiation of monocytes into ATM-like macrophages in
vitro. Adiponectin-positive EVs from human adipose tissue
explants were more potent than the adiponectin-negative subset
in promoting monocyte differentiation into ATMs as they
induced the expression of mixed pro- and anti-inflammatory
markers, which are characteristic of ATMs, in monocytes in vitro
(47). Furthermore, adipocyte-derived EVs isolated from high-fat
diet (HFD)-fed mice drove polarization of macrophages toward
the pro-inflammatory M1 phenotypes in bone marrow-derived
macrophages (BMDMs) in vitro by miR-155, which inhibited
the expression of suppressor of cytokine signaling 1 (SOCS1),
leading to suppression of signal transducer and activator of
transcription 6 (STAT6) (54). In addition to adipose tissue,
adipocytes also exist in tumor microenvironment, including
melanoma. It is reported by recent studies that adipocyte-
secreted exosomes were taken up by tumor cells, resulting in
increased melanoma migration and invasion through fatty
acid oxidation. Such effects were amplified in obese animals
(55, 56).

Macrophages
In addition to adipocytes, ATMs also produce EVs to
modulate inflammatory responses and metabolic homeostasis.
In vitro, secretion of EVs was detected in the culture
medium of human THP-1-derived macrophages (14, 57). These
EVs were identified as exosomes with a diameter of 30–
100 nm by using transmission electron microscopy (14). The
macrophage-derived exosomes can be effectively internalized
into adipocytes. Exosomes from LPS-activated macrophages
promote the expression of inflammation-related genes in
adipocytes (57). Interestingly, when THP-1 monocytes-derived
macrophages are polarized to M1 or M2 phenotype by LPS
plus IFN-γ or IL-4, respectively, exosomes derived from M1
macrophages impair insulin signaling in human adipocytes,
while the M2 macrophage-derived exosomes enhance insulin
signaling and glucose uptake in adipocytes (14). Likewise, EVs
harvested from ATMs isolated from VAT of mice were also
found to be exosomes as they are 30–100 nm in size (13).
It is further evidenced by detection of exosomal membrane
markers in the EVs, including TSG101, syntenin 1, CD63,
and CD9. In line with the in-vitro-based findings, treatment
with ATM-derived exosomes from lean mice ameliorated diet-
induced glucose intolerance and insulin resistance in obese
mice, whereas administration of exosomes isolated from ATMs
of obese mice promoted glucose intolerance and insulin
resistance in lean recipients (13). These studies collectively
support a critical role of ATM-derived exosomes in the
regulation of neighboring adipocytes under physiological and
pathological conditions.

Adipose-Derived Stem Cells (ADSCs)
ADSCs have emerged as a potential tool for regenerative
therapy due to its multipotency in differentiating into different
types of cells (58). Additionally, ADSCs are also a critical
player in immune regulation, and have shown potential for
treatment of inflammatory and autoimmune diseases, including
colitis, autoimmune diabetes and arthritis, as well as to resolve
obesity-induced inflammation and metabolic dysregulation by
polarization of macrophages toward the anti-inflammatory M2
phenotypes (59–62). These beneficial effects may be attributed
at least in part to the paracrine effects of EVs produced from
ADSCs. Zhao et al. isolated ADSCs from mouse VAT and found
that ADSC-derived EVs were approximately 100 nm in diameter
and positive for the exosomal markers TGS101, CD9, CD63,
HSP90, and ALIX, thus of exosomal origin (15). It has been
shown in another study that human primary ADSCs also secreted
40–100 nm particles, which had the typical characteristics of
exosomes (63). However, Katsuda et al. reported that human
ADSC-derived exosomes had a peak size distribution of 150–
200 nm which was larger than that reported by others. However,
exosomal markers CD63 and HSP90 were present, suggesting
that the size range of exosomes may differ among different cell
types (64).

ADSC-derived exosomes isolated from patients with
and without cancer show distinct miRNA profiles. Selective
enrichment of certain miRNAs, including let-7-a-1, miR-21, and
miR-1260b has been identified in ADSC-derived exosomes from
cancer patients (65). Treatment of hepatocellular carcinoma cells
with ADSC-exosomes containing miR-122 showed increased
sensitivity to chemotherapies (66). Human ADSC-derived
exosomes promoted migration of breast cancer cell line (63).
ADSC-derived exosomes can be internalized into ATMs, and
treatment of obese mice with ADSC-derived exosomes isolated
from mouse VAT attenuated obesity and insulin resistance
by inducing polarization of macrophages toward the M2
phenotypes through transactivation of arginase-1 by exosome-
carried active STAT3, thus beiging of WAT (15). In addition to
the undifferentiated ADSCs, EVs isolated from human ADSCs
during white and beige adipogenic differentiation provided
biochemical cues such as miRNAs to induce the differentiation
of ADSCs into white and beige adipocytes, thereby promoting
adipogenesis and adipose tissue remodeling, respectively (67).

Endothelial Cells
A recent study also identified adipose tissue endothelial cells as
a source of ADEVs (68). These ADEVs are enriched with the
exosomal markers CD9, CD63, TSG101, and ALIX. Production
of EVs from adipose endothelial cells was increased under
the fasted condition, mainly through the action of glucagon.
As endothelial cells are located at the interface between the
circulation and adipose tissue extracellular space, endothelial
cell-derived ADEVs can take up proteins and lipids such as
mitochondrial components and ceramides from the bloodstream,
and subsequently release the components to the adjacent
adipocytes through internalization (68). Notably, the changes of
EV secretion from adipose endothelial cells in response to fasting
and refeeding was absent in dietary or genetic obese mouse
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models, implicating the possible involvement of dysregulated
adipose endothelial cell-derived EVs in the pathogenesis of
obesity and its related metabolic diseases.

MAJOR COMPONENTS OF ADEVs AND
THEIR ROLES IN IMMUNE RESPONSES
AND METABOLIC REGULATION

EVs exert their biological functions by carrying various types of
bioactive cargos including mRNAs, miRNAs, DNA, proteins and
lipids to their target cells through phagocytosis or endocytosis
(55, 69, 70), which in turn mediate cell-cell communications.
Additionally, since EVs have the same transmembrane proteins
on their surface as the cell of origin, they can also act as the
ligands directly binding and activating the surface receptor of
target cells to initiate cellular signaling (71). Likewise, ADEVs
modulate immune responses in local adipose tissues through
cell-cell communication, and systemic insulin sensitivity, glucose
and lipid metabolisms through their distal effects on other
major metabolic organs such as liver, skeletal muscle, and
brain (Figure 2). Such local and distal effects of ADEVs are
attributed to their unique vesicular composition, which has been
characterized in great details (Table 1).

miRNA, mRNA and lncRNA
The exosome-mediated cellular signaling is largely dependent on
their composition of miRNAs, which are small non-coding RNA
molecules that post-transcriptionally regulate gene expression

by binding to the 3
′
-untranscribed region of target mRNAs,

leading to mRNA degradation and repression of translation.
miRNAs are critically involved in adipogenesis and regulation
of adipose tissue functions (77). Recently, ADEVs have been
found as an important source of circulating miRNAs in both
mice and humans. It was evidenced by a significant reduction in
exosomal miRNAs in serum of adipocyte-specific Dicer knockout
(ADicerKO) mice, which have abrogated miRNA processing in
adipocytes (12). DICER is a key enzyme that cleaves pre-miRNAs
into mature miRNA, thus important for miRNA biogenesis (78).
The same study also examined the circulating exosomal miRNA
profiles in patients with congenital generalized lipodystrophy and
patients with HIV-associated lipodystrophy who have general
loss of adipose tissue and reduced expression of adipose Dicer
respectively, and found that dominant miRNAs in exosomes
were significantly downregulated in the serum of both patient
cohorts, suggesting that circulating miRNAs in humans also
originate mainly from ADEVs (12). Defects in ADEV-derived
miRNA production resulted in reduced WAT, whitening of
BAT, insulin resistance and dyslipidaemia in the ADicerKO
mice, demonstrating the importance of adipose tissue-specific
exosomal miRNAs in the physiological regulation of systemic
energy metabolism. Transplantation of BAT, but not WAT from
wild-type mice in ADicerKO mice improved glucose tolerance
and insulin resistance in the recipient mice which was associated
with reduced production and secretion of FGF21 from the
liver (12). Further investigation revealed that mRNA expression
of Fgf21 in hepatocytes was suppressed by ADEV-derived

miR-99b from BAT, suggesting that BAT-derived exosomal
miRNAs mediate the adipose-liver crosstalk to modulate glucose
homeostasis. However, both animal and clinical studies have
shown beneficial effects of FGF21 in improving insulin sensitivity
and alleviating hyperglycemia (79). Therefore, it is unlikely that
the metabolic benefits of BAT-derived ADEVs are attributed
to reduction in hepatic FGF21 expression. Further studies
are needed to investigate the detailed molecular mechanism
underlying the effects of BAT-derived exosomal miRNAs in the
regulation of systemic glucose homeostasis.

ADEVs derived from different adipose depots appear to
contain distinct miRNA composition. For example, miR-34a
is selectively enriched in the exosomes from VAT, but not
in SAT in both rodents and humans (11). Furthermore,
high fat diet feeding leads to a progressive increase of miR-
34a in the exosomes isolated from adipocytes in VAT in
mice. The adipocyte-derived miR-34a is transported to the
adjacent macrophages by exosomal delivery and drives the
polarization of macrophages toward the pro-inflammatory M1
phenotypes by suppression of transcription factor Krüppel-
like factor 4 (KLF4), which is important in maintenance of
M2 macrophage phenotypes. Conversely, adipocyte-selective
ablation of miR-34a protects mice against obesity-induced
adipose inflammation, systemic insulin resistance and NAFLD
(11). Selective enrichment of miR-34a in VAT may explain
why this adipose depot is more susceptible to inflammation
and is more harmful to cardiometabolic health than SAT. In
addition, miRNA-containing exosomes released from ATMs can
modulate systemic insulin resistance. Administration of obese
ATM-derived exosomes in lean mice impaired insulin sensitivity
and glucose tolerance (13, 80). Uptake of ATM-exosomes can
be detected in the liver, muscle and adipose tissues of mice.
In-vitro experiments showed that exosomes derived from obese
ATMs directly impaired insulin signaling in adipocytes, myocytes
and hepatocytes (80). These effects were possibly attributed
to obesity-induced changes in miRNA contents in the ATM-
exosomes, such as miR-155, which target the nuclear receptor
PPARγ (13). Likewise, the distal effects of the exosomal miR-
27a released from adipocytes of obese mice on induction of
insulin resistance in skeletal muscle were also attributed to
its repression of PPARγ (73). Adipocytes also regulate lipid
catabolism in skeletal muscle via exosomal miR-130b. miR-
130b has been shown to inhibit the expression of PPARγ

coactivator 1α (PGC1α), which is important in lipid oxidative
capacity and mitochondrial function (72). In addition to the
aforementioned roles of miR-155 on adipocytes, hepatocytes and
myocytes, exosomal miR-155 derived from ATMs of obese mice
also exerts profound regulation on pancreatic β cells, leading
to impaired insulin secretion and increased β cell proliferation
by repressing the expression of v-maf musculoaponeurotic
fibrosarcoma oncogene family protein B (MAFB) (74).

There is emerging evidence showing that environmental
changes can alter the composition of adipose-derived exosomal
miRNA, which in turn participates in adaptive responses to
metabolic stresses. In high-attitude population, hypoxia and
cold temperature causes downregulation of exosomal miR-
210/92a from WAT, thereby increasing the thermogenic activity

Frontiers in Immunology | www.frontiersin.org 6 February 2021 | Volume 12 | Article 60868063

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Huang and Xu Adipose Vesicles and Immunometabolism

FIGURE 2 | ADEVs-mediated interorgan crosstalk in metabolic regulation. Both white and brown adipose tissues secrete EVs containing various types of vesicular

components into the circulation. The ADEVs can act as endocrine factors affecting metabolic profiles in distal organs by sending bioactive vesicular molecules. In the

liver, exosomal miRNAs modulate glucose tolerance and insulin sensitivity through modulation of peroxisome proliferator activated receptor gamma (PPARγ) and

perhaps fibroblast growth factor 21 (FGF21). In skeletal muscle, miRNAs regulate insulin sensitivity and lipid oxidative capacity through PPARγ and PPARγ coactivator

1α (PGC1α), respectively. In pancreas, ADEV-derived miRNAs modulate β-cell mass and insulin secretion. In brain, ADEVs-derived long non-coding RNA

metastasis-associated lung adenocarcinoma transcript-1 (MALAT1) regulates mTOR signaling in hypothalamic pro-opiomelanocortin (POMC) neurons to control

appetite and body weight. In the bloodstream, exosomal proteins and lipids affect the differentiation and immunomodulatory responses of monocytes. RBP4, retinol

binding protein 4; WAT, white adipose tissue; BAT, brown adipose tissue; MAFB, v-maf musculoaponeurotic fibrosarcoma oncogene family protein B.

of BAT possibly by upregulation of FGFR1 (81). ADEVs may
participate in the regulation of the inflammasome activation. EVs
derived from both ADSCs and epidural fat-mesenchymal stem
cells inhibit Nod-like receptor pyrin domain-containing three
(NLRP3) inflammasome activation (82, 83). MiR-223, possibly of
ADEV origin, is reduced in blood from patients with T2D and
obesity (84). This reduction in miR-223 is believed to contribute
to the increased adipose tissue inflammation in obesity as miR-
223 can inhibit inflammation by targeting NLRP3, which is
a key component of the inflammasome (85). However, it is
currently unclear how adipose tissues sense the environmental
and nutritional changes to alter the vesicular composition of
miRNAs under different pathophysiological conditions.

In addition to miRNAs, mRNAs have been found to be
present in EVs. Valadi and colleagues provided the first evidence
demonstrating that EVs secreted from mast cells contained
substantial amount of mRNAs, which were functional as they can

be transferred to other cells and translated into new proteins in
the recipient cells (70). Subsequent analysis of EVs derived from
adipocytes differentiated from mouse 3T3-L1 cell line revealed
that ADEVs also contained mRNAs encoding genes involved
in metabolic and inflammatory processes (86). In contrast,
exosomal mRNAs were not detected in VAT or SAT from either
lean or obese human subjects (87). The discrepancy may be
resulted from the difference in cellular sources of exosomes and
possible difference inmiRNA species that mightmediate intrinsic
degradation of mRNAs in ADEVs from human subjects.

