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The aim of this Research Topic is to discuss the 
state of the art on the use of Information-based 
methods in the analysis of neuroimaging data. 
Information-based methods, typically built as 
extensions of the Shannon Entropy, are at the 
basis of model-free approaches which, being 
based on probability distributions rather than 
on specific expectations, can account for all 
possible non-linearities present in the data in a 
model-independent fashion. 

Mutual Information-like methods can also 
be applied on interacting dynamical variables 
described by time-series, thus addressing the 
uncertainty reduction (or information) in one 
variable by conditioning on another set of 
variables. 

In the last years, different Information-based 
methods have been shown to be flexible and 
powerful tools to analyze neuroimaging data, 
with a wide range of different methodologies, 
including formulations-based on bivariate 
vs multivariate representations, frequency vs 
time domains, etc. Apart from methodological 
issues, the information bit as a common unit 
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The skeleton of a full brain network model 
in The Virtual Brain (TVB). The anatomical 
structure on which simulations are built in 
TVB represent two relevant spatial scales 
at which structural connectivity is defined. 
This separation allows for the construction 
of two main types of simulations: region-
based and surface-based simulations. The 
first type uses only the connectome as spatial 
support and each of the nodes models the 
neural population activity of an entire brain 
region. The edges represent the long-range 
connections (interregional fibres in white) at 
the scale of centimetres. In the second type 
of simulations the cortex is shaped more 
realistically, each vertex of the surface is 
considered a cortical node and its dynamics 
are modelled by a neural population model; 
and, a local connectivity kernel assigns the 
density of local connections.
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represents a convenient way to open the road for comparison and integration between 
different measurements of neuroimaging data in three complementary contexts: Structural 
Connectivity, Dynamical (Functional and Effective) Connectivity, and Modelling of brain 
activity. Applications are ubiquitous, starting from resting state in healthy subjects to 
modulations of consciousness and other aspects of pathophysiology.
 
Mutual Information-based methods have provided new insights about common-principles 
in brain organization, showing the existence of an active default network when the brain is 
at rest. It is not clear, however, how this default network is generated, the different modules 
are intra-interacting, or disappearing in the presence of stimulation. Some of these open-
questions at the functional level might find their mechanisms on their structural correlates. A 
key question is the link between structure and function and the use of structural priors for the 
understanding of the functional connectivity measures. 
As effective connectivity is concerned, recently a common framework has been proposed for 
Transfer Entropy and Granger Causality, a well-established methodology originally based on 
autoregressive models. This framework can open the way to new theories and applications.
 
This Research Topic brings together contributions from researchers from different 
backgrounds which are either developing new approaches, or applying existing methodologies 
to new data, and we hope it will set the basis for discussing the development and validation 
of new Information-based methodologies for the understanding of brain structure, function, 
and dynamics.
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This Research Topic gathers different contributions highlight-
ing novel types of analysis and methods to deal more efficiently
with neuroimaging data, simulated and real, acquired with dif-
ferent modalities. These approaches allow us to shed light on the
mechanisms of brain organization, with focus on the relationship
between brain structure, function and dynamics.

The first article of this Topic (Sanz Leon et al., 2013), intro-
duces The Virtual Brain, a Neuroinformatics platform for full
brain network simulations using realistic connectivity, putting
in evidence that the integration between brain structure and
function is perfectly plausible by simulating realistic brain activ-
ity (more specifically, neural mass models) on the architecture
of the structural connectome. The authors show that dynam-
ical models aimed at reproducing the functional connectivity
patterns observed in the resting brain exhibit a much better per-
formance when they are tuned around a balanced state favoring
the shifting between attractors. This balanced state is described in
terms of energy landscape, as discussed also in Watanabe et al.
(2014), where the state transitions (in terms of energy land-
scape) between two representative Resting State Networks—the
Default Mode Network and the Fronto-Parietal Network—are
addressed.

With an alternative approach, the relation between structural
and functional networks is tackled in Ajilore et al. (2013), by
using the functional-by-structural hierarchical (FSH) mapping.
This was developed for multimodal integration of the resting
state fMRI (rsfMRI) and the whole brain (tractography-derived)
connectome and is based on the evidence that the level of resting-
state functional correlation between any two regions (in general)
decreases as the graph distance of the corresponding structural
connectivity matrix between them increases. Results are reported
in health and depression.

Effective connectivity methods are devised to infer directed
connectivity patterns from time-series data. A new method based
on Variational Bayesian Inference to infer causality from time
series was proposed in Luessi et al. (2014). The method uses a
vector autoregressive model for the latent variables describing
neuronal activity in combination with a linear observation model
based on a convolution with a hemodynamic response function.

The method is validated using both real and synthetic resting
fMRI data.

Continuing with the problem of causality inference, classical
methods like Granger causality were extended to the situation of
time-varying signals in Chicharro and Panzeri (2014). This study
also provides a graphical approach to predict dynamic statistical
dependencies between the signals from the causal structure.

A different approach is presented in Kolchinsky et al.
(2014), where brain regions and networks are characterized by
information-theoretic measures using both functional and struc-
tural information in a complementary manner. In particular,
Kolchinsky et al., quantify the amount of functional coupling
between sets of regions of interest (ROIs) as well as integra-
tion within sets of ROIs. Several information-based measures are
considered, and their scaling with subsystem size is explored.

Regarding consciousness and its relationship with Information
Theory, two papers have been contributed to this Research Topic.
In Lee et al. (2013) the Approximate Entropy (ApEn), a mea-
sure known to correlate with the level of brain consciousness,
is used to characterize EEG signals in children and adults to
show that the amount of ApEn is lower in children and that
it correlates, in children as in adults, with consciousness; in
particular, the authors show that ApEn decreases across the tran-
sition from awake to REM sleep to non-REM sleep. For patients
with deficit of consciousness (DOC) after traumatic brain injury,
(Mäki-Marttunen et al., 2013) show two possible markers from
fMRI time series that can distinguish between DOC patients
and healthy subjects. The inter-hemispheric correlations (but not
the intra-hemispheric correlations) between left-right homolog
areas decrease, as does the intra-hemispheric information flow,
in DOC patients compared to control. For a small group of 4
patients who fully recovered from coma, the study also reports an
increase of the intra-hemisphere information flow with respect
to controls.

Information-based measures have been associated with altered
information processing in Autism Spectrum Disorder (ASD).
The close link between active information storage and general
theories of cortical function has been addressed in Gómez et al.
(2014), by analyzing magnetoencephalography (MEG) signals.
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The authors report a significant reduction of information storage
in the hippocampus in ASD patients. The amount of informa-
tion and entropy of MEG signals in ASD (Asperger syndrome in
this case) has been analyzed also in Pérez Velázquez and Galán
(2013). The analysis, carried out at the source level, addresses the
relationship between resting state activity and the brain inner pro-
cessing with regards to information production, as quantified by
the relative entropy. The results suggest that the brains of individ-
uals with ASD produce more information than the age-matched
participants.

The complementary role of the three components of informa-
tion processing, transfer, storage and modification is investigated
in Wibral et al. (2014). Local information storage is analyzed in
detail in neural data and associated to neural properties such as
stimulus preferences and surprise.

The connection between information content of brain activity
signals and function has been explored also in Sokunbi (2014).
The author investigates the power of a similarity measure (the
Sample Entropy) to discriminate between young and elderly sub-
jects emphasizing on the possible limitations arising from the
reduced length of time series that are commonly encountered in
fMRI studies.

Information-based measures are also useful for develop-
ing new technical tools for structural and functional analysis.
Novel algorithms have been proposed to improve the con-
struction of the structural connectome in Roine et al. (2014),
by investigating the isotropic partial volume effects caused by
non-white matter tissue on fiber orientation diffusion esti-
mated with constrained spherical de-convolution. Diffusion
weighted signals are simulated with varying diffusion weight-
ings, signal-to-noise ratios, fiber configurations, and tissue
fractions.

The equivalence between the information-based and model-
based approaches to directed dynamical connectivity in the fre-
quency domain was explored in Takahashi et al. (2014). To
enhance the understanding of the possibly complex interaction
between multiple time series the authors decompose the estab-
lished approaches to Directed Coherence into different modes of
interaction.

Concerning improvements to functional analysis, a novel
information-theoretic approach for spatial components ranking
has been proposed in Ossadtchi et al. (2013). The proposed
method is based on the Mutual Information (MI) Spectrum
which serves as a power-invariant measure of repetitive task-
related signal in the temporal loadings of spatial components.
Using realistic simulations, the authors in show that the task-
relatedness measure, based on estimating the MI between a
component and the expanded binary stimulus signal, allows for
significantly higher detector characteristics when compared with
conventional alternatives. The application of the MI Spectrum for
the selection of task-related independent components is validated
with real MEG data.

We hope that the reader will find in this Research Topic a use-
ful reference for the state of the art in the emerging field of tools
rooted in information theory and applied to neuroscience.
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We present The Virtual Brain (TVB), a neuroinformatics platform for full brain network
simulations using biologically realistic connectivity. This simulation environment enables
the model-based inference of neurophysiological mechanisms across different brain scales
that underlie the generation of macroscopic neuroimaging signals including functional
MRI (fMRI), EEG and MEG. Researchers from different backgrounds can benefit from
an integrative software platform including a supporting framework for data management
(generation, organization, storage, integration and sharing) and a simulation core written
in Python. TVB allows the reproduction and evaluation of personalized configurations of
the brain by using individual subject data. This personalization facilitates an exploration
of the consequences of pathological changes in the system, permitting to investigate
potential ways to counteract such unfavorable processes. The architecture of TVB supports
interaction with MATLAB packages, for example, the well known Brain Connectivity
Toolbox. TVB can be used in a client-server configuration, such that it can be remotely
accessed through the Internet thanks to its web-based HTML5, JS, and WebGL graphical
user interface. TVB is also accessible as a standalone cross-platform Python library and
application, and users can interact with the scientific core through the scripting interface
IDLE, enabling easy modeling, development and debugging of the scientific kernel. This
second interface makes TVB extensible by combining it with other libraries and modules
developed by the Python scientific community. In this article, we describe the theoretical
background and foundations that led to the development of TVB, the architecture and
features of its major software components as well as potential neuroscience applications.

Keywords: connectome, neural masses, time delays, full-brain network model, virtual brain, large-scale simulation,

web platform, python

1. INTRODUCTION
Brain function is thought to emerge from the interaction of
large numbers of neurons, under the spatial and temporal con-
straints of brain structure and cognitive demands. Contemporary
network simulations mainly focus on the microscopic and meso-
scopic level (neural networks and neural masses representing
a particular cortical region), adding detailed biophysical infor-
mation at these levels of description while too often losing
perspective on the global dynamics of the brain. On the other
hand, the degree of assessment of global cortical dynamics,
across imaging modalities, in human patients and research sub-
jects has increased significantly in the last few decades. In
particular, cognitive and clinical neuroscience employs imag-
ing methods of macroscopic brain activity such as intracere-
bral measurements, stereotactic Encephalography (sEEG) (von
Ellenrieder et al., 2012), Electroencephalography (EEG) (Nunez
and Srinivasan, 1981; Nunez, 1995; Niedermeyer and Lopes
Da Silva, 2005), Magnetoencephalography (MEG) (Hämäläinen,

1992; Hämäläinen et al., 1993; Mosher et al., 1999), and func-
tional Magnetic Resonance Imaging (fMRI) (Ogawa et al., 1993,
1998; Logothetis et al., 2001) to assess brain dynamics and evalu-
ate diagnostic and therapeutic strategies. Hence, there is a strong
motivation to develop an efficient, flexible, neuroinformatics
platform on this macroscopic level of brain organization for
reproducing and probing the broad repertoire of brain dynamics,
enabling quick data analysis and visualization of the results.

The Virtual Brain (TVB) is our response to this need. On the
one hand, it provides a general infrastructure to support multi-
ple users handling various kinds of empirical and simulated data,
as well as tools for visualizing and analyzing that data, either via
internal mechanisms or by interacting with other computational
systems such as MATLAB. At the same time it provides a simula-
tion toolkit to support a top–down modeling approach to whole
brain dynamics, where the underlying network is defined by its
structural large-scale connectivity and mesoscopic models that
govern the nodes’ intrinsic dynamics. The interaction with the
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dynamics of all other network nodes happens through the con-
nectivity matrix via specific connection weights and time delays,
where the latter make a significant contribution to the biological
realism of the temporal structure of dynamics.

Historically, Jirsa et al. (2002) first demonstrated neural field
modeling on a spherical brain hemisphere employing EEG and
MEG forward solutions to obtain simulation imaging signals. In
this work, homogeneous (translationally invariant) connectivity
was implemented along the lines of Jirsa and Haken (1996, 1997);
Bojak and Liley (2010) yielding a neural field equation, which
has its roots in classic works (Wilson and Cowan, 1972, 1973;
Nunez, 1974; Amari, 1975, 1977). At that time more detailed
large-scale connectivity of the full primate brain was unavail-
able, hence the homogeneous connectivity scaled up to the full
brain was chosen as a first approximation (Nunez, 1974). The
approach proved successful for the study of certain phenomena
as observed in large-scale brain systems including spontaneous
activity (Wright and Liley, 1995; Robinson et al., 2001, 2003;
Breakspear et al., 2003; Rowe et al., 2004; Freyer et al., 2011),
evoked potentials (Rennie et al., 1999, 2002), anesthesia (Liley
and Bojak, 2005), epilepsy (Breakspear et al., 2006), sensori-
motor coordination (Jirsa and Haken, 1996, 1997), and more
recently, plasticity (Robinson, 2011) [see Deco et al. (2008) and
Jirsa (2004) for a review].

Careful review of this literature though shows that these mod-
els mostly emphasize the temporal domain of brain organization,
but leave the spatiotemporal organization untouched. This may
be understood by the fact that the symmetry of the connectivity
imposes constraints upon the range of the observable dynamics.
This was pointed out early by Jirsa et al. (2002) and a sug-
gestion was made to integrate biologically realistic DTI based
connectivity into full brain modeling efforts. Large scale brain
dynamics are basically expected to reflect the underlying anatomi-
cal connectivity between brain areas (Bullmore and Sporns, 2009;
Deco et al., 2011), even though structural connectivity is not the
only constraint, but the transmission delays play an essential role
in shaping the brain network dynamics also (Jirsa and Kelso,
2000; Ghosh et al., 2008; Knock et al., 2009; Jirsa et al., 2010).
Recent studies (Pinotsis et al., 2012) have systematically inves-
tigated the degree to which homogeneous approximations may
serve to understand realistic connection topologies and have con-
cluded that homogeneous approximations are more appropriate
for mesoscopic descriptions of brain activity, but less well suited
to address full brain network dynamics. All this underscores the
need to incorporate realistic connectivity into large scale brain
network models. Thus the simulation side of TVB has evolved out
of a research program seeking to identify and reproduce realistic
whole brain network dynamics, on the basis of empirical connec-
tivity and neural field models (Jirsa and Stefanescu, 2010; Deco
et al., 2011).

1.1. MODELING
In line with these previous studies, TVB incorporates a biologi-
cally realistic, large-scale connectivity of brain regions in the pri-
mate brain. Connectivity is mediated by long-range neural fiber
tracts as identified by tractography based methods (Hagmann
et al., 2008; Honey et al., 2009; Bastiani et al., 2012), or obtained

from CoCoMac neuroinformatics database (Kötter, 2004; Kötter
and Wanke, 2005; Bakker et al., 2012). In TVB, the tract-lengths
matrix of the demonstration connectivity dataset is symmetric
due to the fiber detection techniques used to extract the infor-
mation being insensitive to directionality. On the other hand,
the weights matrix is asymmetric as it makes use of directional
information contained in the tracer studies of the CoCoMac
database. Such details are specific to the connectivity demonstra-
tion dataset included in the distribution packages of TVB. The
symmetry (or lack thereof) is neither a modeling constraint nor
an imposed restriction on the weights and tract-length matrices.
The general implementation for weights and tract lengths are full
nodes × nodes matrices without any symmetry restrictions.

Two types of structural connectivity are distinguished in TVB,
that is long- and short-range connectivity, given by the connec-
tivity matrix and the folded cortical surface, respectively. The
connectivity matrix defines the connection strengths and time
delays via finite signal transmission speed between two regions
of the brain. The cortical surface allows a more detailed spa-
tial sampling resulting in a spatially continuous approximation
of the neural activity as in neural field modeling (Deco et al.,
2008; Coombes, 2010; Bressloff, 2012). When using neural mass
models, building the network upon the surface allows for the
application of arbitrary local connectivity kernels which rep-
resent short-range intra-cortical connections. Additionally, net-
works themselves can be defined at two distinct spatial scales
yielding two types of simulations (or brain network models):
surface-based and region-based. In the former case, cortical and
sub-cortical areas are shaped more realistically, each vertex of the
surface is considered a node and is modeled by a neural popula-
tion model; several nodes belong to a specific brain region, and
the edges of the network have a distance of the order of a few
millimeters. The influence of delayed activity coming from other
brain regions is added to the model via the long-range connectiv-
ity. In the latter case of nodes only per region, the connectome
itself is used as a coarser representation of the brain network
model. The networks comprise discrete nodes, each of which
models the neural population activity of a brain region and the
edges represent the long-range connectivity (interregional fibers)
on the order of a few centimeters. Consequently, in surface-based
simulations both types of connectivity, short- and long-range,
coexist whereas in region-based simulations one level of geometry
is lost: the short-range connectivity.

Neural field models have been developed over many years
for their ability to capture the collective dynamics of relatively
large areas of the brain in both analytically and computationally
tractable forms (Beurle, 1956; Wilson and Cowan, 1972, 1973;
Nunez, 1974; Amari, 1975, 1977; Wright and Liley, 1995; Jirsa and
Haken, 1996, 1997; Robinson et al., 1997; Jirsa et al., 2002; Atay
and Hutt, 2006; Bojak and Liley, 2010). Effectively neural field
equations are tissue level models that describe the spatiotempo-
ral evolution of coarse grained variables such as synaptic voltage
or firing rate activity in populations of neurons. Some of these
models include explicit spatial terms while others are formulated
without an explicit spatial component leaving open the possibil-
ity to apply effectively arbitrary local connectivity kernels. The
lumped representation of the dynamics of a set of similar neurons
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via a common variable (e.g., mean firing rate and mean postsy-
naptic potential) is known as neural mass modeling (Freeman,
1975, 1992; Lopes da Silva et al., 1974). Neural mass models
accounting for parameter dispersion in the neuronal parame-
ters include Assisi et al., 2005; Stefanescu and Jirsa, 2008, 2011;
Jirsa and Stefanescu, 2010. Networks of neural masses, with-
out an explicit spatial component within the mass but with the
possibility to apply local connectivity kernels (e.g., Gaussian or
Laplacian functions) between masses, can be used to approximate
neural field models. Both neural field and neural mass model-
ing approaches embody the concept from statistical physics that
macroscopic physical systems obey laws that are independent of
the details of the microscopic constituents of which they are built
(Haken, 1983). These and related ideas have been exploited in
neurosciences (Kelso, 1995; Buzsaki, 2006).

In TVB, our main interest lies in using the mesoscopic laws
governing the behavior of neural populations and uncovering
the laws driving the processes on the macroscopic brain network
scale. The biophysical mechanisms available to microscopic single
neuron approaches are absorbed in the mean field parameters on
the mesoscopic scale and are not available for exploration other
than through variation of the mean field parameters themselves.
As a consequence, TVB represents a neuroinformatics tool that is
designed to aid in the exploration of large-scale network mecha-
nisms of brain functioning [see Ritter et al. (2013) for an example
of modeling with TVB].

Furthermore, TVB’s approach to multi-modal neuroimaging
integration in conjunction with neural field modeling shares
common features with the work of Bojak et al. (2010, 2011) and
Babajani-Feremi and Soltanian-Zadeh (2010). The crucial differ-
ence is that the structure upon which TVB has been designed rep-
resents a generalized large-scale “computational neural model” of
the whole brain. The components of this large-scale model have
been separated as cleanly as possible, and a specific structure has
been defined for the individual components. This generic struc-
ture is intended to serve the purpose of restricting the form of
models enough to make direct comparison straight forward while
still permitting a sufficiently large class of models to be expressed.
Likewise, the paradigms presented during the last few years in this
line of research (Sotero et al., 2007; Sotero and Trujillo-Barreto,
2008) could potentially be reproduced, tested and compared in
TVB. The mathematics underlying our model-based approach
have been partially described in various original articles (Deco
et al., 2011; Deco and Jirsa, 2012) and will be reviewed in more
detail in future articles.

1.2. INFORMATICS
From an informatics perspective, a large-scale simulation project
requires a well defined yet flexible workflow, i.e., adaptable
according to the users profiles. A typical workflow in TVB
involves managing project information, uploading data, setting
up simulation parameters (model, integration scheme, output
modality), launching simulations (in parallel if needed), ana-
lyzing and visualizing, and finally storing results and sharing
output data.

The web interface allows users without programming knowl-
edge to access TVB to perform customized simulations (e.g.,

clinicians could use their patient’s data obtained from DTI stud-
ies). In addition, it enables them to gain a deeper understanding
of the theoretical approaches behind the scenes. On the other
hand, theoreticians can design their own models and get an idea
of their biophysical realism, their potential physiological applica-
tions and implications. As both kinds of users may work within
the same framework, the interplay of theory and experiment
or application is accelerated. Additionally, users with stronger
programming skills benefit from all the advantages provided by
the Python programming language: easy-to-learn, easy-to-use,
scriptable and with a large choice of scientific modules (Oliphant,
2006).

TVB has been principally built in the Python programming
language due to its unique combination of flexibility, existing
libraries and the ease with which code can be written, docu-
mented, and maintained by non-programmers. The simulation
core, originally developed in MATLAB, was ported to Python
given its current significance in the numerical computing and
neuroscience community and its already proven efficiency for
implementing modeling tools (Spacek et al., 2008).

Simulations benefit from vectorized numerical computations
with NumPy arrays and are enhanced by the use of the num-
expr package. Although this allows rather efficient single simu-
lations, the desire to systematically explore the parameter spaces
of the neural dynamic models, and to compare many connectiv-
ity matrices, has lead to the implementation of code generation
mechanisms for the majority of the simulator core—producing
C code for both native CPU and also graphics processing units
(GPU), leading to a significant speed up of parameter sweeps and
parallel simulations (5x from Python to C, 40x from C to GPU).
Such graphics units have become popular in scientific computing
for their relatively low price and high computing power. Going
forward, the GPU implementation of TVB will require testing and
optimization before placing it in the hands of users.

This article intends to give a comprehensive but non-
exhaustive description of TVB, from both technical and scientific
points of view. It will describe the framework’s architecture, the
simulation core, and the user interfaces. It will also provide
two examples, using specific features of the simulator, extracted
from the demo scripts which are currently available in TVB’s
distribution packages.

2. TVB ARCHITECTURE
The architectural model of the system has two main components:
the scientific computing core and the supporting framework with
its graphical user interface. Both software components communi-
cate through an interface represented by TVB-Datatypes, which
are described in section 2.2. In Figure 1 TVB’s architectural details
are illustrated and explained in more depth.

General aspects: TVB is designed for three main deployment con-
figurations, according to the available hardware resources: (1)
Stand Alone; (2) Client-Server or, (3) Cluster. In the first, a local
workstation is assumed to have certain display, computing power
and storage capacity resources. In the second, an instance of
TVB is running on a server connected through a network link
to client units, and thus accessible to a certain number of users.
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FIGURE 1 | The Virtual Brain Architecture: TVB provides two

independent interfaces depending on the interaction with users.

Blocks in the back-end are transparently used by different top application
layers. TVB-Datatypes, are the common language between different
components (analyzers, visualizers, simulator, uploaders). They represent

“active data” in the sense that, when TVB is configured with a database,
data contained in TVB-Datatypes instances are automatically persistent.
Currently the console interface works without the storage layer, keeping
the results just in memory. S-Users need to manually handle data import
and export operations.

In this deployment model, simulations use the back-end server’s
computing power while visualization tasks use resources from
the client machine. The third is similar to the client-server con-
figuration, but with the additional advantage of parallelization
support in the back-end. The cluster itself needs to be configured
separately of TVB.

Based on the usage scenarios and user’s level of program-
ming knowledge, two user profiles are represented: a graphical
user (G-user) and scripting user (S-user). We therefore provide
the corresponding main interfaces based on this classification: a
graphical user interface (web) and a scripting interface (IDLE).
S-users and G-users have different levels of control over different
parts of the system. The profile of S-users is thought to be that of
scientific developers, that is, researchers who can elaborate com-
plex modeling scenarios, add their own models or directly modify
the source code to extend the scientific core of TVB, mostly work-
ing with the scientific modules. They do, nevertheless, have the
possibility to enable the database system. In contrast, G-users
are relatively more constrained to the features available in the
stable releases of TVB, since their profile corresponds more to
that of researchers without a strong background in computational
modeling. The distinction between these two profiles is mainly a
categorization due to the design architecture of TVB. For instance,
we could also think of other type of users who want to work with
TVB’s GUI and are comfortable with programming, and there-
fore they could potentially make modifications in the code and
then see the effect of those when launching the application in a
web browser.

The development of TVB is managed under Agile tech-
niques. In accord therewith, each task is considered as done,

after completing a validation procedure that includes: adding a
corresponding automated unit-test, labeling the task as finished
from the team member assigned to implement the task and fur-
ther tagging as closed from a team member responsible for the
module, which means a second level of testing. Before releas-
ing stable packages, there is a period for manual testing, that
is, a small group of selected users from different institutions
check the main features and functionalities through both inter-
faces. The navigation and workflows scenarios through the web-
based interface are evaluated by means of automated integration
tests for web-applications running with Selenium (http://docs.
seleniumhq.org/) and Apache-JMeter (http://jmeter.apache.org/)
on top of a browser engine. Special effort is being made to provide
good code-coverage, including regression tests. Accordingly, the
simulation engine of TVB has automated unit-tests, to guarantee
the proper and coordinated functioning of all the modules, and
simple programs (demonstration scripts), that permit qualitative
evaluation of the scientific correctness of results.

The development version of TVB is currently hosted on a
private cluster, where we use the version control system svn
(subversion). Additionally, as any large collaborative open-source
project, it is also available in a public repository, using the dis-
tributed version control system git (Chacon, 2009) to make
accessible the scientific core and to gather, manage and inte-
grate contributions from the community. The distribution pack-
ages for TVB come with an extensive documentation, including:
a User Guide, explaining how to install TVB, set up models
and run them; Tutorials, Use Cases and Script Demos, guid-
ing users to achieve predefined simulation scenarios; and a
Developer Guide and API reference. Table 1 provides the links
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Table 1 | TVB links.

TVB official website http://www.thevirtualbrain.org

Distribution packages http://www.thevirtualbrain.org/register

Public repository https://github.com/the-virtual-brain

User group https://groups.google.com/group/tvb-users/

to: the official TVB website, where distribution packages for Linux
and Mac OS (32 and 64 bits) and Windows (32 bits) are avail-
able for download; the active users group of TVB hosted in
Google Groups, where users can ask questions, report issues and
suggest improvements or new features; and the public reposi-
tory, where the source code of both the framework and scien-
tific library (which contains the simulation engine) are avail-
able.

Installation and System Requirements: When using the web
interface, users are recommended to have a high definition mon-
itor (at least 1600× 1000 pixels), a WebGL and WebSockets
compatible browser (latest versions of Mozilla Firefox, Apple
Safari or Google Chrome), and a WebGL-compatible graphics
card, that supports OpenGL version 2.0 or higher (Shreiner et al.,
2005).

Regarding memory and storage capacity, for a stand alone
installation a minimum of 8 GB of RAM is recommended. For
multi-users environments 5 GB of space per user is suggested.
This is a storage quota specified by an administrator to manage
the maximum hard disk space per user. As for computing power
one CPU core is needed for a simulation with a small number
of nodes, while simulations with a large number of nodes, such
as surface simulations, can make use of a few cores if they are
available. When the number of launched simulations is larger
than the number of available cores, a serialization is recom-
mended (a serialization mechanism is provided by the supporting
framework through the web user interface by specifying the max-
imum of simultaneous jobs allowed). In order to use the Brain
Connectivity Toolbox (Rubinov and Sporns, 2010), MATLAB or
Octave should be installed, activated and accessible for the current
user.

2.1. TVB FRAMEWORK
The supporting framework provides a database back-end, work-
flow management and a number of features to support collab-
orative work. The latter feature permits TVB to be setup as
a multi-user application. In this configuration, a login system
enables users to access their personal sessions; by default their
projects and data are private, but they can be shared with other
users. The graphical user interface (GUI) is web based, making
use of HTML 5, WebGL, CSS3 and Java Script (Bostock et al.,
2011) tools to provide an intuitive and responsive interface that
can be locally and remotely accessed.

2.1.1. Web-based GUI
TVB provides a web-based interactive framework to generate,
manipulate and visualize connectivity and network dynamics.
Additionally, TVB comprises a set of classic time-series analysis
tools, structural and functional connectivity analysis tools, as well

as parameter exploration facilities which can launch simulations
in parallel on a cluster or on multiple compute cores of a server.
The GUI of TVB has six main working areas: USER, PROJECT,
SIMULATOR, ANALYZE, STIMULUS, and CONNECTIVITY.
In USER, the users manage their accounts and TVB settings.
In PROJECT, individual projects are managed and navigation
tools are provided to explore their structure as well as the data
associated with them. A sub-menu within this area provides
a dashboard with a list of all the operations along with their
current status (running, error, finished), owner, wall-time and
associated data, among other information. In SIMULATOR the
large-scale network model is set up and simulations launched,
additional viewers for structural and functional data are offered
in 2D and 3D, as well as other displays to visualize the results
of a simulation. A history of simulations is also available in this
area. In ANALYZE time-series and network analysis methods
are provided. In STIMULUS, users can interactively create stim-
ulation patterns. Finally, in CONNECTIVITY, users are given
a responsive interface to edit the connectivity matrices assisted
by interactive visualization tools. Figure 2 depicts the different
working areas, as well as a number of their sub-menus, avail-
able through the web UI. A selection of screenshots illustrating
the interface in a web browser is given in Figure 3.

2.1.2. Data management and exchange
One of the goals of TVB is to allow researchers from differ-
ent backgrounds and with different programming skills to have
quick access to their simulated data. Data from TVB can be
exchanged with other instances of TVB (copies installed on differ-
ent computers) or with other applications in the neuroscientific
community, e.g., MATLAB, Octave, The Connectome ToolKit
(Gerhard et al., 2011).

Export: A project created within TVB can be entirely exported
to a .zip file. Besides storing all the data generated within a par-
ticular project in binary files, additional XML files are created to
provide a structured storage of metadata, especially with regard to
the steps taken to set up a simulation, configuration parameters
for specific operations, time-stamps and user account informa-
tion. This mechanism produces a summary of the procedures
carried on by researchers within a project which is used for shar-
ing data across instances of TVB. The second export mechanism
allows the export of individual data objects. The data format used
in TVB is based on the HDF5 format (The HDF Group, 2010)
because it presents a number of advantages over other formats:
(1) huge pieces of data can be stored in a condensed form; (2)
it allows grouping of data in a tree structure; (3) it allows meta-
data assignment at every level; and (4) it is a widely used format,
accessible in several programming languages and applications.
Additionally, each object in TVB has a global unique identifier
(GUID) which makes it easy to identify an object across systems,
avoiding naming conflicts among files containing objects of the
same type.

Import: A set of mechanisms (“uploaders”) is provided in TVB
to import data into the framework, including neuroimaging data
generated independently by other applications. The following for-
mats are supported: NIFTI-1 (volumetric time- series), GIFTI
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FIGURE 2 | Main working areas of The Virtual Brain ’s web interface: in

USER personal information (account settings) as well as hardware and

software preferences (technical settings) are configured. Through the
PROJECT area users access and organize their projects, data, figures and the
operations dashboard. Input and output simulated data can be exported in
HDF5 format and may be used outside of the framework. Brain network
models and execution of simulations are configured and launched,

respectively in SIMULATOR. In this area results can be immediately analyzed
and visualized to have a quick overview of the current model. A history of
launched simulations is kept to have the traceability of any modifications that
took place in the simulation chain. STIMULUS provides a collection of tools
to build stimulation patterns that will be available to use in the simulations.
Finally, CONNECTIVITY provides an interactive environment to the edit and
visualize connectivity matrices.

(surfaces) and CFF (connectome file). General compression for-
mats, such as ZIP and BZIP2 are also supported for certain
data import routines that expect a set of ASCII text files com-
pressed in an archive. Hence the use of general compression
formats means that preparing datasets for TVB is as simple as
generating an archive with the correct ASCII files, in contrast
to some of the other neuroscientific data formats found else-
where. For instance, a Connectivity dataset (connectome) may be
uploaded as a zip folder containing the following collection of
files: (1) areas.txt, (2) average_orientations.txt, (3) info.txt, (4)
positions.txt, (5) tract_lengths.txt, and (6) weigths.txt. More con-
ventions and guidelines to use each uploader routine can be found
in the User Guide of TVB’s documentation.

2.1.3. File storage
The storage system is a tree of folders and files. The actual
location on disk is configurable by the user, but the default
is a folder called “TVB” in the user’s home folder. There is a
sub-folder for each Project in which an XML file containing
details about the project itself is stored. Then for each opera-
tion, one folder per operation is created containing a set of .h5

files generated during that particular operation, and one XML
file describing the operation itself. The XML contains tags like
creation date, operation status (e.g., Finished, Error), algorithm
reference, operation GUID, and most importantly input param-
eters dictionary. Sufficiently detailed information is stored in
the file system to be able to export data from one instance
of TVB and to then import it into another instance, correctly
recreating projects, including all operations and their results.
Even though the amount of data generated per operation varies
greatly, since it depends strongly on the Monitors used and
parameters of the simulation, some rough estimates are given
below:

• A 1000 ms long, region-based simulation with all the default
parameters requires approximatively 1 MB of disk space.
• A 10 ms long, surface-based simulation, using a precalculated

sparse matrix to describe the local connectivity kernel and all
the default parameters, requires about 280 MB.

Users can manually remove unused data using the correspond-
ing controls in TVB’s GUI. In this case, all files related to these
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FIGURE 3 | UI screenshots. (A) SIMULATOR Area. Having multiple panels
allows a quick overview of previous simulations (left), model parameters for
the currently selected simulation (middle), and summary displays of the data
associated with the currently selected simulation (right). (B) Shows the

interface for editing and visualising the structural connectivity, for one of the
six possible connectivity visualisations. (C) PROJECT Area—operations
dashboard. On the left column, users can compose filters to search through
all the operations on the list.

data are also deleted, freeing disk space. The amount of phys-
ical storage space available to TVB can be configured in the
USER→ Settings working area of the GUI—this is, of course,
limited by the amount of free space available on the users
hard drives.

2.1.4. Database management system
Internally, TVB framework uses a relational database (DB),
for ordering and linking entities and as an indexing facil-
ity to quickly look up data. At install time, users can choose
between SQLite (a file based database and one of the most
used embedded DB systems) and PostgreSQL (a powerful,
widely spread, open-source object-relational DB system which
requires a separate installation by users) as the DB engine.
In the database, only references to the entities are stored,
with the actual operation results always being stored in files,

due to size. A relational database was chosen as it provides
speed when filtering entities and navigating entity relationship
trees.

2.2. TVB DATATYPES
In the architecture of TVB, a middleware layer represented by
TVB-Datatypes allows the handling and flow of data between the
scientific kernel and the supporting framework. TVB-Datatypes
are annotated data structures which contain one or more data
attributes and associated descriptive information, as well as meth-
ods for operating on the data they contain. The definition
of a Datatype is achieved using TVB’s traiting system, which
was inspired by the traiting system developed by Enthought
(Enthought, 2001). The traiting system of TVB, among other
things, provides a mechanism for annotating data, that is, associ-
ating additional information with the data which is itself usually
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a single number or an array of numbers. A complete descrip-
tion of TVB’s traiting system is beyond the scope of this article.
However, in describing TVB’s Datatypes we will give an example
of its use, which should help to provide a basic understanding of
the mechanism.

A number of basic TVB-Datatypes are defined based on
Types that are part of the traiting system, with these traited
Types, in turn, wrapping Numpy data types. For instance,
TVB-FloatArray is a datatype derived from the traiting system’s
Array type, which in turn wraps Numpy’s ndarray. The trait-
ing system’s Array type has attributes or annotations, such as:
dtype, the numerical type of the data contained in the array;
label, a short (typically one or two word) description of what
the Array refers to, this information is used by the support-
ing framework to create a proper label for the GUI; doc, a
longer description of what the Array refers to, allowing the
direct integration of useful documentation into array objects; and
default, the default value for an instance of an Array type. In
the case of a FloatArray, the dtype attribute is fixed as being
numpy.float64.

More complex, higher-level, TVB-Datatypes are then built
up with attributes that are themselves basic TVB-Datatypes. For
example, TVB-Connectivity is datatype which includes multi-
ple FloatArrays, as well as a number of other traited types, such

as Integer and Boolean, in its definition. An example of a
FloatArray being used to define an attribute of a Connectivity can
be seen in Code 1. The high-level Datatypes currently defined in
TVB are summarized in Table 2.

An example indicating the usage and features of TVB-
Datatypes is provided below. When a user uploads a connectivity
dataset through the UI, an instance of a Connectivity datatype is
generated. This Connectivity datatype is one of the required input
arguments when creating an instance of SIMULATOR. As a result
of the execution of a simulation, other TVB-Datatypes are gener-
ated, for instance one or more TimeSeries datatypes. Specifically,
if the simulation is run using the MEG and EEG recording
modalities then TimeSeriesMEG, TimeSeriesEEG, which
are subclasses of TimeSeries, are returned. Both the Connectivity

Code 1 | An instance of TVB’s FloatArray Datatype being used to

define the conduction speed between brain regions as an attribute of

a Connectivity Datatype.

speed = FloatArray(
label = "Conduction speed",
default = numpy.array([3.0]),
doc = """A single number or matrix of conduction speeds for the

myelinated fibre tracts between regions.""")

Table 2 | TVB Datatypes.

Base class datatype Description Derived classes

Connectivity Maps connectivity matrix data Connectivity

Surfaces Covers surface representations CorticalSurface, SkinAir, BrainSkull, SkullSkin,
EEGCap, FaceSurface, Cortex, RegionMapping,
LocalConnectivity

Volumes Wraps volumetric data ParcellationMask, StructuralMRI

Sensors Wraps sensors data used in different acquisition techniques to
generate physiological recordings

SensorsEEG, SensorsMEG, SensorsInternal

ProjectionMatrix Wraps matrices defining a linear operator to map the spatial sources
into the leadfield domain

ProjectionRegionEEG, ProjectionSurfaceEEG,
ProjectionRegionMEG

It relates two datatypes: a source of type Connectivity or Surface
and a set of Sensors

ProjectionSurfaceMEG

The matrix is computed using OpenMEEG. (Gramfort et al., 2010)

Equations Commonly used functions for defining local connectivity kernels and
stimulation patterns

SpatialPattern Contains patterns mainly used as stimuli. It makes use of Equation
datatypes

SpatioTemporalPattern, StimuliRegion,
StimuliSurface, SpatialPatternVolume

TimeSeries One of the most important TVB-Datatypes. Derived classes wrap
measurements recorded under different acquisition modalities

TimeSeriesRegion, TimeSeriesSurface,
TimeSeriesVolume, TimeSeriesEEG, TimeSeriesMEG

Graph Wraps results from a covariance analysis or results from BCT
analyzers

Covariance, ConnectivityMeasure

MappedValues Wraps a single value computed from a TimeSeries object

ModeDecomposition Wraps results from matrix factorization analysis (i.e., PCA and ICA) PrincipalComponents, IndependentComponents

Spectral Wraps results from frequency analysis FourierSpectrum, WaveletCoefficients,
ComplexCoherenceSpectrum

Specifications about the requirements to build a TVB-Datatype can be found in the documentation of the distribution packages.
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and TimeSeries datatypes are accepted by a range of appropriate
analysis and visualization methods.

Further, TVB-Datatypes have attributes and metadata which
remains accessible after exporting in TVB format. The meta-
data includes a technical description of the data (storage size
for instance) as well as scientifically relevant properties and use-
ful documentation to properly interpret the dataset. In the shell
interface, the attributes of TVB-Datatype can be accessed by their
key-names in the same way as Python dictionaries.

2.3. TVB SIMULATOR
The simulation core of TVB brings together a mesoscopic model
of neural dynamics with structural data. The latter defines both
the spatial support (see Figure 4), upon which the brain net-
work model is built, and the hierarchy of anatomical connectivity,
that determines the spatial scale represented by the structural
linkages between nodes (Freeman, 1975). Simulations then recre-
ate the emergent brain dynamics by numerically integrating this
coupled system of differential equations. All these entities have
their equivalent representation as classes either in the sci-
entific MODULES or datatypes, and are bound together in an
instance of the Simulator class. In the following paragraphs
we describe all the individual components required to build a
minimal representation of a brain network model and run a simu-
lation, as well as the outline of the operations required to initialize
a Simulator object and the operations of the update scheme.

2.3.1. Coupling
The brain activity (state variables) that has been propagated over
the long-range Connectivity pass through these functions before
entering the equations of a Model describing the local dynam-
ics. A Coupling function’s primary purpose is to rescale the
incoming activity to a level appropriate to the population model.
The base Coupling class as well as a number of different cou-
pling functions are implemented in the COUPLING module, for
instance Linear and Sigmoidal.

FIGURE 4 | Demonstration datasets exist in TVB for the anatomical

structure on which simulations are built, including a triangular mesh

surface representation of the neocortex (A) and white matter fiber

lengths (B). However, new data from structural imaging such as MRI, DTI,
and DSI for individual subjects, as well as data from the literature can be
used and wrapped in a TVB-Datatype.

2.3.2. Population models
A set of default mesoscopic neural models are defined in TVB’s
MODELS. All these models of local dynamics are classes derived
from a base Model class.

We briefly discuss the implemented population models in
order of increasing complexity. They include a generic two
dimensional oscillator, a collection of classical population mod-
els and two recently developed multi-modal neural mass models.
Below, N refers to the number of state variables or equations
governing the evolution of the model’s temporal dynamics; M
is the number of modes and by default M = 1 except for the
multi-modal models.

The Generic2dOscillator model (N = 2) is a generic
phase-plane oscillator model capable of generating a wide range
of phenomena observed in neuronal population dynamics, such
as multistability, the coexistence of oscillatory and non-oscillatory
dynamics, as well as displaying dynamics at multiple time
scales.

The WilsonCowan model (Wilson and Cowan, 1972)
(N = 2) describes the firing rate of a neural population con-
sisting of two subpopulations (one excitatory and the other
inhibitory). It was originally derived using phenomenological
arguments. This neural mass model provides an intermediate
between a microscopic and macroscopic level of description of
neural assemblies and populations of neurons since it can be
derived from pulse-coupled neurons (Haken, 2001) and its con-
tinuum limit resembles neural field equations (Jirsa and Haken,
1996).

The WongWang model (Wong and Wang, 2006) represents
a reduced system of N = 2 coupled non-linear equations, orig-
inally derived for decision making in two-choice tasks. The
BrunelWang model (Brunel and Wang, 2001, 2003) is a mean
field model derived from integrate-and-fire spiking neurons and
makes the approximation of randomly distributed interspike
intervals. It is notable that this population model shows only
attractor states of firing rates. It has been extensively used to
study working memory. Its complexity resides in the number of
parameters that it uses to characterize each population (N = 2).
These parameters correspond to physical quantities that can be
measured in neurophysiology experiments. The current imple-
mentation of this model is based on the approach used in (Deco
and Jirsa, 2012).

The JansenRit model (Jansen and Rit, 1995) is a deriva-
tive of the Wilson-Cowan model and features three coupled
subpopulations of cortical neurons: an excitatory population of
pyramidal cells interacting with two populations of interneu-
rons, one inhibitory and the excitatory. This model can produce
alpha activity consistent with that measured in EEG, and is
capable of simulating evoked potentials (Jansen et al., 1993). It
displays a surprisingly rich and complex oscillatory dynamics
under periodic stimulation (Spiegler et al., 2010). Each popu-
lation is described by a second order differential equation. As a
consequence the system is described by a set of N = 6 first order
differential equations.

The StefanescuJirsa2D and StefanescuJirsa3D
models (Stefanescu and Jirsa, 2008; Jirsa and Stefanescu, 2010;
Stefanescu and Jirsa, 2011) are neural mass models derived from a
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globally coupled population of neurons of a particular kind. The
first one has been derived from coupled FitzHugh-Nagumo neu-
rons (FitzHugh, 1961; Nagumo, 1962), which, with N = 2, are
capable of displaying excitable dynamics, as well as oscillations.
The second is derived from coupled Hindmarsh-Rose neurons
(Hindmarsh and Rose, 1984), which are also capable of pro-
ducing excitable and oscillatory dynamics, but with N = 3 have
the additional capability of displaying transient oscillations and
bursts. The two Stefanescu-Jirsa models show the most complex
repertoire of dynamics (including bursting and multi-frequency
oscillations). They have been derived using mean field tech-
niques for parameter dispersion (Assisi et al., 2005) and have an
additional dimension, the mode M, which partitions the dynam-
ics into various subtypes of population behavior. These models
are therefore composed of 12 (N = 4, M = 3) and 18 (N = 6,
M = 3) state variables, respectively.

2.3.3. Integrators
The base class for integration schemes is called Integrator, an
INTEGRATORS module contains this base class along with a set of
specific integration scheme classes for solving both deterministic
and stochastic differential equations. The specific schemes imple-
mented for brain network simulations include the Euler and
Heun methods. The 4th-order Runge-Kutta (rk4) method is
only available for solving ordinary differential equations (ODEs),
i.e., deterministic integration, given that there are various vari-
ants for the stochastic version of the method, differing rates of
convergence being one of the points that several attempts of cre-
ating a stochastic adaptation fail at [see Burrage et al. (2004)
for an overview]. Therefore, this method is available for drawing
example trajectories in the interactive phase-plane plot tool.

2.3.4. Noise
Noise plays a crucial role for brain dynamics, and hence for
brain function (McIntosh et al., 2010). The NOISE module con-
sists of two base classes: RandomStream that wraps Numpy’s
RandomState class and Noise. The former provides the ability
to create multiple random streams which can be independently
seeded or set to an explicit initial state. The latter is the base
class from which specific noises, such as white and colored (Fox
et al., 1988), are derived. In TVB’s implementation Noise enters
as an additional term within the stochastic integration schemes,
and can be either an Additive or Multiplicative process
(Klöden and Platen, 1995). As well as providing a means to gener-
ate reproducible stochastic processes for the integration schemes,
the related classes in NOISE are used to set the initial conditions
of the system when no explicit initial conditions are specified.

2.3.5. Monitors
The data from a simulation is processed and recorded while
the simulation is running, that is, while the differential equa-
tions governing the system are being integrated. The base class
for these processing and recording methods is the Monitor
class in the MONITORS module. We consider two main types
of online-processing: (1) raw or low-level; and (2) biophysical
or high-level. The output of a Monitor is a 4-dimensional
array (which can be wrapped in the corresponding TimeSeries

datatype), i.e., a 3D state vector as a function of time. For
the first kind of Monitors these dimensions correspond to
[time, state variables, space, modes] where “space” can be either
brain regions or vertices of a cortical surface plus non-cortical
brain regions. The number of state variables as well as the num-
ber of modes strictly depend on the Model. For the second kind
of Monitors, the dimensions are [time, 1, sensors, 1]. The sim-
plest form of low-level Monitor returns all the simulated data,
i.e., time points are returned at the sampling rate correspond-
ing to the integration scheme’s step size and all state variables
are returned for all nodes. All other low-level Monitors per-
form some degree of down-sampling, such as returning only a
reduced set state variables (by default the variables of interest of
a Model), or down-sampling in “space” or time. Some vari-
ations include temporally sub-sampled, spatially averaged and
temporally sub-sampled, or temporally averaged. The biophysical
Monitors instantiate a physically realistic measurement pro-
cess on the simulation, such as EEG, MEG, SEEG or BOLD. For
the first two, a ProjectionMatrix is also required. This matrix
maps source activity (“space”) to sensor activity (“sensors”).
OpenMEEG (Gramfort et al., 2010) was used to generate the
demonstration projection matrix, also known as lead-field or gain
matrix, that corresponds to the EEG/MEEG forward solution.
The forward solution modeling the signals from depth electrodes
is based on the point dipole model in homogeneous space (Sarvas,
1987). The BOLD monitor is based on Buxton and Frank (1997)
and Friston et al. (2000). Figure 5 summarizes the fundamental
blocks required to configure a full model, launch a simulation and
retrieve the simulated data.

In most neural mass models there is a state variable represent-
ing some type of neural activity (firing rate, average membrane
potential, etc.), which serves as a basis for the biophysical moni-
tors. The state variables used as source of neural activity depend
both on the Model and the biophysical space that it will be pro-
jected onto (MEG, EEG, BOLD). Given a neural mass model with
a set of state variables, G-Users can choose which subset of state
variables will be fed into a Monitor (independently for each
monitor). However, how a given Monitor operates on this sub-
set of state variables is an intrinsic property of the monitor. Users
with programming experience can, of course, define new moni-
tors according to their needs. Currently, there is not a mechanism
providing automatic support for general operations over state
variables before they are passed to a monitor. As such, when the
neural activity entering into the monitors is anything other than
a summation or average over state variables then it is advised to
redefine the Model in a way that one of the state variables actually
describes the neural activity of interest.

2.3.6. Outline of the simulation algorithm
The Simulator class has several methods to set up the
spatiotemporal dimensions of the input and output arrays,
based on configurable attributes of the individual
components such as integration time step (e.g., INTE-
GRATORS.HeunDeterministic.dt), structural spatial
support (e.g., connectivity.Connectivity or surfaces.
CorticalSurface) and transmission speed (e.g., connec-
tivity.Connectivity .speed) as well as a cascade of specific
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FIGURE 5 | Diagram of the configurable elements for building a brain

network model and launching a simulation. TVB can incorporate cortical
connectivity information from an individual’s tractographic and cortical
geometry data. The Connectivity object contains matrices defining the
connection strengths and time delays via finite signal transmission speed
between all regions, while the folded Cortical Surface mesh provides the
spatial support for finer resolution models. In the latter case a Local
Coupling defines the interaction between neighboring nodes. In its simplest
form local connectivity is spatially invariant, however, support exists for
spatial inhomogeneity. Signal propagation via local connectivity is
instantaneous (no time delays), which is a reasonable approximation
considering the short distances involved. Together, the cortical surface with
its local connectivity, the long-range connectivity matrix, and the neural mass

models defining the local dynamics define a full brain network model.
Additionally, stimulation can be applied to a simulation. The stimulation
patterns are built in terms of spatial and temporal equations chosen
independently. For region-based network models, it is only possible to build
time dependent stimuli since there is not a spatial extent for a region node.
However, node-specific weightings can be set to modulate the intensity of
the stimulus applied to each node. For surface-based models, equations with
finite spatial support are evaluated as a function of distance from one or more
focal points (vertices of the surface), where the equation defines the spatial
profile of the stimuli. The neural source activity from both region or
surface-based approaches can be projected into EEG, MEG and BOLD
(Buxton and Frank, 1997; Friston et al., 2000) space using a forward model
(Breakspear and Jirsa, 2007).

configuration methods to interface them. The Simulator
class coordinates the collection of objects from all the modules
in the scientific library needed to build the network model and
yield the simulated data. To perform a simulation a Simulator
object needs to be: (1) configured, initializing all the individual
components and calculating attributes based on the combination
of objects passed to the Simulator instance; and (2) called in
a loop to obtain simulated data, i.e., to run the simulation (see
Code 2). The next paragraphs list the main operations of the
simulation algorithm.

Initializing a Simulator

1. Check if the transmission speed was provided.
2. Configure the Connectivity matrix (connectome). The

delays matrix is computed using the distance matrix and
the transmission speed. Get the number of regions.

3. Check if a Surface is provided.
4. Check if a stimulus pattern is provided.
5. Configure individual components: Model, Integrator,

Monitors. From here we obtain integration time

step size, number of statevariables, number
of modes.

6. Set the number of nodes (region-based or surface-based
simulation). If a Surface was given the number of nodes
will correspond to the number of vertices plus the num-
ber of non-cortical regions, otherwise it will be equal to the
number of regions in the Connectivity matrix.

7. Spatialise model parameters if required. Internally, TVB uses
arrays for model parameters, if the size of the array for a
particular parameter is 1, then the same numerical value is
applied to all nodes. If the size of the parameter array is N,
where N is the number of nodes, the parameter value for each
node is taken from the corresponding element of the array of
parameter values.

8. If applicable, configure spatial component of stimulation
Patterns (requires number of nodes).

9. Compute delays matrix in integration time steps.
10. Compute the horizon of the delayed state, that is the

maximum delay in integration time steps.
11. Set the history shape. The history state contains the activ-

ity that propagates from the delayed state to the next.
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12. Determine if the Integrator is deterministic or stochas-
tic. If the latter, then configure the Noise and the integration
method accordingly.

13. Set initial conditions. This is the state from
which the simulation will begin. If none is provided, then
random initial conditions are set based on the ranges of the
model’s state variables. Random initial conditions are fed to
the initial history array providing the minimal state of the
network with time-delays before t = 0. If initial conditions
are user-defined but the length along the time dimension
is shorter than the required horizon, then the history
array will be padded using the same method of described for
random initial conditions.

14. Configure the monitors for the simulation. Get variables
of interest.

Calling a Simulator

1. Get simulation length.
2. Compute estimates of run-time, memory usage and storage.
3. Check if a particular random state was provided (random

seed). This feature is useful for reproducibility of results, for
instance, getting the same stream of random numbers for the
Noise.

4. Compute the number of integration steps.
5. If the simulation is surface-based, then get attributes required

to compute Local Connectivity kernel.
6. Update state loop:

a. Get the corresponding coupled delayed activity. That is,
compute the dot product between the weights matrix
(connectome) and the delayed state of the coupling
variables, transformed by a (long-range) Coupling
function.

b. Update the state array. This is the numerical integration,
i.e., advancing an integration time step, of the differential
equations defining the neuron model. Distal delayed activ-
ity, local instantaneous activity and stimulation are fed to
the integration scheme.

c. Update the history.
d. Push state data onto the Monitors. Yield any processed

time-series data point if available.

As a working example, in Code 2, we show a code snippet which
uses TVB’s scripting interface and some of the classes and mod-
ules we have just described to generate one second of brain
activity. The for loop in the example code allows scripting users to
receive time-series data as available and separately for each of the
monitors processing simulated raw data. In this implementation,
at each time step or certain number of steps, data can be directly
stored to disk, reducing the memory footprint of the simula-
tion. Such a feature is particularly useful when dealing with larger
simulations. Likewise, data can be accessed while the simulation
is still running, which proves to be advantageous for modeling
paradigms where one of the output signals is fed back to the net-
work model as stimulation for instance (see the paragraph about
Dynamic modeling in section 3).

Code 2 | Script example to simulate 1 second of brain activity. Output

is recorded with two different monitors.

from tvb.simulator.lab import *

#Initialise a Model, Connectivity and Global Coupling
oscilator = models.Generic2dOscillator()
white_matter = connectivity.Connectivity()
white_matter.speed = numpy.array([4.0]) # [mm/ms]
white_matter_coupling = coupling.Linear(a=0.0042)

#Initialise an Integrator
heunint = integrators.HeunDeterministic(dt=2**-4)

#Initialise some Monitors with period in physical time
mon_raw = monitors.Raw()
mon_tav = monitors.TemporalAverage(period=2**-2)
what_to_watch = (mon_raw, mon_tav)

#Initialise a Simulator object
sim = simulator.Simulator(model = oscilator,

connectivity = white_matter,
coupling = white_matter_coupling,
integrator = heunint,
monitors = what_to_watch)

# Configure the Simulator object
sim.configure()
LOG.info("Starting simulation...")

raw_data, raw_time = [], []
tavg_data, tavg_time = [], []

# Call the Simulator object -- Run simulation
for raw, tavg in sim(simulation_length=2**10):

if not raw is None:
raw_time.append(raw[0])
raw_data.append(raw[1])

if not tavg is None:
tavg_time.append(tavg[0])
tavg_data.append(tavg[1])

LOG.info("Finished simulation.")

2.4. ANALYZERS AND VISUALIZERS
For the analysis and visualisation of simulated neuronal dynamics
as well as imported data, such as anatomical structure and exper-
imentally recorded time-series, several algorithms and techniques
are currently available in TVB. Here we list some of the algo-
rithms and methods that are provided to perform analysis and
visualization of data through the GUI.

Analyzers are mostly standard algorithms for time-series and
network analysis. The analyzers comprise techniques wrapping
functions from Numpy (Fast Fourier Transform (FFT), auto-
correlation, variance metrics), Scipy (cross-correlation), scikit-
learn (ICA) (Pedregosa et al., 2011) and matplotlib-mlab (PCA)
(Hunter, 2007). In addition, there are specific implementations
of the wavelet transform, complex coherence (Nolte et al., 2004;
Freyer et al., 2012) and multiscale entropy (MSE) (Costa et al.,
2002, 2005; Lake and Moorman, 2011).

Visualizers are tools designed to correctly handle specific
datatypes and display their content. Representations currently
available in the GUI include: histogram plots (Figure 6A);
interactive time-series plots, EEG (Figure 6C); 2D head topo-
graphic maps (Figure 6B); 3D displays of surfaces and animations
(Figure 6D) and network plots. Additionally, for shell users there
is a collection of plotting tools available based on matplotlib and
mayavi (Ramachandran and Varoquaux, 2011).

3. PERFORMANCE, REPRODUCIBILITY, AND FLEXIBILITY
3.1. TESTING FOR SPEED
In the context of full brain models there is no other platform
against which we could compare the performance results for TVB
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FIGURE 6 | Continued
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FIGURE 6 | Visualizers. (A) Histogram of a graph metric as a function
of nodes in the connectivity matrix. (B) A 2D projection of the head.
The color map represents a graph metric computed on the connectivity
matrix. (C) EEG visualizer combines a rendered head surface, an overlay

with the sensors positions and an interactive time-series display. (D) An
animated display of the spatiotemporal pattern applied to the cortical
surface. Red spots represent the focal points of the spatial component
of the stimulus.

and define a good ratio run-time/real-time. As a first approxima-
tion a simple network of 74 nodes, whose node dynamics were
governed by the equations of the Generic2dOscillator
model (see Code 3) was implemented in the Brian spik-
ing neural network simulator. The integration step size was
0.125 ms (dt = 2−3 ms) and the simulation length was 2048 ms.
This network was evaluated without time delays and using
a random sparse connectivity matrix. Execution times were
about 4.5 s in Brian and 15 s in TVB. In contrast, when
heterogeneous time delays were included, running times of
the simulations implemented in Brian increased considerably
(approximately 6.5x) whereas in TVB they hardly changed
(approximately 1.2x). Simulations were run on a CPU Intel®
Xeon® W3520 @ 2.67 GHz. These results, although informa-
tive, expose the fact that the architectures of TVB and the Brian
simulator are different and therefore they have been optimized
accordingly to serve distinct purposes from a modeling point
of view.

To assess the performance of TVB in terms of simulation
timings, we also ran simulations for all possible combinations
of two parameters: simulation length and integration time step
(Figure 7A). We made the following estimates: it takes on aver-
age 16 s to compute 1 s of brain network dynamics [at the region
level, with an integration time step of 0.0625 ms (dt = 2−4 ms)
and including time delays of the order of 20 ms which amounts to
store about 320 past states per time step] on CPUs Intel ®Xeon
®X5672 @ 3.20 GHz, CPU cache of 12 MB and Linux kernel
3.1.0-1-amd64 as operating system. In Figure 7B we quantify how
running times increase as a function of the integration time step
in 64 s long (region-based) simulations for two different sizes of
the connectivity matrix.

Code 3 | State equations of the generic plane oscillator as scripted to

run the simulation in the Brian simulator. The description of the

parameters are explained in the API documentation and will be

discussed in the context of dynamical systems elsewhere.

# model equations
eqs = ’’’
dV/dt = d * tau * (alpha * W - f * V**3 + e * V**2 + I)
dW/dt = d * (a + b * V + c * V**2 - beta * W) / tau
’’’

In general, human cortical connectomes are derived from
anatomical parcellations with a variable number of nodes, from
less than 100 to over a few thousands nodes (Zalesky et al., 2010).
Preliminary results of simulations (data not shown) using con-
nectivity matrices of different sizes (16, 32, 64, 128, 256, 512,
1024, 2048, and 4096 nodes) and a supplementary parameter
(transmission speed that has an effect on the size of the history
array keeping the delayed states of the network) indicate that there
is a quadratic growth of the running times for networks with more
than 512 nodes. Since performance depends on a large num-
ber of parameters which have an effect on both memory (CPU
cache and RAM) and CPU usage, and therefore resulting run-
ning times arise from the interaction between them, we see the
need to develop more tests to stress in particular memory capacity
and bandwidth in order to fully understand the aforementioned
behavior.

In Future Work we talk about the approaches to bench-
mark and improve the execution times of simulations. For the
present work we have restricted ourselves to present performance
results looking at the parameters that have the strongest effect on
simulations timings.
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FIGURE 7 | (A) As expected for fixed time-step schemes, execution
times scale linearly with the number of integration steps. We used
seven values of simulation lengths (1, 2, 4, 8, 16, 32, and 64 s) and
five values of integration time step (dt = 2−2 = 0.25, dt = 2−3 = 0.125,
dt = 0.0625 = 2−4, dt = 0.03125 = 2−5, and dt = 0.015625 = 2−6 ms). For
each possible combination 100 simulations were performed. The network
model consisted of 74 nodes (with two state variables and one mode
per node). Numerical integration was based on Heun’s stochastic
method. We plot the average execution time with the error bars
representing the standard deviation over simulations. The inset shows a
narrower range for simulation lengths between 1 and 4 s. Axes units

and color code are the same as those displayed in the main plot.
(B) Here, execution times are shown as a function of the integration
time step size, dt, for two different number of nodes (solid and dashed
lines correspond to connectivity matrices of 64 and 128 nodes,
respectively) for a specific conduction speed (4 mm/ms) and simulation
length (64 s). Both axes are in logarithmic scale with base 2. In this
case, halving dt or doubling the number of nodes in the connectivity
matrix, N, doubles the running time. However, as mentioned in the text,
for larger networks execution times seem to grow quadratically as a
function of the number of nodes in the network. Further tests need to
be developed to understand this behavior.

3.2. REPRODUCIBILITY OF RESULTS FROM THE LITERATURE
Ghosh et al. (2008) and Deco et al. (2009) demonstrated the
important role of three large-scale parameters in the emergence
of different cluster synchronization regimes: the global coupling
strength factor, time-delays (introduced via the long-range con-
nectivity fiber tract lengths and a unique transmission speed)
and noise variance. They built parameter space maps using the
Kuramoto synchronization index. Here, using TVB’s scripting
interface, we show it is easily possible to build a similar scheme
and perform a parameter space exploration in the coupling
strength (gcs) and transmission speed (s) space. The Connectivity
upon which the large-scale network is built was the demonstra-
tion dataset. It is bi-hemispheric and consists of 74 nodes, i.e.,
37 regions per hemisphere. It includes all the cortical regions but
without any sub-cortical structure such as the thalamic nuclei.
Its weights are quantified by integer values in the range 0–3. The
evolution of the local dynamics were represented by the model
Generic2dOscillator, configured in such a way that a single iso-
lated node exhibited 40 Hz oscillations (Figure 8). The variance
of the output time-series was chosen as a simple, yet informa-
tive measure to represent the collective dynamics (Figure 9A) as
a function of the parameters under study. Results are shown in
Figure 9B. Parameter sweeps can also be launched from TVB
web-interface (see Figure 10 for an illustration).

Currently TVB provides two scalar metrics based on the vari-
ance of the output time-series to perform data reduction when
exploring a certain parameter space. These are Variance of the
nodes Variances and Global Variance. The former zero-centers
the output time-series and computes the variance over time of
the concatenated time-series of each state variable and mode for
each node and subsequently the variance of the nodes variances

is computed. This metric describes the variability of the tem-
poral variance of each node. In the latter all the time-series are
zero-centered and the variance is computed over all data points
contained in the output array.

With this example we intended to expose the possibility to
reproduce workflows, i.e., modeling schemes, found in the liter-
ature. TVB is a modeling platform providing a means of cross-
validating scientific work by encouraging reproducibility of the
results.

