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Editorial on the Research Topic

Artificial Intelligence (AI) Optimized Systems Modeling for the Deeper Understanding of
Human Cancers

Cancer research in the field of Computational Systems Biology attempts to address questions that will
advance current knowledge in the mechanisms of cancer progression or treatment resistance. By
analyzing multi-omics data and developing a predictive mathematical and/or computational model of
an unknown biological system, we can systematically understand 1) themechanisms that tie altered gene
expression and downstream molecular mechanisms to functional cancer phenotypes (Colaprico et al.,
2020; Menyhárt and Győrffy, 2021); 2) and/or the mechanisms that tie tumor morphology to functional
cancer phenotypes (Koutsogiannouli et al., 2013; Suhail et al., 2019); 3) and/or the mechanisms that tie
treatment sequence and combination to evolving functional cancer phenotypes (Yalcin et al., 2020).
Currently, systems biology still faces some challenges, includingmodel calibration, model validation and
generalization, computational efficiency, and the feasibility of clinical transition (Ching et al., 2018).
Recent developments in artificial intelligence technologies, e.g., deep learning (DL), allow us tomodel the
hierarchical structure of real biological systems, efficiently converting gene-level data to pathway-level
information with an ultimate impact on cell phenotype (Gazestani and Lewis, 2019). Furthermore, such
computational models could require fewer training samples, are more generalizable across diverse
biological contexts, and can make predictions that are more consistent with the current understanding
on the inner-workings of biological systems (Brodland, 2015).

This special issue entitled “Artificial Intelligence (AI) Optimized Systems Modeling for the Deeper
Understanding of Human Cancers” in Frontiers in Bioengineering and Biotechnology, and Frontiers in
Genetics aims to provide an international forum for:

1) bringing together the greatest research efforts in cancer-specific molecular/network signature
identification by integrating multi-omics/multi-level data;

2) exploring future-generation interesting and practical biomedical applications in AI, machine
learning, big data sciences, knowledge-based system, etc., to provide novel ideas and solutions in
mathematical modeling for tumor growth, drug resistance, and targeting effect prediction;

3) addressing the real-world challenges in the fields of AI-based patient diagnosis or disease
progression prediction by utilizing modern machine learning or statistical strategies, and
produce a more reliable and promising application environment to develop those
technologies.
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Submission for this special issue started from May 2020 and
closed in Oct 2020. In nearly one and half years, we received in
total 36 paper submissions. All submitted manuscripts had gone
through at least two rounds of revision with reviewers in the
related fields, including bioinformatics, computational biology,
machine learning, and clinical study, etc.The final acceptance rate
is 50% with 18 accepted papers in this special issue. The
summaries of these papers are outlined below.

1) New bioinformatic approaches to Identify keymolecular/network
signatures for precision diagnosis or treatment of cancers

In the article entitled “Identification of signatures of prognosis
prediction for melanoma using a hypoxia score” by Shou et al. The
authors developed a computational method to identify the gene
signatures of melanoma in hypoxic condition for prognosis
prediction.

In the article entitled “Identifying hypoxia characteristics to
stratify prognosis and assess the tumor immune microenvironment
in renal cell carcinoma” by Zhang et al. The authors established a
hypoxia-related risk model to predict the prognosis of patients.

In the article entitled “Prediction of Radiosensitivity in Head
and Neck Squamous Cell Carcinoma Based on Multiple Omics
Data” by Liu et al. The authors identified 12-gene signature based
on multiple omics data achieved the best ability for predicting
radiosensitivity in Head and Neck Squamous Cell.

In the article entitled “An Effective Graph Clustering
Method to Identify Cancer Driver Modules” by Zhang et al.
The authors proposed a graph clustering method, called
“MCLCluster”, to identity cancer driver modules that drive
cancer progression.

In the article entitled “Exploring the differential expression and
prognostic significance of the COL11A1 gene in human colorectal
carcinoma: an integrated bioinformatics approach” by Patra et al.
The authors developed an integrated bioinformatics approach to
reveal the COL11A1 gene as a prognostic biomarker in colorectal
carcinoma.

In the article entitled “MicroRNA-126 Modulates Palmitate-
induced Migration in HUVECs by Downregulating Myosin Light
Chain Kinase via the ERK/MAPK Pathway” by Zhu et al. The
authors evaluated the effects of miR-126 on the cell migration and
uncovered the underlying mechanism in HUVECs treated with
palmitate.

In the article entitled “Integrated analysis of DEAD-box helicase
56: a potential oncogene in osteosarcoma” by Zhu et al. The authors
set up a novel integrated analysis protocol and found that DDX56
is a potential therapeutic target for the treatment of osteosarcoma.

In the article entitled “Amachine learning approach for tracing
tumor original sites with gene expression profiles” by Liang et al.
The authors developed a machine learning approach by
integrating random forest and Naive Bayesian, to predict the
primary origin sites of tumors.

In the article entitled “A deep learning framework to predict
tumor tissue-of-origin based on copy number variation” by Liang
et al. The authors proposed a deep learning framework composed
of an autoencoder (AE) and a convolution neural network (CNN)
to predict the primary origin sites of tumors.

In the article entitled “TOOme: a novel computational
framework to infer cancer tissue-of-origin by integrating both
gene mutation and expression” by He et al. The authors
integrated somatic mutation and gene expressions t infer the
primary original sites of tumor and obtained a great accuracy.

2) New studies of clinical informatics for speeding up the
development of cancer diagnosis

In the article entitled “Diagnosis of cervical cancer with parametrial
invasion on whole-tumor dynamic contrast-enhanced magnetic
resonance imaging combined with whole-lesion texture analysis
based on T2-weighted images” by Li et al. The authors integrated
DCE-MRI images and texture analysis for diagnosis cervical cancer.

In the article entitled “Predictive value of the texture analysis of
enhanced computed tomographic images for preoperative
pancreatic carcinoma differentiation” by Zhang et al. The
authors extracted 396 features from patient CT images and
selected the optimal feature subset to predict the pathological
degree of differentiation of pancreatic carcinoma.

In the article entitled “RA-UNet: A hybrid deep attention-
aware network to extract liver and tumor in CT scans” by Jin et al.
The authors developed a 3D network model, RA-UNet, to
precisely extract the liver region and segment tumors from the
liver. Testing on public datasets show that the proposed
architecture obtains competitive results.

In the article entitled “Classification of Infected Necrotizing
Pancreatitis for Surgery within or beyond Four Weeks Using
Machine Learning” by Lan et al. The authors applied machine
learning models to predict the optimal timing of surgical
intervention and identified the key factors associated with
surgical timing for infected necrotizing pancreatitis.

In the article entitled “Prediction of Proximal Junctional
Kyphosis after Posterior Scoliosis Surgery with Machine
Learning in the Lenke 5 Adolescent Idiopathic Scoliosis Patient”
by Peng et al. The authors developed a machine learning model
for proximal junctional kyphosis (PJK) prognostication in Lenke
5 adolescent idiopathic scoliosis (AIS) patients undergoing long
posterior instrumentation and fusion surgery.

In the article entitled “A New Method Based on CEEMD
Combined with Iterative Feature Reduction for Aided Diagnosis
of Epileptic EEG” by Peng et al. The authors proposed a
computational method based on complementary ensemble
empirical mode decomposition (CEEMD) combined with
iterative feature reduction for aided diagnosis of epileptic EEG.

3) New strategies for optimizing the data preprocessing and
quality control

In the article entitled “Assessing the impact of data preprocessing
on analyzing next generation sequencing data” by He et al. The
authors compared commonly used data preprocessing software
and found differences in the detection of hotspot mutations and
HLA typing. They also explained the impact of data preprocessing
steps on downstream data analysis results.

In the article entitled “RF-PCA: A New Solution for Rapid
Identification of Breast Cancer Categorical Data Based on Attribute
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Selection and Feature Extraction” byBian et al. The authors developed
a hybridmodel RF-PCA, which significantly reduce the time required
for the classification, but also improved the accuracy.

The guest editors would like to thank all authors submitting
their valuable works to this special section of Frontiers in
Bioengineering and Biotechnology, Frontiers in Genetics, as
well as all peer-reviewers for their great effort reviewing the
submitted articles, providing constructive comments and
suggestions and assisting the editors reaching the final
decision. Special thanks will be sent to the editor-in-chief
(EIC), Ranieri Cancedda and José AG Agúndez, for their
precious time and valuable instructions that help us prepare
and finalize this special issue.
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Identifying the molecular modules that drive cancer progression can greatly deepen

the understanding of cancer mechanisms and provide useful information for targeted

therapies. Most methods currently addressing this issue primarily use mutual exclusivity

without making full use of the extra layer of module property. In this paper, we propose

MCLCluster to identity cancer driver modules, which use somatic mutation data,

Cancer Cell Fraction (CCF) data, gene functional interaction network and protein-protein

interaction (PPI) network to derive the module property on mutual exclusivity, connectivity

in PPI network and functionally similarity of genes. We have taken three effective

measures to ensure the effectiveness of our algorithm. First, we use CCF data to

choose stronger signals and more confident mutations. Second, the weighted gene

functional interaction network is used to quantify the gene functional similarity in PPI.

The third, graph clustering method based on Markov is exploited to extract the candidate

module. MCLCluster is tested in the two TCGA datasets (GBM and BRCA), and identifies

several well-known oncogenes driver modules and some modules with functionally

associated driver genes. Besides, we compare it with Multi-Dendrix, FSME Cluster

and RME in simulated dataset with background noise and passenger rate, MCLCluster

outperforming all of these methods.

Keywords: driver modules, mutual exclusivity, connectivity, functionally similarity, Markov clustering

INTRODUCTION

Cancer research has shown that gene mutation can disrupt specific cellular pathways that drive
cancer development (Weinstein et al., 2013). Recently, the rapid development of next-generation
sequencing technologies has increased the generation and availability of high-resolution data
related to cancer, providing opportunities for the study of cancer genomes (Wood et al., 2007;
Cancer Genome Atlas Research, 2008; Tomczak et al., 2015; Zhao et al., 2019). The key task
of cancer genomes research is to identify the molecular mutations or drivers. Functionally
related driver mutations in the genome, also known as driver modules or pathways, activate the
mechanisms by which cancer occurs, triggering cancer, driving cancer progression and giving
cancer cells a selective advantage.
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Some computational methods and mathematical models have
been developed to detect driver gene sets, pathways and modules
by using large-scale sequencing data (Hou et al., 2016; Zheng
et al., 2016; Yang et al., 2017; Xi et al., 2018; Ahmed et al.,
2019; Deng et al., 2019; Zhang and Wang, 2019a; Pelegrina
et al., 2020). Existing research show that the members of cancer
driver modules often exhibit specific mutation patterns in cancer
samples, the most significant characteristic is mutual exclusivity
(mutex) which means once one member mutates, the tumor will
gain a significant selection advantage, while later mutations in
other members will not give the tumor a selection advantage.
Most current methods use only mutex to derive the driver
pathway or modules, the other properties of the module are
not fully considered, such as functionally similarity of members
within a module.

Recently, two types of methods for identifying driver modules
or gene sets have been proposed: De novo and knowledge-
based methods. The De novo methods usually exploit two
characteristics from somatic mutation data: high coverage and
mutex (Dees et al., 2012; Vandin et al., 2012; Zhao et al., 2012;
Babaei et al., 2013; Leiserson et al., 2013; Paull et al., 2013; Jia
et al., 2014; Deng et al., 2019; Zhang and Wang, 2019a,b; Dees
et al., 2012; Vandin et al., 2012; Zhao et al., 2012; Babaei et al.,
2013; Leiserson et al., 2013; Paull et al., 2013; Jia et al., 2014; Deng
et al., 2019; Zhang and Wang, 2019a,b). High coverage means
that the driver modules or driver pathway covers a large number
of samples. Mutex represents that one of driver gene mutations
in a pathway are sufficient to interfere with the pathway. For
example, Dendrix (Vandin et al., 2012) identifies driver pathways
with high coverage and mutex by transforming the problem into
a maximum exclusive sub-matrix. MDPFinder (Wu et al., 2015),
Multi-dendrix (Leiserson et al., 2013), ComMDP, and SpeMDP
(Zhang and Zhang, 2016) figure out the maximum exclusion
sub-matrix problem by utilizing the integer linear programming,
focus on identifying mutex gene sets. On the other hand, the
knowledge-based approaches, in addition to somatic mutation
data, other network- and functional phenotype-based data are
combined to detect driver pathway or modules (Hua et al., 2013;
Babur et al., 2015; Kim et al., 2015; Leiserson et al., 2015; Nambara
et al., 2015; Wang et al., 2015; Reyna et al., 2018; La Vecchia and
Sebastian, 2020). These approaches can be subdivided according
to the optimization objectives in the computational problem,
and they are used to define cancer driver modules identification
problems. In the methods of Hotnet (Network, 2012), Hotnet2
(Leiserson et al., 2014), Hierarchical Hotnet (Reyna et al., 2018),
thermal diffusion is a common feature. Diffusion values are used
to extract modules with high connectivity, which are defined by
graph connectivity (usually strong connectivity). Other methods,
such as MEMo (Ciriello et al., 2012), RME (Leiserson et al.,
2015)and FSME Cluster (Liu et al., 2017), use the interaction
network and function relation graph to derive the largest group
in the similarity graph, and derive the group with largest mutex.
Babur et al. (Babur et al., 2015) proposed a seed growth-based
method in the network, which uses TCGA data to identify
pan-cancer modules, and the method determines the growth
strategy based on mutex scores. Dao et al. (Dao et al., 2017)
proposed an ILP method, which combined the definition of

interaction density and mutex in the module as the optimization
target. MEMCover (Kim et al., 2015) and MEXCOwalk (Ahmed
et al., 2019) combined mutation data with interaction data
to detect mutually exclusive mutant genomes in the same or
different tissues.

In this work, we get inspired by these existed methods
and present a novel knowledge-based method to identify
cancer driver modules (MCLCluster), which combines mutex,
functional similarity and connectivity in PPI network, multiple
data type is used. Before we compute the mutex, the Cancer
Cell Fraction (CCF) is aided to select stronger signals and
more confident mutations, then the weighted gene functional
interaction network is used to quantify the gene functional
similarity in PPI, exploit graph clustering method based on
Markov to extract the candidate module. The similarity measure
between a pair of genes is defined as PPI network edge
weight through taking into account functional similarity and
mutex. Cluster filter and permutation test is used to test which
cluster to be driver modules. We compare it with those of
three representative approaches [Multi-Dendrix (Leiserson et al.,
2013), FSME Cluster (Liu et al., 2017), and RME (Leiserson
et al., 2015)] on simulated dataset with background noise,
MCLCluster outperform all of these methods. Unlike most of
presented approaches to discover driver modules with mutually
exclusive between all gene pairs, MCLCluster does not necessarily
identify complete exclusivity gene pair, but uses other functional
similarity information to complement interaction data for a
better identification of modules.

METHODS

The identification of the cancer driver modules based on graph
clustering (MCLCluster) is introduced in detail. The schematic
flowchart is shown in Figure 1.

Datasets
GBM and BRCA datasets which including CNVs and SNVs
mutational data are used for testing, which are downloaded from
cBioPortal (Cerami et al., 2012). The GBM dataset contains 550
samples, 1,376 mutant genes, and the BRCA dataset contains
1078 samples, and 1463 mutant genes. We combine non-binary
data (CCF) to provide more information and prioritize more
important mutations (ie, earlier mutations with larger CCF
values). The CCF value indicates the proportion of cancer cells
in the mutant sample. CCF data is extracted from read count
data (Roth et al., 2014). PPI network are derived from Multinet
(Khurana et al., 2013), which contains 109599 interactions
between 14445 genes.

In order to verify the reliability, we produce various
simulation data with random passenger rate and background
noise, and the execution of the entire simulation process use
the algorithm in RME. MCLCluster is compared with Multi-
Dendrix, FSME Cluster and RME in simulation data. Each
simulation datasets contains 500 patients and 200 mutant genes.
Mutation noise is achieved by converting a value with opposite
values (0 for 1 or 1 for 0) in different probability ranges of 0.05 to

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 2 April 2020 | Volume 8 | Article 2719

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Zhang et al. Identify Cancer Driver Modules

FIGURE 1 | The overview of MCLCluster. (A) Integrate CCF data to choose stronger signals and more confident mutations, and compute the mutex of each gene

pairs. (B) The weighted gene functional interaction network is used to quantify the gene functional similarity in PPI. (C) Compute total similarity as edge weight, then

execute Markov clustering to extract candidate module.

0.11. The remaining genes are considered to be passenger genes
and the probability of their mutation uses empirical values.

Similarity Measure
In order to consider the module property on mutex, functional
similarity and connectivity in the PPI network, and to facilitate
subsequent graph clustering, we define the edge weights of the
PPI network as the product of mutex and functional similarity
between gene pair.

Functional Similarity
Actually, most of the existing methods widely use cosine
coefficient to measure the functional similarity between entities
in PPI network, which only consider the network structure and
it is too simple to as a functional similarity measurement. So we
develop a new metric to measure the entities similarity in PPI
with the help of theweighted gene functional interaction network
(wgfin), which is downloaded from HumanNet. We use the
correlated log-likelihood scores (LS) as a metric of the interaction
strength between any two genes in wgfin. LSN(gi, gj) represents
the normalized value between gene i and gene j when LS(gi, gj) is
normalized using min-max normalization, the detail is:

LSN
(

gi,gj
)

=
LS

(

gi,gj
)

− LSmin

LSmax − LSmin
(1)

Here LSmin denotes the minimal LS and LSmax denotes the
maximal LS in wgfin. As a result, the similarity S

(

gi, gj
)

between
any two genes that have edges in wgfin is calculated:

S
(

gi,gj
)

=







1, gi=gj
0, e(gi,gj)/∈ HumanNet

LSN
(

gi,gj
)

, (gi,gj)∈ HumanNet

(2)

Here e
(

gi, gj
)

represents the edge between gene i and gene
j. Then, the similarity of gene gn and gene set G =
{

gn1, gn2, . . . , gnp
}

is calculated as follows:

S
(

gn,G
)

=max1≤i≤p(S
(

gn,gni
)

) (3)

At last, according to the BMA (Best-Match Average) method
(Wang et al., 2007; Xiao et al., 2018), the functional similarity of
pgi and pgj in the PPI network is defined. The detail is as follows:

SPij =

∑

g∈Gi
S(g,Gj)+

∑

g∈Gj
S(g,Gi)

|Gi| + |Gj|
(4)

Here Gi and Gj respectively denote the a set of gene connected to
pgi and pgj, and |G| denotes the number of genes in G.
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Mutual Exclusivity (Mutex)
To choose stronger signals and more confident mutations, we
combine the CCF matrix to process somatic mutation. For
each gene, we perform two operations, the one is to delete the
mutation with the lowest CCF value, and the other is to delete one
mutation when the CCF difference between the two mutations
is less than a certain parameter ε (obtain through multiple
experiments, usually small than coverage). In this paper, overall
consider weighing algorithm efficiency and number of modules,
we set the parameter ε = 0.1. The somatic mutation matrix A
is filtered by CCF matrix, then it will be used to compute mutex,
and the detail of each entry is listed as:

Aab =







1, if sample a mutated in a gene b and it CCF

value meet condition

0, otherwise

(5)

In general, mutations between member genes in a driver module
appear to be mutually exclusive. The previous work (Vandin
et al., 2011) proposed that a pathway or module is a group of
genes characterized by high coverage and low coverage overlap.
Coverage represents the patient proportion with at least one gene
mutation in a group of gene, and coverage overlap is equal to the
patient proportion withmore than two genemutations in a group
of gene. The mutex is expressed as:

ME (se) = C (se) − O (se) (6)

Where ME denotes mutex, se denotes the genes sets, C denotes
coverage and O denotes coverage overlap. Here, we calculate the
pairwise and group mutex. Pairwise mutex genes help identify
all gene pairs which are may take part in the same module, and
the group mutex is applied to compute the mutex of all genes in
one module. An example in Figure 1A shows the computation of
coverage, coverage overlap and mutex.

Then combine these two properties (functional similarity and
mutex) to calculate the total similarity as the edge weight of the
PPI network:

ws
(

pg i,pg j

)

=ME
(

pgi,pg j

)

× SPpgipgj
(7)

Candidate Module Extraction
Here, we apply Markov clustering (MCL) to identify clusters in
the PPI network appling the total similarity matrix ws derived by
Equation (7). Markov clustering is an effective biological network
clustering algorithm, which is widely used for the identification of
functional modules (Brohee and van Helden, 2006; Vlasblom and
Wodak, 2009; Shih and Parthasarathy, 2012). After executing the
clustering, closely functional related genes will be grouped into
the same cliques, which are as candidate modules and will be used
for follow-up modules refinement.

The GR = (Np, ǫp) denotes the undirected graph in the PPI
network, in whichNp represents node sets and ǫp represents edge
set. pgi ∈ Np represents the i-th gene, and ws

(

pgi, pgj
)

is the edge
weight of

(

pgi, pgj
)

, ws
(

pgi, pgj
)

> 0 indicate that pgi interact
with pgj in the PPI network, ws

(

pgi, pgj
)

= 0 indicate they are

not interaction. P ∈ R
|Np|×|Np| denotes GR′s adjacency matrix,

the initialization of P is:

P
(

i,j
)

=











ws
(

pgi,pg j

)

if (pgi,pg j)∈ǫp

ws
(

pgi,pgk
)

if (pgi=pg j)

0 otherwise

, k ∈[1,
∣

∣Np

∣

∣ ] (8)

The matrix p can holds the transition probabilities of the Markov
chain defined on GR. p

(

i, j
)

denotes the transition probability
from pgi to pgj. Normalize the matrix P as follow:

P̃
(

i,j
)

=
P(i,j)

∑|Np|

k=1 p(k,j)
(9)

Markov clustering contains two processes, which are known
as ‘Expand’ and ‘Inflate’. When execute the operation process,
the ‘Expand’ and ‘Inflate’ respectively are iteratively assigned to
the stochastic matrix. The calculation formula of the Expand
operation is:

Pexp = P̃∗P̃ (10)

The inflation parameter rp is used in Inflate process to raise
each entry in the matrix p̃. The Inflate process can expand the
unevenness of each column. That is to say, flows increase where
they are already powerful and decrease when they are weak. The
Inflate process is expressed like Equation (9):

Pinf
(

i,j
)

=
P̃(i,j)

rp

∑|Np|

k=1 P̃(k,j)
rp

(11)

Markov clustering starts from the matrix P, and iteratively uses
the Expand and Inflate until convergence. After convergence,
there is one non-zero value in each column of the final matrix,
and those non-zero value in the same row form a node cluster,
we can get them as the candidate modules.

Modules Refinement and Mutex Significant
Test
Not all of the clusters (candidate driver modules) obtained by
graph clustering can be used as driver modules, nor are all genes
in a population members of the module, because it is difficult to
obtain the exact size of the module number. Therefore, perform
the permutation test on each cluster to evaluate the importance
of mutex. However, testing only on the largest cluster may result
in the loss of potential subgroups which may pass the test. In
order to solve this problem, (Ciriello et al., 2012) proposed the
following steps to filter the genes and compute the mutex of the
subgroups while limiting the subgroup size. Given a candidate
module C containing the r gene, if a significant p value is
observed, we will retain the module C, and not consider compute
the mutex of all its subgroups. Or else, we list all subgroups
of r-1 size, for each member belongs to the C, and executes a
permutation test on each subgroup to get a p value. It repeats
recursively until one of these two conditions is met (Ciriello et al.,
2012): a subgroup is significantly mutually exclusive or r = 3
(min_module_size is 3). After testing, only the cluster that gets
the most significant p value is reserved as the driver module.
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TABLE 1 | Results of GBM.

No Driver modules Gene number ME (Exclusivity) P-value ws

1 CDKN2B CDK4 RB1 ERBB2 4 76% 0 0.834

2 TP53 MDM2 MDM4 3 82% 0.001 0.766

3 PTEN PIK3R1 NF1 EGFR 4 78% 0.001 0.741

ws is the average value of ws (The sum of the similarities between the pairs divided by the gene number), and ws is the total similarity calculated by Equation (7).

Evaluating Performance
To compare the performance, F1 score is used for evaluating the
power of the identification module. F1 score expressed the trade-
off between accuracy (abbreviated to Pr) and recall (abbreviated
to Re), which can be computed using true positive (abbreviated
to TP), false positive (abbreviated to FP), and false negative
(abbreviated to FN). The details are:

Pr =
TP

(TP+FP)
, Re=

TP

(TP+FN)
, F1=

2 • Pr • Re

Pr+Re
(12)

RESULTS

GBM
We apply MCLCluster to GBM dataset, 3 important driver
modules are identified, the detailed information of them are listed
in Table 1. The interaction among genes within GBM modules
are list in Figure 2. All the genes in these 3 modules are well-
known in the GBM research, they aremembers of the 3 important
signaling pathways and their mutation samples are more than
five percent.

The first module contains the mutation of ERBB2, CDK4,
and CDKN2B, RB1. The mutation of these four genes cover
78% of the samples, and average functional similarity is 0.834,
indicate that the genes in module have similar function. The p-
value calculated by the permutation test is equal to 0, indicate
that the module has significant mutex. Three of these genes
(except ERBB2) are from the RB signaling pathway that related
to G1/S progression. CDKN2B inhibits CDK4, CDK4 inhibits
RB1. CDKN2B and RB1 are core members of the cell cycle
and cell cycle mitosis, the over expression of ERBB2 made the
proliferation activation, and CDK4 has a strong interaction as a
negative regulator of normal cell proliferation (Porta-Pardo et al.,
2015; Tang et al., 2016).

The second module includes the mutation of MDM2, MDM4
and TP53. Most of the MDM2 mutation is amplified in the
sample. TP53 is an important tumor suppressor gene which is
the most common mutant gene in GBM samples. The module
is mutated in 85% of the samples, the mutex of the module is
82%, and average functional similarity is 0.766, indicate that the
genes in module have similar function, the p-value calculated by
the permutation test is equal to 0.001, indicate that the module
has significant mutex. All the members of this module are well-
known members of the p53 signaling pathway (Kim et al., 2015),
which is a key and frequently mutated pathway in GBM related to
aging and apoptosis (Ciriello et al., 2012). This module contains
3 mutually exclusive gene pairs (all of which are significant), and
no gene pair mutates simultaneously (Babur et al., 2015).

The third module consists of deletion of PTEN, the mutation
of PIK3R1, NF1, and EGFR. Deletions in PTEN have been linked
to the proneural subtype of GBM. Mutations in EGFR and NF1
related to the classical GBM subtype, in addition to the PIK3R1
appearing in the GBM pathway of (Greenman et al., 2007), it has
been previously reported to be related to many human cancers
(Vandin et al., 2012). The module is mutated in 82% of the
samples, the mutex of the module is 78%, and average functional
similarity is 0.741, indicate that the genes in module have similar
function, the p-value calculated by the permutation test is equal
to 0.001, indicate that the module has significant mutex. All the
members of this module are core members of RTK/RAS/PI(3)K
signaling pathway.

BRCA
We apply MCLCluster to BRCA dataset, 4 driver modules are
identified, the detailed information of them are listed in Table 2.
The interaction among genes within BRCA modules are list
in Figure 3. Most of the genes in these 4 modules are core
members of the 4 signaling pathways (p53 signaling, PI(3)K/AKT
signaling, ERBB signaling pathway and RB signaling pathway).
They are well-known in the BRCA research and their mutation
samples are more than five percent. Compared with GBM, these
4 modules cover a smaller percentage of samples, indicate that
the mutation heterogeneity or disease heterogeneity of the breast
cancer dataset is greater.

The first module contains the mutation of PIK3CA, PIK3R1,
AKT1, PTEN. The mutation of these four genes cover 75%
samples, and average functional similarity is 0.824, indicate that
the genes in module have similar function. The p-value calculated
by the permutation test is equal to 0, suggesting that the module
has significant mutex. All genes in this module are core members
of PI(3)K/AKT signaling pathway. AKT1 interact with PTEN,
PIK3R1, and PIK3CA, PTEN inhibits PIK3CA and PIK3R1 (Wu
et al., 2015; Mandal and Ma, 2016).

The second module includes TRPS1, ZNF217 and FBXO31
gene mutations. The mutation of these 3 genes cover 89%
samples, and average functional similarity is 0.811, indicate that
the genes inmodule have similar function. The p-value calculated
by the permutation test is equal to 0, suggesting that the module
has significant mutex Two third of genes are members of the
ERBB signaling pathway, which is an important breast cancer-
related pathway. TRPS1 is a common oncogene that plays an
important role in controlling cell cycle during breast cancer (Wu
et al., 2014). ZNF217 is proved to be a central role in cancer
development, and FBXO31 is proved to be a candidate tumor
suppressor gene, by generating Skp Cullin F-box containing SCF
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FIGURE 2 | List 3 driver module and the interaction among genes in each driver module in the GBM data. Node color shows the role of GBM in different signal

pathways.

TABLE 2 | Results of BRCA.

No Driver modules Gene number ME (Exclusivity) P-value ws

1 PTEN PIK3CA PIK3R1 AKT1 4 72% 0 0.824

2 TRPS1 ZNF217 FBXO31 3 74% 0 0.811

3 TP53 CDH1 MYC 3 80% 0.001 0.721

4 FBXO31 RB1 CCDN1 3 70% 0.001 0.714

ws is the average value of ws (The sum of the similarities between the pairs divided by the gene number), and ws is the total similarity computed by Equation (7).

complex, it causes cell senescence and has consistent tumor
suppressor attributes (Kumar et al., 2005). FBXO31 inhibits
TRPS1 and ZNF217.

The third module contains mutations in TP53, CDH1,
MYC. The mutation of these 3 genes cover 82% samples, and
average functional similarity is 0.721, indicate that the genes

in module have similar function. The p-value calculated by the
permutation test is equal to 0.001, suggesting that the module
has significant mutex. Two third of genes are core members
of the p53 signaling pathway. Loss or down-regulation of the
Ecadherin gene CDH1 at 16q22.1 is associated with breast cancer
proliferation and invasion, MYC is an effective tumorigenic
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FIGURE 3 | List 4 driver module and the interaction among genes in each driver module in the BRCA data. Node color shows the important role of BRCA in different

signal pathways.

activator, a transcription factor, and a key regulator of cell growth,
differentiation, and apoptosis (Amgalan and Lee, 2015; Nangalia
et al., 2015).

The forth module contains mutations in CCND1, RB1 and
CDK4. The mutation of these three genes cover 73% samples,
and average functional similarity is 0.714, indicate that the
genes in module have similar function. The p-value calculated
by the permutation test is equal to 0.001, suggesting that the
module has significant mutex. All of genes in this module

are important members of the RB signaling pathway. CDK4
interacts with CCND1, CCND1 inhibits RB1. CCND1 and
RB1 encode interact proteins that have an important effect in
cell cycle (Placke et al., 2014). CCND1 encodes the cyclind1
protein, it affect the retinoblastoma protein which encoded
through overphosphorylation by RB1 (Rozenchan et al., 2014).
Hyperphosphorylation of RB inactivates its role as a tumor
suppressor gene, so mutations targeting CCND1 or RB1 are of
great significance for tumor proliferation (Salgia et al., 2017).
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FIGURE 4 | The F1 score of MCLCluster, Multi-Dendrix, FSME Cluster and RME in simulation data for 1 module. (A) When noise = 0.05, the F1 score of the four

methods with different passenger rate. (B) When noise = 0.07, the F1 score of the four methods with different passenger rate. (C) When noise = 0.09, the F1 score of

the four methods with different passenger rate. (D) When noise = 0.11, the F1 score of the four methods with different passenger rate.

FIGURE 5 | The F1 score of MCLCluster, Multi-Dendrix, FSME Cluster and RME in simulation data for multiply modules.

Simulated Data
Identifying Top One Module
To comparing the four methods (MCLCluster, Multi-Dendrix,
FSME Cluster and RME), we generated simulation samples
considering two parameters (passenger rate and background
noise). The Multi-Dendrix need to input the module size, and

it is difficult to obtain, so considering fairness, Multi-Dendrix is
applied three times for each data set, the module sizes are set
to three, four, and five, respectively. The remaining parameter
used in other three approaches is set to the default value. By
default, MCLCluster will identify multiple modules, the module
with the highest ws and the lowest p-value will be selected. It’s
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worth noting that in simulation experiment, we cannot consider
the CCF value.

As shown in Figure 4, when the noise is 0.05, the fourmethods
all achieve high F1 score under different passenger rates. Among
them, MCLCluster received F1 scores above 0.94. In general,
when the noise is greater than 0.07, the F1 scores decrease with
the increase of passenger rate in Multi-Dendrix and RME. In
addition, when noise and passenger rates all greater than or equal
to 0.09, the F1 scores of RME are all less than 0.6. MCLCluster
and FSME Cluster also faces a decline in F1 score, when the
noise is greater than 0.09. MCLCluster have better performance
than the others in all cases, which shows that MCLCluster have
a strong ability to detect mutually exclusive drive modules.
Compared with the other three methods, under different noise
environments, as the passenger rate increases, the MCLCluster
shows good stability.

Identifying Multiply Modules
We identify one to four modules to compare MCLCluster, Multi-
Dendrix, FSME Cluster and RME. The passenger rate is set to
0.05 and 0.10, and the module noise is set to 0.10. We can
see from Figure 5, the F1 scores of the four methods have a
slight downward trend. When the passenger rate is 0.05, the
RME showed a high F1 score relative to Multi-Dendrix in most
cases, and when the passenger mutation rate increased to 0.10,
Multi-Dendrix performed better than RME. TheMCLCluster can
outperform all other methods in any cases, both the increased
module numbers and the two different passenger rates.

CONCLUSIONS AND DISCUSSIONS

We develop a new approach named MCLCluster, which
uses somatic mutation data, Cancer Cell Fraction (CCF)
data, gene functional interaction network and protein-protein
interaction (PPI) network to detect multiple driver modules
that simultaneously display functional similarity and mutation
mutex in cancer. The reliability of MCLCluster is verified
using GBM and BRCA cancer datasets and simulation samples.
Taking GBM as an example, MCLCluster successfully identified
3 driver modules, which include some important and common
driver genes, like CDKN2B, CDK4, RB1, ERBB2, TP53, EGFR
etc., which provided important verification for this method. In
the simulation dataset, the MCLCluster can maintain higher
performance than Multi-Dendrix, FSME Cluster and RME in F1
scores. With the increase of noise, passenger rate and the module

numbers in the simulation data, our method keeps a stable and
sufficiently high F1 score, indicate that the MCLCluster can
accurately identify modules in complex cases. BRCA and GBM
are used as examples to prove the effectiveness of themethod, and
actually it is universal and can be applied to other type of interest
cancer. In this paper, we use a general method to preprocess
the real data set and construct the simulated data set, which is
a feasible method verified by a lot of experiments. In addition,
some parts of our method are general and can be used to solve
other bioinformatics problems, such as the similarity measure
method, which can be used to identify cancer-related microRNA
modules based on microRNA-disease associations.

However, like previous researches of Multi-Dendrix, FSME
Cluster and RME, MCLCluster is also designed for large
sample sets to achieve statistical significance. Therefore, applying
MCLCluster to a small number of samples may have some
limitations. Some extensions can be used to further improve
the MCLCluster method, for example, we can integrate the
methylation andmRNA expression data, and use well-researched
pathways reported in many literatures as a priori information. As
the genome sequencing dataset in TCGA expands to more than
20 types of cancer, MCLCluster will be an important approach to
identify new driver modules in different cancer.
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Metastatic cancers require further diagnosis to determine their primary tumor sites.
However, the tissue-of-origin for around 5% tumors could not be identified by routine
medical diagnosis according to a statistics in the United States. With the development
of machine learning techniques and the accumulation of big cancer data from The
Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO), it is now feasible
to predict cancer tissue-of-origin by computational tools. Metastatic tumor inherits
characteristics from its tissue-of-origin, and both gene expression profile and somatic
mutation have tissue specificity. Thus, we developed a computational framework to
infer tumor tissue-of-origin by integrating both gene mutation and expression (TOOme).
Specifically, we first perform feature selection on both gene expressions and mutations
by a random forest method. The selected features are then used to build up a multi-label
classification model to infer cancer tissue-of-origin. We adopt a few popular multiple-
label classification methods, which are compared by the 10-fold cross validation
process. We applied TOOme to the TCGA data containing 7,008 non-metastatic
samples across 20 solid tumors. Seventy four genes by gene expression profile
and six genes by gene mutation are selected by the random forest process, which
can be divided into two categories: (1) cancer type specific genes and (2) those
expressed or mutated in several cancers with different levels of expression or mutation
rates. Function analysis indicates that the selected genes are significantly enriched
in gland development, urogenital system development, hormone metabolic process,
thyroid hormone generation prostate hormone generation and so on. According to the
multiple-label classification method, random forest performs the best with a 10-fold
cross-validation prediction accuracy of 96%. We also use the 19 metastatic samples
from TCGA and 256 cancer samples downloaded from GEO as independent testing
data, for which TOOme achieves a prediction accuracy of 89%. The cross-validation
validation accuracy is better than those using gene expression (i.e., 95%) and gene
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mutation (53%) alone. In conclusion, TOOme provides a quick yet accurate alternative
to traditional medical methods in inferring cancer tissue-of-origin. In addition, the
methods combining somatic mutation and gene expressions outperform those using
gene expression or mutation alone.

Keywords: tissue-of-origin, somatic mutation, gene expression, random forest, cross-validation

INTRODUCTION

Metastatic cancer is a common clinical challenge for limited
evidence to determine its primary origin. Patients with carcinoma
of unknown primary (CUP) account for about 5% of total cancer
patients (Shaw et al., 2007). CUP are usually heterogeneous, and
can lead to dilemmas in diagnosing and treatment since the
original tumor site is unknown (Rizwan and Zulfiqar, 2010).
Clinically, CUP patients are generally treated with non-selective
empirical chemotherapy, which usually leads to low survival rates
(Kurahashi et al., 2013). Thus, identifying cancer tissue-of-origin
(TOO) is critical in improving the treatment of cancer patients
and extending their surviving time (Hudis, 2007; Varadhachary
et al., 2008; Hyphantis et al., 2013).

There are several ancillary examinations in CUP
identification, among which immunohistochemistry (IHC)
is an important one. However, this method relies on the
experiences of pathologists and is labor-intensive. As a result,
it is inaccurate in most of the times (Huebner et al., 2007;
Voigt, 2008; Centeno et al., 2010; Kandalaft and Gown, 2015;
Janick et al., 2018). Positron emission tomography (PET) and
computed tomography (CT) are also commonly used in the
identification of CUP (Fencl et al., 2007; Kwee et al., 2010; Fu
et al., 2019). The detection rate of conventional radiological
imaging on primary carcinoma reach 20–27%, and that of PET
reach 24–40% (Ambrosini et al., 2006). The detection accuracy
of PET/CT is awfully low that it rarely brings help to identify
the primary origin. Obstacles in image technology cause much
difficulty of effective use of relative Carcinoma image to help
tracing cancer tissue origin.

Molecular profiling of tissue-specific genes is also being used
in CUP work-up. Quantities of large-scale profiles of different
tumors have been used for diagnose. Molecular profiling is as
well as or better than IHC, in terms of poorly differentiated
or undifferentiated tumors (Oien and Dennis, 2012). Therefore,
making use of molecular profiling has become a popular way for
diagnosis of unknown origin. Comprehensive molecular profiles
displayed in The Cancer Genome Atlas (TCGA) including copy
number variation, somatic mutation, gene expression, microRNA
expression, DNA methylation, and protein expression, are used
to identifying human tumor types (Li et al., 2017). By analysis
of tumor types from data of methylation and copy number
variation, tissue of origin and molecular classification can be
revealed (Hoadley et al., 2014). The methylation profile of
metastasis in a meningeal melanocytic tumor is similar to that
of primary tumor, and it is suggest that particular copy number
variations may be associated with metastatic behavior (Küsters-
Vandevelde et al., 2017). Methylation and copy number variation

are DNA-level molecular profiling, which brought great help to
identify tumor origins.

The copy number profile and gain or loss in specific
chromosome regions have been researched by hybridization
and cytogenetic-based methods (Baudis, 2007; Beroukhim
et al., 2007). An IDH1 somatic mutation in genomic profiling
was revealed to bring great benefit to the diagnosis of
cholangiocarcinoma and trace the primary origin in a malignancy
(Sheffield et al., 2016). Marquard et al. (2016) obtained
classification accuracy of 69% and 85% on 6 and 10 primary
sited with somatic mutation, respectively, based on PM and
CN classifier (classifiers with both point mutations and copy
number aberrations) with cross-validation. Mutation of tumor-
specific enrichment in certain genes, has been utilized to infer
tumor localization, and Dietlein and Eschner (2014) developed
a tool with mutation spectra to infer cancer origins with a
prediction specificity of 79% (Lawrence et al., 2014). As a DNA-
level molecular profiling, SNP, that is somatic mutation, can be
used as a very useful tool to infer the tissue of origins.

A lot of RNA-level gene expression profile have been explored
to identify the cancer tissue of origin (Erlander et al., 2004; Qu
et al., 2007; Gross-Goupil et al., 2012; Greco, 2013; Hainsworth
et al., 2013). Erlander et al. (2011) have demonstrated that the
gene expression value of samples detected in metastatic tumor
is similar to that in the original tumor under condition of CUP.
Centeno et al. (2010) developed a hybrid model by integrating
expression profiling and IHC for microRNA-based qRT-PCR
test on identification of cancer tissue origin, with 85% of the
cases correctly identified (Rosenwald et al., 2010). Bloom et al.
(2004) utilized artificial neural networks (ANNs) to predict the
unknown cancer tissue origin with mean accuracy of 83–88% in
different platforms.

Numerous researches have utilized molecular profiles, such as
copy number variation, somatic mutation, gene expression, and
so on for predicting cancer tissue origin. However, the accuracy
of prediction was not satisfying. Identifying cancer tissue origin
by combining somatic mutation and gene expression profiling
on DNA level and RNA level, respectively, is first proposed in
this study. Firstly, we obtained the data of somatic mutation
and gene expression profiling from International Cancer Genome
Consortium (ICGC) Database. Machine learning methods can
help to improve the performance on prediction of cancer tissue
origin. We aim to obtain better performance in predicting cancer
tissue origin, by the combination of somatic mutation and gene
expression profiling, based on random forest. Machine learning
algorithm, such as logistic regression can be used to select gene
(Kao et al., 2006). However, random forest algorithm (Sandri and
Zuccolotto, 2006) was chosen as the gene selection algorithm
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in this study due to its advantage, good robustness and easy to
use. Finally, we used random forest algorithm for classification of
cancers. Experiment results showed that higher accuracy can be
obtained by using the method proposed in this study.

MATERIALS AND METHODS

Gene Expression Data
Gene expression profile was downloaded from ICGC Database
version release-261. Each gene is named by Gene Symbol

1https://dcc.icgc.org/releases/release_26/

ID. The value of gene expression in each labeled sample is
normalized by TPM. After deduplication, samples were extracted
for combination with SNP samples.

Somatic Mutation Data
The somatic mutation data was downloaded from ICGC
Database version release-282. Each gene is named by Ensembl
Gene ID. For Gene Symbol ID is most widely used in paper,
the Ensembl Gene ID of gene name in somatic mutation data
was converted to Gene Symbol ID. The samples are deduplicated
according to information of ICGC-donor-ID, chromosome, and

2https://dcc.icgc.org/releases/release_28/

FIGURE 1 | The complete workflow of prediction on cancer tissue origin.
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locus in chromosome and gene-affected. Each sample was labeled
by its type of cancer.

Data Combination
The gene expression and somatic mutation data were merged
into one feature matrix. For labeled samples with gene expression
array data only involves in 21 cancer types, and samples
with Skin Cutaneous Melanoma (SKCM) were removed for
it contributes to the major metastasis cancers. The sample
with somatic mutation data whose label was not included in
these 20 cancer types was removed. Then, the shared sample
data was chosen, therefore the samples data after filtering is
obtained from 20 different cancer types. An M∗N matrix was
generated, where M and N represents the number of sample and
gene, respectively.

Gene Selection
Because gene sequencing and mutation detection are costly and
time consuming, a scale reduction of gene number is necessary.
There are many feature selection algorithms, like Lasso, PCA
(Malhi and Gao, 2005; Muthukrishnan and Rohini, 2016) and
etc. The Random forest (Breiman, 2001; Sandri and Zuccolotto,
2006) was a supervised learning algorithm, which is an ensemble
learning algorithm based on decision tree and was used to select
genes. Best performance was obtained by using 80 selected genes.
√

n genes were used in a tree, where n represents the number

TABLE 1 | Sample distribution of each cancer from ICGC database.

Available cancer types Abbreviation Samples

Amount Percentage

Bladder urothelial carcinoma BLCA 294 4.20%

Breast invasive carcinoma BRCA 970 13.84%

Cervical squamous cell carcinoma and
endocervical adenocarcinoma

CESC 241 3.44%

Colon adenocarcinoma COAD 390 5.57%

Glioblastoma multiforme GBM 148 2.11%

Head and neck squamous cell
carcinoma

HNSC 460 6.56%

Kidney renal clear cell carcinoma KIRC 345 4.92%

Kidney renal papillary cell carcinoma KIRP 216 3.08%

Acute myeloid leukemia LAML 121 1.73%

Brain lower grade glioma LGG 433 6.18%

Liver hepatocellular carcinoma LIHC 282 4.02%

Lung adenocarcinoma LUAD 475 6.78%

Lung squamous cell carcinoma LUSC 411 5.87%

Ovarian serous cystadenocarcinoma OV 185 2.64%

Pancreatic adenocarcinoma PAAD 134 1.91%

Prostate adenocarcinoma PRAD 374 5.34%

Rectum adenocarcinoma READ 137 1.95%

Stomach adenocarcinoma STAD 412 5.88%

Thyroid carcinoma THCA 486 6.93%

Uterine corpus endometrial carcinoma UCEC 494 7.05%

Total 7008 100%

of genes. At the process of splitting node, Gini index was used,
which is calculated by formula:

Gini(p) =

K∑
k=1

pk(1− pk) = 1−
K∑

k=1

pk
2 (1)

Where p represents the weight referring to frequencies of cancers
in a node, k represents the number of cancers and pk represents
the weight of the kth cancer. The variable importance measures of
ith gene in node m, that is the Gini index variation after splitting
of node m, is calculated by formula:

VIM(Gini)
im = GIm − GIl − GIr (2)

Where m is a node in M, which is a set of nodes, VIM(Gini)
im

represents variable importance measures of ith gene in node
m, the GIm represents the Gini index before splitting, GIl and
GIr represents the Gini index of two new node after splitting,
respectively. The importance of the ith gene, in the tth tree is
calculated by formula:

VIM(Gini)
ti =

∑
m∈M

VIM(Gini)
im (3)

Where VIM(Gini)
ti represents the importance of the ith gene in the

tth tree. If the set of trees is T, the importance of the ith gene in
all the tree is calculated by formula:

VIM(Gini)
i =

T∑
t=1

VIM(Gini)
ti (4)

TABLE 2 | Performance of classification of combination of somatic mutation and
gene expression by using 80 genes.

Cancer type Precision Recall F1-score Support Specificity

BLCA 0.8906 0.9354 0.9124 294.0000 0.9950

BRCA 0.9987 0.9947 0.9967 970.0000 0.9998

CESC 0.9148 0.8859 0.9001 241.0000 0.9971

COAD 0.7548 0.9644 0.8468 390.0000 0.9815

GBM 0.9940 1.0000 0.9970 148.0000 0.9999

HNSC 0.9916 1.0000 0.9958 460.0000 0.9994

KIRC 0.9850 0.9516 0.9680 345.0000 0.9992

KIRP 0.9344 0.9630 0.9485 216.0000 0.9979

LAML 1.0000 1.0000 1.0000 121.0000 1.0000

LGG 0.9926 0.9977 0.9952 433.0000 0.9995

LIHC 0.9925 0.9844 0.9884 282.0000 0.9997

LUAD 0.9358 0.9448 0.9403 475.0000 0.9953

LUSC 0.9408 0.9000 0.9199 411.0000 0.9965

OV 1.0000 0.9946 0.9973 185.0000 1.0000

PAAD 0.9378 0.9552 0.9464 134.0000 0.9988

PRAD 0.9973 1.0000 0.9987 374.0000 0.9998

READ 0.7569 0.1591 0.2627 137.0000 0.9990

STAD 0.9947 0.9976 0.9961 412.0000 0.9997

THCA 1.0000 0.9979 0.9990 486.0000 1.0000

UCEC 0.9673 0.9816 0.9744 494.0000 0.9975

Accuracy 0.9577 0.9577 0.9577 0.0000
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Where VIM(Gini)
i is the importance of the ith gene in all trees. We

sorted the importance scores of all genes, then the top H genes
were selected, where H is the variable number of genes that can
be set to find the best result.

Multi-Classifier Random Forest
The random forest is actually a special method of bagging that
using the decision tree as a model in bagging (Breiman, 2001;
Meyer et al., 2019). First, the bootstrap method is used to generate
m training sets, which is a set of samples. Then, each training set
is used to construct a tree.

√
n genes are used in a tree, where n

represents the number of selected genes. When splitting a node,
not all the genes are used to optimize the metric Gini index used
in this study, a part of genes is randomly extracted instead. An
optimal solution can be found among the extracted genes, and
applied to node splitting. Leaf node in the tree records which
gene is used to determine the cancer type, and each leaf node
represents the last judged cancer type. The predicted cancer type
is given by maximum votes from decision tree.

Statistical Analysis
The metric of precision, recall and F1 score were used to evaluate
the performance of the model. True-positive, false-positive, true-
negative and false-negative are abbreviated as TP, FP, TN, and FN,

respectively. Precision is calculated by (TP)/(TP + FP), which
indicates the ability of classifier to differentiate positive from
negative cases. Recall is calculated by (TP)/(TP + FN), which
indicates the ability of classifier to recognize all positive cases.
The F1 score is calculated by (2 ∗ recall ∗ precision)/(recall+
precision). Each individual cancer type is calculated by these
metrics, and the cohort metric adopt the mean report. The
entire cohort is calculated by accuracy, reported as (TP +
TN)/(total cases). Ten times 10-fold cross validation is used
to obtain the metric report, whose average is treated as
the result metric.

Gene Annotation
The functions annotation of specific gene set was given. Geno
ontology (Ye et al., 2006; Waardenberg et al., 2016) was used as
enrichment analysis database. Gene clustering and visualization
was realized by R package cluaterProfiler and gogadget (Yu et al.,
2012; Nota, 2016).

RESULTS

The Workflow of TOOme
The complete workflow of prediction on cancer tissue origin is
shown in Figure 1. The process can be split into three steps. At

FIGURE 2 | The classification accuracy of using somatic mutation, gene expression and combination of somatic mutation and gene expression, respectively.
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TABLE 3 | Prediction probabilities of each samples on each cancer.

Cancer 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

BLCA 0.0005 0.0015 0.0005 0 0.1825 0.162 0.0665 0.0155 0.002 0.001 0.034 0 0 0 0 0.0015 0.0005 0 0

BRCA 0.993 0.9675 0.9995 0.999 0.6375 0.1195 0.045 0.066 0.0015 0.0005 0.0085 0.001 0.0005 0 0 0 0 0 0

CESC 0.0005 0.004 0 0 0.047 0.101 0.8 0.086 0.0275 0.002 0.1115 0 0 0 0 0.0015 0 0 0.001

COAD 0 0.001 0 0.0005 0.005 0.01 0.008 0.002 0.7015 0.001 0.009 0 0 0 0 0.001 0 0 0

GBM 0 0 0 0 0.001 0.0035 0 0 0 0 0.001 0 0 0 0 0 0.0005 0 0

HNSC 0.0005 0 0 0 0.0065 0.011 0.0055 0.0015 0 0.993 0.754 0 0 0 0 0 0 0 0.001

KIRC 0 0 0 0 0.0015 0.0535 0.001 0.003 0.0005 0 0.001 0 0.0005 0 0 0.0015 0.001 0 0

KIRP 0 0 0 0 0.004 0.038 0.001 0.0045 0.0005 0 0 0 0 0 0 0.0005 0.0015 0 0

LAML 0 0.006 0 0 0.0155 0.0055 0 0.005 0.001 0 0.0005 0 0 0 0 0 0 0 0

LGG 0 0 0 0 0.0125 0.165 0.0055 0.01 0.0005 0.0005 0.0035 0 0 0 0 0.001 0 0 0.0005

LIHC 0 0.0005 0 0 0.003 0.0365 0.0045 0.0045 0.0095 0 0.001 0 0 0 0 0 0 0 0

LUAD 0.0025 0.006 0 0 0.011 0.0225 0.009 0.012 0.001 0 0.0055 0.0065 0 0 0 0.0025 0.001 0.001 0.001

LUSC 0.001 0.008 0 0.0005 0.017 0.0735 0.0375 0.008 0 0 0.024 0.001 0.0005 0 0 0.0015 0.0005 0.0005 0.002

OV 0 0 0 0 0.002 0.0005 0 0.001 0 0 0 0 0 0 0 0 0.002 0 0

PAAD 0 0.0005 0 0 0.0095 0.0775 0.004 0.0045 0.0075 0 0.001 0 0 0 0 0.0005 0 0 0

PRAD 0 0.0005 0 0 0.003 0.004 0.002 0.001 0 0 0.0005 0 0 0 0 0 0 0 0.001

READ 0 0.002 0 0 0.0005 0.001 0.003 0.0005 0.242 0.0005 0.0065 0 0 0 0 0 0 0 0

STAD 0 0 0 0 0.0055 0.0025 0.0005 0.0005 0.0045 0 0.004 0 0 0 0 0 0 0 0

THCA 0 0 0 0 0.0015 0.0035 0 0.0065 0 0 0.0005 0.991 0.9985 1 1 0.9875 0.9925 0.9985 0.992

UCEC 0.002 0.0025 0 0 0.034 0.1095 0.007 0.768 0.0005 0.0015 0.034 0.0005 0 0 0 0.001 0.0005 0 0.0015

LOW_CONFIDENCE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Predicted_label BRCA BRCA BRCA BRCA BRCA LGG CESC UCEC COAD HNSC HNSC THCA THCA THCA THCA THCA THCA THCA THCA

True_label BRCA BRCA BRCA BRCA BRCA BRCA CESC CESC COAD HNSC HNSC THCA THCA THCA THCA THCA THCA THCA THCA

Correct 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1
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the first step, we download the raw data from ICGC Database,
and extracted the effective information to obtain preliminary
data of somatic mutation and gene expression profiling. At
the second step, we filtered the data of somatic mutation and
gene expression profiling, respectively. Then, samples with both
somatic mutation data and gene expression proofing were used to
form feature matrix. As a result, the generated feature matrix was
used for gene selection. At the third step, most of the samples
were utilized to train the model with 10-time 10 folds cross
validation by using random forest classification algorithm. We
carried out numerous experiments to evaluate the performance
of the proposed method.

Data Used in This Study
We used ICGC version 26 and 28 databases, with Gene expression
profile and somatic mutation information to classify tumor
samples. The allele mutation in somatic mutation data can be
A/G, C/T, C/A, and etc. For it is hard to distinguish mutation
types with limited relative information and tools, we consider
all kinds of allele mutation as gene mutation and count the
number of gene mutation of each sample. Different from somatic
mutation data, gene expression profile array data is directly used.
The sample distribution of each cancer is showed in Table 1,
where samples suffer from BRCA are much more than from other
cancers. Considerable prediction results can be obtained by our
model. The precision, recall and F1 score, showed in Table 2,
reach 99.86%, 99.47% and 99.67%, respectively.

In this study, there are 371 samples with metastasis, where 352
samples are SKCM. To avoid unbalanced distribution of samples,
we removed all the SKCM samples with metastasis. Only 19
samples with metastasis were used as test dataset.

Performance Evaluation
The classification accuracies obtained by using data of somatic
mutation, gene expression profiling and both of them, under
condition of using different number of genes, have been
compared in Figure 2. Motivated by Ma et al. (2006) that five
genes can be used to solve a 32-type classification problem,
five was chosen as the minimum number of genes. For
gene sequencing and mutation detection are costly and time
consuming, 120 was chosen as the maximum number of genes.
A lot of experiments have been done using the prepared data
between the interval from 5 to 120. For using small number of
genes did not obtain satisfying classification performance, the
interval between number of genes was set to 10 or even larger
until the number of genes equals to 50. Then the interval was
set to 5 for fine tuning, based on small fluctuation by changed
number of genes.

Results with 10-time 10 folds cross validation on training
dataset are shown in Figure 2 that accuracy of using data of
both somatic mutation and gene expression profiling is always
higher than that of only using one of it. The best result of them
are 95.77%, 53.51%, and 89.28%, obtained by using 80, 120, and
105 genes, respectively. Results shows that gene expression can
make much contribution to obtain higher accuracy than data of
somatic mutation. However, a combination of them achieved best
classification performance.

As for the test dataset, we conducted experiments by using
the chosen 80 genes in training model. The overall classification
accuracy is 89.47%. Table 3 shows the prediction probabilities of
each sample on each cancer. The value on the table highlighted
by color of green, yellow, and pink presents high, middle,
and low probabilities, respectively, of predicting a sample to

FIGURE 3 | Heatmap of mean value of gene expression on each cancer.
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a cancer type. We obtained considerable prediction accuracy
on sample with BRCA and THCA. Each sample was correctly
predicted to the same as the true label. A sample whose true
label is CESC was predicted to UCEC. A sample whose true
label is BRCA was predicted to LGG with a terrible probability
1.65%. In this condition, we considered that little error on
classification is tolerable.

Mean Value of Gene Expression and
Somatic Mutations on Each Cancer
We plotted the heatmap of mean value of gene expression
and somatic mutations on each cancer. In Figure 3, the rows
represent 74 genes of gene expression and columns denote the
cancers. In Figure 4, the rows represent six genes of somatic
mutation and columns represent the cancers. The mean value
of gene expression and somatic mutation on a logarithmic scale

FIGURE 4 | Heatmap of mean value of somatic mutations on each cancer.

was plotted with relative color. A color bar was used to display
the value difference. Cancers that fell into cluster at horizontal
axis had a similar value between gene expression or mutation
number. The genes were also clustered at vertical axis based on
the similarity between cancers.

DISCUSSION

Data of somatic mutation and gene expression profiling can be
used to identify the primary site of tumors. However, it was the
first time to identify the cancer tissue origin by using both data
of somatic mutation and gene expression profiling. We carried
out experiments by using 7008 samples with combination of
data of somatic and gene expression profiling among 20 cancers.
By comparing the performance of them, we obtained highest
accuracy by leveraging both of the data of somatic mutation and
gene expression profiling.

The primary analysis tool we used was random forest
(Breiman, 2001; Sandri and Zuccolotto, 2006), a machine
learning algorithm that can be used for gene selection and
tumor classification. We chose top-rank 80 genes, where
6 genes and 74 genes are corresponding to mutation and
expression, respectively, for classification. Therefore, it showed
that data of somatic mutation performs worse than gene
expression profiling on prediction of cancer tissue origin.
Our method obtained 96% overall accuracy on the training
dataset. The performance is maintained considerably on the
external cohorts, and the overall accuracy on sample with
metastatic disease is 89%. Our model cannot provide good
performance on physiologically proximal cancers, such as uterine
corpus endometrial carcinoma and cervical squamous cell
carcinoma and endocervical adenocarcinoma. The endometrial
and ovarian endometrioid carcinomas evolve from similar
precursor endometrial epithelial cells; many researches are
involved in the molecular pathogenesis of the endometrial and
ovarian endometrioid carcinomas (McConechy et al., 2014).

We studied the role that gene plays in cellular component,
biological process and molecular function. Figure 5 shows the
top-rank 80 genes selected by random forest algorithm. The
selected genes were enriched in hormone metabolic process,
tissue and organ development and hormone-mediated signaling
pathway, specifically in gland development, urogenital system
development, hormone metabolic process, morphogenesis of a
branching epithelium, morphogenesis of a branching structure,
endocrine system development, branching morphogenesis of
an epithelial tube, thyroid hormone metabolic process, thyroid
hormone generation and prostate gland development. For
example, APC plays a significant role in discovering pathogenesis
of soft tissue tumors (Kuhnen et al., 2000). Birnbaum et al. (2012)
investigated what role the APC gene play in colorectal cancer, at
the investigation of 183 colon adenocarcinomas, point mutations
were found in 73% of cases. We obtained the similar conclusion
that mutation of APC gene may be the important impact of
colorectal cancer, as heatmap shown in Figure 4 that the mean
number of APC gene mutation in colorectal cancer is more than
that in other cancers except rectum adenocarcinoma. It can be
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FIGURE 5 | Selected top-rank 80 genes enriched in cellular component, biological process and molecular function.

explained that they are two physiologically proximal cancers.
Mutation in IDH1 gene can reduce cell survival, proliferation and
invasion of human glioma (Cui et al., 2016). Mutation in IDH1
gene is an oncogenic driver in a majority of lower-grade gliomas
and have an impact on brain lower grade glioma with different
genetic pathway (Ohno et al., 2013; Pieper et al., 2014; Ohka
et al., 2017). The same conclusion was acquired in Figure 4 that
the mean number of IDH1 gene mutation in Brain lower grade
glioma is more than that in other cancers.

ACPP gene plays a vital key in prostate adenocarcinoma
(Maatman et al., 1984; Drago et al., 1989; Vihko et al., 2005). From
the heatmap, it is clear that the level of ACPP gene expression

in prostate adenocarcinoma is higher than that in other cancers.
The expression levels of TG were found to be altered in all kinds
of thyroid carcinomas (Makhlouf et al., 2016). From Figure 3, we
obtained similar results that the level of TG gene expression in
thyroid carcinomas is higher than that in other cancers.

Molecular profiling of tissue-specific genes can be utilized
to identify the primary site of tumor. Combination of data
of somatic mutation and gene expression profiling were first
proposed in this study to predict the primary origin. We
obtained considerable prediction performance, and therefore
this research can bring great help to the identification of
cancer tissue origin. However, we did not carry out research to
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discover the relationship between data of gene expression and
somatic mutation. Our method cannot classify physiologically
proximal cancers yet. And it is also a future work to employing
other machine learning algorithms that can improve the
classification performance.

CONCLUSION

Identification of cancer tissue origin is a challenging work
recently and in the future. With a lot of molecular profiling
available, we can make use of them alone and combine some of
them to improve performance of identification primary site of
tumor. Machine learning algorithm is also an effective tool to
help classifying the cancers. The prediction performance can be
tremendously affected by the number of features used.

In this study, we used both molecular data of somatic mutation
and gene expression profiling to generate a feature matrix. Then
the optimal number of genes was obtained and the data was
trained, based on random forest algorithm. The performance
of using our method was also compared to only by using data
of somatic mutation or gene expression profiling. Our method
achieved highest accuracy. Experiment results shows that our
method can be an effective tool for primary origin tracing.
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Background: The timing of surgery for necrotizing pancreatitis remains a matter of

controversial debate, which has not been resolved by randomized controlled trial (RCT).

This study aims to classify surgical timing within or beyond 4 weeks for patients with

infected necrotizing pancreatitis by using machine learning methods.

Methods: This study analyzed 223 patients who underwent surgery for infected

pancreatic necrosis at West China Hospital of Sichuan University. We used logistic

regression, support vector machine, and random forest with/without the simulation of

generative adversarial networks to classify the surgical intervention within or beyond 4

weeks in the patients with infected necrotizing pancreatitis.

Results: Our analyses showed that interleukin 6, infected necrosis, the onset of fever

and C-reactive protein were important factors in determining the timing of surgical

intervention (< 4 or ≥ 4 weeks) for the patients with infected necrotizing pancreatitis.

The main factors associated with postoperative mortality in patients who underwent early

surgery (< 4 weeks) included modified Marshall score on admission and preoperational

modified Marshall score. Preoperational modified Marshall score, time of surgery,

duration of organ failure and onset of renal failure were important predictive factors for

the postoperative mortality of patients who underwent delayed surgery (≥ 4 weeks).

Conclusions: Machine learning models can be used to predict timing of surgical

intervention effectively and key factors associated with surgical timing and postoperative

survival are identified for infected necrotizing pancreatitis.

Keywords: classification, surgery, timing, machine learning, necrotizing pancreatitis
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INTRODUCTION

Necrotizing pancreatitis occurs in about 20% of patients
suffering from acute pancreatitis (AP) (Banks, 1997). The
current management guideline for necrotizing pancreatitis from
IAP/APA (Working Group IAP/APA Acute Pancreatitis
Guidelines, 2013) recommends delaying the timing of
surgery until 4 or more weeks after initial necrotizing
presentation to become walled-off shown in an addition
file (Supplementary Figure 1). However, some patients with
necrotizing pancreatitis will die before 4 weeks from the onset
of AP. Therefore, how to identify those patients is an urgent
problem to be solved. In addition to IAP/APA guideline,
recommendations for surgical timing of necrotizing pancreatitis
in the United States, United Kingdom, Italy, and Japan are
also delayed as far as possible, without recommendations for
individuals (Association et al., 2005; Tenner et al., 2013; Pezzilli
et al., 2015; Yokoe et al., 2015).

Guo et al. concluded that the postoperative mortality of
patients in 2 weeks with necrotizing pancreatitis wasmuch higher
than that after 2 weeks, and the prognosis of patients who
did surgery before 4 weeks in necrotizing pancreatitis without
persistent organ failure (POF) was same with that of patients
who did surgery after 4 weeks in necrotizing pancreatitis without
POF (Guo et al., 2014). A systematic review suggested that
debridement should be done at least 12 days later for adult
patients with necrotizing pancreatitis (Mowery et al., 2017).
The first drainage time in step-up approach was 3.5–75.5 days
from the onset of AP (Mowery et al., 2017). The timing of
surgical intervention in necrotizing pancreatitis is controversial.
A randomized controlled trial (RCT) which was established to
optimize timings of surgery following PCD in patients with
infected pancreatic necrosis was forced to stop early due to
practical difficulties (Shenvi et al., 2016). The surgical timing
problem has not been resolved by RCT.