Long non-coding RNAs (lncRNAs) have been emerged as
critical regulators to control the development and functions of
various metabolic tissues. For example, brown adipose tissue-
specific lncRNA 1 (lnc-BATE1) was induced during brown
adipocyte differentiation and enriched in BAT compared toWAT
in mice. siRNA-mediated knockdown of lnc-BATE1 impaired
differentiation of brown adipocytes in vitro (88). Liver-specific
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TABLE 1 | Summary of major ADEV cargos and their functions in immune responses and metabolic regulation.

Cargo Donor Recipient Molecular Target Functions References

miRNAs

miR-99b Adipocytes Hepatocytes FGF21 Glucose intolerance ↓ (12)

miR-155 Adipocytes Macrophages SOCS1 M1 polarization of macrophages ↑,

adipocyte insulin signaling ↓

(54)

miR-34a Adipocytes ATMs KLF4 M2 polarization of macrophages ↓, adipose

inflammation ↑

(11)

miR-130b Adipocytes Myocytes PGC1α Lipid oxidation ↓ (72)

miR-27a Adipocytes Myocytes PPARγ Insulin resistance ↑ (73)

miR-155 ATMs Adipocytes, hepatocytes,

myocytes,

β cells

PPARγ MAFB Insulin resistance ↑

β cells proliferation ↑, glucose-stimulated

insulin secretion ↓

(13, 74)

Proteins

ACC, FASN, G6PD Adipocytes Adipocytes, preadipocytes De novo lipogenesis Adipogenesis and lipogenesis ↑ (75)

RBP4 Adipocytes Macrophages TLR4 signaling Macrophage activation ↑, adipose

inflammation ↑

(46)

STAT3 ADSCs ATMs Arginase-1 M2 polarization of macrophages ↑, adipose

inflammation ↓, beiging of WAT ↑

(15)

Mitochondrial

components

Adipose endothelial

cells

Adipocytes Mitochondrial respiratory

chain, lipid metabolism

Respond to changes in systemic nutrient

status

(68)

Lipids and others

Neutral lipids Adipocytes Monocytes, ATMs Lysosomal catabolism Lipid release, monocyte differentiation to

ATM

(52)

Ceramides Adipose endothelial

cells

Adipocytes Stress-related signaling

pathways

Involved in pathological signaling in T2D (68)

α-KG Adipocytes Macrophages STAT3/NF-κB signaling M2 polarization of macrophages ↑ (76)

FGF21, fibroblast growth factor 21; SOCS1, suppressor of cytokine signaling 1; ATMs, adipose tissue-resident macrophages; KLF4, krüppel-like factor 4; PPARγ, peroxisome proliferator

activated receptor gamma; PGC1α, PPARγ coactivator 1α; MAFB, v-maf musculoaponeurotic fibrosarcoma oncogene family protein B; ACC, acetyl-CoA carboxylase; FASN, fatty acid

synthase; G6PD, glucose-6-phosphate dehydrogenase; RBP4, retinol binding protein 4; TLR4, toll-like receptor 4; STAT3, signal transducer and activator of transcription 3; ADSCs,

adipose-derived stem cells; WAT, white adipose tissue; T2D, type 2 diabetes; α-KG, α-ketoglutarate; NF-κB, nuclear factor kappa B.

triglyceride regulator lncRNA (lnc-LSTR) was identified as an
important regulator of hepatic lipid metabolism. Knockdown of
lnc-LSTR in mice lowered serum triglyceride levels by induction
of apolipoprotein C2 (ApoC2), which promotes lipoprotein
lipase-mediated hydrolysis of triglyceride-rich lipoproteins (89).
Recently, it has been reported that lncRNAs are transferred by
ADEVs to mediate the interconnection between adipose tissue
and the central nervous system. In particular, adipocyte-derived
exosomal metastasis-associated lung adenocarcinoma transcript-
1 lncRNA (lnc-MALAT1), which is elevated in obese mice,
has been shown to target hypothalamic pro-opiomelanocortin
(POMC) neurons to upregulatemTOR and thereby downregulate
POMC expression, resulting in increased appetite and weight
gain in lean mice (90).

Proteins
The nature of proteins released from adipocyte-derived exosomes
has been characterized by proteomic profiling of exosomes
produced by human primary adipocytes in comparison with the
overall secretome of the same cells (69). This analysis identified
884 proteins, called as exoadipokines. Among them, 212 proteins
commonly found in both secretome of human adipose tissues
and exosomes are mainly involved in inflammation and fibrosis,
whereas 672 proteins specific for exosomes which are assigned
to signaling pathways and membrane-mediated process (69).

Notably, exosomes were found to be enriched in proteins without
classical signaling peptides that direct proteins to the traditional
secretory pathway, suggesting a significant contribution of
exosomes to the overall human adipokinome (69). Notably,
different proteomic profiles in adipocyte-derived EVs have been
observed between obese diabetic rats and obese non-diabetic
counterparts (91). Exosomes derived from obese diabetic mice
are enriched in proteins and enzymes involved in lipolysis and
glycerol export, which may explain ectopic lipid accumulation
in major metabolic organs and hence systemic insulin resistance
(91). Intriguingly, hypoxia, which is present in obese adipose
tissue, has also been shown to alter proteomic composition of
ADEVs in vitro (75). In particular, enzymes involved in de
novo lipogenesis such as acetyl-CoA carboxylase (ACC), fatty
acid synthase (FASN) and glucose-6-phosphate dehydrogenase
(G6PD) were selectively enriched in exosomes derived from
adipocytes under the hypoxic condition, whichmay increase lipid
accumulation in recipient adipocytes and preadipocytes.

Exosomal proteins in ADEVs are functionally involved in
the paracrine crosstalk between adipocytes and macrophages
in adipose tissue. Adiponectin-positive EVs derived from
adipocytes can promote differentiation of monocytes into ATMs,
which are associated with the production of immunomodulatory
proteins such as TNFα, macrophage-colony-stimulating factor
(MCSF) and retinol binding protein 4 (RBP4) (47). The
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functional relevance of exosomal protein RBP4 in monocyte
differentiation has been substantiated in another independent
study showing that ADEVs from ob/ob mice contained a
higher level of RBP4, and exosomal RBP4 induced macrophage
activation and production of pro-inflammatory cytokines in vitro
(46). Additionally, exosomes from ADSCs contain active STAT3,
which can be transported to macrophages to induce polarization
of macrophages toward the anti-inflammatory M2 phenotypes
through transcriptional activation of arginase-1 (15). Treatment
of obese mice with the ADSC-derived exosomes alleviated
diet-induced insulin resistance and glucose intolerance by
reducing adipose inflammation and enhancing beiging of WAT
(15). These studies collectively support the immunomodulatory
effects of exosomal proteins, in reminiscence of classical
adipokines and chemokines, in the interconnection between
obesity and inflammation. However, loss-of-function studies are
warranted to confirm the requirement of individual exosomal
proteins in the regulation of adipose immune responses and
insulin sensitivity.

Lipids and Other Cargos
In addition to aforementioned miRNAs, mRNAs and proteins,
lipids and other cargos also act as the signaling molecules
conferring the effects of ADEVs. A recent study identified
lipid-filled exosomes released from adipocytes, and these lipid-
enriched exosomes play an important role in transporting lipids
from adipocytes to macrophages (52). Furthermore, these lipid-
filled exosomes are also sufficient to induce differentiation of
bone marrow-derived monocytes into ATM-like macrophages
in vitro (52). The number of the lipid-filled exosomes secreted
from adipocytes was more than doubled in obese mice relative
to the lean mice which might be an additional mechanism
for obesity-associated adipose inflammation. This study also
proposed these lipid-filled exosomes as a new pathway of
lipid release from adipocytes independent of the canonical
lipolysis. However, little is known on how different types
of bioactive lipids are selectively enriched in ADEVs and
exert their local and/or distal effects on immunological and
metabolic regulation. Adipocytes are also found to produce
exosomes containing α-ketoglutarate. Melatonin, a hormone
released from the pineal gland with anti-inflammatory activities,
promoted the secretion of exosomes containing α-ketoglutarate
from adipocytes, whereas uptake of exosomal α-ketoglutarate
by macrophages facilitated the polarization toward the anti-
inflammatory M2 phenotype and thus alleviated adipose
inflammation in obesity (76).

CLINICAL IMPLICATIONS OF ADEVs IN
METABOLIC DISEASES

Measurement of ADEVs in adipose tissue is minimally invasive
and can be potentially used as an alternative approach to
evaluate metabolic health. Changes in circulating EVs have
been associated with various metabolic diseases, including
obesity, T2D and NAFLD, making them attractive biomarkers
for diagnosis and risk prediction of these diseases (92).
However, the extent to which circulating EVs are contributed by

ADEVs is currently unclear. Several adipose markers, including
adiponectin, FABP4 and perilipin A have been used to identify
EVs released from adipose tissues (50, 51). The level of circulating
EVs positive for perilipin A and thus of adipocyte origin was
dramatically increased in both mice with diet-induced obesity
and obese human patients (50). Furthermore, in obese humans,
the circulating level of the EVs enriched with perilipin A was
positively correlated with plasma insulin level and homeostatic
model assessment of insulin resistance (HOMA-IR), supporting
potential use of perilipin A-positive EVs as the biomarker of
insulin resistance (50).

Metabolic status can be also reflected by changes in
vesicular miRNAs in ADEVs. By using FABP4 as a marker to
identify ADEVs from the circulation, Hubal et al. found that
the miRNA content of circulating ADEVs targeting various
genes in the canonical insulin receptor-mediated signaling
pathway was significantly altered 1 year-after gastric bypass
bariatric surgery, and the changes were closely associated
with improvements in insulin sensitivity, suggesting that
FABP4-positive ADEVs might be useful to monitor the
response of obese patients to the intervention with bariatric
surgery (51). However, as FABP4 is also expressed in several
types of immune cells and endothelial cells, ADEVs may
only account for a proportion of the total FABP4 positive
EVs. In addition, the circulating level of exosomal miR-92a
possibly of BAT origin was found to be negatively associated
with BAT activity as measured by 18F-fluorodeoxyglucose
PET/CT in two human cohorts, and thus may represent a
potential biomarker for monitoring BAT activity in humans,
which is much more cost-effective than PET/CT-based
approaches (53).

ADEVs from different adipose depots are differentially
associated with metabolic health and disease. The number of
EVs derived from omental adipose tissue, but not SAT, correlated
positively with HOMA-IR in overweight patients (47). It has also
been reported that the abundance of EVs in VAT was positively
correlated with serum levels of alanine aminotransferase (ALT)
and aspartate aminotransferase (AST), which are the well-
established markers for liver injury, whereas the number of EVs
in SAT was inversely associated with waist circumference and
metabolic syndrome (93). These clinical observations suggest
that differential effects of SAT and VAT on metabolic health may
be related to the distinct amount and/or composition of EVs from
these two adipose depots.

THERAPEUTIC POTENTIAL OF ADEVs FOR
METABOLIC DISEASES

Owing to the easy accessibility from the bloodstream, the
ability to transport the bioactive cargos and surmount
biological barriers, the possibilities to modify the content
with bioengineering, and target specificity, EVs have been
emerged as a cell-free therapy for treatment of various diseases
(94). In particular, EVs from mesenchymal stem cells (MSCs)
could fully mimic the immunomodulatory and regenerative
functions of parental MSCs, and have therefore been exploited
as potential therapeutic agents for various inflammatory diseases
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and regenerative medicine targeting lung, liver, bone, kidney,
brain and heart (95), and a large number of clinical trials on
MSC-derived EVs have been publicly registered in recent years.

Although ADSCs have been shown to possess promising
therapeutic efficacy for Crohn’s disease, idiopathic pulmonary
fibrosis and chronic kidney diseases (NCT03939741) in various
clinical studies, the therapeutic application of ADSC-derived
EVs are still at the early stage (96, 97). Nevertheless, there
is a growing number of preclinical studies suggesting that
ADEVs have the great therapeutic potential for obesity-related
metabolic diseases. Treatment of obese mice with ADSC-
derived exosomes obtained from lean mice caused a significant
reduction of adipose inflammation and beiging of WAT, thereby
leading to obvious metabolic improvements, including weight
loss, alleviation of insulin resistance and hepatic steatosis (15).
Administration of exosomes isolated from BAT or serum of
wild-type mice significantly improved insulin sensitivity and
normalized serum lipids in ADicerKO mice (12). Likewise,
treatment of mice with EVs isolated from human ADSCs
during adipogenic differentiation to beige adipocytes attenuated
diet-induced obesity and hepatic steatosis (67). By contrast,
infusion of mice with EVs isolated from human ADSCs during
adipogenic induction to white adipocytes promoted adipogenesis
and expansion of WAT, suggesting the therapeutic potential for
lipodystrophy, a disorder associated with reduced number of
circulating exosomes (12).

In addition to use endogenous ADEVs as a therapeutic agent,
bioengineering ADEVs by modifying the bioactive cargos may
represent another viable approach to develop effective treatment
for obesity-related metabolic complications. An example is
to deplete those miRNAs causally involved in metabolic
inflammation and insulin resistance. In this connection, genetic
ablation of exosomal miR-34a, which is highly enriched in
exosomes secreted from VAT and contributes to adipose
inflammation by inducing M1 macrophage polarization, has
been shown to reverse obesity-induced insulin resistance,
glucose intolerance and fatty liver in mice (11). Similarly,
treatment of dietary obese mice with antisense RNA for miR-
34a restores hepatic β-klotho expression and FGF19 signaling,
leading to attenuation of fatty liver disease (98). It is also
possible to exogenously load ADEVs with transcriptional factors
participating in M2 macrophage polarization (15), thereby
reducing obesity-related metabolic diseases.