3.3. HIGHER-LEVEL SIMULATION SCENARIOS USING STIMULATION
PROTOCOLS

As one possible use case, we have set up an example based on the
scheme used in McIntosh et al. (2010). The goal is to demonstrate
how to build stimulation patterns in TVB, use them in a simu-
lation, obtain EEG recordings of both the activity similar to the
resting state (RS) and to evoked responses (ER), and finally make
a differential analysis of the complexity of the resulting time-series
by computing MSE.

In vision neuroscience, the two-stream hypothesis (Schneider,
1969) suggests the existence of two streams of information pro-
cessing, the ventral and the dorsal stream. In one of these path-
ways, the ventral stream, the activity from subcortical regions
project to V1 and the activity propagates to the temporal cortices
through V2 and V4 (Goodale and Milner, 1992). We systemat-
ically stimulated the area corresponding to the primary visual
cortex (V1) to demonstrate the functioning of TVB stimulation
Patterns and observed how the activity elicited by a periodic rect-
angular pulse propagates to neighboring regions, especially V2.

Benefiting from TVB’s flexibility we show in Figure 11 that
it is possible to systematically stimulate a specific brain region
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FIGURE 8 | Phase portrait using TVB’s interactive phase plane

tool (accessible from both shell and graphical interfaces): the

blue line corresponds to a trajectory of a single oscillator

node isolated and without noise, 4th order Runge-Kutta

integration scheme. In the bottom panel, the corresponding
trajectories of both the v(t) and w(t) state variables of the
model are shown. The activity exhibits oscillations at
approximately 40 Hz.

FIGURE 9 | (A) The activity of individual regions are illustrated in colored
lines. The black line represents the average activity over the network nodes.
Here brain regions are weakly coupled changing both the collective and local
dynamics of the network. (B) Using TVB scientific library as a python module
we can conveniently run thousands of simulations in parallel on a cluster.
Note that TVB parallelizes different tasks e.g., simulations and analyses,
taking advantage of multi-core systems, however, it does not parallelize the
processes themselves. Simultaneous simulations allow for a systematic

parameter space exploration to rapidly gain insights of the whole brain
dynamics repertoire. In this plot, the magnitude and color scale correspond to
one the variance computed over all the elements of the N-dimensional output
array (Global Variance). Simulations were performed on a cluster based on
the Python demo scripts available in the release packages. On of the major
strengths of The Virtual Brain is that G-Users are enabled to launch parameter
sweeps through the UI without the need to know how to submit parallel jobs
(see Figure 10).

(e.g., V1) and to highlight the anatomical connection to its target
region (e.g., V2) by observing the arrival of the delayed activity;
analyze the responses of the model; handle multi-modal simu-
lated data; and extract metrics from computationally expensive

algorithms to characterize both the “resting” and “evoked”
states.

Currently, TVB permits the stimulation and read-out of activ-
ity from any brain area defined in the anatomical parcellation
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FIGURE 10 | One of TVB’s major strengths is the capability to launch

parallel simulations through the UI. We show a screenshot of the
resulting display when sweeping across two different parameters of the
Generic2dOscillator model. Here each data point represents two metrics:
size is mapping the Global Variance and color corresponds to the Variance
of the nodes Variance. These results provide a topography of the stability
space allowing users to distinguish, and thus select, combinations of
critical parameters values.

used to derive the connectome. This modeling example was
built imposing a strong restriction on the number of regions
to stimulate, since global dynamics can quickly become com-
plex. Additionally, to demonstrate the many scenarios that can
be set up in TVB, we simulated the same brain network model
under the influence of a stimulus, first without noise (Figure 11A:
using Heun deterministic method) and then with white noise
(Figure 11B: using Heun stochastic method). The first approach
makes it easier to see the perturbations induced by the stimulus
and the propagation of activity from one region to the other. The
second approach is a more realistic representation of the neural
activity.

Results of the proposed modeling protocol are presented in
Figure 12 where the EEG traces from channel Oz for the resting
and evoked states are shown together with the MSE estimates.

Scripts to reproduce results from Figures 11, 12 are available
in the distribution packages of TVB.

With the availability of surface-based simulations the challenge
of replicating topographic maps of different sensory systems, such
as those found in the primary visual cortex (Hinds et al., 2009),
could be addressed.

3.4. DYNAMIC MODELING
From both the shell and web interface it is possible to exploit
another feature of TVB: namely, simulation continuation, i.e.,
a simulation can be stopped allowing users to modify model

parameters, scaling factors, apply or remove stimulation or spatial
constraints (e.g., local connectivity), or make any other change
that does not alter the spatiotemporal domain of the system or
its output (integration step, transmission speed and spatial sup-
port) and then resumed without the need of creating a new
Simulator instance. Furthermore, this capability opens the
possibility to dynamically update the simulation at runtime. Such
a dynamic approach leads toward an adaptive modeling scheme
where stimuli and other factors may be regulated by the ongoing
activity (this last feature can be handled only from the scripting
interface for the moment).

4. DISCUSSION
We have presented the architecture and usage of TVB, a neu-
roinformatics platform developed for simulations of network
models of the full brain. Its scientific core has been developed
by integrating concepts from theoretical, computational, cogni-
tive and clinical neuroscience, with the aim to integrate neu-
roimage modalities along with the interacting mesoscopic and
macroscopic scales of a biophysical model of the brain. From a
computational modeling perspective TVB constitutes an alterna-
tive to approaches such as the work of Riera et al. (2005) and
more recently that of Valdes-Sosa et al. (2009), as well as other
relevant studies mentioned in the main text of this article. From
a neuroinformatics perspective, TVB lays the groundwork for
the integration of existing paradigms in the theory of large-scale
models of the brain, by providing a general and flexible frame-
work where the advantages and limitations of each approach may
be determined. It also provides the community with a technol-
ogy, that until now had not been publicly available, accessible
by researchers with different levels and backgrounds, enabling
systematic implementation and comparison of neural mass and
neural field models, incorporating biologically realistic connec-
tivity and cortical geometry and with the potential to become
a novel tool for clinical interventions. While many other envi-
ronments simulate neural activity at the level of neurons (Brian
simulator, MOOSE, PCSIM, NEURON, NEST, GENESIS) (Hines
and Carnevale, 2001; Gewaltig and Diesmann, 2007; Goodman
and Brette, 2008; Ray and Bhalla, 2008; Pecevski et al., 2009;
Brette and Goodman, 2011), even mimicking a number of spe-
cific brain functions (Eliasmith et al., 2012), they, most impor-
tantly, do not consider the space-time structure of full brain
connectivity constraining whole brain neurodynamics, as a cru-
cial component in their modeling paradigm. Other approaches to
multi-modal integration such as Statistical Parametric Mapping
(SPM) perform statistical fitting to experimental data at the level
of a small set of nodes (Friston et al., 1995, 2003; David et al.,
2006; Pinotsis and Friston, 2011) [i.e., they are data-driven as in
Freestone et al. (2011)], thus diverging from our approach that
could be categorized as a purely “computational neural modeling”
paradigm as described in Bojak et al. (2011). From this perspec-
tive, the goal is to capture and reproduce whole brain dynamics by
building a network constrained by its structural large-scale con-
nectivity and mesoscopic models governing the nodes intrinsic
dynamics.

Also, the extension of neuronal level modeling to large brain
structures requires vast supercomputers to emulate the large
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FIGURE 11 | (A) The upper left blue panel shows the raw traces of nodes V2
and V1; the latter stimulated with a rectangular pulse of width equal to 5 ms
and repetition frequency of 1 Hz. Signals are normalized by their
corresponding maximum value. The right blue panel show the signals for a
shorter period of time. Amplitudes are not normalized to emphasize the
relative difference between the two regions. Middle panels illustrate the
stimulus pattern. Lower red panels display the activity as projected onto EEG

space and recorded from channels Oz and O1. The default EEG cap in TVB
consists of 62 scalp electrodes distributed according to the 10–20
international system (Klem et al., 1999). In this simulation a deterministic
integration scheme was employed to obtain the time-series of neural activity,
since noise was not applied to the model’s equations. (B) The same
description as in (A) applies. The main difference with the previous
simulation is that here white noise was added to the system.

number of complex functional units. Focusing on the brain’s
large-scale architecture, in addition to the dimension reduction
accomplished through the mean field methods applied on the
mesoscopic scale, TVB allows for computer simulations on the

full brain scale on workstations and small computing clusters,
with no need to use supercomputing resources.

The simulator component of TVB has the goal of simulat-
ing mesoscopic neural dynamics on large-scale brain networks.
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FIGURE 12 | The green and blue panels show EEG recordings from

electrode Oz during the resting state , i.e., in the absence of stimulation

and in the stimulated condition, respectively, notice the slow damped

oscillations after stimulus onset at a approximately 10 Hz; the light gray

trace depicts the stimulation pattern. The bottom panel displays multiscale
entropy estimates computed on the Oz time-series at different temporal
scales using the dataset obtained by means of a stochastic integration
scheme.

It does not intend to build brain models at the level of neu-
rons (Goodman and Brette, 2009; Cornelis et al., 2012), how-
ever, it does leverage information from microscopic models to
add detail and enhance the performance of the neural popula-
tion models, which act as building blocks and functional units
of the network. TVB thus represents a unique tool to system-
atically investigate the dynamics of the brain, emphasizing its
large-scale network nature and moving away from the study
of isolated regional responses, thereby considering the function
of each region in terms of the interplay among brain regions.
The primary spatial support (neuroanatomical data) on top of
which the large-scale network model is built has a number of
implications:

1. It constraints the type of network dynamics; dynamics that
could be further related to physiology and behavior (Senden
et al., 2012).

2. It permits a systematic investigation of the consequences of
the particular restrictions imposed by that large-scale structure
and the effect of changes to it.

3. It provides a reliable and geometrically accurate
model of sources of neural activity, enabling realistic
forward solutions to EEG/MEG based on implemen-
tations of boundary element methods (BEM) or other
approaches such as finite difference time domain methods
(FDTD).

On the basis of the literature, theoretical and clinical studies
seeking to better understand and describe certain brain functions
and structure use stimulation as an essential part of their proto-
cols. Stimulation is a way to probe how the system respond under
external perturbations adapting itself to the new environmental
conditions or to categorize responses when stimulation repre-
sents real-life (visual, auditory, motor) sensory inputs. Among
the current features of TVB, the easy generation of a variety of
stimulation patterns is to be recognized as one of its great advan-
tages and contributions to experimental protocol design. TVB
permits the development of simple stimulation routines, allowing
evaluation of the viability and usefulness of certain stimulation
procedures.

TVB represents a powerful research platform, combining
experimental design and numerical simulations into a collabo-
rative framework that allows sharing of results and the integra-
tion of data from other applications. Naturally, this leads to the
potential for an increased level of interaction among researchers
of the broad neuroscience community. In the same direction,
TVB is also an extensible validation platform since it supports
the creation of basic modeling refinement loops, making model
exploration and validation a relatively automated procedure. For
instance, after generating a brain network model, exploring the
system’s parameter space by adjusting parameters of both the
local dynamics and the large scale structure can be achieved with
ease. Further, effects of local dynamics and network structure
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can be disentangled by evaluating distinct local dynamic models
on the same structure or the same local dynamic model coupled
through distinct structures. This constrained flexibility makes it
easy for modelers to test new approaches, directly compare them
with existing approaches and reproduce their own and other
researchers’ results. Reproducibility is indeed a required feature to
validate and consequently increase the reliability of scientific work
(Donoho, 2010) and the extensibility of TVB’s scientific compo-
nents, granted by its modular design, provides a mechanism to
help researchers achieve this.

The brain network models of TVB, being built on explicit
anatomical structure, enable modeling investigations of practical
clinical interest. Specifically, whenever a dysfunction or disease
expresses itself as a change to the large scale network structure,
for instance, in the case of lesions in white-matter pathways, the
direct replication of this structural change in TVB’s brain network
models is straight forward.

FUTURE WORK
Regarding performance, of special importance will be to evalu-
ate all the parameters that have an effect on both memory usage
and execution time for surface-based simulations. The reason is
that realistic brain network models are built on top of surface
meshes constructed by thousands of vertices per hemisphere (213

for the TVB demonstration cortical surface) but can easily have
more than 40,000.

Equally important is to develop more tests to generally evalu-
ate the simulation engine, paying close attention to keep the con-
sistency and stability of the algorithms currently implemented.

Another aspect that deserves careful attention is the descrip-
tion of our modeling approach that was largely beyond the scope
of this text. Therefore, the theory underlying the different meth-
ods involved in the development of a generalized framework

for brain network models is to be presented in future scientific
publications.

To allow a most optimal dissemination of knowledge in TVB
we are currently developing a web-based educational platform
that will allow training on the usage of TVB, as well as serve as
a key reference.

As simulations in TVB are built on the large-scale anatomical
structure of the human brain, continued work to integrate new,
reliable, sources of structural data is essential to the progress of
the platform. An obvious future resource in this regard will be
the newly developed database of the Human Connectome Project
(Essen and Ugurbil, 2012; Essen et al., 2012).

INFORMATION SHARING STATEMENT (LICENSE)
The data and software in this study belong to an ongoing project;
it is free software and licensed under the GNU General Public
License version 2 as published by the Free Software Foundation.
The latest releases of The Virtual Brain including the source
code and demo data are free to download from http://www.

thevirtualbrain.org. The source code available in the public repos-
itory includes the latest experimental features regarding GPU
implementation.
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Severe traumatic brain injury can lead to disorders of consciousness (DOC) characterized
by deficit in conscious awareness and cognitive impairment including coma, vegetative
state, minimally consciousness, and lock-in syndrome. Of crucial importance is to find
objective markers that can account for the large-scale disturbances of brain function
to help the diagnosis and prognosis of DOC patients and eventually the prediction of
the coma outcome. Following recent studies suggesting that the functional organization
of brain networks can be altered in comatose patients, this work analyzes brain
functional connectivity (FC) networks obtained from resting-state functional magnetic
resonance imaging (rs-fMRI). Two approaches are used to estimate the FC: the Partial
Correlation (PC) and the Transfer Entropy (TE). Both the PC and the TE show significant
statistical differences between the group of patients and control subjects; in brief, the
inter-hemispheric PC and the intra-hemispheric TE account for such differences. Overall,
these results suggest two possible rs-fMRI markers useful to design new strategies for
the management and neuropsychological rehabilitation of DOC patients.

Keywords: disorder of consciousness, resting state, functional magnetic resonance imaging, BOLD signal, transfer

entropy, partial correlation, functional connectivity, brain networks

1. INTRODUCTION
Recent studies have shown that brain networks obtained from
functional Magnetic Resonance Imaging (fMRI) recordings are
altered in patients with severe disorder of consciousness (DOC)
(Boveroux et al., 2010; Noirhomme et al., 2010; Heine et al., 2012;
Perri et al., 2013). DOC can result from severe brain injury and is
characterized by an absence of awareness of the self and the envi-
ronment, either with preserved or disrupted sleep-awake cycle.
DOC encompasses a wide spectrum of clinical conditions with
different levels in the content of conscious awareness, ranging
from the coma state (CS, patients who have a disrupted sleep-
awake cycle and don’t wake up), vegetative state (VS, who preserve
sleep-awake cycle but are unaware of themselves and the envi-
ronment), minimally consciousness state (MCS, patients who are
unable to reliably communicate but show reproducible albeit fluc-
tuating behavioral evidence of awareness), to lock-in syndrome
(LI, patients who are fully conscious but are completely para-
lyzed except for small movements of the eyes or eyelids). For
the prognosis of these patients, the clinical practice scores this
graduation in DOC response by the Glasgow Coma Scale (GCS)
(Teasdale and Jennett, 1974), or as we will use in this paper,

Abbreviations: fMRI, functional Magnetic Resonance Imaging; rs, resting state;
DOC, disorder of consciousness; BOLD, Blood-Oxygen-Level-Dependent; FC,
Functional Connectivity; TE, Transfer Entropy; PC, Partial Correlation.

by an alternative scale such as the JFK Coma Recovery Scale-
Revised (CSR-R) (Giacino et al., 2004). This scale encodes the
neurological and behavioral state of the DOC patient provid-
ing a number ranging from 0 to 23, 0 for the deepest coma
state, 23 for the fully recovered one. Despite the existence of such
scales, there is a need for more reliable methods that based on
brain neuroimaging can provide better characterization of the
large-scale disturbances of brain function in DOC. Ultimately
these approaches should help in understanding and eventually
predicting coma outcome.

The resting state functional Magnetic Resonance Imaging (rs-
fMRI) accounts for the spontaneous brain activity occurring in
the high-amplitude ultra-slow (0.1 Hz) fluctuations in the Blood-
Oxygen-Level-Dependent (BOLD) signal, defining networks of
correlated spontaneous activity of brain Functional Connectivity
(FC) (Raichle et al., 2001; Beckmann et al., 2005). The interaction
between these distributed networks as well as subcortical mod-
ules is considered critical for conscious processing, and has been
shown to be disrupted in DOC state (Tononi, 2004; Cauda et al.,
2009; Rosanova et al., 2012). Furthermore, the rs-fMRI paradigm
is a very suitable strategy for DOC patients, since they are not able
to efficiently perform specific tasks. The present study addresses
the question of whether the FC obtained from the rs-fMRI is
altered at different brain regions as a consequence of conscious-
ness disturbances. To this end, we investigate the FC obtained
by two different measures: the Partial Correlation (PC) and the
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Transfer Entropy (TE), in two different groups: healthy adults and
DOC patients.

Information theory offers an arsenal of different measures,
complementing the linear correlation estimations of FC. These
information tools are typically built as extensions of the Shannon
Entropy, quantify the interactions between variables by measur-
ing the information which is shared or transferred between them
(Jaynes, 1957; Cover and Thomas, 2006). In the last decade,
the TE method is growing in popularity as it can account for
directed interactions between time-series variables (Schreiber,
2000). When applied to neuroimaging time-series, TE is a data-
driven measure that assesses the functional connectivity between
brain areas even for non-linear interactions. Unlike the correla-
tions, TE reveals directionality in the interactions, allowing for
determining a directed FC between areas.

We hypothesize that FC would be reduced in DOC patients
since consciousness implies functional integration (Tononi,
2004). We anticipate that PC and TE would show different behav-
iors in patients with increasing level of consciousness, provided
that they can be related to different mechanisms of information
processing in the brain.

The paper is organized as follow: in Material and Methods,
we give details on the the data acquisition and preprocessing and
define the two measures PC and TE to compute FC patterns. The
next section is dedicated to present the results of the analysis.
The paper closes with a discussion on some consequences of the
alteration of the FC patterns in DOC patients.

2. MATERIALS AND METHODS
2.1. SUBJECTS
Seventeen healthy subjects (Group 1) aged 25 ± 5 year old (8
men, 9 women), with no history of neurological or psychiatric
problems, participated in this study as a control group. The
Edinburgh Handedness Inventory was used to assess handedness
(Oldfield, 1971), resulting in thirteen subjects right-handed and
four left-handed. Eleven DOC patients (Group 2) were scanned
(age range, 17–44 years; 6 men, 5 women). Data from two patients
were subsequently excluded because of unacceptable degrees of
head and body movements. The coma severity for each patient
was clinically assessed using the Revised Coma Recovery Scale

[CRS-R, (Giacino et al., 2004)]: scores range from 0 (mean-
ing deep coma state) to 23 (full recovery). The patients were
scanned the first time between 2 to 6 months after major acute
brain injury, and a second time between 3 to 6 months after the
first scan (Table 1). For better comparison, group 2 was subdi-
vided into 2 subgroups: Group 2a (n = 12) is composed by all
scans of DOC patients who had a corresponding CRS-R scale.
Group 2b (n = 4) includes the second scans of the four patients
who recovered consciousness before the second session (marked
with asterisks in Table 1). The study protocol was approved by
the Institutional Review Board of the Institute of Neurological
Research FLENI. Informed consent was directly obtained from
healthy participants and from the next kin of each of the
patients.

2.2. MRI DATA ACQUISITION AND PREPROCESSING
The fMRI measurements were carried out on a 3T Signa
HDxt GE scanner using an 8 channel head coil. Change in
blood-oxygenation-level-dependent (BOLD) T2∗ signal was mea-
sured using an interleaved gradient-echo EPI sequence. Thirty
contiguous slices were obtained in the AC-PC plane with the
following parameters: 2 s repetition time (TR), flip angle: 90◦,
24 cm field of view, 64× 64 pixel matrix, and 3.75× 3.75×
4.0 mm voxel dimensions. During the experimental session sub-
jects lied quietly for a period of 7 min. 220 whole brain volumes
were obtained per scan session, including 5 dummy scans to
allow for T1 saturation effects that were discarded from the
analysis. High resolution T1-weighted 3D fast SPGR-IR were
also acquired (TR = 6.604 ms, TE = 2.796 ms, TI = 450; paral-
lel imaging (ASSET) acceleration factor = 2; acquisition matrix
size = 256 × 256; FOV = 24 cm; slice thickness = 1.2 mm;
120 contiguous sections). The image data was analyzed using
SPM8 (Wellcome Department of Cognitive Neurology, London,
UK) implemented in MATLAB (MathWorks Inc., Natick, MA).
The functional images were subjected to temporal alignment
and volumes were corrected for movement using a six-parameter
automated algorithm. The realigned volumes were spatially nor-
malized to fit to the template created using the Montreal
Neurological Institute reference brain based on Talairach and
Tournoux’s sterotaxic coordinate system (Ashburner and Friston,

Table 1 | Clinical characteristics of DOC patients.

Patient Age Time between accident Clinical assessment Time between first and Clinical assessment

code and first scan (months) at first scan second scan (months) at second scan

P1 34 2 VS 5 VS

P2* 18 4 MCS 4 C

P3* 44 2 MCS 3 C

P4 17 6 VS 6 MCS

P5 26 4 VS 3 MCS

P6* 26 4 EMCS 4 C

P7 29 4 MCS 3 MCS

P8 41 2 VS 6 VS

P9* 34 5 VS 5 C

*Patients that recovered from DOC at the second scan. VS, Vegetative State; MCS, Minimally Consciousness State; C, Conscious; EMCS, Emergence from MCS

(an intermediate state between MCS and C).
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1999). The spatially normalized volumes consisting of 4× 4×
4 mm3 voxels were smoothed with a 8-mm FWHM isotropic
Gaussian kernel. Additionally, a linear trend removal and
band pass filtering between 0.01 and 0.08 Hz was applied on
the data.

2.3. BRAIN PARCELLATION AND REGIONS OF INTEREST
Regions of Interest (ROI) were defined following the Automatic
Anatomical Labeling (AAL) atlas (Tzourio-Mazoyer et al., 2002)
(see Figures 1A–D) which comprises 90 different areas, 45 on

each hemisphere (e.g., hippocampus Left, hippocampus Right,
amygdala Left, amygdala Right, etc.). Importantly for the study of
DOC patients, the AAL atlas includes both cortical and subcor-
tical components (eg., hippocampus, thalamus and amygdala).
Per each ROI we have extracted a mesoscopic (multi-voxel) fMRI
time-series resulting from averaging over all fMRI time-series of
all voxels within a given ROI (Figure 1B is showing the ROI size
distribution among all areas). The MNI coordinates of the cen-
troids in each ROI are used to calculate the Euclidean distance
between each pair of regions (Figure 1B).

A B

C D

FIGURE 1 | Anatomical Brain parcellation and Regions of Interest (ROI).

(A) Axial, (C) Saggital, (D) Coronal views. Specific ROI are depicted with
spheres with diameters proportional to the ROI size (i.e., the number of
voxels). Notice that the atlas has both cortical and subcortical components. (B)

ROI size’ distribution and inter-ROI distance’ distribution. To give an estimation,
as each voxel is about 4 cubic millimeters (see Materials and Methods), the
ROI average size (≈150 voxels) is equivalent to a 3D cube of 21 mm edge.
Biggest ROI (≈600 voxels) corresponds to 3D cubes of 34 mm edge.
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2.4. FUNCTIONAL CONNECTIVITY MATRICES
Correlated areas in the rs-fMRI time series define the Functional
Connectivity (FC) matrices. Two methods have been used to the
FC: The PC and TE.

2.4.1. The partial correlation
Matrix has dimensions 90× 90 (with 90 the ROIs number) and
each element is given by the pairwise PC between any two ROIs.
PC is a correlation matrix that removes for a given ROIs pair the
effect of the rest of the variables, i.e., removing the correlations
contribution which are coming from common neighbors inter-
actions. Let C be a non-singular correlation matrix, then each
element of the PC matrix is given by

PCij = − Pij√
PiiPjj

(1)

where P ≡ C−1 is the inverse of the correlation matrix (ie., the
precision matrix).

Notice that PC is a symmetrical measure, i.e., PCij = PCji. We
also have computed the standard correlations C, and although C
is more noisy than PC, the results we are showing here for the PC
are also valid for the standard correlation.

The PC was computed by using the partialcorr method incor-
porated in MATLAB (MathWorks Inc., Natick, MA). The second
argument that the function partialcorr outputs is a matrix of p-
values for testing the hypothesis of no PC against the alternative
that there is a non zero PC.

PC matrices were calculated for each subject and grouped into
the following categories: inter-hemispheric (between one area on
the left and all the other areas at right hemisphere, or vice versa),
homologous inter-hemispheric (one area on the left hemisphere
and its homologous area on the right hemisphere, or vice versa),
left intra-hemispheric, right intra-hemispheric, and total.

2.4.2. Transfer entropy
quantifies the directed interaction between any two ROIs. To com-
pute it, let define iF as the future of the time series in ROI i.
Similarly, iP and jP the pasts of ROIs i and j. Then, the TE from j
to i is defined as

TEji = H
(
iF|iP)−H

(
iF|iP, jP

)
(2)

with H(iF|iP) = H(iF, iP)−H(iP), the conditional Shannon
entropy of iF conditioning on iP [for details, see (Cover
and Thomas, 2006)]. Similarly, H(iF|iP, jP) = H(iF, iP, jP)−
H(iP, jP) is the conditional Shannon entropy of iF conditioning
on iP and jP.

The TE is a non-symmetrical measure, i.e., TEij �= TEji.
The Shannon Entropy (average uncertainty) of the random

variable X is defined as H(X) = −∑x prob(x)log prob(x), where
x represents a possible state in variable X (Cover and Thomas,
2006). For base 2 logarithm (as we have done here), the informa-
tion is expressed as information bits.

To compute probabilities from continuous variables, we did
not perform binning; alternatively, we just rounded each value in
the time series to its nearest integer and computed probabilities

(number of time points in a given state divided by the total time-
series length). The conditional entropies have been calculated
with the function condentropy developed by Hanchuan Peng in
C++ and plug-into MATLAB via mex. The code is available for
download from Peng (Peng).

For the past of the time series it was considered the original
time series. Their future were built by shifting the time series in
MATLAB with the function circshift with a lag value of 10 time
points. This lag number was previously chosen (and fixed for all
simulations) in order to maximize TE values.

The statistical significance of the TE values was estimated by
shuffling the time series of the target ROI (for the calculation of
the TE from j to i, hereafter j will be referred as the source and i as
the target). The time series was shuffled to remove the temporal
information in the target variable. Next, the TE value is calculated
for many repetitions of this shuffling procedure to obtain the dis-
tribution of values under the null hypothesis of zero values of TE
(i.e., zero uncertainty reduction from source j to target i).

TE matrices were calculated for each subject and grouped
into the following categories: homologous inter-hemispheric
(one area on the left hemisphere to its homologous area on
the right hemisphere and vice versa), left intra-hemispheric,
right intra-hemispheric, inter-hemispheric (from one area on
the left to all the other areas at right hemisphere, and from
one area on the right to all other areas at the left hemisphere)
and total.

2.4.3. Summary of brain categories
For easy reading we have adopted the following notation:

• PC calculations: LR: inter- hemispheric (between one area
on one hemisphere and all the other areas at the other
hemisphere). As the PC calculation is symmetric (LR is the
same than RL) we condensed the inter-hemispheric PC in
only LR. HIH: homologous inter-hemispheric. LL: left intra-
hemispheric. RR: right intra-hemispheric.
• TE calculations:

HLR: homologous inter-hemispheric from left to right (one
area on the left hemisphere to its homologous area on the right
hemisphere).
HRL: homologous inter-hemispheric from right to left (one
area on the right hemisphere to its homologous area on the
left hemisphere).
LL: intra-hemispheric from left to left.
RR: intra-hemispheric from right to right.
LR: inter-hemispheric left-right (from one area on the left to all
the other areas at right hemisphere).
RL: inter-hemispheric right-left (from one area on the right to
all the other areas at left hemisphere).

2.5. STATISTICAL ANALYSIS
PC and TE individual matrices were thresholded at a probabil-
ity value of 0.1 (i.e., 10% confidence); these data were used for
Tables 2, 3 and all the figures shown in the paper. We also com-
puted PC and TE matrices at different confidence values, 5%
and 100% (zero threshold), and the results did not considerably
change (cf. Tables S1–S4).
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For comparison of PC and TE values between the dif-
ferent brain categories and groups, a two-ways ANOVA test
was performed, using the function anovan from MATLAB
(MathWorks Inc., Natick, MA). For post-hoc analysis, multi-
sample t-tests were performed between groups for each brain
category using the function multcompare from MATLAB which
include the Bonferroni correction for multiple comparisons.
To assess possible deviations from the Gaussian distribution
in the data, the Kruskal–Wallis non-parametric tests were also
performed using the function kruskal–wallis from MATLAB.
The groups comparison results showed very little differences
across these tests, cf. Tables 2, 3, in which the statistically
significant differences from control were denoted using aster-
isks at different colors (black for ANOVA and green for
Kruskal–Wallis).

2.6. A FURTHER TEST FOR fMRI HEAD MOTION ARTIFACTS
To reject the possibility of head motion artifacts, PC was re-
computed in a matrix which included the original 90 ROIs
from the AAL atlas plus two motion regressors: the transla-
tional modulus and rotational modulus. It is expected, if impor-
tant correlations were introduced by head motion, that the PC
results obtained from this expanded matrix must show significant

Table 2 | PC average values ± standard deviation thresholded at 10%

confidence (see Materials and Methods).

PC G1 G2 G2a G2b

LR 0.11± 0.01 0.12± 0.01 0.11± 0.01 0.12± 0.01

HIH 0.40± 0.03 0.24± 0.03** 0.24± 0.04** 0.26± 0.04**

LL 0.13± 0.01 0.15± 0.01* 0.14± 0.09* 0.15± 0.01

RR 0.13± 0.01 0.15± 0.01* 0.14± 0.09* 0.15± 0.01*

Total 0.12± 0.01 0.13± 0.01** 0.13± 0.01** 0.13± 0.01**

*Significantly different from G1; p < 0.05. Significant differences are indicated

with black asterisks for ANOVA and green for Kruskal-Wallis tests. LR, inter-

hemispheric; HIH, homologous inter-hemispheric; LL, left intra-hemispheric; RR,

right intra-hemispheric.

Table 3 | TE average values ± standard deviation.

TE G1 G2 G2a G2b

HLR 0.009± 0.027 0.006± 0.015 0.004± 0.011 0.017± 0.030

HRL 0.011± 0.020 0.020± 0.049 0.020± 0.053 0.019± 0.032

LL 0.040± 0.021 0.017± 0.016** 0.013± 0.013** 0.040± 0.003

RR 0.039± 0.020 0.027± 0.039* 0.019± 0.033** 0.065± 0.050

LR 0.043± 0.024 0.021± 0.021** 0.016± 0.017** 0.047± 0.017

RL 0.043± 0.021 0.031± 0.045* 0.024± 0.042** 0.066± 0.049

Total 0.041± 0.018 0.024± 0.026** 0.018± 0.022** 0.054± 0.028

*Significantly different from G1; p < 0.05. Significant differences are indicated

with black asterisks for ANOVA and green for Kruskal-Wallis tests. HLR: homolo-

gous inter-hemispheric from left to right; HRL, homologous inter-hemispheric

from right to left; LL, left intra-hemispheric; RR, right intra-hemispheric; LR,

inter-hemispheric left to right; RL, inter-hemispheric right to left.

differences in comparison with the results gathered from the orig-
inal 90 ROI’s. However, this was not the case; no changes were
observed which indicates that the data is free of heat motion
artifacts.

3. RESULTS
3.1. PARTIAL LINEAR CORRELATIONS (PC)
First we looked into the PC patterns (Table 2). ANOVA between
G1 and G2 shows a significant effect of categories (p < 0.001),
and a significant interaction between categories and groups (p <

0.001). Controls have a significantly smaller PC mean value than
patients (p < 0.001). When looking into categories, HIH PCs are
significantly higher than LL, RR, and LR (p < 0.001). In addi-
tion, LL and RR values are significantly higher than LR (p <

0.001). To further inspect the interaction, we performed post-hoc
multiple comparison tests between groups for the different cate-
gories. HIH PCs are significantly higher in G1 (p < 0.001). The
Kruskal–Wallis test gave the same results, with the addition of
being LL and RR PCs significantly higher in G2 compared with G1
(p < 0.005).

The comparison between G1 and G2a gives the same results.
However, when comparing G1 and G2b, the effect of group still
holds but is smaller than that between G1 and G2a (p = 0.002).
The effect of categories is the same as in G1 vs. G2 comparison,
and there is a significant interaction effect (p < 0.001). Post-hoc
tests show that HIH PCs are significantly smaller in G2b with
respect to G1 (p < 0.001). Finally, the comparison including all
brain categories (total) was significant between G1 vs. G2 and G1
vs. G2a (P = 0.018 and 0.044 respectively). The same significant
differences were conserved with the Kruskal–Wallis test. Results
can be seen in Table 2 and Figure 2.

In summary, the partial linear correlations approach allows
to expose a differential functional connectivity in a healthy con-
scious brain in comparison with a DOC state and a recent recov-
ery from it. A reduced inter-hemispheric connectivity is evident
in DOC patients.

3.2. TRANSFER ENTROPY
We then examined the uncertainty reduction (information)
transferred between ROIs pairs by computing the TE. ANOVA
on TE values for G1 and G2 shows a significant effect of group
(p = 0.0025) and categories (p < 0.001). Particularly there were
significant differences between HLR and HRL TEs and the TE
values for the other categories. In the case of HLR, TEs are
significantly lower than LL, RR and inter-hemispheric (LR and
RL) TEs (p < 0.005), whereas HRL TEs are significantly lower
than RR and RL TEs (p < 0.025). There is no interaction effect
between group and brain category. The post-hoc analysis showed
that LL, LR and the total TE values differ between controls and
patients.

However, when performing the ANOVA for G1 and G2a there
is a significant effect of group (p < 0.001) and categories (p <

0.001). Post-hoc tests show that LL and RR TEs are significantly
higher in G1 than in G2a (p < 0.05). In addition, TE for LR is
also significantly higher in G1 (p = 0.001).

When comparing G1 and G2b, there was significant effect
of group (p = 0.042) and categories (p < 0.001). Additionally,
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A B

C D

FIGURE 2 | Average PC values per subject. (A) HIH (homologue
inter-hemispheric areas); (B) LL (left intra-hemispheric); (C) RR (right
intra-hemispheric); (D) total. Insets depict the fraction of rejected pairs of
areas for a given probability level. PC values were thresholded at a

probability value of 0.1 (dashed lines in the insets) . Black circle: G1
(control); blue triangles : G2 (DOC). Observe the huge differences
between G1 and G2 for HIH compared to LL and RR. For detailed
values, see Table 2.

when looking into the main effect of brain sections, HLR and
HRL TE values were significantly smaller than LR and RL (p <

0.05). However the multiple-compare test did not revealed any
significant difference. The Kruskal–Wallis test gave the same gen-
eral results but in this case adding significant differences between
G2 and G1 in the same regions were we previously found only
for G2a.

The results can be seen in Table 3 and Figure 3. If two time
series are highly correlated, their TE is close to zero in both direc-
tions; if they are not correlated but one influences the other’s
behavior, TE is high in that direction and very low in the oppo-
site direction. In our results, the significant smaller TE between
homologue areas with respect to the other TE values is consistent
to the fact that they are highly correlated (cf. results in 3.1).

The differences found within hemispheres between the groups
parallelize the increased intra-hemispheric correlations in G2
and G2a. When looking at G2b group, their averages are also
biased by one patient that presented extremely high TE values
(corresponding to the last case in the x-axis).

In summary, TE analysis exposes alterations in the FC exhib-
ited by DOC patients. In particular, TE within hemispheres and
between hemispheres is smaller, although no difference was found
when looking at homologue areas. In contrast to the results
obtained in the PC analysis, the differences found uphold irre-
spective of the Euclidean distance separating ROIs pairs, although
when considering LL TE, a slight decrease in the statistical p value
can be observed.

3.3. BETWEEN-HOMOLOGUE INTER-HEMISPHERIC PC AND LEFT
INTRA-HEMISPHERIC TE

The results show that for all analyzed areas the best two discrim-
inators are the between-homologue inter-hemispheric (HIH)
PC (Figures 4A–D) and the left intra-hemispheric (LL) TE
(Figures 4E–H). Here, colors denote group differences: black
(G1), blue (G2), green (G2a) and magenta (G2b). For both PC
and TE the thickness of links and arrows is proportional to the
PC and TE values.

For PC there is a manifest anatomical disparity in the cor-
relations pattern: it can be observed that homologue areas that
are closer to each other show stronger correlations than farther
ones (i.e., thicker connections at shorter distances in comparison
with thinner connections at longer distances). To disentangle the
behavior of the neural correlations regarding to a spatial factor, we
look at the Euclidean distances between the centroids of homo-
logue areas. For G1 the areas close to each other presented a high
correlation, and beyond a threshold distance of 20 mm, correla-
tions decreased, although the values remained high. Interestingly,
the same behavior was found in G2. However, the correlation
values there were shifted down, with lower mean value for areas
closer than 20 mm, and decreasing for increasing distances. Thus,
for ROIs areas distance-separated smaller than 20 mm, differences
between G1 and G2 were smaller compared to areas separated at
long distances, distance separation <20 mm pval = 10−6, dis-
tance >40 mm pval = 10−14. When inspecting G2a and G2b
subgroups, there were no observable differences for anatomically
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A B

C

E

D

FIGURE 3 | Average TE values per subject. (A) HLR (homologue left-right
inter-hemispheric areas); (B) HRL (homologue right-left inter-hemispheric
areas); (C) LL (left intra-hemispheric); (D) RR (right intra-hemispheric); (E)

total. Insets depict the fraction of rejected pairs of areas for a given probability
level. TE values were thresholded at a probability value of 0.1 (dashed lines in
the insets). Black circles: G1 (control); blue triangles : G2 (DOC).

closer areas, whilst it could be detected a higher correlation of
some of the anatomically further areas for G2b.

Regarding to the TE, not only the mean values of TE in LL
areas were different between groups (Table 3), but the number
of significant values of TE, i.e., the number of arrows plotted in
Figures 4E–H varies across different groups. This number was
more than 9 times bigger in G1 compared with G2 (G1 # links =
47, Figure 4E; G2 # links = 5, Figure 4F). When comparing with
group G2b, this number doubled the one in group G1 (# links =
99, Figure 4H), possibly indicating a “transient” brain state in the
pattern of information flows in group G2b in comparison with
control.

3.4. CORRELATION BETWEEN fMRI MEASURES AND CRS-R SCORES
We then asked if the two fMRI measures, between-homologue
inter-hemispheric PC and left intra-hemispheric TE were cor-
related with the neurological and behavioral scale given by the
CRS-S. This is represented in Figures 4I–K. For homologue
inter-hemispheric pairs we found that TE gave the biggest cor-
relation with the corresponding value in the communication
function scale. For left intra-hemispheric pairs, TE had 0.73
correlations with oromotor/verbal function scale, 0.73 with the

communication function scale and 0.73 with the total CRS-R
(marked as “JFK” in Figures 4I–K).

4. DISCUSSION
In this study we have investigated whether the functional connec-
tivity is altered as a consequence of consciousness disturbances.
We have applied the PC and the TE approaches to analyze the
FC from resting-state fMRI data. We have compared two groups,
healthy subjects and Disorder of Consciousness patients. The
analysis was done over the 90 anatomical brain areas, defining
regions of interest from the AAL atlas. We have grouped the differ-
ent pairs of ROIs in inter-hemispheric homologue regions, inter-
hemispheric, left intra-hemispheric, right intra-hemispheric and
total (all regions). We have found two particular markers that
account for the large-scale disturbance of patients brain func-
tion: the PC calculated over homologue inter-hemispheric (HIH)
regions and the TE calculated over the left intra-hemispheric (LL)
ROIs.

The PC in HIH regions was found to be notably larger for
control compared to DOC patients. This results holds also when
comparing G1 with the recovered G2b group. The same com-
parison but done over the total average of the 90 regions did
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FIGURE 4 | Inter-hemispheric PC and left intra-hemispheric TE. (A–H)

PC and TE values for all the 4 different groups. The thickness of links
and arrows are proportional to the PC and TE values; the thickness
normalization factor is common among all the 4 groups. (A,E) group
G1, black, (B,F) group G2, blue, (C,G) group G2a, green, (D,H) group
G2b, magenta. (A–D) Visualization of the PC values HIH (homologue
inter-hemispheric pairs). (E–H) TE in LL (left intra-hemispheric pairs). For
clarity in the visualization, links have been thresholded and only TE

values bigger than TE = 0.2 are depicted. (I–K) Correlation between PC
(solid line) and TE (dashed) with the CRS-R scores at the different
functional scales: Auditory, Visual,Motor, Oromotor/Verbal,
Communication, Arousal and the total sum over all the function scales
(JFK) as well as with the acquisition time after trauma. The correlation
has been calculated over pairs which are (I) inter-hemispheric (HIH for
PC and (HLR+HRL)/2 for TE, (J) left intra-hemispheric (LL) and (K) right
intra-hemispheric (RR).

not shown significant differences. Thus, one relevant result of
our analysis is the finding that only by the calculation of the
PC in the proposed grouping of brain regions, it was possible to
detect a significant marker for the patients disturbance, results
that is hidden when we looked at the PC of the total AAL brain
regions.

In the case of TE, the total score did not show any sig-
nificant difference either, but the brain subdivision revealed
that the intra-hemispheric influences were different in control
respect DOC. This happened for both LL and RR, although
the TE in LL discriminated better than in RR. This is a very
novel finding whose origin is still unclear and deserves further
investigation.

4.1. METHODOLOGICAL ISSUES
The PC is a straightforward measure able to eliminate for each
specific ROIs pair, the contribution to the correlations com-
ing from common neighbors, preserving effective correlations
between two time series. Unlike the PC which is a symmetrical
measure, the TE quantifies interaction between ROIs in a directed
form, i.e., region A influences to region B but the opposite is
not necessary true. In concrete, TE quantifies information bits
(uncertainty reduction) flowing from one ROI to the future of the
other. For the case of Gaussian data, the information bits mea-
sured by the TE coincide with the Granger causality measured
from time series (Barnett et al., 2009); however for non Gaussian
data, TE and causality might result in different measures.
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TE emerges as a very suitable measure for the study of tempo-
ral causality in brain fMRI activity in parallel to the advantage
of an accurate spatial resolution. TE assessment in a popula-
tion of patients with disorder of consciousness provides the
opportunity of gaining insight into brain mechanisms of infor-
mation processing and the finding of possible predictors of coma
outcome.

Regarding to the calculation of TE, it is well-known that the
computation of the entropies with small data sets introduces
some a bias (Panzeri and Treves, 1996; Paninski, 2003; Bonachela
et al., 2008). Because we are performing groups comparison with
the same data size in each group (i.e., the time series in each sub-
ject have the same data points), such a bias will be the same in
the two groups, thus not affecting the validity of the groups com-
parison. Nevertheless, as far as we understand there is not any
reported study analyzing either information reduction (i.e., TE)
or causality in fMRI data from DOC patients.

4.2. INTER-RELATION BETWEEN PC AND TE IN DOC PATIENTS
To exhibit high correlations is different from having high TE
between two time series. This can be clearly understood by a
counter-example; two fully correlated time series have zero TE
as to compute the uncertainty reduction in the future of i, con-
ditioning on the two pasts i and j is not adding any further
information to the situation of solely adding the past of i, i.e.,
the two terms in the right-hand side in Equation (2) are equal.
As a consequence of this, the observation of having high PC for
HIH pairs in healthy subjects implies to have high isolation of the
information within hemispheres; thus, the TE values in both LL
and RR are significantly higher than the corresponding values in
HLR and HRL.

Interestingly, we found that while PC is reduced in DOC
patients between inter-hemispheric homologue areas, TE shows
an altered pattern at the level of general inter-hemispheric inter-
actions. In the control group we observe that despite the coher-
ence is high between homologue areas, their TE is low. Conversely,
while PC between hemispheres is low, LR and RL TE are high.
The DOC patients show the same trend, although the LR and
RL TE is significantly lower than in controls. This supports the
notion that consciousness arises from long-range modulation of
neural activity. A disruption in long-range communication could
affect mechanisms such as increase of stimulus’ salience, facil-
itation of propagation across sparsely connected networks, and
selective routing (Ganzetti and Mantini, 2013), mechanisms that
are related to conscious processing (Gaillard et al., 2009).

4.3. rs-fMRI INTER-HEMISPHERIC CORRELATIONS AND GAMMA
RHYTHMS

Recently it has been shown that the inter-hemispheric correla-
tions in the rs-fMRI dynamics correlate with the inter hemi-
spheric coherence exhibited by electrophysiological recordings in
human sensory cortex (Nir et al., 2008), mainly with the slow
modulation of the gamma rhythms in Local Field Potentials.
Other studies have also found such modulation in high-level cog-
nition tasks (Vidal et al., 2012). Thus, one could conjecture that
at the functional level, a breakdown in the inter-hemispheric rs-
fMRI correlations in DOC patients could be an indication of a

similar deficit in the gamma power coherence. One possibility is
that low-frequency oscillatory activity is related to an underlying
neuronal mechanism allowing for maintenance and consolida-
tion of neural events across wide sections of the brain, and for
the handling of incoming stimuli (de Pasquale, 2010; de Pasquale
et al., 2012). Although increasing evidence points toward a prop-
erty of the brain relevant for conscious processing, Vidal et al.
(2012) point out that gamma-amplitude correlation would also
be reflecting the parallel organization of the brain, where neural
networks interact for purposeful processing of information.

4.4. COMPARISON WITH PREVIOUS RESULTS
As fas as we know, a single study have reported that DOC patients
in comparison with healthy subjects manifest a strong reduction
in the inter-hemispheric correlations in the rs-fMRI time series
(Ovadia-Caro et al., 2012). The authors in (Ovadia-Caro et al.,
2012) did not use any atlas to compute inter-hemispheric corre-
lations; instead they investigated specific areas such as pre- and
post-central gyrus and the intra-parietal sulcus. Among other rea-
sons, the authors selected those areas for being well separated each
from the other (arguing the existence of less noise in the signal).
This is consistent with our finding that DOC patients kept more
similar correlations to control for ROIs separation below 20 mm.
In addition to this, our study adds the novelty of having analyzed
the FC obtained by the TE.

4.5. TE DENSITY TO MEASURE CONSCIOUSNESS ALTERATION
We have shown in Figures 4E–H how the number of TE connec-
tions can account not only for the differences between control
(G1) and DOC (G2) but for the transitory brain state in the
group G2b: the patients that awaked and became fully conscious
at the second fMRI acquisition. Thus, we have found that the
number of TE connections were 47 (G1), 5 (G2) and 99 (G2b).
In a similar spirit, Seth et al. (2006) defined the causal den-
sity for measuring consciousness in brain states as the number
of Granger-causality connections flowing in and out per each
specific area. Interestingly, a similar behavior has been reported
during recovery from anesthesia, where an increment in func-
tional connectivity above the normal wakeful baseline is found
(Hudetz, 2012).

4.6. DOC IMPAIRMENT AT SPECIFIC BRAIN AREAS
The aim of this analysis is not to work at the level of an individual
DOC patient but to search for rs-fMRI markers that can account
for groups differences in DOC patients. We have not studied yet
any measure that can account for DOC impairment at specific
brain areas. To this end, one could study in principle the FC
graphs obtained by either PC or TE using complex networks anal-
ysis, or any other kind of graph exploration methods. In a much
simpler spirit (just to illustrate that this approach is plausible), we
have chosen to plot the PC values per area comparing group G2
versus G1. This is illustrated in the Figure S1. The decorrelation
index per area is plotted, (corrG1-corrG2)/corrG1. Colored in
blue, the five biggest decorrelation indices correspond to the fol-
lowing areas: Fusiform, Insula, Parietal Superior, Precentral and
Temporal Superior, revealing that those areas had the major DOC
impairment. Conversely the areas with less DOC impairment
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(colored in red) were the Cingulum Anterior, Cingulum Middle,
Frontal Superior Orbital, Superior Motor Area and Temporal
Inferior.

4.7. LIMITATIONS OF THE STUDY
One of the important limitation of studying DOC patients is the
great amount of involuntary movements they exhibit, leading to
potential artifacts in the fMRI acquisition. Techniques to over-
come this issue include affine transformations to the time series
creating a head-motion parameter matrix which can be used to
regress out and remove the spurious variances they introduce
(Fox et al., 2005). Although these methods can correct signals
from movements spanning the dimensions of up to 3–4 voxels,
recent work (Power et al., 2012) suggest that no technique could
remove completely the effects of these artifacts over the FC. Thus
especial care is necessary to tackle these problems and, eventually,
discard the entire scan.

4.8. FUTURE DIRECTIONS
In this study PC and TE measures were used to assess for the
assessment of functional connectivity in unconscious patients.
In particular we characterized their disruptions at an anatom-
ical level, in the basis of distances between homotopic areas.
Other questions that can be explored, include the integrity of
FC between the areas that constitute hubs in the brain net-
work, between areas with high rich-clubness (van den Heuvel and
Sporns, 2011), or between associative vs. sensory areas.
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Figure S1 | DOC impairment evaluated at specific brain areas. (A)

Decorrelation indices defined as (corrG1-corrG2)/corrG1 computed for

each of the different 45 brain areas. In blue, top-five values of

decorrelation index; in red, bottom five (positive) values. (B) Scatter of

between-homologue inter-hemispheric correlations G1 vs. G2, each point

represents one of the 45 brain areas.
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Background: Many recent studies have separately investigated functional and white
matter (WM) based structural connectivity, yet their relationship remains less understood.
In this paper, we proposed the functional-by-structural hierarchical (FSH) mapping to
integrate multimodal connectome data from resting state fMRI (rsfMRI) and the whole
brain tractography-derived connectome.

Methods: FSH first observes that the level of resting-state functional correlation between
any two regions in general decreases as the graph distance of the corresponding structural
connectivity matrix between them increases. As not all white matter tracts are actively
in use (i.e., “utilized”) during resting state, FSH thus models the rsfMRI correlation as
an exponential decay function of the graph distance of the rsfMRI-informed structural
connectivity or rsSC. rsSC is mathematically computed by multiplying entry-by-entry the
tractography-derived structural connectivity matrix with a binary white matter “utilization
matrix” U. U thus encodes whether any specific WM tract is being utilized during rsFMRI,
and is estimated using simulated annealing. We applied this technique and investigated
the hierarchical modular structure of rsSC from 7 depressed subjects and 7 age/gender
matched controls.

Results: No significant group differences were detected in the modular structures of
either the resting state functional connectome or the whole brain tractography-derived
connectome. By contrast, FSH results revealed significantly different patterns of
association in the bilateral posterior cingulate cortex and right precuneus, with
the depressed group exhibiting stronger associations among regions instrumental in
self-referential operations.

Discussion: The results of this study support that enhanced sensitivity can be obtained
by integrating multimodal imaging data using FSH, a novel computational technique that
may increase power to detect group differences in brain connectomes.

Keywords: connectivity, fMRI, major depression, multimodal, neuroimaging

INTRODUCTION
Modern imaging techniques have allowed us to study the human
brain as a complex system by modeling it as a network. A brain
connectivity network, also called a connectome (Sporns et al.,
2005), consists of nodes (gray matter regions) and edges. Edges
can represent white matter tracts in structural networks or corre-
lations between two BOLD time series in functional networks.

In recent years, substantial research efforts have been directed
toward understanding the brain at rest using resting state func-
tional MRI (rs-fMRI). Several studies have utilized sophisticated
mathematical and statistical tools to investigate the functional
connectome from rs-fMRI data (Biswal et al., 1997). The “default
mode network” (DMN) is a resting-state network theorized to
reflect an individual’s focus on internal tasks such as daydream-
ing, envisioning the future, retrieving memories, and gauging

others’ perspectives. The DMN tends to negatively correlate with
brain systems responsive to external signals. Anatomical regions
involved include the medial temporal lobe, the medial prefrontal
cortex, and the posterior cingulate cortex (Buckner et al., 2008),
along with the adjacent precuneus (Zhang and Li, 2012) and the
parietal cortex.

The DMN is an example of one relatively well-characterized
network, among many overlapping networks that subserve
different functions. Delineating these functional connections
may therefore be challenging, based on the complexity of
the brain. Structural white matter connectivity patterns, how-
ever, may provide a framework for understanding relevant
functional relationships between regions in a network, based
on direct and indirect anatomical connections. This may
aid in determining information available as outputs from
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certain regions and its inputs and potential influence on other
regions (Saygin et al., 2011). An approach using structural
to functional mapping could utilize a combination of DTI-
tractography to estimate brain white matter connectivity and
fMRI to estimate the neuronal activity coupled to blood flow
changes in anatomical regions that comprise nodes of the
network.

There have been several structural to functional mapping
approaches described in the literature. While some have focused
on specific but limited regional activation patterns (Johansen-
Berg et al., 2004; Saygin et al., 2011), other models describe
functional connections within regions comprising larger net-
works or systems (Passingham et al., 2002; Honey et al., 2009;
Deligianni et al., 2010; Skudlarski et al., 2010; Chulwoo et al.,
2011; Varkuti et al., 2011; Ng et al., 2012). Of note, these stud-
ies reviewed here all considered structural connectivity to be
static, unlike their functional counterparts. However, it is highly
unlikely that white matter tracts are static in relation to the
brain’s different functional states. Indeed, white matter tracts
can be in use or engaged when the brain is performing certain
tasks but disengaged during other tasks (e.g., the white mat-
ter structure subserving the DMN will be relatively disengaged
when the brain is responding to external signals). In addition,
some of these previously published techniques rely on statisti-
cal methods based on linear modeling, however the relationship
between structural and functional connectivity may be non-linear
(Deligianni et al., 2010). In other studies, sparse Gaussian graph-
ical modeling (SGGM) is used for multimodal integration (Ng
et al., 2012). There, the authors proposed to merge functional
and tractography-derived structural data by casting functional
connectivity estimation as a sparse inverse covariance learning
problem. As functional connections with less anatomical sup-
port (i.e., fewer streamlines or fiber tracts) were more penalized
via an L1 type penalty term, the resulting functional connec-
tion patterns could thus be considered structural connectivity-
informed.

Here, in contrast to such SGGM models, we reversely con-
sider functional connectivity-informed structural connectivity,
thus arguing that information from fMRI can be used to infer
the underlying pattern of white matter engagement specific to
the brain’s state at the moment of the fMRI. To address that
not all white matter tracts are in use or engaged during fMRI,
we will extend and adapt the functional by structural hierar-
chical mapping (FSH) technique, a novel framework recently
proposed by our group (Leow et al., 2012) in order to estimate
white matter engagement or utilization patterns that generate
the functional connectome from rs-fMRI data, using struc-
tural networks derived from DTI-tractography. The resulting
connectome, which we term the resting-state informed struc-
tural connectome (rsSC), encodes the structural network that
underlies and facilitates the observed rs-fMRI correlation con-
nectome. Moreover, we may detect group differences in rsSC by
investigating and comparing their community or modular struc-
tures. To this end, we utilized PLACE (path length associated
community estimation) (GadElkarim et al., 2013) and detected
altered rsSC community structure in depressed subjects relative
to controls.

MATERIALS AND METHODS
SUBJECT SELECTION
7 healthy comparison (HC, age: 65.6± 8.12, 4 males) and 7 late-
life depressed (LLD, age: 60.7± 2.92, 4 males) subjects, were
recruited via community outreach (e.g., newspaper, radio, and
television advertisements) and relevant outpatient clinics. The
inclusion criteria for all subjects were 55 years of age and older,
medication-naive or anti-depressant free for at least 2 weeks (in
the case of our depressed subjects) and no history of unstable
cardiac or neurological diseases. The exclusion criteria included:
schizophrenia, bipolar or any psychotic disorders; history of anx-
iety disorder outside of major depressive episodes; history of
head trauma; history of substance abuse; contraindications to
MRI such as metal implants. This study was approved by the
University of Illinois-Chicago Institutional Review Board, and
written informed consent was obtained from each participant.
There were no significant differences in age (t = 1.49, p = 0.18)
and gender distribution (χ2 = 0, p = 1) between subject groups.
LLD subjects had a mean HAM-D score of 20± 3.7.

All eligible subjects were assessed by a trained research
assistant with the Structured Clinical Interview for Diagnostic
and Statistical Manual of Mental Disorders, Fourth Edition
(DSM-IV). The severity of depression was quantified by a
board-certified/board-eligible psychiatrist (AK or OA) using the
17-item Hamilton Depression Rating Scale (Hamilton, 1960).
At the time of enrollment, depressed subjects met DSM-IV cri-
teria for MDD and required a score of 15 or greater on the
HAM-D.

MRI ACQUISITION
Brain MRI were acquired on a Philips 3.0T Achieva scanner
(Philips Medical Systems, Best, The Netherlands) using an 8-
channel SENSE (Sensitivity Encoding) head coil. Participants
were positioned comfortably on the scanner bed and fitted with
soft ear plugs; foam pads were used to minimize head move-
ment. Participants were instructed to remain still throughout
the scan. High resolution three-dimensional T1-weighted images
were acquired with a MPRAGE (Magnetization Prepared Rapid
Acquisition Gradient Echo) sequence (field of view: FOV =
240 mm; 134 contiguous axial slices; TR/TE = 8.4/3.9 ms; flip
angle = 8◦; voxel size = 1.1× 1.1× 1.1 mm). Resting-state
data were acquired with the following parameters: Single-shot
gradient-echo EPI sequence, TR/TE = 2000/30 ms, Flip angle =
80◦C, EPI factor = 47, FOV = 23× 23× 15 cm3, in-plane res-
olution = 3x3 mm2, slice thickness/gap = 5/0 mm, slice num-
ber = 30, SENSE reduction factor = 1.8, NEX = 200, total
scan time = 6:52. Subjects were instructed to keep their eyes
close and “not think of anything in particular”. DTI images
were acquired using single-shot spin-echo echo-planar imag-
ing (EPI) sequence (FOV = 240 mm; voxel size= 0.83× 0.83×
2.2 mm; TR/TE = 6,994/71ms; Flip angle = 90◦C). Sixty seven
contiguous axial slices aligned to the anterior commissure–
posterior commissure (AC-PC) line were collected in 32 gradient
directions with b = 700 s/mm2 and one acquisition without
diffusion sensitization (B0 image). Parallel imaging technique
was utilized with factor at 2.5 to reduce scanning time to
approximately 4 min.

Frontiers in Neuroinformatics www.frontiersin.org December 2013 | Volume 7 | Article 30 | 43

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Ajilore et al. The resting-state structural connectome

DATA PREPROCESSING
Structural connectomes were generated using a pipeline which
integrates multiple image analysis techniques and has been
reported elsewhere (GadElkarim et al., 2012; Leow et al., 2012).
In brief, DW images were eddy current corrected using the auto-
matic image registration (AIR) tool embedded in DTIStudio soft-
ware (http://www.mristudio.org) by registering all DW images to
their corresponding b0 images with 12-parameter affine trans-
formations. This was followed by the computation of diffusion
tensors and deterministic tractography using the DTIStudio pro-
gram. T1-weighted images were used to generate label maps
using the Freesurfer software (http://surfer.nmr.mgh.harvard.

edu). Brain networks formed by the 82 cortical/subcortical gray
matter regions were generated using an in-house program in
Matlab by counting the number of fibers connecting each pair of
nodes.

Functional connectomes were generated using the resting-
state fMRI toolbox, CONN (http://www.nitrc.org/projects/
conn; ). In brief,
raw EPI images were realigned, co-registered, normalized, and
smoothed before analyses. Confound effects from motion arti-
fact, white matter, and CSF were regressed out of the signal. Using
the same 82 labels as the structural brain networks, functional
brain networks were derived using pairwise BOLD signal correla-
tions, which were then converted to z scores using Fisher’s r-to-z
transformation.

FUNCTIONAL BY STRUCTURAL HIERARCHICAL (FSH) MAPPING FOR
CONSTRUCTING rsSC
Several assumptions and simplifications are needed in order to
perform FSH mapping (Leow et al., 2013). However, in order
to generalize FSH to construct rsSC, several modifications are
necessary, which we outlined step-by-step as follows:

(1) Higher level of rs-fMRI correlations will be considered evi-
dence of strong structural interactions between two regions
(either through direct or indirect structural connections in
the corresponding DTI-derived structural network)

(2) We observe that in general the level of rs-fMRI correla-
tion between two regions decreases as the graph distance
of the DTI-derived structural connectivity matrix increases
between them. FSH further assumes that such a relationship
is mathematically an exponential decay:

level of rsfMRI correlation between i and j ≈ e−kfi, j(D) (1)

Here, k a rate constant to be estimated, D the DTI-derived struc-
tural connectivity matrix for the same subject, and functional f
denotes the mapping of a brain connectivity matrix to its graph
distance matrix (i.e., each entry denotes the shortest graph dis-
tance between node pairs). Here, f is numerically obtained by
applying the Dijkstra algorithm to the entry-wise inverse of D
(since stronger structural connectivity translates to shorter dis-
tance, edge lengths are then usually assumed to be the inverse of
connectivity strengths).

(3) As in the original formulation of FSH, the presence of an
edge connecting any node pair in the structural connectiv-
ity matrix predicts the existence of neuroanatomical white
matter connections between regions, which may or may not
be actively utilized when the brain is in the resting state. In
order to reduce the mathematical complexity in modeling
and parameter fitting, FSH assumes an all-or-nothing edge
utilization (i.e., an edge is either utilized or not at all). A
connection between node m and n is considered “utilized”
if including the anatomical connection between them bet-
ter predicts the overall resting state fMRI correlation. This
is thus mathematically represented by a binary utilization
matrix U (i.e., if U(i, j) = 1, then the WM structural connec-
tion between nodes i and j are utilized in the resting state;
zero otherwise)

(4) FSH now hypothesizes that a direct mathematical relation-
ship can be established, for each node pair, between the level
of rs-fMRI correlation and the modulated graph distance
between the two nodes for the DTI-derived structural net-
work according to the utilization matrix, via the following
modified exponential decay equation:

level of rsfMRI correlation between i and j = e−kfi, j(U◦D) + ε (2)

Here U is the utilization matrix (same dimension is D), ◦ the
Hardamard entry-by-entry multiplication operator between two
matrices of the same dimensions, ε the fitting error (assumed to
be normally distributed).

Note the above exponential functional dictates that rsfMRI
correlations exponentially decay with increasing modulated
graph distance, and that when the modulated graph distance
between two nodes approaches infinity (i.e., the nodes are far
away from each other), the corresponding rsfMRI correlation as
expected approaches zero (by contrast, if two nodes are infinites-
imally close, the rsfMRI correlation is 1).

(5) For subjects in the same diagnostic group, we fit on
the group level, by minimizing the sum of squared dif-
ferences between the observed and the predicted rsfMRI
correlations for all node pairs (both are z-transformed),
such that the group utilization matrix U is assumed to
capture certain characteristics unique to this group. To
this end, the resting state informed structural connectome
is mathematicallyU◦D. Mathematically, the minimization
problem for solving group-wise U is as follows (the super-
script n denotes subjects in the same diagnostic group; in this
study n ranges from 1–7).