What’s more, infection and organ failure have long been used
as key factors in determining whether or not to undergo surgery
and are considered as the determinants of mortality for the
patients with necrotizing pancreatitis. Surgical indications for
the patients with necrotic pancreatitis are determined empirically
among clinicians (Gomatos et al., 2015; Van Grinsven et al.,
2016). A prospective study observed that POF in the first
week was more likely to determine mortality than infection in
patients with necrotizing pancreatitis (Guo et al., 2013). While a
prospective cohort study from the Netherlands showed that there
were no associations between infection, onset of organ failure,
duration of organ failure and mortality in the patients with
necrotizing pancreatitis (Schepers et al., 2018). These findings
are inconsistent. Additionally, current studies cannot explain
the relationship between the suggested surgical indications of
necrotizing pancreatitis, mortality and surgical timing (Van
Grinsven et al., 2016).

Nowadays, artificial intelligence (AI) is increasingly used in
medicine (Nature Medicine, 2019). Therefore, we applied the
machine learning and deep learning methods in AI to extract
the clinical features from the patients with infected necrotizing
pancreatitis who received early surgery in West China Hospital

of Sichuan University and analyzed the associations between
early surgical treatment, organ failure, infection and clinical
predictors. We also identified the key factors associated with
patients’ mortality following early (<4 weeks) or late (≥4
weeks) surgery.

MATERIALS AND METHODS

Patients and Treatment Protocol
A total of 223 patients (median age: 43 years old, male: 60.99%)
were analyzed in this study. Those patients were hospitalized and
operated due to infected necrotizing pancreatitis in West China
Hospital of Sichuan University from January 2009 to June 2012.
The AP was diagnosed according to the classification system
of 2012 revision of the Atlanta edition, and pancreatic necrosis
or peripancreatic necrosis was determined by contrast-enhanced
computed tomography (CECT). Its treatment protocol was
reported previously (Guo et al., 2013, 2014). The patients with
severe clinical signs of persistent degeneration were operated
before 4 weeks and the remaining patients were operated after
4 weeks from the onset of AP. This study was approved by
the ethics review board of West China Hospital of Sichuan
University, and the need for informed consent was waived owing
to the retrospective nature of the study.

Clinical Data Collection
The clinical data related above patients were collected, including
infection, organ failure, operation time, postoperative mortality,
postoperative complications, during hospitalization of those
patients, etc. The collecting procedure and definitions of the
indicators were described previously (Guo et al., 2013, 2014).

Statistical Analysis
To classify surgical timing, there was nothing worthwhile to learn
about a failed surgery. For example, if a patient died after surgery,
we regarded this kind of case as a failed one. So, the successful
surgery needed to be learned. We assumed that the best surgical
timing was the actual time of a successful surgery. Based on the
time from the onset of AP to surgical intervention, the patients
were divided into the early (<4 weeks) and delayed (≥4 weeks)
surgery groups. The baseline conditions of these patients were
analyzed, including organ failure, infection, etc. T-test, and Chi-
square test were used to evaluate the difference between the
two groups. We then analyzed the factors that affect surgical
timing and the factors associated with postoperative mortality by
feature selection. Finally, we used multiple classifiers to classify
the patients and compared the classifiers’ performance. Variables
with a p < 0.05 were considered to be statistically significant.

Three classifiers were used in this study, including logistic
regression (LR), support vector machine (SVM) and random
forest (RF) (Le, 2019; Le et al., 2019b). The LR is a commonly used
statistic model in the healthcare industry and SVM is a popular
machine learning approach. RF is a classifier that uses multiple
trees to train and predict and has both features of high accuracy
and balancing errors when analyzing unbalanced classification
data sets. In order to find predictors of postoperative mortality
at different surgical timings, in addition to feature selection and

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 2 June 2020 | Volume 8 | Article 54131

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Lan et al. Surgical Timing for IPN With ML

classification of surgical timing in survived patients after surgery,
we performed feature selection and classification of postoperative
death in the early and delayed surgery. Finally, we divided
the patients into three groups based on the surgical time and
mortality for classification analyses.

The survived patients after surgery (n = 186) were divided
into the early group (n= 73) and the delayed group (n= 113), to
predict whether surgical treatment should be performed early;

The patients received early surgery (n = 106) were divided
into the death group (n = 33) and survival group (n = 73), to
predict the death rate of patients after receiving an early surgery.

The patients with delayed surgery (n= 117) were divided into
death group (n = 4) and survival group (n = 113), to predict the
death rate of patients after delayed surgery.

To solve the problem of positive and negative sample
imbalance and small sample size, which will severely affect
the performance of classifiers, we used generative adversarial
networks (GAN) to generate simulated samples, which had the
same distributions as the real samples (Creswell et al., 2017).
GAN, a recently developed deep learning approach (Goodfellow
et al., 2014), shows promising simulation performances in many
fields (Deshpande, 2013; Santana and Hotz, 2016; Li et al.,
2017; Pascual et al., 2017), such as image synthesis, language
processing, etc. Douzas and Bacao (2017) used a conditional
version (referring to each category) of GAN to approximate the
true data distribution and generated data for the minority class
of various imbalanced datasets. To improve the effectiveness
of a classifier, Fiore et al. (2017) trained a GAN model to
mimic the original minority class examples and then merged
the synthetic examples with training data into an augmented
training set. More importantly, by using variant of GAN, Baowaly
et al. (2019) have proved that GAN can adequately learn the
data distribution of real electronic health records and efficiently
generate realistic synthetic electronic health records. GAN is a
powerful generation model (Goodfellow et al., 2014; Douzas and
Bacao, 2017; Fiore et al., 2017; Wang et al., 2017). Therefore,
we applied GAN to electronic medical records to investigate the
timing of surgical intervention for the patients with infected
necrotizing pancreatitis. In this study, the data was randomly
divided into training dataset and testing dataset according to
the ratio of 4:1. The real training dataset were used to train the
simulated samples to optimize GAN parameters. The simulated
samples generated by the GAN generator were filtered by the
GAN discriminator. The simulated samples after filtration were
tested by LR, SVM, and RF (Figure 1).

We used several classification indicators to determine the
classification performance of our models, including accuracy,
precision, recall, F1-measure and area under curve (AUC)
(Le et al., 2017, 2019a). Accuracy provides a percentage of
correct classification. Precision is a measurement of how many
positive classifications are actual positive observations. Recall,
a proportion of all real positive observations that are correct,
is a measure of how many actual positive observations are
classified correctly. F1-measure, the harmonic mean of precision
and recall, is an “average” of both precision and recall. AUC
is the area under the ROC curve. The greater the value of the
indicators, the better the model performance. We combined

multiple evaluation indicators to evaluate the performance of
the models. The simulation for GAN was calculated in Python
software and others were conducted using R software.

RESULTS

Characteristics of Survived Patients After
Early or Delayed Surgery
We compared the major organ failure in the early and
delayed surgery groups as shown in an additional file
(Supplementary Table 1). In general, there were no differences
in POF and the number of organ failure systems between the two
groups. The proportion of renal failure in the early group was
higher than that in the delayed group. Onsets of renal failure and
multiple organ failure in the delayed group were earlier, but the
duration of organ failure was shorter. In terms of the preoperative
POF, more than half of patients with POF were recovered before
surgery, and the proportion of POF in the early group was higher
than that in the delayed group. As shown in another additional
file (Supplementary Table 2), the median time and interquartile
range of surgery for the early group were 21 and 6 days and the
delayed group was 37 and 21 days, respectively. More patients
received continuous renal replacement therapy (CRRT) in the
early group than those in the delayed group. The delayed group
had a higher proportion of infected necrosis. The onset of fever
in the early group was earlier than that in the delayed group.
The proportion of abnormal interleukin 6 (IL-6) level in the
delayed group was higher than that in the early group. There
was no difference in the modified Marshall score between the
two groups, but preoperational modified Marshall score was
higher in the early group. The proportions of intra-abdominal
bleeding and re-intervention were higher in early group. Age,
length of hospital stay and gender composition ratio were similar
between the two groups. There were no differences between the
two groups in blood culture, sputum, white blood cell (WBC),
C-reactive protein (CRP), procalcitonin (PCT), enterocutaneous
fistula, and new-onset organ failure.

Predictors of Surgical Timing and
Postoperative Mortality and Classification
Performance
In order to classify the surgical timing (<4 or ≥4 weeks), the
patients were divided into three groups as shown in the Methods
based on the time of surgery and postoperative mortality,
including the patients surviving after surgery (group 1), the
patients received earlier surgery (group 2) and the patients
underwent delayed surgery (group 3). LR, SVM, RF w/wo GAN
were adopted to predict surgical timing from the three groups of
patients, respectively, where LR was used as a statistical model
and SVM and RF were used as machine learning models. The
first group of patients was used to assess the predictors of surgical
timing. The second group of patients was used for evaluating the
predictors of mortality from early surgery and the third group
of patients for the predictors of mortality from delayed. We used
the stepwise selection procedures for the selection of independent
variables (predictors) in LR. The Boruta function in Rwas applied

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 3 June 2020 | Volume 8 | Article 54132

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Lan et al. Surgical Timing for IPN With ML

FIGURE 1 | Flowchart of the study.

to select important features in SVM, where the value ofmeanImp
indicates the importance of a predictor. RF itself comes with a
feature selection function, where the value of MeanDecreaseGini
represents the importance of a feature. The larger the value, the
more important it is.

The analysis results for group 1 indicated that IL-6, infected
necrosis, the onset of fever and CRP were the important factors
for surgical timing of patients with necrotizing pancreatitis
(Table 1). The results of the following models are derived from
the testing dataset. We also assessed the classification accuracy
of the three models. The classified accuracy of RF (0.80) was

higher than SVM (0.78) and LR (0.71).With the simulation by the
GAN, the classification accuracies for all of the three models were
improved. GAN-RF (accuracy: 0.89) had a better performance
than GAN-SVM (0.84) and GAN-LR (0.83). The recall rates also
reached 1 (Table 2).

We assessed the key factors affecting patient mortality in the
group 2 patients using LR, SVM, and FR models, respectively. As
shown in the Table 3, top-ranked factors associated with patient
mortality include the modified Marshall score on admission
and preoperational modified Marshall score. By combining
with GAN, the classification accuracies of the three models
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TABLE 1 | Top important features for survived patients after early surgery (<4 weeks) compared with survived patients after delayed surgery (≥4 weeks).

LR SVM RF

Significant variable Confirmed variable meanImp Variable MeanDecreaseGini

Pulmonary failure 21.89 Onset of fever 21.40 Onset of fever 14.25

POF 19.77 Infected necrosis 13.37 Age 9.18

Renal failure 5.11 IL-6 10.82 Infected necrosis 5.10

IL-6 2.71 Modified Marshall score

pre-operation

9.58 Modified Marshall score

on admission

4.35

PCT 1.36 Modified Marshall score

on admission

7.99 CRP 3.54

Duration of organ

failure

1.20 Sputum 7.63 IL-6 3.40

Infected necrosis 1.11 CRRT 6.79 Modified Marshall score

pre-operation

3.31

WBC 0.78 CRP 6.12 Duration of organ

failure

2.66

Onset of fever 0.68 Onset of renal failure 5.49 WBC 1.63

CRP 0.31 Renal failure 5.42 Sputum 1.62

LR, logistic regression; SVM, support vector machine; RF, random forest; POF, persistent organ failure; IL-6, interleukin 6; PCT, procalcitonin; WBC, white blood cell; CRP, C-reactive

protein; CRRT, continuous renal replacement therapy.

TABLE 2 | Classification performance for survived patients after early (<4 weeks) or delayed surgery (≥4 weeks).

Model Accuracy Precision Recall F1-Measure AUC

LR 0.71 0.70 0.53 0.58 0.71

SVM 0.78 0.77 0.63 0.67 0.75

RF 0.80 0.75 0.70 0.71 0.78

GAN-LR 0.83 0.62. 1.00 0.76 0.90

GAN-SVM 0.84 0.72 1.00 0.84 0.86

GAN-RF 0.89 0.80 1.00 0.88 0.90

LR, logistic regression; SVM, support vector machine; RF, random forest; GAN, generative adversarial networks.

for mortality in early surgery patients were largely improved.
GAN-RF (0.99) and GAN-SVM (0.99) had a better performance
in evaluating the key factors than GAN-LR (0.90) (Table 4).

As shown in the Table 5, the modified Marshall score pre-
operation was predicted by all three models as an important
factor for the mortality of patients who underwent delayed
surgery. The time of surgery, duration of organ failure and onset
of renal failure were top 5-ranked features predicted by SVM
and RF models (Table 6). Due to the unbalanced positive and
negative samples, we simulated this group of samples using GAN
first and then did classification analysis for the postoperative
mortality using three classifiers. The classification accuracies of
GAN-LR, GAN-SVM, and GAN-RF were 0.97, 0.99, and 0.99,
respectivel (Table 6).

DISCUSSION

This study has two main highlights. (1) We compared the
performance of machine learning models with a common
statistic model (LR) and the performance of machine

learning models were better. (2) We identified the key
factors associated with surgical timing (<4 or ≥4 weeks)
and postoperative survival for infected necrotizing pancreatitis
and predicted the surgical timing by applying machine
learning models.

An international survey shows that 55% of pancreatic
specialists would wait for the effect of antibodies and postpone
surgical management for the patients with infected pancreatic
necrosis, whereas 45% of specialists would take an immediately
action of surgical treatment after diagnosis (Abdelhafez et al.,
2015). The time of operation varies greatly. Therefore, it
is necessary to demonstrate if the patient with necrotizing
pancreatitis needs early or delayed surgery individually. Previous
studies using organ failure and infection as predictors of death
obtained controversial results (Guo et al., 2013, 2014; Schepers
et al., 2018). In our study, we assessed the impact of multiple
clinical factors and comprehensive scores on surgical timing and
postoperative mortality for the patients received the early or
delayed surgery.

Early studies showed that the mortality of patients who
received surgery within 2 weeks was much higher than that
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TABLE 3 | Top important features for mortality after early surgery (<4 weeks).

LR SVM RF

Significant variable Confirmed variable meanImp Variable MeanDecreaseGini

CRRT 744.77 Renal failure 10.32 Modified Marshall score on

admission

5.76

Intra-abdominal

bleeding

424.34 Onset of renal failure 10.19 Renal failure 4.87

Blood culture 373.11 Onset of fever 9.87 Onset of multiple organ

failure

4.70

New-onset organ

failure

297.63 Re-intervention 9.38 Onset of renal failure 3.97

Modified Marshall score

on admission

147.89 Modified Marshall score on

admission

9.02 Number of organ failure

systems

3.23

POF pre-operation 134.08 Onset of multiple organ

failure

7.54 Modified Marshall score

pre-operation

2.74

Modified Marshall score

pre-operation

97.74 Number of organ failure

systems

7.51 Onset of fever 1.78

WBC 75.50 Multiple organ failure 7.45 Re-intervention 1.71

PCT 72.39 POF pre-operation 6.68 Duration of organ failure 1.62

Age 0.35 Modified Marshall score

pre-operation

6.48 Age 1.62

LR, logistic regression; SVM, support vector machine; RF, random forest; POF, persistent organ failure; PCT, procalcitonin; WBC, white blood cell; CRRT, continuous renal

replacement therapy.

TABLE 4 | Classification performance for mortality after early surgery (<4 weeks).

Model Accuracy Precision Recall F1-Measure AUC

LR 0.90 0.82 0.88 0.83 0.94

SVM 0.94 0.94 0.90 0.91 0.93

RF 0.94 0.85 1.00 0.90 0.96

GAN-LR 0.90 0.89 0.92 0.90 0.97

GAN-SVM 0.99 0.99 0.99 0.99 0.99

GAN-RF 0.99 0.99 0.99 0.99 0.99

LR, logistic regression; SVM, support vector machine; RF, random forest; GAN, generative adversarial networks.

of surgery after 2 weeks (Besselink et al., 2007; Guo et al.,
2013, 2014; Schepers et al., 2018), suggesting that early surgery
should be conducted between 2 and 4 weeks. According to
our analysis with multiple classifiers, IL-6, infected necrosis,
onset of fever and CRP are important factors associated with
the timing of surgery, which is consistent with the surgical
indications used in clinic. The modified Marshall score is one of
common factors used to assess patient mortality. Our analysis
indicated that the mortality of the early surgery group was
associated with the preoperative modified Marshall score and the
modified Marshall score assessed at admission, suggesting that
the modified Marshall score should be monitored in a real time
for prediction. According to the Revised Atlanta Classification,
organ failure is determined by modified Marshall score. The
preoperative modified Marshall score was associated with the
mortality after delayed surgery. Only two meaningful variables
were obtained through stepwise regression of LR, including the

preoperative modified Marshall score and circulatory failure.
The preoperative modified Marshall score, the time of surgery,
duration of organ failure and onset of renal failure were among
of the top five important features selected by SVM and RF.
A recent multicenter prospective cohort study reported that
POF and multiple organ failure were the major determinants of
AP severity, and the presence of infection was not associated
with higher mortality (Sternby et al., 2017), consistent with
our findings.

According to our knowledge, this is the first time to apply
SVM and RF to predict the timing of surgery and postoperative
mortality of patients with infected necrotizing pancreatitis. The
classification performance of RF and SVM was better than
LR. Especially when GAN was applied in the simulation, the
accuracies were obviously improved. It is most likely because
GAN can generate simulation samples with the same distribution
as the actual samples, enhancing the sample size. In term of

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 6 June 2020 | Volume 8 | Article 54135

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Lan et al. Surgical Timing for IPN With ML

TABLE 5 | Top important features for mortality after delayed surgery (≥4 weeks).

LR SVM RF

Significant variable Confirmed variable meanImp Variable MeanDecreaseGini

Circulatory failure 60.16 Time of surgery 12.13 Time of surgery 167.62

Modified Marshall score

pre-operation

14.17 Duration of organ failure 9.52 Duration of organ failure 122.11

Modified Marshall score

pre-operation

8.64 Onset of renal failure 111.15

Onset of renal failure 8.60 Onset of fever 108.94

Male 8.35 Modified Marshall score

pre-operation

66.56

Onset of multiple organ

failure

7.34 Onset of multiple organ

failure

52.52

Onset of fever 7.30 Onset of single organ failure 45.50

Modified Marshall score on

admission

7.19 Onset of POF 45.18

Number of organ failure

systems

7.17 Male 43.82

Blood culture 6.99 POF pre-operation 32.31

LR, logistic regression; SVM, support vector machine; RF, random forest; POF, persistent organ failure.

TABLE 6 | Classification performance for mortality after delayed surgery (≥4 weeks).

Model Accuracy Precision Recall F1-Measure AUC

GAN-LR 0.97 0.69 0.70 0.63 0.92

GAN-SVM 0.99 0.80 1.00 0.88 0.99

GAN-RF 0.99 0.94 0.99 0.96 0.99

LR, logistic regression; SVM, support vector machine; RF, random forest; GAN, generative adversarial networks.

model classification performance, the classification accuracies
of three models were high. Therefore, based on the patient’s
routine laboratory test and organ failure status, we can apply
the classifiers to predict whether the patient should undergo
early or delayed surgery individually to reduce patient mortality.
Our classification results provide good references for clinicians
to make personized surgical plans for patients with infected
necrotizing pancreatitis.

However, there are some limitations of this study. Since the
categorical variables cannot be applied to the traditional GAN, we
changed the categorical variables into continuous variables and
then put them into the GANmodel. Although we have reached a
conclusion consistent with Baowaly et al. by using our proposed
GAN, we need to further verify with more samples.

In summary, we (1) applied a better machine learning model

comparedwith a statisticmodel to predict the surgical timing (<4

or ≥4 weeks) in patients with infected necrotizing pancreatitis;

(2) identified the key factors associated with surgical timing

and postoperative survival for infected necrotizing pancreatitis

and predicted the surgical timing by applying machine learning
models; and (3) provided good references for clinicians in
developing personalized surgical plans for patients with infected
necrotizing pancreatitis.
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Purpose: To evaluate the diagnostic value of the combination of whole-tumor dynamic

contrast-enhanced magnetic resonance imaging (DCE-MRI) and whole-lesion texture

features based on T2–weighted images for cervical cancer with parametrial invasion.

Materials and Methods: Sixty-two patients with cervical cancer (27 with parametrial

invasion and 35 without invasion) preoperatively underwent routine MRI and DCE-MRI

examinations. DCE-MRI parameters (Ktrans, Kep, and Ve) and texture features (mean,

skewness, kurtosis, uniformity, energy, and entropy) based on T2-weighted images were

acquired by two observers. All parameters of parametrial invasion and non-invasion were

analyzed by one-way analysis of variance. The diagnostic efficiency of significant variables

was assessed using receiver operating characteristic analysis.

Results: The invasion group of cervical cancer demonstrated significantly higher Ktrans

(0.335 ± 0.050 vs. 0.269 ± 0.079; p < 0.001), lower energy values (0.503 ± 0.093

vs. 0.602 ± 0.087; p < 0.001), and higher entropy values (1.391 ± 0.193 vs. 1.24 ±

0.129; p< 0.001) than those in the non-invasion group. Optimal diagnostic performance

[area under curve [AUC], 0.925; sensitivity, 0.935; specificity, 0.829] could be obtained

by the combination of Ktrans, energy, and entropy values. The AUC values of Ktrans

(0.788), energy (0.761), entropy (0.749), the combination of Ktrans and energy (0.814), the

combination of Ktrans and entropy (0.727), and the combination of energy and entropy

(0.619) were lower than those of the combination of Ktrans, energy, and entropy values.

Conclusion: The combination of DCE-MRI and texture analysis is a promising method

for diagnosis cervical cancer with parametrial infiltration. Moreover, the combination of

Ktrans, energy, and entropy is more valuable than any one alone, especially in improving

diagnostic sensitivity.

Keywords: cervical cancer, parametrial invasion, DCE-MRI, texture analysis, T2-weighted imaging
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INTRODUCTION

Cervical cancer is one of the most common malignant
diseases of the female reproductive system, and it seriously
threatens women’s health and life. Accurate preoperative
staging of cervical cancer plays an important role in clinical
treatment decisions and prognosis. As a matter of principle,
surgery is performed for cervical cancer without parametrial
involvement, while tumors with parametrial invasion are treated
with radio-chemotherapy. To the best of our knowledge,
cervical cancer with parametrial invasion is closely related
to recurrence and survival after treatment (Chung et al.,
2010; Munagala et al., 2010; Noh et al., 2014; Kong et al.,
2016; Xia et al., 2016; Dai et al., 2018). Therefore, accurate
diagnosis of cervical cancer with parametrial invasion is
of great clinical significance. Parametrial invasion is usually
evaluated by conventional magnetic resonance (MR) imaging
and gynecological examination. Several previous investigations
showed that traditional imaging features, such as full-thickness
disruption of the normal cervix stroma with nodular or
spiculated lesions extending to the adjacent parametrium
on T2-weighted images, were considered to be parametrial
invasion (Freeman et al., 2012; Patel-Lippmann et al., 2017);
however, image analysis is a subjective procedure with low
interobserver agreement. An objective and quantitative method
for evaluating parametrial infiltration in clinical practice
is needed.

Currently, many new techniques have been applied at the
molecular level, such as deep learning, proteomics, and protein
interaction network (Wang et al., 2019, 2020; Deng et al.,
2020; Hu et al., 2020). Besides, several imaging techniques
(Park et al., 2014; Zhou et al., 2016) and radiomics (Mu
et al., 2015; Meng et al., 2017) have been reported in the
assessment of patients with parametrial invasion to determine
the stage and treatment of cervical cancer. Chiappa et al.
reported that 3D ultrasound volumes can be used to more
precisely define the location and degree of cervical cancer
invasion (Chiappa et al., 2015). Several studies show that
the apparent diffusion coefficient (ADC) value of cervical
cancer is significantly lower in cancer with parametrial invasion
than in cancer without parametrial invasion (Park et al.,
2014; Woo et al., 2018). Park et al. reported that merging
high b-value diffusion-weighted MR imaging with background
body signal suppression and T2-weighted high-spatial-resolution
imaging could improve diagnostic efficiency of predicting
cervical cancer with parametrial infiltration (Park et al., 2014).
Recently, histogram analysis of ADC has shown potential
to predict outcomes after concurrent chemo-radiotherapy in
patients with cervical cancer (Meng et al., 2017). Moreover,
the study showed that tracer uptake heterogeneity in tumors
characterized by texture features based on fluorodeoxyglucose-
positron emission tomography (18-FDG PET) is highly relevant
to the stage of cervical cancer (Mu et al., 2015). To our
knowledge, however, no reported studies demonstrated the
role of dynamic contrast-enhanced magnetic resonance imaging
(DCE-MRI) or texture analysis in evaluating cervical cancer with
parametrial invasion.

The purpose of our study was to investigate the diagnostic
value of the combination of whole-tumor volumetric DCE-
MRI and texture features based on T2-weighted images for
predicting parametrial invasion. These quantitative parameters
might improve the diagnostic accuracy of cervical cancer with
parametrial infiltration prior to treatment.

MATERIALS AND METHODS

Patients
This study was approved by our institutional review board and
the patients provided written informed consent to participate.
Seventy-five patients with histopathologically confirmed cervical
cancer were admitted to our hospital from September 2017 to
April 2019. Routine MRI sequences and DCE-MRI examinations
were preoperatively performed. Thirteen patients were excluded
according to the following criteria: (1) tumor diameter was
<1 cm (n = 7); (2) image quality was not available for the next
analysis (n= 4); (3) diameter of the necrotic lesions in the tumor
was more than 5mm (n = 2). Finally, 62 patients (25–56 years
old, mean age 45 years) were eligible for the study (27 with
parametrial invasion and 35 without invasion), including FIGO
stage IA (n = 14), IB (n = 9), IIA (n = 12), IIB (n = 15), IIIA
(n= 7), and IIIB (n= 5).

Imaging Acquisition
MRI was acquired by using a 3.0 T Signa HDxT MRI machine
(GE Healthcare, USA) with an 8-channel phased array body
coil. The scanning program for the pelvis was as follows:
unenhanced axial T1-weighted imaging, axial and sagittal
T2-weighted imaging, axial T2-weighted imaging with fat
saturation, axial diffusion weighted imaging, axial DCE-MRI,
and axial and sagittal contrast-enhanced T1-weighted imaging
with fat saturation.

T2-weighted imaging was obtained using a fast spin echo
sequence. The following protocol was used: repetition time
(TR)/echo time (TE), 4600/30ms; number of excitations, 2;
section thickness, 6mm; intersection gap, 2mm; field of view
(FOV), 240 × 240mm; matrix size, 320 × 256; and total time,
2min and 14 s.

DCE-MRI was obtained using T1-weighted fat-suppression
images and a three dimensional (3D) liver acceleration volume
acquisition (LAVA) sequence during the injection of 0.1 mmol/kg
of gadodiamide (Omniscan, GE Healthcare, USA) at a rate of 2
ml/s and following a 20-mL saline flush at the same rate. The
contrast medium was injected after the acquisition of three sets
of pre-contrast T1 mapping using three flip angles: 5, 10, and 15
(total: 43 dynamics). The following protocol was used: TR/TE,
4.2/2.2ms; 15◦ flip angle; FOV, 380 × 340mm; matrix size, 320
× 224; section thickness, 4mm; time resolution, 7.0 s; and total
time, 4min, 40 s.

Imaging Analysis and Parameter
Acquisition
DCE-MRI data were processed by Omni-Kinetics (O.K.;
GE Healthcare, China) software. Multi-flip angle T1
mapping transformed the signal intensity into contrast agent
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TABLE 1 | Comparison of DCE-MRI and texture feature derived parameters.

Parameters Invasion group (n = 27) Non-invasion group (n = 35) P-value ICC

Inter (95% CI) Intra (95% CI)

DCE-MRI

Ktrans, min−1 0.335 ± 0.050 0.269 ± 0.079 <0.001 0.917 (0.834, 0.953) 0.841 (0.792, 0.878)

Kep, min−1 0.538 ± 0.103 0.526 ± 0.110 0.652 0.934 (0.869, 0.958) 0.893 (0.847, 0.961)

Ve 0.538 ± 0.095 0.511 ± 0.104 0.270 0.842 (0.793, 0.902) 0.927 (0.842, 0.972)

Texture

Mean 679.53 ± 66.02 697.12 ± 59.70 0.260 0.924 (0.835, 0.959) 0.858 (0.786, 0.919)

Skewness 0.043 ± 0.242 0.085 ± 0.267 0.502 0.925 (0.834, 0.946) 0.915 (0.862, 0.968)

Kurtosis 3.252 ± 0.477 3.263 ± 0.653 0.940 0.826 (0.783, 0.879) 0.935 (0.883, 0.969)

Uniformity 0.912 ± 0.013 0.915 ± 0.034 0.719 0.904 (0.837, 0.961) 0.912 (0.852, 0.969)

Energy 0.503 ± 0.093 0.602 ± 0.087 <0.001 0.879 (0.802, 0.948) 0.892 (0.817, 0.948)

Entropy 1.391 ± 0.193 1.24 ± 0.129 <0.001 0.924 (0.846, 0.958) 0.921 (0.836, 0.971)

DCE-MRI, dynamic contrast-enhanced magnetic resonance imaging; Ktrans, volume transfer constant; Kep, flux rate constant between extravascular extracellular space and blood

plasma; Ve, fraction of extravascular extracellular volume.

concentration. For the evaluation of the arterial input function
(AIF), a region of interest (ROI) was manually placed on the
iliac artery. Tumors were outlined on each slice from DCE-MRI
images in order to show the volume of interest (VOI) of the
whole tumor. The DCE-MRI parameters (Ktrans [the volume
transfer constant], Kep [the flux rate constant], and Ve [fractional
extravascular extracellular space volume]), were calculated using
a modified Tofts model.

Texture features were acquired by axial T2-weighted images
with ITK-SNAP software (version 3.6.0) and O.K. software. For
each patient, the VOI was calculated using ITK-SNAP software
by manually delineating the ROI along the edge of the tumor on
each slice for the entire tumor by referencing the corresponding
contrast-enhanced images. Texture features were extracted from
the delineated VOI by the O.K. software.

DCE-MRI and texture features were independently measured
by two radiologists using the O.K. software (XX.L. and TT.L.
with 6 years and 12 years of clinical experience, respectively,
in gynecologic oncology MR imaging). Reader 1 measured
DCE-MRI and texture features twice in 1 week to estimate
intraobserver reproducibility, and his first measurement was
compared with the measurement obtained by reader 2 to assess
interobserver agreement. The mean of the two measured data
of reader 1 was statistically analyzed. The intraclass correlation
coefficient (ICC) of more than 0.75 edindicated good agreement.

Statistical Analysis
Quantitative metrics were indicated as mean ± standard error,
and the normality test was assessed using the Kolmogorov-
Smirnov method. The normal distribution of the DCE-MRI
and texture feature parameters data was compared between the
invasion group and the non-invasion group was using one-way
analysis of variance; comparisons among the metrics of each
group were processed using least significant difference (LSD)
test. Non-normal distribution of data were compared using the
Mann–Whitney test. Receiver operating characteristic (ROC)

FIGURE 1 | Boxplots of the DCE-MRI parameters of Ktrans, Kep, and Ve

between the invasion and non-invasion groups.

curve analysis was used to assess the diagnostic ability of DCE-
MRI and texture feature parameters in diagnosing parametrial
invasion. The AUC was compared using the Delong Clarke-
Pearson method (DeLong et al., 1988). Cut-off values were
obtained by maximizing Youden’s index (sensitivity+specificity-
1). Statistical analysis was performed using SPSS 23.0 (IBMCorp.,
Armonk, NY) and GraphPad Prism 8.0 (GraphPad software,
San Diego, CA). P<0.05 was considered as the threshold for
statistical significance.

RESULTS

Excellent intra- and interobserver agreements were found in
the measurements of DCE-MRI and texture features metrics
(Table 1). The intra- and interobserver ICCs of Ktrans, Kep, and
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FIGURE 2 | Boxplots of texture features of mean value, skewness, kurtosis, uniformity, energy, and entropy between invasion and non-invasion groups.

Ve were 0.917 and 0.841, 0.934 and 0.893, and 0.842 and 0.927,
respectively. Meanwhile, the intra- and interobserver ICCs of the
mean value were 0.924 and 0.858, of skewness were 0.925 and
0.915, of kurtosis were 0.826 and 0.935, of uniformity were 0.904
and 0.912, of energy were 0.879 and 0.892, and of entropy were
0.924 and 0.921.

Metrics derived from DCE-MRI and texture features were
compared between the invasion group and the non-invasion
group and are summarized in Table 1 and Figures 1, 2. The
invasion group indicated a significantly higher Ktrans (0.335 ±

0.050 vs. 0.269 ± 0.079; p < 0.001), lower energy values (0.503
± 0.093 vs. 0.602 ± 0.087; p < 0.001), and higher entropy values
(1.391± 0.193 vs. 1.24± 0.129; p< 0.001) than the non-invasion
group, while there was no significant difference for Kep, Ve, mean,
skewness, kurtosis, or uniformity.

ROC analysis showed that setting the Ktrans cut-off value
to ≥0.286 min−1 produced the best diagnostic performance
for diagnosing parametrial infiltration (AUC, 0.788; sensitivity,
0.839; specificity, 0,657). The best diagnostic ability could be
obtained by setting the threshold value of energy at ≤0.488
(AUC, 0.761; sensitivity, 0.710; specificity, 0.714). Setting the
critical value of entropy at ≥1.387 obtained the best diagnostic
index (AUC, 0.749; sensitivity, 0.581; specificity, 0.943). The
combination of Ktrans and energy had a significantly better
diagnostic index than an independent diagnosis of Ktrans, energy,
and entropy (p = 0.036, p = 0.029, p = 0.047). However, using
a combination of Ktrans and entropy (AUC, 0.727; sensitivity,
0.806; specificity, 0.657) and a combination of energy and
entropy (AUC, 0.619; sensitivity, 0.548; specificity, 0.771) as the
diagnostic marker achieved a significantly worse performance
than other single and combination parameters. The combination
of Ktrans, energy, and entropy (AUC, 0.925; sensitivity, 0.935;

FIGURE 3 | Receiver operating characteristic curves of the energy, Ktrans,

entropy, combination of Ktrans and energy, combination of Ktrans and entropy,

combination of energy and entropy, combination of Ktrans, energy, and entropy

for diagnosis of invasion and non-invasion of cervical cancer.

specificity, 0.829) resulted in a significantly better diagnostic
performance than Ktrans, energy, entropy, a combination of
Ktrans and energy, a combination of Ktrans and entropy, or
a combination of Ktrans and energy (p = 0.042, p = 0.037,
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TABLE 2 | Diagnostic efficiency of each parameter and their combined metrics.

Parameters Cut-off value AUC Sensitivity Specificity

Ktrans, min−1 0.286 0.788 (0.690–0.849) 0.839 0.657

Energy 0.488 0.785 (0.717–0.857) 0.774 0.714

Entropy 1.387 0.749 (0.657–0.828) 0.581 0.943

Ktrans + energy 0.813 (0.748–0.859) 0.871 0.714

Ktrans + entropy 0.728 (0.604–0.830) 0.806 0.657

Energy + entropy 0.619 (0.481–0.757) 0.548 0.771

Ktrans + energy + entropy 0.925 (0.853–0.976) 0.935 0.829

Data in parentheses indicate 95% confidence intervals. AUC, area under curve; Ktrans, volume transfer constant.

FIGURE 4 | A 51-year-old woman with stage IIB cervical cancer. (A) T2-weighted image (T2WI) shows a slightly hyperintense cervical mass. (B–D) Ktrans, Kep, and Ve

parametric maps are derived from DCE-MRI. The corresponding values are 0.577/min, 0.639/min, 0.694. (E,F) The volume of the tumor is drawn from T2WI. (G)

Histogram map of the entire tumor.

p = 0.018, p = 0.048, p = 0.007, p = 0.029, respectively)
(Figure 3). Table 2 shows the detailed diagnostic performances.
The representative images of DCE-MRI and texture features of
cervical cancer with and without invasion are summarized in
Figures 4, 5.

DISCUSSION

The signal intensity kinetics acquired by DCE-MRI suggest the
underlying microvessel density, perfusion, permeability, and the
extracellular-extravascular space composition of tumors (Zahra
et al., 2007; Bonekamp et al., 2016). DCE-MRI can predict
the response to and outcomes of radiotherapy in patients with
cervical cancer (Tao et al., 2019). Tao et al. reported (2019)
that the Ktrans of high-grade ductal carcinoma in situ of the
breast is higher than that of low-grade ductal carcinoma. Li
et al. (2015) reported that the Ktrans of high-grade glioma is
higher than that of low-grade glioma. stoLikewise, the present
study infound that the Ktrans value of the invasive group was
higher than that of the non-invasive group. The parameter Ktrans

reflected tumor angiogenesis, which is proportional to the density

of the tumor vessels. This indicated that the angiogenesis of
the invasive cervical cancer group was greater than that of the
non-invasive group, and the malignant degree of the invasive
group was higher than that of the non-invasive group. The
more malignant the tumors are, the more angiogenesis they
have. Early cervical cancer consists mainly of neovascularization,
but the blood vessels are few in number and have low
permeability. The growth rate of advanced cervical cancer
is faster than that of early cervical cancer, and the tumor’s
demand for blood oxygen is increased, so that a large number
of new blood vessels are formed. The angiogenesis and the
permeability of the blood vessels is increased. The tortuous
course of the blood vessels increases their permeable area.
Moreover, the endothelial cells of blood vessels are irregular.
Therefore, the contrast agent permeates through the gaps in
the blood vessels more easily than it does in early cervical
cancer. We can conclude that the parameters of Ktrans in
the infiltration group were higher than those in the non-
infiltration group.

Texture analysis is a new image post-processing computer
technology that quantitatively analyzes the distribution rules and
characteristics of image pixels and reflects lesion heterogeneity
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FIGURE 5 | A 49-year-old woman with stage IIA cervical cancer. (A) T2-weighted image (T2WI) shows a slightly hyperintense cervical mass. (B–D) Ktrans, Kep, and Ve

parametric maps are derived from DCE-MRI. The corresponding values are 0.196/min, 0.430/min, 0.396. (E,F) The volume of the tumor is drawn from T2WI. (G)

Histogram map of the entire tumor.

and the fine differences of tumors. Energy reflects uniformity
and texture the coarseness of the images. The better distributed
the gray of the image is, the greater its value. In this study, the
energy value of the non-invasive group was larger than that of the
invasive group, which indicated that the images of the invasive
group were less uniform than those of the non-invasive group.
This may be owing to the cystoid degeneration and necrosis in
the invasive cervical cancer group. Entropy, reflecting the basic
degree of chaos in the gray levels, is a measure of the image
information. It is mainly used to evaluate the uniformity of
image texture. The entropy value of the parametrial infiltration
group was higher than that of the non-infiltration group, which
indicated that the distribution of image pixels in the infiltration
group was more discrete and disordered than that in the non-
infiltration group. The reason for this difference may be related
to the degree of malignancy. Several studies showed that tumors
with a high degree of malignancy have high heterogeneity (Ng
et al., 2013; Zhang et al., 2017a,b), and a high entropy value
represents high tumor heterogeneity (Guan et al., 2017), and
this is in accordance with our study showing that advanced
cervical cancer representing high heterogeneity has high entropy.
Guan et al. (2017) showed that cervical cancers with higher (IIB-
IVA) rather than lower (IB-IIA) FIGO stages had lower energy
and higher entropy of texture features based on ADC images.
This result is consistent with our study showing that advanced
cervical cancer has lower energy and higher entropy than early
stage cervical cancer. The mean value, skewness, kurtosis, and
homogeneity had no statistical significance in diagnosing cervical
cancer with parametrial infiltration. These parameters may have
significance if we performed multiple sequences of MRI for
texture analysis.

In the present study, Ktrans, energy, entropy, and
combinations of them had the optimal diagnostic performance

for diagnosing cervical cancer with parametrial infiltration;
particularly, the combination of Ktrans, energy and entropy
had the highest AUC (0.925) and sensitivity (93.5%). This
indicated that the combination of Ktrans, energy, and entropy was
more significant than the other parameters for the diagnosis of
parametrial infiltration. In other words, DCE-MRI, representing
quantitative perfusion information at the molecular level, and
texture features, representing a mathematical model of the
gray distribution of quantitative image pixels, are the most
valuable for the diagnosis of cervical cancer with parametrial
infiltration. Thus, we can use more accurate quantitative
parameters at the microscopic level instead of making a
subjective diagnosis with a larger margin of error to evaluate
parametrial infiltration. Quantitative parameters can be used
as an important ancillary diagnostic tool for routine MR
examination and can provide a reference for the establishment of
an artificial intelligence prediction model of cervical cancer with
parametrial infiltration.

Several limitations of the present study are as follows. First,
the sample size of this study was relatively small. Second, the
ROIs of the tumors were manually performed, which might
increase the variability of the data measurement. Third, our study
did not distinguish the pathological types of cervical cancer,
such as squamous cell carcinoma, adenocarcinoma, and small
cell carcinoma.

In conclusion, this study showed that the invasion group of
cervical cancer demonstrated significantly higher Ktrans, lower
energy values, and higher entropy values than those in the
non-invasion group. Both DCE-MRI and texture analysis were
valuable in the diagnosis. A combination of DCE-MRI and
texture analysis may be a promising method to improve accuracy
in diagnosing cervical cancer with parametrial infiltration prior
to treatment and has great significance in the medical field.
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Background: Osteosarcoma is a solid tumor common in the musculoskeletal system.

The DEAD-box helicase (DDX) families play an important role in tumor genesis

and proliferation.

Objective: To screen potential molecular targets in osteosarcoma and elucidate its

relationship with DDX56.

Methods: We employed the Gene Expression Omnibus and The Cancer Genome

Atlas datasets for preliminary screening. DDX56 expression was measured by RT-qPCR

in three osteosarcoma cell lines. Biological roles of DDX56 were explored by Gene

ontology, Kyoto Encyclopedia of Genes and Genomes and Ingenuity Pathway Analysis.

Cell proliferation, cycle, and apoptosis assays were performed using LentivirusTM

knockdown technique.

Results: It was found that DDX56 expression was regularly upregulated in osteosarcoma

tissue and cell lines, while DDX56 knockdown inhibited cell proliferation and promoted

cell apoptosis.

Conclusions: The findings suggest DDX56 as a potential therapeutic target for the

treatment of osteosarcoma.

Keywords: biomarker, DEAD-box RNA helicases 56 (DDX56), osteosarcoma, oncogene, proliferation

INTRODUCTION

Osteosarcoma derives from primitive bone-forming mesenchymal cells. It is a primary bone
neoplasm characterized by the production of osteoid or immature bone by the malignant
cells (Anderson, 2016). Being the most common primary malignancy of bone in children and
adolescents, the incidence of osteosarcoma are 4–5 per year per million for all races and both sexes
(Ottaviani and Jaffe, 2009). The survival rate of patients with osteosarcoma has improved mostly
due to marked advances in diagnosis and chemotherapy (Anderson, 2016). However, the high rate
of relapse and distant metastasis of osteosarcoma result in poor long-term survival (Kumar et al.,
2017). Thus, there is an urgent need to develop new treatment strategies for osteosarcoma.

High-throughput microarrays are promising tools for identifying candidate molecular targets
in medical oncology. During the last decade, numerous gene expression profiling studies on
osteosarcoma oncogenesis and proliferation were performed using microarray technology and
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showed hundreds of differentially expressed genes (DEGs)
involved in different pathways, biological processes, or
molecular functions.

The emerging roles of Asp–Glu–Ala–Asp (DEAD)-box RNA
helicases have recently been acknowledged in disparate cellular
functions. DEAD-box (DDX) RNA helicases play a crucial role
not only in unwinding double-stranded RNA molecules but also
in transcription, splicing, RNA transport, ribosome biogenesis,
RNA editing, RNA decay, and translation (Sugiura et al., 2007;
Xu and Hobman, 2012). Although DDX56 is reported to be
required in virus infection (Reid and Hobman, 2017), affecting
the response to abiotic stress and host–pathogen interaction
(Pragya et al., 2007; Umate et al., 2010), the relationship of
DDX RNA helicases with malignancies remains unclear. The
relationship between DDX family and cancer is worth further
investigating since a number of DEAD-box RNA helicases were
recently reported to be implicated in solid tumor progression and
chemotherapy resistance (Kuramitsu et al., 2013; He et al., 2018).

MATERIALS AND METHODS

Patients and Samples
The gene expression microarray profile of GSE126209 was
downloaded from theGene ExpressionOmnibus (GEO) database
(http://www.ncbi.nlm.nih.gov/geo/). The mRNA profiles of
osteosarcoma tumors and adjacent normal tissues were generated
by high-throughput sequencing based on the GPL20301 platform
(Illumina HiSeq 4000, Homo sapiens). Eleven samples were
obtained from six Chinese Uyghur patients, in which 10 samples
were paired tumor/normal specimens from the same patients.
Specifically, gene expression profiles of mesenchymal stem
cell osteosarcoma patients were compared with those in non-
neoplastic patient to identify the DEGs. The DEAD-box family
was given special attention among the DEGs. qPCR was used
to examine if DDX56 is highly expressed in osteosarcoma cell
lines. Subsequently, we employed the LentivirusTM technique to
examine the effect of DDX56 silencing on human osteosarcoma
cell growth in vitro.

Identification of Differentially
Expressed mRNAs
Paired t-test was used to filter differentially expressed mRNAs
between tumor and adjacent normal tissues. We selected
differentially expressed genes according to the p-value threshold
and absolute value of fold change (FC). A value of p < 0.05 with
|FC| > 2 was considered to represent a significant difference.
The Ensembl Gene ID of the mRNAs was transferred into gene
symbol using the Biomart module in Ensembl (http://www.
ensembl.org/biomart/martview/).

Hierarchical Clustering
The differentially expressed profiles of mRNAs in DDX 56 family
were clustered using a hierarchical cluster algorithm with average
linkage and Spearman’s rank correlation distance, as provided
by the software EPCLUST (http://ep.ebi.ac.uk/EP/EPCLUST/).
The clustering was performed using the methods outlined in a

previous publication (Misha et al., 2004). Results were visualized
with the help of heatmaps and dendrograms.

Protein–Protein Interaction
Network Analysis
The protein–protein interaction (PPI) pairs between
differentially expressed mRNAs were identified using the
IID (Integrated Interactions Database, version 2018-11) database
(Kotlyar et al., 2016), tissue-specific protein–protein interactions
(PPIs) with larger information (a total of 1,566,043 PPIs among
68,831 proteins). The PPI interaction in this study was specified
in musculoskeletal tissues. Furthermore, Cytoscape (version
3.5.0) was used to establish the PPI network and calculate the
parameters of nodes and edges. Top nodes in the DDX56 family
net were chosen according to the network topology property
indicators, and were analyzed by CytoNCA in Cytoscape for
factors including degree, betweenness centrality, and closeness
centrality. In general, a high indicator score in network topology
denotes an important role in the network. Top nodes with the
highest degree were selected for further study.

mRNA Profile Data and Survival Analysis
The mRNA profile and its corresponding survival data were
retrieved from The Cancer Genome Atlas (TCGA) database
(https://tcga-data.nci.nih.gov/tcga/). These data were analyzed
using the UALCAN (http://ualcan.path.uab.edu/) portal tools
(Chandrashekar et al., 2017). The UALCAN tools enable
graphs and plots depicting gene expression and patient survival
information based on gene expression. Additional information
about the selected genes was provided by GTEx (https://
gtexportal.org/). Genes positively and negatively correlated with
DDX56 in sarcoma (SARC) patients were screened out according
to GTEx Profiles (Lonsdale et al., 2013). Extremely low-expressed
genes (median TPM < 0.5) were filtered out.

Osteosarcoma Cell Lines
Human osteosarcoma cell lines (HOS, Sao-2, and U-2 OS) were
purchased from the Shanghai Cell Bank (Shanghai, China).
Cell lines were cultured in Dulbecco’s modified Eagle’s medium
(DMEM; HyClone, Tauranga, New Zealand) supplemented with
10% fetal bovine serum (FBS; Gibco, Rockville, MD, USA),
100µg/ml of streptomycin (Sigma-Aldrich, St. Louis, MO,
USA), and 100 U/ml of penicillin (Sigma-Aldrich), followed
by incubation in a humidified atmosphere with 5% CO2 at
room temperature.

Functional Enrichment Analysis
Gene ontology (GO) analysis, which organizes genes into
hierarchical categories and uncovers gene regulatory networks
on the basis of biological process and molecular function,
was used to analyze the main function of differentially
expressed genes (Gene Ontology, 2006). The KEGG pathway
analysis was then used to identify the significant pathways
for these genes (Kanehisa et al., 2004). The Database for
Annotation, Visualization and Integrated Discovery (DAVID;
https:/david.ncifcrf.gov/) provides a comprehensive set of
functional annotation tools to analyze high-throughput gene
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function. GO and KEGG pathway enrichment analysis were
performed using DAVID. We were only interested in biological
processes, cell components, molecule functions, and KEGG
pathways at the significant level (p < 0.05, FDR < 0.05, and an
enrichment score of >1.5).

Ingenuity Pathway Analysis (IPA)
The core pathway analysis was performed with Ingenuity
Pathway Analysis (Andreas et al., 2014). IPA contains a curated
database of networks and biological relationships based on
original peer-reviewed articles. A geneset including DDX56 and
closely related genes were uploaded and analyzed separately using
the IPA software (Qiagen) (https://apps.ingenuity.com/).

Western Blot Analysis
Cells were harvested in RIPA buffer. Protein concentration
was measured using the BCA protein assay (HyClone-Pierce,
Rockford, IL, USA). Equal amounts of total protein of each
treatment were separated using 12.5% SDS-PAGE and further
transferred onto PVDF membranes. Membranes were incubated
with mouse anti-FLAG or anti-GAPDH antibodies (Santa Cruz
Biotechnology, Santa Cruz, CA, USA). Secondary antibodies
conjugated to horseradish peroxidase and ECL Western blotting
reagents were used for detection.

Quantitative Real–Time Polymerase
Chain Reaction
Total RNA was extracted using the Trizol reagent (Invitrogen,
Shanghai, China) and reverse transcribed to single-stranded
cDNA. The cDNA was then used as a template for the following
polymerase chain reaction (PCR). The primers used were as
follows: for DDX56 forward, 5′-CCG CTT ATG CTA TTC CGA
TGC-3′ and reverse, 5′-TGC GAG ATG GGG TCC CTA CTA
TAG-3′; and for GAPDH forward, 5′-TGA CTT CAA CAGCGA
CAC CCA-3′ and 5′-CAC CCT GTT GCT GTA GCC AAA-
3′. GAPDH was used as an internal control. The PCR products
of DDX56 and GAPDH were 258 and 121 bp, respectively. All
samples were examined in triplicates.

Recombinant Lentiviral Vector Production
and Cell Infection
The interfering target sequence of DDX56
(ACTCAAGGAGCTGATATTA) was designed from the
full-length DDX56 sequence (NM_019082) by GeneChem Co.
Ltd. (Shanghai, China). After testing knockdown efficiencies,
the stem-loop oligonucleotides were synthesized and inserted
into the lentivirus-based pGCSIL-GFP (GeneChem Co. Ltd.)
with AgeI/EcoRI sites. For lentivirus infection, U-2 OS cells
were cultured into six-well plates, and then, the DDX56–
shRNA–lentivirus or negative control (NC) lentivirus was
added according to a multiplicity of infection (MOI). After
72 h of infection, the cells were observed under a fluorescence
microscope (MicroPublisher 3.3RTV; Olympus, Tokyo, Japan).
After 120 h of infection, the cells were harvested to determine
knockdown efficiency by quantitative RT-PCR.

Cell Growth Assay
Cell growth was measured using multiparametric high-content
screening (HCS). Briefly, U-2 OS cells at the logarithmic phase
after being infected with either the NC lentivirus or DDX56–
shRNA lentivirus were seeded at 2,000 cells/well into 96-well
plates; the cells were then incubated at 37◦C with 5% CO2

for 5 days. The cells in the plates were counted using the
Celigo R© Image HCS Cytometer (Nexcelom Bioscience LLC,
Lawrence, MA, USA) for each day’s analysis. In each well, at
least 800 cells were analyzed. Each experiment was performed
in triplicate.

In vitro Proliferation Assay
MTT assays were performed to measure the rate of cell
proliferation in vitro. Briefly, the cells transfected with shDDX56
or shCtrl were planted into 96-well plates at a density of 1 ×

105 cells/well and then cultured for 24, 48, or 72 h, respectively.
The transfected cells were incubated with 25 µl of MTT (Sigma-
Aldrich) for 4 h at 37◦C, followed by removing of supernatants
and adding of 150 µl of DMSO (Sigma-Aldrich). The absorbance
value was measured at 450 nm with a microplate reader (BioTek
Instruments, Winooski, VT, USA).

Cell Apoptosis Analysis
Flow cytometry (FCM) analysis was used to determine the cell
cycle distribution or detect apoptosis. Briefly, U-2 OS cells were
infected with DDX56–shRNA or NC plasmids and incubated at
37◦C for 1, 2, 3, 4, or 5 days. At the indicated time point, adherent
cells were collected. The suspension was filtered through a 300
mesh, and the DNA content of the stained nuclei was analyzed
for the cell cycle phase by BD FACS Calibur flow cytometer
(BD Biosciences, San Diego, CA, USA). Each experiment was
performed in triplicate. Cell apoptosis was assayed by staining
with Annexin V-APC (eBioscience, San Diego, CA, USA) and
detected by FCM. For the analysis of apoptosis, U-2 OS cells
were cultured into six-well plates. After 48 h of transfection with
DDX56–shRNA or NC plasmids, the cells were collected and
washed twice with ice-cold PBS. The cell concentrations were
adjusted to 1 × 106/ml with 1× staining buffer. One hundred
microliters of cell suspension was stained with 5 µl of Annexin
V-APC at room temperature in the dark for 15min. Cells were
analyzed using FCM within 1 h. All experiments were performed
in triplicate.

Statistical Analysis
Statistical analysis was performed using SPSS for Windows
version 23.0 (SPSS, Inc., Chicago, IL, USA). The Student’s t-
test was used for raw data analysis. The random variance model
t-test was performed using BRB-ArrayTools (v4.6, http://linus.
nci.nih.gov/BRB-ArrayTools.html) (Wright and Simon, 2003).
The statistical data for each group were presented as the mean
± SD. Because the sample size was limited, the adjusted p-
values were too large after multiple testing control. We used
raw value of p < 0.05 as threshold for nominally significant
differential expression. Notably, multiple testing adjustment
with FDR < 0.05 was used to filtrate enriched GO and
KEGG pathways.
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FIGURE 1 | Identification of differentially expressed genes (DEGS) in the DEAD-box helicase (DDX) family between osteosarcoma tissue and adjacent normal tissue.

(A) Volcano plot of all 60,492 expression genes included in the GSE126209 dataset. Red spots: up-regulated DEGs; green spots: down-regulated DEGs. (B) The

heatmap with hierarchical clustering for differentially expressed genes in DDX family.

RESULTS

Identification and Preliminary Screening
of DEGs
With a fold change (FC) cut-off value >2 and a value of p < 0.05,
a total of 4,939 mRNAs (3,301 up-regulated and 1,637 down-
regulated) were identified as differentially expressed between
tumor and adjacent normal tissue from the gene expression
microarray profile (Figure 1A). Genes (4,424) succeeded in the
Ensembl Gene ID—gene symbol transferring and 515 genes
failed. The 4,424 genes were then uploaded to the IID website
for bone tissue-specific protein–protein interactions. A total of
32,292 PPIs were identified among those genes. We selected
genes in DEAD-box (DDX) RNA helicases family for further
screening (Table 1 and Figure 1B). The top rank gene DDX56
with highest node degree was chosen as the potential focal target.

mRNA Profile Data and Survival Analysis
The TCGA data retrieved from UALCAN portal were used
to analyze the gene DDX56 expression in SARC patients.
These data revealed that when compared with normal tissues,
DDX56 exhibited a significant higher expression level in tumor
(p < 0.05) (Figure 2A). This difference is independent of gender
and race (Figures S2A,B). These findings were consistent with
the previous DDX56 expression analysis in GSE126209 dataset
and in vitro validation in three different osteosarcoma cell
lines. The gene expression of DDX56 is upregulated in HOS,
Saos-2, and U-2 OS cell (Figure 3). Survival analysis was also
performed to evaluate whether DDX56 expression levels could
predict overall prognosis. However, using all of the TCGA data
obtained, the Kaplan–Meier plot demonstrated no significant
differences (p = 0.81) (Figure 2B). The patients with higher
DDX56 expression had a low survival rate before 3 years of onset,
while it was the opposite after 3 years. The crosspoint of two plots
is near 1,926 days. Stratification was made, but no demographic
bias was found (Figures S2C,D).

TABLE 1 | Protein–protein interaction network statistics of differentially expressed

genes in DEAD-box helicase (DDX) family between osteosarcoma tissue and

adjacent normal tissue.

Rank Gene symbol Degree Betweenness centrality Closeness

centrality

1 DDX56 206 2.24E−04 0.371734

2 DDX54 193 3.29E−04 0.385697

3 DDX55 167 3.69E−04 0.363594

4 DDX5 141 2.07E−04 0.412069

5 DDX31 141 1.11E−03 0.362973

6 DDX6 140 4.36E−04 0.392576

7 DDX27 131 1.11E−04 0.373173

8 DDX11 124 1.70E−04 0.3568

9 DDX10 115 1.56E−04 0.369817

10 DDX3X 87 9.14E−05 0.402981

11 DDX1 80 5.91E−05 0.398811

12 DDX17 79 7.82E−05 0.398782

13 DDX20 69 3.69E−05 0.369504

14 DDX12P 66 4.81E−06 0.338923

15 DDX49 64 2.62E−05 0.35585

Functional Enrichment Analysis
The TCGA data were also used to predict potential genes
relevant to DDX56 function through the UALCAN portal. This
prediction uses additional gene information base on GTEx
profiles. This online in silico analysis yields a total of 480
potential genes relevant to DDX56 function. We found 204
genes co-expressing and interacting with DDX56 by intersecting
these genes with the above DEGs (Figure 4A). More specifically,
when the relationship with DDX56 was divided into positive
and negative and the differential expression was divided into
upregulated and downregulated, there were 199 genes in this
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FIGURE 2 | The Cancer Genome Atlas (TCGA) gene expression and survival plot of DDX56 in sarcoma patients. (A) The expression was significantly higher in

sarcoma patients than in negative control (NC; p < 0.05). (B) Survival plot of DDX56 expression level and race on sarcoma (SARC) patient survival (p = 0.81).

intersection (Figure 4B). The GO analysis and KEGG analysis
were performed using DAVID. The top enriched biological
processes were ribonucleoprotein complex biogenesis, ncRNA
metabolic process and RNA processing. The top enriched
cell components were nucleolus, nucleoplasm, and intracellular
ribonucleoprotein complex. The top enrichedmolecule functions
were poly(A) RNA binding, protein binding, and ATP-dependent
RNA helicase activity, respectively (Figure 4C). The most
enriched pathways include spliceosome, ribosome biogenesis in
eukaryotes, and homologous recombination (Figure 4D).

Ingenuity Pathway Analysis
The core pathway analysis was performed using the IPA software.
The role of DDX56 in cell function includes pluripotency,
replication, and growth. It has several mutations found in liver
neoplasm, melanoma, and pancreatic ductal adenocarcinoma.
Physical interactions, including RNA–RNA, protein–protein,
protein–nucleic acid, and protein–cell or tissue were also found
(Supplementary Material). A physical interaction network was
built based on these findings (Figure 5). This manually curated
database returned a network consisting of three diseases, eight
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transcription regulators, one growth factor, two cytokines, one
ion channel, four enzymes, and several other integrities. The
tp53 gene is a joint node in this IPA network, which has direct
or indirect contacts with many other nodes, and participates in
the communication and regulation of the entire access network.
The nodes referencing relevant diseases in this network include
proliferations, apoptosis, and cell division process of tumor cells.

Lentivirus-Mediated Knockdown of DDX56
In order to validate the gene function of DDX56 in osteosarcoma,
knockdown of the expression of DDX56 was performed by

FIGURE 3 | Validation of DDX56 expression levels in three osteosarcoma cell

lines. Expression of DDX56 mRNA was measured by real-time qPCR in the

indicated cell lines. A constitutively expressed GAPDH gene was used as an

internal control (Ct, cycle threshold; 1Ct = Ct target gene – Ct internal control).

introducing a lentivirus cell infectionmodel specifically designed.
The knockdown efficiency was determined by external Western
blot analysis using human embryonic kidney 293T cells. As is
shown in Figure 6A, the target protein expression was detected
by Western blotting in the cells, but was greatly reduced
in the DDX56–shRNA-infected cultures, indicating effective
knockdown of the target sequence. To further explore the role
of DDX56, we knocked down DDX56 in the U-2 OS cell lines. As
shown in Figure 6B, the proportion of infected cells was >80%
for both the DDX56–shRNA and NC lentivirus by day 3 post-
infection. DDX56 mRNA levels were assessed by real-time PCR
at day 5 post-infection with either the DDX56–shRNA or NC
lentivirus. The DDX56–shRNA lentivirus-infected cultures had
significantly lower levels of DDX56 mRNA compared to levels in
the cultures infected with the NC lentivirus (Figure 6C), which
indicates the success of DDX56 knockdown in targeted cells.

Knockdown of DDX56 in U-2 OS Cells
Reduces Cell Proliferation
To examine the effect of DDX56 on cell growth, U-2 OS
cells cocultured with DDX56–shRNA or NC lentivirus were
seeded into 96-well plates and were monitored by high-
content screening (HCS) every day for 5 days. As illustrated
in Figure 7A and confirmed by quantification in Figure 7B,
control-transfected cells greatly expanded over the 5 days of
the experiment, while the number of DDX56–shRNA-transfected
cells did not change. The cell growth rate was defined as: Cell
count at n days/cell count at first day, where n = 2, 3, 4, and
5 (Figures 7B,C). The results of the present study showed that
DDX56 knockdown significantly inhibited cell growth rate of the
U-2 OS cells.

FIGURE 4 | Identification of DEGs, gene ontologies (GOs), and KEGG pathways relevant to DDX56. (A) Venn diagram for selected identical DEGs and TCGA-relevant

genes. (B) Four-dimensional Venn diagram for up/down-regulated DEGs and positive/negative-related TCGA genes. (C) Functional GO enrichment of DDX56-relevant

DEGs. (D) KEGG pathway enrichment.
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FIGURE 5 | Ingenuity Pathway Analysis (IPA) network of genes that directly interact with DDX56, which were enriched in cell proliferation, apoptosis, and cell cycling.

FIGURE 6 | Knockdown of DDX56 protein expression in 293T cells. (A) External validation of DDX56 knockdown efficiency in 293T cells. DDX56 protein expression

was analyzed by Western blotting in control-transfected (NC) and DDX56–shRNA-transfected 293T cells. GAPDH was used as a loading control. (B) Fluorescent

microscopic images of U-2 OS cell lines infected with DDX56–shRNA and NC lentivirus vectors. Note that most of the cells express GFP. Magnification, ×100. (C)

DDX56 mRNA expression was analyzed by real-time qPCR. Compared with shCtrl, DDX56 mRNA expression was markedly decreased after silencing by RNAi (shCtrl,

sham shRNA interfered control cells; shDDX56, DDX56 targeted shRNA interfered U-2 OS cells; NC, normal control; **p < 0.01).

Knockdown of DDX56 in U-2 OS Cells
Inhibit Clone Formation
In order to validate the cell clonogenic capacity change after
DDX56 knockdown, MTT and clonogenic assays were used.
Three days after shRNA lentivirus infection, the cells were
plated in six-well plates; the number of plated cells was 400,
and the number of clones was observed after 9 days. As is
shown in Figure 7D, the results showed that the number of
colonies in the experimental group decreased, suggesting that the

DDX56 expression is closely related to the clonogenic capacity in
U-2 OS cells.

Knockdown of DDX56 in U-2 OS Cells Can
Trigger Cell Apoptosis
The Annexin V–APC staining and flow cytometry analysis was
carried out to test the relationship between cell apoptosis and
DDX56 expression in U-2 OS cells. As is shown in Figure 7E,
4 days after shRNA lentivirus infection, U-2 OS cells in the
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FIGURE 7 | Effect of DDX56 knockdown on U-2 OS cell growth. (A) Cells were infected with the control or DDX56–shRNA lentivirus, and high-content cell imaging

was applied every day as indicated to acquire raw images (unprocessed by software algorithm) of cell growth. (B) Cells were seeded into 96-well plates and infected

with the control or DDX56–shRNA lentivirus, and cell growth was assayed every day for 5 days (NC vs. DDX56–shRNA, p < 0.05). (C) MTT measurement of cell

proliferation was performed in cells infected with the control or DDX56–shRNA lentivirus. The number of viable cells was 2,000 per well. The optical density (OD) at

490 nm was recorded in 5 days (NC vs. DDX56–shRNA, p < 0.05). (D) Effect of DDX56 knockdown on U-2 OS cell clonogenic ability. Colony formation assay was

performed. Cells were seeded into a six-well plate 3 days after lentivirus. The number of viable cells was 400. The picture (left) was captured 9 days after seeding

using a digital camera. The statistics showed significant difference in clonogenic potential between groups (NC vs. DDX56–shRNA, *p < 0.05). (E) Effect of DDX56

knockdown on U-2 OS cell apoptosis. Cell death was determined by Annexin V staining and flow cytometry. Cell cultures showed a significant increase in apoptosis

compared with NC (*p < 0.05).
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experimental group showed a significant increase in apoptosis
portion (shCtrl 2.53 ± 0.33% vs. shDDX56 25.05 ± 0.24%, p
< 0.001). These results indicate that DDX56 expression is a
determinant of cell apoptosis in U-2 OS cells.