CONCLUSIONS AND FUTURE
PERSPECTIVES

Emerging evidence from both in-vitro and in-vivo studies
support the role of ADEVs as important players mediating

cell-cell communication within adipose tissues as well as
interorgan crosstalk between adipose tissue and other distal
organs, thus participating in the regulation of local immune
responses, tissue remodeling, systemic insulin sensitivity, and
energy homeostasis (Figures 1, 2). Aberrant production and/or
function of ADEVs are implicated in the pathogenesis of
obesity and its related metabolic complications. ADEVs are
heterogeneous in terms of size, composition and origin, with
ADEVs derived from different adipose depots exhibiting distinct
or even opposite functions. However, we are still in the early stage
in understanding biogenesis, regulation and pathophysiological
functions of ADEVs, and there are many important questions
which remain to be addressed: How is the cargo composition
of ADEVs regulated? How does obesity cause dysregulation
in the number and cargo composition of ADEVs? What
determines the target specificity of ADEVs? How do different
cargos affect the functions of target cells? Furthermore, the
clinical investigation of ADEVs as diagnostic biomarkers and
therapeutics for metabolic diseases are constrained by several
technical difficulties: First, there is no well-established, definitive
marker(s) for ADEVs, and it is therefore difficult to dissect
the contribution of ADEVs to circulating EVs, and to precisely
measure the changes of circulating ADEVs in different metabolic
diseases. Second, it is difficult to isolate ADEVs with high purity
using current experimental approaches, and contamination with
other particles such as lipoproteins remains a major concern.
Moreover, due to the heterogeneity of ADEVs, a mixture of EV
populations with different cargos exists in the same cell, causing
the difficulties in obtaining a subtype with a specific set of cargos
for functional characterization. Further technological advances in
molecular and functional characterization of ADEVs will help to
enhance our knowledge in metabolic regulation and to facilitate
the development of novel therapeutics for treatment of obesity
and its related metabolic complications.
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The cardiometabolic syndrome involves a clustering of metabolic and cardiovascular

factors which increase the risk of patients developing both Type 2 Diabetes Mellitus

and cardio/cerebrovascular disease. Although the mechanistic underpinnings of this

link remain uncertain, key factors include insulin resistance, excess visceral adiposity,

atherogenic dyslipidemia, and endothelial dysfunction. Of these, a state of resistance to

insulin action in overweight/obese patients appears to be central to the pathophysiologic

process. Given the increasing prevalence of obesity-related Type 2 Diabetes, coupled

with the fact that cardiovascular disease is the number one cause of mortality in this

patient population, a more thorough understanding of the cardiometabolic syndrome

and potential options to mitigate its risk is imperative. Inherent in the pathogenesis of

insulin resistance is an underlying state of chronic inflammation, at least partly in response

to excess adiposity. Within obese adipose tissue, an immunomodulatory shift occurs,

involving a preponderance of pro-inflammatory immune cells and cytokines/adipokines,

along with antigen presentation by adipocytes. Therefore, various adipokines differentially

expressed by obese adipocytes may have a significant effect on cardiometabolism.

Clusterin is a molecular chaperone that is widely produced by many tissues throughout

the body, but is also preferentially overexpressed by obese compared lean adipocytes

and relates strongly to multiple components of the cardiometabolic syndrome. Herein, we

summarize the known and potential roles of circulating and adipocyte-specific clusterin

in cardiometabolism and discuss potential further investigations to determine if clusterin

is a viable target to attenuate both metabolic and cardiovascular disease.

Keywords: adipocyte, clusterin, cardiometabolic disease, type 2 ddiabetes mellitus, inflammation

INTRODUCTION

Although the exact diagnostic criteria varies (1–3), the metabolic syndrome involves a clustering
of abnormalities including obesity, insulin resistance, hypertension, and dyslipidemia. These in
turn heighten the risk of cardio- and cerebrovascular disease (CVD) [elevated risk of primary and
recurrent stroke (4) and myocardial infarction (5)], Type 2 Diabetes Mellitus (T2D) (6, 7), and
non-alcoholic fatty liver disease/steatohepatitis (NAFLD/NASH) (8). Initially termed the metabolic
syndrome, Reaven’s syndrome, or Syndrome X, among others (9, 10), the ramifications of metabolic
disease on CVD risk have subsequently led to a broadening of terminology (i.e., the cardiometabolic
syndrome). Although the criteria are the same (Table 1), the term cardiometabolic syndrome has
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TABLE 1 | Clinical definitions of the cardiometabolic syndrome based on the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and

Treatment of High Blood Cholesterol in Adults Adult Treatment Panel III, the International Diabetes Federation (IDF), and the World Health Organization (WHO).

WHO (11) NCEP ATP III (2) IDF (12)

T2D or IFG or IGT or insulin

resistance plus ≥ 2 of the

following:

3 of the following: Central obesity defined as WC above

the ethnicity-specific cut-off plus ≥ 2

of the following:

Body Weight • BMI > 30 kg/m2 or WHR >

0.85 (females) or > 0.90 (males)

• WC > 88 cm (females) or >

102 cm (males)

Population specific

Lipid Profile • HDL < 1.0 mmol/L (< 40

mg/dL) and/or

• TG ≥ 1.7 mmol/L (150 mg/dL)

• HDL < 1.3 mmol/L (< 50

mg/dL) and/or

• TG ≥ 1.7 mmol/L (150 mg/dL)

• HDL < 1.3 mmol/L (< 50 mg/dL) or

specific treatment and/or

• TG ≥ 1.7 mmol/L (150 mg/dL) or

specific treatment

Blood pressure • BP ≥ 140/90 mmHg or use of

blood pressure medication

• BP ≥ 135/85 mmHg or use of

blood pressure medication

• BP ≥ 135/85 mmHg or use of

blood pressure medication

Other • Microalbuminuria > 20 pg/min

or Alb/Crea ratio ≥ 30 mg/g

• Fasting plasma glucose ≥ 5.6

mmol/L (100 mg/dL) or previously

diagnosed T2D

BP, blood pressure; HDL, high density lipoprotein cholesterol; IGT, impaired glucose tolerance; T2D, type 2 diabetes; TG, triglycerides; WC, waist circumference; WHR, waist to hip ratio.

gained more widespread acceptance due to the intersection of
risk factors that contribute to both CVD and metabolic disease
and involve similar pathophysiologic processes.

The cardiometabolic syndrome is highly prevalent, affecting
over 30% of the adult population in the United States (U.S.) and
rising, with especially high prevalence rates (>40%) in patients
older than 60 years old (13, 14). Compared to the general
population, the relative risk for developing CVD with coexistent
cardiometabolic syndrome is doubled (15), with 3-fold the risk
of T2D (13). In addition, all-cause mortality is higher in those
with the cardiometabolic syndrome. Importantly, factors related
to ethnicity/race, gender, and socio-economics affect risk, with

the highest rates occurring in non-Hispanic white men and black
women (14). In addition, socio-economic factors such as low

education level and advanced age are independently associated
with a higher risk of the cardiometabolic syndrome. The reasons
for these differences are incompletely understood and likely

multifactorial, but remain a critical focus of future research with
significant public health ramifications (16–19).

THE CENTRAL ROLE OF
OBESITY-RELATED INFLAMMATION AND
INSULIN RESISTANCE IN
CARDIOMETABOLISM

Over 35% of the adult US population is obese (20), and excess

adiposity contributes to multiple complications including T2D
and accelerated rates of CVD (21). In fact, CVD is the number
one cause of mortality in diabetic patients, with a 2–3-fold higher

risk of clinical atherosclerosis (22), illustrating a close association
between metabolic disease and CV risk. As such, underlying
the dysfunction in cardiometabolic disease are four interrelated

central features: insulin resistance, excess visceral adiposity,
atherogenic dyslipidemia, and endothelial dysfunction (23).
Of these, obesity-related insulin resistance appears to the most
important trigger. Among all the cardiometabolic risk factors,

the relationship between insulin resistance and hypertension
is the best established, and end-organ insulin resistance is a
central tenet in its pathophysiology (24). Various mechanisms
have been put forth to explain this connection including a
decrease in insulin-mediated renal artery vasodilatation and
uncompensated sodium reabsorption, with a resultant increase in
blood pressure. Systemic and vascular insulin resistance occurs
in conjunction with inappropriate activation of the renin–
angiotensin–aldosterone system (RAAS) (25). Hyperinsulinemia
also increases sympathetic nervous system activity (26),
contributing further to the development of hypertension, a
prominent component of the cardiometabolic syndrome.

Obesity and its associated comorbidities (including T2D
and CVD) are associated with a state of chronic low-grade
inflammation (27) that is well-recognized as a major cause
of decreased insulin sensitivity (28–30). Inflammatory pathway
activation has been observed in all classical insulin target
tissues, indicating the key role of inflammation in driving
the pathogenesis of systemic insulin resistance. Particularly, in
adipose tissue (AT), macrophages play a central role (28, 31,
32); however, recent studies have highlighted the importance of
several other key immune cells in maintaining lean AT, including
immunosuppressive regulatory T (Treg) cells, which contribute
to a “Type 2” anti-inflammatory immunoenvironment (33, 34).
In obesity, this immunologic milieu is shifted to a more pro-
inflammatory state, in which the normal architecture, energy
storage, and endocrine activities of adipocytes are profoundly
altered. Activation of a proinflammatory pathway in AT leads
to the secretion of numerous cytokines such as tumor necrosis
factor-alpha (TNF-α), interleukin-6 (Il-6) and interleukin-1β (IL-
1β) (35) that activate toll-like receptors (TLR2 and TLR4) and
impair glucose uptake (36). Cytokines also impair suppression
of AT lipolysis, with resultant free fatty acid (FFA) release
into the circulation (37–39), which hinders the ability of
insulin to stimulate muscle glucose uptake (40) and suppress
hepatic glucose production (41), the two major factors in
the pathogenesis of insulin resistance. Therefore, disruption
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in AT fatty acid metabolism is likely an underlying factor
in cardiometabolic disease, by promoting both hyperglycemia
and dyslipidemia.

Obesity, the cardiometabolic syndrome, and T2D have also
long been associated with higher risk of cerebrovascular disease
and cognitive decline (42–52). One potential reason for this
connection is that insulin has direct effects on neurotransmission
and neuropathology in the brain (53–56), including alterations
in the production, degradation and clearance of β-amyloid
(Aβ) that lead to plaque deposition in Alzheimer’s disease (57).
Various murine models of obesity and diabetes (including after
high-fat diet feeding) (58–61) have indicated a relationship
between peripheral and “central” insulin resistance, and in
humans altered metabolic brain activity occurs in peripherally
insulin-resistant subjects (62–64), with dysregulation in CNS
insulin signaling (65–67). In fact, intravenous insulin infusion
(57, 68, 69), inhaled insulin (69, 70), the insulin-sensitizing
agent pioglitazone (70, 71), metformin (72, 73), and weight-loss
interventions, including bariatric surgery, have demonstrated
beneficial effects on memory (74–77). Cerebrovascular disease
(78–80) and vascular dementia (81, 82) are also strongly
related to insulin resistance, even independent of frank diabetes,
and the Insulin Resistance Intervention after Stroke (IRIS)
trial established that improving insulin sensitivity can prevent
cerebrovascular events (83).

CHARACTERISTICS OF CLUSTERIN AND
PHYSIOLOGIC ROLES

The human clusterin (CLU) gene (encodes the protein
clusterin/apolipoprotein J) was first identified by Blaschuk
et al. (84). This highly conserved gene consists of nine exons
located on chromosome 8 that encode different isoforms
resulting from alternative splicing and post-translational
modifications (glycosylation, disulfide bond cleavage, etc.)
(85, 86). The CLU gene promoter is highly conserved among
species, with numerous identified regulatory elements including
TGF-β inhibitory element, activator protein-1 and−2, and
nuclear factor, but is also responsive to many environmental and
cytokines that vary depending on the involved tissue (87–89).
Although expressed by nearly every tissue in the human body,
clusterin is predominantly made by epithelial tissues during
embryonic development and in the testis, ovary, adrenal gland,
liver, heart and brain of adults (85, 86). Its identified receptors
are varied and often tissue-specific and include the HDL
cholesterol receptor, low density lipoprotein-related protein
2 (LRP/megalin) (90), ApoER2 (91), and very low density
lipoprotein receptor (VLDLR), many of which are critical to
cardiovascular health.

There are two major forms of clusterin: a stress-induced, non-
glycosylated, nucleocytostolic 55kDa variant (nCLU) consisting
of parallel α and β chains, and a secreted or cytosolic variant
(sCLU) that is proteolytically cleaved, connected by five disulfide
bonds, and released from cells in an antiparallel fashion (92).
Heterodimeric sCLU circulates mainly as a component of
high-density lipoprotein (HDL) cholesterol, but has also been

found to be bound to apolipoprotein (Apo) A1, various lipids,
paroxanase, beta (β)-amyloid protein, and complement proteins,
among others [summarized in Trougakos and Gonos (93)].
In healthy subjects, a higher prevalence of sCLU is bound
to cardioprotective HDL cholesterol, suggesting that secreted
clusterin may play a role in preventing progression of vascular
disease (94). In contrast, nCLU predominantly promotes ionizing
radiation-induced death of cells and triggers apoptosis in a
BAX-dependent mechanism, and has yet to be linked with
cardiometabolic pathology (95). Therefore, the remainder of this
review will focus on the relationship of CVD and metabolic
disease with sCLU.

One of the major roles of clusterin is to act as a molecular
chaperone that assists folding of secreted proteins (87). Clusterin
may also serve as a sensor of oxidative stress and is reduced upon
exposure to acute stress (96). As a result of its ubiquitous nature,
it has been implicated in a wide range of pathologic processes
including cancer development and progression, complement
regulation, and sperm maturation (93, 97, 98). CLU gene
transcription and protein expression is upregulated in breast
cancer (99), ovarian cancer (100), and prostate cancer (101), and
inhibition of CLU expression protects the cell from apoptosis
induced by chemotherapy, radiotherapy, and androgen/estrogen
depletion (102–104). Clusterin is also involved in CNS lipid
trafficking (105, 106) and is widely expressed in the brain (107).
Accordingly, clusterin has clinical associations with Alzheimer’s
disease (AD) (108, 109) and has been proposed as a biomarker
of AD (110). In fact, risk variants in CLU are strongly associated
with AD (108). In patients with both mild cognitive impairment
and AD, clusterin levels are elevated in the brain, cerebrospinal
fluid, and blood (111–114), and accordinglyCLU gene expression
is elevated in these pathologic conditions (107).