U = argmin
∑

n

∑

i, j

(∣∣∣rsfMRI correlationn
i, j

∣∣∣− e−knfi, j(U◦Dn)
)2

(3)

(6) To solve k (unique to each subject) and the utilization U
(shared for each diagnostic group), we closely follow the orig-
inal FSH formulation by alternating between the estimation
of k and U. When fitting U, we used simulated annealing by
randomly picking one element in U and changing its value
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(between 0 and 1; the initial value of U was set to one for all
its entries, thus indicating all edges were utilized and U◦D
simply returned the original structural connectivity matrix
D). The acceptance criterion determined whether the new
state was accepted from the current state by applying the
following decision rule with respect to an artificial cooling
temperature (c).

probability of accepting a proposed new state =
⎧
⎨

⎩

1 if the new state yields a lower fitting residual

exp

(
−fitting residual increase

c

)
if the new state yields a higher fitting residual

(4)

This perturbation was repeated and the temperature gradually
decreased until the solution space was adequately sampled and
the global minimum reached.

To assess the goodness of fit of FSH mapping, we calculated the
correlation between the observed rs-fMRI z-scores and the pre-
dicted rs-fMRI z-scores according to the exponential decay func-
tion, both without (Equation 1) and with the utilization matrix
(Equation 2). The effect of fitting utilization matrix was then
tested by comparing the two groups of correlation coefficients
using the Fisher’s r-to-z transform.

MODULAR STRUCTURE USING PLACE (PATH LENGTH ASSOCIATED
COMMUNITY ESTIMATION)
After FSH mapping, we constructed the rsSC separately for
the depressed and the control group, by forming the product
U◦D using group-specific utilization matrix and group-average
structural connectivity matrix. We then used the PLACE (path

length associated community estimation) framework presented
in (GadElkarim et al., 2012, 2013) to assess potential group
differences for structural connectome (DTI-derived) alone,
the functional connectome (rs-fMRI-derived) alone, and the
resting state informed structural connectome. PLACE is a
novel technique designed to detect and compare hierarchi-
cal modular or community structure alterations between two
groups of brain networks based on shortest path lengths, and
has been shown to be advantageous when compared to the

FIGURE 1 | (A–D) This shows the FSH mapping results for all node pairs,
collected from all subjects in the HC group for region pairs with direct
structural connections (A and B) versus those without direct structural
connections (C and D). Left panels display the model fitting without the

utilization matrix U and the right panels show fitting with the utilization matrix
in the proposed exponential decay model. The y axis indicates observed
resting state fMRI correlation values and the x axis the predicted resting
state fMRI correlation values.
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modularity metric Q (Newman and Girvan, 2004; Blondel et al.,
2008).

To summarize, in PLACE community structures are first
extracted in the form of top-down hierarchical binary trees via
the maximization of a path-length dependent metric �PL, defined
as the difference between the average inter-community path-
length (interPL) and the average intra-community path-length
(intraPL), for two communities C1 and C2, �PL is mathematically
defined as:

�PL = interC1, C2
PL − 1

2

(
intraC1

PL + intraC2
PL

)
(5)

Where

inter
Ci, Cj

PL =
∑

n,∈Ci;m∈Cj
dnm

Ni Nj
intraCi

PL =
∑

n, m∈Ci;n > m dnm
(
N2

i − Ni
)
/2

(6)

where Ni is the number of nodes in community Ci, dnm is
the shortest path length (i.e., graph distance) connecting nodes
n and m.

To quantify node-level community differences, PLACE uses
the scaled inclusivity metric V (Steen et al., 2011) in which a nodal
consistency vector of length equal to the number of nodes in the
network (82 in our case) is generated to compare nodes in a test
tree (i.e., an individual subject’s tree) to nodes in a reference tree.
Mathematically, for each node k belonging to communities Cp

and Cq in the test and reference trees respectively, V is defined as;
V(k) = (Nc)

2/NpNq, where Nc is the number of common nodes
between Cp and Cq.

In order to examine group differences in community struc-
tures at the nodal level, one group of networks is chosen as the
reference and PLACE generates the reference tree by extracting
the community structure corresponding to the reference group’s
mean connectivity matrices (using node-wise averaging). Next,

FIGURE 2 | (A) The following three regions (in gray) exhibit significant group
differences after FDR correction:. 1. Left posterior cingulate. 2. Right posterior
cingulate. 3. Right precuneus. The frequency of shared community membership

for these regionsin HC and LLD. 100% indicates all seven subjects from the
same diagnostic group have this region assigned to the same community as
the gray region. 2B:. The mean consistency values (V) for each region.
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all individual subjects’ trees are compared to the reference tree,
yielding the node-level scaled inclusivity metric, V. For each node,
2-sample t-tests for V are then used to detect differences in the
community structure on the nodal level (relative to the reference
group), followed by multiple comparisons correction conducted
using the false discovery rate (FDR) (Benjamini and Hochberg,
1995).

RESULTS
Figure 1 shows the FSH mapping results, which confirmed
improved fitting with the additional inclusion of the utiliza-
tion matrix U in the exponential decay function, in the HC
group (Figures 1A–D) by plotting the observed rsfMRI cor-
relations values against the predicted values. Here, we break
down the results for HC subjects into two groups: region
pairs with direct structural connections between them (1A and
1B) versus pairs without direct structural connections (i.e.,
only indirect structural connections; 1C and 1D). Overall, the
proposed FSH-exponential decay model significantly improved
the correlation between rsfMRI and structural connectivity
as all data points moved toward the line x = y after fit-
ting (direct: z = − 8.7, p < 0.0001; indirect z = −10.3, p <

0.0001). The pattern also occurred for LLD subjects (direct:
r = 0.246 (without fitting U), r = 0.509 (with U), z = −12.3,
p < 0.0001;indirect: r = 0.188 (without fitting U), r = 0.267
(with U), z = −4.8, p < 0.0001). Unsurprisingly, node pairs
with direct structural connections exhibited stronger associations
with rsfMRI correlations compared to those with only indirect
connections.

In order to understand the implications of utilization differ-
ences between groups, we examined the global modular structure
of the rsSC. To this end, we compared the community structure of
the rsSC between groups by applying PLACE (with the mean rsSC
of the HC group as the reference tree). We also applied PLACE to
connectomes derived using data from a single imaging modality
of either DTI alone or rs-fMRI alone. For functional connec-
tome PLACE results, we followed the technique of (Schwarz
and McGonigle, 2011) and analyzed the functional networks
formed by positive (right-tail), negative (left-tail), and absolute
correlation strengths across a range of thresholds (in increments
of 0.05 until one or more of the functional networks become
disconnected). Results revealed that there were no significant
differences in modular structure when examining connectomes
from a single modality. By contrast, after applying FDR correc-
tion (with a total of 82 comparisons), rsSC community structure
was significantly altered for three regions with reduced consis-
tency in LLD subjects: bilateral posterior cingulate, and the right
precuneus (Figure 2). Visually, the bilateral posterior cingulate
was more affiliated with posterior regions such as the precuneus
in HC subjects, whereas in LLD bilateral posterior cingulate was
more commonly associated with the anterior cingulate. With the
right precuneus, results demonstrate a strong association with a
limbic lobe module in HC subjects and a parietal lobe module
in LLD subjects. Figure 3 visualizes the differential patterns of
community affiliation and connectivity in the bilateral posterior
cingulate and the right precuneus.

To determine whether standard community detection meth-
ods could yield similar results, we applied the modularity metric,

FIGURE 3 | Communities and connectivities for the resting-state

structural connectome (rsSC), structural connectome, and functional

connectome in healthy control (HC) and late-life depressed subjects

(LLD), for nodes exhibiting significant group differences in the

modular structure of rsSC shown in Figure 2. The left posterior
cingulate (circled in panels indicated “L”), right posterior cingulate (circled
in panels indicated “R”) and the right precuneus (caudal and posterior to
the right posterior cingulate in panels indicated “R”, also circled). For each
diagnostic group, nodes that are coded the same color (either red or blue)
form a community or module in the average tree for that group (computed
by applying PLACE to the edge-wise average of all subjects’ connectivity

matrices in the same group, see methods section). Edges linked to the
bilateral posterior cingulate are indicated in red, while edges linked to the
right precuneus are in blue. For the functional connectome, edges were
thresholded for the level of correlation >0.25. Of note, only the rsSC
demonstrated significant differences in community structure. Visually, the
pattern of associations in the rsSC are similar to those in Figure 2A for
the left and right posterior cingulate (in that for HC there is a stronger
association with ipsilateral precuneus), and for the right precuneus (in LLD
there is a stronger association with occipital and posterior parietal cortices,
consistent with a pattern of dorsal and anterior precuneus functional
connectivity; also see discussion section).
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Q to our sample. Again, there was no significant difference
between groups using only structural or functional connectomes.
However, there was a difference in community membership of the
right fusiform gyrus using the rsSC with a significantly reduced
V in LLD subjects compared to HC subjects (HC:0.801± 0.129,
LLD:0.135± 0.209, p < 0.0001).

DISCUSSION
In this study, we adapted the recently-developed FSH mapping
to construct the rsSC by projecting rsfMRI time series corre-
lation information onto the whole brain tractography-derived
structural connectome. To this end, we assumed that the rsfMRI
correlation exhibits an exponential decay, subject to a rate con-
stant, with respect to the “modulated” graph distance of the
structural connectivity matrix. This allowed us to compute, as in
the original FSH framework, a utilization matrix in order to deter-
mine whether the inclusion of a specific structural connection
better explains the relationship between rsfMRI and the structural
connectivity.

As expected, including the utilization matrix significantly
increased the goodness of fit of the exponential decay model in
both HC and LLD subjects. Network community structure of the
rsSC using PLACE was altered in LLD subjects, particularly for
regions associated with the posterior DMN comprising part of the
limbic lobe and sub-regions of the parietal lobe. It is important to
note that in contrast to our results with the rsSC, applying PLACE
to the structural connectome or the functional connectome alone
failed to yield any significant group differences (the same con-
clusion holds even when we used more conventional community
detection methods, e.g., maximizing the Q modularity). This
is suggestive of enhanced sensitivity to network modular struc-
ture differences in the integrated rsSC compared to connectomes
derived from a single imaging modality.

The rsSC demonstrated altered community structure in a sub-
network of nodes that belong to the posterior DMN and the
limbic lobe. These nodes are notable for being associated with
altered structural and functional connectivity in depression. The
posterior cingulate is a part of the DMN which has been shown to
be altered in depression (Greicius et al., 2007; Sheline et al., 2009),
while as part of the posterior medial parietal cortex, the precuneus
in recent years has been shown to play a central role in wide-
ranging tasks including visuospatial imagery, episodic memory
retrieval, and self-referential operations. Current evidence from
functional studies supports a functional partition of the pre-
cuneus into an anterior division responsible for self-referential
imagery, and a posterior division related to episodic memory
retrieval (Cavanna and Trimble, 2006). Recent structural brain
network studies using whole-brain tractography have also consis-
tently established the precuneus as one of the many “hub” regions
in the brain (i.e., regions with the most wide-spread connections
to the rest of the brain; hub regions usually exhibit high degree
centrality, i.e., serving as relay centers for information transfer
across the brain) (van den Heuvel and Sporns, 2011; GadElkarim
et al., 2012). Tracer studies in recent years have also established
cortical connections between the precuneus and the frontal, the
medial parietal, and the lateral parietal cortices (Cavanna and
Trimble, 2006).

The findings of higher-degree associations between the pre-
cuneus and the lateral parietal cortex, and to some extent the sen-
sorimotor regions have two main parallels with the known litera-
ture. First, the medial parietal cortex (including the precuneus)
and lateral parietal cortex (especially the inferior parietal lob-
ule) along with the medial prefrontal cortex have been shown
to be primary regions activated during first person perspective
tasks (Cavanna and Trimble, 2006). Secondly, a recent resting-
state functional connectivity study of the precuneus has demon-
strated a transitioning pattern of functional connectivity from
the posterior and most ventral part of precuneus (greater con-
nectivity with the medial superior frontal gyrus, orbitofrontal
gyrus, anterior cingulate cortex, and parahippocampus) to the
more dorsal and anterior part (greater connectivity with occipital
and posterior parietal cortices and somatomotor cortex, among
other regions) (Zhang and Li, 2012). Thus our observed rsSC
community structure group differences suggest a pattern of pos-
terior/ventral precuneus connectivity in the control group vs. a
pattern of anterior/dorsal precuneus connectivity in the depressed
group.

To conclude, using our novel multimodal integration tech-
nique FSH combined with PLACE, we detected a differential pat-
tern of functional-structural connectome integration in late-life
depressed subjects relative to controls.
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The use of information-based measures to assess changes in conscious state is an
increasingly popular topic. Though recent results have seemed to justify the merits of such
methods, little has been done to investigate the applicability of such measures to children.
For our work, we used the approximate entropy (ApEn), a measure previously shown
to correlate with changes in conscious state when applied to the electroencephalogram
(EEG), and sought to confirm whether previously reported trends in adult ApEn values
across wake and sleep were present in children. Besides validating the prior findings that
ApEn decreases from wake to sleep (including wake, rapid eye movement (REM) sleep,
and non-REM sleep) in adults, we found that previously reported ApEn decreases across
vigilance states in adults were also present in children (ApEn trends for both age groups:
wake > REM sleep > non-REM sleep). When comparing ApEn values between age
groups, adults had significantly larger ApEn values than children during wakefulness. After
the application of an 8 Hz high-pass filter to the EEG signal, ApEn values were recalculated.
The number of electrodes with significant vigilance state effects dropped from all 109
electrodes with the original 1 Hz filter to 1 electrode with the 8 Hz filter. The number of
electrodes with significant age effects dropped from 10 to 4. Our results support the
notion that ApEn can reliably distinguish between vigilance states, with low-frequency
sleep-related oscillations implicated as the driver of changes between vigilance states.
We suggest that the observed differences between adult and child ApEn values during
wake may reflect differences in connectivity between age groups, a factor which may be
important in the use of EEG to measure consciousness.

Keywords: electroencephalogram, development, sleep, consciousness, approximate entropy

1. INTRODUCTION
Recent theoretical work has proposed a link between the ability
of the brain to integrate information and its corresponding con-
scious state (Tononi and Sporns, 2003; Tononi, 2004, 2008, 2012;
Balduzzi and Tononi, 2008). Meanwhile, related experimental
work has shown a link between changes in informational process-
ing and conscious state (Massimini et al., 2005, 2007; Ferrarelli
et al., 2010; Casali et al., 2013). These studies have provided
compelling evidence of a causal relationship between the com-
plexity of neural responses to external stimulation, as measured
with the electroencephalogram (EEG), and the conscious state of
the subject. Nevertheless, the benefits (particularly in the clinical
setting) of a metric for conscious state independent of external
stimulation are enough to encourage further work toward such a
measure.

In this search for an EEG-specific measure of conscious-
ness, many information-based measures have been applied. For
this study, we chose the approximate entropy (ApEn), a mea-
sure of regularity in the time domain. Originally designed for
use on physiological data (Pincus, 1991), ApEn quantifies the
predictability of a signal by comparing the number of match-
ing sequences of a given length with the number of matching

sequences one increment (time bin) longer. It has been suggested
as an EEG measure of conscious state, and ties into informational
theories of consciousness. Theoretical analysis has shown that
isolated systems should show decreases in ApEn values (Pincus,
1994). This concurs with findings that non-rapid eye move-
ment (NREM) sleep, associated with decreases in consciousness
(Stickgold et al., 2001), tends to feature long-distance connectiv-
ity decreases and increases in local clustering (Massimini et al.,
2005, 2007; Ferri et al., 2007, 2008; Spoormaker et al., 2010;
Uehara et al., 2013). Rapid eye movement (REM) sleep, a state
similar to wakefulness in its content of conscious experience,
tends to show functional connectivity patterns more similar to
those of wake (Massimini et al., 2010).

Prior applications of ApEn as a measure of conscious state have
successfully shown correlations with anesthetic depth (Rezek and
Roberts, 1998; Bruhn et al., 2000a,b; Zhang et al., 2001; Bruhn
et al., 2003; Li et al., 2008; Hayashi et al., 2012), though these find-
ings were contradicted by Jordan et al. (2006), who failed to report
certain key parameters. Burioka et al. (2005) applied ApEn to data
from adults across wake and sleep, finding a consistent decrease
in ApEn from wake to sleep, with the lowest values occurring
during deep sleep. Gu et al. (2003) also applied ApEn to data
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across multiple stages of sleep, and during epileptic seizure onset,
reporting decreases during sleep and during seizure onset, but
did not use any statistical testing. Attempts to tie ApEn changes
to behavioral changes during wakefulness have found conflict-
ing results: ApEn analysis of subjects driving while sleep deprived
found no significant changes in ApEn preceding driving errors
(Papadelis et al., 2007a), though Flores Vega et al. (2013) recently
showed that ApEn could be used to differentiate between some
of the various mental tasks tested. Papadelis et al. (2007b) found
no significant changes in ApEn as a function of hypoxia, but
ApEn derived metrics did show significant changes. In summary,
though its resolution within the wake state is unclear, when ana-
lyzing subjects between wakefulness and other conscious states,
ApEn values consistently decreased with loss of consciousness.
Comparisons of ApEn with other information-based measures
typically showed it to be of comparable accuracy and reliability
(Rezek and Roberts, 1998; Zhang et al., 2001; Bruhn et al., 2003;
Abásolo et al., 2008; Li et al., 2008; Anier et al., 2012).

Past work has documented changes in EEG power across devel-
opment, during both sleep (Feinberg, 1983; Buchmann et al.,
2010; Feinberg and Campbell, 2010; Kurth et al., 2010) and wake
(Whitford et al., 2007). To our knowledge, no group has yet
applied ApEn to the EEG data of children. Therefore, to fur-
ther assess the merits of ApEn as a measure of conscious state,
we applied ApEn to EEG data recorded across sleep and wake,
from both adults and children. Besides replicating the finding that
ApEn can mark changes in vigilance state due to sleep in adults,
we sought to verify that similar ApEn trends were present across
wake and sleep in children, while also assessing any impact of age
on ApEn values across both wake and sleep.

2. MATERIALS AND METHODS
2.1. SUBJECTS
For this study, subjects were pooled into two age groups of six
subjects each, hereafter referred to as adults (age range: 19.4–25.1
years; mean age ± SD: 23.2 ± 2.06 years; 0 females), and children
(age range: 10.6–12.6 years; mean age ± SD: 11.4 ± 0.691 years;
2 females). Subjects wore wrist actigraphs and kept sleep diaries
to ensure sleep schedule compliance. Napping, alcohol consump-
tion, and taking medication were all forbidden for the 24 h
preceding the recording. Informed written consent was obtained
from all subjects or their legal guardians. All procedures were
performed with approval of the local ethics committee, and in
accordance with the Declaration of Helsinki.

2.2. DATA ACQUISITION
All data (EEG, electrooculogram, and electromyogram) were
gathered previously by our group at the University Children’s
Hospital Zurich during one evening, night, and morning. All
sleep data used were originally published in earlier studies from
our group (Kurth et al., 2010, 2012). Of the data recorded previ-
ously, subjects within the selected age range and with minimally-
artifacted data were used, particularly during wakefulness and
REM sleep. Wake data have not yet been used for publica-
tion, and were recorded during an auditory oddball task that
was performed shortly before and after full night sleep record-
ing. Subjects were awoken at a time allowing for normal school

or work attendance. A 128-electrode high-density EEG array
(Electrical Geodesics, Eugene, OR, USA) was used for recording,
with a sampling frequency of 500 Hz. Electrodes were referenced
to the vertex during recording, which was used for filtering,
downsampling, and artifact rejection. Impedences were set below
50 k�. Data were divided into 20 s epochs, the sleep stages of
which were categorized using standard criteria (Iber et al., 2007).
For the scoring of sleep stages, the recordings were referenced to
the mastoid electrodes.

For analysis with the ApEn algorithm, data were then bandpass
filtered at frequencies of 1 and 35 Hz, respectively, and down-
sampled to 250 Hz before being corrected for artifacts. Artifact
correction for sleep data involved visual inspection of the power
between 0.75–4 Hz, and 20–30 Hz, rejecting individual channels
for a given epoch if the power exceeded a mean band power
value. Artifact correction for wake data was based on independent
component analysis, as presented by Jung et al. (2000). Finally,
data were referenced to the average activity of all non-rejected
channels above the ears for analysis. To investigate better the
role of low-frequency EEG activity on ApEn, we later refiltered
our original data with an 8 Hz high-pass filter, and recalculated
the ApEn.

ApEn analysis used all 109 electrodes above the ears not
rejected during artifact correction. Data preprocessing and all
analyses were done using Matlab (The MathWorks, Natick, MA,
USA), statistical testing used Matlab, as well as R (R Foundation
for Statistical Computing, Vienna, Austria). Data series of 4000
points, corresponding to 16 s of EEG signal, were used for anal-
ysis. Because wake epochs were scored in epochs of 4 s duration,
analysis used aggregate 16 s epochs comprised of four consecu-
tive artifact-free epochs, taken from the evening recording session
preceding sleep. Sleep data was drawn from the first 16 s of unarti-
facted 20 s epochs. Sleep epochs used were preceded and followed
by at least 1 min (three epochs) of sleep all of the same stage, to
minimize the influence of stage transitions. For one adult subject,
only two epochs (40 s) preceded and followed the epoch for the
N3 sleep stage used for all analyses.

2.3. APPROXIMATE ENTROPY (ApEn)
The development of ApEn was driven by the need for a
distribution-free measure of signal regularity. Unlike the Shannon
entropy, the calculation of ApEn is not predicated on the underly-
ing distribution of the data; it is instead based on sequence recur-
rence. This allows ApEn to be applied to signals of shorter length,
and makes model estimation wholly unnecessary, removing the
risk for misestimation based on poor model selection.

ApEn can be understood as the logarithmic ratio of
component-wise matching sequences from a signal of length
N. The other relevant parameters are r, a factor based on the
standard deviation of the signal being analyzed, and used for
comparison. The final parameter is m, the length of sequences
compared. It is measured as an integer count of discrete time bins.
The ApEn is computed as follows:

1. The first sequence of length m, is compared with all other
sequences of the same length in a point-wise manner.
Those sequences for which all points are within r of their
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corresponding point in the original sequence are counted as
a match (including the base sequence with itself). This count
is used in step 3.

2. The same comparison is made for sequences of length m + 1,
starting with the first sequence of m + 1 points. This count is
used in step 3.

3. The count from step 2 is divided by step 1, and the natural
logarithm of this ratio is taken.

4. This process is then repeated for all possible sequences (the
final m points of the signal cannot be used, as there would be
no m + 1 sequence for comparison).

5. All logarithm results are then summed, divided by N − m
(the total number of possible base sequences), and multiplied
by −1.

The minimum value for ApEn is 0, suggesting a fully predictable
sequence. ApEn values are heavily dependent on parameter
choice, and values calculated with different parameter choices
cannot be compared. Because the filter factor, r, typically has its
values pegged to the standard deviation of the sequence, the ori-
gin of ApEn’s robustness to noise and scale invariance can be
seen. Our parameters were set per the suggestion of Pincus and
Goldberger (1994), as well as other groups applying ApEn to EEG
data (Bruhn et al., 2000a; Li et al., 2008; Hayashi et al., 2012),
specifically Burioka et al. (2005), to m and r values of 2 and
0.2 · SD, respectively. Our N value, the length of the data series
used, was 4000 points.

To confirm the proper functioning of the ApEn algorithm,
we computed ApEn values for six regular sine curve sequences
of 4000 points, with a simulated sampling rate of 250 Hz. The
sine frequencies used were 1, 2, 4, 8, 16, and 32 Hz, frequen-
cies all within the range used in our EEG ApEn analysis. Each
sine curve sequence was then randomly shuffled twenty times.
ApEn values were calculated for all six sine curve sequences, and
all 120 random sequences (twenty random ApEn values per sine
curve).

For an excellent appendix detailing the steps in ApEn cal-
culation (including a simple by-hand walkthrough of the steps
involved in ApEn calculation, as well as a sample implementation
in Visual Basic), please see Bruhn et al. (2000a).

2.4. STATISTICAL ANALYSIS
As mentioned above, statistical analyses were performed using
Matlab and R. Values were imported into R and log-transformed,
to better approximate a normal distribution. A linear mixed
model for the subject age groups (independent factor) and vig-
ilance states (repeated-measures factor) was then generated and
tested using a repeated-measures ANOVA.

All multiple comparisons corrections were performed using
the Holm–Bonferroni method. Because EEG electrodes are not
independent, the Holm–Bonferroni correction is overly conser-
vative. For this reason, in order to provide the most informative
results, p-values and significance results from comparisons using
all electrodes are reported both with and without correction.
To better investigate differences between age groups, unpaired
independent-samples t-tests were performed between each age
group within each vigilance state.

3. RESULTS
As described above, we analyzed a set of simulated data to validate
our ApEn algorithm. ApEn values for the simulated data ranged
between 0.07 and 0.29 for the sine curves. Mean ApEn values for
the shuffled sequences were all 1.94, with standard deviations of
less than 0.01. These results were in line with expectations.

Figure 1 shows the topographical distribution of mean ApEn
per electrode in adults and children. ApEn value trends across vig-
ilance states were similar for both age groups, and were as follows:
wake ApEn > REM sleep ApEn > N2 sleep ApEn > N3 sleep
ApEn, though REM sleep and N2 sleep were often overlapping,
especially in children. Figure 2 displays the ANOVA results for
all factors. All 109 tested electrodes had significant vigilance state
effects after post-hoc correction. Ninety-three electrodes, widely
distributed across the scalp, showed a significant age effect before
correction. Ten electrodes had a significant age effect after cor-
rection. These ten electrodes were largely clustered over the left
parietal and the area between the occipital and temporal lobes,
with one isolated over the right temporal lobe.

To better discern the causes of the observed age effects, within-
vigilance state pairwise t-tests were calculated across all elec-
trodes. These results are shown in Figure 3, where 66 electrodes
had significant age effects during wakefulness before correction,
of which 28 electrodes were still significant following correction.
N2 sleep and REM sleep had large clusters of significant electrodes
before correction; none were significant after correction.

FIGURE 1 | Topography of across-subject mean ApEn values across

vigilance state in adults and children (for both groups, n = 6).

FIGURE 2 | ANOVA p-value distributions; electrodes with factor effect

p-values less than 0.05 are those displayed in black on the white

background. Electrodes with significant p-values following
Holm–Bonferroni correction are depicted in orange. The nasion electrode
(not shown) was significant for the vigilance state effect post-hoc, and was
not significant at any level for the other effects.
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To fully explore the possibility that sleep regulatory differ-
ences between age groups may influence our results (Carskadon
et al., 1980; Carskadon and Acebo, 2002), and to verify that ApEn
wake values are not influenced by potential changes in over-
all synaptic weighting during sleep [as proposed by Tononi and
Cirelli (2003)], we compared ApEn from both the evening and
morning recording sessions, averaged across all 109 electrodes.
A Two-Way ANOVA for age and recording session found a sig-
nificant age effect (p < 0.001), as expected from earlier testing,
but found no significant effect for the recording session, nor
for the interaction of the two (p > 0.1 for both effects). For all
other ApEn analysis, evening wakefulness was used to represent
wakefulness.

To assess the origin of the observed ApEn differences between
children and adults, a high-pass filter of 8 Hz was applied to the
data, and ApEn values were again calculated. Two-Way ANOVA
results from the high-pass-filtered data of all electrodes are
depicted in Figure 4. Forty-two electrodes had significant age
effects before correction, of which four electrodes were significant
following correction. Vigilance state effects were almost entirely
abolished; seven electrodes were significant before correction; one
electrode was significant after correction.

To check for changes in the regional distribution of ApEn,
electrode values were normalized to the within-subject-within-
vigilance-state mean across all electrodes. One electrode (located
near the posterior end of the right frontal area) showed a signif-
icant vigilance state effect after correction. No other electrodes
were significant for any effect (age, vigilance state, or the interac-
tion of the two), even before post-hoc correction.

Finally, to investigate individual differences in ApEn values, we
averaged ApEn across all electrodes, and plotted values for each
stage as Figure 5. The minimum values from wakefulness were
invariably higher than the maximum observed ApEn value from

FIGURE 3 | Within vigilance state t-test p-values across all electrodes,

electrodes for which p < 0.05 are displayed in black on the white

background, values significant following Holm–Bonferroni correction

are depicted in orange. The nasion electrode (not shown) was significantly
different during wakefulness after post-hoc correction.

sleep (including both NREM and REM sleep) within the same age
group. Comparison of all subjects showed some adult sleep values
(especially during REM sleep) greater than some or all wake ApEn
values for children.

4. DISCUSSION
Our analysis showed significant ApEn effects due both to vig-
ilance state and age, with age differences being predominantly
driven by differences during wakefulness. As a measure of vigi-
lance state, ApEn showed strongly significant results across wake
and sleep, with ApEn values in adults following the same trend
as those previously reported (Burioka et al., 2005). ApEn results
from children followed similar trends between vigilance states,
with the only significant age differences occuring during wakeful-
ness. As demonstrated in Figure 5, within age group minimum
ApEn values for wakefulness were higher than maximum ApEn
sleep values for the same age group, supporting the notion that

FIGURE 4 | ANOVA p-value distributions from 8 Hz high pass filtered

data; electrodes with factor effect p-values less than 0.05 are those

displayed in black on the white background. Electrodes with significant
p-values following Holm–Bonferroni correction are depicted in orange. The
nasion electrode (not shown) was not significant at any level for any effect.

FIGURE 5 | Scatter plot of ApEn values per subject per vigilance state,

averaged across all 109 electrodes. Red bars indicate the minimum
values observed for each age group during wakefulness.
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ApEn can reliably detect changes in vigilance state. The almost
complete abolition of significant vigilance state effects observed
following application of the 8 Hz high pass filter to our data pro-
vide evidence that slow wave activity, the key EEG oscillation of
deep (NREM) sleep (Steriade et al., 2001; Buzsaki, 2006), is also
the key driver behind the increased regularity observed during
sleep.

Pincus (1994) observed that isolated systems have lower ApEn
values. If the brain is indeed a more segregated one during NREM
sleep, as suggested by experimental work (Massimini et al., 2005,
2007), then one would expect to see decreases in ApEn during
NREM sleep, as we did. These findings concur with the proposal
presented in Tononi and Massimini (2008), which drew a link
between slow wave activity during deep sleep and an interrup-
tion in information processing, leading to loss of consciousness.
That ApEn differences due to vigilance state mostly disappeared
after the removal of the lower frequency bands connects ApEn
changes to the presence of sleep oscillations, specifically slow
waves. Our results therefore suggest the possibility of a causal rela-
tionship between EEG signal changes, as measured via ApEn, and
the hyperpolarization phase associated with the slow oscillation
(Steriade et al., 2001). This hyperpolarization has been implicated
in the induction of loss of consciousness (Massimini et al., 2005).

The almost complete lack of significant vigilance state dif-
ferences following normalization to the mean value across all
electrodes indicates that changes in ApEn values across wake
and sleep are not the result of changing topographical distri-
bution. These results were therefore unlike previously observed
age-dependent topographical changes in sleep slow wave activ-
ity (Kurth et al., 2010), and rather suggest that changes in signal
regularity are of a more global nature.

Besides the widely distributed nature of changes due to sleep
stage, changes between wake adults and children were also found
to be global: Pairwise t-tests found a broad distribution of
electrodes with significant increases in wake ApEn values across
development. These results concur with those of Gasser et al.
(1988), who found absolute EEG band power decreases in the
delta and theta bands (both of which were below 7.5 Hz), and
the overall spectrum, across adolescence when measuring during
eyes-closed wake. Our findings also agree with the EEG results
of Whitford et al. (2007), who found global power decreases dur-
ing wakefulness across age, especially in the lower frequency range
(0.5–7.5 Hz).

While EEG power changes between adults and children have
also been observed during sleep [as reviewed in Feinberg (1983);
Feinberg and Campbell (2010), also Buchmann et al. (2010);
Kurth et al. (2010)], we only observed age differences in ApEn
values during wakefulness. This discrepancy may potentially be
explained by the large increase in EEG power during sleep. EEG
power differences caused by sleep-related oscillations may be of a
large enough scale relative to those due to developmental changes
that ApEn age differences are obscured. Figure 5, the scatter plot
of individual mean ApEn values shows a tendency for ApEn
values to be lower in children during sleep (the largest ApEn
values for any given stage are invariably from adults; the low-
est from children), even though statistical testing reveals no age
differences.

Our results from wakefulness may also be in line with this
claim; if ApEn age differences during wakefulness reflect anatom-
ical connectivity changes, then the lack of significant differences
at occipital and temporal electrodes is in line with what would
be expected based on prior developmental research work. The
review of Feinberg (1983) drew parallels between their work mea-
suring changes in sleep EEG activity across development, and
anatomical work, which showed regional variation in synaptic
densities across development [Huttenlocher (1979); Huttenlocher
et al. (1982), expanded in Huttenlocher and Dabholkar (1997)].
These works independently demonstrated that primary sensory
cortices were first to reach adult-level values, both when measured
via EEG power during sleep, and histological synaptic density
counts. Coupled MRI and EEG work from our group found cor-
relations between slow-wave activity decreases during sleep and
gray matter volume decreases (Buchmann et al., 2010). Similar
work during wakefulness from other groups showed correla-
tions between gray matter volume decreases and low-frequency
EEG decreases from late childhood through adulthood (subjects
ranged between 10 and 30 years of age, Whitford et al., 2007),
particularly in the parietal and frontal regions, where our sig-
nificant differences were focused. Developmental changes in the
topographical distribution of low-frequency sleep oscillations fol-
lowed similar trends; regions converging to adult-level synaptic
densities earlier were also the first to converge to adult-level EEG
activity (Kurth et al., 2010). Without the use of other tools, such
as single-unit recording or transcranial magnetic stimulation, it
is difficult to separate EEG slow wave activity from the changes
in functional connectivity observed on the neuronal level dur-
ing slow wave sleep. Nevertheless, the decrease in ApEn observed
between wakefulness in children and in adults matches with
the increased local anatomical connectivity observed in children.
That changes in both vigilance state and sleep result in decreased
ApEn values supports the notion that changes in ApEn values may
reflect connectivity changes, both anatomical and functional.

Though this claim must be further tested, if true, it would
mean that ApEn changes reflect both functional (between wake
and sleep) and anatomical (across development) connectivity
changes in the brain. As we have shown, ApEn can reliably
distinguish between wake and sleep within subject age groups.
However, having demonstrated that age has an uneven influence
on ApEn values across changes in vigilance state, we highlight the
need for future research to fully explore the influence of age on
proposed information-based EEG measures of consciousness.
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Along with the study of brain activity evoked by external stimuli, an increased interest
in the research of background, “noisy” brain activity is fast developing in current
neuroscience. It is becoming apparent that this “resting-state” activity is a major factor
determining other, more particular, responses to stimuli and hence it can be argued
that background activity carries important information used by the nervous systems
for adaptive behaviors. In this context, we investigated the generation of information
in ongoing brain activity recorded with magnetoencephalography (MEG) in children
with autism spectrum disorder (ASD) and non-autistic children. Using a stochastic
dynamical model of brain dynamics, we were able to resolve not only the deterministic
interactions between brain regions, i.e., the brain’s functional connectivity, but also the
stochastic inputs to the brain in the resting state; an important component of large-scale
neural dynamics that no other method can resolve to date. We then computed the
Kullback-Leibler (KLD) divergence, also known as information gain or relative entropy,
between the stochastic inputs and the brain activity at different locations (outputs) in
children with ASD compared to controls. The divergence between the input noise and
the brain’s ongoing activity extracted from our stochastic model was significantly higher in
autistic relative to non-autistic children. This suggests that brains of subjects with autism
create more information at rest. We propose that the excessive production of information
in the absence of relevant sensory stimuli or attention to external cues underlies the
cognitive differences between individuals with and without autism. We conclude that the
information gain in the brain’s resting state provides quantitative evidence for perhaps the
most typical characteristic in autism: withdrawal into one’s inner world.

Keywords: brain’s resting state, Asperger’s syndrome, functional connectivity, stochastic input, relative entropy

INTRODUCTION
Neuroscience has traditionally focused on the investigation of
stimulus-induced activity, whereas spontaneous activity has been
considered as noise or background activity of little consequence.
However, this view is rapidly changing due in part to empirical
evidence indicating the fundamental importance of background,
“noisy” activity in the brain for the processing of sensory inputs.
Indeed, the brain never rests, for it is constantly receiving inputs,
either from the outside or from the body, and even in periods
of slow wave sleep the thalamocortical networks display impor-
tant, coordinated activity. Even when external sensory stimuli
are minimized, as in sensory deprivation experiments, the brain
responds creating its own world of hallucinations (Sireteanu et al.,
2008). Thus, cognitive states in the “idle” brain are not passive
and perhaps represent the best opportunity to study the func-
tional connectivity (a term much used these days and perhaps
many times abused) of the brain (Galán, 2008; Ringach, 2009;
Papo, 2013).

There is a current debate in the autism field about the possible
differences in brain connectivity that manifest in the special cog-
nitive style of autistic individuals. In particular, it has been argued

that autistic brains are more “disconnected” than those indi-
viduals without autism, notion derived mainly form metabolic
brain measures like PET or fMRI (Herbert, 2005; Kennedy and
Courchesne, 2008; Monk et al., 2009; Thai et al., 2009). Distinct
patterns of synchronization of electroencephalographic or mag-
netoencephalographic (MEG) signals between individuals with
and without autism spectrum disorder (ASD) have also been
reported (Murias et al., 2007; Pérez Velázquez et al., 2009; Tsiaras
et al., 2011; Teitelbaum et al., 2012). As for anatomical features
that could underlie possible differences in functional connectivity
and thus brain coordination dynamics, alterations in the frontal
cortex have been noted in autism, and particularly, an abnor-
mal spatial organization in the microglial-neuronal components
(Morgan et al., 2012). Recent studies with difusion tensor imag-
ing have also revealed white matter abnormalities in autism, in
particular, a possible atypical lateralization in some white matter
tracts of the brain and a possible atypical developmental trajec-
tory of white matter microstructure in persons with ASD (Travers
et al., 2012).

Recently, based on the notion that brain activity at rest can be
accurately described using stochastic linear dynamics, we used a
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multivariate Ornstein-Uhlenbeck process (mOUP) to investigate
brain dynamics from MEG recordings in ASD and non-ASD indi-
viduals (García Domínguez et al., 2013). This method allowed
us to estimate not only the functional connections at the sen-
sor level but also the inputs driving the network. Functional
connections account for the covariance and lagged correlations
between signals recorded from different areas. Inputs reflect con-
tributions to the variance of the recorded signals (outputs) that
are not accounted for by the covariance with other signals in
the network of sensors. Our results indicated that the dominant
connectivity change in ASD relative to controls shows enhanced
functional excitation between frontal and parietal/occipital areas.
Moreover, the stochastic inputs driving the background activ-
ity in the resting state showed a greater spatial homogeneity in
ASD than in control individuals, and indeed the spatial com-
plexity of the background noise was significantly lower in ASD
subjects. We speculated that higher long-range spatial correla-
tions in the background noise may result from less specificity
(or more promiscuity) of thalamo-cortical projections (García
Domínguez et al., 2013). All these observations suggest that it
may not be a matter of less connectivity in autism, but of changes
in connectivity between specific areas as well as in the inputs.
As a note of caution, one must bear in mind that in the afore-
mentioned studies with MEG, PET, or fMRI the complex relation
between macroscopic recordings and the underlying neuronal
activity remains to a certain extent undetermined, so “connec-
tivity” changes are to be understood in a functional rather an
anatomical or physiological sense.

The differences found in previous studies on brain coor-
dination dynamics in ASD suggest that information process-
ing/production could be different as well, for it is the coordinated
activity of transiently formed neuronal assemblies that under-
lie information processing and cognition (Flohr, 1995; Bressler
and Kelso, 2001; Kelso, 2008; Pérez Velázquez and Frantseva,
2011). Thus, in this study we investigated whether the production
of information in periods of little sensory perturbation (resting
state) could differ between individuals with and without ASD.
As a measure for information production we used the Kullback-
Leibler divergence (KLD) between the brain’s inputs and outputs.
The KLD is also known as information gain or relative entropy
(Ihara, 1993) and quantifies differences between two distribu-
tions. In our case, the distributions are the probability density of
the stochastic inputs driving the brain’s activity and the proba-
bility density of the brain’s activity itself, as recorded with MEG
(outputs). We found an increased divergence in children with
ASD compared to controls in the resting conditions in which the
MEG recordings were taken, and conjecture that this enhanced
information gain could be related to one of the most typical
characteristics in autism as described already in the early days of
autism research: the withdrawal into one’s inner world.

METHODS
PARTICIPANTS AND MAGNETOENCEPHALOGRAPHIC RECORDINGS
Data were drawn from a larger sample of children enrolled in pre-
vious studies (Pérez Velázquez et al., 2009; Teitelbaum et al., 2012;
García Domínguez et al., 2013). In total, MEG data from 19 chil-
dren, 9 with Asperger’s syndrome and 10 age-matched control

children, were analyzed. Age range was between 6 and 14 years
for the controls (mean: 11.2 years; standard deviation: 2.6 years)
and between 7 and 16 for ASD (mean: 10.8; standard deviation:
3.5). The 9 children with Asperger’s syndrome were males while
the 10 controls were 6 males and 4 females. We note, however,
that boys and girls in the control group were not different from
each other in terms of our analysis, as shown in our previous
study (García Domínguez et al., 2013). The children’s parents pro-
vided written consent for the protocol approved by the Hospital
for Sick Children Research Ethics Board. Participants, who were
evaluated by the psychologists in the Autism Research Unit of
the Hospital for Sick Children or were recruited from the Geneva
Center for Autism and Autism Ontario, met the criteria for ASD
based on DSM-IV. Age-matched control children had no known
neurological disorders.

MEG recordings were acquired at 625 Hz sampling rate, DC-
100 Hz bandpass, third-order spatial gradient noise cancellation
using a CTF Omega 151 channel whole head system (CTF Systems
Inc., Port Coquitlam, Canada). Out of the 151 sensors, we dis-
carded 10 that were not comparable across all patients due to
artifacts or a very low signal-to-noise ratio. Our analysis thus
focused on the recordings from the remaining 141 sensors in
all patients. Subjects were tested supine inside the magnetically
shielded room. Head movement was tracked by measuring the
position of three head coils every 30 ms, located at the nasion,
left and right ear, and movements less than 5 mm were consid-
ered acceptable. Children were instructed to remain at rest during
the recording session that lasted between 30 and 60 s. To facilitate
the involvement of the children in the experiment and minimize
distraction, they were asked to press a button at will with their
right hand a few times during the recording session. For each
child, an epoch of 30 s was taken off for analysis of functional
brain connectivity. All children were awake and had their eyes
open during the experiment. Eye-blinking and muscular arti-
facts have a much larger amplitude than brain activity and are
highly correlated across sensors, so they can be easily identified
and removed using a well-established approach based on a princi-
pal component analysis (Mitra and Pesaran, 1999). In particular,
since the artifacts appear in the first few principal components
exclusively, they are efficiently cleaned out by removing those
components.

MODEL OF FUNCTIONAL CONNECTIVITY AND BACKGROUND NOISE
In the resting state, the non-linear dynamics of the brain reduces
to noise-driven fluctuations around a state of equilibrium, which
corresponds to a stable fixed point in neural-mass models of
brain dynamics that include conduction delays, dendritic integra-
tion and non-linear firing characteristics of neurons (Robinson
et al., 1998, 2001). The presence of background noise does
not allow the system to quench at the fixed point but per-
turbs the system in a continuous manner, so that it fluctuates
around the equilibrium (Galán, 2008). Thus, consistent with
the approach used by several authors (Tononi et al., 1999;
Sporns et al., 2000; Galán, 2008; Barnett et al., 2009; Steinke
and Galán, 2011; García Domínguez et al., 2013), large-scale
spontaneous brain activity is accurately described as a lin-
ear stochastic process that is formally equivalent to a mOUP.
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xi(t + dt) = xi(t)+ dt
N∑

j= 1

Wijxj(t)+ ηi(t + dt), (1)

where Wij is the functional connectivity matrix, i.e., the cou-
pling between the j-th and the i-th nodes; xi(t) is the neural
activity of the i-th node with respect to baseline, measured
as the signal from the i-th MEG channel at time t; ηiare the
residuals (background, uncorrelated white noise) of the i-th
channel; N is the number of nodes (sensors) and dt is the
sampling interval (1.6 ms). The sign of Wij represents func-
tional excitation (+) or inhibition (−) and should not be
confused with excitatory or inhibitory synaptic connections at
the cellular level. At the macroscopic level of MEG record-
ings, functional excitation and inhibition between nodes result
from a combined effect of myriad processes, including multi-
ple synaptic interactions and action potentials, which cannot be
resolved. The units of Wij are reciprocal of time, i.e., frequency
units.

The functional connectivity matrix Wij can be obtained from
the empirical data xi(t) with the Yule-Walker method for multi-
variate time series (Priestley, 2001). First, equation (1) is written
in vector notation as

�x(t + dt) = �x(t)+W�x(t)dt + �η(t + dt). (2)

Multiplying from the right by �x(t)Tand averaging in time,
denoted by brackets 〈...〉, one has C+ = (I +Wdt) C, with C+ =〈�x(t + dt)�x(t)T

〉
, C = 〈�x(t)�x(t)T

〉
, and I being the identity matrix.

After computing Cand C+from the recordings, the connectivity
matrix is then given by

W = (C+ − C) C−1/dt,

where C−1 is the inverse of C, or its pseudo-inverse if it is rank-
deficient. Once W has been determined, the background noise
driving the network ηi(t) can also be obtained from (2), and their
covariance is computed as Q = 〈�η(t)�η(t)T

〉
. Note that the signals

xi(t) in the resting state have a stable mean (which is negligible
relative to the standard deviation), as shown in Figures 2A,B for
three arbitrary sensors. For system (2), the covariance matrices of
the inputs and outputs are related via (Gardiner, 2004)

Q = −dt
(

WTC + CW
)

, (3)

which allows one to compute Q directly from C and W . This pro-
vides a reality check for model (2): the closer the entries in Q are
to the entries in matrix

〈�η(t)�η(t)T
〉
, the more accurate is model

(2). In our data set, the correlation coefficient between the entries
in both matrices is r > 0.99 (García Domínguez et al., 2013).

A multivariate Gaussian distribution of variable
�u ∈ R

N with mean �m = 〈�u(t)
〉
, and covariance � =〈

(�u(t)− �m) (�u(t)− �m)T
〉
∈ R

N×N is given by

G(�u; �m, �) ≡ 1

(2π)N/2 |�|1/2
exp

(
−1

2
(�u− �m)T �−1 (�u− �m)

)
, (4)

where |...| denotes the determinant of the matrix inside, or
the pseudo-determinant, if the matrix is rank-deficient. For

mOUP, the stationary distributions of �xand �η are the multivariate
Gaussians, G

(�x; �0, C
)
and G

(�η; �0, Q
)
, respectively.

ENTROPY AND INFORMATION GAIN
We computed the entropy of the inputs as the entropy of the dis-
tribution of �ηand the entropy of the output, as the entropy of
the distribution of �x. To this end, we recall that the entropy of a
multivariate Gaussian distribution (4) with zero mean is given by

H (�u) =
∞∫

−∞
G(�u; �0, �) ln G(�u; �0, �)duN = 1

2
ln |2πe�|

= N

2
(1+ ln(2π))+ 1

2
ln |�| . (5)

So that the entropy of the inputs in (2) is H (�η) = 0.5 · ln |2πeQ|
and the entropy of the outputs is H (�x) = 0.5 · ln |2πeC|.

The KLD of two distributions, also known as the relative
entropy or information gain, measures how much variability
of a stochastic variable �u ∈ R

N with distribution P cannot be
accounted for by a reference distribution Q. It is defined as

D (P||Q) =
∞∫

−∞
P(�u) ln

P(�u)

Q(�u)
duN .

To determine the information gain of a mOUP we computed.

D
(
G(�x; �0, C)||G(�η; �0, Q)

) =
∞∫

−∞
G(�u;C) ln

G
(�u; �0, C

)

G
(�u; �0, Q

)duN

= 1

2

(
trace

(
Q−1C

)− ln
|C|
|Q| − N

)
. (6)

The units of the outcome from expressions (5) and (6) are nats.
We converted those values to bits by dividing by ln(2), and again
by eight to obtain the final result in bytes.

INVARIANCE OF INFORMATION GAIN
An important property of the information gain is that it is invari-
ant under linear transformations. This implies that the “cross-
talk” or mixing of independent source signals does not affect the
information gain. In other words, the information gain measured
at the sensor level is the same as the information gain at the source
level. The mathematical proof is as follows. Recall that model (2)
represents the signal model at the sensor level. Let U denote a
linear transformation that “unmixes” the sensor level signals �x(t)
to obtain the source level signals, �y(t), so that, �y(t) = U�x(t). In
particular, matrix U can be computed with an independent com-
ponent analysis. At the source level, model (2) is transformed
into

�y(t + dt) = �y(t)+ V�y(t)dt + �ξ(t + dt)

with V = UWU−1and �ξ(t) = U�η(t). The covariance matrix of
�y(t) is then given by UCU−1 and the covariance matrix of �ξ(t) by
UQU−1. The information gain at the source level is thus

Dsource = 1

2

(

trace
((

UQU−1)−1
UCU−1

)
− ln

∣∣UCU−1
∣∣

∣∣UQU−1
∣∣ − N

)

.
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We first note that

trace
((

UQU−1)−1
UCU−1

)
= trace

(
UQ−1CU−1) = trace

(
Q−1C

)
,

due to the invariance of the trace under similarity transforma-
tions. We also note that, since the determinant of the product is
the product of the determinants one has

∣∣UCU−1
∣∣

∣∣UQU−1
∣∣ =
|U| |C| ∣∣U−1

∣∣

|U| |Q| ∣∣U−1
∣∣ =
|C|
|Q| .

Thus, the information gain at the source level becomes

Dsource = 1

2

(
trace

(
Q−1C

)− ln
|C|
|Q| − N

)
,

which is identical with the information gain at the sensor level (6).

RESULTS
Figure 1A displays the arrangement of MEG sensors over the
scalp. We only show the positions of the 141 out of 151 sensors
that were used in all the subjects (as indicated in methods, 10 sen-
sors were left out due to artifacts and/or low signal-to-noise ratios
in different patients). Thus, the dimensions of the functional
brain connectivity matrix for each subject are 141× 141. The sen-
sors cover the occipital (O), frontal (F), central (C), parietal (P),
and temporal (T) areas. Each ordered pair of sensors (i, j)defines
an entry in the connectivity matrix Wij (Figure 1B), which is
obtained from the data using model (1). Because MEG signals are
most sensitive to cortical activity due to the pronounced decay of
magnetic fields with distance, matrix Wij mainly represents func-
tional connections between cortical areas. A thorough analysis of
the connectivity matrices and their differences in ASD was pre-
sented in our previous study (García Domínguez et al., 2013).
Model (1) also allows one to obtain the inputs to the network,
ηi(t) as explained in Methods. Figure 1C schematically shows
the black-box interpretation of the brain dynamics described by
equation (1), for just three nodes. The stochastic inputs (back-
ground noise), ηi(t) impinge on the nodes of the network, which
in turn affect each other’s activity rate, dxi(t)/dt according to
the connectivity matrix Wij. This determines the instantaneous
activity fluctuations (outputs) recorded from each node, xi(t).
Figure 2A shows traces of ongoing activity recorded with three
arbitrary sensors from one of the children. Only 3 seconds of
the total recording (30 s) are shown. Traces x1 and x2 clearly
display correlated fluctuations between them but not with x3.
Figure 2B shows the histograms of the fluctuations recorded from
each of those three sensors. The fluctuations around the mean
were normalized to the standard deviation of the traces so that the
normalized amplitude is given by the z-score. Clearly, the fluctu-
ations are normally distributed, as demonstrated by the excellent
fit to a Gaussian (red line). The high p-values confirm the null
hypothesis of the chi-square goodness-of-fit test, namely, that the
fluctuations have a normal distribution in each sensor.

Model (1) assumes that the noise is additive and hence state
independent. In such a case, the mean and variance of small seg-
ments of the time series should be independent of each other. To

FIGURE 1 | Inputs and outputs of the cortical network as defined in

our analysis. (A) Spatial arrangement of MEG sensors recording brain
activity from the scalp (outputs). (B) Functional connectivity as a table of
interactions between signals recorded by sensor pairs. (C) Schematic
representation of the brain’s functional connectivity, its inputs and outputs.
Only three nodes are shown.

test this, we divided the traces in successive segments of 500 ms
and plotted the mean over each segment against its standard
deviation (Figure 2C). For all traces, the Pearson’s correlation
coefficient was not statistically significant, suggesting that both
quantities are indeed independent of each other.

Figure 2D shows the stochastic inputs to the three nodes
investigated above, η1, η2 and η3. Compared to the outputs in
Figure 2A, the inputs display no significant temporal structure
and lower amplitudes, which is what one would expect for the
residuals of a parametric model, such as model (1). Figure 2E
shows that the inputs are also normally distributed.

From the connectivity matrix, Wij and the covariance matrix
of the signals, Cij, one can readily obtain the covariance matrix of
all the inputs, Qij, using formula (3) in Methods, without hav-
ing to determine them explicitly. This allows us to efficiently
compute information theoretical measures. Figure 3 shows the
entropy of the inputs and outputs for the control and ASD
groups. The entropy is larger for the outputs than for the inputs
for both groups. However, the differences between both groups
for inputs or outputs are not significantly different (p >> 0.05,
Wilcoxon rank-sum test). We note that the entropy values are
negative. Indeed, while entropy values for discrete signals are non-
negative, the entropy of continuous signals (differential entropy)
may be negative. Negative entropy values result from expression
(5), when |2πe�| < 1. Note that the value of this determinant
depends on the units of the covariance, so our choice of those
units affects the value of the entropy. Moreover, the entropy for
continuous signals is very sensitive to their variance and because
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FIGURE 2 | Activity fluctuations at rest are normally distributed. (A)

Recordings of ongoing activity (3 s long) from three arbitrary sensors in a
control subject. (B) Activity fluctuations have zero mean and are normally
distributed. The histograms were built from segments of 30 s. (C) Over

short segments of the time series (500 ms long) the mean and standard
deviation are uncorrelated, consistently with the assumption of additive
noise. (D) Residuals (inputs) of the model for the traces shown in (A).
(E) The residuals are also normally distributed.

the amplitudes of the activity fluctuations are not significantly
different between control and ASD (data not shown), neither
are the entropies. These are well-known caveats that preclude
the interpretation of entropy (or more accurately, differential
entropy) as a measure of information content for continuous sig-
nals (Ihara, 1993). This contrasts with the case of discrete signals,
for which entropy is legitimately interpreted as the expected value
of information contained in a signal (Ihara, 1993).

A more relevant measure of information that has the same
interpretation and properties for continuous and discrete signals
is the relative entropy, or information gain, defined as the KLD
between two distributions (see Methods). In lay terms, the KLD
measures how much variability of a stochastic variable with dis-
tribution P cannot be accounted for by another stochastic variable
with distribution P′. This interpretation justifies the alternative
name of “information gain” about one variable by knowing the
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FIGURE 3 | Differential entropies of the inputs and outputs. (A) Inputs.
(B) Outputs. There are no significant differences between groups in either
case.

FIGURE 4 | Information gain in the brain’s resting state. (A) Schematic
black-box representation of cortical dynamics in the resting state. (B) The
information gain is significantly increased by 42% in autistic relative to
non-autistic children.

other. In our context, we computed the KLD to quantify the
amount of information of the outputs that cannot be accounted for
by the inputs. In other words, we quantified how much infor-
mation is “created” by the brain in the resting state. Figure 4A
shows a simplified black-box interpretation of the brain, in a sim-
ilar fashion to Figure 1C but for an arbitrary number of nodes
and without paying attention to the details of the brain’s network
contained in the box. The key finding of this article is shown in
Figure 4B, which plots the information gain of the brains in the
control and ASD groups. Despite some overlap between the dis-
tributions, the medians of both groups are significantly different
(Wilcoxon sum-rank test; p = 0.035). In particular, the informa-
tion gain in the ASD group is 42% larger on average, indicating
that ASD brains produce more information from the stochastic
inputs driving them.

In a previous study we identified the subnetwork of sensors
containing the functional connections whose changes in autism
are largest in absolute value and most significant relative to con-
trol (García Domínguez et al., 2013). We then asked whether this
subnetwork on its own can account for the increased information

FIGURE 5 | Main subnetwork contributing to the increased information

gain. (A) Subnetwork containing the largest (in absolute value) and most
significant changes in functional connectivity (left). This subnetwork alone
accounts for a significant increase in information gain in autism (right). (B)

Complementary subnetwork containing the remaining sensors (left). This
subnetwork cannot account for the change in information gain on its own,
as the increase is not statistically significant (right).

gain in autism. Figure 5A displays the sensors belonging to this
subnetwork (left; magenta circles) and the information gain for
this subnetwork in the control and ASD groups (right). The dif-
ference of the medians is 57% and it is statistically significant
(p = 0.017; Wilcoxon rank-sum test). In contrast, if one con-
siders the complementary network, i.e., the other nodes in the
sensors network (Figure 5B, left), the difference of the medi-
ans is 40% but not statistically significant, as it falls below the
95% confidence level (p = 0.053; Wilcoxon rank-sum test). In
conclusion, although all nodes contribute to the information
gain, those nodes encompassing the interactions with the largest
changes in autism contribute more to the increase in information
gain. However, changes in connectivity alone are not sufficient to
account for the difference in information gain that we observe in
ASD, as the information gain depends not only on W via C, but
also on matrix Q, which we know from our previous study that
is also significantly different in ASD (García Domínguez et al.,
2013). The question then is: do changes in W compensate for
changes in Q or do these changes act synergistically to increase
the information gain? Our analysis suggests the latter may be the
correct answer, or at least, that changes in connectivity cannot
fully compensate for changes in the inputs.

DISCUSSION
The term autism (from the Greek autos, meaning “self”) was
coined in 1911 by Swiss psychiatrist Eugen Bleuler, who used it
to describe withdrawal into one’s inner world (even though at this
time he was referring to schizophrenia patients). Later, other stud-
ies defined more precisely the syndrome (Kanner, 1968). The neu-
rophysiological reasons responsible for a certain detachment from
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the environment of individuals with ASD remain unknown, and
several scholars have proposed ideas mostly centered on the psy-
chological level of description. Whereas much brain structural
and genetic studies are being done in autism research, the investi-
gation of the brain dynamics is lagging considerably behind. Here,
we have explored what the background brain activity in resting
conditions (when individuals are not presented with specific sen-
sory stimuli) may reveal about the inner processing of the brain in
terms of information production, quantified as relative entropy.
Our analysis of MEG signals recorded at rest indicated that the
brains of individuals with ASD, Asperger syndrome in this case,
produce more information than the age-matched participants
with a 42% increase on average. These significant differences can-
not be attributed to the gender-ratio mismatch in our cohort.
Although there were 6 males and 4 females in the control group,
and no females in the ASD group, the control group was fairly
homogeneous: there were no significant differences in the infor-
mation gain between the boys and girls within the control group
(p = 0.76; Wilcoxon rank-sum test).

We decided to focus on spontaneous brain activity in resting
conditions because the fundamental importance of the ongo-
ing, “noisy” nervous system activity is widely recognized today,
and a more in-depth investigation of brain activity in periods of
minimal sensory perturbation has been advised by several schol-
ars as it may provide the best opportunity to study the intrinsic
connectivity of the brain, in the absence of major sensory per-
turbations (Galán, 2008; Ringach, 2009; Steinke and Galán, 2011;
García Domínguez et al., 2013; Papo, 2013). From an analyti-
cal perspective, there are two important reasons for investigating
brain activity in the resting state. The first one is that in this
case, the brain dynamics are described by stochastic model (1),
which implies that functional connections (Wij) are constant, in
contrast to the stimulated brain, in which interactions between
different areas are state-dependent and typically non-linear. The
second reason is that in the brain’s resting state the stochastic
inputs, ηi, as well as the activity fluctuations, xi (outputs) are
normally distributed. Thus, the distributions of �η and �x are both
N-dimensional Gaussians. This enables an accurate parametric
estimation of the entropies and relative entropy, as shown above.
If the fluctuations are not normally distributed, as it is frequently
the case for stimulus-evoked activity, a parametric estimation of
information theoretical measures is in general not possible. To
compute entropies and related quantities in such cases, one needs
to estimate the probability densities of the data. However, the esti-
mation of high-dimensional probability densities requires very
large datasets, which are virtually impossible to collect in current
experimental settings.

In our study, functional connections between areas and their
inputs are defined operationally from model (1): functional con-
nections account for the covariance and lagged cross-correlations
between signals recorded from different areas, whereas the inputs
are defined as contributions to the variance that are not accounted
for by the covariance with other signals in the network of sen-
sors. Neither the functional connections nor the inputs represent
specific neuronal elements, although they obviously emanate
from them in a complex, undetermined manner. Certainly, a

multiscale modeling approach, from single cells to neural mass
models, is worth attempting. This is, however, a daunting task, as
recognized by other authors working on this problem (Deco et al.,
2008).

There are two important considerations about the dynamical
model used in our study: (1) the suitability of a linear model
for large-scale brain dynamics in the resting state; and (2) the
interpretation of the inputs in the model. As for the first con-
sideration, we note that there is no contradiction between our
stochastic linear model and the fact that brain dynamics are
strongly non-linear because we do not intend to model neu-
ronal dynamics per se. We are rather modeling the recorded
signals, which are magnetic fields that do superimpose linearly.
An analog dichotomy takes place in weather forecasting: although
the dynamics of air masses are turbulent, chaotic and therefore,
unpredictable, when considered over a large area the flow of
air masses becomes predictable within a time window of a few
days. These coarse dynamics of air masses fit very well a lin-
ear multivariate stochastic process, which can then be used to
accurately forecast variations and co-variations of air pressure
and temperature at different locations (Storch and Zwiers, 2001).
Similarly, in neural mass models the strong non-linear dynam-
ics of single neurons, when averaged over a fairly large spatial
range, display fluctuations around a mean that make a stochas-
tic linear model suitable for the description of large-scale activity.
As noted by Nunez and Srinivasan, “the question of brain linear-
ity depends on context and the level [. . . ] addressed [. . . ]. It is
only in mathematics that a sharp distinction exists between lin-
ear and non-linear system” (Nunez and Srinivasan, 2006). We
also note that non-linear neuronal networks, like those based on
the celebrated Wilson-Cowan model and the neural-mass mod-
els frequently possess hyperbolic fixed points which are linearly
stable. The brain’s resting state we record from corresponds to
this kind of stable state, as shown in Figures 2A,B, in which base-
line activity is characterized by fluctuations around a fixed mean.
Indeed, linearization of neural-mass dynamics around a hyper-
bolic fixed point leads to model (2) when stochastic perturbations
are included. Several recent papers have taken advantage of this
fact to investigate the link between connectivity and spontaneous
activity patterns in a neural network model (Galán, 2008; Barnett
et al., 2009; Steinke and Galán, 2011; García Domínguez et al.,
2013). Outside the resting state, during sensory stimulation, brain
activity typically has a moving baseline, or low frequency modula-
tion of the fluctuations, which results from the non-linear regime
of the neural-mass dynamics, and therefore, it is inconsistent with
model (2). That is the reason why our model should only be
applied to brain activity in the resting state.

As for the interpretation of the inputs in our model, we remark
that subcortical structures relay inputs to the cortex and prob-
ably more (if these could be quantified) than those from the
external sensorium, which with the exception of the olfactory
system are filtered through the thalamus. Our model considers
both sources of fluctuating inputs together: those coming from
the external world and those from internal organs are similar for
our purposes because the other organs are, after all, external to
the brain too, so they are all just inputs. Regarding this matter of
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differentiating internal vs. external inputs, we find the thoughts by
Nachev and Husain quite appealing; in their words “the contrast
between internally and externally-generated actions is empirically
intractable” (Nachev and Husain, 2010).