DISCUSSION

Osteosarcoma is the most prevalent primary bone tumor in
children, adolescents, and elderly adults (Mckenna et al., 1987).
The current overall treatment efficiency and recurrence remain
unsatisfactory as the molecular mechanisms underlying the
pathogenesis have not been fully determined. Recent studies
revealed the potential effects of RNA splicing, assembly, and
adjustment on tumor genesis (Inoue et al., 2019; Shuai et al.,
2019; Suzuki et al., 2019). The DDX RNA helicases family
represents the largest family of RNA helicases to be involved
in cellular metabolism (Cordin et al., 2006; Patrick and Paul,
2006; Patrick, 2008). In this study, we found 15 encoding genes
in the DEAD-box helicase family among 4,939 differentially
expressed mRNAs between osteosarcoma tumor and adjacent
normal tissues. Since protein–protein interactions play essential
roles in various biological progresses (Wang et al., 2019), we then
mapped the PPI network using the above coding genes. DDX56,
the node gene with the highest degree in the PPI network was
selected for further study.

Interaction network analysis has been proven effective in
assisting to understand the pathogenesis of complex diseases
(Wang et al., 2020). In this study, the ingenuity pathway
analysis was used to find out potential mechanism and core
pathways that might relate DDX56 to tumor cell proliferations,
cell division, and apoptosis. The IPA database manually screened
existing knowledge from over 20 years’ literature and provides
sensitive and accurate predictions on molecular interactions.
Based on the DDX56-related osteosarcoma IPA network, the
TP53 gene exhibited a crucial role in the connection and
regulation of these nodes. The tumor protein p53 (TP53),
also known as p53, is the most frequently mutated human
gene that regulates the tumor suppression processes (Wang
et al., 2014; Wang and Sun, 2016). It controls cell cycle arrest
and apoptosis induced by chemotherapeutic agents including
doxorubicin, by activating Bax, p21, PUMA (p53 Upregulated
Modulator of Apoptosis), and Noxa (Levine et al., 1991).
Previous studies found that p53 suppresses osteosarcoma cell
proliferation, metastasis, and angiogenesis through inhibition of
the PI3K/AKT/mTOR pathway (Song et al., 2015). Activation
of p53-dependent signaling pathway promotes apoptosis in
osteosarcoma cells and enhances sensitivity of osteosarcoma to
the chemotherapy (Yuan et al., 2007; Yang et al., 2012). In
the present study, we performed corresponding experiments to
validate the effects of lentivirus-mediated DDX56 knockdown
on these processes. First, we detected the mRNA and protein
expression levels of DDX56 in osteosarcoma using public data
and RT-PCR assay. We showed that DDX56 was upregulated
in the GSE126209 dataset, TCGA SARC patients, and validated
using osteosarcoma cell lines. Then, we downregulated DDX56
in U-2 OS cell lines via transfection of shRNA plasmids. We
evaluated the role of DDX56 knockdown in proliferation, cell
division, and apoptosis of osteosarcoma cells. As expected,

we observed that DDX56 knockdown exerted a significant
inhibitory effect on proliferation and clonogenic capacity, while
significantly promoting cell apoptosis in U-2 OS cells. These
findings suggest that the DDX56-modulated oncogenesis and p53
signaling-related osteosarcoma neoplasia may share a common
molecular pathway. Further studies regarding the underlining
mechanisms are worth exploring.

Moreover, we found 204 genes co-expressing and interacting
with DDX56 in the studied gene profile. These genes are
primarily involved in RNA processing-related pathways,
including spliceosome, ribosome biogenesis in eukaryotes,
and homologous recombination. Notably, alternative RNA
splicing is an essential process to yield proteomic diversity in
human malignancies (Inoue et al., 2019; Shuai et al., 2019),
especially including osteosarcoma (Ajiro et al., 2016). Several
DDX family members were reported to play roles in alternative
splicing (Linder and Jankowsky, 2011; Bourgeois et al., 2016).
DDX5 and DDX17 contribute to tumor cell invasiveness by
regulating alternative splicing of several DNA- and chromatin-
binding factors (Peters and Doets, 2009). As DDX56 shares
common structures with the DDX family members (Linder
and Jankowsky, 2011), DDX56 may also change splicing by
spliceosome assembly alteration. A recent study has verified that
DDX56 cell promotes proliferation in colorectal cancer through
alternative splicing tumor suppressor WEE1 (Voss et al., 2015).
We found in our experiment that DDX56 knockdown exerted
a significant inhibitory effect on proliferation and clonogenic
capacity, while significantly promoting cell apoptosis in U-2
OS cells. However, the underlining mechanism remains to be
further verified.

Survival analysis considering DDX56 expression on the
prognosis of osteosarcoma was performed using data from the
TCGA database. Oddly, these data do not support significant
difference in clinical outcomes between patients with high-
and low-expressed DDX56 probably due to the significant
heterogeneity between samples. In practice, it was also recognized
that the overall prognosis was poor before chemotherapy
(Anderson, 2016). Moreover, the number of samples with
osteosarcoma in the TCGA database is limited. Even though it
is the largest samples volume currently available with clinical
and expression data, there are only 65 primary sarcoma patients
included with high DDX56 expression, given that osteosarcomas
represent fewer than 1% of cancers overall. In the TCGA
database, DDX56 is overexpressed in osteosarcoma among other
cancers. External validation was performed in vitro using several
osteosarcoma cell lines to suggest that DDX56 might be a novel
oncogene in osteosarcoma. More rigid designed prospective
clinical survival observation as well as mechanical studies should
be performed in order to further validate this hypothesis.

There are some limitations that should be acknowledged. First
of all, the sample size is relatively small due to the low overall
incidence of the rare musculoskeletal malignancy. Second, the
selected subjects all come from the Chinese Uyghur population.
Given the potential ethnic specificity, the genetic background is
possibly different between the Uyghur cells and purchased cells,
which might affect the extension of the conclusion. Third, the
IPA program builds its models by querying the known literature.
Unknown interactions could not be discovered through this
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analysis, and thus, it is likely that there are highly relevant
interactions that do not emerge in IPA. The next limitation is
the fact that, since IPA queries only known associations and
interactions, genes about which little or nothing is known about
the function of their products cannot be identified as hubs using
this method. In addition, the PPI network was constructed using
a previous published database (IID) (Kotlyar et al., 2016); those
unidentified but existing protein interaction relationships may
have been missed. Given these limitations, the models generated
here must be considered preliminary and incomplete. Other
predictive tools, such as predictions of protein interactions based
on molecular structure, specific groups, may be good cross-
validations (Deng et al., 2020; Hu et al., 2020). Further studies
should also be done to illustrate the underlying mechanisms.

In conclusion, we have identified DDX56 as a novel
oncogene using bioinformatics tools and demonstrated that
DDX56 was overexpressed in osteosarcoma tissues and cell lines.
Furthermore, DDX56 knockdown inhibited cell proliferation and
promoted cell apoptosis in osteosarcoma. These findings propose
that DDX56 may be considered as a potential therapeutic target
for the treatment of osteosarcoma.
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Purpose: To assess the utility of texture analysis for predicting the pathological degree
of differentiation of pancreatic carcinoma (PC).

Methods: Eighty-three patients with PC who went through postoperative pathology
diagnose and CT examination were selected at Anhui Provincial Hospital. Among them,
34 cases were moderately differentiated, 13 cases were poorly differentiated, and 36
cases were moderately poorly differentiated. The images in the arterial and venous
phase (VP) with the lesions at their largest cross section were selected to manually
outline the region of interest (ROI) to delineate lesions using open-source software.
A total of 396 features were extracted from the ROI using AK software. Spearman
correlation analysis and random forest selection by filter (rfSBF) in the caret package
of R studio were used to select the discriminating features. The receiver operating
characteristic ROC analysis was used to evaluate their discriminative performance.

Results: Twelve and six features were selected in the arterial and VPs, respectively.
The areas under the ROC curve (AUC) in the arterial phase (AP) for diagnosing poorly
differentiated, moderately differentiated and moderate-poorly differentiated cases were
0.80, 1, and 0.80 in the training group and 0.77, 1, and 0.77 in the test group; in the
VP, the values were 0.81, 1, and 0.82 in the training group and 0.74, 1, and 0.74 in the
test group.

Conclusion: Texture analysis based on contrast-enhanced CT images can be used as
an adjunct for the preoperative assessment of the pathological degrees of differentiation
of PC.

Keywords: pancreatic carcinoma, texture analysis, contrast-enhanced CT, pathological grading, machine
learning
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INTRODUCTION

Although all the efforts have been made to develop better
pancreatic carcinoma (PC) treatment strategies, the prognosis
still remains poor. PC, which is a tumor with a very high
degree of malignancy and it is usually found at an advanced
stage (Luu et al., 2019). Early diagnosis remains challenging
if the tumor is not located close to the common bile duct,
causing obstructive jaundice (Siegel et al., 2016). Some patients
have already missed the best treatment opportunity when PC is
discovered. PC cells are highly invasive and prone to metastasis
and the 5-year survival rate is only 5–7% (Schima et al., 2007;
Siegel et al., 2016). Wang et al. (2003, 2007) reported that
the degree of enhancement and differentiation of the tumor
were inversely proportional to the degree of malignancy. The
lower the degree of enhancement, the higher the degree of
malignancy, and the lower the degree of differentiation, the
higher the degree of malignancy. Surgery is the only effective
method to cure PC and is still considered for most lesions (Cloyd
and Poultsides, 2015; Wong et al., 2018). Different pathological
grades of PC have different prognoses (Kurihara et al., 2015;
Matsumoto et al., 2015). Therefore, the preoperative prediction
of the pathological grade and differentiation of lesions is very
important in the treatment and prognostic evaluation of patients
with PC (Kurihara et al., 2015; Matsumoto et al., 2015). PC
can be detected with computed tomography (CT), magnetic
resonance imaging (MRI), and ultrasound (US), but CT is still
the most commonly used method for the diagnosis of PC
(Chun-Ye et al., 2012). Recently, texture analysis technology has
become a topic of growing interest. This technology is widely
used in the diagnosis, differential diagnosis and pathological
grading of diseases by extracting potential information from
the image and analyzing the extracted texture features. When
the radiologists diagnose the disease, it is mainly based on
the observation of the image of the lesion and the clinical
manifestation of the patient. The application of texture analysis
in imaging can quantify the imaging features of the disease, thus
assisting the imaging physician in the diagnosis (Davnall et al.,
2012; Ng et al., 2013; Rao et al., 2014; Hanania et al., 2016;
Choi et al., 2018).

Some researches had shown CT texture analysis was helpful
to the prediction of the resectability and prognosis in patients
after neoadjuvant therapy for pancreatic ductal adenocarcinoma
and the prediction of pancreatic neuroendocrine tumor grade
(Canellas et al., 2018; Choi et al., 2018; Wong et al., 2018).
Sandrasegaran et al. (2019) has reported that CT texture
analysis was easy to perform on contrast-enhanced CT and
it could determine prognosis in patients with unresectable
PC. Huang et al.’s (2019) study showed that two-dimensional
texture analysis was a feasible quantitative technique for the
differential diagnosis of pancreatic lymphoma from pancreatic
adenocarcinoma, and the diagnostic performance was similar
to CT characteristics. To the best of our knowledge, texture
analysis has not been used as a method for predicting
PC differentiation. The purpose of this study is to explore
the value of texture analysis on CT images for predicting
PC differentiation.

MATERIALS AND METHODS

Ethical Approval
The studies involving human participants were reviewed and
approved by Medical Research Ethics Committee of The First
Affiliated Hospital of University of Science and Technology of
China (Anhui Provincial Hospital).

Patients
A retrospective analysis was performed on patients at the
Department of Imaging of the Anhui Provincial Hospital
from 2013 to 2019 who met the following inclusion criteria:
(1) contrast-enhanced multiphase abdominal CT scan before
surgery; (2) lesion size ≥10 mm; (3) a single mass. The exclusion
criteria were as follows: (1) received chemotherapy or other
treatment before CT examination; (2) poor-quality images; (3)
the tumor was transferred, so the patient could not undergo
surgery. All included patients underwent surgical treatment
within 2 weeks after enhanced CT scan. The chi-square test was
used to compare the differences in the sex distribution between
the groups. P < 0.05 was considered statistically significant.
A total of 83 patients with PC diagnosed by pathology from
the Anhui Provincial Hospital were collected, including 54
males and 29 females, aged from 41 to 76 years, with a mean
age of 60.69 ± 9.12 years, as shown in Figure 1. The main
symptoms of the patients when they came to the hospital for
treatment were jaundice (74 cases, 89.1%), yellow urine (44 cases,
53.0%), abdominal discomfort (including abdominal distension
or abdominal pain, 50 cases, 60.2%), itchy skin (5 cases, 6.0%),
fever (2 cases, 2.4%), and diarrhea (1 case, 1.2%); in addition,
one patient was found to have no obvious clinical symptoms on
medical examination.

Scanning Method
All patients fasted for 6 h before the CT scan. The examination
was carried out according to the following protocol:
intramuscular injection of anisodamine (654-II) 10–15 mg
and 800–1000 mL of clear water orally 15 min before the
scan. All examinations were performed using a multidetector
CT scanner (DiscoveryHD750, Gemstone Spectral Imaging,
GE Healthcare, Milwaukee, WI, United States). All patients
underwent routine unenhanced/three-phase enhanced CT
scans to determine the extent of the lesion. The parameters
for abdominal CT were as follows: tube voltage 120 kVp, tube
current 250–350 mA, slice thickness 5 mm, slice interval 5 mm,
field of view 35–50 cm, matrix 512 × 512, rotation time 0.7 s
and pitch 1.375. After unenhanced CT scans were obtained,
each patient received 1.5 mL per kilogram of body weight of
non-ionic iodinated contrast material (Iohexol, Omnipaque
300, GE Healthcare, Shanghai, China), which was administered
at a rate of 3.0 mL/s using a power injector (Stellant; Medrad,
Warrendale, PA, United States). The scanning delay for arterial
phase (AP) imaging was determined using automated scan
triggering software (SmartPrep; GE Healthcare, Milwaukee,
WI, United States). AP scanning automatically began 10 s after
the density in the descending aorta reached 100 HU on the
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FIGURE 1 | Screening and grouping flow chart of enrolled cases in this study.

monitoring scan. At delays of 30 s and 3 min after AP scanning,
venous phase (VP) and delayed phase (DP) acquisitions
commenced, respectively.

Region-of-Interest (ROI) Segmentation
and Radiomics Feature Extraction
The images of the arterial and VPs of all patients were
collected from the CT ICPACS workstation of the Department of
Radiology, Anhui Provincial Hospital, and exported in DICOM
format. Two imaging physicians with 15 years of diagnostic
experience in the CT diagnosis of abdominal disease used
open-source software1 to delineate Region-of-Interests (ROIs)
containing the target lesions in the arterial and venous images.
Open-source ITK-SNAP software was used for ROI sketching.
During the process of sketching, the operators selected the largest
area of the enhancement on the AP and VP of the tumor,

1www.itksnap.org

paying attention to avoiding the pancreatic duct, blood vessels,
calcification, and necrotic cystic areas to minimize errors.

Statistical Analysis and Clinical
Predictive Model-Building
To ensure the intra- and inter-observer reproducibility,
30 patients were randomly selected and delineated by the
radiologists1 for twice to calculate the intra-observer ICCs, and
delineated by radiologist2 for once to calculate the inter-observer
ICCs. An ICC>0.75 indicated good reproducibility. Radiologist1
finished the rest delineation.

The original images were normalized by transforming them
into standard intensity ranges with a mean value of 0 and a
standard deviation of 1 (z-score transformation) before the image
features were extracted. AK software (GE Healthcare, Analysis
Kit, Version: 3.2.0. R) was used to extract a total of 396 feature
parameters, of which 42 were histogram features, nine were
form factors, 154 were gray level co-occurrence matrix (GLCM)

TABLE 1 | Comparison of the clinical data of the cases grouped according to the degree of differentiation.

Degree of pathological differentiation Number of cases (patients) Sex Age (year) CT value (Hu)

Male Female Arterial phase Venous phase

Poor differentiation 13 9 4 42∼76 52.1 ± 9.2 67.7 ± 8.4

Moderate-poor differentiation 36 24 12 43∼76 56.2 ± 9.4 72.5 ± 13.2

Moderate-poor differentiation 34 21 13 41∼75 65.7 ± 9.9 84.5 ± 11.7

T value χ2 = 0.303 F = 1.213 F = 12.660 F = 13.498

P value >0.5 >0.05 <0.05 <0.05
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FIGURE 2 | Enhanced CT images of moderately differentiated PC in the arterial phase (a) and venous phase (c); the treatment ROI using ITK-SNAP software (b,d).

features, 11 were gray-level size zone matrix (GLSZM) features,
and 180 were run length matrix (RLMs) features.

All statistical analyses were performed in R (3.5.12). Patients
were randomly assigned to the training and test group at a ratio
of 7:3. In training group, first, Spearman correlation analysis
was used to eliminate features with correlation coefficients >0.9.
Next, random forest selection by filter (rfSBF) in the “random
forest” package with ten-fold cross validation tests was used to
select the best feature subsets in each phase. Then, the conditional
inference tree “ctree” of the “train” function in the “caret” package
was applied in the best sub-feature groups to train the predictive
model. Afterward, the “pROC” package was applied to evaluate
the discriminative performance of the model and validated in the
test group. Other parameters, including accuracy, sensitivity and
specificity, were calculated by the “confusion matrix.”

RESULTS

Clinical Characteristics
A total of 83 cases of PC were included in this study. The
postoperative pathological grade included 13 cases of poorly

2http://www.Rproject.org

differentiated adenocarcinoma, 36 cases of moderately poorly
differentiated adenocarcinoma, and 34 cases of moderately
differentiated adenocarcinoma. The CT values of the AP and
VP of the three groups were statistically significant (P < 0.05)
(Table 1). Part of the images and ROIs are shown in Figure 2.

Feature Selection and Radiomics
Signature Building
The range of the inter-observer ICCs in the Artery phase were
from 0.0096 to 1, and the intra-observer ICCs were from 0.14 to
1; In VP, inter-observer ICCs were from 0.06 to 0.94, and intra-
observer ICCs were from 0.26 to 1.0, 282 features for Artery
phase and 274 for VP with an ICC value bigger than 0.75 were
selected for the further analysis. Spearman correlation analysis
and the random forest method were used to select features.
The final retained features of the arterial and VPs are shown
in Figure 3. Twelve features were retained in the AP (a), six
features were retained in the VP (b), and 12 features were
retained in the combined group (c); the x-axis represents the
weight of the features, the y-axis represents the last retained
features, and the larger the weight is, the more predictive the
feature is. In the AP, the three most predictive features in
the poorly differentiated group, moderately differentiated group
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FIGURE 3 | The best texture features obtained by the random forest, The arterial phase (A), the venous phase (B), and the combined group (C).

and moderate-poorly differentiated group were compactness2,
compactness1 and histogramEnergy; in the VP, the two most
predictive features were compactness1 and histogramEnergy; in
the combined group, the two most predictive features were
artery-histogramenergy and venous-compactness2. We can see
that in both the AP and VP, compactness1 from “Form factor”
and histogramEnergy from “histogram” show the best predictive
performance. The explanation of some texture features is shown
in Table 2.

The AUC(95%CI) value of the three models to differentiate
the degree of differentiation in the training group and test
group of PC patients were shown in Figures 4A–F. Other
parameters, including sensitivity, specificity, and model accuracy
were shown in Table 3, The overall accuracies in the AP
and VP were 0.77(95%CI: 0.64–0.87) and 0.77(95%CI: 0.62–
0.86) in the training group and 0.74(95%CI: 0.52–0.89) and
0.70(95%CI: 0.47–0.86) in the test group, respectively. We
can see that neither the AUC nor sensitivity and specificity
in both the AP and VP have a one hundred percent value
in differentiating moderate differentiation. Additionally, the
model has good performance in poor differentiation and
moderate-poor differentiation, and the accuracy of the model
was higher than 0.74 in both the training and test groups.
Thus, it can be considered that texture analysis can be used

for enhanced CT scanning and has obvious texture features.
The comparison also has a certain predictive effect, and
the malignancy of pancreatic cancer can be evaluated to
a certain extent.

DISCUSSION

Pancreatic carcinoma is a very malignant tumor with a 5-
year survival rate of <6%. And it is possible that PC will
become the second leading cause of death from malignancy in
the next two decades (Rahib et al., 2014; Ferlay et al., 2015).
The disease is usually detected at a late clinical stage that is
difficult to treat. Therefore, the preoperative evaluation of the
degree of malignancy and resectability of PC is very important
for the operation, postoperative treatment and prognosis of
patients (Kurihara et al., 2015; Matsumoto et al., 2015). This
study provides a radiomics features based machine learning
model for predicting the degree of differentiation of PC before
surgery. And the results show that the model has high feasibility
and credibility.

Texture analysis has been shown great value in medical
image preprocessing This technology is not affected by photon
noise and can quantitatively measure tumor heterogeneity.
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FIGURE 4 | (A,B) represent the training and test groups with moderately differentiated, poorly differentiated, and moderate-poorly differentiated pathologies of PC.
(C,D) represent the AUC values of the venous phase of the training and test groups with moderately differentiated, poorly differentiated and moderate-poorly
differentiated PC. (E,F) represent the combined groups (Class 0 means moderately differentiated, Class 1 means poorly differentiated, Class 2 means
moderate-poorly differentiated, Res means the rest of the cases).
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TABLE 2 | Features measured with different texture analysis
methods by AK software.

Texture feature groups Parameters

Histogram Features (Gray intensity
information and its distribution of the lesion, for
example HistogramEnergy describes the
severity of the change in image brightness
information, the smaller the change, the greater
the Energy.)

Mean, Variance, Uniformity,
Skewness, Kurtosis,
Energy, Entropy

Form Factor Features (The shape of the
lesion, For example, Compactness, describing
the degree of roundness or sphericity of the
lesion; if the lesion is more spherical, the
Compactness value is greater.)

Volume CC, Surface,
Surface Volume Ratio,
Compactness, Maximum
3D Diameter

GLCM Features (Obtained by counting the
probability of pixel pairs in different directions
and step sizes)

Entropy, Inertia, Inverse
Difference Moment;

RLM Features (obtained by counting the
probability of multiple occurrences of pixels in
different directions and steps)

Short Run Emphasis, Low
Gray Level Run Emphasis,
Short Run Low Gray Level
Emphasis;

GLSZM Features (obtained by counting the
number of pixels with the same adjacent gray
value, so as to obtain the gray connected area
matrix)

Small Zone Emphasis, Low
Gray Level Zone Emphasis,
Short Run Low Gray Level
Emphasis

GLCM, gray level co-occurrence matrix; RLM, Run Length Matrix; GLSZM, Gray
Level Size Zone Matrix. All of them are used to describe the complexity of the
lesion site, level changes, and the thickness of the texture and other information.

It is widely used in the diagnosis, differential diagnosis and
therapeutic evaluation of tumors (Davnall et al., 2012; Ng
et al., 2013). Texture analysis can parameterize the potential
information in the inspected image to obtain more abundant
quantitative data, which will facilitate structured analysis and the
processing of data. Kim et al. (2019) and Sandrasegaran et al.
(2019) determined that texture analysis is useful for predicting
a patient’s prognosis and resectability of the tumor, after
neoadjuvant therapy for PDAC. Canellas et al. (2018) showed
that texture analysis has certain feasibility in the classification of
pancreatic neuroendocrine tumors. We can boldly hypothesize
that this technology can also be used for pathological grading of
pancreatic cancer.

Watanabe et al. (2014) showed that when more tumor-
associated fibrosis is present, the stronger the tumor invasiveness,
and the higher the degree of malignancy and that the
overexpression of fibroblast activation protein in PC tissue causes

an increase in the lesion interstitial fiber component. Blocking the
contrast agent into the lesion weakens the degree of enhancement
of the lesion. The results of this study are consistent with
the findings of Wang et al. (2003, 2007), that the higher the
malignancy of the tumor, the lower the degree of differentiation
and enhancement. In addition, Eilaghi et al. (2017) showed
that CT image-based texture analysis can effectively distinguish
between tumor and normal pancreatic tissue, and CT texture
features may become an imaging biomarker for the postoperative
overall survival rate. Our study showed that the feasibility of CT
image-based texture analysis for the preoperative prediction of
PC differentiation.

The limitations of this study are as follows: (1) the sample size
was limited, and the measured values of the parameters may be
biased; (2) there was no uniform standard when selecting the ROI
in this study, and manual image sketching is time-consuming and
laborious; and (3) in this study, feature extraction was based on
a single enhanced image for analysis. The better way is to use
3D stereo modeling to extract texture features for analysis. In
actual work, imaging physicians use CT plain scans and three-
phase enhancement methods to analyze and diagnose the lesions
or perform multiple imaging examinations at the same time to
achieve a more comprehensive diagnosis.

In summary, CT texture analysis in PC has a clear predictive
value for identifying differences in tumor grading. It provides
a new method for assessing the malignant degree of tumor
grading. It has the advantage of being a non-traumatic
examination method, it is not dependent the opinion or
experience of radiologists, that still permits the accurate diagnosis
of patients with cancer.
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In the clinical diagnosis of epileptic diseases, the intelligent diagnosis of epileptic

electroencephalogram (EEG) signals has become a research focus in the field of brain

diseases. In order to solve the problem of time-consuming and easily influenced by

human subjective factors, artificial intelligence pattern recognition algorithm has been

applied to EEG signals recognition. However, at present, the common empirical mode

decomposition (EMD) signal decomposition algorithm does not consider the problem of

mode aliasing. The EEG features obtained by feature extraction may be mixed with some

unimportant features that affect the classification accuracy. In this paper, we proposed

a new method based on complementary ensemble empirical mode decomposition

(CEEMD) combined with iterative feature reduction for aided diagnosis of epileptic EEG.

First of all, the evaluation indexes of decomposing and reconstructing signals by several

methods were compared. The CEEMD was selected as the decomposition method of

the signals. Then, the support vector machine recursive elimination (SVM-RFE) was used

to reduce 9 features extracted from EEG data. The support vector classification of the

gray wolf optimizer (GWO-SVC) recognition model was established for different feature

subsets. By comparing the classification accuracy of training set and test set of different

feature subsets, and considering the complexity of the model reflected by the number of

features selected by SVM-RFE, the analysis showed that the 6 feature subsets with fewer

features and higher classification accuracy could reflect the key information of epileptic

EEG. The accuracy of the training set classification was 99.38% and the test set was

as high as 100%. The recognition time was only 1.6551 s. Finally, in order to verify the

reliability of the algorithm proposed in this paper, the proposed algorithm compared with

the classification model established by the raw EEG signals and the optimization model

established by other intelligent optimization algorithms. It is found that the algorithm

used in this paper has higher classification accuracy and faster recognition time than

other processing methods. The experimental results show that CEEMD combined with

SVM-RFE is feasible for rapid and accurate recognition of EEG signals, which provides

a theoretical basis for the aided diagnosis of epilepsy.

Keywords: intelligent diagnosis, EEG signals, complementary ensemble empirical mode decomposition, feature

reduction, gray wolf optimizer
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INTRODUCTION

Epilepsy is a chronic disease of nervous system disorder caused
by abnormal discharge of brain neurons (Sheng et al., 2018).
Worldwide, the number of epileptics has exceeded 50 million
(Yang et al., 2011). The symptoms of epilepsy patients are usually
sudden loss of consciousness, muscle convulsions, etc., which
make epilepsy patients have a high mortality rate (Kobow et al.,
2012), so their daily life has been greatly troubled. If the epilepsy
of seizure type can be accurately identified and classified so
that doctors can take reasonable treatment plans, it can help
epileptics avoid the risk of disease in advance (Chen E. et al.,
2018). Therefore, it is of great significance to strengthen the early
diagnosis and late treatment of epilepsy.

The analysis of electroencephalogram (EEG) signals has the
characteristics of high efficiency, small damage, and low cost.
It has become the main clinical diagnosis method of epilepsy.
This method needs experienced doctors to observe the high
amplitude synchronous rhythms such as sharp wave and spike-
wave in EEG during the epileptic seizure for a long time with
the naked eye (Lévesque et al., 2017), which will not only
consume a lot of energy but also may get wrong diagnosis results
due to various uncertain factors. Therefore, it is necessary to
develop a method of automatic recognition of epileptic EEG.
In recent years, machine learning and deep learning algorithms
have been widely applied in the biomedical and health field
(Wang et al., 2019, 2020; Deng et al., 2020; Hu et al., 2020).
Artificial intelligence combined with EEG has achieved good
results in the diagnosis and prediction of epilepsy and other
diseases. For example, Bajaj and Pachori (2013) used empirical
mode decomposition (EMD) to decompose EEG signals and
improved the classification accuracy of epilepsy detection by
analyzing the first three natural mode function components.
Puspita et al. (2017) extracted the mean, standard deviation
and median statistical features of EEG data, and then used
the back-propagation neural network (BNN) to establish the
classification and recognition model of EEG data of epilepsy
patients and achieved the best classification results. Cao et al.
(2017) combined the short-time Fourier transform (STFT) with a
convolutional neural network (CNN) and used the deep learning
algorithm to avoid the process of manual feature selection in
EEG recognition. The analysis steps of EEG mainly include
preprocessing of raw signals, feature extraction, recognition, and
classification. EMD is often used as the decomposition method
of EEG signals. However, only one or some IMF components
selected by subjective experience are taken as the research object,
which cannot completely contain the useful information of the
original signals, so the accuracy of EEG obtained is low, and it
cannot effectively identify different types of EEG. Several typical
EEG feature indexes are extracted directly for classification and
recognition. This method cannot judge whether the extracted
EEG features are all effective EEG feature indexes, which not
only increases the recognition time but also affects the accuracy
of classification.

Complementary ensemble empirical mode decomposition
(CEEMD) is a signal decomposition method developed
on the basis of empirical mode decomposition (EMD)

(Muñoz-Gutiérrez et al., 2018), it has obvious advantages in
dealing with non-linear and non-stationary signals. Satija
et al. (2017) used a modified CEEMD algorithm to achieve
automatic detection and classification of ECG noise. Chen
and Hsiao (2018) used the CEEMD method to extract hidden
signals from the respiratory inductance plethysmography (RIP)
signals based on the frequency bands of different respiratory
muscles. Amezquita-Sanchez et al. (2016) combined CEEMD
with magnetoencephalography (MEG) to distinguish patients
with mild cognitive impairment (MCI). Support vector
machine recursive feature elimination (SVM-RFE) is a feature
selection method, it can eliminate the feature information of
low importance, and effectively remove the interference of
redundant information (Tapia et al., 2012), which is conducive
to the establishment of the classification model. SVM-RFE has
been widely used in biomedical research. Ding et al. (2015)
proposed a method of SVM-RFE combined with voxel-based
morphometry (VBM) to analyze MRI data and realized the
automatic classification of smokers and non-smokers. Anaissi
et al. (2016) used the ensemble SVM-RFE algorithm to select
the characteristic genes in the genomic data. Bisdas et al. (2018)
adopted the SVM-RFE method to select the most discriminative
diagnostic biomarkers. Gray wolf optimizer (GWO) is a new
swarm intelligent optimization algorithm (Yamany et al., 2015).
It can improve the performance of the SVM training model and
has the advantages of simplicity and efficiency. Ramakrishnan
and Sankaragomathi (2017) used the modified region growing
(MRG) and GWO to achieve the accurate segmentation of CT
brain tumor images. Shankar et al. (2018) proposed an improved
GWO to optimize the performance of multi-kernel SVM for
thyroid disease classification.

In this paper, CEEMD was used to decompose the raw
epileptic EEG signals into natural mode functions (IMF)
of different frequencies, then these component signals were
reconstructed and their linear and non-linear features were
extracted. SVM-RFE was used to eliminate non-key features
and reduce the influence of redundant features on recognition
accuracy. Finally, the GWO-SVC classification model based on
GWO optimized support vector classification (SVC) algorithm
was applied to classify the EEG signals, which provided a
theoretical basis for the aided diagnosis of epilepsy.

MATERIALS AND METHODS

Selection of Experimental Data
The experimental data in this paper were from the EEG database
of the epilepsy research center of the University of Bonn,
Germany (Andrzejak et al., 2001). The sampling frequency of
EEG signal acquisition system was 173.61Hz, and the range
of filtering bandwidth was 0.53–40Hz. EEG data have been
preprocessed to remove the artifacts and the data were widely
used in public, so the experimental results have high reliability
and contrast. The data set consists of five data subsets (denoted
A–E), each of which contains 100 single-channel signals with
a time of 23.6 s, and each single-channel signal contains 4,097
sampling points, and the bit of A/D conversion is 12 bits. The
band-pass filter with a bandwidth of 0.53–40Hz was used for
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filtering. Subsets A and B were EEG signals from the scalp surface
of 5 healthy volunteers when they opened and closed their eyes,
respectively. Subset C was the EEG signals of the hippocampal
formations in five epileptic patients. Subset D was the EEG signal
of the epileptogenic area with interictal epilepsy. Subset E was the
EEG signal of the epileptogenic area during the ictal epilepsy.

The hardware condition of the computer used in the
experiment was the Intel Core i7 processor, 4GB memory,
win7 system. Under the environment of MATLAB r2016b
(MathWorks, USA), the algorithm was used to simulate and test
the data. The support vector machine chose the libsvm-mat-3.1
toolkit (Chang and Lin, 2011) to run.

Complementary Ensemble Empirical Mode
Decomposition
CEEMD is an improved signal decomposition method for EEMD
proposed by Yeh et al. (2010). This method not only solves
the problems of residual white noise and complex processing in
EEMD (Wu and Huang, 2009) decomposition but also effectively
suppresses the modal aliasing in the EMD decomposition
method (Wu and Huang, 2010). The decomposition process
of the CEEMD algorithm is based on EMD, adding a pair of
auxiliary white noise with the same amplitude and opposite
sign to the raw signals. These raw signals are decomposed
into several intrinsic mode functions (IMFs) and residuals
with clearer physical meaning. As the number of added noise
increases, the residual amount of noise in reconstruction data will
decrease, and the final residual amount can be almost ignored
(Chen D. et al., 2018).

The decomposition steps of CEEMD are as follows:

Step 1: A pair of random Gaussian white noises with the same
amplitude and opposite signs are added to the signal to form
two new decomposition signals.

{

S+i(t) = S(t)+ N+
i (t)

S−i(t) = S(t)+ N−
i (t)

(1)

Where S(t) is the raw signal,Ni(t) is the white noise added for the
i time, S+i(t) is the signal obtained by adding the positive white
noise for the i time, and S−i(t) is the signal obtained by adding the
negative white noise for the i time. Generally, the value is 0.01–0.5
times of the standard deviation of the original signal.

Step 2: EMD algorithm is used to decompose S+i(t) and S−i(t)
to get their IMF components and residual terms.















S+i(t) =
m
∑

j = 1
I+ij(t)+ R+i(t)

S−i(t) =
m
∑

j = 1
I−ij(t)+ R−i(t)

(2)

Where I+ij(t) denotes the j IMF component from S+i(t)
decomposition, I−ij(t) denotes the j IMF component from S−i(t)
decomposition, R+i(t) and R−i(t) denote the corresponding
residual terms, respectively.

Step 3: Step 1 and step 2 are repeated form times, and random
white noise is added each time until the residual terms can no
longer be decomposed.
Step 4: Calculate the mean value of IMF components obtained
by decomposition, and take the mean value as the result of
IMF component.

Cj(t) =
1

2m

m
∑

i = 1

(I+ij(t)+ I−ij(t)) (3)

where Cj(t) denotes the first IMF component obtained
by CEEMD.

Support Vector Machine Recursive
Feature Elimination
Support vector machine recursive feature elimination (SVM-
RFE) is a feature selection method based on feature sorting
technology proposed by Guyon et al. (2002). The function of RFE
is to rank features by greedy strategy. Starting from the complete
set, the least relevant features are eliminated one by one to
complete the backward feature reduction, and finally, the optimal
feature subset is obtained. SVM-RFE is a combination of SVM
and RFE. In the process of SVM training, the weight of features
can reflect their contribution to classification decision-making.
Therefore, the weight of a classifier can be used as the basis
of feature ranking, and then the relatively unimportant features
are deleted one by one according to the weight of classifier
until a certain number of features with higher importance
are left. The combination of the SVM classification algorithm
and feature selection process can improve the effectiveness of
feature selection.

The steps of iterative reduction feature of SVM-RFE method
are as follows:

Step 1: Input training sample data D = {d1, d2, ..., d3}
T and

category label L = {l1, l2, ..., ln}
T

Step 2: Initialize feature set α = {λ1, λ2, ..., λn} and rearrange
feature set β = {}

Step 3: The SVM classifier is used to train the input data,
and the parameter information of the support vector is δ =

SVMtrain(D, L)
Step 4: Calculate the cost function of features

f (x) =
1

2
DTU(x)−

1

2
DTU(−x) (4)

WhereU(x) is amatrix with element aiajK(xi, xj),U(−x) is the
matrix after eliminating x features, and K denotes the kernel
function of correlation between xi and xj
Step 5: The weight coefficient w is used as the ranking criterion
of feature importance to reorder new features. Get a new
feature order set β = {β1,β2, ...,βn}, and remove the feature
with the smallest weight coefficient from the current order set,
repeat Step 3–Step 5, until enough features are deleted
Step 6: A set of nested feature subsets Z1 ⊂ Z2 · · ·Zn is
defined, Zi(i = 1, 2, · · · , n) represents a subset of the top
most important features selected from the feature set, and uses
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the recognition rate of the classifier as the evaluation index to
select the best subset.

Gray Wolf Optimizer Combine With
Support Vector Classification
Gray wolf optimizer (GWO) is an advanced heuristic group
intelligent optimization algorithm proposed by Mirjalili et al.
(2014). This algorithm is mainly an optimized search method
which simulates the social hierarchy of gray wolf and the way
of preying on its prey. It has strong convergence performance,
few parameters and easy to realize, and so on. SVM is originally
a two classification model and can be used to solve multi-
classification problems. It is a linear classifier with the largest
interval defined in the feature space, which makes it different
from the perceptron (Utkin et al., 2016). The learning strategy
of SVM is to maximize the interval. SVM is a non-linear classifier
in essence. SVM algorithm can be used for pattern classification
or nonlinear regression, and SVC is the algorithm used by
SVM to solve classification problems (Chen et al., 2010). The
classification performance of the SVC model is affected by the
penalty coefficient c and kernel function parameter g. Through
the GWO algorithm, the SVC parameters are optimized to find
the best classification parameters c and g, so as to obtain the
GWO-SVC model with good performance.

The specific parameter optimization steps are as follows:

Step 1: α, β , and γ are three different classes of primitive
wolves with the same scale generated from feasible
regionW = {w1,w2, · · · ,wn}

Step 2: Initialize the position of the original wolves, obtain the
fitness µ of gray wolf individuals in the population, and define
the optimal and suboptimal fitness as c and g, respectively
Step 3: Select the fitness of the top three, and set the
corresponding gray wolf to α, β , and γ in order
Step 4:Constantly move the position of gray wolf when it preys
on prey and updates the subordinate wolves. The updating
formula is as follows:







Qα =
∣

∣W(t)−H1Wα

∣

∣

Qβ =
∣

∣W(t)−H2Wβ

∣

∣

Qγ =
∣

∣W(t)−H3Wγ

∣

∣

(5)







W1 = Wα − K1Qα

W2 = Wβ − K2Qβ

W3 = Wγ − K3Qγ

(6)

W(t + 1) = 1
3 (W1 +W2 +W3) (7)

WhereWα ,Wβ , andWγ denote the location of the gray wolf,
and H1, H2, H3, K1, K2, and K3 are scale factors
Step 5: Update the values of α, H, and K. If the constraints are
not met, go to step 2
Step 6: Use output parameters c and g to build SVC model for
classification and recognition.

Evaluation Index
The effect of a signal processing method is determined by the
comparison of some digital evaluation indexes, such as pearson
correlation coefficient (Pr), signal to noise ratio (SNR), and mean

absolute error (MAE) (Ou-Yang et al., 2012). Generally, the larger
the Pr value is, the greater the linear correlation between signals
is. The larger the SNR value is, the more useful the restored signal
is and the less the distortion is. The smaller theMAE value is, the
better the effect of signal filtering is.

The expression of the Pr:

Pr =

m
∑

i = 1
(Xi − X)(Yi − Y)

√

m
∑

i = 1
(Xi − X)

2

√

m
∑

i = 1
(Yi − Y)

2

(8)

The expression of the SNR:

SNR = 10log10

m
∑

i = 1
X2
i

√

m
∑

i = 1
(Xi − Yi)

2

(9)

The expression of theMAE:

MAE =
1

m

m
∑

i = 1

|Xi − Yi| (10)

Where Xi is the original signal, Yi is the processed signal, X is
the average value of the signal, and Y is the standard deviation of
the signal.

Feature Extraction
Because the information contained in EEG is usually recessive,
it is difficult to find all the rules through observation, so it is
necessary to extract the features of EEG data. Because of its
unique characteristics, EEG is different from other physiological
signals, and the characteristics of different EEG are also different.
The purpose of EEG feature extraction is to extract relatively
effective feature indexes from many EEG features. At present,
there are many EEG characteristics studied in the literature,
such as mean, variance, standard deviation, range, fluctuation
coefficient (Yuan et al., 2012), variation coefficient (Vinton
et al., 2004), sample entropy (Arunkumar et al., 2018), kurtosis
(Javidi et al., 2011) and skewness (Gandhi et al., 2012). In this
paper, we extracted the above nine features from EEG signals
for analysis.

RESULTS AND ANALYSIS

Analysis of EEG Signal of Primary Epilepsy
One single-channel signal is selected from subset Dwith interictal
epilepsy and subset E with ictal epilepsy for waveform analysis.
The raw epileptic EEG signal is shown in Figure 1, and the single-
channel signal contains 4,097 sampling points. Figure 1A shows
the EEG signal during the interictal epilepsy. The waveform of
the signal is relatively stable with little fluctuation. The amplitude
range is −252∼123 µV. Figure 1B is the EEG signal during
the ictal epilepsy, which fluctuates violently and has regularity.
The amplitude range is −890∼1,367 µV. The amplitude of EEG
in the ictal period is obviously larger than that in the interval
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FIGURE 1 | Raw EEG signal of epilepsy. (A) EEG signal of interictal epilepsy and (B) EEG signal of ictal epilepsy.

period, and the fluctuation gap is obvious, which indicates that
the signal is excited and fluctuates violently in the ictal period.
This phenomenon is consistent with the state of EEG activity with
ictal epilepsy.

CEEMD Based on Signal Evaluation Index
EMD and CEEMD are used to decompose epileptic EEG
signals, and the Intrinsic Mode Function (IMF) components
of each order are obtained. Based on the MATLAB platform,
the standard deviation of the added white noise is set to 0.2
times of the raw signal of the standard deviation. The number
of iterations is set to 100, and the number of IMF is set to
9 (not including the trend). The signal decomposition of EEG
between interictal and ictal period are shown in Figure 2. The
raw EEG signal is decomposed into nine IMF and one residual
term. The decomposed IMF components are arranged in the
order of frequency from high to low, and each component has
its own amplitude and frequency. With the increase of IMF
component orders, themore stable the signal changes, the smaller
the corresponding energy. The signal changes during the ictal
period are more intense than during the interictal period. The
amplitudes of the first four orders are larger than those of other
orders. It can be seen from Figures 2A,C that the amplitude
of IMF in each stage of ictal EEG signal processed by EMD
is larger than that of the interictal EMD, and the difference is
obvious. High-frequency signals with small amplitude appear
in some sampling points of the first three IMF components,
that is to say, there are different degrees of mode aliasing,
which is more obvious in the ictal period. However, it can be
seen from Figures 2B,D that there is no small-amplitude and
high-frequency signals in the first three stages of EEG signals
and seizure signals processed by CEEMD, which indicates that
CEEMD can solve the problem of mode aliasing caused by EMD
decomposition. There are great differences in amplitude and
frequency between interictal EEG and ictal EEG.

EMD, EEMD, and CEEMD are used to decompose the IMF
component of the ictal period signals and conduct correlation
analysis with the original signals, as shown in Figure 3. It can
be concluded from the correlation property that the Pr of IMF2
and IMF3 decomposed by EMD is >0.5, which shows a strong
correlation. The Pr of IMF2 reaches a maximum value of 0.6932,
followed by a decreasing trend of IMF. The results of EEMD
and CEEMD show that the Pr of IMF2, IMF3, and IMF4 are
more than 0.5, which shows a strong correlation. The Pr of
the two decomposition methods reach the maximum at IMF3,
and their values are 0.8316 and 0.8300, respectively. The Pr
of the latter IMF shows a decreasing trend. In addition to the
first two IMF components, the Pr of the remaining eight IMF
components decomposed by EMD are smaller than the Pr of the
corresponding components decomposed by EEMD and CEEMD.
The evaluation indexes of 10 IMF decomposed by different
decomposition methods are shown in Table 1. The difference
between the average Pr of the IMF decomposed by CEEMD
and EEMD is very small and larger than that of EMD. The
average Pr of EMD and EEMD is close, and both are smaller
than the CEEMD decomposition method. CEEMD’s average
MAE is also smaller than the other two signal decomposition
methods. In general, the CEEMD has relatively good signal
evaluation indexes. However, from the signal evaluation index,
it can be seen that the average Pr of different IMF decomposed
by three methods is between 0.1 and 0.3, which shows weak
correlation, indicating that a single IMF cannot represent all
the information of the raw EEG signals. We need to select
some useful IMF components for signal reconstruction in order
to avoid the influence of distorted signals on the subsequent
EEG recognition.

Generally, it is considered that Pr has no correlation in
the range of 0–0.09. The threshold value is set to 0.1, IMF
components below the threshold value are deleted, and the
components above the threshold value are reserved for signal
reconstruction. As can be seen from Figure 3, the IMF1–IMF4
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FIGURE 2 | The signal decomposition of EEG between interictal and ictal period. (A) EMD decomposition during the interictal period, (B) CEEMD decomposition

during the interictal period, (C) EMD decomposition during the ictal period, and (D) CEEMD decomposition during the ictal period.

components decomposed by EMD, the Pr of the IMF1–IMF6
components decomposed by EEMD and CEEMD are all higher
than 0.1. We select these IMF components to reconstruct
the EEG signals. The evaluation indexes reconstructed by
different decomposition methods are shown in Table 2. After
reconstruction, the evaluation indexes of EEG signals are better
than those of a single IMF component signal. The Pr of
reconstructed signals and raw signals are all >0.9, showing a
strong correlation, which shows that signal reconstruction is a
necessary job. In conclusion, CEEMD is better than the other
two methods in decomposing and reconstructing the signals,

and CEEMD is chosen as the preprocessing method of the raw
EEG signals.

The above simulation experiment is to analyze the correlation
of one channel of epileptic EEG during the ictal period, and the
next is to analyze the correlation of two kinds of EEG signals
during the interictal and ictal period. Each type of signal has
100 channels. Here, one channel is selected from the two types
of signals for further correlation analysis. As shown in Figure 4,
the maximum correlation component of EEG signals during
the interictal period is IMF4, the maximum correlation IMF
component of EEG signals during the ictal period is IMF2, and
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FIGURE 3 | Correlation between IMF and raw signals in different stages of

ictal period signals.

TABLE 1 | Evaluation indexes of different decomposition methods.

Method Average Pr Average SNR Average MAE

EMD 0.1964 0.4946 296.4282

EEMD 0.2701 0.4233 296.5334

CEEMD 0.2745 0.7692 287.3643

Bold values indicate the best experimental results more intuitively.

TABLE 2 | Evaluation indexes reconstructed by different decomposition methods.

Method Pr SNR MAE

EMD 0.9856 12.4403 72.8892

EEMD 0.9954 5.5925 158.0966

CEEMD 0.9959 14.3365 67.1919

Bold values indicate the best experimental results more intuitively.

the maximum correlation IMF components of different types
of signals are different. The EEG samples of 200 channels are
decomposed by the CEEMD method, and the average Pr of IMF
components is used as the division basis of useful signals. The
threshold value is set to 0.1. As shown in Figure 5, the average Pr
of IMF1–IMF7 components is higher than 0.1. Finally, we select
these seven IMF components to reconstruct all EEG signals.

Feature Extraction of EEG Signals
The feature extraction of 200 single-channel signals
reconstructed from the interictal and ictal period is carried
out. The extracted 9 features, namely mean, variance, standard
deviation, range, fluctuation coefficient, variation coefficient,
sample entropy, kurtosis, and skewness will be used in the next
iterative feature reduction analysis. In the extraction of sample
entropy, m = 2, r = 0.2 std. Because 9 features will produce
many combinations of different feature subsets, it will lead to

FIGURE 4 | Correlation between IMF components of different channels and

raw signals.

FIGURE 5 | Correlation between IMF components of all channels and

raw signals.

low training efficiency and model performance degradation.
Therefore, the SVM-RFE algorithm should be used to rank the
epileptic EEG data according to the weight of feature importance
and select the combination of the optimal features.

Reduction of Secondary Features and
Establishment of Classification Models
When SVM-RFE is used to reduce the secondary features of data,
it is necessary to normalize the data to [0,1] interval first to
avoid the adverse effect of a too large difference between different
features of data on the experimental results. Gaussian radial basis
function (RBF) is used as a kernel function of SVM. The weight
values of different features are shown in Figure 6. The sequence
numbers 1–9 correspond to the nine features extracted from
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FIGURE 6 | Weight values of different features.

the EEG signals, respectively. This figure fully reflects that there
are obvious differences in the importance of each feature of the
EEG signals. It can be seen that the weight value of the standard
deviation feature is the largest, indicating that the feature covers
a lot of useful information on the EEG data. The weight of
mean value, fluctuation coefficient, and variation coefficient is
very small, which shows that the importance of these three
characteristics is relatively low. According to the weight values of
different features, the new features are sorted as {3,4,8,2,7,9,5,1,6}.

Because the first feature is the last one to be eliminated, it is
also the most important feature. Therefore, based on all feature
combinations in the new feature sorting, the features with the
lowest importance in the current feature set are eliminated one
by one feature at a time, and the number of features is reduced
iteratively until it is reduced to the most important standard
deviation feature. There are nine different feature sets. 80% (160)
of 200 epileptic EEG signals are divided into training sets and
the remaining 20% (40) into test sets. The data of different
feature combinations in EEG signals are input to the GWO-SVC
classification models in turn. The accuracy of the training set and
test set obtained by a training classifier is used as the evaluation
index of secondary feature reduction to select the optimal subset.
In order to ensure the accuracy of classification results and the
efficiency of recognition process at the same time, the initial
number of the gray wolf is set to 20, the maximum number of
iterations is set to 50, and the search interval of penalty coefficient
and kernel function parameter is [0,100].

The classification accuracy of different feature subsets is
shown in Table 3. The accuracy of the training set is on the
decline, while the accuracy of the test set is on the rise and then
on the decline. When the number of features in the feature subset
is reduced from 9 to 8, the accuracy of the test set reaches the
maximum of 100% for the first time, and only one channel EEG
signal in the training set is misclassified. When the number of
features is reduced to 6, the accuracy of the training set and the

TABLE 3 | Classification accuracy of different feature subsets.

Feature subset Feature

numbers

Best c Best g Training set/% Test set/%

{3,4,8,2,7,9,5,1,6} 9 60.1100 6.9761 100 (160/160) 97.5 (39/40)

{3,4,8,2,7,9,5,1} 8 33.9487 8.6581 99.38 (159/160) 100 (40/40)

{3,4,8,2,7,9,5} 7 70.2355 5.2786 99.38 (159/160) 100 (40/40)

{3,4,8,2,7,9} 6 79.1905 7.7580 99.38 (159/160) 100 (40/40)

{3,4,8,2,7} 5 72.8569 9.2752 98.75 (158/160) 97.5 (39/40)

{3,4,8,2} 4 1.1068 70.1738 98.13 (157/160) 97.5 (39/40)

{3,4,8} 3 15.0708 12.2651 97.5 (156/160) 97.5 (39/40)

{3,4} 2 9.8490 88.9158 96.25 (154/160) 95 (38/40)

{3} 1 24.4377 39.4796 93.13 (149/160) 95 (38/40)

Bold values indicate the best experimental results more intuitively.

test set begins to decline. There are eight iterations until there is
only one feature left. The purpose of secondary feature reduction
is to improve the classification accuracy by filtering features or
to reduce the dimension of feature set without reducing the
classification accuracy. Although the accuracy of the training
set of the full feature set is 100%, there are EEG signals in the
test set which are misclassified, and the number of features is
the most, which results in the low efficiency of model training.
Finally, the subset {3,4,8,2,7,9} of six features with fewer features
and higher classification accuracy is selected as the result of the
SVM-RFE algorithm.

Based on the 9 features extracted from the raw EEG data,
the SVC model without parameter optimization is established,
and RBF is chosen as the kernel function. In libsvm-mat-3.1
toolkit, the default value of a penalty coefficient c is 1, and the
default value of a kernel function parameter g is the reciprocal
of feature number (1/features). In order to clearly express the
difference between the test category and the actual category, the
blue “◦” in the figure is the actual category of the input sample,
and the red “∗” is the predicted result of the classification model.
If “◦” and “∗” coincide, the sample is correctly classified. The
classification results of the raw EEG signals by SVC are shown
in Figure 7. In the training set, 23 EEG signals were identified
incorrectly, including three EEG signals in the interictal period
and 20 EEG signals in the ictal period. A total of four EEG signals
in the test set were identified incorrectly, and they were all EEG
signals during the ictal period. The EEG signals processed by
CEEMD are classified by GWO-SVC as shown in Figure 8. Only
one EEG signal in the training set is identified incorrectly, which
was the 73rd EEG signal in the interictal period. All the EEG
signals in the test set are correctly identified. It can be seen that
the training and test set of the GWO-SVC model established by
the EEG signal after CEEMD processing has significantly better
recognition results than the SVC classification model established
by the unprocessed raw EEG signals. It shows that the method in
this paper is applicable to the aided diagnosis of epileptic EEG,
and it realizes the precise identification of EEG signals.

Comparison With Other Methods
In order to verify the classification effect and superiority of the
proposed method for epilepsy EEG recognition, the algorithm
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FIGURE 7 | The classification results of the raw EEG signals by SVC. (A) Classification diagram of training set and (B) Classification diagram of test set.

FIGURE 8 | The EEG signals processed by CEEMD are classified by GWO-SVC. (A) Classification diagram of training set and (B) Classification diagram of test set.

in this paper not only performs longitudinal comparative
analysis and research with the SVC classification results of the
unoptimized parameters of the raw EEG data but also compares
with the classification results of grid search (GS), genetic
algorithm (GA), particle swarm optimization (PSO), artificial
bee colony (ABC), cuckoo search (CS), and firefly algorithm
(FA) intelligent optimization algorithms. Other classifiers are
similar to the GWO algorithm. The number of initial population
is set to 20, the maximum number of iterations is set to 50,
the search interval of penalty coefficient and kernel function
parameters is [0,100], and the EEG data are normalized to [0,1]
interval. Through such work, the unity of initial conditions can
be ensured. Table 4 shows the classification results of different
processing methods. It can be seen that the number of features
selected by the model without parameter optimization and
parameter optimization is different. The modeling time of SVC
without parameter optimization is short, but the accuracy of

the training set is low. It takes less time to establish the SVC
model without parameter optimization, but the accuracy of the
training set is low. CEEMD has little effect on the accuracy of
the SVC model without parameter optimization. The accuracy of
the training set and test set of GWO-SVC model is significantly
higher than that of SVC. Compared with the raw EEG signals, the
training set and test set accuracy of the model is improved after
the signal is processed by CEEMD and SVM-RFE. Compared
with the SVC model based on the raw EEG signals, the accuracy
of training set classification and test set classification of the
optimization model based on the algorithm in this paper is
improved by 13.755 and 10%, respectively.

The classification results of different optimization algorithms
are shown in Table 5. The training set classification accuracy
of the GS algorithm optimization model is the lowest, and the
recognition time is long. Although the FA algorithm can make
the classification accuracy of the training set reach 100%, the
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TABLE 4 | Classification results of different treatment methods.

Processing method Feature numbers Best c Best g Training set/% Test set/% Time (s)

Raw+SVC 9 1 0.1111 85.625 (137/160) 90 (36/40) 0.0739

Raw+GWO-SVC 9 47.9615 34.1838 100 (160/160) 95 (38/40) 2.6507

Raw+SVM-RFE+SVC 5 1 0.2 86.875 (139/160) 95 (38/40) 0.0731

CEEMD+SVC 9 1 0.1111 85.625 (137/160) 90 (36/40) 0.0503

CEEMD+GWO-SVC 9 60.1100 6.9761 100 (160/160) 97.5 (39/40) 1.7907

CEEMD+SVM-RFE+ SVC 5 1 0.2 87.5 (140/160) 95 (38/40) 0.0443

CEEMD+SVM-RFE+GWO-SVC 6 79.1905 7.758 99.38 (159/160) 100 (40/40) 1.6551

Bold values indicate the best experimental results more intuitively.

TABLE 5 | Classification results of different optimization algorithms.

Modeling method Feature numbers Best c Best g Training set/% Test set/% Time (s)

GS-SVC 6 5.6569 8 97.5 (156/160) 97.5 (39/40) 4.0977

GA-SVC 6 43.9056 3.1953 98.75 (158/160) 97.5 (39/40) 3.2152

PSO-SVC 6 5.3156 8.7895 98.13 (157/160) 97.5 (39/40) 4.4063

ABC-SVC 6 85.5963 6.0455 99.38 (159/160) 100 (40/40) 3.5328

CS-SVC 6 72.2167 8.4386 99.38 (159/160) 100 (40/40) 3.1746

FA-SVC 6 82.2227 20.4157 100 (160/160) 97.5 (39/40) 1.8642

GWO-SVC 6 79.1905 7.758 99.38 (159/160) 100 (40/40) 1.6551

Bold values indicate the best experimental results more intuitively.

classification accuracy of the test set is less than GWO and ABC,
and the recognition time is longer than GWO. The accuracy of
the test set of GWO, ABC, and CS algorithm is 100%, and all
EEG signals are recognized correctly. However, the recognition
time of the GWO-SVCmodel is only 1.6551 s, which is obviously
faster than that of ABC-SVC, and CS-SVC model, and 2.7512 s
faster than PSO-SVC model which has the slowest recognition
speed. Compared with other heuristic intelligent optimization
algorithms, the GWO algorithm is more effective and reliable in
parameter optimization of the SVC model, where c is 79.1905,
g = 7.758.

DISCUSSION AND CONCLUSIONS

In this study, we have proposed a new method based on
CEEMD combined with iterative feature elimination for EEG
of epilepsy aided diagnosis. The CEEMD signal decomposition
algorithm was used to decompose the raw EEG signals into the
IMF of different orders, and then feature extraction is carried
out for the reconstructed signals. The SVM-RFE algorithm
was used to reduce secondary features. Finally, the GWO-
SVC classification and recognition model was established to
realize the accurate and fast identification of Epileptic EEG.
From the experimental analysis process and results, we can
see that:

(1) CEEMD algorithm based on correlation analysis can make
the non-stationary EEG data stable, decompose the complex
EEG signals into IMF components with practical physical
significance, and solve the problems of mode aliasing. This

algorithm is superior to the traditional EMD algorithm in
various evaluation indexes.

(2) SVM-RFE is used to filter the features of EEG signals,
which can reduce the redundant information acquisition
in the EEG data that has no internal relationship with
the classification. The useful information of epileptic EEG
signals is reflected by fewer features. The complexity of a
training model is reduced, and the recognition efficiency and
reliability of the classification model are improved.

(3) The normalized data get rid of the influence of the big
difference of sample data, speed up the optimal solution
process, and improve the classification accuracy. The
GWO-SVC epileptic EEG recognition model has a good
classification accuracy. Combining CEEMD and SVM-RFE
algorithm, it can make the classification accuracy higher
than the recognition model of all features, and improve the
performance and generalization ability of the model.

(4) The algorithm in this paper can be applied to the aided
diagnosis of epileptic EEG. This method can accurately
and quickly identify the types of epileptic seizures. It has
a certain theoretical guidance and promotion value for
doctors to achieve the early diagnosis of epileptic diseases
and take a reasonable epileptic treatment plan in the
later stage.

The EEG data of epilepsy in the experiment were collected in the
laboratory. The collection conditions are better than the actual
clinical diagnosis conditions, and the interference is relatively
small, but there may be many uncertain factors in the actual
EEG analysis. In this study, 200 groups of sample data were
tested and analyzed, but the actual clinical diagnosis needs to
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analyze a large number of data, which brings many challenges
to the auxiliary diagnosis of Epilepsy EEG. The results show
that although the method proposed in this paper has achieved
high recognition accuracy, there are still wrong samples. How
to overcome these difficulties will become the focus of the next
research, and also the key to improving the recognition rate of
epilepsy. We are going to add the disadvantageous factors in
the experimental analysis to the future research work, expand
the sample size of training data, and constantly improve and
optimize the intelligent analysis algorithm to achieve perfect
recognition accuracy.
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Data quality control and preprocessing are often the first step in processing next-
generation sequencing (NGS) data of tumors. Not only can it help us evaluate the quality
of sequencing data, but it can also help us obtain high-quality data for downstream
data analysis. However, by comparing data analysis results of preprocessing with
Cutadapt, FastP, Trimmomatic, and raw sequencing data, we found that the frequency
of mutation detection had some fluctuations and differences, and human leukocyte
antigen (HLA) typing directly resulted in erroneous results. We think that our research
had demonstrated the impact of data preprocessing steps on downstream data
analysis results. We hope that it can promote the development or optimization of
better data preprocessing methods, so that downstream information analysis can be
more accurate.

Keywords: the next generation sequencing, data preprocessing, mutation, cancer, HLA typing

INTRODUCTION

In recent years, sequencing technologies, especially next-generation sequencing (NGS), have
been widely used in scientific research and clinical applications. It allows for higher sequencing
throughput and lower sequencing costs, and with the development and optimization of
experimental and data analysis methods, the subsequent analysis results are increasingly accurate.
For example, important techniques for detecting cancer-associated biomarkers using liquid biopsy
techniques (Esposito et al., 2017) are essentially done using the NGS technology platform, especially
in the detection of cell-free tumor DNA (ctDNA) in plasma, such as Duplex sequencing (Schmitt
et al., 2012), Cancer Personalized Profiling by deep Sequencing (CAPP-Seq) (Newman et al., 2014),
and Targeted Error Correction Sequencing (TEC-Seq) (Phallen et al., 2017). However, ctDNA
sequencing data have strong background noise, contamination of sequencing adapters, unbalanced
base distribution, sequencing quality and errors introduced during the experiments; these factors
have a crucial impact on the accuracy of detecting low-frequency and even ultra-low-frequency
mutations in ctDNA. Therefore, quality control and data preprocessing are especially important
for obtaining downstream high-quality and high-confidence analytical data to reduce false positives
and false negatives.
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Illumina reads are commonly 36–300 nucleotide bases
produced by a reversible-terminator cyclic reaction associated to
base-specific colorimetric signals within the sequencing machine.
Reads can be separated “single-end” or “paired-end” reads, in
which case they are representing both extremities of the same
nucleotide fragment. These colorimetric signals are translated
into base calls by an internal Illumina software (CASAVA),
represented in the FASTQ format (Cock et al., 2010), where each
nucleotide is associated to an ASCII-encoded quality number
corresponding to a PHRED score (Q) (Ewing and Green, 1998),
which is in recent Illumina runs ranges from 0 to 41 and the
error rate at each position ranges from 7.94e-5 to 1. Whatever
the original cause of low quality or high error chance nucleotides,
such as air bubbles, spot-specific signal noise, malfunctioning
laser or lens, and so on, the Q value if encoded and stored together
with the sequence information, and this confidence information
can be used for subsequent analysis, together with the sequence
information itself.

At present, there are many software programs for data quality
preprocessing. Cutadapt (Martin, 2011), which is widely used,
is the only stand-alone tool that can correctly trim color space
reads. It can search for multiple adapters in a single run
of the program and removes the best matching one. It can
optionally search and remove an adapter multiple times, which
is useful when (perhaps accidentally) library preparation has
led to an adapter being appended multiple times. It can either
trim or discard reads in which an adapter occurs. Reads that
are outside a specified length range after trimming can also be
discarded. In addition to adapter trimming, low-quality ends of
reads can be trimmed using the same algorithm as Burrows-
Wheeler Aligner (BWA). FastP (Chen et al., 2018b), as an all-
in-one FASTQ preprocessor, provides functions including quality
profiling, adapter trimming, read filtering, and base correction.
It supports both single-end and paired-end short read data and
provides basic support for long-read data, which are typically
generated by PacBio and Nanopore sequencers. Trimmomatic
(Bolger et al., 2014) includes a variety of processing steps for read
trimming and filtering, but the main algorithmic innovations
are related to the identification of adapter sequences and
quality filtering. Trimmomatic uses a pipeline-based architecture,
allowing individual “steps” (adapter removal, quality filtering,
and so on) to be applied to each read/read pair in the order
specified by the user. Each step can choose to work on the
reads in isolation or work on the combined pair, as appropriate.
The tool tracks read pairing and stores “paired” and “single”
reads separately.

The data preprocessing software and algorithms have shown
excellent results in published articles. We have also used them to
obtain high-quality clean data to do downstream analysis, such
as alignment and mutation detection. Generally, when there are
false-positive or false-negative results, we tend to think this may
be due to unreasonable parameter settings in the analysis process
or other experimental reasons, but this may not always be the
case. We analyzed and compared the raw sequencing data with
commonly used data preprocessing software, such as Cutadapt,
FastP, and Trimmomatic, and found that the data preprocessing
results affected the subsequent detection results. Therefore, we

realized that in the data preprocessing, we need to choose the
software and algorithms carefully, and the data preprocessing
algorithms need to be further improved according to actual data
features. It is necessary to make different choices according to
specific data analysis.

