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Editorial on the Research Topic

Primary Glial and Immune Cell Pathology in Neurodegenerative Diseases

Non-neuronal cells in the brain have been proposed as key modulators of neuronal network
function in health and in neurological disease. Until recently, the involvement of glial cells—
including astrocytes, microglial cells, oligodendrocytes and their progenitors—and infiltrating
immune cells in neurodegenerative diseases has been merely viewed as a secondary adaptive
response to disease-specific neuronal pathology. It emerges that glial and other non-neuronal cells
can also be directly affected by neurodegenerative cues, worsening neuronal dysfunction (1, 2).
This has highlighted new potential avenues in targeting disease pathways in a broad spectrum
of neurodegenerative conditions, which would require teasing apart primary pathology from
secondary processes in multiple cell types.

In this issue we brought together some of the leaders in glial cell biology and neurodegenerative
disease research to cover recent advances in pathomechanistic studies informing novel
experimental treatment strategies in six review articles.

The Research Topic starts with two articles discussing the emerging role of astrocytes in
neurodegeneration. One of the most argued, and therapeutically relevant issues, is the extent
to which morphological, gene expression and signaling changes characterize a primary cell-
autonomous astrocyte pathology or a secondary adaptive or “reactive” response to damage. There
is a consensus in the field to steer away from the less reliable phenotypic classifications and
rather assess the function of various astrocytic states in individual disease models to help reveal
potential treatment targets (3). What complicates this assessment is the growing evidence that
astrocytes already represent a large and heterogenous cell population (4, 5). Monterey et al.
review the “many faces” of astrocytes, which can represent both a regional cell diversity and
a broad functional spectrum in disease with multiple targetable elements. They discuss recent
advances in sequencing technologies, and how they can be used to distinguish pathological cell
states and signaling disturbances in Alzheimer’s disease (AD). The article by García-Bermúdez
et al. emphasizes that glaucoma, a common eye disease that damages the optic nerve and the
retina, shares glia-mediated mechanisms with many neurodegenerative diseases, such as AD. The
concept of common pathological processes between the eye and the brain is also supported by
observations of retinal changes in AD patients, forming the basis of an emerging ophthalmological
diagnostic opportunity for neurodegenerative disorders (6). Furthermore, the authors provide a
broad overview on retinal glia-ganglion cell interactions as potential therapeutic targets. Altogether,
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these articles highlight the importance of distinguishing
homoeostatic and detrimental astrocyte responses for identifying
potentially targetable pathological signaling cascades.

Another major advance concerns microglial transcriptomic
and inflammatory signaling changes in neurodegenerative
pathologies. Similar to astrocytes, microglia may adapt to
neuronal injuries by regaining their homeostatic function but
can rapidly escalate the expression of inflammatory mediators
as part of the innate immune response. How the adaptive
immune response and other risk factors trigger this process
in neurodegeneration have been an exciting topic in research
over the last decade (7, 8). A minireview by Candlish and
Hefendehl highlight the recent significant advances in this
field. In particular, they overview mechanisms that govern
the transition of microglia into various subtypes during the
neurodegenerative process. A particularly interesting angle is
the discussion about the risks that lifestyle factors and aging
processes impose on cell phenotype changes. Nitsch et al. then
provides a detailed overview on the contribution of microglial
signaling to AD pathology with a specific focus on interleukin-23
(IL-23). This paper sheds light on mechanisms by which p40, an
IL-23 subunit can be released by microglial cells upon exposure
to amyloid-beta (Aβ), a central molecule in AD pathogenesis.
One of the key messages of this review is that p40 appears to
establish a new link betweenAβ and neuroinflammation, possibly
via Th17 cells, astrocytes and microglia. Although the identity
of effector cells and pathways induced by IL-23 require further
elucidation, blocking or neutralizing antibodies for IL-23 may
provide promises in reducing cerebral amyloid load or soluble Aβ

species (9), which may attract therapeutic interests. Since anti-
inflammatory or current antibody treatment approaches have
yet to improve the clinical outcome in neurodegeneration, for
instance in AD patients (10, 11), the articles in this special issue
well serve the purpose of highlighting potential target options for
more effective strategies.

The final two articles wrap up the recently revealed aspects
of interactions between astrocytes, microglia, peripheral immune
cells, and their effect on neuronal networks. Pietrowski et
al. reviews the growing evidence of purinergic signaling and
its breakdown between glial cells and neurons. This is of
particular relevance to non-cell autonomous pathomechanisms
in neurodegeneration (1, 7), which can worsen neuronal network
function, leading to cognitive or motor decline. This paper
also brings up the issue of emerging major transcriptional and
functional differences between human and mouse astrocytes and
microglia (12, 13), including expression of genes that are a
pre-requisite for their interactions with neurons. Considering
these potential differences is crucial when interpreting results in
mouse diseasemodels that do not entirely recapitulate the human

pathobiological phenotype (14). Another timely issue related
to glial cell communication concerns immune cells, a topic
which has emerged onto the central stage of neurodegeneration
research. Copas et al. put this into an interesting perspective.
They describe how the genetic risk in Parkinson’s Disease (PD)
may affect glial cells and conspire with peripheral infections
during lifetime, predisposing to a chronic neuroinflammatory
response. The authors follow us through the ways infiltrating T
cells could play a central role, triggered by antigen-presenting
microglia. They argue that this may also lead to altered astrocytic
inflammatory responses, and consequently contribute to the
loss of dopaminergic neurons. The broad overview of the
above disease-related pathways illuminates the role of infection
and peripheral immune activation as important risk factors in
neurodegenerative diseases.

CONCLUSIONS

Overall, the review articles in this issue remind us of the
multiple cell-types that are primarily involved in disease, and
also focus on those cell populations that are not innate in the
brain. The discussions highlight the need for systems biology
approaches to distinguish initiating molecular disturbances
that can be obscured by secondary homeostatic responses in
many cell populations. Recent examples have already shown
us how new technologies and platforms, such as single
cell or spatial transcriptomics and human stem cell-based
or brain organoids could resolve the above problem (15–
17). We anticipate that the emerging data demonstrating
human-specific differences in pathogenesis will transform
translational science and personalized treatment strategies in
this decade.
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Glaucoma is the second leading cause of blindness worldwide, affecting ∼80 million

people by 2020 (1, 2). The condition is characterized by a progressive loss of retinal

ganglion cells (RGCs) and their axons accompanied by visual field loss. The underlying

pathophysiology of glaucoma remains elusive. Glaucoma is recognized as a multifactorial

disease, and lowering intraocular pressure (IOP) is the only treatment that has been

shown to slow the progression of the condition. However, a significant number of

glaucoma patients continue to go blind despite intraocular pressure-lowering treatment

(2). Thus, the need for alternative treatment strategies is indisputable. Accumulating

evidence suggests that glial cells play a significant role in supporting RGC function and

that glial dysfunction may contribute to optic nerve disease. Here, we review recent

advances in understanding the role of glial cells in the pathophysiology of glaucoma.

A particular focus is on the dynamic and essential interactions between glial cells and

RGCs and potential therapeutic approaches to glaucoma by targeting glial cells.

Keywords: Glaucoma, glia, retinal ganglion cells, Müller glial cells, microglia, astrocytes, oligodendrocytes, retinal

glia interactions

INTRODUCTION

Glaucoma is a group of eye diseases that can cause vision loss and blindness. The number of
people with glaucoma is increasing due to the age-related nature of the disease (3). Hence, it
is estimated that more than 120 million people worldwide will suffer from glaucoma in 2040
(4). Glaucoma is characterized by progressive degeneration of retinal ganglion cells (RGCs) and
is often asymptomatic until its advanced stages when vision loss is irreversible (5). Glaucoma
can be classified as either primary or secondary, with secondary glaucoma attributable to
known pathologies or medications. Glaucoma may be further classified as either open-angle or
angle-closure according to the anatomy of the aqueous outflow pathway (2, 6). In all subtypes of
glaucoma, the inner retinal degeneration, especially the gradual loss of RGCs, is a hallmark (7).
RGCs are the output neurons of the retina, and their axons transfer visual information from the
retina to the brain (8). RGC dysfunction and death lead to vision impairment and ultimately to
blindness. To date, no approved treatments for glaucoma directly target RGCs. Instead, the only
available treatments are indirectly protective for RGCs by lowering the intraocular pressure (IOP).
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It is, therefore, crucial to identify cellular mechanisms for the
prevention of RGC degeneration, the repair of dysfunctional
cells, and the promotion of axonal regeneration to limit the
projected burden of vision impairment and blindness from
glaucoma (9, 10). Although the most investigated risk factors
for glaucoma progression include IOP, age, genetic background,
thinner corneal thickness, and vascular dysregulation (11), other
disease mechanisms such as oxidative stress, mitochondrial
dysfunction, excitotoxicity, and immunological processes may
contribute to the pathophysiology of the disease (2, 12, 13).
In this context, accumulating evidence suggests that glial cells
in the retina and optic nerve may play important roles in the
pathogenesis of RGCs (14–16). However, despite having been
studied for more than a century, there are substantial aspects of
the interrelationship between glial cells and RGCs that are still to
be elucidated (17, 18).

Emerging literature emphasizes the roles of glia in both the
maintenance of the retina and in the pathogenesis of glaucoma
(15, 19). Although Müller glia, astrocytes, oligodendrocytes,
and microglia have different developmental origins, they
are now known to share many functions. Although some
functions are subserved simultaneously by different glia,
others are performed by specific glial subtypes (14, 19–22).
Similarly, attention has turned to the complex interactions
between retinal glia and neurons and the centrality of
these interactions to retinal homeostasis (14, 19, 23, 24).
Likewise, it is evident that the glial response to injury
stimuli can further perpetuate RGC damage (17, 23, 25, 26).
Despite these important advances in our understanding of
the interactions between glia and retinal neurons in health
and in the context of glaucoma, there is still much to
be learned.

GLIAL CELLS OF THE RETINA ARE NOT

JUST SUPPORT CELLS

Glial cells are named after the Greek word for glue, as it was
thought that their function was simply to bind the neurons
in the central nervous system (CNS) together (27). It is
now understood that glial cells play a range of diverse and
complex functions beyond the provision of structural support
to neurons. Two basic types of glial cells are found in the
human retina: macroglia and microglia. Retinal macroglia are
comprised of Müller glia and astrocytes. Macroglia maintain
retinal homeostasis by regulating ion exchange, glucose, and
neurotransmitter transport (14). Microglia respond to retinal
injury and are important in the maintenance of neuronal
networks and the mediation of neuroinflammation (14, 28–
30). In the optic nerve, oligodendrocytes, another type of
macroglia, and astrocytes provide essential support to RGC
axons as they travel to the brain (31). Accumulating evidence
suggests that both types of glial cells are interacting with the
retinal and optic nerves, and are important contributors to
the pathophysiological processes leading to glaucomatous RGC
loss (14, 15, 17, 23, 32–34).

A PARTNERSHIP BETWEEN MÜLLER GLIA

AND RETINAL GANGLION CELLS

Müller glia are found throughout the retina, with processes
extending from the outer limiting membrane to the inner
limiting membrane and surrounding the RGCs. Their unique
morphology and distribution are related to the role of Müller
glia as mediators of the transport of molecules between RGCs
and the vitreous humor, retinal vessels, and the subretinal space
(15) (Figure 1). Müller glia have multiple functions and are
symbiotically associated with RGCs.

Glutamate Clearance to

Avoid Neurotoxicity
An essential role of Müller glia is their ability to rapidly remove
excess glutamate from the extracellular space by amino acid
transporters (excitatory amino acid transporters), keeping it
at low concentrations to avoid excitotoxicity (18, 24, 35, 36).
Glutamate is converted to glutamine via the glial-specific enzyme
glutamine synthetase. Glutamine subsequently serves as the
precursor for glutamate in neurons. In patients with glaucoma
and some animal models of the disease, an augmentation of
glutamine expression in Müller glia has been shown, indicating
an enhanced activation of the glutamate–glutamine cycle (37–
39). In addition, it is thought that increased glutamine levels in
Müller glia might be due to reduced glutamine requirement in
damaged RGCs (37). In addition to removing excess glutamate
from the synapse, Müller glia can also use glutamate as a
metabolic substrate (16, 18, 26) (Figure 2).

Glial Cell Line-Derived Neurotrophic Factor

in Glutamate Homeostasis
Another crucial Müller glia feature is the ability to release
neurotrophic factors. In this context, studies have shown that
ischemia-induced glial cell activation results in the release
of glial cell line-derived neurotrophic factor (GDNF), which
increases glutamate uptake, thereby potentially facilitating
neuroprotection by reducing glutamate-induced excitotoxicity
(37, 40). The potential neuroprotective role of GDNF has
been supported in a rat ocular hypertension model, where
an intravitreal injection of GDNF-containing microspheres
was shown to increase RGC survival while reducing glia
cell activation (41). The neuroprotective effect of GDNF has
furthermore been associated with reduced activation of the L-
glutamate receptor, N-methyl-D-aspartate receptor (NMDAR)
(42), by receptor desensitization and downregulation in both
neocortical neurons and astrocytes through activation of
mitogen-activated protein kinase (MAPK) (43, 44). However,
there are conflicting results regarding the effect of GNDF on
glutamate homeostasis, with one study suggesting that GDNF
pre-treatment can increase neuronal cell death via upregulation
of glutamate transporters with a consequent increased excitotoxic
concentration of glutamate (45).
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FIGURE 1 | Cellular architecture of mammalian retina. Retina consists of 10 layers. Starting with layer furthest away from vitreous humor (VH), layers of retina are

retinal pigment epithelium (RPE), photoreceptor layer (PhL), outer limiting membrane (OLM), outer nuclear layer (ONL), outer plexiform layer (OPL), inner nuclear layer

(INL), inner plexiform layer (IPL), retinal ganglion cell layer (RGC), retinal nerve fiber layer (RGC axons) (NFL), and inner limiting membrane (ILM). Main types of glial cells

found in mammalian retina are macroglia [Müller glia (MG) and astrocytes (As), and microglia (Mi)]. Glial cells serve to maintain retinal homeostasis. As illustrated, Müller

glia traverses retina, providing structural support to neurons, mediating transport of molecules between retinal vessels and RGCs, and secreting neurotrophic factors,

such as BDNF, NT3, and NGF. Furthermore, processes of Müller glia comprise outer and inner limiting membranes of retina. Müller glia, end-feet of astrocytes and

vascular endothelial cells, and basal membrane constitute blood–retinal barrier. BM. basal membrane; Ch, choriocapilaris.

N-Methyl-D-Aspartate Receptor Activation

Is Crucial in Retinal Homeostasis
In general, safeguards against glutamate excitotoxicity have
been proposed to be important treatment targets to prevent
retinal neurodegeneration. In particular, NMDAR activation has
been extensively studied and found to be essential for retinal
homeostasis but, at the same time, to cause neurodegeneration
when overactivated (46). To activate NMDARs, D-serine, or
glycine along with glutamate are required. D-serine is a
physiological coagonist of the NMDA subtype of glutamate
receptor (47). The enzyme serine racemase has been shown to
catalyze the conversion of L-serine to D-serine in rats and mouse
Müller glia and in cortical astrocytes (46, 48). Furthermore, D-
serine has been shown to play an important regulatory role in
NMDAR response to light-evoked activity in retinal neurons
(49). D-serine and serine racemase are mainly localized in
Müller glia and retinal astrocytes (48), and in this regard, glia
dysregulation of D-serine metabolism has been associated with
retinal neurodegeneration, including glaucoma (47, 50).

Glycolysis Is the Energetic Support of

Müller Glia
Bioenergetic support is central to retinal homeostasis, as
the retina is one of the most metabolically active tissues

in the body (51). Although retinal neurons are highly
dependent on mitochondrial phosphorylation to produce
adenosine triphosphate (ATP), aerobic glycolysis has been shown
to be the major provider of ATP in Müller glia (52). It is still
unclear why glucose is not completely oxidized under aerobic
glycolysis conditions in Müller glia. Some studies have suggested
that the absence of the aspartate glutamate carrier (AGC) in
Müller glia may explain the predominance of glycolysis in these
cells (53, 54). Thus, AGC is a major component of the malate-
aspartate shuttle (MAS) that translocates electrons produced
during glycolysis to mitochondria to oxidize glucose (54).
Despite some studies claiming that oxidative phosphorylation
is less likely in Müller glia, we and others have observed
that Müller glia switch primarily to mitochondrial respiration
under glucose-deprived conditions (26, 55–58), whereas in
the presence of sufficient intracellular glucose levels, Müller
glia mainly rely on a combination of aerobic and anaerobic
glycolysis (59, 60).

Lactate Can Act as a Primary Energy

Source
The predominant glycolysis during normal conditions results
in the aerobic conversion of glucose into lactate, which is
thought to be shuttled to the RGCs. The shuttling of lactate
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FIGURE 2 | Glial cell and neuronal interactions in human retina. Müller glia and astrocytes take up excess extracellular glutamate to prevent glutamate-induced

excitotoxic damage of retinal ganglion cells (RGC). Once glutamate is transported into glial cells, it is converted into glutamine by glutamine synthetase (GS). Glutamine

can then be released by glial cells, taken up by neurons, converted into glutamate by glutaminase (GLS), and reused in synaptic neurotransmission. Glutamate can

also be converted into α-ketoglutarate by glutamate dehydrogenase (GD) and used as an energy substrate. Müller glia supply bipolar cells and RGCs with energy

substrates in form of lactate. Additionally, lactate released by Müller glia may function as a signaling molecule for G-protein coupled receptor 81 (GPR81) to inhibit

glutamate release. EAAT, excitatory amino acid transporter; GLUT, glucose transporter; MCTs, monocarboxylate transporters; NMDAR, N-methyl-D-aspartate receptor.

from glia to retinal neurons was originally hypothesized by
Pellerin et al. (61). Their hypothesis predicted that uptake
of glutamate would trigger glycolytic production of lactate,
which in turn would be released and taken up by the
surrounding neurons to fuel oxidative metabolism (62). It
is clear that the lactate shuttle alone cannot explain the
complex partnership between Müller glia and RGCs. Although
lactate is highly produced in Müller glia, the overall role

of lactate is likely to be greater in the retina compared
with other tissues. Hence, the content of lactate is much
higher in the retina compared with other tissues (16), and
studies have reported a preference for lactate as a primary
energy source in both Müller glia and RGCs compared with
glucose (58, 63, 64).

It is clear that lactate is at the crossroads between glycolytic
and oxidative energy metabolism and that more studies are
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necessary to understand further the roles of lactate in retinal
homeostasis and pathology (65).

Mitochondrial Dysfunction Is Associated

With Glaucoma
Nevertheless, lactate metabolism is tightly associated with
mitochondrial function, and disturbances in such have
been identified as important to numerous retinal and optic
nerve diseases, including glaucoma (52, 66, 67). Thus,
age-related impairments of mitochondrial function may
exacerbate these diseases (67–70). Mitochondrial genetic
variations have been associated with primary open-angle
glaucoma (POAG) in large genetic studies (71). In particular,
genes involved in mitochondrial lipid and carbohydrate
metabolism pathways have been implicated in the pathogenesis
of POAG and normal-tension glaucoma (72). In line with
these findings, metabolomic studies have also identified
dysfunctional carbohydrate metabolism in POAG (73).
In parallel, Müller glia seems to be vulnerable to the
effects of metabolic stress and mitochondrial dysfunction
(52, 54, 59, 74, 75). Because many of the essential functions of
Müller glia are energy-dependent, mitochondrial dysfunction
leaves these cells vulnerable during glucose restriction
(52, 59).

Retinal Diseases Cause Müller Gliosis and

Nitric Oxide Production
As Müller glia span the entire depth of the neural retina, they
are vulnerable to most forms of retinal injury. Accordingly,
Müller gliosis, characterized by increased expression of the
glial fibrillary acidic protein and activation of extracellular
signal-regulated kinases, occurs in a wide range of retinal
diseases (23, 76–78). Immediately after injury, Müller gliosis
may be neuroprotective due to the production and release of
antioxidants and trophic factors, including expression of ciliary
body-derived neurotrophic factor (CNTF) (79). In contrast,
later-stage gliosis has been associated with cell death and the
establishment of a glial scar that inhibits neuronal regeneration
(15, 80, 81). A particular pathological event during gliosis is the
accumulation of nitric oxide (NO). Thus, NO has been shown to
cause intracellular damage by inhibiting mitochondrial function,
lowering ATP, and via direct damage to DNA. Furthermore,
in a rat experimental glaucoma model, NO synthase (NOS)
levels were found to be increased at the optic nerve head in
response to IOP increase, resulting in increased NO levels (82).
Despite the substantial literature on the neurotoxic effects of
NO, NO also plays an important role in regulating retinal
vascular tone to match neuronal activity (83). Thus, although NO
contributes to neurovascular coupling and retinal homeostasis,
it may become injurious in excess and in the context of
retinal injury.

Overall, there is a growing body of evidence indicating that
Müller glia is essential for RGC survival and that Müller glial
dysfunction and stress are important factors in the pathogenesis
of glaucoma (26, 80).

ASTROCYTES AND THEIR ROLE IN

RETINAL GANGLION CELL HOMEOSTASIS

AND GLAUCOMA

Retinal astrocytes, also called astroglia, link neurons to blood
vessels and are located almost exclusively in the retinal
nerve fiber layer (84). They have been found to provide
structural and physiological support to optic nerve head
axons (85) and modulate remodeling of the extracellular
matrix in response to IOP elevation (86, 87). During
retinal injury or in response to elevated IOP, astrocytes
are activated, followed by morphological changes, such as
cell body hypertrophy and loss of thick processes (17, 87).
In addition, astrocyte processes have been shown to lose
their parallel orientation and distribution once axons are
lost (88).

Astrocytes Have Several and Different

Functions in the Retina
Retinal astrocytes supply bioenergetic substrates to RGCs
via the glutamate/glutamine cycle and via the transport of
lactate and pyruvate (88, 89). It is thought that astrocytes
account for more than 70% of the mitochondria in the
optic nerve head (90, 91). In this context, astrocytes have
been shown to engulf and degrade dysfunctional axonal
mitochondria, a process known as transmitophagy (92, 93).
Moreover, astrocytes have been shown to remove ions and
recycle neurotransmitters from the extracellular space (28).
During various pathological events, including elevated IOP
or simply during aging, astrocytes undergo gliosis, a process
of neurochemical and morphological remodeling (90, 94).
Astroglial activation in glaucoma has been shown to increase
the expression of many factors, including endothelin-1 (ET-
1), tumor necrosis factor-α (TNF-α), oxidative stress molecules,
and trophic factors, e.g., CNTF, with varied neuroprotective and
harmful properties (17, 25, 32, 95, 96).

Activated Astrocytes Play a Role in

Glaucoma
In the course of progressive glaucoma, reactive gliosis and
inflammation may potentially promote regeneration and
remodeling in the optic nerve (90, 94). Within this era, IOP-
induced mechanical stress has been shown to upregulate
epidermal growth factor receptor after activation of astrocytes
and finally leading to a neurodegenerative response with the
upregulation of TNF-α, matrix metalloproteinases (MMPs),
and endothelin and nitric oxide synthase-2 (NOS-2) (97–
100). Upregulated expression of the phagocytosis-related
gene Mac-2 (101) and ET-1 have also been described in
experimental glaucoma as well as in the plasma and aqueous
humor of glaucoma patients, indicating an association between
these molecules and phagocytic degeneration of myelin in
the optic nerve head transition zone in glaucoma patients
(14, 92).
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Astrocytes Are Involved in Retinal

Homeostasis
Overall, there is considerable evidence that astrocytes are
essential for the maintenance of retinal homeostasis by clearing
debris fromRGC axons, supporting RGCswith energy substrates,
and finally by removing excess neurotransmitters from the
synaptic cleft (89, 95, 102). In contrast, activated astrocytes
may have detrimental properties such as secretion of neurotoxic
molecules and induction of inflammatory responses (14, 17, 95,
103, 104). Despite the lower abundance of astrocytes compared
with Müller glia in the retina, the two macroglia subtypes have
multiple overlapping functions but also separate properties that,
in most cases, remain unknown. Future studies are highly needed
to investigate the individual and the similar functions of both
astrocytes and Müller glia. Moreover, their potential partnership
is also important to understand. Current knowledge of such a
partnership is discussed later.

OLIGODENDROCYTE AND THEIR

ESSENTIAL SUPPORT OF RETINAL

GANGLION CELL AXONS

Oligodendrocytes myelinate axons in the CNS (31), significantly
reducing the energy requirements for the propagation of action
potential and further protecting against various cytotoxic
and excitotoxic factors (105, 106). A single oligodendrocyte
can produce numerous myelin segments on multiple axons
(107). Myelinating oligodendrocytes express neurotransmitter
receptors, ion channels, transporters, and gap junctions
(108). RGC axons remain unmyelinated until they reach the
retrolaminar portion of the optic nerve. At this point, the axons
are ensheathed by and supported by oligodendrocytes (31).

Oligodendrocytes Support Metabolic

Transport
Oligodendrocytes are great examples of metabolic coupling
between glia, which furnishes essential metabolic substrates to
RGC axons (108, 109). Thus, oligodendrocytes have been shown
to shuttle lactate to axons, thereby promoting axonal function
and survival (107, 110). Both lactate and pyruvate are transported
via monocarboxylate transporters (MCTs). MCT-1 transports
lactate out of the oligodendrocyte membrane, whereas MCT-2
transporters are located on the RGC-axons and transport lactate
into the RGC-axon (111). Astrocytes are also involved in lactate
transport, as glucose is taken up in astrocyte processes from
the blood vessels and metabolized to lactate/pyruvate, which is
then transported to the oligodendroctyes via gap junctions and
subsequently to the axons (107).

Poor Myelination Is Involved in

Neurodegeneration
An experimental link to the potential importance of impaired
bioenergetic supply to axons in glaucoma has been provided.
Thus, Rindholm et al. performed a study on mutant and
transgenic mice with deficient proteolipid protein, a principal
component of myelin, and showed that these mice had axonal

degeneration, whereas the action potential propagation remained
intact. Rindholm et al. further investigated the impact of myelin
basic protein deficiency and reported that these mice lacked
both compacted myelin and action potential propagation in the
absence of axonal degeneration (112–114). Overall, these studies
indicated that oligodendrocytes provide axons with support for
survival and action potential propagation and that a dysbalance
in oligodendrocyte myelination can be detrimental for RGC axon
function and survival (112).

Mitochondrial Dysfunction Is Associated

With Glaucoma
Mitochondrial dysfunction has also been shown to play crucial
roles in the homeostasis of oligodendrocytes. Thus, mitochondria
are essential for the development of myelin sheaths and the
development of carbon skeletons and lipid metabolism (115).
Oxygen starvation and glucose deprivation have furthermore
been shown to inhibit myelin development, and added together,
multiple stressors have been found to have a detrimental
impact on oligodendrocytes and thus associated with retinal
neurodegeneration, such as seen in glaucoma (116).

In humans, optic nerve oligodendrocytes from glaucoma
patients have been found to have smaller mitochondria compared
with age-matched controls (116), supporting findings in the
DBA/2J mouse model of glaucoma in which bioenergetic
impairment was associated with axonal degeneration (114).
Overall, there is some evidence for the involvement of
oligodendrocytes in the pathogenesis of axonal dysfunction and
loss. However, future studies are needed to investigate further
how these glial cells predispose to axonal metabolic compromise
and loss in glaucoma (117).

MICROGLIA AND THEIR IMPACT ON

RETINAL GANGLION CELL SURVIVAL AND

FUNCTION

Microglia are innate immune cells of the CNS. Activation of
microglia may be triggered by multiple events (20), such as
ATP release from nerve terminals, activated immune cells or
damaged cells (118), neurotransmitter accumulation (119), the
release of growth factors or cytokines (120), and changes in ion
homeostasis (121). Activation of microglia is highly regulated.
Hence, beneficial activation of microglia leads to the secretion
of anti-inflammatory cytokines, such as interleukin (IL)-10 vs
interleukin-10 (IL-10) that inhibits the production of pro-
inflammatory cytokines by microglia (122–124). In contrast,
marked activation of microglia in the setting of major insults
results in the release of pro-inflammatory cytokines and cytotoxic
agents, such as TNF-α, IL-1β, IL-6, inducible NOS, and NO,
which in turn kill potential pathogens (125, 126) (Table 1).

Activated microglia migrate toward sites of injury due to the
expression of β-integrin CD11α (126) in a process mediated
by the transcription factor nuclear factor-kappa-light-chain-
enhancer of activated B cells (2). In addition, microglia support
myelination, oligodendrogenesis, and neurogenesis, as well as
stimulate synaptic formation and maturation (144).
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TABLE 1 | Effector molecules of activated microglia.

Growth factors References

Basic fibroblast growth factor (127, 128)

Transforming growth factor α (129, 130)

Transforming growth factor β (129)

Cytokines

Interleukin-1α (129, 131)

Interleukin-1β (132, 133)

Interleukin-3 (130)

Interleukin-6 (134, 135)

Interleukin-10 (136, 137)

Tumor necrosis factor α (132, 138)

Complement factors

C1, C2, C4 (129, 139)

Free radicals

Superoxide anions (138, 140)

Nitrix oxide (141, 142)

Adapted from Minghetti et al. (143).

Activated Microglia and Glaucoma
Substantial evidence has shownmicroglial involvement in several
eye diseases, including glaucoma (34, 145–148). In glaucoma,
activated microglia have been described in clusters around
blood vessels in the injured optic nerve and choriocapillaris,
indicating an innate immune activation (149, 150). Dual roles
for activated microglia have been proposed in glaucoma. On
the one hand, activated microglia can phagocytose degenerated
or dying RGCs, thereby maintaining a retinal environment
free of toxic molecules (33), as well as the ability to secrete
neurotrophic factors, such as brain-derived neurotrophic factor
(BDNF) and CNTF (151), which provide neuroprotection and
possibly promote neuroregeneration (95). On the other hand,
chronic microglial activation leads to the release of neurotoxic
and pro-inflammatory molecules, as mentioned earlier (28).
In rodent glaucoma models, where mice were exposed to
either hypoxic damage or ocular hypertension, a release of
TNF-α and IL-1β from activated microglia accompanied by
apoptosis of RGCs was found, supporting the involvement
of microglia in glaucomatous neurodegeneration (152, 153).
In addition, in an experimental rat model of glaucoma,
microglial activation was shown to increase inducible NOS
expression, NO production, and RGC injury (154). Activated
microglia have furthermore been shown to release reactive
oxygen species and prostaglandin E2, which predispose to
RGC apoptosis (155). In glaucoma, microglial cell activation
at the optic nerve head has been shown to be associated with
altered cellular morphology, protein expression, and antigen-
presentation (149, 156). Moreover, damage-associated molecular
patterns (DAMPs), released by RGCs or by astroglia in the optic
nerve head, which can trigger an inflammatory response, have
been shown in response to elevated IOP (32). Finally, microglial
activation has been correlated with axonal degeneration in an
experimental glaucoma model (33).