ROLE OF CIRCULATING CLUSTERIN IN
INSULIN RESISTANCE AND METABOLIC
DISEASE

There are numerous identified mechanisms by which circulating
clusterin could impact the risk of metabolic disease. Leptin
resistance has been demonstrated in both murine models and
human obesity, with reduced transport across the blood-brain-
barrier (BB) (115). In turn, sCLU affects the transport of leptin
across the BBB via LDL cholesterol (116), and through its
binding to the receptor LRP2 can sensitize leptin receptors
in the hypothalamus (117). This suggests that clusterin may
play a role in modulating appetite and contributing to obesity
(117). Clusterin can also directly affect insulin signaling and
inflammation, two factors that can lead to insulin resistance,
via its actions on macrophage phosphoinositide 3-kinase (PI3K;
a mediator of insulin signaling) and NFκB (a major pro-
inflammatory pathway in insulin resistance) (118). Clusterin
induces directional migration of macrophages acting as a
chemoattractant (119). This stimulates the expression and
secretion of TNF-α and various chemotactic cytokines allowing
clusterin to serve as a link between inflammation and remodeling
of tissues by directing immune cells (120). Therefore, clusterin
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plays a significant role in inflammation and immune responses
through its molecular interactions with complement factors,
immunoglobulins, and inflammatory pathways (121).

In support of these identified mechanistic processes, both
murine and human studies have demonstrated a significant
link between circulating clusterin and features of the metabolic
syndrome. Skeletal muscle and hepatic gene expression of CLU
increase following high-fat diet feeding in mice, and whole body
clusterin knockout mice are insulin sensitive compared to wild-
type mice (122). Obese patients without diabetes following a
2 week very low calorie diet have reduced plasma clusterin
levels (123), and in obese compared to lean subjects, plasma
clusterin levels are elevated and positively relate to body mass
index, waist circumference, markers of inflammation (hsCRP
and retinol-binding protein-4) (124), and insulin resistance
(125). In addition, polymorphisms in CLU have been linked
to insulin resistance [by the homeostasis model of insulin
resistance [HOMA-IR] and impaired insulin secretion [HOMA-
β]] (126). In contrast to these deleterious metabolic effects,
clusterin has been shown to reduce hepatic fibrosis via stellate
cell downregulation of the Smad3 signaling pathway (127).

CARDIOVASCULAR AND
CEREBROVASCULAR EFFECTS OF
CIRCULATING CLUSTERIN

The mechanistic effects of circulating clusterin on CVD are
controversial, due to seemingly paradoxical effects in the existing
literature, and the mechanisms behind such a link remain
unclear. Clusterin is found in a subset of dense HDL cholesterol
particles and has wide-ranging effects on lipid transport (121,
128). In plasma, clusterin forms HDL particles with ApoA-I
and ApoE and aids in the transfer of HDL cholesterol from
peripheral tissues to the liver, diverting lipoproteins away from
atherosclerotic lesions (129, 130). In contrast, clusterin may have
a deleterious effect on the antioxidant activity of paroxanase-1
(PON1), whose deficiency enhances atherosclerosis by increasing
the accumulation of oxidized phospholipids in atherosclerotic
plaques (131).

There are multiple lines of evidence suggesting that human
clusterin may have a significant clinical association with multiple
facets of cardiovascular risk. Circulating plasma clusterin (sCLU)
levels are strongly associated with the pro-inflammatory factor C-
reactive protein (CRP) (124), various lipid markers of heightened
cardiovascular risk, and increasing systolic and diastolic blood
pressure (90, 132). Circulating clusterin is also negatively
associated with leptin in obesity-related CVD (133). In addition,
clusterin bound to HDL cholesterol is reduced in obese males
and is associated with lower levels of HDL cholesterol, higher
TGs (134) and low-density lipoprotein (LDL) cholesterol levels,
and accelerated atherogenesis (135), and may confer higher
cardiovascular risk during the aging process (135). Interestingly,
proteomic analysis has shown that higher levels of clusterin are
found in carotid atherosclerotic compared to non-atherosclerotic
plaques (136). Not all studies, however, have confirmed a
beneficial role for clusterin in CVD. A recent study showed

that lower serum clusterin was associated with higher rates
of mortality in heart failure patients (137), indicating some
uncertainty on the importance of circulating clusterin in the
CVD process.

ADIPOCYTE-DERIVED CLUSTERIN AND
ITS POTENTIAL ROLE IN
CARDIOMETABOLIC DISEASE

The adipocyte is no longer viewed as simply a storage depot
for lipids, but is now recognized as an important determinant
of an obesity-related proinflammatory environment, instigating
inflammation in expanding AT (138). Despite significant
progress in our understanding of the role of the adipocyte
as an immumodulator, and evidence that circulating plasma
and HDL cholesterol bound clusterin may be involved in the
metabolic syndrome, insulin resistance, atherogenesis, and CV
risk, the importance of adipocyte-derived clusterin in human
cardiometabolic disease remains largely unknown. In whole
human AT, CLU gene expression is higher in obese compared
to lean subjects, and is decreased following weight loss induced
by VLCD or bariatric surgery (123). We have recently shown
that clusterin derived specifically from the adipocyte may play
an important role in cardiometabolic disease (90). In obese
compared to lean human subjects, adipocyte gene expression
and protein levels of clusterin were higher and responsive to
(FFA) palmitate stimulation (a major component of a high
fat diet enriched in fatty acids) (139). In addition, we found
strong associations of adipocyte clusterin with systemic insulin
resistance, multiple components of the metabolic syndrome
(HDL cholesterol, the ratio of HDL cholesterol to total
cholesterol, and TGs, and both systolic and diastolic blood
pressure), and overall CVD risk and mortality. In this same
study, clusterin treatment of human liver cells reduced insulin
signaling by lowering Akt phosphorylation and promoting key
genes involved in gluconeogenesis; yet hepatic expression of
the major regulator of hepatic de novo lipogenesis [sterol
regulatory element-binding protein-1 [SREBP-1]] and APOA1
were decreased in response to clusterin binding to LRP2.
These results suggest that the liver receptor LRP2 may be a
key target for the potential cardiometabolic role of clusterin.
Knockdown of SREBP-1 can perpetuate hyperglycemia via
enhanced gluconeogenesis and reduced glycolysis and glycogen
synthesis (140). APOA1 is a major protein associated with
HDL cholesterol particles in plasma which facilitates efflux
of cholesterol from cells, notably from macrophages within
atherosclerotic plaques, to the liver for excretion. Low plasma
APOA1 levels are also a strong predictor of CVD (141). In a
mouse model prone to non-alcoholic steatohepatitis (NASH)
adipocyte CLU expression also paralleled an increase in liver fat,
hepatic fibrosis, and steatohepatitis (90).

Although these results suggest several mechanisms by which
clusterin could link insulin resistance, metabolic disease, and
CVD (Figure 1), further investigation is needed to fully elucidate
the cardiometabolic role of AT clusterin, and specifically clusterin
derived from the adipocyte. Although treatment with the FFA
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FIGURE 1 | Summary of proposed mechanism for clusterin-mediated cardiometabolic disease. Various stimuli may increase adipocyte expression of CLU from

adipocytes in the setting of obesity. Circulating clusterin subsequently has multiple effects on the liver (reduction in ApoA1 expression, dyslipidemia, impaired insulin

signaling, and potentially increased steatosis and inflammation) and on macrophages, which may contribute to the cardiometabolic syndrome, and increase CVD risk.

palmitate stimulates clusterin release in vitro, other potential
triggers for clusterin expression are possible. These include
AT hypoxia, which has previously been shown to increase
clusterin expression in other cell types outside of AT (142).
In addition, the effects of adipocyte-derived clusterin on the
AT immunoenvironment and the skewed balance of pro- and
anti-inflammatory cytokines observed in human obesity is
also unknown.

CONCLUSION

The cardiometabolic syndrome is a clustering of metabolic and
cardiovascular abnormalities that increase the risk of CVD,
T2D, and all-cause mortality. The rising prevalence of the
cardiometabolic syndrome, both in the U.S. and worldwide,
make a more thorough understanding of its pathophysiologic
underpinnings imperative. Although likely multifactorial, the
presence of obesity-related insulin resistance appears to be
a central, if not instigating factor. Systemic and tissue-
specific insulin resistance not only affect endothelial function
and leads to atherogenic dyslipidemia, but propagate a pro-
inflammatory environment that includes excess release of
detrimental FFAs into the circulation. Clusterin is a ubiquitous
protein secreted by many organs/tissues throughout the body.
Although studies have implicated circulating clusterin inmultiple

metabolic and cardio/cerebrovascular abnormalities, a unifying
mechanism remains elusive, and the current literature is
inconsistent and inconclusive. In particular, the importance of
AT derived clusterin, strongly associated with many metabolic
and CVD risk factors, requires further investigation. This
includes understanding the exact mechanistic processes by
which it acts locally within AT and systemically in the
liver, endothelial cells, and the vasculature. Isolating its
effects, potentially through the development of adipocyte-
specific clusterin knockout and overexpression models, will be
instrumental in determining if it is a viable target to attenuate
features of the cardiometabolic syndrome.
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It has been increasingly recognized that inflammation plays an important role in the
pathogenesis of cardiovascular disease (CVD). In obesity, adipose tissue inflammation,
especially in the visceral fat depots, contributes to systemic inflammation and promotes
the development of atherosclerosis. Adipocyte fatty acid-binding protein (AFABP), a lipid
chaperone abundantly secreted from the adipocytes and macrophages, is one of the key
players mediating this adipose-vascular cross-talk, in part via its interaction with c-Jun
NH2-terminal kinase (JNK) and activator protein-1 (AP-1) to form a positive feedback loop,
and perpetuate inflammatory responses. In mice, selective JNK inactivation in the adipose
tissue significantly reduced the expression of AFABP in their adipose tissue, as well as
circulating AFABP levels. Importantly, fat transplant experiments showed that adipose-
specific JNK inactivation in the visceral fat was sufficient to protect mice with apoE
deficiency from atherosclerosis, with the beneficial effects attenuated by the continuous
infusion of recombinant AFABP, supporting the role of AFABP as the link between visceral
fat inflammation and atherosclerosis. In humans, raised circulating AFABP levels are
associated with incident metabolic syndrome, type 2 diabetes and CVD, as well as non-
alcoholic steatohepatitis, diabetic nephropathy and adverse renal outcomes, all being
conditions closely related to inflammation and enhanced CV mortality. Collectively, these
clinical data have provided support to AFABP as an important adipokine linking obesity,
inflammation and CVD. This review will discuss recent findings on the role of AFABP in
CVD andmortality, the possible underlying mechanisms, and pharmacological inhibition of
AFABP as a potential strategy to combat CVD.

Keywords: cardiovascular disease, adipocyte fatty acid-binding protein, mortality, inflammation, adipokine
INTRODUCTION

Obesity is a global health problem. Based on the data from the World Health Organization (WHO),
in 2016, more than 1.9 billion adults aged 18 years or above were overweight, and among them, 650
million were obese (1). In a pooled analysis of 19.2 million participants, the age-standardized
prevalence of obesity has tripled in men and doubled in women over the last four decades. If these
trends continue, around 1 in 5 of the global population will become obese by year 2025 (2).
org March 2021 | Volume 12 | Article 589206180

https://www.frontiersin.org/articles/10.3389/fimmu.2021.589206/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.589206/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.589206/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:ksllam@hku.hk
https://doi.org/10.3389/fimmu.2021.589206
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2021.589206
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2021.589206&domain=pdf&date_stamp=2021-03-19


Lee et al. AFABP, CVD, and Mortality
Obesity leads to increased risks of type 2 diabetes (3, 4), non-
alcoholic fatty liver disease (NAFLD) (5), cardiovascular disease
(CVD) (6), cancer (7), and mortality. Indeed, high body mass
index (BMI) has become one of the top five leading causes of all-
cause mortality and disability-adjusted life-years (8). In 2015,
high BMI contributed to 7.1% of global deaths. Strikingly, CVD
accounted for two-thirds of these deaths and more than half of
disability-adjusted life-years related to high BMI (9). Recently, in
a Mendelian randomization (MR) study involving more than
360,000 participants from the UK Biobank, each genetically
instrumented increase in BMI of 1 kg/m2 was associated with a
significantly higher risk of most cardiovascular outcomes
including hypertension, atrial fibrillation, coronary heart
disease (CHD), heart failure and peripheral vascular disease
(PVD) (10). Genetically predicted fat mass index was
associated with an even broader list of cardiovascular outcomes
including ischemic stroke. These findings corroborated with
another large MR study which demonstrated the causal effects
of adiposity on CVD (11). Taken together, both observational
and MR studies provided strong epidemiological evidence that
obesity, in particular central adiposity, is closely linked with
CVD and cardiovascular mortality.

Inflammation, on the other hand, is an established important
risk factor of CVD and cardiovascular mortality (12). Previous
observational studies had demonstrated that markers of
inflammation such as C-reactive protein (CRP) and tumor
necrosis factor alpha (TNF-a) receptor 1 were independent
prognostic markers of adverse cardiovascular outcomes among
individuals with and without prevalent CVD (13, 14). Recently,
the use of Canakinumab, an anti-inflammatory monoclonal
antibody targeting interleukin-1, was also shown in a
randomized controlled trial to significantly reduce the
incidence of non-fatal myocardial infarction, non-fatal stroke
and cardiovascular death, confirming that inflammation plays a
crucial role in the pathogenesis of CVD (15). Obesity is a state of
chronic low-grade systemic inflammation, which is induced by a
cascade of cellular events that occur in the dysfunctional adipose
tissue, and perpetuated by dysregulated secretion of adipokines
through their local and systemic actions (16). This review will
focus on adipocyte fatty acid-binding protein (AFABP) and
present the recent data on its role as an important adipokine
linking obesity, inflammation and CVD.
AFABP EXPRESSION AND SECRETION

AFABP is a major cytosolic protein of the mature adipocytes
(17). As a fatty acid binding protein, it acts as a lipid chaperone
that facilitates the trafficking of non-esterified fatty acids
throughout cellular compartments such as peroxisome,
endoplasmic reticulum (ER), mitochondria and nucleus (18).
AFABP also regulates lipid storage and oxidation, and is involved
in lipolysis though its interaction with the hormone-sensitive
lipase (HSL) and a co-activator of adipose triglyceride lipase
(ATGL) (19, 20). The expression of AFABP in adipocytes is
induced during adipocyte differentiation, and is transcriptionally
Frontiers in Immunology | www.frontiersin.org 281
activated by fatty acids, glucocorticoids, cyclic adenosine
monophosphate (cAMP), and peroxisome proliferator-
activated receptor gamma (PPARg) agonists (21–23).