MATERIALS AND METHODS

Sample Collection
HD753, a reference genomic DNA (gDNA), is used as the
reference standard (Horizon DiagnosticsTM, Waterbeach,
United Kingdom) and contains 10 mutation variations:
AKT serine/threonine kinase 1 (AKT1) p.E17K (5%),
phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit
alpha (PIK3CA) p.E545K (5.6%), epidermal growth factor
receptor (EGFR) p.745-750del (5.3%), EGFR p.V769delinsVASV
(5.6%), KRAS proto-oncogene, GTPase (KRAS) p.G13D (5.6%),
notch receptor 1 (NOTCH1) p.P668S (5%), MET proto-
oncogene, receptor tyrosine kinase (MET) p.V237fs (2.5%),
BRCA2 DNA repair associated (BRCA2) p.A1689fs (5.6%), EGFR
p.G719S (5.3%), B-Raf proto-oncogene, serine/threonine kinase
(BRAF) p.V600E (18.2%), and PIK3CA p.H1047R (16.7%). The
original HD753 reference has two replicates. We then used
the standard sample to do three fivefold dilution experiments
and every five-diluted sample has also two replicates, while the
negative control sample, a healthy human white blood cells, also
has two replicates.

All five human leukocyte antigen (HLA) typing samples and
75 mutation detection samples were obtained from lung cancer
patients and informed written consent was obtained from the
patients and de-identification. The 80 clinical samples we used
were collected from October 2017 to May 2018.

Experiment Workflow
gDNA for NGS-based mutation variations analysis was extracted
using the GONOROAD Kit (Qiagen, Hilden, Germany) for
formalin-fixed and paraffin-embedded (FFPE) tissue. DNA
(200 ng) was used to build the library by using NEBNext Ultra
II DNA library Prep Kit for Illumina (96 reactions) (NEB,
Ipswich, MA, United States). Integrated DNA technologies (IDT,
Skokie, IL, United States) customized probes were used for
hybridization capture. We used the Genesis 41 gene tumor
hotspot mutation customized panel (Supplementary Sheet 1) for
eight gDNA standard samples and two negative control samples.
Quantification was performed with a Library Quantification
Kit – Illumina/Universal (Kapa Biosystems, Wilmington, MA,
United States) on an ABI 7500 Real Time PCR system (Applied
Biosystems, Waltham, MA, United States). A Quality control
Agilent 2100 Bioanalyzer with a High Sensitivity DNA Kit
was used for quality control (Agilent Technologies, Santa
Clara, CA, United States). NGS analysis was performed on
a Nextseq500 instrument according to the manufacturer’s
instructions (Illumina, San Diego, CA, United States). With a
NextSeq500/550 High Output V2 kit, Illumina Nextseq500 was
used for DNA sequencing in 302 cycles, standing for paired-
End 151bp.
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The 75 clinical samples’ cell-free DNA was extracted using
a QIAamp Circulating Nucleic Acid Kit (Qiagen, Hilden,
Germany) according to the manufacturer’s instructions. The
obtained DNA (20 ng/sample) was then used to build libraries
using Accel-NGS R© 2S Plus DNA Library Kits (96 reactions;
Swift Biosciences, Ann Arbor, MI, United States). Customized
probes were obtained from Integrated DNA technologies (IDT,
Skokie, IL, United States) and were used for hybridization
capture. All cfDNA libraries utilized the Genesis 41 gene
tumor hotspot mutation customized panel and were quantified
using a Universal Library Quantification Kit (Kapa Biosystems,
Wilmington, MA, United States) on an ABI 7500 Real-Time
PCR system (Applied Biosystems, Waltham, MA, United States).
Sample quality was evaluated using a high sensitivity DNA kit
(Agilent Technologies, Santa Clara, CA, United States) with an
Agilent 2100 Bioanalyzer per the manufacturer’s instructions.
NGS with fusion detection was performed using a NextSeq
500/550 High Output v2 kit with a NextSeq 500 sequencer
(Illumina, San Diego, CA, United States) for 302 cycles, with
standing paired-end reads of 151 bp.

Five DNA samples for HLA typing analysis were extracted
from the FFPE tumor tissues using the GeneRead DNA
FFPE Kit (Qiagen, Hilden, Germany). DNA samples were
normalized to yield a 100 − 250 ng input. Whole genome
libraries were prepared using NEBNext R© UltraTM II DNA
Library Prep (NEB, Ipswich, MA, United States) and through
a series of steps including covaris shearing, end-repair, A-base
addition, barcoded adapter ligation, and PCR amplification.
Libraries were quantitated using a Qubit dsDNA HS Kit
(Invitrogen, Carlsbad, CA, United States) and quality assessed
with Agilent 2100 Bioanalyzer (Agilent Technologies, Santa
Clara, CA, United States) as per the manufacturer’s protocol.
Targeted enrichment was carried out on the prepared libraries
to specifically pull down DNA fragments that contained
the target site using custom 5′ biotinylated capture probes.
Four libraries were then pooled at 125 ng each for a total
of 500 ng. Cot-1 DNA (Sigma-Aldrich, MO, United States)
and universal blocking oligonucleotides (IDT, Skokie, IL,
United States) were added to the pooled libraries and dried
in a SpeedVac. The dried mixture was then resuspended
in IDT Hybridization Buffer and Hybridization enhancer
(IDT, Skokie, IL, United States) and hybridized for 4 h with
custom 5′ biotinylated capture IDT probes (IDT, Skokie,
IL, United States) and BOKE probes (BOKE, Beijing,
China). Streptavidin DynaBeads (Invitrogen, Carlsbad,
CA, United States) were used for capture and washes were
performed using xGenLockdown-Reagents Kit (IDT, Skokie,
IL, United States). The final hybridized product was amplified
using KAPA Hifi HotStart Ready Mix (Kapa Biosystems,
Wilmington, MA, United States) and Illumina sequencing
primers for a total of 15 cycles. Final target capture library
quantification was performed using a Qubit dsDNA HS Kit
(Invitrogen) and quality assessed with Agilent 2100 Bioanalyzer
(Agilent Technologies, Santa Clara, CA, United States). With
a NextSeq500/550 High Output V2 kit, Illumina Nextseq500
(Illumina) was used for DNA sequencing in 302 cycles, standing
for paired-End 151 bp.

Mutation Validation
EGFR-T790M (25), EGFR-L858R (26), BRAF-V600E (5),
PIK3CA-E545K (6), KRAS-G12C (11), and KRAS-G12V (2)
mutant allele frequencies were determined using a Digital
Droplet PCR system (Bio-Rad Laboratories, Inc., Hercules, CA,
United States), with a droplet size of 1 nL in a total reaction
volume of 20 µL with ∼20 ng of cfDNA library utilized. All
primers and probes were synthesized by IDT (Skokie, IL,
United States). Droplet counts were determined using the
QuantaSoft software (Bio-Rad) (Supplementary Sheet 7).

HLA Typing Validation
Human leukocyte antigen typing was performed at the BFR
Medical Laboratory (BFR, Beijing, China) by the high–resolution
HLA sequence-based typing method (HLA-SBT).

Data Analysis for Mutation Detection
We used Cutadapt (version 1.3, parameter: -b AGATCGGA
AGAGCACACGTCTGAACTCCAGTCAC -b AGATCGGAAGAG
CGTCGTGTAGGGAAAGAGTGTA -e 0.01 -m 15), FastP (version
0.20.0, parameter: -trim_poly_g), and Trimmomatic (version
0.39, parameter: PE -threads 4 -phred33 ILLUMINACLIP:
TruSeq3-PE.fa:2:30:10 MINLEN:15) to preprocess the raw
sequencing data (Fastq), filtering out the adapter contamination
reads, low-quality reads, and unpaired reads to get clean data.
We used the Bwa aln (Version: 0.7.12-r1039) algorithm to align
the clean data to the human reference genome (hg19) and
get the Sequence Alignment/Map format (sam) file. For the
Binary Alignment/Map format (bam) file, the sam file was sorted
by samtools (Version: 0.1.19-44428cd). According to the bed
interval file of the Genesis 41 gene tumor hotspot mutation
customized panel, we used freebayes (version: v1.0.2-6-g3ce827d,
parameter: -j -m 10 -q 20 -F 0.001 -C 1 -t bed.file –f hg19.fa)
to call single nucleotide polymorphisms (SNPs) and insertions
or deletions (indels), and then used ANNOVAR to do the
annotation (Figure 1).

Data Analysis for HLA Typing
The method and parameters of data preprocessing were
consistent with the above. We used Novoalign (version: V3.09.02,
parameter: -t 30 -o SAM -r all -l 80 -e 100 -i PE 200 140) to
align the clean data to the HLA reference sequence. We then
used samtools (version: 1.3.1) to sort the sam files to get the bam
files. We used Athlates (version: 1.0, default parameter) for typing
analysis of HLA-A∗, HLA-B∗, and HLA-C∗ (Figure 1).

RESULTS

No Significant Difference in the Impact
on Data Quality After Data Preprocessing
For the 10 standard samples data, calculating the number of
reads, GC content, Q20 ratio, average depth, capture efficiency,
and duplication rate after data preprocessing (Figures 2A–F
and Supplementary Sheet 2), we found that the data of
the three software-processed indicators, except the Q20 ratio,
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FIGURE 1 | The pipeline of data analysis. The blue section was the three method of data preprocessing: Cutadapt, FastP, Trimmomatic, and raw sequencing data;
the yellow section was the pipeline of data analysis for mutation detection; the green section was the pipeline of data analysis for HLA typing.

showed no significant difference (the p-value of the two-
tailed heteroscedastic T-test was > 0.05). The Q20 ratio after
FastP treatment was significantly improved, and the two-tailed
heteroscedastic T-test p-values were 0.036 (vs. Raw data), 0.040
(vs. Cutadapt), and 0.026 (vs. Trimmomatic).

For the 75 clinical samples data, we also found the same
conclusion that the data, except the Q20 ratio, showed
no significant difference (Supplementary Figure 1 and
Supplementary Sheet 6). The Q20 ratio after FastP treatment
was significantly improved, and the two-tailed heteroscedastic
T-test p-values were 1.69476E-10 (vs. Raw data), 3.05502E-10
(vs. Cutadapt), and 2.24745E-11 (vs. Trimmomatic).

Frequency of Mutations Detected After
Data Preprocessing May Be Affected
For the 10 standard samples data, we found that all of the
hotspot mutations were detected in raw data, Cutadapt, FastP,
and Trimmomatic preprocessing data in the two replicate
reference standard gDNAs and the fivefold diluted HD753
specimens (Supplementary Sheet 3), while false positive results
of EGFR p.G719S were found in all the negative control samples
(HD753-NB). It may have been caused by sequencing errors
or contamination introduced during the experiment. We found
that the four preprocessing data analysis results had lower

mutation frequencies than the expected frequencies of HD753-
0A and HD753-0B (Figure 3A), which may be related to
the experimental capture operation. There was no statistical
difference between the distribution of frequencies of the four
data types (the p-values of the two-tailed heteroscedastic T-test
were > 0.05). But for the repeated dilution samples, the
detected mutation frequency fluctuated greatly (Figures 3B,C).
We assumed that a mutation frequency greater than 1% was
used as a threshold for positive result for the FFPE or tissue
samples. For a hotspot mutation AKT1 p.E17K in HD753-1A, the
detection results after Cutadapt and FastP data pretreatment were
positive, and the detection frequencies were 1.06% (41/3869)
and 1.00% (38/3785), respectively. Meanwhile, the raw data
and Trimmomatic treatments were negative, with detection
frequencies of 0.95% (34/3579) and 0.96% (34/3549), respectively.
For EGFR p. 745_750del of HD753-2A, the results were negative
after pretreatment with Cutadapt and FastP data, and the
detection frequencies were 0.97% (20/2055) and 0.98% (20/2051),
respectively. The results of the raw data and Trimmomatic
treatment were positive, and the detection frequencies were
1.05% (20/1900) and 1.06% (20/1889), respectively. While the
mutation of NOTCH1 p.P668S in HD753-2A was detected as
a positive result, which was preprocessed by FastP data, the
detection frequency was 1.12% (32/2860). The data preprocessed
by Cutadapt, Trimmomatic, and the raw data were negative,

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 4 July 2020 | Volume 8 | Article 81780

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-00817 July 28, 2020 Time: 17:57 # 5

He et al. Data Preprocessing on NGS Analysis

FIGURE 2 | Quality control statistical distribution of Cutadapt, FastP, and Trimmomatic preprocessed data and raw sequencing data. (A) Statistical distribution of the
number of reads, (B) statistical distribution of the GC content, (C) statistical distribution of the Q20 ratio, (D) statistical distribution of the average depth, (E) statistical
distribution of the capture efficiency, and (F) statistical distribution of the duplication rate.

and the detection frequency was 0.98% (28/2857), 0.98%
(26/2659), and 0.97% (26/2686), respectively. We also found that
the results of Trimmomatic data pretreatment were basically
consistent with the raw sequencing data, and the results of
Cutadapt and FastP data pretreatment were consistent. It
showed that there were no significant differences in the four
methods of mutation support reads number. However, the
sequencing depth of the mutation sites were quite different.
That may be because Cutadapt and FastP only trim the reads,
making the sequence shorter and achieving multi-alignment
in the alignment process, which could be increasing the
probability of the alignment. In contrast, in our paired-end
preprocessing data, Trimmomatic retained the sequenced full-
length sequence to be consistent with the raw sequencing data
(Supplementary Sheet 3).

For the 75 clinical samples data, we used digital droplet
PCR system to determine the mutations’ frequency, and the
frequency limit was 0.1%. Consistent with the results found
in the results of the standard, there was some fluctuation in
the detection frequency after 4 data preprocessing method,

but the coefficient of determination R2 of raw data, Cutadapt,
Fastp, and Trimmomatic was 0.9386, 0.9381, 0.9416, and 0.9416,
respectively. Compared with the result of ddPCR, the detection
rate of data preprocessing by raw data, Cutadapt, Fastp, and
Trimmomatic was 94.67% (71/75), 100% (75/75), 98.67% (74/75),
and 96.00% (72/75), respectively (Supplementary Sheet 7). We
found that the false negatives had a low mutation frequency
(Table 1), and the effect of Cutadapt was the best compared to
the other three methods.

HLA Typing Data After Preprocessing
Had a Significant Impact on Data Quality
We calculated the reads number, GC content, and Q20
ratio for 10 HLA typing samples after data preprocessing
(Figures 4A–C and Supplementary Sheet 4). We found that
the data distribution after the three software treatments had
significant fluctuations. The Q20 ratio was statistically significant
based on the two-tailed heteroscedasticity test. The number of
reads after Trimmomatic data preprocessing was significantly
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FIGURE 3 | Distribution of hotspot mutation detection in the reference standard samples: (A) frequency distribution of the hotspot mutation detection in the two
experimental replicates of the reference standard samples, (B) frequency distribution of the hotspot mutation detection in each experimental repeat of the fivefold
dilution standard samples, and (C) average frequency distribution of the hotspot mutation detection in each experimental repeat of the fivefold dilution standard
samples.

TABLE 1 | Compared with ddPCR results, the false negative results of data preprocessing by raw data, Cutadapt, Fastp, and Trimmomatic.

Sample_ID Mutation_Type ddPCR (%) Raw_data (%) Cutadapt (%) Fastp (%) Trimmomatic (%)

T790M-sample21 EGFR:p.T790M 0.17 0.00 0.14 0.00 0.00

L858R-sample19 EGFR:p.L858R 0.32 0.00 0.15 0.15 0.15

V600E-sample8 BRAF:p.V600E 0.31 0.00 0.26 0.26 0.00

E545K-sample10 PIK3CA:p.E545K 0.24 0.00 0.16 0.14 0.00

*Mutations’ frequency limit was 0.1%.

different from the distribution of the remaining three data
types (Figure 4D).

Data Preprocessing May Affect HLA
Typing Analysis
We performed HLA typing data analysis on five samples captured
by BOKE and IDT probes. We obtained incorrect typing
results with the data after pretreatment of Cutadapt and FastP
(Tables 2a, 2b and Supplementary Sheet 5). After pretreatment

with Cutadapt and FastP data, the sample NZTD181200662
showed errors in the typing analysis of HLA-A and HLA-C,
whether it was the BOKE probe capture or IDT probe capture,
which was inconsistent with the validation results (such as
Table 1, the red background was shown). The results of the
raw data and Trimmomatic data preprocessing were consistent
with the validation results. Since the NZTD181200690 sample
was classified incorrectly in the four analysis results, it may have
been caused by experiments or sequencing errors. Therefore,
for the overall result of the BOKE probe capture, the accuracy
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FIGURE 4 | Quality control statistical distribution of Cutadapt, FastP, Trimmomatic preprocessed data, and raw sequencing data for 10 HLA typing samples.
(A) Statistical distribution of the GC content, (B) statistical distribution of the Q20 ratio, (C) statistical distribution of the reads number, and (D) significant level for the
four data types in the Q20 ratio and the reads number.

after treatment with Cutadapt, FastP, raw data, and Trimmomatic
was 86.67, 80.00, 93.33, and 93.33%, respectively. For the overall
results of the IDT probe capture, the accuracy rates after
treatment with Cutadapt, FastP, raw data, and Trimmomatic were
86.67, 86.67, 93.33, and 93.33%, respectively.

For the NZTD181200662 sample, we extracted the reads ID
of the sequencing data captured by the BOKE probe capture
and the IDT probe (Figures 5A,B), and we wanted to know
if the sequence reads causing the typing error had certain
characteristics. We found that the three preprocessed data
were highly consistent with the raw sequencing data, but the
Trimmomatic preprocessed data also had many specific reads,
accounting for 32.64 and 47.52% of the FastP preprocessing
data captured by the BOKE and IDT probes, respectively. This
phenomenon was basically the same in the remaining samples
(Supplementary Figures 3–6). Due to the high accuracy of the
raw data and Trimmomatic preprocessed data, we assumed that
the read features that caused the incorrect HLA typing data of the
Cutadapt and FastP data were in their specific reads compared
with the raw data and Trimmomatic data. We extracted this
part of the read and analyzed the length distribution of the
reads. We found that the length of the read from 143 bp to

149 bp was significantly reduced (Figure 5C). Therefore, we
extracted the 143–149 bp reads from the NZTD181200662’s
BOKE and IDT probes captured data processed by Cutadapt
and FastP for HLA-A and HLA-C typing, respectively. The
results were consistent with the validation results for the BOKE’s
capture probes. The HLA-A typing results of Cutadapt and
FastP processed data were A∗02:01:01/A∗02:01:01 and the HLA-
C typing results were C∗08:22/C∗08:22. For the IDT’s capture
probe, the HLA-A typing results of Cutadapt and FastP processed
data were A∗02:01:01/A∗02:01:01 and the HLA-C typing results
were C∗08:22/C∗08:22.

DISCUSSION

Data quality control and preprocessing play an important role
in data analysis in scientific research and clinical fields, and it is
often the first step in data analysis. We believe that it can help
us evaluate the experimental steps or problems in the sequencing
process, and also reduce the sequence of low-quality or adapter
contamination, reduce the computational cost, and allow us
to obtain high-quality sequencing sequences for downstream
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TABLE 2a | Summary of HLA typing results in the four data types with BOKE capture probes.

Sample-BOKE Validation Cutadapt FastP Raw Trimmomatic

HLA-A HLA-B HLA-C HLA-A HLA-B HLA-C HLA-A HLA-B HLA-C HLA-A HLA-B HLA-C HLA-A HLA-B HLA-C

NZTD181200662 A*02:
01:01

B*40:06:
01:01

C*08:22 A*02:
01:01

B*40:06:
01:01

C*08:22 A*02:
01:01

B*40:06:
01:01

C*08:22 A*02:
01:01

B*40:06:
01:01

C*08:22 A*02:
01:01

B*40:06:
01:01

C*08:22

A*02:
01:01

B*81:02 C*08:22 A*02:
01:01

B*81:02 C*08:
01:01

A*02:53N/
A*02:96/. . .

B*81:02 C*08:
01:01

A*02:
01:01

B*81:02 C*08:22 A*02:
01:01

B*81:02 C*08:22

NZTD181200665 A*11:
01:01

B*52:01:
01:02

C*01:
02:01

A*11:
01:01

B*54:
01:01

C*01:
02:01

A*11:
01:01

B*54:
01:01

C*01:
02:01

A*11:
01:01

B*54:
01:01

C*01:
02:01

A*24:
02:01

B*54:
01:01

C*01:
02:01

A*24:
02:01

B*54:
01:01

C*12:02:
02:01

A*24:
02:01

B*52:01:
01:02

C*12:
02:02

A*24:
02:01

B*52:01:
01:02

C*12:
02:02

A*24:
02:01

B*52:01:
01:02

C*12:
02:02

A*11:
01:01

B*52:01:
01:02

C*12:
02:02

NZTD181200677 A*03:01:
01:01

B*40:
01:02

C*03:
04:01

A*03:01:
01:01

B*40:
01:02

C*05:01:
01:02

A*03:01:
01:01

B*40:
01:02

C*05:01:
01:02

A*03:01:
01:01

B*40:
01:02

C*05:01:
01:02

A*03:01:
01:01

B*40:
01:02

C*05:01:
01:02

A*11:
01:01

B*44:
02:01

C*05:01:
01:02

A*11:
01:01

B*44:
02:01

C*03:
04:01

A*11:
01:01

B*44:
02:01

C*03:
04:01

A*11:
01:01

B*44:
02:01

C*03:
04:01

A*11:
01:01

B*44:
02:01

C*03:
04:01

NZTD181200678 A*02:
01:01

B*41:01:
01:01

C*15:02:
01:01

A*02:
01:01

B*51:
01:01

C*17:
01:01

A*02:
01:01

B*51:
01:01

C*17:
01:01

A*02:
01:01

B*51:
01:01

C*17:
01:01

A*02:
01:01

B*51:
01:01

C*17:
01:01

A*03:01:
01:01

B*51:
01:01

C*17:01:
01:05

A*03:01:
01:01

B*41:01 C*15:
02:01

A*03:01:
01:01

B*41:01 C*15:
02:01

A*03:01:
01:01

B*41:01 C*15:
02:01

A*03:01:
01:01

B*41:01 C*15:
02:01

NZTD181200690 A*11:
02:01

B*27:
04:01

C*12:02:
02:01

A*11:77 B*27:
04:01

C*12:
02:02

A*11:77 B*27:
04:01

C*12:
02:02

A*11:
02:01

B*27:
04:01

C*12:
02:02

A*11:
02:01

B*27:
04:01

C*12:
02:02

A*11:
02:01

B*51:01:
01:01

C*14:
02:01

A*11:
02:01

B*51:
01:01

C*14:
02:01

A*11:
02:01

B*51:
01:01

C*14:
02:01

A*11:77 B*51:
01:01

C*14:
02:01

A*11:77 B*51:
01:01

C*14:
02:01

The color values represented that the predicted results were inconsistent with the validated results.
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TABLE 2b | Summary of HLA typing results in the four data types with IDT capture probes.

Sample-IDT Validation Cutadapt FastP Raw Trimmomatic

HLA-A HLA-B HLA-C HLA-A HLA-B HLA-C HLA-A HLA-B HLA-C HLA-A HLA-B HLA-C HLA-A HLA-B HLA-C

NZTD181200662 A*02:
01:01

B*40:06:
01:01

C*08:22 A*02:
01:01

B*40:06:
01:01

C*08:22 A*02:
01:01

B*40:06:
01:01

C*08:22 A*02:
01:01

B*40:06:
01:01

C*08:22 A*02:
01:01

B*40:06:
01:01

C*08:22

A*02:
01:01

B*81:02 C*08:22 A*02:
338

B*81:02 C*08:22 A*02:
338

B*81:02 C*08:22 A*02:
01:01

B*81:02 C*08:22 A*02:
01:01

B*81:02 C*08:22

NZTD181200665 A*11:
01:01

B*52:01:
01:02

C*01:
02:01

A*11:
01:01

B*54:
01:01

C*01:
02:01

A*11:
01:01

B*54:
01:01

C*01:
02:01

A*24:
02:01

B*54:
01:01

C*01:
02:01

A*11:
01:01

B*54:
01:01

C*01:
02:01

A*24:
02:01

B*54:
01:01

C*12:02:
02:01

A*24:
02:01

B*52:01:
01:02

C*12:
02:02

A*24:
02:01

B*52:01:
01:02

C*12:
02:02

A*11:
01:01

B*52:01:
01:02

C*12:
02:02

A*24:
02:01

B*52:01:
01:02

C*12:
02:02

NZTD181200677 A*03:01:
01:01

B*40:
01:02

C*03:
04:01

A*11:
01:01

B*40:
01:02

C*03:
04:01

A*11:
01:01

B*40:
01:02

C*05:01:
01:02

A*03:01:
01:01

B*40:
01:02

C*03:
04:01

A*03:01:
01:01

B*40:
01:02

C*03:
04:01

A*11:
01:01

B*44:
02:01

C*05:01:
01:02

A*03:01:
01:01

B*44:
02:01

C*05:01:
01:02

A*03:01:
01:01

B*44:
02:01

C*03:
04:01

A*11:
01:01

B*44:
02:01

C*05:01:
01:02

A*11:
01:01

B*44:
02:01

C*05:01:
01:02

NZTD181200678 A*02:
01:01

B*41:01:
01:01

C*15:02:
01:01

A*02:
01:01

B*41:01 C*17:
01:01

A*02:
01:01

B*51:
01:01

C*17:
01:01

A*02:
01:01

B*51:
01:01

C*15:
02:01

A*02:
01:01

B*51:
01:01

C*17:
01:01

A*03:01:
01:01

B*51:
01:01

C*17:01:
01:05

A*03:01:
01:01

B*51:
01:01

C*15:
02:01

A*03:01:
01:01

B*41:01 C*15:
02:01

A*03:01:
01:01

B*41:01 C*17:
01:01

A*03:01:
01:01

B*41:01 C*15:
02:01

NZTD181200690 A*11:
02:01

B*27:
04:01

C*12:02:
02:01

A*11:
02:01

B*27:
04:01

C*12:
02:02

A*11:
02:01

B*27:
04:01

C*12:
02:02

A*11:
02:01

B*27:
04:01

C*14:
02:01

A*11:
02:01

B*27:
04:01

C*12:
02:02

A*11:
02:01

B*51:01:
01:01

C*14:
02:01

A*11:77 B*51:
01:01

C*14:
02:01

A*11:77 B*51:
01:01

C*14:
02:01

A*11:77 B*51:
01:01

C*12:
02:02

A*11:126 B*51:
01:01

C*14:
02:01

The color values represented that the predicted results were inconsistent with the validated results.

Frontiers
in

B
ioengineering

and
B

iotechnology
|w

w
w

.frontiersin.org
July

2020
|Volum

e
8

|A
rticle

817

85

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-00817 July 28, 2020 Time: 17:57 # 10

He et al. Data Preprocessing on NGS Analysis

FIGURE 5 | Statistics for the reads ID in the four data preprocessing types of sample NZTD181200662. (A) Four kinds of reads ID difference by BOKE probe
capture data processing, (B) four kinds of reads ID difference by IDT probe capture data processing, and (C) the length distribution in the Cutadapt preprocessing
data for the BOKE and IDT probes and the FastP preprocessing data for the BOKE and IDT probes.

analysis, making the analysis results more reliable. When false-
positive or false-negative results are obtained, we usually think it
is caused by (i) experimental factors, such as errors introduced
by PCR or sample contamination; (ii) sequencing factors, such
as sequencing quality and data contamination caused by index
hopping when splitting data; or (iii) analysis software parameters
setting factors, such as alignment software or specific parameter
adjustment of downstream personalized analysis. There have
been some studies that have done some comparisons of data
preprocessing methods, for example, Del Fabbro et al. (2013)
evaluated nine different trimming algorithms in four datasets and
three common NGS-based applications (RNA-Seq, SNP calling,
and genome assembly) (Chen et al., 2018a). But until now, we
still did not notice that the data preprocessing step may also have

a certain impact on the analysis results. We may even consider the
notion that the sole purpose of data preprocessing is to reduce the
downstream computing consumption and describe the quality of
the sequencing data, as the actual importance and meaning have
been previously neglected.

In this study, we compared commonly used data
preprocessing software and found differences in the detection
of hotspot mutations and HLA typing. Although the detection
results may be affected by the three factors described above, for
the different processing of the same data and the subsequent set
of analysis processes, this could reflect the difference between
the different pretreatment methods and the impact on the
detection results. For the current “liquid biopsy” method, the
sample testing requirements are to detect ctDNA mutations
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in the plasma to guide subsequent targeted drug therapy or
real-time monitoring, but the ctDNA’s content in the plasma
is very small (Bettegowda et al., 2014). For the accuracy of
detecting mutations, each step in the experiment and analysis
process should require strict quality control. Each step plays an
important role in the detection results and cannot be ignored.
Particularly for the detection of low-frequency or ultra-low-
frequency mutations such as hotspot mutations, we showed that
if the sequencing depth and mutation support reads number
changes, it may directly lead to false-positive or false-negative
results, which has a huge impact on clinical testing.

Currently, there are many available data quality control
and preprocessing software programs, in addition to the three
methods described in the article, such as FASTQC (Andrews,
2010), SOAPnuke (Chen et al., 2018c), and NGSQC (Dai
et al., 2010). But most methods for the strategy of data
preprocessing are to cut off all subsequent bases as long
as the average quality of the bases in a certain bin or
consecutive bases is below a certain threshold to reduce
memory consumption and I/O reading, increasing the speed
of operation. They do not notice the distribution of the
actual low-mass bases in the sequence, which could result
in many short sequences and may reduce the accuracy of
downstream alignment and increase the sequencing depth
of some reference sites. Thus, the analysis results may be
inaccurate, and the effect may not be as good as the result
of not doing data preprocessing, which was also confirmed in
our analysis results. As the sequencing throughput becomes
higher and higher, the sequencing read length becomes
longer and longer, but the longer the sequencing read
length, the worse the sequencing quality. Therefore, data
preprocessing becomes increasingly important in data analysis.
Existing principles and methods of data preprocessing for
the long sequencing read length are worth considering. Our
research explains the impact of data preprocessing steps on
downstream data analysis results. We hope that our study
can promote the development or optimization for the data
preprocessing methods, so that downstream information analysis
can be more accurate.
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MicroRNA-126 (miR-126) is an endothelial-specific microRNA that has shown beneficial
effects on endothelial dysfunction. However, the underlying molecular mechanism is
unclear. The present study evaluated the effects of miR-126 on the cell migration
and underlying mechanism in HUVECs treated with palmitate. The present results
demonstrated that overexpression of miR-126 was found to decrease cell migration
in palmitate-treated HUVECs, with decreased MLCK expression and subsequent
decreased phosphorylated MLC level. miR-126 also decreased the phosphorylation
of MYPT1 in palmitate-treated HUVECs. In addition, it was demonstrated that miR-
126 decreases expression of the NADPH oxidase subunits, p67 and Rac family small
GTPase 1 with a subsequent decrease in cell apoptosis. Moreover, the phosphorylation
of ERK was reduced by miR-126 in palmitate-induced HUVECs. Taken together, the
present study showed that the effect of miR-126 on cell migration and cell apoptosis is
mediated through downregulation of MLCK via the ERK/MAPK pathway.

Keywords: microRNA-126, cell migration, myosin light chain kinase, endothelial dysfunction, ERK/MAPK pathway

INTRODUCTION

Atherosclerosis (AS) is a chronic progressive pathological process characterized by multiple factors.
Specifically, endothelial dysfunction is the earliest step in the pathogenesis of AS (Gimbrone and
García-Cardeña, 2016). Palmitate, a main component of saturated fat, is associated with increased
cardiovascular disease risk. Furthermore, clinical and experimental studies have demonstrated
that high concentrations of free fatty acid (FFA) in the plasma, promotes endothelial dysfunction
(Arijit et al., 2017). Palmitate increased monocyte expression of CD11b, which was associated with
increased adhesion to rat aortic endothelium and CD36 expression, which promoted oxidized LDL
uptake (Gao et al., 2012).
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The phosphorylation of myosin regulatory light chain (MLC)
has an essential role in the control of actomyosin contractility
participates in cell contraction, cell adhesion, cell migration
and epithelial barrier formation. Myosin light chain kinase
(MLCK) induced the phosphorylation of MLC which activated
by Ca2+-calmodulin, is important in stress fiber formation and
cell contractility. Aberrant expression of MLCK was shown to
promote the progression of numerous inflammatory diseases,
including pancreatitis, respiratory diseases, cardiovascular
diseases, cancer and inflammatory bowel disease (Kim et al.,
2012; Yu et al., 2018; Wang et al., 2019).

MicroRNAs (miRNAs) are a class of small 18–22 nucleotide,
non-coding, single-stranded RNA molecules that regulate gene
expression at the post-transcriptional level by binding to target
mRNA. It was well-known that abnormal expression of miRNAs
have been closely linked to the progression of AS by regulating
endothelial cell function, lipid accumulation and vascular cells
proliferation (Wojciechowska et al., 2017; Hung et al., 2018).
Furthermore, miR-126, a miRNA specific for endothelial cells
mediates vascular development and angiogenesis. Circulating
level of miR-126 was decreased in the coronary artery
disease (CAD) patients compared with healthy control (Wang
et al., 2017). Previous study has shown that miR-126 play a
protective role in human cardiac microvascular endothelial cells
from hypoxia/reoxygenation-induced injury and inflammatory
response by increasing NO secretion (Yang et al., 2017).
In addition to vascular changes, miR-126 also modulates
inflammation, and regulate lipid metabolism in endothelial cells
(Yuan et al., 2016). Our previous study showed that miR-
126 serves an anti-apoptotic role in palmitate-treated human
umbilical vein endothelial cells (HUVECs) by decreasing the
production of reactive oxygen species (ROS) (Wang et al., 2015).
However, the role of miR-126 in the MLCK expression is unclear.
Therefore, this study was aimed to analyze the effect exerted by
miR-126 in MLCK expression in palmitate treated HUVECs, as
well as the underlying mechanisms.

MATERIALS AND METHODS

Reagents and Antibodies
Palmitate and oleate were obtained from Sigma-Aldrich. DMEM
medium was obtained from Gibco. FBS was purchased from
the Zhejiang Tianhang Biological Technology. Anti-MLCK,
anti-MLC, anti-MYPT1, anti-p-MYPT1, anti-ERK, anti-p-ERK
and anti-β-actin antibodies were purchased from Santa Cruz
Biotechnology. Anti-pMLC was obtained from Cell Signaling
Technology. Anti-NOXA2/p67phox and anti-Rac family small
GTPase 1 were purchased from Abcam.

Cell Culture and Transfection
HUVECs were cultured at 37◦C in DMEM supplemented
with 10% FBS at 5% CO2 incubator. miR-126 mimic, miR-
126antagomir and a scrambled oligonucleotide (Qiagen GmbH)
were transfected with TransMessenger Transfection Reagent
(Qiagen GmbH) according to the instructions. After 24 h, cell
medium was changed with palmitate or oleate supplementation

for 24 h. Oleate, as an unsaturated fatty acid exerts beneficial
effects on endothelial dysfunction, was used as a control
(Grenon et al., 2012). Each experiment was repeated a
minimum of three times.

miR-126 Expression Assay
Total RNA from HUVECs was extracted by using TRIzol
reagent (Invitrogen; Thermo Fisher Scientific, Inc.). A miRNA
plate assay kit (Signosis, Inc.) and an oligo mix specific
for miR-126 (Signosis, Inc.) were used to detect miR-126
expression following the manufacturer’s protocol. The U6
small nucleolar RNA was chosen as an endogenous reference
of miR-126. miR-126 expression was also assessed by reverse
transcription-quantitative polymerase chain reaction (RT-
qPCR), the sequences of the primers were as follows:
miR-126, forward 5′-UCGUACCGUGAGUAAUAAUGCG-
3′, reverse 5′-CAUUAUUACUCACGGUACGAUU-3′, and
U6, forward 5′-CTCGCTTCGGCAGCACA-3′, and reverse
5′-AACGCTTCACGAATTTGCGT-3′. The reaction procedure
was as follows: pre-denaturation at 95◦C for 10 min, followed by
40 cycles of 95◦C for 15 s, 65◦C for 15 s, and 72◦C for 15 s.

Scratch Healing Assay
HUVECs were seeded in 12-well plates and transfected as
indicated, a total of 24 h later, palmitate or oleate were incubated
with HUVECs. When the cells reached confluence, a sterile
200-µl pipette tip was used to create a horizontal wound in
the confluent monolayer. Photographs of scratch wounds were
captured prior to stimulation (0 h) and 24 h after incubation.
The initial distance (0 h) and the distance traveled by cells
after 24 h as detected using a microscope (Olympus). The
percentage of wound healing was calculated using Image J
(National Institutes of Health).

Cell Apoptosis
Cells underwent transfection for 48 h, followed by digestion
and centrifugation to remove the supernatant. The cells
were then washed with PBS and centrifuged again. The
apoptotic rate of HUVECs was detected using annexin
V-allophycocyanin apoptosis detection kit (Beyotime) following
the manufacturer’s instructions.

Western Blot Analysis
Protein samples were extracted from cultured cells. Cells were
lysed using RIPA buffer. The protein concentrations were
determined using a BCA protein assay kit (Beyotime Institute
of Biotechnology). The protein was separated by SDS-PAGE,
then transferred to polyvinylidene fluoride membranes. The
membrane was blocked with 5% non-fat dry milk solution at
room temperature for 2 h, and followed by incubation with
the following primary antibodies (anti-MLCK, anti-MLC, anti-
pMLC, anti-MYPT1, anti-pMYPT1, anti-ERK, anti-p-ERK, anti-
p67phox, anti-Rac1, and anti-β-actin, all were used at a dilution
of 1:1,000.) overnight. The 2 day, the membranes incubation
with secondary antibodies at room temperature for 2 h and
visualized with a Super Signal West Pico kit (Thermo Fisher
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FIGURE 1 | Effect of miR-126 on the migration of palmitate-treated HUVECs. (A,C) The migration rate was increased in palmitate-treated HUVECs compared with
oleate-treated HUVECs, miR-126 mimic inhibited the migration rate of palmitate-treated HUVECs. (B,D) miR-126 antagomir increased the migration rate of
palmitate-treated HUVECs. *P < 0.05 vs oleate-treated HUVECs; **P < 0.05 vs palmitate-treated HUVECs.

Scientific, Inc.). Data were quantified through densitometry using
Quantity One software.

Statistical Analysis
All data are reported in the form of mean ± standard deviation.
The significant differences among groups were carried out
with ANOVA followed by Newman-Keuls test for multiple
comparisons. P-values below 0.05 were considered to indicate a
statistically significant difference. Statistical analyses were carried
out using SPSS 17.0.

RESULTS

miR-126 Reduces Palmitate-Induced
Migration (motility) in HUVECs
To study the influence of miR-126 on cell migration in palmitate-
treated HUVECs, the present study performed wound healing
scratch assays. Following treatment with palmitate, the migration
distances of HUVECs were found to be significantly longer
compared with the oleate-treated HUVECs 24 h after injury.
However, miR-126 mimic decreased the migration distances in
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FIGURE 2 | Effect of miR-126 on the expression of MLCK, p-MLC and p-MYPT1 in palmitate-treated HUVECs. (A) Palmitate inhibited the expression of miR-126 in
HUVECs compared with oleate. (B–D) The expression level of MLCK was upregulated in palmitate-treated HUVECs compared with oleate-treated HUVECs, and the
p-MLC/MLC ratio in palmitate-treated HUVECs was upregulated, which all inhibited by miR-126 mimic. (E–G) The expression of level of MLCK and p-MLC/MLC
ratio in palmitate-treated HUVECs was enhanced by miR-126 antagomir. (H) The pMYPT1/MYPT1 ratio was upregulated in palmitate-treated HUVECs compared
with oleate-treated HUVECs which inhibited by miR-126 mimic. (I) The pMYPT1/MYPT1 ratio in palmitate-treated HUVECs was enhanced by miR-126 antagomir.
n = 3. *P < 0.05 vs oleate-treated HUVECs; **P < 0.05 vs palmitate-treated HUVECs.

palmitate-treated HUVECs compared with the control group
(transfected with a scrambled oligonucleotide). By contrast, miR-
126 antagomir further increased the migration distances in
palmitate-treated HUVECs compared with the control group
(Figure 1). The results indicated that miR-126 reduced cell
migration in palmitate-treated HUVECs.

miR-126 Reduces MLC Phosphorylation
by Regulating the Expression of MLCK
and MYPT1 Phosphorylation in
Palmitate-Treated HUVECs
To investigate the effect of palmitate on miR-126 expression in
HUVECs, HUVECs were incubated with palmitate or oleate
(0.1 mM) as a control. After 24 h, miR-126 expression was
determined in HUVECs using the miRNA plate assay. As

presented in Figure 2A that palmitate significantly decreased
miR-126 expression. To measure the influence of miR-126
on MLCK expression, the level of MLCK was analyzed
in palmitate-treated HUVECs transfected with a miR-126
mimic or miR-126 antagomir. Palmitate induced a markedly
increased MLCK protein expression in HUVECs compared
with oleate-treated cells. Furthermore, overexpression of
miR-126 decreased MLCK protein expression in palmitate-
treated HUVECs, while downregulation of miR-126 had
the opposite effect (Figures 2B,C). In addition, MLCK is
known to catalyze MLC phosphorylation. The present results
demonstrated that the expression of MLC in palmitate-
treated HUVECs was not significantly different compared
with oleate-treated HUVECs, However, the phosphorylated
MLC/MLC ratio in palmitate-treated HUVECs was increased
compared with oleate-treated HUVECs, andmiR-126 mimic
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FIGURE 3 | miR-126 modulates the expression of p67phox and Rac1 in palmitate-treated HUVECs. (A,C) The expression level of p67phox and Rac1 were
upregulated in palmitate-treated HUVECs compared with oleate-treated HUVECs, miR-126 mimic inhibited the expression level of p67phox and Rac1 in
palmitate-treated HUVECs. (B,D) miR-126 antagomir enhanced the expression level of p67phox and Rac1 in palmitate-treated HUVECs. n = 3. *P < 0.05 vs
oleate-treated HUVECs; **P < 0.05 vs palmitate-treated HUVECs.

significantly decreased MLC phosphorylation (Figures 2B,D).
By contrast, miR-126 antagomir significantly increased MLC
phosphorylation (Figures 2E,G). To determine whether miR-126
regulates MLC phosphorylation through the phosphorylation
of MYPT1, the levels of pMYPT1 and MYPT1 were quantified.
The results demonstrated that miR-126 mimic significantly
increased MYPT1 phosphorylation, whereas miR-126
antagomir significantly decreased MYPT1 phosphorylation
(Figures 2H,I). These results indicated that miR-126 reduced the
phosphorylation of MLC by regulate the expression of MLCK and
the phosphorylation of MYPT1 in palmitate-treated HUVECs.

miR-126 Reduces NADPH Oxidase
Subunits Rac1 and P67phox Expression
in Palmitate-Treated HUVECs
Previous studies have shown that NADPH oxidase activity
was is influenced by MLCK. Therefore, NADPH oxidase
expression levels were quantified in the present study. The results
revealed that palmitate increased the expression levels of Rac1
and p67phox (subunits of NADPH oxidase 2) in HUVECs
compared with oleate-treated HUVECs (Figure 3). Furthermore,
overexpression of miR-126 decreased Rac1 and p67phox protein
expression in palmitate-treated HUVECs, while downregulation
of miR-126 had the opposite effect. These results indicated
that miR-126 reduced the expression of Rac1 and p67phox in
palmitate-treated HUVECs.

miR-126 Reduces Apoptosis in
Palmitate-Treated HUVECs
We investigated the effect of miR-126 on the regulation of
HUVECs apoptosis induced by palmitate. As presented in

Figure 4, the number of apoptotic cells in palmitate-treated
HUVECs was higher than those observed in oleate-treated
HUVECs. However, upregulation of miR-126 significantly
alleviated apoptosis in palmitate-treated HUVECs, while
downregulation of miR-126 further increased the number of
apoptotic cells in palmitate-treated HUVECs. The data indicated
that miR-126 inhibited apoptosis in palmitate-treated HUVECs.

miR-126 Attenuates Activation of ERK in
Palmitate-Treated HUVECs
The ERK/MAPK pathway has been reported to be associated
with endothelial dysfunction. Next, we investigated whether
miR-126 participates in regulating the ERK/MAPK pathway
in palmitate-induced HUVECs. miR-126 mimic, antagomir or
a scrambled oligonucleotide were transfected into HUVECs,
respectively, a total of 24 h later, HUVECs were exposed
to palmitate or oleate (0.1 mM) for a further 24 h. As
shown in Figure 5, phosphorylated ERK/ERK ratio was
upregulated in palmitate-treated HUVECs compared with
oleate-treated HUVECs, overexpression of miR-126 attenuated
the phosphorylated ERK/ERK ratio in palmitate-treated
HUVECs, whereas downregulation of miR-126 increased the
phosphorylated ERK/ERK ratio in palmitate-treated HUVECs.
The results indicated that miR-126 modulate activation of ERK
in palmitate-treated HUVECs.

DISCUSSION

The endothelial cells (ECs) dysfunction in AS is characterized
by increased cellular migration, apoptosis and enhanced
permeability of the endothelial cell monolayer, allowing passage
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FIGURE 4 | miR-126 affected palmitate-induced HUVECs apoptosis as assessed by FACS. (A,C) FACS was used to detect HUVECs apoptosis, HUVECs apoptosis
rate was increased in palmitate-treated HUVECs compared with oleate-treated HUVECs, miR-126 mimic decreased cell apoptosis in palmitate-treated HUVECs.
(B,D) FACS was used to detect HUVECs apoptosis, HUVECs apoptosis rate was increased in palmitate-treated HUVECs compared with oleate-treated HUVECs,
miR-126 antagomir promoted cell apoptosis in palmitate-treated HUVECs. n = 3. *P < 0.05 vs oleate-treated HUVECs; **P < 0.05 vs palmitate-treated HUVECs.

of lipids and inflammatory factors (Chistiakov et al., 2016;
Hu et al., 2020). miR-126 is the most prominent miRNA in
ECs, abnormal expression of miR-126 may contributing to the
pathogenesis of AS. In vivo study showed that miR-126 is essential
for maintaining vascular integrity by involved in endothelial cell
migration, disruption of cytoskeletal structure and cell apoptosis
(Huveneers et al., 2015). The present study, demonstrated that
the presence of miR-126 ameliorated cell migration and cell

apoptosis, and subsequently reduced the expression of MLCK in
HUVECs that had previously been treated with palmitate.

Furthermore, the endothelial cytoskeleton contractile
machinery has an important role in maintaining barrier
properties of the endothelium (Kása et al., 2015). Additionally,
MLCK is a specifically enzyme via catalyze the phosphorylation
of MLC mediate the reorganization of the cytoskeleton, leading to
the disruption of endothelial barrier integrity (Rossi et al., 2011).
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FIGURE 5 | miR-126 modulates the phosphorylation of ERK in palmitate-treated HUVECs. (A) Western blot results showed that phosphorylated ERK/ERK ratio was
upregulated in palmitate-treated HUVECs compared with oleate-treated HUVECs, miR-126 mimic decreased the phosphorylated ERK/ERK ratio in palmitate-treated
HUVECs. (B) Western blot results showed that phosphorylated ERK/ERK ratio was upregulated in palmitate-treated HUVECs compared with oleate-treated
HUVECs, miR-126 antagomir increased the phosphorylated ERK/ERK ratio in palmitate-treated HUVECs. n = 3. *P < 0.05 vs oleate-treated HUVECs; **P < 0.05 vs
palmitate-treated HUVECs.
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The compromised endothelial barrier become more permeable
to lipids and immune cells, ultimately leading to AS lesion
formation (Schnittler, 2016). The present results indicated that
miR-126 attenuates the expression of MLCK and decreases
phosphorylation of MLC in palmitate-treated HUVECs.
Dephosphorylation of MLC is accomplished by MLCP, which
is consisting of MYPT1, a myosin target subunit, and a subunit
with uncertain function. Dephosphorylation of MLC results in
cell relaxation. The catalytic activity of MLCP are inhibited by
the phosphorylation of MYPT1 at multiple sites by several kind
of kinases, therefore, led to decreased dephosphorylated MLC
and thus, vascular smooth muscle contraction (Qiao et al., 2014;
Chang et al., 2016; Gao et al., 2017; Deng et al., 2020). The current
study found that miR-126 decreased phosphorylation levels of
MYPT1 in palmitate-treated HUVECs, which may account for
the observed decrease in MLC phosphorylation. Therefore, miR-
126 may modulate the phosphorylation of MLC via the regulation
of MLCK expression and MLCP activity.

Previous studies have found that knockout of MLCK reduces
the level of oxidized low-density lipoprotein (oxLDL)-induced
endothelial hyper-permeability and also reduced the size of aortic
lesions. Notably, it was also identified that MLCK acts through
both MLC phosphorylation-coupled and -uncoupled pathways
(Shen et al., 2010). Furthermore, Usatyuk et al. demonstrated that
upregulation of MLCK in human pulmonary artery endothelial
cells enhances the activation of endothelial NADPH oxidase and
enhances ROS production (Usatyuk et al., 2012). Alternatively,
downregulation of MLCK significantly inhibits NADPH oxidase,
resulting in subsequently reduced ROS production. NADPH
oxidase are important enzymes that regulate ROS generation in
the vasculature. NADPH oxidase inhibitors have been shown to
attenuate palmitate-induced excessive production of ROS within
animal models (Li et al., 2019). Therefore, it was postulated
that miR-126 could regulate NADPH oxidase expression by the
regulation of MLCK. The current study examined the level of
cellular apoptosis, as well as the expression of NADPH oxidase
2 subunits, such as p67phox and Rac1. The results indicated
that miR-126 ameliorated cell apoptosis and reduced expression
of p67phox and Rac1 in palmitate-treated HUVECs. These
results were consistent with our previous study showing that
miR-126 reduced ROS production in palmitate-treated HUVECs
(Wang et al., 2015).

The MAPK signaling pathway has a vital function in the
pathogenesis of AS. Chandra S et al. reported that high

glucose induced endothelial dysfunction are mediated by the
ERK/MAPK pathway (Chandra et al., 2019). Recently, a study
have demonstrated that the ERK/MAPK pathway contribute to
the activation of MLCK (Tan et al., 2014). Therefore, a previous
study has shown that overexpression of miR-126 suppressed ERK
pathway activity in glioma cells and resulted in the inhibition of
glioma cell proliferation and invasion (Li et al., 2017; Wang et al.,
2020). In the current study, we found that miR-126 could affect
the activity of MLCK contributed to endothelial dysfunction via
the ERK/MAPK pathway. The present data revealed that ERK
activation was decreased in the presence of miR-126 mimic and
increased by miR-126 antagomir. These results suggest that miR-
126 may modulate MLCK expression through the ERK/MAPK
signaling pathway.

In conclusion, the present results suggest a role for miR-
126 in palmitate-treated HUVECs cell migration by causing a
downregulation in MLCK via ERK activation. Understanding
how miR-126 regulate endothelial cell migration and cell
apoptosis provide important insights into the development of AS.
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Cancer of unknown primary site (CUPS) is a type of metastatic tumor for which the

sites of tumor origin cannot be determined. Precise diagnosis of the tissue origin

for metastatic CUPS is crucial for developing treatment schemes to improve patient

prognosis. Recently, there have been many studies using various cancer biomarkers

to predict the tissue-of-origin (TOO) of CUPS. However, only a very few of them use

copy number alteration (CNA) to trance TOO. In this paper, a two-step computational

framework called CNA_origin is introduced to predict the tissue-of-origin of a tumor

from its gene CNA levels. CNA_origin set up an intellectual deep-learning network mainly

composed of an autoencoder and a convolution neural network (CNN). Based on real

datasets released from the public database, CNA_origin had an overall accuracy of

83.81% on 10-fold cross-validation and 79% on independent datasets for predicting

tumor origin, which improved the accuracy by 7.75 and 9.72% compared with the

method published in a previous paper. Our results suggested that the autoencoder model

can extract key characteristics of CNA and that the CNN classifier model developed in

this study can predict the origin of tumors robustly and effectively. CNA_origin was written

in Python and can be downloaded from https://github.com/YingLianghnu/CNA_origin.

Keywords: tumor, tissue-of-origin, copy number alteration, autoencoder, convolution neural network

1. INTRODUCTION

Cancer metastasis is the process in which tumor cells fall off from the primary site, enter the
circulatory system, transfer to other parts of the body, and continue to grow. In about 3–5% of
metastatic tumors, the sites of origin cannot be found, and this is known as cancer of unknown
primary site (CUPS). Patients diagnosed with CUPS are treated with broad-spectrum anticancer
drugs and have a low median survival time of 9–12 months. Precise diagnosis of the tissue of
origin for metastatic CUP is essential for deciding on the treatment scheme to improve the patient’s
prognosis (Chen et al., 2017). Clinical, imaging and pathological examination are used to detect the
tissue of origin, but these approaches can only determine the tissue of origin in about 50–80% of
CUP patients.

Recently, a large number of studies have tried to use cancer biomarkers to predict the primary
tumor site for CUPs so as to provide much-needed guidelines for timely patient care and cancer
therapy (Liang et al., 2016; Grewal et al., 2019; Wang et al., 2019; Zheng et al., 2019). The gene
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expression patterns in tumors have high specificity, and so
these the most widely used biomarkers for tumor classification
(Bloom et al., 2004; Tothill et al., 2005; Staub et al., 2010;
Wu et al., 2010; Handorf et al., 2013; Xu et al., 2016; Wang
et al., 2018; Li et al., 2019). For example, Li used the within-
sample relative gene expression orderings of gene pairs within
individual samples to identify a prediction signature (Li et al.,
2019). Wang proposed a general framework to identify a subset
of genes for each tumor subtype and presented a corresponding
classification model for distinguishing different tumor subtypes
(Wang et al., 2018). Xu established a comprehensive database
integrating microarray- and sequencing-based gene expression
profiles of 16,674 tumor samples covering 22 common human
tumor types to discriminate the origins of tumor tissue, which
will be an additional useful tool for determining the tumor origin
(Xu et al., 2016).

DNA methylation and miRNA regulate the expression of
genes involved in numerous biological processes (Rosenfeld et al.,
2008; Rosenwald et al., 2010; Ferracin et al., 2011; Mueller
et al., 2011; Søkilde et al., 2014). Tang developed a user-
friendly webserver to predict tumor origin by identifying highly
tissue-specific CpG sites and miRNA expression (Tang et al.,
2017). Bae tried to discover tissue-specific methylation markers
and predicted the tissue-of-origin in CUPS (Bae et al., 2018).
Yang proposed an inverse space sparse representation model
to distinguish tumor origins considering the characteristics of
gene-based tumor data (Yang et al., 2019). Visual imagery
is one of the main methods used by pathologists to assess
the stage, type, and subtype of tumors (Shi et al., 2016;
Coudray et al., 2018; Mohsen et al., 2018). Coudray employed
visual inspection of histopathology slides to classify lung
adenocarcinoma, lung squamous cell carcinoma, and normal
lung tissue, which achieved performance comparable to that
of pathologists (Coudray et al., 2018). Ultrasound imaging can
also be used for tumor detection and diagnosis with a deep
polynomial network algorithm (Shi et al., 2016).

As yet, few studies have investigated the roles of genome
variants on tissue-of-origin in CUPS. Genome variants include
mutation, small insertion, and deletion (INEDL) and copy
number alteration (CNA). CNA is amplification and deletion of
genomic sequences ranging from kilobases (Kb) to megabases
(Mb) in size, which covers 360 Mb and encompasses hundreds of
genes, disease loci, and functional elements (Redon et al., 2006).
As the main genetic marker of the genome, CNA can affect the
gene function through gene dose, gene breakage, gene fusion,
and position effects and is closely related to the occurrence and
development of tumor (Poduri et al., 2013). CNA also plays
an increasingly important role in targeted therapy, personalized
treatment, and prognosis judgment for tumors. Marquard
developed a tool named TumorTracer by using publicly available
somatic mutation data to train random forest classifiers and
thus to identify the tissue of origin. This was demonstrated to
be accurate enough to aid in the clinical diagnosis of cancers
with unknown primary origin (Marquard et al., 2015). Zhang
conducted a comprehensive genome-wide analysis of CNAs from
six cancer types and selected 19 discriminative genes for tumor
classification, but their overall prediction accuracy was about

TABLE 1 | Number of samples per tissue for CNA profiles.

Primary site Histology CNA datasets

Breast BRCA (Breast invasive carcinoma) 847

Colorectal COADREAD (Colorectal adenocarcinoma) 575

Brain GBM (Glioblastoma multiforme) 563

Kidney KIRC (Kidney renal clear cell carcinoma) 490

Ovarian OV (Ovarian serous cystadenocarcinoma) 562

Uterine UCEC (Uterine Corpus Endometrial Carcinoma) 443

75% (Zhang et al., 2016). In the current study, a computational
method called CNA_origin is proposed to predict the tissue of
origin with the information of gene CNA levels. CNA_origin set
up an intellectual deep-learning network mainly composed of
an autoencoder and a convolution neural network (CNN). This
predictor successfully learned the inherent information of gene
copy number and exhibited superior performance to classical
algorithms for the same benchmark datasets.

2. MATERIALS AND METHODS

2.1. Datasets
The copy number signal was produced by Affymetrix SNP
6.0 arrays for the set of samples in the cancer genome
atlas (TCGA) study, as generated with the Firehose analysis
pipeline. The preprocessing analysis of the dataset was performed
with GISTIC (Beroukhim et al., 2007). These datasets were
from primary solid tumor samples released by MSKCC in
2013 that could be downloaded from http://cbio.mskcc.org/
cancergenomics/pancan_tcga/. The datasets with a sample size
greater than 400 were selected. The details of all tissue samples,
including tumor status, histopathology details, and sample sizes,
are summarized in Table 1.

Each sample had 24,174 genes with discrete copy number
values denoted as “–2,” “–1,” “0,” “1,” “2,” where “–2” was
homozygous deletion, “–1” was heterozygous loss, “0” was
diploid, “1” was one copy gain and “2” was high-level
amplification or multiple-copy gain (Ciriello et al., 2013). The
CNA values were scaled to [–1, 1] with Equation (1).

x′ =
x

|x|max

(1)

where x was the CNA value of the gene, |x|max was the maximum
absolute value of CNA among samples, and x′ was the value
after correction.

2.2. Feature Extraction
Each sample had 24,174 gene-level CNA values. High
dimensionality and small sample sizes have seriously obscured
the intrinsic nature of CNA data. In this paper, CNA_origin
applied a stacked autoencoder (SAE) to extract the features of
CNA values, which converted the high-dimensional data into
low-dimensional codes by training a multilayer neural network
with small central layers to reconstruct high-dimensional input
vectors (Hinton and Salakhutdinov, 2006). The SAE consisted
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of an adaptive multilayer “encoder” network and an asymmetric
“decoder” network, and high-dimensional abstraction whilst
maintaining the key information was achieved for feature
reduction with the help of hidden nodes in the code layer, as
illustrated in Figure 1A.

In the encoder network, the 24,174 gene-level CNA values
used as inputs were mapped to the latent representation of next
layer using Equation (2).

X[i] = f (WiX
[i−1] + bi) (2)

where f (x) = max (0, x)was ReLU activation function, bi was the
bias of layer i, and Wi was the weight between layer i-1 and i. In
the decoder network, the code layer was used to reconstruct the
input by a reverse mapping using Equation (3).

X[i] = f (Wi
′X[i−1] + bi

′) (3)

where Wi
′ = WT

i . The tanh activation function f (x) = ex−e−x

ex+e−x

was added to predict the final value, and the dimensionality of
the final output layer was the same as that of the input layer. To
determine the optimized parameters of W and b, layer-by-layer
pretraining was used to minimize the error between the input
X and output X′. The middle features were extracted through
hidden nodes in the code layer.

CNA_origin was implemented in Python 3.7.3 using Keras
(2.24) with the backend of TensorFlow (1.14.0). For the feature
extraction of gene CNA, the neuron numbers in symmetrical
hidden layers were set at 4,096, 1,024, 256, 100, 256, 1,024, and
4,096, respectively. The middlemost 100 neurons represented
the extracted features, as it was found that features with more
than 100 dimensions were not helpful to improve the classifier
performance. The initial learning rate was set to 0.01, batch size
to 64, and epochs to 16. This autoencoder was optimized using
the Adam algorithm to learn the model parameters, and the loss
function was mean square error.

2.3. Classifier Construction
The fully connected layer learns the global patterns in feature
space, but convolution layer applies filters in the form of
convolution operations to learn local patterns from the image
(Baek et al., 2018). Inspired by the visual world, CNN has
two interesting properties, translation invariant and spatial
hierarchies of patterns, which allow a convolution network
to efficiently learn increasingly complex and abstract visual
concepts (Chollet, 2015, 2017). These properties are specialized
for image data and also show outstanding performance in
sequence processing (Le et al., 2017, 2019b). The same
input transformation was performed on every subsequence;
a pattern learned at a certain position in a sequence was
later recognized at a different position, making 1D convnets
translation invariant. A 1D convolution layer could catch local
patterns in a sequence, making it competitive with recurrent
neural networks (RNN) on sequence-processing at a considerably
cheaper computational cost.

CNA_origin reshaped the 100 features of the sample into a
100 × 1 vector; each input tensor was 100 in width, 1 in height,

and 1 in depth. The 1D convolution was used to extract local
subsequences with D filters, and each filter was of k × 1 in
size, which means the filter was k in width and 1 in height.
CNA_origin utilized multi-scale convolution kernels, such as
1× 1, 3× 1, 5× 1, 7× 1, and 9× 1, to extract high-order features
of different levels and increase the diversity of feature extraction.
Among them, the 1× 1 convolution kernel changed the number
of channels, increased the non-linear transformation of features,
and improved the generalization ability of the network. The
number 48 or 64 in parentheses behind k× 1 meant convolution
with 48 or 96 filters. CNA_origin padded the features by adding
k/2 columns with elements being zero to the head and tail of
the sequence; therefore, the width of the new sequence after
convolution with stride 1 was still the same.

The Concat operation in Figure 1meant that the layer stacked
features from each branch together. Different convolution layers
and max-pooling layers concatenated like the Inception module,
which increased the depth of the network and improved the
robustness of the CNN. At the beginning of the network, a larger
convolution kernel was used to reduce the number of parameters
and computation, as illustrated in Figure 1B. In the last, the
network connected two full connection layers, with a dropout
layer to avoid overfitting. Usually, the number of hidden units
was far larger than the obtained data, resulting in overfitting. The
dropout layer helped alleviate this problem by removing some of
the connections in the network (Baek et al., 2018). Output such
as 50 × 1× 128 meant that the feature maps were 50 in width, 1
in height, and 128 in depth. The final result was the probability
that the sample belonged to each class and was found with the
“softmax” activation function, which is often used in solving
multi-classification problems. It was defined as Equation (4).

Pk =
exp(αk)

∑m
i = 1 exp(αi)

(4)

Pk was the probability that the sample belonged to class k. exp(x)
represented an exponential function, αk was the input value of
class k, and m was the number of tumor classes. The categorical
cross-entropy loss corresponding with the “softmax” activation
function was used, which was a variant of binary cross-entropy
and was defined as Equation (5).

loss = −

n
∑

i = 1

yi1logPi1 + yi2logPi2 + · · · + yimlogPim (5)

Pim was the predicted probability, n was the number of samples,
and yim was the true label.

For the classification learning, the number of multi-scale
convolution kernels was set to 64, batch size to 16, and epochs
to 12. The learning rate was dynamically adjusted according to
the loss value of the test dataset, and the initial value was 0.01.
The dropout rate was set to 0.4, and the loss function was sparse
categorical crossentropy.
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FIGURE 1 | The workflow of CNA_origin. CNA_origin applied a stacked autoencoder to extract the feature of CNA values, which was composed of a symmetrical

encoder and decoder network, and 4,096, 1,024, and 256 were the neuron numbers in symmetrical hidden layers (A). A 1D CNN with multi-scale convolution kernels

(1× 1, 3× 1, 5× 1, 7× 1, 9× 1) was used to construct a classifier model, and the number 48 or 64 in parenthesis behind k × 1 meant convolution with 48 or 96

filters. The Concat layer stacked features from each branch together; the output denoted the dimensions of feature maps for each layer (B).
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3. RESULTS AND DISCUSSION

3.1. Performance Evaluation Metrics
The six tumor datasets were used to train CNA_origin. To
understand the generalization performance, CNA_origin was
also tested by independent datasets. In this work, the precision
(P), recall (R), accuracy (ACC), and F1-score were adopted to
assess the performance of the corresponding method; they have
been used as measurement metrics in previous works (Le et al.,
2018, 2019a). They are defined as Equation (6).

P =
TP

TP + FP

R =
TP

TP + Fn

ACC =
TP + Tn

TP + Fp + Fn + Tn

F1− score =
2× P × R

P + R

(6)

where TP, Tn, FP, and Fn were the numbers of true positives,
true negatives, false positives, and false negatives, respectively.
P ∈ [0, 1], R ∈ [0, 1], ACC ∈ [0, 1], and F1− score ∈ [0, 1]. P= 0
indicated that all predicted positive results were actually negative.
When all results were incorrect, TP = 0 and Tn = 0; therefore,
P = 0, R = 0, ACC = 0, and F1-score = 0. When all results were
correct, FP = 0 and Fn = 0; therefore, P= 1, R= 1, ACC= 1, and
F1-score = 1. Precision and recall are two contradictory metrics.
Generally speaking, when the precision is high, the recall is often
low, while when the recall is high, the precision is often low.