Microglia, Friend, or Foe?
As with macroglia, significant research has suggested that
microglia can be considered either friend and foe depending
on the degree of activation and context (21, 77, 143, 157, 158).
One mechanism by which microglial activation is controlled is
via a series of cell surface receptors (33). Thus, microglia are
usually activated only when necessary to minimize safety damage
to neighboring cells (159). Consequently, damage to RGCs may
occur as observed in glaucoma when microglial homeostasis
is disrupted. The expression of several inhibitory receptors
decreases with age. Examples of such receptors are CX3CR1 and
CD200. Ligand binding to CX3CR1 is crucial for the elimination
of damaged or dying cells, whereas ligand binding to CD200
receptors leads to modulation of activated microglia during
chronic as well as acute inflammation (138, 159). Other receptors
vary with sex and age, such as the purinergic receptors P2 that
bind to ATP to mediate intercellular communication (159). In
a mice model of glaucoma, it has been demonstrated that a
deficient activation of CX3CR1 enhances microglia activation
and leads to neurotoxic loss of RGCs (34).

Emerging evidence exists on the impact of autophagy in
microglia activation (160). In this context, autophagymodulation
is thought to regulate microglia phagocytosis and inflammatory
response (160, 161). Autophagy can either be considered
as pro-inflammatory or anti-inflammatory depending on the
acute or chronic stage of the injury (161). Potentially, the
balance between autophagy and microglia can be regulated by
pharmacological inhibition of, e.g., 3-methyladenine. Finally,
studies indicate that some humans are genetically impaired
of basal autophagy, which can impact retinal homeostasis
and potentially promote retinal neurodegeneration, hereunder
glaucoma (162–164). Future studies are needed to investigate
further the partnership between autophagy and microglia as well
as to elucidate further the interaction between microglia as well
as other glia subtypes and RGCs.

RETINAL GLIAL INTERACTIONS

Emerging evidence has identified the importance of cross talk
between retinal glial cells in health and disease (14, 165–167)
(Figure 3). In general, glia interactions attempt to maintain
retinal homeostasis and regulate each other’s activity. However,
glia interactions can also create imbalance and thus contribute to
retinal neurodegeneration.

An example of a glia interaction is the modulation of T cell
response due to microglia antigen presentation (165), which
in turn regulate the inflammatory cytokine levels, including
TNF-α and IL-1β, followed by astrocyte activation (28, 168).
Furthermore, microglial migration and immune cell recruitment
have been correlated with Müller glial activation (14), indicating
tight coordination of retinal immune responses (169). In line
with this, activated microglia secrete TNF-α, CCL2 (MCP-1),
MCP-3, MIP-1α, MIP-1β, and CCL5 (RANTES), which mediate
activation and recruitment of additional microglia, amplifying
the inflammatory response (84, 165, 170). In addition, microglia-
derived IL-1β has been shown to upregulate the expression of
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FIGURE 3 | Glial interactions in retina and optic nerve. In retina, astrocytes, Müller glia, oligodendrocytes, and microglia widely interact to maintain retinal homeostasis

by release of trophic factors and cytokines, ATP-exchange, phagocytosis of neuronal debris, antigen presentation, and by promoting activity of each other.

Furthermore, retinal glia cells are interactively involved in maintaining retinal vessels as well as blood–retinal barrier, for example, through interactions between microglia

and astrocytes. Some glial interactions also impair function of other glial cells. In particular, microglia via release of cytokines (IL-1β and TNF-alpha) affect function of

oligodendrocytes, which myelinate axons of retinal ganglion cells in optic nerve. However, microglia can also contribute to oligodendrogenesis. Although glial

interactions attempt to maintain retinal homeostasis, they can also promote retinal neurodegeneration. Prodegenerative factors released from glial cells to interact with

one another are highlighted in red.

Ccl2, Cxcl1, and Cxcl10 in Müller glia, which has been associated
with retinal neurodegeneration (171). Another example of
microglia and Müller glia interaction is the secretion of
microglia-derived nerve growth factor (NGF), BDNF, and CNTF
from microglia that in themselves protect RGCs (172) but also
modulate the production of basic fibroblast growth factor and
GDNF in Müller glia, conferring neuroprotection (167, 173).
Both astrocytes, microglia, oligodendrocytes, and neurons secrete
MMPs (174). Under normal conditions, astrocytes and microglia

express MMP-2 (gelatinase A) in the foot processes near blood
vessels (175). Upon astrocyte and microglial activation, MMP-
2 is, however, increased, thereby causing increased permeability
of the blood–retinal barrier (176), angiogenesis, and glial
scar formation (177). Activated microglia also express MMP-3
(stromelysin-1), which in turn activates proMMP-9 (178). MMP-
9 has been found to be elevated when there is an increase in the
blood–retinal barrier permeability. In line with this, an MMP-
9 increase has been shown in diabetic rat retinas when glucose
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levels rise (176). MMP-9 has also been implicated in myelin basic
protein degradation, and it has therefore been suggested that
MMP-9 is associated with demyelination and axonal injury (178–
180). Finally, both the effects of MMP-9 and MMP-3 have been
shown to be enhanced by TNF-α and IL-1, further indicating
complex interactions between molecules secreted by different
retinal glia (181–183).

Glia–glia interactions have also been shown between
oligodendrocytes and microglia as well as astrocytes. In this
context, studies have shown that microglial activation can cause
astrogliosis and apoptosis of oligodendrocytes via TNF-α and
IL-1β, causing an increase in MMP production in astrocytes
and microglia as well as a possible induction of oxidative stress,
inflammation, and glutamate toxicity (183–185).

Although there is currently relatively sparse literature on
glia–glia interactions, it can be expected that this interaction
will prove to be very relevant for both the understanding of
retinal homeostasis and for neurodegenerative diseases such as
glaucoma (186).

THERAPEUTIC APPROACHES

Targeting Retinal and Optic Nerve Glial

Cells to Treat Glaucoma
Glial cells in the retina and the optic nerve play an important
role in supporting RGCs and their axons, and because glial cell
dysfunction has been implicated in glaucoma, it is conceivable
that future treatments for glaucoma may target glial cells.

Targeting Müller Glia and Astrocytes
Modulation of Glutamate via N-Methyl-D-Aspartate

Receptors
RGC damage leads to elevated glutamate levels, causing
NMDARs to be overstimulated with a consequent increase
in Ca2+ influx and excitotoxicity (187). Impaired clearance
of glutamate by Müller glia is involved in the pathogenesis
of both glaucoma and diabetic retinopathy (37, 188, 189).
Amidation and oxidation are the two routes of glutamate
disposal. In a cultured rat retinal Müller cell line, treatment
with hydrocortisone was shown to increase the amidation of
glutamate to glutamine, whereas the addition of branched-
chain keto acids was found to enhance oxidation of glutamate,
suggesting that intracellular levels of glutamate play a role in
the removal of extracellular glutamate (35). In a rodent model
of ocular hypertension, the use of memantine nanoparticles,
a non-competitive NMDAR antagonist, conferred RGCs
neuroprotection (190). Unfortunately, oral memantine did not
show any significant prevention of glaucoma progression when
tested in a clinical trial (191). Another modulator of glutamate-
induced toxicity, brimonidine, has been proposed to slow the
rate of glaucoma progression in glaucoma patients in an additive
manner other than its IOP-lowering effect (192). In a rodent
model, brimonidine was shown to modulate glutamate uptake
by glial cells after induction of ocular hypertension, suggesting
neuroprotection through modulation of macroglia (193).

Neurotrophin Administration
Neurotrophins are important in the development, differentiation,
and survival of RGCs. Many of these neurotrophins are produced
by glial cells during normal conditions. In this context, BDNF has
been shown to protect RGCs in mice with ocular hypertension
(194). Furthermore, it has been shown that GDNF combined
with BDNF convey synergic protective effects (195). Finally,
glial cells are important producers of neurotrophins, including
NGF, BDNF, CNTF, neurotrophin-3, and neurotrophin-4/5, all
having potential as neuroprotective properties (196). Among
the mentioned neurotrophins, more have already been tested
in preclinical settings. An example is mature BDNF, which
has been targeted to secretory vesicles within RGCs by adeno-
associated virus gene therapy, increasing BDNF production
and long-term BDNF receptor expression in a mouse model
of optic nerve damage and in a rat model of chronic IOP,
which provides neuroprotection against RGCs (197). In addition,
increased release of CNTF by Müller glia has been shown
to provide endogenous neuroprotection of RGCs after both
ischemias and in response to the induced ocular hypertension
(194). Recently, an encapsulated cell technology has allowed a
controlled, continuous, and prolonged administration of CNTF
in animal models that provide photoreceptor protection (198).
In general, the administration of exogenous neurotrophins or
the augmentation of endogenous production has been shown to
have a protective effect on RGCs in several experimental models,
highlighting this as a potential therapeutic strategy for glaucoma
(199). The efficacy of such treatments may, however, decrease
over time as treatment with chronic neurotrophin administration
can lead to downregulation of the relevant receptors (197).

Targeting Astrocytes and Astrocyte Activation
Astrocyte activation may be an important factor in the
pathogenesis of glaucoma. In this context, inhibition of astrocyte
activation has been shown to increase neuronal survival in
experimental glaucoma models via modulation of a tyrosine
kinase inhibitor of epidermal growth factor receptor (200) or
blocking of endothelin-1 (201). Similarly, the neuroprotective
effects of calcium channel blockers and endothelin blockers
in humans with glaucoma are thought to act via this
mechanism (202).

In addition to the previously mentioned involvement of TNF-
α in microglia activation, TNF-α has also been shown to mediate
both astrocyte, Müller glia, and oligodendrocyte activation
followed by RGC death (203–205). In a rodent glaucoma
model, this detrimental effect of TNF-α was demonstrated
after intravitreal TNF-α injections and reversed by an antibody
neutralizing TNF-α activity or by deleting the genes encoding
TNF-α or its receptor, TNF-R2 (204). Future studies are needed
to define further the potential role of TNF-α inhibitors as a
treatment target for neuroprotection (206).

Nutrition may affect retinal homeostasis and, in particular,
mitochondrial function. Hence, a ketogenic diet was shown
to increase mitochondrial respiration, hereunder mitochondrial
respiration in astrocytes (207, 208). In addition, the ketogenic
diet has been reported to restoremonocarboxylate transporters to
boost the antioxidant response followed by preservation of RGC
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function and structure without affecting glycogen stores (117).
Finally, a low-carbohydrate diet has been shown to reduce the
risk of POAG in a US cohort (209). In summary, nutrition and
ketogenic diets may increase the resistance toward glaucomatous
neurodegeneration. Future studies are, however, necessary to
further investigate such potential.

Targeting Oligodendrocytes
Inhibition of Inflammatory Mediators
Oligodendrocyte degeneration has been correlated to TNF-α
release followed by increased IOP and optic nerve damage. In
this context, suppression of TNF-α, with an anti-TNF-α blocking
antibody or the deletion of the gene encoding TNF-α, was shown
to elicit neuroprotective effects in the optic nerve and RGCs in a
mouse model of glaucoma (204).

Inhibiting Lingo-1
LINGO-1 is a leucine-rich repeat, expressed on oligodendrocytes
and neurons. It negatively regulates differentiation and
myelination, neuronal survival, and axonal regeneration.
In glaucoma models and human CNS diseases, LINGO-1
expression has been found to be upregulated (210). LINGO-1 has
furthermore been shown to have negative regulatory functions
in axonal regeneration, neuronal survival, and oligodendrocyte
differentiation as well as myelination. In addition, LINGO-1
was found to be increased in models of spinal cord injury and
glaucoma (211). The LINGO-1 monoclonal antibody, BIIB033,
has shown promise as a neuroprotective and neuroregenerative
strategy in clinical studies, but continued evaluations are needed
to confirm this promising effect in glaucoma patients (211).

Targeting Microglia
Inhibition of Microglial Activation
Microglia have increasingly been identified as targets in glaucoma
neuroprotection and neuroregeneration (22, 28, 212, 213). The
blockade of the microglial adenosine A2A receptor has been
shown to protect RGCs from elevated IOP in murine glaucoma
models by controlling the microglial activation and inhibiting
reactive oxygen species (214). Minocycline has also been shown
to inhibit microglial activation and upregulate pro-survival genes
in experimental glaucoma (215, 216). Although minocycline has
proven oral safety and has been found to cross the blood–brain
barrier, long-term randomized control trials with the necessary
high doses of minocycline are needed (217).

Modulation of Microglial Activation
In addition to the harmful effects of microglia, the activation of
these cells can also benefit the healthy eye, where such activation,
e.g., acute inflammation, has been shown to protect against
neuronal damage (22). Microglia activation is regulated by
several inhibitory pathways, such as the ligand fractalkine (FXN
or Cx3cl1) in neurons and the receptors Cx3cr1 and CD200R
in microglia (218). The loss of Cx3xl1 signaling has been shown
to exacerbate dysfunctional axon transport in RGCs, increased
CCR2+ macrophages infiltration (219), and upregulation of
NOS-2 in myeloid cells from DBA/2J mice (219).

CD200 is expressed in the vascular endothelium of
the retina, photoreceptors, and RGCs (34) and interacts
with CD200R to modulate microglial activation (220).
Breakdown of CD200-CD200R is involved in RGC loss
in experimental glaucoma (221). Thus, in a rat model
with optic nerve crush, the agonist of CD200R known
as CD200Fc was shown to increase CD200R expression
and inhibit CD200 expression, thereby assisting in the
neuroprotection of RGCs (222, 223). Overall, microglial
activation may be beneficial for RGC function and survival,
and numerous studies emphasize the dual roles of microglia
activation. However, more studies are needed to further
understand such potential beneficial functions of microglia
in glaucoma.

Inhibition of Inflammatory Mediators
In advanced glaucoma, inflammatory mediators, including TNF-
α, are increased. Inhibition or genetic deletion of TNF-α reduces
the activation of microglia (32, 224), and the blockade of TNF-
α signaling has been shown to protect RGCs in an experimental
glaucoma mouse model (204, 225).

The Fas ligand (FasL), a member of the TNF protein
family, links microglia activation and the induction of apoptosis
of RGCs through the Fas receptor. In the eye, FasL can
be expressed as the membrane-bound pro-apoptotic and
pro-inflammatory protein (mFasL) or as the soluble, non-
apoptotic, and non-inflammatory form sFasL (226). Previous
studies have shown that FasL is constitutively expressed in
ocular tissue, where the ligand helps maintain the immune-
privileged state of the eye and helps prevent neoangiogenesis.
However, FasL has also been shown to play an important
role in retinal neurotoxicity. In this context, FasL has been
shown to accelerate RGC death in an experimental glaucoma
model (227). In line with this, the peptide inhibitor of
the Fas receptor, ONL1204, has been found to halt mFasL
activation by inhibition of microglial activation, inflammation,
and apoptosis of RGCs in a mice model (228). In contrast to
the neurotoxic effects of FasL, FasL administration has been
shown to protect RGCs from cell death (227). Overall, the
contradictive roles of FasL and mFasL require more studies
to investigate the potential roles of FasL/mFasL modulation in
future neuroprotective treatments.

Reducing Oxidative Stress
Orally administered docosahexaenoic acid and intravitreal
injection of polysialic acid has been shown to reduce microglial
activation by decreasing oxidative stress and inflammation in
rodent models of glaucoma and experimental glaucoma models
(146). Moreover, the natural resin mixture, propolis, produced
by honeybees, has been shown to reduce neuroinflammatory
responses and reduce oxidative stress in microglia cell cultures
by inhibiting nuclear factor-κB when cultures were exposed to
hypoxia (229).

Macrophage Pro-Inflammatory Cytokines
Glial cell activation triggers macrophage infiltration and
the release of pro-inflammatory cytokines that further
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activate glial cells. Such pro-inflammatory cytokines
have been found to be upregulated in both the blood
and in the aqueous humor of patients with POAG
(133, 230). Accordingly, treatments targeting macrophage-
derived pro-inflammatory cytokines, such as IL-1β,
may be used in the future treatment of glaucoma
(133, 194).

CONCLUSION

Glial cells play complex and multifactorial roles in glaucoma.
Advances in our understanding of the nature and regulation
of these various roles in health and disease have enabled the
identification of novel therapeutic strategies to protect RGCs in
glaucoma. Therapies targeting glial cells or those emulating the
protective effects of these cells on RGCs will likely go hand-
in-hand with conventional therapies to lower IOP and with
emerging approaches that aim to augment neuronal bioenergetic
resilience and promote axonal repair.
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Neuronal cell death, amyloid β plaque formation and development of neurofibrillary

tangles are among the characteristics of Alzheimer’s disease (AD). In addition to

neurodegeneration, inflammatory processes such as activation of microglia and

astrocytes are crucial in the pathogenesis and progression of AD. Cytokines are essential

immune mediators of the immune response in AD. Recent data suggest a role of

interleukin 23 (IL-23) and its p40 subunit in the pathogenesis of AD and corresponding

animal models, in particular concerning microglia activation and amyloid β plaque

formation. Moreover, in animal models, the injection of anti-p40 antibodies resulted in

reduced amyloid β plaque formation and improved cognitive performance. Here, we

discuss the pathomechanism of IL-23 mediated inflammation and its role in AD.

Keywords: interleukin 23, microglia, neuroinflammation, antibody therapy, Alzheimer’s disease

INTRODUCTION

Alzheimer’s disease (AD) is the most common form of dementia and affects millions of people
worldwide (1). Despite the immense progress in AD research over the recent years, many aspects
of the underlying pathomechanism remain elusive and new approaches for effective therapies
are needed. Besides neurodegeneration, the disease-accelerating role of neuroinflammation
has become a focus of research in AD. Since the central role of interleukin 23 (IL-23) in
neuroinflammation, especially in multiple sclerosis (MS), has become clear, several interesting
studies about AD and IL-23 have been published. Therefore, this review provides an overview of
the current data on IL-23 mediated neuroinflammation in AD, open aspects for further research
and possible therapeutic approaches.

IL-23

Cytokines are peptide hormones that act as messengers of the immune system and modulate the
immune response in an autocrine, paracrine, or endocrine manner (2). They regulate activation
or inhibition of immune cells, control their differentiation, proliferation and chemotaxis. In
particular, the successful application of antibodies modulating the cytokine function for the
treatment of a variety of diseases has further advanced the research in the field of cytokines and
cytokine-inhibiting therapies.
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A subgroup of cytokines are the interleukins. IL-23 consists of
a unique p19 and a common p40 subunit, which is shared by the
structurally related IL-12 (3). It appears that the heterodimeric
molecule is the bioactive cytokine and both subunits, p19/p40
for IL-23 and p35/p40 for IL-12 must be co-expressed in the
same cell to generate the bioactive form. However, some data
also show an effector function of p40 alone as discussed below.
Since the first study demonstrated that IL-23 and not the
structurally similar IL-12 is the central cytokine contributing to
the pathogenesis of autoimmune diseases (4, 5), the importance
of IL-23 in neuroinflammation has been further deciphered
in many preclinical and clinical studies. IL-23 is primarily
secreted by antigen presenting cells (APC) like dendritic cells,
macrophages, and B cells (3, 6, 7). The local production of
IL-23 in the CNS has been demonstrated for astrocytes and
infiltrating macrophages under inflammatory conditions (5, 8).
In addition, some studies demonstrated the secretion of the IL-
12/IL-23 subunit p40 by microglia (9, 10), while others provided
evidence that microglia secrete the bioactive cytokine IL-23 upon
activation (11–13).

Figure 1 summarizes how IL-23 activates the immune system.
Best known responders to IL-23 stimulation are the CD4T helper
subset T helper 17 (Th17) cells, a distinct subpopulation of γ δ

T cells, subsets of natural killer T cells, and innate lymphoid

FIGURE 1 | IL-23 mediated activation of the immune system. IL-23 is primarily secreted by APC like dendritic cells, macrophages, and B cells. Best known

responders to IL-23 stimulation are Th17 cells, a distinct subpopulation of γ δ T cells, subsets of natural killer T cells, and innate lymphoid cells. IL-23 binds to its

specific receptor complex, which consists of a unique IL-23 receptor subunit and a IL12β1 subunit. γ δ T cells express the IL-23 receptor constitutively, but naive

CD4+ cells lack the IL-23 receptor. CD4+ cells are therefore first activated by other cytokines such as TGF-β, IL-6, or IL-21, then differentiate into Th17 cells and

express the IL-23 receptor. By binding to the IL-23 receptor, IL-23 leads conformational change of the receptor that promotes the phosphorylation of JAK2 and Tyk2

leading to phosphorylation of STAT factors. Thereby STAT3 is primarily activated. The activated STAT protein enters the nucleus to exert its biological effects. ILC,

innate lymphoid cell; NKT, natural killer cell.

cells (14). IL-23 binds to its specific receptor complex, which
consists of a unique IL-23 receptor subunit and a IL12β1 subunit.
γ δ T cells express the IL-23 receptor constitutively, but naive
CD4+ cells lack the IL-23 receptor. CD4+ cells are therefore
first activated by other cytokines such as the transforming growth
factor (TGFβ), IL-6 or IL-21, then differentiate into Th17 cells
and express the IL-23 receptor (15–17).

By binding to the IL-23 receptor, IL-23 leads to a
conformational change of the receptor, which promotes the
phosphorylation of Janus kinase 2 (JAK2) and tyrosine kinase
2 (Tyk2) leading to phosphorylation of signal transducer and
activator of transcription (STAT) factors with STAT3 primarily
activated (18). The activated STAT protein enters the nucleus
to exert its biological effects. This leads to the secretion of the
Th17 cell characteristic cytokines IL-17A, IL-17F and several
other proinflammatory cytokines like IL-22, the granulocyte-
macrophage colony-stimulating factor (GM-CSF) or the tumor
necrosis factor (TNFα) (14).

Among the different cell subtypes expressing the IL-23
receptor, Th17 cells could be established as key players in
neuroinflammation, particularly in MS (19, 20). Beside these
well-known responders of lymphocytic origin, expression of
the IL-23 receptor on macrophages/monocytes, microglia, and
dendritic cells was described (21, 22), enabling these cells to
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directly interact with IL-23. Thereby, IL-23 enhances the cytokine
production of IL-23 receptor expressing myeloid cells (21, 22).

IL-23 AND NEUROINFLAMMATION

The crucial role of IL-23 in the pathogenesis of a vast variety
of autoimmune diseases like inflammatory bowel diseases,
rheumatoid arthritis, and psoriasis has been clearly demonstrated
[(23–27), summarized in Table 1]. IL-23 is also important in the
atherogenesis and progression of atherosclerotic plaques (28, 29).

Numerous studies could demonstrate the significance of IL-
23 in neuroinflammation as well. Most of the data on IL-23
and neuroinflammation have been derived from studies on the
pathogenesis of MS and corresponding animal models (38).
The central role of IL-23 in the development of MS is beyond
doubt. IL-23 is increased in serum, cerebrospinal fluid (CSF), and
lesional tissue of MS patients (13–15). Animal models emphasize
the non-redundant role of IL-23 in MS, as an experimental
autoimmune encephalitis cannot be induced in mice lacking IL-
23 or the receptor complex (30–32). Nevertheless, there are also
studies suggesting IL-23 is critical in stroke patients, especially in
the postischemic inflammatory phase (33, 34). Furthermore, the
IL-23 signaling pathway is part of the defense mechanism in viral,
bacterial, and fungal infections of the CNS (35–37). To further
investigate how IL-23 mediates neuroinflammation in different
animal models, we have recently established a mouse model with
astrocyte-specific expression of IL-23 revealing unexpectedly, a
spontaneous B cell accumulation in the cerebellum (39).

With the increasing number of studies demonstrating the
importance of IL-23 in neuroinflammation, several studies have
also investigated the influence of IL-23 on AD. Therefore, this
review will give an overview of the role of IL-23 in AD.

AD AND NEUROINFLAMMATION

Characteristics of AD are amyloid β (Aβ) plaques, which
are extracellular deposits of Aβ derived from the β-amyloid
precursor protein (APP), neurofibrillary tangles composed of
hyperphosphorylated tau and neuronal cell death (40). In
addition to neurodegeneration, neuroinflammation is crucial
in the pathogenesis and progression of AD (40). Although it
is not clear to what extent neuroinflammation contributes to
the pathogenesis of AD, it is generally acknowledged that the
immune system influences the disease progression.

Neuroinflammation in AD is mainly promoted by CNS-
resident cells like microglia and astrocytes. Microglia are CNS-
resident cells of myeloid origin with immune-modulating and
phagocytic capabilities (41). Activation of the innate immune
system in AD seems to follow Aβ deposition. However,
studies of patients with mild cognitive impairment demonstrate
neuroinflammation even in the early phase (42, 43).

Aβ plaques are surrounded by reactive astrocytes and
activated microglial cells (44, 45). The role of microglia in AD
initiation and progression are debated, with conflicting reports
regarding their detrimental or protective function (46). Microglia
and astrocytes can remove Aβ by uptake and degradation

TABLE 1 | Role of IL-23 in the pathogenesis of different diseases.

Disease IL-23 effect References

Inflammatory bowel diseases Pathogenic (24, 25)

Rheumatoid arthritis Pathogenic (25, 27)

Psoriasis Pathogenic (23–26)

Atherosclerosis Pathogenic (28, 29)

MS Pathogenic (13–15, 30–32)

Stroke/postischemic inflammation Pathogenic (33, 34)

Infections Protective (35–37)

or extracellularly degrade Aβ by enzyme secretion (40).
However, they also lead to increased Aβ levels and contribute
to tissue reaction and destruction in AD especially during
disease progression (47). In addition, activation of microglia
and complement-dependent pathways mediates synapse loss
in AD (48). The state of activation appears to determine
whether microglia have a protective or detrimental role in AD
(49). Microglial mediated neuroinflammation is increased in
AD while microglial-mediated Aβ clearance mechanisms are
diminished (41).

Microglia and astrocytes are the major source of
proinflammatory cytokines as essential regulators of the
immune response in AD (50). IL-1, IL-6, IL-12, IL-23, GM-
CSF, TNF-, C-X-C motif chemokine ligand 10 (CXCL10) are
detectable or upregulated in animal models of AD, in the
brain or CSF from AD patients (47, 51). APP/presenilin 1
(APP/PS1) mice, a well-established mouse model to study
amyloid pathology in AD, show reduced plaque burden and
Aβ levels if genetically deficient for CXCR3, the receptor
for CXCL10 (52). The proinflammatory cytokine milieu in
the AD brain contributes directly or indirectly to neuronal
damage. Aβ stimulation results in secretion of proinflammatory
cytokines, which trigger neuronal hyperexcitability and synaptic
dysfunction (40). Moreover, cytokines stimulate the secretion
of inducible nitric oxide synthase in microglia and astrocytes,
which is toxic to neurons at high concentrations (40).

IL-23 AND AD

As the relevance of IL-23 in neuroinflammation, particularly
in MS, has become evident, the question of how IL-23 affects
inflammatory processes in AD has arisen. Therefore, several
descriptive and experimental studies addressed the impact of
IL-12/23 p40 and IL-23 signaling on AD in recent years.

Single nucleotide polymorphisms in the IL-12/23 subunit
p40 (rs3212227) (53) and IL-23 receptor polymorphisms are
associated with AD in a northern Han Chinese population (54).

AD patients show higher peripheral levels of IL-23 (55) and
the concentration of the subunit p40 was identified as a serum
marker for the prediction of the Aβ load in an AD cohort
(56). A plasma multianalyte profiling study of patients with mild
cognitive impairment and AD demonstrated an association of
plasma p40 levels with abnormal cognitive performance (57).
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FIGURE 2 | Possible effector cells in IL-23 mediated neuroinflammation in AD. Suggested model how IL-23 and IL-12/23 p40 drives neuroinflammation in AD. Upon

activation, microglia secrete IL-23 or/and IL-12/23 p40. IL-23 and IL-12/23 p40 lead to a shift of microglia from Aβ clearance and tissue remodeling toward an

activated state with production of proinflammatory cytokines, inhibition of the clearance of Aγ δ neuronal damage, which in turn could further enhance the IL-23

secretion. IL-23 and IL-12/23 p40 could also lead to activation of astrocytes. Nevertheless, it cannot be excluded that the effector cells for IL-23 signaling are partly T

cells, as described for other neuroinflammatory diseases. The figure was generated with BioRender.com.

In contrast, a smaller study demonstrated reduced p40
concentration in CSF in patients with cognitive impairment
including AD in early phases of the disease with a median
Mini-Mental State Examination (MMSE) score of 23 (58).
However, this study additionally found CSF IL-12/23 p40
concentrations correlated positively with CSF concentrations of
Aβ1-42 and phosphorylated tau protein but not MMSE score in
the total study population including patients with mild cognitive
impairment, AD, and other dementia forms. But in AD patients
CSF IL-12/23 p40 only correlated positively with CSF P-Tau
(58). The most extensive study concerning the role of IL-23
in AD was performed by vom Berg et al. (59). They found
increased expression of p40 in microglia in APP/PS1 mice and
increased p40 in cerebrospinal fluid of AD patients. The cognitive
performance measured with the MMSE score correlated in this
study negatively with CSF IL-12/23 p40 levels. However, it
should be noted that the number of AD patients studied was
small (n = 7). Furthermore, p40 appears to contribute to the
extent of cerebral plaque formation and activation of microglia
in the mouse model. Cytokine-knockout (p19, p35, and p40)
APP/PS1 mice showed reduced microglial activation and disease
severity along with diminished accumulation of Aβ in young
and older mice (59). Thereby, loss of the common IL-12/23 p40
subunit did show the greatest impact on Aβ plaque burden,
whereas deficiency of the unique subunits IL-23 p19 or IL-
12 p35 results in a similar but weaker reduction. Moreover,
experiments with bone marrow-chimeric mice indicated that
microglial cell-derived IL-12/23 p40, but not peripheral myeloid

cell-derived IL-12/23 p40 is involved in the extent of in Aβ

plaque load. This finding further illustrates the central role
of microglia in mediating p40-related effects on Aβ burden
(59). The p40 production by microglia was associated with the
de novo expression of the activation marker CD11c indicating
modulation of microglia activity when producing p40 (59). In
addition, after injection of anti-p40 antibodies before or after
the onset of amyloid accumulation, the mice showed reduced
Aβ formation and improved cognitive performance (59). Thus,
both female and male mice were used for this study and a gender
bias cannot be ruled out. Another study examined the gender-
specific effect in mice lacking IL12p40. Eede et al. found that
IL12p40 deficiency reduces Aβ plaque burden in male APP23
mice, while female mice had a significant reduction in soluble
Aβ1-40 without changes in Aβ plaque burden (60). Furthermore,
plasma and brain cytokine levels are altered differently in female
vs. male APP23 mice lacking IL12p40.

Which Cells Mediate the Effects of IL-23 in

AD?
While the number of leukocyte subpopulations known to
respond to IL-23 is growing (14), the effector cells upon IL-
23 signaling in the context of AD remain elusive. Although the
actions of IL-23 in other neuroinflammatory processes like MS
are mediated via Th17 cells (19, 20), in AD, IL-23 and IL-12/23
p40 might act through novel mechanisms independent from T
cells. Figure 2 provides a proposed mechanism how IL-23 drives
neuroinflammation in AD.
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Vom Berg et al. provided a hypothesis involving cells of
the innate immunity as effectors in the p40 driven signaling
pathway (59). One possible scenario covers the sustained Aβ-
driven release of p40 by microglia that binds to the IL12Rβ1
receptor on adjacent astrocytes in a paracrine manner. As a
second scenario, autocrine activation of microglia by binding
of p40 to the IL12Rβ1 receptor on microglia themselves is
suggested, which promotes AD pathology.

However, it should be noted that the p40 subunit alone is in
generally not considered a bioactive form. It appears that both
subunits, p40 and p19 for IL-23, p40 and p35 for IL-12, must be
co-expressed in the same cell to generate the bioactive form (IL-
12 or IL-23). But several studies in fact show that p40 alone can
act as a messenger substance (61). The p40 homodimer is capable
of inducing the expression of immune factors in microglia via the
IL-12Rβ1 (62).

