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Growth differentiation factor 15 (GDF15) is a stress molecule produced in response to

mitochondrial, metabolic and inflammatory stress with a number of beneficial effects on

metabolism. However, at the level of skeletal muscle it is still unclear whether GDF15 is

beneficial or detrimental. The aim of the study was to analyse the levels of circulating

GDF15 in people of different age, characterized by different level of physical activity

and to seek for correlation with hematological parameters related to inflammation. The

plasma concentration of GDF15 was determined in a total of 228 subjects in the age

range from 18 to 83 years. These subjects were recruited and divided into three different

groups based on the level of physical activity: inactive patients with lower limb mobility

impairment, active subjects represented by amateur endurance cyclists, and healthy

controls taken from the general population. Cyclists were sampled before and after

a strenuous physical bout (long distance cycling race). The plasma levels of GDF15

increase with age and are inversely associated with active lifestyle. In particular, at any

age, circulating GDF15 is significantly higher in inactive patients and significantly lower in

active people, such as cyclists before the race, with respect to control subjects. However,

the strenuous physical exercise causes in cyclists a dramatic increase of GDF15 plasma

levels, that after the race are similar to that of patients. Moreover, GDF15 plasma levels

significantly correlate with quadriceps torque in patients and with the number of total

leukocytes, neutrophils and lymphocytes in both cyclists (before and after race) and

patients. Taken together, our data indicate that GDF15 is associated with decreased

muscle performance and increased inflammation.

Keywords: GDF15, physical activity, sedentarity, inflammation, skeletal muscle, healthy aging

INTRODUCTION

Growth differentiation factor 15 (GDF15), also known as macrophage inhibitory cytokine 1
(MIC-1), is a stress responsive member of the transforming growth factor-β (TGF-β) cytokine
superfamily, discovered in 1997 (1). GDF15 modulates appetite and energy metabolism possibly
by regulating mitochondrial functions, such as mitochondrial biogenesis, thermogenesis, and fatty
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acid metabolism (2). Interestingly, mice overexpressing human
GDF15 display increased life span (3). However, the role
of GDF15 in promoting health or disease is still debated.
There are in fact several evidences indicating that GDF15
levels are associated to progression of many diseases, such as
cardiovascular diseases, insulin resistance and type 2 diabetes,
neurodegeneration, renal chronic disease and cancer, but also
to the limitation of the damage caused by stress and injuries
(4–8). Accordingly, GDF15 has recently emerged as a potential
biomarker for the aging process and many age-related diseases
(2, 9–11). As far as muscle atrophy and sarcopenia, there is debate
on whether GDF15 is to be considered protective or detrimental.
Recent data from animal models showed that GDF15 is able to
induce muscle fiber apoptosis (12, 13), but also the ablation of
GDF15 resulted in an amplified skeletal muscle post exercise
stress response, with a bigger increase of markers of muscle
stress (Atf3, Atf6, and Xbp1s) (14). In humans, circulating
GDF15 levels are significantly higher in subjects with sarcopenia
or muscle atrophy (15–17) with respect to healthy subjects of
comparable age. Recent studies demonstrate that GDF15 levels
are negatively correlated with skeletal muscle mass index, hand-
grip strength, muscle cross-sectional area and thickness (15, 18).
Moreover, the loss of muscle mass observed in cachectic patients
is mediated at least in part by the activity of GDF15 (19). On
the other hand, it is known that physical exercise can effectively
combat muscle atrophy, but is characterized by an increase in
the level of circulating GDF15 (20–22). This could be explained
by the fact that, as recently proposed, skeletal muscle is not the
primary source of GDF15 (22). Finally, it is known that GDF15 is
a stress molecule that is produced in response to mitochondrial,
metabolic and inflammatory stresses (2, 23). To this regard, it
is worth noting that a chronic state of low-grade inflammation,
termed inflammaging, characterizes old people and is at the basis
of many age-related diseases (24–26).

The aim of this study is to analyse the levels of circulating
GDF15 in people of different age characterized by different levels
of physical activity and to seek for correlation with hematological
parameters related to inflammation. To this purpose, we studied
three groups of subjects: 1. patients with chronic lower limb
mobility impairment as a model of physical inactivity; 2. a group
of amateur endurance cyclists as a model of physical activity; 3.
and, age-matched subjects recruited from the general population,
not actively exercising. Cyclists were sampled before and after
a strenuous physical bout (a 130-km long distance road cycling
race with a total uphill gradient of 1,871 m).

METHODS

Subjects
In the present study, a total of 228 subjects in the age range
from 18 to 83 years were recruited and divided into three
different groups based on the level of physical activity: patients
with lower limb mobility impairment (hereinafter patients),
cyclists and controls. Patients suffered of coxarthrosis or hip
dysplasia, causing them to be chronically unable to walk or
exercising, and were therefore considered a model for prolonged
physical inactivity. All subjects were further divided according
to their age into the following groups: young, adult, late

TABLE 1 | Experimental sample description.

Cyclists Controls Patients

n◦ Young

Age range

(average, ±SD)

10 (2F, 8M)

18–39 yrs

(30.3, ± 6.0)

15 (9F, 6M)

18–39 yrs

(29.1, ± 7.6)

15 (5F, 10M)

24–39 yrs

(33.0, ± 4.8)

n◦ Adult

Age range

(average, ±SD)

32 (4F, 28M)

40–60 yrs

(49.8, ± 5.8)

21 (5F, 16M)

41–60 yrs

(51.7, ± 6.5)

20 (8F, 12M)

43–60 yrs

(51.4, ± 5.6)

n◦ Late adult

Age range

(average, ±SD)

5 (0F, 5M)

61–71 yrs

(64.6, ± 6.0)

32 (14F, 18M)

63–71 yrs

(67.7, ± 2.8)

17 (12F, 5M)

61–70 yrs

(65.3, ± 2.5)

n◦ Old

Age range

(average, ±SD)

____ 43 (13F, 30M)

72–82 yrs

(75.6, ± 3.1)

12 (7F, 5M)

73–83 yrs

(79.6, ± 3.5)

Subjects are divided in four groups (in bold) according their age: Young, Adult, Late adult,

Old. Each age group includes subjects with different levels of physical activity: Cyclists,

Controls, Patients. The number (n◦) of the subjects for each groups are reported in bold.

adult, old (Table 1). All subjects were enrolled in Italy in the
framework of the following projects: the EU project MYOAGE
for patients and controls, the “Novecolli Life” project promoted
by Italian National Transplant Center for cyclists. The study
protocols were approved by the Ethical Committee of Istituto
Ortopedico Rizzoli, Bologna, Italy (ethical clearance no. 10823
issued on April 26, 2010) and by the Ethical Committees of
the Italian Institute of Health (ethical clearance prot.no. 14/420
issued on March 7, 2014), respectively. All subjects signed an
informed consent before entering the study. Age (>18 years)
and ability to provide informed consent were inclusion criteria.
Exclusion criteria were the presence of chronic kidney or liver
diseases, unstable cardiovascular pathology, bleeding disorders,
diabetes, neuromuscular disorders, systemic infections, major
psychological problems, malignant neoplasia and/or a current
therapy with immune suppressor drugs (like cyclosporine,
methotrexate, glucocorticoids, etc.) or anticoagulant drugs,
history of alcohol or drug abuse.

The Race
Briefly, the race, known as “Nove Colli,” is a long-distance cycling
road race that takes place in Romagna (Forlì-Cesena and Rimini,
Italy). The characteristics of the route were: length, 130 km;
total uphill gradient, 1,871m; uphill riding, 50 km over 4 hills;
downhill riding, 46 km; flat terrain, 34 km; maximum riding time
allowed, 7.5 h. For further details see Mosconi et al. (27, 28).

Sampling and Data Collection
For patients and controls, blood was drawn in the morning
after overnight fasting. All samples were processed immediately
to collect plasma. For cyclists, the collection of venous blood
(30mL) samples was done at three different times: time 1 (T1),
the day before the race, time 2 (T2), immediately after crossing
the finish line, and time 3 (T3), 18–24 h after competing.

Plasma was obtained within 4 h from venipuncture by
centrifugation at 2,000 g for 20min at 4◦C, rapidly frozen and
stored at−80◦C.

Blood cells and creatinine were measured by standard
biochemical assays. White blood cell counts for cyclists
(both T1 and T2) and patients divided for age group are
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presented in Supplementary Table 1. For cyclists, both at T1
and T2, three markers of cellular inflammation were calculated
(Supplementary Table 2) as described below. The neutrophil-
lymphocyte ratio (NLR) was calculated on the basis of absolute
neutrophil (N; ×103/microL) and lymphocyte (L; ×103/microL)
blood counts, using the formula: NLR = N/L. The platelet-
lymphocyte ratio (PLR) was calculated on the basis of peripheral
platelet (P; ×103/microLiter) and lymphocyte (L; ×103/microL)
blood counts, using the formula: PLR = P/L. The systemic
immune-inflammation index (SII) was calculated on the basis
of peripheral platelet (P), neutrophil (N), and lymphocyte (L)
blood counts, using the following formula: SII= P ∗ N/L. All the
inflammatory markers are ratios thus do not have a unit (29, 30).

Estimated glomerular filtration rate (eGFR) was calculated
according to CKD-EPI (Chronic Kidney Disease Epidemiology
Collaboration) equation based on serum creatinine, age, sex

and ethnicity. (31). Body mass index (BMI) was calculated
as weight in kilograms divided by the square of the height
in meters (kg/m2). For patients, maximal quadriceps torque
and vastus lateralis thickness were measured by using a
Handifor R© dynamometer and portable ultrasound (Mylab25,
Esaote), respectively, as reported in (32).

GDF15 concentration was determined in plasma samples
by ELISA assay using commercial kits, R&D (DGD150),
according to the manufacturer’s instructions. All the samples
were measured in duplicate and the analyses were performed in a
blind setup.

Statistical Analysis
The data were analyzed with non-parametric tests since they did
not follow a normal distribution. In particular, the comparisons
among cyclists, controls and patients in the different age groups

FIGURE 1 | Plasma levels of GDF15 increase with age and are negatively associated with active lifestyle. (A) Regression analysis of circulating GDF15 and age in

cyclists, controls and patients. (B–D) Circulating plasma levels of GDF15 in young cyclists (T1), controls and patients (B); in adult cyclists (T1), controls and patients

(C); in late adult cyclists (T1), controls and patients (D). Data are expressed as mean ± SE and p-values refer to Kruskal-Wallis test. (E) Circulating plasma levels of

GDF15 in old controls and patients, data are expressed as mean ± SE and p-values refer to Mann-Whitney test. (F) Regression analysis of circulating GDF15 vs.

quadriceps maximal torque normalized for age and vastus lateralis muscle thickness in patients.
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FIGURE 2 | GDF15 plasma levels in cyclists before and after the race. (A) The differences among plasma GDF15 levels before the race (T1), immediately after the

race (T2), and after 18–24 h from the race (T3) were analyzed. Data are expressed as mean ± SE p-values refer to Friedman test. (B–D) Circulating plasma levels of

GDF15 in young cyclists (T2), controls and patients (B); in adult cyclists (T2), controls and patients (C); in late adult cyclists (T2), controls and patients (D). Data are

expressed as mean ± SE and p-values refer to Kruskal-Wallis test.

(young, adult, late adult) were performed by using Kruskal-
Wallis test with a Steel post-hoc test, while the comparison
between patients and controls in old group was performed by
Mann-Withney test. To compare the GDF15 levels in cyclists at
different times of the race (T1, T2, T3) we performed a Friedman
test. The relationship among GDF15 levels and age, white blood
cells, hematological markers of cellular inflammation (NLR, PLR,
SII), creatinine, eGFR, and quadriceps torque were calculated
by Spearman rank correlation test and regression analysis.
Significance was accepted as p< 0.05. Data are expressed asmean
± SE. All data were analyzed using the SPSS 25.0 for Windows
software (SPSS Inc.; Chicago, IL, USA).

RESULTS

Plasma Levels of GDF15 Increase With Age
and Are Negatively Associated With Active
Lifestyle
Linear regression analysis showed that GDF15 plasma levels
were significantly associated with age for all the 228 subjects
(Figure 1A). Spearman rank correlation coefficient and p-value
are: ρ = 0.741, p < 0.0001. This age-related increase of plasma
GDF15 was evident irrespective to the level of physical activity of
the subjects, confirming previous data on GDF15 and age (10).
However, when the subjects were subdivided on the basis of their

age and level of physical activity (as described in Materials and
Methods Section), the plasma levels of GDF15 were significantly
higher in inactive patients and significantly lower in active people
such as cyclists with respect to control subjects, in young, adult
and late adult people (Figures 1B–D). For ages over 72 years,
only patients and controls were available but also in this case the
same trend was observed (Figure 1E). The relationship between
physical activity and GDF15 was also analyzed considering BMI
as a covariate, and the results remained the same (data not
shown). Therefore, it seems that the level of physical activity
determines the plasma levels of GDF15 at any age. For patients,
the values of maximal quadriceps torque normalized on vastus
lateralis muscle thickness were available, and these values,
considering age as a covariate, resulted inversely correlated to
GDF15 plasma levels; Spearman rank correlation coefficient and
p-value are: ρ = −0.449 and p < 0.0001 (Figure 1F). Similar
results were obtained when quadriceps torque was normalized
on total BMI (data not shown). However, as already reported,
a strenuous physical exercise (in our case, the long-distance
cycling race) is able to cause a dramatic increase of plasma
GDF15, as evidenced by the difference between T2 (immediately
after the race) and T1 (before the race) (Figure 2A). After 18–
24 h from the race (T3), the levels of GDF15 tend to return
at baseline level, even if these levels remain significantly higher
than T1 (Figure 2A). We also compared the levels of GDF15
at T2 with those observed in controls and patients of similar
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FIGURE 3 | Regression analysis of GDF15 plasma levels with hematological parameters. (A–C) Regression analysis of circulating GDF15 levels and leukocytes (A),

neutrophils (B), lymphocytes (C), in cyclists before the race (T1), immediately after the race (T2), and in patients.

age. In the group of young subjects GDF15 levels resulted
significantly higher with respect to controls and similar to
patients (Figure 2B), while in the adult group the GDF15 levels
resulted significantly higher with respect to controls and patients
(Figure 2C). In the group of late adults, no difference was present
(Figure 2D).

Relationship Among Plasma Levels of
GDF15 With Hematological Parameters
Related to the Inflammatory Response and
Renal Function
It is known that GDF15 is responsive to mitochondrial
stress and inflammation, two conditions that apply under
strenuous physical exercise (33). We then sought for associations
with hematological parameters associated to an inflammatory
response. In cyclists, before (T1) and immediately after (T2) the
race, regression analysis has shown an association between white
blood cells and GDF15 plasma levels (Figures 3A–C). Moreover,

GDF15 plasma levels significantly and positively correlated with
the number of total leukocytes (T1: ρ = 0.311 and p = 0.036,
T2: ρ = 0.343 and p = 0.019) (Figure 3A) and neutrophils (T1:
ρ = 0.346 and p = 0.018, T2: ρ = 0.621 and p < 0.0001)
(Figure 3B), and negatively with lymphocytes (T1: ρ = −0.332
and p = 0.024, T2: ρ = −0.613) (Figure 3C). Interestingly, the
same associations were found for patients (Figures 3A–C) and in
this case the Spearman rank correlation coefficients were similar
to those observed for cyclists’ T2 (leukocytes: ρ = 0.388 and
p = 0.001; neutrophils: ρ = 0.519 and p < 0.0001; lymphocytes:
ρ =−0.536 and p< 0.0001). Therefore, it seems that a strenuous

physical exercise produces a transient state of stress that, as far as
GDF15 and inflammatory parameters, is similar to that present
in patients.

Recently, several studies have proposed NLR, PLR and SII

as white blood-cell-based inflammatory markers. The levels of
these inflammatory indices are in fact elevated in individuals
with chronic inflammation and several age-related pathologies
(29, 30). To evaluate whether strenuous exercise influences
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FIGURE 4 | Regression analysis of GDF15 plasma levels with hematological markers of cellular inflammation in cyclists before (T1) and immediately after (T2) the race.

(A) Regression analysis of circulating GDF15 levels and neutrophil/lymphocyte ratio (NLR); (B) regression analysis of circulating GDF15 levels and platelet/lymphocyte

ratio (PLR); (C) regression analysis of circulating GDF15 levels and systemic immune-inflammation index (SII).

the relationship between GDF15 plasma levels and these
inflammatory markers, a regression analysis in cyclists at T1 and
T2 was performed. We observed significant association between

GDF15 and NLR, and GDF15 and SII, both at T1 and T2
(Figures 4A,C); while the association between GDF15 and PLR
is present only at T2 (Figure 4B). Interestingly, these associations
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FIGURE 5 | Regression analysis of GDF15 plasma levels with estimated glomerular filtration rate (eGFR) and creatinine. (A,B) Regression analysis of circulating

GDF15 and eGFR (A), creatinine (B) in cyclists before the race (T1), immediately after the race (T2).

are stronger at T2, as also confirmed by Spearman’s correlation
analysis. In this case in fact, only at T2 the levels of GDF15
significantly correlate with these markers (NLR: ρ = 0.616 and
p < 0.0001; PLR: ρ = 0.567 and p < 0.0001; SII: ρ = 0.580
and p < 0.0001).

It has been recently reported that upon metformin treatment,
GDF15 is increased in distal intestine and kidney (34), and an
intense sport exercise induces acute renal stress (35), with an

increase in creatinine levels and a decline of estimated glomerular

filtration rate (eGFR), as indices of renal function (36). We
then evaluated in cyclists at T1 and T2 the possible relationship
among GDF15 levels, creatinine, and eGFR. We observed that
GDF15 levels were associated with creatinine (Figure 5A) and
eGFR (Figure 5B). Furthermore, according to the Spearman’s
correlation analysis, GDF15 plasma levels, both at T1 and
T2, positively correlated with creatinine (T1: ρ = 0.316 and
p = 0.032, T2: ρ = 0.422 and p = 0.003), and negatively with

eGFR (T1: ρ = −0.506 and p < 0.0001, T2: ρ = −0.486 and
p = 0.001). These results suggest that the elevation of GDF15
observed during a strenuous physical exercise is associated with
renal stress.

DISCUSSION

GDF15 is a cytokine that was considered expressed only by a
limited number of tissues, such as liver, lung and kidney, as
well as by the placental trophoblast (37). More recently it has
been demonstrated that GDF15 is responsive to mitochondrial
stresses (38), and, according to the theory that aging is associated
with increased mitochondrial dysfunction, elevated circulating
levels of GDF15 are found in elderly people and centenarians
(9–11). As it is known that strenuous exercise induces GDF15
expression (20–22), it has been hypothesized that also skeletal
muscle can be a source of this cytokine. Accordingly, GDF15 is
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expressed in muscles from mouse models of aging and inactivity
(12, 14). However, this idea has been recently challenged, as
the concentrations of GDF15 during a physical exercise resulted
similar in arterial and venous blood across the exercised leg
(22). Our results are in favor of the idea that skeletal muscle
is not the primary source of GDF15, as its basal levels are
lower in actively exercising people like cyclists with respect to
age-matched controls. However, this does not exclude at all
that skeletal muscles can produce a little amount of GDF15.
Moreover, after a bout of strenuous physical activity, the levels of
GDF15 are correlated with markers of kidney injury, suggesting
that, according to literature data (34), the elevation of GDF15
may be a response to an injury to other organs, including
the kidney.

Whether GDF15 is beneficial or detrimental for skeletal
muscle is still debated. It has been previously reported that
GDF15 causes anorexia/cachexia via its impact on energy
metabolism (18) and, accordingly, it is found inversely associated
with muscle mass (39). Moreover, even though its receptor,
GDNF family receptor α-like (GFRAL), has not been found
expressed in muscle (40) GDF15 is able to induce muscle
fiber apoptosis via phosphorylation of STAT3 (13). On the
other side, as mentioned, the GDF15 knockout determines
the elevation of markers of muscle stress (Atf3, Atf6, and
Xbp1s) upon exercise (14). Our data suggest that GDF15 is
inversely associated with muscle health, as it is elevated in
patients with lower limb mobility impairment and inversely
associated with their quadriceps maximal torque. It is at present
unclear whether this association is causal or not. In order to
reconcile our data with those demonstrating a beneficial role for
GDF15, we can hypothesize that transient peaks of GDF15 are
stimulatory/homeostatic, whereas long-lasting elevated systemic
levels can turn detrimental. This could be the case of patients with
lower limb mobility impairment.

Another alternative possibility is that GDF15 acts in synergy
or in opposition with other factors. Interestingly, some samples
from cyclists used in this study were previously assayed for the
expression of inflammatory mediators such as IL-6, TNF-α, and
IFN-γ that resulted dramatically increased after the race (33). To
this regard, it is worth noting that GDF15 is also responsive to
inflammation, mostly via p53 (41). It has indeed been shown
that GDF15 is a direct target gene of p53. Recently, it has
been demonstrated that GDF15 is necessary for tolerance to
inflammation induced by viral or bacterial infections (23). It has
also a clear anti-inflammatory activity in experimental models
of liver injury and myocardial infarction (42, 43). In particular,
GDF15 attenuates the LPS-induced production of classical pro-
inflammatory cytokines such as TNF-a, IL-1β and IL-6 in Kupffer
cells (42), and is able to inhibit the chemokine-activated leukocyte
arrest on the myocardial endothelium of infarcted heart (43).
Here we show that GDF15 levels are clearly associated with
hematological parameters related to inflammation, i.e., increased
number of leukocytes (in particular neutrophils) and decreased
number of lymphocytes, in both cyclists and patients. Thus, it is
possible that the net effect of GDF15 on muscle health depends
on the fine interaction with inflammatory mediators.

Given its responsiveness to inflammation and reported anti-
inflammatory effects, the elevated levels of GDF15 can be

interpreted as an automatic mechanism to blunt the detrimental
effects of inflammation (acute like a strenuous bout of physical
activity, or chronic like that present in inactive patients). It has
been previously reported that a chronic, subclinical inflammation
(inflammaging) is a typical feature of old people. Therefore, it
is tempting to speculate that GDF15 is elevated in the elderly at
least in part as a consequence of inflammaging, and that GDF15
could be added to the list of anti-inflammagingmediators. Elderly
people are also characterized by a loss of muscle mass and power
(44), and we have reported that GDF15 levels are very high in
old people and centenarians (10). Therefore, due to its wasting
activity on muscle, it is thus conceivable that the elevated levels
of GDF15 in elderly people and particularly in the oldest old can
be a trait-d’union between inflammaging and the observed loss of
muscle mass and power.

Finally, it can be hypothesized that people with less
inflammaging have consequently a lower production of GDF15.
A corollary of this hypothesis is that the positive effects of
GDF15 are likely not enough to overcome the detrimental
ones brought by inflammaging. These considerations possibly
indicate GDF15 as a target for future pharmacological or life-
style interventions to implement healthy aging and longevity,
whose goal would be to obtain the beneficial effects of GDF15
avoiding the detrimental ones. Future studies are needed in
this perspective.
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Obesity, similar to aging, is associated with chronic low-grade systemic inflammation,

known as inflammaging, and represents a significantly higher risk for developing chronic

diseases typical of old age. Immune cells are recruited to the obese adipose tissue

(AT) by chemotactic molecules secreted by non-immune and immune cells in the AT,

both contributing to the release of several pro-inflammatory mediators that fuel local and

systemic inflammation, to the refractory response of immune cells to further in vivo and in

vitro stimulation and to the induction of autoimmune B cells with potentially pathogenic

repertoires. In terms of molecular mechanisms involved, leptin, an adipokine secreted

primarily by adipocytes, has been proposed to be involved in the reduced generation

of protective antibodies, and in the increased generation of autoimmune antibodies,

further supporting the concept that obesity accelerates age defects. Leptin has also

been shown to induce intrinsic B cell inflammation and B cell immunosenescence. The

results presented in this review highlight the importance of weight reduction programs

to improve immunity and reduce the risk for developing chronic diseases in obese and

older individuals.
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INTRODUCTION

Obesity, defined as body-mass index (BMI) ≥ 30 kg/m2 by CDC and WHO, is an increasing
health concern that affects young (1) and older adults (2), and has reached pandemic proportions.
Individuals with obesity are at higher risk for developing chronic diseases typical of old age
such as cardiovascular disease (3), Type-2 Diabetes Mellitus (T2DM) (4–6), cancer (7), psoriasis
(8), atherosclerosis (9), inflammatory bowel disease (10). Obesity-induced metabolic changes
cause tissue dysfunction, disruption of the integrity of lymphoid tissues, and decreased leukocyte
development and function, all leading to reduced protective immunity. One of the reasons
is because obesity, similar to aging, is an inflammatory condition associated with chronic
low-grade systemic inflammation, inflammaging (11), which is negatively associated with a
functional immune system, healthspan and longevity in both mice and humans (12). All immune
cells contribute to the inflammatory status of obese individuals, and increased frequencies of
pro-inflammatory macrophages (13, 14), T cells (15, 16), and B cells (17, 18) have been reported.
Decreased frequencies of regulatory B cells have also been shown in the blood of individuals with
obesity (19).
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THE OBESE ADIPOSE TISSUE (AT)

Obesity is characterized by increased mass of the AT. The
AT is a storage of nutrients and an active endocrine and
immunological tissue. The AT is composed of adipocytes
and a mixture of mesenchymal, endothelial and immune
cells, known as the Stromal Vascular Fraction (SVF) (17,
20). Under conditions of over-nutrition, the AT changes
from a condition of insulin sensitivity (IS) to a condition
of insulin resistance (IR) that is occurring in parallel with
the expansion of adipocyte mass, remodeling of extracellular
matrix components (collagens, elastins and the associated
blood vasculature) and increased secretion of pro-inflammatory
mediators (cytokines, chemokines, adipokines, leukotrienes),
involved in the recruitment of immune cells to the AT. Chronic
inflammation in the AT contributes to inflammaging and leads
to increased IR in obesity (21). IR also increases with age (22,
23), and is associated with high serum levels of glucose and
free fatty acids (FFAs), and markers of metabolic inflammation,
metaflammation (24), that fuels inflammaging and promotes
aging, diseases and death.

Altered innate and adaptive immune responses occur in
the AT under conditions of over-nutrition (17, 20). Mouse
(25, 26) and human (27, 28) results have shown that immune
cells are recruited to the obese AT by chemotactic molecules
secreted by non-immune and immune cells in the AT, generating
a positive feedback loop in which a large number of pro-
inflammatory mediators are secreted, contributing to local and
systemic inflammation. The obese AT of mice (25, 26) and
humans (28, 29) also secretes antibodies that have been shown
to be pathogenic (25) in mouse studies. These antibodies are
IgG2c, a subclass associated with murine autoimmunity (26).
These antibodies are specific for AT-derived “self ” proteins
and nucleic acids, including dsDNA, found increased in the
plasma of elderly individuals, suggesting that obesity may
drive the secretion of autoimmune antibodies during aging.
This may occur even in elderly lean individuals, due to
the deposition of fat on internal organs which is known to
increase during aging. An age-associated increase in ectopic
deposit of triglycerides in several tissues (liver, muscle, heart,
pancreas, kidney) (30–34) and blood vessels (35) has indeed been
reported and the word “TOFI” (thin-outside-fat-inside) has been
coined to identify lean individuals with abnormal abdominal
adiposity and inflammaging. Moreover, age-associated changes
in abundance, distribution and cellular composition of the
AT have been reported and shown to accelerate the onset
of age-associated diseases (36, 37). Computational tomography
scans have shown that with age subcutaneous AT (SAT) mass
decreases, whereas visceral AT (VAT) mass increases (38).
SAT and VAT are biologically distinct in secretion of pro-
inflammatory mediators, with VAT being more inflammatory.
Furthermore, secretion of adipokines by cells in the AT is
regulated by nutrients, and these responses are increased with
aging (39).

Senescent cells accumulate in the AT of aging mice and
humans (40). Senescent cells are characterized by the irreversible
arrest of cell proliferation due to different types of stress,

and by the secretion of factors that constitute the senescence-
associated secretory phenotype (SASP), consisting of soluble pro-
inflammatory molecules, soluble receptors, growth factors and
extracellular matrix macromolecules (41). The age-dependent
accumulation of senescent cells is a favorable environment for the
development of inflammatory-based age-associated diseases and
for this reason several strategies have been developed to decrease
accumulation of senescent cells in tissues and suppress the SASP
with the aim to delay the onset of age-associated diseases (42, 43).

EFFECTS OF OBESITY ON MOUSE B
CELLS

Obesity, similar to aging, impairs several aspects of B cell biology.
In mice fed a high-fat diet (HFD), early B cell development is
characterized by decreased frequencies of B cell subsets in the
bone marrow (BM) and reduced expression of early lymphoid
commitmentmarkers such as the B cell transcription factor PAX5
(44). Mechanistic experiments using co-cultures of BM cells
with the OP9 stromal cell line have shown that BM adipocytes
secrete soluble factors that drive the development of myeloid-
derived suppressor cells (MDSCs) (45, 46). MDSC inhibition of
B lymphopoiesis is mediated by MDSC-derived IL-1β and the
inflammatory molecule complex called calprotectin, suggesting
that these may be therapeutic targets for the restoration of B
lymphoiesis in obesity and aging.

Splenic B cell function is also affected by HFD. Initial studies
have indicated thatmice fedHFD secretemore pro-inflammatory
cytokines (IL-6/TNF-α) than B cells from mice fed normal-fat
diet (NFD), thus contributing to the higher levels of systemic
inflammation observed in mice fed HFD (47) and in aged mice
(48). B cells from HFD mice, in turn, induce changes in the AT
and promote adipocyte hyperthropy, hyperglycemia and IR and
induce T cell and macrophage inflammation (25). Mice lacking B
cells (µMTmice) (49) have reduced IR and glucose intolerance.

Splenic B cells from obese mice have been shown to be
pathogenic, as demonstrated by adoptive transfer experiments
in which B cells from HFD mice, transferred into Bnull mice,
induce IR and glucose intolerance only if recipients are on
HFD, suggesting that the development and/or maintenance of
pathogenic B cells requires exposure to HFD (25). B cells from
HFD mice influence the function of T cells and macrophages
and induce secretion of IFN-γ and TNF-α, respectively, two
crucial cytokines involved in the establishment of IR. IgG
antibodies isolated from the serum of HFD, but not NFD, mice
are mediators of IR and glucose intolerance and induce FcγR-
mediated activation of macrophages and consequent TNF-α
secretion. B cell depletion using anti-CD20 antibodies decreases
obesity-induced glucose abnormalities and ameliorates metabolic
disease. All these results were among the first to show the
fundamental role of B cells in the pathogenesis of obesity-
associated IR.

While the spontaneous secretion of pathogenic IgG antibodies
increases in the spleen of HFD mice (25), as well as in the spleen
of aged mice (26), the secretion of protective IgG antibodies
decreases (44, 50). It has been shown that even mice fed a
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Western Diet (that provides a moderate but lower quantity
of fat than the HFD), showed significantly lower influenza-
specific titers as compared to NFD mice after infection with the
influenza virus A/Puerto Rico/8/34 (44). In the same study, it was
shown that mice fed HFD together with DHA (docosahexaenoic
acid), an essential FA with immunostimulatory function, whose
serum levels are low in obesity, had improved influenza-specific
antibody responses, suggesting that DHA may be used as a
therapeutic strategy to increase humoral immunity.

Also, mucosal B cells from HFD mice regulate obesity-
induced IR (51). IgA secreting B cells, as well as secreted IgA
antibodies, are significantly reduced in the colon of HFD vs.
NFD mice, similar to what has been observed in the colon
of aged mice (52). IgA deficiency, specifically in intestinal B
cells, deteriorates glucose homeostasis in HFD but not NFD
mice, further confirming that the negative regulation of glucose
metabolism needs exposure to HFD. IgA antibodies control host-
microbiome homeostasis and provide a barrier for microbial
and/or ingested antigens that may translocate from the gut into
the blood, inducing inflammatory responses. IgA antibodies also
regulate lipid absorption from the gut.

The characterization of potentially pathogenic B cell
repertoires, performed using high-throughput Ig sequencing
from several tissues of mice fed HFD and NFD, has shown
that HFD significantly changes the biochemical properties of Ig
heavy-chain complementarity-determining region-3 (CDRH3)
sequences, with IgA antibodies being characterized by shorter
and highly hydrophobic CDRH3 (53). HFD is also associated
with higher frequencies of unmutated IgA. These changes occur
in B cells from the gut and the AT, suggesting the possibility of a
gastrointestinal-AT immune axis shaped by HFD. Surprisingly,
similar gene rearrangements were found in B cells from the gut,
AT and peritoneal cavity of several individual mice, suggesting
that affinity maturation may have occurred in these tissues in a
similar antigen-specific way.

B cells infiltrate the AT under obesity conditions (25, 26,
54), recruited by several chemotactic signals including those
generated by the interaction of the leukotriene B4 with its
receptor. Inhibition of this interaction has been shown to
reduce B cell recruitment and activation and to mitigate the
contribution of B cells to local inflammation and IR (55).
AT-associated B cells are highly inflammatory and secrete
several pro-inflammatory mediators (cytokines, chemokines,
adipokines). It has recently been shown that aging further
increases the expansion of these AT resident B cells, through
the activation of the NLRP3 inflammasome, a major regulator of
inflammaging and age-associated metabolic disorders, likely due
to AT-associated metabolic and mitochondria dysfunction and
increased production of mitochondrial reactive oxygen species
(54). Our studies on mice fed HFD have confirmed the above
findings and have shown that the increased size of the AT,
increased infiltration of immune cells and increased secretion
of pro-inflammatory mediators induce a powerful feed-forward
loop of inflammation, both locally and systemically, that are
responsible for the refractory response of immune cells to further
in vivo and in vitro stimulation. In particular, we have shown
that the AT directly impairs B cell function by changing the

composition of the B cell pool and inducing higher frequencies
of pro-inflammatory B cells (26), and similar results have been
observed in old mice (56).

EFFECTS OF OBESITY ON HUMAN B
CELLS

Studies on B cell development in the human BM have shown that
soluble factors secreted by the adipocytes inhibit early stages of
B lymphopoiesis, with the inhibition occurring at the common
lymphoid progenitor to pre/pro-B cell stage (57), suggesting that
the age-related decline in B lymphopoiesis is due at least in part
to an increase in BM adipocytes, and an increase in adipocyte-
derived factors (IL-1β) that directly inhibit B lymphopoiesis.

Obesity decreases B cell function in humans as well, and it
is associated with impaired B cell responses to infections and
vaccines (58–60). Our results in humans have demonstrated that
obesity-associated defects in class switch recombination (CSR)
and somatic hypermutation (SHM), two processes necessary
for the generation of class switched high affinity secondary
antibodies (61), are due to reduced expression of activation-
induced cytidine deaminase (AID), the enzyme of CSR and SHM,
and E47, encoded by the E2A gene, a key transcription factor
regulating AID (62). Both AID and E47 are decreased in B cells
isolated from the blood of obese young and elderly individuals as
compared to lean controls. Importantly, the response of elderly
lean individuals was not different from that of young obese
individuals, supporting the hypothesis that obesity accelerates
age defects in B cells. At least one mechanisms involved in the
decrease of AID/E47 in B cells from obese vs. lean individuals
was the decreased expression of phosphorylated-AMPK (59), up-
stream of phosphorylated-p38 MAPK, crucial for E47 activation,
as previously shown in murine B cells (63). Another mechanism
was associated with the increased expression of the inflammatory
micro-RNA (miR)-155 and miR-16 in unstimulated B cells
from obese vs. lean individuals, with miR-155 binding the 3’-
untranslated region (3’-UTR) of AIDmRNA andmiR-16 binding
the 3’-UTR of E47mRNA, inducing their degradation (59). These
results recapitulate what we have initially shown in our studies on
the effects of aging on B cell function in which both AID and E47
were found decreased in mitogen-stimulated B cells from elderly
as compared to young individuals (64).

Leptin has been proposed to be at least one molecular
mechanism involved in dysfunctional B cell function in
individuals with obesity. Leptin is an adipokine secreted
primarily by the adipocytes (65) with endocrine and immune
functions, whose serum concentration correlates with the
amount of body fat and BMI (66). Leptin increases the secretion
of pro-inflammatory cytokines by immune cells, and ob/ob mice
that are leptin-deficient have reduced secretion of Th1 cytokines
and increased secretion of Th2 cytokines (67).

Leptin levels in the serum of young obese individuals are
comparable to those in the serum of elderly lean individuals
(68), and we have recently demonstrated that incubation of B
cells from young lean individuals with leptin decreases class
switch and influenza vaccine-specific IgG antibodies, similar
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FIGURE 1 | Effects of leptin on human B cell function. Leptin is secreted by adipocytes in the AT. Leptin concentration increases locally and systemically under obesity

conditions. Leptin interacts with its receptor on the surface of B cells and increases mRNA expression of several markers of inflammation and cellular senescence,

such as TNF-α, IL-6, IL-8, miR-155, miR-16, TLR4, and p16. The expression of these mediators in unstimulated B cells is negatively associated with the response of

the same B cells after in vivo/in vitro stimulation, e.g., with the influenza vaccine.

to the levels observed in B cells from young obese and
from elderly lean individuals, further supporting the concept
that obesity accelerates age defects. Leptin also increases the
frequencies of pro-inflammatory B cells and induces intrinsic
B cell inflammation, measured by mRNA expression of several
pro-inflammatory markers associated with immunosenescence,
the expression of which before stimulation negatively correlates
with the response of the same B cells after stimulation (68).
Previously published data have also shown that leptin activates
human peripheral blood B cells to secrete the pro-inflammatory
cytokines TNF-α and IL-6 (69, 70). Figure 1 summarizes
our recently published results on the effects of leptin on B
cell function.

Obesity increases blood frequencies of the subset of B cells
called late memory, tissue-like or double negative (DN) B cells
(CD19+CD27-IgD-), that represents the most inflammatory B
cell subset, also increased in the blood of elderly individuals
(71, 72) and of autoimmune patients (73–75). DN B cells do not
proliferate and do nomake antibodies to “new” antigens, but they
secrete antibodies specific for autoantigens known to increase
with age and autoimmune diseases, such as the “self ” antigens
dsDNA and Malondealdehyde, a product of lipid peroxidation
and a marker of oxidative stress (76). DN B cells that secrete anti-
“self ” antibodies are characterized by the membrane phenotype
CD95+CD21-CD11c+, and by the spontaneous expression of
the transcription factor T-bet (29, 72), two features of human
B cells present not only in patients with autoimmune diseases
but also in individuals with chronic inflammatory conditions,
including aging and obesity (77, 78).

Previously published results have indicated that the plasma
of obese individuals with IR contains autoantibodies specific for
intracellular proteins, ubiquitously expressed in tissues including
pancreas, nervous tissues, muscle, AT, as well as in immune
cells (25), suggesting the release of “self ” antigens under obesity
conditions in insulin target tissues. More recently, we have shown
that the human obese AT contributes to increased secretion of
adipocyte-specific IgG antibodies and this occurs without any
stimulation, likely because the ongoing process of cell death in
the obese AT leads to the release of “self ” antigens, that are almost
exclusively intracellular or cell-associated, able to chronically
stimulate B cells (28). Adipocyte-specific IgGs secreted in the
obese AT are significantly correlated with those present in the
plasma (79).

DN B cells are the cells secreting anti- “self ” antibodies
in the human obese AT. DN B cells are significantly
increased in frequencies in the SVF of the human obese
AT. Autoimmune antibody secretion occurs after a
metabolic adaption that allows DN B cells to activate
oxidative phosphorylation, aerobic glycolysis and fatty acid
oxidation, as well as pathways that mitigate stress and
cell death, leading to a better survival and function in the
hostile pro-inflammatory environment of the obese AT
(29). Under these conditions, metabolic reprogramming
represents a significant advantage, allowing cells to adapt and
survive even when they encounter metabolically restrictive
conditions, such as hypoxia, nutrient deprivation and
exposure to inflammatory stimuli, as it happens during
obesity and aging.
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CONCLUSIONS

The mechanisms for the down-regulation of mouse and human
B cell responses by obesity and aging are in large part
overlapping. Obesity accelerates inflammaging and induces
metabolic, physiological, and functional changes in immune cells
that lead to defective humoral immunity. The results in this
review highlight the importance to prevent obesity as a way to
improve immunity and reduce the risk for developing chronic
diseases typical of old age.
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Background: Hip fracture (HF) is common in the geriatric population and is associated

with a poor vital and functional prognosis which could be impacted by immunological

changes. The objective here is to decipher immune changes occurring in the 1st days

following HF and determine how phenotype, function, and regulation of innate and

adaptive compartments adapt during acute stress event.

Methods:We included HF patients, aged over 75 years. For each patient, blood samples

were taken at five different timepoints: four in the perioperative period (day 0 to hospital

discharge) and one at long term (6–12 months). Phenotypical and functional analysis

were performed longitudinally on fresh blood or cryopreserved PBMCs. Clinical data were

prospectively collected.

Results: One-hundred HF patients and 60 age-matched controls were included.

Innate compartment exhibits pro-inflammatory phenotypes (hyperleukocytosis, increase

of CD14+ CD16+ proportion and CCR2 expression), maintaining its ability to

produce pro-inflammatory cytokines. Adaptive compartment extends toward a transitory

immunosuppressive profile (leucopenia) associated with an active T-cell proliferation.

Furthermore, increases of LAG-3 and PD-1 and a decrease of 2-B4 expression are

observed on T-cells, reinforcing their transitory suppressive status. Of note, these immune

changes are transitory and sequential but may participate to a regulation loop necessary

for homeostatic immune control at long term.

Conclusion: HF is associated with several transitory immunological changes including

pro-inflammatory phenotype in innate compartment and immunosuppressive profile

in adaptive compartment. A comprehensive assessment of immune mechanisms

implicated in the patient’s prognosis after HF could pave the way to develop new immune

therapeutics strategies.

Keywords: acute stress, immune response, aging, inflammation, regulation loop
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INTRODUCTION

Worldwide, 1.6 million of patients suffer of hip fracture (HF)
each year, notably in the aged population (1). This frequent
pathology is associated with a poor prognosis with high mortality
rate (20–30% of one-year mortality) and a decrease of functional
autonomy (2–4). Main factors associated with death are not
directly due to the HF and/or its treatment but are represented
by comorbidities decompensations (cardio-vascular events) and
secondary infections (5). The fall, and consequently the HF
generates an important acute stress that impacts organism and
could induce immunological changes in this context (6, 7).

Immunosenescence, defined as the impact of age on the
immune system, is characterized by phenotypical and functional
changes that affect innate and adaptive compartments. Briefly,
phagocytosis and chimiotactism of innate cells (monocytes,
macrophages, or neutrophils) are decreased. The pool of naïve
T cells decreases due to the thymic involution (8) and there is
a shrinking of TCR repertoire (9). Furthermore, older patients
present an elevated level of pro-inflammatory cytokines coined
“Inflam-aging” (10).

Several studies have shown immunological changes after
HF. Neutrophils exhibit functional alterations with a defect
in phagocytosis ability and superoxide production (6).
Conventional monocytes switch toward inflammatory phenotype
with an increased production of tumor necrosis factor alpha
(TNF-α) (11).

Finally, HF prognosis has been associated with an increase of
pro-inflammatory cytokines (IL-6, TNF-α) and few biomarkers
have been described (c-reactive protein, procalcitonin) (7, 12).
In a previous study, we observed that pre-operative rate of
neopterin (a molecule secreted by myeloid lineage under IFN-
γ stimulation) was strongly associated with long-term mortality
(13). The objective of this longitudinal study is to decipher
immune changes occurring in the 1st days following HF and
determine how phenotype, function, and regulation of innate and
adaptive compartments adapt during acute stress event.

MATERIALS AND METHODS

Patients Cohort
We included hip fracture patients, aged over 75 years
admitted between 2013–2015 and 2017–2018 in emergency
department of Pitié Salpêtrière hospital. Patients with metastatic
fracture, history of cancer, autoimmune disease, and/or
immunosuppressive treatment were excluded. For each patient,
five blood sample were taken at different timepoints: in pre-
operative period (Pre), 24 h after surgery (Post), between day 3
and 5 of hospitalization usually (Hosp), then at patient hospital
discharge (Discharge) and finally at long term post-surgery (6–12
months; Long term). Healthy individuals matched for age were
included in geriatric department and a unique blood sample
was collected. One milliliter of fresh blood was immediately
used for cell count and innate phenotyping. PBMCs (isolated by
density gradient centrifugation) and plasma were cryopreserved
until use.

Clinical data including age, sex, comorbidity scale
(Cumulative Illness Rating Scale, CIRS), functional status and
frailty scale {Activity of daily living [ADL (14)], Instrumental
activity of daily living [IADL (15)], Clinical Frailty Scale (CFS)
(16)1} at admission and functional and vital status at long term
(6–12 months) were prospectively collected.

This study was approved by the ethics committee (CPP
Pitié-Salpêtrière, Paris, France). All participants included were
informed and gave their consent. The database was recorded to
the French National Commission for Computing and Liberty
(CNIL, Paris, France).

Flow Cytometry Analysis
Staining on Fresh Cells
The percentages and absolute counts of lymphocyte
subpopulations were determined in whole blood using CytoStat
tetra-CHROME reagents (panel 1: CD45-FITC/CD56-PE/CD19-
ECD and CD3-PC5; panel 2: CD45-FITC/CD4-RD1/CD8-ECD
and CD3/PC5; Beckman Coulter, Hialeah, Florida). Sample
acquisition with Flow-Count Fluorospheres was performed on a
FC500 flow cytometer (Beckman Coulter).

Cell Counts

Innate phenotyping
Directly conjugated antibodies were obtained from the following
vendors: BD Biosciences (San Jose, CA): CD3 (FITC), CD14
(BV605), HLADR (PE-CF594), CD16 (APC-H7); R&D systems:
CCR2 (APC); eBioscience (San Diego, CA): CX3CR1 (PE),
CD62L (PerCP-eF710). Staining for innate cell surface markers
was performed with 100 µl of fresh blood incubated 15min
with antibodies. The blood was then lysed with BD FACS lysing,
resuspended with PBS 1X (BD Biosciences) and immediately
analyzed by flow cytometry.

Staining on Frozen Cells

Immune checkpoint phenotype
Directly conjugated antibodies were obtained from the following
vendors: BD Biosciences (San Jose, CA): CCR7 (PC7), CD45-
RA (V450), CD4 (HV500), HLA-DR (BV650), CD8 (APC-
Cy7); BioLegend (San Diego, CA): PD1 (BV711), LAG3 (FITC),
CD244/2B4 (PE). Staining was performed on cryopreserved
PBMCs with standard method.

Homeostatic proliferation assay and activation status
Directly conjugated antibodies were obtained from the following
vendors: BD Biosciences (San Jose, CA): CD4 (APC-cyanin7),
CCR7 (PE-Cy7), CD38 (APC), and Ki67 (FITC); Beckman
Coulter: CD45RA (ECD), Caltag (Burlingame, CA): CD8
(Alexa405); Dako (Glostrup, Denmark): CD3 (Cascade Yellow);
BioLegend (San Diego, CA): CD27 (AlexaFluor700). Cell surface
marker stainings were performed by addition of the respective
antibodies for 15min at room temperature. After incubation,
cells were washed in PBS and then permeabilized with Perm/fix
kit (eBiosciences) before the addition of Ki67 antibody. Stainings

1Available online at: https://www.dal.ca/sites/gmr/our-tools/clinical-frailty-scale.

html.
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were analyzed on an LSR2 flow cytometer (Becton Dickinson)
with appropriate isotype controls and color compensation.

CMV responsiveness
To assess functional capacity of HCMV specific CD8+ or
CD4+ T cells, PBMC were stimulated with 15 amino acid
long synthetic peptides (5µM) overlapping by 10 amino acids
and spanning the two HCMV proteins, pp65. After 1 h, the
secretion inhibitor brefeldin A (5µg/mL; Sigma-Aldrich) was
added and the incubation was continued overnight at 37◦C in
a 5% CO2 atm. Cytofix/CytopermTM (BD Biosciences) was used
to fix/permeabilize the cells prior to staining for intracellular
IFN-γ and TNF-α. The limit of detection for cytokine
secretion was 0.01% in CD8+ or CD4+ T cell populations.
“FunkyCellsBoolean Dataminer” software (www.FunkyCells.
com), provided by Dr. Martin Larsen (INSERM U1135, Paris,
France), was used to determine the Polyfunctionality Index in
response to pp65 stimulation (17).

Monocyte function
PBMCs (1×106/well) were stimulated overnight at 37◦C with
LPS 10µg/ml (E. coli serotype O55:B5; Alexis Biochemicals).
After 1 h, 5µg/ml of brefeldin (Sigma-Aldrich) was added. After
12 hours of stimulation, cell surface staining was performed with
CD14-BV605, HLA-DR BV650, CD16-APCH7, CD3-AF700 (BD
Biosciences San Jose,CA). After washes in PBS, cells were
fixed in Cytofix/Cytoperm buffer (BD Biosciences), for 30
min at 4◦C, washed in PermWash buffer (BD Biosciences,
and then stained for intra-cellular markers: IL8-BV510, TGFβ-
PE-CF594, TNFα-APC (BD Biosciences San Jose, CA); IL10-
AF488 (R&D systems); IL1β-PE (eBioscience, San Diego,CA);
IL6-PECy7 (Biolegend, San Diego, CA) for 30 min at 4◦C.
After wash, PBMCs were resuspended in PBS, before their
flow cytometry acquisition on LSR2 flow cytometer. Data were
analyzed using FlowJo v9 (Tree Star, Inc.) and DIVA softwares
(BD Biosciences).

Statistical Analysis
Data are expressed as frequencies and percentages for
categorical variables and as medians and interquartile ranges
(IQR) for continuous variables. Bivariable associations
were evaluated with the use of Mann–Whitney U-test
for continuous variables. All analyses were performed at
a two-sided alpha level of 5%. A P-value of <0.05 was
considered to significant. All analyses were performed
with SPSS software, version 20, and Graph Pad Prism,
version 5.

RESULTS

Patients Characteristics
One hundred patients with HF and 60 age-matched controls
were included in this study. Main clinical characteristics are
reported in Table 1. Patients with HF were 87 years old
[83–92] and 27% were men. As expected, patients exhibit
characteristics of geriatric population: they were comorbid (the
median CIRS = 9 [7–13], polymedicated for 63% of them,

TABLE 1 | Patients characteristics.

Variable Hip

fracture

group

(n = 110)

Control

group

(n = 60)

p-value

Age (years) 87 [83–92] 84 [80–89] 0.05

Male sex 30 (27.3%) 17 (28.3%) 0.9

Comorbidities

CIRS 9 [7–13] 9 [6–12] 0.3

Dementia 46 (41.8%) 35 (58.3%) 0.02

Hypertension 74 (67.3%) 33 (55%) 0.1

Diabetes 16 (14.5%) 7 (11.7%) 0.6

Chronic cardiac

failure

21 (19.1%) 5 (8.3%) 0.06

Chronic renal failure 67 (60.9%) 42 (70%) 0.2

COPD 8 (7.3%) 5 (8.3%) 0.8

Polymedication (≥5

drugs)

70 (63.6%) 37 (61.7%) 0.8

Frailty/functional autonomy

CFS 5 [4–6] 4 [4–5] 0.03

ADL 6 [3.5–6] 6 [5–6] 0.2

IADL 2 [0.75–4] 3 [1–4] 0.3

Ability to walk 103

(93.6%)

59 (98.3%) 0.5

Type of fracture

Intertrochanteric 55 (50%)

Femoral neck 55 (50%)

Number of

post-operative

complication

2 [1–4]

Long term outcomes

6-months mortality 17 (15.5%)

12-months mortality 19 (17.3%)

ADL at M6 (n = 48) 3 [2–6]

IADL at M6 (n = 48) 1 [0–3.25]

Ability to walk at M6

(n = 68)

55 (80.9%)

Data are median (25th−75th interquartile), or number (percentage). CIRS, Cumulative

Illness Rating Scale; COPD, Chronic Obstructive Pulmonary Disease; CFS, Clinical Frailty

Scale; ADL, Activity of Daily Living; IADL, Instrumental Activity of Daily Living.

and mildly frailed (a median CFS = 5 [4–6]. At 12-months,
19 of them were deceased. Patients and age-matched controls
were comparable in terms of global comorbidities (CIRS) and
functional autonomy (ADL and IADL) despite a higher clinical
frailty score for HF.

Immunophenotyping and Function
Innate Compartment
The total neutrophils and monocytes counts transitory
increase in the pre-operative period comparatively to controls
(Neutrophils 8.9 × 106/mm3 [7–10.9] vs. 3.9 × 106/mm3

[3–4.9], p < 0.0001; Monocytes 0.77 × 106/mm3 [0.57–0.94]
vs. 0.58 × 106/mm3 [0.43–0.72], p < 0.0001) before cell
counts normalization and return to baseline at long term
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(Figures 1A,E), suggesting an immediate mobilization of the
innate compartments.

Neutrophils subsets were gated on size and structure
as well as the combination of CD16+ and CD62L
(Figure 1B) in order to differentiate inflammatory neutrophils
(CD16+CD62Lhigh; Figure 1C) from anti-inflammatory
neutrophils (CD16+CD62Llow; Figure 1D). Their respective
proportions were not significantly different from the control
group (Figures 1C,D). Gating strategy of monocytes was
represented in the Figure 1F and relies on the combination
of size, structure, HLA-DR, CD14, and CD16 expression.
The proportion of intermediary monocytes (CD14+CD16+),
known as “inflammatory” monocytes (18), increased during
hospitalization before return to baseline at long term
(Figure 1H). On the contrary, the proportions of conventional
and non-conventional monocytes decreased in post-operative
period and during hospitalization comparatively to control
group and pre-operative period respectively (Figures 1G,I).
Concerning CCR2 and CX3CR1 chemokines, known to
be differentially expressed according to cell subsets, we
observed that the expression of CCR2 within conventional
monocytes increased significantly after HF to be maximal
in the post-operative period (MFI 849 [637–1,211] vs. 442
[248–728], p = 0.002) (Figures 1J,L) and this trend is the same
whatever the monocytes subset (Supplementary Figures 1A,B).
Inversely, the expression of CX3CR1 transitory decreased
after HF to be minimal at the post-operative timepoint
(MFI 10400 [3,120–28,896] vs. 31,427 [22,395–37,612], p
= 0.01; Figures 1K,M) with the same trends for the other
monocytes subset (Supplementary Figures 1C,D). These results
suggest an increased turnover of monocyte/macrophage
precursors in the bone marrow (decrease of CX3CR1
expression) (19) and an elevated monocyte migration
from bone marrow to inflammatory site (increase of
CCR2 expression).

Overall, these results show a transitory activation of the
innate compartment after HF, followed by a normalization of the
different phenomenons leading to a homeostatic return at long
term. To evaluate monocytes function after HF, we analyzed their
pro-inflammatory cytokines production under LPS stimulation.
At each time points, monocytes were able to secrete IL-1β, IL-
6, IL-8, and TNF-α without significant difference compared to
age-matched controls (Figure 2). Therefore, despite the hyper-
inflammatory context of acute HF, functionality of monocytes
to induce pro-inflammatory signals in response to acute stress is
preserved after HF.

Adaptive Compartment
Contrary to the innate cell subsets, we observed a significant
and transitory lymphopenia after HF compared to control group
(post-operative 0.94 × 106/mm3 [0.66–1.37] vs. control 1.59 ×

106/mm3 [1.13–1.9], p < 0.0001; Figure 3A). This lymphopenia
is significantly observed on T cells (CD3+, both for CD4+ and
CD8+ cells; Figures 3B–D), on B cells (CD19+) (Figure 3E)
and on NK cells (CD3–CD56+) (Figure 3F). Of note, all
subsets seem to be differentially affected: the lymphopenia is

more sustained for the CD4+ proportionally to the CD8+
compartment; B cells recover faster during hospitalization
whereas NK cells are mobilized at early timepoints post-fracture
(Supplementary Figure 2).

Altogether, these results suggest a transitory
lymphosuppressive profile within adaptive compartment
after HF.

To evaluate if this lymphopenic state led to compensatory
mechanisms such as lymphopenia-induced proliferation through
homeostatic signals, we measured their ex vivo proliferation
capacity (Ki67 level) on naïve and memory T cell compartments.
Whatever the subsets followed, we observed that T-cells isolated
from elderly patients suffering from HF were proliferated during
their stay to hospital in order to counteract the existing and
persistent lymphopenia (Figures 4A–D).

This response to homeostatic signals was confirmed by the
fact that T-cells were not activated (based on CD38+ expression;
Figures 4E,F).

Despite the absence of CMV reactivation during this acute
clinical event (data not shown), we decided to evaluate in
vitro the functionality of lymphocytes by analyzing their
ability to response to pp65 antigens (which constitute the
immunodominant responses described for CMV infection in
elderly). Thus, taking into account the proportion of either
CD4+, either CD8+ T-cells to secrete IFN-γ and/or TNF-
α and/or IL-2, we found that T-cells in HF patients were as
polyfunctional as elderly controls (Figures 4G,H), suggesting
that T-cells were fully functional and able to response to antigenic
stimulation if necessary.

Immune Checkpoint Analysis
Previous results suggest an immunosuppressive profile within the
adaptive compartment, without defect in functional capacities
of T cells. We hypothesized that T-cells regulation, mediated
by immune checkpoints, could be defective. The membrane
expression of immune checkpoints regulators (PD-1 and LAG-3
and 2-B4) were analyzed on memory CD4+ and CD8+ T cells
(Figure 5). The expression of immune checkpoints inhibitors
significantly increased after HF compared to control. At long
term, their expression returned to controls level (Figures 5A–D).
The maximal expression of LAG-3 was observed in post-
operative timepoint within CD4+ (post-operative MFI: 240
[191–352] vs. controls MFI: 150 [133–176], p < 0.0001)
and CD8+ (post-operative MFI: 360 [272–429] vs. controls
MFI: 217 [190–245], p < 0.0001) T cells (Figures 5C,D).
Conversely, the expression of 2-B4 significantly decreased
after HF compared to controls, within CD4+ and CD8+
with a minimal expression at post-operative timepoint (post-
operative MFI: 81 [62–107] vs. controls MFI: 190 [178–
200], p = 0.0001 and post-operative MFI: 307 [230–345]
vs. controls MFI: 423 [358–448], p = 0.001, respectively;
Figures 5E,F).

These results reinforce the transitory suppressive
status in adaptive compartment, occurring early after
the HF and the recovery to the homeostatic status at
long term.

Frontiers in Immunology | www.frontiersin.org 4 September 2020 | Volume 11 | Article 57175924

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Vallet et al. Immunological Imprint in Hip Fracture

FIGURE 1 | Longitudinal analysis of innate phenotype. (A) Number of neutrophils (103 cells/mm3 ); (B) Gating strategy depicting neutrophils staining based on

size/structure and CD62L/CD16 expression; (C) Percentage of inflammatory neutrophils expressing CD16+CD62Lhigh; (D) Percentage of suppressive

(Continued)
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FIGURE 1 | neutrophils expressing CD16+CD62Llow; (E) Number of monocytes (103cells/mm3 ); (F) Gating strategy depicting monocytes staining based on

size/structure criteria, HLADR, CD14, and CD16 expression; (G) Percentage of conventional CD14+CD16− monocytes; (H) Percentage of intermediate CD14+

CD16+ monocytes; (I) Percentage of non-conventional CD14−CD16+ monocytes; (J) Representative histogram of CCR2 expression within conventional monocytes

(black; control isotype in gray overlay); (K) Representative histogram of CX3CR1 expression within non-conventional monocytes (black; control isotype in gray

overlay); (L) CCR2 expression within conventional monocytes (expressed in mean fluorescence intensity); (M) CX3CR1 expression within non-conventional monocytes

(expressed in mean fluorescence intensity). Data are plotted for age-matched control individuals (CTR) or for hip fracture patients at different times of follow-up

(pre-surgery: PRE; post-surgery: POST; during hospitalization: HOSP; at hospital discharge: DISCHARGE and between 6 and 12 months post-fracture: LONG TERM).

Each dot represents an individual. The lanes indicate the medians. Statistical significance is determined by the nonparametric Mann–Whitney test: p < 0.05 was

considered significant.

DISCUSSION

The objective of this study was to pinpoint immunemodifications
occurring after HF which represents an acute assault that can
accelerate abruptly the progressive health decline associated
with aging.