3.2. CNA_Origin Performance
Ten-fold cross-validation was utilized to evaluate our algorithm
with the extracted 100-dimensional features. The datasets were
randomly divided into ten subsets of approximately equal size.
Our network was trained 10 times; nine of the 10 subsets were
used as the training datasets, and the remaining one was the test
dataset. All of the above evaluation indices of our algorithm, that
is, P, R, ACC, and F1-score, were calculated according to the
results in our work. The average values of four metrics P, R, ACC,
and F1-score defined in Equation (6) over ten test datasets are
listed in Table 2.

TABLE 2 | CNA_origin performance measured by three metrics via 10-fold

cross-validation.

Cancer Precision Recall F1-score

BRCA 0.8750 0.9231 0.8984

COADREAD 0.8158 0.7381 0.7750

GBM 0.9310 0.8438 0.8852

KIRC 0.8889 0.9600 0.9231

OV 0.8980 0.8672 0.8800

UCEC 0.6792 0.7200 0.6990

3.3. Performance Comparison With Other
Algorithms
The performance of our algorithm was compared with four
other classical classification algorithms with the same benchmark
datasets. Random forest (RF) is an ensemble classifier that
producesmultiple decision trees using a randomly selected subset
of training samples and variables (Liu et al., 2019). XGBoost is
a novel sparsity-aware algorithm for sparse data and weighted
quantile sketch for approximate tree learning and has been
used in many bioinformatics fields (Chen and Guestrin, 2016;
Deng et al., 2020; Hu et al., 2020). Long Short-Term Memory
(LSTM) is an artificial RNN architecture that is well-suited to
classifying, processing, and making predictions based on time
series data (Hochreiter and Schmidhuber, 1997). Zhang proposed
a method to computationally classify cancer types by using CNA

TABLE 3 | Comparison of CNA_origin predictions with those of other algorithms.

Cancer Predictor Precision Recall F1-score

BRCA CNA_origin 0.8750 0.9231 0.8984

LSTM 0.8713 0.8462 0.8585

RF 0.8556 0.8645 0.8601

XGboost 0.8214 0.8846 0.8519

CNA_zhang 0.7916 0.8735 0.8306

COADREAD CNA_origin 0.8158 0.7381 0.7750

LSTM 0.8571 0.8077 0.8317

RF 0.7659 0.6923 0.7272

XGboost 0.7959 0.7500 0.7723

CNA_zhang 0.6000 0.7346 0.6605

GBM CNA_origin 0.9310 0.8438 0.8852

LSTM 0.8913 0.8913 0.8913

RF 0.8627 0.8627 0.8627

XGboost 0.9535 0.8913 0.9213

CNA_zhang 0.8870 0.8593 0.8730

KIRC CNA_origin 0.8889 0.9600 0.9231

LSTM 0.8837 0.9268 0.9048

RF 0.9056 0.8571 0.8807

XGboost 0.8780 0.8780 0.8780

CNA_zhang 0.8085 0.9268 0.8636

OV CNA_origin 0.8980 0.8627 0.8800

LSTM 0.7843 0.9091 0.8421

RF 0.7826 0.9000 0.8372

XGboost 0.7551 0.8409 0.7957

CNA_zhang 0.8461 0.7586 0.8000

UCEC CNA_origin 0.6792 0.7200 0.6990

LSTM 0.6897 0.6557 0.6723

RF 0.6451 0.6060 0.6250

XGboost 0.7407 0.6557 0.6957

CNA_zhang 0.7419 0.4693 0.5750

The bold values are the best performance among counterparts.
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level values; this was denoted as CNA_zhang here because the
authors did not give the method a name (Zhang et al., 2016).
CNA_zhang used minimum redundancy maximum relevance
(mRMR) and incremental feature selection (IFS) to select features
and the Dagging algorithm to give the final classification. The
input of LSTM, RF, and XGboost was the extracted features from
the autoencoder, and the GridSearchCV function in the sklearn
package was used to select the optimal super-parameters that,
were promised in the best condition.

Table 3 shows that the performance of CNA_origin was
superior to LSTM, RF, XGboost, and CNA_zhang for BRCA,
KIRC, OV, and UCEC. For BRCA, compared with LSTM and
CNA_zhang, the F1-score was increased by 4.6 and 8.1%,
respectively, and the recall (R) was increased by 9.08 and 5.67%,
respectively. For GBM, CNA_origin performed slightly worse
than the best, XGboost, with reductions of 2.35% in precision,
5.32% in recall, and 3.91% in F1-score. For KIRC, compared
with LSTM and CNA_zhang, the F1-score was increased by
2.02 and 6.88%, respectively, and the recall was increased by
3.58%. For UCEC, compared with LSTM and CNA_zhang, the
F1-score was increased by 3.97 and 21.56%, respectively, and
the recall was increased by 9.80 and 53.41%, respectively. For
COADREAD, CNA_origin performed slightly worse than the
best LSTM algorithm, with reductions of 4.81% in precision,

8.61% in recall, and 6.81% in F1-score, respectively. For OV,
the F1-score of CNA_origin was increased by 4.50% and 10.00%
compared with LSTM and CNA_zhang; the recall was worse than
the best, LSTM, by 5.10%, and precision was better than LSTM
and CNA_zhang by 14.49 and 6.13%, respectively. CNA_origin
exhibited perfect performance for the tumor classification.

The macro-averages of precision, F1-score, recall, and
accuracy of six types of tumors were utilized to evaluate
our predictor. Ten-fold cross-validation was run 100 times to
test CNA_origin, LSTM, RF, XGboost, and CNA_zhang. For
precision, CNA_origin had a mean value of 0.8369, which
was increased by 0.70 and 6.87% compared with LSTM and
CNA_zhang. For recall, the mean value of CNA_origin was
0.8345, which was increased by 0.91 and 8.68% compared with
LSTM and CNA_zhang, respectively. For the F1-score, the mean
value of CNA_origin was 0.8339, which was increased by 0.77
and 8.22% compared with LSTM and CNA_zhang, respectively.
For accuracy, the CNA_origin had a mean value of 0.8381, which
was increased by 0.92 and 7.75% compared with LSTM and
CNA_zhang, respectively. The results are shown in Figure 2.

The results showed that the sensitivity, accuracy, and
specificity of UCEC were significantly lower than those of other
tumors. The results of UCEC were further analyzed, and it
was found that about 48–76% of UCEC samples were predicted

FIGURE 2 | Performance comparison between CNA_origin and other algorithms (basic LSTM, RF, XGboost, and CNA_zhang) for the macro-averages of precision,

F1-score, recall, and accuracy from 10-fold cross-validation 100 times.
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FIGURE 3 | Effect of cross-validation fold k value on classifier performance.

When the value of k became larger, the performance of classifiers was

improved, but a small sample size of the test set had a negative impact on

model evaluation.

to be OV, while 24–52% of UCEC samples were predicted to
be BRCA. This may be because BRCA, OV, and UCEC are
hormone-dependent tumors, which have a close relationship
in tumorigenesis. Many reports have pointed out that BRCA,
OV, and UCEC are related to changes in estrogen and estrogen
receptors (Rodriguez et al., 2019; Scherbakov et al., 2019; Sehouli
et al., 2019). Moreover, the physical location of ovary and uterus
is very close, which may lead to contamination of tissue samples
and difficulty in distinguishing UCEC from OV samples.

3.4. Impact of Sample Size
Different cross-validation fold k values were used to study the
effect of sample number on the performance of the classifier. The
larger k was, the more samples there were in the training set,
and then the fewer samples there were in the test set, and vice
versa. The range of k ranged from 5 to 30 with step size = 1, and
Figure 3 shows the accuracy of CNA_origin, LSTM, RF, XGboost,
and CNA_origin with the different fold k values. With increasing
k value, the performance of CNA_origin was gradually improved
at first, which could be due to a bigger k including more training
samples. But, as k became larger, the number of samples in the
test set became smaller, and the performance of the classifiers
was weakened. The results indicated that the performance of
CNA_origin would be further improved if the training samples
were expanded and that sufficient test samples were also very
important for model evaluation.

3.5. Performance Comparison of
Independent Datasets
In order to compare generalization performance on the
independent data, experiments were performed with CNA
datasets released by TCGA in 2016 downloaded from http://gdac.
broadinstitute.org/. The TCGA datasets had 1080 BRCA samples,
611 COADRAD samples, 577 GBM samples, 528 KIRC samples,
552 OV samples, and 533 UCEC samples, respectively. The
preprocessing analysis of 24776 gene CNA values was performed
with GISTIC2 (Mermel et al., 2011). The TCGA datasets

FIGURE 4 | Performance comparison of CNA_origin and other algorithms

(basic LSTM, RF, XGboost, and CNA_zhang) for independent datasets from

the TCGA.

were reasonably independent of the training data because of
preprocessing analyses such as quality control, alignment, and
variation detection, which had a different systematic bias. The
genes involved in bothMSKCC datasets and TCGA datasets were
selected, and the TCGA samples existing in MSKCC datasets
were removed. There were 19895 common genes present in
the MSKCC and TCGA datasets, and the independent datasets
contained 234 BRCA samples, 50 COADRAD samples, 25
GBM samples, 41 KIRC samples, 21 OV samples, and 99
UCEC samples (see Supplementary Material for details). The
independent datasets were used to evaluate the performance
of CNA_origin. As shown in Figure 4, the overall performance
of CNA_origin in terms of precision, recall, accuracy, and F1-
score was the highest among the tools, at 0.74, 0.85, 0.79,
and 0.77, respectively (see Supplementary Material for details).
According to the results shown in Figure 4, it was concluded that
CNA_origin performed successfully in the independent datasets.

4. CONCLUSIONS

Patients with CUPS often have a low median survival time of 9–
12 months. Precise diagnosis of the tissue origin for metastatic
CUPS is essential for determining the treatment scheme to
improve patient prognosis. A lot of studies have tried to use
cancer biomarkers to predict the primary tumor site for CUPS
so as to provide important guidelines for timely patient care and
cancer therapy. CNA provides a new way to identify and classify
tumor types. In this study, a computational method, CNA_origin,
was proposed to predict the tissue of origin from information on
gene CNA levels. CNA_origin set up an intellectual deep-learning
network mainly composed of an autoencoder and a CNN. This
predictor successfully learned the inherent information of gene
copy number and exhibited superior performance to the classical
algorithms on k-fold cross-validations and independent datasets.

At present, the accuracy of using only CNA as the biomarker
for tumor traceability is not very high. Integrating multiple
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biomarkers, such as CNA and DNA methylation or gene
expression data, to trace tumor is our future goal.
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Head and neck squamous cell carcinoma (HNSCC) is a malignant tumor. Radiotherapy
(RT) is an important treatment for HNSCC, but not all patients derive survival benefit
from RT due to the individual differences on radiosensitivity. A prediction model of
radiosensitivity based on multiple omics data might solve this problem. Compared with
single omics data, multiple omics data can illuminate more systematical associations
between complex molecular characteristics and cancer phenotypes. In this study, we
obtained 122 differential expression genes by analyzing the gene expression data of
HNSCC patients with RT (N = 287) and without RT (N = 189) downloaded from The
Cancer Genome Atlas. Then, HNSCC patients with RT were randomly divided into a
training set (N = 149) and a test set (N = 138). Finally, we combined multiple omics
data of 122 differential genes with clinical outcomes on the training set to establish a
12-gene signature by two-stage regularization and multivariable Cox regression models.
Using the median score of the 12-gene signature on the training set as the cutoff value,
the patients were divided into the high- and low-score groups. The analysis revealed
that patients in the low-score group had higher radiosensitivity and would benefit from
RT. Furthermore, we developed a nomogram to predict the overall survival of HNSCC
patients with RT. We compared the prognostic value of 12-gene signature with those of
the gene signatures based on single omics data. It suggested that the 12-gene signature
based on multiple omics data achieved the best ability for predicting radiosensitivity. In
conclusion, the proposed 12-gene signature is a promising biomarker for estimating the
RT options in HNSCC patients.

Keywords: head and neck squamous cell carcinoma, radiotherapy, multiple omics data, radiosensitivity, gene
signature

INTRODUCTION

Head and neck squamous cell carcinoma (HNSCC) is the sixth most common malignancy in the
world, and nearly 60% of newly diagnosed HNSCC is locally advanced disease (Alsahafi et al., 2019;
van der Heijden et al., 2019; Wang et al., 2019). Radiotherapy (RT) is a commonly used adjuvant
therapy for HNSCC in addition to surgical treatment (Jemal et al., 2011; Suh et al., 2015). But each
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of HNSCC patients receiving the same dose of RT has different
responses due to the complexity and heterogeneity of tumor, and
some patients even have RT injury and secondary cancer (Scaife
et al., 2015). Globally, the prognosis of HNSCC patients receiving
RT remains a challenge. Therefore, prognostic biomarkers of
radiosensitivity prediction for HNSCC are needed to improve RT
options and predict treatment response.

In recent years, several studies have suggested that miRNAs,
lncRNAs, and some of their target genes were correlated with
the RT outcomes in HNSCC patients (Leucci et al., 2016;
Weng et al., 2016; Chen et al., 2018; Han et al., 2018). For
instance, the upregulation of miR-494-3p expression can enhance
the radiosensitivity of HNSCC (Weng et al., 2016), and the
upregulation of LINC00473 promotes the radioresistance of
HNSCC cells (Han et al., 2018). Furthermore, some gene
expression-based signatures have been constructed to predict the
survival rate of HNSCC patients with RT. For example, Eschrich
et al. (2009) developed the radiation sensitivity index, which was
used to predict survival probability in HNSCC patients receiving
concurrent chemoradiotherapy. Ma et al. (2019) identified a
4-gene methylation signature to predict the survival rate of
HNSCC patients with RT. However, these studies only used
single omics data which could not draw more comprehensive
associations between complex molecular characteristics and
cancer phenotypes. By contrast, multiple omics data involve
multidimensional studies of cancer cells, potentially revealing the
molecular mechanisms behind different phenotypes of cancer,
such as metastasis and recurrence (Chakraborty et al., 2018;
Xi et al., 2018; Wang et al., 2020). Therefore, a model based
on multiple omics data could be an effective method for
radiosensitivity prediction of HNSCC patients.

In this work, in order to construct reliable biomarkers for
predicting RT response in HNSCC, we used the gene expression
data and copy number variation (CNV)/single nucleotide
variation (SNV) data from The Cancer Genome Atlas (TCGA)
(Tomczak et al., 2015) to develop a gene signature by the two-
stage regularization (2SR) (Lin et al., 2015; Hu et al., 2019) and
multivariable Cox regression (Gui and Li, 2005; Benner et al.,
2010) models. Then, we evaluated the ability of the gene signature
for predicting radiosensitivity by Kaplan–Meier survival analysis
(Tripepi and Catalano, 2004). Furthermore, we constructed a
nomogram based on the gene signature and clinical variables to
facilitate a more intuitive prediction of 3-year and 5-year survival
rates for HNSCC patients receiving RT.

MATERIALS AND METHODS

Figure 1 illustrated the workflow of the proposed signature for
predicting RT response in HNSCC. Firstly, R package DESeq2
(Love et al., 2014) was used to identify differential expression
genes (DEGs) between HNSCC patients receiving RT and
without RT. Secondly, the 2SR and multivariable Cox regression
models were used to construct a gene signature associated
with the radiosensitivity prediction of HNSCC patients. Finally,
Kaplan–Meier survival analysis and time-dependent receiver
operating characteristic (ROC) curves (Heagerty et al., 2000;

FIGURE 1 | Workflow of constructing a gene signature for predicting RT
response in HNSCC.

Kamarudin et al., 2017) were used to evaluate the performance of
the gene signature. And a nomogram based on the gene signature
and clinical variables was constructed to predict the 3-year and
5-year survival rates. The major procedures were described in the
following sections.

Data Processing
We downloaded the transcriptomic gene expression data and
the clinical follow-up data of HNSCC patients from TCGA
(Tomczak et al., 2015). Meanwhile, we collected the genomic
CNV/SNV data from UCSC Xena platform (Goldman et al.,
2019). Firstly, we abandoned samples with overall survival
(OS) less than 30 days to avoid the impact of deaths with
unrelated causes (Chen et al., 2018), and a total of 476
HNSCC patients were analyzed. Furthermore, the available
clinical variables included gender, age, OS, vital status, T
stage, N stage, clinical stage, tumor grade, and RT options.
Secondly, we obtained 20,557 common genes from the gene
expression data and the CNV/SNV data, which were used to
screen the gene signature associated with the radiosensitivity
prediction of HNSCC in subsequent analysis. Thirdly, DESeq2
was used in the normalization of gene expression data and
the detection of DEGs between 287 HNSCC patients with RT
and 189 patients without RT. As a consequence, genes with
|log2 fold change| ≥ 1 and false discovery rate (FDR) < 0.01
were defined as DEGs for the further analysis. Finally, the
CNV/SNV data of DEGs were converted into a sample-by-
gene matrix. If there were one or more mutations within the
gene for each sample, the gene-level mutation status value
in sample-by-gene matrix was defined as 1; otherwise, it
was defined as 0.
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Establishment of the Gene Signature
Based on DEGs, we used the 2SR and multivariable Cox
regression models to construct a gene signature that can predict
the radiosensitivity of HNSCC patients. The 2SR model could
integrate multiple layer omics data to identify signature genes.
Specifically, on the first layer, we predicted gene expression values
using the CNV/SNV data of DEGs. On the second layer, we
used a regularization methodology to regress the predicted gene
expression on the first layer and performed signature genes
selection and estimation. Multivariable Cox regression model
was used to estimate regression coefficients for the identified
signature genes. From this model, gene score of HNSCC patients
was described as the sum of the products of individual gene
expression levels and the estimated regression coefficients. The
detailed processes were elaborated in the following.

Firstly, the 287 patients with RT were randomly divided into a
training set (N = 149) and a test set (N = 138) (Table 1). Secondly,
on the training set, we input gene expression data, clinical data,
and the sample-by-gene matrix of DEGs into the 2SR model to
select the OS-related signature genes. The 2SR model was used
with default parameters, and the output of this model was a list
of genes and their correlated coefficients with OS in patients
with RT. When the correlation between genes and OS reached
80% and above, these genes were identified as signature genes.
Finally, we calculated the coefficients of these signature genes
using multivariable Cox regression model and constructed a gene
signature according to the expression levels of these genes, which
can stratify HNSCC patients into the high- and low-score groups
with the median score of the gene signature on the training set
as cutoff value.

Statistical Analysis
In the work, the ROC curve was performed via the R package
survivalROC (Heagerty et al., 2013), and the area under the
ROC curve (AUC) was used to assess the overall performance
of radiosensitivity prediction. Kaplan–Meier survival curves
were used to further evaluate the significance difference of OS
between different groups. A two-tailed P-value (P) < 0.05 was
considered statistically significant in all analyses. The nomogram
and the calibration plot were established using R package rms
(Harrell et al., 2019) and were used to predict OS of HNSCC
patients with RT.

RESULTS AND DISCUSSION

Identification of a 12-Gene Signature
Based on the gene expression data from 287 patients with RT
and 189 patients without RT, 122 DEGs with |log2 fold change|
≥ 1 and FDR < 0.01 were obtained. The gene expression,
clinical, and CNV/SNV data of these DEGs on the training
set were imported into 2SR model. With the probability
related to OS should be >80% of HNSCC patients receiving
RT, 12 genes were picked out as the signature genes. Next,
we calculated the coefficients of these signature genes using
multivariable Cox regression model. Finally, in order to predict
the radiosensitivity of HNSCC patients, we constructed a gene

signature on the training set according to the expression levels
of these 12 genes as follows: gene score = TDRD9 × 6.950E-
6+CELF3× 1.106E-2+ FGF19× 1.937E-5+KCNB2× 5.388E-
3 + CLDN6 × 1.334E-4 − BEST2 × 6.053E-
4 − DDX25 × 1.802E-3 − TMPRSS15 × 4.378E-
4−ALPI× 2.134E-3− FABP7× 1.754E-3− IL17REL× 2.132E-
3 − RORB × 1.182E-3. The details of these 12 signature genes
were shown in Supplementary Table S1. Then, based on the gene
scores, the patients were divided into the high- and low-score
groups, where the cutoff value of -0.06338 was derived from
the median score of gene scores on the training set samples.
Specifically, on the training (149 HNSCC patients receiving RT)
and test (139 patients receiving RT) sets, HNSCC patients with
a gene score ≥-0.06338 were divided into the high-score group,
while those with a gene score <-0.06338 were divided into the
low-score group.

Radiosensitivity Prediction by the
12-Gene Signature
To assess the radiosensitivity prediction ability of the 12-gene
signature on the HNSCC patients, Kaplan–Meier survival and
ROC curves were performed on the training and test sets,

TABLE 1 | Clinical variables of the 287 HNSCC patients with RT.

Variable Subgroup Total Training set Test set P*

N % N % N %

Age (year) ≤60 156 54.36 87 58.39 69 50.0 0.22

>60 131 45.64 62 41.61 69 50.0

Gender Male 224 78.05 123 82.55 101 73.19 0.15

Female 63 21.95 26 17.45 37 26.81

T stage 1 14 4.88 9 6.04 5 3.62 0.34

2 66 22.30 27 18.12 39 28.26

3 79 27.53 45 30.20 34 24.64

4 122 42.51 63 42.28 59 42.75

N stage 0 113 39.37 57 38.26 56 40.58 0.35

1 56 19.51 26 17.45 30 21.74

2 105 36.59 59 39.60 46 33.33

3 3 1.05 0 0 3 2.26

Clinical stage 1 9 3.14 2 1.34 7 5.07 0.30

2 23 8.01 12 8.05 11 7.97

3 48 16.72 21 14.09 27 19.57

4 207 72.13 114 76.51 93 67.39

Tumor grade 1 25 8.71 11 7.38 14 10.14 0.20

2 168 58.54 82 55.03 86 62.32

3 75 26.13 47 31.54 28 20.29

4 2 0.70 2 1.34 0 0

Survival time
(month)

21.77 20.73 23.62 0.32

Vital status Death 110 38.33 57 38.26 53 38.41 0.12

Alive 177 61.67 92 61.74 85 61.59

*The difference between the test set and training set was calculated in terms of
clinical pathologic factors. Specifically, age was compared with Wilcoxon rank-sum
test; gender, clinical T, N, stage, and grade were compared with the chi-squared
test; survival time and the status difference were assessed with the log-rank test.
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respectively. On the training set, there was a significant difference
on radiosensitivity between the high- and low-score groups
(P = 0.0011, Figure 2A). As we can see, patients in the high-
score group were associated with poor radiosensitivity, while
patients in the low-score group showed good radiosensitivity.
In the light of the time-dependent ROC curves of 3-year
and 5-year survival (Figure 2B), the survival time prediction
accuracy of the 12-gene signature for HNSCC patients had AUC
of 0.705 at 3 years and 0.697 at 5 years. Furthermore, the
prediction performance of the 12-gene signature was evaluated
on the test set. As seen in Figure 2C, the survival rate was
significantly higher in the low-score group than that in the
high-score group (P = 0.00031), which was similar with the
result of the training set. And the 3-year and 5-year prediction
accuracy achieved 0.661 and 0.584, respectively (Figure 2D).
The performance on the test set was similar with that on
the training set. It indicated the generalization ability of the
12-gene signature was good, and this gene signature could
provide a method to predict the radiosensitivity for HNSCC
patients. However, the radiosensitivity prediction accuracy of
5-year survival on the test set was lower than that on the
training set (Figures 2B,D). There were two possible reasons
to explain the causes of the difference. First, the follow-up
times were relatively short for HNSCC cohort in TCGA, and
the OS of most patients was also less than 5 years. Second,
the intrinsic genetic heterogeneity of the tumor could lead
to different OS in HNSCC patients with same therapeutic
method. The longer the OS, the larger the effect of the intrinsic
genetic heterogeneity, and the more difficultly we evaluated
this effect with RT.

Assessment of the 12-Gene Signature in
All HNSCC Patients
Because of the complexity and heterogeneity of tumors, some
HNSCC patients are treated by RT with good outcomes,
and some patients may have a resistance to RT, even get
worse. Therefore, the 12-gene signature is important for the
radiosensitivity prediction of HNSCC patients to improve RT
options. In addition, we also assessed the prognostic value of
the 12-gene signature in a total of 476 HNSCC patients. As
seen in Figure 3A, it indicated that patients in the low-score
group generally had a higher 5-year survival rate than that in
the high-score group (P < 0.0001). And there was a significant
difference between patients with RT and without RT in the low-
score groups (P = 0.0033, Figure 3B); however, in the high-score
group, the difference was insignificant (P = 0.95, Figure 3C). It
suggested that patients in the high-score group might have the
radioresistance and did not benefit from RT.

In addition, based on different clinical variables such as
age, gender, T stage, N stage, clinical stage and tumor grade,
HNSCC patients were further stratified into different subgroups
(Table 1). Then we evaluated the prognostic value of the 12-gene
signature on these different subgroups between HNSCC patients
in the high- and low-score groups. On the subgroups of clinic T
(Figures 4A,B), clinic N (Figures 4C,D), stage 3-4 (Figure 4F),
and grade (Figures 4G,H), the survival rates of patients in the

low-score group were significantly higher than those in the high-
score group. While there was no statistically significant difference
of survival rate between patients in the high- and low-score
groups in the subgroup of stage 1-2 (Figure 4E). It was mainly
due to the small number of patients in this clinical phase, which
accounted for only 11% of all HNSCC patients. Furthermore,
on the subgroups of age (Supplementary Figures S1A,B) and
gender (Supplementary Figure S1C), the survival rates of
patients in the low-score group also were significantly longer than
those patients in the high-score group. However, the survival
rate between female patients (Supplementary Figure S1D)
in the high- and low-score groups did not have statistically
significant difference, which was similar with that on the stage
1-2 subgroup. Taken together, these results suggested that this 12-
gene signature could serve as a novel and reliable biomarker for
the radiosensitivity prediction of HNSCC patients.

Prediction of OS in HNSCC With RT by
Nomogram
As a visual tool, nomogram has been widely used in predicting
the prognosis of cancers (Lubsen et al., 1978; Gorlia et al., 2008).
In this work, the nomogram was used to construct the OS
prediction model for HNSCC patients with RT. As shown in
Figure 5A, age, T stage, N stage, clinical stage, tumor grade,
and gene score were considered as relevant variables for the
nomogram construction. Since the points of male and female
in the nomogram were similar and closed to zero, gender was
not shown here. In addition, the contribution of gene score was
very important, and it played a crucial role in survival estimation
of HNSCC patients with RT. In order to evaluate the predicted
outcomes of nomogram, the calibration plots on the training
and test sets were exhibited in Figure 5B. It was found that
the predicted results of the nomogram showed good agreements
with the actual situations, especially on the test set. Furthermore,
according to the time-dependent ROC curves (Figure 5C), the
nomogram achieved 0.701 and 0.641 of AUC for 3-year OS on the
training and test sets, respectively. It revealed that the nomogram
could be used as a promising tool to predict the OS of HNSCC
patients with RT.

Comparison With the Gene Signatures
Based on Single Omics Data
Besides the 12-gene signature established using multiple
omics data, we also assessed the radiosensitivity prediction
ability of the gene signatures based on single omics data,
such as gene expression data or CNV/SNV data. Since
the 2SR model requires multiple omics data as the input
files, we used differential expression analysis, univariable Cox
proportional hazards regression analysis (David, 1972), classical
LASSO regression model (Tibshirani, 1996, 1997; Segal, 2006),
and multivariate Cox regression model to select the most
important biomarkers and take their linear combination as a
predictor of radiosensitivity based on single omics data. Firstly,
differential expression analysis was used to identify DEGs by
analyzing gene expression profiles of HNSCC patients with
RT and without RT. Of note, the construction of the gene
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FIGURE 2 | Kaplan–Meier survival and time-dependent ROC curves on the training (A,B) and test (C,D) sets according to the 12-gene signature.

signature based on the CNV/SNV data did not use differential
expression analysis. Secondly, univariate Cox proportional
hazards regression analysis and LASSO logistic regression model
were used to screen out the characteristic genes associated with
survival. Thirdly, multivariate Cox regression model was used
to establish a gene signature for radiosensitivity prediction.
Then, HNSCC patients receiving RT were divided into the

high- and low-score groups according to the median score on
the training set patients. Finally, Kaplan–Meier survival analysis
and ROC curves were conducted to observe the difference
of survival rate between the patients in the high- and low-
score groups.

Based on gene expression data, a 7-gene signature was
constructed for radiosensitivity prediction, and the gene
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FIGURE 3 | The prognostic values of the 12-gene signature in all HNSCC patients. (A) Kaplan–Meier analysis of overall survival in 476 patients according to the
12-gene signature. (B) Kaplan–Meier survival curves of patients with/without RT in the low-score group. (C) Kaplan–Meier survival curves of patients with/without RT
in the high-score group.

FIGURE 4 | The Kaplan–Meier survival analysis of the 12-gene signature in all HNSCC patients in the high- and low-score groups on clinical subgroups of T 1-2 (A),
T 3-4 (B), N 0-1 (C), N 2-3 (D), Stage 1-2 (E), Stage 3-4 (F), Grade 1-2 (G) and Grade 3-4 (H).

score = CHGB × 1.121E-4 + ODAM × 3.603E-5 + RP11-
169K17.3× 8.518E-2− ZNF541× 8.229E-5− CLGN × 2.952E-
3 − AC011747.3 × 1.407E-1 − RP11-203B7.2 × 1.357E-
1. The details of these 7 signature genes were shown in
Supplementary Table S2. The survival analysis results on the test
set were shown in Figure 6A. Obviously, the difference between
the high- and low-score groups was significant (P = 0.029),
which was similar with that on the training set (P = 0.011,
Supplementary Figure S2A). The prognostic accuracy of the
7-gene signature for HNSCC patients receiving RT was 0.62
at 3 years and 0.575 at 5 years (Figure 6B), which were both
lower than the performances of the 12-gene signature based on
multiple omics data.

Based on CNV/SNV data, a 3-gene signature was
developed for radiosensitivity prediction, and the gene
score = − BCLAF1 × 8.084E-1 − ABCB9 × 3.330E-
1 − MIS18BP1 × 3.697E-1. The details of the 3-gene signature
were shown in Supplementary Table S3. The survival analysis on
the test set showed that there was a significant difference between
the high- and low-score groups (P = 0.018, Figure 6C), but it
was inconsistent with the result on the training set (P = 0.0068,
Supplementary Figure S2C). The 3-year and 5-year survival
prognostic accuracy of the 3-gene signature were 0.387 and
0.345 on the test set, respectively (Figure 6D), which were
far less than the performances of the 12-gene signature using
multiple omics data. As single omics data, the sample-by-gene
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FIGURE 5 | Evaluation of the nomogram on predicting the OS of HNSCC patients with RT. (A) Nomogram for predicting the 3-year and 5-year OS in HNSCC with
RT. (B) Calibration plots of the nomogram on the training and test sets. The 45-degree line represents the real outcomes. (C) Time-dependent ROC curves of 3-year
OS prediction using the nomogram on the training and test sets.

matrix based on CNV/SNV data was sparse, and the genetic
information extracted from the sparse matrix was very limited.
So the radiosensitivity prediction accuracy of the gene signature
based on CNV/SNV data was not good.

At first, we compared the 12-gene signature with those
gene signatures (7-gene and 3-gene signatures) based on single
omics data. The results showed that the 12-gene signature
achieved the highest separation ability, and it significantly
stratified patients into the low- and high-score groups on

the test set (P = 0.00031 vs. P = 0.029 vs. P = 0.018). It
also had the highest accuracy of survival estimation among
these gene signatures (3-year survival: 0.661 vs. 0.620 vs.
0.387; 5-year survival: 0.584 vs. 0.575 vs. 0.345) on the test
set. In addition, we performed GO and KEGG enrichment
analyses, and the result showed there were no significant
enrichments. Moreover, on the GO and KEGG terms (Jiao
et al., 2012; Xi et al., 2020), there are also no correlations
between these signature genes and radiation. Maybe these genes
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FIGURE 6 | Kaplan–Meier survival and time-dependent ROC curves on the test set according to the 7-gene signature (A,B) and the 3-gene signature (C,D).

were novel candidate targets and biomarkers correlated with
radiation. However, given the performance of 12-gene signature
was better than those of 7-gene and 3-gene signatures, the
genes in 12-gene signature were more important on radiation
response and radiosensitivity prediction. Nevertheless, their
roles need to be proved by biological and clinical experiments.
Furthermore, we evaluated the performance of the 5-miRNA

signature (Chen et al., 2018) on the test set. As shown in
Supplementary Figure S3, there is no significant different
between the high- and low-score groups based on 5-miRNA
signature, and the items of AUC (0.493 and 0.450) on 3-
year and 5-year survivals were lower than those (0.661 and
0.584) based on 12-gene signature. In a word, the 12-gene
signature based on multiple omics data was a relatively reliable
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biomarker to predict whether the HNSCC patient benefit from
the treatment of RT.

CONCLUSION

In this study, we used the gene expression, clinical, and
CNV/SNV data to develop and validate the 12-gene signature,
which may serve as a promising prognostic biomarker for the
radiosensitivity prediction of HNSCC patients. Furthermore,
we constructed a nomogram based on gene score and clinical
variables, which might be a useful tool on the survival estimation
of HNSCC patients receiving RT. Finally, we systemically
compared the prognosis ability of the gene signatures based on
multiple and single omics data, and the results showed that
the 12-gene signature based on multiple omics data was more
accurate in predicting radiotherapy response and survival rate of
HNSCC patients. However, this study also has some limitations.
First, these signature genes as biomarkers for radiosensitivity
in HNSCC deserve further biological and clinical verification.
Second, gene expression signatures are subject to sampling bias
caused by the complexity and heterogeneity of tumors, so we will
consider the subtypes of tumor in the future study.
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Breast cancer is one of the most common cancer diseases in women. The rapid
and accurate diagnosis of breast cancer is of great significance for the treatment of
cancer. Artificial intelligence and machine learning algorithms are used to identify breast
malignant tumors, which can effectively solve the problems of insufficient recognition
accuracy and long time-consuming in traditional breast cancer diagnosis methods.
To solve these problems, we proposed a method of attribute selection and feature
extraction based on random forest (RF) combined with principal component analysis
(PCA) for rapid and accurate diagnosis of breast cancer. Firstly, RF was used to reduce
30 attributes of breast cancer categorical data. According to the average importance
of attributes and out of bag error, 21 relatively important attribute data were selected
for feature extraction based on PCA. The seven features extracted from PCA were
used to establish an extreme learning machine (ELM) classification model with different
activation functions. By comparing the classification accuracy and training time of these
different models, the activation function of the hidden layer was determined as the
sigmoid function. When the number of neurons in the hidden layer was 27, the accuracy
of the test set was 98.75%, the accuracy of the training set was 99.06%, and the
training time was only 0.0022 s. Finally, in order to verify the superiority of this method
in breast cancer diagnosis, we compared with the ELM model based on the original
breast cancer data and other intelligent classification algorithm models. The algorithm
used in this article has a faster recognition time and a higher recognition accuracy
than other algorithms. We also used the breast cancer data of breast tissue reactance
features to verify the reliability of this method, and ideal results were obtained. The
experimental results show that RF-PCA combined with ELM can significantly reduce
the time required for the diagnosis of breast cancer, which has the ability of rapid and
accurate identification of breast cancer and provides a theoretical basis for the intelligent
diagnosis of breast cancer.

Keywords: breast cancer, artificial intelligence, random forest, principal component analysis, extreme learning
machine
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INTRODUCTION

Cancer is a disease that seriously threatens human health. The
latest annual report on cancer incidence in the United States
(Siegel et al., 2020) shows that it is estimated that in 2020,
1,806,590 new cancer cases will be found in the United States,
which is equivalent to nearly 5,000 people suffering from
cancer every day. There will be 606,520 cancer deaths,
which is equivalent to more than 1,600 cancer deaths per
day. Over the most recent 5−year period (2012–2016), the
breast cancer incidence rate increased slightly by 0.3% per
year (DeSantis et al., 2019). Cancer not only affects people’s
normal life but also brings a huge economic burden to
people with high medical costs. Therefore, more and more
researchers are committed to the research of cancer diagnosis
and treatment methods (Gebauer et al., 2018). Among them,
the incidence rate of breast cancer is only second after
the lung cancer incidence rate in the world (Wang et al.,
2018). Early detection and diagnosis of breast cancer are very
helpful for treatment. If breast cancer is detected early, it can
guide clinically targeted prevention and treatment measures,
reduce the recurrence rate of breast cancer, improve the
prognosis of patients, and prolong the life cycle of patients
(Charaghvandi et al., 2017). How to quickly and accurately
predict breast malignant tumors has become the key to the breast
cancer diagnosis.

The traditional diagnosis method of breast cancer is mainly
a fine-needle aspiration cell method (Dennison et al., 2015).
The degree of canceration can be determined by observing
the abnormal cell morphology of the collected tissue sections
under the light microscope. This method needs the operation
of experts with senior clinical experience, but it may cause
the wrong diagnosis due to various uncertain subjective
factors, which will also consume a lot of working time. In
recent years, various prediction algorithms in machine learning
can be well used in disease diagnosis, and more intelligent
prediction results can be used to assist doctors, so as to
speed up the time of diagnosis and improve the accuracy
of diagnosis. For example, Cui et al. (2018) used neural
network cascade (NNC) model identified numerous candidate
miRNA biomarkers to detect breast cancer and obtained
equivalent diagnostic performance. Wang et al. (2017) used a
support vector machine (SVM)-based weighted AUC ensemble
learning model to achieve a reliable and robust diagnosis
of breast cancer. Noorul et al. (2019) proposed a transfer
learning-based deep convolutional neural network (CNN) for
segmentation to improve the detection rate of breast cancer
for histopathological images. However, most of these machine
learning algorithms analyze all the attributes of breast cancer
data, which fails to take into account the influence of redundant
information on the experimental results and the relationship
between the attribute factors. Deep learning algorithm used
to detect breast cancer needs to analyze the histopathological
images of breast cancer, which not only requires a large
number of samples, but also consumes a lot of time, and
the prediction efficiency is low. Some artificial intelligence
algorithms and classification models have been proposed to

identify breast malignant tumor by using the Wisconsin Breast
Cancer Database (WBCD). For example, Sewak et al. (2007)
provide a resemble learning method based on SVMs to classify
the breast malignant tumor and achieved with acceptable
prediction accuracy. Nahato et al. (2015) combined rough set
indiscernibility relation method with back propagation (BP)
neural network for analysis of breast cancer dataset and the
breast cancer dataset obtained its higher performance with a
reduct of least number of attributes. Mert et al. (2014) used
the independent component analysis and the discrete wavelet
transform to reduce the dimension of data. A probabilistic
neural network (PNN) classification model is established to
increases the performance of breast cancer classification as
benign and malignant and reduce the computational complexity.
Jhajharia et al. (2016) used the principal component analysis
(PCA) to preprocess the original breast cancer data, and then a
decision tree (DT) prediction model was established to achieve
the prognostic analysis of breast cancer data. Yang and Xu
(2019) developed a feature extraction method by PCA and a
differential evolution algorithm to optimize the parameter of
SVM for the identification of breast tumors to present a superior
classification performance.

Random forest (RF) is a supervised learning algorithm,
which can select features according to the importance of
attributes and reduce the complexity of the model (Odindi
et al., 2014). Saraswat and Arya (2014) introduced a novel
Gini importance-based binary random RF selection method
to extract the relevant features of leukocytes and got a high
classification accuracy. Zhou et al. (2017) proposed an iterative
RF method to select candidate biomarkers and completed
the classification of renal fibrosis. Wade et al. (2016) used
the regularized RF to select the features of high dimensional
shape data from subcortical brain surfaces. PCA is a kind
of unsupervised learning feature extraction algorithm which
maps high-dimensional data to low-dimensional space by linear
projection and reduces the dimension of data sets (Simas Filho
and Seixas, 2016). Skala et al. (2007) chose a method based
on PCA to use the information inherent in the dose-volume
histograms (DVH) to analyze after image-guided radiation
therapy for prostate cancer. Fabris et al. (2014) employed sparse
PCA to assess the glucose variability index of continuous glucose
monitoring (CGM) time-series. Garbis et al. (2018) used PCA
for proteomic quantitative analysis of primary cancer-associated
fibroblasts in esophageal adenocarcinoma. Extreme learning
machine (ELM) is an efficient and intelligent algorithm that can
be used to solve classification or regression problems (Huang
et al., 2010). Kavitha et al. (2015) combined the ELM with
fractal feature analysis to assess glaucoma. Bueno-Crespo et al.
(2017) put forward a method based on ELM to automatically
design a multitask learning machine. At present, most of the
researches are to use feature selection and feature extraction
methods independently, but we combine feature extraction and
feature selection to carry out the follow-up research work
in this article.

The present work is concerned with the development of
analytical method for rapid identification of breast cancer
categorical data based on attribute selection and feature
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extraction. Firstly, the RF is used for characteristic attribute
selection processing of original breast cancer data, and
the samples are divided into a training set and test set.
Then, feature extraction and dimensionality reduction of
selected attribute data by the PCA. Finally, the extracted
characteristic data are used as the input of the ELM to
establish the identification model of breast malignant tumor.
Brief conclusions and future work are summarized at the
end of the article.

MATERIALS AND METHODS

Collection of Breast Cancer Data
The validity and feasibility of the methods described in this
article were verified by the University of Wisconsin breast
cancer data sets (Street et al., 1993). There are 569 cases of
breast tumor data in this nuclear micrograph of breast tumor
lesion tissue database, including 357 cases of benign tumors and
212 cases of malignant tumors. To facilitate the proportional
division of samples, 400 cases were randomly selected as
the study objects, including 200 cases of benign tumors and
200 cases of malignant tumors. The quantitative real-valued
features of the nuclear micrograph of breast tumor lesion tissue
include radius (mean of distances from center to points on
the perimeter), texture (standard deviation of gray-scale values),
perimeter (sum of the distances between consecutive boundary
points), area (perimeter to compensate for digitization error),
smoothness (local variation in radius lengths), compactness
(perimeter2/area − 1.0), concavity (severity of concave portions
of the contour), concave points (number of concave portions of
the contour), symmetry (relative difference in length between
pairs of line segments perpendicular to the major axis), and fractal
dimension (“coastline approximation”− 1). A set of data for each
case includes 30 attributes, including the average value, standard
deviation, and worst value (the average value of the three largest
data of each feature) of the 10 characteristic quantities of each
nucleus in the sampled tissue. The 30 attributes were already
present from the data sets. Each sample data is composed of 32
fields. The first field is case number, the second field is diagnosis
result, B is benign, M is malignant. The other fields are all
the attributes of 10 quantitative features, and the first to the
tenth attributes are the average value of 10 quantitative features.
The 11th to 20th attributes are the standard deviation of 10
quantitative features. The 21st to 30th attributes are the worst
value (average value of the three largest data of each feature) of 10
quantitative features. These characteristics can reflect the nature
of the breast tumor.

The hardware conditions of the computer used in the
experiment include an Intel Core i7 processor, an NVIDIA
RTX 2070 graphics card, and a 16G Kingston memory module,
etc. The algorithm simulation is run in MATLAB R2016b
(MathWorks, United States) environment.

Random Forest for Attribute Selection
The feature selection method is to select features from the
original attribute data and get a new feature subset composed

of the original features, so as to reduce the number of
attributes in the attribute set. It is an inclusive relationship
and does not change the original feature space (Guyon
and Elisseeff, 2003). RF is a supervised learning algorithm
that uses multiple DT to train samples. This algorithm
was proposed by Breiman (2001), which can be used to
solve classification and regression problems. The RF feature
selection method will give the importance score of each
variable (Genuer et al., 2010), evaluate the role of each
variable in the classification problem, and delete the attribute
with lower importance. If a feature is randomly added with
noise, the accuracy of out of bag data changes significantly,
which shows that this feature has a greater impact on the
predictive results of samples. Furthermore, it shows that its
importance is high, so it is necessary to select and delete
the attributes with low importance. The out of bag error
(Mitchell, 2011) is usually used to evaluate the importance
of features by RF.

The steps for attribute selection of RF algorithm are as follows:
Step 1: calculate the importance of each attribute and arrange

it in descending order of importance
Attribute importance Im:

Im =
1
N

∑
(errOOB2− errOOB1) (1)

Where, N is the tree in the RF, errOOB2 represents the out of bag
error of data with noise interference, and errOOB1 denotes the
out of bag error of original data;

Step 2: Set the threshold value, delete the attributes whose
importance is lower than the threshold value from the current
attributes, and the remaining attributes will form a new attribute
set again;

Step 3: A new RF is established by using the new attribute
set, the importance of each attribute in the attribute sets are
calculated and arranged in descending order;

Step 4: Repeat step 2 and step 3 until all the attribute
importance values are greater than the threshold value;

Step 5: Each attribute set corresponds to a RF, and the
corresponding out of bag error rate is calculated;

Step 6: Take the attribute set with the lowest out of bag error
rate as the last selected attribute set.

Normalization of Data
Standardization refers to the pre-processing of data so that
the values fall into a unified range of values. In the process
of modeling, the difference of each feature amount is reduced
(He et al., 2010). Different data often have different dimension
units and do not belong to the same order of magnitude.
The data with a too-large difference will eventually affect the
evaluation results. To eliminate the influence of too large
dimensional difference between indicators, before using PCA
for feature selection, data need to be standardized to solve
the error caused by the difference between data indicators
(Sun et al., 2016). The common standardization methods
are Min − Max normalization (Snelick et al., 2005) and
Z-score normalization (Ribaric and Fratric, 2006). Min–max
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normalization can normalize data to interval [0, 1] and interval
[−1, 1] respectively.
[0, 1] normalization:

X[0,1] =
X − XMin

XMax − XMin
(2)

[−1, 1] normalization:

X[−1,1] =
X − µ

XMax − XMin
(3)

Z-score normalization:

XZ =
X − µ

σ
(4)

Where X is the original sample data, XMax is the maximum
value of the original sample data, XMin is the minimum value
of the original sample data, µ denotes the average value of the
original sample data, and σ represents the standard deviation of
the original sample data.

Principal Component Analysis for
Feature Extraction
The method of feature extraction is mainly to transform the
feature space through the relationship between attributes, map
the original feature space to the low-dimensional feature space,
so as to complete the purpose of dimension reduction (Wang
and Paliwal, 2003). As an unsupervised learning dimensionality
reduction method, PCA reduces the data dimension through
the correlation between multidimensional data groups. On the
premise of minimizing the information loss, it can simplify the
data structure, make the data set easier to use, completely without
parameter limitation, and reduce the calculation cost of the
algorithm (Hess and Hess, 2018).

The steps of the PCA algorithm for feature extraction are as
follows:

Step 1: Input the original sample data matrix X:

X =


x11 x12 · · · x1n
x21 x22 · · · x2n
...

...
...

...

xm1 xm2 · · · xmn

 (5)

Step 2: Set each column as a feature and average each feature.
Subtract the average value from the original data to the new
centralized data;

Step 3: Calculate the covariance matrix:

D(X) =
1
n

XXT (6)

Step 4: Solve eigenvalue λ and eigenvector q of covariance
matrix by the eigenvalue decomposition method;

Step 5: Sort the eigenvalues from large to small, and select the
largest k of them. Then the corresponding k eigenvectors are used
as row vectors to form eigenvector matrix Q;

Step 6: Multiply the data set m∗n by the eigenvector of n
dimensional eigenvector, and obtain the data matrix Y = QX of
the last dimension reduction.

As the basis of selecting the number k of principal
components, the cumulative contribution rate of principal
components is generally required to be more than 85%.

Extreme Learning Machine for
Classification
The ELM is a simple and efficient learning algorithm proposed by
professor Huang (Huang et al., 2006) of the Nanyang Polytechnic,
it can be used to solve the problem of classification and regression
in pattern recognition. This algorithm only needs to set the
number of hidden layer neurons of the network, it does not
need to adjust the input weight of the network and the bias
of hidden layer neurons in the process of implementation, and
produces a unique optimal solution, so the learning speed is fast
and the generalization performance is good (Zhang and Ding,
2017). ELM is a single-layer feedforward network that can train
training set quickly. There are only three layers in the network,
namely the input layer, the hidden layer, and the output layer.
The network structure of ELM is shown in Figure 1. From left
to right, there are input layer neurons, hidden layer neurons, and
output layer neurons.

There are S different training samples s, where xi =

[x1, x2, x3, · · · , xm]T , xi ∈ Rm.pi =
[
p1, p2, p3, · · · , pn

]
, ti ∈ Rn.

Set the activation function g(x), with K hidden layer nodes output
as follows:

pi =

K∑
i=1

βig(ωi · xj + bi) =

K∑
i=1

βiF(ωi, bi, xj) (7)

Where j = 1, 2, · · · , N, ωi = [ω1, ω2, · · · , ωm]T is the input
weight of the hidden layer neuron, bi is the hidden layer
neuron bias, and βi = [β1, β2, · · · , βn]T is the output weight of
the output neuron.

The steps of the ELM algorithm are as follows:
Step 1: Select (ωi, bi) randomly and map the

samples to the feature space according to h(x) =[
F(ω1, b1, x), · · · F(ωK , bK , x)

]T . If the feature mapping
h(x) forms the hidden layer matrix H, then it exists

Hβ = P (8)

Where H =

 h(x1)
...

h(xS)

 =
F(ω1, b1, x1) · · · F(ωK , bK , x1)

...
...

F(ω1, b1, xS) · · · F(ωK , bK , xS)


S×K

,

β =

 βT
1
...

βT
K


K×n

and P =

 pT
1
...

pT
S


S× n

.

Sin function, Hardlim function, and Sigmoid function can
be selected as the activation function of hidden layer neurons
(Song et al., 2015).∗

Step 2: In the new feature space, the optimal output weight β∗

is obtained from Eq. (8) by using the least square method, where
H+ is the Moore-Penrose generalized inverse of H, β∗ = H+ P.
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FIGURE 1 | Network structure diagram of ELM.

Evaluation Index of Classifier
Performance
In order to better evaluate the performance of classifier, we
introduce the confusion matrix. In the field of machine learning,
confusion matrix is a visual tool to evaluate the performance of
classification models. Among them, each column of the matrix
represents the situation of predictive samples and each row of
the matrix represents the situation of actual samples (Deng et al.,
2016). The confusion matrix consists of true positive (TP), false
positive (FP), true negative (TN), and false negative (FN). The
accuracy, precision, sensitivity, specificity, F1-score and MCC
(Azar and El-Said, 2012; Zheng et al., 2018) can be obtained
from the confusion matrix and all of them are used as evaluation
indexes of performance. In general,

Accuracy is the ratio of the correctly classified examples to the
total sample size.

Accuracy =
TP + TN

TP + FN + FP + TN
(9)

Precision is the percentage of samples are correctly classified
as true positive.

Precision =
TP

TP + FP
(10)

Sensitivity is the percentage of samples are correctly classified
as true positive in total positive samples.

Sensitivity =
TP

TP + FN
(11)

Specificity is the percentage of samples are correctly classified
as true negative in total negative samples.

Specificity =
TN

TN + FP
(12)

F1-score is an index used to measure the accuracy of a binary
classification model.

F1− score =
2 ∗ Precision ∗ Sensitivity

TN + FP
(13)

MCC is essentially a balanced index that describes the
correlation coefficient between the actual classification
and the predicted classification, which is used to measure
the classification performance of binary classification.
The value range of MCC is [−1,1]. The closer the
MCC value is to 1, the better the classifier performance.

MCC =
TP · TN − FP · FN

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(14)
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RESULTS AND DISCUSSION

Attribute Selection Based on Random
Forest
There are 30 attributes in the original breast cancer data, each of
which contains the corresponding information of breast tumor
lesion tissue. Different attributes play different roles in the
analysis of breast cancer data. Redundant and less important
attributes will affect the establishment of breast cancer of a
predictive model, which cannot achieve high prediction accuracy,
but also increase the complexity of the model and reduce the
efficiency of breast cancer prediction. Attribute selection based
on RF of the method is used to select more important attributes to
improve the efficiency of modeling and prediction ability. Before
RF is used, we set the number of trees to 200, the number of leaf
node samples to 1, and the number of fboot to 1.

The importance ranking of the first selected attribute is shown
in Figure 2. From the top to the bottom, the importance of
attributes is sorted according to the order of importance from
the largest to the smallest. We can find that there are significant
differences in the importance of each attribute. The 28th attribute
is the most important, with a value of 0.96. The 20th attribute
is the least important, which is the standard deviation of the

quantitative features, with a value of only 0.05. The areas with
high importance are mainly concentrated in the 21st to 24th
attribute range and the 28th attribute, which are the worst values
of the quantitative features, all of which are above 0.8. This shows
that the worst value of the quantitative characteristics of nuclear
micrograph covers a large amount of important information
about data. However, the importance of the 16th, 10th, and 20th
attributes is less than 0.1, which indicates that the importance
of these three attributes is very low and the influence on the
predictive results of breast cancer is very small, which belongs to
redundancy attribute information.

The threshold value of attribute selection based on RF is
set to 0.1, the attributes whose importance is lower than the
threshold value are deleted, and the remaining 27 attributes are
selected as the result of RF initial attribute selection. 27 attributes
of the first reduction are continued to be selected by RF. We
delete the redundant attributes whose importance is lower than
the threshold value, calculate the importance of the remaining
attribute sets and each attribute in it, and arrange them in
descending order of importance.

The ranking of attribute importance for four iterations is
shown in Figure 3. Because of the randomness of RF, it can
be seen from Figures 3A,B that there are differences in the
ranking of the importance of the first two attributes. The

FIGURE 2 | Ranking of attribute importance for RF initial selection.
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FIGURE 3 | Ranking of attribute importance. The threshold value of attribute selection based on RF is set to 0.1. (A) Ranking of attribute importance after one
iteration, including 27 attributes. (B) Ranking of attribute importance after two iteration, including 26 attributes. (C) Ranking of attribute importance after three
iteration, including 22 attributes. (D) Ranking of attribute importance after four iteration, including 21 attributes.

maximum value of attribute importance for both iterations is
obtained at the 28th attribute. After the first iteration, only
the 30th attribute is below the threshold, while the second is
the 12th, 19th, 15th, and 9th attributes. As can be seen from
Figures 3C,D, compared with the previous two iterations, the
attribute of the maximum importance has changed, which is the
24th attribute. After the third iteration, only the importance of
the 18th attribute is below the threshold, and after the fourth
iteration, the importance of all attributes is greater than the
threshold. We take the average attribute importance and out of
bag error as the evaluation indexes of attribute selection based on
RF. The larger the average attribute importance of attributes and

the smaller the out of bag error, the more useful information these
attributes contain, the less redundant information they have. The
evaluation indexes of five iterations are presented in Table 1.
From the table, we can see that with the increasing number of
iterations, redundant attributes are gradually eliminated, and the
corresponding evaluation indicators are also changing. When
the number of iterations is 4, the average attribute importance
reaches a maximum of 0.5214, the out of bag error reaches a
minimum of 0.0318, and the number of attributes selected by RF
is 21. In the fifth iteration, the importance of each attribute is still
greater than the threshold, the number of attributes selected by
RF remains unchanged, and each attribute retains the relatively
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important and effective information of breast cancer data. Finally,
21 attributes selected by four iterations are the result of the
attribute selection of the RF algorithm.

Feature Extraction Based on Principal
Component Analysis
After RF selection, the number of attributes is reduced by 9
compared with the original data, and there is a lot of redundant
information in these 9 attributes. In order to achieve the
requirement of accurate prediction of breast cancer, PCA needs
to be used to further simplify the data attributes. When PCA
is used to extract features, to prevent PCA from over capturing
some features with large values, which results in the loss of a
large amount of information and the impact of features with large
values on the results, we will standardize each feature first, so that
their sizes are within the same range. PCA is employed to extract
the 21 attributes of breast cancer data after attribute selection, and
the cumulative contribution rate is 95%.

The 160 samples of each group are selected, and a total of 320
samples of breast cancer data are used as the training set. The
remaining 40 samples of each group are selected, and a total of 80
samples of breast cancer data are used as the test set. [0, 1], [−1,
1], and Z-score normalization methods are used to normalize
the breast cancer data after feature selection. The training set
is used to establish the predictive model of breast cancer based
on ELM, and the test set is used to test the prediction ability of
the model. Under different standardized methods, we input the
data of feature extraction into the predictive model of ELM, and
compare their prediction accuracy of the training set and test set,
then select the best normalization method.

The predictive results of different normalization methods are
shown in Table 2. It can be seen that the main component
scores of [0, 1] and [−1, 1] normalization methods are
only two, and the accuracy of the training set is relatively
low. The prediction accuracy of the Z-score of the training
set and test set is significantly higher than the other two

TABLE 1 | Evaluation indexes of five iterations.

Iterative number Attributes Average attribute
importance

Out of bag
error

1 27 0.4315 0.0335

2 26 0.4381 0.0320

3 22 0.4792 0.0337

4 21 0.5214 0.0318

5 21 0.4987 0.0322

TABLE 2 | Predictive results of different normalization methods.

Normalization
method

Principal
components

Predictive accuracy/%

Training set Test set

[0,1] 2 90.94 (291/320) 96.25 (77/80)
[−1,1] 2 90.63(290/320) 95 (76/80)

Z-score 7 99.06 (317/320) 98.75 (79/80)

methods, which fully shows that the proper selection of the data
standardization method plays a key role. Z-score is selected as the
normalization method of data.

From the variance contribution rate of the principal
components in Figure 4, we can see that the first principal
component bears 56.43% of the difference. The variance
contribution rate of the first principal component is the
largest, and the variance contribution rate of the other
principal components is decreasing in turn, then seven principal
components can be obtained. The cumulative contribution rate
of principal components is shown in Table 3. The cumulative
contribution rate of the first seven principal components is
95.99%, which achieves the goal of 95%. Therefore, the first
seven principal components are selected as the feature of PCA
extraction. Finally, the dimension of breast cancer data is reduced
to 7 dimensions, which is more conducive to the subsequent
recognition and prediction of breast cancer.

Predictive Models for Breast Cancer
The prediction performance of the ELM model is affected by
the type of activation function. By comparing and analyzing the
predictive results of breast cancer under three different activation
functions of sin, hardlim and sigmoid, the activation function
with the best prediction effect was selected. Seven feature data
are used to establish the predictive model of ELM under different
activation functions, and the predictive results are shown in
Table 4. When the Sigmoid function is used as the ELM activation
function, both the training set and the test set have higher
prediction accuracy.

In the predictive model of ELM, the number of input
layer neurons, hidden layer neurons, and output layer neurons
and network structure should be determined. The number of
extracted features is 7, so the number of input layer neurons
is 7. Because two types of breast tumors are predicted, the
number of output neurons is 2. The number of hidden layer
neurons is the key parameter that affects the prediction ability
and generalization performance of ELM. The initial number of
neurons in the hidden layer is set to 1. It is necessary to analyze
the prediction of breast cancer by the ELM model corresponding
to the number of different hidden layers. In order to reduce the
training time of the model, the number of hidden layer neurons
is set within 200.

As shown in Figure 5, when there is only one neuron in the
hidden layer, the prediction accuracy of the test set is only 50%.
When the number of hidden layer neurons is 2, the prediction
accuracy increases to 91.25%. The number of neurons increases
from 3 to 5, the prediction accuracy gradually increases to a
higher value of 92.5%, and then began to fluctuate in the range
of 81∼99%. The overall trend is relatively stable, and the average
accuracy is about 92%. However, it is not that the more the
number of hidden layer neurons, the better the prediction effect
of the model. After the number of hidden layer neurons reaches
120, the accuracy of the test set fluctuates greatly, ranging from
81 to 96%, and the average accuracy is about 90%. When the
number of hidden layer neurons is 27, the ELM model has the
best prediction effect on the test set, and the prediction accuracy
reaches 98.75%. Figure 6 shows the relationship between the
number of hidden layer neurons and the training time. We
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FIGURE 4 | Variance contribution rate of the principal components.

can find that with the increase in the number of hidden layer
neurons, the overall training time is on the rise. Compared with
Figure 5, when the prediction accuracy reaches the maximum,
the number of hidden layer neurons is 27, and the training time
is only 0.0022 s.

In order to prove the reliability of attribute selection and
feature extraction algorithm for breast cancer data modeling, the
predictive results of the original data, the data after attribute
selection, and the data after feature extraction are compared and
analyzed, and the results are shown in Table 5. It can be seen
that the accuracy of the training set and test set after dimension
reduction is higher than that of original data modeling, which
shows that attribute selection and feature extraction methods

TABLE 3 | Cumulative contribution of principal components.

Principal component PCA1 PCA2 PCA3 PCA4 PCA5 PCA6 PCA7

Cumulative contribution rate/% 56.43 71.56 80.15 86.97 91.17 94.22 95.99

TABLE 4 | Predictive results of different activation functions.

Activation
function

Time/s Predictive accuracy/% Hidden layer
neurons

Training samples Training set Test set

Sin 0.0067 97.81 (313/320) 95 (76/80) 104

Hardlim 0.0029 98.13 (314/320) 98.75 (79/80) 53

Sigmoid 0.0022 99.06 (317/320) 98.75 (79/80) 27

improve the predictive learning ability of model training and test
samples. The number of features obtained by single RF and PCA
dimensionality reduction methods is less than that of the original
data, and the number of features is reduced to 70 and 33% of
the original data, respectively. RF combined with PCA (RF-PCA)
process the original data to get the least number of features and
the number of features is only 23% of the original data. The
accuracy of the training set and test set is not only higher than that
of original data modeling but also higher than that of single RF
and single PCA modeling. Because the classifiers used are ELM,
so there is little difference in training time, only about 0.002 s,
and the number of hidden layer neurons corresponding to the
optimal accuracy is different.

In order to verify the superiority of the predictive model based
on breast cancer data after RF-PCA dimensionality reduction,
we also compared and analyzed the prediction performance
of several different modeling methods based on the data after
dimension reduction, such as a PNN, SVM, BP neural network,
and DT. The optimal parameter spread of PNN is set to
0.87. The radial basis function (RBF) is used as a kernel
function of SVM. SVM uses a fivefold cross-validation method
to find the best penalty coefficient C and kernel function
parameter g in the range of [2−10, 210

], at which point, C =
2.2974, g = 0.0625. BP adopts the same network structure as
ELM, in which the number of hidden layer neurons is 27,
the learning step of BP is set to 0.3, the minimum mean
square error is set to 10−8, and the minimum gradient is set
to 10−20.

The predictive results of different modeling methods are
shown in Table 6. According to the accuracy (Acc), precision
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FIGURE 5 | Predictive accuracy of different hidden layer neurons.

FIGURE 6 | Training time of different hidden layer neurons.

(Pr), sensitivity (Se), specificity (Sp), F1-score (F1) and MCC,
we find that although the accuracy and other evaluation indexes
of the BP training set is as high as 100% and higher than
that of other models. The accuracy of the test set are the
lowest and other evaluation indexes are relatively low, which
indicates that BP based on gradient descent method has slight

over-fitting. The training time of BP is 9.6259 s, and the
prediction speed is obviously slower than other methods. The
accuracy of the test set of PNN, SVM, and DT is 95%, and
their MCC are all 0.9, which shows that they have similar
prediction performance, and the difference is mainly reflected
in the evaluation index of the training set and training time.
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TABLE 5 | Predictive results of different dimensionality reduction methods.

Dimension reduction method Features Predictive accuracy/% Time/s Hidden layer neurons

Training set Test set Training samples

ELM 30 95.31 (305/320) 95 (76/80) 0.0020 14

RF + ELM 21 97.5 (312/320) 96.25 (77/80) 0.0023 24

PCA + ELM 10 97.19 (311/320) 97.5 (78/80) 0.0028 13

RF-PCA + ELM 7 99.06 (317/320) 98.75 (79/80) 0.0022 27

TABLE 6 | Predictive results of different modeling methods.

Modeling method Time/s Training set Test set

Training Acc Pr Se Sp F1 MCC Acc Pr Se Sp F1 MCC

PNN 0.0339 99.69% 99.38% 100% 99.38% 99.69% 0.99 95% 95% 95% 95% 95% 0.9

SVM 1.4601 99.06% 98.16% 100% 98.13% 99.07% 0.98 95% 97.37% 92.5% 97.5% 94.87% 0.9

BP 9.6259 100% 100% 100% 100% 100% 1 93.75% 92.68% 95% 92.5% 93.83% 0.88

DT 0.1669 98.13% 98.13% 98.13% 98.13% 98.13% 0.96 95% 95% 95% 95% 95% 0.9

ELM 0.0022 99.06% 98.16% 100% 98.13% 99.07% 0.98 98.75% 97.56% 100% 97.5% 98.76% 0.98

TABLE 7 | Predictive results of dimensionality reduction by RF-PCA.

Modeling method Time/s Training set Test set

Training Acc Pr Se Sp F1 MCC Acc Pr Se Sp F1 MCC

Raw + ELM 0.0096 95% 85.71% 100% 85.71% 92.31% 0.86 92.31% 92.86% 97.5% 92.5% 95.12% 0.9

ELM 0.0011 100% 100% 100% 100% 100% 1 96.15% 92.31% 100% 92.86% 96% 0.93

PNN 0.0314 91.25% 94.59% 87.5% 95% 90.91% 0.83 88.46% 80% 100% 78.57% 88.89% 0.79

SVM 0.1592 97.5% 95.24% 100% 95% 97.56% 0.95 96.15% 100% 91.67% 100% 95.65% 0.93

BP 1.3080 100% 100% 100% 100% 100% 1 84.62% 78.57% 91.67% 78.57% 84.62 0.7

DT 0.0551 96.25% 93.02% 100% 92.5% 96.39% 0.93 92.31% 91.67% 91.67% 92.86% 91.67% 0.85

In the comparison of these three methods, the training set of
PNN has the highest prediction performance and the training
speed of PNN is the fastest. Finally, by comprehensively
comparing the evaluation indexes of training time, Acc, Pr, Se,
Sp, F1, and MCC, we can clearly see that the training time
of ELM is much faster than other models, and the evaluation
index of predictive performance is better than other models,
which fully verifies the superiority of RF-PCA combined with
ELM, and meets the requirements of real-time breast cancer
auxiliary diagnosis.