Studies in recent years have shown that AFABP is secreted
from the adipocytes, and circulates in the blood stream in
both mice and humans (24) (25). However, since it lacks
a signal peptide sequence for classical secretory pathway
(25), it has recently been reported that AFABP is secreted
unconventionally via endosomes and secretory lysosomes in
response to lipolytic and fasting related signals, such as
adrenergic signaling, beta agonists, branched-chain amino
acids and glycerol (25, 26), and the involvement of sirtuin-1
activation has been implicated (27). While it is also expressed in
the macrophages (28) and endothelial cells (29), in vivo data
suggest that the adipocyte is the predominant contributor to
circulating AFABP levels (25).
AFABP IN RELATION TO ADIPOSE TISSUE
INFLAMMATION AND INSULIN
RESISTANCE IN OBESITY

AFABP secretion is dysregulated in obesity, with raised
circulating AFABP concentrations being found in obese
individuals (24). With chronic nutrient excess, pathological
expansion of the adipose tissue causes several maladaptive
changes especially in the visceral fat depots. Hypertrophic
adipocytes undergo high rates of spontaneous lipolysis (30),
which increases free fatty acid (FFA) efflux and stimulates
AFABP release. Lipo-toxicity ensues as lipid intermediates such
as ceramides and diacylglycerols accumulate. Moreover,
adipocyte hypoxia and cell death develop as a consequence of
its continuous expansion despite relative under-perfusion and
increased mechanical stress (31), and hypoxia is another known
stimulus for AFABP release from adipocytes (32). On the other
hand, AFABP (33), as a lipid chaperone, has been implicated in
ER stress in response to lipotoxic signals, leading to activation of
stress kinases such as nuclear factor kappa B (NFkB) and c-Jun
NH2-terminal kinase (JNK) (34), enhancing adipocyte insulin
resistance that potentiates lipolysis and lipotoxicity. Adipocyte
insulin resistance also augments the secretion of pro-
inflammatory cytokines including the chemokine monocyte
chemoattractant protein 1 (MCP1) (35), which stimulates the
recruitment of macrophages into the adipose tissue (36).
Furthermore, it induces a phenotypic switch in the
macrophages from the anti-inflammatory M2 polarized state to
the pro-inflammatory phenotype typical of M1 classical
inflammation in metabolically-activated macrophages (MMe)
(37, 38).

Both innate and adaptive immunity are activated in obesity.
In addition to macrophage infiltration, adaptive immune cells
including CD4+ T helper (Th1) cells, CD8+ T cells and B cells
also accumulate in the visceral adipose tissue (39). Transient
enhancement of AFABP expression has been reported in murine
splenic lymphocytes after dexamethasone administration (40).
However, among the major human leucocyte subsets, the
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expression of AFABP is largely restricted to the macrophages and
myeloid dendritic cells (DC) (41). Specifically, owing to its high
expression in the macrophages (28), AFABP is more closely
linked with the innate immune cells. It has been shown that
AFABP perpetuates lipopolysaccharide (LPS)-induced
inflammatory responses in macrophages through its interaction
with JNK and activator protein-1 (AP-1) forming a positive
feedback loop. Upon stimulation by LPS via toll like receptor 4
(TLR4), JNK is activated, leading to the induction of c-Jun
phosphorylation and its recruitment to a highly conserved AP-
1 consensus binding motif located within the AFABP gene
promoter. As a result, AFABP gene transcription is
upregulated, which further potentiates LPS-induced JNK
phosphorylation, activation of AP-1 complex and amplification
of pro-inflammatory responses in the macrophages (42).
Nonetheless, AFABP can also affect adaptive immunity
through the modulation of DC responses. NFkB activation is
impaired in AFABP deficient DCs, which exhibit reduced DC
function in T cell priming and cytokine production (41).
Recently, AFABP was also found to be upregulated in a
subpopulation of tissue-resident memory CD8+ T cells which
have high requirement for fatty acid metabolism. Importantly,
the lack of AFABP in these cells could negatively impact their
survival and hence attenuate their function in protective
immunity (43). In a viral infection model, mice with genetic
deficiency of AFABP had decreased interferon gamma
production and increased viral load (41). However, in a rodent
model of sepsis, pharmacological inhibition of AFABP in fact
was demonstrated to be beneficial, with attenuation of sepsis-
triggered inflammatory responses, reduced hepatic and
pulmonary tissue injury, as well as improved survival (44).
Frontiers in Immunology | www.frontiersin.org 382
Taken together, these studies highlight the close and complex
relationship between AFABP and cellular immunity.

In the adipose tissue, infiltration of these immune cells drives
further release of pro-inflammatory adipokines including
TNF-a, interleukin-6 (IL-6) and AFABP, and reduces the
secretion of the anti-inflammatory adipokine adiponectin.
Increased AFABP secretion induces further lipolysis and
inflammation in the adipocytes via the p38/mitogen-activated
protein kinase (MAPK) pathway (45), and contributes to
this vicious cycle of adipose tissue insulin resistance and
inflammation (46) (Figure 1). Whole-body insulin sensitivity
was ultimately impaired, accompanied by a chronic state of
subclinical systemic inflammation, and the development of an
array of obesity-related complications including CVD and
cardiovascular mortality (Table 1).
AFABP AND CARDIOVASCULAR RISK
FACTORS

The detrimental role of AFABP on the development of CVD
begins with its effects on traditional cardiovascular risk factors in
addition to excess adiposity. AFABP-deficient mice displayed
improved glycemia, insulin sensitivity and lipid metabolism in
both dietary and genetically induced obesity (47, 48), secondary
to a reduced FFA efflux and increased glucose utilization in
muscles (49). Moreover, AFABP increases the hepatic expression
of gluconeogenic enzymes phosphoenolpyruvate carboxylase 1
(Pck1) and glucose-6-phosphatase (G6pc), leading to enhanced
hepatic glucose production and impaired glucose metabolism (25).
FIGURE 1 | AFABP in the vicious cycle of adipose tissue insulin resistance and inflammation. AFABP, adipocyte fatty acid-binding protein; ER, endoplasmic
reticulum; JNK, c-Jun NH2-terminal kinase.
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In humans, circulating AFABP concentrations also correlate
positively with adverse cardiometabolic risk factors including
age, obesity indices, hypertension, homeostatic model of insulin
resistance (HOMA-IR), low-density lipoprotein cholesterol
(LDL-C), and negatively with high-density lipoprotein
cholesterol (HDL-C) (50). Moreover, high circulating AFABP
concentrations predicted incident metabolic syndrome and type
2 diabetes, both of which are associated with increased risks of
CVD and mortality (50, 51).
AFABP AND ATHEROSCLEROSIS

AFABP promotes atherosclerosis, the central event in the
pathogenesis of CVD (81). Bone marrow transplant
experiments revealed that macrophage-specific AFABP
deficiency reduced atherosclerotic lesions in mice with
apolipoprotein E (ApoE) deficiency, to a similar extent as
those with whole body AFABP deficiency, suggesting that
much of the pro-atherogenic effects of AFABP are specific to
its actions in macrophages (28). The expression of AFABP in
macrophages can be upregulated in response to oxidized LDL
(oxLDL) and LPS (82, 83), which are both increased in obesity
(84, 85). On the other hand, metformin has been shown to
inhibit AFABP expression in macrophages (86). AFABP alters
lipid metabolism in macrophages and facilitates the formation of
Frontiers in Immunology | www.frontiersin.org 483
foam cell enriched with cholesterol and triglyceride (53, 54).
AFABP also promotes macrophage cell death through saturated
fatty acid-induced ceramide production (55). Moreover, AFABP
has been shown as an obligatory mediator of toxic lipids-induced
ER stress in macrophages, through inhibiting liver X receptor
alpha (LXRa) to reduce macrophage de novo fatty acid synthesis
which confers resistance to ER stress (33), as well as impairing
macrophage autophagy by attenuation of Janus Kinase 2 (JAK2)
activity (87). The elevated ER stress potentiates JNK activation
and further exacerbates inflammation.

However, there was recent evidence suggesting that the
negative impact of AFABP on atherosclerosis was not
exclusively due to its action in the macrophages. In mice,
selective JNK inactivation in the adipose tissue significantly
reduced both the expression of AFABP in their adipose tissue,
as well as circulating AFABP levels. Importantly, fat transplant
experiments showed that adipose-specific JNK inactivation in
the visceral fat was sufficient to protect mice with apolipoprotein
E (ApoE) deficiency from atherosclerosis, with the beneficial
effects attenuated by the continuous infusion of recombinant
AFABP, supporting the participation of adipocyte-derived
AFABP as a link between visceral fat inflammation and
atherosclerosis (56).

In humans, elevated baseline AFABP concentration predicted
incident CVD over a median follow-up of around 10 years in a
community-based cohort (57). Moreover, high circulating
TABLE 1 | Associations of AFABP with cardiometabolic conditions.

Circulating AFABP level Potential mechanistic actions References

Type 2
diabetes

• Predicts the development of type 2 diabetes • Increases free fatty acid efflux
• Reduces glucose utilization in muscles
• Increases hepatic expression of gluconeogenic enzymes

(25, 47–51)

Hypertension • Correlates positively with blood pressure • Increases endothelial dysfunction
• Worsens insulin sensitivity

(47, 48, 50,
52)

Dyslipidemia • Correlates positively with low-density lipoprotein cholesterol
• Correlates negatively with high-density lipoprotein cholesterol

• Increases free fatty acid efflux
• Negative effects on lipid metabolism
• Worsens insulin sensitivity

(47, 48, 50)

Coronary heart
disease

• Predicts the development of cardiovascular diseases
• Associates with coronary calcium score in patients with type 2

diabetes
• Associates with the coronary plaque burden in patients with

coronary heart disease

• Promotes atherosclerosis development:
• Alters lipid metabolism in macrophages and facilitates

foam cell formation
• Promotes saturated fatty acid-induced ceramide

production in macrophages
• Mediates toxic lipids-induced endoplasmic reticulum

stress in macrophages
• Increases adipose tissue and systemic inflammation

(33, 53–60)

Stroke • Associates with the presence of carotid atherosclerosis
• Correlates positively with the vulnerable carotid plaque phenotype
• Doubles the risk of incident adverse cardiovascular events including

cardiovascular mortality, non-fatal myocardial infarction and non-fatal
stroke.

• Predicts poor functional outcome and mortality from ischemic stroke

• Promotes atherosclerosis development (as above)
• Enhances the production of matrix metalloproteinases-9

which degrade the tight junction proteins in the blood
brain barrier, leading to cerebral edema, increased
neuro-inflammation and poor neurological outcomes

(61–68)

Heart failure • Correlates positively with circulating levels of N-terminal fragment of
pro-B-type natriuretic peptide

• Associates with the presence of left ventricular systolic and/or
diastolic dysfunction

• Associates with increasing severity of clinical heart failure
• Predicts incident heart failure among older individuals

• Negative inotropic effect on cardiomyocytes
• Reduces phosphorylation of endothelial nitric oxide

synthase in acute myocardial ischemia/reperfusion injury
• Increases oxidative stress and cardiac inflammation
• Increases cardiac hypertrophy and fibrosis

(52, 69–75)

Cardiovascular
mortality

• Associates with both short- and long-term cardiovascular morbidity
and mortality in patients with established coronary heart disease

• Predicts cardiovascular deaths in patients with type 2 diabetes

• See above (76–80)
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AFABP concentration was associated with coronary calcium
score in patients with type 2 diabetes (58), as well as the
coronary plaque burden in patients with coronary heart disease
(59). In keeping with observations from preclinical studies,
AFABP was not only expressed in macrophages within
atherosclerotic plaques of the coronary arteries in patients with
CHD, but also in both macrophages and adipocytes in their
epicardial and perivascular fat. In vitro studies showed that
treatment of human coronary artery smooth muscle and
vascular endothelial cells with AFABP augmented palmitic
acid-induced inflammation, suggesting that AFABP from
epicardial and perivascular fat could also participate in the
development of coronary atherosclerosis in a paracrine manner
(60). Furthermore, individuals who harbored the single
nucleotide polymorphism (SNP) T-87C, which reduced
AFABP gene expression in their adipose tissue, was found to
have a lower risk of CHD (88).
AFABP AND STROKE

The role of AFABP in the development of stroke is multifaceted.
First, high circulating AFABP concentration was associated with
the presence of carotid atherosclerosis (61, 62), a predisposing
condition for cerebral infarction. In patients with carotid
atherosclerosis, AFABP concentrations in their carotid plaques
correlated positively with the vulnerable plaque phenotype (63,
64), predicted their disease progression (89), and doubled their
risk of incident adverse cardiovascular events including
cardiovascular mortality, non-fatal myocardial infarction and
non-fatal stroke (64). Moreover, circulating AFABP concentration
was associated with ischemic stroke in cross-sectional studies, and
high AFABP concentration was consistently shown to be
predictive of poor functional outcome, as well as short- and
long-term mortality in patients who suffered from ischemic
stroke (62, 65–67).