Further data are needed to elucidate if neuroinflammation in
AD is driven by IL-12/23 p40, IL-23 or even partly by IL-12.
Since p40 is a subunit of both IL-23 and IL-12, this is difficult
to determine from the data. The results of the APP/PS1 mouse
model with deletion of the unique subunits IL-23 p19 or IL-12
p35, which results in a weaker but similar reduction of the plaque
load, speak against the fact that the effect is mediated by p40
alone (59).

A study analyzing Aβ clearance in IL-23-treated microglia
further enlightened, which effector cells might respond to p40
or IL-23. In a human macrophage cell line Aβ42 incubation
increased the expression of IL-17, IL-18, IL-23, whereas the same
cytokines impaired Aβ clearance by macrophages or microglia
(63). The inhibitory effects of IL-18 were blocked by IL-23 or
IL-17 neutralizing antibodies while the inhibitory effects of IL-
23 were blocked by IL-17 neutralizing antibodies pointing to
an interaction of IL-17, IL-18, and IL-23 and microglia for the
Aβ clearance.

In another mouse model, the senescence-accelerated mouse
prone-8 model (SAMP8), Tan et al. screened the cerebral
expression of IL-12/23 in 3-, 7-, and 11-month-old mice and
demonstrated that these cytokine levels in the brain were
upregulated during aging (64). By in vivo infusion of non-viral
small interfering RNA (siRNA) to knock down the common
IL-12/23 subunit p40 in the brain, they demonstrated that
these p40-deficient mice had significantly diminished cerebral
Aβ42 levels, reduced synaptic and neuronal loss, and reversed
cognitive impairments. In addition, treatment of the SAMP8
mice with a neutralizing p40-specific antibody also ameliorated
AD-associated pathology and cognitive deficits.

Several studies have demonstrated that microglia can express
both neurotoxic and neurotrophic factors (65). Tan et al.
hypothesized that the beneficial changes by treatment of
SAMP8 mice with a neutralizing p40-specific antibody might
be derived from a shift of microglia from an activated state
with release of proinflammatory cytokines and inhibition of the
clearance of Aβ toward an increased Aβ clearance and enhanced
tissue remodeling.

Nevertheless, it cannot be excluded that the effector cells
for p40 or IL-23 signaling are partly T cells, as described for
other neuroinflammatory diseases. In a mouse models of AD, Aβ

vaccination results in a reduction in amyloid burden concomitant
with decreased expression of the IL-12Rβ1 receptor by T cells,
the receptor subunit binding to p40 (66). Th17 cell-mediated
neuroinflammation is involved in neurodegeneration of a rat
AD model (67). Furthermore, activation of Th17 cells in AD
patients has been demonstrated by Saresella et al. (68) and Th17
cells, which infiltrated into AD brain parenchyma, participate in
neuroinflammation and neurodegeneration of AD by release of
proinflammatory cytokines and by direct action on neurons via
the Fas/FasL apoptotic pathway (67). The role of IL-23 and IL-
17a, as the signature cytokine of Th17 cells, was also reviewed
by Mohammadi Shahrokhi et al. (69), which identified IL-17a
as a main inducer of neuroinflammation in AD. In contrast,
Saksida et al. identified IL-17 as a rather protective factor. The
central finding of the study was a lower production of IL-17
in gut-associated lymphoid tissue cells of aged 5xFAD mice
probably due to impaired post-transcriptional stabilization of
the IL-17 mRNA mediated by miR-155 (70). The decreased IL-
17 level could impair the homeostasis of the immune system
in the gut-associated lymphoid tissue, but could also contribute
to inappropriate Aβ clearance in gut-associated lymphoid tissue
and CNS. Another review speculates about the beneficial use
of anti-IL-17A and anti-IL-23 antibody in AD by interfering
with neutrophil infiltration and thereby suggets another possible
effector cell in IL-23-mediated neuroinflammation in AD (71).

A shift from the Th17 cell/regulatory T cell balance favoring
the proinflammatory Th17 side is suspected to contribute to
exacerbation of autoimmune disorders (72). Since regulatory T
cells delay disease progression in AD pathology (73), the role of
regulatory T cells in IL-23 and AD should also be enlightened in
further studies.

However, it is important to take into account that most data
on the functional role of IL-23 in AD have been generated from
mouse models, and in particular from the APP/PS1 model, which
develops Aβ plaques by 6-8 months, but no tau pathology and
does not cover all aspects of AD pathology (74). The effect
of IL-23 especially on tau pathology is certainly worthwhile to
investigate further.

Nevertheless, the current knowledge of the role of IL-23 and
especially the IL-12/23 common subunit p40 are promising.
The signaling pathways and effector cells involved in IL-23
and IL-12/23 p40 mediated immune response in AD should be
enlightened in further studies, particularly in the clinical context.

IL-23 an Attractive Therapeutic Target in

AD?
Novel therapeutic options such as a variety of antibody
therapies have led to significant progress in the treatment
of many neurological diseases in recent years. However, the
treatment of AD remains inadequate despite the immense
progress in therapeutic options, so that the development of
new therapeutic approaches remains a central aspect in AD
research. Modulating the function of IL-23 appears to be an
interesting target for AD although the precise signaling pathways
and corresponding effector cells are not completely characterized.
The beneficial results of the anti-IL-23 in preclinical studies
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could be transferable to the patient. While antibody therapies
that interfere with the IL-23 are firmly established in the
therapeutic concept for diseases such as psoriasis, spondylitis
ankylosans, or inflammatory intestine illness (75–77), they are
yet not established for the treatment of inflammatory CNS
diseases. Administration of the p40 antibody ustekinumab was
not successful in clinical trials in MS patients (78). Similarly,
the anti-p40 antibody briakinumab showed only a slight benefit
in terms of imaging progress and clinical relapse rate (79).
Nevertheless, clinical trials blocking IL-23 and investigating
whether it results in reduced neuroinflammation, reduced plaque
burden, and improved cognitive impairment appear worthwhile.
Considering the large number of patients already receiving an
approved anti-IL23 therapy, studies of whether anti-IL23 therapy
can prevent the development of AD would also be interesting.

These studies should be in particular feasible, as the yet
approved anti-IL23 antibody therapies for autoimmune diseases
showed a favorable risk profile in terms of safety of use,
especially with regard to more severe infections or malignancies
(75, 78–80).

DISCUSSION

Taken together, the currently available studies underline the
impact of the proinflammatory cytokines of IL-23 and its subunit
p40 in the pathogenesis of AD. In addition to clinical data

showing the association of single nucleotide polymorphisms,
IL-23 levels and AD, preclinical data demonstrate that IL-23
plays a crucial role in neuroinflammation, plaque formation in
AD models and identify anti-IL-23 therapy as a promising new
therapeutic approach. The data suggest that the aspects of IL-
23 mediated neuroinflammation in AD remain an interesting
research field and further data will enlighten the significance and
signaling pathways of IL-23 in AD.
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et al. Impaired IL-17 production in gut-residing immune cells of 5xFAD

mice with Alzheimer’s disease pathology. J Alzheimers Dis. (2018) 61:619-

30. doi: 10.3233/JAD-170538

71. Katayama H. Anti-interleukin-17A and anti-interleukin-23 antibodies may be

effective against Alzheimer’s disease: role of neutrophils in the pathogenesis.

Brain Behav. (2020) 10:e01504. doi: 10.1002/brb3.1504

72. Fasching P, Stradner M, Graninger W, Dejaco C, Fessler J. Therapeutic

potential of targeting the Th17/Treg axis in autoimmune disorders.Molecules.

(2017) 22:134. doi: 10.3390/molecules22010134

73. Dansokho C, Ait Ahmed D, Aid S, Toly-Ndour C, Chaigneau

T, Calle V, et al. Regulatory T cells delay disease progression in

Alzheimer-like pathology. Brain. (2016) 139:1237-51. doi: 10.1093/brain/

awv408

74. Myers A, McGonigle P. Overview of transgenic mouse models for Alzheimer’s

disease. Curr Protoc Neurosci. (2019) 89:e81. doi: 10.1002/cpns.81

75. Blauvelt A, Papp KA, Griffiths CE, Randazzo B, Wasfi Y, Shen YK,

et al. Efficacy and safety of guselkumab, an anti-interleukin-23 monoclonal

antibody, compared with adalimumab for the continuous treatment of

patients with moderate to severe psoriasis: results from the phase III,

double-blinded, placebo- and active comparator-controlled VOYAGE 1

trial. J Am Acad Dermatol. (2017) 76:405-17. doi: 10.1016/j.jaad.2016.

11.041

76. Kavanaugh A, Menter A, Mendelsohn A, Shen YK, Lee S, Gottlieb

AB. Effect of ustekinumab on physical function and health-related

quality of life in patients with psoriatic arthritis: a randomized,

placebo-controlled, phase II trial. Curr Med Res Opin. (2010)

26:2385-92. doi: 10.1185/03007995.2010.515804

77. ArgolloMC, AlloccaM, Furfaro F, Peyrin-Biroulet L, Danese S. Interleukin-23

blockers: born to be first-line biologic agents in inflammatory bowel disease?

Curr Pharm Des. (2019) 25:25-31. doi: 10.2174/13816128256661903131

40811

78. Segal BM, Constantinescu CS, Raychaudhuri A, Kim L, Fidelus-

Gort R, Kasper LH, et al. Repeated subcutaneous injections of

IL12/23 p40 neutralising antibody, ustekinumab, in patients with

relapsing-remitting multiple sclerosis: a phase II, double-blind, placebo-

controlled, randomised, dose-ranging study. Lancet Neurol. (2008)

7:796-804. doi: 10.1016/S1474-4422(08)70173-X

79. Vollmer TL, Wynn DR, Alam MS, Valdes J. A phase 2, 24-week, randomized,

placebo-controlled, double-blind study examining the efficacy and safety of an

anti-interleukin-12 and−23 monoclonal antibody in patients with relapsing-

remitting or secondary progressive multiple sclerosis. Mult Scler. (2011)

17:181-91. doi: 10.1177/1352458510384496

80. Macaluso FS, Orlando A, Cottone M. Anti-interleukin-12 and anti-

interleukin-23 agents in Crohn’s disease. Expert Opin Biol Ther. (2019) 19:89-

98. doi: 10.1080/14712598.2019.1561850

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2021 Nitsch, Schneider, Zimmermann and Müller. This is an open-

access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Neurology | www.frontiersin.org 8 April 2021 | Volume 12 | Article 63935331

https://doi.org/10.1038/nm.2965
https://doi.org/10.15252/embr.201948530
https://doi.org/10.1111/j.1749-6632.1996.tb52650.x
https://doi.org/10.1002/glia.20869
https://doi.org/10.1016/j.cyto.2019.03.003
https://doi.org/10.3233/JAD-131148
https://doi.org/10.1038/nn.4338
https://doi.org/10.1016/S0165-5728(02)00307-7
https://doi.org/10.1371/journal.pone.0075786
https://doi.org/10.3233/JAD-131160
https://doi.org/10.1080/08820139.2018.1504300
https://doi.org/10.3233/JAD-170538
https://doi.org/10.1002/brb3.1504
https://doi.org/10.3390/molecules22010134
https://doi.org/10.1093/brain/awv408
https://doi.org/10.1002/cpns.81
https://doi.org/10.1016/j.jaad.2016.11.041
https://doi.org/10.1185/03007995.2010.515804
https://doi.org/10.2174/1381612825666190313140811
https://doi.org/10.1016/S1474-4422(08)70173-X
https://doi.org/10.1177/1352458510384496
https://doi.org/10.1080/14712598.2019.1561850
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


MINI REVIEW
published: 05 May 2021

doi: 10.3389/fneur.2021.660720

Frontiers in Neurology | www.frontiersin.org 1 May 2021 | Volume 12 | Article 660720

Edited by:

Gabor Petzold,

Helmholtz Association of German

Research Centers (HZ), Germany

Reviewed by:

Karen Gertz,

Charité – Universitätsmedizin

Berlin, Germany

Sabina Tahirovic,

Helmholtz Association of German

Research Centers (HZ), Germany

*Correspondence:

Jasmin K. Hefendehl

hefendehl@bio.uni-frankfurt.de

Specialty section:

This article was submitted to

Dementia and Neurodegenerative

Diseases,

a section of the journal

Frontiers in Neurology

Received: 29 January 2021

Accepted: 19 March 2021

Published: 05 May 2021

Citation:

Candlish M and Hefendehl JK (2021)

Microglia Phenotypes Converge in

Aging and Neurodegenerative

Disease. Front. Neurol. 12:660720.

doi: 10.3389/fneur.2021.660720

Microglia Phenotypes Converge in
Aging and Neurodegenerative
Disease

Michael Candlish and Jasmin K. Hefendehl*

Institute of Cell Biology and Neuroscience, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt,

Frankfurt am Main, Germany

Microglia, the primary immune cells of the central nervous system, hold a multitude of

tasks in order to ensure brain homeostasis and are one of the best predictors of biological

age on a cellular level. We and others have shown that these long-lived cells undergo an

aging process that impedes their ability to perform some of the most vital homeostatic

functions such as immune surveillance, acute injury response, and clearance of debris.

Microglia have been described as gradually transitioning from a homeostatic state to

an activated state in response to various insults, as well as aging. However, microglia

show diverse responses to presented stimuli in the form of acute injury or chronic

disease. This complexity is potentially further compounded by the distinct alterations

that globally occur in the aging process. In this review, we discuss factors that may

contribute to microglial aging, as well as transcriptional microglia alterations that occur in

old age. We then compare these distinct phenotypic changes with microglial phenotype

in neurodegenerative disease.

Keywords: microglia, aging, neurodegeneration, alzheimer’s disease, senescence

INTRODUCTION

Microglia originate from hematopoietic progenitor cells found in the yolk sac and, upon entering
the brain, gradually adapt a homeostatic microglial phenotype (1). Homeostatic microglia feature
a distinct ramified morphology and were first identified by del Rio-Hortega (2). As the primary
immune cells of the brain, microglia aremostly associated with acute or chronic responses to injury.
In response to these stimuli, microglia display morphological and biochemical changes that have
often been grouped under the term “activation.” These changes can entail a variety of downstream
effects including cytokine and chemokine production, enhanced phagocytosis, proliferation, and
migration. Historically, based on in vitro experiments, this rather generalized diversion from the
homeostatic cell state has led to a differentiation into twomicroglial groups: M1 (proinflammatory)
and M2 (neuroprotective). This relatively oversimplified classification (3) of microglial reactivity is
now being refined by single-cell resolution techniques that show diverse transcriptional states that
can be adapted by microglia in either a gradual or acute manner. Intriguingly, we and others have
shown that microglia are long-lived cells that undergo an aging process on a cellular level, altering
their surveillance capacity and injury response time, and also influence neurodegenerative diseases
(4–7) [reviewed in (8, 9)]. These rather slow and gradual alterations are contrasted by rapid changes
brought on by acute damage. Local signals in themicroglial microenvironment drive acute as well as
gradual changes, leading to broad alterations in gene transcription, cell morphology, phagocytotic
activity, and proliferation status (10–12). Over decades of research, a wide variety of terms have
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been used to describe microglial cell states (13). As research
has advanced, new distinctions in microglial phenotypes
have been identified based on expression of particular genes
and, most recently, their transcriptome signature. In this
review, we aim to uncover potential similarities in microglial
phenotypes in advanced age and neurodegenerative disease
(Figure 1A) (12, 15, 16).

MICROGLIAL AGING: A SUMMATION OF

FACTORS ACCUMULATED THROUGHOUT

LIFE?

It recently was shown that not only cells of the adaptive immune
system but also those of the innate immune system can display
memory effects (5). The priming step of the immune cells,
induced by a primary insult, can result in an enhanced or
dampened subsequent injury response (17–19). In vivo tracking
of individual microglial cells showed that microglia can revert to
a homeostatic morphology post-injury (20–22). However, even
if the morphological homeostatic phenotype is reestablished,
epigenetic modification may render the cells altered from their
homeostatic state. As long-lived cells, microglia are very likely to
be primed by signals in their microenvironment, hence memory
effects might add up during the cell’s life span. This poses the
question if these rather individualized priming steps might be
part of the cellular aging process or if they have the potential
of adversely affecting healthy aging. Furthermore, as some acute
injuries such as microlesions are likely to only affect surrounding
microglial cells, the priming impact might be locally restricted.

Individual local events could result in the generation of
distinct spatially restricted transcriptional and phenotypic
alteration as microglial phenotypes are partially regulated
through membrane-bound pattern recognition receptors
(PRRs), which depend on molecules released by cells in their
microenvironment. In a local ischemic event, disease-associated
molecular patterns are passively released from dying cells (23),
which may lead to a transient activation with a priming effect,
whereas the deposition of amyloid β (Aβ) in the parenchyma
[a hallmark of Alzheimer disease (AD), but can also be found
in aged brains on a lesser scale] may lead to a different chronic
disease–associated microglial phenotype, which not only
depends on PRRs, as microglia also possess a wide variety of
receptors to detect other types of molecules such as hormones
and neurotransmitters (23). Therefore, a multitude of factors
exist that could potentially affect local and global microglial
behavior both in a short- or long-term fashion. A recent study
demonstrated the importance of the local milieu within the
brain in this regard by transiently depleting microglia using the
colony-stimulating factor 1 receptor antagonist PLX5622 (24)
in aged mice (25). The authors hypothesized that withdrawal
of the drug would result in the replenishment of “young”
unprimed microglia (25). Conversely, they reported that the
transcriptomic alterations in old age were only partially reversed,
and the replenished microglia responded to lipopolysaccharide
(LPS) with an exaggerated proinflammatory response, typical
of primed microglia. Further in vitro experiments confirmed

that media conditioned by 24-h cultivation of brain slices from
aged, but not young adult, mice were sufficient to trigger an
exacerbated response to LPS in neonatal microglia, elegantly
demonstrating the importance of the milieu in which microglia
are resident (24).

When focusing on the healthy aging process of microglia,
they have been described as dystrophic or senescent [reviewed in
(26)]. Historically, senescence is characterized by arrested growth
caused by oxidative stress as well as elevated DNA damage.
Age-related changes in the secretory profile were described
to coin the term senescence-associated secretory phenotype,
classifying a particular cell state in the aging brain (27,
28). The term dystrophic, on the other hand, was created
by the observation of changes in microglial morphology in
brain sections from elderly humans and potentially includes
all visually altered microglia (20). Among other features,
this phenotype includes the beading of microglial processes,
which are held together by thin channels (29), and was
proposed to signify microglial senescence (30). Previous studies
addressing the question if one of the described phenotypes
is purely age-related are controversial; some have found
dystrophic microglia in aged humans without any underlying
neurodegenerative disorders (30–32), whereas others gathered
evidence suggesting that dystrophic microglia are associated
with a variety of diseases including, e.g., AD (29, 31–
34), Huntington disease (14), and multiple sclerosis (35).
However, recently some light has been shed on the question
whether these two terms are describing the same or two
different phenotypes. To address this issue, Shahidehpour et
al. (36) conducted stereological analysis of microglia in human
brain tissue spanning the age of 10-90 years. The analysis
revealed an increased number of dystrophic microglia with
age, which, however, was much greater when neurodegenerative
pathology was present as well (36). They hence conclude
that aging itself is only associated with a minor increase
in dystrophic microglia (36). It is thus possible that the
disease event that generated an activated microglia phenotype,
potentially early in life, has a priming effect on cellular
aging, leading to an increase of dystrophic microglia in
old age (Figure 1A).

Also, the opposite assumption is valid; the overall cellular
aging process is likely causative for poor local injury responses,
resulting in an ineffective healing process that in turn might
again increase the amount of dystrophic/senescent microglia.
One example is the finding that population RNAseq of murine
microglia has identified a consistent age-dependent increase in
genes associated with a low-grade inflammatory response (37),
which might be causative for a poor local injury response by
microglia to additional acute insults. We have found the injury
response time to a local laser lesion of aged microglia (∼2.4-
year-old mice) to be reduced by ∼50%. Additionally, while
microglial process end-tips in young and adult mice showed
an increase in local diameters after a microlaser lesion, the
aged animals displayed significantly less morphological changes
upon lesioning, as the process end-tips already were found
to be enlarged prior to the insult (4). Further supporting
a gradual overall drift into a low-grade inflammatory state
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FIGURE 1 | (A) Homeostatic microglia over the life span of the animal encounter both spatially restricted and global injuries that likely contribute to transcriptomic and

functional alterations in microglia, potentially resulting in the adaption of specific disease- or injury-associated microglia phenotypes and conceivably contributing to

premature cellular aging. (B) Venn diagram illustrating the number of enriched (1.5-fold or higher) mutually and exclusively expressed genes between DAM (identified in

(Continued)
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FIGURE 1 | a mouse model of AD) (14) and two distinct clusters identified in aged wild-type mice [old age (OA) 2 and OA3] (7). (C) DAM and OA2 feature 39 mutually

expressed genes suggesting the activation of common transcriptional programs in both neurodegenerative disease and a minority of cells in healthy aging. (D)

Conversely, only nine genes were mutually expressed between DAM and OA3 suggesting that the OA3 population may be distinct from both DAM and OA2 microglia.

Venn diagram generated using Venny 2.1 (https://bioinfogp.cnb.csic.es/tools/venny/).

during aging, Minhas et al. recently put forward evidence
suggesting that a change in the metabolic state of macrophages
(in the brain and periphery), signified by a reduction of
the two main metabolic pathways (glycolysis and oxidative
phosphorylation), is affecting brain health as acute energy
demands, e.g., in order to support macrophage activation,
cannot be met any longer (38). More specifically, prostaglandin
E2 (PGE2), a proinflammatory signaling protein, which is
known to increase not only during aging but also in AD,
was investigated. The inhibition of PGE2 was shown to lead
to brain rejuvenation, reducing inflammatory levels in the
aged brain (38). These findings are of particular interest as
they support other reports that microglia can be influenced
by stimulation of peripheral immune cells (5) and that their
responsiveness can be (partially) restored even in the aged
brain. With the detailed mechanism leading to the reported
reduction in metabolism still being unknown, a future challenge
is to unravel this pathway to explore possible therapeutic
interventions, aiding in a wide range of diseases, as well as
aging itself.

TRANSCRIPTOMIC ALTERATIONS IN

MICROGLIA IN OLD AGE AND

NEURODEGENERATIVE DISEASE

In the effort to characterize microglia phenotype in disease,
scRNAseq has become a powerful weapon and has facilitated
even greater insight into the transcriptomic alterations of
microglia in diverse conditions. At present, however, comparing
transcriptomic data from different studies comes with inherent
challenges. Variability can be introduced at many stages such
as dissociation, gating for cell sorting, the scRNAseq procedure,
and data analysis. Technical limitations can further result
in discrepant data. For example, it was recently revealed
that the technical limitations of single-nucleus (sn)RNAseq (a
theoretically useful approach for postmortem human tissue as
it is compatible with frozen tissue) may have resulted in data
that lead inadvertently to the overstating of differences between
murine and human microglial transcriptomes (16). Thrupp et al.
found that many transcripts associated with microglial activation
are concentrated in the cytosol as opposed to the nuclei, resulting
in many transcripts remaining undetected with snRNAseq
(16). Another pertinent issue is that despite recent technical
advances in scRNAseq, correlating transcriptional profiles to
mechanistic data remains a persistent bottleneck. Spatially
resolved scRNAseq, especially at a single-cell resolution, would
provide an unparalleled advantage in correlating morphological
observations to distinct transcriptome signatures. At present,
however, these limitations greatly hinder correlating microglial

phenotypes (as evident by morphology or behavior in vivo) with
specific gene-expression profiles.

Despite these difficulties, highly valuable data have been
collected in several high-impact studies. Hammond et
al. (12) identified two distinct microglia clusters using
scRNAseq that, in the absence of overt pathology, were
expanded in aged (∼1.5 years old) mice. One cluster
(entitled OA2) was found to up-regulate the chemokines
Ccl3 and Ccl4 along with interleukin 1 beta (Il1b),
indicative of a shift to a proinflammatory phenotype
during aging (12). The other emerging cluster in aged
animals was found to be enriched in several interferon-
response genes [Ifitm3, Rtp4, and Oasl2 (entitled OA3)]
(12). This shift toward expression of interferon-response
genes is highly interesting, given that recent research has
demonstrated that interferon signaling in a mouse model
of AD triggers microglial activation, neuroinflammation,
and synaptic loss in response to nucleic acid containing
Aβ plaques (39).

Sala Frigerio et al. (40) also identified two microglial clusters
using scRNAseq that were expanded in aged mice. One cluster,
entitled activated response microglia (ARM), increased from
around ∼3% in 3-month-old mice to ∼12% of total microglia
in 21-month-old mice (40). ARM microglia were found to up-
regulate histocompatibility complex class II genes (Cd74, H2-
Ab1, and H2-Aa) and proinflammatory genes Cst7, Clec7a, and
Itgax (encoding CD11c). Notably, with the exception of Itgax
and Clec7a, these genes were also found to be up-regulated
in OA2 microglia (12). Another microglia cluster was also
identified, dubbed interferon-response microglia (IRM) (40).
This cluster was found to up-regulate Ifit3, Ifitm3, Irf7, and
Oasl2, consistent with OA3 microglia (12). Furthermore, using
semisupervised pseudotime analysis, the authors found that
homeostatic microglia in old age can transition into either IRM
or ARM. Taken together, these data suggest that in old age,
microglia transition into one of two mutually exclusive states,
one characterized by up-regulation of interferon-response genes
and the other characterized by a shift to a proinflammatory
state. However, as previously mentioned, it remains challenging
to ascertain the impact that transcriptional alterations have on
microglial phenotype in vivo.

Microglia play complex roles in neurodegenerative disease
(41), often being beneficial in some respects, while pathogenic
in others. Taking AD as an example, microglia phagocytose
Aβ (42, 43) (although this becomes attenuated with aging/Aβ

plaque load) and encircle Aβ plaques, prohibiting the spread
of [comparably more toxic (44)] soluble amyloid species
into the surrounding brain parenchyma (45). Consistent with
this, ablation of microglia after amyloid deposition results in
increased LAMP1 immunoreactivity surrounding Aβ plaques
(46); indicative of dystrophic neurites (47). While these findings
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suggest that microglia play a beneficial role in AD, microglia
themselves contribute to synaptic and neuronal loss in AD (48).
It was also shown that abolishing microglia after Aβ plaques
are well-established in the brain fails to provide any beneficial
effects (49) in the APPPS1 AD mouse model. Furthermore,
if microglia are abolished prior to amyloid deposition, Aβ

plaques fail to develop in the 5XFAD AD mouse model (46)
(although Aβ accumulates on blood vessels resulting in cerebral
amyloid angiopathy, a risk factor for hemorrhagic stroke).
Taken together, because of the complex matter at hand, it is
hard to determine whether microglia provide a net beneficial
or detrimental role in AD, and a simple binary answer is
not likely.

Despite the potential for global or spatially restricted
alterations in transcriptome signature in aging and pathology,
recent publications seem to suggest a common—or at least
highly similar—transcriptional program (50, 51) in diseased
states [i.e., disease-associated microglia (DAM) (52), microglia
neurogenerative phenotype (53), ARM (40), and, most recently,
white matter–associated microglia (54), a recently identified
microglial phenotype that expands during aging and in
neurodegenerative disease]. Massively parallel single-cell analysis
with chromatin profiling on immune (CD45+) cells from
5XFAD mouse brains (a well-established AD mouse model)
revealed two unique microglial clusters (52). Intriguingly, these
clusters expressed genes implicated in lipid metabolism and
phagocytosis (52). By analyzing mice from the age of 1-8
months (as Aβ deposition is advancing), the authors uncovered
an age-dependent shift from a homeostatic phenotype to a
DAM phenotype with one of the two clusters identified as
being a transitory stage (defined as stage 1) (52). DAM are
characterized by the up-regulation of Itgax, Trem2, Axl, Cst7,
Ctsl, Lpl, Cd9, Csf1, Ccl6, Clec7a, Lilrb4, and Timp2 (52).
Notably, Itgax in particular was found in every cell featuring
a DAM transcriptome signature (52). In addition, they down-
regulate Cx3cr1, P2ry12, and Tmem119 (52), genes typically
expressed in homeostatic microglia (12). The authors further
identified that DAM are in close association with Aβ plaques
and contain phagocytosed Aβ (52). Intriguingly, the authors
identified that a transition from stage 1 DAM to stage 2 DAM
was dependent on triggering receptor expressed on myeloid
cells 2 (Trem2) (52); homozygous loss-of-function mutations in
this gene are known to cause autosomal recessive early-onset
dementia [Nasu–Hakola disease and frontotemporal dementia
(FTD)–like disease] (55–57). TREM2 acts as a receptor for
apolipoprotein E, Aβ, and high- and low-density lipoprotein
and has been identified as crucial for triggering microglial
phagocytosis, proliferation, and inflammation (58). Importantly,

loss-of-function mutations in Trem2 have also been implicated
in diverse neurodegenerative diseases including AD (59),
amyotrophic lateral sclerosis (60), Parkinson disease (61), and
FTD (62). Consistent with this, DAM transcriptomes have now
been identified in diverse models of neurodegenerative disease.
Based on these elegant findings, it is tempting to speculate
that the DAM phenotype represents a pan-neurodegenerative
disease response.

GRADUAL ACCUMULATION OF DAM

DURING AGING

Even though we and others have shown morphological and
functional changes of microglial cells in aged mice, only a rather
small subpopulation show a transcriptomic profile consistent
with that of DAM. By comparing (Figure 1B) the top up-
regulated genes (greater than 1.5-fold change) between DAM
(52) and the small clusters of transcriptionally distinct cells from
aged mice (OA2 and OA3) (12), a set of 39 mutually expressed
genes can be identified between DAM and OA2 (Figure 1C).
Conversely, only nine genes were mutually expressed between
DAM and OA3 (Figure 1D). The amount of overlap in genes up-
regulated in DAM and OA2 appears to support the hypothesis
that a common transcriptional program is activated in both
DAM and aged microglia, but only in a minority of the
cell population in healthy aging. However, in various disease
models, the cell population displaying transcriptomic signatures
consistent with DAM is much larger, suggesting that pathological
insults during the animal’s life span will heavily expand the
DAM population, which has a potential impact on cellular
aging. Consistent with this, the ARM phenotype described by
Frigerio et al. (consistent with DAM) eventually becomes the
majority population of microglia at 12 months in an AD mouse
model (AppNL−G−F) (40). IRM (consistent with OA3) conversely
seemed to increase with age more rapidly in AppNL−G−F mice
than wild-type mice but ultimately also represented only a
minority of cells (< ∼5%) similar to wild-type mice. Ferretin
expression has been identified as a marker for dystrophic
microglia (36) and senescence (26). Shahidehpour and colleagues
(36) found ferretin-expressing dystrophic cells to be present,
but again to a very small extent, in healthy aged humans.
Conversely, the number of dystrophic microglia was significantly
increased in patients suffering from neurodegenerative disorders.
Consistent with the data of Shahidehpour et al. (36), ferritin
is expressed in the OA2 subpopulation (12), which again
is minimal in the absence of overt pathology, yet abundant
in neurodegenerative disease conditions (DAM) (52). Taken
together, the data suggests a disease-induced increase of cellular
aging hallmarks.