The same algorithm can be applied to different data sets to
ensure the reliability of the algorithm. If the algorithm proposed
in this article can achieve good prediction results for different
data sets, it can show that the algorithm has strong adaptability
and generalization performance. The generalization performance
of the algorithm is verified by the data (Jossinet, 1996) in
UCI database. The data was obtained by jossinet’s team using
electrical impedance tomography to measure the impedance of
106 pathological breast tissue from 64 women. The sample were
divided into pathological tissue and normal tissue, according
to the pathology and morphology of the breast. Among them,
pathological tissue includes mastopathy: benignant and non-
inflammatory disease of the breast (MA), fibro-adenoma (FA)
and carcinoma (CA), while normal tissue includes mammary

gland (MG), connective tissue (CT) and adipose subcutaneous
fatty tissue (AT). A total of 80 samples were randomly divided
into training sets and the remaining 26 samples were used
as test sets. Firstly, RF is used for attribute selection, and
then PCA is used for feature extraction. Finally, the dimension
of data is reduced from 9 to 4 dimensions. The reduced
dimension data of RF-PCA is fed into ELM and a predictive
model is established.

We also compare common methods of classifiers used in
the literature about breast cancer recognition for the new data.
The reduced dimension data is fed into other classifiers and a
predictive model is established. When the number of neurons in
the hidden layer was 97, the ELM model has a best prediction
performance. The optimal parameter spreadof PNN is set to 0.68.
The optimal C of SVM is 42.2243 and g is 9.1896. Table 7 is
the comparison between the predictive results of the ELM model
of the data after dimensionality reduction by RF-PCA and the
raw data. It can be seen that the prediction performance of the
training set and the test set of the ELM model established by the
dimensionality reduction method of RF-PCA is higher than that
of the ELM model established by the raw data. All the samples of
the training set are predicted correctly, and only one sample
of the test set is predicted incorrectly. The number of features
of the data is almost reduced to half of the raw data, and the
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training time is only about 0.0011 s. In the training set, we
find that the prediction performance of PNN is the worst. BP
has the same prediction performance as ELM, but the training
time is the longest. In the test set, SVM has a similar prediction
performance as ELM, and a faster training speed. BP has the
worst prediction performance. Comparing all kinds of evaluation
indexes of the model, it can be seen that ELM and SVM have a
good prediction effect and the fast training time in the electrical
impedance data, but the performance of the model established by
the method of BP is poor.

All of these shows that the method proposed in this article
can still achieve a better prediction performance and faster speed
when applied to the new dataset to predict new samples. To a
certain extent, the proposed method can exclude the possibility
of overfitting of the models.

CONCLUSION

In this article, we put forward a new solution based on
attribute selection and feature extraction for rapid diagnosis
of breast cancer, which is called RF-PCA. Firstly, we used
the attribute selection based on RF of algorithm to select the
useful attributes of quantitative feature data of breast tumor
cell images and then used the feature extraction algorithm
based on PCA to reduce the dimension of data after attribute
selection. Finally, the ELM model was established to test
the prediction effect of breast cancer. In order to verify
the reliability of this algorithm, we compared the prediction
accuracy of ELM model after using RF or PCA alone. To
verify the superiority of this algorithm, we also compared
the prediction performance of different models and used the
impedance data of the breast tissue to verify the adaptability
of the algorithm.

The results show that (1) The feature selection based on RF
or feature extraction based on PCA of a method can not only
reduce the complexity of the training model but also improve
the prediction accuracy of the model to a certain extent; (2)
Combining feature selection with feature selection, we use the
advantages of the two methods to reduce the dimension of data.
Compared with the single dimension reduction method, it can
reflect the effective information of the original data with fewer
features, make the model simple, and improve the efficiency
and reliability of modeling; (3) ELM model has high prediction
accuracy and short training time, which effectively avoids over-
fitting and has a certain generalization ability; (4) RF-PCA
combined with ELM model can significantly reduce the training
time of the network, and more adapt to the requirements of a
rapid and accurate breast cancer aided diagnosis.

Despite the achievement of some research results, there are
some limitations in this study. When the proposed algorithm

in this article is used in breast cancer diagnosis, the training
time is reduced and the prediction accuracy is better. However,
these advantages mainly focus on the fast prediction speed and
does not reach the optimal accuracy of all samples. Therefore,
in future work, it will be necessary to study some optimization
algorithms to improve the performance of the model and achieve
the highest prediction accuracy on the basis of ensuring faster
prediction speed.
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Melanoma is one of the most aggressive cancers. Hypoxic microenvironment affects
multiple cellular pathways and contributes to tumor progression. The purpose of the
research was to investigate the association between hypoxia and melanoma, and
identify the prognostic value of hypoxia-related genes. Based on the GSVA algorithm,
gene expression profile collected from The Cancer Genome Atlas (TCGA) was used for
calculating the hypoxia score. The Kaplan–Meier plot suggested that a high hypoxia
score was correlated with the inferior survival of melanoma patients. Using differential
gene expression analysis and WGCNA, a total of 337 overlapping genes associated with
hypoxia were determined. Protein-protein interaction network and functional enrichment
analysis were conducted, and Lasso Cox regression was performed to establish the
prognostic gene signature. Lasso regression showed that seven genes displayed the
best features. A novel seven-gene signature (including ABCA12, PTK6, FERMT1,
GSDMC, KRT2, CSTA, and SPRR2F) was constructed for prognosis prediction. The
ROC curve inferred good performance in both the TCGA cohort and validation cohorts.
Therefore, our study determined the prognostic implication of the hypoxia score in
melanoma and showed a novel seven-gene signature to predict prognosis, which may
provide insights into the prognosis evaluation and clinical decision making.

Keywords: melanoma, hypoxia score, prognosis, gene signature, prediction model

INTRODUCTION

Melanoma is one of the highly malignant cutaneous neoplasms with a rising incidence
around the world (Hallberg and Johansson, 2013; Domingues et al., 2018), characterized by its
strong metastasis rate and poor prognosis (Nakamura and Fujisawa, 2018). Although surgery,
chemotherapy, immunotherapy, and radiation have been performed to treat malignant melanoma,
the efficacy of therapies remains limited (Domingues et al., 2018). Therefore, investigating the
underlying biological mechanism and identifying new therapeutic targets are demanded.

Tumor microenvironment (TME) refers to the biological environment where tumors initiate,
locate, and progress (Brandner and Haass, 2013; Roma-Rodrigues et al., 2019). The interaction
between tumor and its TME influence the survival, migration, and invasion of tumor cells
(Whiteside, 2008). Hypoxia is one of the essential features in the TME, which originates from
the proliferation of tumor cells and increased oxygen consumption (Manoochehri Khoshinani
et al., 2016). Tumor Hypoxia results in the activation of hypoxia-inducible factor (HIF), which
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mediates the expression of genes regulating metabolic pathways,
pH regulation, DNA replication, and protein synthesis (Al
Tameemi et al., 2019). Thus, tumor hypoxia contributes to
heterogeneous changes, genetic instability, angiogenesis, and
resistance to treatments, which has become an adverse prognostic
factor of tumor assessment (Walsh et al., 2014; Jing et al., 2019).
Many studies have suggested that hypoxia is related to poor
prognosis in solid tumors (Winter et al., 2007; Ward et al., 2013).
Likewise, hypoxia is a critical molecular program in melanoma,
promoting tumor growth, invasion, treatment resistance, and
relapse through the stabilization of HIF and the regulation
of hypoxia-related responses (Widmer et al., 2013; Qin et al.,
2016). In light of the essential role of hypoxia in melanoma, the
detection and assessment of tumor hypoxia plays a critical role in
clinical practice.

Assessment of the oxygen concentration, report of physiologic
processes involving oxygen markers, and evaluation of
endogenous molecules expression are considered as three
major groups to detect tumor hypoxia status (Walsh et al., 2014).
Deeply understanding the gene characteristics to estimate the
degree of hypoxia would help the prognostic evaluation and
treatment options. Immunohistochemistry (IHC) and plasma
protein assays were developed for determining hypoxia (Russell
et al., 2009; Khan et al., 2013). Recently, bioinformatics has been
utilized to determine broader signatures. Based on the 26-gene
hypoxia signature (Eustace et al., 2013), hypoxia status classifier
was administrated in head and neck cancer (Brooks et al., 2019),
and hypoxia score was implemented in lung adenocarcinoma
(Liu Z. et al., 2020). Up till now, the hypoxia score in melanoma
has not been investigated in detail.

Here, we calculated the hypoxia score for the analysis of gene
expression profiles of melanoma which were collected from The
Cancer Genome Atlas (TCGA, https://cancergenome.nih.gov).
The correlation between hypoxia and prognosis was investigated,
and hypoxia-associated molecules were determined. A seven-
gene signature was further conducted using the profiles from
TCGA and verified in the GSE54467, GSE53118, and GSE22153
dataset, providing novel insights for the assessment, treatment,
and prognosis of melanoma. The workflow presenting the design
of the present research was shown in Figure 1.

MATERIALS AND METHODS

Data Collection
The clinical information and RNA-sequencing data of skin
cutaneous melanoma (SKCM) were downloaded from the
TCGA database1.

Calculation of the Hypoxia Score
Hypoxia score was calculated based on the 26-gene hypoxia
signature (Eustace et al., 2013) and a gene set variation
analysis (GSVA) (Eustace et al., 2013; Hänzelmann et al., 2013).
GSVA is a GSE method which estimates variation of pathway
activity over a sample population in an unsupervised manner

1https://tcga-data.nci.nih.gov/

(Hänzelmann et al., 2013). Hence, we used the 26-gene hypoxia
signature and evaluated the GSVA score of each sample using
the GSVA algorithm. The GSVA score was recognized as the
hypoxia score, which represented the hypoxia status of each
sample. The cut-off value was identified according to the
method of best separation in R package survminer, and patients
were divided into high- and low-hypoxia score groups. Such
grouping aims to minimize the P value of the survival curve.
Additionally, T-test was used to judge the differences of clinical
indexes between groups.

Definition of Differentially Expressed
Genes (DEGs)
EdgeR package was used to identify DEGs between high- and
low-hypoxia score groups. The fold change (|fold change| ≥ 1.5)
and adj.p < 0.05 were considered significant. Pheatmap package
was used to generate the heatmap.

Identification of Hypoxia-Associated
Genes by the Weighted Gene
Co-expression Network Analysis
(WGCNA)
The top 9829 genes, based on standard deviation, were used for
further investigation. Co-expression networks were performed
by using the R package WGCNA (Langfelder and Horvath,
2008). Among all the soft threshold values, we chose the β that
showed the highest mean connectivity (β = 3). As the module
Eigengenes (ME) was recognized to define the interpretation of
gene expression profile, we associated the ME with the hypoxia
feature, which showed high and low hypoxia score. Module with
the highest correlation was selected, and genes of which were
named hypoxia-related genes.

The Protein-Protein Interaction (PPI)
Network and Functional Annotation
The overlapping genes between DEGs and hypoxia-related genes
were depicted by the online Venn diagram analysis2. We used
the STRING (version 11.0, Search Tool for the Retrieval of
Interacting Genes) and Cytoscape software (version 3.7.0) to
construct the PPI network (Shannon et al., 2003; Szklarczyk et al.,
2015). Molecular Complex Detection (MCODE) was utilized to
determine the interaction clusters. The R package clusterprofile
was used to perform functional enrichment analysis and KEGG
(Kyoto Encyclopedia of Genes and Genomes) pathway analysis
(Yu et al., 2012).

Survival Analysis and Construction of the
Hypoxia-Related Signature for
Melanoma
For survival analysis, we utilized Kaplan–Meier survival.
Survival-related genes in the multivariate Cox regression analysis
were inferred using the least absolutes shrinkage and selection
operator (LASSO) by the R package glmnet. Risk scores

2http://bioinformatics.psb.ugent.be/webtools/Venn/
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FIGURE 1 | The workflow of the research.

were obtained according to genes expression multiplied by a
linear combination of regression coefficient acquired from the
multivariate Cox regression, and patients were divided into a
high-risk group and low-risk group based on the optimal cut-off
point of risk score using the R package survminer. The Kaplan–
Meier analysis and the receiver operating characteristic (ROC)
curve were carried out using the R package ROCR.

Interaction Network Between the 7-Gene
Signature and the 26-Gene Hypoxia
Signature
To investigate the association between the 7-gene signature and
the 26-gene list, genes from these two gene lists were input to
the Gene-Cloud of Biotechnology Information (GCBI) analysis
platform3 for data analysis.

3https://www.gcbi.com.cn

External Validation of the
Hypoxia-Related Signature Model
The signature model was validated using the GSE54467,
GSE53118, and GSE22153 dataset derived from the Gene
Expression Omnibus (GEO) database4. Risk scores were
calculated using the same formula, and Kaplan–Meier and ROC
curve analyses were implemented.

RESULTS

Evaluation of the Degree of Hypoxia
Hypoxia scores were distributed between −0.699 to 0.659.
A total of 368 patients were divided into high- and low-
score groups based on the optional cut-off point of hypoxia

4https://www.ncbi.nlm.nih.gov/geo
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FIGURE 2 | Distribution of hypoxia score in melanoma. (A) Distribution of hypoxia score of patients with different TNM staging. (B) Distribution of hypoxia score of
patients with different T stage. (C) Distribution of hypoxia score of patients with or without lymph node metastasis. (D) Distribution of hypoxia score of patients with
or without distant metastasis. (E) Distribution of hypoxia score of patients younger than 65 and those older than 65 years of age. (F–I) Distribution of hypoxia score
of patients with BRAF mutant and BRAF wildtype, patients with NRAS mutant and NRAS wildtype, patients with MAP2K1 mutant and MAP2K1 wildtype, and
patients with KIT mutant and KIT wildtype, respectively. (J) Patients were divided into high- and low-hypoxia score groups based on the cut-off value. Patients with a
high hypoxia score showed a better prognosis compared to patients with a low score ((P) = 0.007). (K) Heatmap of the DEGs of high-hypoxia score group vs.
low-hypoxia score group. p < 0.05, |fold change| ≥ 1.5. DEGs, differentially expressed genes.

score (0.43, Supplementary Figure S1). As shown in
Figures 2A–E, no obvious differences in hypoxia scores
were detected in patients with different clinical features.
Additionally, mutations were common in melanoma,
including BRAF (50%), NRAS (30%), MAP2K1 (6%), and
KIT (2.6%). So, we also plotted the distribution of hypoxia
scores to the status of driver mutations and found they
were not significant (P = 0.375, P = 0.100, P = 0.765,
P = 0.145, Figures 2F–I).

The effects of hypoxia on prognosis were analyzed. The
Kaplan–Meier plot suggested that patients with high hypoxia
scores had a poor prognosis (P = 0.007, Figure 2J). To further
determine the correlation of gene expression with hypoxia scores,
we did differential gene expression analysis between high and low
hypoxia scores. Of the 415 differential expression genes (DEGs),
365 genes were upregulated, while 50 genes were downregulated.
Heatmaps in Figure 2K inferred distinct gene expression profiles
of cases belong to high- vs. low-hypoxia scores.
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FIGURE 3 | Determination of modules correlated with the hypoxia of melanoma in the WGCNA. (A) Analysis of the scale-free fit index and the mean connectivity for
various soft-thresholding powers. (B) Checking the scale free topology when β = 3. Correlation coefficient = 0.9, which showed scale-free topology. (C) Dendrogram
of genes clustered according to a dissimilarity measure (1-TOM). (D) Heatmap of the correlation between module Eigengenes and hypoxia. WGCNA, the weighted
gene co-expression network analysis.

Identification of the Most Relevant
Module Genes for Hypoxia in Melanoma
We selected the top 9829 (of 19658) after sorting by
the standard deviation (Figures 3A–C). The co-expression
network was constructed, and 13 modules were determined.
Correlation analysis between the module eigengenes and
hypoxia scores showed that the yellow module (Figure 3D,
Module–trait relationships = 0.43, P = 0.000) had the highest
association with the degree of hypoxia. Then, 802 genes in the
module were considered to be hub hypoxia-related genes for
further investigation.

Protein-Protein Interactions and
Functional Enrichment Analysis
A total of 337 genes were overlapped between DEGs and hypoxia-
related genes (Figure 4A). To explore the interplay among 337
overlapping genes, the STRING tool with confidence > 0.7 was
used to construct a PPI network. There were 10 modules in the

network, including 195 nodes and 1173 edges. Modules with 10
or more nodes were selected for further analysis (Figure 4B).
Based on the connection degree, we named these modules IVL,
and FLG modules, respectively. In the IVL module, 528 edges
involving 33 nodes were formed in the network. IVL, TGM1,
LOR, SPRR1B, and PPL were the remarkable nodes, as they had
the most connections with others. In the FLG module, FLG,
DSG1, DSG3, PKP3, PKP1, KRT14, and DSC1 occupied the
center of the module.

To better understand the biological significance, we conducted
enrichment analysis of the 337 overlapping genes. As shown
in Figure 4, a total of 27 terms of biological process
(BP), 8 terms of cellular component (CC), and 14 terms of
molecular function (MF) were enriched (P < 0.05). Top GO
terms comprised epidermis development, skin development
and epidermal cell differentiation (Figure 4C), serine type
endopeptidase activity, serine type peptidase activity, and
serine hydrolase activity (Figure 4D), and cornified envelope
and cell-cell junction (Figure 4E). Besides, KEGG analysis
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FIGURE 4 | Analysis of DEGs. (A) Venn diagrams showing the number of commonly genes in DEGs and yellow module. (B) PPI networks of overlapping genes.
A large node represented a higher degree. (C–E) Go enrichment analysis of biological process (BP), molecular function (MF), and cellular component (CC). (F) KEGG
pathway enrichment analysis of the overlapping genes. DEGs, differentially expressed genes; PPI, the protein-protein interaction; GO, Gene Ontology; KEGG, Kyoto
Encyclopedia of Genes and Genomes.

suggested overlapping genes were enriched in Staphylococcus
aureus infection, estrogen signaling pathway, and IL-17 signaling
pathway (Figure 4F).

Determination of Prognostic Molecules
and a Prognostic Risk Model
We generated Kaplan–Meier survival curves to explore the
independent prognostic impact of 337 overlapping genes and
found that 29 genes were associated with prognosis in the
log-rank test (P < 0.05). A total of 7 genes identified with
the LASSO algorithms included ATP-binding cassette sub-
family a member 12 (ABCA12), protein tyrosine kinase 6
(PTK6), fermitin family member 1 (FERMT1), gasdermin C
(GSDMC), keratin 2 (KRT2), cystatin A (CSTA), and small
proline rich protein 2F (SPRR2F), and constructed as a seven-
gene signature model (Table 1). The risk score = 0.26084 ∗
Expression (ABCA12)+ 0.05797 ∗ Expression (PTK6)+ 0.14404
∗ Expression (FERMT1)+ (−0.44473) ∗ Expression (GSDMC)+
(−0.09102) ∗ Expression (KRT2) + (−0.02677) ∗ Expression
(CSTA) + 0.11245 ∗ Expression (SPRR2F). The roles of these
7 genes in melanoma and hypoxia responses were described in

TABLE 1 | The results of Univariate Cox regression analysis.

HR Z P

ABCA12 0.564 −3.171 0.002

PTK6 0.617 −2.687 0.007

FERMT1 0.626 −2.607 0.009

GSDMC 1.547 2.419 0.02

KRT2 1.460 2.105 0.04

CSTA 1.442 2.042 0.04

SPRR2F 0.682 −1.955 0.04

HR: hazard ratio.

Table 2. Also, we explored the relationships among genes from
the 7-gene signature and 26-gene list. Although genes from the 7-
gene signature were different from those of the 26-gene one, there
were common regulators associated with hypoxic responses,
including EGFR, ERBB2, and miR-125a (Figures 5A,B, Table 3).

Kaplan–Meier curve and ROC were utilized to assess the
prognostic capacity of the seven-gene signature model, and
similar procedures were performed in the external data. The
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TABLE 2 | The roles of 7 genes in melanoma and hypoxia response.

Gene Function Role in melanoma Role in hypoxia response

ABCA12 Membrane
transport

Associated with skin malignancies including melanoma Not reported

PTK6 Protein
phosphorylation

Identified as a prognostic biomarker for metastatic skin cancers
including malignant melanoma

Up-regulated by HIF-1α and HIF-2α

FERMT1 Keratinocyte
proliferation

Not reported Down-regulated in the condition of hypoxia

GSDMC Pyroptosis Present in malignant melanoma and associated with the metastasis Not reported

KRT2 Keratinization Not reported Not reported

CSTA Keratinocyte
differentiation

Not reported Up-regulated in hypoxic cells

SPRR2F Epidermis
development

Not reported Not reported

FIGURE 5 | Interaction network of molecules associated with the genes from the 7-gene signature and the 26-gene list. (A) Interaction network of genes associated
with the 7-gene signature and the 26-gene list. Colors indicated types of genes: light blue, input genes; orange, activated genes; red, expressed genes; green,
associated genes; dark blue, inhibited genes; yellow, the largest connection counts. Node size was adjusted according to the number of associated genes.
(B) Interaction network of miRNAs correlated with the 7-gene signature and the 26-gene list. Colors indicated types of molecules: light blue, input genes; purple,
targeted miRNAs; yellow, the largest connection counts. Node size was adjusted according to the number of associated miRNAs.

TABLE 3 | Common regulators and downstream effectors.

Targeted-genes in the
7-gene signature

Targeted-genes in the
26-gene list

EGFR PTK6 ALDOA, TPI1

ERBB2 PTK6 KRT17

MiR-125a FERMT1 VEGFA, ENO1, TPI1

results showed that genes in the signature model performed well-
predicting prognosis within the TCGA cohort (Figures 6A–G).
Figures 6H–K suggested that patients with low-risk scores had

significantly longer overall survival than those with high-risk
scores in TCGA, GSE54467, GSE53118, and GSE22153 dataset
(P < 0.001, P = 0.004, P = 0.017, P = 0.048). The AUCs
were 0.716 (95% CI: 0.661–0.771), 0.667 (95% CI: 0.541–0.792),
0.648 (95% CI: 0.419–0.878), and 0.628 (95% CI: 0.406–0.849),
respectively (Figures 6H–K).

DISCUSSION

Hypoxia, one of the hallmarks of TME, is a biological
condition present in most tumors (Jing et al., 2019). Tumor
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FIGURE 6 | Kaplan–Meier analysis, risk score analysis, and ROC analysis for the seven-gene signature. (A–G) Kaplan–Meier curves for overall survival of ABCA12,
CSTA, FERMT1, GSDMC, KRT2, PTK6, and SPRR2F. (H–K) Kaplan–Meier curves for overall survival of risk score and ROC analysis for the seven-gene signature in
TCGA cohort, GSE54467, GSE53118, and GSE22153. ROC, receiver operating characteristic; TCGA, The Cancer Genome Atlas.

hypoxia exacerbates progression and metastasis through both
physiological and genomic mechanisms (Akanji et al., 2019).
Investigating crucial features of tumor hypoxia environment may
facilitate clinical decision-making.

Previous studies identified several genes, long non-coding
RNAs and miRNAs as promising therapeutic biomarkers in
melanoma (Zhang et al., 2017; Wei et al., 2019; Xu et al.,
2019). However, the differentially expressed signatures were
explored between the normal and tumor samples, or between
the primary and metastatic tissues, and molecules associated with
the progression of cancer were not taken into consideration.
Notably, the focus of our study was to estimate the degree of
hypoxia according to the evidential basis for 26-gene hypoxia
signature (Eustace et al., 2013), and high hypoxia score was
demonstrated as a strong predictor of poor clinical outcome.
Subsequently, we identified the promising hypoxia-related genes
associated with prognosis.

Based on bioinformatics methods and databases, hypoxia
score was calculated, and patients were divided into high- and
low-score groups. DEGs were collected using differential gene
expression analysis. At the same time, WGCNA analysis was
performed to select the modules with the strongest relationship
between genes in the modules and the module traits. The
overlapping 337 genes of the above two clusters were determined
as the hypoxia strongly associated genes related to melanoma.
Functional analysis showed these 337 genes to be closely related
to the development of melanoma, like via cell-cell junction.
Cell junction was reported to be relevant for the metastatic
process (Knights et al., 2012). Also, the process of epidermis
development and epidermal cell differentiation were enriched.
Previous studies showed the hyperplastic epidermal region was
accompanied by aberrant expression of keratin 14, and melanoma
cells were able to increase expression of keratins 8, 19 (Kodet
et al., 2015). keratin 8, 14,19 were also observed in the FLG
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module from PPI network. These results showed that epidermis
surrounding melanoma performed hyperplastic features, and
indicated the possible interaction between melanoma cells and
keratinocytes. KEGG analysis highlighted the estrogen signaling
pathway and the IL-17 signaling pathway. Several studies pointed
out that the estrogen signaling pathway relied on the balance
between estrogen receptor (ER) α and ERβ expression, and
the levels of ERβ regulated the capacity of melanoma invasion
(Marzagalli et al., 2016; Rajabi et al., 2017). Additionally, IL-
17/IL-17RA pathway stimulated cell proliferation of mouse
B16F10 and human A375 and A2058 cell lines (Chen et al.,
2019). IL-17 and IL-23 immunohistochemistry expression were
increased in the melanoma tissues, possibly enhancing VEGF
expression and angiogenesis (Ganzetti et al., 2015). Therefore,
these analyses supported the hypothesis of the importance of
hypoxia microenvironment in the regulation of the biological
behavior of tumor cells and surrounding non-tumor cells.

Based on the log-rank test identifying the genes associated
with prognosis, LASSO was performed, and seven characteristic
variables were extracted. ABCA12 was upregulated in ovarian
carcinoma and colorectal cancer, which was recognized as a
promising candidate marker (Hlavata et al., 2012; Elsnerova
et al., 2016). Mutations in ABCA12 were related to malignant
melanoma (Natsuga et al., 2007). PTK6, a non-receptor type
tyrosine kinase, was involved in breast, pancreatic cancer and
metastatic skin cancer. It was recognized that PTK6 regulated
proliferation and migration (Gotoh et al., 2014; Ito et al., 2017;
Liu G. et al., 2020). FERMT1, encoding Kindlin-1, was correlated
with metastasis and poor prognosis in several solid tumors
(Liu et al., 2016; Sarvi et al., 2018). GSDMC functioned as
an oncogene, enhancing cell proliferation and tumorigenesis in
lung adenocarcinoma and colorectal carcinogenesis (Miguchi
et al., 2016; Wei et al., 2020). It presented high in malignant
melanoma but undetectable in normal epithelial cells, which
might be associated with the metastasis of cells (Xia et al., 2019).
CSTA, one of the tumor suppressors, had the anti-apoptotic
effect and maintaining cell-cell adhesion. It was upregulated in
several epithelial-derived malignancies, including squamous cell
carcinoma (Gupta et al., 2015; Ma et al., 2018). KRT2 was found
to form a mechanically resilient cytoskeleton and contribute to
the skin homeostasis (Fischer et al., 2016). SPRR2F, a cross-
linked envelope protein of keratinocytes, providing the protective
barrier function (Cabral et al., 2001). Although there was no
report of KRT2 and SPRR2F as a prognostic molecule of tumors,
KRT2 and SPRR2F might function as promising biomarkers in
melanoma. The consistency of our findings regarding ABCA12,
PTK6, FERMT1, GSDMC and CSTA with previous studies
suggested our method to be reliable, and thus supported the
reliability of these potential prognostic and therapeutic targets to
a certain extent.

Previous studies inferred that the expression of PTK6 were
up-regulated, and FERMT1 were down-regulated in response
to the hypoxia condition (Hlavata et al., 2012; Regan Anderson
et al., 2013; Lin and Liu, 2019). PTK6 expression depended
on both HIF-1α and HIF-2α, which were reported to have a
direct regulation of PTK6 transcription. In the analytic process
of investigating the effect of hypoxia on the vhl-deficient cells,

HIF-regulated genes were obtained. FERMT1 was one of the 214
downregulated DEGs. Additionally, the increased expression of
CSTA was detected in hypoxic A431 cells (Park et al., 2010).
Although there was no common gene between the 7- and 26-gene
signatures, a total of 3 genes, including epidermal growth factor
receptor (EGFR), erb-b2 receptor tyrosine kinase 2 (ERBB2), and
miR-125a, were identified as common regulators and effectors in
these two gene lists in a context-dependent manner. PTK6 was
reported to enhance EGFR signaling by direct phosphorylation of
EGFR and inhibition of its degradation (Li et al., 2012), and EGFR
might promote the cellular response to hypoxia by increasing
HIF-1α expression (Swinson and O’Byrne, 2006). Through the
split ubiquitin (Ub)-based membrane yeast two-hybrid assay,
EGFR was reported to be physically associated with aldolase
(ALDOA) and triosephosphate isomerase 1 (TPI1), respectively
(Deribe et al., 2009). However, the potential functions of ALDOA
and TPI1 need to be further explored. Furthermore, ERBB2,
also known as HER2, was recognized as a regulator of HIF-
2α and a driver of hypoxic responses (Jarman et al., 2019).
PTK6 was coamplified with ERBB2 to promote cell proliferation
(Xiang et al., 2008). Additionally, ERBB2 and keratin 17 (KRT17)
were found to locate in the same chromosome region, which
might have the following tumor associations (Zhang et al., 2013).
Apart from regulating the expression of genes, hypoxia-regulated
microRNAs (miRNAs) were identified. MiR-125a was a direct
target of HIF-1α and drove the reduction of vascular endothelial
growth factor A (VEGFA) (Dai et al., 2015; Pan et al., 2018).
Based on the map of human miRNA interactome, enolase 1
(ENO1), FERMT1, and TPI1 were observed in the interaction
sites of miR-125a and further examinations were demanded
(Helwak et al., 2013).

Saxena and Jolly summarized different extents of hypoxia
(Saxena and Jolly, 2019). Under acute hypoxia, HIF-1α levels
stayed high to regulate acute response, while HIF-2α levels
were stabilized later and played a crucial role during chronic
hypoxia. Besides, cyclic hypoxia enhanced the expression
of HIF-1α instead of HIF-2α. Several factors implicated in
these hypoxia conditions were determined, including HSP-
70, HAF, H3, H4, REST, and miR-429. Although genes
identified in our study have been reported to function in
hypoxic responses, there was no report of them to make a
distinction of conditions of hypoxia, and further experimental
verification is required.

Considering the accuracy of these prognostic genes,
a seven-signature model was established based on the
combination of genes. Cases in the low-risk group inferred
obviously better survival than patients in the high-risk group.
The prognosis predictive performance of the model was
relatively good not only in the TCGA melanoma cohort but
also in the GSE54467, GSE53118, and GSE22153 cohort.
Additionally, we investigated whether the clinical features
were correlated with the degree of hypoxia, and the results
showed that no apparent differences in hypoxia score were
observed. BRAF mutation was found to increase HIF-
1α expression and influenced survival in previous studies
(Kumar et al., 2007; Zerilli et al., 2010). KIT mutant was
reported to require HIF-1α to transform melanocytes into
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melanoma cells (Monsel et al., 2010). In our cohort, the hypoxia
score in the BRAF-mutant or KIT-mutant group was slightly
higher than that of the wildtype group, but it was not statistically
significant. It could be because of an inevitable limitation, the
sample size. There were two other limitations to our study.
Firstly, data were collected from TCGA, where the potential for
selection bias could not be excluded, but we validated the results
in the GEO database and demonstrated the reliability to some
extent. Secondly, analysis in our study was descriptive, further
research in vitro and in vivo could enhance our understanding
of the critical genes.

In conclusion, we applied the hypoxia score to determine the
degree of hypoxia in TME and identified the prognostic role of
hypoxia score. Furthermore, using bioinformatics and machine
learning methods, we determined the seven-gene prognostic
signature as a potential prognostic predictor and therapeutic
targets for melanoma.
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Objective: To build a model for proximal junctional kyphosis (PJK) prognostication
in Lenke 5 adolescent idiopathic scoliosis (AIS) patients undergoing long posterior
instrumentation and fusion surgery by machine learning and analyze the risk factors
for PJK.

Materials and Methods: In total, 44 AIS patients (female/male: 34/10; PJK/non-PJK:
34/10) who met the inclusion criteria between January 2013 and December 2018 were
retrospectively recruited from West China Hospital. Thirty-seven clinical and radiological
features were acquired by two independent investigators. Univariate analyses between
PJK and non-PJK groups were carried out. Twelve models were built by using four
types of machine learning algorithms in conjunction with two oversampling methods
[the synthetic minority technique (SMOTE) and random oversampling]. Area under the
receiver operating characteristic curve (AUC) was used for model discrimination, and
the clinical utility was evaluated by using F1 score and accuracy. The risk factors were
simultaneously analyzed by a Cox regression and machine learning.

Results: Statistical differences between PJK and non-PJK groups were as follows:
gender (p = 0.001), preoperative factors [thoracic kyphosis (p = 0.03), T1 slope angle
(T1S, p = 0.078)], and postoperative factors [T1S (p = 0.097), proximal junctional
angle (p = 0.003), upper instrumented vertebra (UIV) – UIV + 1 (p = 0.001)]. Random
forest using SMOTE achieved the best prediction performance with AUC = 0.944,
accuracy = 0.909, and F1 score = 0.667 on independent testing dataset. Cox model
revealed that male gender and larger preoperative T1S were independent prognostic
factors of PJK (odds ratio = 10.701 and 57.074, respectively). Gender was also at the
first place in the importance ranking of the model with best performance.
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Conclusion: The random forest using SMOTE model has the great value for predicting
the individual risk of developing PJK after long instrumentation and fusion surgery in
Lenke 5 AIS patients. Moreover, the combination of the outcomes of a Cox model and
the feature ranking extracted by machine learning is more valuable than any one alone,
especially in the interpretation of risk factors.

Keywords: spinal deformity, proximal junctional kyphosis, sagittal malalignment, machine learning, prediction
model

INTRODUCTION

For adolescent idiopathic scoliosis (AIS) patients, orthopedic
operations are employed to reconstruct the coronal and sagittal
alignment in an attempt to maintain the stability of the spine
(Mimura et al., 2017). Long posterior instrumentation and fusion
surgery is the preferred treatment strategy for improving the
management of progressive scoliotic spines (Suk et al., 1995).
Although all the efforts have been made to design a suitable
operative procedure, the prognosis is not always satisfactory
(Humke et al., 1995; Bridwell, 1997). Proximal junctional
kyphosis (PJK), a multifactorial proximal adjacent segment
disease following fusion treatment, has drawn the attention of
many spine surgeons (Watanabe et al., 2010; Kim et al., 2013).
It affects around 28% of the adolescent idiopathic scoliosis (AIS)
population, with regional pain and poor life quality in some
severe cases (Kim et al., 2007; O’Shaughnessy et al., 2012; Passias
et al., 2018; Sebaaly et al., 2018). The most commonly adopted
definition of PJK is accepted in this study: the Cobb angle
between the upper instrumented vertebra (UIV) and the two
supra-adjacent vertebrae is superior to 10◦ and at least 10◦ greater
than its preoperative value (Glattes et al., 2005).

Currently, most researchers are devoted to extracting proper
prognostic information by using statistical methods to have an
insight into the characteristics with high risks (Kim et al., 2008;
Scheer et al., 2016). Previous studies also showed the potential
of binary logistic regression in risk factors identification, such
as old age, gender, fusion levels, type of instrumentation at the
UIV, and various sagittal spinopelvic radiographic parameters
(Sebaaly et al., 2018; Zhao et al., 2018). To our knowledge,
no reported studies analyzed cervical balance parameters in
conjunction with well-known clinical prognostic factors to
confirm that it is an independent risk factor for AIS patients.
In addition, logistic regression models depend heavily on the
linear separability of samples, which is vulnerable to the degree
of multicollinearity between variables and may result in a model
with underfitting and low accuracy to provide unreliable outcome
prediction for a personalized surgical planning. Therefore, it
seems unreasonable to make use of linear models for accurate
preoperative prediction in the era of personalization of medicine.
Non-linear machine learning methods (e.g., random forest) have
a distinct advantage over the linear approach because they
distinctly provide inherent data pattern recognition and map
non-linear relationships between high-dimensional variables to
estimate the clinical outcome for each individual (Karhade et al.,
2019). Scheer et al. (2016) have constructed a decision tree
model (accuracy = 0.860) on 510 adult spinal deformity patients

by commercially available software. Nonetheless, in the study,
just 13 variables were considered for the highly heterogeneous
study population.

The purpose of this study was to establish preoperative
risk models for Lenke 5 AIS patients undergoing long
posterior instrumentation and fusion surgery. We also explored
and compared the outcomes of machine learning and a
commonly used model in clinic (Cox regression) at risk factor
identification for PJK.

MATERIALS AND METHODS

Patient Population
The institutional review boards approved this retrospective study
and waived the requirement to obtain written informed consent.
Between January 2013 and December 2018, 293 AIS patients
were admitted to West China Hospital. Inclusion criteria were
as follows: (1) Lenke 5 curves (2) long posterior instrumentation
and fusion surgery with > 6 instrumented motion segments, (3)
at least 1 year follow-up; (4) adequate preoperative, immediate
postoperative (3–7 days after surgery), and final follow-up
anteroposterior and lateral standing long-cassette radiographs;
(5) radiographs with good quality. Finally, a total of 44 Lenke
5 patients with posterior instrumentation (34 without PJK and
10 with PJK) were recruited on the basis of the eligibility
criteria (Figure 1).

Parameters Collection
Patient demographics and surgical factors including amount
of correction, upper instrumented vertebra (UIV) level,
lower instrumented vertebra (LIV) level, and the number of
instrumented vertebras were recorded from the electronic
medical records.

Two coronal and 28 sagittal parameters were collected
according to the results of previous researches on PJK (Glattes
et al., 2005; Kim et al., 2005, 2013, 2014; Yagi et al., 2011; Hostin
et al., 2013; Ghailane et al., 2017; Sebaaly et al., 2018; Zhao
et al., 2018; Alzakri et al., 2019). Specifically, coronal parameters
included the following: coronal vertical axis (CVA, offset of C7
plumb-line relative to the center sacral vertical line) and the
main scoliosis curve Cobb angle (CAMSC); sagittal parameters
included the following: the sagittal vertical axis (SVA, offset of C7
plumb-line relative to S1 on the sagittal plane), pelvic tilt (PT),
pelvic incidence (PI), PI-LL mismatch, sacral slope (SS), upper
segmental lumbar lordosis from L1 to L4 (ULL), lower segmental
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FIGURE 1 | Flow diagram of patient inclusion and exclusion. AIS, adolescent idiopathic scoliosis.

lumbar lordosis from L4 to S1 (LLL), lumbar lordosis (LL, Cobb
angle between superior endplate of L1 and superior endplate
of S1), thoracic kyphosis (TK, Cobb angle between superior
endplate of T4 and inferior endplate of T12), rod contour angle
(RCA, angle between the superior plate of UIV and the inferior
plate of one vertebra caudal to the UIV), UIV – UIV + 1 (angle
between the inferior endplate of UIV and the superior endplate
of one cephalad vertebrae), proximal junctional angle (PJA, angle
between the inferior endplate of UIV and the superior endplate
of two cephalad vertebrae), T1 slope (T1S, Cobb angle between a
horizontal line and the upper endplate of T1), and T1SpinoPelvic
inclination (T1SPI, the angle between the vertical plumb-line and
the line drawn from vertebral body center of T1 and the center of
the bicoxofemoral axis).

It is worthy of note that the value of PI was constant before
and after surgery; thus, we only demanded the preoperative PI.
Moreover, RCA was defined as a postoperative variable as stated
by Kim et al. (2007) and Lonner et al. (2017). The specific
measurement methods are presented in Figures 2, 3.

Univariate Analyses
Continuous and categorical data were shown as mean ± standard
deviation and numbers with percentages in parentheses,
respectively. Shapiro-Wilk test was performed to test the
normality of data distribution. Two-sided Student t-test (for
normally distributed data) and Mann–Whitney–Wilcoxon
test (for non-parametric data) were used to determine the
statistical differences in continuous data between PJK and
non-PJK groups, whereas chi-square test was performed for
categorical variables. p < 0.1 was indicative of a statistically
significant difference.

Machine Learning Model Construction
Thirty-seven variables were normalized to reduce the effect of
data scale while maintaining the distributions of original data.

Data were split into training and testing sets at a random stratified
ratio of 3:1 by preserving the percentage of samples for each class,
and the testing set was held out for examining the generalization
ability of the models. To address the class imbalance problem
which could lead to a severely imbalanced degree of accuracy with
the majority class having nearly 100% accuracy while the minority
one having worse accuracy of 0–10%, two oversampling methods,
the synthetic minority technique (SMOTE) (Chawla et al., 2002)
and random oversampling (ROS) (He and Garcia, 2009), were
applied for model training (Mendoza-Lattes et al., 2011; Lei et al.,
2016, 2017; Lan, 2017; Sebaaly et al., 2018).

We established four kinds of popular supervised machine
learning models [random forest (RF), support vector machine
(SVM), k neighbors classifier (KNN), and linear regression (LR)]
for risk prediction, which had superior advantages in solving the
small-sample size problem. The parameters of the model were
optimized by cross-validated grid search over a parameter grid,
such as the number of estimators and criterion and the minimum
number of samples required to split for RF; kernel, regularization
parameter, and gamma for SVM; and number of neighboring
samples, power parameter for the Minkowski metric, and weight
function for KNN (Swami and Jain, 2012; Peng et al., 2016; Zhao
et al., 2019). Leave-one-out cross-validation was implemented
to evaluate the performance of models in training stage. More
specifically, one patient from all patients was used for model
testing while the rest for training, and these procedures were
repeated until each patient had been used once as a testing
sample. Final evaluation was be done with the independent test
set as the model training was fulfilled to reflect the ability of a
model to unknown sample.

Model discrimination was measured by area under the
receiver operating characteristic curve (AUC). Accuracy was used
to assess the difference between the predicted clinical results
(PJK) and ground truth derived from follow-up study. The
clinical utility of the model was also evaluated with F1 score,
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FIGURE 2 | Graphic representations of special angles of an adolescent idiopathic scoliosis patient with PJK postoperatively. Different from the conventional
measurements, the (A) anteroposterior and (B) lateral preoperative radiographs purposely included the following measurements for demonstrating coronal and
sagittal malalignment: coronal vertical axis (CVA), the main curve coronal angle (CAMSC), T1 Slope (T1S), and T1SpinoPelvic inclination (T1SPI). At immediate
postoperative X-ray films (C,D), rod curve angle (RCA) was also measured. PJK, proximal junctional kyphosis.

which is a necessary synthesized indicator by conveying the
balance between the precision and the recall in imbalanced
dataset (Chawla et al., 2002). At last, the model with the best
prognostic performance was considered as the final prediction
model to obtain the feature importance in PJK occurrence by
ranking factor influences (Ji et al., 2015). Python version 3.5
(Python Software Foundation, Wilmington, DE, United States)
was used for modeling.

Cox Proportional Hazards Regression
A Cox proportional hazards regression model was also applied
to select PJK-related features. Event-free survival was defined as
the time from the date of surgery to the date of PJK occurrence.
Follow-up time for patients without complications were censored
at the last visit, and PJK patients contributed follow-up time
until the outcomes were first recorded. The predictors of PJK
with statistical significance in the univariable analysis were
included in the multivariable Cox model. The final model was
selected by forward Wald method. And the proportional hazards
assumption of models was verified by examining the scaled
Schoenfeld residual plots. The results were compared with the
feature importance information acquired by machine learning

model for exploring the interpretability and predictive value of
variables. Statistical analysis was performed using SPSS 25.0 (IBM
Corp., Armonk, NY).

RESULTS

Clinical Characteristics
Tables 1, 2 show detailed baseline and clinical-radiologic
characteristics of all patients. A total of 44 patients (female/male:
34/10) were recruited for this study. The average age at
surgery, follow-up time, and instrumented vertebras were
18.27 ± 3.61 years, 3.15 ± 2.67 years, 6.80 ± 1.37 vertebras,
respectively. At final follow-up, there were 10 (22.7%) patients
with PJK, while 34 patients demonstrated no significant PJK by
follow-up investigation.

Between PJK and non-PJK groups, significant differences
(p < 0.1) were observed in the following variables: gender
distribution (p = 0.001), preoperative TK (p = 0.03), preoperative
T1S (p = 0.078), postoperative T1S (p = 0.097), PJA (p = 0.003),
and postoperative UIV – UIV + 1 (p = 0.001). However,
there were no differences in age at surgery, body mass
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FIGURE 3 | Graphic representations of special angles of an adolescent idiopathic scoliosis patient without PJK postoperatively. Different from the conventional
measurements, the (A) anteroposterior and (B) lateral preoperative radiographs purposely included the following measurements for demonstrating coronal and
sagittal malalignment: coronal vertical axis (CVA), the main curve coronal angle (CAMSC), T1 Slope (T1S), and T1SpinoPelvic inclination (T1SPI). At immediate
postoperative X-ray films (C,D), rod curve angle (RCA) was also measured. PJK, proximal junctional kyphosis.

TABLE 1 | Demographic and clinical variables.

Variable None (n = 34) PJK (n = 10) p-value

Age at surgery, mean ± SD 18.50 ± 3.71 17.50 ± 3.31 0.669

Gender Female, n (%) Male, n (%) 30 (68.2%) 4 (9.1%) 4 (9.1%) 6 (13.6%) 0.001* (χ 2 = 10.23)

BMI 18.84 ± 2.39 21.29 ± 6.31 0.216

Amount of correction 80.4% ± 14.5% 81.6% ± 12.6% 0.901

Follow-up time (years) 2.88 ± 1.32 4.22 ± 4.54 0.648

UIV levels T1–T5 T6–T9 T10–T12 6 (13.6%) 20 (45.5%) 8 (18.2%) 2 (4.5%) 8 (18.2%) 0 0.232 (c2 = 2.92)

LIV levels L3 L4 L5 6 (13.6%) 18 (40.9%) 10 (22.7%) 5 (11.4%) 3 (6.9%) 2 (4.5%) 0.114 (χ2 = 4.338)

Number of instrumented vertebrae, mean ± SD 6.85 ± 1.31 6.60 ± 1.075 0.344

Bold and * values both represent a statistically significant difference between the PJK and None groups. SD, mean ± standard deviations; BMI, body mass index; UIV,
upper instrumented vertebra; LIV, lower instrumented vertebra.

index (BMI), amount of correction, and UIV and LIV levels
(Table 1). Additionally, no significant differences were observed
in preoperative data including CAMSC, CVA, LL, ULL, LLL, SVA,
PT, PI, SS, PI-LL mismatch, T1SPI, PJA, and UIV – UIV + 1, and
immediate postoperative parameters including CAMSC, CVA,
TK, LL, ULL, LLL, SVA, PT, PI, SS, PI-LL mismatch, T1SPI, and
RCA (Table 2).

Machine Learning Results
The average accuracies of machine learning models without
oversampling for predicting PJK occurrence in the train and
test sets were 0.728 and 0.783, whereas, models trained with
ROS were 0.80 and 0.73, and models with SMOTE were
0.82 and 0.78, respectively. The average AUC for models
without oversampling, with ROS, and with SMOTE were 0.64,
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TABLE 2 | Radiographic variables.

Abbreviation Parameter Type None (n = 34) PJK (n = 10) p-value

Coronal parameters

CAMSC The coronal main scoliosis
curve Cobb angle (◦)

Pre Post 43.96 ± 10.60 8.56 ± 6.31 39.74 ± 5.91 7.01 ± 4.81 0.237 0.478

CVA Coronal vertical axis (mm) Pre Post 14.01 ± 14.42 5.89 ± 18.86 16.69 ± 18.00 8.57 ± 12.18 0.628 0.675

Sagittal parameters

TK Thoracic kyphosis (◦) Pre Post 21.45 ± 9.42 19.35 ± 8.66 29.51 ± 11.68 23.50 ± 10.07 0.030* 0.207

LL Lumber lordosis (◦) Pre Post 47.67 ± 11.43 48.54 ± 9.11 52.64 ± 10.20 47.20 ± 7.61 0.772 0.673

ULL Upper segmental lordosis
from L1 to L4 (◦)

Pre Post 19.13 ± 9.19 20.55 ± 5.84 20.60 ± 934 19.20 ± 7.16 0.660 0.544

LLL Lower segmental lordosis
from L4 to S1 (◦)

Pre Post 34.88 ± 8.84 31.23 ± 8.31 39.11 ± 10.97 30.11 ± 7.34 0.215 0.704

SVA Sagittal vertical axis (◦) Pre Post −8.77 ± 27.36 3.13 ± 30.83 1.39 ± 15.81 10.85 ± 25.78 0.271 0.476

PT Pelvic tilt (◦) Pre Post 7.23 ± 7.84 3.68 ± 8.43 4.96 ± 10.03 3.31 ± 9.14 0.452 0.905

PI Pelvic incidence (◦) Pre 45.12 ± 11.48 42.30 ± 13.61 0.514

SS Sacral slope (◦) Pre Post 37.89 ± 8.73 39.70 ± 8.23 37.34 ± 5.87 37.72 ± 5.80 1.000 0.483

PI-LL mismatch Pelvic incidence-lumbar
lordosis mismatch (◦)

Pre Post −3.92 ± 12.69 −2.88 ± 9.30 10.35 ± 14.77 −6.10 ± 13.89 0.196 0.397

T1S T1 slope (◦) Pre Post 14.43 ± 7.50 12.33 ± 7.93 19.45 ± 8.47 16.93 ± 5.82 0.078* 0.097*

T1SPI T1SpinoPelvic inclination (◦) Pre Post −4.07 ± 3.37 −1.87 ± 4.19 −3.05 ± 2.57 −1.03 ± 3.47 0.383 0.569

PJA (◦) Pre Post 8.23 ± 5.45 7.74 ± 5.23 8.89 ± 3.64 13.35 ± 4.28 0.745 0.003*

UIV – UIV + 1 (◦) Pre Post 4.93 ± 3.47 4.45 ± 3.12 6.63 ± 2.97 8.13 ± 3.38 0.115 0.001*

RCA Rod contour angle (◦) Post 4.03 ± 2.60 5.71 ± 4.56 0.464

All values are shown as mean ± SD. *Values represent a statistically significant difference (p < 0.1) between the PJK and None groups. Pre, preoperative; Post, immediate
postoperative (3–7 days after surgery); UIV, upper instrumented vertebrae.

FIGURE 4 | Graphs show the performances for PJK risk prediction obtained by established models in the training and testing sets. Three colors demonstrate
different data processing methods (orange, without data processing; blue, random oversampling; green, SMOTE). Random forest combined with SMOTE provided
an excellent prediction performance compared with rival models. SMOTE, the synthetic minority technique; AUC, area under the receiver operating characteristic
curve; PJK, proximal junctional kyphosis. (A–D) Respectively represent the model performance of random forest, support vector machine, K neighbors classifier,
linear regression.
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FIGURE 5 | Importance order of top 10 predictors (importance = 64%) ranked
by random forest using SMOTE. SMOTE, the synthetic minority technique;
pre, pre-operation; post, immediate postoperative (3–7 days after surgery);
SVA, sagittal vertical axis; UIV, upper instrumented vertebrae; CA(MSC), the
main scoliosis curve coronal angle; TK, thoracic kyphosis; T1SPI,
T1SpinoPelvic inclination.

0.86, and 0.82 in the train set, respectively, and 0.70, 0.74,
and 0.78 in the test set. The F1 score performances of the
models that trained with oversampling were superior to that
of without oversampling in both sets (train: 0.70 vs. 0.38,
0.70 vs. 0.24; test: 0.37 vs. 0.24, 0.53 vs. 0.24). The general
tendency was that models with data oversampling had better
robustness than the ones without preprocessing, and models
that integrated SMOTE in the training stage yielded the best
prognostic performance.

Discriminatory performance and prediction accuracy of
all models in leave-one-out cross-validation and test set are
shown in Figure 4. Random forest using SMOTE provided
better prognostic ability (AUC = 0.944), better clinical
usefulness compared with rival models (accuracy = 0.909,
F1 score = 0.667), and low operation time (4 ms for each sample)
in independent test set, whereas, linear regression had the worst
performance (AUC = 0.545, F1 score = 0.228, accuracy = 0.704),
suggesting non-linear machine learning models had more precise
prognostication. The detailed prediction outputs of this model
were nine true negative, one false negative, one true positive,
and zero false positive on test data set, demonstrating a lower
misdiagnosis rate. In addition, the model presented feature
selection based on data attributes importance ranking, and the
top 10 prognostic indicators were gender, four preoperative
features (UIV – UIV + 1, CAMSC, SVA, and T1SPI), and five

modifiable surgical features (SVA, PJA, UIV – UIV + 1, TK, and
amount of correction) (Figure 5).

Multivariable Proportional Hazards
Regression Model
To compare the feature selection results with the risk factors
of PJK obtained by a model widely used for clinical research,
a Cox proportional hazards regression model was also used.
There were no significant violations of the proportional hazards
assumption assessed by Schoenfeld residuals against time for
all six statistically significant variables at univariable analysis.
Multivariable Cox model based on aforementioned parameters
demonstrated that male gender and larger preoperative T1S were
the independent risk factors [odds ratio (OR) = 10.701 and
57.074, respectively] in Table 3. Gender was at the first place on
the importance ranking in RF model, which accounted for 22.9%,
compared with 1.2% of preoperative T1S.

DISCUSSION

The aim of our study was to develop prognostic models in
Lenke 5 AIS patients undergoing long posterior instrumentation
and fusion surgery and simultaneously explore the predictive
value of clinical factors for PJK. We concluded that random
forest that trained with SMOTE exhibited better performance
in PJK prediction compared with other models. Specifically, in
independent test set, the model provided better prognostic ability
(AUC = 0.944, accuracy = 0.909, F1 score = 0.667) compared with
other rival models, suggesting the reproducibility and reliability
of the proposed model. In addition, a multivariable Cox model
revealed that male gender and larger preoperative T1S were the
independent prognostic factors for PJK (OR of male gender,
10.701 and OR of preoperative T1S, 57.074), and gender also
ranked the first place with the prognostic importance of 22.9%
in our prediction model.

For AIS patients, PJK was a complication after corrective
surgery with unknown causation, and 22.7% of the patients in
our study developed PJK (Hollenbeck et al., 2008; Zhao et al.,
2018). The occurrence of PJK is multifactorial, including clinical,
surgical, and radiographic factors. Linear regressions, such as
binary logistic regression, may be simple and transparent for
data analysis, however, they are not able to meet the needs
of distinguishing high-dimensional and linear inseparable input
data. Conversely, the power and potential of machine learning are
increasingly recognized in the field of scoliosis correction (Group
et al., 2015). In our study, we established four classes of models
for PJK prediction. Models trained with oversampling methods

TABLE 3 | Cox proportional hazards regression model (forward Wald method) for risk factors of PJK.

Variable B SE Wald df Sig. Exp(B) 95%CI for Exp(B)

Lower Upper

Male gender 2.370 0.719 8.804 1 0.002 10.701 2.062 34.510

Preoperative T1S 4.044 0.753 9.909 1 0.022 57.074 2.446 46.813

T1S, T1 slope.
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showed relatively higher discrimination ability than that without
using oversampling, suggesting rebalancing the class distribution
for an imbalanced dataset was favorable to the construction of
classifiers. In fact, SMOTE oversamples minority class by creating
“synthetic” examples to build larger decision regions that contain
nearby minority class points, rather than by oversampling with
replacement, which actually diminishes and specifies the decision
region for the minority class (Chawla et al., 2002; Ji et al.,
2016). Our results also showed that random forest using SMOTE
would be a useful approach that could effectively evaluate
the risk of PJK postoperatively for patients with scoliosis in
real time. In addition, the models may facilitate individualized
surveillance policy. Specifically, low-risk patients may receive a
less intensive surveillance regimen, even within the first year
after surgery.

We carefully considered the potential risk factors for PJK.
Several disputable factors were controlled in our study, including
age, gender, TK, postoperative PJA, and UIV location. For
example, UIV located in the lower thoracic region is a risk factor
for PJK in Zhao et al. (2018), however, Zhao et al. recruited
more PJK patients corrected by selected fusion with UIV stopping
at lower thoracic levels, whereas, UIV always tended to stop
at the upper thoracic regions (upper/lower: 36/8) in our study,
which decreased the risk of PJK. In addition, we also included
cervical alignment parameters in the analysis. T1S and male
gender were independent risk factors in the multivariable Cox
model when adjusting for other clinical prognostic factors. In
fact, researchers have found that if middle or upper thoracic
segments were fused, the postoperative compensation of cervical
curvature would occur during the follow-up period (Sebaaly
et al., 2018; Alzakri et al., 2019; Buell et al., 2019). We
inferred that the proximal kyphosis might aggravate in PJK
group to balance the cervical curvature for maintaining the
global balance. Controversy exists on whether gender has an
effect on the incidence of PJK or not. In accordance with
Kim et al. (2007), which retrospectively assessed 410 patients
and demonstrated that male gender had higher prevalence
than female gender, our findings also suggested that male
gender correlated significantly with PJK, although the underlying
reasons were unclear.

Even though there were no differences in other sagittal
spinopelvic parameters in Cox regression analysis, their
importance in compensating for the misalignment of the spine in
the long-term follow-up could not be ignored. In fact, the random
forest model demonstrated that the top 10 prognostic indicators
were gender, four preoperative features (UIV – UIV + 1, CAMSC,
SVA, T1SPI), and five modifiable surgical parameters (SVA, PJA,
UIV – UIV + 1, TK, amount of correction). Accordingly, the
common points and differences between the results of the Cox
model and the feature ranking extracted by the random forest
model certified the significance of combined use of machine
learning and statistical analysis. Five modifiable parameters of
the prediction model may further supply a detailed assistant
decision-making for preoperative surgical plan. We believe
that our prediction models would affect operational design
by individualizing management according to the risk profiles
for PJK occurrence.

Our study had limitations. First, we developed our model
for the Lenke 5 AIS patients, the most common Lenke type
(Yang, 2003). However, further validation studies are warranted
for other scoliosis types. Second, it was a retrospective analysis
that suffers from inherent biases, although an independent
data set was conducted to improve the reliability. Third, the
sample size of this study was relatively small; our results
require further validation with other institutions to check for the
generalizability.

CONCLUSION

In conclusion, the random forest using SMOTE model has great
value for predicting the individual risk of developing PJK after
long instrumentation and fusion surgery in Lenke 5 AIS patients.
The model may facilitate clinical decision making in the era of
precision medicine for spinal orthopedics. The combination of
the results of a Cox model and the feature ranking extracted by
machine learning is a promising approach to identify prognostic
factors and has great significance in the medical field. Further
studies are required to explore the generalized utility of our model
and translate the results into clinical practice.

DATA AVAILABILITY STATEMENT

The datasets presented in this article are not readily available
because, the datasets generated during and/or analyzed during
the current study are available from the corresponding author
on reasonable request. Requests to access the datasets should be
directed to LP, pengli_bonne@163.com.

AUTHOR CONTRIBUTIONS

LP, XZ, and GZ conceived and launched this study. XiaoY and
YG designed the medical and statistical analysis. YS, PX, BH,
and XiY collected cases and clinical diagnosis. LP and RY took
the angle measurements in X-rays. LP and LL analyzed the data,
carried out statistical experiments, and wrote the first draft of this
manuscript. LL and XZ revised and edited the final version. All
authors reviewed and approved the manuscript.

FUNDING

This work was supported by 1.3.5 project for disciplines of
excellence-Clinical Research Incubation Project, West China
Hospital, Sichuan University (Grant 2019HXFH022), 1.3.5
project for disciplines of excellence, West China Hospital,
Sichuan University (Grant ZYJC18010).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fbioe.
2020.559387/full#supplementary-material

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 8 October 2020 | Volume 8 | Article 559387149

mailto:pengli_bonne@163.com
https://www.frontiersin.org/articles/10.3389/fbioe.2020.559387/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fbioe.2020.559387/full#supplementary-material
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-559387 October 5, 2020 Time: 18:50 # 9

Peng et al. Predict PJK With Machine Learning

REFERENCES
Alzakri, A., Vergari, C., Van den Abbeele, M., Gille, O., Skalli, W., and Obeid,

I. (2019). Global sagittal alignment and proximal junctional kyphosis in
adolescent idiopathic scoliosis. Spine Deformity 7, 236–244. doi: 10.1016/j.jspd.
2018.06.014

Bridwell, K. H. (1997). Spinal Instrumentation in the management of adolescent
scoliosis. Clin. Orthop. Relat. Res. 335, 64–72. doi: 10.1097/00003086-
199702000-00007

Buell, T. J., Chen, C.-J., Quinn, J. C., Buchholz, A. L., Mazur, M. D., Mullin, J. P.,
et al. (2019). Alignment risk factors for proximal junctional kyphosis and the
effect of lower thoracic junctional tethers for adult spinal deformity. World
Neurosurg. 121, e96–e103. doi: 10.1016/j.wneu.2018.08.242

Chawla, N., Bowyer, K., O Hall, L., and Philip Kegelmeyer, W. (2002). SMOTE:
synthetic minority over-sampling technique. arXiv [Preprint]. doi: 10.1613/jair.
953

Ghailane, S., Pesenti, S., Peltier, E., Choufani, E., Blondel, B., and Jouve, J. L. (2017).
Posterior elements disruption with hybrid constructs in AIS patients: is there an
impact on proximal junctional kyphosis? Arch. Orthop. Trauma Surg. 137:631.
doi: 10.1007/s00402-017-2684-0

Glattes, R. C., Bridwell, K. H., Lenke, L. G., Kim, Y. J., and Rinella, A.
(2005). Proximal junctional kyphosis in adult spinal deformity following
long instrumented posterior spinal fusion: incidence, outcomes, and risk
factor analysis. Spine 30, 1643–1649. doi: 10.1097/01.brs.0000169451.
76359.49

Group, I. S. S., Scheer, J. K., Smith, J. S., Schwab, F. J., Lafage, V., Shaffrey, C. I.,
et al. (2015). Development of validated computer based preoperative predictive
model for proximal junction failure or clinically significant proximal junction
kyphosis with 86% accuracy based on 510 adult spinal deformity patients with
two-year follow-up. Spine J. 15, S137–S138.

He, H., and Garcia, E. A. (2009). Learning from imbalanced data. IEEE Trans.
Knowl. Data Eng. 21, 1263–1284. doi: 10.1109/TKDE.2008.239

Hollenbeck, S. M., Glattes, R. C., Asher, M. A., Lai, S. M., and Burton, D. C. (2008).
The prevalence of increased proximal junctional flexion following posterior
instrumentation and arthrodesis for adolescent idiopathic scoliosis. Spine 33,
1675–1681. doi: 10.1097/BRS.0b013e31817b5bea

Hostin, R., McCarthy, I., O’Brien, M., Bess, S., Line, B., Boachie-Adjei, O., et al.
(2013). Incidence, mode, and location of acute proximal junctional failures
after surgical treatment of adult spinal deformity. Spine 38, 1008–1015. doi:
10.1097/brs.0b013e318271319c

Humke, T., Grob, D., Scheier, H., and Siegrist, H. (1995). Cotrel-Dubousset and
Harrington Instrumentation in idiopathic scoliosis: a comparison of long-term
results. Eur. Spine J. 4, 280–283. doi: 10.1007/bf00301034

Ji, Z., Meng, G., Huang, D., Yue, X., and Wang, B. (2015). NMFBFS: a NMF-
based feature selection method in identifying pivotal clinical symptoms of
hepatocellular carcinoma. Comput. Math. Methods Med. 2015:846942. doi: 10.
1155/2015/846942

Ji, Z., Su, J., Wu, D., Peng, H., and Zhao, W. (2016). Predicting the impact
of combined therapies on myeloma cell growth using a hybrid multi-scale
agent-based model. Oncotarget 8, 7647–7665. doi: 10.18632/oncotarget.13831

Karhade, A. V., Ogink, P. T., Thio, Q., Broekman, M. L. D., Cha, T. D., Hershman,
S. H., et al. (2019). Machine learning for prediction of sustained opioid
prescription after anterior cervical discectomy and fusion. Spine J. 19, 976–983.
doi: 10.1016/j.spinee.2019.01.009

Kim, H. J., Bridwell, K. H., Lenke, L. G., Park, M. S., Ahmad, A., Song,
K. S., et al. (2013). Proximal junctional kyphosis results in inferior SRS pain
subscores in adult deformity patients. Spine 38, 896–901. doi: 10.1097/BRS.
0b013e3182815b42

Kim, H. J., Bridwell, K. H., Lenke, L. G., Park, M. S., Song, K. S., Piyaskulkaew,
C., et al. (2014). Patients with proximal junctional kyphosis requiring
revision surgery have higher postoperative lumbar lordosis and larger
sagittal balance corrections. Spine 39, E576–E580. doi: 10.1097/brs.0000000000
000246

Kim, Y. J., Bridwell, K. H., Lenke, L. G., Glattes, C. R., Rhim, S., and Cheh, G.
(2008). Proximal junctional kyphosis in adult spinal deformity after segmental
posterior spinal instrumentation and fusion: minimum five-year follow-up.
Spine 33, 2179–2184. doi: 10.1097/BRS.0b013e31817c0428

Kim, Y. J., Bridwell, K. H., Lenke, L. G., Kim, J., and Cho, S. K. (2005). Proximal
junctional kyphosis in adolescent idiopathic scoliosis following segmental
posterior spinal instrumentation and fusion: minimum 5-year follow-up. Spine
30, 2045–2050. doi: 10.1097/01.brs.0000179084.45839.ad

Kim, Y. J., Lenke, L. G., Bridwell, K. H., Kim, J., Cho, S. K., Cheh, G., et al.
(2007). Proximal junctional kyphosis in adolescent idiopathic scoliosis after
3 different types of posterior segmental spinal instrumentation and fusions:
incidence and risk factor analysis of 410 cases. Spine 32, 2731–2738. doi: 10.
1097/BRS.0b013e31815a7ead

Lan, L. (2017). Influencing factors of inpatient expenditure pattern for cancer in
China, 2015. Chinese J. Cancer Res. 29, 11–17. doi: 10.21147/j.issn.1000-9604.
2017.01.02

Lei, Y., Yuan, W., Wang, H., Wenhu, Y., and Bo, W. (2017). A skin segmentation
algorithm based on stacked autoencoders. IEEE Trans. Multimedia 19, 740–749.
doi: 10.1109/TMM.2016.2638204

Lei, Y., Yuan, W., Wang, H., You, W., and Bo, W. (2016). A skin segmentation
algorithm based on stacked autoencoders. IEEE Trans. Multimedia 99, 740–749.
doi: 10.1109/tmm.2016.2638204

Lonner, B. S., Ren, Y., Newton, P. O., Shah, S. A., Samdani, A. F., Shufflebarger,
H. L., et al. (2017). Risk factors of proximal junctional kyphosis in adolescent
idiopathic scoliosis—the pelvis and other considerations. Spine Deformity 5,
181–188. doi: 10.1016/j.jspd.2016.10.003

Mendoza-Lattes, S., Ries, Z., Gao, Y., and Weinstein, S. L. (2011). Proximal
junctional kyphosis in adult reconstructive spine surgery results from
incomplete restoration of the lumbar lordosis relative to the magnitude of the
thoracic kyphosis. Iowa Orthop. J. 31, 199–206.