In fact, HF constitutes an important geriatric problem
with high level of mortality and loss of functional
autonomy. Despite improvement of clinical care through
specific orthopedic geriatric unit creation (20), part
of mechanisms implicated in the bad prognosis of
HF keep unknown and could be a key to enhance
medical care.

Longitudinal analysis of immune modifications is a strength
in our study. Indeed, the four early time points permitted to
highlight that immune changes appear in 1st hours following
HF. Most of the time, these alterations falling into place at
hospital discharge or at long term. Another strength of this
work is the size of the cohort and the population characteristics.
Patients included are typical of geriatric population with age
over 80 years old, multiple comorbidities, polymedication,
and frailty.

Our main results are: an increased number of innate
compartments (neutrophils, monocytes) with a higher
proportion of inflammatory monocytes in the first days
following HF; a transitory decreased number of NK cells, T,
and B lymphocytes. Despite these differential mobilizations,
cells keep their ability to respond to environmental stimuli or
homeostatic signals.

Moreover, there is a transient alteration in the regulation
of T-cells activation with an increase expression of immune
checkpoint inhibitors and a decrease expression of immune
checkpoint activators, as previously described in trauma by
Laudanski et al. (21) and in sepsis by Zhang et al. (22).

Overall, there is shift to a pro-inflammatory phenotype in
innate compartment and to an anti-inflammatory phenotype in
the adaptive compartment in the first days after HF. All these
modifications are transitory forming a regulation loop before
return at homeostatic status at long term.

HF represents an intense acute stress in old patients. It induces
systemic reaction and notably immune responses. Another
model of acute stress in geriatric population is sepsis. For
several years, immune modifications by sepsis are described,
associating an intense pro-inflammatory phase called “cytokine

storm” and a suppressive phase with some similarities with our
results (22).

During sepsis, phenotypic changes in monocytes are
quite similar to what we observed in HF where the
increased proportion of CD16+ monocytes is associated
with an decreased expression of CX3CR1 (23–25). In our
study, we observed a decreased expression of CX3CR1
and an increased expression of CCR2 indicating an
intense turnover and recruitment of monocytes from
bone marrow, potentially enabling migration to the
fracture site.

In the 1st days of sepsis, there is a major leukocytosis similar
to what we observed in this study of HF. However, in sepsis,
neutrophils acquire a pro-inflammatory profile associating a
decrease in the expression of CD16 and L-selectin (26). We
did not observe differences in the expression of CD16 and L-
selectin in our cohort. One hypothesis could be the bacterial
origin of sepsis that mobilized intensively neutrophils as first line
of defense against bacteria.

Concerning the adaptive compartment, early stage of sepsis
is associated with global lymphopenia (27). CD4+, CD8+, B
cells, and NK cells drastically decrease. Furthermore, inhibitory
immune checkpoint (PD-1 and LAG-3) expression within T
cells increases leading to T cells impairment and inhibition
of innate cell function (28). We observed similar results in
our study reinforcing the hypothesis of immunosuppression
within adaptive compartment. Thus, negative signaling could
contribute to T-cell anergy in trauma patients, as suggested
by Bandyopadhyay et al. (29). Similarly, PD-L1 blockade
has been shown to improve immune dysfunction of spleen
dendritic cells and T-cells in multiple organs dysfunction
syndromes (30).

If immune scar observed in HF is similar to the one
observed in sepsis, it could be interesting to consider
these two common complications in elderly populations as
unique models to propose strategies to restore immunity
after prolonged stress-induced immune suppression.
Most recently, the concept of metabolic dysfunction has
emerged as a factor underlying impaired function of the
innate and adaptive immune systems of severely injured
patients (31).

A comprehensive assessment of immune mechanisms
implicated in the patients prognosis after HF appears
important and could pave the way to news immune
therapeutics approach.

In this regard, a recent study elegantly showed that hip
fracture and surgical trauma cause significant increases in PD-
1 expression in aged mice compared to sham controls. Antibody
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FIGURE 2 | Ability of monocytes from HFP to produce pro-inflammatory cytokines upon stimulation. (A) Representative flow cytometry profile of cytokines secretion

(TNF-α and IL-1β upper panel; IL-8 and IL-6 bottom panel) in unstimulated monocytes (US, left panel) or in LPS conditions (right panel). Monocytes were identified

according to size/structure, HLADR, CD14, and CD16 expression; (B) Percentages of monocytes secreting (B) TNF-α, (C) IL-1 β, (D) IL-8, and (E) IL-6. Data are

plotted for age-matched control individuals (CTR) or for hip fracture patients at different times of follow-up (pre-surgery: PRE; post-surgery: POST; during

hospitalization: HOSP; at hospital discharge: DISCHARGE and between 6 and 12 months post-fracture: LONG TERM). Each dot represents an individual. The lanes

indicate the medians. Statistical significance is determined by the nonparametric Mann–Whitney test: p < 0.05 was considered significant.
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FIGURE 3 | Longitudinal analysis of adaptive phenotype. Number (103 cells/mm3 ) of (A) total lymphocytes, (B) T-cells, (C) CD4+ T-cells, (D) CD8+ T-cells, (E)

CD19+ B cells, and of (F) CD56+ NK cells. Data are plotted for age-matched control individuals (CTR) or for hip fracture patients at different times of follow-up

(pre-surgery: PRE; post-surgery: POST; during hospitalization: HOSP; at hospital discharge: DISCHARGE and between 6 and 12 months post-fracture: LONG TERM).

Each dot represents an individual. The lanes indicate the medians. Statistical significance is determined by the nonparametric Mann–Whitney test: p < 0.05 was

considered significant.
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FIGURE 4 | Functionality of CD4+ and CD8+ T cells in HF patients (longitudinal analysis) compared to control. Proliferation was evaluated by the % of cells expressed

Ki67+ for (A) CCR7+ CD45RA+ naïve CD4+, (B) memory CD4+, (C) CCR7+ CD45RA+ naïve CD8+, and (D) memory CD8+. Activation was evaluated by the % of

cells expressed CD38+ within (E) memory CD4+ and (F) CD8+. Priming capacity was evaluated by the polyfunctionality index within (G) CD4+ and (H) CD8+. Data

are plotted for age-matched control individuals (CTR) or for hip fracture patients at different times of follow-up (pre-surgery: PRE; post-surgery: POST; during

hospitalization: HOSP; at hospital discharge: DISCHARGE and between 6 and 12 months post-fracture: LONG TERM). Each dot represents an individual. The lanes

indicate the medians. Statistical significance is determined by the nonparametric Mann–Whitney test: p < 0.05 was considered significant.
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FIGURE 5 | Longitudinal analysis of immune checkpoint expression within T cells. Surface membrane expression within memory CD4+ (Left) and memory CD8+ T

cells (Right) for PD-1 (A,B upper panels) LAG-3 (C,D middle panels) and 2-B4 expression (E,F bottom panels). All results are expressed in mean fluorescence

intensity. Data are plotted for age-matched control individuals (CTR) or for hip fracture patients at different times of follow-up (pre-surgery: PRE; post-surgery: POST;

during hospitalization: HOSP; at hospital discharge: DISCHARGE and between 6 and 12 months post-fracture: LONG TERM). Each dot represents an individual. The

lanes indicate the medians. Statistical significance is determined by the nonparametric Mann–Whitney test: p < 0.05 was considered significant.
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blockade of PD-1 partially reverses T cell apoptosis, decreases the
systemic inflammatory response and susceptibility to bacterial
lung infection, and reduces mortality (32).

During sepsis, many approaches have been deployed to target
immune checkpoints reviewed in (28) and represent therefore
a nice model to understand underlying mechanisms improving
clinical patients outcome. Targeting immune checkpoints which
could potentially reverse innate and adaptive system hypo-
responsiveness during the 1st days following hip fracture could
benefit elderly patients in preventing and treating immune
tolerance. However, such a therapy needs to be evaluated
in this particular population, where advanced age of the
individuals may play a role in their capacity to respond
to treatment.
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Supplementary Figure 1 | Longitudinal analysis of chemokines expression within

monocytes subtype. CCR2 expression within (A) intermediate and (B)

non-conventional monocytes (expressed in mean fluorescence intensity). CX3CR1

expression within intermediate (C) and conventional (D) monocytes (result

expressed in mean fluorescence intensity). Data are plotted for age-matched

control individuals (CTR) or for hip fracture patients at different times of follow-up

(pre-surgery: PRE; post-surgery: POST; during hospitalization: HOSP; at hospital

discharge: DISCHARGE and between 6 and 12 months post-fracture: LONG

TERM). Each dot represents an individual. The lanes indicate the medians.

Statistical significance is determined by the nonparametric Mann–Whitney test: p

< 0.05 was considered significant.

Supplementary Figure 2 | Longitudinal analysis of adaptive phenotype. (A) % of

CD4+ T cells, (B) % of CD8+ T cells, (C) % of CD19+, and (D) % of CD56+. Data

are plotted for age-matched control individuals (CTR) or for hip fracture patients at

different times of follow-up (pre-surgery: PRE; post-surgery: POST; during

hospitalization: HOSP; at hospital discharge: DISCHARGE and between 6 and 12

months post-fracture: LONG TERM). Each dot represents an individual. The lanes

indicate the medians. Statistical significance is determined by the nonparametric

Mann–Whitney test: p < 0.05 was considered significant.
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Bearing a strong resemblance to the phenotypic and functional remodeling of the immune

system that occurs during aging (termed immunesenescence), the immune response to

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of

Coronavirus disease 2019 (COVID-19), is characterized by an expansion of inflammatory

monocytes, functional exhaustion of lymphocytes, dysregulated myeloid responses and

the presence of highly activated senescent T cells. Alongside advanced age, male gender

and pre-existing co-morbidities [e.g., obesity and type 2 diabetes (T2D)] are emerging as

significant risk factors for COVID-19. Interestingly, immunesenescence is more profound

in males when compared to females, whilst accelerated aging of the immune system,

termed premature immunesenescence, has been described in obese subjects and T2D

patients. Thus, as three distinct demographic groups with an increased susceptibility

to COVID-19 share a common immune profile, could immunesenescence be a generic

contributory factor in the development of severe COVID-19? Here, by focussing on

three key aspects of an immune response, namely pathogen recognition, elimination and

resolution, we address this question by discussing how immunesenescencemay weaken

or exacerbate the immune response to SARS-CoV-2. We also highlight how aspects

of immunesenescence could render potential COVID-19 treatments less effective in

older adults and draw attention to certain therapeutic options, which by reversing or

circumventing certain features of immunesenescence may prove to be beneficial for the

treatment of groups at high risk of severe COVID-19.

Keywords: aging, COVID-19, immunesenescence, immune dysfunction, inflammaging, SARS-Cov_2

INTRODUCTION

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel highly-infectious
betacoronavirus originally found in Wuhan, China in December 2019 (1). Transmitted by direct
contact with infected individuals, contaminated surfaces or via respiratory droplets, SARS-CoV-2
is the causative agent of Coronavirus disease 2019 (COVID-19), which as of June 2020 had
infected over 7 million people resulting in over 400,000 deaths (2). Whilst for the majority of
individuals COVID-19 is a self-resolving mild to moderate respiratory tract infection, ∼20% of
infected patients develop severe respiratory complications (e.g., dyspnea and pneumonia), which,
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in extreme cases (∼5%), progress to acute respiratory distress
syndrome (ARDS), respiratory failure, organ damage, and death
(3–6).

Epidemiological analyses of COVID-19 outbreaks have
revealed the disease to be highly prevalent amongst older adults,
with one study of 1,591 patients reporting 87% of cases were in
adults aged 51 years and over (7, 8). Furthermore, older adults are
more prone to developing severe COVID-19 and its associated
poor outcomes (4, 6, 9–15). For example, 91 and 81% of COVID-
19 related deaths have occurred in people aged 65 years and over
in the UK and USA respectively, with the majority of deaths
occurring in those aged 85 years and over (16, 17). Moreover, the
recovery times of older adults who survive COVID-19 are more
protracted, involving more serious clinical manifestations that
often require hospitalization and prolonged therapy (10, 14, 18).

The scientific community has moved rapidly to gain an
understanding of the immune response to SARS-CoV-2 and how
it influences patient outcome. Summarized recently by Vabret
et al. (19) the current literature details a hyper-inflammatory
state in severe COVID-19 patients that is characterized by a
sustained raised level of pro-inflammatory cytokines such as
interleukin (IL)-6, expansion of inflammatory monocytes and
T cells, dysregulated myeloid responses, functional exhaustion
of lymphocytes and impaired innate immune function.
This immunological profile bears a strong resemblance to
the remodeling of the immune system that occurs during
physiological aging. Termed immunesenescence, immune
aging is associated with marked alterations in the composition,
phenotype and functional responsiveness of the innate and
adaptive arms of the immune system that compromises
the older adults ability to combat infections allowing for
pathogen dissemination in a vicious cycle that leads to further
inflammation and ultimately tissue damage. Furthermore,
aging is accompanied by a state of chronic low-grade systemic
inflammation, termed inflammaging, meaning older patients
start with a higher inflammation status prior to infection.
Immunesenescence is viewed as a major contributory factor
in the increased susceptibility of older adults to infection
(20, 21) as well as their poor vaccination responses (22). In
addition to older adults, males (3, 4, 6, 13, 23, 24) as well
as patients with pre-existing co-morbidities such as diabetes
(4, 13–15, 25) and obesity (11, 24, 26–29) are at an increased risk
of severe COVID-19.

Immunologically, immunesenescence and inflammaging
appear to be more profound in older males when compared
to females (30, 31), whilst an accelerated aging phenotype,
termed premature immunesenescence has been described in
obese subjects and patients with type 2 diabetes (T2D) (32–34).
Although 85–90% of T2D patients are overweight or obese, not
all adults who are obese develop T2D and most studies suggest
the prevalence is below 50% (35). For this reason, we have
considered three distinct demographic groups with an increased
susceptibility to COVID-19 that appear to share a common
immune profile, posing the question could immunesenescence
be a generic contributory factor in the development of severe
COVID-19? Here, by focussing on three key aspects of an
immune response, namely pathogen recognition, elimination

and resolution, we will address this question by discussing how
immunesenescence may weaken or exacerbate the immune
response to SARS-CoV-2. We also highlight how aspects
of immunesenescence could render potential COVID-19
treatments less effective in older adults and draw attention to
certain therapeutic options, which by reversing or circumventing
certain features of immunesenescence may prove to be beneficial
for the treatment of groups at high risk of severe COVID-19.

PATHOGEN RECOGNITION

Pathogen Recognition Receptor
Expression and the Early Anti-viral
Response
Comprised of four different families, namely the toll-like
receptors (TLRs), retinoic acid-inducible gene (RIG)-I-like
receptors (RLRs), nucleotide-binding oligomerization domain-
like receptors (NLRs) and the C-type lectin receptors (CLRs),
pathogen recognition receptors (PRRs) are evolutionary
conserved germline-encoded receptors responsible for the early
detection of invading pathogens. Located at the cell surface, in
endosomes and in the cytosol, PRRs are expressed predominantly
by cells of the innate immune system, in particular monocytes
and dendritic cells (DCs). As a single-stranded RNA virus,
detection and initiation of the immune response against SARS-
CoV-2 will be mediated by the RNA-sensing endosomal PRRs
TLR 3, 7 and 8, and the cytoplasmic-residing RLRs and NLRs.

Ligation of PRRs activates interferon regulatory factors (IRFs),
a family of transcription factors that drive the production
of type I (α/β) and type III (γ) interferons (IFNs) (36). By
inhibiting viral replication, enhancing innate immune responses
and modulating T cell expansion and memory formation (37),
IFNs provide strong anti-viral effects. SARS-CoV-2 appears
particularly sensitive to IFNs, with in vitro culture studies
revealing viral replication in kidney epithelial cells and primary
human intestinal epithelial cells is potently inhibited by type
I and type III IFNs, respectively (38, 39). In one of the few
studies to have investigated the IFN response to SARS-CoV-2
in patients (40, 41), Hadjadj et al. identified a distinct type I
IFN signature in severe COVID-19 patients (40). Compared to
individuals with mild to moderate disease, critically ill patients
presented with marked downregulation of IFN-stimulated genes
in whole blood leukocytes, significantly lower plasma levels of
IFN-α2 and reduced IFN activity in serum (40).

Studies that have examined the effect of age on the expression
of RNA-sensing PRRs have reported significantly reduced
expression of TLRs 3, 7, and 8 in myeloid DCs (mDCs) or
plasmacytoid DCs (pDCs) isolated from older adults (42, 43).
Accompanying these changes in PRR expression is an age-related
impairment in the generation of type I and III IFNs (44). pDCs or
monocytes from older adults secrete significantly lower amounts
of IFN α, β, or γ in response to specific ligation of TLRs 7/8 and
RIG-I, with the reduction in IFN α and β synthesis post-RIG-
I activation attributed to impaired activation of IRFs (43, 45–
47). Furthermore, and of particular importance in the context of
SARS-CoV-2, age-related impairments in type I IFN production
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have been described for monocytes and pDCs challenged with
influenza A virus and West Nile virus (WNV) (42, 47–50), two
RNA viruses that also cause significant morbidity and mortality
in older adults (51–53). As prompt and efficient type I IFN
responses are critical for preventing poor outcome following
coronavirus infections (54, 55), an age-related impairment in
IFN production may result in more robust virus replication
and higher viral loads. On this note, it has been suggested that
COVID-19 patients with type I IFN deficiency, a criterion we
propose older adults would fulfill, may benefit from IFN α or β

supplementation (40). In an open-label, randomized, phase 2 trial
in COVID-19 patients, Hung and colleagues demonstrated that,
when compared to anti-viral drug treatment alone, a combined
therapy of anti-viral drugs and IFN-β significantly shortened
the duration of viral shedding, time to symptom resolution
and length of hospital stay in patients with mild to moderate
disease (56). Whilst this therapeutic approach is worthy of
consideration for geriatric COVID-19 patients, it should be noted
that in vitro studies with monocytes from older adults have
demonstrated reduced up-regulation of IFN-stimulated genes
following influenza A virus challenge (47). Thus, increasing type
I IFN levels in older adults via IFN supplementationmay be offset
by an age-related impairment in IFN responsiveness.

Ligation of PRRs also triggers the secretion of pro-
inflammatory cytokines via the activation of nuclear factor
kappa B (NF-κB) and mitogen activated protein kinase (MAPK)
signaling pathways. Compared to those with mild-to-moderate
disease, patients with severe COVID-19 infection present with
significantly elevated circulating concentrations of a range of pro-
inflammatory cytokines such as IL-6 and tumor necrosis factor-
alpha (TNF-α) (57–61). Although not observed in all studies
(43, 62), the majority of groups that have investigated cytokine
production triggered by RNA-sensing PRRs have found this
function is maintained with age (42, 43, 46, 47, 62). For example,
in response to stimulation with TLR3, TLR 7/8 and RIG-I specific
ligands, as well as influenza A virus, mDCs or monocytes isolated
from young and older adults generate comparable levels of TNF-
α, IL-6 and/or IL-12 (42, 43, 46, 47, 62). In the context of COVID-
19, these data imply that the pro-inflammatory cytokine response
to SARS-CoV-2 elicited by monocytes and mDCs would be
similar across different age groups. However, this may not be the
case for patients with pre-existing co-morbidities. For instance,
compared to normal-weight controls, monocytes isolated from
obese subjects generate significantly greater amounts of TNF-α
and CCL5 following stimulation with viral ssRNA (63), whilst in
monocytes fromT2D patients, basal expression of components of
the TLR signaling pathway such as the adaptor proteins MyD88
and TRIF as well as the p65 subunit of NF-κB are significantly
increased (64). Thus, we propose that this remodeling of innate
immune cells in obese and T2D patients would lead to a
more robust pro-inflammatory response to SARS-CoV-2 when
compared to that of healthy age-matched controls, culminating
in greater systemic inflammation and more severe disease.

Generated via the activation of the NLRP3 inflammasome,
a multi-subunit complex comprising of the NLR protein
NLRP3, the adaptor protein ASC and caspase-1, IL-1β promotes
anti-microbial resistance via the modulation of innate and

adaptive immune responses (65). However, if dysregulated,
production of this pro-inflammatory cytokine can promote lung
injury and severe pulmonary fibrosis (66, 67). Coinciding with
elevated plasma levels of IL-1β (3), single cell transcriptomic
analysis of peripheral blood mononuclear cells (PBMCs) has
shown a greater abundance of classical CD14++ CD16− IL1β+

monocytes in COVID-19 patients when compared to healthy
controls (HCs) (68), whilst analysis of RNA extracted from
whole blood found increased IL-1β gene expression preceded a
decline in respiratory function (69). In terms of patient groups
at high risk of severe COVID-19, significantly increased NLRP3
expression and ssRNA-induced IL-1β generation has been
reported for monocytes and monocyte-derived macrophages
isolated from T2D patients and obese subjects, respectively (63,
70, 71), suggesting potential exaggeration of inflammasome-
mediated immune responses to SARS-CoV-2 in these cohorts.
Conversely, aging appears to be associated with impaired
activation of the inflammasome. Investigated primarily in
animal models, significantly reduced inducible expression of
NLRP3, ASC and/or caspase-1 has been described in lung
homogenates, macrophages and/or DCs from aged mice, with
these changes in expression resulting in decreased synthesis of
IL-1β upon stimulation (72–74). Highlighting the importance
of the inflammasome in host protection, models of influenza
infection and secondary Streptococcus pneumoniae infection have
shown the age-associated decrease in NLRP3 inflammasome
expression and activity results in impaired cell infiltration to
sites of infection, increased pathogenic load in the lung and
higher rates of morbidity and mortality (72, 74). In terms of
human aging and its impact on the inflammasome, no change
(47) or a significant reduction (45) in IL-1β production by
monocytes challenged with influenza A virus or TLR 7/8 ligands,
respectively has been reported. Given the importance of the
inflammasome in host defense against viral infections (75, 76), we
suggest that the older COVID-19 patient with no pre-existing co-
morbidities would elicit an impaired inflammasome-mediated
immune response to SARS-CoV-2 that would increase their
susceptibility to severe disease.

PATHOGEN ELIMINATION

Neutrophils
Currently, few studies have reported upon the neutrophil
response to SARS-CoV-2. These studies have shown neutrophilia
(3, 4), an elevated neutrophil-to-lymphocyte ratio (60, 61, 77–79)
and neutrophil infiltration in the lungs (80, 81) to be features
of severe COVID-19 and poor patient outcomes. In the only
laboratory-based study, Zuo et al., using cell-free DNA (cfDNA),
myeloperoxidase-DNA complexes and citrullinated histone H3
as surrogate markers of in vivo neutrophil extracellular trap
(NET) formation, reported elevated levels of all three markers in
serum samples obtained from hospitalized COVID-19 patients
when compared to HCs (82). Significantly higher cfDNA
and myeloperoxidase-DNA complexes were recorded in those
who required mechanical ventilation, suggesting a potential
relationship between enhanced NET formation and disease
severity (82). Previously linked to the pathogenesis of acute lung

Frontiers in Immunology | www.frontiersin.org 3 October 2020 | Volume 11 | Article 57366235

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Hazeldine and Lord Immunesenescence and COVID-19

injury and the onset of ARDS in critically-ill patients (83–86),
the authors suggested robust NET formation may propagate the
inflammatory storm that appears to precede the onset of severe
COVID-19 (3, 82, 87).

In the context of immunesenescence, both murine and
human-based studies have reported a significant age-related
reduction in NET formation (88–90). Thus, in contrast to
younger adults and those with inflammatory co-morbidities
(91–93), we would speculate that in older adults with no pre-
existing health conditions, any elevation in circulating NET
components post SARS-CoV-2 infection would not be a direct
consequence of enhancedNET formation. Rather, we suggest that
reduced clearance may be responsible. Once dismantled by the
endonuclease deoxyribonuclease (DNase)-1, NETs are engulfed
by macrophages and degraded in lysosomes, a process facilitated
by the opsonisation of NET fragments by the complement
protein C1q (94). Whilst no study to our knowledge has
investigated the effect of age on DNase-1 activity, there are
reports that aging is associated with reduced endocytic and
phagocytic activity of macrophages (95–97) as well as reduced
lysosomal activity (98). When viewed alongside data from
critically-ill patients, in whom DNase activity and uptake of
NETs by alveolar macrophages (AM) is significantly reduced
(99, 100), then older adults with severe COVID-19 are a group
that would be predicted to present with a high systemic NET load,
a scenario, which in a cohort of patients with severe influenza A
infection was associated with the development of multiple organ
dysfunction syndrome (101).

NET production, whether assessed by a measurement of
circulating markers (e.g., MPO-DNA complexes) or ex vivo
generation, is significantly increased in obese subjects and
individuals with T2D (91–93), patient groups that are not only
at high risk of developing severe COVID-19 (102, 103) but
who experienced poor outcomes in the 2009 H1N1 influenza A
virus pandemic (104). Whilst multiple factors will underlie the
susceptibility of obese and T2D subjects to severe COVID-19, it
is intriguing to speculate that remodeling of the innate immune
response, in this case a heightened sensitivity for NET generation,
could be one such factor, particularly given the cytotoxic and
pro-thrombotic nature of NETs (105, 106).

NETs may represent a potential therapeutic target for the
prevention of poor outcomes such as ARDS in COVID-19. In
a recent article, Barnes et al. discussed the therapeutic options
that are available to manipulate NET formation and how some
of these approaches are already being tested in clinical trials
in COVID-19 patients (80). Improvements in clinical indices
were reported in a cohort of severe COVID-19 patients that
were co-treated with anti-viral agents and dipyridamole, an
adenosine-receptor agonist that inhibits NET formation in vitro
(107, 108). However, whether the observed benefits were related
to the modulation of NET production was not addressed (108).
Nevertheless, the success that enhancing NET degradation has
had in terms of improving clinical markers in patients with
virus-associated bronchiolitis (109, 110) and reducing both lung
injury and mortality rates in murine models of pneumonia (84),
should encourage researchers and clinicians to pursue NETs
as therapeutic strategies. This is particularly pertinent to older

adults, where administration of therapeutic doses of DNase
would completely eradicate NETs (94), thereby bypassing the
need for macrophage clearance, which is a process that is likely
to be impaired with age.

Associated with lymphocytic and neutrophilic infiltrate, post-
mortem histological examination of lung tissue has shown severe
COVID-19 results in extensive diffuse alveolar damage (81). In
response to a panel of inflammatory mediators, which included
IL-8, C5a, leukotriene B4 and sputum, we have shown aging
is associated with impaired migratory accuracy of neutrophils
(111). This defect, which was detected in individuals aged
≥60 years, was accompanied by enhanced degranulation and
neutrophil proteinase activity, leading us to propose that aging
is associated with an increase in neutrophil-mediated bystander
tissue damage (111). Interestingly, a similar situation may
be observed in T2D patients, whose neutrophils also exhibit
impaired migration in vitro (112, 113). Furthermore, compared
to HCs, circulating levels of the protease inhibitor alpha-1
antitrypsin are significantly lower in T2D subjects (114). Thus,
in the context of SARS-CoV-2, we suggest that the meandering
neutrophils of both older adults and T2D patients would, via
excessive proteinase release, promote more widespread tissue
damage and increased systemic inflammation.

Monocytes and Macrophages
Accompanied by an emergence into circulation of large atypical
vacuolated monocytes (115), SARS-CoV-2 infection is associated
with alterations in the composition of the peripheral monocyte
pool. For example, whereas frequencies of CD14++ CD16−

classical monocytes have been reported to be significantly
reduced in COVID-19 patients when compared to HCs (115),
the proportions of intermediate (CD14++16+) and non-classical
(CD14+16++) monocytes are significantly increased (115, 116),
with analysis also revealing the percentage of intermediate
CD14++16+ monocytes to be significantly higher in patients
requiring intensive care unit (ICU) treatment when compared to
those with milder disease (116).

Moreover, single cell analysis of PBMCs has reported the
presence of a monocyte subset unique to severe COVID-19
patients that is enriched in genes encoding a range of cytokine
storm related cytokines such as IL-1β, IL-6, and TNF-α (117).
Phenotypically, mirroring the immunological changes that occur
during sepsis, monocytes from COVID-19 patients exhibit
significantly reduced surface expression of the antigen presenting
molecule HLA-DR (118). Ex vivo examination of intracellular
cytokine levels has revealed an increased frequency of GM-CSF+

and IL-6+ monocytes in both ICU and non-ICU COVID-19
patients, with the percentage of IL-6+ monocytes correlating
with disease severity (116). Similarly, a greater proportion of
CD14++ CD16− IL1β+ monocytes were detected in COVID-
19 patients by RNA sequencing, which found expression
in CD14++ monocytes of pro and anti-inflammatory genes
were up and down-regulated, respectively when compared to
HCs (68). Whilst more studies are required, emerging data
implies a role for IL-6 in driving the SARS-CoV-2-mediated
remodeling of the monocyte pool (117, 118), with one group
demonstrating a significant reduction in the expression of genes
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involved in “leukocyte chemotaxis” and the “acute inflammatory
response” in monocytes obtained from COVID-19 patients
following treatment with the IL-6 receptor monoclonal antibody
Tocilizumab (117).

Physiological aging and obesity are associated with
remodeling of the circulating monocyte pool, with older
adults and obese subjects exhibiting elevated frequencies of
intermediate and non-classical monocytes when compared
to younger adults and lean subjects, respectively (119–126).
Interestingly, Ong et al. have recently assigned a senescent-
like pro-inflammatory phenotype to both non-classical and
intermediate monocytes (123). Associated with high expression
of the phosphorylated p65 subunit of NK-κβ, both monocyte
subsets secreted, in the absence of ex vivo stimulation, an
array of pro-inflammatory cytokines and chemokines, which
included TNF-α, IL-6, and CCL4 (123). Importantly, this basal
increase in monocyte activity was associated with significantly
elevated plasma levels of IL-6 and TNF-α (123). Thus, in
the absence of infection, obese and older adults exhibit a
state of heightened peripheral inflammation upon which the
abovementioned SARS-CoV-2-mediated changes in monocyte
biology would be super-imposed. When combined with the
maintained (42, 43, 46, 47, 62) or increased (63) generation of
pro-inflammatory cytokines by RNA-stimulated monocytes of
older adults and obese subjects respectively, we speculate that
this high level of basal inflammation would predispose these
groups to hyper-inflammation that would hasten the onset of
severe COVID-19.

Single cell RNA sequencing (scRNA-seq) of bronchoalveolar
lavage fluid (BALF) has revealed the composition of macrophages
within the lungs of COVID-19 patients differs based on disease
severity. Categorizing macrophages as monocyte-derived, pro-
fibrotic or alveolar, Liao et al. found BALF obtained from patients
with severe disease was dominated by monocyte-derived and
pro-fibrotic macrophages, with the former subset expressing a
strong pro-inflammatory gene signature (127). Offering potential
insights into the secondary complications that may develop in
severe COVID-19 patients as a consequence of this remodeling
of lung-resident macrophages, two studies have implicated
monocyte-derived AMs in the development of post-injury lung
fibrosis and viral-induced pneumonia (128, 129). In the context
of immunesenescence, it has been proposed that as a consequence
of life-long exposure to environmental challenges, monocyte
recruitment to the lung increases with age, such that over time,
monocyte-derived macrophages become the predominant subset
within the lungs (130). If correct, then a more robust pulmonary
inflammatory response to SARS-CoV-2 in older adults may
increase their susceptibility to developing severe COVID-19.

Natural Killer Cells
Natural killer (NK) cells are innate immune cells that play
a major role in the early recognition and elimination of
virally-infected cells. In a murine model of severe SARS-CoV-1
pulmonary infection, Glass et al. demonstrated viral clearance
in the absence of NK cells (131), a finding that suggests these
innate lymphocytes are not required for host protection against
coronaviruses. However, the significant number of studies that

have demonstrated marked alterations in the composition and
function of the circulating NK cell pool of COVID-19 patients
(19) makes a discussion of the NK cell response to SARS-CoV-2,
particularly in the context of immunesenescence, necessary.

COVID-19 patients with mild-to-moderate disease present
with significantly reduced circulating numbers of total NK cells,
driven by a reduction in both CD56DIM16+ and CD56BRIGHT

NK cell subsets (40, 41, 79, 118, 132–134). Accompanying
these numerical changes are significant alterations in NK
cell phenotype, with scRNA-seq and flow cytometric analyses
revealing the peripheral NK pool of COVID-19 patients is
dominated by immature, highly activated and functionally
compromised cells (40, 41, 134). Focussing on the latter,
increased frequencies of NK cells expressing the inhibitory
receptors TIM3 and NKG2A have been detected in patients with
mild/moderate and severe COVID-19 (40, 134) with the increase
in NKG2A expression potentially reflecting the stimulation of
NK cells by pro-inflammatory cytokines (135). Upon recognition
of its ligand HLA-E, signaling through NKG2A inhibits NK cell
cytotoxicity (NKCC) (136, 137). Thus, one would predict that
NK cells isolated fromCOVID-19 patients would exhibit reduced
functional responses. Indeed, albeit to a non-viral stimulus,
Zheng and colleagues found the frequencies of CD107a+, IFNγ+,
TNFα+, and IL-2+ NK cells in PBMC samples acquired from
COVID-19 patients were significantly lower following PMA
and ionomycin challenge when compared to HCs (134). As
blood samples were acquired at the time of hospital admission,
these results imply an immediate breakdown of NK-mediated
anti-viral immunity (134). Interestingly, when patients were
reanalysed following anti-viral therapy, a marked reduction in
the percentage of NKG2A+ NK cells was noted, leading to the
suggestion that downregulation of NKG2A may correlate with
disease control (134).

A prominent feature of NK cell immunesenescence is
reduced NKCC, a defect we have previously attributed to
impaired polarization of the pore forming protein perforin to
the immunological synapse (138). Accompanying this decline
in lytic activity is an age-related reduction in cytokine and
chemokine production (139–141). NK cell function is regulated
by the balance of signals transmitted through surface expressed
activatory and inhibitory receptors (142). As discussed by others
(19), it is currently unknown as to which ligands for activatory
receptors are expressed on the surface of SARS CoV-2 infected
cells. Possible candidates are stress-inducible ligands, which are
recognized by the activatory receptors NKG2D, NKp30, and
NKp46. Whilst age has no effect upon the expression of NKG2D
(138, 143), a number of studies have described an age-associated
decline in the frequency of NKp30+ and NKp46+ NK cells
(138, 144, 145). Thus, in the older adult with severe COVID-19,
superimposed on a baseline reduction in NKCC and activatory
receptor expression would be a SARS-CoV-2 driven induction
of functional exhaustion via the up-regulation of NKG2A (134).
Moreover, with in vitro studies having shown that exposure
to IL-6 and TNF-α, two cytokines whose circulating levels are
elevated in COVID-19 patients (3, 77, 146) impairs NKCC and
reduces perforin, NKp30 and NKp46 expression (147–149), then
the SARS-CoV-2-induced cytokine storm would exacerbate the
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abovementioned functional and phenotypical features of NK cell
immunesenescence, which would be predicted to further reduce
NK cell anti-viral activity.

Recent studies in the field of cancer immunotherapy have
shown that manipulation of NKG2A signaling can restore NKCC
and promote anti-tumor immunity (136, 150, 151). Based on its
success, Yaqinuddin and colleagues have proposed mirroring this
therapeutic approach for the treatment of COVID-19 patients,
where administration of the humanized anti-NKG2A antibody
Monalizumab would rejuvenate the anti-viral immune response
of COVID-19 patients by counteracting the NKG2A-driven
inhibition of NKCC (152). However, for older adults with severe
COVID-19, any therapeutic value of this approach may be offset
by the age-related impairments in perforin polarization, NKCC
and the reduced expression of NK cell activating receptors.

T Cell Responses
Lymphopenia is a common hematological observation in patients
infected with SARS-CoV-2. CD3+, CD4+, and CD8+ T cell
counts are significantly lower in patients with severe COVID-
19 when compared to those with mild disease (57, 60, 133,
134, 153), with numbers increasing significantly in subjects
who respond clinically to anti-viral treatment (133). Elevated
circulating concentrations of pro-inflammatory cytokines (133,
154), induction of apoptosis (40) and pulmonary infiltration
(5, 127) are some of the mechanisms that have been proposed
to underlie SARS-CoV-2-induced lymphopenia. Indicative of in
vivo activation, increased proportions of CD4+ and CD8+ T
cells expressing CD69, CD38, CD44, or HLA-DR have been
reported in COVID-19 patients (5, 116, 155–158) as has the
presence of pathogenic GM-CSF+/IL-6+ and GM-CSF+/IFN+

CD4+ T cells, with those experiencing severe disease presenting
with significantly increased frequencies when compared to those
with mild COVID-19 (116). Pointing toward a state of functional
exhaustion or senescence, markedly higher percentages of CD4+

or CD8+ T cells expressing a variety of molecules such as
NKG2A, PD-1, TIGIT, TIM-3 and CD57 have been detected
in SARS-CoV-2-infected patients (116, 134, 154, 159), with
their presence coinciding with significantly reduced intracellular
cytokine generation upon ex vivo stimulation (134, 158).

Characterized by the gradual replacement of functional
epithelial cells with fat and fibrous tissue (160), thymic involution
is a defining feature of T cell immunesenescence, which results
in a decline in the production of naïve T lymphocytes (161).
This reduction in thymic output is offset by the homeostatic
proliferation of pre-existing naïve and memory T cells, a scenario
that results in a contraction in the diversity of the circulating
T cell receptor (TCR) repertoire of older adults (162). As well
as aging, obesity is associated with reduced thymic function.
Yang and co-workers found the generation of naïve T cells was
significantly lower in obese younger adults when compared to
age-matched lean controls (163). As a broad TCR repertoire
is crucial for the detection of novel pathogens, the reduced
diversity within the T cell pool of older adults and obese subjects
may contribute to their increased susceptibility to SARS-CoV-
2 infection and put them at risk of eliciting a blunted immune
response to any future COVID-19 vaccine.

Owing to impaired metabolism, shortened telomeres
and aberrant intracellular signaling (33, 164, 165), reduced
proliferation, cytokine production, cytotoxicity and migration
are examples of some of the functional impairments that have
been reported for T cells isolated from older adults and those
with inflammatory co-morbidities (33, 166, 167). The peripheral
T cell pools of these adults are enriched with functionally
exhausted (TIGIT+, PD-1+), highly activated (TIGIT+ HLA-
DR+ CD38+), senescent (CD28−57+, CCR7−45RA+) and
terminally differentiated (CD27−28−) CD4+ or CD8+ T cells
(33, 168–170). The most profound changes are witnessed within
the CD8+ T cell subset, with the accumulation of CD8+28−

T cells of particular significance (171). Saurwein-Teissl et al.
found an expansion of CD8+28− T cells was associated with
reduced antibody responses in older adults following influenza
vaccination (172). The efficiency of T cell responses are also
hampered by age-associated alterations in the expression of
co-stimulatory molecules on the surface of antigen presenting
cells. Relevant to SARS-CoV-2, monocytes isolated from older
adults have been shown to exhibit reduced expression of CD80
and CD86 following ligation of the RNA-sensing PRRs TLR7/8
(173). In subsequent vaccination studies, it was shown that
expression of these co-stimulatory molecules was positively
associated with antibody responses (173).

Based on scRNA-seq data that has shown the presence of
highly expanded and functionally-competent CD8+ T cells in
the BALF of mild COVID-19 patients, it has been suggested
that a robust adaptive immune response is critical to controlling
SARS-CoV-2 infection (127). If correct, then combined with
the aforementioned remodeled T cell pool of older adults and
individuals with inflammatory co-morbidities, the SARS-CoV-2
driven induction of lymphocyte exhaustion (116, 134, 154, 159)
would hamper both the initiation and maintenance of such
a response. Furthermore, due to the reduced vaccine efficacy
that occurs as a consequence of both innate and adaptive
immune dysfunction, alternative therapeutic strategies such as
administration of the immunomodulatory drugs metformin and
pioglitazone, have been proposed to protect these high risk
groups against severe COVID-19 (174).

B Cells
Marked alterations have been described in the composition of the
circulating B cell pool of SARS-CoV-2 infected patients. Relative
to HC’s, significantly reduced frequencies of naïve IgM+CD27−,
memory CD21+27+ and CD5+ B cells have been reported
(175, 176), and are accompanied by a concurrent elevation in
the proportion of CD38+27+ plasmablasts (175–177). When
analyzed by disease severity, significant alterations in plasmablast
and memory CD21+27+ B cell frequencies were observed only
in patients with severe COVID-19 disease, with the proportions
of both subsets returning to levels comparable to those of HCs
upon recovery (175, 176). Demonstrating a rapid and robust B
cell response to SARS-CoV-2 infection, elevated circulating levels
of virus specific IgM, IgG, and IgA antibodies have been detected,
with this seroconversion evident within 7–14 days post-symptom
onset (19, 68, 175, 176, 178). Interestingly, in a small pilot study of
five critically-ill COVID-19 patients, transfusion of convalescent
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plasma containing neutralizing SARS-CoV-2 specific antibodies
was shown to improve clinical status (179). In terms of the
longevity of the antibody response, SARS-CoV-2 specific IgG
antibodies have been detected in serum samples acquired from
COVID-19 patients 7 weeks post-infection (180). However, due
to the infancy of the current pandemic, it is currently unknown
as to whether this initial antibody response and generation of
memory B cells will protect against re-infection. That said, data
from previous coronavirus outbreaks, in which a progressive
decline in both SARS-CoV-1 specific IgGmemory B cells and IgG
antibodies were reported (181, 182), suggests that SARS-CoV-2
antibody responses will wane over time.

Attributed to a range of factors such as changes in the bone
marrow microenvironment and skewing of haematopoietic stem
cell differentiation toward the myeloid lineage, murine-based
studies have shown aging is associated with a reduction inmature
B cell production (183). In line with this observation, human
aging is accompanied by a reduction in the size of the peripheral
B cell pool, with both the frequency and absolute numbers of
CD19+ B cells significantly lower in older adults (183–185).
However, whether human aging is associated with changes in the
composition of the peripheral B cell pool is unclear. For example,
whilst some groups have reported an age-related increase in the
percentage or number of circulating CD27+ memory B cells
(185), others have demonstrated an age-associated decline in this
subset (183, 184). Similarly, the frequency of IgMmemory B cells
have been reported to be either decreased (186) or unchanged
with age (184).

Results of human and animal-based studies have revealed
that aging is associated with reduced B cell proliferation and
differentiation into plasma cells, which secrete antibodies that are
weaker and of lower affinity when compared to those produced
by plasma cells of younger subjects (186–189). Critical steps
in a humoral immune response are class switch recombination
(CSR) and somatic hypermutation (SHM). Taking place in
germinal centers, these two processes are responsible for the
generation of isotype-switched high-affinity antibodies. Essential
for both CSR and SHM is activation-induced cytidine deaminase
(AID), a DNA-editing enzyme, whose expression is regulated
by the transcription factor E47. Culminating in defective class
switching, the expression of both AID and E47 has been shown
to be significantly lower in B cells from aged mice and humans
(184, 190, 191). Alongside these intrinsic defects, B-cell extrinsic
factors also contribute to the age-related impairment in humoral
immunity. For example, attributed to reduced surface expression
of Fc receptors, follicular dendritic cells of aged mice exhibit
reduced antigen trapping and presentation (192), whilst the age-
related decline in CD40L expression on the surface of activated
CD4+ T cells would reduce the delivery of co-stimulatory signals
to antigen-expressing B cells (193).

B cell immunesenescence is considered a major underlying
factor in the reduced efficacy of vaccination in older adults.
Characterized by decreased antibody concentrations, delayed
peak antibody titres and lower seroprotection (194–196), the
humoral response to a range of vaccinations such as influenza
(197) and Hepatitis A (196) is significantly reduced in older
adults. Furthermore, accompanying this impairment in initial

antibody responses is an age-associated decline in antibody
persistence, with one study reporting non-protective antibody
titres to be present in older adults 6–10 years following
vaccination with tetanus toxoid (198). In the context of COVID-
19, these studies highlight the need for research groups involved
in designing a SARS-CoV-2 vaccine to consider the impact
that age will have on its efficacy, and whether one vaccine will
confer protection amongst all groups of society. With this in
mind, it may be that a vaccination strategy specific for older
adults is required. This could involve the co-administration of an
adjuvant or delivery of a booster vaccine, two strategies that have
previously proven successful in augmenting antibody titres and
conferring seroprotection in aged rhesus monkeys and humans
(199, 200).

Inflammaging
Physiological aging is accompanied by a sub-clinical chronic
low-grade state of systemic inflammation, inflammaging. This
phenomenon is characterized by elevated serum levels of acute
phase proteins (e.g., C-reactive protein) and pro-inflammatory
cytokines (e.g., TNF-α, IL-6, and IL-8) (201). Previous papers
that have discussed COVID-19 in the context of aging and
immunesenescence have speculated that inflammaging would
predispose the older adult to severe infection by fuelling an
exaggerated pro-inflammatory response to SARS-CoV-2 (202,
203). However, based on emerging data that suggests excessive
pro-inflammatory responses in older adults negatively regulates
their immune responses (204, 205), we propose the following
alternative hypothesis: inflammaging predisposes older adults to
severe COVID-19 by suppressing the immune response to SARS-
CoV-2. Whilst in vitro and in vivo studies have demonstrated
that exposure to pro-inflammatory cytokines can modulate the
phenotype and/or function of innate and adaptive immune cells
(147–149, 206), it is the work of Akbar et al. that have specifically
linked hyper-inflammation to impaired antigen specific immune
responses during aging. Using a human experimental system
that investigates antigen-specific immunity in vivo, the group
has consistently demonstrated an age-related impairment in the
delayed type hypersensitivity (DTH) response to varicella zoster
virus (VSV) antigen (204, 205, 207). Attributed to aberrant
activation of P38 MAPK signaling, the decreased VZV antigen
responsiveness of older adults is associated with an accumulation
of CCR2+ monocytes that inhibit T cell proliferation via the
production of prostaglandin E2 (PGE2) (204, 205).

In terms of COVID-19, it is interesting that the aging lung
is characterized by a state of heightened basal inflammation,
with levels of IL-6, amongst other cytokines, significantly higher
in the BALF of healthy older adults when compared to their
younger counterparts (208–210). It has been suggested that a
life-long accumulation of senescent cells may be responsible for
this age-associated increase in pulmonary inflammation (210).
Whilst data from murine models support this assumption (211),
it is currently unknown in humans as to whether aging is
associated with an increased senescent cell burden in the lungs.
However, it is interesting that metatranscriptomic sequencing of
BALF from COVID-19 patients aged 40-61 years detected an
up-regulation of CCL2 (212), a chemokine produced in large
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amounts by senescent cells (213, 214). Moreover, CCL2 is the
chemoattractant for CD14++ CCR2+ classical and intermediate
monocytes, which in the abovementioned VZV models were
more abundant at sites of antigenic challenge in older adults
and negatively regulated the adaptive immune response (204).
Thus, in response to SARS-CoV-2, the pulmonary immune
response of older adults may share features reminiscent of the
impaired cutaneous immune response described in DTHmodels,
in that, via the CCL2-mediated recruitment of PGE2-secreting
monocytes, a hyper-inflammatory response would impede T
cell function.

Residing in a state of permanent cell cycle arrest, yet
remaining metabolically active, senescent cells are a rich source
of pro-inflammatory cytokines, chemokines, growth factors and
proteases (215). Due to this inflammatory profile, termed the
senescent associated secretory phenotype (SASP), and their
presence in various tissues of older adults and T2D patients
(216–218), senescent cell accumulation is considered to be one
factor underlying the heightened systemic inflammatory status
of these individuals. Recently, it was demonstrated that certain
viruses such as influenza virus exhibit enhanced replication
efficiency in senescent cells (219). In terms of coronavirus, entry
of SARS-CoV-1 into host cells has been shown to be dependent
upon surface expression of vimentin, a filament protein that
interacts directly with the spike protein of SARS-CoV-1 (220).
Since vimentin was recently found to be expressed on the
surface of senescent lung fibroblasts (221), and the fact that
SARS-CoV-1 and SARS-CoV-2 utilize the same mechanism of
attachment to host cells, a number of groups have proposed
increased SARS-CoV-2 replication would occur in individuals
with a high senescent cell burden (222–224). Thus, an increased
presence of senescent cells may predispose to the development of
severe COVID-19 via two mechanisms: (1) reduced immune cell
clearance by contributing to the aforementioned inflammation-
induced suppression of innate and adaptive immunity (204, 205,
225) and (3) increasing viral load by acting as a site of enhanced
SARS-CoV-2 replication. Interestingly, a number of clinical trials
assessing the therapeutic benefit of drugs that directly eliminate
senescent cells or suppress their SASP are already underway in
patients with COVID-19 (223, 226). Results of such studies will
help researchers address whether a high senescent cell burden is
indeed a risk factor for the development of severe COVID-19.

Belonging to one of two distinct subsets, namely monocytic
or granulocytic, myeloid-derived suppressor cells (MDSC’s) are
a heterogeneous collection of immature cells. Via a range of
mechanisms, which include the generation of ROS and nitric
oxide, arginine metabolism, induction of T regulatory cells and
the production of anti-inflammatory cytokines, MDSC’s are
potent immune suppressors, inhibiting the proliferation and
activation of innate (NK cells, DC’s and macrophages) and
adaptive (T and B cells) immune cells (227, 228). Whilst the
presence of MDSC’s during acute inflammatory responses is
seen as beneficial (due to their involvement in the resolution
of inflammation), in the setting of chronic inflammation,
where MDSC’s persist, their suppressive activity is considered
detrimental to the host (229). Thus, the elevated frequency
of MDSC’s reported in older adults, obese subjects and T2D

patients (230–232) has been proposed as a potential mechanistic
explanation for the increased susceptibility to infection and poor
vaccination responses elicited by these individuals (233, 234).
Given that such inflammatory mediators as PGE2, IL-6, TNF-α,
and GM-CSF promote the expansion and activation of MDSC’s
(227), the hyperactive immune response and cytokine storm
described in SARS-CoV-2-infected patients has resulted in a
handful of studies investigating whether MDSC’s may contribute
to the pathogenesis of COVID-19.

Relative to HC’s, significantly elevated frequencies of MDSC’s
(235) and granulocytic-MDSC’s (G-MDSCs) (236) have been
detected in peripheral blood samples obtained from mild
and severe COVID-19 patients. Suggestive of driving reduced
anti-viral immune responses, significant negative associations
were reported between MDSC frequency and the percentage
of perforin+ CD3+T cells and perforin+ NK cells (235),
whilst in ex vivo cultures, depletion of G-MDSC’s from PBMC
samples of severe COVID-19 patients restored the proliferative
capacity and cytokine production of T cells (236). In terms
of disease severity, MDSC frequency has been reported to be
significantly higher in patients with severe COVID-19 when
compared to subjects with mild disease (236), whilst single
cell transcriptomics has revealed the presence of immature
CD14+MPO+Ki67+HLA-DRlo suppressive monocytes and
immature ARG1+CD101+S100A8/A9+ neutrophils only in
patients with severe disease (237). Furthermore, there is evidence
to suggest that MDSC’s persist in severe patients, with one
study reporting G-MDSC’s comprised >30% of total PBMC’s in
samples acquired from 3 severe COVID-19 patients at day 18
post-hospital admission (236). Thus, it has been hypothesized
that a SARS-CoV-2-induced expansion of MDSC’s may promote
immune paralysis and that current therapeutic approaches
targeting the cytokine storm may have the additional benefit of
augmenting anti-viral immune responses by reducing MDSC
proliferation and activation (235).

Age-Associated Changes in Pulmonary
Immune Responses
Thus, far, our discussion of how immunesenescence may
predispose to severe COVID-19 has focussed on the changes
that occur in the composition, phenotype and/or function of
circulating immune cells. As a respiratory tract infection, it is
important to discuss the pulmonary immune response.

As the resident immune cell of the lungs, studies that
have examined the effect of age on the pulmonary immune
response have focussed predominantly upon the AM. Gene
profiling of resting AMs has shown aging induces wide-spread
transcriptional changes in aged mice (97), with up-regulation
of inflammatory pathways related to oxidative burst and IL-8
supporting the notion that aging is associated with heightened
basal inflammation within the lung (97). Intertwined with this
pulmonary inflammaging is reduced AM function (95, 97, 238),
with the work of Hinojosa et al. suggesting the elevation in
basal inflammation is linked to impaired cytokine production
via an up-regulation in AMs of A20, a negative regulator of
NK-κβ and MAPKs (239). As both these signaling elements
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function downstream of the RNA sensing PRRs TLR7/8 and
RIG-1, pro-inflammatory cytokine production by AMs following
SARS-CoV-2 stimulation may be reduced with age. This theory
is supported by the significantly reduced production of IL-6
by AMs from aged mice following ex vivo stimulation with
the TLR7/8 agonist R848, an impairment that was reported
alongside a down-regulation of TLR8 gene expression and a
reduced induction of genes related to IL-6 signaling in lung
tissue from aged mice following viral infection (240). Other
age-related defects reported in the pulmonary immune response
include reduced NKCC (241), impaired migration of pulmonary
DCs to draining lymph nodes (DLNs) (242), diminished virus-
specific CD8+ T cell responses (242–245) and delayed immune
cell infiltration (74, 245). Results of adoptive transfer experiments
point toward an immune suppressive environment rather than
cell-intrinsic defects as the cause of some of the abovementioned
functional impairments, with one study attributing the age-
associated impairment in pulmonary DC and T cell responses to
elevated levels of the immune suppressive eicosanoid PGD2 in
the lungs of aged mice (97, 242).

Insights into how aging may specifically affect the pulmonary
immune response to SARS-CoV-2 are offered by the results
of murine and non-human primate models of SARS-CoV-1
infection (242, 246–251). Replicating the situation in humans,
disease severity and lethality in these models are higher in aged
animals when compared to their younger counterparts (242, 247–
249), and interestingly, the immune dysregulation that occurs
in aged mice infected with SARS-CoV-1 is greater than that
detected during influenza A virus infection (242). Features of the
pulmonary immune response of aged animals to SARS-CoV-1
include: reduced DC migration to DLNs (242), impaired CD8+

viral-specific T cell responses (242), decreased macrophage
and DC activation (247), reduced T cell proliferation (247)
and enhanced pro-inflammatory cytokine responses (246, 248,
249). Those studies that have reported an age-related increase
in viral-induced inflammation have shown this exaggerated
response is associated with significant lung damage, leading
to the suggestion that a pathological immune response may
contribute to the increased morbidity and mortality rates in
older adults following coronavirus infection (246). Using two
distinct approaches, namely antagonism of PGD2 signaling (242)
or prophylactic treatment with the TLR3 agonist poly IC (251), it
is possible to enhance the pulmonary immune response of older
animals to SARS-CoV-1 and increase host survival (242, 251).
Demonstrating reversal of immunesenescence, these therapeutic
strategies have been proposed as a potential means of improving
clinical outcome in older adults at high risk of severe respiratory
infections (242, 251).

RESOLUTION OF INFLAMMATION

A co-ordinated multi-step program that involves the clearance
of apoptosed neutrophils by macrophages (efferocytosis) and the
generation of specialized pro-resolving lipid mediators (SPMs),
the resolution of inflammatory responses is an active process
that protects against unwarranted tissue damage (252). Whilst we

await data relating specifically to features of the resolution phase
in SARS-CoV-2-infected patients, a series of murine and human-
based studies have shown aging (97, 225, 253), obesity (254, 255)
and T2D (254, 256) are all associated with delayed resolution of
inflammatory responses.

Attributed to a p38 MAPK driven reduction in the expression
of T-cell immunoglobulin mucin protein 4 (TIM-4), a receptor
expressed by macrophages that recognizes phosphatidylserine
on the surface of apoptosed neutrophils, De Maeyer and
colleagues recently demonstrated an age-associated impairment
in efferocytosis (225). In a human dermal model of acute
sterile inflammation, this defect in efferocytosis resulted in the
accumulation of annexin V+ neutrophils and delayed resolution
(225). Mirroring these observations, reduced clearance of
apoptosed cells by macrophages has been reported in the
experimental settings of obesity (97, 254, 257) and diabetes (254,
256, 258), with decreased PI3-K signaling (257) and elevated
PGE2 levels in inflammatory exudate (254) identified as potential
underlying causes. In addition to defective efferocytosis, reduced
concentrations of SPMs have been measured at sites of acute
inflammation in murine models of aging (253) and diabetes
(256). Augmenting SPM levels via exogenous administration
shortened resolution time in vivo, with this improvement linked
to increased efferocytosis and the reprogramming of monocytes
to a pro-resolving phenotype (253). Based on these data, we
propose that, via their delayed induction of resolution programs,
groups at high risk of COVID-19 would experience prolonged
inflammatory responses following SARS-CoV-2 infection. By
exacerbating their pre-existing heightened pro-inflammatory
status, this impairment in resolution would promote further
immune dysregulation and bystander tissue damage that would
result in delayed viral clearance and an extended time to recovery.
On this note, coinciding with impaired efferocytosis in vitro,
Wong et al. observed greater neutrophil retention in the lungs
and higher myeloperoxidase levels in the BALF of aged mice
following influenza A virus infection (97). Interestingly, adoptive
transfer of AMs from young mice into aged mice significantly
reduced the degree of lung damage measured 3 days post
influenza A virus challenge (97).

Associated with pathogen dissemination, impaired lung
function and increased mortality (259, 260), down-regulation
of ALOX5 (the gene responsible for the synthesis of the SPM
lipoxin) and reduced production of the SPM protectin D1
(PD1) have been reported in murine models of severe influenza
infection. Based in part on the fact that in these models
administration of PD1 improved survival rates and pulmonary
function (260), SPM treatment has been proposed as a therapy
by which to promote the resolution of lung inflammation and
reduce tissue damage in COVID-19 patients (261). Importantly,
treatment regimens that include exogenous application of SPMs
and inhibition of P38 MAPK have been shown in human and
animal models to overcome the delay in inflammatory resolution
that occurs as a consequence of aging and the presence of co-
morbidities (225, 253, 256). Thus, it appears that resolution
of inflammation can be manipulated in groups at high risk
of severe COVID-19. However, as histological examination of
lung tissue obtained from a SARS-CoV-1 infected patient found
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increased expression of plasminogen activator inhibitor-1 (262),
a negative regulator of efferocytosis (263), there may be obstacles
beyond impaired SPM generation that need to be overcome
in order to successfully promote the resolution of coronavirus-
induced inflammatory responses in older adults and those with
inflammatory co-morbidities.

FUTURE DIRECTIONS

Immunesenescence and the Development
of a COVID-19 Vaccine
A recent report by the World Health Organization provided
information on the 26 candidate COVID-19 vaccines that are
currently undergoing clinical testing and details of a further 139
that are in preclinical evaluation (264). The speed of COVID-
19 vaccine research was highlighted by the fact that within 68
days of being declared a pandemic, results of the first animal and
human based studies to test potential vaccines were published
(265). Across rodents and non-human primates, the efficacy of
an adenovirus-vectored vaccine encoding the spike protein of
SARS-CoV-2 (266), a purified inactivated virus vaccine (267)
and a series of DNA vaccines expressing different forms of
the spike protein (268) have been tested, with preliminary
results demonstrating the generation of robust humoral and
cell-mediated responses that significantly reduce viral load and
prevent the development of pneumonia (266, 267). Moderna
Therapeutics recently announced the results of their phase 1
human trial of a potential COVID-19 vaccine (269). Using
an mRNA vaccine that encodes for a pre-fusion stabilized
form of the SARS-CoV-2 spike protein, the company reported
seroconversion following a single dose in all 45 participants, with
those who received two doses generating antibody levels akin to
those measured in patients that have recovered from COVID-19
(269). However, it will be important to consider the impact of age
and co-morbidities on the efficacy of any potential vaccine.

To date, a number of animal-based studies have investigated
the effect of age on the efficacy of SARS-CoV-1 vaccines (270–
272). In response to infection with homologous or heterologous
viral strains, Bolles et al. found that aged mice vaccinated
with an adjuvanted-double-inactivated whole SARS-CoV-1 virus
were not completely protected against virus-induced mortality
and exhibited both increased morbidity and pulmonary viral
load when compared to young mice (270). Underlying this
impairment in vaccine efficacy was a significant age-associated
reduction in serum neutralizing antibody titres (270). However,
in a related study, Sheahan et al. used a virus replicon particle
vaccine platform that specifically targeted DCs, and showed
that this strategy resulted in comparable antigen-specific IgG
responses between young and aged mice and protected older
mice from SARS-CoV-1-mediated clinical disease (272). Taken
together, these data not only demonstrate the importance of
testing any potential COVID-19 vaccine in all age groups
but highlight how vaccine design will be critical for inducing
protective antibody responses in aged hosts. On this note, a
number of therapeutic strategies have been proposed and/or
trialed in an attempt to combat the reduced efficacy of

vaccinations against viral antigens in older adults (273). To date,
these have included immunostimulant patches (274), the use of
TLR agonists as adjuvants (275), the fusion of viral proteins with
TLR agonists (276), high dose vaccination (277–279) and the use
of PGD2 antagonists (242).