CONCLUSIONS

Microglia with transcriptomic signatures consistent with that
found in neurodegenerative diseases represent only a minority of
microglia in healthy aging. It remains unclear what this subset of
microglia contributes toward overall microglial dysfunction or,
conversely, if they might have a beneficial impact. With regard
to microglia featuring a neurodegenerative disease-associated
transcriptome signature, it is possible that neurodegenerative
disease causes advanced cellular aging, or conversely, advanced
cellular aging may be a contributing factor to neurodegenerative
disease (63). Further studies will be required to interrogate the
roles of these interesting microglial populations in old age. In
addition, it seems reasonable to speculate that data gathered
from mice at the end of the mouse life span (∼2.5 years)
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would be particularly valuable given the advanced ages reached
by humans in contemporary society. scRNAseq studies to date
seem to suggest that, despite the many factors that could
potentially influence microglial phenotypes in either a global
or spatially restricted manner, microglia in aged mice appear
to consist of homeostatic microglia, neurodegenerative disease-
like microglia, and IRM. The lack of apparent heterogeneity
could conceivably be in part due to the artificial conditions
that laboratory rodents reside in. This is an important caveat
that should be considered when attempting to extrapolate
observations from laboratory rodents to humans. With highly
individualized lifestyles, disease backgrounds, and environmental
factors, microglia in humans are likely to be primed more
diversely and extensively given human longevity in comparison
to laboratory mice. Hence, much remains to be discovered that

could potentially bring valuable mechanistic insights into both
aging and neurodegenerative disease.
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Purinergic signaling regulates neuronal and glial cell functions in the healthy CNS. In

neurodegenerative diseases, purinergic signaling becomes dysregulated and can affect

disease-associated phenotypes of glial cells. In this review, we discuss how cell-specific

expression patterns of purinergic signaling components change in neurodegeneration

and how dysregulated glial purinergic signaling and crosstalk may contribute to

disease pathophysiology, thus bearing promising potential for the development of new

therapeutical options for neurodegenerative diseases.

Keywords: Alzheimer, neurodegeneration, ATP, adenosine, oligodendrocyte, microglia, astrocyte, purine

INTRODUCTION

Neurodegenerative diseases are characterized by a progressive loss of structure and function of
the CNS. An estimated 50 million patients worldwide are currently affected by neurodegenerative
diseases and it has been projected that this number will rise to 131 million patients by 2050 (1).
Many of these diseases are idiopathic/polygenic proteinopathies, which are characterized by
accumulation and/or aggregation of proteins such as TAU, amyloid-β or α-synuclein (α-SYN)
in the CNS and are multifactorial, with both genetic and environmental risk factors. The most
common ones are the sporadic forms of Alzheimer’s disease (AD; TAU/amyloid-β (Aβ) aggregates),
Parkinson’s disease (PD; α-SYN aggregates), amyotrophic lateral sclerosis (ALS; TARDNA binding
protein 43 (TDP-43)/FUS RNA binding protein (FUS) aggregates), Lewy body dementia (α-SYN
aggregates) and frontotemporal lobar degeneration (FTLD; TAU/TDP-43/FUS aggregates) (2).

Despite decades of research, no causal treatment is available for any of these diseases. One
promising approach to help overcome the lack of therapeutical options is to shift the focus
from a linear neuron-centered view on how neurodegenerative diseases develop to a broader and
integrative view in which interactions between all cell types in the brain are considered. This
paradigm shift has led to an increased interest in the role of glial cells in neurodegeneration.

Indeed, there is strong evidence that changes in glial cells, microglia, astrocytes and
oligodendrocytes, are causally involved in neurodegenerative diseases. Around half of the known
genetic risk factors in sporadic AD are glial genes related to immune function such asTREM2,CD33
or CR1 (3, 4). Furthermore, recent data have highlighted phenotypic changes of glial cells over the
disease course with the discovery of disease-associated microglial (DAM) and disease-associated
astrocytic markers (DAA) (5, 6). Accordingly, new therapeutic strategies targeting glial signaling
pathways are currently being tested in pre-clinical intervention studies, for example, treatments
modulating the NLRP3 inflammasome (7), astrocytic nuclear factor kappa-β (8) and TREM2-
mediated signaling (9), among others.
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The targeting of purinergic signaling—i.e., signaling pathways
mediated by extracellular nucleotides and nucleosides such as
ATP or adenosine—belongs to these novel emerging therapeutic
strategies (10). All CNS cell types, including glial cells, express
purinergic receptors and purinergic signaling influences key CNS
functions [for review see Agostinho et al. (11)] such as synaptic
transmission, proliferation, maturation and neuroinflammation
(12) that are altered in neurodegeneration. Thus, in the
present manuscript, we discuss the current knowledge on
purinergic signaling in glial cells and its potential relevance
in neurodegenerative disease. We provide a comprehensive
overview and cell-specific expression tables based on available
transcriptomic data of purinergic genes in glial cells in
neurodegeneration and link this data with data from functional
studies. Finally, we discuss glial purinergic signaling as a potential
target for future therapeutic intervention.

THE COMPONENTS OF PURINERGIC
SIGNALING

Purines are a family of small molecules involved in DNA/RNA
structure and key cellular processes such as cell metabolism,
intracellular signaling and extracellular signaling. Geoffrey
Burnstock coined the term of “purinergic signaling” for the latter
in 1972 (13), in which he referred to cell signaling pathways
that are activated by engagement of nucleosides and nucleotides
with specific cell receptors. ATP, the main energy storage of
the cell, can be hydrolyzed in the extracellular space through
specific enzymes called ectonucleotidases into ADP, AMP
and adenosine. These include ectonucleoside triphosphate
diphosphohydrolases (E-NTPDases), ectonucleotide
pyrophosphatase/ phosphodiesterases (ENPPs), alkaline
phosphatases and ecto-5′-nucleotidase (NT5E/CD73) (14).
Adenosine can also be produced through the S-adenosyl-
L-homocysteine pathways and degraded by adenosine
deaminase and adenosine kinase. Furthermore, ATP and
its derivatives can be transported between cell compartments
and released extracellularly through different transporters like
the equilibrative nucleoside transporters (ENTs) or concentrative
nucleoside transporters (CNTs), but also through channels such
as Connexin-43 (CX43), Connexin-32 (CX32) or Pannexin-1
(PANX1), secretion involving vesicular nucleotide transporter
(SLC17A9/VNUT) or ultimately by membrane rupture during
cellular injury, allowing them to trigger purinergic receptor
signaling (15, 16).

Purinergic receptors are subclassified into two large families:
P1 receptors that are activated by nucleosides, and P2 receptors
that are activated by nucleotides. P2 receptors are further
subdivided into ionotropic P2X receptors and metabotropic
P2Y receptors (17, 18). So-called P0 receptors have recently
been defined and constitute adenine receptors (19, 20). The P1
receptor family consists of four receptors (adenosine A1, A2A,
A2B and A3 receptor), the P2X family of seven receptors (P2X1-
P2X7) and the P2Y family of eight receptors (P2Y1, P2Y2, P2Y4,
P2Y6, P2Y11-P2Y14).

GLIAL PURINERGIC SIGNALING AND
CROSSTALK UNDER PHYSIOLOGICAL
CONDITIONS

Purinergic signaling controls important physiological processes
in the healthy CNS, such as synaptic transmission, cell
proliferation and innate immune response (11, 12). ATP and
adenosine are produced and released upon neuronal or glial
activation and initiate various cellular pathways corresponding
to the activation of P2X, P2Y and adenosine receptors. Neurons,
microglia, astrocytes and oligodendrocytes express a unique
repertoire of purinergic receptors (Figure 1, left), which due
to receptor-specific intracellular downstream signaling cascades
lead to specific responses in each CNS cell type. Many previous
studies have contributed to our understanding of the purinergic
signaling repertoires in microglia (21–24), astrocytes (25–27)
and oligodendrocytes (28, 29). However, a full overview of the
expression patterns of all components of purinergic signaling
in the main mouse and human CNS cells has only become
available through the seminal work of the laboratory of Ben
Barres. The group created an unbiased RNA sequencing database
of purified specific CNS cells from human and mouse cortex
(30–32). Using this database, we here assembled expression data
of purinergic genes from neurons, microglia, astrocytes and
oligodendrocytes. With the caveat of missing validation on the
protein level, possible cell impurities, region-specific differences
or age-dependent modifications, this makes it possible to
compare expression patterns of purinergic genes in these CNS
cell types in human and mouse (Figure 2).

According to this data, microglia are the cells with the
highest expression and largest number of expressed purinergic
receptors (in particular ADORA3, P2RY12, P2RY13, and at
lower levels P2RX7 and P2RY14 genes) and ectonucleotidases
(in particular ENTPD1 gene also known as CD39) in the
human cortex. There are significant differences in murine
microglial gene expression of purinergic components compared
to human. For example, Adora1, P2rx4 and Entpd2 show
higher expression levels in mouse. Additionally, genes encoding
ENTs (ENT1, 2 and 3, encoded by Slc29a1, Slc29a2 and
Slc29a3, correspondingly) are expressed at higher levels
in mouse microglia, suggesting that nucleoside transport
processes may differ between humans and mice. Similarly,
cell-specific expression of some ectonucleotidases, including
Entpd1 in microglia are considerably different in human and
mouse (Figure 2).

Human astrocytes, despite displaying–in some cases
considerably–lower expression values than microglia, also
express a variety of purinergic receptors (ADORA2B, P2RY1,
P2RY12) and ectonucleotidases (ENTPD1, ENPP5 and NT5E
also known as CD73). Similar patterns can be found in mouse
astrocytes (Figure 2).

Lastly, human oligodendrocytes express ADORA3, P2RX7,
P2RY12, P2RY13, and NT5E. Interestingly, ectonucleotide
pyrophosphatases/phosphodiesterases (ENPPs, namely Enpp2,
Enpp4, Enpp5, and Enpp6) in oligodendrocytes show a higher
expression in mouse (Figure 2).
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FIGURE 1 | Glial purinergic signaling under homeostatic conditions and in proteinopathies. Under healthy conditions (Left), cell-specific glial purinergic signaling

contributes to fine-tuning of synapse function and thus, normal cognitive abilities. In proteinopathies (Right), accumulation of protein aggregates leads to glial

phenotype changes that are associated with altered expression of purinergic signaling components and altered ATP and adenosine (Ado) levels. This impacts synaptic

function and ultimately results in synapse loss, contributing to impaired cognition. Two self-portraits are shown to illustrate the cognitive status in health and disease,

similar to the famous work of William Utermohlen, who continued to create self-portraits after being diagnosed with AD.

Although some of the data largely overlaps with previous
findings in rodent and human CNS tissue, this cell type-specific
gene expression table allows to better appreciate the considerable
inter-species similarities–and differences–between human and
mouse. It also shows the large spectrum of purinergic gene
expression patterns in the different CNS cell types.

How is this cell type-specific purinergic signaling repertoire
linked to glial cell function? Although some aspects have
remained ill-defined, especially regarding the role of purinergic
enzymes and transporters, a lot is known about how purinergic
receptor signaling shapes glial cell function in the healthy brain
[Figure 1 left; for a recent detailed review see Agostinho et
al. (11)].

For example, different P1 and P2 receptors such as A3, P2Y12,
P2Y13, P2X4 control the motility of the ramified and dynamic
cell processes of microglia, the tissue-resident immune cells of
the brain (33–36). This motility of cell processes is important
for surveillance and chemotactic cell process movement toward
localized brain damage. Furthermore, phagocytosis and release
of inflammatory molecules, both major effector functions of
microglia, are modulated by purinergic signaling pathways,
involving P2X4, P2X7, and P2Y6 (37–40). In addition, there
is evidence that microglial contribution to synaptic pruning

and synaptic function is at least partly controlled by purinergic
mechanisms (41). It has also been shown that innate immune
responses of microglia are positively modulated by ATP through
P2X7 receptors (42) and negatively by adenosine through A2A
receptors (43).

Astrocytes are involved in a wide variety of functions in the
CNS, such as metabolic support, synaptic function, neuronal and
synaptic maturation and blood brain barrier permeability (44–
47). The relevance of astrocytic P2 receptor signaling in some of
these cell functions has been implicated in a number of previous
studies. More specifically, P2Y1 mediates calcium signaling in
astrocytes, which is critical for modulating synapse function
and blood-brain barrier maintenance (48). Neurotransmitter
recapture is also modulated by astrocytic A2A receptor-mediated
signaling, allowing for a reduced uptake of glutamate and greater
uptake of GABA, reinforcing synaptic activation (49, 50).

Oligodendrocytes synthesize myelin sheaths, which insulate
CNS axons, enabling a rapid action potential propagation. This
process occurs life-long as oligodendrocytes perform myelin
remodeling. Additionally, oligodendrocytes contribute to the
metabolic support of axons through a wide variety of transporters
(51). Oligodendrocyte progenitor cells (OPC, also called NG2
cells as they express the NG2 chondroitin sulfate proteoglycan)
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FIGURE 2 | Cell-specific expression of purinergic genes. Estimated expression

levels FPKM (Fragments Per Kilobase Million) of genes involved in purinergic

signaling pathways in microglia, myelinating oligodendrocytes, mature

astrocytes and neurons was obtained from existing data sets from Zhang et al.

(30) (mouse data) and Zhang et al. (31) (human data) (30, 31). FPKM values of

100 and above are shown in the same color for visualization purposes.

can differentiate into new mature oligodendrocytes. As for
microglia and astrocytes, there is evidence that purinergic
signaling controls a number of cell functions in oligodendrocytes.
Adenosine and ATP/ADP have been shown to contribute to
proliferation, migration and maturation of oligodendrocytes
through P1 (A1 and A2A) and P2 receptors (P2X7 and P2Y1).

Apart from its importance in shaping cell functions of
particular glial cells, purinergic signaling plays a key role in
neuro-glial interactions (11). Neurons and glial cells reside
in spatial proximity to each other, which is particularly
important at the synaptic site. This proximity enables an efficient
inter-cellular crosstalk through purinergic signaling, based on
ATP/adenosine release, ectonucleotidase activity and receptor
stimulation, affecting the neighboring cells in an autocrine and
paracrine manner.

For example, ATP and adenosine released by synaptic
stimulation trigger calcium wave signaling in the astrocytic
syncytium through P2Y receptors, which in response decrease

the activation of neighboring synapses through adenosine A1
receptor, a phenomenon called “heterosynaptic depression”
(52, 53). Moreover, neuronal ATP release at the synapse
recruits microglial cell processes, allowing cleavage of ATP
into adenosine through microglial CD39 and ubiquitous CD73,
leading to dampening of synapse activity upon A1 receptor
stimulation (41).

Furthermore, ectonucleotidases such as CD73 are required
for adenosine A2A receptor potentiation of synapses, and such
mechanism could be similar in a glial context (54). For instance,
ENTPD1 (CD39) and NT5E (CD73) are expressed in all CNS
cell types in the human CNS, albeit in case of CD73 at very low
and in case of CD39 at high levels in microglia compared to
the other cell types (31). This suggests that local degradation of
ATP and ADP and production of adenosine may also occur in a
cell-autonomous manner.

GLIAL PURINERGIC SIGNALING AND
CROSSTALK IN NEURODEGENERATION

Since purinergic signaling is a multi-cellular, dynamic
and complex signaling system, some of its aspects in
neurodegenerative diseases have been difficult to evaluate
and will require more specific quantitative tools in the future.

For instance, one major question that has remained
unresolved due to the lack of specific tools with sufficient
temporal and spatial resolution, is how the spatio-temporal
kinetics of ligand availability and purinergic receptor activation
is regulated in neurodegeneration (55). However, it has recently
been shown that purinergic metabolites are strongly modified
in AD. Adenosine was shown to be the most affected purine,
increasing in temporal and parietal cortices of AD brains (56).
Similarly, increased levels of adenosine are detectable in the CSF
of ALS patients (57).

Another question that has not been sufficiently addressed
until recently has been whether and how expression of
purinergic signaling components is altered in glial cells in
neurodegeneration. To get a better understanding of disease-
associated changes, we took advantage of the increasing
number of unbiased transcriptomic studies on human
and murine glial cells in neurodegeneration. These studies
did not have the primary goal to investigate differential
purinergic gene expression in glial cells. However, they now
constitute valuable resources to detect potential patterns of
purinergic transcriptomic response in microglia, astrocytes
and oligodendrocytes in neurodegeneration. To assemble the
available data in a comprehensive manner, we searched for
studies from transgenic AD, PD, tauopathy and ALS mouse
models and human AD, PD, tauopathy and ALS patients, in
which transcriptomic analyses on single cells or nuclei and
bulk-sorted glial populations were performed. Among the
available studies that mainly covered AD and ALS, we selected
the data sets, in which at least one component of purinergic
signaling was significantly dysregulated. We thus included 18
data sets from 14 studies on microglia (5, 58–68), nine data sets
from eight studies on astrocytes (61, 68–74) and 4 data sets from
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FIGURE 3 | Differentially expressed purinergic genes in microglia in neurodegeneration. Heatmap shows Log2 fold changes in expression of genes involved in

purinergic signaling pathways between disease (AD or ALS, or relevant mouse models) and control samples. LFC values above 1 and below −1 are shown in the

same color intensity for visualization purposes. Studies were selected according to the following criteria: transcriptomic analysis was performed on single cells or

nuclei and allows disease/control comparisons for selected cell types, or on bulk-sorted glial populations; differential expression analysis results were provided by

authors as supplementary material and were accessible. In total, 18 data sets from 14 studies were included for microglia [Orre et al. (69) (mouse, AD model, bulk),

Chiu et al. (63) (mouse, ALS model, bulk), Wang et al. (64) (mouse, AD model, bulk), Srinivasan et al. (65) (mouse, AD model, bulk), Friedman et al. (66) (mouse, AD

model, bulk), Rothman et al. (58) (mouse, AD model, bulk), Mathys et al. (72) (mouse, AD model, single-cell, two disease-associated clusters), Keren-Shaul et al., (5)

(mouse, AD model, single-cell, DAM cluster), Zhou et al. (68) (two data sets, mouse AD model and human AD patients, single-nuclei), Liu et al. (59) (mouse, ALS

model, single-cell), Lau et al. (61) (human, ALS, single-nuclei), Grubman et al. (74) (human, AD, single-nuclei), Butovsky et al. (75) (mouse, ALS model, bulk), Sobue et

al. (60) (three data sets, mouse AD and ALS models, and human AD patients, bulk)] (5, 58–68).

three studies on oligodendrocytes (61, 68, 72) and used log2 fold
change expression values between diseased and control samples
to visualize shifts of gene expression involved in purinergic
signaling pathways for each cell type (Figures 3–5).

Using this data and functional studies on glial purinergic
signaling, we will discuss in the following sections what is
known about purinergic signaling in microglia, astrocytes and
oligodendrocytes in neurodegeneration.

It should be noted, however, that glial populations in
neurodegeneration are spatially and temporally heterogeneous,
depending on disease stage and proximity to specific pathological
hallmarks. This heterogeneity is well-described for microglial

populations in AD, in which “early” and “late” subsets of disease-
associated microglia occur on both gene and protein expression
levels (5, 76, 77). Moreover, single-cell transcriptomic studies
have shown divergent but co-existent microglial subsets with
different directions of gene expression changes (67, 76, 78).
Therefore, it is likely that functionally and spatially distinct glial
subsets co-exist within disease-associated reactive populations
of glial cells [disease-associated microglia (DAM, (5)), disease-
associated astrocytes (DAA, (73)) and pathology-associated
populations of oligodendrocytes (67, 79)]. This may explain some
of the discrepancies between purinergic gene expression changes
and evidence from functional studies.
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Microglia
Microglia are centrally involved in the pathophysiology
of neurodegenerative diseases. Microglia not only drive
inflammation in neurodegenerative diseases, but, as the main
phagocytes in the CNS, are important for clearing protein
aggregates, debris and apoptotic cells (80–86). Furthermore, the
elaborate cellular morphology and process motility that enable

efficient tissue surveillance are altered in neurodegeneration
and this capability is therefore strongly affected (87–90).

Some of these changes in microglial cellular functions may be

caused by alterations in microglial purinergic signaling upon
neurodegeneration (Figure 1, right).

When interrogating the microglia purinergic transcriptomic
data from AD patients and AD mouse models we summarized
here, a microglial response pattern emerges, in which Adora1

and P2rx4 are upregulated and Adora3, P2rx7, P2ry6, P2ry12,
and P2ry13 downregulated (Figure 3). There are also changes in
ectonucleotidase expression, particularly in Enpp1 (upregulated)
and Entpd1 (downregulated) that are consistent between several

data sets in mice. However, the majority of differentially
expressed genes is only detected as differentially expressed in a
few studies. Some inconsistencies in expression changes of some
genes including upregulation of P2RY6 and P2RY12 in Zhou et

al. (68), or upregulation of P2ry12 and Entpd1 in Rothman et

al. (58), may be explained by differences in the experimental
approaches (58, 68). A number of ALS-related changes in gene
expression are similar to gene expression patterns from AD

studies, including P2ry12 and P2ry13 (91) that are downregulated
both in murine AD and ALS mouse models. Transcriptomic data
sets for glial cells in Parkinson’s disease are still largely missing,

both frommousemodels and human brain tissue. However, there

was no clear association between PD risk genes and microglia or
astrocyte populations in a recent study, in which single nuclei
from substantia nigra and cortex were extracted and analyzed,

suggesting that microglial purinergic alterations may play a less
prominent role in PD than in AD (92).

In contrast to these transcriptomic data, numerous
experimental studies have shown that microglial P2X7 protein
levels are elevated in human AD brains, in multiple rodent

amyloidosis models (93–98), in the PD rat model 6-OHDA as

well as in the spinal cord of ALS patients and SOD1 mutant mice
that serve as ALS animal models (99–101).

These findings are functionally important since enhanced
activity of P2X7 drives cellular inflammation in several
neurodegenerative pathologies. On a molecular level, Aβ-

induced ATP release activates P2X7, which in turn results in
ROS production (98, 102–104) as well as activation of the
inflammasome and subsequent release of the cytokine IL-1β
(82, 105–108). Similarly, SOD1G93A and TDP-43Q331K in
ALS and α-synuclein in PD, contribute to oxidative stress and

inflammation via microglial P2X7 activation (83, 109–111). On
a functional level, it was demonstrated that inhibition of P2X7

decreases migration of microglia in vitro, whereas phagocytosis
is enhanced in vivo in the J20 AD model (93) making it an
interesting target. The functional role of P2X7 in the pathogenesis

of ALS is less clear than in AD. On the one hand, SOD1

FIGURE 4 | Differentially expressed purinergic genes in astrocytes in

neurodegeneration. Heatmap shows Log2 fold changes in expression of

genes involved in purinergic signaling pathways between disease (AD or ALS,

or relevant mouse models) and control samples. LFC values above 1 and

below −1 are shown in the same color intensity for visualization purposes.

Studies were selected according to the following criteria: transcriptomic

analysis was performed on single cells or nuclei and allows disease/control

comparisons for selected cell types, or on bulk-sorted glial populations;

differential expression analysis results were provided by authors as

supplementary material and were accessible. In total, nine data sets from eight

studies were included for astrocytes [Orre et al. (69) (mouse, AD model, bulk),

Kamphuis et al. (70) (mouse, AD model, bulk), Miller et al. (71) (mouse, ALS

model, bulk), Mathys et al. (72) (human, AD, single-nuclei), Zhou et al. (68) (two

data sets, mouse AD model and human AD patients, single-nuclei), Habib et

al. (73) (mouse, AD model, single-nuclei), Lau et al. (61) (human, ALS,

single-nuclei), Grubman et al. (74) (human, AD, single-nuclei)] (61, 68–74).

mutant microglia show reduced ATP degradation and enhanced
ATP sensitivity in vitro (100). On the other hand, the onset
of clinical symptoms seemed to be accelerated and disease
progression exacerbated (112) in P2X7-deficient SOD1 mutant
mice. This indicates a complex scenario, which has implications
for potential treatment strategies, as the time point of P2RX7
counteraction seems to play a key role. Microglia seem to play
a dual role in ALS, acting beneficially at early stages of the
disease, while exacerbating disease pathology at later stages (113).
Taken together, P2RX7 activation and subsequent inflammatory
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FIGURE 5 | Differentially expressed purinergic genes in oligodendrocytes in

neurodegeneration. Heatmap shows Log2 fold changes in expression of

genes involved in purinergic signaling pathways between disease (AD or

relevant mouse models) and control samples. LFC values above 1 and below

−1 are shown in the same color intensity for visualization purposes. Studies

were selected according to the following criteria: transcriptomic analysis was

performed on single cells or nuclei and allows disease/control comparisons for

selected cell types, or on bulk-sorted glial populations; differential expression

analysis results were provided by authors as supplementary material and were

accessible. In total, four data sets from three studies were included for

oligodendrocytes [Mathys et al. (72) (human, AD, single-nuclei), Zhou et al. (68)

(two datasets, mouse AD model and human AD patients, single-nuclei), Lau et

al. (61) (human, ALS, single-nuclei)] (61, 68, 72).

response represent a common purinergic dysregulation in
proteinopathies such as AD, PD and ALS. However, further
research needs to be conducted, especially in the fields of ALS
and PD research.

As mentioned earlier, microglial morphology, motility and
chemotaxis are regulated by the interplay of multiple different
purinergic receptors including P1 and P2 receptors. The
adenosine A1 and A3 receptors both play a role in microglial
migration (33, 114). A1 is involved in morphological changes
of microglia (115) and A3 contributes to the regulation
of process extension (33). Consequently, the transcriptomic
changes of Adora1 (A1) and Adora3 (A3) that can be detected
in the transcriptomic studies in neurodegeneration (Figure 3)
may contribute to alterations in microglial morphology,
although functional studies are currently missing. In contrast
to Adora1 and Adora3, expression of Adora2a (encoding
A2A) is barely detectable under normal conditions (Figure 2).
Nevertheless, A2A has been shown to mediate microglia
process retraction (116), to induce Ptgs2 (Cyclooxygenase
2) expression (117) and proliferation of microglia (118).
Interestingly, A2A was found to be increased in microglia

in AD when using immunolabelling (119). Consequently, this
upregulation could contribute to increasedmicroglia cell number
and decreased morphology around Aβ plaques. However,
microglia-specific studies investigating the effects of P1 receptors
in neurodegeneration are limited and further investigations will
be required.

P2Y12 and P2Y13, encoded by P2ry12 and P2ry13, are
the main P2 receptors that regulate microglial surveillance
motility and chemotaxis. More specifically, P2Y13 regulates
microglial morphology and surveillance (35), whereas P2Y12
mediates directed motility in microglia, process extension and
microglia migration toward stimuli including ATP release (34,
41, 88). P2ry12 and P2ry13 are strongly downregulated in the
transcriptomic studies summarized here (Figure 3), a finding
that has been confirmed in mouse and human tissue at the RNA
and protein levels (74, 75, 91, 120). Given the functional role of
these two receptors, a strong decrease of P2Y13 may contribute
to a loss of microglial surveillance function in neurodegeneration
that normally supports tissue integrity and downregulation
of P2Y12 may affect microglial directed migration, including
migration to the plaque site in AD. Furthermore, P2Y12 is
important to balance hyperexcitability of neurons, most likely
through the involvement of P2Y12 in cell process extension
toward the synaptic site (41) and P2Y12 deletion exacerbates
experimentally induced epileptic events in mice (121). It is thus
tempting to speculate that a reduction of P2Y12 in microglia
in AD may contribute to the increased occurrence of epileptic
events in AD patients (122).

In addition, brain-derived neurotrophic factor (BDNF) serves,
among other functions, as a signal to regulate neuronal
activity, since BDNF-mediated disruption of chloride gradient
and following disturbance of chloride-dependent GABAergic
inhibitory function was reported (123–125). Exocytosis of BDNF
is mediated by ATP-evoked P2X4 activation (123, 126–130) and
regulated by A2A (118). Decrease of inhibitory signals favors
increased neuronal activity and hyperexcitability, eventually
causing epileptic seizures (131–134). Both of the mentioned
purinergic receptors, P2X4 and A2A, that regulate BDNF release
are upregulated in AD [Figure 3, (119)]. The upregulation and
following release of BDNF may therefore also contribute to
hyperexcitability and epileptic events in neurodegeneration.

Besides, P2X4 is involved in the chemotactic response of
microglia, as pharmacological inhibition and downregulation
of P2X4 lead to impaired chemotaxis in vitro (36). The
transcriptomic studies we summarize here provide evidence that
P2rx4 is upregulated in different murine AD models (Figure 3),
implicating that it could play a functional role in altering
microglial chemotaxis in AD.

In summary, a number of purinergic receptors that regulate
microglial morphology, motility and migration are dysregulated
in neurodegeneration and may thus constitute pathways that
contribute to impairment of these microglial motility functions.
It will be important to validate this assumption in functional
studies in the future.

Another important microglial cell function that is affected in
neurodegeneration is the phagocytic capacity (87), which among
many other mechanisms, is regulated by the UDP-sensitive
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purinergic receptor P2Y6. Interestingly, it has been shown
that the ion channel function of P2X4 is inhibited by P2Y6
upregulation. This suggests an interesting mechanism, in which
P2RY6 would be key to switch from migratory to phagocytic
behavior of microglia (135). Because P2ry6 is downregulated in
several murine ADmodels (Figure 3), this couldmean that UDP-
sensitive phagocytosis may be decreased in neurodegeneration.
This could also be relevant for a process called “phagoptosis,”
i.e., the uptake of live neurons by microglia involving P2Y6
(136). Inhibition of P2Y6 prevents neuronal loss induced by
low levels of Aβ, suggesting that microglial phagocytosis could
be responsible for neuronal loss (136). However, the absence of
P2Y6-dependent inhibition of ex vivo phagocytosis in 5xFAD
mice indicates that in AD, purinergic receptors other than
P2Y6 may regulate microglial phagocytosis (137). Unlike in AD
models, P2RY6 was upregulated in a PDmodel and in human PD
brains, implying an opposite functional impact of P2Y6 in PD
(101, 138).

In addition to P2Y6, there is also evidence that P2Y2
contributes to phagocytosis functions in microglia. Specifically,
Aβ-induced microglial ATP release enhances phagocytosis of
Aβ via P2Y2 activation in cultured cells (103, 139). In vivo
data confirmed that heterozygous deletion of P2Y2 enhances
β-amyloid plaque burden, indicating that downregulation of
P2Y2 could contribute to AD pathology (140, 141). Apart from
phagocytosis, pinocytosis induced by ATP or UTP is another
mechanism that contributes to Aβ uptake by microglia. This
process can be accelerated by yet another purinergic receptor,
namely P2Y4 (142).

Altogether, since purinergic signaling regulates phagocytosis,
a key function of microglia allowing clearance of pathologic
protein aggregates, dysregulation of these purinergic pathways is
likely to contribute to neurodegenerative disease pathology.

In light of the importance of purinergic signaling for
the regulation of many microglia functions, the balance of
extracellular purinergic ligands such as ATP, ADP, AMP
and adenosine gains in significance. The concentration of
extracellular purinergic elements is regulated by purinergic
enzymes and transporters. Ectonucleotidases, namely CD39 and
CD73, through ATP degradation and adenosine production,
modulate microglial migration, microglia morphology and
process elongation (114, 143, 144) and reduce phagocytosis (145).
It is thus conceivable that downregulation and therefore loss of
CD39 function, as observed in the spinal cord of ALS subjects
(75) and in transcriptomic data from SOD1 mutant mice and
murine amyloidosis models (Figure 3), could have detrimental
consequences. Additionally, Enpp1 in turn is upregulated, while
microglial ENT1 and ENT3 are downregulated (Figure 3).
This indicates that the regulation of extracellular ligands by
ectonucleotidases and by cross-membrane transport may become
disturbed in neurodegeneration, although the exact impact
on microglia themselves and other CNS cells will require
further investigation.