Mimura, T., Takahashi, J., Ikegami, S., Kuraishi, S., Shimizu, M., Futatsugi, T.,
et al. (2017). Can surgery for adolescent idiopathic scoliosis of less than 50
degrees of main thoracic curve achieve good results?. J. Orthop. Sci. 23, 14–19.
doi: 10.1016/j.jos.2017.09.006

O’Shaughnessy, B. A., Bridwell, K. H., Lenke, L. G., Cho, W., Baldus, C., Chang,
M. S., et al. (2012). Does a long-fusion "T3-sacrum" portend a worse outcome
than a short-fusion "t10-sacrum" in primary surgery for adult scoliosis? Spine
37, 884–890. doi: 10.1097/brs.0b013e3182376414

Passias, P. G., Horn, S. R., Poorman, G. W., Daniels, A. H., Hamilton, D. K.,
Kim, H. J., et al. (2018). Clinical and radiographic presentation and treatment
of patients with cervical deformity secondary to thoracolumbar proximal
junctional kyphosis are distinct despite achieving similar outcomes: analysis of
123 prospective CD cases. J. Clin. Neurosci. 56, 121–126. doi: 10.1016/j.jocn.
2018.06.040

Peng, H., Zhao, W., Tan, H., Ji, Z., Li, J., Li, K., et al. (2016). Prediction of treatment
efficacy for prostate cancer using a mathematical model. Sci. Rep. 6:21599.
doi: 10.1038/srep21599

Scheer, J. K., Osorio, J. A., Smith, J. S., Schwab, F., Lafage, V., Hart, R. A.,
et al. (2016). Development of validated computer-based preoperative
predictive model for proximal junction failure (PJF) or clinically
significant PJK With 86% accuracy based on 510 ASD patients with
2-year follow-up. Spine 41, E1328–E1335. doi: 10.1097/brs.0000000000
001598

Sebaaly, A., Sylvestre, C., El Quehtani, Y., Riouallon, G., Larrieu, D.,
Boissiere, L., et al. (2018). Incidence and risk factors for proximal
junctional kyphosis: results of a multicentric study of adult scoliosis.
Clin. Spine Surg. 31, E178–E183. doi: 10.1097/bsd.0000000000
000630

Suk, S. L., Lee, C. K., Kim, W. J., Chung, Y. J., and Park, Y. B. (1995). Segmental
pedicle screw fixation in the treatment of thoracic idiopathic scoliosis. Spine 20,
1399–1405. doi: 10.1097/00007632-199520120-00012

Swami, A., and Jain, R. (2012). Scikit-learn: machine learning in python. J. Mach.
Learn. Res. 12, 2825–2830.

Watanabe, K., Lenke, L. G., Bridwell, K. H., Kim, Y. J., Koester, L., and Hensley, M.
(2010). Proximal junctional vertebral fracture in adults after spinal deformity
surgery using pedicle screw constructs: analysis of morphological features. Spine
35, 138–145. doi: 10.1097/BRS.0b013e3181c8f35d

Yagi, M., Akilah, K. B., and Boachie-Adjei, O. (2011). Incidence, risk factors
and classification of proximal junctional kyphosis: surgical outcomes review
of adult idiopathic scoliosis. Spine 36, E60–E68. doi: 10.1097/BRS.0b013e3181
eeaee2

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 9 October 2020 | Volume 8 | Article 559387150

https://doi.org/10.1016/j.jspd.2018.06.014
https://doi.org/10.1016/j.jspd.2018.06.014
https://doi.org/10.1097/00003086-199702000-00007
https://doi.org/10.1097/00003086-199702000-00007
https://doi.org/10.1016/j.wneu.2018.08.242
https://doi.org/10.1613/jair.953
https://doi.org/10.1613/jair.953
https://doi.org/10.1007/s00402-017-2684-0
https://doi.org/10.1097/01.brs.0000169451.76359.49
https://doi.org/10.1097/01.brs.0000169451.76359.49
https://doi.org/10.1109/TKDE.2008.239
https://doi.org/10.1097/BRS.0b013e31817b5bea
https://doi.org/10.1097/brs.0b013e318271319c
https://doi.org/10.1097/brs.0b013e318271319c
https://doi.org/10.1007/bf00301034
https://doi.org/10.1155/2015/846942
https://doi.org/10.1155/2015/846942
https://doi.org/10.18632/oncotarget.13831
https://doi.org/10.1016/j.spinee.2019.01.009
https://doi.org/10.1097/BRS.0b013e3182815b42
https://doi.org/10.1097/BRS.0b013e3182815b42
https://doi.org/10.1097/brs.0000000000000246
https://doi.org/10.1097/brs.0000000000000246
https://doi.org/10.1097/BRS.0b013e31817c0428
https://doi.org/10.1097/01.brs.0000179084.45839.ad
https://doi.org/10.1097/BRS.0b013e31815a7ead
https://doi.org/10.1097/BRS.0b013e31815a7ead
https://doi.org/10.21147/j.issn.1000-9604.2017.01.02
https://doi.org/10.21147/j.issn.1000-9604.2017.01.02
https://doi.org/10.1109/TMM.2016.2638204
https://doi.org/10.1109/tmm.2016.2638204
https://doi.org/10.1016/j.jspd.2016.10.003
https://doi.org/10.1016/j.jos.2017.09.006
https://doi.org/10.1097/brs.0b013e3182376414
https://doi.org/10.1016/j.jocn.2018.06.040
https://doi.org/10.1016/j.jocn.2018.06.040
https://doi.org/10.1038/srep21599
https://doi.org/10.1097/brs.0000000000001598
https://doi.org/10.1097/brs.0000000000001598
https://doi.org/10.1097/bsd.0000000000000630
https://doi.org/10.1097/bsd.0000000000000630
https://doi.org/10.1097/00007632-199520120-00012
https://doi.org/10.1097/BRS.0b013e3181c8f35d
https://doi.org/10.1097/BRS.0b013e3181eeaee2
https://doi.org/10.1097/BRS.0b013e3181eeaee2
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-559387 October 5, 2020 Time: 18:50 # 10

Peng et al. Predict PJK With Machine Learning

Yang, S. P. (2003). Proximal kyphosis after short posterior fusion for thoracolumbar
scoliosis. Clin. Orthop. Relat. Res. 411, 152–158. doi: 10.1097/01.blo.
0000069885.72909.bb

Zhao, J., Yang, M., Yang, Y., Chen, Z., and Li, M. (2018). Proximal junctional
kyphosis following correction surgery in the Lenke 5 adolescent idiopathic
scoliosis patient. J. Orthop. Sci. 23, 744–749. doi: 10.1016/j.jos.2018.05.010

Zhao, X., Lang, R., Zhang, Z., Zhao, W., Ji, Z., Tan, H., et al. (2019). Exploring and
validating the clinical risk factors for pancreatic cancer in chronic pancreatitis
patients using electronic medical records datasets: three cohorts comprising
2,960 patients. Transl. Cancer Res. 9, 629–638. doi: 10.21037/tcr. 2019.
11.49

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Peng, Lan, Xiu, Zhang, Hu, Yang, Song, Yang, Gu, Yang and Zhou.
This is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums
is permitted, provided the original author(s) and the copyright owner(s) are credited
and that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does not
comply with these terms.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 10 October 2020 | Volume 8 | Article 559387151

https://doi.org/10.1097/01.blo.0000069885.72909.bb
https://doi.org/10.1097/01.blo.0000069885.72909.bb
https://doi.org/10.1016/j.jos.2018.05.010
https://doi.org/10.21037/tcr.2019.11.49
https://doi.org/10.21037/tcr.2019.11.49
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-607126 November 18, 2020 Time: 19:40 # 1

ORIGINAL RESEARCH
published: 24 November 2020

doi: 10.3389/fbioe.2020.607126

Edited by:
Bing Wang,

Anhui University of Technology, China

Reviewed by:
Quan Zou,

University of Electronic Science
and Technology of China, China

Lei Wang,
Xiangtan University, China

*Correspondence:
Wen Zhu

syzhuwen@163.com

Specialty section:
This article was submitted to

Preclinical Cell and Gene Therapy,
a section of the journal

Frontiers in Bioengineering and
Biotechnology

Received: 16 September 2020
Accepted: 26 October 2020

Published: 24 November 2020

Citation:
Liang X, Zhu W, Liao B, Wang B,

Yang J, Mo X and Li R (2020) A
Machine Learning Approach

for Tracing Tumor Original Sites With
Gene Expression Profiles.

Front. Bioeng. Biotechnol. 8:607126.
doi: 10.3389/fbioe.2020.607126

A Machine Learning Approach for
Tracing Tumor Original Sites With
Gene Expression Profiles
Xin Liang1,2,3, Wen Zhu1,2,3* , Bo Liao1,2,3, Bo Wang4,5, Jialiang Yang4,5, Xiaofei Mo4,5 and
Ruixi Li1,2,3

1 Key Laboratory of Computational Science and Application of Hainan Province, Haikou, China, 2 Key Laboratory of Data
Science and Intelligence Education, Ministry of Education, Hainan Normal University, Haikou, China, 3 School of Mathematics
and Statistics, Hainan Normal University, Haikou, China, 4 Qingdao Geneis Institute of Big Data Mining and Precision
Medicine, Qingdao, China, 5 Geneis (Beijing) Co., Ltd., Beijing, China

Some carcinomas show that one or more metastatic sites appear with unknown origins.
The identification of primary or metastatic tumor tissues is crucial for physicians to
develop precise treatment plans for patients. With unknown primary origin sites, it is
challenging to design specific plans for patients. Usually, those patients receive broad-
spectrum chemotherapy, while still having poor prognosis though. Machine learning has
been widely used and already achieved significant advantages in clinical practices. In this
study, we classify and predict a large number of tumor samples with uncertain origins by
applying the random forest and Naive Bayesian algorithms. We use the precision, recall,
and other measurements to evaluate the performance of our approach. The results
have showed that the prediction accuracy of this method was 90.4 for 7,713 samples.
The accuracy was 80% for 20 metastatic tumors samples. In addition, the 10-fold
cross-validation is used to evaluate the accuracy of classification, which reaches 91%.

Keywords: the ability of tissue tracing, random forest, naive Bayes, machine learning, uncertain origins

INTRODUCTION

Tumors can develop in any part of body, and some tumors even can metastasize to other parts of
the body from their primary sites after developing at a certain point. In general, the occurrence
of tumors at primary sites and their metastatic sites could be found deferentially, and the primary
origins of metastatic cancers can be identified within a short amount of time by clinical assessments
(Chen and Chen, 2001). Histological and imaging techniques are mostly employed to identify the
origin of metastatic tumors. However, in some cancer patients, physicians cannot find the primary
origin of tumors even after comprehensive examinations and assessment studies of patients with
standard methods. These tumors are called carcinomas with unknown primary (CUP). According
to statistical data, there are approximately 150,000 new cases of CUPs annually in the United States
and Europe, and the numbers are still increasing though. Currently, approximately one third of
cancer patients would develop metastasis after initial diagnosis and/or post-operation treatment.
In many of those patients, it is relatively difficult for physicians to identify the primary origins
of the metastatic cancers (Oien, 2009; Pavlidis and Pentheroudakis, 2012). To our knowledge,
2–4% of CUPs (Susman et al., 2012) account for all metastatic cancer. Even through autopsy, the
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primary origin of CUPs is uncertain (Myung et al., 2001;
Petrushev et al., 2011). Because of limited treatment plan for
CUP patients, the treatment efficacy is often unpredictable, and
those patients usually have poor prognosis (Sun and Zhang,
2006; Gupta et al., 2007; Carmeliet and Jain, 2011; Petrakis et al.,
2013). The immunohistochemistry assay is usually considered to
be a diagnostic method for CUP patients. However, it is time-
consuming and subjective. Moreover, the diagnostic accuracy
is around by 30% for CUP patients, which is not reliable to
design a personalized treatment plan for CUP patients. Currently,
most CUP patients received radiological therapy (Stoyianni
et al., 2011) or broad-spectrum chemotherapy. However, these
treatments are not effective and with intolerable complications,
and the prognosis is relatively poor as well. Therefore, it
is urgent to develop effective clinical intervention for CUP
patients (Guntinas-Lichius et al., 2006; Pavlidis and Fizazi, 2009;
Hainsworth and Greco, 2014). Nowadays, identifying the primary
origin of malignant tumors is critical for designing a treatment
plan in clinical practices.

The targeted therapy (Tsao et al., 2005; Hudis, 2007; Miller
et al., 2007; Varadhachary et al., 2008; Anderson and Weiss, 2010;
Boscolo-Rizzo et al., 2015) can be used for tumors after accurately
identifying the primary origin, which could greatly improve the
survivals. It has been proven in the Minnie Pearl Cancer Research
Network Study (Pavlidis and Pentheroudakis, 2010; Molina et al.,
2012). Immunohistochemically, the marker has also been an
important instrument for identifying the primary origin of
cancerous tissues (Monzon et al., 2009; MacReady, 2010; Massard
et al., 2011; Hashimoto et al., 2012; Oien and Dennis, 2012;
Kim et al., 2013; Tang et al., 2018). Furthermore, a diagnostic
method has been proposed to predict the primary origin of
malignant cancers by comparing the gene expression profiles
from the primary origin and the metastasis tissue (Hoadley
et al., 2014). Many researchers have systematically compared the
characteristics of gene expression profile across different cancers
(Joyce and Pollard, 2009). Therefore, it is feasible to compare
the differential gene expression to predict the primary origin of
malignant cancer. There are two commercial products approved
by FDA, which are Tissue of Origin (TOO) and CancerTYPE
ID. Both of them are developed on the basis of differential gene
expressions to predict primary origins.

TOO is a product of array-based gene expression profiles.
TOO can identify 2,000 genes and 15 types of tumors,
including thyroid cancer, breast cancer, non-small cell lung
cancer, pancreatic cancer, gastric cancer, colorectal cancer,
liver cancer, bladder cancer, kidney cancer, non-Hodgkin’s
lymphoma, melanoma, ovarian cancer, sarcoma, testicular germ
cell tumor, and prostate cancer. The advantage of this product
is that it prevents the subjective bias. It can objectively
identify the primary origin of cancers no matter which is
well-differentiated or not. However, TOO is time-consuming,
which is not feasible for clinical practices (Brugarolas, 2007;
Economopoulou et al., 2015).

CancerTYPE ID is a product that uses cancer samples based
on RT-PCR data. In the study (Marquard et al., 2015), 578
labeled samples covering 39 tumor types were included in
datasets for tracing origins. The results showed that there was

no significant difference in the accuracy of predictions of cancer
with primary or metastatic tumors. Secondly, RT-PCR was used
to evaluate the 92-gene (Ma et al., 2005) expression of cancer
cells from patients and then compared with labeled 50 tumors
from databases to predict the primary origin of metastatic tumors
and their subtypes (Pappa et al., 2006). CancerTYPE ID has
been able to compare gene expression profiles from tumor
samples to reference database with more than 2,000 labeled
tumors, therefore identifying the most accurate results. However,
CancerTYPE ID does not have the relatively good accuracy for
pancreatic cancer, colorectal cancer, and gastroesophageal cancer.

Though the above two products have good performance for
some types of cancers, two products are costly with up to $3000–
$4000 (Pillai et al., 2011; Oien and Dennis, 2012; Economopoulou
et al., 2015), and the accuracy is limited to other types of cancer
as well. In order to facilitate the low-cost and high-efficiency
product, our study aimed to use RNA-seq data, which are
extracted from TCGA database, combining with random forest
and naïve Bayes algorithms to develop a computational model.

RESULTS

Firstly, data were downloaded from TCGA and GEO. Secondly,
after data preprocessing for raw data, genes were selected by the
random forest algorithm with 10-fold cross-validation. Finally,
the naive Bayes classifier was used to classify the 20 kinds of
tumors, and the output of the model was shown as the evaluation
index. The detailed step is shown in Figure 1.

Data Preparation
A total of 7,715 RNA-seq samples that covered 21 cancers
and excluded metastatic cancers were extracted from TCGA.
In the process of data preparation, we eliminated two samples
due to the lack of clinical data. Therefore, the remaining
7,713 samples were used as either the training dataset or
the validation dataset for the classification. Furthermore, the
expression spectrum matrix of 7,633 samples was constructed.
Each sample contained 20,501 genes. In this paper, 372 samples
from metastatic cancers were selected as the test dataset, of which
352 samples belong to Skin Cutaneous Melanoma (SKCM).
The ratio of SKCM was much higher than other types of
metastatic cancers, and we excluded SKCM data from our
selected data in order to reduce the possible effects on the
results. The detailed information of selected data is shown
in Table 1.

For the independent validation dataset, 48 samples are
obtained from GEO and processed according to the description
in section “Materials and Methods” and then used for the trained
naive Bayesian model to make the prediction. The detailed
information of selected data is shown in Table 2.

Gene Selection by Random Forests
Under the common condition, we use relatively low-cost panels
but also include sufficient genes to determine the level of specific
gene expression. However, the coverage of gene numbers would
be significantly affected by the cost of panel. In order to reduce
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FIGURE 1 | Flow chart of the article.

the cost of panels as well as improve the accuracy of tracing
ability. Random forest algorithm was employed widely in the
bioinformatics researches (Lv et al., 2019, 2020; Ru et al., 2019).

TABLE 1 | Detailed information of data covering 21 cancers
downloaded from TGCA.

Cancer Total
samples

Samples
from

women

Samples
from men

Percentage
(%)

Note

BLCA 301 80 221 3.9

BRCA 1,056 1,044 11 13.7 1 person has no
clinical information

CESC 258 258 0 3.3

COAD 451 215 236 5.8

GBM 153 53 100 2.0

HNSC 480 128 352 6.2

KIRC 526 184 342 6.8

KIRP 222 63 159 2.9

LAML 173 80 93 2.2

LGG 439 192 247 5.7

LIHC 294 99 195 3.8

LUAD 486 262 224 6.3

LUSC 428 109 319 5.5

OV 261 261 0 3.4

PAAD 142 64 78 1.8

PRAD 379 0 379 4.9

READ 153 70 82 2.0 1 person has no
clinical information

SKCM 80 34 46 1.0

STAD 415 147 268 5.4

THCA 500 367 133 6.5

UCEC 516 516 0 6.7

Total 7,713 4,226 3,485 99.8

TABLE 2 | Detailed information of data covering five cancers
downloaded from GEO.

Cancer Total samples Percentage (%)

LIHC 9 18.75

UCEC 6 12.5

THCA 8 16.67

BLCA 11 22.92

PAAD 14 29.17

Total 48 99.98

In this study, the random forest algorithm was applied to
select the features of the primary origin tumor samples, and a
matrix of M∗N was formed, with M representing the number
of samples and N representing the numbers of genes, and
all samples were labeled with the type of each cancer. The
expression profile was divided into 20 types of cancer, and
the combination of five genes could be used to classify this
problem (Ashburner et al., 2000). The Gini average impurity
method of random forest was used as the standard to evaluate
the importance of genes. The importance score of genes was
obtained, and the genes were sequenced according to the score.
We conducted many experiments, and the precision was the
highest when 2,300 genes were obtained. The experimental
results are shown in Figure 2. Our method takes five steps and
increases N up to 2,300.

Based on the above analysis, genes with high scores were
selected as the features, and 2,300 genes were extracted from each
sample. Because some genes were not in the GEO database, we
deleted these genes and got 2,284 genes. A 7,633∗2,284 matrix was
constructed as the input matrix for cancer classification.

Classification Based on Naive Bayes
Since Naive Bayes is relatively consistent for classification, this
study used Naive Bayes as a classifier for genomic combination.
In this study, we chose 75% of the dataset for training, and
the remaining 25% was chosen for validation by using our
model. The algorithm used gene expression as the feature for
training and predicting the labeled cancer. After the training,
the model achieved the accuracy of 91% in predicting the
origin of the cancer. In order to validate the accuracy of
classification of model for metastatic tumors, 20 metastatic
tumors with known primary origin sites were applied to the
model. 7,633∗2,284 was used as the input matrix for classification
and applied to the naive Bayesian classification model to obtain
the specific prediction results of specific cancer types with a
prediction accuracy of 80% for metastatic cancer types, as shown
in Figure 3.

In addition, ClueGO was used to identify gene ontology and
enrichment analysis for selected genes. Due to the large number
of 2,284 genes, we selected the top 100 genes with the highest
score for analysis. The statistical significance level is set as the
p-value of 0.001. The results of enrichment analysis are shown
in Figure 4.

The enrichment results in Figure 4 show that the genes
are significantly enriched in cellular metabolism, especially

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 3 November 2020 | Volume 8 | Article 607126154

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-607126 November 18, 2020 Time: 19:40 # 4

Liang et al. Tracing Tumor Original Sites

FIGURE 2 | The accuracy with the different of number genes. With a 10-fold cross-validation accuracy, the value of the accuracy is increasing up to 1,700 genes,
after which it keeps stable with the value of 91.07%.

FIGURE 3 | The confusion matrix of 2,284 genes in the classifier, in which red represented the result of inconsistency between primary and predicted cancer types.
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FIGURE 4 | Gene enriched in biological process, cellular component, and molecular function were drawn for first 100-gene set by ClueGO.

lipid metabolism. In addition, some genes are enriched in
acetyl-CoA cycle, alcohol dehydrogenase NAD activity, etc.
Almost all genes are enriched in lipid metabolism, which
provides cellular energy for all cellular activity. Moreover, genes
are also enriched through peroxisome proliferator-activated
receptor (PPAR) signaling pathway. PPARs are nuclear hormone
receptors activated by fatty acids and their derivatives and
belong to ligand-activated receptors in the nuclear hormone
receptor family. The PPAR signaling pathway plays a role in
clearance of circulating lipid and promotes lipid oxidation
and cell proliferation. The PPAR transcriptional activity
can be regulated by non-gene crosstalks with phosphatases
and kinases, including ERK1/2, p38-MAPK, PKC, and
AMPK. The upregulated PPAR signaling pathway would
lead to dysfunctional metabolic homeostasis and inflammatory
response, ROS accumulation, as well as carcinogenesis across
almost every tumor.

In order to further differentiate those 100 genes, the following
heat map was drawn to further reveal the gene expression level in
each cancer type.

The analysis shown in Figure 5 reveals that there are
expression differences of the first 100 genes in different cancers.
Each small block represents a gene, and the color represents
the size of gene expression. The higher level of the expression
is represented with the darker color (red indicates upregulated
and green indicates downregulated). The bottom horizontal line
represents a different gene, while the vertical line on the right
represents a different cancer.

Independent Verification
For independent tests, the model with the previous training
parameters was tested on the dataset in GEO, and the probability
of each sample being accurately assigned to each category was

given, with an overall accuracy of 75%. The specific results are
shown in Figure 6.

Performance Assessment
For the evaluation of classification performance, this study used
the 10-fold cross-validation for the algorithm with the feature in
each gene set. To be specific, the samples were randomly divided
into 10 subsets; 1 of 10 subsets was selected as the test set at one
time, and the other 9 was merging to 1 training set. The accuracy
of cross-validation is 90%, which indicated that the algorithm
achieved a good performance. The precision, recalls, and f1 scores
were used to evaluate the significance of the model as well. The
detailed results are shown in Figure 7.

The comparison among results of the k-nearest neighbor
(k = 5), decision tree, and Naive Bayesian to classify 20 cancers
is shown in Figure 8.

MATERIALS AND METHODS

Data Preparation
The TCGA RNA-seq and array data were downloaded from
the ICGC Data Portal1. Each sample and each gene from each
cancer type table were extracted to generate a matrix of M∗N,
where M is the number of samples, N is the number of genes,
and all the samples were labeled by cancer types. All primary
tumors were divided into training sets and metastatic tumors
were divided into test sets.

For the independent set, 48 samples from 5 known cancer
origin sites were downloaded from Gene Expression Omnibus
(GEO). These tumors belong to GSE10907, GSE11222,

1 https://dcc.icgc.org/releases/release_26/

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 5 November 2020 | Volume 8 | Article 607126156

https://dcc.icgc.org/releases/release_26/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-607126 November 18, 2020 Time: 19:40 # 6

Liang et al. Tracing Tumor Original Sites

FIGURE 5 | A heat map of the first 100 genes was screened by the random forest algorithm. Where, row is cancer type, column is gene. In this part, RPKM is used
to define the gene expression level, and the average value of samples in each cancer type is calculated as the gene expression difference.

FIGURE 6 | The result of independent verification. Blue represents the primary tumor, orange represents the accuracy of the prediction, light red represents the
predicted tumor type, and dark red represents the number of predicted tumor types.

GSE5608, GSE8352, GSE4895, GSE8912, GSE7966, and
GSE12281. In addition, these 5 cancers belong to the 20 cancer
types in this paper.

Gene Selection
In order to reduce the cost of gene number determined by gene
panel, in this study, random forest algorithm was applied to select
genes. The Gini average impurity in random forest was used as
the criterion to estimate the importance of genes. The random

forest is composed of several decision trees, which are binary
decision trees. Each node in the decision tree is a condition on
a single gene. As a result, we can achieve the goal by splitting
the dataset into two datasets; therefore, a similar expression level
can be classified in the same dataset. For random forest, the
average reduction of each feature impurity can be calculated. In
addition, the importance score of genes can be calculated and
sorted according to the score. GI stands for Gini, S stands for
importance score, G = {g1,g2,.,gn} stands for feature, and C stands
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FIGURE 7 | The figure represented the recalls and precision after 10-fold cross-validation.

FIGURE 8 | In this figure, the first was the result of k-nearest neighbor (k = 5) algorithm, and its prediction accuracy was only 88%; the second was the result of
decision tree algorithm, and the classification accuracy was only 88%; the third is the result of naive Bayesian algorithm, and the classification accuracy was reaching
to 90%.

for cancer type. That is, to calculate the Gini score Sj for each
feature gj, the calculation formula of Gini index is as follows:

GIm = 1−
|C|∑
c=1

P2
mk

where c represents C categories, and Pmk represents the
proportion of category k in node m.

The importance of feature gj in node m, that is, the variation
of Gini impurities before and after node m branch, is calculated
as follows:

Sjm = GIm − GIl − GIr

where GIl and GIr, respectively, represent the Gini index of
the two new nodes after branching, and Sjm represents the
importance of feature gj in node m.
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If the node m with characteristic gj that appears in decision
tree i belongs to M, the importance of gj in the ith tree is
calculated as follows:

Sij =
∑

m∈M

Sjm

Assuming the random forest has t trees, the importance score
formula of forest is:

S
∗

j =

t∑
i=1

∑
m∈M

Sjm

The importance score is obtained by normalizing all the
importance scores obtained:

Sj =
S
∗

j∑n
i=1 Si

The top N genes with high scores were selected until the stopping
criterion was met. Finally, the selected genes in all samples
participated in the next classification.

Enrichment
Using the gene ontology (Bindea et al., 2009; Gene Ontology
Consortium, 2019) as the database of enrichment analysis and
annotating the function of specific gene sets to analyze their
biological significance, ClueGO (Zhao et al., 2014) is used
for visualization.

Classification
In this paper, naive Bayes was used as the classifier of gene
combination. Naive Bayes is one of the classical machine learning
algorithms. It is a classification algorithm based on Bayes
theorem. Its principle is simple and easy to implement. The core
idea of naive Bayesian algorithm is to assume that each feature
is independent. For a given type of data to be judged, classify
and predict according to the training dataset, and calculate the
probability that the current type of data to be judged belongs
to a certain category through Bayesian theorem. The maximum
probability relationship obtained is that the algorithm judges the
category of these data. Naive Bayesian algorithm can be divided
into three parts:

First, determine the feature attributes; that is to say, the
expression profiles of 2,284 genes corresponding to each sample
were extracted. Then, it was assumed that all the features
conformed to the Gauss distribution. The samples in the dataset
were labeled as cancer type. G represents the characteristics and C
represents the type of cancer, which can be calculated as the prior
probability P(C). Ck represents the kth category, gi represents the
ith feature, and then calculate conditional probability by prior
probability. The formula is as follows:

P(G|Ck) = P(G1 = g1, G2 = g2, · · · , Gn = gn|Ck)

The conditional probability of all the kth classes is calculated
by the Bayesian formula:

P(Ck|G) =
P(G|Ck)P(Ck)

P(G)
= P(Ck)

n∏
i=1

P(gi|Ck)

Since all the features conform to the Gaussian distribution
and are independent of each other, the formula for conditional
probability becomes as follows:

P(G|Ck) =

n∏
i=1

P(gi|Ck) =

n∏
i=1

P(gi|µi,Ck , σi,Ck)

=
1

σi,Ck

√
2π

exp

{
−

(gi − µi,Ck)
2

2σ2
i,Ck

}

where gi is the ith feature, and µi,ck and σi,ck are the mean and
variance of the ith feature in the K class Ck, respectively.

The conditional probability formulas for all the Kth class are
calculated as follows:

P(Ck|G) =
P(G|Ck)P(Ck)∑
k P(G|Ck)P(Ck)

∝ P(G|Ck)P(Ck)

Finally, obtain the relationship between the maximum
probability data to be classified and the category, P(Ck| G), that
is:

y = argmaxCk
P(G|Ck)P(Ck)

It is meaningful to indicate that we could get the most probable
type of cancer under certain gene expressions.

DISCUSSION

In Figure 3, 20 known primary tumors were predicted, while
4 of them were misjudged, which may be related to the naive
Bayesian algorithm. Naive Bayes is one of the few algorithms
based on probability theory, which is a very simple and
convenient algorithm. However, the premise of this algorithm
is to assume that each feature is independent of others, which
is not in line with the reality. Therefore, it may produce
errors in the classification results, leading to the decline of
the prediction accuracy. In addition, in Figure 3, COAD was
mislabeled as READ. It was possibly because the anatomical
proximity is relatively close and may share differential gene
expression. During the normal digestive process, the function
of colon and rectum is not significantly different, while colon
may contribute to maintaining the gut microenvironment. The
epithelial cells that are usually changed in colon adenocarcinoma
and rectum adenocarcinoma are not well-distinguished. It may
possibly increase both the subjective and objective bias of our
model. One case of CESC was misdiagnosed as UCES. Those
two female malignant tumors are more commonly regulated
by the female hormone, which share similar risk factors.
The anatomical proximity is close as well. The above cases
indicated that anatomical proximity may share oncogenic genes
to drive genetic mutation, such as both cancers contain KRAS
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mutations (Gene Ontology Consortium, 2019), or it is difficult to
differentiate epithelial or adrenal cell changes before oncogenesis.
It is critical to point out that some biological factors might
bring some effect for model performance. It is necessary to be
considered as the model construction. In addition, there are
only 20 cases of known primary tumor data used to predict the
classification. The data size is relatively small, so we cannot get a
certain conclusion. We need to further expand the database for
classification and prediction.

In Figure 4, the first 100 genes with the highest score are
selected by the random forest algorithm. Some genes obtained by
this method may have high correlation; that is to say, these genes
will provide the same information for the classifier. In addition,
although we used the 10-fold cross-validation to investigate the
performance of the model, in the independent validation, the
accuracy of this model is only 75%. The predictive error to PAAD
is large, and the independent validation dataset is small.

CONCLUSION

In this study, the random forest and naive Bayesian algorithms
were employed to trace the origin of CUP sites. Through a
large number of experiments, we found that 2,284 genes with
the highest score achieved the best performance. Performance
evaluation shows that this method can achieve good classification
and prediction results. In addition, ClueGO enrichment analysis
was used for the top 100 genes with the highest scores. The
results showed that some genes were enriched in PPAR signaling
pathway. Upregulation of PPAR signaling pathway has been
proven to lead to metabolic homeostasis disorder, inflammation,
ROS accumulation, and carcinogenesis. In summary, the

proposed approach can reduce the cost and has high efficiency,
and thus it is promising for clinical practices.
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Automatic extraction of liver and tumor from CT volumes is a challenging task due to their

heterogeneous and diffusive shapes. Recently, 2D deep convolutional neural networks

have become popular in medical image segmentation tasks because of the utilization of

large labeled datasets to learn hierarchical features. However, few studies investigate 3D

networks for liver tumor segmentation. In this paper, we propose a 3D hybrid residual

attention-aware segmentation method, i.e., RA-UNet, to precisely extract the liver region

and segment tumors from the liver. The proposed network has a basic architecture

as U-Net which extracts contextual information combining low-level feature maps with

high-level ones. Attention residual modules are integrated so that the attention-aware

features change adaptively. This is the first work that an attention residual mechanism

is used to segment tumors from 3D medical volumetric images. We evaluated our

framework on the public MICCAI 2017 Liver Tumor Segmentation dataset and tested

the generalization on the 3DIRCADb dataset. The experiments show that our architecture

obtains competitive results.

Keywords: medical image segmentation, tumor segmentation, u-net, residual learning, attention mechanism

1. INTRODUCTION

Liver tumors, or hepatic tumors, are great threats to human health. The malignant tumor, also
known as the liver cancer, is one of the most frequent internal malignancies worldwide (6%), and
is also one of the leading death causes from cancer (9%) (WHO, 2014a,b). Even the benign (non-
cancerous) tumors may grow large enough to cause health problems. Computed tomography (CT)
is used to assist the diagnosis of liver tumors (Christ et al., 2017a). The extraction of liver and
tumors from CT is a critical task before surgical intervention in choosing an optimal approach
for treatment. Accurate segmentation of liver and tumor from medical images provides their
precise locations in the human body. Then therapies evaluated by the specialists can be provided to
treat individual patients (Rajagopal and Subbaiah, 2015). However, due to the heterogeneous and
diffusive shapes of liver and tumor, segmenting them from CT images is challenging. Numerous
efforts have been taken to tackle the segmentation task on liver/tumors. Figure 1 shows some
typical liver and tumor CT scans.

In general, liver and tumor extraction approaches can be classified into three categories:
manual segmentation, semi-automated segmentation, and automated segmentation. Manual
segmentation is a subjective, poorly reproducible, and time-consuming approach. It heavily
depends upon human recognizable features, and requires people with high-level technical skills.
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FIGURE 1 | Examples of typical 2D CT scans and the corresponding ground truth of liver/tumor extractions where red arrows indicate the tumor/lesion regions. The

typical scans are from the MICCAI 2017 Liver Tumor Segmentation (LiTS) dataset.

These factors make it impractical for real applications (Li et al.,
2015). Semi-automated segmentation requires initial human
intervention, which may cause bias and mistakes. In order
to accelerate and facilitate diagnosis, therapy planning, and
monitoring, and finally help surgeons remove tumors, it is
necessary to develop an automated and precise method to
segment tumors from CT images. However, the large scale spatial
and structural variability, low contrast between liver and tumor
regions, existence of noise, partial volume effects, complexity
of 3D-spatial tumor features, or even the similarity between
nearby organs make the automation of segmentation quite a
difficult task (Li et al., 2015). Recently, convolutional neural
networks (CNN) have been applied to many volumetric image
segmentations. A number of CNNmodels including both 2D and
3D networks have been developed. However, the 3D networks
are usually not as efficient and flexible as the corresponding 2D
networks. For instance, 2D and 3D fully convolutional networks
(FCNs) have been proposed for semantic segmentation (Long
et al., 2015). Yet due to the high computational cost and the low
efficiency of 3D convolutions, the depth of the 3D FCNs is limited
compared to that of 2D FCNs, which makes it impractical for 2D
networks to be extended to 3D networks.

To address these issues and inspired by the residual
networks (He et al., 2016) and the attention residual
learning (Wang et al., 2017), we propose a hybrid residual
attention-aware liver and tumor extraction neural network
named RA-UNet1, which is designed to effectively extract
3D volumetric contextual features of liver and tumor from
CT images in an end-to-end manner. The proposed network
integrates a residual U-Net architecture and an attention
residual learning mechanism which enables the optimization and
performance improvement on deep networks. The contributions
of our works are listed as follows: Firstly, the attention
mechanism can have the capability of focusing on specific parts
of the image. Different types of attention are possible through
stacking attention modules so that the attention-aware features
can change adaptively. Secondly, we use the 3D U-Net as the
basic architecture to capture multi-scale attention information
and to integrate low-level features with high-level ones. Besides,
RA-UNet, which directly segments the liver and tumor from 3D

1https://github.com/RanSuLab/RAUNet-tumor-segmentation.git

medical volumes, enlarges the U-Net family in 3Dmedical image
analysis. What’s more, our model does not depend on any pre-
trained model or commonly used post processing techniques,
such as 3D conditional random fields. The generalization of
the proposed approach is demonstrated through testing on the
3DIRCADb dataset (Soler et al., 2010). Our architecture achieves
competitive performances comparing with other state-of-the-art
methods on the MICCAI 2017 Liver Tumor Segmentation
(LiTS) dataset, and also shows high generalization. Our paper
is organized as follows. In section 2, we briefly review the
state-of-the-art automated liver tumor segmentation methods.
We illustrate the methodologies in detail including the datasets,
preprocessing strategy, hybrid deep learning architecture, and
training procedure in section 3. In section 4, we evaluate the
proposed algorithm, report the experimental results, compare
with some other approaches, and extend our approach to other
medical segmentation tasks. Conclusions and future works are
given in section 5.

2. RELATED WORKS

In the past decades, various applications have been developed
via computer-aided methods in medical/biomedical image
processing, cellular biology domains (Zeng et al., 2017; Hong
et al., 2020a,b; Song et al., 2020a,b, 2021). Recently, with the
advance of artificial intelligence, deep learning has been used in a
number of areas such as natural language processing, anti-cancer
drug response prediction, and image analysis (Liu et al., 2017; Su
et al., 2019; Zeng et al., 2020). Some have achieved state-of-the-art
performances in medical imaging challenges (Litjens et al., 2017;
Jin et al., 2019).

2.1. Deep Learning in Medical Image
Analysis
Unlike the traditional methods that use hand-crafted features,
deep neural networks (DNNs) are able to automatically learn
discriminative features. The learned features which contain
hierarchical information have the ability to represent each level
of the input data. Among those methods, CNN is one of the most
popular methods and has shown impressive performance for 3D
medical image analysis tasks. Multi-scale patch-based and pixel-
based strategies were proposed to improve the segmentation
performance. For instance, Zhang et al. (2015) proposed a
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method which used a deep CNN for segmenting brain tissues
using multi-modality magnetic resonance images (MRI). Li
et al. (2015) presented an automatic method based on 2D
CNN to segment lesions from CT slices and compared the
CNN model with other traditional machine learning techniques,
which included AdaBoost (Collins et al., 2002), random forests
(RF) (Breiman, 2001), and support vector machine (SVM) (Furey
et al., 2000). This study showed that CNN still had limitations on
segmenting tumors with uneven densities and unclear borders.
Pereira et al. (2016) proposed a CNN architecture with small
kernels for segmenting brain tumors on MRI. This architecture
reached Dice similarity coefficient metrics of 0.78, 0.65, and 0.75
for the complete, core, and enhancing regions respectively. Lee
et al. (2011) presented a CNN-based architecture that could learn
from provided labels to construct brain segmentation features.
However, due to low memory requirements, low complexity of
computation, and lots of pre-trained models, most of the latest
CNN architectures including the methods reviewed above used
2D slices from 3D volumes for carrying out the segmentation
task. However, the spatial structural organizations of organs
are not considered, and the volumetric information is not fully
utilized. Therefore, 3D automatic segmentation which makes full
use of spatial information is urgently needed for surgeons.

2.2. 3D Convolutional Neural Networks
In order to sufficiently add 3D spatial structures into CNN
for 3D medical image analysis, 3D CNN which considers axial
direction of the 3D volumes has recently been proposed in
medical imaging field. Shakeri et al. (2016) proposed a 2D CNN
architecture to detect tumors from a set of brain slices. Then
they additionally applied a 3D conditional random field (CRF)
algorithm for post processing in order to impose volumetric
homogeneity. This is one of the earliest studies that used CNN-
related segmentation on volumetric images. Çiçek et al. (2016)
learned from sparsely sequential volumetric images by feeding a
U-Net with 2D sequential slices. 3D CNN-based segmentation
methods were then employed in a large scale. Andermatt et al.
(2016) used a 3D recurrent neural network (RNN) with gated
recurrent units to segment gray and white matters in a brain MRI
dataset. Dolz et al. (2017) investigated a 3D FCN for subcortical
brain structure segmentation in MRI images. They reduced the
computational and memory costs, which were quite severe issues
for 3D CNN, via small kernels with a deeper network. Bui
et al. (2017) proposed a deep densely convolutional network
for volumetric brain segmentation. This architecture provided
a dense connection between layers. They concatenated feature
maps from fine and coarse blocks, which allowed to capture
multi-scale contextual information. The 3D deeply supervised
network (DSN), which had a much faster convergence and
better discrimination capability, could be extended to other
medical applications (Dou et al., 2016). Oktay et al. (2018)
proposed a novel attention gate model called attention U-
Net for medical imaging which could learn to concentrate
on target structures of different shapes and sizes. However,
due to hardware limitations, 3D convolutional medical image
segmentation is still a bottleneck.

2.3. Liver Tumor Segmentation
As for liver tumor detection in 3D volumetric images, not many
explorations have been made using the CNN-based methods.
Lu et al. proposed a method based on 3D CNN to carry out
the probabilistic segmentation task and used graph cut to refine
the previous segmentation result. However, as tested only on
one dataset, the generality of this architecture still needs to
be validated (Lu et al., 2017). Christ et al. (2017a) proposed
a cascaded FCNs (CFCNs) to segment liver and its lesions in
CT and MRI images, which enabled segmentation for large
scale medical trials. They trained the first FCN to segment
the liver and trained the second FCN to segment its lesions
based on the predicted liver region of interest (ROI). This
approach reached a Dice score of 94%. Additionally, Christ
et al. (2017b) also predicted hepatocellular carcinoma (HCC)
malignancy using two CNN architectures. They took a CFCN
as the first step to segment tumor lesions. Then they applied
a 3D neural network called SurvivalNet to predict the lesions’
malignancy. This method achieved an accuracy of 65% with
a Dice score of 69% for lesion segmentation and an accuracy
of 68% for tumor malignancy detection. Kaluva et al. (2018)
proposed a fully automatic 2-stage cascaded method for liver
and tumor segmentation based on the LiTS dataset, and they
reached global Dice scores of 0.923 and 0.623 on liver and
tumor, respectively. Bi et al. (2017) integrated 2D residual
blocks into their network and gained a Dice score of 0.959.
Moreover, Li et al. (2018) built a hybrid densely connected U-
Net for liver and tumor segmentation, which combined both
2D and 3D features on liver and tumor. They reached Dice
scores of 0.961 and 0.722 on liver and tumor segmentation,
respectively. Pandey et al. (2018) reduced the complexity of a
deep neural network by introducing ResNet-blocks and obtained
a Dice score of 0.587 on tumor segmentation. Recently, Tang
et al. (2020) proposed a two-stage framework for 2D liver
and tumor segmentation. The proposed network explicitly
captured complementary objects (liver and tumor) and their
edge information to preserve the organ and lesion boundaries.
Heker and Greenspan (2020) introduced transfer learning and
joint learning to improve the network’s generalization and
robustness for liver lesion segmentation and classification.
Seo et al. (2019) modified the U-Net with Object-Dependent
high-level features for the liver tumor segmentation challenge.
However, as mentioned earlier, most of them segmented the
liver or lesion regions based on 2D slices from 3D volumes.
The spatial information has not been taken into account to the
maximum extent.

Recently, attention based image classification (Wang
et al., 2017) and semantic segmentation architectures (Chen
et al., 2016) have attracted a lot of attention. Some medical
imaging tasks have used the attention mechanism to solve
the issues in real applications. For instance, Schlemper
et al. (2019) proposed an attention-gated networks for real-
time automated scan plane detection in fetal ultrasound
screening. The integrated self-gated soft-attention mechanisms,
which can be easily incorporated into other networks,
achieved good performances. Overall, it is expected that
3D deep networks combined with the attention mechanism
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FIGURE 2 | Overview of the proposed pipeline of liver and tumor segmentation. (A) A simple version of 2D RA-UNet (RA-UNet-I) is employed for coarse localization of

a liver region within a boundary box. (B) The 3D RA-UNet (RA-UNet-II) is designed for hierarchically extracting attention-aware features of liver volume of interest (VOI)

inside the liver boundary box. (C) RA-UNet-II is responsible for an accurate tumor extraction which is inside the liver VOI. (D) The overall architecture of RA-UNet.

would achieve a good performance for liver/tumor
extraction tasks.

3. METHODOLOGY

3.1. Overview of Our Proposed Architecture
The first time that an attention mechanism was introduced in
semantic image segmentation was in Chen et al. (2016), which
combined share-net with attention mechanisms and achieved
good performances. More recently, the attention mechanism is
gradually applied to medical image segmentation (Oktay et al.,
2018; Schlemper et al., 2019). Inspired by residual attention
learning (Wang et al., 2017) and U-Net (Ronneberger et al.,
2015), we propose the RA-UNet that for the liver and tumor
segmentation tasks. Our overall architecture for segmentation is
depicted in Figure 2. The proposed architecture consists of three
main stages which extract liver and tumor sequentially. Firstly,
in order to reduce the overall computational time, we used a 2D
residual attention-aware U-Net (RA-UNet) named RA-UNet-I to
obtain a coarse liver boundary box. Next, a 3D RA-UNet, which
is called RA-UNet-II, was trained to obtain a precise liver volume
of interest (VOI). Finally, the obtained liver VOI was sent to a
second RA-UNet-II to extract the tumor region. The designed
network can handle volumes in various complicated conditions
and obtain desirable results in different liver/tumor datasets.

3.2. Datasets and Materials
In our study, we used the public Liver Tumor Segmentation
Challenge (LiTS) dataset to evaluate the proposed architecture.
This dataset has a total of 200 CT scans containing 130 scans
as training data and 70 scans as test data, both of which have
the same 512 × 512 in-plane resolution but with different
numbers of axial slices in each scan. These training data and
their corresponding ground truth are provided by various clinical
sites around the world, while the ground truth of the test data is
not available.

Another dataset named 3DIRCADb is used as an external
test dataset to validate the generalization and scalability of our
model. It includes 20 enhanced CT scans and the corresponding
manually segmented tumors from European hospitals. The
number of axial slices, which have 512× 512 in-plane resolution,
differs for each scan.

3.3. Data Preprocessing
For a medical image volume, Hounsfield units (HU) is a
measurement of relative densities determined by CT. Normally,
the HU values range from −1,000 to 1,000. Because tumors
grow on the liver tissue, the surrounding bones, air, or irrelevant
tissues may disturb the segmentation result. Hence, an initial
segmentation was used to filter out those noises, leaving the
liver region clean which is yet to be segmented. In terms of
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TABLE 1 | Typical tissues radiodensities of human body.

Tissue HU

Air −200+

Bone 400+

Liver 40∼50

Water 0 ± 10

Blood 3∼14

convenience and efficiency, we took a global windowing step as
our data preprocessing strategy.

We list the typical radiodensities of some main tissues in
Table 1, which shows that these tissues have a wide range of HU
values. From the table, the HU value for air is typically above
−200; for bone, it is the highest HU values among these tissues;
for liver, it is from 40 to 50HU; for water, it is approximately from
0 to 10 HU; and for blood, it is from 3 to 14 HU.

In this article, we set the HU window at the range from
−100 to 200. With such a window, irrelevant organs and tissues
were mostly removed. The first rows of Figure 3 shows the 3D,
coronal, sagittal, and axial plane views of the raw volumes of
LiTS and 3DIRCADb, respectively. The second rows show the
preprocessed volumes with irrelevant organ removed. It can be
seen that most of the noise has been removed. The distribution
of HU values before and after windowing is illustrated on the
left and right of the third rows in Figure 3 where Frequency
denotes the frequency of HU values. We applied the zero-mean
normalization and min-max normalization on the data after the
windowing. No further image processing was performed.

3.4. RA-UNet Architecture
3.4.1. U-Net as the Basic Architecture
Our RA-UNet has an overall architecture similar to the standard
U-Net, consisting of an encoder and a decoder symmetrically
on the two sides of the architecture. The contextual information
is propagated by the encoder within the rich skip connections
which enables the extraction of hierarchical features with more
complexities. The decoder receives features that have diverse
complexities and reconstructs the features in a coarse-to-fine
manner. An advantage is that the U-Net introduces long-range
connections through the encoder part and the corresponding
decoder part, so that different hierarchical features from the
encoder can be merged to the decoder which makes the network
much more precise and expansible.

3.4.2. Residual Learning Mechanism
The network depth is of crucial importance. However, gradient
vanishing is a common problem in a very deep neural network
when carrying out back propagation, which results in poor
training results. In order to overcome this problem, He et al.
proposed the deep residual learning framework to learn the
residual of the identity map (He et al., 2016). In our study,
residual blocks are stacked except the first layer and the last layer
(Figure 2D) to unleash the capability of deep neural networks.
The stacked residual blocks solve the gradient vanishing problem

at the structural level of the neural network by using identity
mappings as the skip connections. The residual units directly
propagate features from early convolution to late convolution
and consequently improve the performance of the model. The
residual block is defined as:

ORi,c(x) = x+ f i,c(x) (1)

where x denotes the first input of a residual block, OR denotes
the output of a residual block, i ranges over all spatial positions,
c ∈ {1, . . . ,C} indicates the index of channels, C is the total
number of channels, and f represents the residual mapping to
be learned.

The residual block consists of three sets of combinations of
a batch normalization (BN) layer, an activation (ReLU) layer,
and a convolutional layer. A convolutional identity mapping
connection is used to ensure the accuracy as the network goes
“deeper” (He et al., 2016). The detailed residual unit is illustrated
in Figure 4.

3.4.3. Attention Residual Learning Mechanism
The performance will drop if only naive stacking is used for the
attention modules. This can be solved by the attention residual
learning proposed by Wang et al. (2017). The attention residual
mechanism divides the attention module into a trunk branch and
a soft mask branch, where the trunk branch is used to process the
original features and the soft mask branch is used to construct the
identity mapping. The output OA of the attention module under
attention residual learning can be formulated as:

OAi,c(x) = (1+ Si,c(x))Fi,c(x) (2)

where S(x) has values in [0,1]. If S(x) is close to 0, OA(x)
will approximate the original feature maps F(x). The soft mask
branch S(x), which selects identical features and suppresses
noised from the trunk branch, plays the most important role in
the attention residual mechanism.

The soft mask branch has an encoder-decoder
structure which has been widely applied to medical image
segmentation (Ronneberger et al., 2015; Çiçek et al., 2016;
Alom et al., 2018). In the attention residual mechanism, it is
designed to enhance good features and reduce the noises from
the trunk branch. The encoder in the soft mask branch contains
a max-pooling operation, a residual block, and a long-range
residual block connected to the corresponding decoder, where
an element-wise sum is performed following a residual block
and an up-sampling operation. After the encoder and decoder
parts of the soft mask, two convolutional layers and one Sigmoid
layer are added to normalize the output. Figure 5 illustrates the
attention residual module in detail.

In general, the attention residual mechanism can keep the
original feature information through the trunk branch and pay
attention to those liver tumor features by the soft mask branch.

3.4.4. Loss Function
The weights are learnt by minimizing the loss function. We
employed a loss function based on the Dice coefficient proposed
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FIGURE 3 | Comparison between the raw CT scans (first row), windowed (second row) scans, and histograms of HU (third row) before and after windowing.

(A) Shows the comparison on LiTS. (B) Shows the comparison on 3DIRCADb.
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in Milletari et al. (2016) in this study. The loss L is defined
as follows:

L = 1−
2
∑N

i=1 sig i
∑N

i=1 s
2
i +

∑N
i=1 g

2
i

(3)

where N is the number of voxels, si and g i belong to the binary
segmentation and binary ground truth voxel sets, respectively.
The loss function measures the similarity of two samples directly.

3.5. Liver Localization Using RA-UNet-I
The first stage aimed to locate the 3D liver boundary box. A
2D version RA-UNet-I was introduced here to segment a coarse
liver region, which can reduce the computational cost of the
subsequent RA-UNet-II, remove the redundant information, and
provide more effective information. It worked as a “baseline” to
limit the scope of the liver.

We down sampled the slices to 256×256 and fed the
preprocessed slices into the trained RA-UNet-I model. Next, we
stacked all the slices in their original sequence. Afterwards, a
3D connected-component labeling (Hossam et al., 2010) was
employed. The connected component labeling, which is used for
determining specific regions and measure the size of regions,
is a procedure for assigning a unique label to each connected
component in an image. Then the largest component was chosen

FIGURE 4 | Sample of a residual block in the dashed window. An identity

mapping and convolutional blocks are added before the final feature output.

as the coarse liver region. Finally, we interpolated the liver region
to its original volume size with a 512× 512 in-plane resolution.

Connected component labeling is a procedure for assigning a
unique label to each connected component in an image.

3.6. Liver Segmentation Using RA-UNet-II
The RA-UNet-II was a 3D model which fully utilized the
volume information and captured the spatial information. The
3D U-Net type architecture (Çiçek et al., 2016) merges the low
resolution and high resolution features to generate an accurate
segmentation. Meanwhile, using large image patches (224 × 224
× 32) for training provides much richer contextual information
than using small image patches, which usually leads to more
global segmentation results.

As shown in Table 2, the network went down from the top
to the bottom in the encoder, and reversed in the decoder.
During the encoding phase, the RA-UNet-II received liver
patches and passed them down to the bottom. During the
decoding phase, lower features were passed from the bottom
to the top with resolution doubled through the up-sampling
operation. Note that the long-range connection between the
encoder and the decoder was realized by the attention block.
We then combined the features from the attention blocks with
those from the corresponding up-sampling level in the decoder
via concatenation. Then the concatenated features were passed
on to the decoder. Finally, an activation layer (i.e., Sigmoid) was
used to generate the final probability map of liver segmentation.

The RA-UNet-II has fewer parameters than the traditional
U-Net (Ronneberger et al., 2015). With this architecture, the
number of parameters has been largely decreased to only 4M
training parameters. During the training phase, we interpolated
the liver boundary box in the x−y plane to a fixed size (i.e.,
224×224) and randomly picked 32 slices successively in the z
direction to form the training patches. The RA-UNet-II was
employed on each CT patch to generate 3D liver probability
patches in sequence. Then, we interpolated and stacked those
probability patches to be restored to the original size of the
boundary box. A voting strategy was used to generate the final
liver probability of the VOI from overlapped sub-patches. A
3D connected-component labeling was used and the largest

FIGURE 5 | The architecture of the attention residual module. (A) The attention residual module contains a trunk branch and a soft mask branch. The trunk branch

learns original features while the soft mask branch focuses on reducing noises and enhancing good features. (B) The soft mask branch contains a stack of

encoder-decoder blocks. D denotes the depth of skip connections. In our network, we set D to 0,1,2,3 according to the specific location of the attention residual block.
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TABLE 2 | Architecture of the proposed RA-UNET-II in liver localization stage.

Encoder Output size Decoder Pre-operation Output size

Input 224× 224× 32× 1 Att1 [Res4], depth=0 14× 14× 2× 256

Conv1 224× 224× 32× 32 Res7 [Up1, Att1] 14× 14× 2× 256

Pooling 112× 112× 16× 32 Up2 28× 28× 4× 256

Res1 112× 112× 16× 32 Att2 [Res3], depth=1 28× 28× 4× 128

Pooling 56× 56× 8× 32 Res8 [Up2, Att2] 28× 28× 4× 128

Res2 56× 56× 8× 64 Up3 56× 56× 8× 128

Pooling 56× 56× 4× 64 Att3 [Res2], depth=2 56× 56× 8× 64

Res3 28× 28× 4× 128 Res9 [Up3, Att3] 56× 56× 8× 64

Pooling 14× 14× 2× 128 Up4 112× 112× 16× 64

Res4 14× 14× 2× 256 Att4 [Res1], depth=3 112× 112× 16× 32

Pooling 7× 7× 1× 256 Res10 [Up4, Att4] 112× 112× 16× 32

Res5 7× 7× 1× 512 Up5 224× 224× 32× 32

Res6 7× 7× 1× 512 Conv2 [Up5, Conv1] 224× 224× 32× 32

Up1 14× 14× 2× 512 Conv3 224× 224× 32× 1

Here [ ], long range connection; [,], concatenate operation; Conv, convolution; Up, up-sampling; Res, residual block; Att, attention block.

FIGURE 6 | Tumor patch extraction results. The green arrows point to the

tumor regions and the red boxes show the patches used for training.

component was chosen on the merged VOI to yield the final
liver region.

3.7. Extraction of Tumors Based on
RA-UNet-II
Tumor region extraction was similar to liver segmentation but no
interpolation and resizing were performed. Because the size of the
tumor is much smaller than that of the liver, the original tumor
resolution was used to avoid losing small lesions. Furthermore,
in order to solve the data imbalance issue and learn more
effective tumor features, we picked patches on both tumor and
its surroundings non-tumor regions for training as shown in
Figure 6. Note that only those in the liver VOIs would be
the candidate patches for training. We extracted the tumors
following a similar routine as for the liver segmentation step
except the use of interpolation. Subsequently, a voting strategy
is used again on the merged VOI to yield the final tumor
segmentation. At last, we filtered out those voxels which were not
in the liver region.

3.8. Evaluation Metrics
We evaluated the performance of the proposed approach
using the metrics introduced in Heimann et al. (2009).
The evaluation metrics include the Dice score (DS) (Wu
et al., 2016) consist of Dice global (Dice score computed
on all combined volumes denoted with DG) and Dice
per case (mean Dice score per volume denoted with DC),
Jaccard similarity coefficient (Jaccard), volumetric overlap
error (VOE), relative volume difference (RVD), average
symmetric surface distance (ASSD), and maximum surface
distance (MSD).

3.9. Implementation Details
The RA-UNet architecture was constructed using the
Keras (Chollet, 2015) and the TensorFlow (Abadi et al.,
2015) libraries. All the models were trained from scratch.
The parameters of the network were initialized with random
values and then they were trained with back-propagation
based on Adam (Kingma and Ba, 2014) with an initial
learning rate (LR) of 0.001, β1=0.9, and β2=0.999. The learning
rate would be reduced to LR×0.1 if the network went to
plateau after 20 epoches. We used 5-fold cross-training on
the LiTS training dataset, and evaluated the performance
on the LiTS test dataset. To demonstrate the generalization
of our RA-UNet, we also evaluated the performance on the
3DIRCADb dataset using the well-trained weights from the
LiTS training dataset. For the liver and tumor training, the
total numbers of epoches were set at 50 and 50 for each fold,
respectively. An integration operation by a voting strategy
is implemented to ensemble all the prediction results of 5
models. The training of all the models was performed with
an NVIDIA 1080Ti GPU. In our experiments, it took about
100/40 min to train an epoch of our 3D RAUNet for liver/tumor
segmentation, respectively.
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FIGURE 7 | Liver localization using RA-UNet-I. From left to right the figure

shows the preprocessed slice, and the final boundary box which restricts the

liver region. (A) A typical slice from the LiTS validation dataset. (B) A typical

slice from the 3DIRCADb dataset. The RA-UNet-I enables the coarse

localization of liver regions.

4. EXPERIMENTS AND RESULTS

4.1. Liver Volume of Interest Localization
In order to reduce the computational cost, we first down-sampled
the input slices to a 256× 256 pixel in-plane resolution. Secondly,
we used all the slices which have liver in the images together with
1/3 of those randomly picked slices without liver as the training
data. There are a total of 32,746 slices with liver which were used,
including 23,283 slices for training and 9,463 slices for validation.
Note that 5-fold training was not employed at this stage, because
our goal at this stage was to obtain a coarse liver boundary box
and reduce the computational time.

After stacking all the slices and employing the 3D connected-
component labeling, we calculated the 3D boundary box of the
slices with liver, and extended 10 pixels in coronal, sagittal, and
axial directions to ensure that the entire liver region was included.
Figure 7 shows the liver localization results from RA-UNet-I.
It demonstrates that the attention mechanism has successfully
constrained the liver region. Note that this stage aims to reduce
the computational cost for precisely segmenting liver and tumor
by RA-UNet-II.

4.2. Liver Segmentation Using RA-UNet-II
RA-UNet-II allowed the network to go “deeper.” However, the
implementation of a 3D convolution is still limited by the
hardware and memory requirements (Prasoon et al., 2013). In

order to balance the computational cost and efficiency, we first
carried out interpolation in the region inside the liver boundary
box to the size of 224×224×M, where M was the axial length of
the liver boundary box. Then we cropped the volumetric patches
(224×224×32) randomly from each boundary box, which was
constrained by the liver boundary box. Totally, 4,077/1,019
patches were selected for training/validation.

Figure 8 shows the liver segmentation based on RA-UNet-II,
which indicates that our proposed network has the ability to learn
3D contextual information and could successfully extract the liver
from adjacent slices in an image volume. After the 3D connected-
component labeling was carried out, the liver region was precisely
extracted by selecting the largest region.

As shown in Table 3, our method reached up to 0.961 and
0.977 Dice scores on the LiTS test dataset and the 3DIRCADb
dataset, respectively. It reveals that RA-UNet yields remarkable
liver segmentation results. Then we can extract tumors from the
segmented liver regions.

4.3. Extraction of Tumors Based on
RA-UNet-II
Tumors were tiny structures compared to livers. Therefore, no
interpolation or resizing was applied to tumor patch sampling
to avoid information loss from image scaling. It was difficult to
decide what size of patch for training could reach a desirable
performance. In order to determine the patch size, we set
the patch size of 32×32×32, 64×64×32, and 128×128×32,
respectively to test the performance of tumor segmentation.
Results showed that 128×128×32 patch-sized data achieved the
best tumor segmentation performance. The larger the patch
size was, the richer context in formation the patches could
provide. Due to the limitation of computational resources,
128×128×32 was chosen empirically for tumor patches. We
randomly picked 150 patches from each liver volume in the
boundary box. Totally, 14,160/3,540 patches were chosen from
LiTS as training/validation datasets. As shown in Table 4, our
method reached 0.595 and 0.830 Dice scores on the LiTS test
dataset and the 3DIRCADb dataset, respectively. Figure 9 shows
the tumor segmentation results in detail.

Figure 10 shows the liver/tumor segmentation results. It
shows that liver regions which are large in size are successfully
segmented and tumors that are tiny and hard to detect can
be identified by the proposed method as well. Due to the low
contrast with the surrounding livers and the extremely small
size of some tumors, the proposed method still has some false
positives and false negatives for tumor extraction.

4.4. Comparison With Other Methods
There were several submissions about liver and tumor
segmentations to the 2017 ISBI and MICCAI LiTS challenges.
We reached a Dice per case of 0.961, Dice global of 0.963, Jaccard
of 0.926, VOE of 0.074, RVD of 0.002, ASSD of 1.214, and MSD
of 26.948, which is a desirable performance on the LiTS challenge
for liver segmentation. For tumor segmentation evaluation,
our method reached a Dice per case of 0.595, Dice global of
0.795, Jaccard of 0.611, VOE of 0.389, RVD of −0.152, ASSD of
1.289, and MSD of 6.775. Compared with other methods, Bellver
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FIGURE 8 | Liver segmentation results based on RA-UNet-II. (A) From the LiTS validation dataset and (B) is from the 3DIRCADb dataset. From left to right, the first

row of each subplot shows the liver in the green boundary box, magnified liver region, the liver segmentation results, and the corresponding ground truth. The second

and the third rows show the probability heat map of liver segmentation results. The darker the color, the higher the probability of the liver region. Note that the ground

truth contains liver in gray and tumor in white.
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TABLE 3 | Evaluation results of the liver segmentation on the LiTS test dataset

and the 3DIRCADb dataset.

LiTS 3DIRCADb

DC 0.961 0.977

Jaccard 0.926 0.977

VOE 0.074 0.045

RVD 0.002 −0.001

ASSD 1.214 0.587

MSD 26.948 18.617

TABLE 4 | Scores of the tumor segmentation on the LiTS test dataset and the

3DIRCADb dataset.