Large-scale recordings, such as MEG traces, have some limi-
tations to keep in mind (Gross et al., 2013). The signals detected
by MEG reflect population-scale levels of activity in large neu-
ronal networks. Insights gained from the analysis of MEG data are
limited to coarse relationships between large populations of cells
rather than the detailed understanding of interactions between
individual cells. Moreover, spontaneous activity at any given sen-
sor may contain activity from multiple distributed sources, and
conversely, the activity of a single signal source can introduce
coordinated changes at multiple sensors. For these reasons, func-
tional connectivity estimated from signals recorded by the sensors
does not necessarily reflect the actual connectivity between the
brain areas next to where the sensors are located. Thus, a dis-
tinction between sensor-level and source-level connectivity is
pertinent to MEG but also to all technologies for measuring
large-scale brain connectivity that are currently available. Ideally,
connectivity analysis should be performed at the source level.
However, source reconstruction clearly adds another level of com-
plexity to the analysis and may even yield spurious results, as it
is an ill-posed mathematical problem (Gross et al., 2013). This
implies that assumptions must be made about the origin and
location of the sources in order to properly constrain the solution
to the problem. Whereas certain assumptions may be reason-
able for stimulus-driven experiments because specific sensory or
motor areas are expected to be strongly activated, this is not triv-
ial for ongoing activity where no specific areas are expected to
dominate the brain dynamics. Importantly, we have shown here
(see Methods) that the information gain in the brain’s resting state
is the same for the source and sensor levels. Thus, the results
we report here are unaffected by any possible cross-talk between
sensors or mixing of independent source signals at the sensor
level.

When addressing queries on information processing in ner-
vous systems, the question of what is meant by “information”
always arises. There are several different notions about what infor-
mation is and represents, and depending on the research field,
e.g., thermodynamics, cybernetics, information theory etc., one
may come across different definitions. In general terms, however,
the concept of information refers to the ability of a given signal to
encode a message with a presumed alphabet regardless of its con-
tent. That is, the information is agnostic to semantics or meaning.
In plain mathematical terms, the information gain used in this
study is nothing but a measure of the global differences between
the distributions of the input to and output of the brain in its
resting state. It therefore quantifies the degree of transformation of
the inputs into the outputs. Because this transformation is made by
the brain’s network, the information gain can literally be regarded
as the amount of information created by the brain which is not
already present in the inputs.

On a more philosophical level, the general expression “brain
information processing” is commonly used without specific
details as to what this information is, but it serves the purpose

as it relies on certain intuitive knowledge that neuroscientists
share and accept. If, as Heinz von Foerster declared, “informa-
tion is a relative concept that assumes meaning only when related
to the cognitive structure of the observer (the recipient)” (Von
Foerster, 2003), and the activity of the brain cellular circuits
is roughly considered as the production of “novel” associations
between stimuli (external or internal), then perhaps an increase in
the difference between the stochastic input and output, as found
in our work, could conceivably be associated with a more pro-
nounced “mental inner life” that, roughly speaking, may result
in the common detachment of individuals with ASD from their
environment. Perhaps a bit more specifically, following Davies’
recent postulate of two types of information in biological sys-
tems (Davies et al., 2013), structural and functional, it could
be reasoned that in the nervous system the structural informa-
tion derived from direct anatomical connections between cells
is responsible for the maintenance of memory and other spe-
cific aspects that need to be maintained in an stable manner,
whereas functional information, which is what we measured in
our studies, could be related to the rate of cell assembly for-
mation, to the transient establishment of coordinated activity
amongst brain cell networks which is the basis of cognition
(Bressler and Kelso, 2001; Kelso, 2008; Pérez Velázquez and
Frantseva, 2011). As a predecessor of the current conceptualiza-
tion, Hans Flohr already proposed almost two decades ago that
the rate of cell assembly formation determines cognition (Flohr,
1995). A precise investigation of how cell assemblies form and
disappear and the relation between these ephemeral brain func-
tional networks and cognitive/psychological aspects is difficult
to achieve with current methods in brain and cognitive science.
Nevertheless, these types of research encompassing biophysics
and psychological observations, we venture, will be a fundamen-
tal part of the immediate future of neuroscience research. In
fact, with the current theoretical conceptualization of nervous
system dynamics based on dynamical bifurcations that switch
brain/cognitive states in a flexible manner, it is not surprising
that more investigations on the role of background activity in
brain information processing are being conducted at several lev-
els of description (Liljenstrom, 1996; Mcmillen and Kopell, 2003;
Pérez Velázquez et al., 2007; Zhou et al., 2010; Luczak et al.,
2013).

Combining several empirical observations, the picture that
emerges is that a tendency toward enhanced excitatory activity in
the cell circuitry in the autistic brain (Rubenstein and Merzenich,
2003; Han et al., 2012) results in hyperactivity in certain brain
regions (García Domínguez et al., 2013) that in turn enhances the
tendency toward increased synchronous activity in those areas,
e.g., parietal cortices (Pérez Velázquez et al., 2009; Teitelbaum
et al., 2012), which is reflected in greater spatial correlation in
the background activity (García Domínguez et al., 2013) and
in a more pronounced information production from the back-
ground activity, as found in this study. More generally, these
related tendencies toward more than normal excitation and syn-
chronization could underlie most of neurological and psychiatric
disorders (Pérez Velázquez and Frantseva, 2011; Yizhar et al.,
2011). All these neurophysiological differences between autistic
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and non-autistic brains, we propose, could contribute on the
behavioral level to the known withdrawal to their inner world
of individuals with autism. While, at this stage, this is a conjec-
ture, it is perhaps useful to start the never easy attempt of framing
neurophysiological data into psychological aspects. Our study is
intended as an initial step in the investigation of how information
generation in the brain relates to cognitive/psychological aspects
and our results allow us the following speculations. It is notewor-
thy that the subnetwork of sensors that significantly contributes to
the increased information gain in autism (as shown in Figure 5A)
contains a combination of frontal, temporal and parietal areas
which also correspond to the default mode network; the brain
areas that reduced their activations during processing of external
stimuli and are preferentially active when individuals do not focus
on the external world (Buckner et al., 2008). Moreover, this sub-
network contains a number of midline sensors: medial frontal,
central and parietal (Figure 5A). Remarkably, both the default
network and midline brain structures have been proposed to be
fundamental regions for self-processing (Northoff and Bermpohl,
2004), and there are numerous studies that reported the asso-
ciation of activation in parietal and medial frontal cortex in
self-referential processing (Lou et al., 2004; D’argembeau et al.,
2007). Nevertheless, it should be considered that each brain area
is “activated” by other connected nets, which means that these
regions proposed in the literature, while significantly associated
with self-referential processing, receive inputs and integrate their
activity with others possibly subcortical areas (Northoff et al.,
2011). It is also of interest that distinct patterns of synchroniza-
tion in the “default areas” have been noted (Fingelkurts, 2011),
especially an increase in phase synchrony when subjects atten-
tion is internally focused (Kirschner et al., 2012). These previously
reported neurophysiological phenomena in those brain areas may
contribute to the observed differences between the two groups
in the information gain reported in this work, and particularly
the higher information gain in the ASD group could therefore be
related to the more intense “inner world” that autistic individuals
normally have.

Future studies may consider applying our method to other
cognitive phenotypes as well. To interpret information gain in
other contexts one must bear in mind that it explicitly depends on
the inputs and outputs of the resting state network, and implic-
itly (via the output covariance) on the functional connectivity.
Significant changes in information gain must therefore result
from changes in at least one of these measures or, as it is the
case in our study, in all the three measures. One may then ask
whether changes in connectivity tend to compensate for changes
in inputs so that the information gain is barely altered, or whether
those changes act synergistically to exacerbate alterations in neu-
ronal activity and information gain. Finally, to more explicitly
address the relation between information gain and particular psy-
chological traits, it is worth noting that people with schizophrenia
are characterized by excessive self-awareness (Frith, 1979), which
taken to the limit may lead to hallucinations. We surmise that if
our analysis of the brain’s resting state were conducted on peo-
ple with schizophrenia, it would also show a significant increase
in information gain that reflects the ability of the brain to gener-
ate complex activity on its own, even in the absence of significant
stimulation.
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Spatial component analysis is often used to explore multidimensional time series data
whose sources cannot be measured directly. Several methods may be used to decompose
the data into a set of spatial components with temporal loadings. Component selection is
of crucial importance, and should be supported by objective criteria. In some applications,
the use of a well defined component selection criterion may provide for automation of
the analysis. In this paper we describe a novel approach for ranking of spatial components
calculated from the EEG or MEG data recorded within evoked response paradigm. Our
method is called Mutual Information (MI) Spectrum and is based on gauging the amount
of MI of spatial component temporal loadings with a synthetically created reference signal.
We also describe the appropriate randomization based statistical assessment scheme that
can be used for selection of components with statistically significant amount of MI. Using
simulated data with realistic trial to trial variations and SNR corresponding to the real
recordings we demonstrate the superior performance characteristics of the described MI
based measure as compared to a more conventionally used power driven gauge. We
also demonstrate the application of the MI Spectrum for the selection of task-related
independent components from real MEG data. We show that the MI spectrum allows to
identify task-related components reliably in a consistent fashion, yielding stable results
even from a small number of trials. We conclude that the proposed method fits naturally
the information driven nature of ICA and can be used for routine and automatic ranking
of independent components calculated from the functional neuroimaging data collected
within event-related paradigms.

Keywords: spatial components, ICA, SVD, components selection, mutual information, eloquent cortex mapping

1. INTRODUCTION
Spatial decomposition is one of the key techniques applied to
exploratory analysis of multichannel data in general, and to
spatial-temporal electro- and magnetoencephalographic (EMEG)
signals in particular. The most commonly used methods to obtain
both spatial components and the corresponding temporal load-
ings are independent component analysis (ICA) (Comon, 1994),
principal component analysis (PCA) (Golub and Van Loan, 1996)
and factor analysis (FA) (Child, 2006).

The most frequently used approach for analysis of stimulus-
locked averaged EMEG data is PCA, which can be performed
using the singular value decomposition (SVD) of the stimulus-
locked averaged data matrix (Lagerlund et al., 1997). This analysis
is followed by thresholding the singular values (SV) spectrum
to identify the subspace capturing the largest amount of data
variance for a given approximation rank (Vandewalle, 1988).
This technique is inherently power driven. Its application to the

identification of the repetitive task-related signal subspace from
the averaged ERP/F data relies on the assumption that the indi-
vidual evoked responses are sufficiently well phase-locked to the
stimulus. In that case, the stimulus-locked summation results
in an enhanced relative power of the phase-locked component
(Misulis, 1994).

SVD is the optimal method for signal subspace detection mea-
sured by subspace correlation for a given approximation rank
(Vandewalle, 1988). However, the actual value of signal subspace
rank, R, is, in general, unknown. Finding an estimate of R is not
a trivial task. It is often done by visual inspection of the SV spec-
trum . The method is based on identifying the target index, R, of
a singular component just preceding a sharp drop in power, fol-
lowed by a slow decaying plateau in the SV spectrum. However,
a large disparity of activation amplitudes, spatial proximity of the
neuronal sources and powerful noise sources may result in the
absence of a clear cut division between task-related and noise
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components. In addition, in realistic conditions, the recordings
are often contaminated by spatially colored brain activity and/or
spatially coherent artifacts. Under these circumstances, compo-
nent selection based on the SV spectrum may be misleading.
As a motivating example, consider the top panel of Figure 1
that shows the SV spectrum calculated for the averaged data
obtained from the simulated MEG timeseries containing the con-
tribution of two non-synchronous dipolar sources. Although the
subspace spanned by the first R̂ = 2 singular topographies almost
exactly matches the true subspace (subcorr ([a1 a2] , [u1 u2]) =
[1, 0.987]) the spectrum of SVs fails to provide evidence that the
second component contains task-related signal.

ICA is one of the most widely used approaches to blind source
separation, popular for exploratory analysis of multidimensional
data. In the analysis of EMEG data from evoked response exper-
iments, this decomposition may be used both to isolate task-
related components (Makeig et al., 1996; Vigario et al., 2000) and
to remove artifacts (Jung et al., 2000). It can also be used for esti-
mation of source timeseries when proper forward modeling is
unavailable and for the estimation of the signal subspace in cases
when the experimental paradigm can not guarantee sufficiently

FIGURE 1 | In some practical cases, the first singular topographies

remain reasonably good estimators of signal subspace but inspection

of the SV spectrum fails to reveal this as illustrated by a model

example here. While the subspace spanned by the first two singular
topographies and the actual simulated subspace practically coincide the SV
spectrum (top panel) fails to reveal the fact that the second singular
component also belongs to the signal subspace. On the contrary the MI
spectrum (bottom panel) computed using raw data projected onto the left
singular vectors demonstrates a very clearly cut separation of the
task-related and task unrelated subspaces. This figure also introduces the
measure of task-related subspace identifiability used in the paper. Since the
correct signal subspace rank value is R = 2, we use discriminating indicator
q = log

(
S(2)
S(3)

)
− log

(
S(3)
S(4)

)
that formalizes the strategy employed by the

human observers and estimates the amount of drop between the second
and the third components referenced to the ratio of the two largest
components of the noise range spectrum (with indices 3 and 4)
immediately following the two signal components (with indices 1 and 2).

accurate stimulus locking, e.g., in voluntary movement paradigm
(Ossadtchi et al., 2000; Delorme, 2010).

The application of ICA to routine analysis of EMEG datasets
is limited by the absence of standard approaches for ordering
the independent components (Hyvärinen et al., 2001). In the
most typical scenario a human observer visually identifies the
desired components by exploring their timecourses and topogra-
phies. Since the raw EMEG data are often very noisy, it can
be difficult to determine which components should be selected.
Additionally, such manual selection is often daunting, and selec-
tion based on power (Delorme, 2010) or stim-locked averaged
power (AP) (Hyvärinen et al., 2001) does not ensure that the
components are event-related for reasons essentially similar to
those just described for the SV spectrum. It should be also noted
that such power-driven ordering methods may be inappropri-
ate, since ICA as an information (rather than power) driven
technique. An alternative method, using the correlation met-
rics between each estimated component and the event trigger,
is critically dependent on signal shapes, and is therefore highly
unreliable. For completeness we will mention that for some meth-
ods of blind source separation, such as AMUSE (Tong et al.,
1991), components may have an intrinsic order but such an
ordering is not very useful in the context of analysis of EMEG
data from ERP studies. These problems hinder efficient uti-
lization of ICA for batch-mode processing of EMEG datasets,
and affect the objectivity of the results obtained with manual
analysis.

The independent components sorting problem has received
considerable attention in the fMRI data analysis literature. Gu
et al. (2001) and Esposito et al. (2002) have introduced meth-
ods for component ordering based on spatial characteristics. Lu
and Rajapakase (2003) suggested ranking based on component
timecourse kurtosis. Himberg et al. (2004) used clustering of a
succession of ICA realizations to select relevant components. Yang
et al. (2008) describes a method for components selection based
on the reproducibility principle. In the application of ICA to EEG
and MEG, a technique based on measuring the amount of spa-
tial component variance explained by the electromagnetic model
was proposed by Grosse-Wentrup and Buss (2008). However,
an accurate forward model is required to fully benefit from this
approach.

In the current paper, we present a novel mutual information
(MI) based approach for ICA components sorting. Moritz et al.
(2003) has described a somewhat related method for component
ranking, based on the spectral manifestation of stimulus peri-
odicity. However, the periodicity assumption is not always ful-
filled, especially in voluntary movement paradigms. In addition,
the spectral measure uses only first and second order statistical
moments, while our MI-based method implicitly employs higher
order moments for estimating the amount of task-related signal
present in a component. We report the performance of our new
MI based approach and compare it against more conventionally
used AP driven technique. Additionally, we demonstrate an appli-
cation of the MI Spectrum to sorting InfoMax ICA components
obtained from real MEG recordings obtained from an exper-
iment designed to non-invasively map primary motor cortex
(M1 zone).
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2. MATERIALS AND METHODS
2.1. EMEG SIGNAL MODEL AND PRELIMINARIES
EMEG data recorded by a K− sensor array during the i-th rep-
etition of a neuromotor or cognitive task can be written as the
following linear combination

xi(t) = [a1, . . . , aR]

⎡

⎢
⎣

f i
1(t)
...

f i
R(t)

⎤

⎥
⎦+ [b1, . . . , bL

]
⎡

⎢
⎣

pi
1(t)
...

pi
L(t)

⎤

⎥
⎦+ n(t) (1)

For the i− th epoch, a multichannel signal at each instance of
time, xi(t) is a noisy additive mixture of source topographies
[a1, . . . , aR] weighted by the corresponding stimulus-locked acti-
vation timeseries

[
f i
1(t), . . . , f i

R(t)
]
, along with a task-unrelated

contribution from sources with topographies
[
b1, . . . , bL

]
acti-

vated with task-unrelated timeseries
[
pi

1(t), . . . , pi
L(t)

]
, and a

random noise vector n (t). Topographies of task related sources
form an R-dimensional signal subspace and topographies of task
unrelated sources form an L-dimensional coherent interference
subspace. ERP experiments are usually accompanied by a binary
stimulus signal s(t) marking the task onset. In neuro-motor
experiments this binary signal may be derived from the myo-
graphic activity record or from the accelerometer signal, using
a thresholding procedure. Usually the goal of data analysis is to
identify the task related signals and extract the task-related signal
subspace to be used subsequently for neuronal source localiza-
tion. For completeness, we may include induced sources whose
activation power is locked to the task-onset moment with ran-
dom phase. However, since we are interested in analysis of ERP’s
(which are phase-locked by definition), we do not include the
induced component in (1).

Under the ideal and largely unrealistic conditions when acti-
vations f i

r (t) are exactly reproducible across trials, time locked
to the stimulus, and spatially coherent task-unrelated compo-
nents are absent, the identification of task related components
can be done optimally using the SVD of the stimulus locked aver-
age data matrix X̄ = [x̄(0), . . . , x̄(T)], where x̄(t) =∑M

i= 1 xi(t),
M is the task repetitions count, and T is the interval of interest
duration (Vandewalle, 1988). The SVD yields the averaged data
matrix decomposition X̄ = USVT . Columns of the orthonormal
matrix U are the singular topographies, S is a diagonal matrix of
SVs, and columns of the right singular matrix V are the singular
activations. Task related components are chosen to be the first R̂
components ranked by power. R̂ is determined typically by visual
analysis of the SV spectrum. Optionally, the SV spectrum of ran-
dom matrix may be used as a reference in this task (Golub and
Van Loan, 1996).

ICA is usually applied to the raw (unaveraged) spatial-
temporal matrix X(t) and yields a spatial unmixing matrix B
and a collection of independent components zi(t) obtained as
z(t) = BX(t), z(t) = [z1(t), . . . , zK(t)]T . We assume that some
of these components contain task-related signal and the others
do not. In correspondence to B we can put matrix F = B−1 so
that X(t) = Fz(t). Columns of F are called independent topogra-
phies and describe the profiles formed by the corresponding
independent “sources” on the sensors.

2.2. MUTUAL INFORMATION SPECTRUM
We propose to assess the degree to which the i-th component
zi (t) is related to the task using the normalized MI spectrum,
computed as Ii = I(zi(t), e(t)). e(t) is the expanded stimulus line
signal, computed by convolution of the original binary stimulus
signal s(t) with expansion kernel k(t) as e(t) = s(t) ∗ k(t) to pro-
duce monotonic variations over the interval of interest around
each event onset moment. In this work we used a centered (i.e.,
symmetric around the x-axis) ramp function as the expansion
kernel k(t).

We used a simple scaled histogram method to compute the MI
as the difference between the entropy of an independent compo-
nent zi(t) and its entropy conditioned on the expanded stimulus
line signal e(t), i.e.,

I0 (zi(t), e(t)) = H (zi(t))−H (zi(t)|e(t)) (2)

where H(u) denotes the entropy of u.
As suggested by Strehl (2002), we use the geometric mean of

the two marginal entropy values to obtain the normalized MI
quantities as

Ii = I (zi(t), e(t)) = I0 (zi(t), e(t))√
H (zi(t)) H (e(t))

(3)

We then define the MI spectrum as the rank ordered elements
Ii : {Ii ≥ Ii+ 1}.

As with the more conventional SV spectrum, visual analysis of
the MI spectrum can be used to estimate the signal subspace rank.
Originally suggested by us in Ossadtchi et al. (2000), this mea-
sure of MI with the expanded stimulus signal is a power-invariant
way to assess the degree of task-relatedness of raw (unaveraged)
timeseries.

We have introduced the notion of MI spectrum in the con-
text of ICA component selection. This method can also be used
for ranking singular components obtained via SVD of the stimu-
lus locked average data matrix. To compute the MI spectrum for
such singular components, first project the raw unaveraged data
matrix X(t) onto the left singular column vectors of U as z(t) =
UTX(t) and then apply the MI spectrum calculation procedure as
described above.

In neuro-motor tasks, the EMG signal, m(t), can be recorded
and used instead of the expanded stimulus line. Then the MI spec-
trum is calculated as Ii = I(zi(t), m(t)). Since the EMG signal
usually occupies a broader spectrum than that of EEG or MEG
signals, it is beneficial to perform a zero-phase-shift band-pass
filter to remove excessively low and high frequency components
prior to computing the MI.

2.3. STATISTICAL TESTING
In automated applications, and for a more informed decisions
during the visual analysis of the MI spectrum, we suggest the fol-
lowing randomization testing scheme to estimate the p-values to
reject the null-hypothesis that a component is not task related.

The suggested scheme is based on the observation that for
signal components that contain a statistically significant evoked
response, the value of the MI is directly related to the consistent
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correspondence (not similarity!) between the shape of this com-
ponent and the expanded stimulus signal. Therefore, when the
actual task onset moments are randomized, this correspondence
will be destroyed. The MI values for the task-related components
will experience a significant drop, while those that pertain to the
task-unrelated components will remain in the original range.

We suggest the following simple steps to generate surrogate
data and assess statistical significance of the observed MI val-
ues. In what follows M is number of independent components,
J-number of randomization iterations, Nt is the number of sam-
ples in the stimulus signal s(t) and Nr =∑Nt

t= 1 s(t) is the number
of task repetitions.

1. for j = 1:J

1. Create a new, surrogate stimulus signal s∗(t) by randomiz-
ing task onset moments:
s∗(t) = 0, ∀t ∈ [1, Nt];
for k = 1 : Nr, t ← U (0, Nt) , s∗(t) = 1, endk

2. Calculate surrogate expanded stimulus signal:
e∗(t) = s∗(t) ∗ k(t)

3. Calculate the amount of normalized MI of all the compo-
nents with this surrogate expanded stimulus:
for i = 1 : M, I∗ij = I (e∗(t), zi(t)) , endi

2. endj

The i-th row of I∗ij measures the MI for the i-th component and
the j-th randomization of the stimulus onset signal. In order to
calculate the p-values of the null-hypothesis that the i-th compo-
nent does not contain task-related signal, we compute the fraction
of surrogate values I∗ij , j ∈ [1, J] that exceed the actual observed
value Ii. If we define a logical function L(a, b) = 1 if (a > b)
and L(a, b) = 0 otherwise, then p-values for the null-hypothesis
that the i-th component contains no task related signal can be

expressed as pi = 1
M

∑j < J
j= 1 L(I∗ij , Ii).

2.4. MULTIPLE COMPARISON CORRECTION
Since we are testing several hypotheses, we need to correct the
calculated p-values for multiple comparisons. Simple Bonferroni
correction is appropriate, since the components are independent
or at least orthogonal (SVD case) . We therefore conclude that a
component can be considered as task-related at the significance
level of α if pi < α

Nc
, where Nc is the total number of components

tested. An example of applying the suggested statistical testing
scheme is illustrated in Figure 2, where the proposed procedure
allows for the correct identification of task related components in
a simulated scenario with R = 2 task-related sources with pow-
erful, spatially coherent, interference. For this and subsequent
simulations, we used the procedure described in the following
section.

2.5. SIMULATION PROCEDURE
In order to illustrate the performance of the MI spectrum and
compare it with a more standard power driven approach, we
performed realistic simulations with the following procedure.
To simulate the observed sensor signals, we used Equation (1).
We obtained a realistic source configuration from analysis of a

FIGURE 2 | Raw components’ log(p)-values computed using the

suggested randomization scheme. The horizontal line corresponds to
Bonferroni corrected threshold determined for α = 0.05. The data were
simulated with two dipolar sources and powerful spatially coherent
interference. SVD was applied to the stimulus-locked data matrix that
yielded first singular topographies. Subspace correlation of the first two
singular topographies with the true signal subspace was [1,0.987]. We can
see that the suggested randomization scheme is able to correctly detect
the first two components that span the signal subspace.

somatosensory MEG dataset recorded with a 67 channel CTF
MEG system. We applied the RAP-MUSIC localization algorithm
to [0–200 ms] range of the stimulus-locked average data and
obtained R = 2 dipoles with topographies a1 and a2 and their
corresponding activations f1(t) and f2(t) [see Equation (1)]. We
used these dipoles as sources of task related activity in our simu-
lations. To simulate task related activation timeseries we adapted
a kernel-based model of evoked potentials described by Lange
et al. (1997). This model includes random trial-to-trial variation
in the latency and amplitudes of signal components. It is based
on the decomposition of activation timeseries into a superposi-
tion of Gaussian kernels with varying amplitudes and delays. The
model is justified by the fact that, given relatively poor spatial res-
olution of MEG, the dipole timeseries may be viewed as the sum
of activations of several neuronal assemblies, each with different
intensity and activation latency values. A graphical example of
such a decomposition is shown in Figure 3. The simulated acti-
vation of the r-th dipole during the i− th epoch can be expressed
formally as f i

r (t) =∑K
k= 1 βr

kvr
k(t − θr

k) with K kernels defined as

vr
k (t) = fr(t)

e
− (t−τr

k)
2

2σr2
k

∑K
l= 1 e

− (t−τr
l )

2

2σr2
l

, r ∈ [1, R] , k ∈ [1, K] (4)

The model incorporates random variables βk, θk, k = {1, . . . , K}
representing amplitude and latency variations. The latency jitter
values were independent for all components and were generated
using a Gaussian random variable with mean of 50 ms and stan-
dard deviation 10 ms.The k-th kernel amplitude variation βk was
modeled as normally distributed random variable with mean of
unity and standard deviation equal to 0.2.

We modeled brain noise with L = 1000 spatially coherent,
task-unrelated cerebral sources whose locations and time series
varied with each realization. The corresponding topographies bl
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were calculated using locally fitted concentric spheres MEG for-
ward model as implemented in EMSE Software Suite, Source
Signal Imaging Inc., San Diego, CA, USA. The activation time
series were narrow-band signals obtained via zero-phase filtering
of realizations of Gaussian (pseudo)random process by the fifth
order band-pass IIR filters in the bands corresponding to theta
(4–7 Hz), alpha (8–12 Hz), beta (15–30 Hz) and gamma (30–50
and 50–70 Hz) activity. Their relative contributions were scaled
in accordance with 1

f characteristic of the realistic EMEG spec-

trum. An additional narrow-band alpha-component (9–11 Hz) of
occipital origin ([−0.05, 0.01, 0.06] in EMSE coordinate system)
was also included. We scaled the brain noise components to match
typical signal-to-noise ratio of real-life recordings.

3. RESULTS
3.1. DISCRIMINATIVE POWER OF THE MI SPECTRUM
Consider the situation when a task-related signal is generated by
a pair of dipolar sources. When a pair of sources has highly cor-
related topographies or, in case of a large imbalance in source
magnitude, the second singular component may be obscured and
may not produce a pronounced SV distinguishable from the base-
line. In this case, analysis of the SV spectrum will fail to provide
the correct estimate of the signal subspace dimension. An example
is illustrated in Figure 1, where the SV spectrum of the averaged
data matrix obtained from a simulated dataset with R = 2 task-
related sources does not have a significant drop between R = 2
and 3. On the contrary, the MI spectrum exhibits a very clear sep-
aration between task-related and task-unrelated parts, as it can be
seen in the bottom panel of Figure 1.

In order to perform a more systematic evaluation of using MI
to measure the extent to which a component is task-related, we
performed a set of simulations with two dipolar sources in the
presence of realistic brain noise. We varied the ratio of activation
amplitudes of the two dipoles, performed SVD of the averaged

FIGURE 3 | To simulate trial-to-trial variation of the responses we used

overlapping Gaussian kernel based model. At each trial we varied relative
positions of the kernel centers, kernel amplitudes, and global response
latency with respect to the binary stimulus signal. A typical response and
its representation with a set of overlapping modulated kernels is shown.

data matrix and calculated the MI spectrum for the projections
of continuous data onto the left singular vectors. We then com-
pared the discriminating power of the MI and the SV spectra. To
do so we introduced the discriminating indicator q. Since the cor-

rect rank value is R = 2 we used q = log
(

S(2)
S(3)

)
− log

(
S(3)
S(4)

)
, see

Figure 1. q is sensitive to the drop between the second and the
third components, referenced to the ratio of the two largest noise
range spectrum values (with indices 3 and 4) immediately follow-
ing the two signal components (with indices 1 and 2). Results are
shown in Figure 4, illustrating the discriminating indicator q as a
function of source amplitudes ratio. We performed this numer-
ical experiment for a varying number of trials in a simulated
dataset. We found that the proposed MI spectrum outperforms
the SV spectrum for all trial counts, and also provides for a clearer
seperation between the task-related and task-unrelated compo-
nents. Also note that in most cases the correlation of the subspace
spanned by the first two singular topographies and the true sig-
nal subspace spanned by a1 and a2 was sufficiently high to be
considered as a correct estimate of the simulated signal subspace.

3.2. RECEIVER OPERATING CHARACTERISTICS OF MI
In this section we describe our experiments on exploring receiver
operating characteristics (ROC) of the MI metrics. We consider
the task of discriminating between the components that contain
task-related signal and those that do not. Spatial components zi(t)
obtained from signals that can be represented using Equation
(1) can be viewed as the superposition of signal and noise,
expressed as

z(t) = af (t)+ σpp(t)+ σnn(t), (5)

FIGURE 4 | Discriminating power indicator q as a function of source

amplitudes ratio for different number of trials calculated for MI and SV

spectra. Each curve corresponds to a fixed datapoints count. We can see
that the proposed MI based measure outperforms power based technique
and produces a clearer cut between the task-related and task-unrelated
components.
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where f (t) is task-related source activity of amplitude a. p(t) and
n(t) are the contributions from spatially coherent and spatially
white noise sources, with standard deviation values σp and σn

respectively.
We simulated repetitions of the task-related signal, including

the jitter and variations characteristic of realistic brain signals. For
each of Nmc = 1000 Monte-Carlo realizations, we simulated N =
100 signals according to Equation (5). N1 = 10 out of 100 signals
had a = 1 and the remaining N0 = 90 signals had a = 0, i.e., no
task-related signal present. We simulated brain noise as described
in the Simulations Procedure section. The goal was to detect the
components that contain task related signals. We compared the
MI values against the more traditionally used stimulus-locked
averaged signal power (AP), calculated as

Pi =
∑

t∈W

z̄2
i (t), (6)

where z̄i(t) is the stimulus-lock averaged i-th signal. The sum-
mation was performed over a 200 ms window centered ont the
stimulus. We used the same windows to calculate both MI and
AP measures.

To calculate the ROC curves, we applied thresholding to the
MI and AP spectra separately, and marked as detected only those
components whose corresponding MI or AP values exceeded the
threshold. The threshold was originally chosen to be 0.05 of the
largest value in the spectrum (AP or MI). In order to obtain
the ROC curve we calculated the sensitivity psens(θ) = NTP

N1
and

specificity pspec(θ) = 1− NFP
N0

for a succession of evenly spaced
threshold values θ = 0.05 k maxi(Ii) or θ = 0.05 k maxi(Pi) for
k = 1, . . . , 19.

The result is shown in Figures 5A,B. For all epoch counts,
the MI based measure significantly outperforms the power-based
characteristic, and also provides better sensitivity for any selected
specificity. We have observed similar behavior when dealing with
real MEG data, as described below in the “MI versus AP for small
epoch counts in real data” section. The improved ROC may be
explained by the fact that the MI based measure implicitly takes
into account higher order statistical information as compared to
the power based approach, where only the first and second order
statistical moments are used.

3.3. APPLICATION TO M1 MAPPING
Reliable mapping of the primary motor cortex (M1) based on
functional neuroimaging provides an important complement to
the use of structural data alone. However, since various zones
forming the somatosensor complex appear to be in a coupled
interaction even in the motor planning stage, the localization of
M1 zone from the functional EEG and MEG data via standard
approaches is problematic and often does not yield reliable results
(Sanders et al., 1996; Gerloff et al., 1998).

Inspired by the work of Riehle (2005) we explored the possi-
bility of using the information from activation timecourse mor-
phology and looked for spatial properties of activations with
sharp non-linear increase just preceding the movement onset.
To do so we studied MEG-recorded brain responses during a
voluntary index finger movement task performed by 18 healthy
right-handed volunteers.

For computational feasibility we used a subset of 50 sensors
located over the left sensory-motor region. These were selected
based on the grand-average responses, as shown in Figure 6.
Recordings from all experimental sessions in all subjects were

FIGURE 5 | (A) The family of ROC curves for Averaged Response Power and
Mutual Information based detection for various number of epochs on the
same plot. MI based detection clearly and significantly outperforms the
conventional method. Even with 50 trials the MI based criterion (“Nrm. MI,
50 trials” curve) allows to achieve 70 percent of sensitivity with ideal
specificity. We can see that for all counts of epochs the MI based measure

significantly outperforms the power based characteristic. This can be
explained by the fact that in calculation of MI we implicitly take into account
higher order information as compared to the power based approach where
only the first two statistical moments are used. (B) Area under ROC curve
performance characteristic for Averaged Response Power and Mutual
Information.
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FIGURE 6 | We selected for ICA analysis 50 electrodes over the left

sensory-motor cortex corresponding to the cortical representation of

the right hand. Evoked response fields are shown. The selected sensors
are framed.

concatenated into a single sequence and decomposed using the
InfoMax-ICA approach. We obtained 50 independent compo-
nents and ranked them according to the amount of MI with the
expanded stimulus signal e(t) = s(t) ∗ k(t) in the 200 ms window
centered around the movement onset moment marked by s(t).
The choice of the time window is motivated by our interest in the
early components reflecting the activity M1 zone.

We then focused on the first two components with the largest
mutual information, as shown in Figure 7. The temporal dynam-
ics of the first two components showed a slow activation increase
starting as early as 400 ms before the actual movement onset.
However, as illustrated in Figures 7A,B, the two components dif-
fered in their behavior during the interval directly preceding the
movement onset. The component with the larger value of MI
exhibited a sharp quasi-exponential growth starting at around
50–70 ms before the movement onset. The onset dynamics of
the second component was smooth, corresponding to a quasi-
linear growth. After movement onset both components show a
pronounced negative deflection reaching a minimum at around
100 ms after the movement onset.

We used MNE distributed source imaging to localize the neu-
ronal generators underlying the topographies of the first two
components with the highest values of MI. In both cases we
observed activations in the area surrounding the central fissure
of the hemisphere contralateral to movement, shown in Figure 8.
After thresholding at p < 0.001 we observed that cortical areas
subserving these two components do not overlap, as shown in
Figure 8. Cortical sources of the first component localized pri-
marily on the anterior slope of the central sulcus superior to the
omega zone, shown in Figure 8C. This source most likely lies in
M1, based on the anatomy. The cortical sources for the second
component were located in the post-central sulcus and in the
depth of the central sulcus inferior to the omega shaped zone,
shown in Figure 8D.

FIGURE 7 | Relative contribution of independent components of the

evoked magnetic activity accompanying movement onset. All derived
components (abscissa) are ranked according to the amount of mutual
information with the expanded stimulus signal. The MI values were
normalized to the overall amount of information (ordinate). (A,B) The
stimulus-locked average time courses of the two components (4 and 1)
with the greatest share of mutual information with expanded stimulus
signal. Abscissa: time (ms) in relation to the movement onset. Ordinate:
component amplitude (arbitrary units). Low-pass filter with 30 Hz cutoff
frequency was applied. Movement onset is shown by the vertical dotted
line. Horizontal dotted line represents the background signal level. Dark-gray
area shows time interval of exponential growth preceding movement onset
of component 4.

3.4. MI VERSUS AP FOR SMALL EPOCH COUNTS IN REAL DATA
We also compared the performance of the MI spectrum with
the more conventional AP metric (6) when the number of
epochs is limited. We took every 30th event and analyzed the
data according to the scheme described above. Independently
sorted MI and AP spectra for the first 15 components are
shown in Figures 9A,B respectively. The MI spectrum clearly
shows the presence of task-related signal in the first two
components with original indices 4 and 1. The AP spec-
trum shows five seemingly task-related components (indices 8,
3, 4, 15, 1) standing out from the baseline. Components 1
and 4 are identified as task-related by the both measures of
task-relatedness.

In order to check which of the two methods provided the
correct answer, we performed stimulus-locked averaging of the
first five components obtained by sorting in decreasing order the
MI and AP spectra, shown in Figure 9. The results are shown
in Figure 10. The first two components (4 and 1) identified by
the MI spectrum (see Figure 9A) show a clear task related deflec-
tion. The remaining components do not have significant amount
of stimulus-locked activity and therefore are most likely unre-
lated to the task. Three out of five components identified by
the AP spectrum (first two and the fourth) do not exhibit any
deflection resulting from coherent summation. Note also that
components 1 and 4 are among the five components selected
by the AP spectrum (the third and the fifth). Visual analysis of
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FIGURE 8 | Source localization of the two independent components

with the largest amount of MI, (A) component 4, (B) component 2.

Inflated surface of the left hemisphere obtained by averaging of the
co-registered individual cortices of 18 subjects is shown. Light-gray areas
represent gyri and dark-gray areas represent sulci. The central sulcus is
indicated by arrows. Localization of the sources of both components was
done via MNE approach followed by Bonferroni correction. (C,D) Illustrated
patches correspond to current distribution thresholded at significance level
of p < 0.001. (C) We can see that in agreement with our hypothesis the
topography of the independent component with the largest amount of MI
predominantly localizes anterior to the central sulcus and may represent the
M1 zone. (D) The second component’s sources localize to the post-central
fissure and in the depth of the central fissure inferior to the omega shaped
zone.

FIGURE 9 | Analysis of a subset of trials. Normalized by the first element
value MI (A) and AP (B) spectra calculated using a subset of events for the
first 15 independent components. On the top of each stem actual
(unsorted) component number. As prescribed by the MI spectrum we
should select components 4 and 1 as task related. AP spectrum suggests
components 8, 3, 4, 15, 1 for this role. In order to check which of the two
measures provide the right answer we inspected stimulus-locked averages
of the components suggested by the two measures, see Figure 10.

the averages obtained for the other three components suggested
by the AP spectrum does not reveal the presence of signifi-
cant amount of stimulus-locked activity in three out of five
components.

Based on these observations, we conclude that both MI and
AP spectra demonstrate identical sensitivity, as both were able to
detect two clearly task-related components (1 and 4) that were
also found using the full dataset and characterized by inverse
modeling (see Figure 8). However, the MI spectrum exhibits opti-
mal specificity, identifying two components (Figure 9A). Both
of these components appear to have a task-related deflection in
their stimulus-locked averaged profiles (Figure 10A). The speci-
ficity of AP based measure r is poor by comparison with the
MI measure, since AP it identified 5 components (Figure 9B),
including 3 false positives and 2 correct hits (Figure 10B). The
observed behavior is consistent with our simulation studies, illus-
trated in Figures 5A,B, where the MI spectrum demonstrated
significantly higher ROC characteristics, and provided higher
specificity for any fixed sensitivity value compared to the AP
spectrum.

4. DISCUSSION
We describe a novel information-theoretic approach for spa-
tial components ranking. Our method is based on the MI
Spectrum which serves as a power-invariant measure of repeti-
tive task-related signal in the temporal loadings of spatial com-
ponents. Using realistic simulations we demonstrated that the
task-relatedness measure, based on estimating the MI between
a component and the expanded binary stimulus signal, allows
for significantly higher detector characteristics when compared
with conventional alternatives. It also provides a means for
more clear-cut separation of task-related and task-unrelated
components when compared with the standard power driven
approach that is used in SVD, and sometimes used for rank-
ing ICA components as well. The MI measure can be used
for sorting the components obtained from any sort of spatial
decomposition, as long as it is possible to calculate the quasi-
continuous timeseries underlying the components of interest.
The demonstrated advantage in performance over the power-
driven measure makes the MI spectrum method a candidate
for the routine use in ranking both SVD and ICA compo-
nents in the analysis of ERP data. Since the MI method is
insensitive to powerful non-task-related noise sources, it should
also facilitate automatic unsupervised analysis of ERP data
using ICA.

The method can be easily extended to extract not only
the evoked (phase-locked to the stimulus) activity but also
band-specific task induced activity that is characterized by ran-
dom phase but stimulus-locked power fluctuations. Such an
extension would require that the band-pass filtered compo-
nents envelope should be calculated before MI spectrum estima-
tion.

We have also investigated the MI method performance applied
to an MEG dataset in a voluntary finger movement task. Such
paradigms present special challenges, since they include large
amount of random latency jitter when compared with an external
stimulus driven paradigms. This increased jitter comes from the
inevitable errors in the estimates of motion onset obtained from
the accelerometer signal. Nevertheless, the MI measure supported
a clear cut separation of four task related components (Figure 7).
The component with the largest MI (index 4) demonstrated a
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FIGURE 10 | In order to check which of the two methods provide

the right answer we performed stimulus-locked averaging of the

first five components in the order prescribed by sorting of MI and

AP spectra (Figure 9). Left panel corresponds to MI prescribed
components and the right panel - to AP. As it can be seen the first
two components (4 and 1) emphasized by the MI spectrum (Figure 9A)

show a clear task related deflection, the subsequent components do
not have significant amount of stimulus-locked activity and therefore are
most likely unrelated to the task as correctly indicated by the
characteristic drop in the MI spectrum (Figure 9A). Three out of five (8,
3, 15) component averages prescribed by the AP spectrum do not
exhibit the expected deflection.

non-linear increase of activation just prior to the motion onset.
In agreement with the previous experiments on primates (Riehle,
2005), this component localized primarily to the anterior slope
of the central sulcus superior to the omega zone (Figure 8C), and
most likely originates in M1. Thus, we demonstrated the potential
to localize M1 non-invasively on a group level, using a functional
probe.

In order to compare the performance of the MI and power
based measures on the experimental dataset, we used a reduced
number of trials. As shown by simulations (Figures 4, 5), this
reduction should increase the contrast between the performance
characteristics of the two methods. It should also mimic more
realistic scenarios, when only a single subject dataset is used for
ICA analysis. Under these conditions, we demonstrated that the
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proposed MI based measure for a fixed sensitivity value yields
significantly higher specificity than the more conventional power
based measure. This result is in agreement with our simulation
studies.

In the current work we used a simple histogram-based
approach for calculation of MI, omitting any bias correction. For
realizations of independent random processes Treves and Panzeri
(1995) have shown that MI estimate bias is quadratically pro-
portional to the number of histogram bins used to approximate
the pdf of continuous random processes and is inversely propor-
tional to the number of datapoints. Since we used a large number
of datapoints (N ≈ 6.5× 105) in our experimental data analy-
sis compared to the K = 10 bins used for approximation of the
probability density functions, we do not expect a bias correc-
tion procedure to appreciably alter the observed MI . However,
it has also been shown (Chrisman, 2013) that the bias decreases
as the true MI between the timeseries pairs grow. This means
that bias may result in MI values of task-unrelated components
being overestimated, yielding a decreased contrast between the
task-related and task-unrelated components in the MI spectrum.
In our simulation studies we used a relatively small number of
datapoints compared to a standard EEG/MEG data recording per
single patient. Therefore, we expect that the observed perfor-
mance (Figures 4, 5) may be further improved with a proper bias
correction procedure. The use of a biased estimator in the sta-
tistical testing approach we implemented results in less sensitive
tests, since the null-hypothesis distribution estimate appears to
be “shifted to the right.” Selection of an appropriate bias correc-
tion method, however, requires a significant amount of additional
numerical experiments and goes beyond the scope of this paper.
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Every act of information processing can in principle be decomposed into the component
operations of information storage, transfer, and modification. Yet, while this is easily done
for today’s digital computers, the application of these concepts to neural information
processing was hampered by the lack of proper mathematical definitions of these
operations on information. Recently, definitions were given for the dynamics of these
information processing operations on a local scale in space and time in a distributed
system, and the specific concept of local active information storage was successfully
applied to the analysis and optimization of artificial neural systems. However, no attempt
to measure the space-time dynamics of local active information storage in neural data has
been made to date. Here we measure local active information storage on a local scale in
time and space in voltage sensitive dye imaging data from area 18 of the cat. We show
that storage reflects neural properties such as stimulus preferences and surprise upon
unexpected stimulus change, and in area 18 reflects the abstract concept of an ongoing
stimulus despite the locally random nature of this stimulus. We suggest that LAIS will be
a useful quantity to test theories of cortical function, such as predictive coding.

Keywords: visual system, neural dynamics, predictive coding, local information dynamics, voltage sensitive dye

imaging, distributed computation, complex systems, information storage

1. INTRODUCTION
It is commonplace to state that brains exist to “process informa-
tion.” Curiously enough, however, it is much more difficult to
exactly quantify this putative processing of information. In con-
trast, we have no difficulties to quantify information processing
in a digital computer, e.g., in terms of the information stored on
its hard disk, or the amount of information transferred per sec-
ond from its hard disk to its random access memory, and then
on to the CPU. Why then is it so difficult to perform a similar
quantification for biological, and especially neural information
processing?

One answer to this question is the conceptual difference
between a digital computer and a neural system: in a digital
computer all components are laid out such that they only per-
form specific operations on information: a hard disk should
store information, and not modify it, while the CPU should
quickly modify the incoming information and then immedi-
ately forget about it, and system buses exist solely to transfer
information. In contrast, in neural systems it is safe to assume
that each element of the system (each neuron) simultaneously
stores, transfers and modifies information in variable amounts,
and the component processes are hard to separate quantitatively.
Thus, while in digital computers the distinction between infor-
mation storage, transfer and modification comes practically for
free, in neural systems separating the components of distributed
information processing requires thorough mathematical defini-
tions of information storage, transfer and modification. Such

definitions, let alone a conceptual understanding of what the
terms meant in distributed information processing, were unavail-
able until very recently (Langton, 1990; Mitchell, 1998; Lizier,
2013).

These necessary mathematical definitions were recently
derived building on Turing’s old idea that every act of information
processing can be decomposed into the component processes of
information storage, transfer and modification (Turing, 1936)—
very much in line with our everyday view of the subject. Later,
Langton and others expanded Turing’s concepts to describe the
emergence of the capacity to perform arbitrary information pro-
cessing algorithms, or “universal computation,” in complex sys-
tems, such as cellular automata (Langton, 1990; Mitchell et al.,
1993), or neural systems. The definitions of information transfer
and storage were then given by Schreiber (2000), Crutchfield and
Feldman (2003), and Lizier et al. (2012b). However, the defini-
tion of information modification is still a matter of debate (Lizier
et al., 2013).

Of these three component processes above—information
transfer, storage, and modification—information storage in par-
ticular has been used with great success to analyze cerebro-
vascular dynamics (Faes et al., 2013), information processing in
swarms (Wang et al., 2012), and most importantly, to evolve
(Prokopenko et al., 2006), and optimize (Dasgupta et al., 2013)
artificial information processing systems. This suggests that the
analysis of information storage could also be very useful for the
analysis of neural systems.
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Yet, while neuroscientists have given much attention to con-
sidering how information is stored structurally in the brain, e.g.,
via synaptic plasticity, the same attention has not been given to
information storage in neural dynamics, and its quantification. As
an exception Zipser et al. (1993) clearly contrasted two different
ways of storing information: passive storage, where information
is stored “in modified values of physiological parameters such as
synaptic strength,” and active storage where “information is pre-
served by maintaining neural activity throughout the time it must
be remembered.” In the same paper, the authors go on to point
out that there is evidence for the use of both storage strategies in
higher animals, and link the relatively short time scale for active
storage (at maximum in the tens of seconds) with short-term or
working memory and, therefore, refer to it as “active information
storage.”

Despite the importance of information storage for neural
information processing, information theoretic measures of active
information storage have not yet been used to quantify infor-
mation processing in neural systems, and in particular not to
measure spatiotemporal patterns of information storage dynam-
ics. Therefore, it is the aim of this article to introduce measures of
information storage as analysis tools for the investigation of neu-
ral systems, and to demonstrate how cortical information storage
in visual cortex unfolds in space and time. We will also demon-
strate how neural activity may be misinformative about its own
future and thereby generates “surprise.”

To this end, we first give a rigorous mathematical defini-
tion of information storage in dynamic activity in the form of
local active information storage (LAIS). We then show how to
apply this measure to voltage sensitive dye imaging data from
cat visual cortex. In these data, we found sustained increases
in dynamic information storage during visual stimulation, orga-
nized in clear spatiotemporal patterns of storage across the cortex,
including stimulus-specific spatial patterns, and negative stor-
age, or surprise, upon a change of the stimulus. Finally, we
discuss the implications of the LAIS measure for neurophysio-
logical theories of predictive coding [see Bastos et al. (2012), and
references therein], that have been suggested to explain general
operating principles of the cortex and other hierarchical neural
systems.

2. MATERIALS AND METHODS
The use of the stored information for information processing
inevitably requires its re-expression in neural activity and its
interaction with ongoing neural activity and incoming infor-
mation. Hence, information storage actively in use for informa-
tion processing will inevitably be reflected in the dynamics of
neural activity, and is therefore accessible in recordings of neu-
ral activity alone. To quantify this stored information that is
present in neural time series we will now introduce a measure of
information storage called local active information storage (Lizier
et al., 2012b). In brief, this measure quantifies the amount of
information in a sample from a neural time series that is pre-
dictable from its past—and thereby has been stored in this past.
This is done by simply computing the local mutual informa-
tion between the past of a neural signal and its next sample at
each point in time, and for each channel of a recording. As the

following material is necessarily formal, the reader may consider
skipping ahead to section 2.2.3 at first reading to gain an intu-
itive understanding of mechanisms that serve active information
storage.

2.1. NOTATION AND INFORMATION THEORETIC PRELIMINARIES
To avoid confusion, we first have to state how we formalize obser-
vations from neural systems mathematically. We define that a
neural (sub-)system of interest (e.g., a neuron, or brain area)
X produces an observed time series {x1, . . . , xt, . . . , xN}, sam-
pled at time intervals δ. For simplicity we choose our temporal
units such that δ = 1, and hence index our measurements by
t ∈ {1...N} ⊆ N, i.e., we index in terms of samples. The full
time series is understood as a realization of a random process X.
This random processes is nothing but a collection of random
variables Xt , sorted by an integer index (t in our case). Each ran-
dom variable Xt , at a specific time t, is described by the set of
all its J possible outcomes AXt = {a1, . . . , aj, . . . , aJ}, and their
associated probabilities pt(xt = aj). The probabilities of a spe-
cific outcome pt(xt = a) may change with t, i.e., when going
from one random variable to the next. In this case, we will indi-
cate the specific random variable Xt the probability distribution
belongs to—hence the subscript in pt(·). For practical estima-
tion of pt(·) then, multiple time-series realizations or trials would
be required. For stationary processes, where pt(xt = a) does not
change with t, we simply write p(xt), and practical estimation may
be done from a single time-series realization. In sum, in this nota-
tion the individual random variables Xt produce realizations xt ,
and the time-point index of a random variable Xt is necessary
when the random process is non-stationary. When using more
than one system, the notation is generalized to multiple systems
X ,Y,Z, . . . .

As we will see below, active information storage is nothing
but a specific mutual information between collections of random
variables in the process in question. We therefore start by giving
the definition of mutual information (MI) I(X;Y) as the amount
of information held in common by two random variables U , V
on average (Cover and Thomas, 1991):

I(U;V) =
∑

u∈AU , v∈AV

p(u, v) log
p(u, v)

p(u)p(v)
, (1)

=
∑

u∈AU , v∈AV

p(u, v) log
p(v | u)

p(v)
, (2)

where the log can be taken to an arbitrary base, and choos-
ing base 2 yields the mutual information in bits. Note that the
mutual information I(U;V) is symmetric in U and V . As shown
more explicitly in Equation (2), the MI I(U;V) measures the
amount of information provided (or the amount that uncertainty
is reduced) by an observation of a specific outcome u of the
variable U about the occurrence of another specific outcome v
of V—on average over all possible values of u and v. As origi-

nally pointed out by Fano (1961), the summands log p(v|u)

p(v) have

a proper interpretation even without the weighted averaging—as
the information that observation of a specific u provides about
the occurrence of a specific v. The pointwise or local mutual
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information is therefore defined as:

i(u; v) = log
p(v | u)

p(v)
. (3)

It is important to note the distinction of the local mutual infor-
mation measure i(x; y) considered here from partial localiza-
tion expressions, i.e., the partial mutual information or specific
information I(u;V) which are better known in neuroscience
(DeWeese and Meister, 1999; Butts, 2003; Butts and Goldman,
2006). Partial MI expressions consider information contained in
specific values u of one variable U about the other (unknown)
variable V . Crucially, there are two valid approaches to measuring
partial mutual information, one which preserves the additivity
of information and one which retains non-negativity (DeWeese
and Meister, 1999). In contrast, the fully local mutual informa-
tion i(x; y) that is used here is uniquely defined as shown by Fano
(1961).

2.2. LOCAL ACTIVE INFORMATION STORAGE
Using the definition in Equation (3), we can immediately quantify
how much of the information in the outcome xt of the random
variable Xt at time t was predictable from the observed past state
xk−

t− 1 of the process at time t − 1:

a(xt) = i(xk−
t− 1; xt) (4)

= log
pt(xt | xk−

t− 1)

pt(xt)
. (5)

This quantity was introduced by Lizier et al. (2012b) and called
local active information storage (LAIS). Here, xk−

t− 1 is an out-

come of the collection of previous random variables Xk−
t− 1 ={Xt− 1, Xt− t1 , . . . , Xt− tkmax

}, called a state (see below). The cor-
responding expectation value over all possible observations of xt

and xk−
t− 1, A(Xt) = I(Xk−

t− 1;Xt), is known simply as the active
information storage. The naming of this measure aligns well
with the concept of active storage in neuroscience by Zipser
et al. (1993), but is more general than capturing only sustained
firing patterns. In the following subsections, we comment on
practical issues involved in estimating the LAIS, and discuss its
interpretation.

2.2.1. Interpretation and construction of the past state
As indicated above, the joint variable xk−

t− 1 in Equation (4)
is an outcome of the collection of previous random variables:
Xk−

t− 1 = {Xt− 1, Xt− t1 , . . . , Xt− tkmax
}. This collection should be

constructed such, that it captures the state of the underlying
dynamical system X , and can be viewed as a state-space recon-
struction of this system. In this sense, Xk−

t− 1 must be chosen such
that Xt is conditionally independent of all Xt− tl with tl > tkmax ,
i.e., of all variables that are observed earlier in the process X than
the variables in the state at t − 1 . The choice must be made
carefully, since using too few variables Xt− tl from the history
can result in an underestimation of a(xt), while using too many
[given the amount of data used to estimate the probability den-
sity functions (PDFs) in Equation (4)] will artificially inflate it.

Typically, the state can be captured via Takens delay embedding
(Takens, 1981), using d variables Xt− tl with the tl delays equally
spaced by some τ ≥ 1, with d and τ selected using the Ragwitz
criteria (Ragwitz and Kantz, 2002)—as recommended by Vicente
et al. (2011) for the related transfer entropy measure (Schreiber,
2000). Alternatively, non-uniform embeddings may be used (e.g.,
see Faes et al., 2012).

If the process has infinite memory, and kmax does not exist,
then the local active information storage is defined as the limit
lim

k→∞
of Equation (4):

a(xt) = lim
k→∞

i(xk−
t− 1; xt) (6)

= lim
k→∞

log
pt(xt | xk−

t− 1)

pt(xt)
. (7)

2.2.2. Relation to other measures and dynamic state updates
The average active information storage (AIS), is related to two
measures introduced previously. On the one hand, a similar
measure called “regularity” had been introduced by Porta et al.
(2000). On the other hand, AIS is closely related to the excess
entropy (Crutchfield and Feldman, 2003), as observed in Lizier
et al. (2012b). The excess entropy E(Xt) = I(Xk−

t− 1;Xk+
t ), with

Xk+
t = {Xt, Xt+ t1 , . . . , Xt+ tkmax

} being a similar collection of
future random variables from the process, measures the amount
of information (on average) in the future outcomes xk+

t of the
process this is predictable from the observed past state xk−

t− 1 at
time t − 1. As such, the excess entropy captures all of the infor-
mation in the future of the process that is predictable from its
past. In measuring the subset of that information in only the next
outcome of the process, the AIS is focused on the dynamic state
updates of the process.

From the point of view of dynamic state updates, the AIS is
complementary to a well-known measure of uncertainty of the
next outcome of the process which cannot be resolved by its
past state. Following Crutchfield and Feldman (2003) we refer
to this quantity as the “entropy rate,” the conditional entropy of
the next outcome given the past state: Hμ(Xt) = H(Xt | Xk−

t− 1) =〈
− log2 pt(xt | xk−

t− 1)
〉
. The complementarity of the entropy rate

and AIS was shown by Lizier et al. (2012b): H(Xt) = A(Xt)+
Hμ(Xt), where H(Xt) is the Shannon entropy of the next mea-
surement Xt . Hμ(Xt) is approximated by measures known as the
Approximate Entropy (Pincus, 1991), Sample Entropy (Richman
and Moorman, 2000), and Corrected Conditional Entropy (Porta
et al., 1998), which have been well studied in neuroscience
[see e.g., the work by Gómez and Hornero (2010); Vakorin
et al. (2011), and references therein]. Many such studies refer
to Hμ(Xt) as a measure of complexity, however, modern com-
plex systems perspectives focus on complexity as being captured
in how much structure can be resolved rather than how much
cannot (Crutchfield and Feldman, 2003).

Furthermore, given that the most appropriate measure of com-
plexity of a process is a matter of open debate (Prokopenko
et al., 2009), we take the perspective that complexity of a sys-
tem is best approached as arising out of the interaction of the
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component operations of information processing: information
storage, transfer and modification (Lizier, 2013), and focus on
measuring these quantities since they are rigorously defined and
well-understood. Crucially, in comparison to the excess entropy
discussed above, the focus of AIS in measuring the information
storage in use in dynamic state updates of the process make it
directly comparable with measures of information transfer and
modification. Of particular importance here is the relationship
of AIS to the transfer entropy (Schreiber, 2000), where the two
measures together reveal the sources of information (either being
the past of that process itself—storage, or of other processes—
transfer) which contribute to prediction of the process’ next
outcome.

The formulation of the transfer entropy specifically elimi-
nates information storage in the past of the target process from
being mistakenly considered as having been transferred (Lizier
and Prokopenko, 2010; Lizier, 2013; Wibral et al., 2013). An inter-
esting example is where a periodic target process is in fact causally
driven by another periodic process—after any initial entrainment
period, our information processing view concludes that we have
information storage here in the target but no transfer from the
driver (Lizier and Prokopenko, 2010). While causally there is a
different conclusion, our observational information processing
perspective is simply focussed on decomposing apparent infor-
mation sources of the process, regardless of underlying causality
(which in practise cannot often be determined anyway). In this
view, a causal interaction can computationally subserve both
information storage or transfer (as discussed further in the next
section). Information transfer is necessarily linked to a causal
interaction, but the reverse is not true. It has previously been
demonstrated that the information processing perspective is more
relevant to emergent information processing structure in com-
plex systems, e.g., coherent information cascades, in contrast to
causal interactions being more relevant to the micro-scale physi-
cal structure of a system, e.g., axons in a neural system (Lizier and
Prokopenko, 2010).

2.2.3. Mechanisms producing active information storage
In contrast to passive storage in terms of modifications to system
structure (e.g., synaptic gain changes), the mechanisms underly-
ing active information storage are not immediately obvious. The
mechanisms that subserve this task have been formally estab-
lished, however, and can be grouped as follows:

1. Physical mechanisms in the system. This could incorporate
some internal memory mechanism in the individual physical
element giving rise to the process X (e.g., some decay function,
or the stereotypical processes during the refractory period
after a neural spike). More generally, it may involve network
structures which offload or distribute the memory function
onto edges or other nodes. In particular, Zipser et al. (1993)
reported that networks with fixed, recurrent connections were
sufficient to account for such active storage patterns, which
is in line with earlier proposals. Furthermore, Lizier et al.
(2012a) quantified the AIS contribution from self-loops, feed-
back and feedforward loops (as the only network structures
contributing to active information storage).

2. Input-driven storage. This describes situations where the
apparent memory in the process is caused by information stor-
age structure which lies in another element which is driving
that process, e.g., a periodically spiking neuron that may cause
a downstream neuron to spike with the same period (Obst
et al., 2013). As described in section 2.2.2 above, an observer of
the process attributes these dynamics to information storage,
regardless of the (unobserved) underlying causal mechanism.

Of these mechanisms of active information storage the case of
circular causal interactions in a loop motif, and the causal, but
repetitive influence from another part of the system may seem
counterintuitive at first, as we might think that in these cases
there should be information transfer rather than active informa-
tion storage. To see why these interactions serve storage rather
than transfer, it may help to consider that all components of infor-
mation processing, i.e., transfer, active storage and modification,
ultimately have to rely on causal interactions in physical systems.
Hence, the presence of a causal interaction cannot be linked in
a one-to-one fashion to information transfer, as otherwise there
would be no possibility for physical causes of active information
storage and of information modification left, and no consis-
tent decomposition of information processing would be possible.
Therefore, the notion of storage that is measurable in a part of the
system but that can be related to external influences onto that part
is to be preferred for the sake of mathematical consistency and
ultimately, usefulness. We acknowledge that information transfer
has often been used as a proxy for a causal influence, dating back
to suggestions by Wiener (1956) and Granger (1969). However,
now that causal interventional measures and measures of infor-
mation transfer can be clearly distinguished (Ay and Polani, 2008;
Lizier and Prokopenko, 2010) it seems no longer warranted to
map causal interactions to information transfer in a one-to-one
manner.

2.2.4. Interpretation of LAIS values
Measurements of the LAIS tells us the amount to which observ-
ing the past state xk−

t− 1 reduced our uncertainty about the
specific next outcome xt that was observed. We can interpret
this in terms of encoding the outcome xt in bits: encoding xt

using an optimal encoding scheme for the distribution pt(xt)

takes − log2 pt(xt) bits, whereas encoding xt if we know xk−
t− 1

using an optimal encoding scheme for the distribution pt(xt |
xk−

t− 1) takes − log2 pt(xt | xk−
t− 1) bits, and the LAIS is the number

of bits saved via the latter approach.
At first glance we may assume that the LAIS is a positive quan-

tity. Indeed, as a mutual information, the average AIS will always
be non-negative. However, the LAIS can be negative as well as
positive. It is positive where pt(xt | xk−

t− 1) > pt(xt), i.e., where the

observed past state xk−
t− 1 made the following observation xt more

likely to occur than we would have guessed without the knowledge
of the past state. In this case, we state that xk−

t− 1 was informative.

In contrast, the LAIS is negative where pt(xt | xk−
t− 1) < pt(xt); i.e.,

where the observed past state xk−
t− 1 made the following observa-

tion xt less likely to occur than we would have guessed without the
knowledge of the past state (but it occurred nevertheless, making
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the cue given by xk−
t− 1 misleading). In this case, we state that xk−

t− 1
was misinformative about xt . To better understand negative LAIS
also see the further discussion in Lizier et al. (2012a), including
examples in cellular automata where the past state of a variable
was misinformative about the next observation due to the strong
influence of an unobserved other source variable at that time
point.

2.2.5. Choice of the overall time window for constructing
probability densities from data

As already pointed out above, active information storage is tightly
related to predictability of a given brain area’s output as seen by
the receiving brain area. This predictability hinges on the ability of
the receiver to see the past states in the output of a brain area (see
previous section) and to interpret the past states in the received
time series in order to make a prediction about the next value. In
other words, the receiver needs to guess pt(xt, xk−

t− 1) correctly in
order to exploit the active information storage. If the guess of the

receiving neuron (n) or brain area, i.e.,
∼
pn(xt, xk−

t− 1), is incorrect,
then only a fraction of the information storage can be used for
successfully predicting future events. The losses could be quanti-
fied as the extra coding cost for the receiving area, when assuming
∼
pn(·) instead of pt(·). This loss would simply be the Kullback–

Leibler divergence DKL(pt || ∼pn). This scenario sees the receiving
brain area mostly as an optimal encoder or compressor. In con-
trast, the cost occurring in the framework of predictive coding
theories would arise because the receiving brain area could not
predict the incoming signal well, and thereby inhibit it via feed-
back to the sending brain area (Rao and Ballard, 1999). In this
scenario, the cost of imperfect predictions resulting from using
∼
pn instead of pt , would be reduced inhibition and a more frequent
signaling of prediction errors by the sending system, leading to a
metabolic cost.