Mechanistically, genetic ablation of AFABP in mice was
recently found to protect them from severe cerebral ischemic
injury induced by surgical occlusion of their middle cerebral
artery, which translated to less neurological deficits and
improved survival after ischemic stroke. Both circulating and
cerebral AFABP concentrations were elevated in response to
cerebral ischemia. The increase in AFABP, derived from
microglia and infiltrating macrophages, enhanced the production
of matrix metalloproteinases-9 (MMP-9) through JNK activity,
which degraded the tight junction proteins in the blood brain
barrier, leading to cerebral edema, increased neuro-inflammation
and poor neurological outcomes (68).
AFABP, HEART FAILURE, AND
CARDIOVASCULAR MORTALITY

AFABP plays a critical role in the development of heart failure
and predisposes to increased cardiovascular mortality. In vitro
studies demonstrated that adipocyte-derived AFABP possessed a
Frontiers in Immunology | www.frontiersin.org 584
negative inotropic effect on rat cardiomyocytes and could inhibit
their contraction (69). In humans, circulating AFABP
concentration positively correlated with circulating levels of N-
terminal fragment of pro-B-type natriuretic peptide (NT-
proBNP), an established marker of heart failure (70).
Moreover, high circulating AFABP concentration was
associated with the presence of left ventricular systolic and/or
diastolic dysfunction (71–73), as well as increasing severity of
clinical heart failure (74). In the Cardiovascular Health Study,
circulating AFABP concentration was also shown to be a modest
but independent predictor of incident heart failure among older
individuals (75).

The negative impact of AFABP on cardiovascular outcomes
could also be attributed to their effects on endothelial
dysfunction and oxidative stress. Genetic ablation of AFABP
protected mice from cardiac dysfunction secondary to diabetes
and myocardial ischemia/reperfusion (MI/R) injury. AFABP,
whose expression was upregulated in cardiac endothelial cells
in response to acute MI/R injury and hyperglycemia, reduced
phosphorylation of endothelial nitric oxide synthase (eNOS) in
acute MI/R injury, and increased superoxide anions in diabetes.
In both situations, endothelial dysfunction ensued, which
induced oxidative stress and cardiac inflammation, leading to
cardiac hypertrophy, fibrosis and impaired myocardial
contractility (52). Indeed, in keeping with findings from studies
in mice, high circulating AFABP concentration was associated
with both short- and long-term cardiovascular morbidity and
mortality in patients with established CHD (76–78),and was an
independent predictor of cardiovascular deaths in patients with
type 2 diabetes (79, 80).
AFABP AND OTHER OBESITY-RELATED
CONDITIONS WITH INCREASED
CARDIOVASCULAR RISK

AFABP is also implicated in the pathogenesis of several obesity-
related complications with increased cardiovascular risk, such as
NAFLD, obstructive sleep apnea (OSA) and chronic kidney
disease (CKD) (90–92). In NAFLD, for instance, over-
expression of AFABP in Kupffer cells of the liver induced non-
alcoholic steatohepatitis in mice, while obesity-induced liver
injury was alleviated by pharmacological inhibition of AFABP
(93). Similar findings had been observed in humans, where
circulating AFABP concentration was associated with
increasing lobular inflammation, hepatocyte ballooning and
higher stages of hepatic fibrosis on liver histology (94). On the
other hand, elevated serum AFABP concentration was also found
in patients with severe OSA compared with those with milder
disease (95, 96), and the use of continuous positive airway
pressure was shown to reduce circulating AFABP concentrations
in a recent randomized controlled study (97). Moreover, circulating
AFABPwas associated with adverse renal outcomes including renal
deaths in patients with type 2 diabetes (98), which could possibly be
a result of macrophage infiltration in the glomerulus and
interstitium, ectopic expression of AFABP in the glomerulus, as
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well as AFABP induced increased ER stress in the mesangial cells
(99–101). Importantly, high circulating AFABP concentration was
also an independent predictor of cardiovascular death in patients
with end-stage renal disease (102).
AFABP AS A THERAPEUTIC TARGET
FOR CVD

Preclinical studies have demonstrated that there is great potential
in targeting AFABP as a therapeutic strategy to combat CVD and
its risk factors. Several AFABP inhibitors have been developed,
including a few biphenyl azole, indole- and carbazole-based
compounds. In particular, BMS309403 (BMS) is a selective,
high-affinity small molecule oral inhibitor of AFABP which
impedes the ligation of fatty acid to its binding cavity on
AFABP (103). Pharmacological inhibition of AFABP using
BMS alleviated endothelial dysfunction and atherosclerosis in
mice with ApoE deficiency. This was accompanied by reduced
cholesterol ester accumulation in macrophages, as well as
attenuated expression of pro-inflammatory cytokines including
MCP1, IL-6 and TNFa (104, 105). Recently, BMS was also
shown to improve stroke outcomes by ameliorating
neurological deficits and improving the survival in mice with
cerebral ischemic injury after surgical occlusion of their
middle cerebral artery (68). Moreover, BMS attenuated non-
alcoholic steatohepatitis (93), improved glucose tolerance
(105) and decreased toxic lipid-induced ER stress associated
inflammation in the skeletal muscle of mice with dietary
Frontiers in Immunology | www.frontiersin.org 685
obesity (106). Another small molecule inhibitor HTS01037,
which acts as a competitive antagonist of AFABP mediated
protein-protein interactions (107), was shown to alleviate
macrophage inflammation and ER stress through upregulating
uncoupling protein 2 (UCP2) expression (108). In addition to
these oral compounds, alternative approaches of AFABP
inhibition have also been investigated. The use of neutralizing
antibodies against AFABP was demonstrated to significantly
reduce adipose tissue inflammation (34), hepatic glucose
production (25), and whole-body insulin resistance in obese
mice (109). Likewise, adipocyte targeted silencing of AFABP
using short-hairpin RNA treatment resulted in significant weight
reduction, improved insulin sensitivity and glycemia in obese
mice (110).

Although clinical studies of both BMS and neutralizing
antibodies are still not available, several compounds have
been found to modulate circulating AFABP concentrations.
Treatment with chloroquine in mice diminished AFABP
secretion from adipocytes, resulting in a lower circulating
concentration (26). In humans, atorvastatin (111), sitagliptin
(112), omega-3 fatty acids (113), and angiotensin II receptor
blockers (ARBs) including candesartan, olmesartan, telmisartan
and valsartan (114) decreased, whereas pioglitazone (115) and
canagliflozin increased circulating AFABP concentrations (116).
While omega-3 fatty acids and pioglitazone directly affect
AFABP expression in adipocytes, it was postulated that ARBs
suppressed and canagliflozin promoted catecholamines-induced
lipolysis, respectively, causing the changes in the circulating
AFABP concentrations despite neutral, if not favorable effects
FIGURE 2 | Direct and indirect effects of AFABP to the development of cardiovascular diseases. AFABP, adipocyte fatty acid-binding protein; CV, cardiovascular.
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of ARB and sodium glucose co-transporter 2 inhibitors on
adiposity (114, 116).
CONCLUSION

Obesity has reached pandemic levels, and so has CVD. Adipose
tissue inflammation with dysregulated adipokine secretion is
crucial to the pathogenesis of adverse cardiovascular outcomes
in obesity. Recent mechanistic and epidemiological studies have
provided further insights to support AFABP as a key player
mediating this adipose-vascular cross-talk via direct and indirect
effects (Figure 2). However, from a clinical perspective, further
validation studies are certainly required to investigate the
potential of employing AFABP as a promising marker of CVD
and cardiovascular mortality for clinical application. Moreover,
standardization of commercial AFABP ELISA assays is also
equally important. On the other hand, while preclinical studies
Frontiers in Immunology | www.frontiersin.org 786
have clearly demonstrated AFABP as an attractive therapeutic
target in battling against CVD, intervention studies to evaluate
the efficacy and safety of pharmacological inhibitors of AFABP
and/or neutralizing antibodies in humans are eagerly awaited. In
summary, although it may still be a long way before its clinical
application as a biomarker or therapeutic target, research in
recent years have clearly shown that AFABP is another major
adipokine linking obesity with inflammation and adverse
cardiovascular outcomes.
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Adipocytes are the largest cell type in terms of volume, but not number, in adipose tissue.
Adipocytes are prominent contributors to systemic metabolic health. Obesity, defined by
excess adipose tissue (AT), is recognized as a low-grade chronic inflammatory state.
Cytokines are inflammatory mediators that are produced in adipose tissue (AT) and
function in both AT homeostatic as well as pathological conditions. AT inflammation is
associated with systemic metabolic dysfunction and obesity-associated infiltration and
proliferation of immune cells occurs in a variety of fat depots in mice and humans. AT
immune cells secrete a variety of chemokines and cytokines that act in a paracrine manner
on adjacent adipocytes. TNFa, IL-6, and MCP-1, are well studied mediators of AT
inflammation. Oncostatin M (OSM) is another proinflammatory cytokine that is elevated in
AT in human obesity, and its specific receptor (OSMRb) is also induced in conditions of
obesity and insulin resistance. OSM production and paracrine signaling in AT regulates
adipogenesis and the functions of AT. This review summarizes the roles of the oncostatin
M receptor (OSMRb) as a modulator of adipocyte development and function its
contributions to immunological adaptations in AT in metabolic disease states.

Keywords: adipocyte, OSM, Inflammation, OSM receptor, fat, adipose tissue, insulin resistance
INTRODUCTION

The global obesity rate has nearly doubled since 1980 (1). This high incidence poses a massive
economic burden on healthcare systems. More importantly, obesity is frequently accompanied by
adverse metabolic effects including hypertension, dyslipidemia, fatty liver, insulin resistance and
type 2 diabetes (T2D) (2). In addition, obesity (3) and T2DM (4) are prominent risk factors for the
severity of COVID-19 infections. Although obesity is a threat to global health, treatment options
remain limited, and they are often ineffective or invasive (e.g. bariatric surgery) (5).

Obesity occurs when energy intake exceeds energy expenditure, but this relationship is complex,
as many factors influence these two parameters. Positive energy balance causes WAT to expand by
adipocyte hyperplasia, hypertrophy, or a combination of these processes. In addition to lipid
storage, adipocytes have important endocrine functions whereby they secrete hormones (leptin,
adiponectin, etc.), microRNAs, exosomes, and lipids that contribute to systemic metabolic health
(6). There is evidence that the release of proinflammatory cytokines, such as Tumor Necrosis Factor
a (TNFa) and Monocyte chemoattractant protein 1 (MCP-1) that can occur in obesity is driven by
org March 2021 | Volume 11 | Article 612013190
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stress responses related to WAT expansion, although specific
mechanisms involved remain to be elucidated (7).

In addition to adipocytes, there are several other cell types
within WAT, including different types of macrophages and T
cells. The non-adipocyte cells in AT, such as immune,
endothelial, perivascular, and stromal cells, as well as
preadipocytes, collectively comprise the stromal vascular
fraction (SVF). The cell numbers of the SVF are greater than
number of adipocytes in white adipose tissue depots. Obesity is
associated with changes in the relative abundance and activation
states of various immune cell subpopulations in AT, as well as
with altered endocrine properties of adipocytes themselves.
Many of the proinflammatory cytokines produced in AT act in
a paracrine manner and typically do not contribute to circulating
levels of these signaling mediators. Proinflammatory cytokines
made in AT can inhibit adipocyte differentiation and induce
insulin resistance in adipocytes, and modulation of both these
processes in AT has systemic effects (8–10). Although less
studied than other AT cytokines, OSM clearly contributes to
AT homeostasis (11–13), and increased OSM levels in AT
promote systemic metabolic dysfunction through effects on
both adipocyte development and adipose tissue function.
OSM AND ITS SPECIFIC RECEPTOR
OSMRß: SOURCE AND BIOLOGY

The gp130, or interleukin (IL)-6, family is a group of structurally
similar cytokines that includes IL-6, IL-11, IL-27, neuropoietin,
leukemia inhibitory factor (LIF), OSM, cardiotrophin-1, ciliary
neurotrophic factor, and novel neurotrophin-1/B cell stimulating
factor-3 or cardiotrophin-like cytokine (14). These cytokines
regulate a variety of complex biological processes, including
hematopoiesis, immune responses, inflammation, stem cell
potency, mammalian reproduction, cardiovascular action, and
neuronal survival (15). Also, gp130 cytokines have been
proposed as potential therapeutic targets for obesity treatment
(16). Hence, there is a strong rationale for studying gp130
cytokines in modulating metabolic processes in WAT and
other tissues involved in obesity and related diseases.