Astrocytes
Astrocytes become reactive upon neurodegeneration and display
morphological, functional, andmolecular changes. It has recently

been re-confirmed in a consensus statement that reactive
astrocytes should not be subclassified into binary categories
but defined at multiple levels using morphological, molecular
and functional parameters and considering temporal and spatial
aspects (6). Interestingly, the presence of reactive astrocytes
correlates with the cognitive status in AD (146, 147). This
may be due to the fact that astrocytes are involved in a wide
variety of functions in the CNS and during neurodegeneration
lose some of these properties (Figure 1, right), such as their
ability to maintain the integrity of the blood brain barrier,
contribute to gliotransmitter release and glutamate uptake. This
loss of homeostatic defensive function, which may correlate with
astroglial atrophy or “asthenia,” has been attributed to contribute
to the propagation of cognitive decline in AD (148). At the
same time, astrocytes gain potentially toxic functions and release
pro-inflammatory molecules.

Based on the transcriptomic data we assembled here
(Figure 2), it appears clear that mouse and human astrocytes
show distinct expression patterns. P2ry2, Enpp2, Enpp5, andGja1
(encoding CX43) are upregulated in ADmouse models, although
not consistently across the different studies, while only Gja1
was found upregulated in human astrocytes in AD (Figure 4).
Additionally, Adora2a, Adora2b, P2y14, Entpd1 (encoding
CD39), Entpd2, and Enpp4 are downregulated in AD models or
human AD. Furthermore, different sets of purinergic genes were
found upregulated (P2ry6) or downregulated (Entpd3, Entpd4,
Entpd7) in an ALS mouse model.

Functionally, the P2Y1 receptor signaling pathway is one of
the major purinergic signaling pathways that may contribute
to altered astrocyte properties in neurodegeneration, especially
in AD. P2Y1 mediates calcium waves in astrocytes, which
are linked to gliotransmitter release and synchronization of
astrocytic syncytium, which is critical for synaptic plasticity
(149–151). Unlike in the transcriptomic studies we summarized
here, previous studies showed that astrocytic P2Y1 receptor
expression is elevated in ADmousemodels and humanAD brain,
especially in close vicinity to amyloid plaques (151, 152). This
spatially restricted expression pattern may explain some of the
discrepancies to the transcriptome data. P2Y1 activation has been
linked to cognitive decline by enhancing astrocyte hyperactivity
(153) and mediating astroglial network defects (151). Acute
pharmacological inhibition of P2Y1 allows normalization of
such defects (151), highlighting the therapeutical potential of
targeting P2Y1 in AD. In particular, P2Y1 inhibitor injected
through chronic ICV infusion reduced dystrophic neurite
burden, improved astroglial function and long-term potentiation
in an AD animal model (152).

Another study that shows discrepancies to the transcriptomic
analyses shown here, found increased levels of CD39L1 (encoded
by ENTPD2) at Braak stage III-IV in AD (154). Since CD39L1
modulates ATP metabolism and is particularly expressed in
astrocytes (25), increased CD39L expression would reduce
local ATP levels and thus dampen P2Y1-mediated astrocytic
hyperactivity in CNS tissue with AD pathology, while its reduced
expression, as suggested by the transcriptomic analyses, would
have the opposite effect. Further studies are required to resolve
these potential effects.
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In agreement with the upregulation of Gja1/Connexin-43
(CX43) in astrocytes found in the transcriptomic analyses from
AD mouse models and human AD brains we summarized
here (Figure 4), Gja1 was detected among the astrocytic genes
dysregulated in the proximity of amyloid plaques (155). CX43
contributes to ATP release (156). These effects seem to be
mediated by amyloid pathology, as amyloid exposure triggers
increased expression of CX43, both in vitro and in AD models
(157–159). Deletion of astroglial CX43 in an AD mouse model
was able to reduce astrocyte reactivity, ATP release, plaque-
associated neuronal damage and improved synaptic function
(160). In both, an in vitro and a mouse model of PD,
astroglial CX43 was increased following exposure of rotenone,
a neurotoxic substance (161, 162). Interestingly, CX43 activity
is downstream of P2X7 and contributes to ATP release from
astrocytes (163). Using a CX43 inhibitor, reduced α-synuclein
deposits and attenuated neuroinflammation in a PD rat model
were observed (164), highlighting the therapeutic potential
of CX43 in several neurodegenerative diseases. CX43 and
PANX1 are downregulated in an ALS mouse model (SOD1
mutant) at pre-symptomatic stage, while being upregulated at
symptomatic stage (165), which again suggests that disease-
dependent activation stages should be taken into account when
designing therapeutic intervention.

Finally, despite weak expression in astrocytes under
physiological conditions, adenosine A2A receptor was shown
to be increased in astrocytes in both human AD brains (166)
and amyloid models (49, 166, 167), although this finding is not
supported by the transcriptomic data assembled here (Figure 4).
Astrocytic A2A receptor is known for its regulation of glutamate
and GABA uptake (49, 50) but also its in vitro effect on astrocyte
gene regulation (168). Blocking A2A-mediated signaling was
sufficient to mitigate memory defects in animal models (166).

Further investigations will be needed in the future to better
understand whether A2A is clearly dysregulated in astrocytes
or astrocytic subpopulations and whether astrocyte-specific A2A
directly impacts astrocyte function in neurodegeneration.

Oligodendrocytes
In neurodegenerative diseases, oligodendrocytes become
progressively damaged from various causes, such as
neuroinflammation, direct effects from protein aggregates
or oxidative stress, leading to myelin loss, disruption of energy
transfer to neurons, and ultimately cell death (169). Regarding
oligodendrocytes in neurodegenerative diseases, we could only
find few transcriptomic data sets with significant differentially
expressed purinergic genes. Of those, P2rx7 and Enpp4 genes
appear to be upregulated in AD mouse models, and Adora1
downregulated (61, 68, 72) (Figure 5).

All members of the oligodendrocyte lineage are very sensitive
to adenosine and ATP released by neurons or other glial cells
as they are able to migrate, differentiate and proliferate upon
activation of A1, A2A and P2Y1 receptors through calcium
signaling (29, 170–172). In AD, impaired repair of myelin is
observed, which was postulated to contribute to disease initiation
(173). During neurodegenerative conditions, increased ATP
release induces activation of P2X7 in oligodendrocytes, which

could serve as an early sensor of neuronal damage, promoting
OPC migration in vivo (174). Despite several studies pointing
out P2X7 implication in different demyelinating context as well
as oligodendrocyte death, no experimental data was found in
proteinopathies (175–178).

Also, the involvement of oligodendrocyte-specific connexins
such as connexin-29 (CX29 or Gjc3), connexin-32 (CX32 or
Gjb1) or connexin-47 (CX47 or Gjc2) in a manner similar
to CX43 in astrocytes cannot be ruled out (179). A study
showed a downregulation of oligodendrocytic CX47 in an AD
model, contrasting with the increase of CX43 observed in
astrocytes (180). The authors stipulate that such modification
could favor astrocyte-astrocyte connection at the expense
of astrocyte-oligodendrocyte communication, contributing to
oligodendrocyte function impairment. Additionally, CX32 was
suggested to be increased in PD and correlated with increased
alpha-synuclein uptake (181). Thus, consequences of ATP
release from oligodendrocyte connexins and pannexins in
neurodegeneration remain to be investigated.

Overall, proliferation and maturation of oligodendrocyte
lineage are strongly influenced by purinergic signaling. As such,
an imbalanced purinergic signaling upon neurodegeneration
could contribute to myelin loss. Noteworthy, most studies on
oligodendrocytic purinergic signaling have been conducted on
multiple sclerosis and other inflammatory diseases [for review see
Welsh and Kucenas (182)]. The lack of data on the present topic
should be addressed in the future as P2X7 was found significantly
upregulated in oligodendrocytes in AD (61), which could imply a
deleterious role in disease progression.

Purinergic Signaling Crosstalk in
Neurodegeneration
Given the importance of purinergic signaling for inter-glial
and neuro-glial communication, alterations in cell-specific glial
purinergic signaling in neurodegeneration will inevitably lead to
disruptions in purinergic inter-cellular crosstalk (Figure 1, right).

For example, although adenosine has been reported to be the
main purine metabolite that is elevated in neurodegeneration, at
least in AD (56), it cannot be ruled out that opposite changes may
take place in a more restricted spatial or temporal manner. For
instance, CD39, a critical enzyme for the extracellular hydrolysis
of ATP, is downregulated in microglia in AD (Figure 3) (41),
especially in the vicinity of amyloid-beta plaques. This could have
two immediate consequences: firstly, a local lack of adenosine
production, which would reduce adenosine receptor activation,
and secondly, high local levels of ATP, which could trigger
microglial P2X7 receptor. In line with this, global CD39 deletion
was shown to increase ATP and decrease adenosine in the CSF
(183). Furthermore, global and microglia-specific Entpd1/CD39
deletion is associated with neuronal hyperactivity and increased
vulnerability to epileptic events, mediated by a decreased
activation of the inhibitory neuronal adenosine A1 receptor
(41, 183). The reduced expression of astrocytic ENTPD1/CD39
in human AD cases (Figure 4), could further amplify these
events. Additionally, a local ATP increase would trigger other P2
receptors such as astrocytic P2Y1, which would further impair
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neuronal synchronicity through astrocytic hyperactivation (151,
152). Adding further complexity, the ectonucleotidase ENPP1 is
increased in microglia in AD (Figure 3). Whether this can–at
least partially–compensate for decreased CD39-mediated ATPase
activity and whether this affects astrocytic and oligodendrocyte
functions has not been investigated. Hopefully, future studies will
be able to answer these questions.

Furthermore, there is evidence that neuro-glial
communication is affected by upregulation of glial purinergic
receptors in neurodegeneration. For instance, microglial
upregulated P2X7 (184–186) leads to an exacerbation of
a pro-inflammatory microglial phenotype and increased
release of proinflammatory molecules, which disrupt synaptic
communication (187–189). Pro-inflammatory molecules
like chemokines or reactive oxygen species also affect
oligodendrocytes and astrocytes, causing oligodendrocyte
cell death (190–192) and astrocytic reactivity (6), leading
to further cell and network impairment. P2X7 is also
upregulated in oligodendrocytes and has been implicated
in oligodendrocytic cell death, which would critically alter
inter-neuron communication and neuronal metabolic support.
Furthermore, increased astrocytic P2Y1 in neurodegeneration,
which is associated with astrocyte hyperexcitability, network
synchronicity loss and increased ATP/glutamate release
(152, 193) could in turn reinforce P2X7 activation in microglia
and oligodendrocytes. Some studies have also reported increased
A2A receptor expression in astrocytes, which has been shown
to reduce glutamate intake and increase GABA intake (49, 50),
thus favoring an excitotoxicity state, which is detrimental
for synaptic function and reinforces reactive phenotypes of
microglia and astrocytes.

In summary, increased ligand availability (ATP and
adenosine) together with a distinct set of activated glial
purinergic signaling pathways (P2X7, P2Y1, A2A) and loss of
homeostatic neuronal and glial purinergic signaling pathways
(A1, P2Y12, P2Y13) during neurodegeneration may alter the
balance of purinergic signaling homeostasis. This in turn could
lead to more cellular damage (excitotoxicity, neuroinflammation,
myelin loss), loss of homeostatic functions (reduced energy
delivery, reduced trophic factors, impaired synchronicity
between networks) and promote protein aggregation (reduced
phagocytosis of protein aggregates), thus ultimately favoring the
progression of disease pathology in neurodegenerative diseases.

THERAPEUTICAL PERSPECTIVES

Recent advances have highlighted the beneficial effect of targeting
purinergic signaling in neurodegenerative diseases, notably with
the authorization of istradefylline, a selective antagonist of
A2A receptors, in the co-treatment of Parkinson’s disease in
the USA in 2019 (194), following the approval in Japan in
2013. These first steps show that targeting purinergic signaling
can be safe for use in neurodegenerative diseases and help to
slow disease progression. Additionally, several drugs targeting
purinergic signaling have gone into clinical trial in order to treat
inflammatory diseases like rheumatoid arthritis, that are beyond

the scope of this article [for review see Antonioli et al. (195)].
Noteworthy, proteinopathies are often associated with chronic
low-grade neuroinflammation, reinforcing the potential benefits
of using drugs targeting purinergic signaling (196).

P2X7 is one of the most evident targets of glial purinergic
signaling in neurodegeneration, being upregulated in both
microglia and oligodendrocytes at the protein levels (61). It
was postulated that P2X7 is also expressed in neurons, but
this was disproved by unbiased studies and the use of specific
tools (197). Indeed, activation of P2X7 requires high level of
ATP, which is found in neurodegeneration (198). It has been
hypothesized that P2X7 acts as an early sensor, which represents
a prerequisite for glial response to insults. However, chronic
activation of P2X7 results in cell death, contributing to disease
progression. Blocking P2X7 mitigates amyloid burden in AD
models and improves synaptic plasticity, integrity and memory
(94, 108, 199). Additionally, increasedmotor neuron survival and
decreased microgliosis and inflammatory markers were shown
after P2X7 inhibition at late pre-onset in SOD1 mutant mice
(110). Furthermore, using P2X7- or P2Y6-selective antagonists,
BBG or MRS2578 respectively, in an animal model of PD,
neuroprotection and a reduced microglia reactive phenotype
were observed (101, 200).

Adenosine receptors also represent suitable targets for glial
modulation. Administration of the A2A receptor antagonist
preladenant partly decreased ex vivo hyperactive motility around
Aβ plaques in the 5xFAD amyloidosis model (89). In addition,
preladenant restored microglial process extension toward tissue
damage in the MPTP-induced PD model (201). Several studies
have shown increased astrocytic A2A in pathological context
such as AD, which suggests an abnormal function (166, 167).
Additionally, A2A has also been studied as a therapeutical target
in neuroinflammatory conditions involvingmyelin loss and T cell
activation (202). Altogether, these results suggest that adenosine
receptors like A2A could be targeted therapeutically to improve
the disease-associated phenotype of glial cells in proteinopathies.

Apart from purinergic receptors, several studies have
highlighted elevated astrocytic CX43 in neurodegenerative
diseases, leading to increased ATP release. Together with other
nucleotide transporter such as pannexin-1, they could be targets
of choice in order to decrease ATP release and aberrant
purinergic signaling in neurodegeneration (203).

CONCLUSION

As outlined here, purinergic signaling in neurodegeneration
is not only altered in neurons, but in all CNS cell types,
including glial cells. This highlights the potential to target
purinergic signaling in a multi-cellular fashion. However, to
develop this as a valuable strategy in the future, many functional
aspects of purinergic signaling in glial cells need to be further
elucidated. In particular, purinergic signaling in astrocytes and
oligodendrocytes have remained ill-defined, as well as purinergic
signaling pathways in proteinopathies involving FUS or TDP-
43 aggregates. Furthermore, novel tools are needed that help
to better define the cell-specific and the spatio-temporal aspect
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of purinergic signaling in neurodegeneration. These challenges
will need to be faced in the future to better understand this
fascinating system, as within it potentially lies the hopes of
tomorrow’s treatments.
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Parkinson’s disease (PD), the second most common neurodegenerative disease, is

characterised by the motor symptoms of bradykinesia, rigidity and resting tremor and

non-motor symptoms of sleep disturbances, constipation, and depression. Pathological

hallmarks include neuroinflammation, degeneration of dopaminergic neurons in the

substantia nigra pars compacta, and accumulation of misfolded α-synuclein proteins

as intra-cytoplasmic Lewy bodies and neurites. Microglia and astrocytes are essential

to maintaining homeostasis within the central nervous system (CNS), including

providing protection through the process of gliosis. However, dysregulation of glial cells

results in disruption of homeostasis leading to a chronic pro-inflammatory, deleterious

environment, implicated in numerous CNS diseases. Recent evidence has demonstrated

a role for peripheral immune cells, in particular T lymphocytes in the pathogenesis of

PD. These cells infiltrate the CNS, and accumulate in the substantia nigra, where they

secrete pro-inflammatory cytokines, stimulate surrounding immune cells, and induce

dopaminergic neuronal cell death. Indeed, a greater understanding of the integrated

network of communication that exists between glial cells and peripheral immune cells

may increase our understanding of disease pathogenesis and hence provide novel

therapeutic approaches.

Keywords: Parkinson’s disease, astrocyte, microglia, T lymphocytes, Th17 cell, neuroinflammation

INTRODUCTION

Parkinson’s disease (PD) is the second most common neurodegenerative disease affecting 1–2%
of the population over the age of 65 (1) and it is estimated that the number of cases will exceed
12 million individuals in 2040 (2). PD is characterised by the degeneration of dopamine neurons
in the substantia nigra (SN) of the midbrain, with concomitant loss of their axons that project to
the striatum along the nigrostriatal pathway. This results in loss of the neurotransmitter dopamine
which leads to the primary motor symptoms of PD, which were first described by James Parkinson
in 1817 as a heterogeneous manifestation (3). These include bradykinesia, ataxia, tremor, rigidity,
and postural instability which present themselves clinically once the levels of striatal dopamine
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decrease by 70% (4). Another key pathological feature of PD is
the presence of protein inclusions known as Lewy bodies (5). The
protein α-synuclein (α-syn) is a major component of Lewy bodies
(6) and its mutant forms can cause familial PD (7–10).

In the central nervous system (CNS), the continuous
interactions of neurons, glia, and the microenvironment are
key for the maintenance of neural homeostasis and failures in
this homeostatic state leads to neurodegenerative conditions
such as PD. In recent years the role of inflammatory processes
in the death of dopamine neurons has come to the fore and
is now considered vital to this process (11–13). Gliosis is a
typical pathological feature of many neurodegenerative diseases
and emerging evidence indicates that sustained activation of
microglia and astrocytes is central to dopaminergic degeneration
in PD (14). Indeed, activation of microglia in people with
PD was described for the first time in 1988 (15), and this
phenomenon has also been described in animal models (16,
17). Wilson et al. have recently described a PET ligand 11C-
BU99088 which is expressed on reactive astroglia, and as such,
was reflective of astroglial pathology in people with PD and
demonstrated a role for astroglia in the initiation and progression
of PD (18). Astrocyte reactivity was also detected in the SN
of patients with this condition [for review see (19)] and post-
mortem studies of nigral tissue homogenates revealed multiple
alterations in biochemical parameters attributed to astrocyte
dysfunction including a global reduction of glutathione levels,
mitochondrial damage, and accumulation of extracellular toxins
(20). In addition, clinical and basic research have revealed a
role for both the innate and adaptive immune system in PD
[for review see (21, 22)]. In fact, the available data suggests that
in PD there is a response not only by glial cells but also by
peripheral immune cells, suggesting that an interplay between
these cell types contributes to pathophysiology. We will review
the role of astrocytes andmicroglia in PD, taking into account the
emerging role of peripheral immune cells and its implications for
disease pathogenesis.

ASTROCYTES AND THEIR ROLE IN

PARKINSON’S DISEASE

Astrocytes are the most abundant non-neuronal cell type
in the vertebrate nervous system (23) with the critical task
of maintaining structural support and homeostasis. Their
roles include provision of metabolic support, encapsulation
of neuronal synapses (24), promotion of synaptogenesis (25),
and control of the permeability of the blood brain barrier
(BBB) (26). Classically they are recognised for their ability to
secrete a number of neurotrophic factors such as glial derived
neurotrophic factor (GDNF) and mesencephalic astrocyte
derived neurotrophic factor (MANF); both of which have been
shown to offer a degree of neuroprotection to dopamine neurons
both in vitro and in vivo (27–29). However, in addition to this
there is a growing appreciation of the role astrocytes play in
neuroinflammation (30) in many neurodegenerative conditions
including PD. Recently it has been shown that astrocytes become
reactive in response to activated microglial secreted signals such

as IL-1α, TNF-α, and C1q and as such adopt a pro-inflammatory
phenotype (31, 32). Indeed, this astrocyte phenotype has been
shown to exist in the post-mortem brain tissue of people
with PD (31). Furthermore, astrocytes can also adopt a pro-
inflammatory phenotype by endocytosis of α-syn released by
neurons; they secrete cytokines, IL-1α, IL-1β, and IL-6 which are
correlated to α-syn load (33). Moreover, α-syn accumulation in
human astrocytes in vitro resulted in severe cellular stress which
included mitochondrial, lysosomal, and endoplasmic reticulum
deficiencies (34, 35). Indeed, these astrocytes responded to this
stress by sending out nanotubes, which behaved like tunnels, and
enabled the transfer of intracellular α-syn inclusions to nearby
cells, indicating that astrocytes are critically important in the
pathogenesis of PD (35). Interestingly, Yun et al., demonstrated
that NLY101, a GLP-1R agonist is neuroprotective in the pre-
formed α-syn fibril model of PD. It acts to prevent astrocyte
stimulation by activated microglia and in so doing protects
dopamine neurons and prevents behavioural deficits (36). Taken
together, these studies would suggest that astrocyte dysfunction
is a very strong contributor to the pathogenesis of PD.

Impact of Parkinson’s Disease Related

Genetics on Astrocyte Function
There are monogenic mutations identified in 20 genes that have
been implicated in the pathogenesis of PD (37). Interestingly, a
study by Zhang et al. (38) compared the transcriptome of human
astrocytes to neurons, and found upregulation of some of these
monogenic mutations in astrocytes was to a similar level and
sometimes higher than that of neurons [for review see (39)]. This
would strongly support the potential contribution of astrocytes
to the pathogenesis of these familial forms of PD. Altered levels
of these genes lead to many changes in astrocyte function
including impaired glutamate uptake, liposomal homeostasis,
lysosomal, and mitochondrial dysfunction and inflammatory
response (Table 1).

DJ-1/PARK7
Some of these genes have been studied to a greater extent
than others with respect to their roles in astrocyte biology. DJ-
1, encoded by the PARK7 gene, causes early onset autosomal
recessive PD (54) and is probably the most extensively studied.
Mullett and Hinkle utilised neuron-astrocyte co-cultures to
demonstrate that siRNA knockdown of DJ-1 in mouse astrocytes
impairs their ability to protect against neurotoxins such as
rotenone relative to wild type control astrocytes (55). In
addition, studies using DJ-1 knockout mice astrocytes from
postnatal day 1 cerebral cortices have also shown that loss
of this gene can cause alterations in cholesterol levels and
glutamate uptake via regulation of the expression of flotillin-
1 and caveolin-1 (40). Furthermore, Choi et al. demonstrated
using astrocytes from DJ-1 knockout mice that its deficiency
in astrocytes reduced expression of prostaglandin D2 synthase
and subsequent secretion of prostaglandin D2 demonstrating
that DJ-1 is involved in the regulation of the anti-inflammatory
role of astrocytes through prostaglandin D2 synthase expression
(41). Moreover, a study from the Kahle laboratory found
that DJ-1 knockout mice astrocytes produced 10 times more
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TABLE 1 | The role of genes that are causative in Parkinson’s disease pathogenesis and their implications in astrocytes.

Gene/Protein Model used Main findings References

Park 7/DJ-1 DJ-1 KO mice • Alteration in cholesterol levels

• Alterations in membrane fluidity and in lipid raft dependent endocytosis

• Altered glutamate uptake capacity

(40)

Park 7/DJ-1 DJ-1 KO mice • Regulates anti-inflammatory role of astrocytes through Prostaglandin D2

synthase expression

(41)

PARK2/Parkin Parkin KO mice • KO astrocytes exhibit exaggerated ER stress, JNK activation cytokine release

and reduced neurotrophic factors

(42)

PINK1/PINK1 PINK1 KO mice • Reduced astrocyte differentiation, increased p38 activation (43)

PINK1/PINK1 PINK1 KO mice astrocytes • Increased levels of iNOS, NO, TNF-α, and IL-1β (44)

PINK1/PINK1 PINK1 KO rat pups • PINK1 phosphorylation of ubiquitin is predominately in astrocytes (45)

SNCA/α-syn Human SNCA over-expressing

primary foetal astrocytes

• α-syn changed expression of GF production and secretion, e.g., EGF, PDGF,

VEGF, and their receptors

• α-syn changed expression of IGF related proteins

(46)

SNCA/α-syn A53T WT α-syn in mouse

astrocytes

• Disrupted glutamate uptake

• Increased neuronal cell death by overexpressing astrocytes

(47)

LRRK2/LRRK2 G2019S- LRRK2-Tg het mice

astrocytes + α-syn

• Increased ER stress proteins

• Increased cell death with α-syn

• Mitochondrial dysfunction with α-syn

(48)

GBA1/GCase Mice GBA1 D409V knockin

astrocytes

• Defects in lysosomes

• Defects in TLR4-dependent cytokine release

(49)

LRRK2/LRRK2 Human iPSC LRRK2-G2019S -

astrocytes and neurons

• Impaired autophagy in astrocytes

• PD astrocytes accumulate and transfer α-syn to healthy dopamine neurons

(50)

LRRK2/LRRK2 Human iPSC

LRRK2-G2019S—MB astrocytes

• Downregulation of MMP2 and TGFβ (51)

LRRK2/LRRK2 Human iPSC

LRRK2-G2019S—astrocytes

one patient also with GBA

N370S

• Increased expression of α-syn,

• Altered metabolism

• Disrupted Ca2+ homeostasis

• Increased cytokine release following inflammatory stimulation

(52)

GBA1/GCase Human iPSC-derived astrocytes

from GD1 with genotype

N370S/N370S or

N370S/c.84insG

• Abnormal α-syn accumulation due to Impaired lysosomal cathepsin activity

• Increased inflammatory response

(53)

LRRK2, leucine rich repeat kinase 2; GCase, β-Glucocerebrosidase; α-syn, alpha-synuclein; iPSC, pluripotent stem cells; MMP2, matrix metalloproteinase 2; PINK1, PTEN-induced

putative kinase-1; iNOS, inducible nitric oxide synthase; MB, midbrain; GF, growth factor; EGF, epidermal growth factor; PDGF, platelet derived growth factor; VEGF, vascular endothelial

growth factor; IGF, Insulin like growth factor; GD, Gaucher disease.

nitric oxide (NO) than littermate controls when treated with
lipopolysaccharide (LPS), a TLR4 agonist, and interestingly
lentiviral reintroduction of DJ-1 restored the response to LPS
(56). Taken together, these studies demonstrate that DJ-1
is an important regulator of the pro-inflammatory response
and that its knockout in astrocytes deregulates inflammatory
associated damage.

PARK2 and PINK1
Both PARK2 and PINK1 are expressed at similar levels in both
astrocytes and neurons (38, 39, 57). Interestingly, astrocytes
deficient in Parkin, encoded by the PARK2 gene, demonstrated
a stress induced increase in NOD2 expression; a receptor which
integrates ER stress and inflammation and these astrocytes
exhibited increased cytokine release and decreased secretion
of neurotrophic factors (42). Parkin has also been shown to
be involved in the response of astrocytes to an inflammatory
signal; activation with TNF-α results in Parkin upregulation
whereas activation with IL-1β results in Parkin downregulation

(58). PINK1 expression, which encodes the protein PTEN-
induced putative kinase 1 (PINK1), is a loss of function
mutation that is associated with early onset PD (59). Its
expression increases during embryonic development and it was
also shown to affect the development of GFAP-positive astrocytes
(43). Indeed when PINK1 is knocked out in astrocytes, this
causes them to exhibit reduced differentiation (43), reduced
neurotrophic factor release, endoplasmic reticulum (ER) stress,
JNK activation (42), and generate elevated levels of iNOS,
NO, TNF-α, and IL-1β via NF-κB signalling (44). Interestingly,
the steady state levels of PINK1 protein are very low even
in cells that express PINK1, because PINK1 is normally
targeted for degradation after mitochondrial import by a process
that is dependent on mitochondrial membrane potential (60).
While the high penetrance of PINK1 mutations establish its
critical function for maintaining neurons the activity of PINK1
in primary neurons has been difficult to detect. However,
Barodia et al. determined the levels of PINK1 in neurons,
astrocytes, microglia, and oligodendrocyte progenitor cells
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(OPCs) cultured from wild type and PINK1 knockout rat pups
and showed that PINK1-dependent ubiquitin phosphorylation
is predominately in astrocytes suggesting that the contribution
of astrocyte dysfunction to PD pathogenesis warrants further
investigation (45).

SNCA
SNCA encodes for the protein α-syn and missense mutations
as well as duplication or triplication of this gene have been
shown to lead to the development of rare hereditary forms of
PD [for review see (61)]. Interestingly, one such mutation of
the SNCA gene is also associated with an increase in α-syn
aggregation in astrocytes; Gu et al. demonstrated that when
A53T α-syn was selectively expressed in murine astrocytes it
led to disrupted glutamate uptake and increased neuronal death
(47). Indeed, SNCA is one of the PD associated genes that is
expressed at higher levels in neurons than in astrocytes (38, 57).
In 1997, Spillantini et al. reported that α-syn was the major
component of Lewy bodies in the brains of people with idiopathic
PD (6) and inclusions of α-syn have been found in astrocytes
as well as neurons in post-mortem brains of people with PD
(62, 63). Interestingly, it has been shown that neuronal α-syn
can be directly transferred to astrocytes through sequential
exocytosis and endocytosis (33, 64). In addition, overexpression
of human α-syn in human primary foetal astrocytes resulted in
significant changes in the profile of growth factor expression
and release. The most remarkable changes were in epidermal
growth factor (EGF), platelet derived growth factor (PDGF),
vascular endothelial growth factor (VEGF), and their receptors
as well as in insulin like growth factor (IGF) related proteins
(46). Further analysis, using bioinformatics, revealed possible
interactions between α-syn and EGFR and GDNF (46).

LRRK2 and GBA
LRRK2 encodes the protein leucine-rich repeat kinase 2 (LRRK2)
and is causative for a dominantly inherited form of PD (65).
Mutations in LRRK2 have been recognised as genetic risk factors
for both familial and idiopathic forms of PD (66). When the
pathogenic mutation in LRRK2, LRRK2-G2019S, was expressed
in mice it resulted in increased ER stress and cell death in
astrocytes that was exacerbated by the addition of α-syn (48).
GBA encodes an enzyme important in glycolipid metabolism,
beta-glucocerebrosidase (GCase). The effects of a mutation in
GCase encoded by the GBA1 gene in astrocytes has been studied
in mice with knockin of GBA D490V. This resulted in defects in
lysosomes and in TLR4-dependent release of cytokines (49).