It is becoming increasingly recognized that obesity is a risk
factor for infectious disease and poor vaccination responses
(280–283). Data from mice (284–286) and human (287, 288)
studies have reported reduced influenza vaccine efficacy in obese
subjects, which in murine studies was associated with increased
lung pathology, higher viral titres and greater mortality rates
upon secondary infection (284, 285). Studies are underway
to investigate methods of counteracting the negative effects
of obesity on vaccine responses. Of note, whilst the use of
adjuvants and/or high dose vaccination have been shown to
increase neutralizing antibody titres in obese mice, the levels
generated as well as the breadth and magnitude of the antibody
response was significantly lower when compared to lean controls,
ultimately resulting in reduced protection upon viral challenge
(289). Thus, when viewed alongside the abovementioned age-
related impairment in vaccine efficacy, these results imply that
a “one size fits all” policy may not be appropriate for a
COVID-19 vaccine, with high risk groups requiring a tailored
vaccine designed to overcome the deficits of their remodeled
immune systems.

Enhancing Immune Function in Older
Adults
Through pharmacological and non-pharmacological approaches,
which include nutritional intervention (290, 291) and the
administration of protein kinase inhibitors (204, 205, 225, 292,
293), clinical studies in older adults have shown it is possible to
reverse immunesenescence.

Associated with reduced circulating frequencies of
functionally exhausted PD-1 positive CD4+ and CD8+ T
cells, Mannick et al. demonstrated a significantly enhanced
serological response to influenza vaccination in older adults
treated with the allosteric mammalian target of rapamycin
(mTOR) inhibitor RAD001 prior to antigenic challenge
(292). More recently, the same group reported that a
combined therapy of RAD001 and BEZ235, a competitive
mTOR inhibitor, significantly reduced the annualized rate
of respiratory tract infections in adults aged ≥65 years
(293). mRNA sequencing analysis of circulating leukocytes
revealed this protective effect was accompanied by an
up-regulation in genes related to anti-viral type I IFN
signaling (293).

Oral administration of the potent and selective P38 MAPK
inhibitor losmapimod has been shown to boost cutaneous
immune responses in older adults. In a model of DTH, P38
inhibition was found to significantly increase VZV antigen
specific immunity (205). Mechanistically, at the site of antigenic
challenge, this improved immune response was associated with
significantly reduced infiltration of PGE2 producing CCR2+

monocytes and increased T cell proliferation, whilst systemically,
a significant decline in serum CRP levels was reported
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(204, 205). Importantly, losmapimod treatment also augments
the resolution response of older adults (225), meaning that
the improved immune response that would occur following
P38 inhibition would not be offset by bystander tissue
damage that would arise from the delay in the resolution
of inflammatory responses that accompanies physiological
aging (225).

Taken together, these studies demonstrate that it is possible to
enhance anti-viral immunity and resolution responses in older
adults. In the context of SARS-CoV-2 infection, these treatment
regimens could be applied in a prophylactic manner to prevent
the spread of COVID-19 and boost immune responses to future
vaccines. Having already proven successful in elderly subjects,
these therapeutic strategies have an advantage over many other
potential treatments whose efficacy would be hampered by the
remodeling of the immune system that occurs with age.

CONCLUDING REMARKS

The similarities that exist between the immune response that
precedes or accompanies the onset of severe COVID-19,

and the re-modeled immune systems of older adults and
those with inflammatory co-morbidities, lend support to the
idea that immunesenescence may predispose to COVID-19
infection and disease severity (Figure 1). However, current
evidence is at best circumstantial (202, 203), with the lack of
cross-sectional and prospective studies examining the SARS-
CoV-2-induced immune response in these high risk groups
hindering our ability to address this hypothesis. That said, it
appears that such studies are underway (10, 154, 294). For
example, in a recent study, Liu et al. divided a cohort of 221
COVID-19 patients into two distinct age groups, and found
older adults (≥60 years of age) presented with significantly
elevated inflammatory indices (10). Furthermore, a study at
University College London has acquired pre-infection blood
and throat swab samples from people ≥70 years of age
who will be assessed weekly for COVID-19 related symptoms
(294, 295). Working on a hypothesis that prior exposure to
coronaviruses may lead to an exaggerated immune response
against SARS-CoV-2, one aim of the study is to determine
pre-infection antibody titres against other coronaviruses (295).
The results of this study, which also plans to search for

FIGURE 1 | Immunesenescence: a risk factor for severe COVID-19? Similarities between the immune profile of patients with severe COVID-19, healthy older adults

and adults with inflammatory co-morbidities (obesity and type 2 diabetes). IFN, Interferon; NET, Neutrophil extracellular traps; NK, Natural killer.
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biomarkers that are predictive of outcome in those subjects
who develop COVID-19 (294, 295), will provide a much needed
insight into how the immune system of older adults responds
to SARS-Cov-2 and whether it is a contributory factor in
patient outcome.
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One of the most appreciated consequences of immunosenescence is an impaired
response to vaccines with advanced age. While most studies report impaired antibody
responses in older adults as a correlate of vaccine efficacy, it is now widely appreciated
that this may fail to identify important changes occurring in the immune system with age
that may affect vaccine efficacy. The impact of immunosenescence on vaccination goes
beyond the defects on antibody responses as T cell-mediated responses are reshaped
during aging and certainly affect vaccination. Likewise, age-related changes in the innate
immune system may have important consequences on antigen presentation and priming
of adaptive immune responses. Importantly, a low-level chronic inflammatory status
known as inflammaging has been shown to inhibit immune responses to vaccination
and pharmacological strategies aiming at blocking baseline inflammation can be
potentially used to boost vaccine responses. Yet current strategies aiming at improving
immunogenicity in the elderly have mainly focused on the use of adjuvants to promote
local inflammation. More research is needed to understand the role of inflammation in
vaccine responses and to reconcile these seemingly paradoxical observations. Alternative
approaches to improve vaccine responses in the elderly include the use of higher vaccine
doses or alternative routes of vaccination showing only limited benefits. This review will
explore novel targets and potential new strategies for enhancing vaccine responses in
older adults, including the use of anti-inflammatory drugs and immunomodulators.

Keywords: aging, immunosenescence and inflammaging, vaccine, T lymphocytes, anti-inflammatories
INTRODUCTION

Human aging is associated with a general decline in physiological functions and increased
susceptibility to disease. A dysregulation of the immune system, known as immunosenescence, is
characteristic of aging and has been linked with negative clinical outcomes in older adults (1). One
of the most appreciated consequences of immunosenescence is an impaired response to new
infections and vaccination in older people (2). Four vaccines are currently recommended for
individuals over 65 years of age to protect against infections that disproportionately affect older
adults, including influenza, herpes zoster, pneumococcal disease and tetanus and diphtheria. However,
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responses to these vaccines are often impaired in older individuals
placing them at further risk of disease (3, 4). This has considerable
implications for vaccination against emerging infectious diseases
such as COVID-19 that have a disproportionately larger effect on
older subjects (5).

While most studies report antibody responses as a correlate of
vaccine efficacy, it is now widely appreciated that this may fail to
identify important changes occurring in the immune system with
age that may affect vaccine efficacy (6, 7). The impact of
immunosenescence on vaccination goes beyond the defects on
T and B cell responses and changes in innate immunity and
increased systemic inflammation, also referred to as inflammaging,
may have additional consequences on vaccine efficacy (8). While
the mechanisms of immune aging are not yet fully understood, it is
now apparent that this process is dynamic and multifaceted, with a
decline in many primordial functions but also gain of new
functions as well as changes in the microenvironment. Globally,
age-related changes in the immune system are better described as a
remodeling than a decline in immune functions (9). A better
understanding of the full spectrum of changes characterizing
immunesenescence is fundamental to the development of novel
and improved vaccines for older adults.
HOW CAN IMMUNOSENESCENCE AND
INFLAMMATION AFFECT VACCINE
RESPONSES?

Changes affecting both innate and adaptive immune function with
age may lead to impaired vaccine responses in older people.
Immunosenescence is primarily linked to the involution of
primary lymphoid organs (bone marrow and thymus), resulting
in depletion of the peripheral pool of naive B and T cells (10). To
maintain peripheral cell numbers, there is a clonal expansion of
antigen-experienced cells resulting in extreme differentiation and
altered functionality (11). Consequently the immune space becomes
filled with antigen-specific memory cells leading to a contraction of
the immune repertoire and impaired responses to neo-antigens
(12). In parallel with this, the effects of aging on hematopoiesis result
in a lineage skewing towards an increase in myeloid versus
lymphoid precursor (13). Although the numbers of most
circulating innate immune cells may not be significantly reduced
with age, alterations in their functionality have a particular impact
on antigen presentation due to decreased antigen uptake, reduced
phagocyte functions and altered cytokine production (13, 14). In
addition to cell-intrinsic changes, alterations in the
microenvironment including a low-grade chronic inflammatory
status and architectural changes occurring in lymph nodes may
play previously underappreciated roles in shaping vaccine responses
with age (1, 15). Excessive baseline inflammation has been recently
associated with poor responses to vaccination (16) however more
research is needed to reconcile this evidence with the current
paradigm that adjuvants enhance immune responses to vaccines
by promoting local inflammation. It is plausible that stronger local
inflammatory signals are needed to overcome background
inflammation or that specific inflammatory pathways should be
Frontiers in Immunology | www.frontiersin.org 254
triggered to overcome local inhibitory responses. Thus a better
understanding of the role of inflammation in vaccination and of the
mechanisms of action of adjuvants is needed to be able to fine tune
immune responses and selectively stimulate pathways that lead to
long-lasting immune protection. In this review, we will describe the
most recent data on the effects of aging on immune responses to
vaccination and discuss, in light of the current knowledge, how can
immunesenescence and inflammaging be targeted to improve
vaccine responses in older adults.

Age-Related Changes in
Adaptive Immunity
Changes in the T Cell Compartment
The effects of aging are particularly evident in the T cell
compartment and reduced vaccine responses in older people
are, at least in part, due to defective T cell memory responses
with age (17). Different mechanisms may be contributing to
reduced T cell responsiveness with age (18), but the loss of
proliferative capacity (19) and decreased TCR function (20–22)
and TCR diversity (23) are certainly determining factors. Prior
antigen exposure, in particular latent viral infections such as
cytomegalovirus (CMV) and Epstein-Barr Virus (EBV) have a
significant impact on immunosenescence by shaping the
immune repertoire with large proportions of terminally
differentiated cells with reduced proliferative capacity and
features of replicative senescence (24–26). Despite this, data on
the impact of CMV infection on vaccine responses are
controversial, with studies showing an association between
CMV-seropositivity and impaired antibody responses to
vaccination in older adults (3, 27) while others have found
enhanced antibody responses to influenza vaccination in
CMV-seropositive compared to CMV-negative individuals (28,
29). Nevertheless, it has been shown that CMV seropositivity is a
better predictor of a decline in T cell responses to influenza
challenge rather than antibody responses in vaccinated older
adults (30, 31). When using functional assays of CD8+ T cell
cytolytic activity upon ex vivo influenza challenge, CMV-
seropositivity was associated with impaired cytolitic responses
to influenza, measured by granzyme B levels in virus-challenged
T cells (30, 31).

Mechanistically, we have described that highly differentiated
T cells with features of senescence exhibit decreased TCR
responsiveness as a results of loss of key components of the
TCR signalossome (20, 22). Interestingly, these cells concomitantly
express NK lineage receptors and acquire TCR-independent
functionality (32). Thus, non-proliferative senescent-like T cells,
in particular CD8+ T cells, are reprogrammed to acquire broad,
innate-like killing activity regulated by a group of stress sensing
molecules known as sestrins (32). Studies in human centenarians
have found an expansion of these NK-expressing T cells in old
individuals compared to young (33) while others have shown that
the expression of NK cell markers on CD8+ T cells is particularly
evident in individuals with high levels of CD57, indicative of an
aged immune system (34). The biological significance of the
acquisition of innate-like receptors and functions by T cells is
unclear, but we believe that this may serve as a beneficial adaptation
to ensure broad and rapid effector function with age, independently
October 2020 | Volume 11 | Article 583019
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of antigen-specificity, and this may represent a relatively
unexplored opportunity to enhance vaccine-elicited immunity
(35, 36). Despite the loss of proliferative potential, aged T cells
are metabolically active and exhibit increased production of pro-
inflammatory cytokines and thus may have detrimental effects on
the tissue microenvironment, contributing to age-associated low-
grade inflammation (37–39).
Changes in the B Cell Compartment
As with T cells, there is an age-dependent accumulation of late-
stage memory B cells, while the circulating pool of naïve B cells
progressively decreases, skewing the B cell repertoire and
limiting the number of clones available to respond to novel
antigens (40). B cells experience significant functional changes
with age with reduced proliferative potential and impaired
capacity for differentiation into plasma cells after antigen
challenge (41). Senescent B cells have also been shown to
spontaneously secrete pro-inflammatory cytokines contributing
to age-related chronic inflammation and further immune
dysregulation (42). Overall, these changes have been associated
with poor health outcomes (43) and diminished responses to
vaccination in old age (44). Several studies have shown that older
adults have lower antibody responses following vaccination
compared to younger adults and have been reviewed elsewhere
(45). The quality of these antibody responses is also
compromised with reduced diversity in the antibody repertoire
(46, 47). This is particularly well described for influenza
vaccination (48, 49), although responses to pneumococcal
vaccines are equally compromised (50). Intrinsic defects of B
cells, such as reduced somatic hypermutation and isotype switch
as well as reduced numbers of plasma cells contribute to reduced
antibody responses after vaccination and this correlates with
decreased vaccine efficacy (41).
Changes in Innate Immunity With Age
Alterations in the phenotype and function of innate immune
cells with age are increasingly well recognized (13, 14) and
particularly relevant for vaccine-induced immune responses.
Reduced chemotaxis, alterations in signaling pathways following
antigen recognition and aberrant cytokine production have been
described in neutrophils (51, 52), monocytes/macrophages (53,
54) and dendritic cells (DCs) (55, 56) derived from older persons
further affecting their capacity to process and present antigen to T
cells. Toll-like receptor (TLR) signaling has a crucial role in
vaccination by linking innate and adaptive immune responses
(57). Although the surface expression of TLRs does not show a
consistent change with age, altered cytokine production and
impaired downstream TLR signaling have been described in
older adults (58). Interestingly, an age-dependent decrease in TLR
function in human DCs has been linked with poor antibody
responses to influenza immunization, providing evidence for the
impact of an aging innate immune system in vaccine responses (59).
Moreover, intracellular cytokine production in the absence of TLR
ligand stimulation was elevated in cells from older compared with
young individuals (59), suggesting a dysregulation of cytokine
Frontiers in Immunology | www.frontiersin.org 355
production that may contribute to age-related inflammation.
Changes affecting the local microenvironment at the site of
injection may have a significant effect on vaccine responses.
Neutrophils and tissue-resident macrophages contribute to a pro-
inflammatory environment at the site of vaccine injection that is
important for recruiting other immune cells and for the priming of
adaptive immune responses (60). However, as it will be discussed in
more detail there is a growing appreciation that excessive local
inflammation may be detrimental to vaccine responses (16).

The effects of age on the phenotype and function of NK cells
have been described elsewhere (13, 61) and may as well affect the
efficacy of vaccination in older people. As discussed later, NK cells
have a previously unrecognized role in vaccination, contributing for
protection during the early phases post-vaccination by mechanisms
that involve the generation of innate immune memory (62). Thus,
the effects of aging on cytotoxicity and cytokine secretion mediated
by NK cells may have wider implications for immune responses to
vaccination in older adults (63).

Age-related changes in innate T cells are less well described
however a decreased frequency and change in phenotype of
peripheral gd T cells (64) and mucosal-associated invariant T
(MAIT) cells (65) have been reported in older adults compared
to young. Recently it has been described that MAIT cells in
older adults have an increased baseline inflammatory profile
that was associated with reduced Escherichia coli–specific
responses in aged MAIT cells compared with their young adult
counterparts (66).
Inflammaging
Aging is associated with a chronic and systemic sterile
inflammatory state termed inflammaging (67). This is
supported by the findings of higher levels of tumor necrosis
factor (TNF), IL-6 and other pro-inflammatory cytokines in the
serum of older individuals compared to young (68, 69). A variety
of stimuli may sustain inflammaging, not only chronic antigen
stimulation by pathogens, but also activation of the
inflammasome by endogenous cell debris and misplaced self-
molecules and microbial translocation due to increased gut
permeability (70). Although the innate immune system, in
particular the monocyte-macrophage network are thought to
be at the center of inflammaging (70, 71), accumulating evidence
indicates that senescent cells in general, including senescent T
and B cells have an important contribution with their senescent-
associated secretory phenotype (SASP) (72). Regardless of the
origin, this low-grade systemic inflammation is predictive of
frailty and earlier mortality (73) and is an established risk factor
for many age-related diseases including heart disease, age-related
macular degeneration, type II diabetes, osteoporosis and cancer
(74, 75).

There is accumulating evidence that increased chronic
background levels of inflammation might be detrimental for
vaccine responses (76–81). Nakaya et al. investigated gene
signatures predictive of influenza vaccine responses in young
and old adults and found that pre-vaccination signatures
associated with T and B‐cell function were positively correlated
with antibody responses at day 28 after vaccination, while
October 2020 | Volume 11 | Article 583019
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monocyte‐ and inflammation‐related genes were negatively
correlated with antibody responses (76). Similarly, studies on
HBV vaccination in the elderly revealed that a more pronounced
inflammatory gene expression profile at baseline predicted a
poorer response to vaccination (77, 78). Our group has shown
that older individuals exhibit reduced cutaneous immunity to
varicella zoster virus recall antigen challenge associated with
increased baseline local inflammation (79). Subsequently we
demonstrated that infiltrating monocytes play a crucial role in
the inhibition of cutaneous immunity, by a mechanism driven by
increased cyclooxygenase 2 (COX2) expression and production
of prostaglandin E2 (PGE2), ultimately leading to reduced
proliferation of skin resident-memory T cells and reduced
responses to antigenic stimulation (82). Overall, these findings
support the concept that elevated baseline inflammation may
have a significant role in the age-related hypo-responsiveness to
vaccination and thus reducing background inflammation might
be a promising strategy to enhance vaccine responses (83). This
may be a particularly important consideration for older subjects
who develop severe inflammation after SARS-Cov-2 where
reducing inflammation may boost vaccine efficacy (84).
CURRENT STRATEGIES TO IMPROVE
VACCINE EFFECTIVENESS

Current recommendations for vaccination in older adults include
vaccines against influenza, herpes zoster, pneumococcal disease
and a booster against tetanus and diphtheria. Despite being able to
mitigate the severity of the disease to some degree, these vaccines
often fail to induce protective immunity in the elderly. Several
approaches are currently in place to improve vaccine effectiveness
in this population [discussed in detail elsewhere (4)] and largely
focus on the use of adjuvants, higher antigen doses and alternative
routes of immunization.

Influenza Vaccines
Adjuvanted influenza vaccines are now the first choice for those
over 65 years in countries such as Austria and the United
Kingdom (UK) to overcome the low effectiveness of standard
vaccines in the elderly (85). Data from the 2018/19 influenza
season in the UK, the first season after the introduction of
adjuvanted vaccines for persons above 65 years, demonstrated
better protection from pneumonia-associated hospitalizations
and laboratory-confirmed influenza cases with adjuvanted
compared to non-adjuvanted vaccines (86). Studies have
demonstrated that the addition of MF59® to influenza vaccine
enhanced antibody production with increased seroconversion
and seroprotection rates (87), improved antibody binding affinity
and a more diverse antibody epitope repertoire (88) and induced
broader serological protection against drifted strains (89)
providing support for the use of adjuvants in influenza
vaccination of older populations. Despite this, a study
comparing cell-mediated immune responses to vaccination in
adults ≥ 65 years old randomized to receive one of 4 seasonal
influenza vaccines—standard subunit, MF59 adjuvanted subunit
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and split-virus vaccines given intramuscularly or intradermally
—found no benefit of the MF-59 adjuvanted formulation over
non-adjuvanted formulations delivered by intramuscular and
intradermal routes (90).

Alternatively, the use of high-dose influenza vaccines in
individuals over 65 years has also been shown to induce higher
antibody titers and seroprotection rates compared to standard-
dose vaccine (91), leading to their approval for clinical use in
person aged 65 and older (92). Meta-analysis of randomized
controlled trials (RCTs) showed that high-dose vaccines (split-
virus and subunit recombinant hemagglutinin formulations)
were more effective than standard-dose vaccines in preventing
influenza-like illness, influenza hospitalization and all-cause
mortality in adults ≥65 years old (93). When looking at T cell-
mediated immune responses, high-dose influenza vaccines had
little impact on the development of functional T cell memory in
older adults compared to standard-dose vaccines (31).

Another approach to improve influenza vaccine
immunogenicity in older people is the use of alternative routes
of vaccination. Most vaccines are delivered by intramuscular or
subcutaneous injection, bypassing the mucosal immune
compartment. Intranasal and intradermal routes for influenza
vaccination have been developed with the aim of enhancing
immunogenicity, particularly cell-mediated and mucosal
immunity. Although studies suggest that intradermal influenza
vaccination may enhance immunogenicity compared to standard
intramuscular vaccines in persons over 65 years of age (94),
pooled analysis of RCT found no significant differences in
seroprotection and seroconversion rates in older adults with
intradermal vaccine compared to intramuscular (95) and
intradermal influenza vaccines are no longer recommended. T
cell responses were also not different between intramuscular
versus intradermal injection in a randomized study comparing
influenza vaccines in adults ≥ 65 years old (90).

It should be noted that when comparing different types of
influenza vaccines, the formulation may differ. Current licensed
inactivated influenza vaccines are manufactured using either
split-virus or subunit formulations. They are all designed and
licensed based on hemagglutinin antibody responses but while
they may induce similar antibody responses, the differences
become more evident when measuring cellular immune
responses to vaccination (96). Split-virus vaccine lack some of
the purification steps of subunit vaccines and therefore may
contain a larger amount of internal viral proteins such as matrix
protein (M1) and nucleoprotein (97) that are important to elicit
T cell responses (98). Co et al. showed that the presence of
influenza internal proteins, M1 and NP, contained in standard-
dose split-virus vaccines but not in subunit vaccines, were
necessary for stimulating CD8+ T cell responses measured by
IFN-gamma production and by cytotoxicity assays in vitro (96).
Importantly, a study evaluating the clinical effectiveness of split-
virion versus subunit trivalent influenza vaccines in older adults
using a case-positive, control test–negative study design,
demonstrated a vaccine effectiveness of 77.8% (95% confidence
interval [CI], 58.5%–90.3%) for the split-virion compared with
44.2% (95% CI, −11.8% to 70.9%) for the subunit vaccine (99).
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Unfortunately, there are not many studies performing head-to-
head comparisons between the different available influenza
vaccine options for older adults comparing both humoral and
T cell responses. A randomized clinical trial comparing
immunogenicity of currently available vaccine options for
older adults—standard-dose quadrivalent vaccine, MF59-
adjuvanted trivalent vaccine, high-dose trivalent vaccine, or
recombinant-hemagglutinin quadrivalent vaccine – is currently
under way and it will be important for identifying improved
vaccination strategies for influenza in older adults (100).

Herpes Zoster Vaccines
Herpes zoster results from the reactivation of latent varicella-
zoster virus (VZV) infection. Although the reactivation of VZV
can occur throughout life, the risk increases substantially with
age and in conditions associated with a decline in T cell
immunity. A live-attenuated VZV vaccine (Zostavax®) is
approved for older adults to boost VZV-specific cell-mediated
immunity (CMI). Evidence that the vaccine is partially effective
in older patients comes from the Shingles Prevention Study that
demonstrated a reduction in the incidence of herpes zoster and
post-herpetic neuralgia by 51% and 67%, respectively (101).
However, the efficacy of the vaccine was age-dependent,
dropping from 64% in the age group 60–69 years to 41% in
the age group 70–79 years. In addition to this, data on long-term
follow-up indicates that vaccine-induced immune responses
decline over time. Revaccination can have a booster effect
although current evidence is not sufficient to support
revaccination of older people (102).

A new adjuvanted recombinant zoster vaccine (Shingrix®) has
been recently approved to prevent herpes zoster in older adults. It
consists of recombinant VZV glycoprotein E and a liposome‐
based AS01B adjuvant system. This system consists of two
adjuvants, 3-O-desacyl-40-monophosphoryl lipid A (MPL) and
QS-21 formulated in a liposomal delivery system (AS01B) (103).
MPL is a TLR agonist, activating the innate immune system at
the site of the injection and enhancing antigen-presentation
(104). Whist the molecular mechanisms underlying the
adjuvant effect of QS-21 are not yet fully understood, it has
been demonstrated that it induces strong and persistent Th2
humoral and Th1 cell-mediated immune responses (105). It is
thought that the use of liposomal formulations facilitates
the escape of the antigen into the cytosol enhancing antigen-
presentation through MHC-I pathway leading to cross-
presentation to CD8+ T cells and an early IFN-gamma response
that promotes vaccine immunogenicity (106). Interestingly, the
AS01B adjuvant system seems to require the synergistic action of
the three components together for optimal adjuvant effect (107).
The efficacy of the adjuvanted recombinant vaccine has been
demonstrated in two randomized placebo-controlled Phase III
clinical trials, where the administration of two doses resulted in
97.2% protection against HZ in persons over 50 years of age (108)
and 89.8% in adults over 70 years of age (109). While long-term
follow-up is still ongoing, robust antibody and CD4+ T cell
responses were found for at least 3 years after the vaccination,
although CD8+ T cell correlates of protection were not identified
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(110). A meta-analysis comparing the two vaccines in adults over
50 years of age confirmed the superiority of the adjuvant
recombinant subunit vaccine compared to the live attenuated
vaccine for the prevention of herpes zoster infection despite a
greater risk of adverse events at injection sites (111). An
additional advantage of the recombinant zoster vaccine over the
l ive-attenuated vaccine is i ts sui tabi l i ty to use in
immunocompromised patients, including HIV-infected patients
(112) and in transplant recipients (113).

Pneumococcal Vaccines
The currently available 23-valent polysaccharide vaccine (PPV-
23) has been used for many years in older adults and is still the
first choice in many countries. However this vaccine does not
generate adequate immunological memory, as purified
polysaccharides do not induce persistent antigen-specific
memory B cells (114). Furthermore, responses to PPV-23 were
impaired in older adults compared to young individuals (115). A
13-valent conjugate vaccine (PCV-13) has been introduced and
is now the first line choice for older adults in several countries as
it has improved immunogenicity compared to the polysaccharide
vaccine (116). Conjugation of polysaccharide antigens enables
the uptake and antigen presentation in the context of MHC-II to
CD4+ T helper cells resulting in the generation of memory B cells
specific for the polysaccharides (114). A large randomized
placebo-controlled trial demonstrated that the conjugate
vaccine is effective in persons over 65 years of age, reducing
the number of hospitalizations due to community-acquired
pneumonia caused by vaccine-type strains by 45.6% and the
number of cases of invasive pneumococcal disease by 75% (117).
It is still debatable which pneumonoccal vaccine is more suitable
to the elderly and this is largely reflected in the heterogeneity of
the recommendations for pneumococcal vaccines from country
to country. PCV-13 induces stronger and long-lasting memory
responses compared to PPV-23, however PPV- 23 covers more
serotypes. This is particularly relevant in the context of the
serotype replacement that is seen as a consequence of routine
childhood vaccination with PCV-13 leading to the reduction in
the incidence of pneumococcal disease caused by vaccine
serotypes while other serotypes become more prevalent (118).
Tetanus and Diphtheria Vaccines
Antibody responses to tetanus and diphtheria vaccines are also
suboptimal in old age. In addition to reduced antibody
concentrations in the elderly, protection is short-lasting and a
second booster after 5 years did not lead to additional long
lasting immunity in older people (119).

Overall, immune responses to currently recommended
vaccines are suboptimal in older people. Despite the important
successes achieved with strategies currently in place to improve
vaccine responses in the elderly, most available vaccines still fail
to elicit long-lasting immune responses and insufficiently trigger
cell-mediated and mucosal immunity. Therefore, novel
approaches should be explored to enhance immunogenicity
and efficacy of vaccines in this population.
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NOVEL STRATEGIES FOR ENHANCING
VACCINE RESPONSES

Implementing New Correlates of
Vaccine Efficacy
Although real estimates of vaccine efficacy can only be
established in randomized, placebo-controlled trials against
laboratory-confirmed cases, the standard of practice is to use
surrogate markers of vaccine-induced protection against disease
(120–122). Hemaglutinin inhibition (HI) assays detecting
antibody responses to vaccine strains are the most widely used
correlates of protection induced by vaccines. Nevertheless,
studies in older adults have found a poor correlation between
antibody responses to influenza vaccine and protection against
laboratory-confirmed cases of influenza (7, 123). The limitations
associated with over-reliance on HI assays to ascertain vaccine
responses have been reviewed elsewhere (124), however there is
growing appreciation that the use of HI antibody titers as a sole
measure of vaccine efficacy may fail to detect important changes
in cellular immunity that occur with age (6, 7). It has been shown
that older adults exhibit lower T cell responses to influenza
compared to young controls (125) and that preexisting CD4+ T
cells against conserved internal influenza proteins are important
for limiting virus replication and disease severity (126).
Additionally, Sridhar et al. showed that, in the absence of
crossreactive neutralizing antibodies, CD8+ T cells specific to
conserved viral epitopes correlated with crossprotection against
symptomatic influenza (127). However, T cell correlates of
protection based on the frequency of IFN-gamma-producing
CD4+T (126) and CD8+ T cells (128) have only been established
in young adults and have not yet been validated in older adults.
On the other hand, other studies have demonstrated that ex vivo
T cell parameters (e.g., interferon (IFN)-gamma and IL-10 ratio,
granzyme B levels) measuring cellular immune responses to
influenza challenge performed better than antibody titers as
correlates of vaccine efficacy in older adults (7, 129). Correlates
of protection based on functional assays of CD8+ T cell cytolytic
activity are important to better predict vaccine efficacy and
should ideally be incorporated into the evaluation of protective
immunity in the elderly (7). Nevertheless, there is still limited
data on functional T cell responses to vaccines, particularly in
older adults, such as CD8+ T cell-mediated ex vivo virus
inhibition assays as described in HIV vaccine development
(130). Although recent data indicates that innate immune cells
may be important contributors for developing effective cytolytic-
mediated immunity to infection this requires a functional
readout of the response to vaccination.

Novel correlates of vaccine effectiveness are needed and an
evolving area of interest is the contribution of neutralizing and
cross-reactive antibodies induced by vaccination to enhanced
protection against disease (131). The use of functional assays
such as antibody-dependent cell mediated cytotoxicity (ADCC)
and serum neutralization assays to detect cross-reactive
antibodies that may not necessarily be detected in HI assays
has been suggested as alternative correlates of protection
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however they are difficult to standardize across laboratories.
Likewise, the incorporation of methods to assess antibody
binding affinity, specificity, and epitope diversity of polyclonal
antibodies would be important for a more comprehensive
assessment of the quality of immunization-induced antibody
responses and for developing more effective vaccines (132).
Sequencing B and T cell receptors to analyze repertoire
clonality and diversity could represent a valuable tool to
predict vaccine efficacy by identifying vaccine-induced clones
that will respond better and for longer to a given immunogen
(133, 134). Although difficult to implement as routine measure of
vaccine efficacy, assessment of repertoire clonality and diversity
would be important to direct the development of next-generation
vaccines that provide long-lasting immunity against infection.

Searching for Novel Adjuvants to
Stimulate the Immune System
Adjuvants act as enhancers of vaccine-induced immunogenicity
at multiple dimensions: inducing local proinflammatory
cytokine production, recruiting and activating innate immune
cells, stimulating antigen presentation and ultimately boosting
humoral and cellular immune responses (135). For many years,
aluminium salts have been the only adjuvant in use in human
vaccines. In recent years, high-throughput screening approaches
have led to the discovery of many novel adjuvants. However, to
date only two adjuvants (MF59 and AS01B) are currently
licensed for persons older than 65 years, while the majority
failed to translate to effective therapeutics mostly due to their
side-effects (136). As our understanding of the mechanisms that
boost immunogenicity rapidly increases, new adjuvants are being
developed with focus on generating multifaceted immune
responses. Recent research efforts have also focused on
developing new ways to deliver old adjuvants in order to
improve their function while reducing side-effects (137). The
requirements for effective novel adjuvants are to boost innate and
adaptive immune responses to vaccines and induce long-term
protective memory as well as to counterbalance the low-grade
inflammatory state that might hamper vaccine responses (136,
138). The incorporation of pathogens associated molecular
patterns (PAMPs) in vaccine formulations that act as ligands
for pattern recognition receptors (PRRs) on innate immune cells
is a strategy already in place for enhancing vaccine-specific
responses. PRR activation leads to inflammatory cytokine and
type I IFNs production, facilitating antigen cross-presentation
and activation of cytotoxic T cells (135). Due to their ability to
induce strong cell-mediated responses, TLR ligands are attractive
sources for developing new adjuvants (57, 139, 140). Some TLR
agonists are already in clinical stage as vaccine adjuvants.
Monophosphoryl lipid A is among the first of a new
generation of TLR agonists to be already approved and in
clinical use worldwide as an adjuvant in several vaccine
formulations including a vaccine against hepatitis B virus
(FENDrix) and human papilloma virus (Cervarix) (141).
Another TLR4 agonist, glucopyranosyl lipid adjuvant (GLA)
formulated in a squalene-in-water emulsion (SE), has been
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shown in a first-in-human trial to improve magnitude and
quality of humoral and T-helper 1 type cellular responses
elicited by the ID93 tuberculosis vaccine (142). The
stimulatory effect of GLA-SE is well preserved in older adults
(143) and in vitro studies in the context of vaccination with a
split-virus influenza vaccine in older adults confirmed the
activation of DCs to induce a Th1 response, increasing the
interferon-g to IL-10 ratio and the cytolytic (granzyme B)
response to influenza virus challenge, both of which have been
shown to correlate with protection against influenza in older
adults (144). However, the response to TLR agonists was
impaired in aged compared to young mice (145) and the age-
related defects in TLR function and cytokine production might
limit the utility of TLR ligands in older adults (58, 59). Although
more research is needed, the use of combinations of TLR agonists
has been proven effective in experimental models and might be a
possible strategy for more effective vaccination in the older
population (140).

Triggering Innate Immune Memory
Effective vaccination strategies should aim at inducing
protective adaptive immunity but also incorporate novel means
of triggering innate immune memory to induce life-long
protection against infection (146). Recent findings suggest that
NK cells may play important roles in vaccination, through the
modulation of adaptive immune responses and generation of
innate immune memory (62, 63). NK cells can be activated
following immunization through cytokines produced in response
to adjuvants (147) or by direct stimulation of receptors,
including TLRs (148). Thus, vaccine adjuvants can be
optimized to promote activation and recruitment of NK cells
to target tissues where they can positively or negatively regulate
antigen presenting cells and downstream T cell responses
(149). Additionally NK cells may contribute to enhanced
vaccine responses through the generation of long-lived
‘memory’ NK cells capable of mediating rapid effector
functions following re-exposure to antigen, reminiscent of T-
cell memory responses (62, 150, 151). The concept of innate
immune memory is relatively new and a better understanding of
how memory NK cells are generated and can mediate specific
recognition of antigen is important to define strategies
promoting the development of these cells during vaccination.

Targeting T Cells to Induce Broad
Protective Immunity
An ongoing challenge in vaccination is the development of
vaccines that are able to induce broad protective immunity.
This is particularly relevant for influenza where next-
generation vaccines inducing T cell immunity may potentially
overcome the limitations of current available vaccines that rely
on antibodies to provide narrow subtype-specific protection and
are prone to antigenic mismatch with circulating strains. The
concept of “universal” vaccines is based on the possibility of
inducing heterosubtypic immunity, whereby T cells can target
diverse influenza strains by recognizing highly conserved
peptides (127, 152). Studies conducted during the 2009 H1N1
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pandemic provided key insights into the role of cross-reactive T-
cells in mediating heterosubtypic protection in humans. We
conducted influenza studies to map T cell responses before and
during infection in adults with no detectable antibodies to
pandemic H1N1 and found that preexisting CD4+ T cells
targeting highly conserved protein epitopes exhibited cytotoxic
activity across strains and were important to limit viral
replication and disease severity (126). By mapping the type of
epitopes that were able to generate heterotypic responses across
strains, the results of this work and others (153) can aid the
development of broadly protective T cell vaccines (154). This
may be particularly important in the context of pandemics where
there is no preexisting immunity. Interestingly, a recent study
done in COVID-19 convalescent patients detected circulating
SARS-CoV-2-reactive CD4+ T cells in 40%–60% of unexposed
individuals, supporting the importance of cross-reactive
heterotypic T cell responses for clinical protection and limiting
disease severity (155).
Exploring New Pathways for the
Development of Broadly Protective
Vaccines
Innate T-cells (MAIT cells, gd cells, and NKT cells) are attractive
vaccine targets as they can link both innate and adaptive
immunity by mediating TCR-dependent and independent
(innate-like) functions (156). A common feature of innate T
cells is their capacity to respond rapidly to danger signals and
pro-inflammatory cytokines (such as IL‐12, ‐15, ‐18 and Type I
IFNs) in a TCR‐independent mechanism and participate in the
early stages of defense against certain infections. MAIT cells are
abundant in human lungs where they have been shown to
contribute to protection against influenza infections (157) and
mucosal tissues, such as the intestinal mucosa, making them
attractive targets for mucosal vaccine design. Recent studies have
shown that MAIT cell frequencies can be rapidly ‘boosted’
through mucosal administration of synthetic MAIT cell ligands
with TLR agonists (157, 158) and this could be particularly
beneficial for the elderly who have impaired MAIT cell immunity.

Bystander activation by cytokines is a feature shared by a
subset of conventional T cells, particularly CD8+ T cells. We have
recently shown that as T cells differentiate toward senescence
they become less responsive to TCR conventional signaling while
acquiring innate-like functions (32). The reprogramming of
highly differentiated CD8+ T cells from TCR to NKR
functional activity provides them broad protective functions
that can be beneficial in the context of aging (35) and might be
also relevant for vaccination.

Another area of potential interest is the use of monoclonal
antibodies that selectively block inhibitory receptors to boost T
cell function. In light of the unprecedented results obtained with
the use of checkpoint inhibitors (e.g., PD-1, CTLA-4) in cancer,
new avenues of research are open for the use of these
immunomodulators in other settings, including vaccination
(159, 160). Interestingly, improved vaccine responsiveness has
been linked to reduced frequencies of CD4+ and CD8+ T
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lymphocytes expressing PD-1. For instance, immunological
responses to the live-attenuated zoster vaccine in individuals
over 50 years of age were correlated with pre-vaccination levels of
regulatory T cells and PD1-expressing T cells, regardless of the
age of the vaccine (161). Ex vivo blocking experiments
corroborated a role of PD1 and CTLA4 as modulators of
decreased VZV responses (161). A study on the responses to a
trivalent inactivated influenza vaccine in lung cancer patients
receiving PD-1 blockade therapy compared to age-matched
healthy controls showed comparable serological protection but
an increased rates of immune-related adverse events (IRAEs)
(162) although a subsequent study found no increase in
incidence or severity of IRAEs in patients on immune
checkpoint inhibitors who received the flu vaccine (163).
While more research is needed on the safety and efficacy of
such combinations of immune checkpoint inhibitors with
vaccines, this combinatorial approach has been tested and
proved efficient in preclinical and clinical trials using
therapeutic cancer vaccines with anti-PD1 (164, 165) or anti-
CTL4 (166) monoclonal antibodies. As the expression of
inhibitory receptors on T cells has been shown to increase with
age and differentiation (37, 167) the selective blockade of
inhibitory receptors known to regulate T cell activity could be
explored as means of boosting cellular responses in the elderly
prior to or during vaccination.
Blocking Baseline Inflammation to Boost
Vaccine Responses
Responses to vaccination vary widely across individuals and are
generally poorer in particular groups including not only the
elderly but also individuals with autoimmune diseases, HIV
infection (168) and cancer (169). A common feature among
these groups is the presence of a chronic inflammatory
background that has been associated with adverse health
outcomes (170). Furthermore there is a growing appreciation
that pre-existing inflammation may be a determinant of vaccine
responsiveness and thus modulating baseline inflammation prior
to vaccination has become an attractive area of research to boost
vaccine responses (16, 83, 171). Using high-throughput
technology researchers have identified baseline transcriptional
signatures that predict protective immune responses to vaccines
(76, 78–81). Most of the signatures identified so far are indicative
of broad immune activation and excessive inflammation. For
example, a study comparing responses to the yellow fever vaccine
in an African cohort compared with a Swiss cohort found that an
activated immune profile of NK cells, monocytes and
differentiated T and B cell subsets was associated with reduced
responses to vaccination (81). Our group has previously shown
that older individuals have decrease ability to mount recall
responses to VZV antigen challenge in the skin (172) and this
was subsequently associated with increased baseline local
inflammation (79). Ingenuity pathway analysis indicated that
this inflammation was driven by the activation of p38 MAP
kinase pathway in the skin of old individuals compared with
young. Short-term systemic treatment with an oral p38 MAPK
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inhibitor (Losmapimod) significantly increased the cutaneous
VZV response in older subjects (79), supporting the concept
that anti-inflammatory interventions may be promising
strategies for boosting immunity during aging. Furthermore,
oral administration of an mTOR inhibitor (Rapamycin)
prior to influenza vaccination of older adults resulted in
increased antibody titers against all three strains of a trivalent
influenza vaccine by more than 20% in individuals aged above 65
years (173). Other immunomodulator agents such as metformin,
imiquimod (174) and anti-inflammatory drugs inhibiting
COX2 expression (175) (e.g., aspirin and NSAIDS) that are
currently approved for clinical use in other settings may
represent attractive approaches to promote more effective vaccine
responses by transiently alleviating chronic inflammation prior to
vaccination. Finally, it is likely that targeting other sources of
inflammaging by changing the composition of the microbiome
(176) or selectively removing senescent cells using senolytic drugs
(177) may represent further opportunities for enhancing vaccine
immunity in the setting of chronic inflammation.
REFLECTIONS ON COVID-19
VACCINATION STRATEGIES FOR
THE ELDERLY

The discussion about the impact of aging on immunity and
vaccination is particularly relevant at the moment as the
COVID-19 pandemic placed again the spotlight on the
vulnerability of older adults to emerging infectious diseases.
Epidemiological data reveals that individuals over 60 years of
age are disproportionately affected by SARS-CoV-2 infection
experiencing the most severe forms of disease and the highest
hospitalization rates (178–180). Age is a strong predictor of
death among patients hospitalized with COVID-19 (181, 182)
and a review of epidemiological data from different countries
revealed an exponential increase in case fatality rates with age,
regardless of the geographic region (183). Despite being the most
affected risk group, older adults are the least likely to respond to a
new vaccine. This represents a major challenge for vaccine
development and thus it is critical to understand how
immunosenescence and inflammaging impact on vaccine
responses to ensure that vaccination remains effective in
this age group (184). To meet this need, leading vaccine
developers Oxford University/AstraZeneca (ClinicalTrails.gov
number: NCT04516746), NIAID/Moderna Therapeutics
(NCT04405076) and BioNTech/Pfizer (NCT04368728) are
currently recruiting adults over 55 years of age to evaluate
efficacy, safety and immunogenicity of their vaccine candidates
in older individuals. However, due to intricacies of clinical trial
design with strict inclusion/exclusion criteria most COVID-19
vaccine studies may fail to include a sufficient number of older
individuals, in particular those in their 70s and 80s. As of 3 of
September 2020, the COVID-19 vaccine development landscape
includes 33 vaccine candidates in clinical trials, of which 6
candidates are currently in phase III clinical trials (185).
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Despite the promising preliminary reports of their phase I/II
trials (186, 187), current vaccine front-runners have not yet
published results on the vaccine safety and immunogenicity in
elderly. Relaxing the eligibility criteria and ensuring an adequate
representation of the groups most affected by COVID-19 disease -
such as elderly people, those with comorbidities and people from
black, Asian and minority ethnic groups – is of key importance for
successful vaccination strategies for COVID-19.

Trials in older adults are also important to understand why
immune responses to COVID-19 infection and vaccination may
vary from person to person. A recent study performed deep
immune profiling of 125 COVID-19 patients and identified
immune profiles associated with poor clinical outcomes (97).
Severe COVID-19 disease was associated with an immunotype
characterized by the paucity of circulating follicular helper cells
and the presence of highly activated CD4+ and CD8+ T cells, with
increased frequencies of highly differentiated CD8+ T cell
“EMRAs” and exhausted PD1+ CD8+ T cells, providing
evidence for the association between an immunosenescent
phenotype and disease severity. Other studies have shown that
severe COVID-19 disease correlated with elevated serum
concentrations of inflammatory cytokines including interleukin-
6 (IL-6), granulocyte colony-stimulating factor (G-CSF), IP-10,
MCP1, macrophage inflammatory protein 1a (MIP1a) and
tumor necrosis factor (TNF) (188–191). Among these, IL-6 has
received particular attention (189) providing support for several
clinical trials on IL-6 receptor antagonists as potential treatments
for severe COVID-19 disease (192). Accumulating evidence
suggests that the pathophysiological hallmark of COVID‐19
disease is severe inflammation with descriptions of a cytokine
storm syndrome (193, 194) induced by a dysregulated monocyte/
macrophage response (195, 196). As previously discussed, the
presence of low-grade sterile inflammation characterized by high
baseline serum concentrations of pro-inflammatory cytokines
including IL-6 is a hallmark of aging (70) and is predictive of
early mortality (73). Thus, it can be speculated that inflammaging
is one of the mechanisms underlying increased morbidity and
mortality due to SARS-CoV-2 infection in older adults (196). As
pre-existing inflammation may also be detrimental to vaccine
responses it has been proposed that reducing inflammation with
short-term course of mTOR or p38MAPK inhibitors and possibly
other anti-inflammatory agents (e.g., steroidal drugs such as
dexamethasone) may be used as a strategy for improving
COVID-19 vaccine responses in older people (84).
CONCLUDING REMARKS AND
UNSOLVED QUESTIONS

Despite the important successes achieved with current vaccines,
most available vaccines still fail to elicit long-lasting immunity in
older adults. Current vaccine strategies must evolve to be able to
enhance cell-mediated and mucosal immunity in addition to
inducing long-lasting antibody responses. However, to date most
clinical trials leading to vaccine approval in older adults rely
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entirely on antibody responses as correlates of protection and
thus novel correlates of vaccine effectiveness are needed that fully
reflect the changes occurring with age in the immune system. The
use of system vaccinology approaches can aid researchers in
identifying signatures that predict protective immune responses
and this information can be used for optimization of current
vaccination strategies. Responses to vaccination vary widely across
individuals and baseline immune profiles matter to determine the
outcome of vaccination. Recent data suggests that excessive
baseline inflammation is deleterious and may hamper immune
responses and thus novel approaches aimed at reducing
inflammation may offer novel opportunities to improve vaccine
responses in older individuals. Yet the prevailing view is that
adjuvants improve vaccine responses by promoting local
inflammation. Thus more research is needed to understand the
role of inflammation in vaccine responses and to reconcile these
seemingly paradoxical observations. It could be speculated that the
effects of systemic versus local inflammation are distinct and that
the beneficial effects of anti-inflammatory drugs on vaccine
response result from the systemic reduction of the low-level
chronic inflammation. Additionally, chronic immune activation
may be associated with desensitization or tolerance to new
antigenic stimulation resulting in poor immune responses. Thus
stronger adjuvants may be needed to overcome this tolerogenic
state and alleviate the consequences of chronic inflammation.
There is a need to develop newer and more specific adjuvants,
able to fine tune immune responses and selectively stimulate
pathways that lead to long-lasting immune protection. As our
understating of immunosenescence and inflammaging increases
new individualized approaches could point towards the
development of more effective vaccines for older individuals.
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Old individuals are more susceptible to various infections due to immunological changes
that occur during the aging process. These changes named collectively as
“immunosenescence” include decreases in both the innate and adaptive immune
responses in addition to the exacerbated production of inflammatory cytokines. This
scenario of immunological dysfunction and its relationship with disease development in
older people has been widely studied, especially in infections that can be fatal, such as
influenza and, more recently, COVID-19. In the current scenario of SARS-CoV-2 infection,
many mechanisms of disease pathogenesis in old individuals have been proposed. To
better understand the dynamics of COVID-19 in this group, aspects related to
immunological senescence must be well elucidated. In this article, we discuss the main
mechanisms involved in immunosenescence and their possible correlations with the
susceptibility of individuals of advanced age to SARS-CoV-2 infection and the more
severe conditions of the disease.

Keywords: COVID-19, coronavirus, aging, immunosenescence, inflammaging, SARS-CoV-2
INTRODUCTION

Human history is marked by major epidemics, and viral respiratory infections have been major
villains in this scenario. The 20th century was certainly marked by the devastating outbreak of the
Spanish flu, caused by an influenza A virus of the H1N1 subtype (1). Currently, in the 21st century,
coronaviruses appear to show their potential, with three epidemics in the past two decades.

Coronavirus epidemics include severe acute respiratory syndrome (SARS) coronavirus (CoV)
(SARS-CoV-1), which occurred between 2002 and 2003, and Middle East respiratory syndrome
(MERS)-CoV, which occurred in 2012 (2). Since December 2019, SARS-CoV-2, a new type of
coronavirus, has caused respiratory infections ranging from mild to severe clinical conditions and
death, and the disease caused by it has been called coronavirus disease 2019 (COVID-19) (3).

The current SARS-CoV-2 outbreak originated in the city of Wuhan in China (4), rapidly spread
worldwide and was declared a pandemic by the World Health Organization. By September 20, 2020,
COVID-19 had already infected more than 30 million people and caused over 950,000 deaths (5). In
this global pandemic scenario, the United States and Brazil are the countries with the highest
org October 2020 | Volume 11 | Article 579220168
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number of cases and deaths from COVID-19 (5). In Brazil,
approximately 51% of SARS cases due to COVID-19 occur in old
individuals (over 60 years of age), accounting for 73% of
deaths (6).

In fact, it was observed that older people have a higher
severity of the disease and are considered the main risk group
for COVID-19 (4). This observation has been reinforced by
SARS-CoV-2 infection in experimental models, where infected
aged Syrian hamsters developed alveolar and perivascular edema
(7). A greater severity in individuals of advanced age has also
been reported in SARS-CoV-1 (8) and MERS (9). Interestingly,
in addition to advanced age, male gender appears to be another
risk factor for COVID-19 (10). Additionally, other conditions
such as obesity, hypertension, and metabolic diseases are also
risk factors for COVID-19 (11).

The following additional four coronaviruses circulate globally
among the population: alpha (229E and NL63) and beta (OC43
and HKU1) CoVs. These coronaviruses generally cause mild
infections of the upper respiratory tract similar to the common
cold (12). However, there are reports of more severe respiratory
diseases caused by OC43 and 229E, mainly in older individuals
and individuals with chronic immune deficits (13).

Thus far, it is known that cytokine storm in the lungs may
be among the immunological components involved in the
pathogenesis of COVID-19 in the aged population. Although
it has been suggested that alveolar macrophages from older
individual have an anti-inflammatory profile, they can
develop higher and uncontrolled responses of cellular
activation and cytokine production after a pathogen insult
and a lower ability to control tissue damage due to infection
leaving the lung in a compromised state (14–16). In fact, at
baseline state, the lungs of old individuals show increase in
levels of complement and surfactant proteins and pro-
inflammatory cytokines (15, 16). Interestingly, half of fatal
cases of COVID-19 experience a cytokine storm, of which 82%
are over the age of 60 (17).

Notably, a series of immunological changes occur with age,
causing older individuals to develop immunosenescence (18).
These factors can contribute to as pulmonary as systemic
exacerbated inflammatory response in older individuals and seem
to play a role in increasing susceptibility to respiratory infections.

In fact, a better knowledge of these mechanisms can
contribute to the understanding of the infection dynamics in
this scenario. Thus, here, we review the main factors related to
the senescence of the innate and adaptive immune responses that
can be responsible for both the severity and pathogenesis of
COVID-19.
BRIEF BACKGROUND OF CORONAVIRUS
INFECTION

Coronaviruses have a positive single-stranded RNA genome of
approximately 30 kb that forms the viral nucleocapsid with the
nucleocapsid (N) protein. This structure is surrounded by an
envelope formed of a lipid bilayer in which the spike (S) proteins,
Frontiers in Immunology | www.frontiersin.org 269
membrane (M) protein, and envelope (E) protein are
inserted (19).

The coronavirus subfamily consists of four genera, i.e., a, b, g,
and d coronaviruses, and the a and b genera are responsible for
human infections (20, 21). Among the coronaviruses that infect
humans, seven are known to cause diseases with flu-like
symptoms, but SARS-CoV-1, MERS-CoV, and, more recently,
SARS-CoV-2 have gained greater notoriety for their high
transmission capacity and severe infections (22–24).

The transmission of coronaviruses occurs mainly through
respiratory droplets and close contact between people. Once in
the body, the viruses enter target cells when protein S binds to
specific input receptors. SARS-CoV-2 S protein binds
angiotensin-converting enzyme 2 (ACE2), which is present on
the surface of several human cells (25). In addition, several
studies have been suggesting that the MERS-CoV receptor,
dipeptidyl peptidase 4 (DPP4), can also be used by SARS-CoV-
2 during infection (26, 27). The interaction between SARS-CoV-
2 and ACE2 recruits the transmembrane protease serine 2
(TMPRSS2), which promotes S protein priming and facilitates
viral entry in the host cell (28). Other cellular proteins, such as
the protease furin, can also promote SARS-CoV-2 S protein
cleavage indicating their potential involvement in viral entrance
(29). Once inside the cell, the envelope fuses with the endosomal
membrane and releases the viral genome into the cytoplasm
where replication and assembly of new viral particles occurs (30).

Coronavirus infection can affect the airways, causing cough,
headache, and fever. In more severe cases, the infection can cause
tissue damage, especially to the lung tissue, due to the high
degree of inflammation generated to fight the virus, leading to
the development of pneumonia and dyspnea, which can progress
to death (31). Among patients with COVID-19, the highest
incidence of severe cases occurs in individuals affected by
comorbidities such as lung diseases, diabetes, and hypertension
(32–34). Age also appears to be a risk factor for the disease, as
worse outcomes and higher mortality rates are observed in older
patients (35–37).
IMMUNOSENESCENCE: INNATE
IMMUNITY AND SUSCEPTIBILITY TO
COVID-19

Can Inflammaging Enhance
Immunopathogenesis in Old Individuals?
The aging process can be understood as a progressive and natural
decrease in the biological functions of an organism (18). Despite
its enormous plasticity and capacity for renewal, the immune
system is also affected during the aging process. Since a
functional immune response is essential for maintaining
homeostasis and health, the immune aging process, called
immunosenescence (Figure 1), contributes to the increased
susceptibility to infections, cancers and autoimmune diseases
(38–40).

A very striking feature of the immunosenescence process is a
low-grade proinflammatory state, with an increase in serum
October 2020 | Volume 11 | Article 579220
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inflammatory mediators, such as IL-6, IL-1RA, TNF-a, IL-1, and
C-reactive protein (CRP) (41, 42). This low-grade inflammatory
state named “inflammaging” is associated with the diminished
ability to mount efficient immune responses during the aging
process (42) (Figure 1).

Inflammaging is caused by a set of hormonal, metabolic and
immune factors that constantly provide stimuli that are
recognized by innate receptors, favoring an inflammatory
environment (43). In addition, senescent cells commonly
experience changes in their intracellular homeostasis, including
telomeric perturbations and oxidative stress, leading to the
activation of signaling pathways such as nuclear factor kB
(NF-kB) and increased secretion of cytokines, chemokines,
growth factors and lipids (44, 45). This condition in which
senescent cells change their secretory phenotype is called the
senescence-associated secretory phenotype (SASP) and is a
potential contributor to inflammaging (46). The exacerbated
inflammatory process associated with age may also be due to a
failure to resolve inflammation since many regulatory factors are
also deficient in older individuals (47–49).

The inflammatory stimuli that support the phenomenon of
inflammaging can be triggered by several factors, including
chronic infections and microbiota changes, which are going to
be more detailed further in this text. However, sterile
components naturally produced during cell cycle can also
contribute to this phenomenon. Cellular debris resulting from
Frontiers in Immunology | www.frontiersin.org 370
the cell death process that occurs daily due to chemical and
physical stresses as well as the accumulation of metabolic
products and cellular catabolic products, such as lipofuscins
and beta-amyloid proteins play a crucial role in inflammaging
(50, 51). Under the physiological conditions of cell proliferation,
such components are usually diluted between dividing cells.
However, as the cell proliferation rate reaches its lowest levels
due to aging, these molecules accumulate and can be recognized
by pattern recognition receptors (PRRs) (52, 53).

In addition, infectious processes during aging can further
accentuate the inflammatory condition by releasing pathogen-
associated molecular patterns (PAMPs) and damage-associated
molecular patterns (DAMPs) (54). During cytomegalovirus
(CMV) infection, which infects 40–100% of the population
worldwide (55), inflammatory mediators such as prostaglandin
E2, IL-6 and TNF-a are released, highlighting the important
contribution of this pathogen to inflammaging (56–58).
However, a 10-year longitudinal study compared the impact of
CMV infection on the serum levels of inflammatory cytokines in
249 individuals and showed that cytokine production in CMV-
seropositive and CMV-seronegative individuals is similar (59).

Studies focusing on the current SARS-CoV-2 pandemic have
already investigated the association between the pathogenesis of
the disease and the inflammatory process. Regardless of the age
group, patients affected by COVID-19 have higher plasma
concentrations of inflammatory cytokines, such as TNF-a and
FIGURE 1 | Major immunological alterations observed during immunosenescense. Aging interferes in a number of innate and adaptive immune cells aspects that
can impair or compromise their function and response. Additionally, several factors can dysregulate intracellular homeostasis during aging, intensifying the secretion
of inflammatory cytokines and chemokines (inflammaging).
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IL-6, and the chemokines and molecules that activate cells, such
as CXCL10, CCL2, CCL3, G-CSF, IL-2, IL-7, and IL-10 (24, 60).
There is also a circulating increase in others well-known
inflammatory markers, such as CRP, ferritin, D-dimer, and
serum amyloid A (SAA) (61–64).

Additionally, in vitro SARS-CoV-1 studies have found that the
viral cytopathic effect induces apoptosis in Vero E6 and HEK293
cells (65, 66) and that MERS-CoV promotes apoptosis in lung and
kidney cells via Smad7 and FGF2 (67). A similar effect has also
been observed in the HCoV virus (229E) in monocytic cells (68).
These findings suggest that target cell apoptosis is a factor
contributing to the tissue damage caused during in vivo
infection. Potential DAMPs released during apoptosis can
contribute to the local and systemic inflammatory response by
activating PRRs, further aggravating the infection. Additionally, in
silico studies have indicated that a strong protein-protein
interaction exists between the viral S protein and TLR4, a PPR,
suggesting that SARS-CoV-2 directly activates proinflammatory
pathways (69).

One of the main intracellular pathways resulting from the
activation of PRRs is NF-kB, which is the main pathway
responsible for inducing the inflammatory response and the
appearance of the SASP phenotype (70). DAMPs can also
signal via the NLRP3 receptor, leading to the activation of the
inflammasome pathway and secretion of the inflammatory
cytokines IL-1b and IL-18 (71). Interestingly, serum IL-18
levels increase with age, indicating that the pathway strongly
contributes to inflammaging (72). Higher levels of IL-18 were
also observed in the serum of COVID-19 patients and were
associated with disease severity and clinical outcome (73).
Moreover, monocytes infected in vitro with SARS-CoV-2
presented the formation of NLRP3 puncta, and the same could
be observed in mononuclear cells isolated from COVID-19
patients, indicating activation of the inflammasome pathway
(73). In fact, NLRP3 inhibitors have already been proposed as
potential drugs for the treatment of COVID-19 (74).