To see the storage that the receiving brain area can exploit, the
time interval used for the practical estimation of the probabil-
ity density functions (PDFs) from neural recordings should best
match the expected sampling strategy of the receiving brain area.
For example, if we think that probabilities are evaluated over long
time frames, then it might make sense to pool all available data
in the experiment, as even a mis-estimation of the true prob-
ability densities pt(·) (due to potential non-stationarities) then

will better reflect the internal estimate
∼
pn(xt, xk−

t− 1), and thus
the internally predictable information. However, if we think that
probabilities are only estimated instantaneously by pooling over
all available inputs to a brain area at any time point, then we
should construct the necessary PDFs only from all simultane-
ously acquired data from all measurement channels, but not pool
over time. The latter view could also be described as assuming
that the brain area receiving the signals in question computes the
PDF instantaneously by pooling over all its inputs, without keep-
ing any longer term memory of the observed probabilities. This
construction of a PDF would be linked closely to an instanta-
neous physical ensemble approach, considering that all incoming
channels are physically equivalent, but are only assessed at a sin-
gle instant in time. In contrast, if we assume that learning of

the relevant PDFs takes place on a lifelong timescale, then PDFs
should be acquired from very long recordings of a freely behaving
subject or animal in a natural environment, and the outcomes
of a specific experiment should be interpreted using this “life-
long” PDF. Here we lean toward this latter approach and pool all

available data to estimate the internally available
∼
pn .

Note that while we indeed pool over all the available data to

obtain the distribution
∼
pn, the interpretation of the data in terms

of the active information storage is local per agent and time step.
This is exactly the meaning of “local” in local active informa-
tion storage as introduced in Lizier et al. (2012b) (this is also
akin to the relation of the local mutual information introduced by
Fano (1961) and the corresponding global PDF). The local active
information storage values are thus obtained by interpreting real-
izations for a single agent and a single time step in the light of a
probability distribution that is obtained over a more global view
of the system in space and time. This is also indicated by the use

of
∼
pn instead of pt . Also see the discussion section for potential

other choices of obtaining p.

2.3. ACQUISITION OF NEURAL DATA
2.3.1. Animal preparation
Data were obtained from an anesthetized cat. The animal had
been anesthetized and artificially ventilated with a mixture of
O2 and N2O (30/70%) supplemented with Halothane (0.7%).
All procedures were along the guidelines of the Society for
Neuroscience, in accordance with the German law for the pro-
tection of laboratory animals, permitted by the local authorities
and overseen by a designated veterinarian.

2.3.2. Voltage sensitive dye imaging
For optical imaging the visual cortex (area 18) was exposed and an
imaging chamber was implanted over the craniotomy. The cham-
ber was filled with silicone oil and sealed with a glass plate. A volt-
age sensitive dye (RH1691, Optical Imaging Ltd, Rehovot, Israel)
was applied to the cortex for about 2 h and subsequently the excess
of the dye was washed out. For imaging we used a CMOS cam-
era system (Imager 3001, Optical Imaging Ltd, Rehovot, Israel,
Camera: Photon Focus MV1 D1312, chip size 1312× 1082 pixel)
fitted with a lens system consisting of two 50 mm Nikon objectives
providing a field of view of 8.7× 10.5 mm and an epifluores-
cence illumination system (excitation: 630± 10 nm, emission
high pass 665 nm). In order to optimize the signal-to-noise ratio
raw camera signals were spatially binned to 32× 32 camera pix-
els allowing for a spatial resolution of 30× 32 μm2 per data pixel.
Camera frames were collected at a rate 150 Hz, resulting in a
temporal resolution of 6.7 ms.

2.3.3. Visual stimulation
Stimuli were presented triggered to the heartbeat of the animal
for 2 s and camera frames were collected during the entire stim-
ulation period. We will denote such a single stimulation period
and the corresponding data acquisition as a trial here. Each trial
consisted of 1 s stimulation with an isoluminant gray screen fol-
lowed by stimulation with fields of randomly positioned dots (dot
size: 0.23◦ visual angle; 384 dots distributed over an area of 30◦
(vertical) by 40◦ (horizontal) visual angle) moving coherently in
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one of eight different directions at 16 degree/s. Stimuli were pre-
sented in blocks of 16 trials, consisting of eight trials using the
stimuli described before and an additional eight trials which con-
sisted only of the presentation of the isoluminant gray screen
for 2 s (“blank trials”). Each motion direction condition was
presented eight times in total (eight trials), resulting in the pre-
sentation on 64 stimulus trials and 64 blank trials in total. Of the
presented set of eight stimulus types, seven were used for the final
analysis, as the computational process for one condition did not
finish on time before local compute clusters were taken down for
service.

2.3.4. VSD data post-processing
After spatial binning of 32× 32 camera pixels into one data pixel,
VSD data were averaged over all presentations of blank trials
and this average was subtracted from the raw data to remove
the effects of dye-bleaching and heartbeat. Finally, the data were
denoised using a median filter of 3× 3 data pixels.

2.4. MEASUREMENT OF LAIS ON VSD NEURAL DATA
Estimation of LAIS was performed using the open source Java
information dynamics toolkit (JIDT) (Lizier, 2012), with a his-
tory parameter kmax of ten time points, spaced 2 samples, or
(2/150 Hz) = 13.3 ms, apart. The total history length thus cov-
ered 133 ms, or roughly one cycle of a neural theta oscillation,
which seems to be a reasonable time horizon for a downstream
neural population that ultimately must assess these states. To
enable LAIS estimation from a sufficient amount of samples, we
considered the data pixels as homogeneous variables executing
comparable state transitions, such that the pixels form a physical
ensemble in terms of information storage dynamics. Pooling data
over pixels thus enables an ensemble estimate of the PDFs in ques-
tion. This approach seems justified as all pixels reported activity
from a single brain area (area 18 of cat visual cortex, see below).
Mutual information was estimated using a box kernel-estimator
(Kantz and Schreiber, 2003) with a kernel width of 0.5 standard
deviations of the data.

Here we assume that the neural system is at least capable
of exploiting the statistics arising from the stimulation given
throughout the experiment and thus construct PDFs from all
data (time points and pixels) for a given condition. Therefore,
we pool data over the full time course from −1 to 1 s of the

experiment. Thus, each image of the VSD data had a spatial con-
figuration of 67× 137 spatial data pixels after removal of the two
rows/columns on each side of an image because of the median
filter that was applied. Each trial (of a total of eight trials per
condition) resulted in 288 LAIS values, based on an original data
length of 298 samples and a history length (state dimension) of 10
pixels. The product of final image size and LAIS samples resulted
in 2.64 · 106 data points per trial for the estimation of the PDF for
each of the eight motion direction conditions. Due to computa-
tional limitations, LAIS estimates were performed on two blocks
of four trials separately, resulting in 1.06 · 107 data points entering
the estimation in JIDT.

2.5. CORRELATION ANALYSIS OF LAIS AND VSD DATA
For each of the seven analyzed motion direction conditions, VSD
data and LAIS were initially organized separately per condition
into 5 dimensional data structures, with dimensions: blocks (1,2),
trials (1–4), time (−1 to 1 s), and pixel row (67) and columns
(137). For correlation analysis, these arrays were linearized and
entered into a Spearman rank correlation analysis to obtain
correlation coefficients ρ(VSD,LAIS) and significance values.

3. RESULTS
LAIS values exhibited a clear spatial and temporal pattern. The
temporal pattern exhibited higher LAIS values during stimula-
tion with a moving random dot pattern than under baseline
stimulation with an isoluminant gray screen, with effects being
largest in spatially clearly segregated regions (Figures 1–3). The
spatial pattern of LAIS under stimulation was dependent on the
motion direction of the drifting random dots in the stimulus
(Figure 2).

In contrast to this spatially highly selective elevation of LAIS
values under stimulation, there was a sharp drop in LAIS val-
ues at approximately 40 ms after stimulus onset, with negative
LAIS values measured at many pixels (Figure 1, 40 ms window;
Figure 2, middle column; Figure 3, lower row). This indicates
that the baseline activity was misinformative about the follow-
ing stimulus related activity (since an observer would expect the
baseline activity to continue). This transient, stimulus induced
drop in LAIS was more evenly distributed throughout the imag-
ing window than the elevated LAIS in the later stimulus period
post 200 ms (Figure 2, middle column). The transient drop in

FIGURE 1 | Local active information storage (LAIS) allows to trace

neural information processing in space and time. Spatio-temporal
structure of LAIS in cat area 18—seven frames from the spatio-temporal
LAIS data, taken at the times indicated below each frame. Stimulation
onset was at time 0. Baseline activity (−74.5 ms) is around zero and

mostly uniform. At 40 ms after stimulus onset, LAIS is negative in a
region that correlates to the region that later exhibits high LAIS. Around
227 ms increased LAIS sets in and lasts until the end of the data epoch,
albeit with slow fluctuations (up to 1 s, see Figure 3). Also see the
post-stimulus time-average in Figure 2.
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FIGURE 2 | VSD-activity and local active information storage (LAIS)

maps. VSD activity averaged over stimulation epochs and time after
stimulus onset after the initial transient (0.2–1 s) (left column). LAIS
map immediately after stimulus onset—negative values (blue) indicate
surprise of the system (middle column). Time-average LAIS maps from
the stimulus period after the initial transient (0.2–1 s) (right column).
Rows 1–7 present different stimulus motion directions: 0, 45, 90, 180,
225, 270, 315 (in degrees, indicated by arrows on the right, arrow
colors match time-trace colors in Figure 3). 67× 137 data pixel per
image, pixel dimension 30× 32 μm2. Left–right image direction is
anterior–posterior direction.

LAIS had a recovery time of approximately 34 ms, also giving an
estimate of the dominant intrinsic storage duration of the neural
processes.

In all conditions we observed a positive, but weak correla-
tion between the local VSD activity values and LAIS values over
time and space (Table 1). Looking at individual time intervals, we
found stronger, and negative, correlation coefficients both, for the
baseline interval (−1 to 0 s), and for the initial interval after the
onset of the moving dot stimulus (0.04–0.14 s). In contrast, we
observed a strong positive correlation at the late stimulus interval
(0.2–1 s). This means that the increased dynamic range observed
in the VSD signals during stimulation with the moving stimuli led
to an increased amount of predictable information, rather than
to a decrease. This correlation also means that storage was gen-
erally higher in neurons that were preferentially activated by the
respective moving stimulus (also compare left and right columns
in Figure 2 for each motion direction).

4. DISCUSSION
Our results demonstrate increased local active information stor-
age in the primary visual cortex of the cat under sustained
stimulation, compared to baseline. The spatial pattern of the LAIS
increase was clustered spatially and stimulus-specific (Figure 2).
The temporal pattern of LAIS consisted of a first sharp drop in
LAIS from 0.04 to 0.14 s after onset of the moving stimulus and
a sustained rise in LAIS up to the end of the stimulation epoch
(Figure 3). The sharp drop at stimulus onset for many pixels is
important because it indicates the past activity of the pixels was
surprising or misinformative about the next outcomes near that
onset. This has the potential to be used in detecting changes of
processing regimes directly from neural activity.

The subsequent sustained rise in LAIS is particularly notable
because of the random spatial structure of each stimulus on a
local scale; this random spatial structure translates into a random
temporal stimulation sequence in the receptive field of each neu-
ron because of the stimulus motion. The increased LAIS despite
random stimulation of the neurons suggests that our observa-
tion is not due to input-driven storage, i.e., memory or storage
contained already in the spatio-temporal stimulus features that
drive the observed LAIS [as discussed in section 2.2.3 and by Obst
et al. (2013)]. Nevertheless, as revealed by correlation analysis,
storage was highest in regions preferentially activated by the stim-
ulus, suggesting a representational nature of LAIS in these data
with respect to the motion features of the stimulus. In sum, the
changes of LAIS with stimulation onset, stimulation duration,
and stimulus type clearly demonstrate that LAIS reflects neural
processing, rather than mere physiological or instrumentation-
dependent noise regularities. This leads us to believe that LAIS is
a promising tool for the analysis of neural data in general, and of
VSD data in particular.

4.1. LOCAL ACTIVE INFORMATION STORAGE AND NEURAL ACTIVITY
LEVELS

Any increase in LAIS may in principle arise from two sources:
first, a richer dynamics with a larger amplitude range—increasing
overall information content, while maintaining the predictabil-
ity of the time series (e.g., quantified as the inverse of the signal
prediction error, or the entropy-normalized LAIS), may increase
LAIS. Alternatively, increased LAIS may be based on increased
predictability under essentially unchanged dynamics. The signif-
icant positive correlation between LAIS and VSD activity after
stimulus onset suggests that a richer, but still predictable, dynam-
ics of VSD activity is at the core of the stimulus-dependent effects
observed here. As a caveat we have to note that the use of a kernel
estimator for LAIS measurement, coupled with pooling of obser-
vations over the whole ensemble of pixels and time points may
also have introduced a slight bias in favor of a positive correla-
tion between high VSD activity and LAIS, as it allows storage to
be more easily measured in pixels with larger amplitude here. The
negative correlation observed in the baseline interval, however,
demonstrates that this bias is not a dominant effect in our data.
This is because a dominant effect of the kernel-based bias would
also assign higher storage values to high amplitude data in the
baseline interval, and thereby result in a positive correlation in
the baseline. This was not the case. The relatively low correlation
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FIGURE 3 | Temporal evolution of VSD activity and local active

information storage. Spatial averages over the 67× 137 data pixels
for VSD activity (black traces), and the LAIS (red traces) versus
time. Motion directions are indicated by arrows for each panel.
Note that LAIS for the vertical, the right, and the downward-right

motion directions continues to rise toward the end of the stimulus
interval, despite declining activity levels. Also note that the
unexpected onset response at approximately 40 ms leads to
negative active information storage. For an explanation see the
Materials and Methods section.

Table 1 | Correlation of LAIS and local VSD activity.

Motion direction Correlation coefficient

Full epoch −1 to 0 s 0.04–0.14 s 0.2–1 s

0◦ 0.05* −0.33* −0.09* 0.45*

4 ◦ 0.09* −0.50* −0.20* 0.65*

90◦ 0.12* −0.30* −0.13* 0.48*

180◦ 0.07* −0.27* −0.22* 0.44*

225◦ 0.07* −0.58* −0.22* 0.71*

270◦ 0.17* −0.39* −0.33* 0.68*

315◦ 0.03* −0.37* −0.17* 0.40*

Correlation coefficients are Spearman rank correlations.
*p < 0.05/7.

coefficients across the complete time-interval, which are between
0.02 and 0.13, further suggest that LAIS increases due not follow
higher VSD signals tightly. Therefore, LAIS extracts additional
useful information about neural processing. This point is fur-
ther supported by the stimulus-dependent changes that seem
more pronounced in LAIS maps than in the VSD activity maps
(compare left and right columns in Figure 2).

For future studies the amplitude-bias problem introduced by
the fixed-width kernel estimator should easily be overcome using
a Kraskov-type variable width kernel estimator—see the original
work of Kraskov et al. (2004), and Lindner et al. (2011); Vicente
et al. (2011); Wibral et al. (2011, 2013); Lizier (2012) for imple-
mentation details of Kraskov-type estimators. Another possibility
would be to condition the analysis on the activity level, as for
example done for the transfer entropy measure by Stetter et al.
(2012).

4.2. TIMESCALES OF LAIS
The recovery time of the stimulus-induced, transient drop in
LAIS was 34 ms. A drop of this kind means that the activity before
the drop (baseline activity) was not useful to predict the activity

during the drop (the onset response). This is expected as the stim-
ulus is presented in an unpredictable way to the neural system.
However, the recovery time of this drop of approximately 34 ms
yields an insight into the intrinsic storage time scales of the neu-
ral processes. We note that the observed time-scale corresponds to
the high beta frequency band around 29 Hz (1/34 ms). In how far
this is an incidental finding or bears significance must be clarified
in future studies.

4.3. ON THE INTERPRETATION OF LOCAL ACTIVE INFORMATION
STORAGE MEASURES IN NEUROSCIENCE

When working with measures from information theory, it is
important to keep in mind that the basic definition of infor-
mation as given by Shannon revolves around the probabilities
of events and the possibility to encode something using these
events. To separate Shannon information content from infor-
mation about something (new) in a more colloquial sense, one
often also speaks about potential or syntactic information, when
referring to Shannon information content, of semantic informa-
tion when referring to human interpretable information, and last
of pragmatic information for our everyday notion of informa-
tion as in “news” [for details see for example the treatment of
this topic by Deacon (2010)]. In the same way, LAIS does not
directly describe information that the neural system stores about
things in the outside world—rather, it quantifies how much of
the future (Shannon) information in the activity can be predicted
from its past.

In fact, information in the neural system about something
in the outside world would have to be quantified by some
kind of mutual information between aspects of the outside
world and neural activity, while information in the classic
sense of semantic information represented symbolically (e.g.,
in books, and other media) would be even more complicated:
theoretically it should be quantified as a mutual information
between the medium containing the symbols and activity in
the neural system, while additionally satisfying the constraint
that this mutual information should vanish when conditioning
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on the states of the world variables represented by the
symbols.

While this lack of a more semantic interpretation of LAIS
may seem disappointing at first, the quantification of the pre-
dictable amount of information makes this measure highly useful
in understanding information processing at a more abstract level.
This is important wherever we have not yet gained insights into
what (if anything) may be explicitly represented by a neural sys-
tem. Moreover, the focus on predictability provides a non-trivial
link between LAIS and current theories of brain function as
pointed out below. Nevertheless, a use of the concept in neuro-
science may have to take the properties of the receiving neuron
or brain area into account to consider how much of the math-
ematical storage in a signal is accessible to neural information
processing. To address this concern, we used a pooling over all
available data in space and time here as it seems to represent a
way by which a receiving brain area could construct its (implicit)
guesses of the underlying probability densities. However, also
other strategies are possible and need to be explored in the
future. As one example for another strategy of probability-density
estimation, we have investigated a construction of probability
densities via pooling over all data pixels but separately for each
point in time. This approach avoids any potential issues with non-
stationarities, but obscures the view of the “typical transitions” in
the system over time to a point that no interpretable results were
obtained (data not shown).

4.4. LOCAL ACTIVE INFORMATION STORAGE AND PREDICTIVE CODING
THEORIES

Information storage in neural activity means that information
from the past of a neural process will predict some non-zero
fraction of information in the future of this process. It is via
this predictability improvement that information storage is also
tightly connected with predictive coding, an important family of
theories of cortical function. Predictive coding theories propose
that a neural system is constantly generating predictions about the
incoming sensory input (Rao and Ballard, 1999; Knill and Pouget,
2004; Friston, 2005; Bastos et al., 2012) to adapt internal behavior
and processing accordingly. These predictions of incoming infor-
mation must be implemented in neural activity, and they typically
need to be maintained for a certain duration—as it will typi-
cally be unknown to the system when the predictive information
will be needed. Hence, the neural activity subserving prediction
must itself have a predictable character, i.e., non-zero informa-
tion storage in activity. Analysis of active information storage may
thereby enable us to test central assumptions of predictive coding
theories rather directly. This is important because tests of pre-
dictive coding theories so far mostly relied on the predictions
being explicitly known and then violated—a condition not given
for most brain areas beyond early sensory cortices, and for most
situations beyond simple experimental designs. Here, the quan-
tification of the predictability of brain signals themselves via LAIS
may open a second approach to testing these important theories.
To this end we may scan brain signals for negative LAIS, as neg-
ative LAIS values indicate the past states of the neural signals in
question were not informative about the future, i.e., negative LAIS
signals a breakdown of predictions. In our example dataset this

was brought about by the sudden, unexpected onset of the stim-
ulus. However, the same analyses may be applied in situations
that are not a under external control—for example to analyze
internally driven changes in information processing regimes.

In relation to predictive coding theories it is also encouraging
that the predictive information was found on timescales related
to the beta band. This is because this frequency band has been
implied in the intra-cortical transfer of predictions (Bastos et al.,
2012).

4.5. SUB-SAMPLING AND COARSE GRAINING, AND NON-LOCALITY OF
PDF ESTIMATION

When interpreting LAIS values it should be kept in mind that
in neural recordings we typically do not observe the system
fully or at the relevant scales—in contrast to artificial systems,
such as cellular automata and robots, where the full system is
accessible. More precisely, in neural data one of two types of sub-
sampling is typically present—either coarse graining with local
averaging of activity indices (as in VSD) or sub-sampling proper,
where neural activity is recorded faithfully (e.g., via intracellu-
lar recordings) but with incomplete coverage of the full system.
This sub-sampling may have non-trivial effects on the probability
distributions of neural events [see for example Priesemann et al.
(2009, 2013)]. Hence, LAIS values obtained under sub-sampling
should be interpreted as relative rather than absolute measures
and should only be compared to other experiments, or exper-
imental conditions, when obtained under identical sampling
conditions.

In addition there is necessarily temporal subsampling in the
form of finite data; we therefore note again the potential for bias
in the actual MI values returned via the use of kernel estima-
tion here, particularly for large embedding dimensions and small
kernel widths. Alternatives to kernel estimator are known to be
more effective in bias compensation [e.g., Kraskov-Grassberger-
Stögbauer estimation (Kraskov et al., 2004)]; or use of use kernel
estimation is solely motivated by practical computational rea-
sons. Effects of temporal subsampling also mandates to focus on
relative rather than absolute values within this experiment.

Even within the experiment though, the bias may not be evenly
distributed amongst the local MI values, which tend to exhibit
larger bias for low frequency events. With that said, our exper-
iment did use a large amount of data (by pooling observations
over pixels and time), which counteracts such concerns to a
large degree, and many of the key results (e.g., Figure 3) involve
averaging or correlating over many local values, which further
ameliorates this. There are techniques suggested to alleviate bias
in local or pointwise MI, e.g., Turney and Pantel (2010), and while
none were applied here, we do not believe this alters the general
conclusions of our experiment for the aforementioned reasons.
As a particular example, the surprise caused by the onset of stim-
ulus is still clearly visible as negative LAIS, despite any propensity
for such low frequency events to have been biased strongly toward
positive values.

4.6. ON THE LOCALITY OF INFORMATION VALUES
As a concluding remark, we would like to point out again that var-
ious “levels of locality” have to be carefully chosen in the analysis
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of neural data. One important level is the spatial extent (ensem-
ble of agents) and the time span over which data are pooled to
obtain the PDF. However, even pooling over a large spatial extent,
i.e., many agents and a long time span, may still allow to inter-
pret the information value of the data agent-by-agent and time
step-by-time step, if agents i are identical and samples at subse-
quent time points t come from a stationary random process [see
the book of Lizier (2013) for several examples]. This is because
one may pool data to estimate a PDF as long as these data can
be considered “replications,” i.e., as coming from the same ran-
dom variable. Pooling data under these conditions will obviously
not bias the PDF estimate away from the ground truth for any
agent or time step. Irrespective of how many data points are
pooled this way, it is then still possible to interpret each data point
(xi,t, xk−

i,t− 1) individually in terms of its LAIS, a(xt, xt
k−
t− 1). This

locality of information values is identical to the local interpre-
tation of the (Shannon) information terms h(xi) = − log(p(xi))

that together, as a weighted average over all possible outcomes
xi, yield the (Shannon) entropy H(X) =∑i p(xi)h(xi) of a ran-
dom variable X. As explained for example by MacKay (2003,
chapter 4), each and every outcome xi of a random variable X
has its own meaningful Shannon information value h(xi), that
may be very different from that of another outcome xj, although
repeated draws from this random variable can be considered sta-
tionary. It is this sense of “local” that gives local active information
storage its name. In contrast, how locally in space and time we
obtain the PDF is more important for the precision of the LAIS
estimates.

In the analysis of LAIS from neural data three issues will neces-
sarily blur locality, and impair the precision of the LAIS estimate
to some extent:

1. If a pool of identical agents i, all running identical stationary
random processes Xi, is available, the only blurring of locality
arises due to the intrinsic temporal extent of the state variables.
However, the while the stored information may be encoded in
a temporally non-local state xt

k−
t− 1 , this information is used to

predict the next value of the process xt at a single point in time.
2. If agents are non-identical, but their data are pooled nonethe-

less, then the overall empirical PDF obtained across these
agents is no longer fully representative of each single agent and
the local information storage values per agent are biased due
to the use of this non-optimal PDF. This effect may be present
to some extent in our analysis, as we cannot guarantee that all
parts of area 18 behave strictly identical.

3. If the random process in question is not stationary, then a PDF
obtained via pooling samples across time is also not represen-
tative of what happens at single points in time, and again a bias
in the LAIS values for each agent and time step arises. This bias
is potentially more severe. Nevertheless, we pooled data across
all available time samples here, as this seems to be closer to
the strategy available to a neuron in a downstream brain area
(also see section 2.2.5), when trying to estimate, or adapt to,
its input distribution. This is because a neuron may more eas-
ily estimate approximate PDFs of its inputs across time than
across all possible neurons in an upstream brain area, to most
of which it simply doesn’t interface.

5. CONCLUSION
Distributed information processing in neural systems can be
decomposed into component processes of information transfer,
storage and modification. Information storage can be quantified
locally in space and time using an information theoretic measure
termed local active information storage (LAIS). Here we present
for the first time the application of this measure to neural data.
We show that storage reflects neural properties such as stimulus
preferences and surprise, and reflects the abstract concept of an
ongoing stimulus despite the locally random nature of this stimu-
lus. We suggest that LAIS will be a useful quantity to test theories
of cortical function, such as predictive coding.
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Autism spectrum disorder (ASD) is a common developmental disorder characterized by
communication difficulties and impaired social interaction. Recent results suggest altered
brain dynamics as a potential cause of symptoms in ASD. Here, we aim to describe
potential information-processing consequences of these alterations by measuring active
information storage (AIS)—a key quantity in the theory of distributed computation in
biological networks. AIS is defined as the mutual information between the past state of a
process and its next measurement. It measures the amount of stored information that is
used for computation of the next time step of a process. AIS is high for rich but predictable
dynamics. We recorded magnetoencephalography (MEG) signals in 10 ASD patients and
14 matched control subjects in a visual task. After a beamformer source analysis, 12
task-relevant sources were obtained. For these sources, stationary baseline activity was
analyzed using AIS. Our results showed a decrease of AIS values in the hippocampus
of ASD patients in comparison with controls, meaning that brain signals in ASD were
either less predictable, reduced in their dynamic richness or both. Our study suggests the
usefulness of AIS to detect an abnormal type of dynamics in ASD. The observed changes
in AIS are compatible with Bayesian theories of reduced use or precision of priors in ASD.

Keywords: autism spectrum disorder, information theory, active information storage, complex systems,

magnetoencephalography, hippocampus, predictive coding

1. INTRODUCTION
It has been 70 years since Kanner (1943) and Asperger (1944)
first described an intriguing disorder characterized by the chil-
dren’s inability to relate themselves in the ordinary way to people
and situations from the beginning of life. The symptom cluster
described by Kanner has been called autism spectrum disor-
der (ASD), and it is clinically defined by a triad of deficits
comprising impairments in communication, social interaction,
and behavioral flexibility (Wing and Gould, 1979). Prevalence
studies estimate that ASD affects 2–10 children per 1000 births
(Yeargin-Allsopp et al., 2003; Baird et al., 2006). It is charac-
terized by an early onset, since these typical behaviors show
up before the age of 36 months. Nevertheless, ASD is a per-
manent developmental disorder that will continue into adult-
hood. Great heterogeneity in development has been reported,
with some individuals losing skills over time, others reaching
a plateau in adolescence, and still others manifesting a pattern
of continued development in adulthood (Seltzer et al., 2003).
Due to the complexity and variety of the symptoms with which
autistic individuals present to clinicians, it has been difficult
to conceptualize a defining neurological mechanism that might
underlie the core features of this disorder (Bauman and Kemper,

2005). Therefore, new techniques are necessary to achieve a more
detailed understanding of this disorder, and ultimately an ear-
lier identification and more effective interventions and treatment
(Bauman and Kemper, 2005).

ASD symptoms, but also self-reports of ASD patients
(Williams and Bishop, 1994) and the phenomenon of “savants”
(Treffert, 2009) point to fundamentally altered modes of infor-
mation processing in the brain of patients with autism. While
autism has most likely genetic roots, the final disease outcome
is the result of a developmental trajectory and of an interaction
with the environment. It seems safe to assume that in the autistic
brain information processing is also optimized or adapted during
development in some way that genetics and environment allow,
and the complex developmental trajectory of neuroanatomi-
cal changes in ASD supports this view (Bauman and Kemper,
2005). However, even describing this adapted, but altered infor-
mation processing in ASD at a neurophysiological level—beyond
behavioral outcomes—has remained difficult. Results at the neu-
rophysiological level have so far mostly dealt with descriptors of
the dynamics, such as time-frequency analysis (Sun et al., 2012),
connectivity methods (Belmonte et al., 2004a,b) or entropy mea-
sures (Bosl et al., 2011). However, it has been difficult to address
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information processing more directly. These difficulties were
foremost conceptual because what we actually mean when using
the term information processing in biological systems has been
unclear. Only recently formal, operational descriptions of infor-
mation processing and its components have become available
(Langton, 1990; Mitchell, 2011; Lizier, 2013). These descriptions
can be traced back to Turing’s finding that every act of informa-
tion processing can be decomposed into the component processes
of information storage, transfer and modification (Turing, 1936).
Later, Langton and others expanded these concepts to describe
the emergence of the capacity to perform arbitrary information
processing algorithms, or “universal computation,” in complex
systems, such as cellular automata (Langton, 1990; Mitchell,
2011).

Of the three component processes above—information trans-
fer, storage, and modification—information storage in particular
has been used with great success to evolve (Prokopenko et al.,
2006), and optimize (Dasgupta et al., 2013) self-organizing infor-
mation processing systems. This success was enabled by the
introduction of quantitative measures of information storage
in the form of excess entropy by Grassberger (1986) (intro-
duced as “effective measure complexity,” and later reintroduced
as excess entropy by Crutchfield and Feldman, 2003), and
in the form of the active information storage (AIS) by Lizier
et al. (2012). Despite their success in artificial systems, however,
these measures have not been applied yet to biological neural
systems.

One reason for this slow adoption may be that we face an
apparent complication in biological neural systems, as in these
systems information storage may at first sight take various forms,
e.g., as reverberant neural activity or as synaptic changes (Zipser
et al., 1993). However, a use of the stored information for infor-
mation processing inevitably requires its re-expression in neural
activity and its interaction with ongoing neural activity and
incoming information. Hence, information storage actively in
use for a computation will be reflected in the dynamics of neu-
ral activity, and is therefore accessible based on recordings of
neural activity. Information storage in neural activity will be
reflected by the fact that information from the past of a neu-
ral process will serve to predict a certain fraction of information
in the future of this process, by virtue of the very definition
of storage. To measure information-theoretically this amount
of information in the future of a process that is predicted by
its past state, we use AIS (Lizier et al., 2012), described in
section 2.1.

It is via this predictable information that information stor-
age is also tightly connected with predictive coding, an impor-
tant family of theories of cortical function. Predictive coding
theories propose that a neural system is constantly generat-
ing predictions about the incoming sensory input (Rao and
Ballard, 1999; Friston et al., 2006; George and Hawkins, 2009;
Bastos et al., 2012; Grossberg, 2013) to adapt internal behav-
ior and processing accordingly. The prediction of incoming
information that forms the central idea of predictive coding
theory must happen via neural activity. These predictions typ-
ically need to be maintained for a short interval—as it is
not known precisely a priori when the predictive information

will be needed. Hence, the neural activity subserving predic-
tion must itself have a predictable character, i.e., non-zero
information storage. Analysis of AIS thereby enables us to
test central assumptions of predictive coding theories rather
directly.

The close link between information storage and general the-
ories of cortical function makes AIS also a promising candidate
measure to investigate altered information processing in ASD.
Influential accounts of altered perception in ASD hold that there
is either some form of reduced top–down control (Happé and
Frith, 2006; Pellicano and Burr, 2012; Friston et al., 2013), or
a reduced noise in the ascending sensory systems (e.g., Mottron
et al., 2006). Both views can be formalized using a Bayesian for-
malism, i.e., a predictive coding theory of perception in ASD
(Pellicano and Burr, 2012). Despite this semi-quantitative formal-
ism, many aspects of altered perception in ASD can be explained
in a Bayesian framework in one of two opposing ways—either
by less dominant (top–down) expectations or more precise sen-
sory inputs (Brock, 2012). Here, quantities such as the amount
of predictable information in a neural signal—as measured by
AIS—may play a crucial role in distinguishing these theoreti-
cal accounts based on experimental evidence, as they quantify
the amount of information that is reliably obtainable from a
brain area.

To explore the potential of AIS for ASD research, we here apply
this measure to magnetoencephalographic (MEG) data obtained
from a group of patients with high functioning ASD and matched
healthy controls. We focus our study on the visual system, as
atypical perception is particularly well documented in this sys-
tem (see Williams and Bishop, 1994; Plaisted, 2001; Ropar and
Mitchell, 2002; Mitchell and Ropar, 2004; Bertone et al., 2005;
Rogers and Ozonoff, 2005; Happé and Frith, 2006; Mottron et al.,
2006; Sheppard et al., 2007; Baron-Cohen et al., 2009; David et al.,
2010, but also see, Ropar and Mitchell, 1999, 2001).

2. MATERIALS AND METHODS
2.1. ACTIVE INFORMATION STORAGE—DEFINITION AND PRACTICAL

ESTIMATION
We assume that the neural signals we record from a system X can
be treated as realizations xt of random variables Xt that together
form the random process X, describing the system’s dynamics.

AIS is then simply defined as the mutual information

I
(

Xk−
t− 1;Xt

)
—see Cover and Thomas (1991)—between the past

state random variable Xk−
t− 1 = {Xt− 1, . . . , Xt− 1− k} of a process

and its next random variable Xt (Lizier et al., 2012):

AXt = lim
k→∞

I
(

Xk−
t− 1;Xt

)
= lim

k→∞

〈

log
p
(

xk−
t− 1, xt

)

p
(

xk−
t− 1

)
p (xt)

〉

. (1)

Here the averaging 〈·〉 via p
(

xk−
t− 1, xt

)
in principle has to be

taken over an ensemble of realizations of the process at time
point t (e.g., via physical replications of the system X ). For sta-
tionary processes, however, where all random variables that form
the process X have identical probability distribution, we can use
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time-averaging instead of the ensemble average and Equation (1)
simplifies to:

AX = lim
k→∞

〈

log
p
(

xk−
t− 1, xt

)

p
(

xk−
t− 1

)
p (xt)

〉

t

(2)

where the averaging can now be taken with respect to time t.
The use of the multivariate collection Xk−

t− 1 is particularly
important here—it is intended to capture the state of the under-
lying dynamical system X , and can be viewed as a state-space
reconstruction of it. In this fashion, AIS brings together aspects
of both dynamical systems theory and information theory in its
analysis. The AIS tells us how much information could be pre-
dicted about the next measurement of a process by examining
its past state. For a linear perspective, this is akin to building
a classical autoregressive model of order k and measuring how
well that model predicts the next measurements of the process.
Importantly though, the use of information theory here is a more
general approach which captures non-linear auto-dependencies
in the process, and does so in a model-free way. As such, we
refer to this component of the prediction of the next measure-
ment as information storage, capturing the information-theoretic
basis of the self-prediction. This also highlights that AIS quan-
tifies how much information from the past state is involved in
generating or computing the next value of a process, in contrast
to other information sources (i.e., information transferred from
other processes as quantified by the transfer entropy Schreiber,
2000, a non-linear analogy of the Granger causality) as discussed
by Lizier et al. (2010). We call this the active component of
information storage since it quantifies the stored information
actively in use in this generation of the next value, as opposed
to that passively stored for later use, e.g., in synaptic weights.
Zipser et al. (1993) discuss this contrast in active and passive stor-
age, though our perspective generalizes the active storage beyond
merely “maintaining neural activity” (as described by Zipser et al.,
1993) to more complex non-linear auto-correlations, and may
additionally capture contributions of passive storage when they
are re-expressed in dynamics.

Now, if the history before a certain time point t − kmax does
not help to improve the prediction of Xt we can further sim-
plify Equation (2). Technically speaking, Xt then is conditionally
independent of all Xt−ki with ki > kmax:

lim
k→∞

p
(

xt |xk−
t− 1

)
= p

(
xt |xkmax−

t− 1

)
, (3)

and Equation (2) becomes:

AX =
〈

log
p
(

xkmax−
t− 1 , xt

)

p
(

xkmax−
t− 1

)
p (xt)

〉

t

. (4)

The parameter kmax can be determined using Ragwitz’ crite-
rion (Ragwitz and Kantz, 2002), as suggested for example in
Vicente et al. (2011), and implemented in the TRENTOOL tool-
box (Lindner et al., 2011). For the analyses presented here, we
used kmax = 10 on data with a sampling rate of 300 Hz.

For the practical estimation of Equation (4) for continuous
data, as analyzed here, various estimation techniques exist, such
as binning and kernel approaches. Here, we used a kernel-based
estimator (see Kantz and Schreiber, 2003 for more information
on kernel-based estimators) as implemented in the open source
JAVA Information Dynamics Toolkit (Lizier, 2012), with a kernel
width ε of 0.5 standard deviations of the data.

2.2. DATA ACQUISITION
We recorded magnetoencephalography (MEG) signals in 10 ASD
patients and 14 matched healthy control (HC) subjects in a visual
task. More details of this study can be found in Sun et al. (2012).
Its most important aspects are summarized in the following
paragraphs.

2.2.1. Participants and task
All ASD patients (mean age: 30.3± 9.6) were clinically diagnosed
and suffered from Asperger’s disorder, or pervasive develop-
mental disorder not otherwise specified (PDD-NOS) accord-
ing to DSM-IV (American Psychiatric Association, 2000). The
clinical diagnosis was corroborated using the German form
of the Autism Diagnostic Interview-Revised (Schmötzer et al.,
1993; Lord et al., 1994) and the Autism Diagnostic Observation
Schedule (Lord et al., 2000). The patients were recruited from the
Department of Child and Adolescent Psychiatry, Psychosomatics,
and Psychotherapy of the Goethe University at Frankfurt/M. The
healthy controls (mean age: 29.7 ± 6.9) were screened for psy-
chopathology with the German version of Structured Clinical
Interview for DSM-IV-R Non-Patient Edition (Saß et al., 2003).
Both groups showed no significant differences in age, sex dis-
tribution and IQ. The study was performed according to the
Declaration of Helsinki and approved by the ethics committee of
the Goethe University (Frankfurt, Germany).

All subjects performed a perceptual closure task where stimuli
consisted of degraded pictures of human faces in which all shades
of gray had been converted into black or white (Mooney and
Ferguson, 1951). In addition, scrambled and vertically mirrored
versions of these stimuli were created, for which face perception
was not possible. One hundred and sixty different stimuli for each
stimulus category were presented in a random sequence, where
each stimulus was shown for 200 ms, separated by a random inter-
stimulus intervals between 3500 and 4500 ms. Participants had
to indicate with a button press whether they saw a face or not.
Response hands were counterbalanced across participants in each
group. This set of stimuli allowed us to identify the visual sys-
tem and higher cortices related to object and face perception for
further investigation using AIS.

2.2.2. MR and MEG data acquisition
Individual structural MR images were acquired with a Siemens
Allegra scanner (Siemens Medical Solutions, Erlangen,
Germany), using a 3D MPRAGE sequence. MEG signals
were recorded with a 275-channel system (Omega 2005; VSM
MedTech, Coquitlam, BC, Canada) with 600 Hz sampling rate,
third-order gradiometers. The acquired data were bandpass
filtered between 0.5 and 150 Hz (fourth order Butterworth filter).
Before and after each run, the head position was localized using
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localization coils. Recordings with movements larger than 5 mm
were discarded.

2.2.3. MEG data preprocessing
MEG data were analyzed using the FieldTrip open source
MATLAB Toolbox (Oostenveld et al., 2011). The continuously
recorded data were segmented into trials from −1000 to 1000 ms
with respect to the onset of the visual stimulus. Eye blinks, signal
jumps caused by the SQUID sensors, and muscle artefacts were
detected automatically (in this sequence) using the preprocessing
functions of FieldTrip, followed by visual inspection for residual
artefacts. Affected trials were rejected completely as suggested in
Gross et al. (2012). The remaining trials were linearly detrended
and baseline corrected.

2.2.4. Analysis of sensor-level spectral power changes
Time-frequency representations (TFRs) were computed from
sensor data using a multi-taper method [frequency range from
25 to 140 Hz in 2 Hz steps over a time range of −500 to 1000 ms
in 10 ms steps, discrete prolate spheroidal sequences (DPSS),
length of sliding time window, 5/frequency, width of frequency
smoothing, 0.4 ∗ frequency]. The power of the time-frequency-
transformed trial data was averaged over all sensors and trials
and, subsequently, all subjects. The optimal beamformer band-
width (Brookes et al., 2008) was then estimated based on the
observed power changes induced by the visual stimulus (analy-
sis interval 75–375 ms) relative to baseline (analysis interval−350
to−50 ms).

2.2.5. Source reconstruction and selection
As the estimation of AIS is computationally very demanding, we
were not able to compute this measure on a source grid cover-
ing the whole brain. We therefore chose to investigate a selection
of source locations showing differences between baseline and
the perceptual closure task. This decision was based on previ-
ous reports of changes in visual perception in ASD (see Pellicano
and Burr, 2012 and references therein); this goal for a selection
of sources substantially differs from the goal of detecting sources
with spectral power differences between ASD subjects and con-
trols that was pursued in the study by Sun et al. (2012), and
the analysis strategies differ accordingly. Note that preselecting
sources with power differences between ASD and healthy controls
would potentially bias a subsequent analysis of ASD (“double dip-
ping”), whereas selecting areas that represent the visual system
does not entail such a bias a priori. To identify visually responsive
areas, we first performed a beamformer source analysis in the high
gamma frequency range (60–120 Hz), as the initial TFR-analysis
indicated sustained responses triggered by the visual stimulus in
this frequency range. Note that even though differences between
ASD patients and healthy controls have been demonstrated pre-
viously in this band, the choice of this band does not unduly
bias the analysis as such differences have been shown in all major
frequency bands (see Figure 3 in Sun et al., 2012).

After identifying locations with significant differences in the
high-frequency gamma band, we then recomputed broadband
beamformer filters for these locations and extracted the individ-
ual source time courses for each subject and source location for
further analysis. Note that we only used baseline intervals (time

interval from −1000 to 0 ms with respect to stimulus onset) in
our analysis of AIS to ensure the stationarity of the underly-
ing processes. Note that differences in brain dynamics are also
expected in this baseline interval, as there is of course ongoing
visual experience.

In more detail, we constructed head models of each individual
subject from anatomical MRI for beamformer source reconstruc-
tion. To this end, first a regular source grid with a spacing of
1 cm was constructed in MNI space. After computing the (linear)
transformations from the MNI template head to each individual
subject’s anatomical MRI, these transformations were applied to
the source grid to obtain individual source grids in physical space
for each subject. After segmentation of the MRI to find the inner
boundary of the skull, the lead fields for the individual source grid
locations were then computed using a realistic single shell model
introduced by Nolte (2003).

Next, the cross spectral density (CSD) matrices were computed
for all trials for both patients and controls, separately for base-
line (−350 to−50 ms) and task intervals (75–375 ms) in the high
(60–120 Hz) gamma-band frequency range, using a multi-taper
method (center frequency 90 Hz, smoothing bandwidth ±30 Hz,
DPSS, 17 tapers). Based on the lead fields and the computed CSD
matrices, spatial filters were computed for each grid point using
a frequency domain beamformer (Gross et al., 2001) as provided
by FieldTrip, using real valued filter coefficients. To compensate
for the rather short time intervals underlying the computation of
CSD matrices, a matrix regularization of λ = 5% of the trace of
the CSD matrix was used. In order to avoid that statistical dif-
ferences arise because of different filters for the two intervals, we
computed common filters which are based on the combined CSD
matrices from both, task segments (face and no-faces) and the
corresponding baseline segments (Nieuwenhuis et al., 2008; Gross
et al., 2012). The source power estimate at each grid point was
computed by applying the corresponding common filter of this
grid point to the filtered trial data. This was done separately for
task and baseline segments of each subject.

To obtain common sources that responded to the percep-
tual closure task for all subjects and independent of their group
affiliation, a non-parametric randomization test (test-statistic:
cluster sum of dependent samples t-metric, Monte Carlo esti-
mate with 5000 randomizations, Maris and Oostenveld, 2007)
was computed based on source power data of all subjects. Using
a within-subject design on subject-wise source power for task
and baseline, activation-versus-baseline effects were identified;
t-metrics within a cluster were used to identify local extrema of
source power changes inside the significant clusters.

2.3. ANALYSIS OF ACTIVE INFORMATION STORAGE IN SOURCE TIME
COURSES

For further analysis of AIS based on source time courses, we
obtained these time courses at the identified source locations
that responded to the perceptual closure task, using a broadband
beamformer, so that AIS computation could draw on a signal
bandwidth of 10–150 Hz—the analysis of AIS at even lower fre-
quencies was not possible due to the finite length (1 s) of the
baseline data. On the three source time courses extracted for
the three cardinal spatial directions (x, y, z) at each location
we then performed a principal component analysis in order to
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determine the dominant dipole orientation (direction with the
largest variance), and kept only the signal for this direction. As
indicated above, AIS was computed using the Java Information
Dynamics Toolkit (Lizier, 2012), with a box kernel of a width of
0.5 standard deviations of the data, and a history length k of 10
time steps. Per subject and source, approximately 40.000 samples
entered the AIS analysis, composed of 1 s of baseline data per trial,
sampled at 300 Hz, repeated across approximately 66 correct and
artefact-free trials per condition, and two conditions. For statis-
tical comparison between ASD patients and controls we used a
randomization test, and corrected the significance threshold for
multiple comparisons across 12 sources using the false discovery
rate (FDR) with a threshold of q < 0.1, as suggested in Genovese
et al. (2002).

2.4. CORRELATION OF BAND-LIMITED SPECTRAL POWER,
AUTOCORRELATION DECAY TIME, AND ACTIVE INFORMATION
STORAGE

To investigate whether the obtained AIS values were driven by
spectral power changes, or contained information not accessible

by an analysis of spectral power, we computed the correla-
tion coefficients between spectral power in the 10–12 Hz α-,
the 13–15 Hz β-, the 25–60 Hz low frequency γ-, and the 60–
120 Hz high-frequency γ-bands. Spectral power within these
bands was computed per subject using a Hanning window
on the full baseline data followed by a fast Fourier transform
for frequencies up to 25 Hz. Above 25 Hz spectral power was
determined by a multitaper approach using 34, and 59 DPSS-
tapers for the bands from 25 to 60 Hz and from 60 to 120 Hz,
respectively.

In addition, we determined the autocorrelation decay time
(ACT) as a measure of linear memory time scales in the data. The
ACT was obtained by computing the autocorrelation function
and determining the lag at which the autocorrelation function
had dropped to a fraction of 1/e of its center peak.

3. RESULTS
3.1. SOURCES PARTICIPATING IN THE PERCEPTUAL CLOSURE TASK
Visual stimulation increased neural activity in the high-frequency
gamma band in several occipital, parietal, temporal and central

FIGURE 1 | MEG-beamformer source locations used for the analysis of

active information storage. MEG sources with enhanced power in the
high-frequency gamma band (60–120 Hz) upon visual stimulation with
Mooney face images (see Grützner et al., 2010 for stimulus details);
permutation test on t-metrics p < 0.05, cluster-based correction for
multiple comparisons. Source locations: 1—Primary motor cortex BA4a R
(10, −30, 80), 2—Superior parietal lobule 7PC R (30, −50, 70),

3—Premotor cortex BA6 L (−20, −20, 60), 4—Parietal lobe (60, −50, 50),
5—Precuneus/Superior parietal lobule 7P L (−10, −70, 40), 6—Broca’s area
BA44 L (−60, 10, 30), 7—Temporal lobe (50, −40, 10), 8—Visual cortex V2
BA18 R/V1 BA17 R (30, −50, 10), 9—Secondary somatosensory cortex/
Parietal operculum OP4 L (−60, −10, 10), 10—Hippocampus/Subiculum R
(30, −40, −10), 11—Right cerebellum (50, −90, −30), 12—Cerebellum
(20, −80, −50)
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cortical regions and in the cerebellum (p < 0.05, corrected)
(Figure 1), as expected from previous studies (Grützner et al.,
2010; Sun et al., 2012). Source locations of significantly
increased gamma-band power were: 1—Primary motor cor-
tex BA4a R (10, −30, 80), 2—Superior parietal lobule 7PC
R (30, −50, 70), 3—Premotor cortex BA6 L (−20, −20, 60),
4—Parietal lobe (60, −50, 50), 5—Precuneus/Superior pari-
etal lobule 7P L (−10, −70, 40), 6—Broca’s area BA44 L
(−60, 10, 30), 7—Temporal lobe (50, −40, 10), 8—Visual
cortex V2 BA18 R/V1 BA17 R (30, −50, 10), 9—Secondary
somatosensory cortex/Parietal operculum OP4 L (−60, −10,
10), 10—Hippocampus/Subiculum R (30,−40,−10), 11—Right
cerebellum (50,−90,−30), 12—Cerebellum (20,−80,−50). For

these locations broadband beamformer source time-courses for
the baseline interval were extracted and subjected to AIS-analysis
(recall that only baseline interval values were analyzed to ensure
stationarity of the data).

3.2. ACTIVE INFORMATION STORAGE
AIS-analysis revealed significantly reduced AIS in ASD in the
hippocampus (q < 0.1, FDR corrected) (Figure 2). At an uncor-
rected significance level (p < 0.05), we observed additional differ-
ences in visual cortex, primary motor cortex and premotor cortex.
At a purely descriptive level, in 11 out of 12 sources the observed
median AIS values were lower in the ASD group compared to
controls.

FIGURE 2 | Active information storage (AIS) results in ASD and control

groups. (Center) Source locations (spheres) overlaid on a standard MNI brain.
Sources are colored red or blue to indicate significant or non-significant

differences between groups, respectively. (Surround) Box and whisker plots
for the data of each investigated source as indicated by the number in the
subfigure’s title. For source locations see Figure 1.

Frontiers in Neuroinformatics www.frontiersin.org February 2014 | Volume 8 | Article 9 | 94

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Gómez et al. Predictable information in ASD

3.3. CORRELATION OF SPECTRAL POWER, AUTOCORRELATION DECAY
TIME, AND AIS

Spectral power in none of the investigated bands (10–12,
13–15, 25–60, and 60–120 Hz) was significantly correlated
with AIS values after correction for multiple comparisons
(Table 1)(minimum p-value reached by any correlation: p =
0.03, uncorrected), indicating that AIS provides informa-
tion that is at least partially independent of spectral power
indices (Figure 3). Moreover, correlation coefficients were mostly
negative—in contrast to what would be expected of the bias prop-
erties of the AIS estimator (see the companion paper on local AIS
in this Frontiers special topic Wibral et al., 2014 for details), further
supporting the independence of the two measures for our data.

Similarly, ACT showed a negative Pearson correlation with the
AIS (p < 0.034) (Figure 4).

4. DISCUSSION
In line with our initial hypothesis, we found reduced AIS in
individuals with ASD. More specifically, AIS was reduced in the
hippocampus (subiculum). As our study is the first of its kind,
extra care has to be taken to ensure both, an understanding mean-
ing of the results at the conceptual level, as well as a clear view of
the limitations of the current study. Therefore, we start by dis-
cussing two technical points related to a proper interpretation of
AIS; first, we clarify the relation between AIS and signal predic-
tion errors; second, we discuss the relationship of AIS and more
high level concepts of memory in a neural system. Next, we detail
the limitations of the current study in terms of small sample size
and region of interest analysis. After these technical points, we
discuss our findings in relation to known anatomical and cellular
changes in ASD. We close by discussing our finding in relation to
predictive coding theories of this disorder.

4.1. ACTIVE INFORMATION STORAGE AND SIGNAL PREDICTION
ERRORS

In the introduction, we pointed out how measures of informa-
tion storage may be useful tools to investigate predictive-coding
type of theories of cortical function (Rao and Ballard, 1999;
Friston et al., 2006; George and Hawkins, 2009; Bastos et al., 2012;
Grossberg, 2013). In this respect, it seems important to stress the
difference between the amount of predicted information—as mea-
sured by information storage—and the signal prediction error,
i.e., the amount of information not predicted in a signal (not

Table 1 | Correlation coefficients between AIS and spectral power,

and autocorrelation decay time (ACT) in the hippocampal source.

Frequency (Hz) Spearman Pearson

ρ p ρ p

10–12 −0.202 0.343 −0.444 0.030

13–25 −0.143 0.502 −0.364 0.080

25–60 −0.034 0.876 −0.194 0.364

60–120 0.117 0.586 −0.048 0.825

ACT −0.318 0.130 −0.434 0.034

to be confused with a neural prediction error in predictive cod-
ing theories). While the sum of these is the total information in
a process, this total information is not necessarily constant. In
fact, in most task-related studies we expect the neural processes
to be non-stationary, i.e., to have probability distributions chang-
ing across time, leading to changing total information. This, in
turn, results in predicted information (information storage) and
unpredicted information (prediction error) describing comple-
mentary aspects of the information processing system—and one
cannot be obtained from the other.

4.2. ACTIVE INFORMATION STORAGE, MEMORY, AND NEURAL
PROCESSING

While seemingly similar, AIS as an information theoretic mea-
sure should not be confused with high-level concepts of memory,
or the storage of information about the external world. Rather,
it describes the predictability and complexity of a neural pro-
cess. AIS is low for processes that produce little information, such
as a constant process, but also for unpredictable processes, such
as chaotic ones (Lizier et al., 2011). Only when sufficiently rich
dynamics and predictability meet, a high AIS value is obtained.
In the context of our data, high AIS values are linked to transi-
tions in the dynamics that are repeatedly seen across the multiple
trials used for analysis—albeit not necessarily at the same time.
Therefore, one source for reduced AIS values in the ASD group
could be a more erratic signal behavior across trials in base-
line dynamics between the stimuli. With respect to this baseline
dynamics it is important to note that the baseline activity is not
necessarily independent of stimuli and task. In this respect, the
reduced AIS in the baseline epochs in ASD could still be linked to
the specific stimulus material used here (faces, a social stimulus)
and the detection task. In how far our results can be generalized
for other experimental designs is an open question.

Correlation analysis between spectral power and AIS values
revealed that AIS provides additional information, not immedi-
ately accessible using an analysis of spectral power. In contrast,
the significant Pearson correlation between ACT and AIS indi-
cates that the AIS reflects also the linear memory in the process,
as would be expected. However, the correlation coefficient was
below 0.5, indicating that also for the comparison of ACT and
AIS, AIS yields additional useful information.

4.3. REDUCED ACTIVE INFORMATION STORAGE IN ASD
Our results showed that AIS values were reduced in the neu-
ral signals obtained from the hippocampus/subiculum. Other
sources showed reduction at least at an uncorrected significance
level (visual cortex, primary motor cortex, premotor cortex).
Before we proceed to the potential implications of these find-
ings, we will briefly discuss several reasons that warrant a cautious
interpretation of our results.

4.3.1. Limited sample size
Perhaps the most important reason for caution is the relatively
low number of patients in this study (n = 10), limiting statisti-
cal power. Therefore, our study should be understood as a pilot
study for a larger, normative study of AIS values in ASD. Such
a larger scale study seems highly promising as a close inspection
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FIGURE 3 | Correlation between spectral power and AIS in the

hippocampal source. Correlation between spectral power in the
10–12 Hz α-, the 13–15 Hz β-, the 25–60 Hz low frequency γ-, and

the 60–120 Hz high-frequency γ-bands (x-axes) and the active
information storage (y-axes). See Table 1 for details on correlation
coefficients.

of Figure 2 reveals that the mean and median AIS values in the
ASD group are lower in all investigated sources, except one (right
cerebellum). Despite the fact that none of these effects reaches sta-
tistical significance, the relatively uniform sign of the effect may
point to a more pervasive reduction of AIS in ASD. This, however,
can only be tested in a study with improved statistical power.

4.3.2. Region of interest analysis and magnetoencephalographic
detection of deep sources

Our focus on selected brain areas limits any statements on the
ubiquity of reduced AIS in ASD. The fact that we focus on
preselected brain areas (for purely practical reasons), clearly for-
bids any statements of the type “AIS is most strongly reduced
in brain area A” or “AIS is only reduced in brain area A.” Thus,
we can only link the current findings to literature on ASD-
related changes in the specific brain areas that were investigated
here. Furthermore, MEG source reconstruction is of limited
spatial precision. We therefore discuss our findings of reduced
AIS in the hippocampus/subiculum—where the analyzed source
was located—more broadly as reduced AIS in the hippocam-
pal region, and note the possibility of signal leakage from the
nearby amygdala (note, however, that the cellular organization
of the amygdala makes detectable MEG signals less likely to be
picked up). With respect to the hippocampus it is often ques-
tioned whether the sensitivity of MEG recordings is high enough
to capture this relatively deep source. However, a large body

of evidence has accumulated in recent years that confirms that
hippocampal activity can be reconstructed with modern MEG
devices, artefact suppression techniques, and beamformer source
reconstruction (Tesche et al., 1996; De Araújo et al., 2002; Hanlon
et al., 2005; Cornwell et al., 2008; Riggs et al., 2009; Taylor
et al., 2012). Moreover, nearby inferior temporal brain areas
are routinely localized using MEG, for example the fusiform
face area (Grützner et al., 2010); in addition, traces of thala-
mic activity have been recently revealed, using a combination of
MEG cross-frequency analyses and transfer entropy techniques
(Roux et al., 2013), and even auditory brain stem responses
have been localized using MEG (Parkkonen et al., 2009). We
therefore think it is safe to assume that our results indeed
derive from changes in activity patterns in the hippocampal
region.

4.4. THE HIPPOCAMPUS IN ASD
Interestingly, there is a number of anatomical findings of atypical
hippocampal structure in patients with ASD. At the cellular level,
increased cell packing density and reduced cell size was reported
by Bauman and Kemper (1994). Raymond et al. (1995) further
showed reduced dendritic branching of CA4 and CA1 cells . Blatt
et al. (2001) reported reduced binding of GABAa receptors in
the hippocampus. Furthermore, some rare Autism-linked point
mutations coding for to Neuroligins seem to selectively target
AMPA receptor-mediated neurotransmission in Hippocampus
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FIGURE 4 | Source time courses, power spectra and the correlation of

autocorrelation decay constant, and AIS for the hippocampal source.

(A) Exemplary dipole moment time course of a single trial (baseline) for the
hippocampal source. (B) Source spectral power for the hippocampal
source, separately averaged for the healthy controls (HC, blue), and the
ASD patients (ASD, red). Note that the spectrum was cut at 10 Hz as this
was the lowest frequency included in the AIS analysis. (C) Correlation plot
between the autocorrelation decay time (ACT) and the AIS. Data are shown
separately for healthy controls (HC, blue), and the ASD patients (ASD, red).
See Table 1 for details on correlation coefficients.

and dramatically change synaptic function in a mouse model of
autism (Etherton et al., 2011).

At the macroscopic level, an enlargement of the right hip-
pocampus was found across all studied age groups by Schumann
et al. (2004), and an enlargement of the left hippocampus by
Groen et al. (2010), Dager et al. (2007), and Nicolson et al. (2006)
also reported shape abnormalities of the hippocampus in ASD. In

addition, metabolic abnormalities in the hippocampus-amygdala
region (Otsuka et al., 1999) have been reported as well.

Taken together, these structural and cellular findings suggest
an involvement of hippocampal changes in the pathophysiology
of ASD. Our findings are compatible with this idea and add a
computational perspective to the neuroanatomical and cellular
evidence by indicating that brain signals from hippocampus have
less predictable information in patients with ASD. Next, we will
discuss how these findings tie in with predictive coding accounts
of ASD.

4.5. REDUCED AIS AND PREDICTIVE CODING THEORIES OF ASD
Given that the hippocampus is a plausible locus for changes in
information processing in ASD from an anatomical perspective—
how does the observation of reduced AIS in this brain area fit the
various theoretical accounts of information processing in ASD?

For a more detailed understanding of the meaning of a
reduction in AIS in relation to ASD, we have to consider first
that reductions in AIS may indicate various changes in cortical
dynamics—either a reduced dynamic richness of the neural pro-
cess captured in the measurement, a decrease of predictability, or
a combination of the two. Irrespective of the exact underlying
change in the dynamics, however, a brain area receiving signals
from another one with reduced AIS will inevitably be faced with
a signal that has less predictable information. We can therefore
state that information from cortical signals from one brain area
will be harder to predict internally by another brain area in ASD
patients.

If we look at this reduction in predictable information in
ASD from the perspective of predictive coding theory, we may
speculate that this reduction will result in difficulties in learn-
ing internal predictive models and in a less accurate model of
the external world. Taking into account additionally that internal
models should be organized hierarchically with internal models
in sensory areas lowest in the hierarchy, as suggested for exam-
ple by the hierarchical temporal model of George and Hawkins
(2009), and by the model of Kiebel et al. (2008), the fact that we
observe the most significant differences in hippocampus is par-
ticularly interesting. This is because the hippocampus resides at a
high level in these hierarchies (George and Hawkins, 2009), where
it would be most vulnerable to difficulties in learning of internal
models. Moreover, many anatomical, physiological and compu-
tational reasons suggest that deeper or more central models at
higher levels of the hierarchy entail dynamics that have greater
temporal depth (Kiebel et al., 2008), and therefore should have
more predictable information. One may speculate that this adds
to the visibility of changes in AIS deep into the hierarchy, e.g., in
hippocampus.

The fact that we obtained significantly reduced AIS values
specifically in the hippocampus is also remarkable in relation to
previous whole brain analyses of neuronal responses to explicit
manipulations of predictability—using temporal dependencies in
sequences of stimuli. For example, Strange et al. (2005) report
hippocampal selectivity for the predictability of stimuli, consis-
tent with the notion that the hippocampus is of central impor-
tance in the processing of temporal succession (MacDonald et al.,
2011). This processing of a temporal aspect of predictability
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in hippocampus fits comfortably with the hierarchical Bayesian
inference and predictive coding formulations of autism, when
combined with the changes in hippocampal processing reported
here. In other words, if altered hippocampal processing lead to a
loss of hierarchically deep encoding of hidden causes in the world,
this would necessarily entail a loss of deep temporal structure and
a failure to encode temporal regularities over extended periods of
time, and thereby global temporal context.

Such a loss of central or deep coherence in time and space has
also been proposed previously as a psychological mechanism that
explains many of the symptoms in ASD (“weak central coherence
theory,” Frith, 1989, but see Bernardino et al., 2012 for conflict-
ing data). This view indeed pre-dates modern perspectives from
the point of view of hierarchical inference and predictive cod-
ing (Pellicano and Burr, 2012), but is fully compatible with its
successors.

In sum, our data are fully compatible with predictive coding
accounts of ASD (e.g., Pellicano and Burr, 2012). In contrast, our
data are not compatible with theories that suggest enhanced sen-
sory representations, and/or lower physiological noise, as both of
these should lead to increased rather than reduced AIS values,
which was not observed. Thus, our data favor accounts of autism
in terms of compromised top–down processing.

4.6. AIS AND PREVIOUS STUDIES ON SIGNAL-ENTROPY AND
COMPLEXITY IN ASD

Several previous studies have analyzed brain activity in ASD
by means of complexity and/or entropy measures. For instance,
Catarino et al. (2011) analyzed EEG data using multi-scale
entropy, which quantifies the complexity of a physiological sig-
nal by measuring entropy across multiple time scales. Their
results demonstrated a complexity reduction in autism group
in comparison with controls, especially over tempo-parietal and
occipital sensors. Using a modified version of multi-scale entropy,
a decrease in resting-state EEG complexity in children at high risk
for ASD has been reported (Bosl et al., 2011). In another study,
Ahmadlou et al. (2010) reported significant differences at several
EEG locations using the fractal dimension algorithms proposed
by Higuchi and Katz. Finally, a statistically significant reduction
in Lempel-Ziv complexity was found in ASD group in compar-
ison with controls, at EEG electrodes F7, F3, and T5 (Sheikhani
et al., 2007). All of these previous results are fully compatible
with our findings of reduced AIS, as a reduced entropy limits also
the maximally possible AIS. In addition, the findings of reduced
Lempel-Ziv complexity align well with decreased AIS, as the
Lempel-Ziv algorithm entails cataloguing recurrent events and
this is tightly linked to predictable recurrence inside the repeated
sequences in the signals. Our results extend these previous find-
ings by localizing the dominant changes to the hippocampus.
Moreover, the use of AIS, rather than more generic measures
of entropy or complexity allows a straightforward interpretation
in terms of component processes of information processing, i.e.,
information storage.