LiTS 3DIRCADb

DC 0.595 0.830

Jaccard 0.611 0.744

VOE 0.389 0.255

RVD −0.152 0.740

ASSD 1.289 2.230

MSD 6.775 53.324

et al. (2017) and Pandey et al. (2018) methods reached tumor
Dice per case at 0.587 and 0.59, respectively, which were 2D
segmentation methods. Our approach outperformed these two
methods. The detailed results and all the performances are listed
in Table 5. It is worth mentioning that our method for precise
segmentation of liver and tumor was a full 3D technique with a
much deeper network.

4.5. Generalization of the Proposed
RA-UNet
To show the generalization of the proposed method, we used
the weights well-trained on LiTS and tested on the 3DIRCADb
dataset. Some works concentrated on liver segmentation, and
there were a few about tumor segmentation. Hence, we listed the
results of some approaches in Table 6. Our methods reached a
Dice per case of 0.977, Jaccard of 0.977, VOE of 0.045, RVD of
−0.001, ASSD of 0.587, and MSD of 18.617, which quantitatively
show that our method performed significantly better than all
the other methods on liver segmentation. Since most of the
works aimed at liver segmentation, few of them displayed tumor
segmentation results, we only compared with Christ et al. (2017a)
on the 3DIRCADb dataset. It was worth mentioning that our
method reached a mean Dice score of 0.830 on livers with tumors
compared to a mean Dice score of 0.56 for the method by
Christ et al. (2017a). The visualization of typical performance was
illustrated in Figures 8B, 9B, 10B, which qualitatively indicated
that our method produced precise segmentation performance.

5. CONCLUSION

To summarize our work, we have proposed an effective
and efficient hybrid architecture for automatic extraction of

FIGURE 9 | Tumor segmentation results based on RA-UNet-II. (A) From the

LiTS validation dataset, and (B) is from the 3DIRCADb dataset. From left to

right, the first row of each subplots indicates the raw images, segmentation

results of liver tumor, and the corresponding ground truth. The second and the

third rows show the probability heat map of tumor segmentation results.

liver and tumor from CT volumes. We introduce a new
3D residual attention-aware liver and tumor segmentation
neural network named RA-UNet, which allows the extraction
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FIGURE 10 | Automatic liver and tumor segmentation with RA-UNet. The green regions indicate the correctly extracted liver, the yellow regions are the wrongly

extracted liver, the blue color depicts the correctly extracted tumor regions, and the red color means wrongly extracted tumor. The first row of each subplot shows

four slices from different volumes in the axial view and the second row of each subplot shows the corresponding 3D view of the entire liver/tumor segmentation

results. (A) From the LiTS dataset. (B) From the 3DIRCADb dataset.

TABLE 5 | Segmentation results compared with other methods on the LiTS test dataset.

LiTS liver LiTS tumor

Dimension DC DG Jaccard VOE RVD ASSD MSD DC DG Jaccard VOE RVD ASSD MSD

Kaluva et al. (2018) 2D 0.912 0.923 0.850 0.150 −0.008 6.465 45.928 0.492 0.625 0.589 0.411 19.705 1.441 7.515

Bi et al. (2017) 2D 0.959 – 0.922 – – – – 0.500 – 0.388 – – – –

Li et al. (2018) 2.5D 0.961 0.965 – 0.074 −0.018 1.450 27.118 0.722 0.824 – 0.366 4.272 1.102 6.228

MEDDIIR Unknown 0.950 0.955 – 0.094 0.047 1.597 28.911 0.658 0.819 – 0.380 −0.129 1.113 6.323

Yuan (2017) 2D 0.963 0.967 – 0.071 −0.010 1.104 23.847 0.657 0.820 – 0.378 0.288 1.151 6.269

Summer Unknown 0.941 0.945 – 0.108 −0.066 6.552 152.350 0.631 0.786 – 0.400 −0.181 1.184 6.367

Proposed method 3D 0.961 0.963 0.926 0.074 0.002 1.214 26.948 0.595 0.795 0.611 0.389 −0.152 1.289 6.775

of 3D structures in a pixel-to-pixel fashion. The proposed
network takes advantage of the strengths from the U-Net,
the residual learning, and the attention residual mechanism.

Firstly, attention-aware features change adaptively with the
use of attention modules. Secondly, the residual blocks are
stacked into our architecture which allows the architecture to
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TABLE 6 | Segmentation results compared with other methods on the 3DIRCADb dataset.

3DIRCADb liver 3DIRCADb tumor

Dimension DC Jaccard VOE RVD ASSD MSD DC

Christ et al. (2017a) 2D 0.943 – 0.107 −0.014 1.6 24 0.56

Ronneberger et al.

(2015)

2D 0.729 – 0.39 0.87 19.4 119 –

Li et al. (2013) 2D 0.945 – 0.068 −0.112 1.6 28.2 –

Eapen et al. (2015) 3D – – 0.0554 0.0093 0.78 15.6 –

Lu et al. (2017) 3D – – 0.0936 0.0097 1.89 33.14 –

Proposed method 3D 0.977 0.977 0.045 −0.001 0.587 18.617 0.83

go deeply and solve the gradient vanishing problem. Finally,
the U-Net is used to capture multi-scale attention information
and integrate low-level features with high-level features. To
the best of our knowledge, this is the full 3D model and the
first time that the attention residual mechanism is implemented
in the medical imaging tasks. Fewer parameters are trained
by the attention residual mechanism. The proposed method
enlarges the U-Net family for 3D liver and tumor segmentation
tasks, which is crucial for real-world applications. The effective
system includes three stages: liver localization by the RA-
UNet-I, precise segmentation of liver, and tumor lesion by
the RA-UNet-II. More importantly, the trained network is a
general segmentation model working on both the LiTS and the
3DIRCADb datasets.

Overall, our method achieved competitive performances
in liver tumor challenge, and exhibits high extension and
generalization ability in another tumor segmentation dataset.
The proposed model has great potential to be applied to other
modalities of medical images. It may also assist surgeons to
find treatment for novel tumors. The limitation of the proposed
method is the training time because the 3D convolutions
require larger parameters than the 2D convolutions. In future
work, we aim to further improve the architecture, making the
architecture much more general to other tumor segmentation
datasets and more flexible to common medical imaging tasks.
What’s more, reducing computational cost and developing a
lightweight architecture for speeding training time are also
under consideration.
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Colorectal cancer is one of the most common cancers of humans and the second
highest in cancer-related death. Genes used as prognostic biomarkers play an
imperative role in cancer detection and may direct the development of appropriate
therapeutic strategies. Collagen type XI alpha 1 (COL11A1) is a minor fibrillary collagen
that has an essential role in the regulation of cell division, differentiation, proliferation,
migration, growth, and apoptosis of intestinal and colon cells. The present study seeks
to evaluate the significance of the COL11A1 gene in the progression of colorectal cancer
in humans across the various parameters using advanced bioinformatics approaches.
The application of various databases and servers like ONCOMINE, UALCAN, and
GEPIA were accessed for analyzing the differential expression of the COLL11A1 gene
and its relative influence over the survival of the transformed subjects. In addition,
oncogenomics of COL11A1 gene, mutations associated with this gene and interacting
partners of the gene in the context of oncogenesis were studied using COSMIC,
cBioPortal, GeneMANIA, and NetworkAnalyst. Our experimental data indicate that
the COL11A1 gene is overexpressed in the transformed tissues across the various
clinicopathological parameters reduces the probability of survival in both overall and
disease-specific survival cases. Mutational studies imply that it can induce perturbations
in various signaling pathways viz. RTK-RAS-PI3K, Wnt, TGF-β, and TP53 pathways
influencing cancer development. Also, a positive association and correlation amongst
the THBS2, COL10A1, COL5A2, and COL1A2 genes were observed, which most likely
to contribute to the upregulation of carcinogenesis. Conclusively, this comprehensive
study indicates the COL11A1 gene to be a significant contributor in the etiology of
colorectal cancer, henceforth this gene can be considered as a prognostic biomarker
for the conception of diagnostic and therapeutic strategies against colorectal cancer in
the near future.
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INTRODUCTION

Colorectal cancer is considered as the third most common
cancer in the world and is in the second position for
cancer-related death of humans worldwide (Siegel et al.,
2017). It is a multi-stage process that gradually develops
with the initiation of transformation in normal colon tissue
to an adenomatous intermediate by the consequences of
mutation, epigenetic changes, DNA damage, uncontrolled
growth with gene and chromosomal instability as well as defects
leading to invasive adenocarcinoma (Zhang et al., 2011). It
is imperative to understand the appropriate mechanism of
prognosis, pathogenesis, and genomic alterations associated
with colorectal cancer for the development of appropriate
therapeutic strategies.

The intestinal extracellular matrix (ECM) is majorly
constituted of collagen and is vital for the regulation of cell
division, differentiation, proliferation, migration, growth, and
apoptosis which signify its cruciality across the development
and progression of cancer (Fischer et al., 2001). Collagen
type XI alpha 1 (COL11A1) is a minor fibrillary collagen
protein, that represents one of the two alpha chains of type XI
collagen. Mutations in the COL11A1 gene and/or translational
overexpression of COL11A1 protein due to the signaling defects
are considered as the essential contributors of carcinogenesis
in human colorectal cancer (Raglow and Thomas, 2015). In
this context, higher expression of COL11A1 protein has been
reported in the cancerous tissue and has been found to be
linked with poor progression-free and overall survival across
the various types of cancers (Raglow and Thomas, 2015).
A microarray-based study reveals that the COL11A1 gene is
associated with the disease progression and poor survival in
ovarian cancer and regulates cell invasiveness required for tumor
formation (Wu et al., 2014). Further studies have also established
that COL11A1 gene attributes as a prognostic biomarker for
human carcinoma-associated stromal cells and also stimulates
cancer progression in lungs, breast, gastrointestinal tract,
and pancreas (García-Pravia et al., 2013; Vázquez-Villa et al.,
2015; Shen et al., 2016; Li A. et al., 2017; Toss et al., 2019).
All these reports collectively suggest that overexpression of
COL11A1 in different cancerous tissues results in metastasis
and recurrence of several human cancers (García-Pravia
et al., 2013; Vázquez-Villa et al., 2015; Shen et al., 2016; Li A.
et al., 2017; Toss et al., 2019). COL11A1 is a highly specific
biomarker of activated cancer-associated fibroblasts (CAFs)
which remains conserved for epithelial cancer irrespective of the
site and transformation within the cell undergoing neoplastic
transformation, indicating that targeting fibroblast activation
could be an effective therapeutic strategy for various cancer
(Jia et al., 2016). In an another study, the COL11A1 along
with the other two genes viz. THBS2 and INHBA have been
found to be overexpressed in colon tissue indicating invasion-
facilitated alteration in proteolysis of the extracellular matrix
and used for developing high specificity biomarkers sensing
cancer invasion and determining response against potential
multi-cancer metastasis and therapeutic target (Kim et al., 2010).
Particularly for colorectal cancer, previous researchers revealed

that the expression of the COL11A1 gene is upregulated up to
several folds in the stromal cells of affected colonic mucosa in
comparison to the normal tissue (Fischer et al., 2001). Studies
on left-sided and right-sided colon cancer, it has been found
that COL11A1, TWIST1, insulin-like 5, and chromogranin
A were upregulated across the right-sided colon cancer more
significantly than that of the left-sided cancer, with a sharp
downregulation in 3β-hydroxysteroid dehydrogenase protein
(Su et al., 2019). Several experiments on the transformed
cells also display significant alteration in a number of cellular
signaling pathways, including Wnt, TGF-β, RTK-RAS-PI3K,
and TP53 signaling pathways which might be the crucial
contributors of the neoplastic transformation (Li et al., 2015;
Koveitypour et al., 2019). Although all these various studies
imply that the COL11A1 gene is crucial in the progression
of various cancer, however, the actual significance across the
various clinicopathological factors including cancer-stage, nodal
metastasis status, age group, etc., have not been documented
comprehensively till date.

The mutations in the COL11A1 gene and resultant impact
on the oncogenomic and metabolic pathways are indeed very
much essential in understanding the etiology of human colorectal
cancer and are yet unclear, thus it provides an area for
new research in understanding the actual significance of the
COL11A1 gene in the progression of colorectal carcinoma.
Regarding this, the application of various bioinformatics tools
using the huge dataset of well-established cancer data from
different demographic and clinicopathologic patients provides
a comprehensive area for further research and development of
therapeutic strategies. Considering the background, the objective
of the present study is to collectively examine the differential
expression, survival, co-expression, correlation, mutations, and
protein-protein interaction network that result in the alteration
of various pathways related to the COL11A1 gene playing
a key role in the transformation of human colon tissue to
colorectal cancer using an integrated bioinformatics approach.
In addition, our study also aggregates all the available discrete
data to identify the significance of the COL11A1 gene as a
prognosis biomarker for colorectal cancer which may be useful
in designing future research for the conception of appropriate
therapeutic strategies.

MATERIALS AND METHODS

Analysis of the Differential Expression of
COL11A1 Gene Across Healthy and
Transformed Colon Tissues
Differential expression of COL11A1 gene was studied to identify
the expression pattern of the COL11A1 gene between tumor
and normal tissues across all TCGA (The Cancer Genome Atlas)
datasets was performed using TIMER 2.01. It is a comprehensive
online resource for systematic analysis of immune infiltrates and
gene expression across diverse cancer types (Li T. et al., 2017; Li
et al., 2020).

1http://timer.cistrome.org/
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Next, the Oncomine server2 was searched for human
colorectal cancer and the differential gene analysis section
(Cancer vs. Normal Analysis) was selected to retrieve the results.
It is a publicly accessible cancer microarray database and web-
based data mining platform, containing 715 datasets and 86,733
samples (Rhodes et al., 2004, 2007). The dataset selected for
differential expression of mRNA include TCGA colorectal cancer
and Kaiser Colon cancer, and recorded within a threshold value of
P-value- 1E-4, fold change- 2, Gene rank- Top 10 and are shown
in Supplementary Table 1.

Expression Profile and Correlation
Analysis
The functional expression of COL11A1 gene in colon carcinoma
is analyzed using UALCAN3, a public server to analyze the
cancer OMICS data (TCGA and MET500), built upon PERL-
CGI with high-quality graphics through javascript and CSS to
provide graphs and plots depicting gene expression, survival
information, epigenetic regulation, and also correlation among
gene (Chandrashekar et al., 2017). It is used here to analyze the
expression and promoter methylations of the COL11A1 gene
in colon adenocarcinoma based on clinicopathological features
including sample type, individual cancer stage, patients’ sex
and age, histological subtype, nodal metastasis status, and TP53
mutation status and are listed in Supplementary Tables 2,3.
The correlation of expression between the COL11A1 with
THBS2, COL10A1, COL5A2, and COL1A2 genes for colon
adenocarcinoma is performed using the GEPIA4 and UCSC
Xena5 servers (Tang et al., 2017; Goldman et al., 2020).

Survival Assay of COL11A1 and Its
Correlated Genes
The survival analysis for overall survival and disease-free survival
is determined by generating Kaplan-Meier (KM) plot using
the GEPIA server. It is a web server for analyzing the RNA
sequencing expression data of 9,736 tumors and 8,587 normal
samples from the TCGA and the GTEx projects (Tang et al.,
2017). On the other hand, the KM-plot for disease-specific and
overall survival of these genes in the TCGA COAD dataset is
performed using the UCSC Xena server.

Oncogenomics and Mutational Study
cBioPortal6 is an online server for exploration, visualization, and
analysis of multidimensional cancer genomics data (Cerami et al.,
2012). We use it to analyze the impact of the COL11A1 gene
in the Colorectal Adenocarcinoma TCGA PanCancer dataset
containing 594 samples. It provides a wide range of analysis tab
within its server. The oncoprint demonstrates the overview of the
COL11A1 gene across the dataset and also generate the heatmap
of the correlated gene. Further using the mRNA expression data
of the top 25 positively correlated genes, a clustered heatmap

2https://www.oncomineorg/
3http://ualcan.path.uab.edu/
4http://gepia.cancer-pku.cn/
5https://xena.ucsc.edu/
6https://www.cbioportal.org

is generated using the delimited data on the Clustviz server7.
The cancer type summary tab provides a detailed overview of
the COL11A1 gene across the different subtypes of colorectal
cancer i.e., mucinous adenocarcinoma of colon and rectum,
colon adenocarcinoma, and rectal adenocarcinoma. It also shows
the mutation of the COL11A1 gene for colorectal cancer and
the mutational correlation within the associated gene set. The
different types of mutations associated with the COL11A1 gene
for colorectal cancer were analyzed using COSMIC-“Catalogue of
Somatic Mutations in Cancer”8 which is the world’s largest source
of expert for manually curated somatic mutation information
related to human cancers (Tate et al., 2019).

Analysis for Pathways Associated With
the COL11A1 Gene in Colorectal
Carcinoma
We have explored PathwayMapper in the cBioPortal server shows
the alteration frequencies of selected genes (COL11A1, THBS2,
COL10A1, COL5A2, and COL1A1) along with the various
pathways overlaid on a TCGA pathway using a white to a red
color scale. Furthermore, the top 25 correlated genes belonging to
the COL11A1 gene cluster were used to reveal the KEGG (Kyoto
Encyclopedia of Genes and Genomes) pathways in Colorectal
cancer using DAVID (Database for Annotation, Visualization and
Integrated Discovery) available at https://david.ncifcrf.gov/.

Network and Enrichment Analysis
GeneMANIA9 is a web-based platform to determine the
association between the gene of interest with other genes using an
extensive of functional association data. Herein, this platform was
used to analyze the association of the COL11A1 gene with others
genes, based on the protein and genetic interactions, pathways,
co-expression, co-localization, and protein domain similarity.

After screening, the top 25 significantly correlated gene
along with the COL11A1 were used in NetworkAnalyst10

for the enrichment analysis including Gene Ontology (GO)
enrichment analysis, KEGG and Reactome pathways analysis,
and to construct the protein-protein interaction at a generic level
using International Molecular Exchange Consortium (IMEx)
protein interactions database.

RESULTS

Expression of COL11A1 Gene Is
Upregulated in Colorectal Cancer
The role of the COL11A1 gene in colorectal cancer is significantly
upregulated in colorectal cancer (Figure 1A). The TIMER
analysis reveals that the comparison of the COL11A1 gene
across various cancer types including colon cancer and displays
that it is significantly upregulated for colon adenocarcinoma

7https://biit.cs.ut.ee/clustvis/
8https://cancer.sanger.ac.uk/cosmic
9https://genemania.org
10https://www.networkanalyst.ca/
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FIGURE 1 | Differential expression of COL11A1 gene (A) Expression of COL11A1 mRNA across different cancers where red and blue represent the upregulation and
downregulation, respectively. (B) Comparative expression of COL11A1 mRNA between colon adenocarcinoma tumor tissue and normal tissue (statistical
significance computed by differential analysis, ∗P < 0.05; ∗∗P < 0.01; ∗∗∗P < 0.001). (C–F) Box plot comparison of COL11A1 expression for TCGA colorectal
cancer dataset in panel (C). Colon adenocarcinoma, (D) Colon Mucinous Adenocarcinoma, (E) Rectal Adenocarcinoma, (F) Cecum Adenocarcinoma. (G–J) Box
plot comparison of COL11A1 expression for Kaiser colon cancer dataset in panel (G). Colon adenocarcinoma, (H) Colon Mucinous Adenocarcinoma,
(I) Rectosigmoid Adenocarcinoma, (J) Cecum Adenocarcinoma.
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(Figure 1B). Further analyses of the mRNA expression profiles
of the COL11A1 gene in normal and transformed tissue in
ONCOMINE server reveal significant upregulation of COL11A1
mRNA in both the subtypes of cancer datasets i.e., TCGA
colorectal cancer and Kaiser colon cancer (Figures 1C–J and
Supplementary Table 1). It includes colon adenocarcinoma
(p-value- 2.19E-44, fold change- 32.796), colon mucinous
adenocarcinoma (p-value-7.94E-21, fold change- 79.836), rectal
adenocarcinoma (p-value-3.31E-32, fold change- 24.013), and
cecum adenocarcinoma (p-value-1.48E-13, fold change- 28.716)
for TCGA colorectal cancer (Figures 1C–F), and is somehow
greater than that of the Kaiser Colon cancer dataset (Figures 1G–
J). All these data collectively indicate that human colorectal
cancer samples display significantly higher expression of
COL11A1 mRNA in comparison to normal colon and rectum
tissues, indicating COL11A1 could have a crucial role in the
neoplastic transformation of colorectal cancer.

Transcriptional Expression and
Epigenetic Regulation of COL11A1
Across Various Clinicopathological
Parameters
The expression of COL11A1 in colon adenocarcinoma was
analyzed based on the different clinicopathological parameters
like sample type, individual cancer stage, patient’s sex and age,
histological subtype, nodal metastasis status, and TP53 mutation
status using the UALCAN server (Figure 2 and Supplementary
Table 2). The results support the inference depicted in the earlier
section by demonstrating that COL11A1 expression is higher in
the colorectal cancer tissue at different clinical stages than in
normal tissue (Figure 2A). It tends to increase the expression
of COL11A1 at advanced stages of cancer (Stage 3 > Stage
2 > Stage 1) (Figure 2B) and decrease along with the increase in
the age group of patients (Figure 2C). It was also found that the
expression of the COL11A1 gene increases along with the nodal
metastasis status (N2 > N1 > N0) (Figure 2E).

DNA methylation is relatively associated with the
development of cancer within the human body (Greenberg
and Bourc’his, 2019). From our data, it was evident that the
promoter methylation of the COL11A1 gene is overexpressed
in the colon cancer tissue than that of the normal tissue, and is
negatively regulated for all other clinicopathological parameters
(Figures 2G–L and Supplementary Table 3). It is reflected
that along with the development of cancer stages and nodal
metastasis status, the expression of promoter methylation
decreases in the tissues (Stage 1 > Stage 2 > Stage 3;
N0 > N1 > N2) (Figures 2H,K). These results indicate that
the promoter methylation is negatively associated with the
expression of COL11A1 mRNA, and the hypermethylation of
the promoter of COL11A1 may inhibit COL11A1 in upgrading
cancer development.

Survival Assay of the COL11A1 Gene in
Colorectal Cancer
Survival analysis is one of the key components in analyzing the
influence of any cancer-associated gene (Clark et al., 2003). In

this study, the survival assay of the COL11A1 gene is explained
by the KM-plots which show a reciprocal correlation between
the expression of COL11A1 and overall survival (log-rank p-
0.055) or disease-free survival (log-rank p-0.053), which signifies
the COL11A1 gene as a poor prognostic indicator for colorectal
cancer (Figures 3A,B). Also, the disease-specific survival plot
of COL11A1, obtained from the UCSC XENA server indicates
that higher expression leads to lower survival probability (p-
value- 0.1059) (Figure 3C). Therefore, low COL11A1 expression
in colorectal cancer patients is correlated with prolonged survival,
but high COL11A1 expression in colorectal cancer is associated
with poor survival.

The survival assay of the correlated genes shows similar
significance to that of the COL11A1 gene in the colon
adenocarcinoma dataset. The KM-plot obtained for overall
survival at higher expression of THBS2 (p-value- 0.021),
COL10A1 (p-value- 0.129), COL5A2 (p-value- 0.714), and
COL1A2 (p-value- 0.221) is related with lower survival
probability (Figures 3D–G). Similarly, the disease-specific
survival is also decrease with the increase in expression of THBS2
(p-value- 0.015), COL10A1 (p-value- 0.126), COL5A2 (p-value-
0.925), and COL1A2 (p-value- 0.602) (Figures 3H–K).

Co-expression and Correlation Amongst
the Other Genes Associated With
COL11A1 in Colorectal Cancer
The top 25 positively co-expressed genes were analyzed via
cBioPortal, containing the Spearman’s correlation coefficient,
p-value from two-sided t-test, and also q-value derived
from the Benjamini-Hochberg FDR correction procedure
(Supplementary Table 4). Further mRNA expression data was
used for generating a clustered heatmap showing expression
between +3/−3 with mean-centered to 0 (Figure 4A). From
these above two analyses, it is found that the co-expression of
THBS2, COL10A1, COL5A2, and COL1A2 is most likely to be
positively correlated with the COL11A1 gene in colorectal cancer
(Table 1). To further validate the co-expression, another heatmap
was generated using UCSC XENA server to correlate the gene
expression of the associated genes with respect to the COL11A1
gene, represented as a histogram with the z score transformation
(Supplementary Figure 1). Moreover, correlation graph was
obtained using the Pearson’s correlation coefficient amongst
COL11A1 gene with THBS2 (R-value- 0.90), COL10A1 (R-value-
0.89), COL5A2 (R-value- 0.69) and COL1A2 (R-value- 0.65)
(Figures 4B–E). Collectively all these results reveal that the
COL11A1 gene has a positive association and correlation with
THBS2, COL10A1, COL5A2, and COL1A2 to upregulate the
gene expression to induce the development of colorectal cancer.

Genomic Alteration and Mutation
Associated With COL11A1 Gene in
Colorectal Cancer
The COL11A1 gene mutation was analyzed on COSMIC
database comprising more than 2406 samples of colorectal
cancer out of which 249 were recorded for mutations, among
them the missense substitution is highest with 51.81% followed
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FIGURE 2 | Expression and promoter methylation of the COL11A1 gene in colon adenocarcinoma for different clinicopathological parameters. (A–F) Box-plot
showing relative expression of COL11A1 mRNA in panel (A). cancer tissues and normal tissues, (B) individual cancer stage, (C) patient’s age, (D) histological
subtypes, (E) nodal metastasis status, (F) TP53 mutation status. (G–L) Box-plot showing promoter methylation of COL11A1 mRNA in, (G) cancer tissues and
normal tissues, (H) individual cancer stage, (I) patient’s age, (J) histological subtypes, (K) nodal metastasis status, (L) TP53 mutation status.
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FIGURE 3 | KM-plot for survival assay of COL11A1 and other associated genes. (A–C) Effect of COL11A1 expression on (A) overall survival, (B) Disease-free,
(C) Disease-specific survival. (D–G) Overall survival concerning gene expression of (D) THBS2, (E) COL10A1, (F) COL5A2, (G) COL1A2. (H–K) Disease-specific
survival for the gene expression of (H) THBS2, (I) COL10A1, (J) COL5A2, (K) COL1A2. (Red and blue indicate the higher and lower expression of the gene,
respectively).

by synonymous substitution (15.66%), frameshift mutation
(15.66%), nonsense substitution (4.42%) and other types (4.02%)
(Figure 5A). The breakdown of various substitution mutation
is shown in Figure 5B, representing the highest type of G > A
(25.73%) and lowest showing T > A (0.58%). To determine and
analyze the frequency and type of mutation, cBioPortal server
was used where the cancer type summary indicates the mutation
along with the various subtypes of colorectal cancer showing
mucinous adenocarcinoma of colon and rectum (>12%), colon
adenocarcinoma (<12%), and rectal adenocarcinoma (∼6%)
(Figure 5C). The Oncoprint and Mutation tab shows that the
COL11A1 gene is altered in 10% of the total 526 patients in
TCGA colorectal cancer dataset along with the heatmap for
the associated genes (Figure 5D). Additionally, a mutational

study for the correlation among the COL11A1 gene with
THBS2, COL10A1, COL5A2, and COL1A2 (Figures 5F–I)
showing a significant coefficient value for both Spearman and
Pearson Correlation test and the regression line. It is observed
that the mutation of COL11A1 is much more expressive for
COL1A2 > COL5A2 > THBS2 > COL10A1.

Gene Network and Pathways Alteration
GeneMANIA server provides a complete network of COL11A1
gene with its neighboring gene of interaction in colorectal cancer
displaying the physical interactions (67.64%), coexpression
(13.50%), predicted (6.35%), co-localization (6.17%), pathways
(4.35%), genetic interaction (1.40%), and shared protein domains
(0.59%) (Figure 6A). The Gene Ontology (GO) enrichment
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FIGURE 4 | Coexpression and correlation of genes functionally associated with COL11A1. (A) Clustered heatmap of the top 25 correlated genes (Scaling in –3/3
with mean-centered to 0). (B–E) Graphical representation of Pearson’s correlation test of COL11A1 gene with, (B) THBS2, (C) COL10A1, (D) COL5A2, (E) COL1A2.

analysis was performed on NetworkAnalyst to obtain the network
of GO: biological pathway (Figure 6C), and molecular function
(Figure 6D) showing the significance of the genes in extracellular

structure organization, collagen fibril organization, protein
complex subunit organization, collagen metabolic process, cell
migration, etc., and are listed in Supplementary Table 5. It was
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TABLE 1 | The correlation among the genes associated with COL11A1 gene in
colorectal cancer.

Correlated Gene Spearman’s correlation Pearson’s correlation

THBS2 0.922 0.90

COL10A1 0.913 0.89

COL5A2 0.909 0.69

COL1A2 0.903 0.65

further used to generate the network for Reactome (Figure 6E)
and KEGG pathway (Figure 6F) analysis. Moreover, the protein-
protein interaction (PPI) network was constructed based on the
International Molecular Exchange Consortium (IMEx) protein
interactions database using NetworkAnalyst represented the
crucial protein and helps to further establish the genes promoting
in colorectal cancer prognosis and development. As shown in
the PPI network (Figure 6B), the degree of a node is the
number of connections among the node, and betweenness is
the smallest path amongst nodes showing RAB31 (Degree:19,
Betweeness:2401.3), COL1A1 (Degree:36, Betweeness:5357.51),
COL1A2 (Degree:26, Betweeness:2955.04), COL3A1 (Degree:9,
Betweeness:657.29), COL11A1 (Degree:7, Betweeness:537.23),
and VCAN (Degree:18, Betweeness:2701.11) as the important
proteins of the network.

The KEGG pathways established from the DAVID analysis
indicate the intervention of COL11A1 and associated genes
in the ECM-receptor interaction (Supplementary Figure 2A),
Protein digestion and absorption (Supplementary Figure 2B),
Focal-adhesion (Supplementary Figure 2C), and PI3K-Akt
signaling pathway (Supplementary Figure 2D), and are listed
in Table 2. The PathwayMapper tab in cBioPortal servers
shows the alteration frequency of COL11A1, THBS2, COL10A1,
COL5A2, and COL1A2 over the various pathways on the
colorectal cancer dataset using a white to red color scale where
the more frequently altering gene shows greater intensity of
the red color (Figures 7A–D). COL11A1 associated alteration
mainly induces changes of PTEN (8.1%), PIK3CA (24.8%), KRAS
(37.4%), and BRAF (10.8%) for regulation of RTK-RAS-PI3K
signaling pathway (Figure 7A); APC (66.7%) in regulation of
Wnt signaling pathway (Figure 7B); SMAD4 (15.5%) for TGF-
β signaling pathway (Figure 7C); and ATM (12.5%) and TP53
(53.0%) in alteration of TP53 pathway (Figure 7D) to proliferate
the cancer development.

DISCUSSION

In this modern era, the change in lifestyle, food habits,
consumption of carcinogens, and several altered environmental
factors are collectively considered as the major concerns of
colorectal cancer and related deaths. The functional association
amongst the various genetic and epigenetic processes are known
to play a remarkable role in the initiation and progression
of colorectal cancer (Pancione et al., 2012). In particular,
overexpression and differentiation of ECM molecules, including
collagen in the intestine, are considered as the key determinants
of the proliferation and development of colorectal cancer

(Fischer et al., 2001). The COL11A1 gene is a minor fibrillary
collagen and plays an essential role in the fibrillogenesis and
skeletal morphogenesis by controlling the lateral growth, and
interfibrillar spacing of collagen II fibrils (Brown et al., 2011).
Hitherto, studies available in the literatures and databases provide
discrete evidences on the regulation of COL11A1 gene expression
in the onset of various types of carcinomas (Vázquez-Villa
et al., 2015; Toss et al., 2019). Our present study is a maiden
attempt to provide a comprehensive knowledge of the various
clinical relevance of the COL11A1 gene in the expression profile,
methylation, survivability, and mutation in association with the
colorectal cancer.

The mRNA expression profile of COL11A1 gene obtained
from TCGA dataset of colorectal cancer from the various
servers like ONCOMINE, UALCAN, and GEPIA collectively
discloses significant upregulations at transcriptional level in
cancer tissue than the normal colon tissue across various
cancer subtypes including colon adenocarcinoma, colon
mucinous adenocarcinoma, rectal adenocarcinoma, and cecum
adenocarcinoma (Figures 1C–J); and even in the various
clinicopathological parameters including patients’ age, cancer
stage, nodal metastasis status, and TP53 mutation (Figures 2A–
F). Epigenetic changes in the gene are known to be the leading
causes of neoplastic transformation, and regarding this, our
result on the promoter methylation of the COL11A1 gene
across various parameters indicates negative relation with the
expression profile in a way suggesting the hypermethylation
of the COL11A1 gene may regulate the of development cancer
(Figures 2G–L). The KM-plots obtained for the overall survival
(Figure 3A) and disease-free survival (Figure 3B) show poor
prognosis of colorectal cancer i.e., the higher expression of the
COL11A1 gene signifies poor survivability. The coexpression
and correlation of the top 25 positively correlated genes with
the COL11A1 gene are depicted on the heatmap (Figure 4A).
Herein, we have found that THBS2, COL10A1, COL5A2, and
COL1A2 are the most significant gene having the highest positive
correlation (Supplementary Figure 1 and Figures 4B–E).
Further, upon the survival assays of THBS2, COL10A1, COL5A2,
and COL1A2 genes it has been found a similar pattern of
lower survival probability on overexpression (Figures 3D–K).
Collectively all these experimental data clearly reveal that the
COL11A1 gene along with its associated THBS2, COL10A1,
COL5A2, and COL1A2 might serve as a prognostic biomarker
for colorectal cancer.

The genomic alteration and mutation are the major inducers
for the initiation and development of several cancers (Loeb et al.,
2008). In our study, it has been observed that up to 12% mutation
that relates to the COL11A1 gene contributes to the development
of colorectal cancer with the highest alteration in mucinous
adenocarcinoma of colon and rectum (Figure 5C). Further
analysis from the COSMIC server illustrates that substitution
mutation is the most prevalent mutation that constitutes the
highest frequency of G > A types of changes (Figures 5A,B).
In addition, the prevalence of THBS2, COL10A1, COL5A2, and
COL1A2 enhances the frequency of alteration and depicting
a positive correlation with COL11A1 mutation (Figures 5F–
I). A functional network of the interaction among the

Frontiers in Genetics | www.frontiersin.org 9 February 2021 | Volume 12 | Article 608313185

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-608313 January 25, 2021 Time: 16:19 # 10

Patra et al. Oncogenomics Study of COL11A1 Gene

FIGURE 5 | Mutational analysis of COL11A1 gene. (A) Summary of various types of mutations associated with COL11A1 gene. (B) Bar-graph depicting various
types of substitutional mutation occurring within the gene. (C) Mutation along the subtype of cancer including mucinous adenocarcinoma of colon and rectum
(>12%), colon adenocarcinoma (<12%), and rectal adenocarcinoma (∼6%). (D) Oncoprint showing mutational rate of COL11A1 gene and the heatmap for mRNA
expression of associated genes. (E) Genomic information of COL11A1 mutation. (F–I) Graphical representation of correlation between COL11A1 gene showing
mutation, Pearson correlation coefficient, Spearman correlation coefficient and regression line with, (F) THBS2, (G) COL11A1, (H) COL5A2, (I) COL1A2.
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FIGURE 6 | Gene Network Analysis. (A) COL11A1 gene with its neighboring genes showing physical interactions (67.64%), coexpression (13.50%), predicted
(6.35%), co-localization (6.17%), pathways (4.35%), genetic interaction (1.40%), and shared protein domains (0.59%) (B) Protein-protein interaction network based
on IMEx protein interactions database. (C–F) Network enrichment analysis for (C) GO: Biological process, (D) GO: Molecular function, (E) Reactome pathways, and
(F) KEGG pathways.

TABLE 2 | KEGG pathways analysis using the DAVID server for top 25 correlated genes of COL11A1 in Colorectal cancer.

Pathways Gene count Percentage Fold enrichment p-value q-value

ECM-receptor interaction 8 30.8 52.7 1.3E-11 2.1E-10

Protein digestion and absorption 7 26.9 45.6 1.6E-9 1.3E-8

Focal-adhesion 8 30.8 22.3 5.8E-9 3.1E-8

PI3K-Akt signaling pathway 8 30.8 13.3 2.1E-7 8.3E-7
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FIGURE 7 | Pathway analysis. (A–D) Impact of COL11A1 and associated gene in regulating alteration frequency of (A) RTK-RAS-PI3K signaling pathway, (B) Wnt
signaling pathway, (C) TGF-β signaling pathway, (D) TP53 pathway.

neighboring genes of the COL11A1 in colorectal cancer displays
physical interactions, co-expression, predicted co-localization,
pathways, genetic interaction, and shared protein domains
(Figure 6A). Collectively, we can postulate that the COL11A1
gene interacts with the neighboring mediators to induce
the downregulation of various biological signaling pathways.
Enrichment network created through NetworkAnalyst shows
GO enrichment of various biological and molecular pathways
where the genes significantly associated with extracellular
structure organization, collagen fibril organization, protein

complex subunit organization, collagen metabolic process, and
cell migration (Figures 6C,D and Supplementary Table 5).
The PPI networks indicate the RAB31, COL1A1, COL1A2,
COL3A1, COL11A1, and VCAN as the most important protein
network that likely to be connected and show betweenness among
themselves to significantly promote the prognosis of colorectal
cancer (Figure 6B).

The KEGG pathways established from DAVID analysis
reveals that it shows the highest intimacy with the ECM-
receptor interaction and PI3K-Akt signaling pathway
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FIGURE 8 | Schematic representation for functional relevance of COL11A1 gene in the oncogenesis of colorectal cancer and its candidature as a prognostic
biomarker and therapeutic target.

(Supplementary Figure 2). Moreover, our study through
the PathwayMapper tab of the cBioPortal website indicates the
frequency of alteration of the various signaling cascades of RTK-
RAS-PI3K, Wnt, TGF-β, and TP53 pathways that consequently
leads to colorectal cancer. The RTK-RAS-PI3K signaling axis
is important in regulating the cell growth and survival (Xu
et al., 2020). Perturbation in these signaling cascades is known
to contribute in the induction as well as in the development of
cancer. The mutation of KRAS is found to be higher in colorectal
cancer and thought to enhance the malignancy character of
the transformed cells (Zenonos and Kyprianou, 2013). The
alteration of the PI3K pathway mainly including the RTK
upstream regulator of PI3K, catalytic subunit PIK3CA, PTEN
negative regulator, and the downstream regulator of PI3K lead
to the surge of cancer development (Yuan and Cantley, 2008).
Herein, our study reveals the impact of COL11A1 gene product
in the alteration of PTEN, PIK3CA, KRAS, and BRAF which
might downregulate the RTK-RAS-PI3K signaling pathways to
induce cancer development (Figure 7A). On the other hand,
the Wnt signaling pathway is associated with the regulation of
various developmental and physiological processes including
cell division, specification, proliferation, and even maintenance

of tissues and abnormal signaling leading to colorectal cancer
(Clevers, 2006). The mutation of APC leads to overactivation of
Wnt signaling pathways resulting in 80% of colorectal cancer
prognosis (Koveitypour et al., 2019). The influence of COL11A1
and its associated gene triggers alteration of APC for around
66.7% that resulted in the overactivation of Wnt signaling
pathways leading to cancer development (Figure 7B). TGF-β
signaling pathway plays a vital role in tissue maintenance and is
associated with inflammation and carcinogenesis by restraining
the cell growth, differentiation, and apoptosis (Koveitypour
et al., 2019). Mutation of TGF-β receptor type 2 (TGFBR2)
leads to the microsatellite instability causing colorectal cancer,
and also the loss of function of SMAD4 in the TGF-β signaling
pathway promotes the tumor progression and poor survival
in colorectal cancer (Itatani et al., 2019). The alteration of the
TGF-β signaling pathway by the COL11A1 gene indicates that
the SMAD4 alteration frequency of 15.5% might drive the
formation of cancer (Figure 7C). TP53 pathway is the regulator
of the cell cycle, DNA replication, apoptosis, and response to a
wide range of stresses and safeguards maintenance of genomic
integrity and acts as a tumor suppressor gene (Aubrey et al.,
2016). The mutation of TP53 leads to colorectal cancer elevating
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the invasiveness, metastasis, and poor survival (Li et al., 2015).
The association of the COL11A1 gene with its correlated gene
from our study influences the alteration of TP53 by 53.0%
disrupting the pathway results in uncontrolled cell proliferation
and metastasis (Figure 7D).

All these discrete pieces of evidences from our experimental
results designate the significance of the COL11A1 gene along
with its highly correlated genes (THBS2, COL10A1, COL5A2,
and COL1A2) in the progression of colorectal cancer across
the various parameters using a wide range of data available
in the cancer databases globally. Taken together, this study
comprehensively enlightens the validation of the COL11A1 gene
in the initiation, progression, and development of colorectal
cancer using the bioinformatic approach, and the overall
mechanism is schematized in Figure 8.

CONCLUSION

Our study provides several important pieces of evidences on
the significance of the COL11A1 gene in the prognosis of
human colorectal cancer. The overexpression of COL11A1
is positively upregulated in the cancer tissue across the
various clinicopathological conditions, while negatively
regulated in the case of promoter methylation indicating that
the hypermethylation can induce the inhibition of cancer
development. The survival assay signifies poor prognosis in
both overall and disease-free survival. Our in silico study reveals
that an abundance of COL11A1 mRNA could induce the
transcriptional upregulation of THBS2, COL10A1, COL5A2,
and COL1A2 genes cooperatively, to promote the neoplasia.
The dysregulation in the expression of COL11A1 and mutations
alters various critical regulatory pathways to influence the
oncogenesis of colorectal cancer in humans. Therefore, our
experimental data firmly claims the candidature of the COL11A1
gene as a potential biomarker for the prognosis of colorectal
cancer and opens new areas of research for the diagnosis and

development of appropriate therapeutic strategies. However,
further in vitro and in vivo experimental validations are required
to determine the efficacy of the COL11A1 gene in the prognosis of
colorectal cancer and the development of a therapeutic strategy.
Regarding this, we are in order to work on the cancer cell-lines
and the murine model of colorectal cancer for validating the
present study and developing efficacious therapeutic strategy by
targeting COL11A1 gene.
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Background: Renal cell carcinoma (RCC) is a common malignant tumor worldwide, and

immune checkpoint inhibitors are a new therapeutic option for metastatic RCC. Infiltrating

immune cells in the tumor microenvironment (TME) play a critical part in RCC biology,

which is important for tumor therapy and prediction. Hypoxia is a common condition that

occurs in the TME and may lead to RCC immunosuppression and immune escape. This

study was conducted to analyze the extent of the hypoxia immune microenvironment in

the TME of RCC and develop a hypoxia-related risk model for predicting the prognosis

of patients with RCC.

Methods: The gene expression profiles of 526 patients with RCC were downloaded

from The Cancer Genome Atlas database. Combined with the hallmark-hypoxia gene

dataset downloaded from Gene Set Enrichment Analysis, prognosis-related hypoxia

genes were selected by survival analysis. A protein–protein interaction network and

functional enrichment analysis were performed. A hypoxia-related risk model predicting

the prognosis of patients with RCC was established using the least absolute shrinkage

and selection operator. Data of 91 cases downloaded from the International Cancer

GenomeConsortium (ICGC) database were used for validation. CIBERSORTwas applied

to analyze the fractions of 22 immune cell types in the TME of RCC between low- and

high-risk groups. The expression profiles of immunomodulators and immunosuppressive

cytokines were also analyzed.

Results: Ninety-three genes were significantly associated with poor overall survival

of patients with RCC and were mainly involved in 10 pathways. Using the established

hypoxia-related risk model, the receiver operating characteristic curves showed an

accuracy of 76.1% (95% CI: 0.719–0.804), and Cox proportional hazards regression

analysis revealed that the model was an independent predictor of the prognosis of

patients with RCC [hazard ratio (HR) = 2.884; 95% CI: 2.090–3.979] (p < 0.001).

Using the ICGC database, we verified that the low-risk score group had a better overall

survival outcome than the high-risk group. Additionally, dividing the hypoxia risk score

into high-risk and low-risk groups could predict the immune microenvironment of RCC.
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Conclusions: We demonstrated that a hypoxia-related risk model can be

used to predict the outcomes of patients with RCC and reflect the immune

microenvironment of RCC, which may help improve the overall clinical response to

immune checkpoint inhibitors.

Keywords: renal cell carcinoma, immune response, tumor microenvironment, hypoxia, risk model

INTRODUCTION

Kidney cancer is a common malignant tumor worldwide, with
an estimated 403,000 new cases and 175,000 deaths in 2018
(Bray et al., 2018). Renal cell carcinoma (RCC) is the most
common form of kidney cancer, and ∼70% of these cases
show clear-cell tumors in histological analysis (Lipworth et al.,
2016). Surgical resection, including radical nephrectomy and
nephron-sparing surgery, remains the most effective therapy for
clinically localized RCC. Once metastasis of RCC occurs, clinical
treatment is challenging and patients show a 5-year survival rate
of approximately 12% (Siegel et al., 2017). Cytokines [interferon
(IFN)-α, interleukin (IL)-2], targeted therapy [tyrosine kinase
inhibitors, anti-vascular endothelial growth factor (VEGF)
antibodies, agents targeting the mammalian target of rapamycin
(mTOR)], and immune checkpoint inhibitors are used as
therapies for metastatic RCC. However, it is important to elevate
the overall clinical response rate of cancer immunotherapy and
identify biomarkers for response prediction.

Multiple factors contribute to cancer initiation and
progression. The tumor microenvironment (TME) is an
important regulator of tumor progression and metastasis
(McAllister and Weinberg, 2014). Infiltrating immune cells are
among the major normal cells in tumor tissues and play a crucial
role in tumor biology, tumor prognosis, drug resistance, and
immunotherapeutic efficacy (Straussman et al., 2012; van Dijk
et al., 2019; Guo et al., 2020). A better understanding of the TME,
particularly infiltrating immune cells, is important for improving
tumor therapy and tumor prediction.

Hypoxia is a common condition found in the TME,
playing a vital role in tumor genetic instability and prognosis
(LaGory and Giaccia, 2016). The hypoxia-inducible transcription
factor (HIF) signaling pathway can be activated by tumor-
induced hypoxia (Fallah and Rini, 2019). In clear-cell RCC
(ccRCC), HIF is particularly important, with HIF-1α and
HIF-2α exerting opposing effects on tumor development
(Schödel et al., 2016). Small-molecule inhibitors of HIF-2
may serve as another therapeutic option for ccRCC in the
future (Martínez-Sáez et al., 2017). Hypoxia can lead to
tumor immunosuppression and immune escape. It has been
reported that hypoxia promotes suppressive immune cells and
immunosuppressive cytokines in the TME (Terry et al., 2017).
Therefore, hypoxia-related genes may be useful for predicting
immunotherapy outcomes.

This study was conducted to analyze the gene expression
profiles of RCC downloaded from The Cancer Genome Atlas
(TCGA) database and hypoxia-related genes (hallmark-hypoxia
genes) downloaded from Gene Set Enrichment Analysis (GSEA).

We selected prognosis-related hypoxia genes to develop a
hypoxia-related risk model for predicting the prognosis and
immune microenvironment landscape of patients with RCC in
high/low hypoxia risk score groups. The workflow of the study
design is shown in Figure 1.

MATERIALS AND METHODS

Database
The level 3 gene expression profiles of 526 patients with
RCC were downloaded from TCGA database (https://
tcga-data.nci.nih.gov/) (June 2020). The patients’ clinical
characteristics, including age, sex, TNM stage, and survival
data, were also obtained from the database. Patients with cancer
without pathologic diagnosis or a lack of clinical information
were excluded.

Hypoxia-related genes (hallmark- hypoxia genes) were
downloaded from GSEA (https://www.gsea-msigdb.org/gsea/
index.jsp). The gene expression profiles of 91 patients with
RCC determined by the CAGEKID consortium in Europe were
downloaded from the International Cancer Genome Consortium
(ICGC) database (https://icgc.org/icgc/cgp/65/812/817) and used
as the validation cohort to verify the predictive value of the
risk model.

Construction of Protein–Protein Interaction
Network and Functional Enrichment
Analysis
Hypoxia genes were selected using the log-rank test to
identify statistically significant prognosis-related genes. The
selected hypoxia genes were used to establish a protein–
protein interaction (PPI) network and for functional enrichment
analysis. The Search Tool for the Retrieval of Interacting Genes
(STRING) database was used to generate the PPI network
(Szklarczyk et al., 2015). Thereafter, Cytoscape software (version
3.7.0) was used to reconstruct and visualize the PPI network
(Shannon et al., 2003). The connectivity degree of each protein
node was calculated. The R package clusterprofile was utilized to
perform functional enrichment analysis (Yu et al., 2012). Based
on Gene Ontology (GO) categories, the genes were identified
with different GO terms based on their respective characteristics:
molecular functions (MFs), biological processes (BPs), and
cellular components (CCs). Additionally, Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways were used for pathway
enrichment analysis. The false discovery rate (FDR) was set
at 0.05.
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FIGURE 1 | The flowchart of the study.

Construction of a Risk Model
The selected prognosis-related hypoxia genes were applied in
the least absolute shrinkage and selection operator (LASSO)
using the R package glmnet. The hypoxia risk score formula
was established based on gene expression multiplied by a linear
combination of the regression coefficient, which was acquired
from LASSO. The cases were divided into high- and low-risk
groups based on the optimal cutoff point of the risk score with
the R package survminer (version 0.4.6). R package survival and
ROCR were utilized for Kaplan–Meier analysis and to generate
receiver operating characteristic (ROC) curves. To draw heat
maps, pheatmap (version 1.64.0) was used in R package. The
predictive value of the risk model was verified using data from
91 patients with RCC downloaded from the ICGC database.

Assessment of Immune Cell Type Fractions
Using gene expression data, the analytical method CIBERSORT
(https://cibersort.stanford.edu/) can be applied to characterize
the cell composition in a mixed cell population (Newman et al.,
2015). The leukocyte gene signature matrix containing 547 genes,
named LM22 in CIBERSORT, was applied to distinguish 22
immune cell types including CD8T cells, naive CD4T cells,
restingmemory CD4T cells, activatedmemory CD4T cells, naive
B cells, memory B cells, plasma cells, follicular helper T cells,

T-regulatory cells (Tregs), gamma delta T cells, resting natural
killer cells, activated natural killer cells, monocytes, macrophages
M0, macrophages M1, M2, resting dendritic cells, activated
dendritic cells, restingmast cells, activatedmast cells, eosinophils,
and neutrophils. We applied CIBERSORT to assess the fractions
of these cell types between the low- and high-risk groups.

Expression Profile of Immunomodulators
and Immunosuppressive Cytokines
Several key immunomodulators, including lymphocyte
activation gene 3 (LAG-3), T cell immunoglobulin and mucin
domain containing 3 (TIM-3), cytotoxic T lymphocyte associated
protein 4 (CTLA-4), IFN-γ, ICOS inducible T cell costimulator
(ICOS), intercellular adhesion molecule 1 (ICAM-1), T cell
immunoreceptor with Ig and ITIM domains (TIGIT), PD-1
programmed cell death 1 (PD-1), programmed cell death 1 ligand
1 (PD-L1), natural killer group 2member A (NKG2A), V-domain
immunoglobulin suppressor of T cell activation (VISTA), and
immunosuppressive cytokines were quantified. The t-test was
applied to compare the differences in the expression levels of
immunomodulators and immunosuppressive cytokines between
the low- and high-risk groups. A two-sided p < 0.05 was
considered to indicate statistical significance.
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FIGURE 2 | Analysis of hypoxia-related genes. (A) PPI networks of hypoxia-related genes. A large node means a higher degree. (B) KEGG pathway enrichment

analysis of hypoxia-related genes. (C–E) GO enrichment analysis of molecular function (MF), biological process (BP), and cellular component (CC). PPI, the

protein–protein interaction; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.

RESULTS

Characterization of Hypoxia-Related
Genes
The hypoxia-related gene (hallmark- hypoxia genes) dataset
downloaded from GSEA contained 200 genes. These genes were
upregulated following treatment with low oxygen levels. In
conjunction with the gene expression profiles of 526 patients
with RCC downloaded from TCGA database, the prognostic
predictive value of hypoxia-related genes was explored using
Kaplan–Meier survival curves. Ninety-three genes were found to
be significantly associated with poor overall survival outcomes
according to log-rank test (p< 0.05; Supplemental Table 1). The
STRING database and Cytoscape software were used to build the
PPI network of these genes (Figure 2A). To evaluate the 93 genes,
we performed KEGG and GO analyses. KEGG analysis illustrated
that the genes primarily participated in 10 pathways (Figure 2B),
including glycolysis/gluconeogenesis, HIF-1 signaling pathway,
carbon metabolism, biosynthesis of amino acids, etc. The 285
GO terms, including 269 biological process terms, eight cellular

component terms, and eight molecular function terms, were
enriched (p < 0.05; Supplemental Table 2). The top GO terms,
including carbohydrate binding, monosaccharide metabolic
process, and extracellular matrix, are shown in Figures 2C–E.

Evaluation Prognosis Prediction Power of
the Hypoxia-Related Risk Model
LASSO was used to explore the hypoxia-related risk model
predicting the prognosis of patients with RCC. The optimal
LASSO model was selected that included eight identified genes,
PLAUR, BCL2, KLF6, KDELR3, WSB1, PPARGC1A, PCK1, and
RORA. The risk score was calculated using the following formula:
risk score = 0.34577 × expression (PLAUR) + 0.18588 ×

expression (BCL2)+ (−0.45209)× expression (KLF6)+ 0.22279
× expression (KDELR3) + 0.53993 × expression (WSB1) +

(−0.13366) × expression (PPARGC1A) + 0.01587 × expression
(PCK1) + (−0.55309) × expression (RORA). Figure 3A shows
the heatmap exhibiting the distinct gene expression patterns
of the selected genes. Receiver operating characteristic (ROC)
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FIGURE 3 | Hypoxia risk model. (A) Distribution of genes in the hypoxia risk model. (B) ROC analysis for the hypoxia risk model. (C) Kaplan–Meier curves for overall

survival of risk score in TCGA cohort. (D) ROC analysis for the hypoxia risk model in the ICGC cohort. (E) Kaplan–Meier curves for overall survival of risk score in ICGC

cohort. ICGC, International Cancer Genome Consortium; ROC, receiver operating characteristic; TCGA, The Cancer Genome Atlas.

curves were used to evaluate the prognosis prediction power
of the hypoxia-related risk model shown in Figure 3B. The
model had an accuracy of 76.1% (95% CI: 0.719–0.804), and
its predictive ability was higher than those of any other clinical
characteristics (Table 1).

Based on the chosen cutoff value of 0.5, the cases were divided
into high and low hypoxia risk score group. According to the
Kaplan–Meier curve, Figure 3C illustrates that the low-risk score
group had a better overall survival outcome than the high-risk
score group (p < 0.001). Adjusting for confounding variables,
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TABLE 1 | The predictive accuracy of the hypoxia-related risk model and other

clinical characteristics.

AUC 95% CI

Age 62.9% 0.579–0.680

Gender 49.0% 0.447–0.534

Metastasis 62.9% 0.589–0.669

TNM staging 74.6% 0.701–0.791

Radiation therapy 48.5% 0.439–0.530

Hypoxia risk score 76.1% 0.719–0.804

TABLE 2 | The univariate analysis and multivariate analysis of the hypoxia

risk score.

Parameter Univariate analysis Multivariate analysis

HR 95% CI p HR 95% CI p

Age 1.033 (1.019–1.046) <0.001 1.036 (1.022–1.051) <0.001

Gender 0.941 (0.6902–1.283) 0.7 1.053 (0.767–1.446) 0.749

Metastasis 3.651 (2.68–4.974) <0.001 1.503 (0.987–2.289) 0.058

TNM staging 1.856 (1.629–2.115) <0.001 1.482 (1.241–1.770) <0.001

Radiation therapy 0.775 (0.574–1.046) 0.095 0.862 (0.636–1.167) 0.336

Hypoxia risk 4.315 (3.185–5.845) <0.001 2.884 (2.090–3.979) <0.001

score

including age, gender, metastasis, TNM staging, and radiation
therapy, Cox proportional hazards regression analysis revealed
that the hypoxia risk score was an independent predictor of RCC
patient prognosis, as shown in Table 2 [hazard ratio (HR) =

2.884; 95% CI: 2.090–3.979] (p < 0.001).
From the ICGC database, data from a cohort of 91 patients

with RCC was obtained to verify the results. As shown in
Figure 3D, the accuracy of the model was 62.5% (95% CI: 0.505–
0.745) in the validation samples. Additionally, Figure 3E also
shows that the low-risk score group had a better overall survival
outcome compared to the high-risk score group (p= 0.011).

Immune Landscape of High/Low Hypoxia
Risk Score Groups
The capability of the hypoxia-related risk model to assess the
immune microenvironment of RCC was evaluated. We utilized
the CIBERSORT method with the LM22 signature gene file to
assess the immune cell fraction between the low- and high-
risk groups. A summary of the results based on 526 patients
with RCC downloaded from TCGA database is illustrated in
Figure 4A. The proportions of immunosuppressive cells, such
as Tregs, were significantly higher in the high hypoxia risk
score groups, as shown in Figure 4B. This indicates that patients
with high hypoxia risk scores possess an immunosuppressive
microenvironment. Figures 4C–L show other types of immune
cells, which exhibited significantly different proportions between
the low- and high-risk groups.

Expression Profile of Immunomodulators
and Immunosuppressive Cytokines
The expression of 11 immunomodulators and six
immunosuppressive cytokines in 526 patients with RCC
downloaded from TCGA database is illustrated in Figure 5A.
We found that the expression of PD-1, CTLA-4, ICAM-1, TIGIT,
NKG2A, LAG-3, IFNG, and ICOS was significantly upregulated
in the high hypoxia risk score group, as shown in Figure 5B.
Immunosuppressive cytokines, such as transforming growth
factor (TGF)-β1 and IL-10, were also significantly upregulated
in the high hypoxia risk score group, as shown in Figure 5C.
However, NOS2 and NOS3 were significantly reduced in the
high-risk group. As a result, patients with RCC in the high
hypoxia risk score group may have an immunosuppressive
tumor microenvironment with upregulated immunomodulators
and immunosuppressive cytokines. Therefore, targeting hypoxia
may benefit immunotherapy in clinical practice.

DISCUSSION

Previous studies demonstrate that hypoxia and hypoxia-related
signaling pathways play important roles in the development
and progression of RCC (Schödel et al., 2016). Von Hippel–
Lindau tumor suppressor (pVHL) and HIFs are critical factors
in these pathways. With tumor cell proliferation and growth,
RCC results in hypoxia with the activated HIF-α signaling in
response to oxygen deprivation (Millet-Boureima et al., 2021).
On the other hand, the VHL gene is lost in ∼90% of ccRCC
tumors (Linehan and Ricketts, 2019). In normal renal tissue,
oxygen-dependent posttranslational modifications on HIF-2α
allow pVHL to normally recognize and mediate the proteasomal
degradation (Choueiri and Kaelin, 2020). Loss of VHL gene in
ccRCC, tumor is under pseudohypoxia state with accumulated
HIF-2α and activated HIF-1 to upregulate the expression of
hypoxia-inducible genes and increase tumor oxygenation (Haase,
2013). Hypoxia is a phenomenon in other cancers. HIF-2α
has been known to regulate tumor proliferation, metabolism,
metastasis, and resistance to chemotherapy in digestive system
cancers (Zhao et al., 2015). In melanoma, a hypoxia-related
signature has been developed to predict prognosis (Shou et al.,
2021).

In the present study, we identified 93 hypoxia-related genes
significantly associated with the outcomes of patients with
RCC. The PPI network of these selected genes significantly
included glyceraldehyde-3-phosphate dehydrogenase (GAPDH),
IL-6, phosphoglycerate kinase 1 (PGK1), enolase 1 (ENO1),
and glucokinase (GCK). GAPDH is a key enzyme involved in
glycolysis and is related to cell proliferation in RCC (Vilà et al.,
2000). IL-6 has been shown to induce drug resistance in RCC and
is associated with poor prognosis (Ishibashi et al., 2018). PGK1
is also a glycolytic enzyme that can be secreted by tumor cells
to participate in angiogenesis. ENO1, GCK, PGK1, and GAPDH
are involved in tumor energymetabolism. Functional enrichment
analysis revealed that these genes were specifically related to
the glucometabolic process, hypoxia-related pathway, carbon
metabolism, and extracellular matrix. These results suggest that
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FIGURE 4 | Immune landscape between high and low hypoxia risk score groups of renal cell carcinoma patients. (A) The abundance of immune infiltration in high-risk

and low-risk groups from TCGA cohort. (B–L) The proportions of different immune cells between high-risk and low-risk groups in TCGA cohort. TCGA, The Cancer

Genome Atlas.

hypoxia-related energy metabolism is associated with tumor
prognosis and the TME condition.

Multiple approaches have been developed to predict
the prognosis of RCC, including prognostic models and
nomograms. Tumor node metastasis classification remains the
most important identified prognostic factor (Klatte et al., 2018).
Immunohistochemical staining of Ki-67, p53, and VEGFR-1 was
shown to be significantly related to RCC outcomes. Molecular
markers have also been applied as prognostic models. The
ClearCode34-based model was developed including 34 genes
to classify the subtypes of localized ccRCC to predict patient
survival outcomes (Brooks et al., 2014). The continuous CLEAR
score (continuous linear enhanced assessment of ccRCC)
was developed based on an 18-transcript signature to predict
patients’ disease-specific survival and the response to tyrosine
kinase inhibitor (Wei et al., 2017).

We developed a hypoxia-related risk model based on hypoxia-
related genes to predict the prognosis of patients with RCC.
The model had an accuracy of 76.1% (95% CI: 0.719–0.804) and
was found to be an independent predictor in Cox proportional
hazards regression analysis. PLAUR encodes the receptor for
urokinase plasminogen activator. BCL2 encodes a membrane
protein that regulates lymphocyte apoptosis. KLF6 encodes
the zinc finger protein that acts as a tumor suppressor.
KDELR3 encodes a member of the KDEL endoplasmic reticulum
protein retention receptor family. WSB1 encodes a member
of the WD-protein subfamily. PPARGC1A encodes proteins
that regulate energy metabolism. PCK1 is a critical regulator
of gluconeogenesis. RORA participates in tumor metastasis
regulation. PLAUR, BCL2, KLF6, WSB1, PPARGC1A, and PCK1
were identified to be related to the prognosis of ccRCC (Hirata
et al., 2009; Syafruddin et al., 2019; Xu et al., 2019; Liu et al., 2020;
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FIGURE 5 | Expression profile of immunomodulators and immunosuppressive cytokines. (A) Distribution of genes of immunomodulators and immunosuppressive

cytokines. (B,C) The proportions of immunomodulators and immunosuppressive cytokines between high and low hypoxia risk groups in TCGA cohort. TCGA, The

Cancer Genome Atlas.

Shen et al., 2020; Shi et al., 2020). The functions of KDELR3 and
RORA have not been reported in RCC.

Further analysis demonstrated that the hypoxia-related risk
model was also related to the immune microenvironment of
RCC. Tregs are key players in tumor immune escape and
angiogenesis (Facciabene et al., 2012). Monocytes congregate in
the TME and differentiate into tumor-associated macrophages
(TAMs). Hypoxia has a profound effect on these cells (Lewis
and Murdoch, 2005). Tregs were discovered to be significantly
higher in the high hypoxia risk score groups, indicating
an immunosuppressive microenvironment in these patients.
Monocytes and M1 macrophages, which can function as
efficient immune effector cells and promote antitumor immune
responses, were suppressed in patients with high hypoxia risk
scores. Additionally, our results showed that PD-1 and CTLA-
4 were significantly upregulated in the high hypoxia risk score
groups. However, CD8+ T cells and activated natural killer
cells were higher in the high hypoxia risk score groups. These

results indicate that hypoxia condition has multiple effects on
the immune microenvironment. The hypoxia-related risk model
may be useful for predicting the immunotherapy response.
Improving oxygen deficiency may decrease immunosuppression
in the TME of RCC, which may benefit immunotherapy.

It remains difficult to predict or explain the clinical
response rate of RCC immunotherapy in practice. However,
hypoxia has been reported to lead to immunosuppression
and tumor progression (Li et al., 2018). Hypoxia-induced
changes in the TME have also been reported as a barrier
to immunotherapy in pancreatic adenocarcinoma (Daniel
et al., 2019). Furthermore, inhibition of hypoxic stress-
relevant pathways can enhance antitumor immunity and
improve the response rate of immunotherapy. mTOR inhibitors
are applied in current therapies for RCC to target HIF
translation. VEGFA inhibitors target the function of HIF-
target genes. This may help prevent drug resistance and
enhance immunotherapy.
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There were some limitations to this study. First, the results
are based on data collected from TCGA database. Although the
results were verified in the ICGC database with 91 cases, the
potential for selection bias cannot be avoided, and it is impossible
to collect all clinical information from the patients. Second, the
results are descriptive, and in vitro or in vivo experiments were
not performed to clarify the exact immune microenvironment
of RCC. Third, further clinical trials are needed to validate the
prognostic prediction power of the hypoxia-related risk model.
Last but not least, the comparison between different tools for
predicting the prognosis of RCC, which may lead to a more
objective evaluation of the novel hypoxia-related risk model, is
not included in our study. Despite these limitations and lack of
further validation in more studies, the presented findings applied
a hypoxia-related risk model in RCC prognosis predicting and
statistically proved its performance.

We developed a hypoxia-related risk model based on
eight identified hypoxia-related genes. The model was
validated as an independent predictor of the prognosis of
patients with RCC. We hope that the hypoxia-related risk
model can be used as a prognostic biomarker in patients
with RCC, which may be helpful for underpinning clinical
decision-making in the future. Moreover, the hypoxia-related
risk model may reflect the immune microenvironment
of RCC and help improve the overall clinical response
to immunotherapy.
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