In addition, the autophagy pathway seems to be directly
related to the development and progression of the
inflammaging process. This pathway consists of specialized
protein machinery that promotes the recycling of cellular
content, generating nutrients and energy for maintaining
homeostasis (75). Therefore, autophagy contributes to the
elimination of the debris and products of cellular metabolism,
preventing its recognition by PRRs and the consequent
inflammation (76). However, it has been shown that there is a
reduction in the activity of the autophagy pathway during aging
(77). Additionally, deficiencies in other pathways that regulate
proteostasis during aging, such as reduced proteasome activity,
contribute to the accumulation of misfolded protein aggregates
that can activate inflammatory pathways (78).

Preliminary studies in DAF2 mutant invertebrates, a
longevity study model, indicate that silencing autophagy
pathway genes reduces life expectancy in these organisms (79).
Additionally, in a clinical trial, Mannick et al. (2018)
demonstrated that enhancing the autophagy pathway using
mTOR inhibitors reduces the incidence of infections in older
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individuals and promotes the expression of antiviral genes and a
better response to vaccination against the influenza virus,
corroborating the importance of the autophagy pathway in the
immune response and fighting infections in individuals of
advanced age (80).

Another consequence of reduced autophagy during aging is a
lower rate of mitophagy, which leads to the accumulation of
dysfunctional and damaged mitochondria, changes in the
respiratory chain and the generation of reactive oxygen species
(ROS) (81, 82). Oxidative phosphorylation products, such as
ATP and ROS, induce an inflammatory response by activating
the inflammasome pathway (83, 84). In an experimental model,
it has been verified that the influenza virus induces the
production of mitochondrial ROS, contributing to
inflammation, higher viral titers and increased neutrophil
infiltration in the airways and lungs (85). It has also been
found that oxidative stress generated by H5N1 infection
induces the formation of oxidized phospholipids, which
activate the TLR4-TRIF pathway in pulmonary macrophages,
inducing the inflammatory response (86). In fact, in the context
of COVID-19, it was recently shown that mitoquinol and N-
acetyl cysteine, two antioxidant drugs, prevented SARS-CoV-2
infection in human primary monocytes (87).

Additionally, mitochondrial lesions generated by stress lead
to the release of DAMPs, such as mitochondrial DNA (mtDNA)
rich in CpG motifs and bacterial DNA, and, therefore, can
activate the inflammatory response via TLRs, NLRs and cGAS
(88, 89). In this context, a positive correlation was found between
the increase in mtDNA and proinflammatory cytokines such as
TNF-a, IL-6 and CCL5 during aging (90).

Furthermore, it has been speculated that mitochondrial
dysfunctions could be involved in the older population’s
greater susceptibility to viral infections since the functioning of
MAVS, a protein that assists the RIG-IRF-IFN cascade located in
the mitochondrial membrane, depends on the integrity of the
mitochondria and oxidative phosphorylation (91, 92). SARS-
CoV-1 infection induces mitochondrial fission and MAVS
degradation, suppressing the host’s antiviral response (93).

The intestinal microbiota can also play an important role in
modulating the proinflammatory response during aging (94, 95).
Over time, the composition and diversity of the microbiome
changes, leading to dysbiosis in the host and a predominance of
Th1-type responses (95, 96). Simultaneously, there is an increase
in intestinal permeability with aging, favoring bacterial
translocation and inflammaging (95). It has been observed that
centenary individuals have a greater prevalence of opportunistic
bacteria with proinflammatory characteristics in the intestinal
microbiota and a reduced number of bacteria with anti-
inflammatory properties. These data are strongly correlated
with the serum levels of inflammatory cytokines such as IL-6
and IL-8, suggesting that the microbiota also contributes to the
maintenance of inflammaging (97).

Some studies suggest that an exacerbated immune response is
mainly responsible for the worsening of SARS-CoV-1 and
MERS-CoV infections by contributing more to tissue damage
than the actual infection, regardless of the age group (98).
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Regarding COVID-19, these effects do not seem to be any
different. Excessive immune activation and production of
proinflammatory cytokines are commonly observed in patients
with COVID-19 (99). This exacerbated immune response
involving high levels of cytokine release is known as cytokine
storm syndrome. Although inflammatory responses are crucial
for pathogen clearance, uncontrolled immune responses can be
destructive by leading to systemic inflammation, vascular
hyperpermeability, multiple organ failure and eventually death
(100). In viral infections that reach the lungs, cytokine storm
syndrome contributes to apoptosis in epithelial and endothelial
cells, leading to fluid leakage in the lungs, the accumulation of
leukocytes and tissue fibrosis (101), which, in turn, cause
ARDS (102).

Considering the abovementioned aspects, it is possible that
the inflammaging process favors the greater severity of COVID-
19 in the aged population (Figure 2B). Although experimental
reports are still scarce in the literature, several researchers have
proposed that inflammaging could contribute to the more severe
outcomes of COVID-19 in older patients (10, 103). In fact,
Guaraldi and colleagues demonstrated that treatment with
tocilizumab, a monoclonal anti-IL-6 receptor antibody, could
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attenuate COVID-19 severity in patients older than 60
years (104).

Other Aspects of Innate Immunity That
May Favor SARS-CoV-2
The cells of the innate immune system can be quantitatively
and qualitatively affected by the aging process. In the case of
monocytes, there is a prevalence of nonclassical and
intermediate subtypes associated with a lower phagocytic
capacity (43). Monocytes from older individuals also secrete
less IFN-a, IFN-g, IL-1b, CCL20 and CCL8 when stimulated
with adjuvants of the innate immune response (105), although
some studies have suggested that these cells have a greater
capacity to secrete proinflammatory cytokines under baseline
conditions or after stimulation in older individuals (106–109).
Recently, Zheng and colleagues reported an increase in the
monocyte population in aged healthy adults, especially
classical CD14 monocytes (110). Monocytes from aged
individuals have higher expression of inflammatory genes,
such as IL1B, TNF and CXCL8, and increased activation of
the NF-kB, Toll-like receptor, inflammasome, and MAPK
signaling pathways (110).
FIGURE 2 | Hypothetical framework of SARS-CoV-2 pulmonary infection in old individuals. SARS-CoV-2 consists of single RNA strand and the following proteins:
Spike (S), membrane (M), envelope (E) and nucleocapsid (Np). (A) After entering the organism, the virus infects lung cells by binding to the receptor angiotensin-
converting enzyme 2 (ACE-2) and establishes its replicative cycle releasing new viral particles. (B) Older people have a constitutive low-grade proinflammatory state
that, along with other peculiarities of the immunosenescence, can favor the cytokine storm syndrome, leading to a faster progression to ARDS and severe
manifestations of COVID-19. In addition, tissue resident or lung-infiltrating immune cells (e.g., neutrophils, monocytes and alveolar macrophages) can contribute to
disease severity either by dysfunctional responses associated to immunosenescence or by facilitating viral internalization through ADE. ARDS = Acute respiratory
distress syndrome. ADE = Antibody-dependent enhancement.
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In the case of infection by SARS-CoV-2, there is a greater
production of IL-6 and GM-CSF in the peripheral blood by
CD14+ CD16+ monocytes (61). Additionally, in vitro infection of
human monocytes with SARS-CoV-2 leads to the production of
several inflammatory cytokines, such as IL-6, IL-1b, TNF-a, and
IFN-I (87). Moreover, COVID-19 patients of advanced age have
more monocytes than younger patients (110). These cells with an
inflammatory profile can migrate into the lungs, contributing to
the exacerbated inflammatory response and consequent tissue
damage characteristic of the pathogenesis of the disease. In fact,
because of their inflammatory properties, monocytes have been
suggested to be among the main contributors to the disparate
severity of COVID-19 in older patients (111).

The changes occurring in immunosenescence also affect
antigen-presenting cells (APCs), such as dendritic cells (DCs)
and macrophages (112). In both cell populations, antigen
presentation is compromised in the old population, possibly
due to the lower expression of CD80, CD86 and MHC-II after
exposure to a stimulus (113, 114) and a lower production of
superoxide anion by macrophages after treatment with IFN-g
(115). In vitro studies investigating DCs derived from peripheral
blood monocytes show that infection with MERS-CoV induces
the expression of MHC-II and CD86 and promotes the
production of IFN-g, CXCL10, IL-12, and CCL5 (116).
However, whether DCs from the older people respond
similarly to infection by MERS or other coronaviruses is unclear.

In addition, SARS-CoV-1 is capable of infecting monocyte-
derived DCs, rendering these cells producers of inflammatory
cytokines, such as TNF-a and IL-6, and chemokines, such as
CCL2, CCL3, CCL5 and CXCL10 (117). However, it was not
possible to identify the production of antiviral cytokines, such as
IFN-a, IFN-b, IFN-g and IL-12p40, which may indicate a
possible viral escape mechanism mediated by blocking these
pathways. In fact, Hu et al. showed that the SARS-CoV-1 N
protein interacts with TRIM25, preventing the generation of
IFN-I via RIG-I (118). In COVID-19 patients, an imbalanced
production of IFN-I has also been reported, and it seems to
correlate with disease severity (119, 120). Moreover, SARS-CoV-
2 infection elicits reduced expression of IFN-I and interferon-
stimulated genes (121). In addition, pretreatment with IFN-a or
IFN-b reduced SARS-CoV-2 titers in in vitro infection studies
(122, 123). In fact, IFN-I administration has shown promising
results in COVID-19 patient clinical trials (124). In a phase 2
study, the triple combination of lopinavir–ritonavir, ribavirin
and interferon beta-1b was efficient in reducing symptoms,
shortening the duration of infection and hospital stay in
patients with mild to moderate COVID-19 (125).

Interestingly, in old individuals, the population of
plasmacytoid DCs (pDCs), which is among the main
mechanisms of fighting viral infections, is reduced and has less
capacity for IFN-a secretion when stimulated with influenza
virus due to the deficient expression of TLR7 and TLR9 (126–
128). Complementarily, aged human monocytes have
imbalanced IFN-I and IFN-III production in response to
influenza infection due to defective induction of IFN
transcription (129). Taken together, these findings suggest that
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a reduced IFN-I response in advanced age can contribute to poor
clinical outcomes of COVID-19.

Another peculiarity that is possibly associated with the greater
susceptibility of old individuals to viral infections is the reduced
ability of DCs to perform cross-presentation due to dysfunction
in mitochondrial activity and changes in the membrane potential
of this organelle (130). These data indicate that the greater
susceptibility of the advanced age population to infections may
be associated with a lower functional capacity of phagocytes to
eliminate pathogens and promote adequate activation of the
adaptive immune response.

Aging also contributes to changes in alveolar macrophages
(131, 132). During aging, there is a reduction in this cell
population in the lungs, which is associated with the
downregulation of pathways related to the cell cycle and
upregulation of pathways associated with the inflammatory
response (14). In fact, alveolar macrophages in animals with an
advanced age are in a greater state of cellular activation, secrete
more proinflammatory cytokines in response to a Mycobacterium
tuberculosis stimulus and are refractory to an IFN-g stimulus (16).
Additionally, studies using murine models of influenza infection
indicate that alveolar macrophages have a lower ability to control
tissue damage due to infection (14). In addition, there is lower
expression of the CD204 receptor, suggesting a reduced
phagocytosis capacity of cellular debris that could contribute to
increased tissue damage (14). In an experimental model of
infection by coronavirus hepatitis virus type 1 (MHV-1), the
depletion of alveolar macrophages contributes to the reduction
in mortality and morbidity caused by the infection (133). In fact,
SARS-CoV-2 infection in transgenic mice bearing human ACE2
leads to macrophage infiltration into the alveolar interstitium and
alveolar cavities (134), and macrophage activation syndrome is
associated with severe respiratory failure in COVID-19 patients
(135), suggesting that this cell population plays a crucial role in the
pathogenesis of the disease.

Neutrophils in old individuals are also affected by the
immunosenescence process. During infections in older people,
neutropenia may occur due to the lower proliferative capacity of
neutrophil progenitor cells when stimulated by G-CSF (136).
However, in SARS-CoV-1 infection, an increase in circulating
neutrophils and an association between the infiltrates of this cell
type in the lung and the severity of the injury have been observed
(137). A similar scenario is observed in SARS-CoV-2 infection,
where high neutrophil to lymphocyte ratio in peripheral blood
have been reported in severely ill patients (138). Besides, lung
infiltration of neutrophils was observed in autopsied COVID-19
patients, revealing capillary extravasation and neutrophilic
mucositis (139). These findings indicate that neutrophils not
only contribute to systemic inflammation in COVID-19 but also
play a crucial role in local tissue damage.

Other characteristics of senescent neutrophils include lower
microbicidal activity and a deficiency in the phagocytosis of
opsonized bacteria, possibly due to a reduction in CD16 and the
oxidative burst mediated by Fc-type receptors (140, 141). Some
studies even suggest a deficiency in chemotaxis and release of
ROS and neutrophil extracellular traps (NETs) in neutrophils in
October 2020 | Volume 11 | Article 579220

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Pietrobon et al. Immunosenescence and Inflammaging in COVID-19
old individuals (140, 142, 143). However, there is a higher release
of NETs in COVID-19 patients, and plasma from infected
subjects induces NET release in neutrophils from healthy
donors, indicating the participation of these cells in the
immunopathogenesis of the disease (144).

The natural killer (NK) cell response is also compromised in
old individuals. There is a prevalence of NK CD56dim cells, a cell
population with high cytotoxic capacity and production of IFN-
g, and a decrease in NK CD56bright cells, which have a high
capacity for cytokine and chemokine production (145, 146). NK
cells produced in older people also produce less IFN-g in the
absence of stimulation, which helps to explain the greater
susceptibility to viral infections during this stage of life (147).
In an animal model of influenza infection, a decrease in NK cells
in the lungs, with less capacity for IFN-g production and
degranulation, was observed (148, 149). Similarly, clinical
observations of patients with COVID-19 revealed a significant
reduction in this cell population during SARS-CoV-2 infection
(99). In addition, Zheng et al. reported impaired NK function in
severe COVID-19 patients, expressing higher levels of the NKG2A
receptor, a cellular exhaustion marker, indicating impaired
antiviral immunity (150). However, single-cell analysis of lung
bronchoalveolar immune cells revealed a significant increase of
NK cells in patients with COVID-19 when compared to healthy
controls (151). In addition, in a senescent mice model of SARS-
CoV-1 infection, NK cells have been shown tomigrate to the lungs
(152), indicating a possible contribution of these cells in
coronaviruses infection pathogenesis.

Taken together, these findings lead us to propose that innate
immune cell dysfunction linked to immunosenescence could be
involved in the greater COVID pathogenesis in old individuals
either by promoting a less efficient response for fighting the
infection and/or favoring an exacerbated inflammatory response.
IMMUNOSENESCENCE: ADAPTIVE
IMMUNITY AND SUSCEPTIBILITY TO
COVID-19

Can Exhausted T Cells Compromise the
Cellular Response Against SARS-CoV-2?
Changes due to aging are also present in the adaptive immune
response and are associated with the functional impairment of
T and B lymphocytes (153). The sum of these changes renders
old people vulnerable to new emerging infectious diseases, as
recently observed with SARS-CoV-2. The most prominent
factor involves a decrease in the number of naïve cells
because of thymic involution (154), an increase in memory/
exhausted T cells and a reduction in B cell progenitors in the
bone marrow (155). Consequently, these changes reflect the
cumulative effect of previous and persistent infections in older
individuals (156).

Initial studies involving patients with COVID-19 in China
have observed decrease in peripheral lymphocytes was observed
(24, 32). This lymphopenia was more prominent in the cases
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with more severe disease, and 42% of these patients were aged
≥65 years (32). SARS-CoV-1 patients also have been reported to
have reduced circulating CD4+ and CD8+ T cells (157, 158).
Indeed, in more severe cases of COVID-19, there is a reduction
in CD8+ T cells (159), which could prevent an adequate cytotoxic
response to fight the virus. Taken together, this profile has been
proposed as a biomarker for diagnosis (160).

However, recent data from Arunachalam et al. evidences an
increase in effector CD8+ T cells population in infected patients
in comparison to health donors in an American and Chinese
cohort (161). This could reflect the fact that COVID-19 has
distinct effects in different population. In addition, the
enhancement of effector T cells has been associated with
recovery of SARS-CoV-2 infection (162, 163).

Whether the reduction in the number of T lymphocytes in old
individuals could be a condition that predisposes such patients to
more severe pathogenesis by COVID-19 remains unknown.
However, analysis of immune cell sequencing showed that
SARS-CoV-2 enhances T cell polarization from naïve to
effector cells and that aging promotes the expression of SARS-
CoV-2 susceptibility genes, mainly in T cells (110). In addition to
lymphopenia, other age-related comorbidities are predictive of
severe/critical cases and a high fatality rate during COVID-
19 (37).

Individuals of advanced age have an increase in memory T
cells with oligoclonal expansion and a decrease in the T cell
receptor (TCR) repertoire (164, 165). These senescent T cells are
mainly characterized not only by a low proliferative potential
after activation but also by a shortening of telomeres and low
telomerase activity, high production of ROS and constitutive
activation of p38 MAP kinase, which once activated, blocks
signaling via TCRs (166). Therefore, the inhibition of p38
MAPK could restore the proliferation and activation of
telomerase in senescent T cells.

Phenotypically, senescent T lymphocytes can be identified by
the expression of surface markers (CD28-, CD27-, CD57+ and
CD45RA+) (167–169). In old individuals, the decrease of CD28
has been linked to persistent antigenic stimulation, and with each
cycle of proliferation, its expression on the cell surface decreases
(170). In addition, telomere shortening occurs, characterizing the
process of replicative senescence in T lymphocytes (171).

CD28+CD27+ undifferentiated T cells have long telomeres,
while highly differentiated or senescent CD28-CD27- cells have
shortened telomeres (172). This phenotype (CD28-) is also
observed in persistent human immunodeficiency virus (HIV),
CMV infections and chronic inflammatory diseases such as
rheumatoid arthritis (171). Under these conditions, a persistent
antigenic stimulus occurs that leads to replicative senescence.

Several studies indicate that senescent T lymphocytes express
the exhaustion molecules PD-1+ and Tim3+, a phenotype also
observed in infections by lymphocytic choriomeningitis virus
(LCMV), HIV and HCV (173). Exhausted cells have a low
functional capacity, which could prevent the adequate cellular
response to the virus, favoring viral escape and intensifying the
pathogenesis of COVID-19 in old individuals. We base this
hypothesis on studies showing that in SARS-CoV-2 infection,
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CD4+ and CD8+ T lymphocytes also have PD-1+ and Tim3+

expression, prominently in CD8+ T cells (159, 174).
In addition, changes in cytokine expression/secretion

contribute to the development of immunological senescence.
For example, IL-2 is decreased in old individuals, directly
impacting the activation and proliferation of T cells (175, 176),
which can lead to changes in the intensity and duration of the
immune response and contribute to the immunosenescence
process. In addition, senescent T cells also secrete high levels
of the proinflammatory cytokines IFN-g and TNF-a (166).

Regarding CD4+ helper T cells, the older people have a lower
proportion of IFN-g/IL-4 produced by memory CD4+ T cells,
with increased Th2 cytokines and decreased Th1 cytokines,
which may be a mechanism compensating for the increase in
the proinflammatory state characteristic of the aging process
(177). Interestingly, patients with severe COVID-19 (mean age of
61 years) also have decreased T-cell IFN-g production (178). In
addition, it has been shown that there is a lower frequency of
memory CD4+ T cells producing IL-17 (179).

The functional impairment of the CD4+ T cell response
contributes to the increase in pathology during influenza
infection in old individuals (180). The same seems to be true
for COVID-19 infections, since patients affected by the most
severe form of the disease (mean age of 50 years) develop
pathogenic Th1 lymphocytes that coexpress IFN-g and GM-
CSF and are associated with a hyperinflammatory response in
the pathogenesis of the disease (61).

CD4+ T cells may also contribute to the production of
cytokines in the cytokine storm, which is a main mechanism
associated with the pathogenesis of COVID-19 in old individuals
(181). In patients with severe COVID-19, CD4+ T cells express
high levels of OX40 (159), a molecule involved in the production
of cytokines by T cells (182).

However, an adequate balance between pro- and anti-
inflammatory immune responses is essential for preserving
health in old individuals. In fact, in severe cases of COVID-19,
the evolution to acute respiratory distress syndrome (ARDS) and
respiratory failure is a rapid process, which can occur before
adaptive response establishment, emphasizing that excessive
innate immunity (such as inflammaging) and inadequate
regulatory responses may favor the evolution of the infection.

Regulatory T cells (Tregs) are potentially capable of
suppressing the immune response and guaranteeing
homeostasis (183). The number of naïve circulating Treg cells
decreases while the number of memory Treg cells increases with
age (184). Although both are suppressive, these different
subtypes act at distinct sites in the body, according their
expression of chemokine receptors. In addition increase in
memory Treg cells is associated with a poor humoral response
to influenza vaccination in older individuals (184). In mice, an
increase in Treg cells at the expense of helper T cells has also
been observed with age (185). Interestingly, patients with more
severe COVID-19 present with fewer Treg cells than patients
with less severe COVID-19 (186).

Immunosenescence studies are essential for understanding the
greater susceptibility of older people to severe respiratory failure
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induced by viral infections. The presence of exhausted
lymphocytes with a low functional capacity compromises the
efficient antiviral cellular response, and changes in regulation
favor the inflammatory status. These aspects appear to
contribute to the severity of COVID-19 due to the cytokine storm.

Can Previous Antibodies in Old Individuals
Aggravate the Pulmonary Condition of
COVID-19?
Another important aspect of immunosenescence associated with
the adaptive immune response concerns changes in B cells and
the consequent failure of the humoral response. Memory B cells
have a limited B cell receptor (BCR) repertoire, leading to a
decrease in the humoral response to new antigens, with less
efficient antibodies and less avidity (187).

A decrease in the ability to produce high-affinity antibodies in
old individuals may result from defects in T cell signaling for the
adequate activation of B cells, such as inadequate support
mediated by T follicular helper cells (TFH) (188). Thus, many
vaccines are ineffective in old individuals, rendeing them highly
vulnerable to newly emerging pathogens, such as SARS and
rapidly evolving viruses, such as influenza (189).

In an experimental model of influenza A infection, compared to
young mice, aged mice showed a lower frequency of TFH cells and
germinal center B cells, with reduced IgG titers but not IgM titers,
but the IgM levels do not seem to depend on age (190). Thus, during
the aging process, there may be some intrinsic impairment in B cells
that compromises their functionality (191).

COVID-19 cohort studies show that seroconversion is
observed on approximately the 10th day after symptom onset
by increased IgM and IgG antibodies against the viral proteins N
and S (60, 192). An age-dependent increase in the viral load
(mean age of 66 years) was observed, but there was no
correlation between age and the antibody levels. Interestingly,
COVID-19 patients with associated comorbidities show lower
levels of specific antibodies than COVID-19 patients without
associated comorbidities (192).

A subset of B cells called age-associated B cells (ABCs)
identified in mice has been closely related to the process of
immunological senescence and minimally responds BCR and
CD40 binding (193–195). ABCs have the potential to inhibit the
growth of B cell precursors through the effects of TNF-a,
inducing pro-B cell apoptosis (196, 197).

The transcription factor E47 is involved in the regulation of most
B cell functions and is negatively regulated in splenic B cells in aged
mice, promoting a reduction in the activation of activation-induced
cytidine deaminase (AID) and class-switch recombination (198). In
older humans, B cells have an age-dependent lower expression of
E47 and AID, an associated decline in the number of memory B
cells that have undergone class switching (IgG+ or IgA+) and an
increase in naïve cells (IgG-/IgA-/CD27-) (199).

CD27 expression is related to somatically mutated B cell
subsets (200, 201) and accordingly, CD27- and CD27+ B cells
represent naïve and memory B cells, respectively. In fact, others
studies also found higher number of naïve (CD27-) than memory
(CD27+) B cells in individuals of advanced age (202–204).
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Old people also have a reduction in the number of circulating B
cells (205). In contrast, it has been observed that a double-negative
(DN) B cell subtype (IgD-CD27-), which is the counterpart of ABCs
in humans, is increased in the peripheral blood of older individuals
(206). These DN B cells, also called late memory or exhausted cells,
are associated with the failure to respond to the influenza vaccine in
old individuals. DN B cells show SASP, with greater expression of
proinflammatory cytokines (TNF, IL-6, and IL-8) and microRNAs
associated with inflammation (miR 155/16/93) and are dependent
on metabolic signaling viaMAPK (207). These cells were increased
in cases of chronic inflammation, such as HIV infection (208), and
in systemic lupus erythematosus (209). For COVID-19, DN B cells
are also significantly increased in severe patients (163, 210, 211) but
is still unclear if this conditions is dependent on age.

In addition, recent studies have shown that seronegative healthy
donors have SARS-CoV-2-specific CD4+ T cells, albeit at lower
frequencies, which is indicative of cross-reactivity due to infection
between circulating “common cold” coronaviruses (212–214).
However, it is unknown whether the older individual could have
previous cross-reactive antibodies to the new coronavirus.

In this context, a humoral immune response mechanism
widely proposed to be associated with the severity of COVID-
19 is related to the possible presence of a phenomenon called
antibody-dependent enhancement (ADE) (215–217). ADE
occurs when non-neutralizing antibodies generated in a
previous viral infection bind Fcg receptors (FcgR) present in
host cells and promote viral internalization. This phenomenon
has already been observed in dengue, yellow fever and HIV
infection (218). In fact, ADE has also been demonstrated in other
coronavirus infections, such as SARS-CoV-1 and MERS (215,
219). In COVID-19, ADE in phagocytes such as alveolar
macrophages and lung-infiltrating monocytes could favor
SARS-CoV-2 replication in the lung tissue (Figure 2B). In
addition, the activation of these phagocytes through FcgR
could contribute to the cytokine storm in these patients (220).
Considering the decrease in the quality of antibody production in
older individuals, it is reasonable to think that ADE could be
involved in COVID-19 pathogenesis in advanced age patients.

As previously mentioned, different coronaviruses circulate
among the population. Therefore, it is plausible that older people
have been more exposed to these circulating viruses throughout
their lives, thus generating a greater repertoire of antibodies,
which could favor a more severe ADE-dependent COVID
(Figure 2B). This hypothesis is reinforced since children show
less susceptibility to SARS-CoV-2 infection (181) considering
that their immune system is still developing and that they have
had less time to be exposed to antigens. This hypothesis is also
reinforced by the fact that some studies show rapid
seroconversion to IgG in some patients with SARS-CoV-2 (221).

ADE can also occur when antibody concentrations decrease
as a result of waning immunity, as observed by diluted antibodies
for SARS-CoV-1 (219). Thus, high levels of antibodies can
neutralize the virus, while subneutralizing concentrations could
increase infection (222).

It is worth mentioning that highly neutralizing antibodies,
such as those proposed to be generated by some SARS-CoV-2
Frontiers in Immunology | www.frontiersin.org 976
candidate vaccines (223, 224) or those present in convalescent
plasma used as treatment for some COVID-19 patients (225,
226), should not trigger ADE.

The IgG-mediated humoral response could also contribute to
more severe pulmonary pathology. Compared to patients who
recovered within the first 15 days after the onset of symptoms,
the patients who died of SARS-CoV-1 had higher levels and
faster development of neutralizing anti-S antibodies (227). In
addition, in a nonhuman primate model, the previous presence
of anti-S IgG antibodies resulted in more severe acute lung
injury, with an increase in inflammatory cytokines (CCL2 and
IL-8) and recruitment of monocytes/macrophages in the lung
(228). These antibodies appear to promote activation via FcgR in
these cells since their blockade reduced the inflammatory
condition. The role of the virus-specific antibody response in
lung injury in the pathogenesis of COVID-19 is still unknown.

The presence of immune complexes (ICs) worsens lung injury
in viral infections by H1N1 influenza (229) and respiratory
syncytial virus (230). Another severe lung disease has also been
associated with IC deposition, which promotes not only FcgR-
dependent cell activation but also complement system activation
and consequent tissue damage (231). It is known that the aging
process predisposes individuals to autoimmunity (232); however,
whether the accumulation of ICs in old individuals is related to
the severity of COVID-19 is unknown.

ICs have a high molecular weight, can be deposited in vessels
and tissues, and can activate the complement system, thereby
aggravating inflammation (233). In fact, the SARS-CoV-2 N
protein has been shown to promote the activation of the
complement system lectin pathway and aggravate lung injury
in an animal model (234). In addition, these complement
pathways were overactivated in the lungs of COVID-19 patients.

To date, no studies have proven that this senescent
proinflammatory profile is dependent on B and T cells or
other innate cell types and may in fact contribute to a more
severe lung pathology in coronavirus-infected patients by
increasing the inflammatory response and tissue injury.
CONCLUSIONS AND FUTURE
PERSPECTIVES

Considering the clinical findings obtained thus far concerning
SARS-CoV-2 infection and reports of diseases of a similar
etiology, it is evident that the immunosenescence process,
particularly the increased production of inflammatory cytokines
resulting from inflammaging, plays a role in determining the
prognosis of COVID-19 in old individuals. From an
immunological perspective, the peculiarities of the immune
system of older individuals may contribute to both the deficiency
of effector mechanisms essential to fighting viral pathogens and the
exacerbated inflammatory response, which can accelerate and
intensify lung tissue damage. However, despite the strong
evidence presented here, tests that accurately demonstrate the
association between immunosenescence and the severity of
October 2020 | Volume 11 | Article 579220
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COVID-19 are essential for assisting the search for treatments and
the development of vaccines for this most affected age group.
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ACE2 Angiotensin-converting enzyme 2
ADE Antibody-dependent enhancement
AID Activation-induced cytidine deaminase
APC Antigen-presenting cell
ARDS Acute respiratory distress syndrome
ATP Adenosine triphosphate
BCR B cell receptor
CCL CC chemokine ligand
CD Cluster of differentiation
cGAS Cyclic GMP-AMP synthase
CMV Cytomegalovirus
CoV Coronavirus
COVID-19 Coronavirus disease 2019
CpG Cytosine-phosphate-Guanine
CRP C-reactive protein
CXCL C-X-C motif chemokine ligand
DAF2 Dauer formation-2
DAMP Damage-associated molecular pattern
DC Dendritic cell
DN double-negative B cell
DNA Deoxyribonucleic acid
DPP4 dipeptidyl peptidase 4
E47 E47 transcription factor
FGF2 Fibroblast growth factor 2
Fc Fragment crystallizable
FcgR Fc gamma receptors
G-CSF Granulocyte colony-stimulating factor
GM-CSF Gr anu l o c y t e ma c r o p h a g e c o l o n y -

stimulating factor
H1N1 Haemagglutinin-1 neuraminidase-1
H5N1 Haemagglutinin-5 neuraminidase-1
HCoV Human coronavirus
HIV Human immunodeficiency virus
IC Immune complex
IFN-I Interferon type I
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Ig Immunoglobulin
IL Interleukin
IRF Interferon regulatory factor
LCMV Lymphocytic choriomeningitis virus
MAP Mitogen-activated protein
MAPK Mitogen-activated protein kinase
MAVS Mitochondrial antiviral-signaling protein
MERS Middle East respiratory syndrome
MHC Major histocompatibility complex
MHV-1 Murine hepatitis virus type 1
mtDNA Mitochondrial DNA
mTOR Mammalian target of rapamycin
NET Neutrophil extracellular trap
NF-kB Nuclear factor kappa B
NK Natural killer
NKG2A CD94/NK group 2 member A
NLR NOD-like receptor
NLRP3 NLR family pyrin domain containing 3
OX40 Tumor necrosis factor receptor superfamily,

member 4 (TNFRSF4)
PAMP Pathogen-associated molecular pattern
PD-1 Programmed cell death 1
pDC Plasmacytoid DC
PRR Pattern recognition receptor
RIG Retinoic acid-inducible gene
RNA Ribonucleic acid
ROS Reactive oxygen species
SAA Serum Amyloid A
SARS Severe acute respiratory syndrome
SARS-CoV-1 Seve re acu te r e sp i r a to ry syndrome

coronavirus 1
SARS-CoV-2 Seve re acu te r e sp i r a to ry syndrome

coronavirus 2
SASP Senescence-associated secretory phenotype
Smad7 Mothers against decapentaplegic homolog 7
STING Stimulator of interferon genes
TCR T cell receptor
TFH T follicular helper cell
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TLR Toll like receptor
TMPRSS2 Transmembrane Protease Serine 2
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TNF-a Tumor necrosis factor alpha
Treg Regulatory T cell
TRIF TIR-domain-containing adapter-inducing

interferon beta
TRIM Tripartite motif
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Immunosenescence is marked by a systemic process named inflammaging along with a
series of defects in the immunological activity that results in poor responses to infectious
agents and to vaccination. Inflammaging, a state of low-grade chronic inflammation,
usually leads to chronic inflammatory diseases and frailty in the elderly. However, some
elderly escape from frailty and reach advanced age free of the consequences of
inflammaging. This process has been called immunological remodeling, and it is the
hallmark of healthy aging as described in the studies of centenarians in Italy. The biological
markers of healthy aging are still a matter of debate, and the studies on the topic have
focused on inflammatory versus remodeling processes and molecules. The sub-clinical
inflammatory status associated with aging might be a deleterious event for populations
living in countries where chronic infectious diseases are not prevalent. Nevertheless, in
other parts of the world where they are, two possibilities may occur. Inflammatory
responses may have a protective effect against these infectious agents. At the same
time, the long-term consequences of protective immune responses during chronic
infections may result in accelerated immunosenescence in these individuals. Therefore,
the biological markers of healthy aging can vary according to environmental, cultural, and
geographical settings that reflect worldwide, and in a non-biased, non-westernized
perspective, the changes that we experience regarding our contacts with
microorganisms and the outcomes of such contacts.
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INTRODUCTION

Inflammaging, which has been described as a state of low-grade
chronic inflammation associated with dysfunctional immunity,
is the hallmark of immunosenescence. The consequences of both
processes may lead to increased susceptibility to infection and
poor responses to vaccination as well as to chronic inflammatory
and degenerative diseases in the elderly. However, a critical
observation coming from the studies of centenarians in Italy
was that some aged individuals reach this advanced age without
chronic diseases or frailty. These studies showed that unlike frail
individuals, healthy European centenarians have immune-
modulatory mechanisms that compensate for the inflammaging
and prevent the development of chronic inflammatory diseases
(1). On the other hand, many individuals living in endemic areas
of infectious diseases in developing countries manage to stay clear of
infection throughout life due to remodeling mechanisms of innate
immunity that could be classified as inflammatory. Nevertheless,
chronic exposure to infectious agents and the protective mechanisms
needed to cope with it can also function as aging acceleration stimuli.

The concept of healthy aging was proposed in Europe to
describe individuals who reach advanced age free of
inflammatory consequences of immunosenescence (1, 2).
However, this concept might be incomplete because it does not
take into account environmental and geographical differences
that would interfere with the effects of inflammaging.
Understanding the immunological and biological consequences
of living in areas where contact with infectious agents is
continuous and of high intensity may provide valuable
elements to broaden the concept of healthy aging.
SENIEUR PROTOCOL, CRITICISMS, AND
CRITERIA TO RECOGNIZE AGING AS
HEALTHY

The description of inflammaging as a major event in
immunosenescence has fostered a growing interest among
researchers and physicians in its effects on age-related diseases
and on healthy aging, as its counterpart (3–6). Not only the
number of elderlies is increasing around the world, but today
they expect to live much longer (7). In the case of Brazil, recent
data shows that the country has experienced an unprecedent
demographic process of aging of its population when compared
to more developed countries although it is not clear which is the
real size of elderly population (specially centenarians) due to
incorrect recording of age over the years and the quality of data
(8). In this scenario, a first challenge we still have to face is to
define what healthy aging is. A misinterpretation of any age-
associated condition as age-determined can alter study results
and its usefulness.

Thefirst results on the immunological alterations brought about
by aging were conflicting due to bias in patient selection, which was
one of the reasons for the creation of the SENIEUR protocol (9).
This protocol was proposed in 1984 by Ligthart and coworkers to
better distinguish immunosenescence fromage-associated diseases,
Frontiers in Immunology | www.frontiersin.org 287
and it consists of a set of criteria inwhich clinical information aswell
as laboratory data are evaluated. Any overt disorder that might
influence the immune system should be excluded, including
Crohn’s disease, collagen-vascular diseases, tumors, and
infections. This generated a uniformity in patient selection for
immunological studies and was a huge achievement. In the same
period, most geriatric clinical studies used different criteria for
normal aging dividing it into usual aging (when extrinsic factors
accentuate the effects of aging) and successful aging (when extrinsic
factors play a neutral role). Successful aging was defined as absence
or low risk of disease, high functionality, and high engagement with
life (10, 11).

According to Castle and coworkers (12), 16 years after its
creation, SENIEUR protocol still proved to be methodologically
viable because it was able to reveal immunological differences
between “healthy elderly” (who fit the SENIEUR protocol) and
“almost healthy elderly” (who nearly fit). However, stringent
criteria are the SENIEUR protocol strength and weakness. Some
studies showed that this protocol may exclude a significant
proportion of the elderly living independently at home and
leading an active life (12, 13).

A different approach to evaluate the immune system emerged
from data obtained in immune longitudinal studies enrolling
oldest-old subjects such as OCTO and NONA studies (14). They
described octogenarians and nonagenarians who had mild
chronic diseases in spite of their longevity and reported that
morbidity did not significantly impact on the T-cell immune risk
phenotype (15). In addition, an American centenarian cohort
study revealed that 24% male and 43% women fit in the survivor
morbidity profile (i.e., centenarian patients who had a diagnosis
of an age-associated illness prior to the age of 80) (16). Probably,
the huge majority of them would not be considered healthy
elderly by SENIEUR protocol. Since some experts consider
centenarians as the best model to study human longevity (17),
this data posed doubts on the fitness of the SENIEUR protocol
for understanding longevity.

The idea of disease-free elderly subjects and the exclusion of
any condition that might influence the immune system, as
imposed by SENIEUR protocol, narrow the attention to a very
exclusive group of healthy seniors (18) who are not
representative of the elderly population. Apart from that, this
protocol should be continuously updated as laboratory data and
diagnosis mature and also does our knowledge about age-
associated diseases. Now it is widely accepted that degenerative
diseases usually start many years or even decades before they
become clinically apparent, and immunological alterations are
present much earlier than clinical symptoms (19–21). Pre-
clinical diagnosis for some conditions (such as Alzheimer
disease) are also already part of clinical and research practices.
Therefore, as time passed and technological advances allowed
early diagnosis of these pathological conditions, elimination of
the ‘multimorbidity noise’ when examining immunosenescence
became increasingly difficult.

Although our knowledge about diseases has increased during
the last decades, no augment in life span and health span was
observed by singly studying them. Aging still is the main risk
November 2020 | Volume 11 | Article 579972
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factor for chronic diseases. In order to have a better “bench-to-
bedside” approach, it is important to be more inclusive, and
aging should be studied in association with chronic conditions.
Geroscience was created in this scenario as the intersection
between the biology of age-related chronic diseases and the
basic biology (22). As science developed so did the concept of
what is normal aging. The presence of a disease says little about
the impact it may have on an older person’s life. Health cannot
be viewed also as simply the absence of diseases. The World
Health Organization defines Healthy Ageing “as the process of
developing and maintaining the functional ability that enables
wellbeing in older age” (7). From an immunological point of
view, the concept of healthy aging has been proposed to describe
the “individuals who reach advanced age free of inflammatory
consequences of senescence” (23, 24). Unfortunately, there is no
good biomarker for senescence which incorporates other elements
strongly correlated with aging—autophagy, mitochondrial
function, cellular senescence, and DNA methylation (25). In
addition, all these mechanisms are linked in a complex and
dynamic network to maintain homeostasis (25). Thus, a broader
approach when studying the pace of senescence will certainly be
more fruitful to understand themechanisms that trigger or remodel
the alterations brought about by aging itself.

Aligned with the concept of heathy aging and geroscience, our
group use the clinical-functional categorization (26) classifying
elderly into three categories (i.e., robust, at risk of frailty, and
frail). These three categories encompass 10 sub-categories.
According to this categorization, individuals who are fully
independent (i.e., able to perform advanced activities of daily
life), autonomous, do not have sarcopenia, mild cognitive
impairment, frailty syndrome (27) or complex multi-morbidity
are considered robust.

Finally, it is important to stress that, depending on the
research question addressed by a particular aging study, the
choice of a healthy elderly control group may vary but the
inclusion and exclusion criteria for a patient to be classified as
reference group should be clearly stated.
AGING, INFLAMMAGING, AND
REMODELING

Although aging is a physiological process characterized by several
changes in the organism as a whole, this review is focused on
immunosenescence since the alterations in the function of the
immune system impact on other organs and tissues (28).
Immunosenescence can be described as a complex and
multifactorial process influenced by genetic and microenvironment
that results in gradual decrease of immunological activities including
effector responses and their regulation (4, 28). Therefore, aging is
associated with increased vulnerability to infectious and chronic
diseases, and impairment of immune responses to vaccination (29–
33). Investigations on the age-related changes occurring in the
immune system of different populations (Sweden, Holland and
Belgium) suggested that the immune parameters associated with
Frontiers in Immunology | www.frontiersin.org 388
mortality in the elderly are context-dependent (34). Thus, a major role
in immunosenescence is played by the environmental conditions. We
have conceptualized this main characteristic of immunosenescence by
proposing the new concept of “immunobiography”, defined as the
combination of type, dose, intensity, and temporal sequence of
antigenic stimuli that each individual is exposed throughout life
(35). Owing to its memory and plasticity, the immune system is
capable of adapting and recording all these immunological
experiences. The immunological history of each individual is
responsible for the capability in single persons to mount strong,
weak, or no response to specific antigens, thus determining the large
heterogeneity of immunological responses observed in the elderly (35).

Several immunological alterations associated with aging are
well described in the literature (Table 1), and they heavily impact
the T cell compartment (29, 36). Thymic involution is a hallmark
of immunosenescence responsible for the early decline in the
output of naïve T cells to the peripheral blood and, consequently,
for the shrinking of the T cell repertoire (29, 30). Indeed, a
universally observed aging-associated immunological alteration
is the decrease of naive T cells (particularly CD8+ T cells) in the
peripheral blood (37). Concomitantly, chronic stimulation of the
immune system results in the increase of peripheral CD4+ and
CD8+ memory T cells (38). Furthermore, the inverted CD4/CD8
ratio that was identified in aged individuals has been associated
with increased frequencies of terminal memory T cells and of
senescent exhausted lymphocytes (expressing PD-1, KLRG-1,
CD57, TIM-3) with low proliferative capacity, defects in
signaling pathways, and loss of molecules necessary for co-
stimulation such as CD28 and CD27 (31, 32, 36). The aging-
related shift in the bone marrow maturation of hematopoietic
cells towards myelocytic differentiation (39) results in a decrease
in naïve B cell production and an increasing oligoclonal B cell
repertoire over a span of decades (64). The lower production of
naive B and T cells and the alterations in their repertoire diversity
and their interactions result ultimately in a poor ability to trigger
effective responses against novel antigens (33, 40).

At the same time, it is known that senescent cells, in spite of
the progressive loss of their activity and proliferative ability,
develop a senescence-associated secretory phenotype (SASP)
producing inflammatory cytokines such as IL-6, IL-8, IL-1, IL-
18, and TNF-alpha (65, 66) which contribute to the
inflammaging phenomenon (60).

The term inflammaging was proposed by Claudio Franceschi
and coworkers (2) to name the chronic state of low-grade
inflammation that is associated with aging (67). The continuous
attrition caused by clinical and subclinical infections, as well as the
persistent exposure to other non-infectious antigens (food,
allergens, microbiota) has been correlated with chronic
activation of the immune system and with the low-grade sterile
inflammation that accompanies aging (41, 53). Inflammaging is
characterized by the presence of high levels of pro-inflammatory
cytokines such as IL-6, IL-1-beta, TNF-alpha, IL-8, IL-15, acute
phase proteins (e.g. C-reactive protein) and can be identified in the
elderly and super-elderly (centenarians) regardless of the degree of
frailty (1, 5, 53). Although not fully established, some of possible
causes of inflammaging include thymic atrophy, enhanced
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intestinal permeability, increased damage-associated molecular
patterns (DAMPs), and the accumulation of senescent cells, with
a consequent rise in the SASP (2, 29, 41) (Figure 1). In these
circumstances, SASP presents as particularity the growth arrest,
the resistance to apoptosis and a specific secretome (e.g. IL-8,
TNF-alpha, IL-1-beta, IL-6, metalloproteinases, GM-CSF) that
differs from inactive cells due to the preservation of metabolic
activities (61, 65, 68). This phenotype can also induce DNA
damage in neighboring cells by a paracrine effect and impacts
on the microenvironment of the surrounding tissue impairing
functioning, accelerating aging, and predisposing to age-related
diseases (66, 69). Furthermore, extracellular vesicles (EVs) released
from senescent cells spread pro-senescence signals that contribute
to the propagation of SASP and inflammaging (70).

Interestingly, not all aged individuals have this profile, and
studies on healthy centenarians and nonagenarians showed that
these unique populations develop compensatory mechanisms
called “immune remodeling” that allowed for the control of the
deleterious effects of immunosenescence (42, 62). Data based on
the stringent criteria proposed by SENIEUR protocol (9) have
confirmed that senescence is not necessarily related to
dysfunction of the immune system, but to a continuous
immunological adaptation (42). Such process occurs
heterogeneously among individuals, and it is well established
that not all elderly have dysfunctional immunity, infections,
chronic diseases, and frailty (24, 71, 72). Indeed, innate
immune responses have been increasingly recognized for their
adaptation to senescence and for their profound impact on
health and longevity (24, 51). The immune remodeling is
specially involved with the innate compartment. Despite the
attenuation of some innate responses along the lifespan, there is a
paradoxical rise in the activity of certain signaling pathways and
in the production of cytokines (54). Studies have demonstrated
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that the cytotoxic capacity of natural killer (NK) cells is well-
preserved in healthy elderly and centenarians suggesting these
cells are important players in successful aging (36, 55).

Some studies also suggest that inflammaging is able to
generate regulatory responses by cells with immunosuppressive
phenotypes. Signals from SASP would lead to an increase in the
expression and activity of the transcription factor Foxp3 in T
cells and the expansion of regulatory T cells during aging (41,
56). In addition, regulatory B cells expressing IL-10 would
control inflammatory effector T cells, thus aiding anti-
inflammatory responses during immunosenescence (56).

Our group has studied Brazilian healthy individuals aged
from 0 to 85 years and observed that the frequencies of pro-
inflammatory and regulatory cytokine-producing innate and
adaptive cells change during the aging process in an
undulatory fashion. Although there is an increase in the
frequency of cells that produce pro-inflammatory cytokines in
the healthy elderly, a parallel rise in the frequency of regulatory
cells could also be observed suggesting that a remodeling process
takes place. IL-10-producing neutrophils and monocytes
contribute to a balanced cytokine profile in these individuals (51).

In this sense, healthy immunosenescence can be seen as a
result of the gradual adaptation of the organism to the
deteriorative changes and the continuous stress that occurs over
time (42). Indeed, according to this view, we have proposed that
the body resources are continuously optimized and balanced, and
successful immunosenescence consists of a potentially dynamic
process of remodeling that depends on the individual's
immunobiography (35). This lifelong remodeling process
appears to be non-linear, as distinct fluctuations in the
frequency of cytokine-producing cells throughout life was
observed (51), mirroring the complex undulating changes of the
blood proteome throughout life (43).
TABLE 1 | Summary of some changes during immunosenescence.

Compartment Overall changes References

Adaptive immunity
Decrease in Naïve cell number
Decrease in IL-2 production
Decrease in lymphoid number
Decrease in CD27 expression
Decline in antibody diversity (B cells)
Increase in memory cell number
Increase in regulatory T cell number
Increase in CD8+CD28− T cells

Shrinkage of T cell receptor repertoire;
Loss of immunological space;
Less responsive to immune stimulation/infection and vaccination;
Less efficient responses to stress;
Decrease ability to cope with environmental challenges, such as reactivation
of chronic and new infections;
Accumulation of senescent cells in tissue and organs;
Reduced proliferative capacity of T cells;
Autoimmunity;
Immune dysfunctions

(1–4, 24, 29, 30, 32, 33,
36–52)

Innate immunity
Increase in cytokine production
Increase in myeloid number
Increase in NK cells
Increase in the activity of certain signaling pathways, while
other pathways are impaired
Decrease or no change in phagocytosis
Decrease in chemotaxis

Chronic progressive increase in the pro-inflammatory status resulting in
inflammaging;
Tissue damage and organ dysfunctions;
Delayed wound healing;
Loss of homeostasis;
Modification of interaction with T cells;
Predisposition to diseases and risk of frailty

(5, 6, 28, 31, 35, 39, 44,
51, 53–63)
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ANTIGENIC LOAD: STRESSORS OR
IMMUNOLOGIC STIMULI?

Clonal mechanisms of antigen recognition can be identified only
in vertebrate immune system, and they are known for being able
to mount tolerance responses towards non-harmful self and
quasi-self (food, microbiota) antigens and protective immune
responses against dangerous antigens (toxic and infectious
agents). However, the real immunological picture is not always
that clear. In daily life, the immune system faces a complex
mixture of misplaced and altered self-molecules resulting from
damaged or dead cells, i.e. cell debris and organelles such as
mitochondria components, that can be collectively designated as
“garbage” (28, 63). The innate immune receptors for these
stimuli are “degenerated”, and on many occasions do not
clearly distinguish them. Thus, innate responses can trigger not
only protective responses towards non-self infectious agents but
can also activate inflammatory responses towards quasi-self and
endogenously produced self-components (28). Balanced
responses (inflammatory and regulatory mechanisms) are essential
to maintain the host health under infectious circumstances; however,
both types of antigenic stimuli could activate immune cells. From an
evolutionary point of view, immunosenescence could be a
consequence of “garbage” accumulation and of stimulation by all
antigenic stressors. Given the increase in average human life span,
the immune system has to tackle an extensive variety of antigens
along its lifespan (3, 28, 62). This is particularly relevant for T cells,
and it results in the increase of effector and memory cells (4, 44)
compromising the response to novel pathogens and to vaccination
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(45, 52). However, considering that not all immunological stimuli are
harmful to the organism, distinct antigens might lead to different
impacts on health outcome (being immunosenescence the most
substantial one).

The capacity of the adaptive immune system to differentiate
pathogenic microorganisms from beneficial ones, preserving
symbiotic microorganisms and inducing regulatory mechanisms,
can be a determinant of human survival (46, 47), but again the
involved molecular mechanisms are far from being clear.
Immunosenescence and, consequently, inflammaging, occur as a
result of chronic exposure to different antigens, but it is also known
that potential stressors, such as food protein and gut microbiota,
can act as a key stimuli for the development of the immune system
(73, 74).
ROLE OF MICROBIOTA AND DIETARY
ANTIGENS IN THE DEVELOPMENT OF
THE IMMUNE SYSTEM

The human body harbors trillions of microbial cells on the
surface of the body (the skin and the gastrointestinal,
respiratory, and urogenital tracts) (75, 76). These microbial
populations, called collectively as microbiota, come to the
highest density in the colon (gut microbiota) (75), and they are
established since childhood (77–79). Millions of years of co-
evolution created a mutualistic relationship between microbiota
and human body; the microbiota improves many physiological
functions of the host such as digestion and clearance of
FIGURE 1 | Immunosenescence is a lifelong adaptive process that occurs naturally during aging due to the exposure to antigens. The chronic activation of the
immune system through time changes the health span and the balanced profile of anti-inflammatory (IL-10) versus pro-inflammatory mediators (IL-1, IL6, TNF-a)
found in the younger ages. This balance is lost progressively with aging and results in higher levels of pro-inflammatory cytokines in elderly people, which is known as
inflammaging (low-grade inflammation) and driven by senescent cells (SASP phenotype) and thymic involution. IL-1, Interleukin-1; IL-6, Interleukin-6; TNF-a, Tumoral
Necrosis Factor-alfa; SASP, Senescence-Associated Secretory Phenotype.
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potentially pathogenic microorganisms while receiving
nourishment and habitat in return (80).

The gastrointestinal (GI) tract is the largest body surface that
contacts the external environment with the function of food
processing. It is constantly challenged by antigens from the
lumen including antigens from the diet and microbiota that
will be tolerated and antigens that have to be cleared such as
pathogens and toxins (76, 80). Experiments in germ-free (GF)
mice showed that early life colonization by the microbiota is
critical for the full development of the immune system. Germ
free animals have underdeveloped intestinal mucosal immune
responses, unstructured spleen and lymph nodes, smaller
mesenteric lymph nodes and Peyer’s patches, an underdeveloped
gut-associated lymphoid tissue (GALT), reduced frequencies of
CD4+CD25+ Tregs as well as diminished levels of secretory IgA
and serum IgG (81–84).

The most abundant phyla in human gastrointestinal tract are
Firmicutes and Bacteroidetes, while Actinobacteria, Proteobacteria,
Fusobacteria, and Verrucomicrobia are subdominant divisions (85).
The diverse collection of bacteria in the human gut microbiota
contributes to several physiological functions by producing short
chain fatty acids and vitamins (otherwise inaccessible to humans),
regulating fat storage, promoting the differentiation of various cell
types, protecting the host from colonization by pathogens, and
creating tonic stimuli for the development/modulation of the
immune system (76). On the other hand, any intestinal dysbiosis
(disturbance in microbiota composition) is associated with the
onset and/or aggravation of certain diseases including some
autoimmune and allergic diseases, cancer, metabolic diseases, and
bacterial infections (86–90). This crucial cross-talking between the
human host and microbiota can be altered through dietary habits,
influencing microbiota richness and diversity and potentially
impacting intestinal barrier functions and the immune system
(91, 92).

Food proteins also play a critical role in this context
influencing the microbiota composition and creating a daily
load of antigenic components. Some of us have previously
shown that mice fed a balanced amino acid-based protein-free
diet (Aa-fed) from weaning up to adulthood showed local and
systemic abnormalities in their immune system even though they
grew normally. Aa-fed mice had underdeveloped gut-associated
lymphoid tissue (GALT), low levels of secretory IgA, serum IgG
and IgA, low levels of type 1 cytokines and a predominant Th2
cytokine pattern produced by cells from lymph nodes and spleen
resembling a neonate profile (93). Their immune response to
infectious agents such as Leishmania major was retarded when
compared to mice fed a control protein-containing diet probably
due to their immature immunological status and to the poor Th1
responses they produce (73).

In addition to their tonic properties for the immune system, it
is known that exposure to these luminal antigens generates a
state of specific suppression of inflammatory responses known as
“oral tolerance”. Animals and humans usually tolerate the
antigens that are present in their diets as well as their
autochthonous gut microbiome (94, 95). Antigen presentation
in such context would induce preferentially regulatory T
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lymphocytes (Tregs) producing IL-10 and TGF-beta with local
and system modulatory effects. Tregs are major players in the
tolerance response to the luminal antigens (95, 96), and oral
tolerance can be seen as a process that evolved, as much as the
digestive/absorptive process in the gut, to incorporate these
materials as self-components.

As we age, it has been shown that changes in the composition
and, remarkably, in the diversity of the microbiota are associated
with health outcomes in the elderly, especially in the frailty
context. Several studies have associated the gut microbiome with
hallmarks of aging and immunity, including biomarkers of
inflammation, immunosenescence, oxidative stress, and
cardiometabolic health (89, 97–100). The gut ecosystem of
centenarians differs equally from that of young adults and
seventy-year old people (98). In centenarians, microbiota
diversity is reduced with increased frequencies of pathobionts
such as Fusobacterium, Bacillus, Staphylococcus, Corynebacterium
and many members of Proteobacteriae. However, the increase of
symbiotic species with reported anti-inflammatory properties, such
as Eubaterium limosum and relatives, suggests that the composition
of gut microbiota in centenarians undergoes a clear process of
remodeling (98). Moreover, the gut microbiota of people
characterized by extreme longevity, i.e. semi-supercentenarians
(people who reached 105 years of age), show an increased
capacity of xenobiotic degradation that likely contributes to their
exceptional healthy aging (101). It is becoming clear that
maintaining a health-associated microbiome is crucial to
successful aging.

Interaction between dietary components and bacteria present
in our microbiota also represents a source of interference with
the immune system. The major products that result from
bacterial fermentation of indigestible carbohydrates, also called
“dietary fiber”, in the colon are short-chain fatty acids (SCFAs),
including acetate, butyrate, and propionate. SCFAs are involved
in the maintenance of mucosal integrity as well as colonic
homeostasis: they are able to regulate leukocyte function and
to influence immune responses and disease risk by signaling
through GPR receptors (GPR41 and GPR43) and by inhibiting
histone deacetylase (HDAC) (80, 102).

Exposure of peripheral blood mononuclear cells and
neutrophils to SCFAs blocked the pro-inflammatory nuclear
factor-kB (NF-kB) and regulated the production of cytokines
(such as TNF-alpha, IL-2, IL-6, IL-17, and IL-10) eicosanoids
and chemokines (e.g., MCP-1 and CINC-2) (91, 103–106). In
this context, inhibition of HDACs by SCFA fosters an anti-
inflammatory tolerogenic milieu indicating that the microbiota
acts as an epigenetic regulator of body homeostasis (103).

Some dietary components, such as B vitamins and vitamins A,
D, K, and E can be synthesized by the gut microbiota and have a
key role in reducing inflammation, regulating energy metabolism,
enzymatic functions important for gene expression and immune
response regulation throughout the life course (91, 107, 108).
Interestingly, both zinc deficiency and dysfunction of the immune
system are accompanied by impaired immune responses and
systemic low-grade chronic inflammation in aged individuals
(109–112). Sodium chloride (NaCl) is a salt and a micronutrient
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that also mediates immunological effects. In high concentrations,
NaCl can induce alterations of gut microbiota composition,
modifications of gut permeability, and inflammation in the gut
mucosa, increasing the susceptibility to colitis development (113,
114). As an inflammatory stimulus, consumption of high-salt
diets may interfere with the aging process.

Microbiota and dietary components are clearly innocuous
natural antigens that promote immunological development at
early age and regulatory immune responses throughout life.
However, pathogens cannot be considered as tonic agents.
Contacts with clinical and sub-clinical infections usually lead
to inflammatory responses, and they may be considered as
important stressors that continuously impinge on our immune
system (48, 115).
HYGIENE HYPOTHESIS—INFECTIONS AS
BENEFICIAL IMMUNOLOGICAL
STIMULATION IN CHILDHOOD

The “Hygiene Hypothesis” and the “Old Friends Theory”
advocate that childhood infections and microbiota provide
immunoregulatory mechanisms that shape our immune system
to cope with the continuous exposure of the body to antigens.
The lack of contact with these infectious agents, due to high
hygienic conditions (we became too “clean”), increases the
incidence of atopic diseases, autoimmune and some chronic
inflammatory disorders (116–119).

In the past few years, a large scientific effort has been focused
on understanding how microbiome and parasites modulate the
human immune system, especially how exposure to these
antigens impacts on the incidence of inflammatory and age-
related diseases (119–121). The scope of disorders affected by
contact with different microbiomes and food components has
been enlarged lately including allergies, autoimmunity,
inflammatory bowel disease, celiac disease, food allergy,
vascular disease, cancers, and inflammation-associated
psychiatric disorders (117, 119, 122). However, there are
pathogens such as respiratory syncytial virus (RSV) or
rhinovirus that are not protective in any scenario and are
usually associated with a high susceptibility to develop wheeze
and asthma in children and adults alike (123, 124). In addition,
the human microbiome is itself subjected to the influence of
several related variables including microbial exposure, diet,
lifestyle, medication, parasite infection, among others, and this
network of influences may also be reflected in the immune
system operation at steady state and in the onset of immune-
mediated diseases such as allergy (125–129).

Therefore, the age when the contact with these antigens
occurs is a determinant factor for the later immunological
consequences they trigger. The antigenic load represented by
food and microbiota as well as some parasitic antigens at early
time in life has long lasting beneficial effects in the immune
system contributing to the robustness of the regulatory immune
mechanisms that operate in adults and old individuals (49, 130).
Young adults still have a large repertoire of lymphocytes with
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high diversity and plasticity being able to mount proper immune
responses when challenged by a variety of new antigens. In spite
of that, it is not clear how durable are the effects of antigenic
stimulation at this time point in life. On the other hand, the
immune system of the elderly is less capable of properly dealing
with new antigens since aging is associated with an increasing
loss in repertoire diversity. At this late period of life, introduction
of antigenic novelties, even if they are microbiota or dietary
components, might represent a threat rather than a tonic
regulatory stimulation (49).