5. CONCLUSION
In this study, we present the first application of information the-
oretic measures of information storage to experimental neural

data. Using MEG and source signal reconstruction from 12
selected brain areas, we show that AIS is reduced in the hippocam-
pus of individuals with ASD. Future studies on larger samples of
patients, combined with whole brain analyses, will have to show
in how far our results generalize across brain areas, and to broader
populations of ASD patients. The relatively uniform sign of the
observed AIS differences across all investigated brain areas sug-
gests that reduced AIS may be a pervasive change of information
processing in ASD.
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During rest, the human brain performs essential functions such as memory
maintenance, which are associated with resting-state brain networks (RSNs) including the
default-mode network (DMN) and frontoparietal network (FPN). Previous studies based
on spiking-neuron network models and their reduced models, as well as those based
on imaging data, suggest that resting-state network activity can be captured as attractor
dynamics, i.e., dynamics of the brain state toward an attractive state and transitions
between different attractors. Here, we analyze the energy landscapes of the RSNs by
applying the maximum entropy model, or equivalently the Ising spin model, to human RSN
data. We use the previously estimated parameter values to define the energy landscape,
and the disconnectivity graph method to estimate the number of local energy minima
(equivalent to attractors in attractor dynamics), the basin size, and hierarchical relationships
among the different local minima. In both of the DMN and FPN, low-energy local minima
tended to have large basins. A majority of the network states belonged to a basin of
one of a few local minima. Therefore, a small number of local minima constituted the
backbone of each RSN. In the DMN, the energy landscape consisted of two groups of
low-energy local minima that are separated by a relatively high energy barrier. Within each
group, the activity patterns of the local minima were similar, and different minima were
connected by relatively low energy barriers. In the FPN, all dominant local minima were
separated by relatively low energy barriers such that they formed a single coarse-grained
global minimum. Our results indicate that multistable attractor dynamics may underlie the
DMN, but not the FPN, and assist memory maintenance with different memory states.

Keywords: resting-state network, maximum entropy model, Ising model, attractor dynamics, functional

connectivity

INTRODUCTION
In the last few decades, a line of neuroimaging studies have
accumulated evidence supporting that spontaneous brain activity
during rest is not random enough to be averaged out in statistical
analysis (Biswal et al., 1995; Raichle et al., 2001; Greicius et al.,
2003). The brain activity in resting states shows consistent spatial
patterns called the resting-state networks (RSNs) (Raichle et al.,
2001; Greicius et al., 2003; Fox et al., 2005; Dosenbach et al., 2006;
Fair et al., 2009). Connections between the RSNs and cognitive
functions have been revealed in previous studies. In particular, the
default-mode network (DMN), one of the representative RSNs, is
suggested to be engaged in self-referential mental processes and
maintenance of long-term memory (Raichle et al., 2001; Greicius
et al., 2003; Buckner et al., 2008; Uddin et al., 2009). The fronto-
parietal network (FPN), another RSN, is known to be recruited
during cognitive tasks with relatively high loads that require con-
tinuous attention (Dosenbach et al., 2006; Corbetta et al., 2008;
Fair et al., 2009).

Most of these results on the RSNs were derived from correla-
tions between slow oscillations of brain activity (0.01–0.1 Hz) in
different brain regions. However, the neural activity as observed

in the RSNs at a macroscopic spatial scale is dynamic on a much
shorter time scale. Experimental and computational studies indi-
cate that within a RSN, a group of brain regions is specifically
activated within a specific time window, and that different groups
of regions are activated during different time windows (Honey
et al., 2007; Chang and Glover, 2010; Kiviniemi et al., 2011;
Allen et al., 2012; Hutchison et al., 2013). Such spatio-temporal
dynamics of the RSNs may facilitate, for example, the flexibility
of human cognitive functions (Allen et al., 2012).

These results pertaining to the dynamics of the resting-state
brain activity suggest that the activity of the RSNs may be cap-
tured in terms of transitions among locally stable states, i.e.,
attractor states (Deco et al., 2012, 2013; Nakagawa et al., 2013).
In fact, beyond the description of RSNs, attractor network mod-
els of spiking neurons and firing-rate models derived by the
reduction of spiking-neuron models have been used to model
cortical dynamics (for reviews, see Barbieri and Brunel, 2008;
Wang, 2009; Braun and Mattia, 2010; Knierim and Zhang, 2012).
In particular, the role of attractor dynamics has been implicated
in brain activity during various cognitive functions such as asso-
ciative long-term memory, non-spatial working memory, spatial
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working memory, place field recognition, decision making, and
attention. The aforementioned models are particularly successful
in describing persistent activity recorded during these cognitive
tasks. Although attractor network models may be too simple to
describe fast transients of brain activity accurately (Rabinovich
et al., 2008; Rabinovich and Varona, 2011), these experimental
and numerical results are consistent with the notion that brain
dynamics are multistable and that the brain’s state travels from
one state to another depending on, for example, external input
and endogenous cognitive processes.

In associative memory models, an energy function often exists
such that each state possesses a corresponding energy value and a
state with a low energy is taken with a large probability (Hopfield,
1982; Hertz et al., 1991). In this case, the attractor dynamics can
be described by a trajectory that represents a dynamical state
of the brain in an energy landscape. Therefore, estimating the
energy landscapes of brain activity contributes to understanding
of brain dynamics from the perspective of attractor dynamics.
In the present study, we investigate the energy landscapes of
resting-state brain activity using the functional magnetic reso-
nance imaging (fMRI) data previously collected by our group
(Watanabe et al., 2013). In the previous work based on these data,
we demonstrated that the so-called pairwise maximum entropy
model (MEM) (Schneidman et al., 2006; Shlens et al., 2006; Tang
et al., 2008; Yu et al., 2008; Ohiorhenuan et al., 2010; Santos et al.,
2010; Ganmor et al., 2011) described the activities of the DMN
and FPN with high accuracy (Watanabe et al., 2013). For the fitted
models from that study and randomized RSNs, here we calcu-
lated the energy of all the brain states and identified local minima
of energy that would correspond to the attractors in attractor
dynamics. Then, we applied the so-called disconnectivity graph
method (Becker and Karplus, 1997) to the empirical and arti-
ficial energy landscapes of the RSNs. We found that the energy
landscapes of the DMN and FPN are qualitatively different.

MATERIALS AND METHODS
DATA ACQUISITION AND FITTING OF THE PAIRWISE MEM
To examine the energy landscape of the RSNs, we used the param-
eter values estimated in our previous study in which we fitted the
so-called pairwise MEM to the resting-state fMRI data (Watanabe
et al., 2013) (Figure 1A). The fMRI data were recorded while
six healthy right-handed subjects (aged 20–23 years; three males)
were resting inside a 3T MRI scanner (Philips Achieva X 3T Rel.
2.6, Best, The Netherlands; gradient-echo echo-planar sequences:
TR = 9.045 s, TE = 35 ms, flip angle= 90◦, resolution= 2× 2×
2 mm3, 75 slices). In total, 17,820 volumes of resting-state fMRI
images were obtained. The entire procedure for the MRI scanning
was approved by the institutional review board of The University
of Tokyo, School of Medicine.

The pairwise MEM and the fitting procedure are outlined as
follows. Readers interested in the detailed procedures should refer
to our previous article (Watanabe et al., 2013). First, we con-
ducted a conventional preprocessing procedure that consisted of
slice-timing correction, spatial normalization, spatial smoothing,
motion correction, and temporal band-pass filtering. Second, to
normalize the fMRI data, we subtracted the average from the sig-
nals and divided the obtained values by their standard deviation

for each brain region. Third, we binarized the normalized signals
with a threshold of 0.1. The binarized activity at brain region i and
discrete time t, denoted by σt

i , is either active (+1) or inactive (0).
The network state at time t is described by

Vt = [σt
1, σ

t
2, · · · , σt

N

]
, (1)

where N is the number of the brain regions in a RSN. It should
be noted that there are 2N network states. The empirical acti-
vation probability of region i, denoted by 〈σi〉 , is equal to

(1/T)
∑T

t= 1 σt
i , where T is the number of images. The empirical

joint activation probability of regions i and j, denoted by
〈
σi σj

〉
,

is given by (1/T)
∑T

t=1 σt
iσ

t
j .

Fourth, we adopted the distribution of the network state that
maximized the entropy under the restriction that 〈σi〉 and

〈
σi σj

〉

(1 ≤ i ≤ N, 1 ≤ j ≤ N, i �= j) for the inferred model were equal
to the empirical values. Such a distribution is known to have the
form

P (Vk) = e−E(Vk)/

2N∑

�=1

e−E(V�), (2)

where P(Vk) is the probability of the k th network state Vk, and

E (Vk) = −
N∑

i= 1

hiσi (Vk)− 1

2

N∑

i= 1

N∑

j= 1,j �=i

Jijσi (Vk)σj (Vk) (3)

is the energy of network state Vk. Variable σi(Vk) indi-
cates the value of σi (i.e., 1 or 0) under network state Vk.
For the inferred model, the expected activation probability,
〈σi〉m , and the expected pairwise joint activation probability,
〈
σi σj

〉
m, are given by 〈σi〉m =

∑2N

�=1 σi(V�)P(V�) and
〈
σi σj

〉
m =∑2N

�=1 σi(V�)σj(V�)P(V�), respectively. We determined hi and Jij

by iteratively adjusting 〈σi〉m and
〈
σi σj

〉
m toward 〈σi〉 and〈

σi σj
〉
, respectively, with a gradient descent algorithm. As a

result, we obtained hi (1 ≤ i ≤ N) and Jij(= Jji; 1 ≤ i ≤ N, 1 ≤
j ≤ N, i �= j) for a RSN (DMN or FPN) (Figure 1A). Here, hi is
considered to represent the basal brain activity of region i, i.e.,
the expected brain activity when the region is isolated. Jij repre-
sents the functional interaction between regions i and j. The brain
regions constituting each RSN, with the labels being indicated
in Figure 1A, were determined on the basis of previous studies
(Dosenbach et al., 2006; Fair et al., 2009).

DISCONNECTIVITY GRAPH
The energy landscape of a RSN is specified by two factors: the
energy E(Vk) of the 2N network states Vk, which are regarded
as nodes in a network of network states; and the connectivity
between different nodes (i.e., network states). One RSN inferred
by the pairwise MEM defines an energy landscape. Two nodes are
defined to be adjacent by a link if and only if they take the opposite
binary activity at just one brain region (i.e., one σi; see Figure 1C
for the case of N = 4).

We analyzed the energy landscape for each RSN using dis-
connectivity graphs (Becker and Karplus, 1997; Wales, 2010). In
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FIGURE 1 | (A) Parameter values estimated for the two RSNs. The horizontal
bars show the basal brain activity (hi ). The square matrices show the
functional connectivity between pairs of regions (Jij ) as determined by the
fitting of the pairwise MEM. The obtained parameter values were identical to
those obtained in our previous study (Watanabe et al., 2013). DMN, default
mode network; FPN, fronto-parietal network; ant mPFC, anterior medial
prefrontal cortex; vmPFC, ventro-medial prefrontal cortex; Lt, left; Rt, right;
SFG, superior frontal gyrus; ITG, inferior temporal gyrus; Parahippo,
parahippocampal gyrus; PCC, posterior cingulate cortex; DLPFC, dorso-lateral

prefrontal cortex; MFG, middle prefrontal cortex; Mid, middle; CC, cingulate
cortex; IPL, inferior parietal lobule; IPS, inferior parietal sulcus. (B)

Distribution of energy for each network. To generate the histograms, we
weighted each state equally, i.e., not with the probability that the state is
realized. The results for the shuffled and Gaussian networks are based on a
single realization of the network. (C) Concept of neighbors in a network of
network states. For illustration, we set N = 4. The circles represent nodes,
i.e., network states. A link between a pair of nodes indicates that the two
nodes are adjacent.
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short, a disconnectivity graph represents the (dis)connectivity
between local minima of the energy. It has also been used to study
the Ising spin model, which is equivalent to the pairwise MEM,
and its variants (Garstecki et al., 1999; Zhou and Wong, 2009;
Zhou, 2011). In the context of the spin systems, a disconnectiv-
ity graph with a continuous energy threshold, where the energy
threshold is defined in the following, is also referred to as a barrier
tree (Fontanari and Stadler, 2002; Hordijk et al., 2003).

We constructed disconnectivity graphs in the following way:
(1) A local minimum is a node whose energy is smaller than
those of all the N neighboring nodes. We exhaustively examined
whether each of the 2N nodes is a local minimum. (2) We set a
threshold energy level, denoted by Eth, to the largest energy level
realized by (at least) one of the 2N nodes. (3) We removed the
nodes whose energy level was higher than Eth. We also removed
all links incident to a removed node. In fact, no node or link
was removed when the threshold was equal to the largest possible
energy level. Some nodes and links were removed when we revis-
ited this step after lowering the Eth value. (4) We judged whether
each pair of local minima was connected by a path in the reduced
network. In general, the local minima are classified into some
connected components. (5) We repeated steps (3) and (4) after
moving Eth down to the next largest energy level realized by a
node. Finally, we obtained a reduced network of the local min-
ima in which each local minimum was isolated. (6) On the basis
of these results, we built a disconnectivity graph, i.e., a hierarchi-
cal tree whose leaves (i.e., terminal nodes down in the tree) were
the local minima. The vertical position of the leaves and inter-
nal nodes of the disconnectivity graph represents an energy value.
An internal node represents the point at which the branching
of different groups of local minima takes place. In other words,
local minima that are contained in different branches belong to
distinct connected components for an Eth larger than the value
at the common internal root node. Local minima in the differ-
ent branches belong to the same connected component for Eth

smaller than this value.

BASIN SIZE OF LOCAL MINIMUM
We then calculated the size of the basin of each local minimum
as follows (Stillinger and Weber, 1982, 1984; Becker and Karplus,
1997; Zhou, 2011). We first selected a starting node i, which was
one of the 2N nodes in the network of network states. Then, we
identified the neighbor of node i possessing the smallest energy
level and denoted it by j. If E(Vj) < E(Vi), we moved to node j.
This move is in accordance with the steepest descent at node i.
If such a node j did not exist, we remained at node i. In the lat-
ter case, i is a local minimum. If we moved to node j, we looked
for the steepest descent from node j and continued to travel until
we arrived at a local minimum. The starting node i belongs to
the basin of the local minimum that is finally reached. We per-
formed the same procedure for all i. The basin size of a local
minimum is the fraction of nodes that belong to the basin of the
local minimum.

ENERGY BARRIER
For a given disconnectivity graph, we estimated the energy bar-
rier opposing transitions between two local minima denoted by

i and j. Specifically, we defined the energy barrier between i
and j as min

[
Eb(Vi, Vj)− Vi, Eb(Vi, Vj)− Vj

]
, where Eb(Vi, Vj)

is the threshold energy level at which the disconnectivity graph
branches into a group of nodes that includes i and a group that
includes j. Any path connecting i and j in the network of network
states contains a node whose energy is at least Eb(Vi, Vj). If the
energy barrier is high, the transition of network states between
i and j occurs at a small rate at least in one direction. In fact,
the transition occurs at different rates in the two directions if
Vi and Vj are different (Becker and Karplus, 1997). However, for
simplicity, we used the symmetric definition given above (Zhou,
2011).

HIERARCHICAL CLUSTERING
We carried out hierarchical clustering of the brain regions and
local minima as follows by using MATLAB. First, we set a distance
threshold, dth to the smallest Hamming distance realized by a pair
of nodes. If the distance between a node pair was equal to or less
than the current dth value, we bridged the two nodes through a
parent node, which is located at dth along the axis in the dendro-
gram. We repeated this procedure by gradually elevating dth until
all nodes were connected as a single dendrogram.

RANDOMIZED RSNs
As controls, we calculated the disconnectivity graph and other
properties of the energy landscape for two types of randomized
MEMs. We generated the first type of network by randomly per-
muting hi (1 ≤ i ≤ N) of the original MEM and doing the same
for Jij(= Jji; 1 ≤ i ≤ j ≤ N). We refer to the generated network as
a shuffled network. We also generate a second type of randomized
network by independently drawing the values of hi (1 ≤ i ≤ N)

from a normal distribution with the same mean and standard
deviation as those of the original MEM and doing the same for
Jij(= Jji; 1 ≤ i ≤ j ≤ N). We refer to the generated network as a
Gaussian network.

RESULTS
LOCAL MINIMA AND THE DISCONNECTIVITY GRAPH
The parameter values of the pairwise MEM inferred for the DMN
and FPN are shown in Figure 1A. The distribution of the energy
on the basis of all the 2N network states is shown in Figure 1B
for the two RSNs. The distribution of the energy was unimodal
for both RSNs. The shape of the distribution did not signifi-
cantly differ from that obtained from either of the randomized
networks (for both shuffled and Gaussian networks, P > 0.6 in
the Kolmogorov–Smirnov test; Figure 1B).

The inferred MEMs for the DMN and FPN had 21 and 4 local
minima, respectively. The activity pattern of each local minimum
is shown in Figure 2A. In both RSNs, the probabilities that differ-
ent local minima were visited were similar between the empirical
data and the pairwise MEM (Figure 2B). The similarity is partic-
ularly evident for the local minima with a low energy (i.e., large
probability of the visit) in the DMN. In fact, the error averaged
over all 21 local minima in the DMN was 260%. Here, we defined
the error for a local minimum as the absolute difference between
the empirical and estimated probabilities that the local minimum
is realized, divided by the empirical probability. However, the
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FIGURE 2 | (A) Activation patterns of the local minima. The IDs of the local
minima are shown on the horizontal axis. The local minima are sorted in order of
ascending energy. Each local minimum is specified by an activation pattern,
which is an N-dimensional binary vector. The white and gray elements indicate
active and inactive brain regions, respectively. (B) Comparison of the probability
that the local minima are realized between the empirical data and the model.
Each circle represents a local minimum. (C) The number of local minima for the

original RSNs and the average number of local minima for the randomized
RSNs, where the average is taken over 100 realizations of each type of the
randomized networks. Error bars show the standard deviation. ∗∗P < 0.01,
Bonferroni-corrected. (D) Disconnectivity graphs. The vertical axis represents
the energy. The numbers immediately under the leaves (i.e., end nodes)
represent the IDs of the local minima as defined in panel (A). The energy value
at the bottom end of a leaf is equal to that of the corresponding local minimum.
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large error was due to three outliers with small probabilities (ID
12, 13, and 16). If the three minima were excluded, the averaged
error was 33.2%. Moreover, the error averaged over the 11 local
minima with the lowest energy values (i.e., largest probabilities)
was 26.2%. In the FPN, the error averaged over all four local min-
ima was 18%. Together with these error values, the results shown
in Figure 2B justify the use of local minima of the pairwise MEM
in the following analysis as stochastic footprints of the network
state.

We calculated the number of local minima for 100 realiza-
tions of the two types of randomized RSNs. For the DMN, the
number of local minima was significantly larger for the original
network than for either type of randomized network (P < 0.01,
Bonferroni-corrected; Figure 2C). For the FPN, there was no sig-
nificant difference in the number of local minima between the
original and randomized networks.

We then constructed disconnectivity graphs to illustrate rela-
tionships between the local minima. The disconnectivity graphs
for the original RSN and one realization for each type of random-
ized network are shown in Figure 2D, separately for the DMN
and FPN. In the DMN, the structure of the empirical discon-
nectivity graph was apparently more complex than that of the
randomized networks, partly because the former had more local
minima than the latter (Figure 2C). The disconnectivity graph of
the DMN has a complex and forked structure relative to that of
the FPN. In contrast, the disconnectivity graph of the FPN seems
not as complex as the randomized networks and is composed of a
single dominant minimum with weak fluctuations, which is one
of the main subtypes of the disconnectivity graph (Becker and
Karplus, 1997; Wales et al., 1998).

CLUSTERING OF BRAIN REGIONS AND LOCAL MINIMA
To probe the relationships between different local minima, we
performed hierarchical clustering on the basis of similarity
between local minima. The (dis)similarity between two local min-
ima was defined by the Hamming distance between the activity
patterns of the local minima, i.e., the number of brain regions at
which the two local minima possess the opposite binary activity.
We constructed a dendrogram for each RSN (see Materials and
Methods for the algorithm).

The dendrogram shown in Figure 3A suggests that, in the
DMN, bilateral brain regions show similar activation patterns in
most of the local minima. In particular, in the parahippocampal
gyri, superior frontal gyri, and lateral parietal region, the bilat-
eral regions had exactly the same activation patterns in all the
local minima. In contrast, the resemblance of bilateral regions is
uncommon in the FPN. According to the dendrogram, a region
in a bilateral region pair was not the nearest to its counterpart,
except in the case of the precuneus.

We also quantified the similarity among the local minima by
the same hierarchical clustering algorithm (Figure 3B). In the
DMN, local minima with the lowest energies (e.g., local min #1
to # 6) were relatively dissimilar. The energy landscape of the
DMN is composed of relatively distinct local minima that yield
mutlistability. In contrast, in the FPN, the local minima with the
lowest energies (e.g., #1 and #2) were more similar to each other
than in the case of the DMN. Therefore, we consider that the

energy landscape of the FPN is essentially composed of a single
global minimum. We provide support of this interpretation in the
following sections.

SIZE OF BASIN
To further characterize the energy landscape of the two RSNs, we
calculated the size of the basin of the local minima. The relation-
ship between the size of the basin and the energy value is shown
in Figure 4A. In the figure, an open circle represents a local min-
imum. In both RSNs, a local minimum with a small energy value
tended to have a large basin. This tendency was even stronger
in the randomized networks. In both empirical and randomized
RSNs, a small number of the local minima with the lowest energy
values attracts a majority of the network states (in the sense of
the steepest descent walk in the energy landscape). The fraction
of network states attracted to one of the local minima with the
lowest energies is shown in Figure 4B. For example, when the
value at the fraction of local minima is equal to 0.5, the accumu-
lated size of basins is over 0.8; that is, when the half of the local
minima with the lowest energies is considered, over 80% of the
network states belong to the basin of one of these local minima.
In fact, only the six local minima with the lowest energies (ca.
28% of the local minima) attracted more than 80% of the net-
work states in the DMN (solid line in Figure 4B). In the FPN, the
local minimum with the lowest energy (25% of the local minima)
attracted approximately 60% of the network states (dashed line in
Figure 4B).

These results suggest that the lower part of the disconnectiv-
ity graph comprising the local minima with the smallest energies,
i.e., a connected tree that contains leaves near the bottom in
Figure 2D, reflects the backbone of the energy landscape. A visual
inspection of Figure 2D reveals that the lower part of the discon-
nectivity graph for the DMN comprises two main branches, one
consisting of local minima labeled 6, 9, 3, and 5, and the other
consisting of local minima labeled 8, 10, 7, 4, 2, and 1. In con-
trast, the lower part of the disconnectivity graph for the FPN is
composed of a single main branch.

ENERGY BARRIER
To further quantify the difference between the DMN and FPN,
we evaluated the transition rates between local minima by calcu-
lating the energy barrier between each pair of local minima. If
the barrier is high relative to unity, transitions between the two
local minima are rare, at least in one direction. The energy bar-
riers for all the pairs of local minima are shown in Figure 5A for
each RSN. In the figure, the local minima are sorted according to
the energy value. Figure 5A suggests that, in the DMN, transitions
among the major local minima accompany high energy barriers
such that they occur at small rates. In contrast, in the FPN, tran-
sitions between local minima occur relatively easily at least in one
direction because of the low barriers that separate them.

Subsequently, we calculated the average of energy barrier
between pairs of local minima with the lowest energies. This
amounts to averaging the energy barrier values contained in
the leading principal minor of the matrix shown in Figure 5A
(i.e., top left square submatrix) excluding the diagonal elements.
The results are shown in Figure 5B as a function of the size
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FIGURE 3 | Hierarchical clustering of the brain regions and local

minima. Each row represents the activity pattern of a brain region in
different local minima. Each column represents the activity pattern of a
local minimum in different brain regions. (A) Dendrogram showing the

similarity among the brain regions in a hierarchical fashion. The
similarity is measured by the Hamming distance between the activity
patterns of two local minima. (B) Dendrogram showing the similarity
among the local minima.
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FIGURE 4 | (A) Relationship between the size of basin and the energy of
local minima. In the two panels on the left, the numbers indicate the IDs of
local minima used in Figure 2. (B) Accumulated size of the basin for the local
minima. The vertical axis shows the fraction of the network states that

belong to the basin of one of the local minima with the lowest energies. This
quantity is plotted against the fraction of local minima with the lowest
energies. The solid and dashed curves indicate the results for the DMN and
FPN, respectively.

FIGURE 5 | (A) Energy barrier between pairs of local minima. The local
minima are sorted in order of ascending energy. (B) Average of the energy
barrier between pairs of local minima with the lowest energies. For example,

the values at a fraction 0.5 of local minima indicate the average when we
consider only pairs of the local minima whose energies are among the
lowest 50%.
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of the minor (i.e., the number of local minima with the low-
est energies included in the analysis). As shown in Figure 5B,
the averaged energy barrier was much larger in the DMN
than in the FPN (P < 0.01 in one-sample t-tests when the
linear size of the minor is 25 and 50% of the entire DMN,
respectively. The mean value of the FPN was used as a base-
line in the t-tests). The difference between the two RSNs was
larger when fewer local minima with the lowest energies were
considered.

The results shown in Figure 5 imply that, in the DMN, the
brain activity may linger in the neighborhood of one of the
several local minima for some time and wander from one to
another. This interpretation is consistent with the result that the
major local minima exhibit distinct activation patterns in the
DMN (Figure 3B). In contrast, the brain activity in the FPN
may tend to stay near the global minimum albeit with some
fluctuations.

DISCUSSION
We found that the DMN has dominant local minima that are rel-
atively distinct in terms of the activation pattern and an energy
barrier of the order of unity separating them from one another.
The observed energy barrier is not large enough for the local
minima to be justified as metastable states. However, if the brain
state gradually changes, it may linger near a major local min-
imum for some time before transiting to another minimum.
Therefore, roughly speaking, the present result is consistent with
the concept of the multistable attractor dynamics for the RSN, in
which the brain state is considered to travel from one relatively
stable state to another, either in a spontaneous manner or trig-
gered by external input (Deco et al., 2012, 2013). Such attractor
dynamics may facilitate, for example, large capabilities of com-
putation (Deco et al., 2013). It should be noted that we did not
consider dynamics in the present study. Hence, dynamical vari-
ants of the present study warrant future work. Accounting for
the dynamics will require better temporal resolution in imaging
experiments.

In the DMN, the major local minima with small energies
and large basins can be roughly classified into two groups sep-
arated by a relatively high energy barrier (Figures 3B, 5A). One
group consists of the local minima in which the posterior brain
regions are activated (local minima #1 and #2) and accounts
for approximately 50% of the network states. The other main
group consists of those in which the medial prefrontal regions
are mainly activated (local minima #3, #4, and #5) and domi-
nates approximately 30% of the network states. Therefore, the
DMN is suggested to have two major coarse-grained states
marked by posterior-centric activation (the first group) and
frontal-centric activation (the second group). Previous studies
suggested that the RSNs could be described by attractor dynam-
ics (Deco et al., 2012, 2013). Our empirical evidence indicat-
ing the existence of two major coarse-grained states adds to
these previous arguments. At a cellular level, multistable neu-
ral activity in the hippocampus represents multiple memory
items (Leutgeb et al., 2005; Wills et al., 2005; Knierim and
Zhang, 2012). The present macroscopic results lend a support
to the possibility that multistable activity patterns in the DMN,

which includes the parahippocampal cortex, underlie various
cognitive functions such as memory maintenance and self refer-
ential thought (Raichle et al., 2001; Buckner et al., 2008; Uddin
et al., 2009).

In contrast, the energy landscape of the FPN appears to
be roughly monostable. In fact, the local minima were sepa-
rated by low energy barriers (Figure 5A). A possible reason for
the absence of multistability is that the activity pattern of the
FPN during rest may be different from that when subjects are
performing cognitively demanding tasks. The FPN was origi-
nally determined as a brain network for attentional cognition
(Dosenbach et al., 2006; Corbetta et al., 2008). We should inves-
tigate the activity of the FPN during tasks to better understand
the FPN.

An obvious limitation of the present study is that we have
not directly examined attractor dynamics. Instead, we focused
on the energy landscape of the network states constructed from
the probability distribution of network states. There are several
implicit assumptions underlying our energy landscape analy-
sis. First, the network state was assumed to change gradually.
Otherwise, a network state could jump from one local mini-
mum to another by simultaneously flipping the binary states
of multiple regions without passing through a network state
that realizes the energy barrier. Our analysis, which exploits
the concept of the energy barrier, would then be invali-
dated. The time window for constructing snapshots of brain
activity should be small to track possibly step-by-step transi-
tions of the network state. We followed our previous study
(Watanabe et al., 2013) and used a time window of approx-
imately 9 s because it was effective at decorrelating different
snapshots. It should be noted that the energy landscape does
not depend on the temporal resolution if we have sufficiently
long data. Analyzing data with improved time resolution may
be of interest. We should keep it in mind that the dynam-
ics may not be gradual in fact; non-gradual transition can
occur when fMRI signals at different brain regions are tightly
synchronized.

Second, an energy barrier analysis implicitly assumes that state
transitions depend on the difference between the energy val-
ues in the current and subsequent network states. Therefore,
we implicitly ignored the effect of past network states on
state transitions. To assess the extent of the history depen-
dence of the trajectory is a relevant question. Addressing
this question calls for a large amount of data; hence, it
should be investigated in tandem with the effect of time win-
dow size because correlated snapshots would lead to stronger
history dependence under the discrete time frame whose
unit is defined by the size of the time window of the
measurement.
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Diffusion-weighted (DW) magnetic resonance imaging (MRI) is a non-invasive imaging
method, which can be used to investigate neural tracts in the white matter (WM) of the
brain. Significant partial volume effects (PVEs) are present in the DW signal due to relatively
large voxel sizes. These PVEs can be caused by both non-WM tissue, such as gray matter
(GM) and cerebrospinal fluid (CSF), and by multiple non-parallel WM fiber populations. High
angular resolution diffusion imaging (HARDI) methods have been developed to correctly
characterize complex WM fiber configurations, but to date, many of the HARDI methods
do not account for non-WM PVEs. In this work, we investigated the isotropic PVEs caused
by non-WM tissue in WM voxels on fiber orientations extracted with constrained spherical
deconvolution (CSD). Experiments were performed on simulated and real DW-MRI data. In
particular, simulations were performed to demonstrate the effects of varying the diffusion
weightings, signal-to-noise ratios (SNRs), fiber configurations, and tissue fractions. Our
results show that the presence of non-WM tissue signal causes a decrease in the precision
of the detected fiber orientations and an increase in the detection of false peaks in
CSD. We estimated 35–50% of WM voxels to be affected by non-WM PVEs. For HARDI
sequences, which typically have a relatively high degree of diffusion weighting, these
adverse effects are most pronounced in voxels with GM PVEs.The non-WM PVEs become
severe with 50% GM volume for maximum spherical harmonics orders of 8 and below,
and already with 25% GM volume for higher orders. In addition, a low diffusion weighting
or SNR increases the effects. The non-WM PVEs may cause problems in connectomics,
where reliable fiber tracking at the WM–GM interface is especially important. We suggest
acquiring data with high diffusion-weighting 2500–3000 s/mm2, reasonable SNR (∼30)
and using lower SH orders in GM contaminated regions to minimize the non-WM PVEs
in CSD.

Keywords: diffusion MRI, fiber orientation, partial volume effect, constrained spherical deconvolution, gray matter

INTRODUCTION
Diffusion-weighted (DW) magnetic resonance imaging (MRI) is
a non-invasive imaging method to investigate tissue microstruc-
ture via the measurement of the displacement of water molecules
(Stejskal and Tanner, 1965; Jones, 2010). Diffusion in white mat-
ter (WM) neural tracts is anisotropic: it is larger parallel to the
tract than in the perpendicular direction. In liquid, such as cere-
brospinal fluid (CSF), diffusion is isotropic, i.e., equal in all
directions. This diffusion property can be exploited to extract
fiber orientations from DW data and investigate neural tracts in
the brain WM using fiber tractography algorithms (Conturo et al.,
1999; Basser et al., 2000; Mori and van Zijl, 2002; Jones, 2008;
Tournier et al., 2010; Jeurissen et al., 2011).

The image resolution in DW-MRI is typically about 2–3 mm in
all directions. Thus, significant partial volume effects (PVEs) are
present in the measured signal (Alexander et al., 2001; Vos et al.,
2011). These may be caused by multiple non-parallel neural tracts
passing through a voxel (Vos et al., 2011; Jeurissen et al., 2013),

or several tissue types present in a voxel (Pasternak et al., 2009;
Metzler-Baddeley et al., 2012a).

Currently, the most common method in the analysis of DW-
MRI data is diffusion tensor imaging (DTI; Basser et al., 1994a,b;
Jones and Leemans, 2011; Tournier et al., 2011). The shortcom-
ing of DTI is the inability to identify complex fiber configurations
consisting of multiple fiber orientations (Alexander et al., 2001;
Frank, 2001, 2002), present in 60–90% of WM voxels (Jeurissen
et al., 2013). To overcome this, high angular resolution diffusion
imaging (HARDI) methods (Tuch et al., 2002; Jansons and Alexan-
der, 2003; Tournier et al., 2004, 2007; Tuch, 2004; Dell’Acqua et al.,
2007; Descoteaux et al., 2007; Behrens et al., 2007) and methods
based on diffusion spectrum imaging (DSI; Wedeen et al., 2005,
2008) have been developed. However, although able to identify
complex fiber configurations, most of the HARDI methods do
not account for PVEs caused by non-WM tissue, such as gray
matter (GM) and CSF (Dell’Acqua et al., 2010; Metzler-Baddeley
et al., 2012a).
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The presence of non-WM PVEs is known in DW-MRI (Alexan-
der et al., 2001; Pasternak et al., 2009; Dell’Acqua et al., 2010;
Metzler-Baddeley et al., 2012a), but their effects in HARDI
methods have not been widely studied. Diffusion in non-
WM tissue is mostly isotropic within the resolution of DW-
MRI (Dell’Acqua et al., 2010). Isotropic non-WM PVEs have
been shown to affect DTI (Alexander et al., 2001; Pasternak
et al., 2009) and tensor-derived measures (Metzler-Baddeley et al.,
2012a). Pasternak and coworkers used constrained optimiza-
tion of a bi-tensor model for “free water elimination” (FWE)
in DTI (Pasternak et al., 2009), but they did not investigate GM
PVEs. Metzler–Baddeley and coworkers used FWE to correct for
CSF-contamination in tensor-derived measures in constrained
spherical deconvolution (CSD) based tractography (Metzler-
Baddeley et al., 2012a). Both fractional anisotropy (FA) and
mean diffusivity (MD) were shown to increase in the presence
of CSF-contamination (Pasternak et al., 2009). Moreover, diffu-
sivity metrics were shown to be more sensitive to PVEs than
anisotropy metrics (Metzler-Baddeley et al., 2012a). However,
FWE-based approaches are not suitable for GM-contaminated
regions.

In HARDI methods, very few studies account for the non-WM
PVEs. The “ball and stick” model is the only method, which ini-
tially included an isotropic compartment and could be extended
into multiple fiber orientations (Behrens et al., 2003, 2007; Jbabdi
et al., 2012). In another study involving HARDI methods, isotropic
PVEs were dampened by using adaptive regularization in the
iterative Richardson–Lucy deconvolution algorithm (Dell’Acqua
et al., 2010). Other methods that also account for isotropic com-
partments include diffusion basis spectrum imaging (Wang et al.,
2011) and diffusion decomposition (Yeh et al.,2011; Yeh and Tseng,
2013). However, the non-WM PVEs are not taken into account
and have not been studied earlier in CSD, one of the most popular,
clinically feasible and readily available HARDI methods (Leemans
et al., 2009; Tournier et al., 2012).

In this work, we perform simulations to assess non-WM PVEs
in CSD (Tournier et al., 2004, 2007). This kind of comprehensive
analysis has not been performed before, although the method is
widely used and the consequences may be significant when study-
ing the connectivity between GM regions. In addition, we analyze
the proportion of voxels affected by isotropic PVEs, and present the
fiber orientation distribution functions (fODFs) estimated with
CSD in real data affected by non-WM PVEs.

MATERIALS AND METHODS
We investigated the isotropic PVEs caused by non-WM tissue
on fODFs estimated with CSD. DW signals were simulated with
varying diffusion weightings, signal-to-noise ratios, fiber config-
urations, and tissue fractions. In addition, experiments with real
data were performed.

ESTIMATION OF FIBER ORIENTATIONS WITH CONSTRAINED
SPHERICAL DECONVOLUTION
In CSD, the full fODF is deconvolved from the DW signal using a
kernel constructed from the single-fiber response function (RF),
which can be estimated from the data (Tournier et al., 2004; Tax
et al., 2014). During the deconvolution procedure, constraints are

imposed to suppress the negative peaks in the fODF (Tournier
et al., 2007, 2008). The number of distinct gradient directions
limits the maximum order of the spherical harmonics (SH)
decomposition, which can be used in the estimation in the fODF.
However, the constraints used to suppress the negative peaks in
the fODF can be exploited to estimate higher order solutions and
thus, describe more complex fODFs. This is called super-resolved
CSD (Tournier et al., 2007).

To find the peaks of the fODF estimated with CSD, a New-
ton optimization algorithm was used to extract the local maxima
of the fODF directly based on the SH decompositions (Jeurissen
et al., 2013). Optimization was initialized on a dense set of uni-
formly distributed spherical sample points. A threshold of 33% of
the maximum amplitude of the fODF was used to discard small
peaks. A maximum of six of the highest peaks were identified. The
peaks were clustered around the peaks of the average fODF cal-
culated over all simulation repetitions performed with the same
parameter configuration. Peaks further away than half of the cross-
ing angle (with an upper limit of 35◦) from any of the peaks of
the average fODF were not included in the clusters. A mean dyadic
tensor was then used to derive the mean orientation for each of
the identified fiber clusters (Basser and Pajevic, 2000; Jones, 2003).
This orientation was then compared to the true orientations of
the fiber bundles. Peaks in clusters that were less than half of the
crossing angle (with an upper limit of 35◦) from the true orien-
tations were defined as true, and rest of the peaks, also if they
were not assigned to a cluster, as false. From the true clusters,
accuracy and precision (95th percentile confidence interval, CI)
with respect to the orientation of the mean dyadic tensor were
calculated.

SIMULATION OF THE DW SIGNAL WITH PVES
Two crossing WM fiber configurations were simulated with equal
weights. The orientation of the first fiber bundle was randomly
selected, after which the orientation of the second fiber bundle
was calculated in spherical coordinates with the defined crossing
angle. The resulting angle was verified to be correct in each case.

Then, the DW signal was simulated separately for different
tissue types, and the resulting signals were combined assuming
no exchange between the compartments (Leemans et al., 2005).
The number of gradient directions uniformly distributed on the
unit hemisphere was 64 (Jones et al., 1999). To eliminate any bias
caused by the gradient orientations, a different gradient set was
used for each simulated DW signal. Signal from the specific WM
fiber configurations was combined with isotropic CSF and GM
compartments. In addition, air compartments were simulated to
investigate only the effect of reduced signal of the WM compart-
ment without any isotropic diffusion. Derived based on Basser and
Jones (2002), the combined simulated DW signal S is:

S = (1− fisot)
(

ffibere−Trace(bDfiber1) + (1− ffiber)e−Trace(bDfiber2)
)

+ fisote
−Trace(bDiost), (1)

where fisot is the fraction of isotropic volume, ffiber is the fraction
of the first fiber compartment with respect to the WM compart-
ment, b is the b-matrix summarizing the attenuation in all three
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directions of the diffusion tensor (including information of the
diffusion-weighting and the gradient orientations; Mattiello et al.,
1997), and Dfiber1, Dfiber2 and Disot are the diffusion tensors of the
two WM fibers and the isotropic compartment respectively (Basser
et al., 1994b). The diffusion tensors were created with the follow-
ing values. The MD for the simulation of different tissue types was
0.002 mm2/s for CSF, 0.0007 mm2/s for WM and GM (Dell’Acqua
et al., 2010), and for air the signal was assumed to be zero. The
FA was 0.8 for the WM signal and 0 for other tissue types. Rician
noise was added to the combined DW signal. Finally, the DW
signals were decomposed into an eighth-order series of SH (max-
imum possible order with the number of gradient orientations
used).

SIMULATION EXPERIMENTS
We performed simulation experiments to investigate the PVEs
with different tissue compartments. Simulations and analyses
of the simulation experiments were performed in Matlab (The
MathWorks, Inc., Natick, MA, USA), by using dedicated software
programmed by the authors.

The fraction of isotropic GM, CSF or air volume was varied
from 0.00 to 0.95 with intervals of 0.05. We analyzed angles
between the fiber populations in configurations ranging from
40◦ to 90◦ and with diffusion weightings (b-values) from 1000
to 3500 s/mm2. Signal-to-noise ratio (SNR) was calculated with
respect to the non-diffusion weighted signal and simulated from
10 to 60, also generating a noiseless version of the DW signal.
We performed 1000 repetitions with different noise realizations
(resulting in Rician distributed data) for each parameter configu-
ration. The fODFs were estimated from the simulated DW signals
with CSD or super-resolved CSD using maximum orders of the
SH from 4 to 14.

In addition to the isotropic volume fraction (VF) and PVE type
(GM, CSF, or air) only one parameter at a time was investigated.
The default values for the non-varying parameters were: b-value:
3000 s/mm2; angle between the crossing fiber configurations: 70◦;
SNR: 30. The default maximum order of the SH was 8 for CSD
and 12 for super-resolved CSD.

ACQUISITION AND ANALYSIS OF REAL DATA
High angular resolution DW data were acquired on a 3T MRI
system with a 32-channel head coil. The subject gave written
informed consent to participate in this study under a protocol
approved by the local ethics committee. A single-shot echo-planar
imaging (EPI) sequence was used with TR= 8100 ms, TE= 116 ms
and 2.5 mm × 2.5 mm × 2.5 mm voxel size. The field of view
(FOV) was 240 × 240 mm2 with a 96 × 96 acquisition matrix
and the number of excitations (NEX) was 1. Fifty-four axial
slices were imaged with 2.5 mm thickness and no gap. Diffu-
sion sensitizing gradients with a b-value of 2800 s/mm2 were
applied along 75 non-collinear directions. Ten images without
diffusion weighting (b = 0 s/mm2) were acquired, of which one
was acquired with reverse phase-encoding, for the purpose of EPI
distortion correction. High-resolution anatomical T1-weighted
images were acquired using a 3D magnetization-prepared rapid
gradient-echo (MPRAGE) sequence (Mugler and Brookeman,
1990) with TR = 1900 ms, TE = 2.52 ms, TI = 900 ms and

1 mm× 1 mm× 1 mm voxel size (flip angle= 9◦ and NEX= 1).
FOV was 250 mm× 250 mm× 176 mm with a 256× 256× 176
acquisition matrix.

The DW data were corrected for subject motion and
eddy current induced distortions (Leemans and Jones, 2009;
Andersson et al., 2012), and TOPUP was used to correct for
EPI distortions (Andersson et al., 2003). The MRtrix package
(J-D Tournier, Brain Research Institute, Melbourne, Australia,
http://www.brain.org.au/software/; Tournier et al., 2012) was used
for visualization of the real data. Tissue VFs for the DW data were
estimated from the T1-weighted images, using a similar approach
as presented by Smith et al. (2012).

The percentage of WM voxels affected by significant non-WM
PVEs was estimated from real data. WM voxels were defined
using a threshold of 25% WM tissue. The voxels with PVEs were
estimated by using two threshold values: 25 and 10% non-WM
volume.

RESULTS
First, results of the simulation experiments are presented. Figure 1
shows the effects of isotropic non-WM VF in CSD (Figures 1A–D)
and super-resolved CSD (Figures 1E,H). The bias and the 95%
CI of the fiber orientations extracted with CSD are presented in
Figures 1A,B. We also studied the effects on the number of cor-
rectly and falsely identified peaks (Figures 1C,D). The number of
falsely identified peaks increased and the precision of the identi-
fied fiber orientations decreased, when the isotropic VF increased.
The effects were stronger in GM than in CSF or air. However,
the accuracy of the identified fiber orientations and the number
of true peaks identified did not change until very high non-WM
fractions. The similar performance with CSF and air PVEs using
a high b-value indicates that the effect in CSF is mostly an SNR
effect, which is clearly not the case in GM. Default values were
used for the other parameters as specified in the methods section.
The non-WM PVEs in super-resolved CSD, using up to 12th-order
SH, started to affect the precision and the number of false peaks
(Figures 1F,H) with lower fractions than when using up to eight-
order SH. Accuracy remained high and was similar to the results
when using SH up to eight-order. However, the ability to detect
the two correct fiber orientations stayed higher with high isotropic
fractions than while using SH up to eight order.

An illustration of the estimated fODFs based on only one noise
realization per fraction is shown in Figure 2. The false peaks
became more numerous and the correct peaks lost precision, when
the isotropic VF increased. Next, the effects of varying maximum
SH orders, diffusion weightings, SNRs, and angles between the
two crossing fiber configurations were analyzed, while keeping the
isotropic non-WM fraction constant at 0.5.

In Figure 3, the effects of maximum SH order on the non-
WM PVEs are shown. The 95% CI and the number of false peaks
increased when higher maximum SH orders were used. Bias was
low with all orders except for the lowest maximum order 4 with
GM PVEs. However, the correct peaks could be found properly
with GM PVEs even with the lowest order, but not with CSF or air
PVEs.

In Figure 4, the effects of varying diffusion weightings to the
non-WM PVEs are shown. The 95% CI and the number of false
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FIGURE 1 | Effect of isotropic volume fraction with CSF, GM, and air to bias, 95% confidence interval (CI), and the number of correct and false peaks

estimated with CSD using up to eighth-order SH (A–D) and super-resolved CSD using up to 12th-order SH (E–H; with diffusion weighting

3000 s/mm2, angle 70◦, and SNR 30).

FIGURE 2 | An illustration of fODFs estimated with CSD with GM

partial volume increasing from 0 to 75% (with up to eighth-order SH,

diffusion weighting 3000 s/mm2, angle 70◦, and SNR 30). The blue lines
correspond to the correct fiber orientations.

peaks increased when diffusion weighting decreased. The number
of false peaks was high and the precision of the correct peaks
was low under GM PVEs compared to CSF, air, or 100% WM
regardless of the diffusion weighting. The difference between CSF
and air PVEs was visible only with very low diffusion weightings
of 1000–1500 s/mm2.

The effects of SNR on the non-WM PVEs are presented in
Figure 5. Figures 5A–D show effects with 50% non-WM fractions
and Figures 5E–H with 75% non-WM fractions. With 50% PVEs,
increasing SNR improved the precision and reduced the number
of false peaks identified. However, with 75% non-WM fractions,
increasing SNR could not improve the situation with GM PVEs,
and there were problems with precision also with high SNRs under
CSF PVEs.

Figure 6 shows the effects of varying angle between the two
crossing fiber configurations. With an angle of 40◦ between the
two fiber configurations, the correct peaks could not be properly
identified. However, with an angle of 50◦, they could still be reliably
detected without isotropic PVEs, but any type of non-WM volume
caused a decrease in the fraction of the correct peaks identified
(Figure 6C). With higher angles, the correct peaks were identified
correctly and without more bias than in pure WM (Figure 6A).

The precision of the identified fiber orientations and the number
of false peaks identified improved when the angle between the
fiber configurations increased (Figures 6B,D).

From real data, we estimated that 35.7% of WM voxels, defined
to have at least 25% WM volume, had significant PVEs with non-
WM tissue, also defined to be more than 25% VF. Lowering the
non-WM tissue threshold to 10%, the proportion of WM voxels
affected by PVEs increased to 46.8%. Of these voxels with non-
WM PVEs, 96.0% were affected by PVEs with GM and 5.3% with
CSF.

Figure 7 shows the fODFs estimated with CSD, using up to
eight order SH, from real data overlaid on the WM tissue proba-
bility map of corona radiata extending towards cortical GM. The
areas where WM interfaces with GM were affected both with CSD
and super-resolved CSD. A large amount of voxels in the area had
significant PVEs (gray-colored voxels), and perpendicular or spu-
rious peaks appeared in the voxels with no apparent anatomical
origin.

Figure 8 shows the effect of CSF PVEs on the estimation of
fODFs at the interface between the corpus callosum and CSF. Spu-
rious orientations can be noticed, but they are much smaller in
amplitude and the principal fiber orientation can still be clearly
distinguished.

DISCUSSION
We studied the effects of isotropic non-WM partial volume on the
fiber orientations estimated with CSD and super-resolved CSD by
performing extensive simulations and real data experiments. CSD
is a widely used method and knowledge about the implications of
non-WM PVEs should be augmented.

Our results demonstrate that although CSD is efficient in the
detection of PVEs caused by complex fiber configurations within
a voxel, problems arise in the detection of the fODFs in the case of
non-WM PVEs, which we estimated to be present in 35–50% of
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FIGURE 3 |The effect of varying maximum SH orders with 50% non-WM partial volume (CSF, GM, and air) to bias (A), 95% confidence interval (CI) (B),

and the number of correct (C) and false peaks (D) estimated with CSD (with diffusion weighting 3000 s/mm2, angle 70◦, and SNR 30). For
comparison, 100% WM measures are provided.

FIGURE 4 |The effect of varying diffusion weightings with 50% non-WM partial volume (CSF, GM, and air) to bias (A), 95% confidence interval (CI) (B),

and the number of correct (C) and false peaks (D) estimated with CSD (with up to eighth-order SH, angle 70◦, and SNR 30). For comparison, 100% WM
measures are provided.
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FIGURE 5 |The effect of varying SNRs with 50% (A–D) and 75%

(E–H) non-WM partial volume (CSF, GM, and air) to bias, 95%

confidence interval (CI), and the number of correct and false peaks

estimated with CSD (with up to eighth-order SH, angle 70◦, and

diffusion weighting 3000 s/mm2). For comparison, 100% WM
measures are provided.

FIGURE 6 |The effect of varying angle between the two crossing fiber

configurations with 50% non-WM partial volume (CSF, GM and air) to

bias (A), 95% confidence interval (CI) (B), and the number of correct (C)

and false peaks (D) estimated with CSD (with up to eighth-order SH,

diffusion weighting 3000 s/mm2, and SNR 30). For comparison, 100%
WM measures are provided.
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FIGURE 7 | Illustration of the effects of isotropic non-WM PVEs with

GM in superior corona radiata with real data. WM tissue probability map
estimated from high-resolution anatomical MRI is visualized in the
background, and fODFs estimated with CSD using up to eighth-order SH
are overlaid.

FIGURE 8 | Illustration of the effects of isotropic non-WM PVEs with

CSF in corpus callosum with real data. WM tissue probability map
estimated from high-resolution anatomical MRI is visualized in the
background, and fODFs estimated with CSD using up to eighth-order SH
are overlaid.

the WM voxels. As shown in Figure 1, the precision of the detected
fiber orientations decreases and false peaks appear in the fODFs.
This effect is most prominent for GM PVEs. The increase in bias
with very high isotropic fractions may be at least partly caused
by the inability to distinguish reliably both of the correct fiber
orientations.

Part of these effects is due to the reduction of relative SNR in the
WM tissue, which is caused by the decreased WM volume in the
voxel, and not the isotropic diffusion properties of the non-WM
tissue. PVEs with CSF tissue are mostly due to this effect, as shown
by the similarity to air PVEs (Figure 1). Another part of the effects
is caused by the isotropic diffusion, which invalidates the single
fiber RF originally designed for pure WM. The more prominent
PVEs in GM than in CSF or air are caused by this effect.

In addition, we showed that the PVEs increased when the max-
imum SH order increased. Therefore, the high maximum SH
orders, although able to improve the angular resolution (Tournier
et al., 2007), should be used with caution in the estimation of
the fODFs under significant non-WM PVEs. Although the maxi-
mum angular frequency in the DW data is relatively low (Tournier
et al., 2013), the fODFs contain higher angular frequencies, so a
higher maximum SH order could still be useful in the estimation
of the fODFs within pure WM regions. The use of lower diffusion
weighting than generally used in HARDI sequences (i.e., less than
3000 s/mm2) increased the PVEs. Larger crossing angles could be
detected with higher precision. With higher SNRs, moderate PVEs
could be handled better, but high PVEs continued to decrease
precision and increase the number of false peaks especially
in GM.

Based on these results, we provide the following advice on how
to operate CSD to maintain reasonable precision and number of
false peaks under non-WM PVEs. Conditions with 95% CI lower
than 20◦ and less than one identified false peak were considered
reasonable. Thus, we suggest acquiring data with a high diffusion-
weighting 2500–3000 s/mm2, and a reasonable SNR (∼25–30). To
extract the fiber orientations with CSD in regions with GM PVEs,
we suggest using relatively low, from 6 to 8, maximum SH orders
to minimize the loss in precision and the increase in the number of
identified false fiber orientations. Nevertheless, the identified fiber
orientations should be considered unreliable with higher than 60%
GM and higher than 80% CSF VFs.

The isotropic PVEs, present in a significant proportion of WM
voxels, lead to decreased precision and a high number of false peaks
in the fODFs estimated with CSD, which in turn affects subsequent
tractography algorithms, and may introduce false positives and
hinder tract propagation into the cortex or near subcortical GM
tissue. An algorithm already exists to discard tracts based on their
anatomical feasibility and thus, only accept tracts that correctly
propagate to the cortex (Smith et al., 2012). However, enabling the
tracts to propagate properly into the cortex or adjacent to subcor-
tical GM tissue would reduce the time needed for tracking and
improve the precision of anatomically feasible tracts. Especially
in connectomics, where reliable reconstruction of the fiber orien-
tations profiles at the GM–WM interface is required to compute
connectivity matrices, taking isotropic PVEs into account will be
valuable.

Limitations of this study include the restriction to only one
HARDI method, although it is one of the most commonly used
ones (Metzler-Baddeley et al., 2012b; Emsell et al., 2013; Forde
et al., 2013; Kristo et al., 2013; McGrath et al., 2013a,b; Reijmer
et al., 2013a,b; Thompson et al., 2014). Previous studies indi-
cate that the non-WM PVEs are present in DW-MRI in general
(Alexander et al., 2001; Pasternak et al., 2009; Dell’Acqua et al.,
2010; Metzler-Baddeley et al., 2012a). While some of the analysis
methods already acknowledge or account for these PVEs (Behrens
et al., 2003, 2007; Pasternak et al., 2009; Dell’Acqua et al., 2010;
Wang et al., 2011; Yeh et al., 2011; Jbabdi et al., 2012; Yeh and
Tseng, 2013), many of the currently used methods do not. For
example, in CSD they have not yet been taken into account,
and no detailed investigation about these effects had been per-
formed previously. It is likely that also other methods which do
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not appropriately account for the non-WM PVEs will suffer from
similar consequences. An additional limitation of this study is
that there is no ground truth available in real data. Considering
the clear effects demonstrated in the simulations, it is reasonable
to assume that the spurious fiber orientations visible at the tis-
sue interfaces are in fact false peaks also in real data. However,
further experiments with real data are still necessary to com-
pletely understand the phenomenon and its effects in tractography.
This would in turn help in the development of improvements
for the fODF estimation with CSD, applicable also in real data,
and thus allow improved tracking especially in the WM–GM
interface.

In conclusion, we studied the effects of isotropic non-WM PVEs
in CSD and found decreased precision and increased number of
false peaks in the estimated fODFs. The effect was more pro-
nounced with GM tissue. Considering the clear effects present in
real and simulated data and the large proportion of WM voxels
affected, it is important to take the non-WM PVEs into account
in the extraction of fiber orientations with CSD. Therefore, we
provide simple recommendations for the parameters used in the
acquisition and the analysis, but acknowledge the need for more
sophisticated methods to account for non-WM tissue in CSD.
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The ability to accurately estimate effective connectivity among brain regions from
neuroimaging data could help answering many open questions in neuroscience. We
propose a method which uses causality to obtain a measure of effective connectivity
from fMRI data. The method uses a vector autoregressive model for the latent variables
describing neuronal activity in combination with a linear observation model based on a
convolution with a hemodynamic response function. Due to the employed modeling, it is
possible to efficiently estimate all latent variables of the model using a variational Bayesian
inference algorithm. The computational efficiency of the method enables us to apply it to
large scale problems with high sampling rates and several hundred regions of interest. We
use a comprehensive empirical evaluation with synthetic and real fMRI data to evaluate
the performance of our method under various conditions.

Keywords: fMRI, causality, connectivity, variational Bayesian method, Granger causality

1. INTRODUCTION
Traditionally, functional neuroimaging has been used to obtain
spatial maps of brain activation, e.g., using functional magnetic
resonance imaging (fMRI) or positron emission tomography
(PET), or to study the spatio-temporal progression of activity
using magneto- or electroencephalography (M/EEG). Due to the
increasing availability of MRI scanners to researchers and due
to their high spatial resolution, the question of how fMRI can
be used to obtain measures of effective connectivity, describing
directed influence and causality in brain networks (Friston, 1994),
has recently received significant attention.

An idea that forms the basis of several methods is that causal-
ity can be used to infer effective connectivity, i.e., if activity in
one region can be used to accurately predict future activity in
another region, it is likely that a directed connection between
the regions exists. An exhaustive review of causality based meth-
ods for fMRI is beyond the scope of this work; we only provide
a short introduction and refer to Roebroeck et al. (2011) for a
recent review of related methods. Effective connectivity methods
for fMRI can be divided into two groups. Methods in the first
group are referred to as dynamic causal modeling (DCM) methods
(Friston et al., 2003). In DCM, the relationship between neu-
ronal activity in different regions of interest (ROIs) is described
by bilinear ordinary differential equations (ODEs) and the fMRI
observation process is modeled by a biophysical model based on
the Balloon model (Buxton et al., 1998, 2004). While provid-
ing an accurate model of the hemodynamic process underlying
fMRI, the non-linearity of the observation model poses difficul-
ties when estimating the latent variables describing the neuronal
activity from the fMRI observations. Due to this, DCM is typically
used for small numbers of ROIs (less than 10) and DCM methods

typically are confirmatory approaches, i.e., the user provides a
number of different candidate models describing the connectivity,
which are then ranked based on an approximation to the model
evidence.

The second class of methods attempts to estimate effective con-
nectivity between ROIs from causal interactions that exist in the
observed fMRI time series. In the widely used Wiener–Granger
causality (WGC) measure (Wiener, 1956; Granger, 1969) (refer
to Bressler and Seth, 2010 for a recent review of related meth-
ods), a linear prediction model is employed to predict the future
of one time series using either only its past or its past and the
past of the time series from a different ROI. If the latter leads
to a significantly lower prediction error, the other time series is
considered to exert a causal influence on the time series being
evaluated, which is indicative of directed connectivity between
the underlying ROIs. Related methods estimate the causal con-
nectivity between all time series simultaneously by employing a
vector autoregressive (VAR) model. The magnitudes of the esti-
mated VAR coefficients are considered a measure of connectivity
between regions. In Valdés-Sosa et al. (2005), a first order VAR
model is employed and the connectivity graph is assumed to be
sparse, i.e., only few regions are connected. The sparsity assump-
tion is formalized by using �1-norm regularization of the VAR
coefficients. It has been shown in Haufe et al. (2008) that the
use of higher order VAR models in combination with �1�2-norm
(group-lasso) (Yuan and Lin, 2006; Meier et al., 2008) regulariza-
tion of the VAR coefficients across lags leads to a more accurate
estimation of the connectivity structure.

There are two main concerns when estimating effective con-
nectivity from causal relations in the observed fMRI time series.
First, the processing times at the neuronal level are in the order of
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milliseconds, which is several orders of magnitude shorter than
the sampling interval (time to repeat, TR) of the MRI scanner.
Second, fMRI measures neuronal activity indirectly through the
so-called blood oxygen level dependent (BOLD) contrast (Ogawa
et al., 1990; Frahm et al., 1992), which depends on slow hemo-
dynamic processes. The observation process can be modeled as
a convolution of the time series describing the neuronal activ-
ity with a hemodynamic response function (HRF). As there is
variability in the shape of the HRF among brain regions and indi-
viduals (Handwerker et al., 2004) and the sampling rate of the
MRI scanner is low, detecting effective connectivity from causal
interactions that exist in the observed fMRI data is a challeng-
ing problem. There has recently been some controversy if this is
indeed the case. In David et al. (2008), a study using simulta-
neous fMRI, EEG, and intra-cerebral EEG recordings from rats
was performed and it was found that the performance of WGC
for fMRI is indeed poor, unless the fMRI time series of each
region is first deconvolved with the measured HRF of the same
region. Using simulations with synthetic fMRI data generated
using the biophysical model underlying DCM, it was also found
in Smith et al. (2011) that WGC methods perform poorly relative
to the other evaluated connectivity methods. On the other hand,
another recent study (Deshpande et al., 2010) found that WGC
methods provide a high accuracy for the detection of causal inter-
actions at the neuronal level with interaction lengths of hundreds
of milliseconds, i.e., much shorter than the TR of the MRI scan-
ner, even when HRF variations are present. The minor influence
of HRF variations may be explained by the property that typical
HRF variations do not simply correspond to temporal shifts of an
HRF with the same shape, which would change the causality of
interactions present in the fMRI data. Instead, as pointed out in
Deshpande et al. (2010), the HRF variability among brain regions
is mostly apparent in the shape of the peak of the HRF and the
time-to-peak (Handwerker et al., 2004), which may explain why
causal interactions at the neuronal level can still be present after
convolution with varying HRFs. This is in agreement with recent
results. It has been shown that WGC is invariant to filtering with
invertible filters (Barnett and Seth, 2011) and in Seth et al. (2013)
simulations were performed that confirm that the invariance typi-
cally holds for HRF convolution. However, at the same time it was
found that WGC can be severely confounded when HRF convo-
lution is combined with downsampling and measurement noise
is added to the data.

Several methods have been proposed that account for HRF
variability when analyzing WGC from fMRI data. In David et al.
(2008) a noise-regularized HRF deconvolution was employed.
and in Smith et al. (2010) a switching linear dynamical system
(SLDS) model is proposed to describe the interaction between
latent variables representing the neuronal activity together with
a linear observation model based on a convolution with a
(unknown) HRF for each region. The method employs a Bayesian
formulation and obtains estimates of the latent variables using the
maximum-likelihood approach. In contrast to WGC methods,
the SLDS model can also account for modulatory inputs which
change the effective connectivity of the network and introduce
non-stationarity in the observed fMRI data. The method in Smith
et al. (2010) can be seen as a convergence of DCM methods and

WGC-type methods (Roebroeck et al., 2011). A similar method is
proposed in Ryali et al. (2011), which can be considered a multi-
variate extension of methods which perform deconvolution of the
neuronal activity for a single fMRI time series (Penny et al., 2005;
Makni et al., 2008). Joint estimation of the HRF and detection of
neuronal activity is also an important problem for event-related
fMRI, we refer to Cassidy et al. (2012) and Chaari et al. (2013) for
recently proposed methods addressing this problem.

In this paper, we propose a causal connectivity method for
fMRI which employs a VAR model of arbitrary order for the time
series of neuronal activity in combination with a linear hemody-
namic convolution model for the fMRI observation process. We
use a Bayesian formulation of the problem and draw inference
based on an approximation to the posterior distribution which
we obtain using the variational Bayesian (VB) method (Jordan
et al., 1999; Attias, 2000). In contrast to previous methods (Smith
et al., 2010; Ryali et al., 2011), our method is designed to be com-
putationally efficient, enabling application to large scale problems
with large numbers of regions and high temporal sampling rates.
Computational efficiency is achieved by the introduction of an
approximation to the neuronal time series in the Bayesian mod-
eling. When drawing inference, introducing this approximation
has the effect that the hemodynamic deconvolution can be sep-
arated from the estimation of the neuronal time series, leading
to a reduction of the state-space dimension of the variational
Kalman smoother (Beal and Ghahramani, 2001; Ghahramani
and Beal, 2001), which forms a part of the VB inference algo-
rithm. The lower state-space dimension drastically reduces the
processing and memory requirements. Another key difference to
previous Bayesian methods is that we assume that the VAR coef-
ficient matrices are sparse and that the coefficient matrices at
different lags have non-zero entries at mostly the same locations,
i.e., the matrices have similar sparsity profiles. In Haufe et al.
(2008) this assumption is formalized using an �1�2-norm regu-
larization term for the VAR coefficient matrices. In our work, we
employ Gaussian priors with shared precision hyperparameters
for the VAR coefficient matrices, which is a Bayesian alternative
to �1�2-norm regularization and results in a higher estimation
performance of the method.