It is noteworthy that the vast majority of the studies carried
out to date on the possible implications of the expression of
PD related genes in astrocytes have been conducted in rodents.
However, in the last 2 years a small number of studies have begun
to emerge in the literature where human induced pluripotent
stem cells (iPSC) carrying PD related mutations have been
differentiated into astrocytes. It is not surprising that the majority
of these are studying the LRRK2-G2019S mutation as this is
the most common PD related mutation (67). A study by di
Domenico et al. has shown that there is impaired autophagy
in astrocytes with a LRRK2-G2019S mutation and that they can
accumulate and transfer α-syn to healthy dopamine neurons

(50). Another study patterned regional midbrain astrocytes from
iPSC containing familial LRRK2-G2019S mutation and from
healthy controls. RNAseq analysis revealed downregulation of
genes such as TGFβ1 and MMP2 (51). TGFβ1 has previously
been shown to inhibit the inflammatory microglial response in
a rat model of PD (68), and MMP2 has been shown to be
capable of degrading aggregates of α-syn (69). This suggests that
these PD astrocytes have a reduced neuroprotective capacity and
so may contribute to pathology (51). Further evidence for an
increased expression of α-syn in astrocytes has been provided
by Sonninen et al. using astrocytes differentiated from iPSC
also with LRRK2-G2019S mutation. These astrocytes exhibited
altered metabolism and increased cytokine release following
inflammatory stimulation (52). iPSC-derived astrocytes with two
different GBA1 mutations (N370S/N370S and N370S/c.84insG)
have also demonstrated abnormal α-syn accumulation due to
impaired lysosomal cathepsin activity and had an enhanced
inflammatory response (53). Taken together these studies are
consistent with the role for both LRRK2 and GBA1 mutations in
accumulation of α-syn and an increased inflammatory response
in astrocytes as contributors to PD pathology.

Other Parkinson’s Disease Risk Genes
In addition to the six PD risk genes mentioned above there
are a number of other risk genes in which there is very high
confidence that they are actual PD genes; these are PLA2G6,
ATP13A2, FBXO7, and VPS35 [for review see (37)]. Interestingly,
the levels of PLA2G6, ATP13A2, and FBXO7 gene expression has
been shown to be the same in neurons as in astrocytes but that
of VPS35 is greater in astrocytes than in neurons (38, 39, 57).
PLA2G6 encodes Ca2+-independent phospholipase A2 (iPLA2),
an enzyme responsible for catalysing the release of fatty acids
from phospholipids. A recent study by Strokin and Reiser in
2017 demonstrated that astrocytes from mice with a mutation
in the Pla2g6 gene, that were treated with Ru360 (a blocker of
mitochondrial Ca2+ uniporter), or with rotenone, had a reduced
rate of glutamate-induced Ca2+ influx, which was ∼2-fold lower
than in wild type controls (70). The ATP13A2 gene encodes
a transmembrane lysosomal P5-type ATPase and its missense
or truncation mutation leads to lysosomal dysfunction (71). A
study using primary astrocytes from the mouse midbrain with
a deficiency in ATP13A2 demonstrated intense inflammation,
which exacerbated dopamine neuron damage following MPP+

exposure (71). Furthermore, this same study showed that
astrocytes lacking ATP13A2 had increased lysosomal membrane
permeabilisation and cathepsin B release, which in turn led to
the activation of the NLRP3 inflammasome. This led to increased
production of IL-1β and suggested that there is a direct link
between the astrocyte lysosome and neuroinflammation in PD
(71). Lysosomal degradation was also shown using human iPSC,
from healthy controls or from patients carrying a mutation in
lysosomal ATP13A2, which were differentiated into midbrain
dopamine neurons and astrocytes (72). This study showed that
astrocytes rapidly internalised α-syn and when they were co-
cultured with neurons, this led to a decreased accumulation of
α-syn in neurons and as a consequence diminished interneuronal
transfer of α-syn. Interestingly, loss of this protective function
of astrocytes was seen with ATP13A2 deficiency, suggesting that
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this gene function in astrocytes, contributes partially to PD
pathology (72).

Mutations in the FBXO7 (PARK15) gene have been implicated
in a juvenile form of PD. When this gene was deleted in
tyrosine hydroxylase neurons this resulted in motor deficits,
similar to the phenotype of PARK15 patients (73). Vingill et al.
also showed that the loss of FBXO7 affected the assembly of
proteosomes leading to reduced proteosome activity. This is in
keeping with dysfunction of the ubiquitin proteosome system
being central to neurodegeneration (74, 75). VPS35 (PARK17)
has recently come to the fore as a cause of late-onset familial
PD (76). How this gene contributes to human PD is unclear
however it has been suggested that VPS35 mutations lead to
mitochondrial dysfunction (77), and impaired lysosomal and
autophagy function [for review see (76)], all of which contribute
to PD pathogenesis. To date the potential effects that mutations
in either FBXO7 or VPS35 might have on astrocyte function
remain unknown; further experiments would be required to
elucidate this.

MICROGLIA AND THEIR ROLE IN

PARKINSON’S DISEASE

Microglia are the resident immune cells of the CNS. They
originate in the yolk sac where they develop from early myeloid
precursor cells. During embryonic development, primitive
microglia migrate into the developing neural tube where they
proliferate and populate the CNS (78). Due to the BBB, microglia
lead a relatively sheltered existence compared to peripheral
macrophages, although their functions remain the same. Their
role is to continuously survey the microenvironment and
respond to both physiological and pathological changes. In their
capacity as the first line of defence in the CNS, they identify and
remove unwanted material such as cellular debris.

The physiological roles of microglia include synaptic pruning
and phagocytosis of apoptotic cells (79, 80). They may also aid
synapse formation by releasing neurotrophic factors (81, 82).
However, these cells do not escape the disruption that occurs
during PD; they become activated and assume an inflammatory
phenotype. Their expression of pattern-recognition receptors
(PRR) allows them to respond to the presence of pathogen-
associated molecular patterns (PAMPs) and damage-associated
molecular patterns (DAMPs) in the microenvironment thereby
resulting in microglial activation. Sustained pro-inflammatory
activation of microglia, i.e., microgliosis, has been implicated in
the pathogenesis of many neurodegenerative disorders including
PD. These activated microglia assume an amoeboid morphology,
coupled with increased phagocytic capacity. They are also highly
reactive and are associated with expression of inflammatory
molecules, such as pro-inflammatory mediators and reactive
species, in addition to receptors for antigen recognition such
as TLR2 (2). Their physiological cellular processes are also
thought to be disrupted as a result, further contributing to
disease pathogenesis.

While the clinical characteristics of PD have been well-
defined, the aetiology of idiopathic PD is still unknown and under

investigation. Among the potential causes of PD which are being
considered are inflammation and microglia, whose role in PD
was first posited in 1988 (15). There is evidence of microgliosis
in the SN of PD patients as a result of post-mortem studies
where significant CD68 and Iba1 immunoreactivity was detected.
Since Iba1 immunoreactivity was co-localised with TLR2 it is
thought that this receptormay play a key role inmicrogliosis (83).
This localised microgliosis is also present in the MPTP mouse
model of PD (84), the A53T α-syn transgenic mouse model of
PD following administration of LPS (85) and the L-dopa-induced
dyskinesia rat model of PD (86). Blocking microglial activation
with a combination of matrix metalloproteinase inhibitor 1-DNJ
plus ibuprofen is protective against dopamine neuronal loss (87)
suggesting that microglia are key contributors to PD pathology.

The Impact of Parkinson’s Disease Genes

on Microglial Function
PD-associated genes are expressed by microglia, not just neurons
and astrocytes. The products of these gene mutations are
thought to affect the functioning of these cells (14), and can
exacerbate microgliosis (Table 2). The dominant PD-risk genes
SNCA and LRRK2 promote neuroinflammation via activation
of microglia and inflammatory signalling pathways such as NF-
κB. Besides cell activation, PD-associated genes also disrupt
other microglial processes including mitochondrial respiration
and autophagy (99). Since autophagy is involved in regulating
microglia inflammatory status (100, 101), its disruption has been
reported to play a critical role in inflammation (102) and may
also affect some of the key functions of microglia including
phagocytosis (101). Furthermore, autophagy failure has been
shown to promote intercellular propagation of α-syn (103) which
in turn drives microglial activation and neuroinflammation.
Mitochondrial dysfunction is another pathological feature in
PD, as such the mitochondrial toxin MPTP, is commonly used
to induce PD pathology in rodents in order to model disease
pathology. Furthermore, pesticides paraquat and rotenone can
also be used to induce parkinsonism via disruption of the
respiratory chain in mitochondria (104). A number of genes
associated with increased PD risk are linked to mitochondrial
homeostasis. Among these are SNCA, PARK2, PINK1, PARK7,
and LRRK2 (104) (Table 2).

DJ-1/PARK7
DJ-1 is a sensor for oxidative stress which localises to the
mitochondria when the cell is exposed to oxidative stress (90).
DJ-1 mutations which lead to protein deficiency have been linked
to PD, with 1% of hereditary cases of PD linked to this gene
(88). DJ-1 deficient microglia demonstrate impaired uptake and
degradation of α-syn, as well as impaired autophagy (88), and
increased sensitivity to pro-inflammatory signals such as LPS
(105, 106). This impairment of microglia function combined
with increased sensitivity to inflammatory signals may leave
PD patients with mutant DJ-1 prone to neuroinflammation.
Monoamine oxidase is an enzyme which breaks down amine
neurotransmitters such as dopamine. Monoamine oxidase
inhibitors have been applied in combination therapy for PD and
interestingly one of these, Rasagiline, has been shown to reduce
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TABLE 2 | The role of microglia and Parkinson’s disease risk genes in Parkinson’s disease pathology.

Gene/Protein Model used Main findings References

Park7/DJ-1 DJ-1 knockdown microglia • DJ-1 deficient microglia have impaired uptake of α-syn

• DJ-1 deficient microglia exhibit impaired autophagy which in turn affects α-syn clearance

• DJ-1 deficient microglia show increased inflammatory response to α-syn

(88)

Park7/DJ-1 DJ-1 knockout mice • DJ-1 KO enhanced expression of ICAM-1, IFN-γ, IL-1β, IL-17 and I-TAC, and enhanced

dopamine neuron loss in response to LPS

• DJ-1 deficiency sensitises microglia to release IFN-γ and I-TAC via enhanced

NF-κB signalling

(89)

Park7/DJ-1 N9 murine microglia cells +

DJ-1 shRNA

• DJ-1 deficiency increases mitochondrial and MAO activity, and reduces migration in

microglia

• DJ-1 deficient microglia have increased ROS, NO, IL-6, and IL-1β production and

secretion following LPS insult

• DJ-1 microglia have increased neurotoxicity

(90)

PINK1/PINK1 Primary glia cultures • PINK1-deficiency in microglia causes increased NO production and inflammatory gene

expression following LPS/IFN-γ stimulation

• PINK1-deficiency reduces IL-10 expression in primary microglia

(44)

PARK2/Parkin BV2, N9 and primary

microglia

• Parkin knockdown exacerbates pro-inflammatory response to LPS via over-activation of

JNK and NF-κB pathways

• Parkin silencing attenuates progression of necroptosis

(91)

PARK2/Parkin Park2 KO microglia • PARK2-deficiency has a priming effect on microglia leading to enhanced activation and

NLRP3 induction following LPS exposure; due to loss of A20 negative feedback regulation

(92)

SNCA/α-syn α-syn PFF mouse model • MHCII immunoreactive microglia co-localise with α-syn in SN

• SN microglia exhibit reactive morphology

(93)

SNCA/α-syn Primary mouse microglia +

A53T mutant

• Intensity of microglia activation is dependent on the type of α-syn

• A53T promotes ROS production in microglia

• A53T induces STAT1 phosphorylation and activation of MAP kinases activation, and

induces microglia reactivity via NF-κB, AP-1, and Nrf2 pathways

(94)

SNCA/α-syn BV2 cells and primary

microglia

• A53T mutant α-syn promotes PHOX activation in BV2 and primary microglia

• α-syn is recognised by the P2X7 receptor which is necessary for α-syninduced PHOX

activation via the PI3K/AKT pathway

(95)

LRRK2/LRRK2 LRRK2 KO mice + LPS +

paraquat

• LRRK2 KO prevents microglia activation and TH+ neuron loss following intranigral injection

of LPS and paraquat. Motor function is preserved. Mechanistic involvement of WAVE2 is

proposed

(96)

LRRK2/LRRK2 Human iPSC-derived

microglia

• IFN-γ increased LRRK2 expression in microglia

• LRRK2 regulates function in microglia; LRRK2-G2019S mutant microglia had greater

phagocytic capacity and decreased cytokine secretion

• LRRK2 KO have defective glycolytic shift following stimulation with LPS

(97)

LRRK2/LRRK2 Human embryonic microglia • Manganese increases LRRK2 expression and kinase activity

• LRRK2 inhibition attenuates manganese-induced apoptosis, oxidative stress, TNF-α

production, and MAPK signalling

(98)

KO, knockout; I-TAC, interferon-inducible T-cell alpha chemoattractant; MAO, monoamine oxidase; ROS, reactive oxygen species; NO, nitric oxide; LPS, lipopolysaccharide; JNK, c-Jun

N-terminal kinase; NLRP3, NOD-, LRR- and pyrin domain-containing protein 3; PFF, pre-formed fibrils; PHOX, nicotinamide adenine dinucleotide phosphate oxidase; P2X7, purinergic

receptor; PI3K/AKT, phosphoinositide 3-kinase/protein kinase B.

the pro-inflammatory phenotype in microglia and subsequently
reduce neurotoxicity in a DJ-1 knockout model (90). This
suggests that Rasagiline may be particularly successful in the
treatment of PD patients with PARK7 mutations.

SNCA
Encoded by the SNCA gene, α-syn is the main component of
Lewy bodies in PD. Physiological roles of α-syn include synaptic
vesicle trafficking and formation of the SNARE complex for
exocytosis of synaptic vesicle contents into the synapse (14, 107).
In PD, excess and/or mutant α-syn aggregates form fibrils. These
neurotoxic fibrils act as an endogenous DAMP causing activation
of microglia via TLR2 (2, 94) resulting in the activation of NF-κB

and MAPK pathways and the production and release of pro-
inflammatory mediators such as TNF-α, IL-6, CCL5, and IL-
1β (2, 36). Interestingly, microglia activation in response to α-
syn has been demonstrated to be mutant specific (94) (Table 2).
While α-syn and Lewy bodies are characteristic of PD, it is
possible that patients with SNCA mutations are vulnerable to
enhanced levels of microgliosis and neuroinflammation. α-syn is
now thought to aggregate in microglia as well as in neurons. α-
syn binding to surface FcγRIIB receptors on microglia inhibits
phagocytosis (108), furthermore α-syn accumulation within
microglia can disrupt phagocytosis and lead to activation of
microglia (109). TLR2 has been identified as a receptor for α-
syn, capable of transporting secreted α-syn into the cytoplasm
of microglia (110). Numerous studies have demonstrated a
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role for α-syn in the activation of microglia, via TLR2 (111–
113) and TLR4 (114). Besides TLR2 and TLR4, uptake of α-
syn by microglia is facilitated by FYN kinase and CD36 (115).
Internalised α-syn can act as a priming signal for the NLRP3
inflammasome, and also disrupts mitochondria function leading
to the production of ROS which are capable of activating the
NLRP3 inflammasome (115).

LRRK2
LRRK2 encodes the leucine-rich repeat serine/threonine-protein
kinase 2. LRRK2 is an incompletely penetrant gene associated
with increased PD risk (116, 117). The LRRK2-G2019Smutation
has a variable penetrance and is associated with both sporadic
and familial PD. There is evidence that LRRK2 is capable of
regulating macrophage and microglial motility and phagocytosis
(118), mediated by RAB10 (119, 120). WAVE2, a novel
interacting partner with LRRK2, regulates branched actin and the
Rac1 effector molecule thereby promoting actin polymerisation
and cytoskeletal reorganisation. This rearrangement of the
cytoskeleton is crucial for the phagocytotic functions of myeloid
cells (121). WAVE2 is proposed to be regulated by LRRK2,
therefore LRRK2 deficiency can compromise this protein
and subsequently reduce the phagocytic capacity of microglia
(96, 121) (Table 2). Mutated LRRK2 is observed to alter
mitochondrial morphology and increase mitochondrial fission in
microglia. This was demonstrated via increased levels of Drp1,
a mitochondrial fission marker, CD68, a microglia activation
marker and TNF-α in LRRK2 mutant mice (122). Furthermore,
inhibition of LRRK2 has been shown to attenuate microglial
inflammatory response to TLR4 stimulation (123), and activation
of microglia by extracellular α-syn (124, 125).

Other Parkinson’s Disease Risk Genes
Besides the main culprits, there are many other genes associated
with PD which are proposed to affect microglia function.
GBA encodes the lysosomal hydrolase GCase; an incompletely
penetrant gene associated with increased PD risk. There is
limited literature pertaining to GBA microglia mutants in the
PD context, the majority of papers discuss Gaucher disease. For
example, in zebrafish, GBA knockout leads to early microglial
activation, reduced motor activity, loss of dopaminergic neurons,
and ubiquitin inclusions (126). Furthermore, GBA mutations
can result in accumulation of glucosylceramide and complement
activation which in turn drive inflammation (127).

Recent studies have revealed that autophagy dysfunction can
be closely linked with PD pathogenesis. ATG5 (autophagy-
related protein 5) is an essential component of the
autophagosome, and deficiency results in impaired autophagy.
A number of ATG5 variants have been found in the PD patient
population (99, 128).

PINK1 and PARK2 have been linked to autosomal recessive
forms of PD (116). PINK1 deficiency inmicroglia has been linked
to increased production and secretion of pro-inflammatory
mediators, coupled with a reduction in the production and
secretion of anti-inflammatory factors thereby favouring a
reactive phenotype in microglia (44). The same phenotype is also
associated with PARK2 (Table 2). Deficiency in the associated
protein Parkin, achieved via knockdown in microglial cells, has

a priming effect and results in an enhanced response to the pro-
inflammatory stimulus LPS (91, 92). PD patients with these genes
may have greater levels of microgliosis as a result.

There is a clear role of microglia in the pathogenesis of PD
and the major PD risk genes are a driving force behind this.
However, it is becoming clear that microglia are not the only
immune cells involved in PD. It is very well-established that the
BBB is compromised in PD therefore allowing immune cells from
the periphery to infiltrate the CNS.

AN EMERGING ROLE FOR THE

PERIPHERAL IMMUNE SYSTEM IN

PARKINSON’S DISEASE

Evidence of an important role for inflammation in the
pathogenesis of PD is emerging and the data suggests that
peripheral immune cells may contribute to this inflammation.
In this section of the review we cover the latest studies
demonstrating a role for the peripheral immune system and in
particular T cells in PD. By way of introduction however a brief
explanation of innate and adaptive immunity is outlined below.

The immune system is divided into the innate and adaptive
arms which cooperate to defend against infection, however when
dysregulated, immune responses can be important contributors
to diseases. The innate immune system represents the body’s
first line of defence against invading pathogens, it is comprised
of numerous cell types which carry out functions such as
phagocytosis and antigen presentation. Innate immune cells
include dendritic cells, macrophages and also microglia, which
can be activated via PRR recognising not only PAMPS but
also endogenous DAMPS including α-syn (129). On the other
hand, adaptive immunity consisting of B and T lymphocytes
provides a highly specific, targeted response capable of dealing
with a variety of different intracellular or extracellular infections.
T cells, which are either CD4+ or CD8+ are initially naïve
until their T cell receptor (TCR) recognises its specific antigen
presented by antigen presenting cells via MHC molecules (130).
In general, endogenous antigens such as those from viruses
are presented via MHCI to CD8+ T cells whereas exogenous
antigens are presented via MHCII to CD4+ T cells (130). All
cells in the body express MHCI and can activate CD8+ T cells
whereas only professional antigen presenting cells including
dendritic cells, macrophages, B cells and microglial cells express
MHCII and have the capacity to activate CD4T cells. Once
initially activated in the secondary lymphoid organs, naïve T
cells differentiate into effector cells with specific functionalities
tailored to the infection. CD4+ T cells differentiate into one
of the T-helper subtypes; Th1, Th2, Th17 cells which produce
various cytokines and provide help to B cells (130). CD8+ T
cells differentiate into cytotoxic T lymphocytes which induce
apoptosis of infected cells without affecting adjacent healthy
cells. Naïve B cells, once activated by their specific antigen and
with help from T helper cells, differentiate into plasma cells,
producing antibodies which specifically target the antigen and
promote clearance via phagocytosis (130). Once activated and
differentiated in the lymphoid organs T and B cells traffic to
the tissues where they become reactivated upon encounter of an
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antigen and carry out their effector functions (130). Thus, the
immune system has evolved to deal effectively with infection,
however various genetic and other factors can conspire to result
in inappropriate or chronic inflammation in response to altered
proteins or self-antigens that manifests in autoimmune and
inflammatory disease (131). Neuroinflammation associated with
disorders such as Alzheimer’s disease and PD attracts peripheral
immune cells to the CNS, and the disruption of the BBB which
is a pathological feature of these diseases means that there is a
pathway for these cells to enter the brain parenchyma (132–134).

A Potential Role for T Cells in Parkinson’s

Disease
In the last decade there has been mounting evidence of a role
for T cells in the pathogenesis of PD (Table 3). Despite their
important role as part of the adaptive immune system there is
little evidence of the involvement of B cells in PD. Brochard et al.,
identified both CD8+ and CD4+ T cells but not B cells or natural
killer cells in the post-mortem brain tissue of PD patients (138).
The presence of both CD8+ and CD4+ T cells was also evident
in the MPTP and α-syn overexpressing mouse models of PD
(138, 147). However, Theodore et al., observed both infiltrating B
and T cells following injection with α-syn overexpressing adeno-
associated viral vector (AAV) into the SN of mice (151). The
differences with respect to the possible role of B cells in these
studies may be attributed to the study model and human PD
tissue vs. animalmodel, howevermore research is required before
a definitive conclusion can be drawn.

Disruption of the BBB is commonly observed in PD
pathogenesis, presenting an opportunity for peripheral immune
cells to infiltrate into the brain. Infiltration of T cells from the
periphery into the CNS has been observed in multiple PD studies
(132, 144). Liu et al., demonstrated using MPTP treatment that
BBB disruption increases the frequency of CD4+ T cells in the
SN of mice (144). The infiltration of CD4+ T cells reduced
the number of TH+ neurons, decreased dopamine levels and
increased the production of IL-1β and TNF-α. Importantly,
Brochard et al., observing both CD8+ and CD4+ T cell infiltrates,
determined using CD4−/− and CD8−/− mice that CD4+ T
cells, rather than CD8+ T cells, were responsible for the
neurodegeneration associated with their infiltration (138). As
discussed above, the accumulation of misfolded α-syn protein
contributes to dysregulation and inflammation in PD (152).
Studies have demonstrated that T cell infiltration is associated
with α-syn overexpression (147, 151), additionally the knockout
of lymphocytes reduced α-syn protein aggregates in this PD
model (147). These studies indicate a role for T cells in PD,
however given that T cells are activated in an antigen-specific
manner via MHC molecules, it is essential to understand the
antigen specificity of T cells involved in PD and the possible
contribution of different MHC haplotypes.

The Role of MHC and Antigen Presentation in

Parkinson’s Disease
In addition to the evidence above showing the presence of T cells
in the SN of PD patients and mouse models, a role for T cells
is also implied by the identification of specific MHC haplotypes

and non-coding SNPs in MHC genes as risk factors for PD. Such
MHC associations are a common feature of autoimmune diseases
driven by auto-reactive T or B cells and are thought to result from
preferential presentation of dominant self-epitopes by particular
MHCmolecules to auto-reactive T cells that have escaped thymic
selection. Interestingly, Sulzer et al., demonstrated significantly
enhanced T cell responses to immunodominant α-syn peptides
in PD patients, relative to healthy controls (150). Furthermore, an
immunodominant peptide was shown to bind with high affinity
to the DRB1∗15:01 and DRB5∗01:01 alleles which were part of
the MHC haplotype previously associated with PD (150). In
a subsequent study, Lindestam Arlehamn et al., determined in
a single longitudinal case study that this α-syn-specific T cell
response was elevated prior to diagnosis and decreased thereafter
(142). In the studies above, not all PD patients exhibited α-
syn-specific T cell responses and responses were also observed
in some healthy controls, indicating that in both PD and
healthy controls these auto-reactive T cells escaped deletion
during thymic selection. However, such auto-reactive T cells
only become pathogenic if peripheral tolerance mechanisms are
overcome and they become activated in the secondary lymphoid
organs upon recognition of α-syn peptides presented via MHC
molecules on activated dendritic cells (Figure 1). Tolerance can
be overcome when self-antigens become post-translationally
modified and then appear as neoantigens to which the immune
system is not yet tolerised. Indeed, T cell responses to both
native and post-translationally modified α-syn were observed
in PD patients (150). The α-syn that activates naïve T cells in
PD could either be peripherally derived or have drained from
the CNS as suggested by the proposed body-first vs. brain-
first subtypes, respectively (153). In addition, activation of the
antigen presenting cell via PRR is required in order to induce
the necessary co-stimulation signals required for naïve T cell
activation and the source of this signal is unclear but could
possibly be provided via DAMPs including α-syn.

Mitochondrial Antigen Presentation in Parkinson’s

Disease
Recent studies in a mouse model have identified an intriguing
link between the PD-associated genes PINK1 and PARK2 and
antigen presentation. PARK2 and PINK1, which cause autosomal
recessive forms of PD (116), maintainmitochondrial homeostasis
through mitophagy (110). Loss of function mutations in the
PINK1 gene (a mitochondrial kinase) lead to disturbances
in mitophagy, and mitochondrial fusion and fission (154).
PINK1 deficiency is associated with increased ROS production,
oxidative stress, abnormal mitochondrial function, and altered
morphology (44). Mitochondrial dysfunction can result in
the release of numerous pro-inflammatory factors such as
mitochondrial DNA, RNA, ATP, and cytochrome c (110). The
presence of ROS and DNA from damaged mitochondria can act
as danger signals for activation of the NLRP3 inflammasome
which is involved in neuroinflammation in PD (2, 155,
156). Mitochondrial dysfunction has been shown to over-
activate the NLRP3 inflammasome in microglia resulting in
dopaminergic neuron cell death (157). In its capacity as an
activator of ubiquitin PINK1 cooperates with Parkin a ubiquitin
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TABLE 3 | Evidence for the role of T lymphocytes in Parkinson’s disease.

Specimens Study groups Main findings References

Human PBMCs and

plasma

PD patient and HS • Decreased levels of Tregs observed in PD patients compared to controls

• No significant difference in Th1, Th2, and Th17 levels between patients and control,

however serum levels of IL-17A were decreased in PD patients

• Serum levels of pro-inflammatory cytokines TNF-α, IL-1β, IL-6, and GM-CSF not

significantly different between groups

(135)

Human whole blood PD patient and HS • Overall lymphocyte numbers were reduced

• CD4+ T cell levels were reduced, CD8+ T cells increased

• Treg cells were significantly reduced

• IL-4 producing cells were significantly reduced, IFN-γ/IL-4 ratio was

significantly increased

(136)

Human whole blood

Rodent in vivo

PD patient and HS

MPTP+, MPTP−

6-OHDA+, 6 −OHDA-

• Decreased lymphocyte numbers, both B and T cells were reduced

• CD4+ T cells decreased, CD8+ T cells were consistent

• Significant increase in activated CD4+ T cells and reduction in naïve and memory

CD4+ T cells

• MPTP, but not 6-OHDA treatment, induced activation of CD4+ T cells

(137)

Human post-mortem

tissue

Rodent in vivo

PD patient and HS

MPTP+, MPTP−

Tcrb−/−, Rag1−/−, CD4−/−,

CD8−/−

• Post-mortem tissue of PD patients and MPTP-mouse model demonstrates

infiltration of CD8+ and CD4+ T cells in PD

• MHCI expression was observed on dopamine neurons of the SN in PD

post-mortem samples

• MPTP-induced neurodegeneration decreased in the absence of T cells and cell

death was attenuated by a lack of CD4+ T cells not CD8+ T cell

(138)

Human post-mortem

tissue and hESC

PD patient and HS • Microglia conditioned media from α-syn and neuromelanin activated microglia

cause expression of MHCI in Vm-neurons

• Vm-neurons are capable of inducing proliferation of cytotoxic T lymphocytes which

in turn cause neuronal cell death

(139)

Rodent in vivo, in vitro

primary microglia and

CD4+ T cells

AAV2-Syn or AAV2-GFP

and WT or MHCII−/−

• Overexpression of α-syn causes increased expression of MHCII on microglia

• Knockout of MHCII attenuates α-syn-induced microglial activation in the SN pars

compacta and dopaminergic cell loss

(140)

Human whole blood

and isolated PBMCs

PD patient and HS • PD patients demonstrate lower absolute counts but not frequency of Th17 cells

and Tregs

• PHA stimulation caused greater increase in IFN-γ and TNF-α in PD patients than

HS, however no difference in IL-17A was observed and IL-10 was increased in HS

but not in PD patients relative to non-stimulated cells

• Co-culture of Teff and Treg cells caused ∼80% reduction of IFN-γ and TNF-α in HS

but only ∼20% in PD patients

(141)

Human PBMCs PD patient, AD patient and

HS

• Increased α-syn specific T-cell reactivity prior to PD diagnosis declining

post-diagnosis

• Increased T cell reactivity in response to α-syn in PD patients compared to AD

patients and HS

(142)

Rodent, in vivo, in vitro

neurons and T cells

MPTP+ and MPTP− • MPTP+ mice demonstrate BBB disruption and infiltration of Th17 cells in SN

• IL-17, IL-1β, TNF-α, iNOS, IL-22, and IFN-γ increase in the SN of MPTP+ mice,

BDNF and GDNF decrease

• Co-culture of Th17 cells with Vm-neurons causes increased TNF-α and IL-1β, and

induces neuronal cell death via LFA-1/ICAM-1

(143)

Rodent, in vivo, in vitro

microglia, neurons and

Th17 cells

MPTP+ and MPTP− • MPTP caused BBB disfunction and increased IL-17A in SN only

• Teff cells increase the frequency of CD4+ T cells, reduce TH+ cell numbers in the

SN, decrease dopamine levels in the striatum and increase IL-1β and TNF-α levels

in MPTP mice

• Knockout of IL-17A alleviates these effects

• IL-17A-induced neuronal cell death does not occur in the absence of microglia

• Silencing IL-17A receptor on microglia prevents IL-17-induced cell death

(144)

Rodent, in vivo, in vitro

Treg, Teff and microglia

MPTP+ and MPTP− • Adoptive transfer of Treg attenuates MPTP-induced microglial activation and

neuronal cell loss

• Adoptive transfer of Treg increase neurotrophic factors; BDNF and GDNF

(145)

Rodent, in vivo, in vitro

CD4+ T cells

MPTP+ and MPTP− • α-syn induced Th1/Th17 cell phenotypes from naïve T cells

• Adoptive transfer of α-syn stimulated Th1 and Th17 cells caused neuronal death in

the SN, and increases cell death observed in MPTP model

(146)

Rodent, in vivo WTS+/Rag2+, WTS+

/Rag2−, WTS+/Rag− and

WTS−/Rag2+

• Increased levels of insoluble α-syn in Rag+ mice compared to Rag− mice

• CD4+ and CD8+ T cells observed in the brain of WTS+/Rag+ mice but not in

WTS+/Rag− or WTS−

(Continued)
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TABLE 3 | Continued

Specimens Study groups Main findings References

• M1 phenotype prominent in WTS+/Rag− mice compared with an M2 phenotype in

WTS+/Rag− mice which demonstrate increased phagocytosis of α-syn

(147)

Human iPSC and T

cells

PD patient and HS • Increased frequencies of IL-17 producing CD4+ T cells in PD patients, no

significant difference in IFN-γ or IL-4 producing cells

• Co-culture of iPSC-midbrain neurons with Th17 cells/IL-17 increased neuronal cell

death and levels of IL-17, IL-1β, TNF-α, and IL-6 in PD cells

• Neuronal cell death in PD co-cultures occurred via IL-17/IL-17 receptor signalling,

and potential activation of the NF-κB signalling pathway and preventing IL-17/IL-17

receptor interaction attenuated this

(148)

Human whole blood PD patient and HS • Reduced levels of B and T lymphocytes in PD patients (149)

Human isolated

PBMCs

PD patient and HS • α-syn peptides presented by both MHCI and MHCII induce T cell proliferation in PD

patients

• T cells mainly either IFN-γ or IL-5 producing

(150)

Rodent, in vivo AAV2-Syn or AAV2-GFP • α-syn overexpression caused increased expression of CD68, IgG deposition and

increased ICAM-1, IL-6, IL-1α, and TNF-α levels

• COX-2 remained unchanged and iNOS expression decreased at a later time point

• Increased levels of CD3+ and CD45R+ cells following α-syn overexpression

(151)

6-OHDA, 6-hydroxydopamine; Teff, T effector cells; Vm, ventral midbrain; HS, healthy subjects; PHA, phytohemagglutinin; MPTP, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine;

Rag, recombination activation gene; Tcrb, T cell receptor beta; PBMC, peripheral blood mononuclear cell; iNOS, inducible nitric oxide synthase; COX-2, cyclooxygenase 2; AAV2,

adeno-associated viral vector, serotype 2; WTS, human wild type α-syn overexpressing.

ligase (158, 159). In addition to these established roles in
maintaining mitochondrial homeostasis, PINK1 and Parkin
have more recently been shown to play a role in suppressing
immune responses by actively inhibiting the presentation of
self-mitochondrial antigens via MHCI (160). Mitochondrial
derived vesicles can arise by budding from the mitochondria
and then fuse with lysosomes, processes that are dependent on
the proteins SXN9 and RAB7 GTPase. Mitochondrial antigens
are then processed and presented via the MHCI pathway to
activate autoreactive CD8+ T cells. PINK1 and Parkin however
inhibited the activity of SXN9/RAB7 and thereby mitochondrial
antigen presentation (160). These data suggest that familial
PD associated with loss of function of PINK1/Parkin could
involve an autoimmune component, whereby the presentation
of self-mitochondrial antigens is enhanced in the absence of
PINK1 or Parkin resulting in the activation of autoreactive
CD8+ T cells. These mechanisms were demonstrated in dendritic
cells, macrophages, and fibroblasts; however, a key outstanding
question is whether lack of PINK1/Parkin exerts similar effects
on mitochondrial antigen presentation in astrocytes, microglia
and neurons. If so, then naïve CD8+ T cells could be initially
activated in the periphery by dendritic cells, traffic to the
CNS and cross the BBB where they would kill dopaminergic
neurons upon recognition of their cognatemitochondrial antigen
presented via MHCI. Furthermore, it is also unknown whether
the absence of PINK1/Parkin could result in mitochondrial
antigen presentation via MHCII to activate CD4T cells. This
is an important question given that neurodegeneration was
shown to be dependent on CD4T cells in a mouse model of
PD (138). Interestingly mitochondrial antigen presentation was
shown to be enhanced by an inflammatory insult and indeed in
a follow up study, Matheoud et al. demonstrated that intestinal
infection in PINK1 deficient mice promoted mitochondrial
antigen presentation, the activation of CD8+ T cells specific for
mitochondrial antigens and motor impairment that was reversed

by L-DOPA (161). Given that loss of function of PINK1 or
Parkin results in symptoms of PD in humans but not mice
(162), this suggests that it is a combination of the genetic
mutation together with an inflammatory insult that leads to PD
in individuals with mutations in PINK1/PARK2. Importantly, a
role for the gut-brain axis in PD is implicated by these findings
and supported by a study that showed that the gut microbiome
was required to induce disease in an α-syn mouse model of
PD. Furthermore, transfer of microbiota from PD patients into
α-syn overexpressing mice resulted in exacerbation of disease
symptoms when compared with transfer of microbiota from
healthy controls (163). These studies suggest that dysbiosis could
be responsible for triggering or exacerbating disease at least in
some familial cases of PD and raise the interesting possibility of
preventative or therapeutic targeting of the microbiome.