The pleiotropy hypothesis of aging proposed by George
Williams in 1957 presents an evolutionary perspective to
interpret these discrepancies in immunological behavior when
facing antigenic stimulation throughout life. It suggests that
genes that evolutionarily resulted beneficial at young age
became detrimental at old age, a period that was largely
unpredicted by evolution. Such genes would be favored by
natural selection by enhancing fitness early in life, a period
when selection is stronger, even if they cause the aging
phenotype to emerge (131). Today, it is generally accepted that
antagonistic pleiotropy is common if not ubiquitous, implying
that also a number of other molecular and cellular mechanisms
of aging such as immunosenescence and inflammaging can be
interpreted within such a conceptual framework.
GENETIC AND EPIGENETIC FACTORS AS
MAJOR DETERMINANTS OF
IMMUNOSENESCENCE

Aging is a natural phenomenon that affects individuals
differently. While centenarians are clear examples of resilience
against the detrimental effects of antigenic attrition during aging
(132), some individuals present signs of aging and age-related
diseases early in life. Studies on centenarians who present high
levels of inflammatory mediators suggest that inflammaging is
compatible with longevity (17, 132). These different
performances of individuals facing aging and inflammaging
may have strong genetic and epigenetic determinants (133,
134). The human lifespan is in part heritable; another part of
the aging process is related to environmental factors such as
injuries, lifestyle, socio-economic and education levels, and work
activities (133). Heritability can increase from nonagenarians to
centenarians (100+), semi-supercentenarians (105+), and
supercentenarians (110+), and people who reach above 90
years of age appears to have stronger genetic basis for their
longevity (135, 136).

Epigenetic factors mediate the relationship between the
environment and the genome, and they are also involved in
aging and age-related diseases (137). One of the most important
epigenetic factors, DNA methylation, is known to influence the
outcome of aging. DNAmethylation is strongly related to unique
individual environments, and only a small fraction of DNA
methylated sites associates with familial factors (genetic or shared
environment) (138). In elderly twins, for instance, a different profile
of methylated CpGs is observed over time (133). Many of the
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methylated genes are involved in the regulation of the immune
system, especially of lymphocytes (139). Interestingly, the
geographical location can alter DNA methylation patterns in
family individuals supporting the hypothesis that inflammaging
and immune modulation in aged individuals may vary among
regions and countries.

Lifestyle and environmental factors are strongly involved in
the basis of longevity and aging. Regarding dietary influences,
animal studies on caloric restriction (CR) showed that
mitochondrial-derived free radicals generated during ATP
production are inducers of cellular senescence and aging.
Indeed, caloric restriction in rodents is able to increase their
life span by up to 50% indicating a correlation between oxidative
stress in the mitochondria and life span (140). A randomized
clinical study conducting CR during two years in people
demonstrated that CR effectively controlled energy expended
and oxidative stress, improving life expectancy (141). Caloric
restriction and rapamycin treatment are also involved in anti-
aging process, increase in lifespan, improvement of physiological
functions, and reduction of pathology (137). On the other hand,
a chronic inflammatory condition such as obesity is associated
with decreased size of telomere length and also with increased
oxidative stress in cells, leading to early aging and dementia (142,
143). Regular physical activity can be associated with decreased
levels of oxidative stress and pathological inflammation. A recent
study in twins revealed that sports are related with differences in
telomere lengths between them (144). Another factor that
impacts life expectancy is work behavior. People who work in
night shifts or have irregular hours of work for more than 10
years had accelerated epigenetic age with differentially
methylated CpG sites across their epigenome, including in
genes for circadian rhythm (145).

There are genetic variations in certain proteins that became
markers of longevity. One of them affects the uncoupling
proteins (UCP1, UCP2 and UCP3) that belong to the family of
mitochondrial transmembrane carriers and are regulators of the
respiratory process in mitochondria. These proteins are able to
decrease ATP-generation and ROS production by dissipating the
proton gradient of the inner mitochondrial membrane resulting
in the increased longevity observed during CR (146). Variations
on sirtuin genes (SIRT1, 2, and 3) were also reported to influence
the mitochondrial functionality and longevity (147, 148). SIRT1
gene is involved in decreased oxidative stress and inflammatory
response, and SIRT3 is a mitochondrial deacetylase that reduces
ROS production. Both genes are downregulated in the elderly
and the activation of micro-RNA-9 (miRNA-9) can improve
their functions resulting in decrease aging (149). Another study
showed the involvement of micro-RNAs (miRNAs) in the
development of the age-related Alzheimer’s disease. Two
miRNAs, mi-146b-5p and miR-15b-5p, were identified in a
cohort as related to innate immune responses and regulation
of cell cycle (150). A recent genome-wide analysis of miRNAs in
centenarians and nonagenarians showed different clustering
between the long-aged individuals and the younger controls.
Cancer related proteins such as p53 and others were shown to be
potential targets of these miRNAs indicating that tumor
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suppression and maintenance of genomic integrity are critical
events during aging (151).

Genes related to cell cycle regulation and telomere length,
such as P21, FOXO3A, TERT, and TERC, have also been
described as associated with longevity (133). The cell cycle
inhibitor P21 or CDKN1A gene is induced by stress responses
and inflammation during senescence, and it is implicated in the
upregulation of several age-related genes (35, 152, 153). The
FOXO3 gene can have more than 100 SNPs, and some of them
are associated with very long life span (154).

In fact, some individuals have more susceptibility to age-
related diseases as dementia and cardiovascular diseases (134).
Alzheimer’s disease, diabetes mellitus, and cancer are common
diseases among Western old people probably due to the presence
of genes that predispose to those health conditions. On the other
hand, some individuals from the same region are resistant to
those aged related diseases probably because they lack other
genes involved in disease development. The APOE gene, for
instance, has different variants that are associated with high
susceptibility for cardiovascular and Alzheimer’s diseases (155–
157). Another set of polymorphisms associated with age related
diseases is at FTO (fat mass and obesity associated) gene, which
are involved in increased morbidity and mortality due to
increased adiposity and obesity in humans (156, 158).
Polymorphisms (SNPs) in FTO gene have been recently
described as associated with increased risk for Alzheimer’s
disease (159). FTO is also involved in cell cycle, and its silence
prolongs G1 phase, reducing cell proliferation (160). SNPs in
SDC4 gene were investigated for their association with higher
longevity in a cohort above 64 years old. SCD4 encodes a
transmembrane protein, Syndecan 4, that is associated with
microglia activation during neuroinflammation. SDC4 SNPs
might have influence on lipid metabolism during aging, and
SDC4 gene SNP rs1981429 was negatively associated with
longevity in the group between 64 and 85 years old. The same
association is also observed for high triglyceride level and for low
levels of LDL cholesterol. On the other hand, SNP rs2251252
seems to be associated with longevity and with high levels of
LDL (161).

A simple conclusion from the genetic studies demonstrating a
variety of polymorphisms involved in immunosenescence
underscores the great importance of studying aging across
distinct genetic backgrounds and distinct ethnical groups. A
study conducted during 18 years in UK showed that the
healthy condition of the offspring is associated with parental
lifespan. In addition, the lower incidence of cardiovascular
diseases, cancer, and reduced cognitive decline in certain
populations is associated with higher parental and offspring
survival (162). In a Spanish cohort, researchers observed that
homozygosis in 192bp allele of IGF-1 gene is a marker of healthy
aging. Polymorphisms in this gene could be related to obesity
and several derived conditions such as metabolic syndrome,
cardiovascular diseases risk, cachexia and premature death
(163). A study in centenarians from Italy showed five genes
(HRAS1, SIRT3, TH, INS, and IGF2) associated with longevity.
However the same result was not observed in individuals from
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Germany (148). Therefore, different genes may be associated
with longer life in distinct populations. Although centenarians
usually display the same longevity of their families (164), they
would show distinct ways to attain a longer and healthy life
depending on their geographical location, genes and lifestyle.
THE ROLE OF INFLAMMAGING IN
ENDEMIC AREAS FOR CHRONIC
INFECTIOUS DISEASES

NK cytotoxicity has been described as a biomarker of
immunological remodeling, healthy aging as well as longevity,
and it seems to compensate for the changes/deficiencies
occurring in other immune functions lost by lymphocytes
during immunosenescence (42, 55, 62). Cumulative evidence in
the last two decades identified a well-preserved NK cell activity in
both healthy elderly individuals and centenarians (57–59, 165).
Kaszubowsaka and coworkers demonstrated that the expression
of TNF-alpha by non-stimulated cells was significantly higher in
both CD56dim and CD56bright NK cells of aged individuals when
compared to young ones. Moreover, CD56dim NK cells of the
oldest were responsive to the IL-2 stimulation (59). As previously
described, the increase of the inflammatory microenvironment
associated with aging (6, 55, 166–168) may lead to degenerative
and inflammatory chronic diseases (14, 20, 44, 50, 63). However,
this immune profile can be important for an efficient response
against infectious parasitic diseases, especially for individuals
living in endemic areas.

In this context, in countries where the elderly population live in
endemic areas for infectious diseases such as Chagas disease,
leishmaniasis, and schistosomiasis, the presence of an inflammatory
reactivity can favor these individuals against the constant challenges.
Few studies on the effects of aging and specifically of inflammaging in
Brazilianpopulationsareavailable.Ourgroupsarepartof the fewin the
country working on the topic, and we have already examined the
cytokine/chemokine profile of elderly from Belo Horizonte (51),
Governador Valadares (89), and Bambuı ́ (169, 170) in Minas Gerais
State. Although we observed changes in the profile of pro-
inflammatory versus regulatory cytokines throughout life in all these
locations, they did not show a simple increase in inflamming-
related cytokines.

It is true that life expectancy has increased in industrialized as
well as in developing countries. Nevertheless, the medical
challenges to deal with the aging population in these regions
are very distinct. Considering that chronic infectious diseases are
still prevalent in most developing countries (171), understanding
the clinical outcomes of tropical diseases in elderly patients and
how frailty is related to them will help to define healthy aging in
different scenarios.
CHAGAS DISEASE

Although several studies have shown the importance of immune
response in Chagas disease progression, the mechanisms
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underlying the severe forms of this disease are still elusive. The
balance between inflammatory and modulatory cytokines
towards an anti-inflammatory profile contributes to the control
of the disease and to the development of its milder forms.
Conversely, severe diseased patients with the cardiac form
developed a Th1-specific immune response with inflammatory
infiltrate and tissue damage (172–174). Our group studied
elderly adults from an endemic area for Chagas disease
analyzing the correlation between serum levels of cytokines
and chemokines, Trypanosoma cruzi infection, and cardiac
abnormality (175). When compared to healthy controls,
Chagas disease patients had higher circulating levels of IL-1-
beta, CXCL9, and CXCL10 and lower levels of CCL5 than
healthy subjects. Interestingly and in contrast with control
individuals, levels of CXCL9 and CXCL10 continuously
increased with age indicating that these two chemokines are
strong markers of immunosenescence in the elderly with Chagas
disease (175).
LEISHMANIASIS

Visceral leishmaniasis (VL) is a neglected re-emerging chronic
infectious disease in tropical and subtropical regions (176) where
it is related to poor access to health care and poverty. Countries
like Brazil have reported a high incidence of new cases annually
(177) although it is not clear whether all cases result from recent
infection or from reactivation of latent infection in patients that
have chronic immunosuppressive conditions such as HIV (178)
and organ transplantation (179). The rate of positive Leishmania
skin test results in some areas of Brazil is extremely high in the
elderly, and this might become a relevant geriatric issue (171). In
Teresina, for instance, the capital of a state in the northeast
Brazil, 50% of tested individuals were positive, and prevalence
increased with age (180) suggesting that some of these
individuals were experiencing a reactivation of a previous
infection. Moreover, the overlapping of two chronic infections
such as VL and HIV is reported to create an environment of
persistent cellular activation inducing senescent/exhausted
lymphocytes, affecting the generation of new T cells and
accelerating immunosenescence (181, 182). Indeed, the thymus
of patients living with HIV presents alterations in the lymphoid
and stromal compartments as well as in the generation of the V-
beta repertoire of T lymphocytes (183) that are typical of aging.
In addition, HIV infection potentially contributes for the
inflammatory immunopathogenesis of VL and, at the same
time, impairs the effector immune responses to antigens,
including Leishmania (184).
SCHISTOSOMIASIS

More than 230 million people are infected with schistosomiasis
worldwide (185) causing a huge impact in the quality of life of
affected individuals (186). Our group has studied individuals
from schistosomiasis endemic areas in Minas Gerais State and
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showed a clear correlation between well preserved mechanisms
of innate immunity and the absence of infection in elderly
subjects. We observed an increase in the frequency of IFN-
gamma+CD16+NK cells in non-infected elderly individuals when
compared to Schistosoma mansoni infected ones (187).
Moreover, it was observed that non-infected elderly individuals
present an increase in the frequency of the natural killer (NK)
cells, macrophages, and dendritic cells expressing Toll-like
receptors (TLR)-1, suggesting that, in endemic areas,
remodeling of innate immunity mechanisms may have a
protective role that could compensate for the aging-related
decline in T-cell responses (188). In addition, the augmented
frequency of T cel l s with a regulatory phenotype
(Foxp3+CD25+CD4+, LAP+CD4+, and IL-10+CD4+) observed
in infected aged individuals from these endemic areas (when
compared to non-infected ones) may have two consequences:
they may hinder the development of protective immune
responses but they also explain the absence of severe
hepatosplenic clinical form of the disease during chronic
infection in these individuals (189). Together, these results
support the hypothesis that an inflammatory innate immune
response in parallel with the decrease of regulatory mechanisms
(as observed in non-infected individuals) can induce a protective
immunity in elderly individuals from schistosome endemic
areas. Although this can be seen as a desirable “protective
profile”, it also suggests that remodeling in these regions of
high antigenic load (infectious agents) occurs at the expense of
immune regulatory mechanisms which are important for
controlling inflammaging.
ACCELERATED AGING

It is reasonable to believe that inflammaging could play a role in
protective immunity in endemic areas for infectious disease. If one
takes the premises of the hygiene hypothesis, exposure to infectious
agents since childhood may induce both protective effector immune
responses as well as robust life-long regulatory mechanisms that
would prevent the spill-over effects of inflammaging causing
degenerative diseases and frailty. However, inflammatory responses
could have other consequences such as acceleration of the aging
process itself. This may come as a price to pay for protective
immunity. A hallmark of immunosenescence is the reduction in
the output of naïve T and B cells and the increased frequency of
memory and effector lymphocytes as a consequence of thymic
involution. The continuous exposure to natural antigens
(microbiota, food proteins, allergens) and the antigenic stress
caused by clinical and sub-clinical infections may lead to
inflammaging, degenerative diseases and frailty in senescence (190,
191). A wide range of age-related diseases including diabetes, auto-
immune diseases, osteoporosis, sarcopenia, neurodegeneration, and
atherosclerosis has a common inflammatory pathogenesis (53, 190).
Therefore, it is expected that individuals exposed to a higher burden
of antigen loadwouldpresent accelerated immunosenescence, higher
morbidity andmortality. If we also take into account the reduction in
immunoregulatory mechanisms required in endemic areas to
Frontiers in Immunology | www.frontiersin.org 1095
preserve protective immunity as reported earlier (189), and the fact
that some components known to counteract cellular stress such as
heat shock proteins are also diminished in the elderly (192), the
accumulation of stress attrition during aging would be particularly
deleterious. Although inflammatory responses mounted by
individuals living in these areas are directed towards protective
immunity, being infected or non-infected, the chronic exposure to
infectious stressors may accelerate aging and predispose them to
frailty (Figure 2).

After chronic and prolonged replication, cell senescence occurs
as a natural part of the aging process but can potentially be
accelerated in response to a variety of insults. Stress-induced
premature senescence is a result of cytotoxic stimuli such as
oxidative stress, proteasome inhibition or activation of RAS, and
Myc oncogenes by tumorogenic agents (61, 69). These various
stressors can induce cell cycle arrest, DNA damage,
heterochromatin formation, increased senescence-associated beta
galactosidase (SA-beta Gal) activity, expression of the cell cycle
inhibitors, and the secretion of pro-inflammatory cytokines and
proteases as part of the senescence-associated secretory phenotype
(SASP) (65, 68). Senescent immune and non-immune cells are
critical for the inflammaging phenomenon.

Some pathological conditions act as chronic stressors inducing
premature senescence. Chronic Obstructive Pulmonary Disease
(COPD) is considered a condition of accelerated lung aging, and
senescent cells with shortened telomers have been identified in
emphysematous lungs (193). Some reports also exist on the role of
cancer and cancer treatment as stressors that could accelerate
aging (194). On the other side of the spectrum, the most common
natural process that accelerates epigenetic aging of blood cells is
menopause (195).

Down syndrome is also associated with premature aging.
Using DNA methylation (DNAmAge) as a measurement for
biological age, Bacalini and coworkers identified an epigenetic
signature of DS that sustains a link between developmental
defects and disease phenotype, including premature aging
(196). They found that methylated regions (DMRs) displayed a
genome-wide distribution although they were enriched on
chromosome 21 in genes involved in developmental functions,
including neuronal (NCAM1), embryonic (HOXA family), and
hematological (RUNX1 and EBF4) development as well as
regulation of chromatin structure (PRMD8, KDM2B, TET1).
Interestingly, Biagi and coworkers reported alterations in gut
microbiota of individuals with Down syndrome towards an
overall immunomodulatory profile, when compared to that of
healthy controls (197). This suggests that gut microbiome may
counteract the genetic determined acceleration of immunosenescence
in Down syndrome individuals.

Since infections are stressors and stimulators of immune cells,
chronic infections can be potential stressors able to induce aging
acceleration. In HIV infection this possibility has been already
investigated. Growing evidence reveals a premature aging
phenotype that accompanies HIV-infected patients (186, 187,
198). Thymic alterations in the development of T cell repertoire
as well as increased frequency of senescent/exhausted T cells are
part of the phenotype (182, 183). These patients are exposed to
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several stressors including the virus itself, antiretroviral drugs,
and very often, drug abuse. The fact that they suffer from a
number of comorbidities commonly associated with frailty in the
elderly such as diabetes, renal failure, atherosclerosis, neurological
deficits, and osteoporosis also confirms the age acceleration
hypothesis (198).

Other infectious diseases caused by virus might have an
additional effect on aging and immunosenescence, especially in
poor countries. In this context, human cytomegalovirus (CMV), a
herpesvirus highly frequent worldwide, has a well-known impact
in immunosenescence. Its prevalence is strongly associated with
lower socioeconomic conditions and ethnicity, as verified by the
National Health and Nutrition Examination Survey (NHANES)
III conducted in the United States. A significant racial and
socioeconomic disparity was found in CMV seroprevalence in
children and young adults (199). The prevalence of CMV in
German adults is 56.7% (200); it approaches 80% by the age of
70 years in Northern Europe (201); and it ranges from 8.7 to 99.2%
in the MENA region (Middle East and North Africa) according to
a systematic review (202).

The relevance of CMV in immunosenescence has been an
important topic of discussion since the publication of OCTO and
NONA studies, when it was defined as a part of the immune risk
profile (IRP) and associated with increased mortality in older
ages (14, 203, 204). Nevertheless, the BELFRAIL study conducted
with very elderly individuals did not find a relationship between
CMV infection and mortality in Belgium (205). When it comes
to HIV patients, the presence of CMV co-infection seems to
boost immunosenescence, not only by increasing late-
differentiated CD8+ T cells regardless of chronological age, but
Frontiers in Immunology | www.frontiersin.org 1196
also by promoting an accelerated telomere erosion in that same
subset of cells (206).

The most pronounced effect of CMV in the immune system is
memory inflation, a termused todescribe the expansionofmemory
T cells with the accumulation of late-differentiated CD8+ effector
cells (TEMRA) that re-express CD45RA, are considered senescent
cells and increasewith age (30, 207).Other possible contributionsof
the virus to senescence are the increase in inflammatory mediators
and the elevated risk for age-associated morbidities, such as
cardiovascular diseases, cancer, atherosclerosis, diabetes, and
Alzheimer’s disease (204, 206). Therefore, CMV infection seems
to be a driving force accelerating immunosenescence due to its
impact in T cell senescence and inflammaging. Epidemiological
studies conducted in the US and in England showed a clear
association between positive serology for CMV and
cardiovascular disorders such as hypertension and ischemic heart
disease (208–210). Cytomegalovirus can infect endothelial cells
where they replicated and recruit neutrophils, monocytes, CD4,
and CD8 cytotoxic T cells causing vascular damage (211, 212). The
augment in the frequency of CD4+CD28−T cells, which are highly
cytotoxic and producers of pro-inflammatory cytokines such as
INF-gamma and TNF-alpha, seems to play a key role in the
development of autoimmune and cardiovascular diseases (213).
According to recent reports, increased levels ofCD4+CD28−Tcells
are highly associated with CMV seropositivity, while aging lightly
contributes to this change (214, 215). Furthermore, since CMV
infection is linked to a range of cardiovascular and metabolic
disorders, it might also influence negatively the clinical outcome
of SARS-Cov-2 infection althoughpositive serology forCMValone
has not been confirmed as an independent risk factor (216).
FIGURE 2 | Inflammaging is a distinct and exacerbated process in endemic areas that provides higher antigenic load and exposure to chronic infections. It seems to
have a bright side resulting in protection against infectious antigens that can be explained by the increase in INF-g-producing NK cells and in TLR-1 expression in
innate immune cells (macrophages, NK, and dendritic cells) and by the decrease in regulatory T cells in general. At the same time, it has a dark side that might be
responsible in accelerating aging due to epigenetic mechanisms. NK, Natural Killer; INF-g, Interferon-gamma; TLR-1, Toll-Like Receptors-1.
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CMV-seropositive elderly individuals have a higher chance of
developing age-associated chronic inflammatory diseases, but it
remains unclear whether this latent infection has only a negative
impact in the longevity (206). A study by Bajwa and coworkers
(217) addressed the polyfunctionality of T cells (i.e., several T-
cell effector functions), a relevant quality for protection against
virus and to vaccination, evaluating CMV-specific CD4+ and
CD8+ T-cell responses to 19 different CMV target proteins in
young and old volunteers. They showed that CMV specific T-cell
polyfunctionality was not decreased in the healthy elderly, but it
was reduced in the oldest-old group raising the question whether
polyfunctional T cells in older people were necessarily associated
with protection and longevity. Along the same line, Terrazini and
coworkers (218) showed that most of CMV-specific CD4+ T cells
have anti-inflammatory properties and may mediate a beneficial
effect in aged individuals regarding cardiovascular disorders. The
authors showed that CMV-specific induced regulatory CD4+ T
cells (iTregs) are at high levels in older individuals, and they
correlate with levels of CD8+ effector cells. A significant
association between these CMV-specific T-cell subsets (CD4+
and CD8+), arterial blood pressure and vascular stiffness was
found. Most of the iTreg cells expressed Foxp3; they suppressed
antigen specific as well as non-specific proliferation and
attenuated the inflammatory response as well as the
cardiovascular pathology caused by CD8+ T cells.

Many studies have suggested that CMV effects in the immune
system are age dependent. At early age, the chronic CMV
infection might serve as a trigger to maintain the immune
system in constant alert, enabling rapid recall responses and
enhancing heterologous immune responsiveness, particularly
prior to reproductive age (207, 219, 220). The inflammatory
process triggered by this chronic infection can stimulate the
maturation of the immune system and improve responses to
homologous antigens. Additionally, there is evidence suggesting
that infected young individuals present a better response to
influenza vaccination (221). However, individuals that become
seropositive at older ages were reported to have impaired response
to vaccination (221–224). The cytokine storm triggered by CMV
infection seems to compromise immune responses to influenza
vaccine for instance (201). Therefore, from an evolutionary
perspective, the detrimental effects of CMV infection during
immunosenescence can be seen as a later consequence of its
tonic role in immune responses earlier in life (220).

In endemic areas for chronic infections such as Chagas
disease, leishmaniasis, schistosomiasis, and leprosy, individuals
are usually exposed to infectious agents during their lifetime. In
many regions in Brazil, such as the northeast of Minas Gerais,
these diseases are a result of poor sanitary and economic
conditions, and they co-exist increasing the burden for the
immune system of the individuals who live there (189).
Preliminary results from Ana Faria’s group (D. Durso and
coworkers, unpublished data) show that individuals from a city
located in one of these areas, Governador Valadares in Minas
Gerais, present an accelerated epigenetic aging phenotype as
measured by DNA methylation (DNAmAge) as described by
Horvath and coworkers (225).
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Furthermore, we cannot rule out the possibility that the
immunosenescence phenotype would be a risk factor for severe
outcomes in viral infections such as COVID-19. An important
characteristic of the SARS-Cov-2 infection is the pattern of high-
risk groups reaching mainly individuals with underlying
comorbidities such as diabetes and cardiovascular diseases and
elderly people. In China, case-fatality rate was 0.4% in 40–49-year-
old patients, 1.3% in 50–59, 3.6% in 60–69, 8.0% in 70–79 and
reach 14.8% in >80-year-old patients (226). Similar findings were
reported in Italy where case fatality rates were 12 and 20% among
those aged 70–79 years and 80 years and older, respectively (227).
Senescence-associated decline in immune function observed in
aged people (inflammaging resulting from increased innate
cytokine secretion, decline in effector and regulatory CD4+ T
function and increased frequency of exhausted/senescent CD8+
T cells) may have a critical role in the development of lung and
microcirculation damage and severe respiratory syndrome in
SARS-Cov-2 infected elderly. This possibility has been speculated
by few authors. Alterations such as lymphopenia have been
identified as a tread linking COVID-19 and frail elderly. Indeed,
these groups of individuals share a decline in the numbers of CD4/
CD8 T cells but not of B cells (228). Others propose using
biomarkers of biological age as predictors of disease severity by
SARS-Cov-2 (229), and also that reversing immunosenescence
would impact in the outcome of COVID-19 (230). Finally, it has
been suggested that elderly with pre-existing but clinically silent
CMV infection might be particularly susceptible to the severe
COVID-19 since infection with cytomegalovirus is known to
trigger the cytokine storm, reduction in naïve T-cell
accumulation of terminally differentiated CD8+ T cells and
impaired immune responses to vaccination (201). These
propositions are worth further investigation.
CONCLUSIONS

The rapid aging of the population in developing countries is an
unprecedent demographic phenomenon that is accompanied by
the high prevalence of chronic infectious diseases among
individuals who live there. This process represents a public
health problem and a biological challenge. As part of the aging
process, immunosenescence triggers several alterations in the
immune system resulting in poor response to infection and
increase in inflammation. However, inflammaging can be
associated with remodeling mechanisms as the ones observed
in healthy elderly. Although the concept of healthy aging has
been proposed initially to describe the European individuals who
reach advanced age free of the inflammatory consequences of
immunosenescence, it is now clear that this concept must be
broadened to encompass distinctions related to the role of
inflammaging and remodeling according to genetic, epigenetic,
environmental, and cultural scenarios in which the aging process
takes place. Understanding these geographical differences in
immunosenescence could provide a better understanding of
age-related changes as well as their treatable effects. It will aid
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in the prevention, diagnosis, and treatment of some age-related
dysfunctions as well as infectious diseases in the elderly.
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stimulation until very advanced age revealing increased expression of
cellular protective proteins SIRT1, HSP70 and SOD2. Immun Ageing
(2018) 15:31. doi: 10.1186/s12979-018-0136-5

60. Franceschi C, Campisi J. Chronic Inflammation (Inflammaging) and Its
Potential Contribution to Age-Associated Diseases. J Gerontol Ser A Biol Sci
Med Sci (2014) 69:S4–9. doi: 10.1093/gerona/glu057

61. Latz E, Duewell P. NLRP3 inflammasome activation in inflammaging. Semin
Immunol (2018) 40:61–73. doi: 10.1016/j.smim.2018.09.001

62. Franceschi C. Inflammaging as a Major Characteristic of Old People: Can It
Be Prevented or Cured? Nutr Rev (2007) 65(12 Pt 2):S173–6. doi: 10.1111/
j.1753-4887.2007.tb00358.x

63. Franceschi C, Garagnani P, Vitale G, Capri M, Salvioli S. Inflammaging and
‘Garb-aging.’. Trends Endocrinol Metab (2017) 28(3):199–212. doi: 10.1016/
j.tem.2016.09.005

64. de Bourcy CFA, Angel CJL, Vollmers C, Dekker CL, Davis MM, Quake SR.
Phylogenetic analysis of the human antibody repertoire reveals quantitative
signatures of immune senescence and aging. Proc Natl Acad Sci (2017) 114
(5):1105–10. doi: 10.1073/pnas.1617959114

65. Ghosh K, Capell BC. The Senescence-Associated Secretory Phenotype:
Critical Effector in Skin Cancer and Aging. J Invest Dermatol (2016) 136
(11):2133–9. doi: 10.1016/j.jid.2016.06.621

66. Campisi J, Kapahi P, Lithgow GJ, Melov S, Newman JC, Verdin E. From
discoveries in ageing research to therapeutics for healthy ageing. Nature
(2019) 571:183–92. doi: 10.1038/s41586-019-1365-2

67. Furman D, Campisi J, Verdin E, Carrera-Bastos P, Targ S, Franceschi C,
et al. Chronic inflammation in the etiology of disease across the life span.Nat
Med (2019) 25(12):1822–32. doi: 10.1038/s41591-019-0675-0

68. Rea IM, Gibson DS, McGilligan V, McNerlan SE, Denis Alexander H, Ross
OA. Age and age-related diseases: Role of inflammation triggers and
cytokines. Front Immunol (2018) 9:586. doi: 10.3389/fimmu.2018.00586

69. de Magalhães JP, Passos JF. Stress, cell senescence and organismal ageing.
Mech Ageing Dev (2018) 170:2–9. doi: 10.1016/j.mad.2017.07.001

70. Mensà E, Guescini M, Giuliani A, Bacalini MG, Ramini D, Corleone G, et al.
Small extracellular vesicles deliver miR-21 and miR-217 as pro-senescence
effectors to endothelial cells. J Extracell Vesicles (2020) 9(1):1725285.
doi: 10.1080/20013078.2020.1725285

71. Pawelec G, Ferguson FG, Wikby A. The SENIEUR protocol after 16 years.
Mech Ageing Dev (2001) 122(2):132–4. doi: 10.1016/S0047-6374(00)00240-2

72. Rubino G, Bulati M, Aiello A, Aprile S, Gambino CM, Gervasi F, et al.
Sicilian centenarian offspring are more resistant to immune ageing. Aging
Clin Exp Res (2019) 31(1):125–33. doi: 10.1007/s40520-018-0936-7

73. Amaral JF, Gomes-Santos AC, Paula-Silva J, Nicoli JR, Vieira LQ, Faria AMC,
et al. Antigenic dietary protein guides maturation of the host immune system
promoting resistance to Leishmania major infection in C57BL/6 mice.
Immunology (2010) 129(3):455–64. doi: 10.1111/j.1365-2567.2009.03198.x

74. Lee YK, Mazmanian SK. Has the Microbiota Played a Critical Role in the
Evolution of the Adaptive Immune System? Science (80- ) (2010) 330
(6012):1768–73. doi: 10.1126/science.1195568

75. Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. Diversity,
stability and resilience of the human gut microbiota. Nature (2012) 489
(7415):220–30. doi: 10.1038/nature11550

76. Milani C, Duranti S, Bottacini F, Casey E, Turroni F, Mahony J, et al. The
First Microbial Colonizers of the Human Gut: Composition, Activities, and
Health Implications of the Infant Gut Microbiota. Microbiol Mol Biol Rev
(2017) 81(4):e00036–17. doi: 10.1128/MMBR.00036-17
November 2020 | Volume 11 | Article 579972

https://doi.org/10.1016/j.mad.2018.04.005
https://doi.org/10.3389/fimmu.2017.00982
https://doi.org/10.1016/j.mad.2016.01.001
https://doi.org/10.1016/0047-6374(95)01691-0
https://doi.org/10.3389/fimmu.2016.00502
https://doi.org/10.3389/fimmu.2016.00502
https://doi.org/10.1111/j.1365-2567.2004.02006.x
https://doi.org/10.1016/j.jaci.2020.03.016
https://doi.org/10.1016/j.jaci.2020.03.016
https://doi.org/10.3389/fimmu.2017.01960
https://doi.org/10.1038/s41591-019-0673-2
https://doi.org/10.1007/978-94-017-8712-3_8
https://doi.org/10.1016/j.febslet.2005.02.055
https://doi.org/10.1186/1742-4933-10-12
https://doi.org/10.3389/fimmu.2014.00153
https://doi.org/10.3389/fimmu.2014.00153
https://doi.org/10.1111/j.0818-9641.2004.01242.x
https://doi.org/10.1111/j.0818-9641.2004.01242.x
https://doi.org/10.1111/j.1398-9995.2011.02783.x
https://doi.org/10.1016/j.exger.2006.09.005
https://doi.org/10.1186/s12979-017-0084-5
https://doi.org/10.1086/529197
https://doi.org/10.1186/2046-2395-2-8
https://doi.org/10.1186/2046-2395-2-8
https://doi.org/10.1189/jlb.5MR0315-104R
https://doi.org/10.1016/j.immuni.2006.05.003
https://doi.org/10.1016/j.arr.2019.100998
https://doi.org/10.1111/j.1474-9726.2010.00584.x
https://doi.org/10.1111/j.1474-9726.2010.00584.x
https://doi.org/10.1016/j.humimm.2011.01.009
https://doi.org/10.1186/s12979-018-0136-5
https://doi.org/10.1093/gerona/glu057
https://doi.org/10.1016/j.smim.2018.09.001
https://doi.org/10.1111/j.1753-4887.2007.tb00358.x
https://doi.org/10.1111/j.1753-4887.2007.tb00358.x
https://doi.org/10.1016/j.tem.2016.09.005
https://doi.org/10.1016/j.tem.2016.09.005
https://doi.org/10.1073/pnas.1617959114
https://doi.org/10.1016/j.jid.2016.06.621
https://doi.org/10.1038/s41586-019-1365-2
https://doi.org/10.1038/s41591-019-0675-0
https://doi.org/10.3389/fimmu.2018.00586
https://doi.org/10.1016/j.mad.2017.07.001
https://doi.org/10.1080/20013078.2020.1725285
https://doi.org/10.1016/S0047-6374(00)00240-2
https://doi.org/10.1007/s40520-018-0936-7
https://doi.org/10.1111/j.1365-2567.2009.03198.x
https://doi.org/10.1126/science.1195568
https://doi.org/10.1038/nature11550
https://doi.org/10.1128/MMBR.00036-17
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Batista et al. Inflammaging and Endemic Infectious Diseases
77. Bokulich NA, Chung J, Battaglia T, Henderson N, Jay M, Li H, et al. Antibiotics,
birth mode, and diet shape microbiome maturation during early life. Sci Transl
Med (2016) 8(343):343ra82. doi: 10.1126/scitranslmed.aad7121

78. Yassour M, Vatanen T, Siljander H, Hämäläinen A-M, Härkönen T,
Ryhänen SJ, et al. Natural history of the infant gut microbiome and
impact of antibiotic treatment on bacterial strain diversity and stability.
Sci Transl Med (2016) 8(343):343ra81. doi: 10.1126/scitranslmed.aad0917

79. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG,
Contreras M, et al. Human gut microbiome viewed across age and
geography. Nature (2012) 486(7402):222–7. doi: 10.1038/nature11053
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148. Lescai F, Blanché H, Nebel A, Beekman M, Sahbatou M, Flachsbart F, et al.
Human longevity and 11p15.5: A study in 1321 centenarians. Eur J Hum
Genet (2009) 17(11):1515–9. doi: 10.1038/ejhg.2009.54

149. Owczarz M, Budzinska M, Domaszewska-Szostek A, Borkowska J, Polosak J,
Gewartowska M, et al. miR-34a and miR-9 are overexpressed and SIRT genes
are downregulated in peripheral blood mononuclear cells of aging humans.
Exp Biol Med (2017) 242(14):1453–61. doi: 10.1177/1535370217720884

150. Wu HZY, Thalamuthu A, Cheng L, Fowler C, Masters CL, Sachdev P, et al.
Differential blood miRNA expression in brain amyloid imaging-defined
Alzheimer’s disease and controls. Alzheimers Res Ther (2020) 12(59):1–11.
doi: 10.1186/s13195-020-00627-0

151. Elsharawy A, Keller A, Flachsbart F, Wendschlag A, Jacobs G, Kefer N, et al.
Genome-wide miRNA signatures of human longevity. Aging Cell (2012) 11
(4):607–16. doi: 10.1111/j.1474-9726.2012.00824.x

152. Carrieri G, Marzi E, Olivieri F, Marchegiani F, Cavallone L, Cardelli M, et al.
The G/C915 polymorphism of transforming growth factor b1 is associated
with human longevity: A study in Italian centenarians. Aging Cell (2004) 3
(6):443–8. doi: 10.1111/j.1474-9728.2004.00129.x

153. Olivieri O, Martinelli N, Bassi A, Trabetti E, Girelli D, Pizzolo F, et al. ApoE
ϵ2/ϵ3/ϵ4 polymorphism, ApoC-III/ApoE ratio and metabolic syndrome. Clin
Exp Med (2007) 7(4):164–72. doi: 10.1007/s10238-007-0142-y

154. Bae H, Gurinovich A, Malovini A, Atzmon G, Andersen SL, Villa F, et al.
Effects of FOXO3 Polymorphisms on Survival to Extreme Longevity in Four
Centenarian Studies. J Gerontol - Ser A Biol Sci Med Sci (2018) 73(11):1439–
47. doi: 10.1093/gerona/glx124

155. de Oliveira FF, Chen ES, Smith MC, Bertolucci PHF. Selected LDLR and
APOE Polymorphisms Affect Cognitive and Functional Response to
Lipophilic Statins in Alzheimer’s Disease. J Mol Neurosci (2020) 70
(10):1574–88. doi: 10.1007/s12031-020-01588-7

156. Bessi V, Balestrini J, Bagnoli S, Mazzeo S, Giacomucci G, Padiglioni S, et al.
Influence of ApoE Genotype and Clock T3111C Interaction with
Cardiovascular Risk Factors on the Progression to Alzheimer’s Disease in
Subjective Cognitive Decline and Mild Cognitive Impairment Patients. J Pers
Med (2020) 10(2):45. doi: 10.3390/jpm10020045

157. Dato S, Carotenuto L, Benedictis G. Genes and longevity: A genetic-
demographic approach reveals sex- and age-specific gene effects not shown
by the case-control approach (APOE and HSP70.1 loci). Biogerontology
(2007) 8(1):31–41. doi: 10.1007/s10522-006-9030-1

158. Andreasen CH, Stender-Petersen KL, Mogensen MS, Torekov SS, Wegner L,
Andersen G, et al. Low physical activity accentuates the effect of the FTO
rs9939609 polymorphism on body fat accumulation. Diabetes (2008) 57
(1):95–101. doi: 10.2337/db07-0910

159. Keller L, Xu W, Wang HX, Winblad B, Fratiglioni L, Graff C. The obesity
related gene, FTO, interacts with APOE, and is associated with Alzheimer’s
disease risk: A prospective cohort study. J Alzheimer’s Dis (2011) 23(3):461–
9. doi: 10.3233/JAD-2010-101068
November 2020 | Volume 11 | Article 579972

https://doi.org/10.1016/j.actatropica.2018.08.032
https://doi.org/10.1016/j.actatropica.2018.08.032
https://doi.org/10.1056/NEJMra020100
https://doi.org/10.1056/NEJMra020100
https://doi.org/10.1007/s12016-011-8285-8
https://doi.org/10.1164/rccm.201405-0901PP
https://doi.org/10.1016/j.coi.2018.06.007
https://doi.org/10.1111/cei.13362
https://doi.org/10.1111/cei.13362
https://doi.org/10.1101/cshperspect.a007799
https://doi.org/10.1371/journal.pntd.0004944
https://doi.org/10.1073/pnas.1508740112
https://doi.org/10.1179/2047773213Y.0000000080
https://doi.org/10.1016/j.it.2004.11.005
https://doi.org/10.1093/emph/eoy033
https://doi.org/10.1093/emph/eoy033
https://doi.org/10.1016/j.mad.2019.111199
https://doi.org/10.1016/j.mad.2019.111199
https://doi.org/10.18632/aging.100041
https://doi.org/10.1196/annals.1395.003
https://doi.org/10.1007/s12031-002-0039-x
https://doi.org/10.1161/CIRCRESAHA.118.312562
https://doi.org/10.1016/j.pharmthera.2018.11.001
https://doi.org/10.1093/ije/dyw132
https://doi.org/10.1093/ije/dyw132
https://doi.org/10.1001/jama.299.24.2877
https://doi.org/10.1001/jama.299.24.2877
https://doi.org/10.1177/019262339502300403
https://doi.org/10.1016/j.cmet.2018.02.019
https://doi.org/10.1093/ageing/afz002
https://doi.org/10.1177/0300060519882570
https://doi.org/10.1177/0300060519882570
https://doi.org/10.1001/archinternmed.2007.39
https://doi.org/10.1001/archinternmed.2007.39
https://doi.org/10.1093/ije/dyz027
https://doi.org/10.1152/ajpendo.90903.2008
https://doi.org/10.1152/ajpendo.90903.2008
https://doi.org/10.1016/j.cell.2005.01.029
https://doi.org/10.1038/ejhg.2009.54
https://doi.org/10.1177/1535370217720884
https://doi.org/10.1186/s13195-020-00627-0
https://doi.org/10.1111/j.1474-9726.2012.00824.x
https://doi.org/10.1111/j.1474-9728.2004.00129.x
https://doi.org/10.1007/s10238-007-0142-y
https://doi.org/10.1093/gerona/glx124
https://doi.org/10.1007/s12031-020-01588-7
https://doi.org/10.3390/jpm10020045
https://doi.org/10.1007/s10522-006-9030-1
https://doi.org/10.2337/db07-0910
https://doi.org/10.3233/JAD-2010-101068
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Batista et al. Inflammaging and Endemic Infectious Diseases
160. Hirayama M, Wei FY, Chujo T, Oki S, Yakita M, Kobayashi D, et al. FTO
Demethylates Cyclin D1 mRNA and Controls Cell-Cycle Progression. Cell
Rep (2020) 31(1):107464. doi: 10.1016/j.celrep.2020.03.028

161. Rose G, Crocco P, De Rango F, Corsonello A, Lattanzio F, De Luca M, et al.
Metabolism and successful aging: Polymorphic variation of syndecan-4 (SDC4)
gene associate with longevity and lipid profile in healthy elderly Italian subjects.
Mech Ageing Dev (2015) 150:27–33. doi: 10.1016/j.mad.2015.08.003

162. Melzer D, Pilling LC, Ferrucci L. The genetics of human ageing. Nat Rev
Genet (2020) 21(2):88–101. doi: 10.1038/s41576-019-0183-6

163. Mora M, Perales MJ, Serra-Prat M, Palomera E, Buquet X, Oriola J, et al.
Aging phenotype and its relationship with IGF-I gene promoter
polymorphisms in elderly people living in Catalonia. Growth Horm IGF
Res (2011) 21(3):174–80. doi: 10.1016/j.ghir.2011.03.007

164. De Benedictis G, Franceschi C. The unusual genetics of human longevity. Sci
Aging Knowledge Environ (2006) 2006(10):pe20. doi: 10.1126/sageke.
2006.10.pe20

165. Solana R, Mariani E. NK and NK/T cells in human senescence. Vaccine
(2000) 18(16):1613–20. doi: 10.1016/S0264-410X(99)00495-8

166. Di Bona D, Vasto S, Capurso C, Christiansen L, Deiana L, Franceschi C, et al.
Effect of interleukin-6 polymorphisms on human longevity: A systematic
review and meta-analysis. Ageing Res Rev (2009) 8(1):36–42. doi: 10.1016/
j.arr.2008.09.001

167. Sansoni P, Vescovini R, Fagnoni F, Biasini C, Zanni F, Zanlari L, et al. The
immune system in extreme longevity. Exp Gerontol (2008) 43(2):61–5.
doi: 10.1016/j.exger.2007.06.008

168. Goronzy JJ, Li G, Yu M, Weyand CM. Signaling pathways in aged T cells-a
reflection of T cell differentiation, cell senescence and host environment.
Semin Immunol (2012) 24(5):365–72. doi: 10.1016/j.smim.2012.04.003

169. Lima-Costa MF, de Melo Mambrini JV, de Lima Torres KC, Peixoto SV, de
Oliveira C, Tarazona-Santos E, et al. Predictive value of multiple cytokines
and chemokines for mortality in an admixed population: 15-year follow-up
of the Bambui-Epigen (Brazil) cohort study of aging. Exp Gerontol (2017)
98:47–53. doi: 10.1016/j.exger.2017.08.002

170. Torres KCL, de Rezende VB, Lima-Silva ML, de S Santos LJ, Costa CG, de M
Mambrini JV, et al. Immune senescence and biomarkers profile of Bambuı ́
aged population-based cohort. Exp Gerontol (2018) 103:47–56. doi: 10.1016/
j.exger.2017.12.006

171. Gavazzi G, Herrmann F, Krause K-H. Aging and Infectious Diseases in the
Developing World. Clin Infect Dis (2004) 39(1):83–91. doi: 10.1086/421559

172. Coura JR. The main sceneries of chagas disease transmission. The vectors,
blood and oral transmissions - A comprehensive review. Mem Inst Oswaldo
Cruz (2015) 110(3):277–82. doi: 10.1590/0074-0276140362

173. Nunes MCP, Beaton A, Acquatella H, Bern C, Bolger AF, Echeverrıá LE, et al.
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The immune system is a tightly regulated network which allows the development of
defense mechanisms against foreign antigens and tolerance toward self-antigens.
Regulatory T cells (Treg) contribute to immune homeostasis by maintaining
unresponsiveness to self-antigens and suppressing exaggerated immune responses.
Dysregulation of any of these processes can lead to serious consequences. Classically,
Treg cell functions have been described in CD4+ T cells, but other immune cells also
harbour the capacity to modulate immune responses. Regulatory functions have been
described for different CD8+ T cell subsets, as well as other T cells such as gdT cells or
NKT cells. In this review we describe the diverse populations of Treg cells and their role in
different scenarios. Special attention is paid to the aging process, which is characterized
by an altered composition of immune cells. Treg cells can contribute to the development of
various age-related diseases but they are poorly characterized in aged individuals. The
huge diversity of cells that display immune modulatory functions and the lack of universal
markers to identify Treg make the expanding field of Treg research complex and
challenging. There are still many open questions that need to be answered to solve the
enigma of regulatory T cells.

Keywords: regulatory T cells, immune homeostasis, diversity, autoimmunity, inflammation, aging
INTRODUCTION

Immunological self-tolerance is the unresponsiveness of the adaptive immune system to self-
antigens in primary lymphoid organs and further control of the activation, expansion and survival
of self-reactive T and B cells in the periphery (1). The acquisition of immune tolerance is essential to
avoid fighting one´s own cells and molecules. During thymic maturation of T cells somatic
recombination leads to the expression of a distinct T cell receptor (TCR) on each individual T cell,
which enables each T cell to recognize a specific antigen. The entirety of all T cell specificities is
referred to as the repertoire. Binding of TCRs to self-peptide-loaded MHC molecules (self-pMHC)
in the thymus leads to positive selection, and in a next step T cells binding self-pMHC with high
affinity are eliminated by negative selection. Thymocytes can escape this clonal deletion by TCR
gene rearrangement, which eventually changes the TCR affinity for self-pMHC. This central
tolerance is not absolute as not all self-antigens are expressed in the thymus and due to the
imperfect efficiency of the selection process. As a consequence, depletion of self-reactive T cells can
org January 2021 | Volume 11 | Article 6169491104
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also occur in the periphery and many self-reactive T cells can
enter a state of unresponsiveness called “anergy” (peripheral
tolerance) (2).

Some decades ago it was shown that animals harbor self-
reactive T cells but also T cells that were able to suppress the
autoimmunity caused by these cells (3, 4). These suppressor cells
were later called regulatory T (Treg) cells and the surface
molecule CD25 was identified as the first marker for this CD4+

T cell subset (5). It was not until 2003 that the transcription
factor Forkhead box P3 (Foxp3) was described as a specific Treg
marker by Rudensky’s laboratory. They discovered that Foxp3
deficient mice developed a lethal autoimmune syndrome and
lacked CD4+ CD25+ cells (6). However, not all suppressor/
regulatory T cells express the Foxp3 transcription factor, and
many of those other populations have been described even before
the Foxp3 expressing T cells. In this review, we will focus mainly
on Foxp3 expressing Treg, their mechanisms of suppression and
their role in different contexts. Nevertheless, a short description
of Foxp3- Treg cells is necessary to understand the complexity of
the exquisitely regulated homeostasis of the immune system.
Regulation of immune responses requires not only the control of
autoreactive immune cells but also the termination of immune
responses in order to avoid chronic activation of the immune
system. It is important to understand how these mechanisms are
regulated in order to modulate immune responses in different
disease settings. For instance, we need to strengthen immune
responses in chronic infection or cancer but, on the other hand,
immune responses need to be dampened when there is unwanted
immunological activity (e.g. in autoimmunity or graft rejection).
SUBSETS OF REGULATORY T CELLS

Naturally Arising Foxp3+ CD4+ Treg
Classically defined Treg are a subset of Foxp3 expressing CD4+

cells which maintain peripheral tolerance by suppressing
autoreactive CD4+ cells that have escaped from negative
selection in the thymus (7). Naturally arising Foxp3+ CD4+

Treg cells develop mostly in the thymus (tTreg) and require a
relatively strong TCR signal which results in Treg cells having a
repertoire enriched for self-antigen recognition (8). In the
periphery, Treg can be generated upon TCR stimulation of
naïve CD4+ Foxp3- T cells in the presence of TGFb and they
are known as peripheral Treg (pTreg) (9). In vitro, Treg can also
be produced from CD4+ Foxp3- cells by mimicking in vivo
conditions for pTreg generation (iTreg) (10). In contrast to
tTreg, pTreg are likely generated upon exposure to non-self-
antigens like allergens, food and microbiota (11).

It is important to keep in mind that whereas in mice Foxp3
expression is limited to Treg, many human Foxp3+ T cells are
more similar to conventional T cells (Tconv) than to Treg, and
some activated non-suppressive Tconv express low levels of
Foxp3. Miyara and colleagues defined three different human T
cell populations based on the expression of Foxp3 and CD45RA:
Foxp3low CD45RA+ as resting Treg; Foxp3high CD45RA- as
activated/effector Treg, and Foxp3low CD45RA- as non-
Frontiers in Immunology | www.frontiersin.org 2105
suppressive cytokine-producing non-Treg (12). Thus, it is
fundamental to combine Foxp3 expression with other Treg
markers (CD45RA, CD127 (IL-7R), CD25) in order to identify
and analyze these cells in humans (13).

CD4+ Foxp3+ T cells can modulate immune reactions in a
direct or indirect fashion. One of the most studied direct
suppression mechanisms is the production of the anti-
inflammatory cytokine IL-10, which can inhibit phagocyte
function, antigen presentation, co-stimulatory molecule
expression, T-cell proliferation, and impairs the production of
IL-2 and IFNg. Treg-produced IL-10 promotes tolerance in the
intestinal mucosa and defects in IL-10 signaling trigger
inflammatory bowel disease in mouse and human (14, 15). In
contrast, IL-10 can stimulate NK cell activity, B cell activation
and isotype switching (16). Transforming growth factor-beta 1
(TGFb1) signaling is associated with the development, stability
and function of Treg. TGFb1 antagonizes negative selection in
the thymus, supporting early Treg development (17). In the
periphery, it is essential for the differentiation of Treg from naïve
CD4+ Treg. TGFb1 production by Treg and its autocrine
signaling is required for Treg-mediated suppression, but
several studies suggest that while it is not a major suppressor
mechanism it might be needed under high inflammatory
conditions (18). When Foxp3+ CD4+ Treg encounter effector T
cells (Teff) and interact with them, one mechanism of
suppression is the secretion of granzyme and perforin via
exocytosis. By doing so, they can induce apoptosis in the target
cells, e.g. in CD4+ CD25- effector cells (19, 20).

Treg are able to indirectly turn down immune reactions by
disturbing the optimal environment for immune responses by
interfering with IL-2 availability, ATP/AMP balance, and the
interface between T cells and DC. IL-2 is known for inducing and
promoting T cell proliferation, but it also is involved in
termination of T cell responses (21), since mice deficient in IL-
2 or IL-2R suffer from a lymphoproliferative syndrome (22, 23).
This negative effect on T cell activation happens indirectly by
promoting the activation of anergic Treg, which then in turn
suppress other T cells (24). Upon activation of naïve T cells, IL-2
is produced, which induces phosphorylation of STAT5
promoting Foxp3, Tbet and GATA3 expression and thereby
the generation of Treg, Th1, or Th2 cells, respectively. At the
same time, production of IL-17A and Bcl-6 and thereby
differentiation towards Th17 or Tfh cells is inhibited (25, 26).
Interestingly, high concentrations of IL-2 favor differentiation of
effector T cells (27), whereas low IL-2 levels facilitate the
production of memory T cell (28). Treg can interfere with
these processes by modulating the amount of available IL-2.
They suppress production of IL-2 by effector cells in a contact
dependent manner in vitro. It has also been suggested that Treg
can sense the source of IL-2 and migrate to the zones of immune
activation where they “steal” IL-2 from other T cells promoting
their apoptosis. This model remains controversial regarding in
vivo studies since the source of IL-2 needs to be clarified (18).

Murine CD4+ Treg express high levels of the two
ectonucleotidases CD39 and CD73 which can convert ATP
into non-toxic AMP and AMP into the immune suppressive
January 2021 | Volume 11 | Article 616949
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adenosine, respectively. In humans, co-expression of these
ectonucleases is a rare event and most Treg express only CD39
which means they need to encounter CD73+ cells in order to
produce adenosine (29). Extracellular adenosine binds the A2AR
receptor expressed by Treg increasing their frequency and
promoting their immune modulatory function (30). In the
presence of excessive inflammation and tissue damage, there
is an increase of extracellular ATP, which is cytotoxic for many
cell types. Extracellular ATP promotes death signaling through
P2X7R engagement in sensitive Treg while some Treg survive
and convert into effector Th17 cells upon exposure to
extracellular ATP (31). An additional strategy of Treg to
escape apoptosis and survive in such environments is the
conversion of ATP into non-toxic metabolites, such as AMP.
In addition, AMP can indirectly alter the expression of
proinflammatory cytokines and promote the expression of
inhibitory ones. This translates into a reduction of costimulatory
molecules in DC (32), less activation of effector cells and a higher
suppressive capacity of Treg (30).

Treg can disrupt the microenvironment in the immunological
synapse provided by DC which is essential for T cell
proliferation. In detail, Treg act by either reducing the limiting
enzyme for glutathione (GSH) synthesis or by consuming
extracellular cysteine which is needed for T cell cycle
progression and DNA synthesis (33).

Treg are also capable of removing surface molecules from
antigen presenting cells (APC) during the immunological
synapse. They can engulf part of DC membranes containing
pMHCII and co-stimulatory molecules which leads to
abrogation of T cell priming (34). Moreover, the inhibitory
molecule CTLA-4, which is constitutively expressed on Treg
has been described to remove CD80/CD86 from the surface of
antigen presenting cells during the immunological synapse (35).

Some Treg have developed specialized adaptations to their
environment. As an example, VAT-Treg (visceral adipose tissue-
Treg) express high levels of PPARg in order to reduce insulin
resistance associated with inflammation of fat tissue (36).
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Non-Classical CD4+ Treg
As already mentioned above, there are other types of regulatory
T cells that do not fit the phenotype of the classically defined
CD4+ Foxp3+ Treg cells (Table 1). Many of them share the
mechanisms of suppression of Treg described above, but some
use different strategies.

Type 1 regulatory T cells (Tr1) are a population of CD4+

Foxp3- cells expressing high levels of the anti-inflammatory
cytokine IL-10. They are generated in the mucosa-associated
lymphoid tissue (MALT) when naïve CD4+ cells encounter IL-10
produced by APC. Tr1 cells control T cell responses in infection
and autoimmunity and they have been shown to produce higher
levels of IL-10 than Foxp3+ Treg (37). Another subset of adaptive
Treg are the Th3 cells, which are a unique population of T helper
cells induced by oral tolerance to non-self-antigens. Th3 cells
produce high concentrations of TGFb and moderate amounts of
IL-10 (38). In contrast to Tr1 cells which do not express Foxp3,
some Th3 cells are TGFb-induced-Foxp3+ cells (51). Collison
and colleagues described another inducible type of Treg (iTr35)
which do not secrete IL-10 or TGFb, but instead IL-35, an
inhibitory member of the IL-12 pro-inflammatory family. This
cytokine suppresses T cell responses and expands Treg by
inducing the conversion of conventional T cells into
suppressive Foxp3- regulatory T cells (iTr35). iTr35 cells are
highly suppressive and stable in vivo, they are key mediators of
infectious tolerance and can contribute to Treg-mediated tumor
progression (39).

Similar to other components of the immune system, B cells
are involved in the expansion and generation of Treg. In the
periphery, naïve B cells can convert CD4+ CD25- cells into CD4+

CD25+ Foxp3- Treg (Treg-of-B cells) in a cell-cell contact
dependent manner. These Treg-of-B cells express molecules
characteristic for Treg, such as IL-10, TGFb, CTLA-4, PD-1,
LAG-3, GITR, ICOS, and OX40. They exert their suppressive
function in vivo and in vitro in antigen-specific and antigen-
independent manners, utilizing IL-10-mediated as well as other
suppressive mechanisms (40).

CD8+ Regulatory T Cells
CD8+ T cells were first described to exert immunosuppressive
functions more than 40 years ago, but the lack of specific markers
and therefore the difficulties in isolating this population limited
this area of research (52). Interest in CD8+ Treg cells increased
again after the revival of the concept of T-cell-mediated
immunosuppression in the mid-1990s and the study of CD4+

Treg cells. In the following years the immunosuppressive
properties of CD8+ cells were independently characterized by
several groups (53).

Foxp3 is preferentially expressed in CD4+ CD25+ cells in mice
and it is barely detectable in CD8+ T cells. The expression of the
transcription factor HELIOS or the surface marker CD122 or the
lack of CD28 on the surface are used to identify CD8+ Treg in
mice (46). In contrast, human CD4+ as well as CD8+ T cells are
able to express Foxp3, but levels of this transcription factor are
substantially higher in CD4+ compared to CD8+ cells (54). In
contrast to CD4+ regulatory T cells, there is no reliable marker to
TABLE 1 | Different Treg subsets identified in human and/or mouse.

Cell population Human Mouse Reference

CD4+ CD25+ Foxp3+ ✓ ✓ (5, 6)
CD4+ Foxp3low CD45RA+ ✓ ✗ (12)
CD4+ Foxp3high CD45RA- ✓ ✗ (12)
CD4+ Foxp3- IL10+ (Tr1) ✓ ✓ (37)
CD4+ Foxp3- TGFb+ (Th3) ✓ ✓ (38)
CD4+ Foxp3- IL35+ (iTr35) ✓ ✓ (39)
CD4+ Foxp3- IL10+ TGFb+ (Treg of B cells) ✗ ✓ (40)
CD8+ Foxp3+ and/or CD28- and/or CD25+ ✓ ✗ (41–43)
CD8+ CD45RA+ CCR7+ Foxp3+ ✓ ✗ (44)
CD8+ CD45RClow/- ✓ ✓ (45)
CD8+ CD122+ ✗ ✓ (46)
CD8+ HLA-DR+ ✓ ✗ (47)
CD8+ HLA-E+ ✓ ✗ (48)
CD8+ Qa-1+ ✗ ✓ (48)
gd T cells ✓ ✓ (49)
NKT ✓ ✓ (50)
Treg cells are categorized based on CD4 or CD8 surface markers expression.
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define CD8+ Treg cells, but they are rather identified by their
immunosuppressive function.

Firstly isolated from rats, CD8+ CD45Clow/- Treg cells
suppress the proliferation of CD4+ T cells and their
differentiation into a Th1 phenotype. They produce IL-4, IL-
10, and IL-13 and express CTLA-4 and Foxp3 (45). Sorted
human IFNg+ IL‐10+ CD8+ CD45RClow/‐ Treg are more potent
suppressor cells than the rest of the CD8+ CD45RClow/‐ Treg and
blockage of IFNg abrogated their suppressive activity in a model
of allogenic cardiac transplantation (55).