Our results show that the proposed method offers a higher
detection performance than WGC when the number of nodes is
large or when the SNR is low. In addition, our method is less
affected when the VAR model order assumed in the method is
higher than the order present in the data. We also perform simu-
lations using a modified version of our method, which is similar
to the method in Ryali et al. (2011), and show that the approx-
imation to the neuronal time series used in our method has a
negligible effect on the estimation performance while allowing
the application of the proposed method to large problems with
hundreds of ROIs. We perform an extensive series of simulations
where we vary both the downsampling ratio and the neuronal
delay. The results show that the proposed method offers some
benefits over WGC, especially in low SNR situations and when
HRF variations are present. However, both the proposed method
and WGC can at times detect a causal influence with the oppo-
site direction of the true influence, which is a known problem for
WGC methods (David et al., 2008; Deshpande et al., 2010; Seth
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et al., 2013). Finally, we apply the proposed method to resting-
state fMRI data from the Human Connectome Project (Van Essen
et al., 2012), where it successfully detects connections between
regions that belong to known resting-state networks.

This paper is outlined as follows. First, we introduce a hierar-
chical Bayesian formulation for the generative model underlying
the fMRI connectivity estimation problem. Next, we present the
Bayesian inference scheme which estimates the latent variables of
the model using a variational approximation to the posterior dis-
tribution. We then perform extensive simulations with synthetic
fMRI data. Finally, we apply the method to real fMRI data and
conclude the paper.

1.1. NOTATION
We use the following notation throughout this work: Matrices
are denoted by uppercase bold letters, e.g., A, while vectors are
denoted by lowercase bold letters, e.g., a. The element at the i-th
row and j-th column of matrix A is denoted by aij, while ai· and a·j
denote column vectors with the elements from the i-th row and
the j-th column of A, respectively. The operator diag (A) extracts
the main diagonal of A as a column vector, whereas Diag (a) is
a diagonal matrix with a as its diagonal. The operator vec (A)

vectorizes A by stacking its columns, tr (A) denotes the trace of
matrix A, and ⊗ denotes the Kronecker product. The identity
matrix of size N × N is denoted by IN . Similarly, 0N and 0N×M

denote N × N and N ×M all-zero matrices, respectively.

2. BAYESIAN MODELING
The goal of this work is to infer effective connectivity implied by
the causal relations between N time series of neuronal activity
from N different regions in the brain. To this end, we employ a
vector autoregressive (VAR) model of order P to model the time
series as follows

s (t) =
P∑

p= 1

A(p)s
(
t − p

)+ η (t) , (1)

where s (t) ∈ R
N denotes the neuronal activity of all regions at

time t, A(p) ∈ R
N×N is a matrix with VAR coefficients for lag p,

and η (t) ∼ N (
0, �−1

)
denotes the innovation. In this model,

the activity at any time point is predicted from the activity at P
previous time points. More specifically, the activity of the i-th
time series at time t, denoted by si (t), is predicted from the past

of the j-th time series using the coefficients {a(p)
ij }Pp= 1. Hence, if

any of these coefficients is significantly larger than zero, we can
conclude that the j-th time series exerts a causal influence on the
i-th time series, implying connectivity between the regions. This
is the idea underlying Wiener–Granger causality (Wiener, 1956;
Granger, 1969) and related methods using vector autoregressive
models (Valdés-Sosa et al., 2005; Haufe et al., 2008).

We can now introduce an embedding process (Weigend and
Gershenfeld, 1994; Penny et al., 2005) x (t) defined by

x (t) =
[

s (t)T s (t − 1)T . . . s (t − P + 1)T
]T

, (2)

which allows us to express (Equation (1)) by a first order VAR
model as follows

x (t) = Ãx (t − 1)+ η̃ (t) , (3)

where Ã ∈ R
PN×PN is given by

Ã =

⎡

⎢⎢⎢⎢⎢⎢
⎣

A(1) A(2) · · · A(P−1) A(P)

IN 0N · · · 0N 0N

0N IN · · · 0N 0N
...

...
. . .

...
...

0N 0N · · · IN 0N

⎤

⎥⎥⎥⎥⎥⎥
⎦

. (4)

The innovation η̃ (t) is Gaussian η̃ (t) ∼ N (0, Q), where the
covariance matrix Q is all zero, except for the first N rows and
columns, which are given by �−1. For the remainder of this paper,
we present the modeling and inference with respect to the time
series x (t). If access to the neuronal time series s (t) is required,
it can easily be extracted from x (t) (it simply corresponds to the
first N elements of x (t)).

2.1. OBSERVATION MODEL
Before introducing the observation model, note that we can
obtain a noisy version of the neuronal time series from the
embedding process x (t) as follows

z (t) = Bx (t)+ κ (t) , (5)

where B = [
IN 0N×(P− 1)N

]
and κ (t) ∼ N (

0, ϑ−1I
)
, where ϑ

is the precision parameter. Clearly, by using very large values
for ϑ , the time series z (t) approaches s (t). The introduction of
this Gaussian approximation to the neuronal time series greatly
improves the computational efficiency of the proposed method,
as it separates the VAR model for the neuronal time series from
the hemodynamic observation model. This separation leads to a
reduction of the state-space dimension of the Kalman smooth-
ing algorithm, which forms part of the inference procedure,
and therefore to greatly reduced memory requirements. In addi-
tion, using the approximation allows us to perform parts of the
estimation in the frequency domain, which is computationally
advantageous due to the efficiency of the fast Fourier transform.
The computational advantages of the proposed method will be
discussed in detail in the next section.

To model the fMRI observation process, we follow the stan-
dard assumption underlying the general linear model (Friston
et al., 1995), and express the fMRI observation of the i-th region
as follows

yi (t) = hi (t) ∗ zi (t)+ εi (t)

=
L∑

k= 1

hi (k) zi (t − k+ 1)+ εi (t) , (6)

where ∗ denotes the convolution operation, hi (t) is the hemody-
namic response function (HRF) of length L for the i-th region,
and εi (t) denotes observation noise. Notice that we can arrange
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the HRF hi (t) into a T × T convolution matrix Hi, which allows
us to write (Equation (6)) as

yi = Hizi + εi, (7)

where the T × 1 vectors yi, zi, and εi are the fMRI observation,
the approximation to the neuronal signal, and the observation
noise, for the i-th region, respectively.

2.2. VAR COEFFICIENT PRIOR MODEL
We proceed by defining priors for the VAR coefficient matrices
{

A(p)
}P

p= 1. For a network consisting of a large number of regions,

it can generally be assumed that the connectivity is sparse, i.e.,
the VAR coefficient matrices contain a small number of non-zero
coefficients. In the context of inferring causal connectivity, this
idea has been used in Valdés-Sosa et al. (2005), where a first order
VAR model with �1-norm regularization for the VAR coefficients
is used to obtain a sparse solution. For higher order VAR models,

it is intuitive to assume that if the VAR coefficient a
(p1)
ij modeling

the connectivity from region j to region i and lag p1 is non-zero,
it is likely that also other VAR coefficients for the same con-

nection but different lags, i.e., a
(p2)
ij , p2 �= p1, are also non-zero.

Together with the sparsity assumption, this leads to VAR coef-
ficient matrices with similar sparsity profiles, i.e., the coefficient
matrices at different time lags have non-zero entries at mostly the
same locations. In Haufe et al. (2008) this idea is formalized by
using �1�2-norm (group lasso) (Yuan and Lin, 2006; Meier et al.,
2008) regularization for the VAR coefficients across different lags,
resulting in an improved estimation performance in comparison
to methods that use alternative forms of regularization, such as,
�1-norm or ridge regression.

We incorporate the group sparsity assumption using Gaussian
priors with shared precision hyperparameters across different
lags. More specifically, we use

p
(

A(p)|�
)
=

N∏

i= 1

N∏

j= 1

N
(

a
(p)
ij | 0, γ−1

ij

)
p ∈ {1, . . . , P}, (8)

with Jeffreys hyperpriors to the precision hyperparameters

p (�) ∝
N∏

i= 1

N∏

j= 1

(
γij

)−1
. (9)

During estimation, most of the precision hyperparameters in
� will assume very large values, hence effectively forcing the
corresponding VAR coefficients to zero. This formulation is an
adaptation of sparse Bayesian learning (also known as automatic
relevance determination, ARD) (Tipping, 2001) to the problem
of VAR coefficient estimation and can be considered a Bayesian
alternative to a deterministic �1�2-norm regularization term.
Formulations where shared precision hyperparameters are used
to enforce group sparsity have recently been proposed for applica-
tions such as simultaneous sparse approximation (Wipf and Rao,
2007), where shared precision parameters are used to obtain solu-
tions with similar sparsity profiles across multiple time points.

Recently, shared hyperparameters were used to model the low-
rank structure of the latent matrix in matrix estimation (Babacan
et al., 2012).

2.3. INNOVATION AND NOISE PRIOR MODELS
To complete the description of the Bayesian model, we define
priors for the innovation process and the observation noise in
Equations (1) and (6), respectively. We assume that the inno-
vations are independent and identically distributed (i.i.d.) zero-
mean Gaussian for each time point, i.e., η (t) ∼ N (

0, �−1
)

and
ε (t) ∼ N (0, R). It has to be expected that the linear predic-
tion model used in the proposed method cannot fully explain the
relationship between the neuronal time series in different ROIs.
Hence, the precision matrix � can contain some non-zero off-
diagonal elements. We model this using a Wishart prior for the
precision matrix

p (�) =W (�|ν0, W0) , (10)

where ν0 and W0 are deterministic parameters. By using a diag-
onal matrix for W0, we obtain a prior modeling that encourages
� to be diagonal, which is the structure usually assumed in VAR
models. Another reason for chosing this prior modeling is that
the Wishart distribution is the conjugate prior for the preci-
sion matrix of the Gaussian distribution, which simplifies the
inference procedure.

For the observation noise, we assume that the noise in differ-
ent regions is uncorrelated and use diagonal covariance matrices
given by R = Diag (β)−1, where β is a precision hyperparameter
vector of length N. We use conjugate gamma hyperpriors for the
precisions as follows

p (β) =
N∏

i= 1

�
(
βi|a0

β, b0
β

)
, (11)

where the gamma distribution with shape parameter a and
inverse scale parameter b is given by

� (ξ |a, b) = ba

� (a)
ξ a− 1 exp (−bξ) . (12)

We usually have some information about the fMRI observation
noise and can use this knowledge to set the parameters a0

β and b0
β .

The setting of the deterministic parameters will be discussed in
more detail in the next section.

2.4. GLOBAL MODELING
By combining the probability distribution describing the VAR
model, the fMRI observation model, and the prior model, we
obtain a joint distribution over all latent variables and known
quantities as

p
(

, {y(t)}Tt= 1

)
=

(
N∏

i= 1

p
(

yi|zi, Hi, βi
)
)(

T∏

t= 1

p (z(t)|x(t), ϑ)

)

×
(

T∏

t= 1

p
(

x(t)|x(t − 1) , {A(p)}Pp= 1, �
))
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FIGURE 1 | Graphical model visualizing the dependencies of the joint

distribution over the latent variables and the fMRI observations. Nodes
representing latent variables are depicted with white backgrounds while
nodes with known quantities have gray backgrounds. Rectangular plates
indicate the repetition of nodes.

×
⎛

⎝
P∏

p= 1

p
(

A(p)|�
)
⎞

⎠ p (�) p (�) p (β) , (13)

where 
 contains all the latent variables of the model, i.e.,


 =
{
{x(t)}Tt= 1, {z(t)}Tt= 1, {A(p)}Pp= 1, �, �, β

}
. (14)

The dependencies of the joint distribution can be visualized as a
directed acyclic graphical model, which is depicted in Figure 1.
From the graphical model it can be seen that the node of approxi-
mate neuronal time series z(t) is inserted between the nodes of the
neuronal time series x(t) and the observation y(t). As will be dis-
cussed in the next section, this additional node leads to important
computational advantages, as it allows us to separate the hemo-
dynamic deconvolution (estimation of z(t)) from the estimation
of the estimation of the neuronal time series z(t) and the VAR
modeling parameters.

3. BAYESIAN INFERENCE
We draw inference based on the posterior distribution

p
(

|{y(t)}Tt= 1

)
= p

(

, {y(t)}Tt= 1

)

p
({y(t)}Tt= 1

) . (15)

However, as with many probabilistic models, calculating
p

({y(t)}Tt= 1

)
and hence calculating the posterior distribution

is analytically intractable. Therefore, we approximate the pos-
terior distribution by a simpler distribution using the varia-
tional Bayesian (VB) method with the mean field approximation
(Jordan et al., 1999; Attias, 2000). For the problem at hand we
approximate the posterior by a distribution which factorizes over
the latent variables as follows

q (
) = q
(
{x(t)}Tt= 1

)
q
(
{z(t)}Tt= 1

)
q
(
{A(p)}Pp= 1

)
q (�, �, β) .

(16)

Using the structure of the graphical model and the property of d-
separation, it is found the there are several induced factorizations
when assuming the factorization given by Equation (16) (refer
to Bishop, 2006 for detailed explanations). We can include the
induced factorizations to further factorize to posterior as follows1

q (
) = q
(
{x(t)}Tt= 1

)(
N∏

i= 1

q
(
{zi(t)}Tt= 1

))

q
(
{A(p)}Pp= 1

)

×
(

N∏

i= 1

N∏

k= 1

q (γik)

)

q (�)

(
N∏

i= 1

q (βi)

)

. (17)

The key ingredient of this VB method is that we only assume
a specific factorization of the posterior but make no assump-
tions about the functional form of the distributions. Instead, we
find the form of each distribution by performing a variational
minimization of the Kullback–Leibler (KL) divergence between
the approximation and the true posterior. The KL divergence is
given by

CKL

(
q (
) ‖p

(

|{y(t)}Tt= 1

))
=

∫
q (
) log

(
q (
)

p
(

|{y(t)}Tt= 1

)

)

d
 (18)

which is a non-negative measure that is only equal to zero if
q (
) = p

(

|{y(t)}Tt= 1

)
. A standard result from VB analysis

(Bishop, 2006) is that if we express [Equation (17)] as q (
) =∏
i q (�i), i.e., we use q (�i) to denote the individual factors

in [Equation (17)], the distribution for the i-th factor which
minimizes [Equation (18)] is given by

ln q (�i) =
〈
ln p

(

, {y(t)}Tt= 1

)〉

q(
\�i)
+ const, (19)

where 〈·〉q(
\�i) denotes the expectation with respect to distribu-
tions q (·) all latent variables except �i. Using this, we obtain a
distribution for each factor. The VB inference algorithm sequen-
tially updates the sufficient statistics of each distribution until

1Note that the only factorization we assume is the one in Equation (16); the
induced factorizations appear in the derivation of the approximate posterior
distribution and we can include them at this point to simplify the derivations.
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convergence. Below we show the functional form of the varia-
tional posterior distribution for each latent variable. Due to space
constraints, the derivations are not shown here and we refer to
Luessi (2011) for more details.

Using Equation (19), the distribution for the neuronal time
series q

({x(t)}Tt= 1

)
is obtained from

ln q
(
{x(t)}Tt= 1

)

=
〈
ln

T∏

t= 1

p
(

x(t)|x(t − 1) , {A(p)}Pp= 1, �
)

×p (z(t)|x(t),ϑ)

〉

q
(
{z(t)}Tt= 1

)
q
(
{A(p)}Pp= 1

)
q(�,�,β)

+ const,

(20)

where all terms not depending on {x(t)}Tt= 1 have been absorbed
into the additive normalization constant. Due to the conjugacy of
the priors, q

({x(t)}Tt= 1

)
is a multivariate Gaussian distribution

with dimension TPN. However, this distribution has a compli-
cated form and cannot be further factorized, which makes a direct
calculation of the sufficient statistics computationally infeasible.
Note that this complication is not due to the introduction of z(t);
it is also present in methods which do not employ the approx-
imate time series z(t). Fortunately, Equation (20) has a similar
form as an equation encountered in the variational Kalman
smoothing algorithm (Beal and Ghahramani, 2001; Ghahramani
and Beal, 2001), with the only difference that instead of using the
observations we use the expectation of z(t) under q

({z(t)}Tt= 1

)
.

The variational Kalman smoothing algorithm recursively esti-
mates q (x(t)) = N (

x(t)|μt, 
t
)

using a forward and a backward
recursion. It is important to point out that we do not introduce
an additional factorization of q

({x(t)}Tt= 1

)
over time points, as

for example done in Makni et al. (2008), which has been shown
to result in an inaccurate approximation to the posterior distri-
bution for large T (Wang and Titterington, 2004). Instead, the
variational Kalman smoothing algorithm provides an efficient
way for estimating q

({x(t)}Tt= 1

)
without assuming a factorization

over time points.
In our implementation we ignore the contribution from the

covariances in the quadratic terms of {A(p)}Pp= 1, i.e., we assume
〈(

A(p)
)T (

A(p)
)〉 = 〈

A(p)
〉T 〈

A(p)
〉
. This assumption is also made in

Ryali et al. (2011) and can be expected to have only a minor
influence on the performance of the proposed method. The main
reason for using this approximation is that we do not need

to calculate and store the covariance matrix of q
(
{A(p)}Pp= 1

)
,

which greatly reduces the computational requirements of the
method. Another effect of using this approximation is that the
recursive inference algorithm becomes similar to the standard
Kalman smoothing algorithm, also known as the Rauch-Tung-
Striebel smoother (Rauch et al., 1965). For the forward pass,
we use the initial conditions μ0

0 = 0, 
0
0 = I and calculate for

t = 1, 2, . . . , T the following

μt−1
t = 〈

Ã
〉
μt− 1

t− 1 (21)


t− 1
t = 〈

Ã
〉

t− 1

t− 1

〈
Ã
〉T + 〈Q〉 (22)

μt
t = μt− 1

t + Kt
(〈z (t)〉 − Bμt− 1

t

)
(23)


t
t = 
t− 1

t − KtB
t− 1
t , (24)

where the Kalman gain is given by

Kt = 
t− 1
t BT

(
B
t− 1

t BT + ϑ−1IN

)−1
. (25)

After the forward pass, the final estimate for the last time point
has been obtained, i.e., we have μT = μT

T and 
T = 
T
T . For the

remaining time points we execute a backward pass and calcu-
late the sufficient statistics of q (x(t)) for t = t − 1, t − 2, . . . , 1
as follows

μt = μt
t + Jt

(
μt+ 1 −

〈
Ã
〉
μt

t

)
, (26)


t = 
t
t + Jt

(

t

t − 
t
t+ 1

)
JT

t , (27)

where

Jt = 
t
t

〈
Ã
〉T (


t
t+1

)−1
. (28)

As the posterior distributions of individual time points are
not independent, i.e., q

({x(t)}Tt= 1

) �=∏T
t= 1 q (x(t)), cross-

time expectations contain a cross-time covariance 
t,t− 1, i.e.,〈
x(t)x(t − 1)T

〉 = μtμ
T
t− 1 + 
t,t− 1. Such cross-time covariance

terms are computed as follows (see Ghahramani and Hinton,
1996)


t,t− 1 = 
tJT
t− 1 + Jt

(

t+ 1,t −

〈
Ã
〉

t

t

)
JT

t− 1. (29)

The posterior distribution of the approximate time series for the
i-th region q

({zi(t)}Tt= 1

)
is found to be a Gaussian, that is,

q
(
{zi(t)}Tt= 1

)
= N

(
zi| 〈zi〉 , 
i

z

)
, (30)

with parameters

〈zi〉 = 
i
z

(
〈βi〉HT

i yi + ϑ 〈xi〉
)

, (31)


z
i =

(
〈βi〉HT

i Hi + ϑIT

)−1
. (32)

The distribution for the VAR coefficients a =
vec

([
A(1) A(2) · · · A(P)

])
is also Gaussian, the mean and

covariance matrix are given by

〈a〉 = 
avec

(

〈�〉
[

T∑

t= 1

(
μt

)
1:N μT

t− 1 +
(

t,t− 1

)
1:N,:

])

(33)


−1
a = P1 ⊗ 〈�〉 + Diag (IP ⊗ vec (〈�〉)) , (34)

where the matrix P1 is given by

P1 =
T∑

t= 1

〈
x(t − 1)x(t − 1)T

〉
=

T∑

t= 1

μt− 1μ
T
t− 1 + 
t− 1.(35)
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Notice that the size of 
−1
a is N2P × N2P. Hence, for large N

performing a direct inversion is computationally very demand-
ing and potentially numerically inaccurate. Moreover, storing the
matrix requires large amounts of memory. Instead of directly
inverting the matrix, we use a conjugate gradient (CG) algorithm
to solve


−1
a 〈a〉 = vec

(

〈�〉
[

T∑

t= 1

(
μt

)
1:N μT

t− 1 +
(

t,t− 1

)
1:N,:

])

,(36)

for 〈a〉, which is possible since 
−1
a is symmetric positive definite.

The CG algorithm only needs to compute matrix-vector products
of the form 
−1

a p. From the structure of 
−1
a , one can see that the

multiplication of the diagonal matrix on the right side is simply
the element-wise product of the diagonal of Diag (IP ⊗ vec (〈�〉))
and p, which can be computed efficiently. Similarly, (P1 ⊗ 〈�〉) p
can be computed efficiently without computing the Kronecker
product (Fernandes et al., 1998).

Note that computation of the gamma hyperparameters
requires access to the diagonal elements of 
a. Since we do
not explicitly compute 
a, we approximate the diagonal by

Diag (
a) ≈ Diag
(
diag

(

−1

a

))−1
. We performed experiments

with small N where we calculated 
a directly using a matrix
inversion. We found that using the CG algorithm with an approxi-
mation to the diagonal of the covariance matrix results in virtually
the same estimation performance for the proposed method, while
being much faster and more memory efficient.

The posterior for the noise precision � is Wishart distributed
with q (�) =W (�|ν, W) where the parameters are given by

ν = T + ν0, (37)

W−1 = 〈P2〉 +W−1
0 . (38)

The expectation 〈P2〉 is given by

〈P2〉 =
T∑

t= 1

((
μt

)
1:N −

〈
A
〉
μt− 1

) ((
μt

)
1:N −

〈
A
〉
μt− 1

)T

− (

t,t− 1

)
1:N, :

〈
A
〉− 〈

A
〉T (


t,t− 1
)T

1:N, :

+ (
t)1:N,1:N +
〈
A
〉

t− 1

〈
A
〉T

, (39)

where A = [
A(1) A(2) · · · A(P)

]
, (
t)1:N,1:N is the top left N × N

block of 
t , and
(

t,t− 1

)
1:N, : are the first N rows of 
t,t− 1.

The mean of the Wishart distribution is given by 〈�〉 = νW,
which is the value used in the other distribution updates in the
VB algorithm.

The distribution for the VAR precision hyperparameter q
(
γij

)

is found to be a gamma distribution with shape and inverse scale
parameters

a
i,j
γ = P

2
, b

i,j
γ = 1

2

P∑

p= 1

(〈
a

(p)
ij

〉2 + ā
(p)
ij

)
, (40)

where ā
(p)
ij is the variance of a

(p)
ij , which we obtain from the

approximation to the diagonal of 
a. Similarly, the posterior
for the observation noise precision is a gamma distribution with
the following shape parameter ai

β = T/2+ a0
β and inverse scale

parameter

bi
β =

1

2

[
yT

i yi − 2yT
i Hi 〈zi〉 + 〈zi〉T HT

i Hi 〈zi〉 + tr
(

HT
i Hi


z
i

)]
+ b0

β .

(41)

3.1. SELECTION OF DETERMINISTIC PARAMETERS
The proposed method has several deterministic parameters which
have to be specified by the user, namely, the observation noise
precision parameters {a0

β, b0
β}, the VAR model noise parameters

{ν0, W0}, and the neuronal approximation precision ϑ . Typically,
an estimate of the noise variance σ 2 present in the data is available
to the user. If this case, a reasonable setting of the observa-
tion noise precision parameters is a0

β = c, b0
β = cσ 2, where c is

a constant related to the confidence in our initial noise estimate.
For very small values of c, the observation noise precision will
be estimated solely by the algorithm, while a high value forces
the estimated noise precision to the value specified by the user.
Unless otherwise noted, we assume throughout this work that an
estimate of the noise variance is available and use c = 109.

On the other hand, the user typically does not have precise a
priori knowledge of the AR innovation precision. In this case, one
option is to use ν0 = 0, W−1

0 = 0, which is equivalent to an non-
informative Jeffreys prior for the AR innovation precision matrix.
However, we observed that 〈�〉 can attain values that are too large
when a non-informative prior is used. This behavior is caused by
the fact that the convolution with the HRF acts as a low-pass filter
and it is generally not possible to perfectly recover the high fre-
quency content of the neuronal signal, causing an over-estimation
of the AR innovation precision. We found that using ν0 = 1 and
W0 = 10−3I, prevents 〈�〉 from attaining too large values and
we use this setting in all experiments presented in this work.
Naturally, the parameter setting depends on the scale of the fMRI
observation. Throughout this work, we rescale the fMRI obser-
vation to have an RMS value of 6.0, where the root-mean-square

(RMS) value is calculated as RMS =
√(∑T

t= 1 ‖y (t) ‖2
2

)
/ (NT).

Note that the choice of RMS = 6.0 is arbitrary, i.e., different val-
ues could be used but then other deterministic parameters would
have to be modified accordingly. Finally, the approximation preci-
sion parameter ϑ plays an important role. In Equation (32) it acts
similarly to a regularization parameter while having the role of the
observation noise precision in the variational Kalman smoother.
We heuristically found that using a value that is higher than the
observation noise precision works well and we use ϑ = 10/σ 2

throughout this work.

3.2. COMPUTATIONAL ADVANTAGES OF THE PROPOSED APPROACH
To conclude this section, we highlight some important advan-
tages in terms of computational requirements of the proposed
method over previous approaches. The advantages of the pro-
posed method are directly related to the introduction of the
approximate time series z(t).

Frontiers in Neuroinformatics www.frontiersin.org May 2014 | Volume 8 | Article 45 | 127

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Luessi et al. Variational Bayesian causal connectivity analysis

The first advantage is due to the separation of the model of the
neuronal time series from the hemodynamic convolution model,
which leads to a reduced state-space dimension of the Kalman
smoothing algorithm. More specifically, in Smith et al. (2010);
Ryali et al. (2011), the observation process is modeled as

y(t) = H̃x(t)+ ε (t) , (42)

where H̃ ∈ RN×NL is a matrix that contains the HRFs of all
regions. This modeling requires that x(t) is an embedding pro-
cess over L time points, i.e., the dimension of x(t) is D = NL, as
opposed to D = NP in our method. The higher dimension leads
to excessive memory requirements as the state-space dimension
of the Kalman smoothing algorithm is increased and a total of
2T covariance and cross-time covariance matrices of size D× D
need to be stored in memory. As an example, assuming double
precision floating point arithmetic and P = 2, L = 20, N = 100,
T = 1000, the methods in Smith et al. (2010) and Ryali et al.
(2011) require approximately 60 GB of memory to store the
covariance matrices, whereas the proposed method only requires
approximately 600 MB. The large memory consumption and the
higher dimension of the required matrix inversions is the rea-
son why previous methods become computationally infeasible for
large scale problems where N ≈ 100 and T ≈ 1000. The problem
is even more severe for low TR values, since the HRF typically
has a length of about 30 s and a higher sampling rate means
more samples are needed to represent the HRF, thus increasing
the value of L.

The second advantage due to introduction of z(t) is that the
approximate posterior of z(t) factorizes over ROIs and we can
update the posterior distribution q

({zi(t)}Tt= 1

)
for each region

separately using Equations (31, 32). For large numbers of time
points this computation can still be expensive as the inversion of
a T × T matrix is required. However, notice that if we assume
that the convolution with hi is circular, the matrix Hi becomes
circulant. Circulant matrices can be diagonalized by the discrete
Fourier transform (see, e.g., Moon and Stirling, 2000). Hence,
it is possible to perform the calculation of 〈zi〉 in the frequency
domain. In our implementation we use a fast Fourier transform
(FFT) algorithm with zero-padding such that the circular con-
volution corresponds to a linear convolution. The resulting time
complexity is O

(
T log T

)
, compared to O

(
T3

)
when a direct

matrix inversion is used. Moreover, notice that 
z
i is circulant as

well, which allows us to reduce the computational and memory
requirements by only calculating and storing the first row of 
z

i
(all other rows can be obtained by circular shifts of the first row).

4. EMPIRICAL EVALUATION WITH SIMULATED DATA
In this section, we evaluate the performance of the proposed
method using a number of different simulation scenarios. In
all simulations, the proposed method is denoted by “VBCCA”
(Variational Bayesian Causal Connectivity Analysis). For compar-
ison purposes we include the conditional WGC analysis method
implemented in the “Granger Causal Connectivity Analysis
(GCCA) toolbox” (Seth, 2010), which we denote by “WGCA”
(Wiener–Granger Causality Analysis). Note that we use WGCA
for comparison as it is a widely used method with publicly

available implementations. More recent methods, such as the
methods from , Smith et al. (2010), Marinazzo et al. (2011) and
Ryali et al. (2011) may offer a higher estimation performance than
WGCA. However, their high computational complexity makes it
difficult to apply them to large-scale problems, which is the situa-
tion where our method clearly outperforms WGCA. Nevertheless,
we include a comparison with a modified version of our method,
which does not use an approximation to the neuronal time series
and is therefore more similar to the method from Ryali et al.
(2011), and show that for small networks our method provides
a comparable estimation performance.

4.1. QUALITY METRICS
We use two objective metrics to evaluate the performance of the
methods. The first metric serves to quantify the performance in
terms of correctly detecting the presence of a connection between
regions, without taking the direction of the causal influence into
account. In order to do so, we calculate the area under the receiver
operating characteristic (ROC) curve, which is commonly used in
signal detection theory and has also previously been used to eval-
uate connectivity methods (Valdés-Sosa et al., 2005; Haufe et al.,
2008). In the following we give a short explanation of the ROC
curve and refer the reader to Fawcett (2006) for a more detailed
introduction. The ROC curve is generated by applying thresholds
to the estimated connectivity scores. The resulting binary masks
are compared with the ground truth, resulting in a number of
true positives (TP) and false positives (FP). From the TP and FP
numbers, we can calculate the true positive rate (TPR) and false
positive rate (FPR) as follows

TPR = TP

P
, FPR = FP

N
, (43)

where P and N are the total number of positives and negatives,
respectively. For each threshold, we obtain a (FPR, TPR) point in
the ROC space. By applying all possible thresholds, we can con-
struct the ROC curve which allows us to compute the area under
the curve (AUC). The AUC is the metric used here to evaluate the
connection detection performance. The value of the AUC is on
the interval [0 1], with 1.0 being perfect detection performance
while 0.5 is the performance of a random detector, i.e., the AUC
should always be above 0.5 and as close as possible to 1.0. To cal-
culate the non-directional connectivity score between nodes i and
j from the estimated N × N connectivity matrix, we use the larger
of the directional scores, i.e., con(i, j) = con(j, i) = max (cij, cji).
For WGCA, the matrix C is the matrix with estimated Granger
causality scores, whereas for the proposed method we calculate C

from the estimated VAR coefficients using cij =
√

∑P
p= 1

〈
a

(p)
ij

〉
.

The AUC provides information on the performance in terms
of detecting connections without taking directionality into
account. A second metric, denoted by “d-Accuracy” (Smith et al.,
2011), is used to evaluate the ability of a method to correctly iden-
tify the direction of the connection. The d-Accuracy is calculated
as follows. For true connections (known from the ground truth)
we compare the elements cij and cji in the connectivity matrix. We
decide that the direction was estimated correctly if cij > cji and
the true connection has the direction j→ i. By repeating for all
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connections, we calculate the overall probability that the direc-
tion was estimated correctly, which is the d-Accuracy score. Like
the AUC, the d-Accuracy lies between 0 and 1 with 1.0 indicating
perfect performance and 0.5 being the performance of a random
directionality detector.

4.2. NETWORK SIZE AND SNR
In this experiment we evaluate the performance of the pro-
posed method for a number of networks of varying sizes and a
number of different signal-to-noise ratios (SNRs). We generate
neuronal time series according to Equation (1) where we simu-
late connectivity by randomly activating N/2� uni-directional
connections, for which we generate the VAR coefficients accord-

ing to a
(p)
ij ∼ N (0, 0.05) ∀ p ∈ {1, . . . , P}, with P = 2. The noise

term is chosen to be Gaussian with unit variance, i.e., η (t) ∼
N (0, IN). Using the VAR coefficient matrices we generate a neu-
ronal time series s (t) with a total of T = 500 time points. To
generate the fMRI observations, we convolve the neuronal time
series of each node with the canonical HRF implemented in SPM8
(http://www.fil.ion.ucl.ac.uk/spm/), which has a positive peak at
5 s and a smaller negative peak at 15.75 s. The HRF used has a
total length of 30 s assuming a sampling rate of 1 Hz (L = 30).
Finally, to generate the noisy fMRI observation y (t), we add zero-
mean, independent, identically distributed (i.i.d.) Gaussian noise
with a variance σ 2 determined by the SNR used, i.e., SNRdB =
10 log10

((∑T
t= 1 ‖y (t)− ȳ (t) ‖2

2

)
/(NTσ 2)

)
, where ȳ (t) is the

observation without additive noise.
The simulated noisy observations are used as inputs to the

evaluated connectivity methods. In this experiment we use
the true VAR order, i.e., P = 2, for each evaluated method.
Additionally, in the proposed method we use the same canonical
HRF that is used to generate the data. Results for networks with

N = {5, 10, 25, 50, 100, 200} nodes and SNRs of 0, 5, and 10 dB
are shown in Figure 2. For small networks (5 and 10 nodes) both
methods offer similar performance with the proposed method
being slightly better. The SNR has a small influence on the per-
formance and it can be concluded that each method performs
similarly across the SNRs shown. As expected, the performance
of both methods decreases with increasing network size. However,
WGCA is affected drastically compared to the proposed method,
which shows almost constant performance across network sizes.
The proposed method clearly outperforms WGCA for large net-
works (more than 25 nodes). For N = 200, the AUC for WGCA
is approximately 0.65, which is very poor. Therefore, for the given
number of time samples, it can be concluded that WGCA is not
suitable for connectivity analysis in large scale networks.

4.3. VAR ORDER
An important question is how the performance is affected by
a mismatch in the VAR order present in the data and the VAR
order assumed in the algorithm. For this evaluation we generate
simulated data using the same procedure as in the first experi-
ment for N = 25 and an SNR of 0 dB, but we vary the VAR order
from 1 to 7. The generated data is used as input to the evaluated
methods for which we vary the VAR order used in the algorithm
in the same range, i.e., from 1 to 7. Results for this simulation
are shown in Figure 3; it can be seen that the proposed method
typically outperforms the WGCA method even if there is a mis-
match between the VAR order in the data and the VAR order
used in the algorithm. It is also interesting to note that the pro-
posed method typically performs well as long as the VAR order
used in the algorithm is equal or higher than that present in the
data. This behavior can be attributed to two factors. First, the pro-
posed method employs a grouping of VAR coefficients across lags
through shared priors, which limits the model complexity even

FIGURE 2 | Area under ROC curve (AUC) and d-Accuracy scores for

random networks with sizes between 5 and 200 nodes and different

SNRs. The proposed method is denoted by VBCCA, whereas WGCA
denotes Wiener–Granger causality analysis. All results are averages over

50 simulations with error bars indicating the 95% confidence intervals. The
average scores are also shown as numerical values in the bar plot, where
the values in parentheses are the size of one side of the confidence
interval.
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FIGURE 3 | Area under ROC curve (AUC) and d-Accuracy scores for

data generated by VAR processes with orders from 1 to 7. The proposed
method and the Wiener–Granger causality method are denoted by
VBCCA(P) and WGCA(P), respectively, where P denotes the VAR model
order used in the algorithm. All results are averages over 50 simulations
with error bars indicating the 95% confidence intervals. The average scores
are also shown as numerical values in the bar plot, where the values in
parentheses are the size of one side of the confidence interval.

when the VAR order is increased. Second, we use an approxima-
tion to the posterior distribution to estimate the VAR coefficients;
it is well known that methods which draw inference based on
the posterior distribution are less prone to over-fitting than other
methods, such as, maximum likelihood methods.

4.4. EFFECT OF USING AN APPROXIMATION TO THE NEURONAL
SIGNAL

As discussed in previous sections, the proposed method employs
a hierarchical Bayesian model with an approximation to the neu-
ronal time series. The approximate time series is denoted by
z(t) and is a key part of the proposed method as it enables
the method to be computationally efficient through a reduction
of the state space dimension used in the Kalman smoother. In
addition, the time series z(t) can be efficiently estimated in the
frequency domain using fast Fourier transform algorithms. While
the introduction of this approximation improves the computa-
tional efficiency, some reduction in the estimation performance
may be caused. To quantify the influence of this approximation,
we have implemented a modified version of the proposed method
where z(t) is not used, i.e., we increase the dimension of x(t) to
D = NL and model the observation process using Equation (42).
This part of the modified model exactly corresponds to what is
used in Smith et al. (2010) and Ryali et al. (2011). Due to the

FIGURE 4 | AUC, d-Accuracy, and mean squared error (MSE) scores for

the proposed method with and without using the approximate time

series z(t). The method are denoted by VBCCA (z(t) used) and VBCCA-D
(z(t) not used). The simulation parameters are the same as in the first
experiment, i.e., N = {5, 10}, T = 500, P = 2, SNR = 0 dB. All results are
averages over 50 simulations with error bars indicating the 95% confidence
intervals. The average scores are also shown as numerical values in the bar
plot, where the values in parentheses are the size of one side of the
confidence interval.

excessive memory requirements, the modified version of the pro-
posed method, which we denote by “VBCCA-D,” can only be used
for networks with small numbers of regions and HRFs consisting
of a small number of time samples. We apply the method to the
same data that is used in the first experiment, with N = {5 , 10},
SNR = 0 dB. The resulting connectivity scores, as well as, the
mean squared error (MSE) of the neuronal signal are shown in
Figure 4. The MSE is calculated as follows

MSE =
[

T∑

t= 1

‖s (t)− s̃ (t) ‖2
2

]

/

[
T∑

t= 1

‖s (t) ‖2
2

]

, (44)

where s (t) and s̃ (t) are the true and the estimated neuronal sig-
nals, respectively. It can be seen that the use of the neuronal
approximation does not have a negative influence on the perfor-
mance in terms of AUC while the MSE is slightly lower when the
approximation is not used. The small difference in terms of MSE
implies that both methods estimate the neuronal signal with sim-
ilar estimation quality. This is also apparent from Figure 5, which
shows the time neuronal series for one region estimated with and
without the approximation.

4.5. DOWNSAMPLING AND HRF VARIATIONS
As processing at the neuronal level occurs at temporal scales
which are orders of magnitudes faster than the sampling interval
of the MRI scanner, it is important to analyze how the perfor-
mance of causality based methods is affected by the low sampling
rate. Another important question is the effect of HRF variability
on the performance. In this experiment we analyze the influence
of these effects on the estimated causality. In order to do so, we
generate s(t) for two regions and a single connection accord-
ing to Equation (1) with zero-mean, i.i.d., Gaussian innovations,
i.e., η (t) ∼ N (0, I). The simulated sampling rate at the neu-
ronal level is 1 kHz and we generate a total of 240 s of data. We
use a1

1,1 = a1
2,2 = 0.95 to simulate a degree of autocorrelation
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FIGURE 5 | Sections of the true neuronal signal (blue) and estimated

neuronal signals for one node in a simulation with N = 5, SNR = 0 dB

in the first experiment. The neuronal signal estimated by the proposed
method is shown in red (“Approx.”), while the neuronal signal estimated by
the proposed method without using the approximate time series z(t) is
shown in green (“Direct”).

within each time series. To simulate connection with a certain
neuronal delay, depending of the direction of the influence we
draw the value of either ad

1,2 or ad
2,1 from a uniform distribu-

tion on the interval [0.4, 0.9]. The lag parameter d is used to
simulate the neuronal delay, e.g., d = 10 corresponds to a delay
of 10 ms. Next, we convolve the obtained neuronal time series
with an HRF for each region. In the first simulation we use the
same canonical HRF with peaks at 5 and 15.75 s for both regions,
whereas in the second simulation we use a randomly generated
HRF for each region. To generate a random HRF, we use the
HRF generation function provided in SPM8 (http://www.fil.ion.

ucl.ac.uk/spm/). The parameter controlling the time-to-peak is
drawn from a uniform distribution, such that the positions of
the positive peak lies between 2.5 and 6.5 s, which is the range of
peak positions reported in Handwerker et al. (2004). The param-
eter controlling the position of the negative peak (“undershoot”)
is held constant at 16 s. Due the implementation in SPM8, the
negative peak of the generated HRF lies between 15 and 16.7 s,
depending on the position of the positive peak. An example of
HRFs used in our experiment is depicted in Figure 6. After each
time series has been convolved with a HRF, the data is downsam-
pled to simulate a certain TR value. Finally we add zero-mean,
i.i.d., Gaussian noise such that the resulting SNR is 0 dB. To study
both the influence of downsampling and the neuronal delay, we
linearly vary the simulated TR between 50 ms and 2 s using a step
size of 50 ms (40 points) and the delay using 40 linearly spaced
values between 5 and 300 ms, resulting in a total of 1600 TR/delay
combinations.

Results for the first simulation, in which the HRF is held
constant, are shown in Figure 7. The results confirm previous
findings (Seth et al., 2013) that downsampling confounds WGC.
One might intuitively expect that when the neuronal delay is held
constant, a lower TR will lead to a higher d-Accuracy. However,
our simulations show that this is not necessarily the case; For
very low delay and TR values, the WGCA method has d-Accuracy
to zero, i.e., it consistently estimates a causal influence with the
opposite direction of the true influence, while it approaches the

FIGURE 6 | Example of random hemodynamic response functions

(HRFs) used in the experiment. The HRFs are generated from canonical
HRFs where the parameters are drawn from a uniform distribution such
that positions of the positive and the negative peaks lie in the intervals
[2.5s, 6.5s] and [15s, 16.7s], respectively. The bold dashed line shows the
default HRF with peaks at 5 and 15.75 s.

chance level (0.5) when TR is increased. The proposed method
shows a similar behavior, but for TR values below 300 ms the d-
Accuracy is close to 1.0. While it is difficult to assess the origin of
this transition, it is likely caused by increased aliasing that occurs
for larger TR values. Together with the consistent causality inver-
sion of WGC for low TR values, it shows that causal information
is still present in the data.

In the second simulation, we additionally introduce HRF vari-
ations. Results are shown in Figure 8. In this case, the proposed
method performs poorly, even for low TR values, unless the
method is provided with the true HRF for each region, in which
case it can mitigate the effects of HRF variability. Somewhat sur-
prisingly, WGCA(1) performs similarly as before when the same
HRF was used for each region. However, when the BIC is used
to determine the model order, the WGCA method exhibits low
estimation performance for all TR and delay values. A possible
explanation for this behavior is that due to the HRF convolu-
tion, the selected model order is higher than the true order and
the order also depends on the HRF used (Seth et al., 2013),
which results in spurious causality inversions and hence poor
performance.

It is important to point out that our results should not be inter-
preted in the way that WGC with a fixed model order consistently
estimates a causal influence with the opposite direction for low TR
values; whether the inversion occurs is dependent on simulation
parameters, e.g., the amount of autocorrelation in the simulated
time series, the connection strength, and the signal-to-noise ratio.
For example, when we repeat the first simulation with a higher
signal-to-noise ratio of 20 dB, the results change drastically, as
shown in Figure 9. The WGCA method now correctly estimates
the direction of the influence except for low TR and delay values.
In this case also the proposed method performs poorly for low
delay values. These results show that while the proposed method
performs better, especially in low-SNR situations, there is a risk of
causality inversion for both methods. The superiority of the pro-
posed method can be explained by the modeling, which explicitly
takes additive noise into account. However, at the same time, both
the proposed method and the WGCA method do not model the
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FIGURE 7 | Average d-Accuracy calculated over 50 simulations for a

network with two nodes and a single connection for varying neuronal

delays (40 steps between 5 and 300 ms) and TR values of the fMRI

scanner (40 steps between 50 ms and 2 s). The HRF is held constant for all

simulations, the signal-to-noise ratio is 0 dB. The proposed method is denoted
VBCCA and we use P = 1, whereas WGCA(P) denotes the Wiener–Granger
causality method, for which we use AR model orders of 1, 5, and an order
between 1 and 20 selected using the Bayesian information criterion (BIC).

FIGURE 8 | Average d-Accuracy calculated over 50 simulations for a

network with two nodes and a single connection for varying neuronal

delays (40 steps between 5 and 300 ms) and TR values of the fMRI

scanner (40 steps between 50 ms and 2 s). Random HRFs are used with
a time-to-peak uniformly distributed between 2.5 and 6.5 s, as shown in
Figure 6, the signal-to-noise ratio is 0 dB. The proposed method is

denoted VBCCA and we use P = 1, VBCCA(true HRF) denotes the
proposed method with P = 1 and the HRF assumed in the algorithm is
the same as the HRF that was used to generate the data. WGCA(P)
denotes the Wiener–Granger causality method, for which we use AR
model orders of 1 and an order between 1 and 20 selected using the
Bayesian information criterion (BIC).

non-linear downsampling operation and therefore can fail to cor-
rectly estimate the direction of the causal influence when the data
has been downsampled.

5. APPLICATION TO fMRI DATA
In this section, we apply the proposed method to resting-state
fMRI data provided by the Human Connectome Project (HCP)
(Van Essen et al., 2012). We use data from two 15 min runs of the
same subject (100307), each consisting of 1200 volumes with a TR
of 0.7 s. The minimally preprocessed volume data (Glasser et al.,
2013) was aligned to the FreeSurfer (Fischl, 2012) “fsaverage”
template and data from 148 cortical parcels from the Destrieux
atlas (Destrieux et al., 2010) was extracted by averaging data
across the gray matter at each vertex of the FreeSurfer surface
mesh. In addition, we extracted volume data from six subcorti-
cal parcels (thalamus, caudate, putamen, pallidum, hippocampus,
amygdala) for each hemisphere, resulting in a total of 160 parcels.

The extracted data was further preprocessed to reduce motion
artifacts, slow drifts, and physiological artifacts. Specifically, we
reduced motion artifacts and slow drifts using a linear regres-
sion for each voxel time series with three motion parameters
and a cosine basis up to order 8 as nuisance regressors, where
the order of the cosine basis was determined using the Bayesian
Information Criterion (BIC) (Schwarz et al., 1978). To reduce
physiological noise, we used a procedure similar to CompCor
(Behzadi et al., 2007), i.e., we extracted data from the left and right
lateral ventricles, which can be expected to not contain any signal
of neuronal origin, applied the previously described detrending
and motion artifact correction to it, and finally used a principal
component analysis (PCA) to extract the 20 strongest temporal
components. The extracted noise components were then used as
nuisance regressors for each voxel time series where the num-
ber of components to use was determined using BIC. Finally, to
obtain a single time series for each parcel, we computed a PCA
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for the data within each parcel and retained the first principal
component.

Connectivity matrices obtained by applying the proposed
method and WGCA to the HCP data are shown in Figure 10. As
a reference we also include the correlation coefficient, which is

FIGURE 9 | Average d-Accuracy calculated over 50 simulations for a

network with two nodes and a single connection for varying neuronal

delays (40 steps between 5 and 300 ms) and TR values of the fMRI

scanner (40 steps between 50 ms and 2 s). The HRF is held constant for all
simulations, the signal-to-noise ratio is 20 dB. The proposed method is
denoted VBCCA and we use P = 1, whereas WGCA(1) denotes the
Wiener–Granger causality method, for which we also use AR model order of 1.

the most commonly used fMRI resting-state connectivity mea-
sure. All methods show some consistency across runs. For the
proposed method and the second run, it can clearly be seen that
the method finds connections between nodes that are commonly
associated with resting-state networks. For example, nodes in
the frontal cortices, the temporal lobes, and the parietal lobes,
which are part of the default-mode network (Raichle et al., 2001).
There is also strong bi-lateral connectivity between the left- and
right occipital cortices, which are part of the visual resting-state
network. Compared to correlation and WGCA, the VBCCA con-
nectivity matrices are very sparse, which could indicate that there
may not be enough causal information in the data to result in
strong causality estimates, which would be a sensible explanation
given the short propagation delays at the neuronal level and the
still relatively slow sampling interval of 0.7 s. Finally, it is impor-
tant to note that due to the methodological problems discussed
in the previous section, it is possible that the direction of the
causal influence is estimated incorrectly. The application to real
fMRI data as presented here serves as a demonstration, further
evaluations, e.g., using simultaneous EEG and fMRI data, are nec-
essary to quantify the effectiveness of the proposed method when
applied to real fMRI data.

6. CONCLUSIONS
In this paper we proposed a variational Bayesian causal con-
nectivity method for fMRI. The method uses a VAR model for

FIGURE 10 | Connectivity matrices showing the absolute correlation

coefficient (Corr), Wiener–Granger causality (WGCA), and causality

estimated by the proposed method (VBCCA). We use the same parcel
grouping and order as in Irimia et al. (2012), which groups the parcels into
cortical lobes, i.e., frontal (Front), insular (Ins), limbic (Lim), temporal (Temp),
parietal (Par), occipital (Occ), and subcortical (Subc). The “−L” and “−R”

suffixes indicate the left and right hemisphere, respectively. The parcel colors
are the same as in the standard FreeSurfer color table. Results for the first
run (REST1_LR) and the second run (REST1_RL) are in the top and bottom
row, respectively. For WGCA and VBCCA, we use an VAR order of P = 1
consistent with our simulations. For the proposed method we show √cij in
order to better depict the estimated values within the scale of the color map.
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the neuronal time series and the connectivity between regions
in combination with a hemodynamic convolution model. By
introducing an approximation to the neuronal time series and
performing parts of the estimation in the frequency domain, our
method is computationally efficient and can be applied to large
scale problems with several hundred ROIs and high sampling
rates.

We performed simulations with synthetic data to evaluate the
performance of our method and to compare it with classical
Wiener–Granger causality analysis (WGCA). There are several
important findings from these simulations that need further dis-
cussion. In the first simulation, we demonstrated an important
strength of our method, that is, it performs significantly bet-
ter than WGCA when applied to problems with large numbers
of regions. This effect is due to the use Gaussian priors for the
VAR coefficients in combination with gamma priors for the pre-
cision hyperparameters. This prior has a regularizing effect by
promoting sparsity for the VAR coefficients and can be seen as
an adaptation of sparse Bayesian learning (Tipping, 2001) to
the problem of VAR coefficient estimation. In contrast, WGCA
does not use regularization for the VAR coefficients resulting
in a performance degradation when the number of regions is
increased. It is important to note that also the method in Ryali
et al. (2011) employs Gaussian-gamma priors for the VAR coef-
ficients. However, due to the computational complexity of the
method it can only be applied to problems with small numbers
of regions, where the prior is overwhelmed by the data and the
sparsity promoting effect is of little benefit.

In the second set of simulations, we evaluated our method
using simulated data generated by VAR processes of varying
orders. Again, due to the prior for the VAR coefficients, where
we group coefficients across lags together using shared precision
hyperparameters, our method performed well as long as the VAR
order used in the method is equal or higher than the VAR order
of the data. A grouping of VAR coefficients using �1�2-norm reg-
ularization was first proposed in Haufe et al. (2008), in our work
we propose a Bayesian formulation for this problem.

In the third simulation, we analyzed the effect of using an
approximation to the neuronal time series, which is employed in
our method to improve the computational efficiency, by compar-
ing our method with a modified version of our method where the
convolution with the HRF is included in the observation matrix
of the linear dynamic system, as in previous methods (Smith et al.,
2010; Ryali et al., 2011). The simulation results show that the
approximation leads to some reduction in the quality of the esti-
mated neuronal signal in terms of mean-squared error (MSE) but
does not have a significant influence on the connectivity estima-
tion performance. Importantly, the reduction in computational
complexity resulting from the use of the approximation to the
neuronal signal allows us to apply the method to large scale prob-
lems. As discussed above, the sparsity promoting priors for the
VAR coefficients are of crucial importance when the method is
applied to problems with large numbers of regions. The use of
the approximation to the neuronal time series is therefore an
important contribution of this work, as it allows us to apply the
method to problem sizes where the method can benefit from the
regularizing effect of the priors.

In a last set of simulations, we analyzed the effect of differ-
ent downsampling ratios, simulating different TR values of the
MRI scanner, the neuronal delay, and HRF variability. Perhaps
not surprisingly, the proposed method is immune to HRF vari-
ability if it has access to the true HRF of each region. Clearly,
in practice HRFs are subject and region dependent. However, it
has been shown that HRFs are strongly correlated across sub-
jects and regions (Handwerker et al., 2004). Hence, using data
from a large number of subjects, it may be possible to con-
struct a model describing the relationship between the HRFs
in various brain regions. This “hemodynamic atlas” could then
be used to approximate the HRFs in a large number of regions
from a small number of estimated HRFs for each subject. We
also found that the proposed method generally performs bet-
ter than WGC when a significant amount of additive noise is
present in the data. This finding is consistent with previous
results (Seth et al., 2013) and can be explained by the model
used in the proposed method which can account for additive
noise. However, while the proposed method offers some benefits
over WGC, we find that also the proposed method can estimate
a causal influence with the opposite direction when the data
has been downsampled, which is a known problem with WGC
methods (David et al., 2008; Deshpande et al., 2010; Seth et al.,
2013). The problem that causality estimated using a discrete-
time VAR model from a sampled continuous-time VAR process
can lead to opposite conclusions has been show before (Cox,
1992). Unfortunately, this problem has received little attention
in recent work on causality estimation from fMRI data, where
severe downsampling is common. In Solo (2007), it is shown
that while causality can be preserved under downsampling, VAR
models, as used in traditional WGC analysis and the proposed
method, are inadequate for estimating causality from the sub-
sampled time series and either VAR moving average (VARMA)
models or state-space (SS) models are required to correctly esti-
mate the direction of the causal influence. This raises hopes
that causality estimation from fMRI may be feasible by applying
more sophisticated models to data acquired with low TR values,
which may be achieved using a combination of novel acquisition
sequences and MRI scanners with higher field strengths. Clearly,
HRF variability will still be a problem but under certain con-
ditions it may be possible to use a model similar to the one
proposed in this work which can take into account the HRF of
each region.

Finally, we applied the proposed method to real resting-state
fMRI data provided by the Human Connectome Project (Van
Essen et al., 2012). For this data, the proposed method finds
connections between regions that are associated with known
resting-state networks. However, it is important to emphasize that
application to real fMRI data as presented here serves as a demon-
stration to show that the proposed method can be applied to
real fMRI data. As the true causal relationships in real data are
not known, it not possible to determine whether the direction of
causal influence is correctly estimated. As shown in our simula-
tions, there are methodological problems which, depending on
the noise level, the HRF, the TR, and the neuronal delay, can lead
to causality inversions. Further experiments, e.g., using simulta-
neous EEG and fMRI, are necessary to quantify the effectiveness

Frontiers in Neuroinformatics www.frontiersin.org May 2014 | Volume 8 | Article 45 | 134

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Luessi et al. Variational Bayesian causal connectivity analysis

of the proposed method to estimate the direction of the causal
influence from real fMRI data.
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Partial directed coherence (PDC) and directed coherence (DC) which describe
complementary aspects of the directed information flow between pairs of univariate
components that belong to a vector of simultaneously observed time series have recently
been generalized as bPDC/bDC, respectively, to portray the relationship between subsets
of component vectors (Takahashi, 2009; Faes and Nollo, 2013). This generalization is
specially important for neuroscience applications as one often wishes to address the
link between the set of time series from an observed ROI (region of interest) with
respect to series from some other physiologically relevant ROI. bPDC/bDC are limited,
however, in that several time series within a given subset may be irrelevant or may even
interact opposingly with respect to one another leading to interpretation difficulties. To
address this, we propose an alternative measure, termed cPDC/cDC, employing canonical
decomposition to reveal the main frequency domain modes of interaction between
the vector subsets. We also show bPDC/bDC and cPDC/cDC are related and possess
mutual information rate interpretations. Numerical examples and a real data set illustrate
the concepts. The present contribution provides what is seemingly the first canonical
decomposition of information flow in the frequency domain.

Keywords: directed connectivity measures, canonical decomposition, frequency domain, information flow,

generalized coherence

1. INTRODUCTION
Human behavior is primarily thought as a property that emerges
from the interaction of several brain areas, body parts, and
the environment. Understanding how these elements dynami-
cally interact is one of major themes of systems neuroscience.
Several multivariate time series methods—old and new—have
been introduced to describe the interdependence between brain
areas using signal modalities like EEG, BOLD signals, MEG and
LFP—and are collectively called connectivity measures. Partial
directed coherence (PDC) (Baccalá and Sameshima, 2001) and
directed coherence/directed transfer function (DC/DTF) (Kamiński
and Blinowska, 1991) are two examples of such connectivity mea-
sures. Both describe complementary aspects (see Baccalá and
Sameshima, 2014 for an in depth discussion) of how informa-
tion flows between pairs of univariate time series components
that belong to a multivariate vector of simultaneously observed
time series (Takahashi et al., 2010). Recently, PDC and DC have
been generalized (as bPDC/bDC, respectively) to describe how
subsets (blocks) of components within a time series vector inter-
relate (Takahashi, 2009; Faes and Nollo, 2013). This is specially
important for neuroscience applications as one often wants to
investigate the interaction between sets of time series that are cir-
cumscribed to an observed region of interest (ROI) with respect
to another physiologically relevant ROI (Nedungadi et al., 2011).
The potential relevance of this type of question alone justi-
fies looking for their deeper meaning in terms of information
theoretical quantities.

Despite their practical importance, bPDC/bDC suffer from the
limitation that several time series within a given subset may be
irrelevant or interact in opposition to one another thereby posing
interpretation difficulties. Also, in several situations, a researcher
may be interested in just the few “best” descriptions of interac-
tion between two sets of time series but not in the total amount
of information flowing between them. For a more concrete exam-
ple, assume that two brain areas interact and that bPDC is large.
In this situation, it does not straightforwardly follow that all
brain region components are interacting in the same way, or even
whether some such components may be ignored. One way to
address this limitation is to decompose bPDC/bDC into different
components weighed according to relevance.

The aim of this article is twofold: (a) to provide a proper infor-
mation theoretic interpretation for bPDC/bDC and (b) to intro-
duce a canonical decomposition of information flows, henceforth
termed, respectively, canonical PDC/DC (cPDC/cDC). These new
decompositions allow us to closely mimic classical canonical cor-
relation analysis so that different dynamically relevant interaction
modes between brain areas can be exposed. Due to PDC inter-
pretability in terms of Granger causality (Baccalá and Sameshima,
2014), a consequence of the present formulation is that cPDC
represents a long sought frequency domain counterpart to time
domain canonical decompositions of Granger causality (Sato
et al., 2010; Ashrafulla et al., 2013).

The article is organized as follows. We first introduce the
background and notation necessary for the rest of the article
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(section 2). In the results section (section 3), we first show that
both bPDC and bDC between two subsets of processes are block
coherences between suitably defined underlying processes. Then,
we demonstrate that such coherences are nothing but mono-
tonic transformations of the mutual information rate between
the respective processes (Gelfand and Yaglom, 1959; Takahashi
et al., 2010; Nedungadi et al., 2011) leading immediately to their
interpretability as mutual information rates. Next, we introduce
cPDC and cDC and prove that they are the non-zero eigenvalues
of the matrices whose determinants underlie the respective bPDC
and bDC definitions (section 4). Using simulated examples and
publicly available data we illustrate the usefulness of cPDC/cDC
(section 5) followed by a brief discussion (section 6). Proof details
are left to the Appendix.

2. BACKGROUND
Let X1, . . . , XK be K distinct multivariate time series vectors with
dimension M1, . . . , MK . Using T to indicate matrix transposition,

let X(t) = [X1(t)T, . . . , XK (t)T
]T

for each time t ∈ Z be a second
order stationary time series with spectral density matrix S(ω) at
each frequency ω ∈ [−π, π). To justify our formal computation,
we assume that S(ω) is uniformly bounded from below and above
and invertible at all frequencies (Hannan, 1970). This is called
the boundedness condition which guarantees that the following
autoregressive (AR) representation of X holds in the mean square
sense

X(t) =
+∞∑

l= 1

A(l)X(t − l)+ ε(t), (1)

where ε(t) = [ε1(t)T . . . εK (t)T
]T

stands for a zero mean inno-

vation process, i.e., E
[
ε(t)ε(t)T

] = � and E
[
ε(t)ε(l)T

] = 0 for
l �= t. For l ≥ 1, A(l) are (M1 + . . .+MK )2-dimensional matri-
ces. Let Apq(l) for p, q ∈ {1, . . . , K} and l ≥ 1 be Mp ×Mq-
dimensional matrices so that A(l) has the following structure

A(l) =
⎡

⎢
⎣

A11(l) . . . A1M(l)
...

. . .
...

AM1(l) . . . AMM(l)

⎤

⎥
⎦

We define Ā(ω) = I −∑l≥ 1 A(l)e−
√−1ωl.

Under the boundedness condition, the following moving aver-
age (MA) mean square sense representation for the process X also
holds

X(t) =
+∞∑

l= 0

H(l)ε(t − l), (2)

where H(l) for l ≥ 0 are (M1 + . . .+MK )2-dimensional matri-
ces. Let H̄(ω) =∑l≥ 0 H(l)e−

√−1ωl. We have that Ā∗(ω) =
H̄−1(ω) for all ω ∈ [−π, π). The superscript ∗ indicates the
matrix complex conjugate.

Let P(ω) = S−1(ω). bPDC from the multivariate process Xj

to the process Xi at frequency ω, denoted π
(b)
ij (ω), is defined

(Takahashi, 2009; Faes and Nollo, 2013) by

π
(b)
ij (ω) = 1− det

(
Pjj(ω)− Ā∗ij(ω)�−1

ii Āij(ω)
)

det
(
Pjj(ω)

)−1
,

(3)

where det indicates the determinant and the subscript indices
relate to the natural block structure associated with the matrices.

Let � = �−1. bDC from the multivariate process Xj to the

process Xi at frequency ω, denoted γ
(b)
ij (ω), is defined (Takahashi,

2009; Faes and Nollo, 2013) by

γ
(b)
ij (ω)= 1− det

(
Sii(ω)− H̄ij(ω)�−1

jj H̄∗ij (ω)
)

det (Sii(ω))−1 .

(4)

Note that the present bDC definition differs slightly from the one
in Faes and Nollo (2013). We removed the unnecessary condition
of strict causality, i.e., diagonality of �, simply by substituting
�−1

jj by �−1
jj in their definition of bDC as it is more suited for

formulating information theoretic results as shown ahead.
Consider a second-order stationary multivariate process

W(t) = [Y(t)T Z(t)T
]T

. The block coherence between Y and Z
at frequency ω is defined as (Nedungadi et al., 2011)

C(b)
YZ (ω) = 1− det (SWW (ω)) det (SYY (ω))−1 det (SZZ(ω))−1. (5)

Observe that we used the process name in the subscript of the
power spectrum S to indicate the corresponding spectral density
matrices. In the rest of the article, we will use interchangeably
the process name or the corresponding indices in the subscript
whenever there is no ambiguity.

Another important definition is that of mutual information
rate (MIR) between two multivariate strictly stationary processes
Y and Z is

MIRYZ = lim
t→+∞

1

t
E

[
log

dP(Y(1), . . . , Y(t), Z(1), . . . , Z(t))

dP(Y(1), . . . , Y(t))dP(Z(1), . . . , Z(t))

]
.