In summary, the evidence from post-mortem and MHC

association studies in PD patients together with that frommurine

studies, suggests involvement of T cells in the pathogenesis of
PD. However, there are still many unanswered questions and

more extensive research is required. For example, to translate

the autoimmune hypothesis of PD described above it will be
important to identify mitochondrial antigen-specific T cells in

PD patients with PINK1/PARK2 mutations. The possible role of
different T cell subtypes in PD is discussed below.

Th1 Cells in Parkinson’s Disease
Th1 cells differentiate under the influence of cytokines IFN-γ and

IL-12 released by antigen presenting cells, in combination with
activation of the T-bet transcription factor. The main cytokines
released by Th1 cells are IFN-γ and TNF-α, these cells are
important in activation of B cells and increasing phagocytosis
of microbes (130). PD studies have observed both increased
frequencies of IFN-γ-producing Th1 cells in circulating blood
from PD patients (136, 141), and no significant difference in Th1
levels (135). Kustrimovic et al., discovered decreased levels of the
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FIGURE 1 | Schematic representation of the interactions between glial cells and immune cells in PD. Self-reactive α-syn-specific naïve T cells may have escaped

thymic selection, or alternatively post-translationally modified α-syn may be recognised by naïve T cells as a neoantigen. In individuals with PINK1/PARK2 mutations,

mitochondrial antigen presentation may also result in T cell activation. Autoreactive CD4+ or CD8+ T cells circulate through the lymph nodes where they may become

activated by a dendritic cell (DC) presenting α-syn antigen via MHCII or MHCI, respectively. α-syn or other DAMPs activate the DC via PRR to express co-stimulatory

molecules (B7) and cytokines which drive the proliferation and differentiation of effector T cell subsets. CD4+ T cells differentiate into Th1, Th2, Th17, or Treg cells

depending on the cytokine milieu and CD8+ T cell differentiate into cytotoxic lymphocytes (CTL). Effector T cells traffic via the blood and extravasate through a

permeable BBB into the CNS, where they re-encounter their α-syn antigens presented via MHCI on neurons or MHCII on astrocytes or microglia. Th1 and Th17 cells

produce pro-inflammatory cytokines IFN-γ and IL-17 which contribute to the activation of astrocytes and microglia in synergy with other cytokines such as TNF-α, and

CTL induce apoptosis in DA neurons. On the other hand, Treg and Th2 cells may protect against neuroinflammation. The accumulation of modified or aggregated

α-syn is thought to be a key initiator of PD. α-syn accumulates within DA neurons and can also be secreted where it activates astrocytes and microglia. Activation of

TLR2 or TLR4 by α-syn together with increased intracellular ROS activates the inflammasome. Activated microglia secrete TNF-α, IL-1β, IL-6, and NO which promote

DA neuron degeneration. IL-1α, TNF-α, and C1q from activated microglia also activate astrocytes which in turn secrete IL-6, IL-1α, IL-1β, and NO. In addition,

activated astrocytes exhibit decreased release of protective neurotrophic factors and impaired glutamate uptake. Thus, T cells, astrocytes and microglia cooperate to

perpetuate neuroinflammation and loss of DA neurons in PD.

T-bet encoding gene, TBX21 (141, 164) in PD patients compared
with controls. However, naive CD4+ T cells treated with α-syn
polarised to a Th1 or Th17 phenotype causing cell death of TH+

neurons in the SN and exacerbated MPTP-induced cell death
(146). The evidence above suggests pathogenic potential for Th1
cells in PD, however the evidence is also sparse and conflicting,
which clearly highlights the need for further research in this area.

Th17 Cells in Parkinson’s Disease
A large amount of research exists into the role of Th17 cells in PD.
TGF-β, IL-6, IL-1, and IL-23 along with the RORγt transcription
factor are important in inducing differentiation of Th17 cells

(130, 165). The signature cytokine produced by Th17 cells is IL-
17. Upon binding to its receptor, which is widely expressed on
epithelial and other cell types, it induces the release of chemo-
attractants such as CXCL1 to recruit additional immune cells,
particularly neutrophils. IL-17 also induces the secretion of anti-
microbial peptides such as S100A8/A9 (166). Sommer et al.,
observed increased frequencies of IL-17 producing CD4+ T cells
in the peripheral blood of PD patients compared with control
subjects (148) and infiltration of Th17 cells into the SN has
been demonstrated in an MPTP mouse model of PD (143). In
contrast however, a study using peripheral blood mononuclear
cells (PBMCs) isolated from PD patients and healthy subjects
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discovered lower absolute counts but not frequency of Th17 cells
in PD (141). A separate study observed no difference in the levels
of Th17 cells between PD patients and controls, with reduced
IL-17A levels in PD patients (135, 141).

Although the conflicting studies above indicate that further
work is required to determine whether enrichment of peripheral
Th17 cells is a consistent finding in PD, there is experimental
evidence to suggest a pathogenic role for Th17 cells in the
context of PD. Stimulation of Th17 cells with α-syn was found
to cause neuronal cell death in the SN in an MPTP mouse
model of PD (146). Furthermore, co-culture of MPTP-treated
neurons with Th17 cells further exacerbated neuronal cell death
and increased IL-1α and TNF-α levels observed with MPTP-
treatment alone (143, 146). Liu et al., determined that these
effects weremediated via lymphocyte function-associated antigen
1 (LFA-1) and intracellular adhesion molecule-1 (ICAM-1)
interactions and ablation of either ICAM-1 or LFA-1 attenuated
the dopaminergic cell death observed in this model (143).

Importantly, Sommer et al., demonstrated that the co-culture
of autologous iPSC-midbrain neurons and Th17 cells led to
increased neuronal cell death in cells derived from PD patients
compared with controls and this effect was not observed with
non-autologous cell cultures (148). This suggested that antigens
were presented in an MHC-restricted manner by PD neurons to
Th17 cells which then induced neuronal death. It was determined
that either IL-17 or the IL-17 receptor signalling and a potential
activation of NF-κB signalling was responsible for the neuronal
cell death observed in the co-cultures. Furthermore, attenuation
of neuronal cell death in the PD co-cultures was achieved by
blocking the IL-17 or the IL-17 receptor. Taken together the
above studies indicate a role for Th17 cells in the pathogenesis of
PD. Although much of the research to date has been undertaken
in animal models, future studies like that of Sommer et al., could
utilise human-based models of PD, and patient-derived models
to determine whether these interactions translate to the human
disease phenotype.

Th2 Cells in Parkinson’s Disease
Th2 cells differentiate from naïve T cells under the influence
of IL-4, and the activation of the GATA3 transcription factor.
These cells produce IL-4, IL-5, and IL-13 (130). IL-4 activates
IgE production causing mast cell degranulation, releasing
histamines, and other pro-inflammatory cytokines. Additionally,
IL-4 as well as IL-13 increase mucous production and IL-5
activates eosinophils, releasing various pro-inflammatory and
cytotoxic proteins (167). In the context of neuroinflammation
unlike inflammatory Th1 and Th17 cells, Th2 cells are usually
considered to be anti-inflammatory and protective. Alvarez-
Luquin et al., demonstrated no significant difference in Th2
cell counts in PD patients compared with controls, however
there was a significant increase in IL-13 observed (135). In
contrast, studies have observed lower absolute numbers and
frequency of Th2 cells compared with the healthy subjects
(136, 141), however, increased GATA3 levels were identified
(141). Sulzer et al., observed that α-syn peptides activated
mainly IFN-γ-producing Th1 and IL-5-producing Th2 cells. As
anti-inflammatory, protective immune cells Th2 cells have the

potential to alter the progression of PD pathology. However,
as observed with Th1 and Th17 cells the existing evidence is
often contradictory, and therefore inconclusive, indicating the
necessity for further research into this area before any concrete
conclusions can be drawn.

T Cell Regulation in Parkinson’s Disease
It is well-established that an overactive, aberrant immune
response is rooted in the pathogenesis of numerous inflammatory
diseases. Therefore, proper functioning of the regulatory
mechanisms is key to preventing pathology. CTLA-4 is a crucial
regulator of T cell activation, upon activation T cells upregulate
the expression of CTLA-4, its role is to preferentially bind the
co-stimulatory B7 in place of CD28, having an inhibitory, rather
than stimulatory effect (130, 168, 169). Importantly, Cook et al.,
discovered a reduction in CTLA-4 expression on the surface of T
cells from PD patients following stimulation (169), indicating the
possibility of a potentially unregulated T cell response occurring
in PD.

Regulatory (Treg) cells play a key role in constraining effector
T cells and prevent excessive inflammation and autoimmunity.
Treg cells are either directly generated early in life in the thymus
during T cell development or differentiate in the periphery
from naïve CD4+ T cells under the influence of TGF-β (130,
165) and they express the transcription factor FOXP3 which is
necessary for their function. These cells produce IL-10 and TGF-
β, which are important anti-inflammatory cytokines crucial to the
regulation of the immune response and can also suppress effector
T cells via various othermechanisms including via CTLA-4 (130).
Reduced absolute numbers but not frequency of Treg cells have
been observed in PD patients (135, 136, 141). Kustrimovic et al.,
also observed increased mRNA levels of FOXP3. Interestingly,
T effector cells co-cultured with Treg cells only reduced IFN-
γ and TNF-α by ∼20% in PD patients, compared to an ∼80%
reduction observed in healthy controls, suggesting that Treg
suppression in PD may be impaired (141). Reynolds et al.,
demonstrated a neuroprotective role for Treg cells in the MPTP
mouse model of PD. The Treg cells were adoptively transferred
into MPTP treated mice, a reduction in neuronal cell death,
microglial activation, and increased production of both BDNF
and GDNF were observed (145). Thus, Treg cells are likely
to be protective in the context of PD and although there are
some discrepancies, these data suggest that Treg cells may be
numerically and or functionally impaired in PD and this may
contribute to neuroinflammation.

The literature supporting a role for T cells in PD is
growing, although there still remains evidence which contradicts
this, as numerous studies have observed reduced levels of
circulating T cells in the blood of PD patients compared
with healthy subjects (136, 137, 141, 149). Similarly, most
studies on T cell subsets presented contrasting findings. The
discrepancies between studies may be explained in part by
different methodologies; some studies have identified Th subsets
via their production of signature cytokines whereas others used a
combination of chemokine receptors. Similarly, the markers used
to identify Treg cells were not always comparable between studies
and identification of Treg cells is notoriously difficult as some of
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the markers used can also be induced on non-Treg cells during
inflammation. For this reason, a full panel of markers including
CD4, CD25, CD127, and FOXP3 is required to most reliably
identify Treg cells. Finally, it is worth noting that alterations in
the frequency of peripheral T cell subsets may not reflect changes
occurring in the inflamed tissues and a reduction observed in
the periphery may be due to trafficking to the tissue. Thus, in
summary, this area requires a greater amount of research before
the precise role of these cells can be elucidated.

This review has outlined evidence demonstrating the role of
microglia, astrocytes and even peripheral immune cells in PD
pathogenesis. Logically, this leads to the question of whether
there is potential interplay between these infiltrating peripheral
immune cells and the resident microglia and astrocytes of the
CNS in PD.

THE INTERPLAY BETWEEN GLIA AND

PERIPHERAL IMMUNE CELLS IN

PARKINSON’S DISEASE

Glial cells are crucial to the maintenance of homeostasis within
the CNS and the disruption of this is linked to numerous CNS
diseases. There appears to be little evidence available outlining
potential interactions between peripheral immune cells and
glia in PD, however the research into this area is increasing
and is summarised in Figure 1. A recent study demonstrated
antigen presenting capabilities in astrocytes. MHCII expressing
astrocytes were identified in close proximity to CD4+ T cells in
the post-mortem brain tissue of PD patients and cultured human
astrocytes exposed to pre-formed fibrils of α-syn expressed the
T cell co-stimulatory structures, CD80, CD86, and CD40 (170),
suggesting the capacity to activate CD4+ T cells. Although
Rostami et al., determined that cultured human microglia
demonstrated poor antigen presenting capabilities, Harms et al.,
determined in mice that microglia exposed to α-syn increased
their expression of MHCII, became activated and induced
proliferation of CD4+ T cells. Furthermore, the knockout of
MHCII prevented microglial activation and dopaminergic cell
loss in these mice (140).

ICAM-1 is present on immune cells and its binding to LFA-
1 is key to the migration, extravasation and even activation of
immune cells (171). Prajeeth et al., discovered that it is possible
for Th1 and Th17 cells to induce reactive, pro-inflammatory
astrocytes which microglia migrate toward and increase their
phagocytic ability. In addition to this, the T cell activated
astrocytes enhanced the infiltration of Th17 cells (172). In
other neurodegenerative diseases, such as Alzheimer’s disease,
astrocytes expressing ICAM-1 have been observed in close
proximity to LFA-1 positive microglia (173). Miklossey et al.,
discovered the occurrence of these key immune interactions in
post-mortem brain tissue from PD patients. ICAM-1 expression
by astrocytes in the SN of PD patients was observed, and
co-localised to these areas were LFA-1 positive microglia and
LFA-1 positive leukocytes (174), highlighting the presence of
interactions between glia and immune cells in PD.

The ability of these immune cells to infiltrate into the brain
in PD is demonstrated in numerous studies. BBB disruption in

PD has been observed in both post-mortem studies and animal
models of PD (132, 144) and is linked to increased infiltration
of peripheral immune cells (144). Once the immune cells enter
the brain parenchyma their functions include the release of
various cytokines, which are capable of activating glial cells and
causing neuronal cell death (175). Liu et al., observed increased
levels of IL-17A following BBB disruption in the MPTP mouse
model of PD. Addition of IL-17A to co-cultures of microglia
and neurons resulted in microglial activation, TH+ neuronal cell
death and a decrease in dopamine levels and the inhibition of the
IL-17A receptor on microglia was sufficient to attenuate these
effects (144). The synergistic and additive effect of IL-17 with
factors commonly secreted by astrocytes and microglia, such as
IL-6, IL-1β, and TNF-α has been an area of great interest and
numerous studies have demonstrated this phenomenon (176–
180). The studies discussed in this review support the idea
that inflammation is a key factor in the pathogenesis of PD
and may be driven or compounded by T cells. However, there
are important outstanding questions regarding the specificity of
T cells involved in PD and whether auto-reactive T cells are
involved only in certain subsets of PD patients such as those with
genetic mutation, or whether they are more widely involved in
sporadic PD. The role of the adaptive immune system in PD is a
novel area of research and as such requires deeper investigation
before a complete picture can be drawn of the role of these
cells in PD pathogenesis and their therapeutic potential can be
fully realised.

To aid in this, novel human-based models such as patient-
derived iPSC and 3D culture systems should be utilised to
determine if these findings from animal models translate to the
human disease. As well as this, more patient studies will be
required to determine what is occurring physiologically within
PD patients and if this corresponds to what is observed within
animal and in vitro human models.

IMPLICATIONS FOR THERAPEUTIC

TARGETING

Our increased understanding of the critical role the immune
system plays in PD has stimulated research into the viable
therapeutic targets it presents; so as to allow determination of
their potential as disease modifying therapies. As mentioned
earlier, Yun et al., demonstrated that targeting the GLP-1
receptor with NLY01 prevented conversion of astrocytes to a pro-
inflammatory phenotype by activated microglia and inevitably
reduced neuronal cell death (36). As a long-acting GLP-1 receptor
agonist, with the ability to cross the BBB, NLY01 is currently
undergoing phase 2 clinical trials to investigate its efficacy in early
PD (NCT04232969). Although results have yet to be published
for NLY01, another GLP-1 receptor agonist previously FDA
approved for treatment of type 2 diabetes mellitus, Exenatide,
is currently in phase 3 clinical trials (NCT04154072) having
successfully completed early phase 1 and 2 trials (181).

A second newly emerging PD therapeutic target is that
of monoclonal antibodies, specifically those targeting α-syn.
PRX002/RG7935, an IgG 1 monoclonal antibody targeting
aggregated α-syn, has demonstrated safety and tolerability
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in an initial phase 1 clinical trial and in a further phase
1b trial of multiple ascending-doses with a reduction in
free serum α-syn observed (182). Phase 2 clinical trials are
currently ongoing (NCT6868). Furthermore, BIIB054 another
IgG 1 monoclonal antibody targeting α-syn has concluded
phase 1 clinical trials (183) and is currently undergoing phase
2 (NCT03318523). However, these therapies involve regular
injection with monoclonal antibodies to maintain an immune
response, otherwise known as passive immunisation, another
therapeutic avenue is the use of vaccines, or active immunisation
in the treatment of PD. PD01A is an anti-α-syn vaccine, which
maintains a higher affinity for aggregated rather thanmonomeric
forms of α-syn. The results for the phase 1 clinical trial of this
vaccine in PD patients demonstrated that it is safe and well-
tolerated among treatment groups (184). Although these two
strategies involve the use of antibodies to target the specified
antigen, vaccination brings with it the added benefit of long-term
immunisation however, passive immunisation enables treatment
to cease if adverse side effects occur.

A phase 2 clinical trial is currently ongoing which investigates
the use of the immunosuppressant drug, Azathioprine for
treatment of PD. Azathioprine is an FDA approved, purine
analogue and is used to treat numerous diseases, including
multiple sclerosis. It acts by reducing B and T cell proliferation via
nucleic acid synthesis inhibition (185). However, an important
consideration for this therapy is the fact that it is an
immunosuppressant, which exposes the patient to increased risk
of infection and further illness. Another immunomodulatory
therapy, Sargramostim, is an FDA approved GM-CSF that
stimulates myeloid cell production and induces Treg cells. The
phase 1 clinical trial demonstrated increased numbers and
functionality of Treg cells while maintaining levels of T effector
cells (186). Potentially enabling increased regulation of the
immune response in PD.

As mentioned above, the gut-brain axis is being increasingly
researched and studies have demonstrated a potential role
for this pathway in PD. Importantly, gut microbiome
alterations have been observed in PD patients (187) and
faecal microbiome transplantation has been investigated as
a therapeutic intervention for PD. A case report (188) and a
preliminary study (187) have demonstrated potential benefits
for this as a therapeutic strategy in the treatment of PD.
Additionally, a clinical trial (NCT03808389) is ongoing in
hopes that restoration of microbiome homeostasis will improve
symptoms in PD patients.

These trials represent many varied and promising approaches
targeting the immune system as a means of PD therapy
which together may lead to future disease-modifying therapeutic
strategies for the treatment of PD.

FUTURE DIRECTIONS TO INCREASE OUR

UNDERSTANDING OF NEURO-IMMUNE

CROSS TALK

The crosstalk between the brain and the immune system in
PD is clearly complex with many questions remaining to be

answered. Some of these many interesting questions include
the following: (1) Is the increase or reduction of various T cell
subsets in the blood of PD patients reflective of the situation
in the CNS, or could for example a reduction in the blood
vs. healthy controls merely indicate reciprocal trafficking to the
CNS? (2) What role might the different PD associated genetic
mutations have on crosstalk between glial and immune cells
and how that crosstalk affects dopamine neuronal survival? (3)
Is the peripheral activation of α-syn reactive T cells a primary
event, or is it secondary to the aggregation/alteration/mutation
of α-syn or other PD associated proteins in the CNS which
are then released into the periphery to activate antigen specific
naïve T cells? (4) Does T cell involvement only occur in a
subset of PD patients who are genetically predisposed to T cell
involvement as a result of their MHC haplotype, and are certain
mutated peptides preferentially presented by particular MHC
haplotypes? (5)What role might PD associated genetic mutations
have on mitochondrial antigen presentation and could carriers of
PINK1 or PARK2 mutations present with an autoimmune type
of PD? (6) How might all of the queries above be influenced by
PD medications?

The development of new research tools in recent years,
including animal and various stem cell models, has already
allowed a better understanding of astrocyte and microglial
function and as thesemethods continue to improve, we can probe
more deeply into how these cells communicate with one another
and also begin to answer the questions posed above. Such tools
include rapid and more cost-effective sequencing at single cells
resolution at various stages of the progression of pathology (189).
Others that have also become available are iPSC-derived neurons,
astrocytes, andmicroglia (190), cerebral organoids (191), cerebral
organoids containing microglia (192), CRISPR screening, and
high content imaging (193). Themajor advantage offered by iPSC
is that they allow the study of the known PD associated genetic
mutations where genes are expressed at native levels without
any forced genetic manipulation. To gain a better understanding
of the mechanisms involved in glial and immune cell crosstalk
will require a deeper knowledge of the proteome of T cell
subsets, astrocytes and microglia and integration with multi-
omic datasets. Research will also need to focus on functional
studies to gain a better understanding of dysfunctional pathways
(189) that may allow development of novel therapeutic targets
and the continuing development of animal models will be critical
to development of our increased understanding in this area.
Many exciting discoveries have been made in this field in recent
years; more are sure to follow.
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Alzheimer’s disease (AD) is a progressive neurodegenerative disease and is the most

common cause of dementia in an aging population. The majority of research effort

has focused on the role of neurons in neurodegeneration and current therapies have

limited ability to slow disease progression. Recently more attention has been given to the

role of astrocytes in the process of neurodegeneration. Specifically, reactive astrocytes

have both advantageous and adverse effects during neurodegeneration. The ability

to isolate and depict astrocyte phenotype has been challenging. However, with the

recent development of single-cell sequencing technologies researchers are provided

with the resource to delineate specific biomarkers associated with reactive astrocytes

in AD. In this review, we will focus on the role of astrocytes in normal conditions

and the pathological development of AD. We will further review recent developments

in the understanding of astrocyte heterogeneity and associated biomarkers. A better

understanding of astrocyte contributions and phenotypic changes in AD can ultimately

lead to more effective therapeutic targets.

Keywords: neurodegeneration, Alzheimer’s disease, biomarkers, reactive astrocyte, heterogeneity, single-cell

sequencing, neuroinflammation

INTRODUCTION

Alzheimer’s disease (AD) is the most common form of dementia worldwide and was first described
over 100 years ago by Alois Alzheimer. Alzheimer’s disease is a prominent disease throughout the
world with a significant impact on the health care system, estimated at nearly $500 billion annually
(1). Currently, the FDA has approved few drugs for AD, which aim to improve quality of life but
do not change or slow disease progression (2).

At this time the pathophysiological mechanisms of AD are not fully understood, and current
therapeutic interventions are limited in efficacy. The pathological hallmark of the disease is the
deposition of beta-amyloid (β-amyloid) plaques and the resulting formation of neurofibrillary
tangles composed of hyperphosphorylated tau protein (3). Due to the location of these pathological
markers within neurons, neurons have been the target of research. Ramon y Cajal eloquently
demonstrated these pathological hallmarks decades earlier (4). Interestingly, Ramon y Cajal
also noted reactive hypertrophic astrocytes that surrounded senile plaques and blood vessels
with amyloid deposits in post-mortem AD patients (4). Thus, astrocytic changes due to
neurodegeneration are not a new discovery. However, there has been minimal advancement in
understanding the role of astrocytes in the development of AD. This lack of progress was likely due
to insufficient technology and methods. Due to new innovative technologies, there is an increasing
focus on elucidating the physiological changes within astrocytes during AD progression.
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The astrocyte is a prevalent cell type within the central nervous
system (CNS). They have diverse and vital functions within the
CNS including contributions to synaptogenesis, ion homeostasis,
neurotransmitter buffering, the blood brain barrier (BBB), and
inter/intracellular communication (5). Furthermore, astrocytes
are a heterogeneous group of cells with diverse phenotypes and
functions specific to their origin regionally (5, 6). Currently,
significant effort has been dedicated to investigating the distinct
functions of astrocytes as it relates to neurodegenerative disease
(5, 7).

This review will examine the current understanding of the
roles of reactive astrocytes and potential astrocytic biomarkers
unique to AD. We will further explore new technologies
such as single-cell sequencing and its potential effectiveness
in deciphering the phenotypic changes astrocytes undergo
in the context of AD. Finally, we will examine how these
technologies can help to dissect astrocyte states or subtypes
during AD progression.

ALZHEIMER’S DISEASE PATHOLOGY

Alzheimer’s disease is an irreversible brain disorder that slowly
destroys memory and thinking skills. Two forms of AD exist,
familial, and sporadic. Familial AD accounts for <5% of cases
and is associated with three subtypes defined by unique genetic
mutations (8). The first unique genetic mutation involves the
amyloid-beta precursor protein (APP) gene, which controls the
formation of the amyloid precursor protein. The APP role is
not fully understood, but it is suspected that it helps direct the
migration of neurons during early development (9). Mutations
cluster around the γ-secretase cleavage site of APP, resulting
in longer and more fibrillogenic β-amyloid (10). Two other
genes implicated in familial AD are presenilin1 (PSEN1), and
presenelin2 (PSEN2) (11). These genes encode for subunits
of a complex of gamma (γ)-secretase, which is involved in
the proteolysis and processing of APP. The sporadic or late-
onset (>65 years old) of AD lacks a complete explanation
for its development. However, there is a host of risk factors
associated with the onset of the disease. For example, there
is a genetic association of carriers of the Apolipoprotein E4
(APOE4) allele, Clusterin, and mutations in triggering receptor
expressed on myeloid cells 2 (TREM2) (12, 13). Other risk factors
for the development of sporadic AD are associated with both
environmental and modifiable lifestyle factors (14, 15).

The gold standard of pathologic diagnosis of AD includes
extracellular amyloid plaques and intracellular neurofibrillary
tangles. Amyloid plaques aggregate within the isocortex and are
found in all six cortical layers (16). β-amyloid deposition and
plaque formation are accompanied by reactive astrogliosis and
microglial activation (17). It has been shown in post-mortem
specimens that neurofibrillary tangles were densely associated
with those areas of the brain most affected by the disease, such as
the hippocampus (18). The number of these tangles is correlated
with severity of symptoms (19). Tau protein is a microtubule-
associated protein (MAP) which aggregates into neurofibrillary
tangles. It is necessary for the function and development of

the nervous system and regulation of the normal function
of neurons (20). In AD, tau aggregation secondary to post
translational changes such as hyperphosphorylation, truncation,
glycation, glycosylation, nitration, and ubiquitination results in
the formation of neurofibrillary tangles in neuronal cytoplasm
(20). For example, in AD, hyperphosphorylation of tau protein
is produced by glycogen-synthase-kinase 3β, cyclin-dependent
kinase 5 (CDK5), mitogen-activated protein kinase (MAPKs),
Fyn, and many others (20). In addition, decreased phosphatases
(which dephosphorylate tau) have been found in AD post-
mortem specimens. A major phosphatase implicated in AD is
protein phosphatase 2 (PP2A). Protein phosphatase 2 inhibition
has been shown to increase tau hyperphosphorylation and has
been demonstrated to be reduced in AD human brain specimens
(20, 21). Thus, the imbalance of kinases and phosphatases
together results in hyperphosphorylated tau and progression
in AD.

Currently, the approved treatment for AD is directed at
controlling symptoms. Further investigation is underway to
evaluate possible disease modifying agents to attempt to slow
the progression of the disease. Continued research efforts are
required to clarify the pathological progression of AD and thus
provide new targets for therapeutic development.

ROLE OF NORMAL ASTROCYTES

Astrocytes are specialized glial cells and have important roles
within the CNS. They are essential to allow the brain to
function as an organ and computational structure. Astrocytes
have long been postulated and expanded upon since they were
histologically depicted by Ramon y Cajal and his contemporaries
(22). Initially it was believed that the astrocytes’ role within the
CNS was structural support for neurons. However, over 100
years ago, Ramon y Cajal found morphological heterogeneity
of astrocytes (22). He described nine different morphological
subtypes of astrocytes, which led to the development of multiple
theories of the vital function of astrocytes. Unfortunately,
due to the lack of technology these theories were left largely
unproven and forgotten over the next century. More recently
new methodologies have revealed that astrocytes execute a
variety of essential functions including contributions to the BBB,
synaptogenesis, ion homeostasis, neurotransmitter buffering, and
the secretion of neuroactive agents (5) (Figure 1).