Foxp3+ CD8+ cells are rarely detected in human blood but
they are found in human tonsils where they express high levels of
CTLA-4 and CD45RO but only little CD127 and CD69. Tonsillar
Foxp3+ CD8+ Treg are CD25- and express pro-inflammatory
cytokines like TNFa, IFNg, and IL-17 (41). Foxp3 expressing
CD8+ T cells have also been found in blood of HIV-infected
individuals showing an activated (HLA-DR, Ki-67, and PD-1
expression) and senescent (CD57+ CD28-) phenotype (56).
Several studies show that CD8+ Foxp3+ Treg can be induced
under certain conditions. In vitro stimulation of peripheral blood
mononuclear cells (PBMC) with anti-CD3 mAb has been shown
to induce CD8+ CD25+ Foxp3+ T cells, which were able to
suppress proliferative responses to Staphylococcal enterotoxin B
(SEB), and that the inhibitory effect was partially depending on
CCL-4, TNF, and IL-2 (43). CD8+ CD28- Foxp3+ cells can be
generated in vitro after multiple rounds of stimulation of PBMC
with allogenic or xenogenic APC. They are believed to tolerize
APC by up-regulating the inhibitory receptors immunoglobulin-
like transcript 3 (ILT-3) and 4 (ILT-4) and down-regulating
costimulatory molecules such as CD58 and CD86 (42). Upon
suboptimal TCR stimulation in the presence of IL-15, CD8+

CCR7+ T cells express Foxp3 (they become CD8+ CD45RA+

CCR7+ Foxp3+) and acquire immunosuppressive functions.
They prevent CD4+ T cells from responding to TCR
stimulation by directly interfering with the TCR signalling
cascade and not by the usual suppression mechanisms
mediated by IL-10, TGFb, or CTLA-4 (44). In addition, these
CD8+ Treg release exosomes carrying NADPH oxidase 2
(NOX2), which are taken up by CD4+ T cells and inhibit their
proliferation in vivo and in vitro (57).

Most studies investigating non-Foxp3 expressing CD8+ Treg
in humans describe them as CD8+ CD28- cells, although CD8+

CD28+ Treg can be generated in vitro. Mechanistically, CD8+

CD28- Treg act by i) influencing CD80/CD86 surface expression
of DC leading to inhibition of CD4+ T cell responses, or ii)
secretion of IFNg and IL-6 cytokines or iii) secretion of the anti-
inflammatory cytokine IL-10 (54). In addition, CD8+ CD28-

Treg express high levels of the IL-2 receptor CD122 and this has
been used as a marker for the characterization of these CD8+

CD28- Treg. On the other hand, a population of CD8+ CD28+

Treg cells expressing the chemokine receptor CXCR5 has been
identified, which are capable of suppressing B cell responses and
antibody production by inhibiting follicular helper T (Tfh) cell-
mediated B cell differentiation (58). They also exert strong
antitumor activity and their presence is associated with
favorable prognosis in follicular lymphoma patients (59).
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In mice and humans, CD8+ Treg have been described to
preferentially recognize the non‐classical MHC class I molecules
Qa‐1 (mouse) or HLA‐E (human) which are orthologous genes.
These non‐classical MHC class I restricted populations have the
property to recognize TCR, MHC or heat shock protein derived
peptides (i.e. Qdm, HSP60sp) presented by Qa‐1 or HLA‐E (48).
CD8+ Treg exert a cytotoxic effect against antigen−activated
CD4+ T cells, and this function depends on the expression of
the MHC−Ib molecule Qa−1 in mice (54).

Whereas CD8+ CD45RO+ CCR7+ T cells are found in blood
and have no suppressive function, CD8+ CD45RO+ CCR7+ IL-
10+ suppressive cells are found intratumorally in ovarian cancer
patients and they are believed to be induced by plasmacytoid
DC (60).

In 2014, a novel population of CD8+ Treg characterized by
the expression of HLA-DR was identified in human peripheral
blood and umbilical cord blood. CD8+ HLA-DR+ cells suppress
in a cell-to cell contact dependent manner, which involves
CTLA-4 (47). Within the CD8+ HLA-DR+ Treg cells the
CD28+ subpopulation shows higher suppressive capacity
compared to their CD28- counterparts and also expresses
higher levels of the checkpoint inhibitory molecules CTLA-4,
TIM-3, PD-1 and LAG-3 (61). Similarities have been found
between CD8+ HLA-DR+ and CD4+ Foxp3+ Treg with regards to
the expression of TIGIT, the chemokine receptors CCR4 and
CCR5, the low expression of IL-7R (CD127) and a memory and
effector-like phenotype. In addition, after polyclonal TCR
stimulation, CD8+ HLA-DR+ Treg cells increase IFNg and
TNFa expression suggesting that they are not exhausted cells
despite the fact that they express PD-1 (62).

CD4−CD8− Regulatory T Cells
Gamma-delta T cells (gdT) are the first T cells to develop in the
thymus upon gene rearrangement which generates different TCR
chains (gd) than the more abundant abT cells during fetal
ontogeny. In contrast to abT cells, gdT cells do not undergo
thymic TCR selection (63). gdT cells represent a small T cell
population (3–5% in human peripheral blood) and are able to
interact with different immune cell types such as other T cells, B
cells, DC, NK cells, monocytes/macrophages, and granulocytes.
In some cases, they exert an anti-inflammatory effect. These
regulatory gdT cells have been studied in different contexts and
are associated with immunosuppression in pregnancy,
inflammation, allergy and cancer. Similarly to abT cells, gdT
cells produce TGFb and IL-10 together with variable expression
of the transcription factor Foxp3 (49).

Natural killer T (NKT) cells are a special subset of T cells that
co-express NK cell surface receptors (NK1.1/CD161) with the
semi-invariant T-cell receptors (TCR), which consist of an
invariant TCR a chain paired to a limited number of TCR b
chains. Like all T cells, they are generated in the thymus, but
most of the NKT cells do not express CD4 or CD8 on their
surface (64). Upon activation, NKT cells produce large amounts
of Th1 (including IFNg and TNFa) and Th2 (IL-4, IL-10, and IL-
13) cytokines enabling them to act as powerful regulators of the
immune system (50). Under certain conditions, NKT cells can
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exert potent suppressor functions by shifting from Th1 to Th2
responses both in human and mouse. Their main target cells of
suppression are tumor cells, pathogen-activated T cells and
APCs (65).
ROLES OF TREG IN DIFFERENT
SCENARIOS

Treg constitute a group of phenotypically distinct subsets that
can reside in lymphoid and in non-lymphoid organs where they
exert diverse functions. The main non-lymphoid tissues where
Treg can be found are the visceral adipose tissue (VAT), the
intestine, skin and muscle. In these four tissues Treg are
important regulators of inflammation and fibrosis and
contribute to tissue repair (66). As already mentioned, Treg
participate in numerous processes in which they adapt to the
environment in order to eventually maintain tissue homeostasis.
Some situations such as pregnancy, organ transplants or the
common presence of bacteria in the intestine, require tolerance
against foreign antigens for which Treg activity is essential. If
Treg activity is too low, there can be a failure in self-tolerance
leading to the development of autoimmune diseases. On the
other hand, it can be hypothesized that if Treg are over-active,
they may favor the progression of neoplasic malignancies.
During pregnancy, the allogenic nature of the fetus (harboring
maternal and paternal antigens) requires tolerance from the
mother’s immune system in order not to be rejected. Treg and
other immune cells create a tolerogenic environment whose
composition changes throughout gestation. At least five
different Foxp3+ Treg subtypes have been identified during
different stages of pregnancy. In addition, other minor Treg
subsets such as CD4+ HLA-G+ Foxp3- (which inhibit NK, CD4+

and CD8+ T cells), Tr1, Th3, gdT cells, TIGIT+ T cells, and CD8+

Treg have been detected in the decidua and/or peripheral blood
of pregnant women (67).

Barrier tissues are constantly exposed to dietary, environmental,
and commensal microbiota antigens and therefore immune
homeostasis and tolerance need to be ensured via Treg or Teff
antigen-specific repertoires in these tissues (68). In intestinal
tissues, this tolerance is achieved by the cooperation of different
immune populations including Foxp3+ Treg and Tr1 cells.
Dysregulated intestinal responses to dietary antigens or
commensal microbiota frequently lead to immunological
disorders in humans such as celiac disease, food allergy, and
inflammatory bowel disease (69). Encounter with commensal
microbiota generates pTreg rather than anti-microbial effector
cells. These pTreg use site-specific TCRs different than the ones
that facilitate tTreg development in the thymus, implying that
many colonic Treg arise by means of antigen-specific driven pTreg
development (70).

Several reports highlight Treg functional deficiencies in
autoimmune diseases, but the underlying molecular
mechanisms are still unknown. One of the major limitations of
studying human autoimmunity is the lack of validated
experimental assays and the discrepancies between in vitro and
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in vivo experiments (71). Also, there is little consensus for Treg
identification (i.e. agreement on the markers used for their
identification), which makes the comparison between different
studies almost impossible (13). Treg dysfunction in autoimmune
diseases can be grouped according to different factors (68): i)
Genetic disease like germline mutations in the Foxp3 locus.
The development of the severe immune dysregulation,
polyendocrinopathy, enteropathy, and X-linked (IPEX)
syndrome is due to point mutations and microdeletions in the
Foxp3 gene that impair Treg function (72). ii) The abrogation of
Treg promoting signals. The disruption of the IL-2/IL-2R
pathway dysregulates thymic development and peripheral
homeostasis of Treg. In a murine model of Type 1 diabetes,
pancreatic Treg die showing a decreased expression of the IL-2R
CD25 and of the anti-apoptotic protein Bcl-2 (73). iii) The
presence of Treg destabilizing factors. Overexpression of IL-6
and TNFa can interfere with Foxp3 expression and consequently
alter Treg/Teff balance. In the presence of TGFb, IL-6 enhances
RORgt expression, which induces Th17 generation via STAT-3,
and represses at the same time Foxp3 expression. In the case of
rheumatoid arthritis, high IL-6 levels are related to a preferential
development of Th17 cells over Treg in the periphery (74, 75).

In addition to maintaining immune homeostasis in the
lymphoid tissues, Treg are recognized as regulators of non-
immunological processes. Treg are present in healthy tissues
and upon tissue injury, they promote tissue regeneration in an
amphiregulin-dependent manner (76). In a model of influenza
virus infection, Treg-induced tissue repair is triggered in
response to the inflammatory mediators IL-18 and IL-33, but
not by TCR signaling, which is required for their suppressive
function (77).

Increased immune suppression contributes to cancer onset
and tumors promote the generation of an environment that
allows tumor cells to escape from immune responses. Cancer
cells develop immunosuppressive mechanisms such as
expression of anti-inflammatory mediators and recruitment of
suppressive leukocytes, such as Treg, myeloid derived suppressor
cells (MDSC), tolerogenic DC and tumor-associated
macrophages (TAMs) (68). In recent years it has been found
that many tumors are enriched in Treg cells, indeed, a high Treg/
Teff ratio correlates with poor prognosis (78). Treg may facilitate
cancer progression via suppression of effector cells that otherwise
would attack the tumor. Turnis and colleagues showed
enrichment of IL-35-secreting Treg cells in tumors and
demonstrated that Treg-derived IL-35 promotes T cell
exhaustion in the tumor microenvironment (79). In fact,
different tumor models benefit from Treg depletion leading to
an increased anti-tumor response (80–82), but not all tumors
benefit from the presence of Treg cells. In addition, CD4+ CD25+

Treg collaborate with CD8+ CD28- Treg cells within different
tumors so that the immunosuppressive activity of these tumor
infiltrating Treg cells may be predominant (83). In multiple
myeloma patients, CD8+ CD57+ lymphocytes show an activated
phenotype (HLA-DR+ and Fas+) and can inhibit the suppressive
effect of Treg as well as antibody production (84). However, the
effect of Treg depends on the tumor site, molecular subtype and
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tumor stage (85). Interestingly, Foxp3+ tumor infiltrating Treg
were associated with better prognosis in colorectal cancer (86).
These cells were later shown to not be fully suppressive and to
display some inflammatory T cell features (87). In human
follicular lymphoma, high amounts of intratumoral Treg were
related to positive outcome (88, 89) whereas high levels of
circulating Treg correlated with a negative prognosis (90). All
these discrepancies indicate that the presence of intratumoral or
circulating Treg may depend on the nature of the tumor, the
tumor microenvironment itself and the functionality of the
supposedly suppressive Treg.

Low responsiveness and reduced proliferation of virus-
specific T cells during chronic viral infection is associated with
the expansion of Treg. In acute and chronic murine retroviral
infection models, depletion of Treg decreases viral load and
restores the activity of virus-specific cytotoxic CD8+ T cells (91,
92). On the other hand, it has been found that the role of Treg
depends on the disease stage in tuberculosis patients. Treg
expand and delay immune responses in initial phases but they
counter-regulate excessive inflammation later in the chronic
phase (93). In a mouse model of chronic infection with Friend
retrovirus (FV), vaccination with a calcium phosphate
nanoparticle-adjuvant, which efficiently reactivated CD8+ T
cells, in combination with a transient ablation of Treg
enhances anti-viral immunity (94).

Germinal centers (GC) are transient structures in peripheral
lymphoid organs where B cells develop and differentiate into
antibody secreting plasma and memory B cells. Upon activation
by follicular dendritic cells, B cells proliferate and interact with
primed antigen-specific Tfh cells in order to be fully activated
and differentiate into antibody-secreting plasmablasts (95).
Recently, a new Treg subset has been described in GC called
follicular regulatory T cells (Tfr). These Tfr cells control Tfh-
driven GC responses preventing induction of autoreactive and
foreign antigen-specific antibodies (96). They control IgG and
IgE responses to vaccines, allergens and autoantigens, and have a
critical immunoregulatory function before GC formation (97).
The relevance of these Tfr in the control of antibody production
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has drawn the attention of several studies which investigate these
cells as new targets for immunotherapy.
TREG HOMEOSTASIS AND FUNCTION
IN AGING

The severity of many infections increases with age and many of
the vaccines currently used are less effective in older compared to
younger adults. This is due to changes that the immune system
undergoes over time leading to dysregulation the adaptive and, to
a lesser extent, innate mechanisms (Table 2). In old age, the
capacity of APC to process and present antigens to T cells
declines (98) and chemotaxis, cytokine production and signal
transduction upon antigen recognition are impaired in these cells
as well as in neutrophils (99, 100). In addition, B cells show
reduced somatic hypermutation and class switch and the number
of plasma cells is decreased which leads to lower antibody
production (101). The T cell compartment is skewed towards
effector/memory like T cells, shows a reduced TCR repertoire
and also accumulates DNA damage in aged individuals (102). In
this review, we aim to describe the processes relevant for Treg,
but extensive reviews on general immunosenescence can be
found elsewhere (103–105).

During aging, the thymus undergoes a gradual reduction in
size and function together with changes in its architecture (106).
The activity of key factors for thymus functionality is also
modified. Less bone marrow progenitors reach the thymus, the
flow of sex hormones is diminished, thymic epithelial cell (TEC)
number decreases and there is an increase in adipose tissue (107).
TEC are part of the structural environment necessary to support
the normal differentiation of thymocytes. TEC-mediated thymic
involution results in reduced cellularity capable of maintaining
normal thymocyte differentiation (108). Despite the decline in
thymic cellularity, no blockade of thymocyte differentiation is
observed and thymic function is maintained proportional to the
reduced size (109). Adipocytes are not only responsible for
anatomical changes within the thymus but they actively
contribute to thymic involution. They produce higher levels of
negative factors for thymic maintenance (e.g. IL-6, sex hormones
and steroids) and thereby transmit suppressive signals to TEC
reducing thymopoiesis and cellularity (107). During aging, the
overall endocrine profile changes with an extra-thymic reduction
of sex hormones and growth hormones, and an increase in
glucocorticoid levels (110). Estriol and chorionic gonadotropin
positively affect Foxp3 expression and increase Treg frequency.
Steroids and glucocorticoids can enlarge Treg populations in the
periphery stimulating their function (111). In fact, Treg lacking
the glucocorticoid receptor lose their suppressive function
turning into Th1-like, IFNg-producing cells in a murine colitis
model (112).

In the periphery, the number of recent thymic emigrants (RTE)
is decreased in aged mice and humans which implies a lower
contribution of thymic cells to the pool of total T cells in the body
(113–115). In mice, it has been observed that the production of Treg
cells declines more and faster than conventional T cell production.
TABLE 2 | Immunological changes during aging.

Immune organ/cell Changes in aging

Thymus ↓ bone marrow progenitors
↓ sex hormones
↓ thymic ephitelial cells
↑ adipose tissue

APC ↓ antigen processing capacity
↓ antigen presenting capacity
↓ chemotaxis, cytokine production and signal transduction

Neutrophils ↓ chemotaxis, cytokine production and signal transduction
B cells ↓ somatic hypermutation

↓ Ig class switch
↓ number of plasma cells

T cells ↓ TCR repertoire
↑ effector-memory cells
↑ DNA damage accumulation
A summary of the most prominent changes in the thymus as well as in different immune
cells is described according to their main function.
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This is attributed to the inhibitory effect of recirculating Treg cells
on the differentiation of new Treg when the former revisit the
thymus (116). This accumulation of antigen-specific Treg reduces
clonal diversity which translates into a skewed aged Treg pool which
can suppress only certain T cells while leaving the rest unaffected.
This might favor some proinflammatory cells to remain active in
aged hosts (111).

Aging and age-related diseases are associated with profound
changes in epigenetic patterns. Treg are subject of epigenetic
modifications that are altered during aging. It has been shown
that hypomethylation of CpG sites upstream of the Foxp3
enhancer correlates with a higher suppressive function of Treg
from aged mice (117).

In addition, pTreg differentiation also decreases with age. It has
been observed that naive conventional T cells from aged mice
differentiate less into pTreg in vivo and in vitro compared to their
young counterparts (118). Despite less thymic and peripheral Treg
differentiation, Treg accumulate with age, which could be explained
by the loss of the pro-apoptotic protein Bim rendering these cells
apoptosis-resistant compared to Treg from young individuals (119).
Loss of Bim or overexpression of Bcl-2 lead to Treg accumulation,
but at the same time to reduced suppressive capacity in a model of
murine colitis (120). On the other hand, in vitro studies show that
Treg from young and old adults have the same suppressive capacity
(121). Others describe that old Treg are better suppressors than Treg
from young adult mice due to a higher IL-10 production from the
older ones (117). Despite many discrepancies among different
studies, the overall data suggests that Treg function remains
unchanged or is even enhanced in the elderly. Aged individuals
are more prone to develop infections and neoplastic malignancies
which would agree with enhanced Treg function, whereas they are
also more susceptible to develop autoimmunity due to Treg
dysfunction (122).

In the periphery, total T cell numbers remain unchanged with
age maintaining an adequate pool of circulating T cells including
Treg. In peripheral blood mononuclear cells (PBMC) from aged
humans an increased proportion of activated Treg (Foxp3hi

CD45RA-) and a low but detectable resting Treg population
(Foxp3low CD45RA+) are present. Both populations show
suppressive potential but the activated Treg die after exerting
in vitro suppression (12). It has been observed that there is an
accumulation of CD25low Foxp3+ Treg in old age and this
correlates with lower IL-2 levels. The IL-2 receptor (IL-2R),
consist of the subunits IL-2Ra (CD25), IL-2Rb (CD122) and the
common gamma chain (CD132), and is expressed on T and B
cells, DC and steady state NK cells. CD25low Foxp3+ Treg
upregulate the surface molecule CD122, which is also part of
the IL-15 receptor, suggesting that IL-15 might support CD25low

Treg in old age (123). Tr1 cells also accumulate in aged mice in
an IL-6 dependent manner and are able to produce large
amounts of IL-10 (37). Follow-up studies show that these IL-
10 producing cells manifest a Tfh phenotype and that they are
involved in immune suppression in old age (124). Van der Geest
and colleagues studied different CD4+ T cell populations in
healthy individuals and observed that the proportion of naive
Treg cells declined with age whereas the memory Treg
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compartment and the memory Treg/Teff ratio increased. This
accumulation of memory Treg in old age is associated with poor
responses to influenza vaccination (125). Tfh cells from aged
mice express high levels if IFNg and IL-10 and an environmental
increase in TGFb levels in old mice favors the development of
Treg (126). After vaccination in old age, impaired differentiation
of Tfh cells followed by a suboptimal T cell priming is observed
with a consequent poor GC B cell expansion. This is thought to
be due to not only lower T cell activation but also to an
accumulation of Treg which negatively affect the GC reaction
(127). Along these lines, another study in aged patients showed
that non-responder individuals to influenza vaccination have a
higher frequency of Treg as well as a higher inflammatory status
compared to responders (128). Depletion of Treg with anti-
CD25 treatment prior to influenza infection protected against
lethal viral challenge in aged mice (129). In another study,
responders to influenza vaccination showed a higher frequency
of Treg compared to non-responders, together with an elevated
frequency of early differentiated CD4+ T cells and lower
proportion of memory CD4+ cells (130). Actually, a detailed
study in the context of inflammation showed that, upon
secondary activation, memory Treg could not undergo
pronounced recall expansion as conventional CD4+ T cells do
(131). These findings emphasize the importance of the
accumulation of memory Treg during aging and their role in
the ineffectiveness of vaccination in the elderly.

Similar to CD4+ cells, the CD8+ T cell pool also loses naïve
precursor cells but the contraction of the naïve CD8+ T
compartment is greater than the one for CD4+ T cells (132). In
human and mouse, naturally occurring CD8+ Foxp3+ Treg
numbers increase with age (133, 134) whereas inducible CD8+

CD45RA+ CCR7+ human (135) and CD8+ CD44+ CD62L+

CCR7+ mouse (43) Treg cells decline in old age. The increase
of CD8+ Foxp3+ CD28– Treg is consistent with the higher overall
numbers of CD8+ CD28– T cells in aged individuals (136).
Despite the fact that CD8+ HLA-DR+ Treg accumulate with
age, the expression of CD28 in these cells remains unchanged.
CD8+ HLA-DR+ Treg cells lose suppressive activity and decrease
the production of checkpoint inhibitory molecules in aged
individuals (61).

Together with CD4+ CD25+ Treg frequencies observed in the
elderly, CD8+ Treg accumulation has been suggested to
contribute to the decline in adaptive immune responses in the
aging process (137). The capability of human CD8+ CCR7+ cells
to differentiate into Foxp3-expressing cells negatively correlates
with age (44). It has been shown that expression levels of Foxp3
and CD45RA in CD8+ CCR7+ Treg are lower in older individuals
compared to young, and this may suggest a diminished
suppressive capacity of these cells potentially contributing to
the development of autoimmune diseases in the elderly (138). In
contrast, the ability of aged naturally occurring CD8+ Treg to
suppress the proliferation and cytokine production of effector
CD4+ T cells remains similar between younger and elder
individuals (137). Dysfunction of CD8+ and CD4+ Treg cells in
old age could support age-associated subclinical inflammation
referred to as “inflamm-aging” (139, 140), which is associated
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with increased levels of oxygen radicals, IL-15, TNFa and IFNg
(141, 142).

Taken together these data suggest that CD4+ Treg as well as
CD8+ Treg accumulate in aged individuals. Dysregulation of
immune homeostasis is involved in the development of different
diseases in old age and a connection with increased numbers of
Treg has been demonstrated for several conditions (Figure 1).
DISCUSSION

The findings discussed above show that the field of regulatory
cells is in continuous expansion. The more we try to define it, the
more complex becomes the diversity of different cells (T, B, and
NKT cells) that might be involved. Initially described as
suppressor cells, Treg have demonstrated to be able to regulate
several processes with the final aim of preserving immune
homeostasis. To date, there are numerous types of Treg
described in mouse and human (Table 1) and a lack of
consensus to establish the right markers to define these
populations make of their characterization a matter of
controversy. The promiscuity of Foxp3 expression as a bona
fide marker of Treg is a good starting point to discuss the huge
diversity of Treg identified so far. There is not a single marker
distinct for Treg but a combination of some of them (Foxp3,
CD25; GITR; CTLA-4, IL-10, etc) together with their suppressive
activity could help to identify this elusive type of cells.
Furthermore, most of the studies on human Treg are based on
circulating cells in the blood, which may not represent the real
landscape in a given tissue.
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Treg cells are extremely versatile. They exert various effector
functions and use a number of molecular mechanisms depending
on the tissue and the health or disease context. Dysregulation of
Treg function in one or another direction can unchain a huge
variety of ailments (Figure 1). Indeed, modulation of Treg activity is
a main target for anti-tumor therapies, treatment of autoimmunity
or the avoidance of graft rejection in transplantation, for instance.
The danger of targeting Treg to treat or prevent a certain disease is
that the consequence could promote the development of another
one. As an example, therapies for autoimmune diseases, which
enhance Treg activity in order to dampen the autoreactive immune
components, have the potential to increase the risk of tumor
development as the suppressed immune cells might be
unresponsive to malignant cells.

The level of complexity increases further when we add the factor
age. In the elderly, the immune compartment is altered due to
thymic involution and dysregulation of several immune processes.
Most of the studies show that there is an accumulation of antigen-
experienced Treg with age, but discrepancies exist regarding the
hypo- or hyper-activity of these cells. This difference in Treg
accumulation may not only be age-dependent but also context-
dependent (Figure 1). In some cases, this results in increased
responsiveness of aged individuals to Treg targeted therapies
compared to young ones, as it is the case for anti-PD1 therapy in
melanoma patients (143).

The vast diversity of Treg in different tissues and the lack of
molecular markers to clearly define Treg subtypes makes this
area of study highly complex. The clear increase in immune
regulatory cells in aging is offering the scientific community
plenty of opportunities to learn the context-specific roles of Treg
FIGURE 1 | Schematic landscape of Treg in the elderly. During human and mouse aging, there is a decreased efflux of recent thymic emigrants (RTE) to the
periphery, a reduction of naïve Treg and an accumulation of antigen experienced memory Treg. As a consequence, TCR-restricted Treg accumulate and the pool of
memory T cells is skewed towards memory Treg over effector/memory T cells. This imbalance on T cell homeostasis is related to the development of different
diseases. In old age, an increase in Treg function may lead to the progression of tumors, chronic infections or tissue degeneration, whereas an impaired Treg
function may cause autoimmunity and/or chronic inflammation.
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cells in immunosenescence, advancing the concept into a more
tailored tissue/disease/Treg-specific point of view.
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Breast cancer is the most common malignancy among women worldwide. Over the last
four decades, diagnostic and therapeutic procedures have improved substantially, giving
patients with localized disease a better chance of cure, and those with more advanced
cancer, longer periods of disease control and survival. However, understanding and
managing heterogeneity in the clinical response exhibited by patients remains a challenge.
For some treatments, biomarkers are available to inform therapeutic options, assess
pathological response and predict clinical outcomes. Nevertheless, some measurements
are not employed universally and lack sensitivity and specificity, which might be influenced
by tissue-specific alterations associated with aging and lifestyle. The first part of this article
summarizes available and emerging biomarkers for clinical use, such as measurements
that can be made in tumor biopsies or blood samples, including so-called liquid biopsies.
The second part of this article outlines underappreciated factors that could influence the
interpretation of these clinical measurements and affect treatment outcomes. For
example, it has been shown that both adiposity and physical activity can modify the
characteristics of tumors and surrounding tissues. In addition, evidence shows that
inflammaging and immunosenescence interact with treatment and clinical outcomes
and could be considered prognostic and predictive factors independently. In summary,
changes to blood and tissues that reflect aging and patient characteristics, including
lifestyle, are not commonly considered clinically or in research, either for practical
reasons or because the supporting evidence base is developing. Thus, an aim of this
article is to encourage an integrative phenomic approach in oncology research and
clinical management.
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1It should be considered that unless the relationship between a biomarker and
disease is causal, then a change to biomarker concentration might not necessarily
reflect a prognostic (or predictive) change.
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INTRODUCTION

Breast cancer is the most common form of cancer affecting
women worldwide, with around two million new cases each
year (1). Breast cancer is the second most common form of
cancer overall and the fifth most common cause of cancer-
specific death (2). Men diagnosed with breast cancer account
for 1% of all malignancies and represent 1% of all cases
of breast cancer worldwide (3). The risk of developing breast
cancer is influenced by many factors, including age, age at
first birth, parity, breast feeding, menopausal status, physical
activity level, body composition, and hereditary factors (e.g.,
mutations in key genes, such as BRCA1) (4). Treatment
for breast cancer has improved over the last four decades
and can consist of a combination of traditional and more
advanced interventions including surgery, chemotherapy,
radiation therapy, hormone therapy, small molecule therapy,
immunotherapy and other targeted approaches (such as mTOR
inhibitors) (5). Although most treatments are very effective, the
clinical profile and characteristics of each patient are unique and
tumor heterogeneity—even among patients with the same TNM
(T: tumor, N: node, M: metastasis) staging—results in patient-to-
patient variation in clinical outcomes. This patient-to-patient
variation in clinical outcomes might partly be due to genetic
factors, including germline mutations (e.g., BRCA1/2 or P53) or
polymorphisms in genes encoding drug metabolizing enzymes
and transporters (e.g., DPYD, TPMT or UGT1A1, involved in
5-fluorouracil, mercaptopurine or irinotecan metabolism,
respectively) (6–8). Although these factors can be assessed, a
challenge that remains is predicting which patients will
respond optimally to different treatment options, and to
stratify patients to provide the best care (9). Difficulties in
managing heterogeneity in the clinical response exhibited
by patients emphasizes the need to consider other factors
when measuring and interpreting predictive and prognostic
biomarkers in breast cancer.

Biomarkers are molecular, histological, radiographical or
physiological characteristics that can be measured as an
indicator of normal biological processes, pathogenic processes,
or responses to an exposure or intervention, including therapy
(10). From a clinical perspective, a biomarker could be described
as an objective observation of the medical state of a patient,
which can be assessed accurately and reproducibly (11). To be
reliable, biomarkers need to be sensitive and specific. Sensitivity
refers to the ability of the biomarker to correctly identify patients
with a disease from the whole population, and specificity refers to
the ability of the biomarker to correctly identify people without
the disease (12, 13). Molecules linked with the presence of cancer
are often referred to as tumor biomarkers or tumor antigens,
where antigens are molecules containing sites that are recognized
by, and interact with, components of the immune system.
Neoantigens are antigens that are generated by somatic
mutations in the tumor, whereas tumor-associated antigens
can also be found in healthy tissues, usually at lower levels
(14). Many classical tumor biomarkers are proteins, and they can
either be located on the cell surface, in the intracellular space or
secreted into body fluids by cancer cells or other local cells in
Frontiers in Immunology | www.frontiersin.org 2117
response to the tumor(s) (2, 15). Further, many tumor
biomarkers are shared among different cancers with only a few
biomarkers being disease specific (2).

Tumor biomarkers can be categorized based on their role and
time of assessment, including diagnostic, monitoring, predictive
or prognostic biomarkers (16, 17). Diagnostic biomarkers, for
example, show utility in early phases of disease, as they confirm
the presence of a tumor, whereas biomarkers used for
monitoring disease become more relevant following diagnosis
and during treatment, as their serial measurement gives real-time
information of disease status (16). In this review, our focus is
largely on predictive and prognostic biomarkers, given their
utility in establishing the clinical response to treatment.
Predictive biomarkers assess the response or lack of response
to a specific form of therapy, while prognostic biomarkers can
reflect the natural course of the disease and thus can assess
clinical outcomes in the absence of therapy (18). When
interpreting any type of biomarker, the specific endpoint of
analysis should also be taken into consideration (19). Examples
include calculations of progression-free survival or objective
response rates. The increasing relevance of biomarkers in the
management of cancer has led to the development of a number
of agencies who support and advise on the clinical use of
biomarkers, including the American Society of Clinical
Oncology (ASCO) (20–24), the American National Academy
of Clinical Biochemistry (NACB) (25), the European Group of
tumor markers (EGTM) (5, 26), the European Society of Medical
Oncology (ESMO) (27, 28), the National Institute for Health and
Care Excellence (NICE) and the National Comprehensive
Cancer Network (NCCN). Guidelines have also been produced
with the validation steps needed for biomarkers to reach the
clinics, including evaluation of confounding factors, analytical
and clinical validation, demonstration of clinical utility and
regulatory approval (29). Further, a biomarker registry has
been created to compile data from ongoing, completed but not
yet published, and completed studies, as well as those with
negative results, serving as a useful tool for further analyses or
for the design of new biomarker studies (30).

The search for new cancer biomarkers continues, and once
measurements become established, there is often further
validation and refinement, including the assessment of other
biomarkers simultaneously, to improve the sensitivity or
specificity of tests. An additional step, often not undertaken
either for practical reasons or because the supporting evidence
base is developing, is understanding whether cancer biomarkers
are influenced by broader factors, including the characteristics of
patients and their lifestyle. If it could be established, that factors
such as age, physical activity level, or body composition,
influence the concentration or characteristics of a given
biomarker, then accounting for these inter-individual patient-
centric factors, might improve the clinical utility of that
measurement1. Given that first; some biomarkers indicate the
severity of disease and are secreted or expressed by tumor cells
February 2021 | Volume 11 | Article 616188
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during active disease (31–34), and that second; factors, such as
exercise, physical activity or body composition, are known to
influence disease progression (35–40), then it is conceivable that
there is interaction. Indeed, the effects of age, exercise, and
adiposity, on the composition and function of cells, tissues and
organs, is well established, and there are a variety of mechanistic
links with disease (41, 42). In turn, the composition and
characteristics of tissues that are both local and distant to
tumor sites, could influence the measurement of cancer
biomarkers and also disease progression directly.

The first part of this article summarizes current and emerging
breast cancer biomarkers that are measured in tumors or in
blood (see Tables 1A, 1B and Table 2). The second part of this
article summarizes the effects that aging, exercise or physical
activity, and adiposity can have, on the cellular composition and
function of a variety of cells and tissues, including tumors. In
places, links between these broader characteristics of patients and
overall cancer risk, disease progression, and treatment outcomes
are highlighted. In summary, the overall aim of this article is to
encourage an integrative phenomic approach in oncology
research and clinical management.
MEASUREMENTS IN TUMORS

Estrogen Receptor (ER)
Estrogen receptors (ERs) are nuclear steroid receptors that
operate as transcriptional regulators of several cell processes,
such as proliferation and differentiation, in response, primarily,
to estrogen (45). There are two forms, ER-alfa and ER-beta, and
the majority of ER-positive tumors express the alfa form (49,
120). ER expression is measured by semiquantitative
immunohistochemistry in formalin-fixed paraffin-embedded
tumor biopsies (46). ER expression has proven importance as a
prognostic and predictive factor by identifying which patients
will respond to hormone therapies (e.g., aromatase inhibitors,
tamoxifen and other ER antagonists) informing treatment
decisions, and providing an estimate of overall survival (2). For
almost 50 years, many studies have confirmed both the
prognostic and the predictive value of ER measurements (31,
43) and ER status is used widely in clinics after diagnosis. For
example, a study analyzed data from 4478 breast cancer patients
across seventeen cancer registries in six European countries, to
determine the influence of hormone receptor status on survival
(121). Comparing ER status and relative survival over 5 years, it
was found that women who had been classified as ER positive
had better outcomes (90% survival, 95% CI: 88–92) compared to
ER-negative counterparts (77% survival; 95% CI: 73–78). Among
ER-positive women, tamoxifen treatment was associated with a
10% decrease in relative excess risk of death compared to women
not treated with tamoxifen. Although the majority of studies
examining ER have focused on the alfa form, some reports have
shown prognostic value of the beta isoform, even in ER-alpha
negative tumors (44, 122). Attention has been directed more
recently to mutations in the gene that encodes the ER—so called
ESR1 mutations—because they have been associated with
Frontiers in Immunology | www.frontiersin.org 3118
resistance to endocrine therapy, especially in metastatic
settings (62).

Progesterone Receptor (PR)
Progesterone receptors (PRs) are also nuclear steroid receptors
that govern processes such as proliferation and differentiation
in response, primarily, to progesterone. There are two
isoforms, PR-alpha and PR-beta, which regulate different
genes (50). PR expression is measured by semiquantitative
immunohistochemistry in formalin-fixed paraffin-embedded
tumor biopsies. In healthy breast tissue, both isoforms
are expressed equally, but some studies have shown a
dysregulation of this balance in breast cancer (47). A large
literature base supports the use of PR status for predicting
clinical outcomes. For example, a study defined both clinical
utility and cut off points of immunohistochemistry for PR status
measurement in a ‘test’ group of 1235 cases of primary breast
cancer receiving endocrine therapy. This study then confirmed
clinical utility for successful therapeutic outcomes in an extra
‘validation’ group of 423 breast cancer patients who underwent
mastectomy and were randomized to either 5 years of adjuvant
tamoxifen treatment or no adjuvant treatment (123). Analysis of
formalin-fixed samples from the 423 patients showed that PR
was a strong and significant predictive factor of both improved
disease-free and overall survival (HR = 0.546, P = 0.0034; HR =
0.595, P = 0.0040 respectively). The PR-alpha/PR-beta ratio has
also been suggested to influence responsiveness to hormone
therapies, with some studies showing that a high ratio of PR-
alpha to PR-beta expression is linked to tamoxifen resistance
(48). Combined with information from assessing ER-status, it is
known that tumors expressing both ER and PR respond best to
endocrine therapies (49).

Human Epidermal Growth Factor
Receptor 2 (HER2)
Human epidermal growth factor receptor 2 (HER2; also known
as c-erbB-2, due to the encoding gene, or HER2/neu, due to its
discovery in neuroblastoma rat models (51)), is an epithelial
growth factor oncoprotein, localized in the cell membrane and
involved in communication among cells for proliferation,
differentiation and survival signalling (2). HER2 is commonly
measured in formalin fixed sections of tumor tissue, by
immunohistochemistry, but also by Fluorescence In Situ
Hybridization (56). HER2 status is most commonly used to
identify patients eligible for treatment with HER2-targetting
therapies such as trastuzumab, also known as herceptin (22,
52). HER2 status has prognostic and predictive value, in part, due
to the effectiveness of HER2-targetting therapies. However,
HER2 positivity and overexpression has been associated with
worse prognosis and reduced disease-free and overall survival in
the absence of HER2-targetting treatments (124). In addition,
HER2 expression has been associated with resistance to
endocrine therapy, especially tamoxifen (53, 57, 125, 126) but
has been linked with the success of other chemotherapy
regimens. For example, a study including 638 patients with ER
and/or PR negative tumors and axillary lymph node
February 2021 | Volume 11 | Article 616188
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TABLE 1A | Measurements made in tumours: singleplex/duplex/quadruplex assays.

Biomarker
or test

Type Detection technique RTCs, meta-
analyses and
other studies

Reviews,
and consensus
papers

Recommendations Used
clinically

ER Singleplex Semiquantitative IHC, FFPE (31, 43–44) (2, 45, 46) ASCO (20): treatment decisions
EGTM (26): treatment decisions
ESMO (27, 28): treatment decisions
NACB (25): treatment decisions; prognosis
(combined biomarkers)

Yes

PR Singleplex IHC, FFPE (47–48) (49, 50) ASCO (20): treatment decisions
EGTM (26): treatment decisions
ESMO (27, 28): treatment decisions
NACB (25): treatment decisions; prognosis
(combined biomarkers)

Yes

HER2 Singleplex IHC, FISH, sequencing; FFPE (51, 52–53–55) (56, 57) ASCO (20): treatment decisions
EGTM (26): treatment decisions
ESMO (27, 28): treatment decisions
NACB (25): treatment decisions; prognosis if
combined

Yes

UPA
and
PAI-1

Duplex ELISA, fresh/frozen tissue, FFPE (32, 58–59) (60, 61) ASCO (20): prognosis newly diagnosed (node−)
ASCO (62): treatment decisions (adjuvant therapy
ER+HER2−node−)
EGTM (26): prognosis (combined biomarkers);
prediction (adjuvant therapy ER+HER2−node−)
ESMO (27, 28): prognosis (node−/+); treatment
decisions (combined biomarkers; early disease)
NACB (25): prognosis; further evaluation for
treatment decisions

Note (A)

P53 Singleplex IHC, TTGE/sequencing, cDNA
microarrays; FFPE

(63, 64–65) (66, 67) ASCO (20, 22): insufficient data for treatment
decisions
EGTM (5): insufficient data
ESMO (27, 28): not mentioned
NACB (25): prognosis (conflicting results)
2007 3rd international workshop on TP53:
prognosis

No

Ki-67 Singleplex IHC, RT qPCR
fresh/frozen tissue, FFPE

(68–69) (70, 71) ASCO (20): insufficient data for prognosis
ASCO (62): not recommended for treatment
decisions
EGTM (26): prognosis if combined
ESMO (28): prognosis ER+HER2−, treatment
decisions (combined biomarkers; adjuvant
therapy)
NACB (25): not mentioned
International Ki67 BC working group (72):
guidelines on use

Yes

D
cathepsin

Singleplex IHC (FFPE); immunoenzymatic or
radiometric assays (tumour
lysates); Western Blotting

(73–74) (75, 76) ASCO (20): insufficient data for prognosis/
prediction
EGTM (5): insufficient data
ESMO (27, 28): not mentioned
NACB (25): prognostic (node−; conflicting results)

No

PSA Singleplex IHC (FFPE), ELISA (tumour
cytosolic extracts)

117 (77–78) ASCO (20, 22): not mentioned for BC
EGTM (5, 26): Not mentioned for BC
ESMO (27, 28): Not mentioned for BC
NACB (25): not mentioned for BC

No

IHC4 Quadruplex
(ER, PR, HER2
and KI67)

IHC, FFPE (79, 80) ASCO (22): Not recommended for treatment
decisions
EGTM (5, 26): not mentioned
ESMO (27, 28): not mentioned
NACB (25): not mentioned
2018 NICE DG34 guidelines: not recommended
for treatment decisions in early ER+HER2-node-
(uncertain analytical validity)
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TABLE 1B | Measurements made in tumours: multiplex assays.

Biomarker
or test

Type Detection technique RTCs, meta-analyses
and other studies

Reviews, and
consensus
papers

Recommendations Used
clinically

TILs Multiplex Microscopy, ICC, flow
cytometry, gene expression;
blood, fresh/frozen tissue, FFPE

(81–82) ASCO (22): insufficient evidence for treatment
decisions
EGTM (5, 26): not mentioned
ESMO (28): prognosis, not treatment decisions
NACB (25): not mentioned
2014 International TILs working group (83):
guidelines/recommendations
2019 St Gallen Consensus: prognosis

No

Oncotype
DX

Multiplex
(21
genes)

RT PCR, FFPE (84–85) ASCO (20, 22): prognosis/prediction (adjuvant
therapy, tamoxifen)
EGTM (26): prognosis/prediction (adjuvant
therapy, tamoxifen ER+HER2−
ESMO (28): prognosis/prediction (adjuvant
therapy; combined biomarkers)
NACB (25): prognosis/prediction (adjuvant
therapy; combined biomarkers)
2018 NICE DG34 guidelines: treatment decisions
in early ER+HER2-node- (adjuvant chemotherapy)

Yes

Mammaprint Multiplex
(70
genes)

Microarray, fresh/frozen tissue,
FFPE

(86–87) ASCO (23): prognosis/treatment decisions
EGTM (26): prognosis/treatment decisions
(adjuvant therapy; invasive)
ESMO (28): prognosis/prediction adjuvant
therapy; combined biomarkers)
NACB (25): not mentioned
2018 NICE DG34 guidelines: not recommended
for treatment decisions in early ER+HER2-node-
(not cost effective)
FDA approved

Yes

Prosigna Multiplex
(50
genes)

Microarray, FFPE (88–89) ASCO (22): treatment decisions (adjuvant therapy,
combined biomarkers, ER+HER2−node−)
EGTM (26): prognosis/ treatment decisions
(adjuvant therapy, combined biomarkers, ER+
HER2−)
ESMO (28): prognosis/prediction (adjuvant
therapy, combined biomarkers)
NACB (25): not mentioned
2018 NICE DG34 guidelines: treatment decisions
in early ER+HER2-node- (adjuvant chemotherapy)
FDA approved

Yes

Endopredict Multiplex
(8
genes)

RT PCR, FFPE (90–91) ASCO (22): treatment decisions (adjuvant therapy
ER+HER2−node−)
EGTM (26): prognosis/treatment decisions
(adjuvant therapy, combined biomarkers, ER+
HER2−)
ESMO (28): prognosis/prediction (adjuvant
therapy, combined biomarkers)
NACB (25): not mentioned
2018 NICE DG34 guidelines: treatment decisions
in early ER+HER2-node- (adjuvant chemotherapy)
Not FDA approved but approved for use in
Europe

Yes

Rotterdam
signature

Multiplex
(76
genes)

Microarray, fresh/frozen tissue (92–93) ASCO (20): insufficient data
EGTM (26): insufficient data
ESMO (28): not mentioned
NACB (25): not mentioned
Not commercially available

No

ASCO: American Association of Clinical Oncology; BC: Breast Cancer; Chemo: chemotherapy; EGTM: European Group of Tumour Markers; ELISA: Enzyme Linked Immunosorbent
Assay; ER: Estrogen receptor; FDA: Food and Drug Administration; ESMO: European Society of Medical Oncology; FISH: Fluorescence In Situ Hybridization; FFPE: formalin-fixed paraffin-
embedded tissue; HER2: Human Epidermal Growth Factor Receptor 2; ICC: Immunocytochemistry; IHC: Immunohistrochemistry; NACB: American National Academy of Clinical
Biochemistry; NICE: National Institute for Health and Care Excellence; PR: Progesterone receptor; PSA: Prostate Specific Antigen; RT PCR: reverse transcription Polymerase Chain
Reaction; RT qPCR: Quantitative reverse transcription Polymerase Chain Reaction; TILs: Tumour Infiltrating Lymphocytes; TTGE: temporal temperature gradient gel electrophoresis; UPA
and PAI: Urokinase plasminogen activator and Plasminogen Activator Inhibitor 1. Notes: (A) Not widely used as fresh or freshly frozen tissue is required.
Frontiers in Imm
unology |
 www.frontiersin.org
 5120
 February 2021 | Volume 11 | Artic
le 616188

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Arana Echarri et al. Aging, Lifestyle and Breast Cancer
involvement, showed that patients with HER2 overexpression
benefited from chemotherapeutic regimens where anthracycline-
based drugs such as doxorubicin were added, compared to HER2
negative patients. The 10-year disease free survival of HER2
positive patients increased from 26% to 41% when treated
with doxorubicin, whereas survival did not change in the
HER2 negative group (40 vs. 41%) (54). In another study, 442
women with node positive breast cancer were randomized to
three different doses of adjuvant chemotherapy, combining
cyclophosphamide, doxorubicin and fluorouracil. Women with
tumors overexpressing HER2 (≥50% overexpression) benefited
the most from high doses of chemotherapy, compared to those
with little or no expression of HER2 (55).

Urokinase Plasminogen Activator (uPA) and
Plasminogen Activator Inhibitor 1 (PAI-1)
Urokinase plasminogen activator (uPA) is a serine protease that
converts plasminogen into plasmin, which has a key role in
degradation of extracellular matrix-components, leading to
release of growth factors implicated in migration and invasion
(60, 61). The proteolytic activity of uPA is regulated by inhibitors
such as plasminogen activator inhibitor 1 (PAI-1). Given the role
of uPA in metastasis, PAI-1 was once thought to be protective,
but studies have shown that this inhibitor is also associated with
tumorigenesis, likely by preventing apoptosis (58) or enhancing
angiogenesis (32). Simultaneous measurement of both molecules
has been shown to have better prognostic and predictive value
compared to measuring them separately (127). Both uPA and
PAI-1 are commonly measured in parallel with enzyme-linked
immunosorbent assays (ELISA) in extracts of the primary tumor,
and general reference cut off levels are 3 ng/mg and 14 ng/mg
respectively. uPA and PA-1 levels have prognostic value in breast
cancer patients regardless of menopausal status (128) and node
status (129, 130), and high levels of both markers have been
significantly associated with shorter overall and disease-free
survival. A prospective randomized control trial showed that
uPA and PAI-1 levels also had predictive value, identifying
lymph-node negative breast cancers with better responses to
adjuvant chemotherapy consisting of cyclophospamide,
methotrexate and 5-fluorouracil (CMF) (131). In this study,
breast cancer patients were stratified into either a high-risk or
low-risk group, depending on whether they had high or low
levels of uPA and PAI-1, respectively. Among the high-risk
group, patients receiving chemotherapy had a 44% decrease in
the relative risk of disease recurrence compared to those who did
not receive treatment (RR = 0.56, 95% CI: 0.25–1.28). Similar
findings have been reported in other studies (59), and future
studies need to confirm clinical utility with other more
commonly used treatment regimens (132).

Tumor Protein 53 (P53)
Tumor protein P53 is a nuclear protein involved in cell cycle
regulation that also acts as a tumor suppressor, binding to DNA
in the presence of damage and triggering either DNA repair
pathways, checkpoint arrest or apoptosis (66). In tumors, one or
both alleles of P53 are commonly deleted and/or mutated (63),
Frontiers in Immunology | www.frontiersin.org 6121
and this can result in non-functional P53, which, unable to detect
DNA damage, contributes to tumorigenesis. Overexpression of
mutated versions of P53 can promote tumor formation due to
oncogenic gain-of-function activity (67). Traditionally P53 status
is examined by immunohistochemistry in formalin fixed paraffin
blocks, which is useful for identifying overexpression. However,
given the importance of identifying specific mutations, Temporal
Temperature Gradient Gel Electrophoresis, with sequencing of
aberrant migrating bands to determine the nature of mutations, or
cDNA microarrays are now more common. Overexpression of
P53 protein and some mutations have been linked with poor
prognosis and shorter survival (64, 133–137). For example, there
was a significant reduction in disease free survival over 5 years
among 700 women with node-negative breast cancer exhibiting
tumors that were positive for a mutated version of P53. Disease
free survival probability at 5 years was 80% for P53 negative
tumors, 72% for P53 positive tumors with low expression, and
58% for P53 positive tumors with high expression (P < 0.05) (133).
Some studies have supported the predictive value of P53 for
treatment outcomes, as certain mutations (e.g., stop codons,
point or deletion mutations, in regions like the zinc-binding
domain) have been associated with resistance to some forms of
chemotherapy (e.g., doxorubicin, tamoxifen, 5-fluorouracil and
mitomycin, or cyclophosphamide, methotrexate and 5-florouracil)
or radiotherapy (138–144). Other studies on the other hand, have
shown better responses to certain chemotherapy regimens (e.g.
paclitaxel, or epirubicin and cyclophosphamide) among patients
with mutations in P53, such as deletions, transversions or
transitions in exons 4, 6, 8 or 10 (65, 145).

Ki-67
Ki-67 is a nucleic protein that is a marker of proliferation
expressed at higher levels during mitosis (70). It is commonly
assessed by immunohistochemistry, typically using the MIB-1
antibody (71), although examining gene expression using RT
qPCR provides comparable results (68). High Ki-67 expression
in tumor tissue is associated with poorer outcomes (146–149).
For example, a metanalysis of 12,155 breast cancer patients
showed that, in the overall population, Ki-67 expression was
associated with decreased overall (HR 1.95, 95% CI: 1.70–2.24;
P < 0.001) and disease-free survival (HR 1.93, 95% CI: 1.74–2.14;
P < 0.001) (146). Similar results have been shown by other
studies, examining patients undergoing endocrine therapy (150).
On the other hand, some studies have shown that positive
responses to certain forms of therapy can be predicted with
high Ki-67 scores, such as some chemotherapy combinations
(e.g., docetaxel, fluorouracil and epirubicin) in ER positive
tumors (151) or addition of adjuvant chemotherapy to
endocrine therapy in HER2 negative tumors (152). However,
other studies have not been able to prove predictive value of Ki-
67 (69, 153). The International Ki-67 in Breast cancer working
group reviewed the available evidence base and provided
guidelines for the accurate measurement of this marker (72).

D Cathepsin
D cathepsin is a lysosomal aspartyl protease that breaks down
intracellular and endocytosed proteins in most mammalian cells
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(75) and is involved in remodeling processes in mammary tissue
(76). D cathepsin can be assessed by immunohistochemistry in
formalin fixed paraffin embedded tumor samples, or
immunoenzymatic assays and radiometric immunoassays in
breast tumor lysates or by Western Blotting. Some studies have
indicated that D cathepsin has prognostic value in primary breast
cancer. For example, in an analysis of 2810 cytosolic extracts of
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breast tissue by radiometric immunoassay, it was shown that
tumors with high levels of D cathepsin had significantly poorer
relapse-free and overall survival regardless of node or
menopausal status (73). In addition, dividing D cathepsin
levels into four quartiles (Q1: 0–33, Q2: > 33–47, Q3: > 47–70,
and Q4: > 70 pmol/mg protein) an association was shown
between patients in the higher quartiles with early relapse and
TABLE 2 | Measurements made in blood: singleplex and multiplex assays.

Biomarker
or test

Type Detection technique RTCs, meta-analyses
and other studies

Reviews, and
consensus
papers

Recommendations Used clinically

CEA Singleplex ELISA,
plasma/serum

(94–95) (2) ASCO (20, 21): monitor treatment (combined
biomarkers, metastatic)
EGTM (5): prognosis (combined biomarkers,
early recurrence)
ESMO (27, 28): not mentioned
NACB (25): monitor treatment (combined
biomarkers)

Occasionally

CA 15.3
&
CA 27.29

Singleplex
(one or the
other)

ELISA,
plasma/serum

(33, 96–97) ASCO (20, 21): monitor treatment (combined
biomarkers, metastatic)
EGTM (5): prognosis (combined biomarkers,
early recurrence)
ESMO (27, 28): not mentioned
NACB (25): monitor treatment (combined
biomarkers)

Occasionally

MCA Singleplex ELISA,
plasma/serum

(98, 99) ASCO (20, 22): Not mentioned (favor: CA15.3 &
CA 27.29)
EGTM (5): Not mentioned (favor: CA15.3 & CA
27.29)
ESMO (27, 28): not mentioned
NACB (25): not mentioned

No

Circulating
HER2

Singleplex ELISA,
plasma/serum

(100, 101–102) ASCO (20, 22): insufficient evidence prognosis/
treatment
EGTM (5, 26): Not mentioned
ESMO (27, 28): Not mentioned
NACB (25): Potential: prognosis/treatment/
prediction/monitoring (undergoing evaluation)
FDA approved

No

Circulating
PSA

Singleplex Immunoassays,
serum

(103, 104) (105–106,
107)

ASCO (20, 22): not mentioned for BC
EGTM (5, 26): Not mentioned for BC
ESMO (27, 28): Not mentioned for BC
NACB (25): not mentioned for BC

No

ctDNA Multiplex PCR or sequencing
techniques, blood

(108, 109) (107) ASCO/CAP (24): complementary to genomic
tests (metastasis), insufficient evidence (early-
stage/monitoring/recurrence)
EGTM (5, 26): not mentioned
ESMO (27, 28): not mentioned
NACB (25): not mentioned
FDA approved (PIK3CA mutation test) (110)

No

CTCs Multiplex Microscopy, flow
cytometry, RT-PCR, blood

(34, 111–112) (113) ASCO (20, 22): insufficient evidence for
treatment decisions
EGTM (5, 26): not mentioned
ESMO (27, 28): not mentioned
NACB (25): prognosis/monitoring (advanced
disease, undergoing evaluation)
FDA approved (CellSearch assay) (114)

No

Circulating
Immune
cells

Multiplex Flow cytometry, blood (115–117) (118, 119) No No
February 2021 | Volume 11
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Circulating tumour DNA; EGTM: European Group of Tumour Markers; ELISA: Enzyme Linked Immunosorbent Assay; FDA: Food and Drug Administration; ESMO: European Society of
Medical Oncology; HER2: Human Epidermal Growth Factor Receptor 2; HE4: Human epididymis protein; MCA: Mucin-like carcinoma associated antigen; NACB: American National
Academy of Clinical Biochemistry. PSA: Prostate Specific Antigen.
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death. Relapse-free survival probability at 10 years in the group
with highest D cathepsin levels was 36% compared to 55%
among the group with the lowest levels. In addition, overall
survival probability was 43% in the group with the highest levels
compared to the 63% in the group with the lowest levels.
Although other studies have shown similar results (154–156),
the prognostic value of D cathepsin has not been fully established
and is not used routinely. However, some studies have shown
associations with treatment outcomes, as patients with higher
levels seem to benefit from tamoxifen-based therapies (157, 158)
but other studies show no impact (74, 159).

Prostate-Specific Antigen (PSA)
Prostate-specific antigen (PSA) is a serine protease with
chymotrypsin-like activity which is normally released from
the prostate into seminal fluid to increase sperm motility. PSA
is most commonly considered to be a serum biomarker
for the diagnosis, prognosis and progression of prostate
adenocarcinomas. However, PSA is also produced by other
tissues, including the breast, and PSA has received attention in
breast cancer (103). PSA can be detected by different methods,
such as immunoassays in tumor cytosolic extracts, or
immunohistochemistry and studies have shown prognostic
value in breast cancer (77, 160). For example, a study of 174
breast cancer patients measured PSA in samples of tumor cytosol
and found that PSA positive tumors correlated with early disease
stage, smaller tumors and estrogen receptor positivity (77).
Moreover, patients with PSA-positive tumors showed a
significantly lower risk of relapse and death. However, other
studies have not been able to confirm independent prognostic
value for PSA (161, 162). Studies have also linked PSA to
treatment outcomes. For example, in an analysis of tumor
cytosol from 434 patients with breast cancer that had recurred
who were treated with tamoxifen, a significant association was
shown between high PSA and poor treatment response, as well as
poor progression-free and overall survival (P < 0.001) (78).
Further research is needed to confirm the clinical utility of
PSA in breast cancer.

IHC4
Immuno-HistoChemical-4 score (IHC4) is a four-parameter
immunohistochemistry test that measures the ER, PR, HER2
and Ki-67 in formalin fixed paraffin embedded tumor samples.
In 2011, the ATAC trial (Arimidex, Tamoxifen, Alone or in
Combination) examined the prognostic value of combining
those four immunohistochemistry markers among 1125 ER
positive breast cancer patients in comparison with another
multiparameter test—Oncotype DX, or Genomic Health
Recurrence Score—covered in the next section (79). A
prognostic model and a combined score, the IHC4 score was
computed. Results showed independent prognostic value of each
of the immunohistochemical markers, and a prognostic value for
the IHC4 score that was comparable to that of Oncotype DX
(although IHC4 score was slightly more prognostic for distant
recurrences). In turn, the IHC4 score was subsequently examined
and validated in an additional group of 786 ER positive patients.
High levels of the adjusted IHC4 score were shown to be a strong
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prognostic factor for negative outcome (HR = 4.1, 95% CI: 2.5–
6.8). Other later studies have confirmed the utility of IHC4 to
identify ER positive breast cancer patients that have a low risk of
recurrence (80). However, the IHC4 test needs further validation
and investigation in large randomized trials before it can be used
routinely in clinical practice.

Tumor Infiltrating Lymphocytes (TILs)
Tumor infiltrating lymphocytes (TILs) reflect the immune
response to the presence of a tumor (81). Most studies have
focused on the predictive value of T cells, but many other
immune cell subtypes are present within tumors, including
natural killer cells, B cells and, despite the common name
referring to “lymphocytes”, macrophages have also received
attention (163). TILs can be detected by several methods
including immunocytochemistry, flow cytometry, gene
expression and semiquantitative histological evaluation by light
microscopy (164). The frequency of TILs varies among the
different breast cancer subtypes, and TILs are typically most
abundant in the most aggressive forms, such as basal-like (ER−
PR−HER−) and HER2-positive tumors (165). Studies have
shown that infiltration of some lymphocyte sub-types, such as
cytotoxic CD8+ T cells and helper CD4+ T cells, B cells and
dendritic cells, are associated with good prognosis and therefore
longer survival. However, studies have also shown that the
infiltration of other cells, including regulatory T cells,
neutrophils, and tumor-associated macrophages (TAMs) with
an M2-like (alternatively activated) phenotype are associated
with worse prognosis (82, 164, 166–168). Studies have examined
the predictive value of TILs in the context of treatment
outcomes, showing significant associations between high
frequencies of TILs and positive responses to anthracycline-
based chemotherapy (166), or to chemotherapy combined with
trastuzumab (81). TILs have received a lot of attention in
research settings, and studies have interpreted results in a
variety of ways, including examining the presence or absence
of cell subtypes, and also their relative abundance. The
international TILs working group meeting in 2013 produced
guidelines for these assessments, yet further work is required for
routine clinical use (83).