All members of the IL-6 cytokine family require glycoprotein
130 (gp130) as a common signal transducer in their receptor
complexes. Unlike other gp130 cytokines, OSM has its own
specific receptor (OSMRb) that heterodimerizes with gp130 but is
not used by other gp130 cytokines (17) andmediates the majority of
OSM effects. OSM and LIF evolved by gene duplication relatively
recently (18), and they share substantial sequence identity (19).
Though originally identified for its ability to inhibit cancer growth
in humans (20), OSM can modulate a variety of other biological
processes, including liver development and regeneration (21, 22),
hepatic insulin resistance and steatosis (23), inflammation (24), and
cardiomyocyte dedifferentiation and remodeling (25). There is some
evidence that OSM is the only gp130 cytokine with the unique
ability to signal through two distinct receptor units-the gp130/LIFR
(26) and the gp130/OSMRb complex (17). However, other studies
have shown that murine OSM signals only through the gp130/
OSMRb receptor complex (27–29).
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OSM is produced by activated T cells and macrophages (20,
30, 31), and elevated OSM levels are found in a variety of
inflammatory diseases in humans, including inflammatory
bowel disease, rheumatoid arthritis, cancer, and obesity (12,
32–35). Our own research has shown that OSM is present in
the SVF of AT, but not in adipocytes (11). Purification of
immune cells in AT revealed that T cells and macrophages
were the main sources of OSM in adipose tissue in mice (36).
Although OSM is produced in immune cells, the OSM receptor
(OSMRß) is present in both adipocytes and immune cells (36).
However, upregulation of OSMRß expression by high-fat diet is
observed only in adipocytes (36).
EFFECTS OF OSM-OSMRß INTERACTION
IN PATHOLOGICAL CONDITIONS

The molecular signaling caused by OSM-OSMRß interaction has
been suggested to modulate several inflammatory processes,
including obesity-related insulin resistance (11, 13). One of
several mechanisms involved in the ability of excess OSM to
promote metabolic dysfunction is the control of adipogenesis.
Inhibition of fat cell differentiation and adipose tissue expansion
has been recognized as a causative factor for insulin resistance for
over twenty years (37). Indeed, factors that inhibit adipogenesis,
including OSM, tumor necrosis factor alpha and interferon
gamma have been shown to have metabolically unfavorable
effects such as insulin resistance (38). It is well established that
OSM inhibits adipocyte development of both brown and white
adipocytes in vitro (39–41). Mice with a global deletion of OSMRb
have increased adipose tissue mass (42), supporting the concept
that OSM acts to inhibit adipocyte development and that lack of
OSM signaling leads to increased AT expansion. There is also
evidence to suggest that OSM treatment of mice reduces body
weight and adiposity (42, 43). However, it should be noted that the
OSM doses used in these mouse experiments were very high (12.5
ng/g body weight, administered twice daily) and may have caused
indirect effects on fat mass. The anti-adipogenic effects of OSM
have also been shown in human preadipocytes (13). In regard to
the molecular mechanisms involved in the impairment of
adipogenesis, OSM has been shown to inhibits C/EBPa and
PPARg (peroxisome proliferator-activated receptor g) expression,
two key transcription factors involved in adipogenesis (40, 44). In
terms of modulation of lipid and glucose homeostasis, the anti-
adipogenic effects of OSM could have systemic consequences. In
addition to AT, the liver is an essential metabolic organ for
lipogenesis, lipid uptake, and fatty acid b-oxidation and liver is
responsive to OSM signaling (45). Some studies show that the
OSMRb expression levels negatively correlate with mRNA levels
of gluconeogenic genes. Moreover, OSMRb ablation lead to
decreased levels of genes related to cholesterol efflux and fatty
acid b-oxidation, and increased expression of genes that regulate
cholesterol synthesis, fatty acid synthesis, and uptake (45). Hence,
it is likely that OSM promotes inflammation and metabolic
dysfunction at least in part by inhibiting the development of
new adipocytes., but there is also evidence to show OSM also
regulates lipid metabolism pathways in the liver.
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In addition to regulating adipocyte differentiation, OSM has
been proposed to contribute to AT immune response. In contrast
to IL-6 which is directly induced through the TLR-nuclear factor
k-B pathway (46), OSM is secreted by activated macrophages
through a PGE2-cyclic adenosine monophosphate- protein
kinase A pathway (47, 48). In adipose tissue from obese mice,
OSMRß has been reported to be increased in the SVF, especially
in the F4/80-positive ATMs (adipose tissue macrophages),
suggesting that OSM signaling is strongly associated with the
pathogenesis of obesity and related metabolic disorders (43).
OSM binding to OSMRß modulates inflammatory states, both in
vitro and in vivo. Expression of stromal cell-derived factor 1
alpha (SDF-1a) has been reported to be suppressed by OSM
treatment of adipocytes (49). SDF-1a, also known as CXCL12,
regulates the trafficking of bone marrow progenitor cells, as well
as the transendothelial migration of leukocytes (50, 51). Further
studies are required to determine whether altered SDF-1 levels
play a role in mediating OSM’s effects on homeostasis or
metabolic dysfunction. In addition to SDF-1, there is evidence
that plasminogen-activator inhibitor 1 (PAI1) is also directly
regulated by OSM (11). The ability of OSM to induce PAI1 is
dependent on OSMRß expression in cultured murine adipocytes
(11). Although SDF-1 and PAI-1 may play a role in OSM
function in AT, no rigorous studies have identified or directly
evaluated OSM-regulated genes in adipocytes. Interestingly, in
vitro experiments in brown adipocytes have demonstrated that
OSM signaling via the OSMRß results in an increase in TNFa
and MCP-1 (or C-C Motif Chemokine Ligand 2, Ccl2) mRNA
levels, and interleukin 6 protein and each of these cytokines are
involved in the recruitment and activation of macrophages in AT
(13, 41). Therefore, it is reasonable to predict that in obesity, the
overexpression of OSM by immune cells, including macrophages,
is acting on adipocytes to induce the secretion of inflammatory
cytokines that promote infiltration and activation of more
macrophages. This vicious cycle leads to a low-grade chronic
Frontiers in Immunology | www.frontiersin.org 392
inflammatory state that contributes to the development of insulin
resistance (Figure 1). Moreover, in humans with obesity, OSM
levels correlate positively with inflammatory markers and
negatively with glucose transporter 4 (Glut4), suggesting that
signaling through OSMRß could promote an immunological
response in AT that impairs glucose homeostasis (13, 41).

In vivo experiments have demonstrated that mice lacking
OSMRb, specifically in adipocytes, have significant increases in
AT mass and OSM expression in fat, as well as enhanced adipose
tissue inflammation, as compared to floxed littermate controls
(36). The latter observation is unexpected, given that OSM
signaling is known to promote inflammation. Although data
from this study suggests that enhanced OSM-OSMRb action in
other AT cells, including immune populations, is consistent with
the increased inflammatory immune response and insulin
resistance phenotype in mice that lack OSM receptor
specifically in adipocytes (36). Hence, by blocking OSM
signaling in adipocytes via loss of the OSM receptor, the AT
levels of OSM increase and promote metabolically unfavorable
effects by acting on non-adipocyte cells present in AT.

One method to assess the importance of an endocrine mediator
is to inhibit its activity with an immunoneutralization approach.
Immunoneutralizing OSM is a complementary approach to
knocking down the OSM receptor in adipocytes. In a recent study,
we used high-fat fed C57BL/6J mice to induce OSM expression in
AT and performed OSM immunoneutralization. Mice that received
a specific anti-OSM antibody had improved inflammatory responses
as compared to mice treated with a control IgG antibody (13).
Moreover, OSM immunoneutralization normalized glucose levels
and decreased expression of inflammatory genes in adipose tissue.
However, OSM immunoneutralization did not significantly alter
whole-body glucose tolerance or systemic insulin sensitivity (13).
Although there are limitations with this approach, these studies
underscore the need to understand the cell and tissue specific effects
of both physiological and pathological functions of OSM.
FIGURE 1 | Excess OSM and lack of adipocyte OSM signaling contributes to metabolic dysfunction. Less than half of the cells that comprise white adipose tissue
depots are adipocytes. OSM is not produced in adipocytes, but in adipose tissue macrophages in conditions of obesity. OSM acts on preadipocytes to inhibit
adipogenesis and acts on mature adipocytes to promote inflammatory signaling and insulin resistance in adipocytes. Both a loss of OSM signaling in adipocytes or
excess OSM in adipose tissue promote systemic metabolic dysfunction.
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In addition to its functions in AT and association with obesity
and Type 2 diabetes, OSM has been shown to play a role in a
variety of disease conditions. Several studies have identified the
OSM-OSMRß interaction as a potential therapeutic strategy for
several pathological conditions. The selective inhibition of OSM by
a neutralizing antibody suggested that paracrine actions of OSM in
mammary fat played a role in breast cancer progression (34). In
addition, OSM has been identified as a potential biomarker and
therapeutic target in inflammatory bowel disease (35). The ability to
target OSM in inflammatory bowel disease is important as up to
40% of patients do not respond to anti-TNF agents. Of note, an
anti-OSMmonoclonal antibody has recently been shown to be well
tolerated in healthy subjects, and has demonstrated sufficient
affinity to achieve target engagement in systemic circulation and
target skin tissue, supporting further clinical investigation of anti-
OSM antibodies for inflammatory diseases (52).
CONCLUSIONS

In summary, OSM is a member of a large cytokine family, but its
unique functions in adipocytes drive its effects on metabolic
health. Levels of OSM and its receptor are elevated in AT in
conditions of obesity and insulin resistance in mice and man
(12). The roles of OSM have been elucidated using a wide range
of approaches including global and adipocyte-specific knockout
of the OSM receptor, as well as immunoneutralization of OSM in
metabolically compromised mice. In AT, elevated levels of
immune cell-derived OSM act on adjacent AT cells to inhibit
preadipocyte differentiation and to enhance proinflammatory
responses in adipocytes. Although adipose tissue OSM levels
Frontiers in Immunology | www.frontiersin.org 493
correlate with systemic metabolic dysfunction, a loss of OSM
receptor in adipocytes is also associated with impaired metabolic
responses. This finding is consistent with a role for OSM
signaling in healthy adipocytes and in AT homeostasis. Of
note, there is a precedent for the contribution of inflammatory
mediators in normal adipocyte function, as suppressing
adipocyte inflammation impairs AT function and promotes
insulin resistance (53, 54). Notably, the suppression of
macrophage inflammation has little effect on obesity-induced
insulin resistance, but inhibition of inflammatory signaling in
adipocytes substantially effects systemic metabolic function (54).
Inflammatory signaling in adipocytes plays a role in maintaining
normal adipose tissue function and OSM signaling in adipocytes
and adipose tissue is important for normal adipose tissue
function and systemic metabolic health.
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The role of adipose tissue (AT) inflammation in obesity and its multiple related-
complications is a rapidly expanding area of scientific interest. Within the last 30 years,
the role of the adipocyte as an endocrine and immunologic cell has been progressively
established. Like the macrophage, the adipocyte is capable of linking the innate and
adaptive immune system through the secretion of adipokines and cytokines; exosome
release of lipids, hormones, and microRNAs; and contact interaction with other immune
cells. Key innate immune cells in AT include adipocytes, macrophages, neutrophils, and
innate lymphoid cells type 2 (ILC2s). The role of the innate immune system in promoting
adipose tissue inflammation in obesity will be highlighted in this review. T cells and B cells
also play important roles in contributing to AT inflammation and are discussed in this series
in the chapter on adaptive immunity.

Keywords: adipocytes, obesity, adipose tissue, inflammation, innate immunity
INTRODUCTION

Obesity is a growing healthcare problem in the United States and globally. It is a leading cause of
preventable death and currently impacts more than 35% of the US population (1). This number is
estimated to rise with a projected 42% of the US adult population being obese by 2030 (2). Obesity
adversely impacts the entire body leading to increased Type 2 diabetes and associated
complications, Alzheimer’s disease, vascular dementia, obstructive sleep-apnea, accelerated
atherosclerosis, heart failure, fatty liver disease, nonalcoholic steatohepatitis, osteoarthritis,
altered immune system, impaired response to vaccines, and increased susceptibility to cancer
compared to aged-matched lean individuals (3). Obesity is characterized by an expansion of both
visceral and subcutaneous adipose tissue (AT) in the setting of chronic over-nutrition. The ensuing
chronic low-grade inflammation sets the stage for many of the extensive complications. Thus,
understanding mechanisms that mediate the immunological changes in obesity may unlock new
therapeutic strategies. This review places a special emphasis on the innate immune system and
the adipocyte.
INNATE AND ADAPTIVE IMMUNITY

The role of the immune system is to identify self- versus non-self to eliminate potential toxins,
allergens, and pathogens without destroying the host tissue. The immune system is composed of two
key functional responses, innate and adaptive immunity. The innate immune response is the initial
org June 2021 | Volume 12 | Article 650768195
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line of defense after the host’s external barrier. This immune
response is not antigen-specific, but rather recognizes molecular
patterns that are inherent to the toxin, allergen, or pathogen.
This allows for the rapid activation of an immune response
which is followed by the development of an antigen-specific
immune response. The adaptive immune system upon the first
encounter of a toxin, allergen, or pathogen undergoes expansion
to aid the innate immune response. Upon resolution, a subset of
these adaptive immune cells persists and creates a distinct
population of memory immune cells. Memory cells are faster
to respond to future encounters with the same pathogen,
allergen, or toxin. The cellular component of both immune
responses arises from the hematopoietic stem cell. This
pluripotent cell further differentiates within the bone marrow
to generate either the common lymphoid progenitor or the
common myeloid progenitor. The common myeloid progenitor
gives rise to lineage-specific colony-forming cells which then
further develop into a majority of the innate immune cells as well
as megakaryocytes (platelets) and erythrocytes (red blood cells).
The cellular components of the innate immune response include
the granulocytes including monocytes, macrophages,
neutrophils, basophils, eosinophils, mast cells, and dendritic
cells, as well as adipocytes. While the adipocyte is not
traditionally viewed as an immune cell, recent research has
demonstrated that the adipocyte releases adipokines,
microRNAs and lipids to influence the innate immune
response (4–7). The adipocyte also expresses MHCII molecules
during high-fat diet feeding allowing the adipocyte to interact
with naïve T cells resulting in T cell differentiation and activation
(8, 9). The common lymphoid progenitor gives rise to the key
immune cells within the adaptive immune response including B
cells and T cells as well, as more recently discovered innate
immune cells including the NK cell and the innate lymphoid cell
types 1, 2, and 3 (10, 11). The key link between the innate and
adaptive immune system is antigen presentation.
INFLAMMATION IN ADIPOSE TISSUE;
CONTRIBUTION OF INNATE IMMUNITY

The AT immune cell microenvironment in the lean state is a
well-balanced crosstalk between the adipocyte and the stromal
vascular fraction (SVF) or the cellular compartment of AT. In
lean mice, the SVF is comprised of mesenchymal stem cells (12),
endothelial progenitor cells (13–16) as well as numerous
immune cells including anti-inflammatory immunoregulatory
T cells, Tregs (17), innate lymphoid type 2 cells (ILC2) (18),
alternatively activated macrophages (19, 20), and eosinophils (21).
These cells work in concert to ensure the maintenance of
homeostasis within AT including maintaining systemic insulin
sensitivity. However, upon high-fat diet (HFD) feeding, there is a
disruption of the anti-inflammatory milieu with increased
differentiation and recruitment of pro-inflammatory immune
cells creating a chronic, low-grade inflammatory state. In
murine obesity, AT is characterized by the early, transient
infiltration of neutrophils (22) followed by the accumulation of
Frontiers in Immunology | www.frontiersin.org 296
pro-inflammatory CD8+ T cells (23), CD4 Th1 cells (8) and M1
macrophages (19, 20) all of which surround the dying adipocyte
forming a crown-like structure. Innate immunity is an early and
key component in sustaining AT inflammation.