The understanding of the functional roles in cellular
physiology first begins with understanding uniquemorphological
characteristics. Typical protoplasmic astrocytes demonstrate a
characteristic spongiform morphology (22). These astrocytes are
ubiquitous throughout the gray matter. The astrocyte soma has
numerous major branches with multiple secondary and tertiary
branches that ultimately form interactions with other neurons
and several synapses (23). Astrocytes regulate these synapses by
secreting neurotransmitters to target pre and post synaptic sites
andmodulating function of adjacent neurons and astrocytes (24).
This led to the development of the tripartite synapse, which
is composed of an astrocyte and two neurons as a functional
unit (24). The numbers of synapses an astrocyte interacts with
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FIGURE 1 | Examples of roles of astrocytes in normal condition and in AD. The left half of astrocyte (yellow) depicts normal astrocyte functions, including

neurotransmitter recycling (U-turn arrow and brown-outlined circles), synaptogenesis, central nerve system (CNS) homeostasis, and interaction with vasculature. The

right half of astrocyte (Pink) depicts a reactive astrocyte in Alzheimer’s Disease (AD). The black box contains some examples of the astrocytic signaling pathways

related to AD. Green box indicates examples of inducing factors of reactive astrocytes from microglia. Red boxes are the representative intracellular and secretory

molecules (red-outlined circles) and astrocytic makers expressed by reactive astrocytes in AD. Blue circles with icons are synapses. K+, potassium; AQP4,

aquaporin-4; Kir4.1, inwardly rectifying K+ channel subunit 4.1; APP, amyloid-beta precursor protein; BACE1, β-site APP-cleaving enzyme 1; FFA, free fatty acid;

GFAP, glial fibrillary acidic protein; YKL-40, chitinase-3 protein like-1; S100B, S100 calcium-binding protein B; MAOB, monoamine-oxidase-b; GLAST, glutamate

aspartate transporter; GLT-1, glutamate transporter 1; Ca2+, calcium; NF-κB, nuclear factor- kappa B; Stat3, signal transducer and activator of transcription 3; AGEs,

advance glycation end-products; RAGE, Receptor for advanced glycation end products; TGF-β, transforming growth factor beta; GABA, gamma-aminobutyric acid;

IL, interleukin; TNF-α, tumor necrosis factor alpha; C1q, complement component 1q.

are variable between circuits, brain regions and species. For
example, a single astrocyte in the dorsolateral striatum can
interact with 50,000 synapses while in the hippocampus stratum
radiatum interactions can exceed 100,000 (5). This suggests
that the morphological diversity of astrocytes is also related to
their location within the CNS (6). The mechanism controlling
the morphology of astrocytes remains ill-defined. More recently
studies have proven that the loss of connexins and neuroligins
alters astrocyte morphology, influencing synapse formation (25,
26). For example, Stogsdill et al. found that the morphological
complexity of astrocytes relies on direct contact with neurons
mediated by astrocyte neuroligin/neurexin interactions (26).
Moreover, changes in astrocyte morphology in response to
a pathological insult are ubiquitously noted in variety CNS
diseases (27).

As stated, astrocytes are a mainstay in the development of the
synapse. At a synaptic level, astrocytes have a plethora of roles to
maintain normal synaptic activity. Astrocytes have known roles

in synapticmetabolism and are implicated in glycogen processing
and storage (Figure 1). Astrocytes can synthesize glycogen,
provide glycolytic components for neurons during periods of
high demand, and remove free radicals (28). Additionally, when
neurons have further energy requirements, glycogen stores can
be metabolized to form lactate which is transported from
astrocytes to neurons via various monocarboxylate transporters
(MCTs) (29).

A new waste clearance system formed by normal astrocytes
has been discovered, deemed the glymphatic system (30). In this
system, perivascular channels promote the efficient elimination
of soluble proteins and metabolites, including β-amyloid, from
the CNS. Astrocytes directly contact the CNS vasculature via their
end feet and vasodilate or constrict to accommodate nutrient-
waste exchange for neurons based on activity (5). For example,
astrocytes highly express aquaporin-4 (AQP4) at the end foot
processes and in turn can regulate extracellular matrix as well as
cell membrane potential (Figure 1) (31). Aquaporin-4 is also vital
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in the clearance and exchange of solutes in a water dependent
manner between the cerebral spinal fluid (CSF) and interstitial
fluid (31). Glymphatic dysfunction has been demonstrated in
animal models of traumatic brain injury, AD, and ischemic
disease, most likely related to dysfunction of AQP4 (32).

Moreover, CNS homeostasis is maintained by astrocytes
by regulating pH and fluid levels in the brain, buffering
potassium, and recycling neurotransmitters (Figure 1). For
example, astrocytes possess a Kir4.1 potassium channel (33). In
conjunction this allows astrocytes to control action potential
firing (Figure 1) (34).

Overall, the roles of astrocytes are diverse and fundamentally
important in the CNS. Therefore, any disruption regarding the
normal roles of astrocytes can result in morphological and
functional changes that result in pathological consequences. We
will further review astrocyte function and the impact on AD.

ASTROCYTES IN ALZHEIMER’S DISEASE

Within the CNS astrocytes have a vital role in protecting and
repairing neuronal damage (35, 36). Astrocytes respond to
inflammatory substances and undergo a process known as
reactive astrogliosis (34, 37). Astrocytes become reactive in
response to multiple pathological conditions including acute
injuries and progressive disorders such as tumor and AD (37).
For example, Das et al. completed a meta-analysis of published
astrocyte transcriptomic datasets in both acute and chronic
neurodegenerative models, which displayed differing genetic
astrocyte signatures (38). Specifically, in acute models, astrocytes
were found to have upregulated expression for genes involved
in protein synthesis, protein degradation, and antioxidant
defense, whereas downregulated expression were noted for
genes regulating chromatin structure and transcriptional
repressors. Conversely, in chronic models, astrocytes were
found to have upregulated expression for genes associated with
extracellular matrix proteins and downregulated expression
for genes associated with glycogenolysis, immune modulation,
and antioxidant defense. Thus, astrocytes have unique genetic
signatures in response to acute and chronic neurodegeneration.

Inflammation plays a prominent role in the development
of AD (17). Reactive astrocytes release molecules including
cytokines, chemokines, growth factors, and gliotransmitters (39).
Astrocytes also release axon growth-promoting factors essential
for axon growth and synaptic formation and maturation in
response to injury (34, 40). Additionally, astrocytes increase
neuronal viability and mitochondrial biogenesis, protecting
neural cells from oxidative stress and inflammation induced by
amyloid peptides (41).

The central hypothesis regarding the etiology of AD is that β-
amyloid and neurofibrillary tangles produce acute inflammation
which activates microglia, the primary inflammatory cells of
the CNS, to release inflammatory mediators. This chronic
inflammation results in neuronal dystrophy and ultimately
leads to the clinical symptoms of AD. More recently, the
role of astrocytes in the neuroinflammatory process has been
closely evaluated (42, 43). For example, Orre et al., identified

differentially expressed genes (DEGs) (807 upregulated and
571 downregulated genes) in AD astrocytes in APPswe/PS1dE9
double transgenic mouse model compared with WT mice
(42). These up-regulated genes were enriched in inflammatory
response, such as “defense response” and “positive regulation
of immune response” and down-regulated genes were enriched
in the regulation of synaptic transmission, neurogenesis, and
brain and neuron development. Studies demonstrate that reactive
astrocytes are induced by activated microglia that release IL-
1alpha (IL-1α), IL-1beta (IL-1β), IL-6, tumor necrosis factor-
α (TNF-α), and complement component 1q (C1q) (44–46).
Furthermore, these cytokines can activate β-secretase and γ -
secretase activity, cleaving APP, and stimulating β-amyloid
formation by astrocytes, thereby supplementing neuronal β-
amyloid production (47). For instance, Zhao et al. (48)
demonstrated that primary astrocytes taken from mice and
treated with a combination of INF-γ and TNF-α or IL-1β induced
the secretion of β-amyloid. β-site APP-cleaving enzyme (BACE1)
is an enzyme that works in conjunction with γ -secretase in
cleaving APP to form β-amyloid. Previously it was thought that
only neurons expressed BACE1, thus being the only cell capable
of producing β-amyloid (35). Recent studies on post-mortem
AD human brains have exhibited that astrocytes express BACE1
levels high enough to secrete β-amyloid (49). The mouse models
that overexpress APP with the Swedish mutation (which is a
mutation adjacent to the beta-secretase cutting site in the APP
gene), displayed increased expression of BACE1 in correlation
with elevated β-amyloid in reactive astrocytes, but BACE1 was
not detectable by staining in resting astrocytes in the same mouse
model (50). Therefore, inflammatory stimulation of astrocytes
can induce BACE1 and in turn secrete more β-amyloid resulting
in the progression of AD.

Another important protein associated with astrocytes and
AD severity is S100B. During fetal development, it functions
as a neurotrophic agent (51). S100B has been shown to induce
astrocytes to become reactive in transgenic mice that overexpress
S100b (52). Further studies have proven that cells, particularly
astrocytes, that are S100B positive were located in higher
concentrations around neuritic plaques in post-mortem AD
brains (19). Specifically, there was a high concentration of these
cells in areas of the brain known to be affected severely by
AD, such as the hippocampus. The antiprotozoal medication
pentamidine, which directly blocks S100B activity, has been
studied in an AD mouse model (53). Pentamidine reduced
GFAP, S100B and the receptor for advanced glycation end
products (RAGE) protein expression, which are implicated in
the neuroinflammatory response of astrocytes (53). Cirillo et al.
also displayed the neuroprotective effect of pentamidine in
CA1 pyramidal neurons (53). Thus, S100B is an important
inflammatory regulator of astrocytes involved in phenotypic
changes and progression of AD pathology.

Astrocytes are the primary source of cholesterol and lipid
production and metabolism, and aberrant cholesterol processing
has been implicated in AD development (54, 55). ATP-binding-
cassette transporter 1 (ABCA1) is expressed on astrocytes and
important in the lipidation of APOE. When cholesterol is
abundant, neurons produce β-amyloid to suppress the expression
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of the ABCA1, which results in increased deposition of β-amyloid
(55). Increased free fatty acids have been suggested as a risk
factor in the development of AD and high fat diets in animal
models resulted in the accumulation of β-amyloid and plaque
formation (54, 55). Ceramide, a metabolite of fatty acids, is
increased in AD post-mortem brains and β-amyloid production
(55). Furthermore, elevated ceramide levels have been shown to
induce astrocytes to produce inflammatory cytokines; in turn
this activated BACE1 activity and thus β-amyloid production
in neurons (55). Therefore, cholesterol and fatty acids prompts
astrocyte inflammatory response and further progression of AD.

Additionally, astrocytes recycle glutamate and GABA into
glutamine, via glutamine synthetase (56). The glutamine from
astrocytes is then used by neurons to produce more glutamate
and glutathione (57), thus, providing additional nutrients
and protection against reactive oxygen species. Glutamate
Transporter (GLT-1) and Glutamate Aspartate Transporter
(GLAST) are responsible for 90% of astrocytic glutamate uptake
in the brain and are ubiquitous marker for astrocytes (57).
In post-mortem AD brains and animal models mRNA of
both Glt-1 and Glast are reduced (Figure 1) (58). Astrocyte
glutamatergic dysfunction, specifically GLT-1, is associated
with the microenvironment of β-amyloid plaques in animal
models. For example, when a mouse model lacking one allele
of Glt-1 is crossed with mice expressing mutations in APP
and PS1, it accelerated memory impairment and increased β-
amyloid (59). Additionally, β-amyloid oligomers and preplaque
β-amyloid species have been demonstrated to decrease GLT-
1 and GLAST in cultured astrocytes (60, 61). Thus, aberrant
glutamate transport results in the disruption in the clearance of
excitatory neurotransmitters and increased levels of β-amyloid
and tau from astrocytes (62).

Aberrant gliotransmitter released by reactive astrocytes has
been suggested as a possible role in AD symptomology,
specifically memory loss (63). GABA is a major inhibitory
neurotransmitter within the CNS. GABA is metabolized within
astrocytes by GABA transaminase to succinate, entering the
Krebs cycle, and used for energy production (64). Jo et al.
displayed in vivo that reactive astrocytes produce GABA via
MAOB and release GABA through the bestrophin-1 channel
(63). GABA and MAOB content has been noted to be elevated
in AD patients and mouse models (63, 64). The excessive GABA
produced and released by reactive astrocytes results in activation
of neuronal GABA receptors, which results in inhibition of
glutamate release, and suppresses astrocytes’ pro-inflammatory
response (64). However, other studies have demonstrated
decreased GABA levels in multiple areas of the brain in post-
mortem AD samples (65). Although there are inconsistencies in
how GABA influences AD progression, it is clear that GABA
dysfunction within astrocytes is involved in AD pathogenesis.

Cellular senescence has been considered as a primary
inducing factor of age-associated neurodegenerative disorders,
and astrocytes can undergo stress-induced premature senescence
(66). Recently, astrocytes have been shown to have decreased
normal physiological function and increased secretion of
senescence-associated secretory phenotype (SASP) factors
in AD, which contribute to β-amyloid accumulation, tau

hyperphosphorylation, and neurofibrillary tangle deposition
(66). Senescent astrocytes share many similar phenotypes
to reactive astrocytes, and it has been suggested that prior
studies that focused on reactive astrocytes may have been
focusing on senescent astrocytes (66). However, the topic of
cellular senescence and its involvement in the development
of neurodegenerative disease is controversial at this time (37).
In order to verify if senescent astrocytes become reactive in
the development of neurodegenerative disease, a significant
amount of investigation remains. Specifically, defining molecular
markers of normal aging astrocytes over multiple brain regions
and compare with reactive astrocytes in neurodegenerative
disease will be required (37).

SIGNALING CASCADES ASSOCIATED
WITH ASTROCYTES IN AD

There are many molecules and signaling pathways that have been
implicated in astrocytes in AD. We review some examples as the
following. Astrocyte calcium regulation is regulated by a diverse
set of stimuli that can alter intracellular levels. The pathological
accumulation of β-amyloid results in inflammatory facilitators,
such as bradykinin, to increase intracellular calcium via nicotinic
receptors and the P13K-Akt pathway in cultured astrocytes (67,
68). Additionally, β-amyloid has the unique ability to interact
with multiple astrocyte cell surface receptors, such as P2Y1,
nicotinic receptors, and glutamate metabotropic mGlut receptor,
increasing intracellular calcium (Figure 1) (69). Furthermore,
Chiarini et al. (70) showed β-amyloid can bind to the
calcium sensing receptor (CaSR) in human astrocytes, activating
intracellular signaling, which resulted in the production and
release of phosphorylated tau. Overall, there is sound evidence
that calcium dysregulation is involved in the progression of AD.
However, the receptors involved need further investigation to
determine their diverse function and ability to be developed as
a therapeutic target.

Another signaling cascade important in astrogliosis in AD
is nuclear factor-kappa B (NF-κB). Nuclear factor-kappa B is a
common transcription factor present in almost all cell types and
has a critical function in numerous cellular processes. In the
CNS, NF-κB requires strict control to ensure normal neuronal
development and function (71). Abnormal NF-κB activation has
been previously reported in multiple neurodegenerative diseases,
including AD (72). Studies in rat models and post-mortem AD
brains have shown an association of NF-κB with β-amyloid
(73, 74). Specifically, NF-κB has been shown to have increased
activity in neurons, astrocytes, and microglia due to exposure to
β-amyloid. This activation results in induction of target genes in
reactive astrocytes which induces astrocytes’ morphological and
functional changes. Nuclear factor-kappa B activation in reactive
astrocytes is associated with elevated mitochondrial oxidative
metabolism, limiting the supply of pyruvate substrate for neurons
(75). The increased production of inflammatory substrates also
influences neurons by inducing neuronal oxidative stress and
apoptosis (72). The inhibition of NF-κB activation in AD mouse
models has been demonstrated to slow the AD pathology and
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improve neuronal survival and cognition, implicating that the use
of NF-κB antagonists could provide therapeutic benefit (76, 77).

Signal transducer and activator of transcription 3 (STAT3) is
a transcription factor that is activated through phosphorylation
by Janus Kinases (JAK) in response to cytokines, growth
factors, and intracellular mediators and has been implicated
in the activation of astrocytes (78, 79). Ben Haim et al.
showed that STAT3 is activated in reactive astrocytes of several
murine and primate AD and Huntington’s disease models (79).
Conversely, two studies have been completed in AD mouse
models with Stat3 inactivation in astrocytes (78, 80). Ceyzeriat
et al. demonstrated that inhibition of STAT3 in vivo resulted
in reducing amyloid deposition, restoring synaptic deficits,
and improved spatial learning (80). Similarly, Reichenbach
et al. showed Stat3 inactivation in astrocytes reduced plaque
deposition and improved memory. However, it was also
demonstrated that there was a reduction in pro-inflammatory
cytokine activation (78). Altogether, these studies provide strong
evidence of the potential for targeting STAT3 in astrocytes to
slow the progression of AD (37). However, further investigation
is required to determine the time point in which STAT3 activation
in astrocytes results in pathological consequences.

Receptor for advanced glycation end products is a multi-
ligand receptor of the immunoglobulin superfamily of cell
surface molecules. They bind advance glycation end-products
(AGEs) which are non-functioning glycated proteins or lipids
that become glycated after exposure to sugars (81). Advance
glycation end-products are associated with aging and have been
implicated in neurodegenerative diseases such as AD (82, 83).
Additional research has shown that AGEs form early in disease
process of AD (84). Engagement of AGEs-RAGE converts a
brief pulse of cellular activation to sustained cellular dysfunction
and tissue destruction (85). Increasing expression of RAGE on
the membranes of neurons and microglia is relevant to the
pathogenesis of neuronal dysfunction and death of AD (86).
Most pertinent to this discussion is the role of RAGE regarding
astrocytes response. Reactive astrocytes surround the β-amyloid
plaques and express RAGE (19). It has also been reported
that β-amyloid can bind and activate RAGE on astrocytes and
induce a pro-inflammatory state via a NF-κB pathway (87).
Thus, targeting RAGE has the potential to reduce downstream
inflammatory effects.

Transforming growth factor beta (TGF-β) is expressed
ubiquitously within the CNS. During development,
Transforming growth factor beta helps regulate neuronal
survival, neurogenesis, synaptogenesis, and gliogenesis
(Figure 1) (88, 89). Astroglia expression of TGF-β mediates
synaptic refinement as well as glial scar formation (90, 91).
Abnormal TGF-β hyperactivation has been detected in
neurodegenerative disease and traumatic injury patients,
and astrocytes and microglia are the predominate source
(92–95). Studies in vitro have shown that TGF-β may promote
cell survival since supplementing TGF-β protects neurons
from β-amyloid toxicity (96). This protective activity was further
demonstrated to be antagonized by β-amyloid (97). Furthermore,
the expression of the TFG-β type II receptor, mainly expressed by
neurons, is reduced in AD brains (72). Therefore, it is clear that

TGF-β has both beneficial and detrimental effects. Further work
is necessary to determine when TGF-β becomes detrimental in
response to neurodegenerative disease.

ASTROCYTE BIOMARKERS IN
ALZHEIMER’S DISEASE

Reactive astrocytes have become a focus of study in
neurodegenerative disease and are essential players in the
pathological process of AD and suggested to be targeted for
novel therapeutics (34). Typically, immunohistochemical
markers for reactive astrocytes are cytoskeletal components
such as GFAP, vimentin, and nestin (98). However, the elevated
marker such as GFAP alone is insufficient in categorizing
astrocytes as reactive (37). Therefore, multiple markers are
necessary to classify astrocytes as reactive.

Alzheimer’s disease is classically diagnosed based on clinical
criteria while the gold standard of definitive diagnosis is via
neuropathology. Diagnosis based on clinical symptoms has
a 30% misdiagnosis rate in comparison to neuropathological
diagnosis (99). Thus, significant effort has been dedicated to
develop clinical tools and tests to establish accurate early
diagnosis and monitor the progression of the disease. Initial
investigation for CSF markers began with classic astrocyte
biomarkers such as GFAP, S100B, and glutamine synthetase,
which proved to be not specific candidates due to their
associations with homeostatic states of astrocytes and multiple
other neurodegenerative diseases (100). Growing research has
focused on a new astrocyte CSF biomarker Chitinase-3 protein
like-1 (YKL-40), a protein commonly measured as a surrogate
marker of neuroinflammation in AD (Figure 1) (101, 102). It
has been linked to predict progression from normal cognition
to mild cognitive impairment (MCI) and MCI to AD (102).
Furthermore, elevated CSF YKL-40 has been confirmed to be
correlated with phosphorylated tau levels at the early stages of
AD (103). However, YKL-40 is not specific to AD alone and can
be elevated in other tauopathies. Thus, further evaluation with
multiple reactive astrocyte biomarkers is likely required to test
for accuracy and progression of the disease.

Imaging modalities such as Positron emission tomography
(PET) imaging and Magnetic resonance imaging (MRI) can
assess aberrant astrocyte metabolism and detect accelerated brain
atrophy. Currently, an inhibitor of the enzyme monoamine
oxidase B (MAOB) [11C]-deuterium-L-deprenyl has been
proposed as a PET imaging biomarker of reactive astrocytes
(62, 104–106). MAOB is known to be up-regulated in
GFAP-immunoreactive astrocytes. In post-mortem samples of
individuals afflicted with AD, both the activity of MAOB and
binding of L-deprenyl was found to be increased in multiple
areas of the cerebral cortex (107). Furthermore, Gulyas et al.
demonstrated that the highest binding of L-deprenyl occurs in
the initial stages of AD (108). This suggests L-deprenyl as a
promising PET imaging biomarker in the early diagnosis of AD.

The Alzheimer’s precision medicine initiative was formed
to review current blood-based AD biomarkers (99, 109). At
this time no significant blood-based biomarker has proven to
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be effective. Therefore, it is crucial to continue investigating
and elucidate additional biomarkers for treatment/diagnosis and
signaling pathways to target for a better understanding of disease
progression. It is unlikely a single biomarker will be found for
diagnostic purposes, but rather reactive astrocyte signatures will
be required to increase the specificity of diagnostic tests (37).

HETEROGENEITY OF REACTIVE
ASTROCYTES IN ALZHEIMER’S DISEASE

Most studies of AD focus on tissue samples that contain many
cell types. However, this cannot distinguish the contribution of
specific cell types in AD. Although astrocytes could be isolated
from Alzheimer’s samples based on specific cell markers (110),
the functions of each subpopulation are not clear due to the
heterogeneity of astrocytes. Most of the current studies for
astrocytes emphasize two morphological groups: fibrous and
protoplasmic astrocytes, located in the white and gray matter of
the brain, respectively (111, 112). However, how many astrocyte
subclusters/subpopulations in different regions of the brain and
what functions they play are not clear. Recently, the single-cell
(scRNA-seq) or single-nucleus RNA-seq (snRNA-seq) methods
have been developed andmake it possible to analyze cell subtypes
or status (113). For human Alzheimer studies, most of the
time, only post-mortem frozen samples are available. Single-
nucleus RNA-seq is an effective method to analyze individual
cells using these samples. Grubman et al. obtained 13,214 high-
quality nuclei of entorhinal cortex samples from control and
Alzheimer’s disease brains (114). Astrocytes (2,171 nuclei) were
clustered into eight groups (a1–a8) by bioinformatic analysis. The
functional enrichment showed astrocyte subpopulations might
have different functions. For example, a1 astrocyte subpopulation
was enriched in genes linked to ribosomal and mitochondrial
function neuron differentiation and heat shock responses; a2
was enriched in transforming growth factor TGF-β signaling
and immune response; a3 and a8 were enriched in cellular
responses to lipids and hormones; a4 was enriched in respiratory
and mitochondrial genes, whereas a6 was enriched in synapse
organization, action potentials, and ion channel activity. Mathys
et al. isolated single-nucleus from 48 post-mortem human
prefrontal cortex samples (24 individuals with high levels of
β-amyloid and other pathological hallmarks of AD, and 24
individuals with no or very low β-amyloid burden or other
pathologies) (115). A total of 80,660 droplet-based single-nuclei
was sequenced and was used for identifying transcriptionally
distinct subpopulations. Three thousand three hundred and
ninety-two astrocytes (1,562 cells from no-pathology individuals
and 1,830 cells from AD-pathology individuals) were clustered
into 4 AD-associated subpopulations (Ast0–Ast3), which were
related to the different pathological features of source brains.
For example, Ast1 was associated with a high amyloid level,
high Braak stage (V), low CERAD (Consortium to Establish
a Registry for AD) score, low NIA (National Institute on
Aging)-Reagan score, and pronounced cognitive decline, while
Ast0 was associated with no pathological traits. They also

found astrocyte subpopulations have different responses to
AD pathology between female and male individuals: Ast1 was
enriched in female cells, whereas Ast0 was enriched in male cells.
Zhou et al. analyzed 66,311 individual nuclei from dorsolateral
prefrontal cortexes, and found six sub-clusters (Astro0–5) in
control (2,955 astrocytes) and AD (2,641 astrocytes) samples
(116). Compared with control, Astro3 was depleted in AD. Genes
related to the coordination of lipid and oxidative metabolism
between neurons and astrocytes, such as FABP5, HILPDA,
and SOD2, were down-regulated in AD samples; while the
expression of NCAN and COL5A3, which had functions on the
extracellular matrix, were up-regulated in Astro0 and Astro1.
These results suggested AD astrocytes might have lost metabolic
coordination with neurons in AD. Additionally, Lau et al.
sequenced 169,496 nuclei from prefrontal cortical samples of
12 AD patients and nine normal control (NC) subjects (117).
From these samples, 17,997 nuclei were of astrocyte origin.
The subcluster analysis showed that astrocytes were grouped
into nine clusters (a1–a9). The proportion of cells in each
subpopulation revealed the relative proportion of a2, a4, a5, a7,
a8, and a9 were similar between AD and NC samples. However,
the proportion of a1 and a6 were 9.9 and 10.2% larger and
a3 were 23.5% smaller in AD, compared to the NC samples.
The differential expressed genes across conditions in a1, a3,
and a6 demonstrate the DEGs in a1 and a6 were enriched in
up-regulated genes and a3 were enriched in down-regulated
genes in AD samples. The enriched genes in a1 and a6 were
associated with stress response genes, while genes in a3 were
associated with neurotransmitter metabolism. All the above
results suggest astrocytes from different brain regions might have
specific astrocyte subpopulations. These subpopulations can be
related to different AD pathology.

Regarding animal models of AD, 5xFAD transgenic mice
are commonly used (118). Habib et al. analyzed 54,769 single-
nucleus RNA-seq profiles from eight 7-month male mice
hippocampus [four WT mice and four transgenic models of AD
(5xFAD) mice] to define the role of non-neuronal cells in AD
progression (119). Seven thousand three hundred and forty-five
WT and AD astrocytes were clustered into six subclusters. A
continuous trajectory across astrocyte subclusters showed three
end states [Gfap-low, Gfap-high, and DAA (disease-associated
astrocyte, a specific cluster in AD compared with WT)]. In
these six clusters, clusters 1 and 2 were Gfap-low states and
cluster 6 was Gfap-high state astrocytes; cluster 5 might be
the transitional-like intermediate state between the Gfap-low
state and Gfap-high state; cluster 3 might be a transitional-
like intermediate state between Gfap-low stage and the DAA
(cluster 4). Exemplary studies of astrocyte heterogeneity outlined
above is outlined inTable 1. The continuous expression spectrum
suggested astrocytes have a dynamic activation process in AD.

As astrocyte isolation is challenging, the proportion of
astrocytes obtained in total cells is around 10% in the published
papers. Also, the current single-cell technologies are limited with
low number of transcripts per nuclei/cell compared to bulk RNA-
seq. Future improvement of technology and astrocyte isolation
will enhance our understanding of astrocyte heterogeneity in AD.
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TABLE 1 | Example studies of astrocyte heterogenity in AD.

Species Reference Tissue Total nuclei no. Astrocyte nuclei no. Astrocyte clusters

Human Grubman et al. (114) Entorhinal cortex 13,214 2,171 a1–a8

Human Mathys et al. (115) Prefrontal cortex 80,660 3,392 Ast0-Ast3

Human Zhou et al. (116) Prefrontal cortex 66,311 Control (2,955) and AD (2,641) Astro 0-5

Human Lau et al. (117) Prefrontal cortex 169,496 17,997 a1–a9

Mouse (5xFAD) Habib et al. (119) Hippocampus 54,769 7,345 Cluster 1–6

DISCUSSION

In summary, there is overwhelming evidence of the vital role
astrocytes play in the pathophysiological development and
progression of AD. The advent of technologies such as single-
cell RNA sequencing and single-molecule imaging provides a
greater understanding of the temporal and spatial progression
of astrocytes that occurs during AD, which could serve as
a framework for researchers to elucidate specific astrocytic
biomarkers involved in AD progression (120). Specifically,
studies using transcriptomics have allowed us to understand
further that reactive astrocytes develop different molecular states
during the progression of AD (37). As mentioned earlier,
scRNAseq in AD models has demonstrated multiple stage-
dependent conditions or subpopulations of reactive astrocytes
(114–116). These studies signify the importance of characterizing
the complex diversity and function of reactive astrocytes in each
individual state to understand further the unique role these
changes have in AD progression (114, 115). Therefore, it is not
as simple to classify reactive astrocytes in AD as protective or
toxic. Understanding the molecular changes at a single-cell level
could also provide insight on the time point in which therapeutic
intervention against reactive astrocytes can be applied, to harness
AD progression and symptoms. The combination of powerful
technologies such as viral gene transfer, electrophysiology, and
optogenetics with transcriptomics can further elucidate the
functions of reactive astrocytes in AD (37, 121).

Additionally, the roles and mechanisms of regulatory
RNAs, such as long non-coding RNAs (lncRNAs), are
underexplored in AD (122, 123). Currently, studies have
demonstrated the regulatory role of lncRNA as it relates to tau
hyperphosphorylation and others have suggested the utility
of lncRNA as a biomarker for AD (124). These studies have
provided the exciting potential of lncRNA as both diagnostic and
therapeutic targets for AD.

Another critical consideration in elucidating the
pathophysiological mechanisms of AD and determining
fruitful therapeutic targets is ensuring we select appropriate in
vitro and in vivo study models. Most cellular spatial information
regarding cellular relationships to β-amyloid and neurofibrillary
tangles is lost when isolating mRNA samples (125). Similarly,
morphological and transcriptomic comparisons on human
and mouse reactive astrocytes have revealed significant
differences (37). This exemplifies the inherent limitations of
in vitro studies and animal models in AD, and the difficulty
in interpreting results when comparing studies with post-
mortem specimens. Human induced pluripotent stem cells
are currently increasingly employed in basic science research
and can help narrow these differences (37). Furthermore,
using multiple genomic techniques in combination, such
as spatial transcriptomics and in situ sequencing, provides
a benefit in preserving cellular spatial information (125).
In conclusion, a consensus regarding appropriate research
models and the integration of multiple “omic” modalities
could provide improved diagnostic and therapeutic targets in
reactive astrocytes.
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