Oncotype DX
Oncotype DX, developed by Genomic Health (California, USA;
now part of Exact Sciences, Wisconsin, USA), is a
multiparameter RT-PCR assay that simultaneously measures
the expression of 21 genes in formalin-fixed paraffin embedded
tumor samples. The panel of genes includes 16 cancer-related
genes, such as HER2 and ER, and others implicated in
proliferation and invasion, and also 5 genes for reference (84).
Based on the relative expression of each gene, a recurrence score
is computed classifying patients into three risk categories: low
(recurrence score lower than 18), intermediate (recurrence score
between 18 and 30), and high (recurrence score above 30). The
assay was designed to predict risk in lymph node negative, ER
positive breast cancer patients treated with tamoxifen. The
prognostic value of the Oncotype DX recurrence score has
been extensively validated. High scores are associated with
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shorter relapse-free and overall survival in both lymph node
positive and lymph node negative patients (84, 85, 169–172). The
predictive value of this test is best demonstrated by identifying
patients with ER positive tumors who would benefit most from
adjuvant chemotherapy, regardless of node involvement (170,
172). A study tested the 21-gene recurrence score assay in tumor
samples from the phase III trial SWOG-8814, which included
lymph node negative ER-positive breast cancer patients treated
with either tamoxifen alone or with chemotherapy consisting of
cyclophosphamide, doxorubicin and fluorouracil prior to
tamoxifen (172). The study confirmed the significant
prognostic value of the assay in the tamoxifen alone group as
shown by previous studies. The study also showed a significant
improvement in survival from the addition of chemotherapy to
tamoxifen in the high-risk score group, but a lack of benefit from
chemotherapy in low-intermediate score groups. In the high risk
group, the 10-year estimates for percentage of disease-free
survival were 55% for chemotherapy and tamoxifen vs. 43%
for tamoxifen alone (P = 0.033), and for overall survival, 68% for
chemotherapy and tamoxifen vs. 51% for tamoxifen alone, (P =
0.027), and for breast-cancer specific survival, 73% for
chemotherapy and tamoxifen vs. 54% for tamoxifen alone (P =
0.033). On this basis, Oncotype DX and similar platforms are
routinely used to help decision-making for the use of adjuvant
chemotherapy in ER-positive breast cancer. Further research is
needed to evaluate the use of Oncotype DX among ER
negative patients.

MammaPrint
Mammaprint, developed by Agendia (Amsterdam, Netherlands),
is a multi-parameter microarray-based technique that
simultaneously measures the expression of 70 genes in either
fresh or frozen tumor tissue or formalin fixed paraffin embedded
samples, which produces a recurrence score. In turn, patients are
classified as either low risk with a good prognosis signature, or
high risk with a bad prognosis signature. Several studies have
confirmed the clinical utility of this test to identify patients with
better or worse outcome (86, 173, 174), and to inform clinical
decisions over whether to treat patients with adjuvant
chemotherapy following surgery (175, 176). One of these is the
MINDACT study (Microarray in Node- Negative Disease may
Avoid ChemoTherapy), a prospective randomized trial, which
was conducted with 6693 patients diagnosed with early breast
cancer. In this study, the recurrence risk calculated by
Mammaprint and referred to as genomic risk was compared
with risk calculated by an online decision-making tool for
clinicians that was available at the time (Adjuvant!Online;
referred to as clinical risk) (87, 176). Patients were assigned as
being low or high risk with both scores. There were 1550 patients
with high clinical risk (determined by the online tool) and low
genomic risk (determined by MammaPrint) (176). After
randomization to receive adjuvant chemotherapy or not
following surgery, the difference in survival was small: 1.5%
lower among patients not receiving chemotherapy. Indeed, the 5-
year survival rate without distant metastasis was 95.9% (95% CI:
94.0–97.2) among those receiving chemotherapy compared to
94.4% (95% CI: 92.3–95.9) among patients who were not treated
Frontiers in Immunology | www.frontiersin.org 9124
with chemotherapy. Thus, MammaPrint is a useful tool for
informing treatment decisions.

Prosigna
Prosigna (also called PAM50 gene signature) is a 50-gene
microarray-based technique developed by Nanostring
technologies (Seattle, USA) for use with fresh and frozen tissue
or formalin fixed paraffin embedded samples. The test classifies
tumors in one of four subtypes: Luminal A, Luminal B, HER2-
positive or Basal-like (88). The test provides a Risk of Recurrence
score (ROR), where low scores (ROR<40) categorize patients as
being low risk, and high scores (ROR>60) categorize patients as
being high risk. Several studies have validated the prognostic value
of Prosigna in postmenopausal women with ER-positive early
breast cancer. For example, a study of 1478 women from the
ABSCSG-8 trial who were being treated with tamoxifen or
tamoxifen and anastrozole, showed that the ROR score from
Prosigna has significant prognostic value (177). This study
showed that the Luminal A subtype presented a lower ROR
score after 10 years compared with Luminal B, emphasizing the
utility of this multiparameter test for predicting the risk of distant
recurrence. Other studies have analyzed the utility of Prosigna for
therapeutic prediction. For example, a randomized controlled
study—the DBCG89D trial—among patients with early breast
cancer treated with either CMF (cyclophosphamide, methotrexate
and fluorouracil) or CEF (cyclophosphamide, epirubicin and
fluorouracil) undertook Prosigna assays on samples from 686
patients and studied associations with distant recurrence, time to
recurrence and overall survival (89). The results showed that
patients from the HER2 subtype presented a significant benefit
from anthracycline-based (epirubicin) chemotherapy, in
comparison with patients from the luminal subtypes, as the time
to distant recurrence was significantly longer in the HER2 subtype
treated with CEF. Further, the benefit of CEF therapy over CMF
was associated with higher ROR scores.

Endopredict
Endopredict is an 8-gene RT polymerase chain reaction
developed by Sividon Diagnostics (Koln, Germany, now part of
Myriad Genetics). The test is usually used with formalin fixed
paraffin embedded samples, and, combined with tumor size and
nodal status, it can predict the clinical risk of distant recurrence
ten years after diagnosis by assigning a score (either low or high).
Endopredict is normally used as a prognostic test for patients
with early breast cancer, who are ER-positive and HER2-negative
(90, 178) however other studies have demonstrated its utility to
inform treatment decisions. A retrospective comparative analysis
of five large clinical trials (GEICAM/9906, GEI-CAM 2003/02,
ABCSG-6, ABCSG-8 and TransATAC trials) analyzed a total of
3746 women, who were treated with either adjuvant endocrine
therapy alone or endocrine therapy plus chemotherapy, and
determined the ability of Endopredict to estimate the 10-year
distant recurrence free interval rates (91). The results showed
that women who received chemotherapy in addition to
endocrine therapy and those who had higher Endopredict
scores, showed significantly lower distant recurrence after 10
years compared to those who only received endocrine therapy.
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Rotterdam Signature
The Rotterdam signature is a multi-parameter microarray-based
technique that analyses tumor expression, in fresh or frozen
tissue, of 76 genes involved in cell death, cell cycle, proliferation,
immune response, survival, cell to cell signaling, DNA
replication and repair. These genes do not overlap with
Oncotype DX or Mamma-Print. The Rotterdam signature—so
called due to its development at the Erasmus Medical Centre in
Rotterdam—was designed for lymph node negative breast cancer
patients, to predict metastatic disease over a period of five years.
The model was validated in 171 breast cancer patients and
showed a significant difference of 40% between good and poor
prognosis groups for distant-metastasis-free survival at 60
months and a difference of 27% between groups for overall
survival. This test could predict distant tumor recurrence
regardless of age, menopausal status and tumor size, and could
identify patients with a better prognosis who could avoid
adjuvant systemic therapy (92). Later studies validated the
Rotterdam signature in a large cohort of node negative breast
cancer patients, including those from the TRANSBIG trial
(network of TRANSlational research by the Breast
International Group) (93, 179). Further research is needed for
this index to be used regularly in routine practice.

Summary of Genetic Profiling Tests
Despite the value of the genetic profiling platforms described
above (i.e. Oncotype DX, MammaPrint, Prosigna, Endopredict
and Rotterdam Signature) to inform treatment decisions, these
tests fail to predict recurrence in a fraction of patients,
particularly in those with luminal subtypes (180). Thus, new or
improved tools are needed to accurately predict recurrence and
avoid undertreatment and overtreatment.
MEASUREMENTS IN BLOOD

Carcinoembrionic Antigen (CEA)
Carcinoembrionic antigen (CEA) is a cell surface glycoprotein
which is a 641 amino acid polypeptide chain that can be released
into blood by tumor cells. It is the most widely used tumor
biomarker in clinical settings and for several cancers, particularly
carcinomas of the bowel (2). This biomarker, normally assessed
by Enzyme-linked Immunosorbent Assay (ELISA) in plasma or
serum, has also received a lot of attention in breast cancer, as
studies examining its prognostic value have shown that high
levels are associated with poorer outcomes (94, 96, 181). For
example, in a prospective study that measured pre-operative
CEA levels in serum among 2062 breast cancer patients, it was
shown that high levels of CEA (>5 µg/L) in 12.7% of the patients
correlated with nodal involvement and larger tumors (96). In
addition, an elevated CEA level was present in 56.3% of patients
exhibiting cancer recurrence. Furthermore, CEA was found to be
an independent prognostic factor for both disease free and
overall survival regardless of node status. In addition, high
CEA was associated with a high probability of metastasis, as all
patients with >7.5 µg/L had recurrences during the follow up
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time. Other studies have examined the predictive value of CEA
and high levels have been associated with poorer responses
to therapy in patients with advanced disease. For example,
in a study of 232 breast cancer patients with recurrent tumors
following mastectomy, an increase of >2 ng/ml after the second
cycle of the therapy correlated with shorter progression-free
survival compared with those with lower/stable levels: 6.7 vs.
17.7 months, respectively (P < 0.001) (95). Furthermore, high
CEA was associated with bone metastases. Despite these
promising results, further studies are required before CEA is
used widely in clinical practice.

CA 15.3 and CA 27.29
CA 15.3 and CA27.29 are mucin-like glycoproteins that belong
to the MUC1 family. Mucins (MUCs) are heavily glycosylated,
high molecular weight glycoproteins with an aberrant expression
profile in various malignancies. The names 15-3 and 27.29 refer
to the specific monoclonal antibodies used for detection. CA 15.3
is most commonly used although CA 27.29 has been shown to
have comparable utility (182). These biomarkers are normally
measured by ELISAs, but also other commercially available kits,
based on radio-, enzyme- or chemi-luminescence. Studies
examining CA 15.3 have shown that high levels of this protein
are associated with worse outcomes and shorter survival (97, 100,
183). For example, one study in 2004 recruiting 600 newly
diagnosed breast cancer patients showed that increased levels
of CA 15.3 prior to surgery (>30 units/L) were associated with
shorter overall survival [hazard ratio (HR) = 2.16, CI, 1.55–3.03,
P < 0.0001], regardless of the type of adjuvant treatment
administered (183). Another study prospectively measured pre-
operative serum levels of CA 15.3 in 2062 breast cancer patients
(96). It was shown that high levels of CA 15.3 (>30 kU/L) in
19.6% of the patients correlated with nodal involvement and
larger tumors. In addition, CA 15.3 was a significant prognostic
factor for disease free survival in the absence of CEA.
Furthermore, rising CA 15.3 assessed with serial blood samples
also predicts poor outcomes. Studies have also confirmed the
predictive value of these biomarkers with several types of cancer
treatment, including chemotherapy. A retrospective study
examined CA 15.3 for predicting response to treatment in 73
patients with locally advanced breast cancer and found that
elevated levels prior to administering of primary chemotherapy
were significantly associated with poor clinical and pathological
response (33). Furthermore, if the elevated levels of CA 15.3 were
sustained following treatment, this appeared to be an
independent predictor of recurrence (P = 0.007). Another
study with 232 breast cancer patients who had recurrent
tumors following mastectomy, analyzed the associations
between CEA and CA 15.3 and the response to therapy (95).
This study found that increased levels of CA 15.3 (an increase of
>15 U/ml) after the second cycle of therapy correlated with
shorter progression-free survival compared with normal levels:
7.7 vs. 17.3 months, respectively for CA 15.3 (P < 0.0001).
Furthermore, elevated levels also correlated with metastases in
the bones. Current evidence does not justify the use of CA 15.3
and CA27.29 for monitoring responses to therapy.
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Mucin-Like Carcinoma Associated Antigen
(MCA)
Mucin-like carcinoma associated antigen (MCA) is another
measurement of MUC-1. Some studies have measured MCA
with other circulating markers, such as CA 15.3, CEA and Tissue
Polypeptide (TPA) (98). Testing two different cut off values for
MCA (11 U/ml and 15 U/ml), it has been shown that MCA is
more sensitive than CA 15.3, CEA or TPA (68 vs. 32%, 10%, 26%
for cut off 11 U/ml and 53 vs. 32%, 16%, 42% for cut off 15 U/ml)
but, less specific than CEA and CA15.3 (42% for cut off 11U/ml
or 73% for cut off 15 U/ml vs. 96% and 97% respectively).
Changes to MCA levels have been related to tumor response to
therapy in metastatic patients and elevated pre-surgical levels
seem to be associated with lower disease-free survival. For
example, a study recruiting 548 participants consisting of 148
primary breast cancer patients, 150 with metastatic breast cancer,
50 patients with benign disease, and 200 participants with no
clinically evident disease, showed an association between higher
pre-surgical levels of MCA with lower disease-free survival,
which appeared to be most significant in those with no nodal
invasion. Also, in the metastatic breast cancer subgroup,
decreases in MCA levels positively correlated with therapeutic
response in 82% of the patients (99). However, few studies have
evaluated the prognostic and predictive value of MCA
individually, precluding its use clinically.

Circulating HER2
The extracellular domain of human epidermal growth factor
receptor 2, also known as extracellular circular domain or ECD,
can undergo proteolytic cleavage and can be released into blood,
and is commonly measured by ELISA. High levels of circulating
HER2 levels have been associated with worse outcomes and
poorer survival, therefore measurement of this protein is a useful
prognostic marker (100, 101). For example, it has been shown
that higher levels of circulating HER2 were associated with a 50%
reduction in overall survival in metastatic breast cancer patients
compared to lower levels (10.1 months, 95% CI: 5.2–13.6 vs. 20.2
months 95% CI: 15.0–28.6, P < 0.001) (100). Some studies have
also shown utility of this marker to monitor cancer recurrence
(184), and the predictive value has been shown by studies
showing that patients with high circulating ECD levels, which
were sustained through treatment, benefited less from
trastuzumab. For example, in a study of 175 breast cancer
patients from the GeparQuattro trial, a >20% decrease in
circulating HER2 throughout the course of treatment was
associated with a 60% chance of pathologic complete response
compared to patients where this decrease was not achieved
through therapy (185). Almost identical results have also been
shown with the response to lapatinib treatment (102).

Circulating PSA
After being secreted by breast cancer cells, PSA likely
accumulates in the tumor microenvironment and eventually
reaches peripheral blood. PSA has been measured in serum
from breast cancer patients, primarily using immunoassays,
and some studies have shown prognostic utility of this
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biomarker in breast cancer management (103, 105, 186).
However, other studies have not been able to demonstrate
prognostic value, despite promising results when PSA is
measured in tissue samples from the tumor (187, 188). In
general, using circulating PSA as a biomarker for breast cancer
among women remains a challenge, as PSA levels are very low
compared to men, and often undetectable (106). Although more
sensitive assays are being developed (104), further research with
large cohorts of patients is required before this marker is used
routinely in breast cancer management.

Circulating Cell-Free DNA (ctDNA)
Apoptotic and necrotic cells can secrete fragments of DNA into
blood, referred to as cell free DNA or cfDNA. If it can be
confirmed that this DNA has come from cancer cells, then this
measurement is better known as circulating tumor DNA
(ctDNA). ctDNA is present at a very low concentration in
plasma and enables non-invasive serial assessments of tumor
characteristics including, assessing point mutations and DNA
methylation in key genes (107). ctDNA is assessed via next
generation sequencing or PCR-based assays. Recently, a ctDNA
assay measuring 110 alpha catalytic subunit of phosphoinositide
3-kinase (PIK3CA) mutations in HER2-negative breast cancer
patients has recently obtained FDA approval (110). Indeed,
studies have confirmed the utility of ctDNA to monitor
metastatic disease. For example, a prospective study examined
plasma from 30 breast cancer patients to compare ctDNA levels,
circulating tumor cells and CA 15.3 levels (108). Using digital
PCR and targeted deep sequencing, somatic mutations or
structural variants in PIK3CA and TP53 genes were screened
for, identified and quantified at different timepoints. It was
shown that the concentration of PIK3CA and TP53 mutations
in plasma significantly positively correlated with increases in
tumor burden, with high levels reflecting progressive disease in
89% of the cases and being associated with shorter overall
survival (P < 0.001). Furthermore, it was suggested that ctDNA
analysis could be predictive of therapeutic response earlier than
CA 15.3 and circulating tumor cells. Other studies have shown
that measurement of ctDNA can identify mutations linked to
resistance to certain treatments, such as anti-HER2 therapy, and
therefore predict treatment failure (109). However, further
research is needed via more high-quality prospective studies,
and standardized methodology, before it is used routinely in
all clinics.

Circulating Tumor Cells (CTCs)
Circulating tumor cells (CTCs) can be found at very low
frequency in blood and just a few CTCs per 10 ml of blood
can predict an aggressive primary tumor or metastasis (20).
CTCs are a heterogeneous group of cell types, such as epithelial
tumor cells, epithelial-to-mesenchymal cells and cancer stem
cells (29). Given their low frequency, enrichment procedures and
highly sensitive assays are required to measure them, and CTCs
can be quantified via microscopy, flow cytometry or using RT-
PCR (113). One of the widely used techniques is the CellSearch
Assay, which has had FDA approval for prognostic and
predictive use in metastatic breast cancer (114). CellSearch
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identifies circulating epithelial tumor cells, defining the CTC
phenotype as EpCAM+ (Epithelial cell adhesion molecule),
Cytokeratins (8+, 18+, and/or 19+), DAPI+ and CD45−, and
only counts intact cells (intact cell >4 microns). Other methods
are used in research settings, including flow cytometry, RT-PCR,
gene expression arrays, and Fluorescence In Situ Hybridization.
A study recruiting 99 metastatic breast cancer patients,
enumerated CTCs using CellSearch after the second cycle of
chemotherapy and showed that patients with ≥5 CTCs per 7.5 ml
of blood exhibited reduced overall survival (8.7 months vs. 38.5
months, P < 0.001) and reduced progression-free survival (3
months vs. 9.4 months, P = 0.001) compared with patients who
had < 5 cells per 7.5 ml of blood (34). In addition, the clinical
benefit rate was also considerably lower (44 vs. 77%, P = 0.0051).
Similar results were obtained in another prospective study, with
metastatic patients before they started a new line of treatment
(111). Finally, some studies have shown that CTCs can predict
early relapse after neoadjuvant chemotherapy and shorter overall
survival (189) and can predict treatment outcomes (112). Further
validation studies and standardization is required for integration
in clinics.

Immune Profiles
The phenotype and function of immune cells, as well as the T cell
repertoire and diversity in blood, have been examined for
predictive and prognostic utility in the context of breast
cancer. While an individual’s immune profile prior to a cancer
diagnosis might influence clinical outcomes, cancer itself and/or
treatment of the disease might exacerbate immunosenescence,
changing immune profiles, leading to poor outcomes (190). In a
study of 88 breast cancer patients with metastasis treated with
cyclophosphamide or paclitaxel based chemotherapy regimens,
extensive immunophenotyping was conducted in peripheral
blood using flow cytometry (115). It was shown that among
patients treated with paclitaxel, higher frequencies of naïve
CD4+ or CD8+ T cells (CD45RA+CD95−CD27+CD28+) were
associated with worse prognosis, as they correlated with shorter
breast cancer specific survival (CD8+: 28.7 vs. 12.6 months,
HR = 0.32 95% CI: 0.15–0.67, P = 0.0028; CD4+: 29.4 vs. 15.1
months, HR = 0.45 95% CI: 0.22–0.91, P = 0.027). In these
patients, however, higher frequencies of CD11c+ dendritic cells
were linked to better outcomes (13.4 vs. 25.3 months, HR = 4.60
95% CI: 1.23–17.1, P = 0.023). In the cyclophosphamide-treated
group, CD14+ monocytes were also associated with good
prognosis. Another study of 89 women with metastatic breast
cancer showed that a CD8+CD28− cells were significantly
increased compared to age-matched healthy women, and the
frequency of these cells negatively correlated with progression
free survival. The median survival was on average 2 months less
(P < 0.001) among patients with high frequencies of CD8+
CD28− cells (≥24.0% of the CD8+ T cell pool) compared to
patients with a lower frequency (<24.0%) (191).

Some studies have examined whether the capacity of T cells to
recognize tumor-associated antigens is a predictive or prognostic
factor in breast cancer, and in turn, whether other aspects of
immunosenescence influence this response. For example, the
frequency of regulatory T cells and Myeloid derived suppressor
Frontiers in Immunology | www.frontiersin.org 12127
cells (MDSCs: Lin−CD14+HLA-DR−) and HER2-specific T cells
were examined among 40 patients with breast cancer prior to
treatment (192). Patients exhibiting HER2-reactive T cells with
a lower frequency of MDSCs had a 100% rate of survival after
5 years, compared to 38% of patients without HER2-reactive
T cells with higher frequencies of MDSCs (P = 0.03).
Furthermore, patients without HER2-reactive T cells and with
higher levels of regulatory T cells had a 50% chance of survival
compared to 100% survival of patients who mounted an anti-
HER2 response with lower frequencies of regulatory T cells (P =
0.03). This survival advantage appeared to be independent of
metastases (192). Moreover, T cell receptor diversity and
clonality was studied in a group of 26 breast cancer patients. It
was shown that HER2-positive patients displayed greater highly
expanded clone ratios among the CD8+ T cell repertoire and that
greater heterogeneity during chemotherapy was associated with a
better clinical response (116).

Finally, there is concern that the overall immune profile
of individuals , especial ly those exhibit ing signs of
immunosenescence, could influence the effectiveness of some
immunotherapies (193) such as the monoclonal antibodies
atezolizumab and avelumab for treating breast cancer by
targeting PD-L1 (Programmed death ligand 1). This ligand can
be expressed by tumors and other local cells (e.g., fibroblasts,
endothelial cells, antigen presenting cells, myeloid derived
suppressor cells) and inhibit tumor infiltrating T cells and NK
cells which express PD1. Perhaps counter-intuitively, although
PD-L1 is generally expressed at low levels (around 10%) on
tumor cells, it has been shown that expression level positively
correlates with a higher pathological complete response rate to
neoadjuvant chemotherapy (117). However, PD-L1 expression
appears not to be a good predictor of the response to PD-L1
targeting therapies (118). Taken together, these findings
emphasize the importance of a strong anti-tumor immune
response, hence the development of anti-PD1 therapies which
target T cells and NK cells directly, such as pembrolizumab
(118). Indeed, the capacity to mount a strong anti-tumor
response is likely to be influenced by the characteristics of the
patient such as immunosenescence but also the characteristics
of the tumor given that tumor mutational burden is a strong
predictor of the effectiveness of anti-PD1/PD-L1 treatment
(118, 119).
THE RELEVANCE OF AGING AND
LIFESTYLE FOR CANCER BIOMARKER
PROFILING AND DISEASE PROGRESSION

Aging Influences Tissues and Blood
Aging is a temporal and progressive decline in the integrity of
different physiological systems in an organism, consisting of
tissue-specific changes characterised by processes such as
inflammation and cellular senescence (41). These changes
affect the functional properties of most cells, tissues and
organs. One feature of aging is a gradual accumulation and
redistribution of adipose tissue and a change to its cellular
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composition (194). The accumulation of adipose tissue is
prominent within the abdominal cavity, but ectopic deposition
also occurs around organs and within skeletal muscle (195, 196).
Aging contributes to dysfunction of adipose tissue, characterised
by changes to the tissue microenvironment at structural and
cellular levels, resulting in abnormal secretions derived
predominantly, from adipocytes and resident immune cells
(197). Changes to the tissue include adipocyte hypertrophy,
hypoperfusion, hypoxia, impaired insulin signaling, and
accumulation of macrophages with a pro-inflammatory
phenotype and infiltration of other inflammatory immune
cells, such as sub-populations of T cells. In turn, adipose tissue
dysfunction contributes toward a change in physiology at a local
level (e.g., effects on the surrounding tissues, which could
include, tumors for example) but also at a systemic level (e.g.,
low-grade inflammation and insulin insensitivity). Aging is also
associated with a decline in muscle mass, muscle strength and
changes to the myokinome (198–200). This muscle secretome
consists of many cytokines and other soluble mediators
produced by skeletal muscle in response to contractions during
exercise. These so-called “exercise factors” are released into the
circulation and exert endocrine or paracrine functions in other
cells, tissues or organs, which has relevance for disease risk and
progression (201). Interleukin-6 (IL-6) is the most well-
characterized myokine and its roles when secreted from muscle
are considered to be positive rather than pro-inflammatory, and
include promoting glucose uptake, insulin sensitivity, lipolysis
and fatty acid oxidation. However, in other contexts IL-6 is
considered a mediator of inflammation, and so this cytokine is
sometimes referred to as being pleiotropic; whereby depending
on the context and the site of production, it can be pro- or anti-
inflammatory (202, 203).

Inflammation is a self-limiting process which consists of
a complex network of chemical signals triggered in the
presence of damage for healing purposes, upon infiltration
of pathogens as part of an immune response, or due to
adipose tissue dysfunction (204). Inflammation can directly
affect pathogens, such as by C-Reactive Protein activating
complement (205), interferons limiting viral replication or by
stimulating other immune processes, including attracting
immune cells (206). The term inflammaging refers to the
sustained low-grade inflammation that is characteristic of
aging, and consists of higher levels of cytokines, such as IL-6
and TNF-alpha, increased levels of glucocorticoids and decreased
levels of insulin-like growth factor 1 (207). Inflammaging has
also been associated with deregulation of the complement
pathway and increased activation of coagulation processes
(208). Inflammaging leads to, or is part of, the age-associated
decline and functional deterioration of immune competency,
referred to as immunosenescence (209). The most accepted
hallmarks of immunosenescence are lower numbers of naïve T
cells and higher numbers of memory T cells, particularly within
the CD8+ T cell pool (210). Sustained antigenic stimulation due
to viral infection, especially Cytomegalovirus (CMV), drives these
changes among T cells, but some cells accumulate with age per se
(211), or as a result of other infections or perhaps even
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sub-clinical malignant transformation (212–214). Further,
aging leads to impaired function of neutrophils, dendritic cells
and natural killer cells, and increased frequencies of regulatory T
cells and myeloid-derived suppressor cells (215). Most of these
changes are very evident and well established in blood, but
research characterizing inflammatory and immunological
processes in tissues is limited.

Although it is likely that key mechanistic links between aging,
cancer risk and tumor progression feature within inflammatory
and immunological processes, it is important to emphasise that
aging affects the structure and function of almost all aspects of
physiology (41). In principle, a positive development in cancer
care would be to incorporate measurements of aging into routine
clinical tests and decision making to provide an estimate of
a patient’s biological age. Despite the quest for a single and
easily measured biomarker of aging, a range of blood and
tissue biomarkers would need to be assessed. Aside from
inflammatory and immunological parameters, assessing age-
associated changes to a variety of body systems might be
recommended, including the cardiovascular system (e.g., blood
pressure, homocysteine), metabolic health (e.g., cholesterol,
glucose, leptin), the central nervous system (e.g., amyloid b42,
Tau), the hypothalamic pituitary axis and sympathetic nervous
system (e.g., cortisol, DHEA, IGF-1, adrenaline, noradrenaline)
(216). In addition, a number of genetic markers have been
proposed, such as particular alleles of apolipoprotein E,
polymorphisms in the gene encoding angiotensin-converting
enzyme, mutations in mitochondrial DNA, telomere length,
and many epigenetic changes (216–218). Recent emphasis has
been placed on measuring the accumulation of senescent cells
with aging. For example, by assessing DNA damage pathways
and cyclin-dependent kinase inhibitors (e.g., p16INK4a),
characterizing a senescence-associated secretory phenotype and
apoptosis resistance, or determining morphological changes,
such as lysosome accumulation (e.g via beta-galactosidase
activity) or plasma membrane disturbances (e.g., caveolin-1
upregulation) (219). Finally, it might be recommended that a
panel of aging biomarker measurements are interpreted
alongside integrated whole-body measurements of physical
functioning and frailty (e.g., sit-to-stand tests, walking tests,
muscle function tests) (220).

Aging Influences Tumor Progression
and Cancer Outcomes
Given the constellation of changes that happen over the life
course as time elapses, both chronological and biological aging
are associated with increased cancer risk. Older people are more
likely to get cancer, the majority of cases occur in people over 65
years of age (221). Given that life expectancy has significantly
increased in the last century (222), around 30% to 40% of
patients with breast cancer are over 70 years of age (223), and
yet this population is underrepresented in clinical trials (224).
Older age is associated with faster disease progression, and more
complications, including treatment resistance (225). Indeed,
menopausal status has a very strong influence on breast cancer
risk, tumor characteristics, and disease progression (226).
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Although poor outcomes among older adults might be
influenced by late/delayed diagnosis and undertreatment, a
variety of other age-associated mechanisms likely contribute, of
which some, interact with inflammation.

Deregulation of normal inflammatory processes is
characteristic of aging, including a sustained release of pro-
inflammatory cytokines, which can damage cells, and lead to
an accumulation of damaged cells in tissues, which could
conceivably progress into a malignancy (215, 227). Moreover,
reactive oxygen species released by neutrophils in inflammatory
settings can also damage cells, by oxidizing proteins, lipids and
DNA (228). Once a tumor has developed, the levels of some
cytokines have been associated with worse outcomes among
patients. This is the case of IL-6, for example, as high serum
levels appear to be linked with higher rates of metastasis and
shorter survival in breast cancer patients (229, 230). Indeed,
mechanistic studies have implicated IL-6 treatment resistance.
For example, an in vitro study of drug-sensitive and drug-
insensitive breast cancer cell lines showed that IL-6 was
present at a high concentration in the media of drug-
insensitive cells, but absent in the media of drug-sensitive cells
(231). In addition, pre-treatment of drug-sensitive cells with IL-6
for 10 days caused an 8–10 fold increase in the resistance to the
chemotherapeutic agent doxorubicin, and when drug-sensitive
cells were transfected to constitutively express the IL-6 gene,
drug resistance was shown to be 70-fold higher as compared with
the drug-sensitive cells. Thus, it is conceivable that inflammaging
could be one explanation for the treatment resistance that is
sometimes seen among older people.

While several cytokines have well-established pro-tumor
effects (e.g., IL-1, IL-4, IL-6) and can be produced by tumors
directly in an autocrine manner (232), not all cytokines
contribute toward pro-tumor processes. Indeed, many
cytokines may elicit anti-tumor effects, including IL-2, IL-12,
IL-15, IL-21, IFN-alfa and Granulocyte-Macrophage Colony-
Stimulating Factor GM-CSF (233). Some of these cytokines
have anti-inflammatory roles and can interfere with cancer
progression, either by enhancing anti-tumor immunity—
stimulating certain immune cells—or by exerting direct anti-
proliferative or pro-apoptotic actions on tumor cells directly
(234). These properties have been explored in cytokine-based
immunotherapy trials, either as monotherapy or in combination
with other therapeutic agents (235). IL-2, for example, promotes
survival, expansion and differentiation of activated NK and T
cells, and its use in immunotherapy is approved for the treatment
of metastatic disease in renal cell carcinoma and melanoma
(236). IFN-alfa has been shown to exert anti-proliferative, pro-
apoptotic and anti-tumor activity on cancer cells, and is
approved to treat Hairy cell leukemia, AIDS-related Kaposi’s
Sarcoma, Chronic Myelogenous Leukemia, Malignant
Melanoma and Follicular lymphoma (237). However,
challenges remain with these therapies, including short half-life
of the cytokines, low response rates and frequent adverse events
with high doses (238). However, it is conceivable that in older
adults who might exhibit lower basal levels of IL-2 or IFN-alfa, or
might have an impaired capacity to produce these cytokines
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(239, 240), these individuals might exhibit a greater risk of cancer
and poorer anti-tumor responses. Indeed, the shift to a pro-
inflammatory phenotype is well-known with aging (241) and
some evidence shows this profile is reversed in extremely old
populations, termed ‘anti-inflammaging’ (242, 243).

More broadly, other aspects of an aging immune system
have been linked with unexpected hospitalisations during
chemotherapy and limited effectiveness of some treatments—in
particular immunotherapies—among older people (244–246). It
is thought these effects might be partly attributed to the
reduction of the naïve T cell pool, as this translates into an
impaired ability to recognise and eliminate malignant cells. In
addition, the senescence associated secretory phenotype (SASP)
that some cells in aging tissues adopt, characterized by aberrant
production of a range of cytokines, growth factors, proteases, and
chemokines, could also play a role in tumorigenesis and
progression (247). Finally, studies have shown that other
markers of immunosenescence, including high frequencies of
CD8+CD28− T cells, regulatory T cells, and myeloid-derived
suppressor cells are associated with shorter survival (191).

Aging Influences Cancer
Biomarker Profiles
Evidence shows that the levels and characteristics of some cancer
biomarkers, that are routinely measured in tissues and in blood,
can be influenced by aging, which could affect the interpretation
of clinical measurements and treatment outcomes. For instance,
cross-sectional studies have shown that simple biomarkers
measured in plasma, which are implicated in cancer risk and
disease progression, can be influenced by aging (and also other
factors that change with aging, including physical activity and
body composition). For example, 77 cancer and inflammatory
biomarkers were assessed in plasma from 1005 individuals from
the Northern Sweden Population Health Study, and the influence
of 158 inter-individual factors, was assessed (248). The results
showed that 18 factors including age had a significant influence
on the levels of one or more of 52 of the 77 biomarkers (248). In
another study, plasma IGF-1 and serum IGFBP-3 were assessed
in samples from 364 women with intraepithelial neoplasia or
early invasive breast cancer and compared to 376 unaffected
women (249). Women with early breast cancer had 21% higher
IGF-1 and 19% higher IGFBP-3 than unaffected women,
however IGF-1 levels were negatively associated with age (and
also BMI) across all groups (249). Similar relationships have been
shown with other biomarkers, for example, preoperative serum
levels of CEA were shown to significantly positively correlate
with age at diagnosis and menopausal status (250).

Some of the strongest evidence of aging influencing cancer
biomarkers comes from studies that have considered the
menopause. For example, differences in tumor characteristics
were examined among 428 pre- and post-menopausal women
(251). Compared with post-menopausal women, pre-
menopausal women had significantly larger tumors (21% of
pre-menopausal women had tumors of >5cm of diameter vs.
12% of post-menopausal women, P = 0.047). In addition, pre-
menopausal women were more likely to have lymph node
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metastasis (77% of pre-menopausal women had positive axillary
lymph nodes vs. 56% of post-menopausal women, P < 0.001) and
more likely to have a positive expression of estrogen and
progesterone receptors (ER: 56% of pre-menopausal women
had positive expression vs. 44% of post-menopausal women,
P = 0.002. PR: 52 vs. 41%, respectively, P = 0.014). Finally, pre-
menopausal women had tumors with a greater proliferative
capacity as shown by the higher likelihood of KI-67 positivity
(33% of pre-menopausal women were KI-67 positive vs. 22.8%,
of post-menopausal women, P = 0.017). Post-menopausal
women, on the contrary, had significantly higher likelihood of
expression of HER2 (pre-menopausal women: 2% vs. post-
menopausal women: 19%, P = 0.038). Menopausal status also
influences treatment decisions, and post-menopausal women
were significantly more likely to have breast conserving surgery
(P = 0.004), chemotherapy (P = 0.007), radiotherapy (P = 0.008),
and endocrine therapy (P = 0.025) than pre-menopausal women.
These results highlight important differences in breast tumors
depending on menopausal status, which translate into differences
in treatment and outcomes. However, other studies have
suggested that age itself may be a stronger determinant of
biological and etiological heterogeneity in breast tumors than
menopausal status (252).

Aging in general is associated with particular molecular
subtypes of breast cancer and a differential expression of some
tumor biomarkers. For example, a study evaluated several
makers by immunohistochemistry in different subtypes of
invasive breast cancer among two groups (162 women ≤40
years and 100 women ≥50 years) (253). The results showed
that Triple Negative Breast Cancer and HER2 subtypes were
more common among young women. Furthermore, young
women were more likely to have ER-negative tumors overall
(253). In this work, tumor size and characteristics (ER, PR,
HER2, Ki-67 and p53) were also compared (253). tumors from
younger women were found to be significantly larger than those
from older women; approximately 1.03 cm larger on average (P =
0.01). In addition, there was a significant quantitative differential
expression of the tumor biomarkers on the basis of age. Younger
women presented with lower expression levels of ER and PR
(25% lower for ER, P < 0.01 and 10% lower for PR, P = 0.03), and
higher levels of Ki-67 and P53 overexpression (10% higher for
Ki-67, P = 0.01 and 13% higher for P53, P < 0.01) compared with
women in the older group. Another study evaluated the influence
of both age and menopausal status on several prognostic
biomarkers in 1226 patients with operable primary breast
cancer (254). Patients were divided into four groups: ≤40
years, premenopausal >40 years, postmenopausal <75 years
and ≥75 years. The results showed that youngest patients had a
worse prognosis, which improved with increasing age. Younger
patients had the highest infiltration of TILs (P < 0.001), greatest
p53 and Ki-67 expression (both P = 0.01) and the lowest
expression levels of ER (P < 0.001). Finally, ER was also
influenced by menopausal status, as expression level was
higher in postmenopausal women compared to pre-
menopausal counterparts (P < 0.001). Similar results have been
found in larger studies (255). For example, by assaying 3800
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tumor samples, significant inverse correlations with age and
biomarkers of tumor growth and genetic instability (e.g., Ki-67
and p53 positivity) and growth factor receptor over expression
(e.g., ErbB2+ or EGFR+) were shown (all P = 0.05), and among
ER+ tumors, ER expression was significantly positively
correlated with age (P < 0.0001). Likewise, a potential age-
related association between HER2 and PR was evaluated in a
study that examined 1104 ER positive tumors (divided into two
age groups, 173 women of ≤45 years and 931 women
of >45 years). There was an inverse relationship between HER2
and PR only in the group of women >45 years old (P =
0.001) (256).

There is an increasing interest on how factors such as age can
affect TILs. A study examined TILs in young (35–45 years),
middle-aged (55–65 years) and older (>70 years) patients with
luminal B (ER+PR+HER2−) breast cancer (257). TILs were
phenotyped using CD3, CD4, CD5, CD8, CD20, CD68 and
FOXP3 with immunohistochemistry. The results showed that
increasing age was associated with a decrease in the overall
percentage of stromal TILs in biopsies (P = 0.025). In addition,
age had a significant effect on the composition the tumor/
immune infiltrate, including a lower density of certain immune
cells identified using CD3, CD5, CD8 and CD20, which was
significant in all tumor regions (P < 0.042). The proportions of
CD8+ TILs also decreased significantly with age in all tumor
regions (P < 0.0001). However, the distribution patterns of
TILs across each tumor region did not differ with age.
Likewise, another study quantified the abundance of the
immune cell infiltrate (B cells, CD4+ and CD8+ T cells,
neutrophils, dendritic cells and macrophages) in tumors using
transcriptome datasets. It was shown that there were no
significant differences in the frequency or composition of TILs
between age groups (young group: <40 years, old group: ≥40
years), but high levels of TILs, and in particular, CD8+ T cells,
were associated with better clinical outcomes (P < 0.04) in
women under 40 years of age (258).

Other studies have examined whether the multi-parameter
molecular profiling tests, including IHC4, Oncotype Recurrence
Score (RS) and Prosigna Risk of Recurrence Score, are influenced
by age (259). Data from 940 women in the transATAC trial was
split across three age groups (group 1: ≤59.8 years, group 2: 59.8–
68.2 years and group 3: >68.2 years). The results showed that the
prognostic performance of all molecular scores significantly
differed with age, with the lowest scores among older patients.
For example, for both IHC4 and Oncotype RS, their prognostic
value appeared to be strongest in the lowest age group or group 1
(IHC4: group 1 HR = 3.01, 95% CI: 1.99–4.53, vs. group 2: HR =
1.67, 95% CI: 1.23–2.26 vs. group 3: HR = 1.64, 95% CI: 1.25–
2.15. Oncotype RS: group 1: HR = 2.16, 95% CI: 1.62–2.87 vs.
group 2: HR = 1.39, 95% CI: 1.16–1.66 vs. group 3: HR = 1.38,
95% CI: 1.11–1.73). However, Prosigna had the most prognostic
value in women between 60 and 68 years or group 2 (group 1:
HR = 3.87, 95% CI: 2.21–6.78 vs. group 2:HR = 4.51, 95% CI:
2.87–7.10 vs. group 3: HR = 1.83, 95% CI: 1.28–2.60). The
influence of age on other more recent biomarkers, including
CTCs and ctDNA has also been examined. For example, one
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study has reported a significant positive association between
older age and ctDNA positivity among 31 primary breast cancer
patients scheduled for neoadjuvant chemotherapy (260).

An Active Lifestyle Is Associated With
Better Cancer Outcomes
In addition to the robust evidence linking a physically active
lifestyle with a reduction in breast cancer risk (261), studies are
beginning to show that both exercise and physical activity are
beneficial during cancer treatment and in the years after. The
terms “exercise” and “physical activity” are sometimes used
interchangeably, and there is an important distinction that has
implications for the recommendations made in a cancer setting.
For example, the term ‘‘physical activity’’ includes leisure-time,
occupational, home-based and transport-related activities, some
of which, might be undertaken as normal activities of daily living.
The term “exercise” refers to a component of physical activity
(within the leisure-time domain) and comprises physical
activities that are planned, structured, repetitive and
undertaken for the purpose of improving or maintaining
components of physical fitness and/or sporting performance
(262). In many studies, individuals are referred to as being
‘‘active’’ or ‘‘inactive’’ and these terms infer that individuals
undertake (or fail to undertake) a defined level of physical
activity (e.g., such as the recommendations published by the
World Health Organization). Overall, patients with cancer are
advised to lead a lifestyle that is as active as symptoms allow,
whether this is through structured exercise or being physically
active via activities of daily living, and specific guidelines have
been developed for all stages of disease (263–265). For example,
in general, patients are recommended to undertake around
150 min of moderate-intensity physical activity each week,
which if achieved in a structured way, could be in bouts of
around 30 min on 5 days of the week. Alternatively,
recommendations also promote around 75 min of vigorous
physical activity per week and advise supplementing this
aerobic exercise with strength training on at least two days of a
week. These recommendations are largely based upon those
advocated by the World Health Organization and other bodies
for the general population (266). However, very recently, more
specific recommendations have been developed for patients with
cancer, focusing in particular, on structured exercise training
(267). For example, unique recommendations have been made
for patients with complications (e.g., metastases) and for
targeting particular side-effects and symptoms of disease and
treatment (e.g., anxiety, fatigue, lymphedema, physical function)
(267). For example, to counter fatigue, aerobic exercise training
at moderate intensity for at least 12 weeks, exercising for 30 min
three times a week has been recommended. Whereas for other
complications, such as lymphedema, supervised resistance
exercise training in a progressive manner two or three times
per week is recommended.

Aside from the distinction between structured exercise and
physical activity, many studies have shown that leading a
physically active lifestyle generally brings about benefits, but
studies that have employed structured and supervised exercise
Frontiers in Immunology | www.frontiersin.org 16131
training provide the strongest evidence. Benefits include limiting
treatment toxicity and alleviating cancer-related symptoms such
as fatigue, anxiety, depression, and improving quality of life
(QoL), mood and self-esteem (268, 269). For example, a
randomized and controlled trial investigated the effects of
exercise training on QoL and cardiorespiratory fitness among
53 postmenopausal breast cancer survivors (270). Women were
either assigned to an inactive control group (n = 28) or were
asked to exercise on cycle ergometers three times per week for 15
weeks (n = 25). Exercise was shown to increase overall QoL by
9.1 points compared to 0.3 points from the control group (mean
difference, 8.8 points; 95% CI: 3.6–14.0; P = 0.001). Further,
exercise also increased peak oxygen consumption by 0.24 L/min,
whereas this decreased by 0.05 L/min in the control group (mean
difference, 0.29 L/min; 95% CI: 0.18–0.40; P < 0.001). Moreover,
a meta-analysis investigated effects of exercise interventions on
QoL, social functioning, and physical functioning of breast
cancer survivors in 18 trials (exercise group = 602 participants;
control group = 603 participants) (271). The pooled effect
confirmed that exercise significantly improved QoL (SMD =
0.35; I2 = 61%; 95% CI: 0.15–0.54; P = 0.0004), social functioning
(SMD = 0.20; I2 = 16%; 95% CI: 0.08 to 0.32; P = 0.001), and
physical functioning (SMD = 0.32; I2 = 32%; 95% CI: 0.20–0.44;
P < 0.00001). Remaining active during cancer treatment has also
been shown to improve clinical outcomes (268) and to enhance
the efficacy of various cancer treatments (272). Other studies
have shown that high levels of physical activity are associated
with improved survival and lower levels of cancer recurrence
(35–37). The mechanisms underlying these observations have
not been proven, however likely explanations include exercise
and physical activity influencing the effectiveness of treatment
and modulating the properties of tumors both indirectly
and directly.

An Active Lifestyle Might Lead to Better
Cancer Outcomes Due to Improved
Chemotherapy Completion Rates
Patients who remain active during the period when they receive
chemotherapy are more likely to tolerate a greater dose and
complete their treatment (273, 274). For example, a study
evaluated the potential benefits of aerobic and resistance
exercise among 243 breast cancer patients undergoing adjuvant
chemotherapy (273). Patients were randomly assigned to either
supervised resistance exercise (n = 82), supervised aerobic
exercise (n = 78) or usual care (n = 82), for a median of 17
weeks. Chemotherapy completion rate was assessed as the
average relative dose intensity (RDI) from the originally
planned regimen, and it is known that patients who receive an
RDI of >85% have better outcomes. It was shown that patients in
the resistance exercise training and the aerobic exercise training
groups had better completion rates when compared to the usual
care group, although this was only statistically significant for the
resistance exercise regimen (RDI =84.1% control group vs. RDI=
89.8% resistance exercise group; mean difference=5.7%; 95% CI:
0.4–11.0; P < 0.033). Another study with a comparable group of
breast cancer patients (n = 230) also compared usual care with
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two exercise regimens: a low intensity home based regimen and a
moderate-high intensity supervised regimen combining aerobic
and resistance exercises during a period of chemotherapy
treatment (274). This study evaluated chemotherapy and
trastuzumab completion rates and found that moderate-high
intensity exercise improved completion rates, as a significantly
lower number of patients in this group required chemotherapy
dose adjustments compared to other groups (12%moderate-high
intensity vs. 34% low-intensity vs. 34% usual care, P < 0.002). In
addition, a smaller percentage of patients in the moderate-high
intensity group required a delay or termination of trastuzumab
therapy compared to the other two groups (6% moderate-high
intensity vs. 24% low-intensity vs. 28% usual care). It is worth
highlighting that the home-based exercise was not supervised
and was of lower intensity, whereas the most effective intervention
employed exercise that was supervised and of moderate intensity.
Generally, supervised exercise, and activities that are more
demanding, elicit more robust effects.

Exercise and Physical Activity Influence
Cancer Biomarker Profiles
There is a need for further research examining whether
exercise and physical activity influence cancer biomarker
profiles. Most evidence in support of this concept shows that
broader factors, which are not necessarily cancer-specific, but
are linked to clinical outcomes, including immune competency,
inflammation, and metabolic health, can change among patients
who modify their lifestyle (190). For example, a systematic
review of 45 articles, including a variety of observational
studies and randomized control trials of different designs,
summarized the effects that physical activity in general can
have among cancer survivors on biomarkers (275). This
analysis included the HEAL (Health, Eating, Activity and
Lifestyle) study, an observational prospective cohort study of
746 breast cancer survivors. It was concluded that regular
physical activity can lead to immunological benefits (e.g.,
natural killer cell cytotoxicity, increased T cell proliferation),
positive changes to proteins involved in insulin-signaling
pathways (e.g., C peptide, insulin-like growth factors) and
decreases in systemic inflammation (e.g., C-Reactive Protein,
serum Amyloid A). Similar conclusions were drawn by a pooled
analysis of three randomized controlled trials examining the
influence of resistance exercise on factors that have been linked
to poor cancer prognosis, including C-reactive protein, IL-6, IL1-
beta, insulin-like growth factor binding proteins, leptin, serum
amyloid A, adiponectin and TNF-alpha (276). Post-menopausal
breast cancer survivors were allocated to either 1 year of
resistance exercise consisting of two 1 hour supervised classes
and one 45-minute home-based session each week (n = 109) or
to a control group who undertook stretching and relaxation
exercises (n = 106). It was shown by each trial that resistance
training reduced systemic inflammation and improved
insulin signaling.

A limited number of studies have examined the effects of
exercise and physical activity on cancer-specific biomarkers. For
example, a study of 15 females with breast cancer investigated the
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influence of 8 weeks of aerobic exercise training on serum levels
of CEA and CA 15.3 (277). Participants exercised three times a
week, at a light-to-moderate intensity. The results showed that
participants exhibited a significant reduction in their BMI, body
fat percentage, and body mass (P = 0.0001) and there was a trend
for a decline in the levels of CA 15.3 (P = 0.091). There was no
significant change in CEA. Another study, examined whether 12
weeks of structured exercise affected CEA among 54 healthy
elderly women (70–77 years), randomized to different groups,
varying on the frequency of exercise undertaken (278). The
results showed that CEA significantly decreased in all groups
with the largest decrease (percentage change: −59 ± 5%) among
women who exercised 2–3 days per week.

Exercise and Physical Activity Affect
Tumors Directly and Indirectly
Exercise and physical activity lead to changes in tumor
characteristics, including angiogenesis and enhanced tumor
blood perfusion (due to an increase in tumor blood vessel
density, function and maturity, which leads to reductions in
intratumoral hypoxia), impaired growth and increased immune
cell infiltration (279–283). These changes are clinically relevant
as they may enhance the efficacy of some therapies, such as
chemotherapy or immunotherapy, by facilitating the delivery of
drugs to the tumor, and increased tumor vascularization and
blood perfusion could facilitate immune-surveillance and
processes such as reactive oxygen species production by some
immune cells and treatments (272).

For example, a study in 50 athymic female mice evaluated the
effects of 6 weeks voluntary wheel running on breast cancer
growth and progression (279). Half of the mice were allocated to
an active group with access to a running wheel and the other half
were a control group with no access to a running wheel. Mice
were implanted with human breast cancer cells on the first day of
the study. During the intervention, tumor growth was
monitored, as well as several markers of tumor blood
perfusion, hypoxia, vascularization and angiogenesis. After 6
weeks, although no statistically significant differences were
found between the groups for tumor growth or survival, access
to a running wheel changed many tumor charactetistics. The
active group exhibited increased intratumoral vascularization
and blood perfusion, but also an increase of hypoxia-inducible
factor 1 (HIF-1). In this study, mice were athymic and therefore
lacking T cells, which may explain why tumor growth and overall
survival was not affected. Indeed, even more encouraging results
have been shown by another study of a very similar design but
with immunocompetent animals. Mice allocated to a voluntary
exercise condition were compared to a control group (n = 11–12
per group) and it was shown that the exercise group had a
significantly lower tumor growth rate (P < 0.012), higher tumor
apoptosis (P = 0.048), greater microvessel density (P = 0.004) and
increased tumor vessel maturity, as determined by colocalization
of CD31 with desmin (281). However, different to the previous
study, intratumoral hypoxia was significantly reduced in the
active group compared to the control group (P = 0.012). Most
importantly, this study examined interaction between exercise
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and treatment. Tumor bearing mice were allocated to either
recieve no treatment, exercise only, cyclophospamide only,
or exercise combined with cyclophosphamide (n = 17 per
group). It was shown that the combination of exercise and
cyclophosphamide had the most striking impact on slowing
tumor growth, providing initial evidence that exercise and
the adaptations that may follow, improve the delivery of
chemotherapy to tumors.

Similar to an improvement in the delivery of drugs to sites
where they are needed, physical activity may also enhance the
ability of immune cells to migrate to tumors. For example, one
study examined a number of cancer models in mice, including
breast cancer. Mice were randomized to four weeks of voluntary
wheel running, or to a non-running control group prior to
tumor cell inoculation. Additional groups were designed to
examine questions related to the timing of exercise relative
to tumor formation (284). Overall, physical activity resulted in
a significant accumulation of tumor infiltrating immune cells,
including natural killer cells, CD3+ T cells and dendritic cells,
which appeared to be mediated, at least among natural killer
cells, by IL-6 and epinephrine. Physical activity was also linked
with an upregulation of pathways associated with inflammation
in the tumor (e.g., increased gene expression for IL-1-beta,
IL-6, TNF-alpha) and immune function (e.g., increased
gene expression of NKp46, NKG2D, CD68, CD209, CD8,
CD74, FoxP3). Other studies have shown that reduction of
hypoxia can also facilitate the infiltration of these immune
cells is tumors in mice (285), and given that exercise has been
shown to reduce tumor hypoxia, this might be another exercise-
induced mechanism that facilitates the homing of immune
cells to tumors. However, although some tumor infiltrating
lymphocytes may have a beneficial role (e.g., CD8+ T cells) in
tumor control (286), other cells, such as myeloid derived
suppressor cells could have the opposite effect promoting
tumorigenesis, tissue-destruction and metastases (287).

There are likely to be many other characteristics of tumors
that could be affected by physical activity or exercise, but the
effects on treatment and clinical outcomes may remain
unknown. For example, one study has indicated that exercise
reduces oxidative stress in breast tumors, as shown by 3-fold
lower levels of 8-oxo-dG—a marker of oxidative damage to DNA
—when examining tumors from a group of mice that had access
to a running wheel compared to controls (288). It has also been
hypothesized that physical activity and exercise may counter the
dysregulated energy metabolism of cancer cells, which is
characterized by high glucose uptake and glycolysis (289).
Studies in rats injected intraperitoneally with the carcinogen 1-
methyl-1-nitrosourea showed that rats with free access to
running wheels exhibited less cancer incidence and a lower
average number of tumors per rat compared to controls (290).
The exercising rats also showed changes in blood levels of
hormones and growth factors involved in glucose metabolism,
as reductions in plasma insulin, insulin-like growth factor 1
(IGF-1) and leptin were shown. In support, breast cancer bearing
mice undergoing 7 weeks of endurance exercise training studied
showed that in addition to a reduction in tumor mass, there was
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also a significant decrease in the levels of tumor lactate compared
to untrained controls (291). Exercise training also resulted in
significant changes in the levels of some enzymes that are
essential for sustaining a glycolytic phenotype of tumor cells.
For example, lactate dehydrogenase isoforms A and B, and
monocarboxylate transporter 1 were decreased in tumors from
trained mice, which, in combination with lower lactate
production, could contribute to slower tumor progression.
Indeed, excess of lactate anaerobic metabolism in cancer cells
has been associated with poorer activation, infiltration and
function of immune cells within the tumor (292). Therefore,
these metabolic findings support the positive impact of exercise
in enhancing anti-cancer immunity that may improve
treatment outcomes.

Despite some very advanced studies with animal models,
mechanistic research with human participants examining the
effects of exercise on tumor characteristics and clinical outcomes
is limited. Indeed, most mechanistic insight in human settings is
limited to review articles, which summarize that better clinical
outcomes among more active patients, are likely to be linked to
mechanisms related to metabolic growth factors, inflammation,
immune function, myokines and adipokines (293). Indeed, some
understanding of how exercise and physical activity can affect
tumors directly comes from studies that have incubated cancer
cell lines with human serum collected before and after exercise.
For example, a study collected serum from breast cancer
survivors before and after a 6-month exercise training
intervention (i.e. to examine chronic effects of exercise) and
before and after a 2 hour bout of exercise (i.e. to examine acute
effects) (294). Breast cancer cell lines were grown in human
serum for 48 hours and the effects on viability was examined.
Serum samples collected before and after the exercise training
intervention provided evidence of a reduction in systemic
inflammation shown by lower IL-6 and TNF-alpha post-
intervention, but these serum samples had no anti-growth
effect on the breast cancer cell lines. However, serum samples
collected immediately after an acute bout of exercise—which, as
expected, exhibited a high concentration of adrenaline,
noradrenaline, lactate and IL-6—reduced the viability of the
breast cancer cell lines by approximately 9% (294). Subsequent
work showed that breast cancer cells grown in this acute-
exercise-conditioned serum were 50% less tumorigenic when
implanted into mice, due to adrenaline and noradrenaline
activating the Hippo signaling pathway, and subsequent
phosphorylation of the YAP protein, reducing the expression
of genes associated with proliferation (295).

Prospective cohort studies with patients are ongoing, such as
the AMBER study, which is examining relationships between
physical activity and health related fitness with treatment
outcomes among 1500 newly diagnosed breast cancer patients
(296). Physical activity is measured objectively using wearable
devices, cardiorespiratory fitness is assessed directly, along with
body composition using dual x-ray absorptiometry, and clinical
measurements such as lymphedema and fatigue are also being
recorded. However, most importantly, molecular measurements
in tumors will be interpreted alongside clinical outcomes,
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with follow up at 1, 3 and 5 years. Among the very few
studies which have investigated the relationship between
exercise and treatment outcomes with cellular and molecular
measurements, is a randomized clinical trial of 20 breast cancer
patients undergoing neoadjuvant chemotherapy (297). One
group underwent a standard period of doxorubicin and
cyclophosphamide treatment, whereas another group received
this chemotherapy with supervised aerobic exercise training.
Exercise reduced systemic inflammation, but increased some
angiogenic factors, including proangiogenic factor placenta
growth factor (PLGF). In addition, circulating endothelial
progenitor cells increased, which might contribute toward
tumor vessel normalization and the reduction of hypoxia,
shown by animal studies. However, this study was unable to
examine whether exercise improved the clinical response to
chemotherapy due to power.

Other human studies provide more indirect evidence of
exercise-induced mechanisms that might benefit patients with
cancer. For example, it is very well established that acute bouts of
exercise cause a transient lymphocytosis and a subsequent
lymphocytopenia in the hours after, whereby lymphocytes with
strong tissue-migrating and effector capabilities, migrate to
peripheral tissues searching for antigens (298). This effect is
particularly marked among T cells and natural killer cells, and is
thought to represent immunosurveillance, that may even
facilitate the detection and elimination of tumors (42, 298–
300). The concept that regular exercise might bolster aspects of
immune function has been shown by a randomized and
controlled trial in breast cancer survivors (301). Participants
were randomized to either aerobic exercise training for 15 weeks
three times per week (n = 25), or an inactive control group (n =
28). The results showed that regular exercise increased cytotoxic
activity of natural killer cells. Other indirect effects of exercise
shown in human studies that might benefit patients with cancer
might be brought about by interaction with age-related
processes, such as immunosenescence and inflammaging. For
example, exercise training or remaining physically active
throughout life might prevent, limit, delay or even reverse
some aspects of immunosenescence (190, 299, 302). A
potential mechanism is limiting the expansion of late-stage
differentiated T cells by exercise mobilizing these cells to
peripheral tissues, where they are exposed to apoptotic signals,
followed by a mobilization of hematopoietic cells and trafficking
to the thymus, stimulating development of naïve T cells (190).
This hypothesis is supported by several observational studies,
including a comparison of 125 regular cyclists (55–79 years), 75
age-matched older adults and 55 young adults who did not
exercise regularly (303). Cyclists exhibited many features of a
less-aged immune system, including lower proportions of late-
stage differentiated T cells, high frequencies of B cells, lower
levels of IL-6, and higher levels of the thymoprotective cytokine
IL-7 (303). In support, another study has shown that higher
levels of directly measured cardiorespiratory fitness are
associated with lower frequencies of late-stage differentiated
T cells and higher frequencies of naïve T cells (304). Finally,
it is well established that regular exercise and physical
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activity can counter inflammation, and perhaps over a lifetime,
this effect limits inflammaging (42, 299, 300). For example,
a study of 3075 participants aged 70–79 years reported lower
levels of inflammatory markers, including IL-6, TNF-alpha
and CRP, among those who performed higher levels of
exercise (305).