Adipocyte
The adipocyte, unlike most traditional immune cells, links the
innate and adaptive immune systems through adipokine, lipid
and exosome release and through antigen presentation. While
the adipocyte is the primary site of energy storage for the body
and performs multiple metabolic activities, it can assume the role
of a highly functional immune cell, releasing anti- and pro-
inflammatory cytokines and hormones (adipokines), as well as
lipids, which also act as signaling molecules (24). Since its
discovery as an endocrine cell, the adipocyte has been
identified to secrete more than 50 adipokines/cytokines
including adiponectin (4, 25), leptin (5), TNFa (26–29),
visfatin (30), and resistin (31) among many others (32) which
impact local and systemic metabolism and inflammation.

The first adipokine described was leptin which revolutionized
our understanding of the critical role that adipocytes play in
whole-body energy homeostasis (33). Mutations in the leptin
gene in the ob/ob mouse model led not only to hyperphagia and
weight gain but also disruptions in fertility and body temperature
regulation (34). Treatment of ob/ob mice with recombinant
leptin, but not db/db (leptin receptor-deficient) mice, led to
improved body weight and decreased food intake (35). However,
contrary to what was initially hypothesized, leptin is found in
higher levels in obese patients as compared to lean controls (36)
suggesting the presence of leptin resistance (37). Increasing
evidence supports an immunologic role of leptin. Leptin
deficiency is associated with greater susceptibility to death after
administration of LPS or TNFa which is partially corrected with
leptin administration (38, 39). Macrophages from leptin-
deficient mice have impaired phagocytosis and altered cytokine
production (40, 41). In neutrophils, leptin appears to increase
ROS production (42), inhibit apoptosis (43), and affect
neutrophil migration (44) suggesting that leptin impacts cells
that mediate the innate immune response. More recently,
Scherer and colleagues (45) demonstrated that hyperleptinemia
is a driving force for metabolic disorders. Interestingly, a partial
decrease of circulating leptin in obesity reestablishes
hypothalamic leptin sensitivity and effectively reduces weight
gain and enhances insulin sensitivity.

Unlike leptin, adiponectin, a key adipokine involved in energy
homeostasis, is reduced in obese subjects and has anti-
inflammatory effects. Adiponectin is found in higher levels in
AT and blood of lean subjects (46). Ob/ob mice with adiponectin
overexpression have an increased ability to expand their
subcutaneous AT associated with in a reduction of systemic
and local AT inflammation. These mice also develop less ectopic
lipid deposition in the liver and skeletal muscle leading to
improvements in insulin sensitivity despite greater amounts of
AT (47). Within the innate immune system, adiponectin acts
primarily on macrophages resulting in a greater polarization of
M2-like macrophages, decreased M1-like macrophages, and a
reduction in ROS production (48). In neutrophils, adiponectin
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functions to decrease the production of the neutrophil chemokine
CXCL8 (49) and ROS via modulation of NADPH oxidase (50).
These observations highlight the yin-yang relationship of leptin
and adiponectin, which functions as an anti-inflammatory
regulator of the innate immune response. These hormones are
the most well-known adipokines, but as discussed above,
numerous other have been identified. Consistently obese versus
lean humans and mice reveal increased proinflammatory and
extracellular matrix gene expression, but the function of many
adipokines remains unknown (51, 52).

Lipid release is another important mechanism by which
adipocytes can impact immune cells in the AT microenvironment.
Lipids such palmitate and other unsaturated fatty acids can bind to
toll-like receptors (TLRs) on the surface of immune cells, such as
macrophages, and are converted to ceramides and diacylglycerols
during states of lipid overabundance as occurs in obesity. These toxic
lipids enhance proinflammatory signaling (7). More recently,
branched-chain fatty acid esters of hydroxyl fatty acids (FAHFAs)
produced by adipocytes were shown to bind to G-protein coupled
receptors (GPRs) 40 and 120 to inhibit inflammation and improve
insulin secretion and sensitivity (53). Within the blood and
subcutaneous adipose tissue of insulin-resistant humans and mice,
there is a reduction of several FAHFAs most notably palmitic acid
esters of hydroxyl stearic acids. Supplementation of these via oral
ingestion or subcutaneous administration improves glucose and
insulin handling (53). These observations indicate adipocytes
release both pro- and anti-inflammatory lipids as a mechanism to
modulate the immune system.

Adipocytes are composed of large unilocular lipid droplets
containing triacylglycerols and neutral free fatty acids (FFAs),
which are a major mechanism for energy storage and release.
Adipocytes not only release lipids and secrete adipokines, but they
can also employ exosomes- extracellular vesicles (40-150 nm in
size) of endosomal origin to participate in this process. Exosomes
are increasingly recognized as a novel mechanism by which
adipocytes communicate with other cells and target tissues.
Their cargo contains adipokines, lipids, and microRNAs. Release
is dependent on nutritional status and degrees of adiposity:
increased release in obesity and decreased release with caloric
restriction or lipodystrophy. Exosomes can be taken up by
endocytosis, pinocytosis, or phagocytosis, and can be directed to
target cells by adhesion molecules on the exosomal surface (6).
Recently, Flaherty, et al. reported that adipocytes of mice release
1% of their lipid content daily ex vivo via exosomes, which was
increased in obese mice. This release of exosomes contributed to
macrophage foam cell formation, suggesting that exosomes
contribute to the orchestration of AT immune cells (54).
MicroRNAs, which regulate protein translation, are another
important component of adipocyte-derived exosomes.
Adipocytes are a major source of microRNAs in the circulation
with greater than 55 differentially expressed microRNAs between
lean and obese individuals. Adipocyte microRNAs contribute to
the regulation of metabolism, inflammation, and multiple biologic
processes locally and systemically (55). However, controversy
exists as to whether adipocyte exosomes represent a minority or
majority of circulating exosomes (54, 56).
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Finally, one of the most unique features of the adipocyte is its
ability to function as an antigen-presenting cell, which is
described in detail in Chapter XX of this series by Deng et al.
The adipocyte can present antigen to promote differentiation and
activation of interferon gamma-producing CD4 Th1 cells. This
activity is increased early in obesity, after only 2 weeks HFD in
mice, before the AT macrophage increase, suggesting adipocytes
both instigate and maintain AT inflammation (8). Adipocytes
provide a critical link between the innate and adaptive
immune systems.

Neutrophils
Neutrophils are one of the initial inflammatory cells recruited to
sites of host injury. As a component of the innate immune
system, neutrophils have four primary activities including,
phagocytosis, degranulation, reactive oxygen species (ROS)
production, and neutrophil extracellular trap (NET) formation
(57). Within mouse peripheral blood, neutrophils comprise 10-
25% of the circulating immune cells (58), whereas in humans
they compromise 50-70% of circulating immune cells.
Furthermore, unlike humans, mouse neutrophils do not have
defensins (anti-microbial peptides). While there are several
differences between mouse and human neutrophils, mouse
models are still routinely used for genetic manipulation (59).

Early studies in mice observed the transient infiltration of
neutrophils into the AT after the start of HFD resulting in
maximal levels by day 3 and undetectable levels by day 28 (22).
However, others have suggested a more prolonged presence,
contributing to about 2% of the SVF (60). Despite the early and
relatively small contribution of the neutrophil in obese mice, loss
of neutrophil elastase (60) or myeloperoxidase (61) leads to a
decrease in AT inflammation and macrophage recruitment and
promotes resolution of insulin resistance. However, loss of
neutrophil NET formation does not impact obesity-related
inflammation or insulin resistance in HFD-fed mice (62).

Within human AT, there have been fewer studies. One
identified the presence of neutrophils within subcutaneous AT
and reported that neutrophils were contained within the
vasculature with no or limited infiltration into the tissue similar
to vascular pools of neutrophils found in the liver (63). Another
study showed limited infiltration in obesity in both visceral and
subcutaneous AT (64); however, the quantity, cause of
recruitment, and function of these cells within human AT
remains unknown. Despite this, inflammatory lipids such as
leukotrienes are known to attract and activate neutrophils.
Under inflammatory conditions adipocyte and macrophages
produce increased IL-8, a powerful neutrophil chemoattractant
(65, 66). Additionally neutrophils can self-recruit via increased
production of CXCL2, another known neutrophil chemoattractant
(67). Using a mouse peritonitis model, Tynan et al. demonstrated
that lipids extracted from human adipocytes promoted migration
and accumulation of neutrophils and macrophages, and activated
these cells to produce cytokines (68). These effects were similar
whether the adipocytes were obtained from lean or obese subjects,
as fatty acid profiles, analyzed by gas chromatography, were not
different. Oleic acid was also shown to recruit neutrophils in a
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similar mouse model (69). Additionally, adipocyte lipolysis has
been shown to attract neutrophils and enhance their production of
IL-1b leading to the activation of adipocytes and other immune
cells (70). Further studies will be useful to determine the types of
adipocyte lipids and other factors that attract and activate
neutrophils into AT.

Macrophages
One of the most well-studied immune cells in AT and a key
component of the innate immune response is the macrophage.
Within mouse models of obesity, macrophages comprise up to
40% of the SVF (71) and are shown to be involved in the
development of insulin resistance (72), atherosclerosis
progression (73), and other obesity-related complications. In
mice, macrophages have been classified into the relatively
simplistic M1 and M2 phenotypes with obesity increasing the
prevalence of pro-inflammatory M1-like macrophages (19).
Ablation of these CD11c+ proinflammatory macrophages
decreases AT inflammation and interferes with the
development of insulin resistance, suggesting that macrophages
are key mediators of insulin sensitivity (72). Furthermore
inhibiting macrophage recruitment through the genetic
depletion of CCR2 (74) or MCP-1 (75) also leads to the
repression of AT inflammation and insulin resistance during
HFD feeding. In contrast, accumulation of anti-inflammatory
PPARg positive macrophages (M2 macrophages) leads to
Frontiers in Immunology | www.frontiersin.org 498
improvements in AT inflammation and insulin sensitivity (76),
while loss of macrophage PPARg increases AT inflammation and
insulin resistance (77). The balance between the pro and anti-
inflammatory macrophage subtypes is much less defined within
human AT with most AT macrophages expressing both common
M1 and M2 markers (78, 79). Although there is still some debate
on this topic with others suggesting a greater abundance of
CD206 macrophages after weight loss (80). Further research on
human adipose tissue macrophage subsets still needs to be done.
The interaction between adipocytes and ATMs begins with the
formation of crown-like structures characterized by macrophage
accumulation surrounding dying adipocytes. This process is
mediated by the adipocyte secretion of MCP-1 resulting in
macrophage accumulation and activation (81). Once
accumulated, these macrophages release TNFa which increases
adipocyte release of FFAs (82). FFAs are capable of binding TLR4
on both the adipocyte and the macrophage resulting in NFkB
activation and release of IL1b by macrophages (83). Adipocyte
turnover occurs with approximately 10% of adipocytes
undergoing apoptosis annually (84). These dying adipocytes are
removed via trogocytosis by ATMs (85). Adipokine secretion by
adipocytes also alters macrophage function. Increased leptin in
obesity increases the phagocytic function of ATMs and is
associated with an increase in circulating C-reactive protein (41,
86). Adiponectin secretion is thought to be inhibited by TNF-
alpha secretion which is increased in obesity. In the lean state,
FIGURE 1 | The earliest changes in adipose tissue inflammation include adipocyte hypertrophy with direct secretion/exosome release of key adipokines (increased
leptin/decreased adiponectin) which in combination with increased adipocyte MHCII expression result in the differentiation of pro-inflammatory Thelper type 1 cells
(Th1) resulting in decreased regulatory T cells (Tregs). Adipocytes during this time frame also increase IL-8 production resulting in neutrophil accumulation. Later in
the time course (around 8 weeks), macrophage infiltration is stimulated by toxic lipid production and increased MCP-1 secretion which inhibits innate lymphoid cell
type 2 (ILC2) differentiation.
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adiponectin is known to inhibit the development of foam cells
from macrophages and decreases endothelial cell activation and
monocyte adhesion (87). The interaction between adipocytes and
ATMs is a key contributor to the chronic low-grade inflammation
of obesity (88).

Innate Lymphoid Cells Type 2
Another key innate immune cell that is not well-defined within AT
is the innate lymphoid cell type 2 (ILC2). ILC2 cells are important
in the maintenance of insulin sensitivity and are decreased in the
setting of HFD. Innate lymphoid cells express CD4+ related
cytokines, mirror Th1, Th2, and Th3 expression profiles (89),
but differ in that they do not express B or T cell receptors despite
arising from the common lymphoid progenitor cell (90). The ILC2
cell is similar to Th2 cells in that it contains the transcription factor
GATA3 (91) and secretes IL5 and IL13. Within mouse models of
obesity, the administration of IL25 leads to improvements in
glucose tolerance and weight loss and is associated with the
infiltration of ILC2 cells, alternatively activated macrophages,
and eosinophils. Depletion of ILC2 cells in obese Rag1-/- mice
leads to worsening insulin sensitivity and weight gain, while
repletion of ILC2 cells reverses these negative metabolic
consequences (18). Furthermore, in murine models, ILC2 cells
appear to be the primary source of IL-5 and IL-13 and are
necessary for the maintenance of alternatively activated
macrophages and eosinophils, two key cells implicated in the
anti-inflammatory state of lean AT (92). These cells are thought to
contribute to an improved metabolic phenotype through the
beiging of WAT characterized by increased expression of Ucp1
leading to an increase in caloric expenditure and attenuation of
weight (93, 94). These researchers also confirmed that ILC2 cells
Frontiers in Immunology | www.frontiersin.org 599
are markedly decreased in the SAT of obese compared to lean
humans (93); thus highlighting a key role for ILC2 cells in AT (95).

CONCLUSIONS

Multiple changes in the innate immune system are key contributors
to inflammation in obese AT resulting in the development of
obesity-related diseases as summarized in Figure 1. Despite the
greater understanding of the immunologic role of AT, further
investigation should seek to answer the following questions:
(1) what are the causes of AT immune cell infiltration and
activation, (2) how does the adipocyte contribute to these changes
and interact with AT immune cells, (3) is there a role of the gut
microbiota in alteration of AT inflammation and (4) how do AT
immune cells change during weight-loss. Through the elucidation of
the answers to these key questions, immunologic therapies,
potentially targeting the adipocyte, for the treatment of obesity
and its inflammatory complications can be developed.
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