Adiposity Is Associated With Poor
Cancer Outcomes
Overweight and obesity are characterised by excess accumulation
of adipose tissue and are commonly been defined using Body
Mass Index (BMI), of between 25–30kg/m2 or more than 30kg/
m2 respectively (306). Being overweight or obese is associated
with an increased risk of developing breast cancer, and these
associations are strongest in postmenopausal women (307, 308).
However, a higher BMI and/or higher percentage body fat are
measurements that have also been associated with worse clinical
outcomes among women diagnosed with breast cancer,
including worse prognosis, higher risk of recurrence, and lower
overall and disease-specific survival (38–40). For example,
a metanalysis showed that there appears to be a linear
relationship between BMI and mortality beginning from 20 kg/
m2 when assessed before diagnosis and up to 12 months after
(40). Moreover, obesity also appears to have an impact on the
effectiveness of some treatments. A pooled study compared data
from 8 prospective trials of breast cancer patients treated with
neoadjuvant chemotherapy and found that high BMI negatively
influenced the response to anthracycline-taxane based treatment,
and was significantly associated with lower rates of pathological
complete response (309). High BMI was also associated with
shorter disease-free survival and overall survival independently
of pathological complete response in luminal-like tumors and in
triple negative breast cancer. In addition, obesity has been linked
to the development of tumor metastases (310) and recurrence
(311). For example, in a study of 1250 HER2 positive breast
cancer patients it was shown that in the ER negative subgroup of
patients, obese individuals were more likely to develop distant
metastases at 5 years (33.4%, 95% CI: 22.1–50.5) than those in
the overweight (17.9%, 95% CI: 12.3–25.9) or under/normal
weight (17.5%, 95% CI: 13.8–22.4) groups (310). However, not
all studies evaluating the influence of overweight and obesity in
cancer settings have reported worse outcomes compared to lean
counterparts: this phenomenon has been named the “obesity
paradox” as some studies reported that people with a high BMI
responded better to therapy than expected or had better survival
rates (312). As an example, a prospective study of 88 metastatic
breast cancer patients on palliative chemotherapy analyzed the
impact of BMI on survival and treatment response over a follow
up period of 40 months (313). It was shown that a greater
proportion of overweight patients were most responsive to
treatment (56%) followed by obese patients (30%) compared to
a smaller proportion in the normal weight group (15%) (313).
Moreover, patients with a BMI ≥25 kg/m2 survived for longer (19
months) in comparison with patients who had a BMI < 25 kg/m2.
However, it is worth considering that this study has a relatively
small sample size and it may not have adequately controlled for
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other potentially influencing factors, such as tumor type,
receptor status, extent of disease, cardiovascular risk, etc.

Adiposity Could Be Associated With Poor
Cancer Outcomes Due to Undertreatment
It has been suggested that in the past, obesity has been linked
with undertreatment, where the dose of some chemotherapies
has been adjusted to the ideal body mass of a patient, or
arbitrarily capped at a body surface area of 2.0 m2. For
example, a retrospective cohort study compared treatment
patterns among overweight, obese, and patients of a normal
weight, in a total of 9672 breast cancer patients treated with
chemotherapy (314). The results showed that, compared to the
9% of people in the healthy weight group, 11% of the overweight
group, 20% of the obese group, and 37% of the severely obese
group, were administered dose reductions during their first
chemotherapy cycle. This reduction in the dose has been
associated with poorer outcomes (315), and could partially
explain why adiposity relates to worse prognosis. The rationale
for dosing chemotherapy based on body surface area, rather than
absolute body mass, is to avoid toxicity, however evidence
shows that this strategy could lead to poor clinical outcomes
and that toxicity is unlikely. For example, a study examined
data from 1,435 stage II breast cancer patients undergoing
adjuvant chemotherapy to determine if dosing based on
actual body mass increased risk of toxicity (316). Analyses
during the first chemotherapy cycle showed that patients
with a BMI ≥ 27.3 kg/m2 who were dosed according to actual
body mass did not exhibit excess toxicity (% of women with
toxicity: 47% of overweight women vs. 51% of lean women,
P = 0.51). Indeed, compared to overweight women who
received a dose reduction due to body surface area dosing,
overweight women who received their dose based on actual
body mass, had an adjusted risk ratio of treatment failure of
0.73 95% CI: 0.53–1.00, indicating that dose reduction can lead
to poor clinical outcomes. However, guidelines now advocate
dosing chemotherapy for obese patients based on absolute body
mass (317, 318). Thus, understanding why obesity is associated
with poor treatment outcomes, requires further investigation.

Adiposity Influences Cancer
Biomarker Profiles
Obesity is associated with particular molecular subtypes of breast
cancer. For example, a study evaluated the link between BMI and
breast cancer subtypes (319). In a retrospective analysis of 848
patients with primary operable breast cancer, groups were
formed on the basis of BMI: normal weight (BMI = 18–24.9
kg/m2), overweight (BMI = 25–29.9 kg/m2) and obese (BMI > 30
kg/m2). The results showed that triple negative breast cancer was
more common among overweight and obese women, whereas
HER2-positive tumors were more frequent among women of
normal weight.

Body composition can also affect the properties of tumors, as
well as the levels and characteristics of some cancer biomarkers.
Evidence in support comes from randomized and controlled
trials implementing behavioral or lifestyle interventions to bring
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about changes to physiology. For example, one study
randomized 32 overweight or obese stage 0-II breast cancer
patients into an intervention and control group as part of a 30
day pre-surgery “weight loss” study (320). The intervention
group received counseling on caloric restriction and aerobic
exercise to promote a change in body mass of 0.68–0.92 kg/
week. The control group received nutritional counseling and
upper body resistance exercise which was assumed to elicit a
smaller energy expenditure than aerobic exercise. Circulating
cytokines and metabolic measurements implicated in cancer
progression but also tumor characteristics were assessed. The
intervention group exhibited a greater change in body mass than
the control group (−3.62 vs. −0.52 kg) and exhibited greater
changes in metabolic measurements, including serum leptin and
fasting insulin, and inflammatory markers such as TNF-alpha.
Most importantly, a greater change to body mass and
accelerometer-measured physical activity was positively
associated with an infiltration of the CD56+dim cytotoxic
sub-population of natural killer cells into tumors. Indeed,
tumors from the intervention group were characterized by
a greater expression of key genes associated with immune
cell recruitment (e.g., CX3CL1, CXCL1, and CXCL12), and
higher TNF-alpha, but there were no differences in Ki-67
between groups.

Other evidence for body composition affecting cancer
biomarkers comes from cross-sectional studies. For example,
one study investigated the association between BMI in 535 post-
menopausal women with operable breast cancer and the
expression of HER2. The results showed that, with increasing
BMI, there was a significant decrease in HER2 overexpression
(321). The circulating form of HER2 has also been shown to be
positively associated with BMI in a healthy population of males
and females aged 45–65 years (322). Other cross-sectional
studies have examined the influence of BMI on results from
molecular profiling tests. For example, 865 postmenopausal
women with breast cancer were divided into groups on the
basis of BMI (<25 kg/m2, 25–30 kg/m2 or ≥30 kg/m2). It was
shown that IHC4 and Oncotype RS had the most prognostic
value for distant recurrences in the group with the lowest BMI
and there was no prognostic value in the group with a BMI ≥30
kg/m2. In the case of Prosigna, the score was most prognostic in
patients with a BMI 25–30 kg/m2. Other cross-sectional studies
have examined TILs in the context of body composition. For
example, functional tumor infiltrating CD8+TILs were assessed
in two groups of breast cancer patients who were classified as
either lean (BMI < 25 kg/m2) or obese (BMI > 32.5 kg/m2). It was
shown that CD8+ TILs from obese patients had a significantly
lower expression of Granzyme B (323). Furthermore, there was a
significantly lower number of these cells in the lymph nodes
draining the tumor in the obese group.

Other studies have examined soluble cancer biomarkers in a
variety of body fluids. For example, a study of 128 women with
breast cancer (89 post-menopausal) and 254 without breast
cancer (125 post-menopausal) measured prostate specific
antigen (PSA) in serum and nipple aspirate fluid (324). Among
women with breast cancer, PSA measured in nipple aspirates
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from pre-menopausal women negatively correlated with BMI
(r = −0.53, P = 0.049), whereas PSA correlated positively with
BMI in samples from post-menopausal women (r = 0.37, P =
0.017). Among women without breast cancer, serum PSA was
negatively correlated with BMI in both pre- (r = −0.56, P = 0.001)
and post-menopausal women (r = −0.37, P = 0.017), but this
association was lost when controlling for plasma volume (324).
Indeed, obesity is associated with an expansion of blood and
plasma volume (325–327) and it is often not considered that the
concentration of cancer biomarkers reported in cross-sectional
studies could be affected. For example, a study investigated the
effect of plasma hemodilution on the concentration of several
tumor markers in 6917 healthy women and found that BMI was
significantly positively associated with a greater plasma volume,
as well as with higher serum concentrations of CEA and a‐
fetoprotein and lower concentrations of CA 125 and CA 19.9
(328). Even in investigations examining changes over time with
serial measurements, results might be affected by shifts in plasma
volume. Bouts of exercise that could have been undertaken by
study participants and patients in the hours before blood
sampling, which is sometimes not controlled for, can decrease
plasma volume by up to about −10%, artificially increasing the
concentration of some measurements (329, 330). Although these
potential inaccuracies in reported values are probably only a
minor consideration, they could shift a measurement above or
below a cut-off or threshold that influences treatment decisions,
or with serial measurements, could give falsely influence
estimates of disease progression.
Adiposity Can Affect Tumors Directly and
Indirectly
The mechanisms underlying links between obesity and breast
cancer treatment have not been determined. Some mechanisms
could be indirect and systemic due to the impact that overweight
and obesity has on metabolic health, inflammation, and immune
competency, whereas other mechanisms could be more direct, or
at least related to the characteristics of local tissue surrounding
breast tumors. Adipose tissue could in principle contribute to
local tumorigenesis, but perhaps counter-intuitively, women
with a high percentage of breast adipose tissue, are at a lower
risk of disease (331). Indeed, high mammographic density,
characterized by radiologically dense breasts consisting of
epithelial or stromal tissue which appears light on a
mammogram, compared to adipose tissue which appears dark,
is a strong predictor of breast cancer risk (332, 333). Although
BMI and physical activity should be considered when
interpreting mammographic density data (334, 335) it is
important to emphasise that the characteristics of breast
adipose tissue, such as the phenotype, and the secretory profile,
are probably the most important factors that could influence
breast tumors.

In vitro and in vivo animal studies have examined whether
interactions between breast cancer cells and different cell types
within surrounding adipose tissue, such as mature and immature
adipocytes, and normal and cancer associated fibroblasts,
Frontiers in Immunology | www.frontiersin.org 21136
influence tumor progression (336, 337). Using cell co-cultures
and mouse models, it was shown that cancer cells triggered
phenotypical changes in the surrounding adipocytes, such as
increased production of proteases and pro-inflammatory
mediators including IL-6, IL-8, CCL2 and CCL5 (336). Indeed,
this cross-talk between so-called cancer-associated adipocytes,
contributed toward cancer progression and invasion (336).
Cytokine production was enhanced further when cancer cells
interacted with immature adipocytes stimulating mammosphere
formation, resulting in higher invasion and metastatic potential.
Indeed, when the cancer cells were injected into mice after
co-culture with immature adipocytes for 7 days, the number
of tumor initiating cells increased 3-fold, and the volume of
metastases in the lungs increased as did the number of
circulating tumor cells (337). Further experiments showed that
immature adipocytes and the release of cytokines upregulated
embryonic stem cell transcription factors c-MYC, SOX2, and
NANOG, through Src activation, promoting the expansion of
cancer stem cells (337).

Other animal studies have shown that adipocytes from
human and mouse breast tissue recruit and activate
macrophages (338). For example, one study has used a human-
in-mouse breast cancer model whereby human breast adipose
stromal cells, modified to model an inflammatory environment
of obese breast, are injected into the mouse mammary fat. In
this work, mice were randomized to eat either a normal
diet (ND) or to eat a diet with increased calories from fat
(HFD). It was shown that in mammary glands of HFD mice,
total numbers of macrophages were significantly increased
(4.4 x105 ± 0.5 x 105; macrophages/gland) compared with ND
mice (2.5 x105 tumor± 0.5 x105; P = 0.05). It was also shown
that the recruitment and activation of these macrophages
was through the CCL2/IL-1b/CXCL12 signaling pathway.
These findings provide a mechanistic role for adipocytes
leading to adipose tissue dysfunction in breast tissue, which
could precede tumor development (338). A study in mice
evaluating obesity-promoted breast tumor growth showed
that increased oxidation of fatty acids and reduced glycolysis,
both enhanced by the leptin-PD-1-STAT3 axis in CD8+
TILs, promoted obesity-related breast tumorigenesis and
contributed to resistance to immunotherapy (323). Inhibiting
STAT3 or fatty acid oxidation restored CD8+ T cell effector
functions and inhibited tumor development in obese mice.
Other murine studies have provided further evidence that
obesity can impair cancer immune surveillance. For example,
showing that obesity promotes hyperactivation of CD8+ TILs,
and an accumulation of granulocytic myeloid-derived suppressor
cells (G-MDCSs), which induced Fas/FasL mediated apoptosis
of CD8+ T (339).

Research in humans has also examined links between
breast cancer and dysfunctional adipose tissue. For example,
one study compared two groups of individuals without
a breast cancer diagnosis (lean n = 37, obese n = 19) to
patients with breast cancer (n = 12) (340). Using RT-PCR to
examine expression levels of genes in circulating leukocytes, it
was shown that TNF-alpha, IL-6, leptin and ErbB2, were
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significantly higher in obese individuals without a cancer
diagnosis and among breast cancer patients compared to the
lean group. Assuming leukocyte gene expression of ErbB2 is
representative of gene expression in breast tissue, then obesity-
associated over-expression could have important implications
for tumorigenesis and treatment, given its role in metastatic
disease. A possible mechanism underlying interactions between
disease progression and adipose tissue surrounding breast
tumors could be the adoption of an adipose derived secretory
phenotype that attracts different populations of immune cells.
Adipose tissue dysfunction is characterised by changes to the
tissue microenvironment at cellular and structural levels, which
results in abnormal secretions derived from adipocytes and local
immune cells (197). Changes include adipocyte hypertrophy,
hypoperfusion, hypoxia and impaired insulin signaling, leading
to an enlargement of adipose tissue, low-grade systemic
inflammation due to the release of inflammatory cytokines
(341, 342) and possibly exacerbated immunosenescence (343).
These changes lead to immune cell accumulation within adipose
tissue, most prominently consisting of macrophages with a pro-
inflammatory phenotype and effector-memory CD8+ T cells
(195, 197). The implications of attracting highly inflammatory
populations of immune cells to areas surrounding breast tumors
are unknown, but could conceivably have both negative and
positive effects, depending on the cell type recruited, perhaps in
part providing one explanation for the “obesity paradox”. For
example, a study investigated 334 breast tumors from patients
with long-term follow-up and showed that high frequencies of
tumor infiltrating CD8+ T cells were associated with higher
cumulative breast cancer specific survival (344). On the other
hand, a metanalysis of sixteen studies and a total of 4,541 breast
cancer patients showed that overall survival and disease free
survival correlated with high frequencies of tumor associated
macrophages (overall survival: HR = 1.50, 95% CI: 1.20–1.88 vs.
disease free survival: HR 2.23, 95% CI: 1.72–2.90) (345).

Although in obesity, there is often a large accumulation of
abdominal adipose tissue, deposition occurs elsewhere, including
the breast, and a question that remains is whether regional
depots of adipose tissue interact differently with tumors. To
further improve our understanding of this question, a study
isolated breast tissue-derived and abdominal tissue-derived
mesenchymal stem cells (MSCs) from healthy adults
undergoing cosmetic surgery (346). MSCs, with the capacity to
differentiate into adipocytes, were co-cultured with MCF7 or
MDA-MB-231 breast cancer cell lines and compared to co-
culture with human macrophages. MSCs from both regions
stimulated proliferation of the breast cancer cell lines similarly,
and abdominal MSCs had a higher expression of IL-1-beta
compared to breast MSCs. Co-culturing MSCs with
macrophages led to higher levels of VEGF-A, VEGF-C, SER-
PINE1, FGF2, IL-1-beta and IL-6 gene expression in
macrophages. Thus, MSCs, and perhaps adipocytes from both
breast and abdominal depots, interact with macrophages, which
could lead to the development of dysfunctional adipose tissue.

In summary, further studies are required to understand
mechanistic interactions between adipose tissue—including
Frontiers in Immunology | www.frontiersin.org 22137
adipocytes and adipose-associated immune cells—with breast
cancer cells. Indeed, if the dysfunction of adipose tissue
surrounding breast tumors influences the accumulation of local
immune cells, tumor infiltrating lymphocytes, and other tumor
characteristics, then this process could have an impact on the
expression of tumor biomarkers and cancer progression.
Moreover, systemic adipose tissue dysfunction could lead to
metabolic, inflammatory and immunological profiles that have
been associated with poor clinical outcomes. Encouragingly, if
adipose tissue dysfunction and adipose derived secretions
contribute to tumorigenesis, then lifestyle interventions could
in principle limit disease progression and facilitate treatment. For
example, regular exercise, triggers a reduction in fat mass and
limits the release of adipokines, resulting in anti-inflammatory
adaptations (42, 299, 347).
CONCLUSIONS

Managing heterogeneity in the clinical response exhibited
by patients remains a challenge. The first part of this
article summarized biomarkers that are available to address
this problem, by informing therapeutic options, assessing
pathological response and predicting clinical outcomes. The
second part of this article summarized factors such as aging,
physical activity, and body composition, that might influence
the sensitivity and specificity of these biomarkers, by
modulating the cellular composition and function of tissues.
This article has highlighted that the characteristics of patients,
including their age, physical activity level and adiposity,
could interact with disease progression and influence
treatment effectiveness due to a combination of direct and
indirect mechanisms (Figure 1). Indeed, processes and
profiles associated with lifestyle, including metabolic health,
inflammaging and immunosenescence, are gaining increasing
recognition as being important factors that can influence cancer
and its treatment. The positive outlook is that some of these
processes might be reversible, or at least, their development
might be slowed or limited, by for example, encouraging
patients to lead a physically active lifestyle, at almost any
stage of disease. In summary, the measurement of cancer
biomarkers in blood or in tumors could be influenced by
patient characteristics and their lifestyle, because these factors
affect the composition and function of cells and tissues across
the body and across the life-course. These factors are not
commonly considered clinically or in research, either for
practical reasons or because the supporting evidence base is
developing. Thus, a broader perspective within cancer care is
required which integrates objective measurements of aging,
lifestyle and other patient characteristics, using a combination
of established biomarkers measured in tissues and in blood,
but also broader whole-body measurements of physical
functioning and frailty (216, 219, 220). Given the literature
presented herein, we hope that this article encourages an
interdisciplinary phenomic approach in oncology research
and clinical management.
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FIGURE 1 | Breast cancer prognosis, tumor properties, and clinical outcomes can be influenced by the characteristics of patients, including: age, body composition
and adiposity, or exercise and physical activity. References are considered to be representative examples of robust human studies with breast cancer patients.
(A) Cancer biomarkers can be assessed in tumor tissue or in blood and can provide information about prognosis and the clinical response to different treatments.
(B) Some studies have shown that older age is associated with lower expression of tumor proliferative markers (e.g., Ki-67) and proteins implicated in tumor
progression (e.g., P53), and higher expression of certain hormone receptors (e.g., ER, PR). (C) Higher adiposity has been associated with a lower expression of
HER2, a lower magnitude of tumor immune cell infiltration and lower activation status of tumor-resident CD8+ T cells. (D) Bouts of exercise and physical activity have
been shown to decrease some inflammatory markers (e.g., IL-2) and increase pro-angiogenic factors (e.g., PLGF and EPCs expressing VEGFR-2). Higher tumor
vascularity could facilitate the delivery of drugs to a tumor. (E) The effectiveness of breast cancer treatments can be influenced by tumor properties [shown in panel
A] and the characteristics of patients [shown in (B–D)]. (F) In turn, interaction between tumor properties, the characteristics of patients, and the effectiveness of
breast cancer treatments can influence clinical outcomes. EPCs: Epithelial Progenitor cells, ER: Estrogen Receptor, HER2: Human Epidermal Growth Factor
Receptor-2, IL-2: Interleukin 2, IL-6: Interleukin 6, KI-67: nuclear protein Ki-67, PGLF: Placenta Growth Factor, PR: Progesterone Receptor, P53: tumor protein 53,
TILs: tumor Infiltrating Lymphocytes, VEGFR-2: Vascular Endothelial Growth Factor Receptor-2. Figure created with BioRender.com. Adapted from “tumor
Microenvironment 2” and “Types of Cancer Treatment”, by BioRender.com (2020). Retrieved from https://app.biorender.com/biorender-templates.
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VM. Aging is associated with circulating cytokine dysregulation. Cell
Immunol (2012) 273(2):124–32. doi: 10.1016/j.cellimm.2012.01.001

242. McNerlan SE, Armstrong M, Ross OA, Maeve Rea I. Cytokine Expression and
Production Changes in Very Old Age. Germany: Springer Netherlands (2009)
p. 771–81.

243. Minciullo PL, Catalano A, Mandraffino G, Casciaro M, Crucitti A, Maltese G,
et al. Inflammaging and Anti-Inflammaging: The Role of Cytokines in
Extreme Longevity. Archivum Immunol Ther Exp (2016) 64(2):111–26.
doi: 10.1007/s00005-015-0377-3

244. Pawelec G. Immunosenescence and cancer. Biogerontology (2017) 18
(4):717–21. doi: 10.1007/s10522-017-9682-z

245. Huff WX, Kwon JH, Henriquez M, Fetcko K, Dey M. The Evolving Role of
CD8+CD28– Immunosenescent T Cells in Cancer Immunology. Int J Mol
Sci (2019) 20(11):2810. doi: 10.3390/ijms20112810

246. Moreira A, Gross S, Kirchberger MC, Erdmann M, Schuler G, Heinzerling L.
Senescence markers: Predictive for response to checkpoint inhibitors. Int J
Cancer (2019) 144(5):1147–50. doi: 10.1002/ijc.31763

247. Zinger A, Cho WC, Ben-Yehuda A. Cancer and Aging - the Inflammatory
Connection. Aging Dis (2017) 8(5):611–27. doi: 10.14336/AD.2016.1230

248. Enroth S, Johansson Å, Enroth SB, Gyllensten U. Strong effects of genetic and
lifestyle factors on biomarker variation and use of personalized cutoffs. Nat
Commun (2014) 5:4684. doi: 10.1038/ncomms5684

249. Johansson H, Baglietto L, Guerrieri-Gonzaga A, Bonanni B, Mariette F,
Macis D, et al. Factors associated with circulating levels of insulin-like
growth factor-I and insulin-like growth factor binding protein-3 in 740
women at risk for breast cancer. Breast Cancer Res Treat (2004) 88(1):63–73.
doi: 10.1007/s10549-004-0746-9

250. Li J, Liu L, Feng Z, Wang X, Huang Y, Dai H, et al. Tumor markers CA15-3,
CA125, CEA and breast cancer survival by molecular subtype: a cohort
study. Breast Cancer (2020) 27:621–30. doi: 10.1007/s12282-020-01058-3
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Patients with end-stage renal disease (ESRD) are at high risk of morbidity and mortality
from cardiovascular and infectious diseases, which have been found to be associated with
a disturbed immune response. Accelerated T-cell senescence is prevalent in these
patients and considered a significant factor contributing to increased risk of various
morbidities. Nevertheless, few studies have explicated the relevance of T-cell senescence
to these fatal morbidities in ESRD patients. In this study, we designed a longitudinal
prospective study to evaluate the influence of T-cell senescence on cardiovascular events
(CVEs) and infections in hemodialysis (HD) patients. Clinical outcomes of 404 patients who
had been on HD treatment for at least 6 months were evaluated with respect to T-cell
senescence determined using flow cytometry. We found that T-cell senescence was
associated with systemic inflammation. High-sensitivity C-reactive protein was positively
associated with decreased naïve T cell levels. Elevated tumor necrosis factor-a and
interleukin 6 levels were significantly associated with lower central memory T cell and
higher T effector memory CD45RA cell levels. Decreased CD4+ naïve T cell count was
independently associated with CVEs, whereas decreased CD8+ naïve T cell count was
independently associated with infection episodes in HD patients. In conclusion, HD
patients exhibited accelerated T-cell senescence, which was positively related to
inflammation. A reduction of naïve T cell could be a strong predictor of CVEs and
infection episodes in HD patients.

Keywords: hemodialysis, T-cell senescence, naïve T cells, cardiovascular event, infection
INTRODUCTION

End-stage renal disease (ESRD), considered as a public health concern, affects more than 1.5 million
people worldwide (1). Patients with ESRD usually have a high risk of life-threatening comorbidities,
especially cardiovascular and infectious diseases. According to the U.S. Renal Data System, ESRD
patients have a 25% annual mortality rate, and almost 50% patient deaths are attributed to
org March 2021 | Volume 12 | Article 6446271149
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cardiovascular complications (2). Infection is the second leading
cause of death, accounting for 35% of all-cause mortality (3). It
has been proposed that chronic kidney disease may be a model of
premature aging, since uremia could induce premature
senescence and many aging-related complications are prevalent
in ESRD patients, including those with cardiovascular diseases
(CVDs) and infections (4). Recent evidence suggests that uremia
can induce T-cell senescence, indicated by a lower thymic output
of naïve T cells, a decline in T-cell telomere length, and an
increase in differentiation toward the terminal differentiated
memory phenotype; T-cell senescence is more pronounced in
patients undergoing hemodialysis (HD) therapy (5, 6).
Compared with physiological aging, ESRD seems to have the
ability to increase the immunological age of T cells by 20–30
years (7). In terms of function, T cells in ESRD patients are pre-
activated by secreting more inflammatory cytokines in the
resting state, leading to persistent inflammation and providing
a breeding ground for CVD (8, 9). On the contrary, T cells in
ESRD patients have diminished reaction toward pathogen
stimulation, with susceptibility to apoptotic death after
activation (9), reduced humoral response to vaccination (10),
and impaired maintenance of specific T cell memory (11),
resulting in a high incidence of infection. Hence, interventions
targeting T cell function could improve morbidity and mortality
in such patients.

While it is well-recognized that ESRD-related T cell
dysfunction is prominent, few studies have explicated the
relevance of T-cell senescence to the fatal morbidity resulting
from ESRD, and existing results are based on different markers of
immune senescence. It has been reported that telomere length
shortening is associated with a higher risk of death, reduced
thymic output is associated with severe infection episodes, and
terminally differentiated CD8+T cell expansion is closely linked
to accelerated atherosclerosis in ESRD patients (5). CD4+CD28-

T cells, as a terminal differentiated memory phenotype, were
independently associated with the presence of atherosclerotic
disease in ESRD patients (12). Cytomegalovirus (CMV) infection
is considered to act as a critical factor for accelerated T-cell
senescence in ESRD patients by exacerbating the selective
depletion of naïve T cells and clonal expansion of memory T
cells (13). However, since most patients with ESRD are CMV-
seropositive (14, 15), it is difficult to distinguish the CMV-
independent effects of T-cell aging in ESRD. The question that
then arises is whether it would be possible to find one consistent
marker for evaluating overall immunological age, assessing the
risk of multiple complications, and aiding early intervention in
ESRD patients.

Depletion of naïve T cells, the most significant and consistent
change reported during aging, is also prevalent in ESRD (8, 15).
Our previous study findings revealed that a decrease in the
number of naïve T cells is significantly associated with
increased mortality in HD patients (16), supporting the idea
that selective reduction of naïve T cell is a critical feature in this
population and may impact clinical outcomes profoundly. In the
present study, we prospectively analyzed whether T-cell
senescence is associated with cardiovascular events (CVEs) and
Frontiers in Immunology | www.frontiersin.org 2150
infectious episodes in HD patients and aimed to find valuable
markers for clinically evaluating immunological aging and
predicting risk of ESRD.
MATERIALS AND METHODS

Study Population
This current study included patients who had been on HD
treatment for at least 6 months in the Blood Purification Center,
Department of Nephrology, Zhongshan Hospital, Fudan
University. Patients were enrolled from August to September,
2016 and followed weekly. Individuals who experienced CVE or
infection within 3 months were excluded. Those with evidence of
hematological diseases, rheumatic diseases, active malignancies,
and history of human immunodeficiency virus infection or using
immunosuppressants were also excluded. Follow-up lasted for 2
years and ended in October 2018. During follow-up, CVEs and
infection episodes were documented. CVEs were defined as
coronary artery disease, congestive heart failure, stroke, and
peripheral arterial occlusive disease. Infection episodes were
defined as infectious diseases requiring regular intravenous
antibiotics in hospital or emergency department.

We obtained blood samples from the arterial site of vascular
access before the start of the HD session in the middle of the
week. Anti-CMV-IgM and IgG antibodies were detected using
the Roche Elecsys assay. All procedures were performed at the
Department of Clinical Chemistry, Zhongshan Hospital, Fudan
University using standard methods. Written informed consent
was obtained from all patients that met the inclusion criteria.
This study was approved by the Ethics committee of Zhongshan
Hospital, Fudan University.

Cell Preparation and Flow
Cytometry Analysis
On the day of blood drawing, blood samples mixed with heparin
anticoagulant were lysed with red blood cell lysis solution and 0.1
mM EDTA and prepared for flow cytometry analysis with the
following fluorescein-conjugated monoclonal antibodies: CD3-
PE (Bio- Legend, San Diego, CA, USA), CD4-APC (eBioscience,
San Diego, CA, USA), CD8a-Percp/Cy5.5 (eBioscience),
CD45RO-FITC (Miltenyi Biotec, Bergisch Gladbach,
Germany), and CCR7-APC/Cy7 (BioLegend). The relative
expression of CD45RO and CCR7 was used to identify naïve
T cell (TNaïve, CD45RO

− CCR7+), central memory T cell (TCM,
CD45RO+ CCR7+), effector memory T cell (TEM, CD45RO

+

CCR7−), and T effector memory CD45RA cell (TEMRA,
CD45RO− CCR7−) subsets of CD4+ or CD8+ T cells. These
markers were selected according to previous studies (7, 17). The
immunophenotyping methods and gating strategy have been
elaborated in the supplementary materials (Figure S1).

Statistical Analysis
All data are expressed as mean ± standard deviation or median
(interquartile range), as appropriate. Correlations between T cell
parameters and laboratory variables were tested using a non-
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parametric Spearman rank analysis. Free survival of CVEs and
infection episodes were estimated using the Kaplan–Meier curve,
and differences between groups were examined using the log-
rank test. Univariate Cox regression analysis was used to identify
predictors of CVE and infection. Significant predictors were
subsequently added to the multivariable model, and backward
stepwise Cox regression identified the most parsimonious model.
The probability used for the stepwise regression was set at 0.05
for entry of variables and 0.1 for removal of variables. The results
of the Cox proportional hazards analysis are presented as the
hazard ratio (HR) and 95% confidence interval (95% CI).
Statistical significance was considered at P < 0.05. All statistical
analyses were performed using SPSS version 20.0.
RESULTS

Demographic and Clinical Characteristics
of Patients
A total of 404 patients (248 men and 156 women) were enrolled
in this study. The average age of patients was 59.4 ± 14.6 years.
The median time in HD was 53 (26, 80) months. Of the 404
patients, 94 (23.3%) had diabetes mellitus and 324 (80.2%) had
hypertension. The overall frequency of CVD in this cohort was
30.7%; stroke and congestive heart failure were the most
prevalent complications, followed by coronary artery disease
and peripheral arterial occlusive disease. The underlying
kidney diseases included chronic glomerulonephritis (46.8%),
diabetic nephropathy (16.8%), polycystic kidney disease (9.4%),
hypertension renal disease (3.5%), others (10.9%), and unknown
(12.6%). Only one patient (0.2%) was seropositive for CMV-IgM,
and 401 patients (99.3%) were seropositive for CMV-IgG. The
median level of CMV-IgG was 468 U/ml, and 189 patients
(46.8%) had CMV-IgG titers exceeding the upper limit of
500 U/ml. Table 1 presents the baseline characteristics of the
study population.

T-Cell Senescence Is Associated With
Systemic Inflammation in HD Patients
We examined the association between T cell subsets and
circulating inflammatory markers at enrollment. As shown in
Table 2, high-sensitivity C-reactive protein (hsCRP) was
positively associated with decreased TNaïve cell count in both
CD4+ and CD8+ T cell compartments (p < 0.05). Meanwhile,
elevated tumor necrosis factor-a (TNF-a) and interleukin 6
(IL-6) levels were significantly associated with lower CD4+ TCM

and higher CD4+ TEMRA levels (p < 0.001).

Decreased CD4+ TNaïve Cell Count as
a Predictor of CVEs in HD Patients
During the 650 ± 176 days of follow-up, 86 patients (21.3%)
experienced at least one CVE and a total of 99 CVEs were
recorded. The incidence of CVE was 13.4% per year. A total of 42
patients died of CVEs, accounting for 56.8% of all-cause
mortality. Furthermore, 32 patients had stroke and 14 died of
it; 24 patients developed acute coronary syndrome and 12 died of
Frontiers in Immunology | www.frontiersin.org 3151
it; 22 patients experienced at least one event of heart failure and 8
died of it; 12 patients developed lower extremity atherosclerotic
occlusive disease and 4 died of it; and 4 patients died of sudden
cardiac death. The median value of each T cell parameter was
used in analyzing the correlation between CVEs. A lower
absolute number/percentage of CD4+ TNaïve as well as a higher
percentage of CD4+ TEM and CD8+ TEM could significantly
predict CVEs (Figure S2). When taking age into consideration,
only CD4+ TNaïve cells were shown to significantly predict CVEs.
In the pairwise comparison, patients with a lower CD4+ TNaïve

count had a significantly higher CVE incidence in both the
middle-aged [36 < age (years) ≤ 65, p = 0.014] and old (age > 65
years old, p = 0.003) groups. There was no difference in CVE
incidence between middle-aged patients with a lower CD4+

TNaïve count and old patients with a higher CD4+ TNaïve count
(Figure 1). In the univariate Cox proportional hazard model,
other CVE predictors included older age, history of CVD and
diabetes mellitus, usage of central venous catheter, lower
serum levels of albumin, prealbumin, creatinine, and uric acid,
and increased levels of white blood cell count, hsCRP, and
N-terminal pro-brain natriuretic peptide (NT-proBNP) (Table
3). In the multivariate Cox hazard model, a decreased count of
CD4+ TNaïve cells along with older age, history of diabetes,
history of CVD, as well as elevated white blood cell count and
TABLE 1 | Demographic data of the study population.

Variable mean ± SD/median (interquartile range)

Age, years 59.4 ± 14.6
Time on HD, months 53 (26,80)
Male (%) 248 (61.4%)
Diabetes mellitus (%) 94 (23.3%)
CVD history (%) 124 (30.7%)
Hypertension (%) 324 (80.2%)
CMV seropositive (%) 401 (99.3%)
BMI (kg/m2) 21.5 ± 3.2
Kt/Vurea 1.31 ± 0.57
Hemoglobin, g/L 112.4 ± 15.9
White blood cell, ×109/L 6.56 ± 2.02
Lymphocytes, ×109/L 1.3 ± 0.5
Albumin, g/L 39.0 ± 3.2
Prealbumin, g/L 0.32 ± 0.13
Creatinine, mmol/L 1,000.3 ± 277.3
Uric acid, mmol/L 441.6 ± 88.8
Calcium, mmol/L 2.32 ± 0.24
Phosphorus, mmol/L 2.17 ± 0.65
Total cholesterol, mmol/L 4.11 ± 1.07
Triglyceride, mmol/L 1.45 (1.03, 2.23)
LDL-C, mmol/L 2.27 ± 0.87
HDL-C, mmol/L 1.06 ± 0.59
Homocysteine, mmol/L 34.7 (26.4, 46.6)
NT-proBNP, pg/ml 3,882.0 (1,782.3, 10,324.2)
iPTH, pg/ml 260.7 (150.3, 407.2)
Ferritin, pg/ml 296.9 (139.3, 495.5)
hsCRP, mg/L 4.0 (1.4, 10.2)
TNF-a, pg/ml 33.4 (22.8, 58.8)
IL-6, pg/ml 9.6 (4.2, 36.2)
CVD, cardiovascular disease; CMV, cytomegalovirus; BMI, Body mass index; LDL-C, low
density lipoprotein–cholesterol; HDL-C, high density lipoprotein–cholesterol; NT-proBNP,
N-terminal pro-brain natriuretic peptide; iPTH, intact parathyroid hormone; hsCRP, high-
sensitivity C-reactive protein; TNF-a, tumor necrosis factor-a; IL-6, interleukin 6.
March 2021 | Volume 12 | Article 644627
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NT-proBNP was independently associated with CVEs (HR
0.430, 95% CI 0.253–0.731, p = 0.002).

Decreased CD8+ TNaïve Cell Count
as a Predictor of Infection Episodes
in HD Patients
A total of 90 patients (22.3%) experienced at least one infectious
episode and 16 died of it, which accounted for 21.6% of all-cause
Frontiers in Immunology | www.frontiersin.org 4152
mortality. The incidence of infection was 15.6% per year. A total
of 97 infectious events were recorded. The following infections
were reported: pulmonary infections [n = 55 (56.7%)], dialysis
access-related infections [n = 14 (14.4%)], skin or joint infections
[n = 9 (9.3%)], urinary or abdominal infections [n = 10 (10.3%)],
septic shock [n = 3 (3.1%)], and infections at other sites or
undocumented sites [n = 6 (6.2%)]. The median value of each
T cell parameter was used for analyzing the correlation between
FIGURE 1 | CVE-free survival curves according to age-CD4+ TNaïve group. We divided the patients into five groups according to age and CD4+ TNaïve cell count.
Group 1 included young patients (age ≤35 years old, n = 29). Group 2L included middle-aged patients with a lower CD4+ TNaïve cell count [36 < age (years) ≤ 65,
CD4+ TNaïve < 153 cells/ml, n = 120]. Group 2H included middle-aged patients with a higher CD4+ TNaïve cell count [36 < age (years) ≤ 65, CD4+TNaïve ≥ 153 cells/ml,
n = 120]. Group 3L included old patients with a lower CD4+ TNaïve cell count (age > 65 years old, CD4+TNaïve < 110 cells/ml, n = 67). Group 3H included old patients
with a higher CD4+ TNaïve cell count (age > 65 years old, CD4+ TNaïve ≥ 110 cells/ml, n = 68). Kaplan-Meier analysis revealed that survival rate was significantly
different among the five age-CD4+ TNaïve groups (p < 0.001). In pairwise comparison, patients with a lower CD4+ TNaïve count had a significantly higher CVE incidence
in both the middle-aged (p = 0.014) and old groups (p = 0.003). There was no difference between middle-aged patients with a lower CD4+ TNaïve count and old
patients with a higher CD4+ TNaïve count.
TABLE 2 | Correlations between T cell subsets and inflammatory markers in hemodialysis patients.

TNF-a IL-6 hsCRP

Correlation coefficient p Correlation coefficient p Correlation coefficient p

Cell subset percentage
CD4+T cells % −0.198** <0.001 −0.093 0.062 0.005 NS
CD4+ TNaïve% 0.015 NS 0.026 NS −0.097 0.052
CD4+TCM% −.225** <0.001 −.248** <0.001 0.071 NS
CD4+TEM% −0.032 NS −0.016 NS 0.096 0.054
CD4+TEMRA% 0.321** <0.001 0.312** <0.001 −0.034 NS
CD8+T cells% 0.180** <0.001 0.05 NS −0.002 NS
CD8+ TNaïve% −0.016 NS −0.023 NS −0.146* 0.003
CD8+ TCM% −0.083 0.095 −0.046 NS 0.052 NS
CD8 +TEM% −0.121* 0.015 −0.061 NS 0.100* 0.045
CD8+TEMRA% 0.104* 0.037 0.073 NS 0.073 NS
Absolute cell number
CD4+T cells (cells/ml) −0.085 0.089 −0.129* 001 −0.062 NS
CD4+ TNaïve (cells/ml) −0.058 NS −0.085 0.087 −0.108* 0.03
CD4+TCM (cells/ml) −0.215* 0.001 −0.260* 0.001 0.012 NS
CD4+TEM (cells/ml) −0.021 NS −0.075 NS 0.043 NS
CD4+TEMRA (cells/ml) 0.242* 0.001 0.205* 0.001 −0.063 NS
CD8+T cells (cells/ml) 0.075 NS −0.059 NS −0.035 NS
CD8+ TNaïve (cells/ml) 0.033 0.051 −0.062 NS −0.148* 0.003
CD8+ TCM (cells/ml) −0.07 NS −0.084 0.093 0.013 NS
CD8 +TEM (cells/ml) −0.033 NS −0.103* 0.039 0.044 NS
CD8+TEMRA (cells/ml) −0.016 NS 0.044 NS 0.046 NS
Ma
rch 2021 | Volume 12 | Article 6
Spearman rank analysis was applied to investigate the relationship between inflammatory markers and T cell subset level, including the percentages as well as absolute cell counts of naïve
(TNaïve), central memory (TCM), effector memory (TEM), and effector memory CD45RA (TEMRA) subsets. *p value < 0.05. **p value < 0.001. NS, non-significant, p value > 0.1.
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infections. Decreased absolute count/percentage of CD8+ TNaïve

and increased percentage of CD8+ TEMRA cells were significant
predictors of infection (Figure S3). Although aging contributes
to both infection and depletion of CD8+ TNaïve cells, patients
with a lower CD8+TNaïve count in the middle-aged group [36 <
age (years) ≤ 65] had a significantly higher infection incidence
than those with a higher CD8+ TNaïve count in the same age
group (p = 0.04) (Figure 2). Other infection event predictors
included a history of CVD, usage of central venous catheter,
decreased levels of hemoglobin, albumin, prealbumin, creatinine,
and uric acid, and increased serum levels of hsCRP, NT-proBNP,
ferritin, and globulin (Table 4). In the multivariate Cox hazard
model, a decreased count of CD8+ TNaïve cells was independently
associated with infection episodes in HD patients (HR 0.460,
95% CI 0.279–0.758, p = 0.002).
DISCUSSION

In the current study, CVEs and infections were the major
complications accounting for more than 70% of all-cause
mortality. Our study finding indicates that a decreased level of
Frontiers in Immunology | www.frontiersin.org 5153
CD4+ naïve T cells is a strong predictor of CVEs, while a
decreased level of CD8+ naïve T cells is a strong predictor of
infectious episodes in HD patients. Loss of naïve T cells might be
a hallmark of immune disturbance, leading to a more intense
immune incompetence with profound clinical outcomes.

In the original model of the T cell system, naïve T cells are
activated in the presence of infection, which then proliferate and
generate heterogeneous classes of effector and memory cells with
distinctive surface phenotypes, cytokine production abilities, and
homing potentials (18). The T cell system has unique
mechanisms of replenishment. Thymic T cell generation is the
only way to add novel naïve T cells and enrich diversity; however,
thymic function rapidly declines during adolescence and early
adulthood and is quantitatively irrelevant throughout adult life
(19). Instead, homeostatic proliferation is responsible for
maintaining the size of the naïve T cell compartment
and sustaining the richness of the T cell receptor repertoire
(20). Generally, homeostatic proliferation in humans is efficient
in maintaining a sizable CD4+ naïve T cell pool (21). CD8+ naïve
T cells, on the contrary, are progressively lost with age, which
induces a higher homeostatic proliferation of aged-CD8+ naïve T
cells than that of aged-CD4+ naïve T cells (20).
TABLE 3 | Cox hazard model for CVEs in hemodialysis patients.

Variables Univariate Cox hazard model Multivariate Cox hazard model1

HR (95% CI) P value HR (95% CI) P value

Age (≥65 years old = 1) 2.967 (1.929, 4.564) <0.001 1.747 (1.068, 2.857) 0.026
Sex (male = 1) 1.263 (0.810, 1.968) 0.303
Diabetes mellitus (yes = 1) 2.767 (1.802, 4.249) <0.001 1.687 (1.060, 2.683) 0.027
CVD (yes = 1) 5.169 (3.323, 8.034) <0.001 3.118 (1.839, 5.286) <0.001
Central venous catheter (yes = 1) 2.137(1.383, 3.302) <0.001
BMI (kg/m2) 0.961 (0.902, 1.024) 0.275
Kt/Vurea 0.556 (0.288, 1.074) 0.081
Time on HD (month) 0.996 (0.991, 1.001) 0.108
CMV IgG (U/ml)2 1.003 (1.000,1.007) 0.084
Hemoglobin (g/L) 0.989 (0.976, 1.003) 0.116
White blood cell (×109/L) 1.111 (1.011, 1.220) 0.029 1.155 (1.040, 1.283) 0.007
Albumin (g/L) 0.859 (0.804, 0.916) <0.001
Prealbumin (g/L) 0.023 (0.003, 0.199) 0.001
Creatinine(mmol/L) 0.998 (0.998, 0.999) <0.001
Uric acid (mmol/L) 0.995 (0.993, 0.998) <0.001
Triglyceride (mmol/L) 0.804 (0.649, 0.996) 0.045
LDL-C (mmol/L) 0.974 (0.758, 1.251) 0.835
Phosphorus (mmol/L) 0.928 (0.664, 1.295) 0.660
Calcium (mmol/L) 0.723 (0.297, 1.759) 0.475
Log-iPTH (pg/ml) 1.107 (0.616, 1.989) 0.735
b2-Microglobulin (mg/L) 1.012 (0.986, 1.040) 0.371
Homocysteine (mmol/L) 1.001 (0.995, 1.007) 0.705
Log-hsCRP (mg/L) 2.058 (1.439, 2.943) <0.001
Log-NT-proBNP (pg/ml) 4.407 (2.777, 6.994) <0.001 2.388 (1.409, 4.048) 0.001
CD4+ TNaïve count (≥137 cells/ml = 1) 0.352 (0.219, 0.553) <0.001 0.430 (0.253, 0.731) 0.002
CD4+ TNaïve % (≥36.7 = 1) 0.505 (0.325, 0.784) 0.002
CD4+TEM% (≥33.2 = 1) 1.987 (1.279, 3.087) 0.002
CD8+TEM% (≥22.0 = 1) 1.770 (1.143, 2.741) 0.011
March 2021 | Volume 12 | Artic
CVD, cardiovascular disease; BMI, Body mass index; HD, hemodialysis; CMV IgG, cytomegalovirus immunoglobulin G; LDL-C, low density lipoprotein–cholesterol; Log-iPTH, log
transformed intact parathyroid hormone; Log-hsCRP, log transformed high-sensitivity C-reactive protein; Log-NT-proBNP, log transformed N-terminal pro-brain natriuretic peptide. TNaïve,
naïve T cell; TEM, effector memory T cell.
1Backward conditional method was used. Model included each T cell parameters and was adjusted for age, gender, history of CVD, history of diabetes, types of vascular access, Kt/Vurea,
CMV IgG, albumin, prealbumin, white blood cell, creatinine, uric acid, triglyceride, LDL-C, NT-proBNP, and hsCRP.
2For those with CMV-IgG titers exceeding the upper limit of 500 U/ml, the numbers were regarded as 500 U/ml.
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To the best of our knowledge, this is the first study to identify
a decrease in CD4+ naïve T cells as a novel CVE risk factor and a
decrease in CD8+ naïve T cells as a novel infection risk factor in
patients with ESRD. Notably, compelling data suggest profound
lymphopenia of naïve T cells in both the CD4+ and CD8+

compartments in ESRD (15, 22), although the underlying
mechanism is not sufficiently understood. It is evident from
the literature that there is a reduced thymic output in ESRD (15,
22); however, the more important reason seems to be the failure
to maintain quiescence in these cell compartments. Maintenance
of quiescence is vital for naïve T cells to retain their self-renewal
potential and differentiation plasticity throughout life. In
circumstances of inflammation, T cells can leave their usual
quiescent state and accumulate as partially differentiated cells,
even in the absence of antigen stimulation (23, 24). In ESRD,
inflammation is significantly enhanced with uremia (25), and
dialysis treatment certainly exposes these patients to microbial
products and other antigenic stimulations, which can lead to
accelerated activation and turnover of naïve T cells. Thus,
chronic inflammation could be responsible for the decreased
naïve T cells in ESRD patients, which is supported by our finding
that decreased levels of naïve T cells were correlated with
elevated levels of the inflammation marker hsCPR in both
CD4+ and CD8+ compartments. In earlier studies on aging, the
decline in naïve T cells and relative expansion of memory and
effector T cell populations were entirely due to chronic CMV
stimulation (26). In this context, chronic immune stimulation
could be the reason for accelerated T cell aging in ESRD patients,
including at least the prevalent CMV infection, renal damage,
uremia toxin retention, and increased reactive oxygen species
generation. Any attempts to maintain the naïve T cell pool
eventually lead to its further depletion and extinction, as such
attempts result in the partial loss of stemness and incomplete
Frontiers in Immunology | www.frontiersin.org 6154
differentiation and activation of negative regulatory programs
(20, 27). In this context, decreased naïve T cells could represent
their maladaptive behavior in ageing and even trigger a vicious
cycle of aggravated immunosenescence. This is more so in case of
CD4+ naïve T cells, as their shrinkage is not common
during normal aging. Besides chronic kidney diseases,
rheumatoid arthritis is another pathological condition wherein
there are several lines of evidence of premature aging of T cells,
indicating a defective DNA repair mechanism in CD4+ naïve T
cells (28, 29). T cell senescence should be included in the
assertion that cellular senescence is an emerging cardiovascular
risk factor along with senescence of the endothelial and vascular
smooth muscle cells (30, 31). We have reported that the absolute
numbers of CD8+ naïve T cells decreased significantly with age in
a nearly parallel pattern in HD patients aged 20–89 years (16). In
the current study, we found that the levels of CD8+ naïve T cells
dropped to an extremely low level in HD patients older than 65
years, which could explain why we did not find a significant
correlation between CD8+ naïve T cells and infection in these
patients. In the middle-aged patients, a decreased CD8+ naïve T
cell count was significantly related to a higher risk of infection
episodes. This could be attributed to a decreased T cell receptor
diversity in naïve T cells, which are not only vital for a primary T
cell response but continue to be a resource for T cell responses to
antigens previously encountered. On the contrary, chronic
immune stimulation, such as that by CMV infection, can also
lead to the clonal expansion of the T cell population, which can
severely compromise repertoire diversity. Recent studies
indicated that ESRD patients present reduced T cell receptor
diversity with clonal expansion (32, 33), leading to a high
incidence of infection in these patients.

Generated from naïve T cells, TCM cells home to lymph
nodes, lack potent effector functions, and mount rapid
FIGURE 2 | Infection-free survival curves according to age-CD8+ TNaïve group. We divided the patients into five groups according to age and CD8+ TNaïve cell count.
Group 1 included young patients (age ≤35 years old, n = 29). Group 2L included middle-aged patients with a lower CD8+ TNaïve cell count [36 < age (years) ≤ 65,
CD8+ TNaïve < 63 cells/ml, n = 120]. Group 2H included middle-aged patients with a higher CD8+ TNaïve cell count [36 < age (years) ≤ 65, CD8+ TNaïve ≥ 63 cells/ml,
n = 120]. Group 3L included old patients with a lower CD8+ TNaïve cell count (age > 65 years old, CD8+ TNaïve < 25 cells/ml, n = 66]. Group 3H included old patients
with a higher CD8+ TNaïve cell count (age > 65 years old, CD8+ TNaïve ≥ 25 cells/ml, n = 69). Kaplan-Meier analysis revealed that survival rate was significantly different
among the five age-CD8+ TNaïve groups (p < 0.001). In pairwise comparison, old patients had a significantly higher infection incidence, regardless of the CD8+ TNaïve
count. Patients with a lower CD8+ TNaïve count in the middle-aged group had a significantly higher infection incidence than those with a higher CD8+ TNaïve count in
the same age group (p = 0.04).
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secondary responses upon re-exposure to antigens. TEM cells
migrate to peripheral tissues and display immediate effector
function at the sites of inflammation. TEMRA cells are usually
considered to be at an advanced stage of differentiation and are
promoted by homeostatic cytokines or low load but protracted
antigen exposure (34, 35). TEMRA cells share the same
characteristics as senescent cells, such as possessing short
telomeres, DNA damage foci, and a secretome of senescence-
associated secretory phenotype (36). Consistent with the concept
that senescent cells exert systemic detrimental effects,
TEMRA cells have been implicated in several chronic disease
states, such as rheumatoid arthritis, acute coronary syndromes,
as well as poor vaccine responses (37–39). In the current study,
TEMRA cells were correlated with proinflammatory cytokines,
such as TNF-a and IL-6. It is hard to distinguish causality
between inflammation and expanded TEMRA cells. In the
present study, a higher percentage of TEM cells was associated
with CVEs, and a higher percentage of CD8+ TEMRA cells was
associated with infection. However, after including naïve T cells
in the model, the association between these cells and clinical
events diminished, indicating that an increase in differentiated T
cells might partly be due to the decrease in naïve T cells; this is
partly explained by some epigenetic studies (40, 41).

Overall, T-cell senescence in HD patients is markedly evident,
and the contraction of the naïve T cell pool may act as a major
player in developing CVEs and infections in these patients.
Mechanistic studies on T cell homeostasis are needed in these
patients. The central theme emerging from our finding is to
Frontiers in Immunology | www.frontiersin.org 7155
alleviate chronic inflammation and promote cellular quiescence.
Modifying HD therapy seems to be a feasible way to ameliorate
T-cell inflammation and improve immunity against pathogens
using antioxidant electrolyzed-reduced water (42) and
introducing hemodiafiltration (43). To the best of our
knowledge, only one study has investigated these T cell
parameters in healthy individuals for each decade, with T cell
subsets defined by co-expression of CD95 and CD62L, and
reported that an increased absolute number of CD8+ memory
T cells (CD95+CD62L−) correlated with increased mortality (44).
Few other studies have reported the relevance of T-cell
senescence to morbidity in the aged population. One study
conducted in 1,072 elderly individuals from a nursing home
indicated that a decreased percentage of CD4+ naïve T cells and
CD8+ TEM cells was correlated with frailty (45). In a case-control
study conducted in 122 women aged 65 and above, no significant
correlation was observed in naïve nor memory T cells between
cases and controls (46). However, these studies did not take
absolute count of these T cell parameters into consideration,
which could miss the vital date of T-cell senescence in aged
individuals. Thus, studying T-cell senescence in patients with
ESRD can help to shed light onto the alteration of immune
function in the general aged population.

Our study had several limitations. First, it remains unclear
whether inflammation is the cause or the consequence of T-cell
senescence. Second, T-cell senescence can be assessed by several
other markers, such as telomere length, recent thymic emigrants,
CD57, and CD28. This study cannot exclude the impact of these
TABLE 4 | Cox hazard model for infection incident in hemodialysis patients.

Variables Univariate Cox hazard model Multivariate Cox hazard model1

HR (95% CI) P value HR (95% CI) P value

Age (≥65 years old = 1) 2.514 (1.658, 3.813) <0.001
Sex (male = 1) 1.207 (0.784, 1.858) 0.394
Diabetes mellitus (yes = 1) 1.213 (0.755, 1.949) 0.425
CVD (yes = 1) 1.724 (1.130, 2.630) 0.011
Central venous catheter (yes = 1) 2.653(1.744, 4.036) <0.001 2.225 (1.416, 3.497) 0.001
BMI (kg/m2) 0.985 (0.925, 1.048) 0.626
Kt/Vurea 0.777 (0.481, 1.255) 0.303
Time on HD (month) 0.999 (0.995, 1.003) 0.700
Hemoglobin (g/L) 0.978 (0.967, 0.990) <0.001 0.983 (0.970, 0.997) 0.014
White blood cell (×109/L) 1.013 (0.915, 1.122) 0.800
Albumin (g/L) 0.864 (0.812, 0.920) <0.001
Globulin (g/L) 1.048 (1.003, 1.095) 0.036 1.039 (0.996, 1.084) 0.074
Prealbumin (g/L) 0.079 (0.011, 0.540) 0.010
Creatinine(mmol/L) 0.998 (0.998, 0.999) <0.001
Uric acid (mmol/L) 0.997 (0.994, 0.999) 0.007
Phosphorus (mmol/L) 0.794 (0.571, 1.104) 0.171
Calcium (mmol/L) 1.136 (0.475, 2.716) 0.775
Log-iPTH (pg/ml) 0.902 (0.517, 1.573) 0.717
Log-hsCRP (mg/L) 1.780 (1.268, 2.498) <0.001
Log-NT-proBNP (pg/ml) 2.180 (1.403, 3.388) 0.001 1.559 (0.977, 2.488) 0.062
Log-ferritin (pg/ml) 1.729 (1.002, 2.983) 0.049
CD8+ TNaïve count (≥46 cells/ml = 1) 0.469 (0.304, 0.725) <0.001 0.460 (0.279, 0.758) 0.002
CD8+ TNaïve % (≥19.7 = 1) 0.420 (0.270, 0.654) <0.001
CD8+TEMRA% (≥50.3 = 1) 1.902 (1.239, 2.920) 0.003 1.549 (0.978, 2.453) 0.062
March 2021 | Volume 12 | Artic
CVD, cardiovascular disease; BMI, Body mass index; HD, hemodialysis; Log-iPTH, log transformed intact parathyroid hormone; Log-hsCRP, log transformed high-sensitivity C-reactive
protein; Log-NT-proBNP, log transformed N-terminal pro-brain natriuretic peptide; TNaïve, naïve T cell; TEMRA, T effector memory CD45RA cells.
1Backward conditional method was used. Model included each T cell parameters and was adjusted for age, history of CVD, history of diabetes, types of vascular access, hemoglobin,
albumin, prealbumin, creatinine, uric acid, globulin, ferritin, NT-proBNP, and hsCRP.
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unmeasured parameters. Of particular interest is the fact that
CMV infection has a substantial impact on T-cell senescence. In
the current study, nearly all patients were seropositive for CMV-
IgG, and half of them had an extremely high CMV-IgG titer,
which could lead to underestimation of the relevance of CMV
infection and T-cell senescence in HD patients. Finally, this was a
single-center study, which might potentially limit the statistical
power and its external validity. Hence, further studies are needed
in this area to gain a deeper understanding.

In conclusion, HD patients exhibited accelerated
immunosenescence in the T lymphocyte compartment, and
these changes were positively related to inflammation. A
reduction of naïve T cells was shown to be a strong predictor
of CVEs and infection episodes in these patients. Monitoring
naïve T cells could be useful for the early identification of
patients at a high risk of profound complications.
DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.
ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by Ethical Committee, Zhongshan Hospital, Fudan
Frontiers in Immunology | www.frontiersin.org 8156
University. The patients/participants provided their written
informed consent to participate in this study.
AUTHOR CONTRIBUTIONS

FX analyzed the data and drafted the manuscript. BS and JZ
made the diagnosis and designed the experiments. XD, XHC,
and ZZ revised the manuscript. FX and XSC collected the data.
All authors contributed to the article and approved the
submitted version.
FUNDING

This work was supported by Natural Science Foundation of
China (No. 82000705), Shanghai Municipal Hospital Frontier
Technology Project supported by Shanghai Shen Kang Hospital
Development Center (No. SHDC12018127), and Shanghai
“science and technology innovation plan” popular science
project (No. 19DZ2321400).
SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fimmu.2021.
644627/full#supplementary-material
REFERENCES

1. Thomas B, Wulf S, Bikbov B, Perico N, Cortinovis M, Courville DVK, et al.
Maintenance Dialysis throughout the World in Years 1990 and 2010. J Am
Soc Nephrol (2015) 26(11):2621–33. doi: 10.1681/ASN.2014101017

2. Patient mortality and survival. United States Renal Data System. Am J Kidney
Dis (1998) 32:S69–80. doi: 10.1053/ajkd.1998.v32.pm9713409

3. Charytan DM, Lewis EF, Desai AS, Weinrauch LAM, Ivanovich PM, Toto
RDM, et al. Cause of Death in Patients With Diabetic CKD Enrolled in
the Trial to Reduce Cardiovascular Events With Aranesp Therapy (TREAT).
Am J Kidney Dis (2015) 66(3):429–40. doi: 10.1053/j.ajkd.2015.02.324

4. Stenvinkel P, Larsson TE. Chronic Kidney Disease: A Clinical Model of
Premature Aging. Am J Kidney Dis (2013) 62(2):339–51. doi: 10.1053/
j.ajkd.2012.11.051
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