(6)

The classical relationship between block coherence (Equation 5)
and mutual information rate (Equation 6) follows from

Theorem. (Gelfand and Yaglom, 1959; Pinsker, 1964) If Y and Z
are jointly stationary Gaussian processes satisfying the boundedness
condition, we have that the MIR between Y and Z is given by

MIRYZ = − 1

4π

∫ π

−π

log
(

1− C(b)
YZ (ω)

)
dω. (7)

Now, following Takahashi et al. (2010), we define, for
i ∈ {1, . . . , K}, the partialized process ηi by

ηi(t) = Xi(t)− E
[
Xi(t)| {Xj(l), j �= i, l ∈ Z

}]
, (8)

where E[	|	] henceforth denotes the best linear conditional
predictor. Likewise the partialized innovation process ζi for i ∈
{1, . . . , K} is

ζi(t) = εi(t)− E
[
εi(t)| {εj(t), j �= i

}]
. (9)
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Observe that both partialized process and partialized innovation
process were defined in Takahashi et al. (2010) but for the special
case of scalar ηi and ζi.

3. RELATION BETWEEN bPDC/bDC AND MUTUAL
INFORMATION RATE

Our first result establishes the relationship between bPDC and
block coherence and is analogous to Theorem 1 in Takahashi et al.
(2010).

Theorem 1. Let X satisfy the boundedness condition. For all
i, j ∈ {1, . . . , K} and all frequencies ω ∈ [−π, π) we have that

π
(b)
ij (ω) = C(b)

εiηj
(ω). (10)

A straightforward corollary is

Corollary 1. Let X be a stationary Gaussian process and satisfy the
boundedness condition. For all i, j ∈ {1, . . . , K} we have that

MIRεiηj = −
1

4π

∫ π

−π

log
(

1− π
(b)
ij (ω)

)
dω. (11)

Similar results also hold for bDC.

Theorem 2. Let X satisfy the boundedness condition. For all
i, j ∈ {1, . . . , K} and all frequencies ω ∈ [−π, π) we have that

γ
(b)
ij (ω) = C(b)

Xiζj
(ω). (12)

and

Corollary 2. Let X be a stationary Gaussian process and satisfy the
boundedness condition. For all i, j ∈ {1, . . . , K}, we have that

MIRXiζj = −
1

4π

∫ π

−π

log
(

1− γ
(b)
ij (ω)

)
dω. (13)

4. CANONICAL PDC AND DC
Canonical correlation is a classical method developed initially
by Hotelling (1936) to address the relationship between ran-
dom vectors. Brillinger (1981) generalized the method for time
series and gave an excellent account of the relationship between
canonical correlation analysis and different ideas in multivariate
statistics. Our formulation of canonical coherence is equivalent to
the definition introduced by Brillinger (1981).

Let Y and Z be respectively MY - and MZ-dimensional jointly
second order stationary processes. To better understand the rela-
tionship between Y and Z, we can ask the following question:
Which components of Y and Z are most representative of the
interaction between the processes? One way to formalize this is to
consider filtering matrices BY (l) ( 1×MY ) and BZ(l) ( 1×MZ),
for all l ∈ Z and define the scalar processes bY and bZ by

bY (t) =
∑

l∈Z

BY (l)Y(t − l) (14)

and

bZ(t) = ∑

l∈Z

BZ(l)Z(t − l), (15)

so that CbY bZ (ω) is maximized for all ω ∈ [−π, π). If further-
more Y and Z are jointly stationary Gaussian processes, then this
is equivalent to maximizing MIRbY bZ .

Following the above idea, we define the first canonical coher-
ence between Y and Z at frequency ω by

C(c1)
YZ (ω) = sup

BY ,BZ

CbY bZ (ω). (16)

Assume that the supremum (Equation 16) is achieved for b̄Y

and b̄Z , which we call first canonical time series. Consider the
residual processes Y1(t) = Y(t)− E

[
Y(t)| {b̄Y (l), l ∈ Z

}]
and

Z1(t) = Z(t)− E
[
Z(t)| {b̄Z(l), l ∈ Z

}]
. Observe that Y1 and Z1

are uncorrelated to the processes b̄Y and b̄Z , respectively. The sec-

ond canonical coherence C(c2)
YZ (ω) is defined recursively on the

residues by C(c2)
YZ (ω) = C(c1)

Y1Z1 (ω).
Analogously, for 2 ≤ m ≤ min{MY , MZ}, considering the

residual processes

Ym(t) = Ym− 1(t)− E
[
Ym− 1(t)| {b̄Yk (l), l ∈ Z,

k ∈ {1, . . . , m − 1}}]
and

Zm(t) = Zm− 1(t)− E
[
Zm− 1(t)| {b̄Zk (l), l ∈ Z,

k ∈ {1, . . . , m − 1}}],
one may define the m-th canonical coherence as

C(cm)
YZ (ω) = C(c1)

Ym− 1Zm− 1 (ω). (17)

In this way, it is possible to construct a hierarchy of coherences
where each element captures the dependence structure that is not
explained by the other elements.

Finally, we introduce cPDC and cDC. For m ≤ min{Mi, Mj},
the m-th canonical PDC from j to i at frequency ω denoted

π
(cm)
ij (ω) is defined by

π
(cm)
ij (ω) = C(cm)

εiηj
(ω). (18)

Similarly, the m-th canonical DC from j to i at frequency ω

denoted γ
(cm)
ij (ω) is defined by

γ
(cm)
ij (ω) = C(cm)

Xiζj
(ω). (19)

At first sight, it is unclear whether the canonical PDC and DC
exist at all or even if they are uniquely defined. More importantly,
nor is it obvious that it is possible to compute them. Despite these
initial uncertainties, we show next that canonical coherences are
consistently defined as the non-null eigenvalues of some specific
matrices.
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Let λm(Q) denote its m-th eigenvalue from matrix Q ordered
from its largest to its smallest value. The following theorem
furnishes a practical way to calculate cPDC and cDC.

Theorem 3. Under the boundedness condition for X the following
identities hold:

π
(cm)
ij (ω) = λm

(
Ā∗ij(ω)�−1

ii Āij(ω)P−1
jj (ω)

)
(20)

and
γ

(cm)
ij (ω) = λm

(
S−1

ii (ω)H̄ij(ω)�−1
jj H̄∗ij (ω)

)
. (21)

Furthermore it is possible to relate bPDC/bDC and
cPDC/cDC via

Theorem 4. Under the same conditions of Theorem 3 the following
identities hold:

π
(b)
ij (ω) = 1−

min{Mi,Mj}∏

m= 1

(
1− π

(cm)
ij (ω)

)
(22)

and

γ
(b)
ij (ω) = 1−

min{Mi,Mj}∏

m= 1

(
1− γ

(cm)
ij (ω)

)
. (23)

A simple consequence of Equations (22), (23) is that for station-
ary Gaussian processes satisfying the boundedness condition, we
now have a decomposition of the mutual information rates

MIRεiηj =
min{Mi,Mj}∑

m= 1

− 1

4π

∫ π

−π

log
(

1− π
(cm)
ij (ω)

)
dω (24)

and

MIRXiζj =
min{Mi,Mj}∑

m= 1

− 1

4π

∫ π

−π

log
(

1− γ
(cm)
ij (ω)

)
dω. (25)

Note how the quantities being summed in Equations (24), (25)
are formally themselves contributions to the mutual information
written in terms of their canonical coherence contributions.

5. ILLUSTRATIONS
5.1. SIMULATED MODELS
Example 1. To provide insight into cPDC behavior, we begin with
a very simple example that can be fully and explicitly solved.

Let a vector of observed time series [Y1, Y2, Y3, Y4] be a real
valued autoregressive process of order p = 1 and � = I. The
autoregressive coefficients of the model are described by

A(1) =

⎛

⎜⎜
⎝

.5 f 0 0
e .5 0 0
a b .5 h
c d g .5

⎞

⎟⎟
⎠, (26)

as in Figure 1.

FIGURE 1 | Connectivity diagram for Example 1. The number of
canonical components depends on the value of ad − bc.

By adopting time series blocks as X1 = [Y1 Y2] and X2 =
[Y3 Y4], when e = f = g = h = 0, direct computation shows that

the canonical PDC from block X2 to X1 is zero, i.e., π
(c1)
12 (ω) =

π
(c2)
12 (ω) = 0 for all ω (reflecting the nullity of the 2× 2 A(l) right

side upper block), whereas the coupling in the opposite direction
contributes two distinct components:

π
(c1)
21 (ω) = a2 + b2 + c2 + d2 +√(a2 + b2 + c2 + d2)2 − 4(ad− bc)2

2.5− 2 cos (ω)
(27)

and

π
(c2)
21 (ω) = a2 + b2 + c2 + d2 −√(a2 + b2 + c2 + d2)2 − 4(ad− bc)2

2.5− 2 cos (ω)
.(28)

For ad = bc—i.e., if the lower left 2× 2 block determinant of A(l)
is zero as well, the total number of non-zero cPDC components
reduces to just 1.

Even if e, f , g, h are non-zero, i.e., regardless of intrablock
dynamics, a = b = 0 suffices to produce the single non-zero

π
(c1)
21 (ω) component (shown in Figure 2A) since block X1 inter-

acts with block X2 exclusively through Y4, i.e., π
(c2)
21 (ω) ≡ 0. In

this case, since only Y4 is directly impacted by the interaction,
only one combined source of variance exists even though two
links exist between the blocks. Likewise if b = d = 0, even though
two links leave X1, there is only one dynamical component that
counts.

This contrasts with the situation when b = c = 0 where two
non-zero π

(c2)
21 (ω) coexist (Figure 2B) regardless of the values of

e, f , g, h which, nonetheless, contribute to the relative size of the
components.
Example 2. In the next example, a 10-variate time series
(Y1, . . . , Y10) follows the connectivity diagram represented in
Figure 3. The multivariate time series is divided into four blocks
(X1, X2, X3, and X4), where X4 only sends information and X3,
which is an integrative block, only receives information. Block
X1 has two functionally distinct internal parts, and only one is
reached by outside influence. The scenario is fairly complicated
and we next illustrate cPDC/cDC usefulness for understanding
the underlying dynamic interaction between blocks.
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A B

FIGURE 2 | Illustrative plots of the observations in Example 1. (A)

cPDC21 results for e = f = g = h = 0 in Example 1 revealing just one
non-zero component under the ad = bc condition. (B) cPDC21 when
b = c = 0 and non-zero a and c in Example 1 leading to two non-zero
components for any non-zero values of the e, f , g, h coefficients (the graph
shown was produced using a = 0.5, b = 0, c = 0, d = 1, e = 0.3, f = −0.1,
g = 0.3, h = 0.4).

FIGURE 3 | Connectivity diagram for Example 2 portraying how the

bock sets. Note the effect of the value of the a parameter on cDC (Figure 5

versus Figure 6).

To help interpret the results, we begin by describing the non-
zero model coefficients and their dynamical effects. Observe that
the model subscript indices in this example indicate the corre-
sponding scalar process and not the block number.

1. Block X1 = [Y1 Y2 Y3 Y4 Y5]

A1,1(1) = 1.98 cos(π/50), A1,1(2) = −(.99)2,

(low frequency oscillator in Y1 ) (29)

A2,3(1) = 1, (30)

A3,3(1) = 1.98cos(π/2), A3,3(2) = −(.99)2,

(oscillator at midband (π/2) in Y3) (31)

A5,4(1) = .99, A4,5(1) = −.99,

(oscillator at midband in [Y4 Y5] ) (32)

A8,2(1) = 1, A8,2(3) = 1, (midband notch) (33)

A6,3(1) = 1, A6,3(3) = 1, (midband notch) (34)

A9,1(1) = 1, A9,5(1) = 1. (35)

2. Block X2 = [Y6 Y7]

A6,7(1) = .99, A7,6(1) = −.99,

(oscillator identical to the [Y4 Y5]) (36)

A9,6(1) = 1. (37)

3. Block X3 = [Y8 Y9]

A8,8(1) = −1, A9,8(1) = .5. (38)

4. Block X4 = [Y10]

A10,10(1) = 1.98 cos(2π/3), A10,10(2) = −(.99)2,

(high frequency oscillator in Y10 ) (39)

A4,10(1) = a, (40)

A7,10(1) = 1. (41)

The resulting cPDC components can be appreciated in Figure 4
for |a| = 1. Among their interesting features is the existence of
the notch filtered link from X1 to X2 and to X3 at midband. The
effects of the low frequency dynamics due to Y1 and the midband
resonance due to [Y4 and Y5]manifests itself as the strongest com-
ponent from X1 to X3. Likewise the single link effect from X2 to
X3 is readily apparent as the higher frequency resonances from X4

toward both X1 and X2. Both X3 components are identically equal
to 1 since nothing leaves the block.

The corresponding cDCs are portrayed in Figure 5 for a = −1
with no signal reachability from X4 to X3. This contrasts markedly
with Figure 6 for a = 1 where X4’s indirect effects on X3 are not
balanced out.

The effects of the notch connections are readily apparent in
both cases. For example, the power associated with the notch
frequencies are the local components to X2 and X3 and cannot
be attributed to outside influence. For block X1 only one of the
five components is different from 1 reflecting the contribution
coming from X4.

5.2. EMPIRICAL DATA
This example is based on EEG data borrowed from Sameshima
et al. (2014) (Ex. 7.7), which describes a left mesial temporal
ictal episode monitored using an extended 10–20 system. The
midline electrodes were excluded and left (L) and right (R) side
electrodes were grouped as to whether they were frontal (F), cen-
tral (C), parietal (P), temporal (T) or occipital (O) leading to the
canonical PDCs portrayed in Figure 7 where the most important
connecting blocks share a dominant low pass frequency canoni-
cal component of fairly identical shape pointing to the existence
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FIGURE 4 | The cPDC for Example 2 reflects the existence of the

notch connecting filters from X1 to X2 and to X3. The intrinsic
dynamics of the oscillators from a subregion of X1 into X3 is apparent
in the resonances of the largest cPDC component. The resonance
within block X2 manifest itself in the single non-zero component into

X3 while the effect of X4 reaches symmetrically into X1 and X2 via its
single dynamic component. In this and following two figures, each
subfigure may contain up to five cPDC/cDC components, given by
min(Mi , Mj ) as in Equations (22)/(23), represented in red, blue, yellow,
green, or black lines in decreasing order of magnitude.

of a shared dominant connectivity dynamics behind the observa-
tion, see Figure 8A. Their connectivity is further summarized in
Figure 8B.

6. DISCUSSION
We showed that bPDC/bDC introduced in Takahashi (2009) and
Faes and Nollo (2013) are block coherences between properly
chosen vector time series. When the time series are Gaussian,
this implies that bPDC/bDC represent mutual information rates
between well defined underlying vector time series. This fully
generalizes the results presented in Takahashi et al. (2010). To
enhance the understanding of the possibly complex interaction
between multiple time series and overcome some bPDC/bDC
limitations, we showed that the latter can be decomposed in
canonical terms that we call cPDC/cDC. These decompositions
represent the various different modes of interaction whereby
sets of time series interact. We introduced an explicit way to
compute these new quantities and proved some of their prop-
erties. The usefulness of cPDC/cDC was illustrated by three
examples.

6.1. bPDC AND bDC AS BLOCK COHERENCES
Takahashi et al. (2010) showed that PDC from the j-th scalar time
series to the i-th scalar time series is the coherence between the
i-th innovation process and the j-th partialized process with a
similar result for DC. It is natural to ask whether an analogous

result holds for bPDC and bDC. We showed that this is indeed
the case where bPDC/bDC represent block coherences relat-
ing subsets of adequately defined innovations/partialization pro-
cesses (Takahashi, 2009; Nedungadi et al., 2011). At first sight
these identities may seem surprising as both bPDC and bDC
are fully multivariate and directional measures of dependence,
whereas block coherences are at once block-pairwise and sym-
metric measures of dependence. Yet careful reading of Theorems
1 and 2 highlights that bPDC/bDC from j to i and bPDC/bDC
from i to j are, in general, block coherences between distinct
pairs of vector processes which explains their asymmetric nature
and lends them their directed connectivity character. Also, we
note that for both bPDC and bDC, the coherences involve
innovation process subsets which explains their fully multivari-
ate characteristic as measures. Another interesting observation
is that since the innovation processes are uncorrelated to the
past of the partialized processes by construction, in the case
of bPDC only innovations in the past of the partialized pro-
cess contribute to the coherence which explains why bPDC is
a directed measure of dependence. An analogous observation
holds for bDC. In the Gaussian case, the bPDC/bDC represen-
tation as a block coherence allows relating them to the mutual
information rate between suitably chosen time series. Formally
this justifies the idea that these quantities are de facto mea-
sures of information flow. For an interesting comparison between
bPDC/bDC and Geweke’s measure of linear feedback see Faes
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FIGURE 5 | cDC for Example 2 for a = −1 leading to a cancelation of the effect of X4 on X3 as the signal travels indirectly through two exactly

identical structures but with opposite phases before reaching X3. The notch filtering action is also apparent from the cDCs from X1 to X2 and X3.

FIGURE 6 | cDC for Example 2 with a = 1 which differs from Figure 5 in the effect from X4 to X3 which no longer cancels out.
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FIGURE 7 | cPDC from the Empirical Data example (section 5.2) from the left mesial ictal episode where the largest components are represented

either in red or green. cPDC values in red were arbitrarily considered significant and were pictorially summarized in Figure 8B.

and Nollo (2013). As a small note for the reader, we observe that
our definition of bPDC/bDC is slightly more general than the
one proposed by Faes and Nollo (2013) because the covariance
matrix of the innovations does not need to be diagonal as they
assumed.

6.2. CANONICAL DECOMPOSITION OF DIRECTIONAL MEASURES
Given a pair of random vectors, it is natural to ask how to mea-
sure/represent dependence between them. In statistics, there are
two main methods, both inspired by the basic Pearson correla-
tion, to address this. The first one generalizes Pearson correlation
directly using the determinants of the covariance matrix between
and within each set of random variables. For time series, the
equivalent measure in the frequency domain is the block coher-
ence and the directed versions are bPDC and bDC. A second
generalization rests on the idea of canonical correlation intro-
duced by Hotelling (1936). There are several generalizations of
canonical correlation for time series taylored specifically to infer
Granger causality in the time domain (Sato et al., 2010; Wu et al.,
2011), but, to the best of our knowledge, cPDC and cDC are the
first proposals of canonical measures of directed dependence in
the frequency domain.

One advantage of cPDC/cDC over bPDC/bDC is that canon-
ical decomposition allows inferring the various different existing
modes of interaction between sets of time series in close analogy
to what is done for classical canonical correlation and princi-
pal component analyses. One should expect this to be useful
when several signals are redundant, generated by similar mech-
anisms, or when there are several time series that do not signif-
icantly contribute to the interaction between sets of time series,
e.g., when there are many brain areas that are not interacting
with each other during some specific behavior. Besides, as we
show in Theorem 4, we can recover the bPDC/bDC from the
cPDC/cDC.

6.3. INTERPRETING cPDC/cDC
The main practical interest of cPDC/cDC is to allow the simplifi-
cation of connectivity interpretations whilst giving new insights
into the dynamical interaction between neural structures. We
illustrated the achievable simplification using an EEG data set
from an epileptic patient. We also showed how cPDC is related
to the number of “modes” of interaction between sets of time
series through the simple numerical Example 1 and via the slightly
more complex Example 2. We expect that cPDC/cDC together
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A B

FIGURE 8 | (A) This corresponds to Figure 7.13 from Sameshima et al.
(2014) showing the gPDC connectivity graph (see arrows) and the scalp
electrodes grouping sets corresponding to frontal (LF, RF), temporal (LT,
RT), central (LC, RC), pariental (LP, RP), and occipital (LO, RO) areas.
The midline electrodes in gray were not considered in this analysis.
(B) Diagram for the significant first cPDC components in Figure 7 (red

lines) showing scalp electrode set connections shown in (A). Notice
some divergences between gPDC and cPDC graphs possibly due the
lack of proper rigorous statistics usage for cPDC significance level
estimation, for instance, there is cPDC from RO to LO (B), but gPDC
O2 to O1 is absent (A), while there is gPDC from C4 to T1 without
corresponding cPDC from RC to LT.

with bPDC/bDC become useful tools for handling high dimen-
sional data sets that are increasingly being recorded by several
researchers.

We propose that a reasonable way to understand the useful-
ness of cPDC/cDC is to make an analogy with classical prin-
cipal component and canonical correlation analyses. Therefore,
similar heuristics could be applied in practical situations, for
example, to decide the number of different components to
include in the interpretation. The canonical time series b̄Y

and b̄Z from section 4 (see also Brillinger, 1981) are anal-
ogous to the canonical variables from the classical canoni-
cal correlation analysis and can play a similar role for result
interpretation.

Finally we remark that the computational procedures used for
the present paper will be made available the PDC homepage at
http://www.lcs.poli.usp.br/∼baccala/pdc/canon together with the
data used in section 5.2.
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A. APPENDIX
A.1 PROOF OF THEOREMS 1 AND 2 AND COROLLARIES 1 AND 2
The proofs in this section follow the pattern of those in Takahashi
et al. (2010). The chief difference lies in the care needed regarding
the order of the products between the defining matrices. Here we
exhibit the main proof ingredients for reader convenience, with
further details available in Takahashi (2009) and Takahashi et al.
(2010).

Proof of Theorem 1 and Corollary 1. Let W = [YT ZT]T be a sec-
ond order stationary process satisfying the boundedness condi-
tion, using the following well known identity for determinants
(Lütkepohl, 1996)

det (SW (ω)) = det (SZZ(ω)

− SZY (ω)S−1
YY (ω)SYZ(ω)) det (SYY (ω)) (A1)

leads to

C(b)
YZ (ω) = 1− det (SZZ(ω)

− SZY (ω)S−1
YY (ω)SYZ(ω)) det (S−1

ZZ (ω)) (A2)

= 1− det (SYY (ω)

− SYZ(ω)S−1
ZZ (ω)SZY (ω)) det (S−1

YY (ω)), (A3)

under Equation (5).
Rewrite bPDC as

π
(b)
ij (ω) = 1− det (P−1

jj (ω)

− P−1
jj (ω)Ā∗ij(ω)�−1

ii Āij(ω)P−1
jj (ω)) det (Pjj(ω)),(A4)

so that using the following identities proved in Takahashi et al.
(2010)

Pjj(ω) = S−1
ηjηj

(ω), (A5)

Sεiηj (ω) = Āij(ω)Sηjηj (ω), (A6)

and for all ω ∈ [−π, π)

Sεiεi (ω) = �ii, (A7)

back substituted into Equation (A4) leads to

π
(b)
ij (ω) = 1− det (Sηjηj (ω)

− Sηjεi (ω)�−1
ii Sεiηj (ω)) det (S−1

ηjηj
(ω)), (A8)

so that using Equation (A2) shows that the right-hand side of

Equation (A8) actually is C(b)
εiηj (ω) as we set out to prove. Corollary

1 is immediate from Theorem 1 and Equation (7).

Proof of Theorem 2 and Corollary 2. Theorem 2 is obtained by

rewriting C(b)
Xiζj

(ω) using Equation (A3) noting that

SXiζj (ω) = H̄ij(ω)Sζjζj (ω) (A9)

and for all ω ∈ [−π, π)

Sζjζj (ω) = �−1
jj . (A10)

Corollary 2 follows from Theorem 2 and Equation (7).

A.2 PROOF OF THEOREMS 3 AND 4
Brillinger (1981, chapter 10) introduced the idea of canonical
coherence for time series. We restate his result under our notation
as the following theorem.

Theorem 5 (Brillinger, Theorem 10.3.2). Let X and Y be m1

and m2-dimensional time-series jointly satisfying the boundedness
condition. For m ≤ min{m1, m2}, the following identity holds:

C(cm)
XY (ω) = λm(S−1

YY (ω)SYX(ω)S−1
XX(ω)SXY (ω)) (A11)

= λm(S−1
XX(ω)SXY (ω)S−1

YY (ω)SYX(ω)). (A12)

Proof of Theorem 3. From Equations (18), (A11), we have

C(cm)
εiηj

(ω) = λm(S−1
ηjηj

(ω)Sηjεi (ω)S−1
εiεi

(ω)Sεiηj (ω)). (A13)

Now, from Equations (A5), (A6), and (A7) it follows that

S−1
ηjηj

(ω)Sηjεi (ω)S−1
εiεi

(ω)Sεiηj (ω) = Ā∗ij(ω)�−1
ii Āij(ω)P−1

jj (ω),

(A14)

which proves Equation (20).
To prove Equation (21), we use Equations (19), (A12) to obtain

C(cm)
Xiζj

(ω) = λm(S−1
XiXi

(ω)SXiζj (ω)S−1
ζjζj

(ω)SζjXi (ω)). (A15)

Finally, from Equations (A9), (A10), we have

S−1
XiXi

(ω)SXiζj (ω)S−1
ζjζj

(ω)SζjXi (ω) = S−1
ii (ω)H̄ij(ω)�−1

jj H̄∗ij (ω),

(A16)

which concludes the proof.

Proof of Theorem 4. Rewrite bPDC as

1− π
(b)
ij (ω) = det (I − Ā∗ij(ω)�−1

ii Āij(ω)P−1
jj (ω)). (A17)

Now, Equation (22) is a straightforward consequence of the rela-
tionship between eigenvalues and the determinant of a matrix. A
similar argument proves Equation (23).
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In recent years, powerful general algorithms of causal inference have been developed.
In particular, in the framework of Pearl’s causality, algorithms of inductive causation (IC
and IC∗) provide a procedure to determine which causal connections among nodes in
a network can be inferred from empirical observations even in the presence of latent
variables, indicating the limits of what can be learned without active manipulation of the
system. These algorithms can in principle become important complements to established
techniques such as Granger causality and Dynamic Causal Modeling (DCM) to analyze
causal influences (effective connectivity) among brain regions. However, their application
to dynamic processes has not been yet examined. Here we study how to apply these
algorithms to time-varying signals such as electrophysiological or neuroimaging signals.
We propose a new algorithm which combines the basic principles of the previous
algorithms with Granger causality to obtain a representation of the causal relations
suited to dynamic processes. Furthermore, we use graphical criteria to predict dynamic
statistical dependencies between the signals from the causal structure. We show how
some problems for causal inference from neural signals (e.g., measurement noise,
hemodynamic responses, and time aggregation) can be understood in a general graphical
approach. Focusing on the effect of spatial aggregation, we show that when causal
inference is performed at a coarser scale than the one at which the neural sources interact,
results strongly depend on the degree of integration of the neural sources aggregated in
the signals, and thus characterize more the intra-areal properties than the interactions
among regions. We finally discuss how the explicit consideration of latent processes
contributes to understand Granger causality and DCM as well as to distinguish functional
and effective connectivity.

Keywords: causal inference, brain effective connectivity, Pearl causality, Granger causality, Dynamic Causal

Models, graphical models, latent processes, spatial aggregation

INTRODUCTION
The need to understand how the interactions and coordination
among brain regions contribute to brain functions has led to an
ever increasing attention to the investigation of brain connec-
tivity (Bullmore and Sporns, 2009; Friston, 2011). In addition
to anatomical connectivity, two other types of connectivity that
regard how the dynamic activity of different brain regions is
interrelated have been proposed. Functional connectivity refers
to the statistical dependence between the activity of the regions,
while effective connectivity refers, in a broad sense, to the causal
influence one neural system exerts over another (Friston, 2011).

Attempts to go beyond the study of dynamic correlations
to investigate the causal interactions among brain regions have
made use of different approaches to study causality developed
outside neuroscience (Granger, 1963, 1980). Granger causality
was proposed in econometrics to infer causality from time-series
and has been widely applied in neuroscience as a model-free
approach to study causal interactions among brain regions (see
Bressler and Seth, 2011, for an overview). It has been applied to

different types of neural data, from intracranial electrophysiolog-
ical recordings (e.g., Bernasconi and König, 1999; Besserve et al.,
2010), Magnetoencephalography recordings (e.g., Vicente et al.,
2011), to functional magnetic resonance imaging (fMRI) mea-
sures (e.g., Roebroeck et al., 2005; Mäki-Marttunen et al., 2013;
Wu et al., 2013). New approaches have been also developed within
neuroscience, such as Dynamic Causal Modeling (DCM) (Friston
et al., 2003) which explicitly models the biophysical interactions
between different neural populations as well as the nature of the
recorded neural signals (Friston et al., 2013).

Separately, in the field of artificial intelligence, another
approach to causal analysis has been developed by Pearl and
coworkers. Pearl’s approach combines causal models and causal
graphs (Spirtes et al., 2000; Pearl, 2009). The fundamental dif-
ference with the approaches currently used to study the brain’s
effective connectivity (Granger causality and DCM) is that the
understanding of causation in Pearl’s framework ultimately relies
on the notion of an external intervention that actively per-
turbs the system. This notion of intervention provides a rigorous
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definition of the concept of causal influence but at the same time
illustrates the limitations of causal analysis from observational
studies.

The analysis of the causal influence one neural system exerts
over another (i.e., effective connectivity) requires considering
causation at different levels (Chicharro and Ledberg, 2012a), in
particular distinguishing between causal inference and quantifi-
cation or modeling of causal effects (Pearl, 2009). At the most
basic level, causal inference deals with assessing which causal con-
nections exist and which do not exist, independently of their
magnitude or the mechanisms that generate them. At a higher
level, the quantification of the magnitude implies selecting a mea-
sure of the strength of the causal effect, and the characterization of
the mechanisms implies implementing a plausible model of how
the dynamics of the system are generated. Recently, it has been
pointed out that the existence of causal connections should be dis-
tinguished from the existence of causal effects, and in particular
that only in some cases it is meaningful to understand the interac-
tions between subsystems in terms of the causal effect one exerts
over another (Chicharro and Ledberg, 2012a). Furthermore, the
possibility and the limitations to quantify causal influences with
Granger causality has been examined (Lizier and Prokopenko,
2010; Chicharro and Ledberg, 2012b; Chicharro, 2014b).

In this work we focus on the basic level of causal analysis
constituted by causal inference. In particular, we investigate how
some general algorithms of causal inference (IC and IC∗ algo-
rithms) developed in the Pearl’s framework (Verma and Pearl,
1990; Pearl, 2009) can be applied to infer causality between
dynamic processes and thus used for the analysis of effective con-
nectivity. This algorithmic approach relies on the evaluation of
the statistical dependencies present in the data, similarly to the
non-parametric formulation of Granger causality. Its particular-
ity is that it explicitly considers the impact of latent (unobserved)
processes as well as the existence of different causal structures
which are equivalent in terms of the statistical dependencies
they produce. Accordingly, it provides a principled procedure
to evaluate the discrimination power of the data with respect
to the possible causal structures underlying the generation of
these data.

Although these causal algorithms do not assume any con-
straint on the nature of the variables to which they are applied,
their application to dynamic processes has yet to be investigated.
The main goal of this paper is to study the extension of Pearls
causal approach to dynamic processes and to evaluate concep-
tually how it can contribute to the analysis of effective neural
connectivity. To guide the reader, we provide below an overview
of the structure of this article.

OVERVIEW OF THE STRUCTURE OF THE ARTICLE
We start by reviewing the approach to causal inference of Pearl
(2009) and Granger (1963, 1980) and we then focus on the
analysis of temporal dynamics. In the first part of our Results
we investigate the application to dynamic processes of the algo-
rithms of causal inference proposed by Pearl. We then recast
their basic principles combining them with Granger causality into
a new algorithm which, as the IC∗ algorithm, explicitly deals
with latent processes but furthermore provides a more suited

output representation of the causal relations among the dynamic
processes.

In the second part of our Results, we shift the focus from the
inference of an unknown causal structure to studying how statis-
tical dependencies can be predicted from the causal structure. In
particular, for a known (or hypothesized) causal structure under-
lying the generation of the recorded signals, we use graphical
criteria to identify the statistical dependencies between the sig-
nals. We specifically consider causal structures compatible with
the state-space models which have recently been recognized as an
integrative framework in which refinements of Granger causal-
ity and DCM converge (Valdes-Sosa et al., 2011). This leads us
to reformulate in a general unifying graphical approach different
effects relevant for the analysis of effective connectivity, such as
those of measurement noise (Nalatore et al., 2007), of hemody-
namic responses (e.g., Seth et al., 2013), and of time aggregation
(e.g., Smirnov, 2013). We especially focus on the effect of spatial
aggregation caused by the superposition in the recorded signals
of the massed activity of the underlying sources of neural activity
interacting at a finer scale.

Finally, in Discussion we discuss the necessity to under-
stand how causal interactions propagate from the microscopic
to the macroscopic scale. We indicate that, although the algo-
rithms here discussed constitute a non-parametric approach
to causal inference, our results are also relevant for modeling
approaches such as DCM and help to better understand how
difficult it is in practice to distinguish functional and effective
connectivity.

REVIEW OF RELEVANT CONCEPTS OF CAUSAL MODELS
In this section, we lay the basis for the novel results by review-
ing the approach to causal inference of Pearl (2009) and Granger
(1963, 1980).

MODELS OF CAUSALITY
We begin reviewing the models of causality described by Pearl
(2009) and relating them to DCM (Friston et al., 2003). For
simplicity, we restrict ourselves to the standard Pearl mod-
els which are the basis of the IC and IC∗ algorithm, with-
out reviewing extensions of these models such as settable
systems (White and Chalak, 2009), which are suitable for a
broader set of systems involving, e.g., optimization and learning
problems.

A Causal Model M is composed by a set of n stochastic variables
Vk, with k ∈ {1, . . . , n} which are endogenous to the model, and
a set of n′ stochastic variables U ′k, with k′ ∈ {1, . . . , n′}, which are
exogenous to the model. Endogenous variables are those explicitly
observed and modeled. For example, when studying the brain’s
effective connectivity, these variables may be the neural activity of
a set of n different regions. The exogenous variables correspond
to sources of variability not explicitly considered in the model,
which can for example correspond to sources of neuromodula-
tion, uncontrolled variables related to changes in the cognitive
state (Masquelier, 2013), or activity of brain areas not recorded.
Accordingly, for each variable Vk the model contains a function fk
such that

Vk = fk(pa(Vk), Uk, θk) (1)
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That is, the value of Vk is assigned by a function fk determined by
a set θk of constant parameters and taking as arguments a sub-
set of the endogenous variables which is called the parents of Vk

(pa(Vk)), as well as a subset of the exogenous variables Uk. In gen-
eral, in Pearl’s formulation the exogenous variables are considered
as noise terms which do not introduce dependencies between the
endogenous variables, so that a single variable Uk can be related
to each Vk. Causality from Vj to Vj ′ is well-defined inside the
model: Vj is directly causal to Vj ′ if it appears as an argument
of the function fj ′ , that is, if Vj is a parent of Vj ′ (Vj ∈ pa(Vj ′ )).
However, whether the inside-model causal relation correctly cap-
tures some real physical causality depends on the goodness of the
model. To complete the model the probability distribution p({U})
of the exogenous variables is required, so that the joint distribu-
tion of the endogenous variables p({V}) is generated using the
functions. Accordingly, p({V}) can be decomposed in a Markov
factorization that reflects the constraints in terms of conditional
independence that result from the functional model:

p(V1, . . . , Vn) =
n∏

k= 1

p(Vk|pa(Vk)). (2)

Each causal model M has an associated graphical representa-
tion called causal structure G(M). A causal structure is a directed
acyclic graph (DAG) in which each endogenous variable Vk cor-
responds to a node and an arrow pointing to Vk from each of its
parents is added. A path between nodes Vj and Vj ′ is a sequence of
arrows linking Vj and Vj ′ . It is not required to follow the direction
of the arrows, and a path that respects their direction is called a
directed path. A causal structure reflects the parental structure in
the functional model, and thus indicates some constraints to the
set � = {θ1, . . . , θn} of constant parameters used to construct
the functions. The factorization of Equation (2) is reflected in Vk

being conditionally independent from any other of its ancestors
once conditioned on pa(Vk), where the ancestors of Vk—i.e., an
(Vk)—are defined in the graph as those nodes that can be attained
by following backwards any directed path that arrives to Vk.

In the formulation of Pearl no constraints concern the nature
of the variables in the causal model. However, in the presentation
of Pearl’s framework (Pearl, 2009) dynamic variables are seldom
used. This fact, together with the fact that the causal graphs asso-
ciated with the causal models are acyclic, has sometimes lead to
erroneously think that the Pearl’s formulation is not compatible
with processes that involve feedback connections, since they lead
to cyclic structures in the graph (see Valdes-Sosa et al., 2011, for
discussion). However, cycles only appear when not considering
the dynamic nature of the causal model underlying the graphical
representation. For dynamic variables, the functional model con-
sists of a set of differential equations, DCM state equations being
a well-known example (Valdes-Sosa et al., 2011). In particular, in
a discretized form, the state equations are expressed as

Vk,i+1 = fk(pa(Vk,i+1), Uk,i; θk); (3)

where Vk,i+1 is the variable associated with the time sampling i+1
of process k. In general, the parents of Vk,i+1 include Vk,i and can

comprise several sampling times from other processes, depend-
ing on the delay in the interactions. Depending on the type of
DCM models used, deterministic or stochastic, the variables {U}
can comprise exogenous drivers or noise processes. It is thus clear
that the models of causality described by Pearl are general and
comprise models of the form used in DCM.

STATISTICAL INDEPENDENCIES DETERMINED BY CAUSAL
INTERACTIONS
As mentioned above, a causal structure is a graph that represents
the structure of the parents in a causal model. Pearl (1986) pro-
vided a graphical criterion for DAGs called d-separation—where
d stands for directional—to check the independencies present in
any model compatible with a causal structure. Its definition relies
on the notion of collider on a path, a node on a path for which,
when going along the path, two arrows point toward the node
(→V←). The criterion of d-separation states:

D-separation
Two nodes Vj, Vj ′ are d-separated by a set of nodes C if and only
if for every path between Vj, Vj ′ one of the following conditions
is fulfilled:

(1) The path contains a non-collider Vk (→ Vk → or
← Vk → ) which belongs to C.

(2) The path contains a collider Vk (→ Vk ← ) which does not
belong to C and Vk is not an ancestor of any node in C.

For a causal model compatible with a causal structure the
d-separation of Vj and Vj ′ by C is a sufficient condition for Vj

and Vj ′ being conditional independent given C, that is

Vj⊥GVj′ |C⇒ Vj⊥MVj′ |C (4)

where ⊥G indicates d-separation in the causal structure G and
⊥M independence in the joint probability distribution of the
variables generated by the causal model M. This sufficient con-
dition can be converted into an if and only if condition if fur-
ther assuming stability (Pearl, 2009)—or equivalently faithfulness
(Spirtes et al., 2000)—, which states that conditional indepen-
dence between the variables does not result from a particular
tuning of the parameters �, which would disappear if those were
infinitesimally modified.

Considering the correspondence between d-separation and
conditional independence, an important question is the degree to
which the underlying causal structure can be inferred from the set
of conditional independencies present in an observed joint distri-
bution. The answer is that there are classes of causal structures
which are observationally equivalent, that is, they produce exactly
the same set of conditional independencies observable from the
joint distribution. Consider, for example, the four causal struc-
tures of Figure 1. Each causal structure is characterized by a list of
all the conditional independencies compatible with it. Applying
d-separation it can be checked that for Figures 1A–C we have that
X and Y are d-separated by Z (X⊥Y |Z), while in Figure 1D X
and Y are d-separated by the empty set (X ⊥ Y). Therefore, we
can discriminate Figures 1A–C from Figure 1D, but not among
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FIGURE 1 | Observationally equivalent causal structures. The causal
structures (A–C) are observationally equivalent, while the one in (D) is
distinguishable from them.

Figures 1A–C. Statistical dependencies, the only type of avail-
able information when recording the variables, only retain limited
information about how the variables have been generated.

Verma and Pearl (1990) provided the conditions for two DAGs
to be observationally equivalent. Two DAGs are observationally
equivalent if and only if they have the same skeleton and the same
v-structures, where the skeleton refers to the links without con-
sidering the direction of the arrows, and a v-structure refers to
three nodes such that two arrows point head to head to the cen-
tral node, while the other two nodes are non-adjacent, i.e., not
directly linked (as in Figure 1D). It is clear from this criterion
that the structures in Figures 1A–C are equivalent and the one
in Figure 1D is not.

CAUSAL INFERENCE
Causal inference without latent variables, the IC algorithm
Given the existence of observationally equivalent classes of DAGs,
it is clear that there is an intrinsic fundamental limitation to the
inference of a causal structure from recorded data. This is so even
assuming that there are no latent variables. Here we review the IC
algorithm (Verma and Pearl, 1990; Pearl, 2009), which provides a
way to identify with which equivalence class a joint distribution
is compatible, given the conditional independencies it contains.
The input to the algorithm is the joint distribution p({V}) on
the set {V} of variables, and the output is a graphical pattern that
reflects all and no more conditional independencies than the ones
in p({V}). These independencies can be read from the pattern
applying d-separation. The algorithm is as following:

IC ALGORITHM (INDUCTIVE CAUSATION)
(1) For each pair of variables a and b in {V} search for a set Sab

such that conditional independence between a and b given
Sab (a ⊥ b|Sab) holds in p({V}). Construct an undirected
graph linking the nodes a and b if and only if Sab is not found.

(2) For each pair of non-adjacent nodes a and b with a common
adjacent node c check if c belongs to Sab

If it does, then continue.
If it does not, then add arrowheads pointing at c to the edges
(i.e., a→ c← b).

(3) In the partially oriented graph that results, orient as many
edges as possible subject to two conditions: (i) Any alternative
orientation would yield a new v-structure. (ii) Any alternative
orientation would yield a directed cycle.

The algorithm is a straightforward application of the definition
of observational equivalence. Step 1 recovers the skeleton of the
graph, linking those nodes that are dependent in any context.

Step 2 identifies the v-structures and Step 3 prevents creating
new ones or cycles. A more procedural formulation of Step 3
was proposed in Verma and Pearl (1992). As an example, in
Figure 2 we show the output from the IC algorithm that would
result from joint distributions compatible with causal structures
of Figure 1. Note that throughout this work, unless otherwise
stated, conditional independencies are not evaluated by estimat-
ing the probability distributions, but graphically identified using
Equation (4). The causal structures of Figures 2A,C result in the
same pattern (Figures 2B,D, respectively), which differ from the
one that results from Figure 2E (Figure 2F).

The output pattern is not in general a DAG because not all
links are arrows. It is a partial DAG which constitutes a graphical
representation of the conditional independencies. D-separation
is applicable, but now it has to be considered that non-colliders
comprise edges without arrows, while the definition of collider
remains the same. Note that, to build any causal structure that
is an element of the class represented by a pattern, one has to
continue adding arrows to the pattern subject to not creating
v-structures or cycles. For example, the pattern of Figure 2B can
be completed to lead to any causal structure of Figures 1A–C,
but one cannot add head to head arrows, because this would
give a non-compatible causal structure which corresponds to the
pattern of Figure 2F.

CAUSAL INFERENCE WITH LATENT VARIABLES: THE IC∗ ALGORITHM
So far we have addressed the case in which the joint distribution
p({V}) includes all the variables of the model. Now we consider
that only a subset {VO} is observed. We have seen that while a
causal structure corresponds to a unique pattern which represents
the equivalence class, a pattern can represent many causal struc-
tures. The size of the equivalence class generally increases with
the number of nodes. This means that when latent variables are
not excluded, if no constraints are imposed to the structure of the
latent variables, the size of the class grows infinitely. For example,
if the latent variables are interlinked, the unobserved part of the
causal structure may contain many conditional independencies
that we cannot test. To handle this, Verma (1993) introduced the
notion of a projection and proved that any causal structure with
a subset {VO} of observable nodes has a dependency-equivalent
projection, that is, another causal structure compatible with the
same set of conditional independencies involving the observed
variables, but for which all unobserved nodes are not linked
between them and are parents of exactly two observable nodes.
Accordingly, the objective of causal inference with the IC∗ algo-
rithm is to identify with which dependency-equivalent class of
projections a joint distribution p({VO}) is compatible. In the
next section we will discuss how relevant it is for the application
to dynamic processes the restriction of inference to projections
instead of more general causal structures.

The input to the IC∗ algorithm (Verma, 1993; Pearl, 2009)
is p({VO}). The output is an embedded pattern, a hybrid acyclic
graph that represents all and no more conditional independen-
cies than the ones contained in p({VO}). While the patterns that
result from the IC algorithm are partial DAGs which only con-
tain arrows that indicate a causal connection, or undirected edges
to be completed, the embedded patterns obtained with the IC∗
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algorithm are hybrid acyclic graphs because they can contain
more types of links: genuine causal connections are indicated by
solid arrows (a→ b). These are the only causal connections that
can be inferred with certainty from the independencies observed.
Potential causes are indicated by dashed arrows (a ��� b), and
refer to a possible causal connection (a→ b), or to a possi-
ble latent common driver (a← α→ b), where greek letters are
used for latent nodes. Furthermore, bidirectional arrows indicate
certainty about the existence of a common driver. Undirected
edges indicate a link yet to be completed. Therefore, there is a
hierarchy of inclusion of the links, going from completely unde-
fined, to completely defined identification of the source of the
dependence: Undirected edges subsume potential causes, which
subsume genuine causes and common drivers.

Analogously to the patterns of the IC algorithm, the embed-
ded patterns are just a graphical representation of the dependency
class. Their main property is that using d-separation one can
read from the embedded pattern all and no more than the con-
ditional independencies compatible with the class. In the case of
the embedded patterns, d-separation has to be applied extending
the definition of collider to any head to head arrows of any of the
type present in the hybrid acyclic graphs.

IC∗ ALGORITHM (INDUCTIVE CAUSATION WITH LATENT VARIABLES)
(1) For each pair of variables a and b in {VO} search for a set Sab

such that conditional independence between a and b given
Sab (a ⊥ b| Sab) holds in p({VO}). Construct an undirected
graph linking the nodes a and b if and only if Sab is not found.

(2) For each pair of non-adjacent nodes a and b with a common
adjacent node c check if c belongs to Sab

If it does, then continue.
If it does not, then substitute the undirected edges by dashed
arrows pointing at c.

(3) Recursively apply the following rules:

- 3R1: if a and b are non-adjacent, they have a common adjacent
node c, if the link between a and c has an arrowhead into c and
the link between b and c has no arrowhead into c, then sub-
stitute the link between c and b (either an undirected edge or a
dashed arrow) by a solid arrow from c to b, indicating a genuine
causal connection (c→ b).

- 3R2: if there is a directed path from a to b and another path
between them with a link that renders this path compatible
with a directed path in the opposite direction, substitute the

FIGURE 2 | Causal structures (A,C,E) and their corresponding patterns

obtained with the IC algorithm (B,D,F).

type of link by the one immediately below in the hierarchy that
excludes the existence of a cycle.

Steps 1 and 2 of the algorithm are analogous to the steps of the IC
algorithm, except that now in Step 2 dashed arrows are introduced
indicating potential causes. The application of step 3 is analogous
to the completion in Step 3 of the IC algorithm, but adapted to
consider all the types of links that are now possible. In 3R1 a causal
connection (c→ b) is identified because either a causal connec-
tion on the opposite direction or a common driver would create a
new v-structure. In 3R2 cycles are avoided.

As an example of the application of the IC* algorithm in
Figure 3 we show several causal structures and their correspond-
ing embedded patterns. The causal structure of Figure 3A results
in an embedded pattern with two potential causes pointing to Z
(Figure 3B), while the one of Figure 3C results in an embedded
pattern with undirected edges (Figure 3D). The embedded pat-
tern of Figure 3B can be seen as a generalization, when latent
variables are considered, of the pattern of Figure 2F. Similarly,
the pattern of Figure 3D is a generalization of Figures 2B,D. In
the case of these embedded patterns a particular causal structure
from the dependency class can be obtained by selecting one of the
connections compatible with each type of link, e.g., a direct arrow
or to add a node that is a common driver for the case of dashed
arrows indicating a potential cause. Furthermore, like for the
completion of patterns obtained from the IC algorithm, no new
v-structures or cycles can be created, e.g., in Figure 3D the undi-
rected edges cannot be both substituted by head to head arrows.

However, in general for the embedded patterns, not all the ele-
ments of the dependency class can be retrieved by completing
the links, even if one restricts itself to projections. For example,
consider the causal structure of Figure 3E and its corresponding
embedded pattern in Figure 3F. In this case the embedded pat-
tern does not share the skeleton with the causal structure, since
a link X–Y is present indicating that X and Y are adjacent. This
makes the mapping of the embedded pattern to the underlying

FIGURE 3 | Causal structures containing latent variables (A,C,E,G) and

their corresponding embedded patterns obtained with the IC∗
algorithm (B,D,F,H).

Frontiers in Neuroinformatics www.frontiersin.org July 2014 | Volume 8 | Article 64 | 152

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Chicharro and Panzeri Algorithms of causal inference

causal structure less intuitive and further highlights that the pat-
terns and embedded patterns are just graphical representations of
a given observational and dependency class, respectively.

As a last example in Figures 3G,H we show a causal structure
and its corresponding embedded pattern where a genuine causal
structure is inferred by applying the rule 3R1. A genuine cause
from X to Y (X→ Y) is the only possibility since a genuine cause
from Y to X (X← Y), as well as a common driver (X← α→ Y)
would both create a new v-structure centered at X. Therefore,
rule 3R1 reflects that even if allowing for the existence of latent
variables, it is sometimes possible to infer a genuine causation
just from observations, without having to manipulate the sys-
tem. As described in rule 3R1, inferring genuine causation from
a variable X to a variable Y always involves a third variable and
requires checking at least two conditional independencies. See the
Supplementary Material for details of a sufficient condition of
genuine causation (Verma, 1993; Pearl, 2009) and how it is for-
mulated in terms of Granger causality when examining dynamic
processes.

THE CRITERION OF GRANGER CAUSALITY FOR CAUSAL INFERENCE
So far we have reviewed the approach of Pearl based on models of
causality and graphical causal structures. The algorithms of causal
inference proposed in this framework are generic and not con-
ceived for a specific type of variables. Conversely, Granger (1963,
1980) proposed a criterion to infer causality specifically between
dynamic processes. The criterion to infer causality from process X
to process Y is based on the extra knowledge obtained about the
future of Y given the past of X, in a given context Z. In its linear
implementation, this criterion results in a comparison of predic-
tion errors, however, as already pointed out by Granger (1980), a
strong formulation of the criterion is expressed as a condition of
independence

p(Yi+ 1|{V}i) = p(Yi+ 1|{V}i\Xi), (5)

where the superindex i refers to the whole past of a process
up to and including sample i, {V} refers to the whole system
{X, Y, Z}, and {Vi}\Xi refers to the past of the whole system
excluding the past of X. That is, X is Granger non-causal to Y
given Z if the equality above holds. Granger (1980) indicated that
Granger causality is context dependent, i.e., adding or removing
other processes from the context Z affects the test for causality.
In particular, genuine causality could only be checked if Z was
including all the processes that have a causal link to X and Y,
otherwise a hidden common driver or an intermediate process
may be responsible for the dependence. Latent variables com-
monly result in the existence of instantaneous correlations, which
are for example reflected in a non-zero cross-correlation of the
innovations when multiple regression is used to analyze linear
Granger causality. In its strong formulation (Granger, 1980) the
existence of instantaneous dependence is tested with the criterion
of conditional independence

p(Xi+ 1, Yi+ 1|{V}i) = p(Xi+ 1|{V}i)p(Yi+ 1|{V}i), (6)

called by Granger instantaneous causality between X and Y. Both
criteria of Granger causality and instantaneous causality can be

generally tested using the conditional Kullback-Leibler divergence
(Cover and Thomas, 2006)

KL(p(Y |X); q(Y |X)) =
∑

x,y

p(x, y) log
p(y|x)

q(y|x)
. (7)

The KL-divergence is non-negative and only zero if the distribu-
tions p and q are equal. Accordingly, plugging into Equation (7)
the probability distributions of the criterion of Granger causality
of Equation (5) we get (Marko, 1973).

TX→Y |Z = I(Yi+ 1, Xi|Yi, Zi)

= KL(p(Yi+ 1|Yi, Zi, Xi); p(Yi+ 1|Yi, Zi)), (8)

which is a conditional mutual information often referred to
as transfer entropy (Schreiber, 2000). Analogously, a general
information-theoretic measure of instantaneous causality is
obtained plugging the probabilities of Equation (6) into Equation
(7) (e.g., Rissanen and Wax, 1987; Chicharro and Ledberg,
2012b):

TX·Y |Z = I(Xi+ 1;Yi+ i|Xi, Yi, Zi)

= KL(p(Yi+ 1|Xi+ 1, Xi, Yi, Zi);p(Yi+ 1|Xi, Yi, Zi)).(9)

Note that here we use Granger causality to refer to the criterion
of conditional independence of Equation (5), and not to the par-
ticular measure resulting from its linear implementation (Bressler
and Seth, 2011). In that sense, we include in the Granger causality
methodology not only the transfer entropy but also other mea-
sures developed for example to study causality in the spectral
domain (Chicharro, 2011, 2014a).

GRAPHICAL REPRESENTATIONS OF CAUSAL INTERACTIONS
Causal representations are also commonly used when applying
Granger causality analysis. However, we should distinguish other
types of causal graphs from the causal structures. The connec-
tions in a causal structure are such that they reflect in a unique
way the arguments of the functions in the causal model which
provides a mechanistic explanation of the generation of the vari-
ables. This means that, for processes, when the functional model
consists of differential equations that in their discretized form are
like in Equation (3), the causal structure comprises the variables
corresponding to all sampling times, explicitly reflecting the tem-
poral nature of the processes. Figures 4A,D show two examples of
interacting processes, the first with two bidirectionally connected
processes and the second with two processes driven by a common
driver.

The corresponding causal structures constitute a microscopic
representation of the processes and their interactions, since they
contain the detailed temporal information of the exact lags at
which the causal interactions occur. However, when many pro-
cesses are considered together, like in a brain connectivity net-
work, this representation becomes unmanageable. Chicharro and
Ledberg (2012b) showed that an intermediate mesoscopic repre-
sentation is naturally compatible with Granger causal analysis,
since it contains the same groups of variables used in Equations
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FIGURE 4 | Graphical representations of interacting processes at

different scales. (A–C) Represent the same bivariate process at a micro,
meso, and macroscopic scale. (D–F) Represent another process also at these

different scales, and (G) represents the Granger causal and instantaneous
causality relations when only X and Y are included in the Granger causality
analysis.

(5, 6). These graphs are analogous to the augmentation graphs
used in Dahlhaus and Eichler (2003). At the mesoscopic scale the
detailed information of the lags of the interactions is lost and thus
also is lost the mapping to the parental structure in the causal
model, so that an arrow cannot be associated with a particular
causal mechanism. Accordingly, the mesoscopic graphs are not in
general DAGs, as illustrated by Figure 4B.

Macroscopic graphs offer an even more schematized represen-
tation (Figures 4C,F) where each process corresponds to a single
node. Moreover, the meaning of the arrows changes depend-
ing on the use given to the graph. If one is representing some
known dynamics, for example when studying some simulated
system, then the macroscopic graph can be just a summary of
the microscopic one. On the other hand, for experimental data,
the graph can be a summary of the Granger causality analy-
sis and then the arrows represent the connections for which the
measure of Granger causality, e.g., the transfer entropy, gives
a non-zero value. Analogously, Granger instantaneous causality
relations estimated as significant can be represented in the graphs
with some undirected link. For example, Figure 4F summarizes
the Granger causal relations of the system {X, Y, Z} when all vari-
ables are observed, and Figure 4G is a summary of the Granger
causal relations (including instantaneous), when the analysis is
restricted to the system {X, Y}, taking Z as a latent process. In
Figure 4G the instantaneous causality is indicated by an undi-
rected dotted edge. Mixed graphs of this kind have been studied
to represent Granger causality analysis, e.g., Eichler (2005, 2007).
Furthermore, graph analysis with macroscopic graphs is also
common to study structural or functional connectivity (Bullmore
and Sporns, 2009).

Apart from the correspondence to a causal model, which
is specific of causal structures, it is important to determine
for the other graphical representations if it is possible to
still apply d-separation or an analogous criterion to read
conditional independencies present in the associated probability

distributions. Without such a criterion the graphs are only a basic
sketch to gain some intuition about the interactions. For meso-
scopic graphs, a criterion to derive Granger causal relations from
the graph was proposed by Dahlhaus and Eichler (2003) using
moralization (Lauritzen, 1996). Similarly, a criterion of separa-
tion was proposed in Eichler (2005) for the mixed graphs rep-
resenting Granger causality and instantaneous Granger causality.
However, in both cases these criteria provide only a sufficient con-
dition to identify independencies, even if stability is assumed, in
contrast to d-separation for causal structures or patterns, which
under stability provides an if and only if condition.

EXTENSION OF PEARL’S CAUSAL MODELS TO DYNAMIC
SYSTEMS AND RELEVANCE TO STUDYING THE BRAIN’S
EFFECTIVE CONNECTIVITY
Above we have reviewed two different approaches to causal infer-
ence. The approach by Pearl is based on causal models and explic-
itly considers the limitations of causal inference, introducing the
notion of observational equivalence and explicitly addressing the
consequences of potential latent variables in the algorithm IC∗.
Conversely, Granger causality more operationally provides a cri-
terion of causality between processes specific for a context, and
does not explicitly handle latent influences. Moreover, the Pearl’s
approach is not restricted with respect to the nature of the vari-
ables and should thus be applicable also to processes. Since this
approach is more powerful in how it treats latent variables and in
how it indicates the limits of what can be learned, in the following
we investigate how the IC and IC∗ algorithms can be applied to
dynamic processes and how they are related to Granger causality.

CAUSAL INFERENCE WITHOUT LATENT VARIABLES FOR DYNAMIC
PROCESSES
We here reconsider the IC algorithm for the especial case of
dynamic processes. Of course one can apply the IC algorithm
directly, since there are no assumptions about the nature of the
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variables. However, the causal structures associated with dynamic
processes (e.g., the microscopic graphs in Figures 4A,D) have
a particular structure which can be used to simplify the algo-
rithm. In particular, the temporal nature of causality assures that
all the arrows should point from a variable at time i to another
at time i+ d, with d > 0. This means that the arrows can only
have one possible direction. Therefore, once Step 1 has been
applied to identify the skeleton of the pattern, all the edges can be
assigned a head directly, without necessity to apply Steps 2 and 3.
Furthermore, even Step 1 can be simplified, since the temporal
precedence give us information of which variables should be used
to search for an appropriate set Sab that renders a and b condition-
ally independent. In particular, for Vj,i and Vj′,i+d, indicating the
variable of process j at the time instant i and the variable of pro-
cess j′ at time i+ d, respectively, the existence of Vj,i → Vj′,i+d

can be inferred testing if it does not hold

p(Vj′,i+d|{V}i+d−1) = p(Vj′,i+d|{V}i+d−1\Vj,i), (10)

where {V}i+d−1\Vj,i means the whole past of the system at time
i+ d excluding Vj,i. This is because conditioning on the rest of
the past blocks any path that can link the two nodes except a
direct arrow. Therefore, Sab = {V}i+d−1\Vj,i is always a valid set
to check if Vj,i and Vj′,i+d are conditionally independent, even
if considerations about the estimation of the probability distribu-
tions lead to seek for smaller sets (e.g., Faes et al., 2011; Marinazzo
et al., 2012).

Note that the combination of the assumption of no latent vari-
ables with the use of temporal precedence to add the direction
of the arrows straightforwardly after Step 1 of the IC algorithm
leads to patterns that are always complete DAGs. This straightfor-
ward completion indicates that there is a unique relation between
the pattern and the underlying causal structure, that is, there are
no two different causal structures sharing the same pattern. For
example, from the three causal structures that are observationally
equivalent in Figures 1A–C, if only one direction of the arrows
is allowed (from right to left for consistency with Figure 4) then
only the causal structure of Figure 1B is possible.

There is a clear similarity between the criterion of Equation
(10) to infer the existence of a single link in the causal struc-
ture and the criterion of Granger causality in Equation (5). In
particular, Equation (10) is converted into Equation (5) by two
substitutions: (i) taking d = 1 and (ii) taking the whole past
Vi+d−1

j instead of a single node Vj,i. Both substitutions reflect
that Granger causality analysis does not care about the exact lag
of the causal interactions. It allows representing the interactions
in a mesoscopic or macroscopic graph, but is not enough to
recover the detailed causal structure. By taking d = 1 and tak-
ing the whole past one is including any possible node that can
have a causal influence from process j to process j′. The Granger
causality criterion combines in a single criterion the pile of cri-
teria of Equation (10) for different d. Accordingly, in the absence
of latent variables, Granger causality can be considered as a par-
ticular application of the IC algorithm, simplified accordingly
to the objectives of characterizing the causal relations between
the processes. Note that this equivalence relies on the stochastic
nature of the endogenous variables in Pearl’s model (Equation 1).

Furthermore, it is consistent with the relation between Granger
causality and notions of structural causality as discussed in White
and Lu (2010).

CAUSAL INFERENCE WITH LATENT VARIABLES FOR DYNAMIC
PROCESSES
We have shown above that in the absence of latent processes
adding temporal precedence as a constraint tremendously sim-
plifies the IC algorithm and creates a unique mapping between
causal structures and patterns. Adding temporal precedence
makes causal inference much easier because time provides us
with extra information and, in the absence of latent variables, no
complications are added when dealing with dynamic processes.

We now show that this simplification does not hold anymore
when one considers the existence of latent processes. We start with
two examples in Figure 5 that illustrate how powerful or limited
can be the application of the IC∗ algorithm to dynamic processes.
Note that the IC∗ algorithm is applied taking the causal structures
in Figures 5A,C as an interval of stationary processes, so that the
same structure holds before and after the nodes displayed.

In Figure 5A we display a causal structure of two interacting
processes without any latent process, and in Figure 5B the corre-
sponding embedded pattern. We can see that, even allowing for
the existence of latent processes, the IC∗ algorithm can result in a
DAG which completely retrieves the underlying causal structure.
In this case the output of the IC algorithm and of the IC∗ algo-
rithm are the same pattern, but the output of the IC∗ algorithm is
actually a much stronger result, since it states that a bidirectional
genuine causation must exist between the processes even if one
considers that some other latent processes exist.

Conversely, consider the causal structure of Figure 5C in
which X and Y are driven by a hidden process. The resulting
embedded pattern is a completely filled undirected graph, in
which all nodes are connected to all nodes since there are no
conditional independencies. Further using the extra information
provided by temporal precedence—by substituting all horizontal
undirected links by dashed arrows pointing to the left and vertical
links by bidirectional arrows—does not allow us to better retrieve

FIGURE 5 | Causal structures corresponding to interacting dynamic

processes (A,C) and their corresponding embedded patterns retrieved

from the IC∗ algorithm (B,D).

Frontiers in Neuroinformatics www.frontiersin.org July 2014 | Volume 8 | Article 64 | 155

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Chicharro and Panzeri Algorithms of causal inference

the underlying causal structure since, unlike the patterns resulting
from the IC algorithm, the embedded patterns resulting from the
IC∗ algorithm do not have to share the skeleton with the causal
structures belonging to their dependency equivalence class.

The IC∗ algorithm is not suited to study dynamic processes for
two main reasons. First, the embedded pattern chosen as a rep-
resentation of the dependency class is strongly determined by the
selection of projections as the representative subset of the class.
The projections exclude connections between the latent variables
or latent variables connected to more than two observed variables.
By contrast, a latent process generally consists per se in a complex
structure of latent variables. In particular, commonly causal inter-
actions exist between the latent nodes, since most latent processes
will have a causal dependence on their own past, and each node
does not have a causal influence on only two observable nodes.

Second, the IC∗ algorithm is designed to infer the causal
structure associated with the causal model. This means that, for
dynamic processes, for which generally an acyclic directed graph
is only obtained when explicitly considering the dynamics, the
IC∗ algorithm necessarily infers the microscopic representation
of the causal interactions. In contrast to the case of the IC algo-
rithm in which there are no latent variables, it is not possible
to establish an immediate correspondence with Granger causal-
ity analogous to the relation between Equation (5) and Equation
(10). The fact that the IC∗ algorithm necessarily has to infer the
microscopic causal structure is not desirable for dynamic pro-
cesses. This is because of several reasons related to the necessity
to handle a much higher number of variables (nodes). In first
instance, it requires the estimation of many more conditional
independencies in Step 1 of the algorithm, which is a challenge
for practical implementations (see Supplementary Material for
discussion of the implementation of the algorithms). In second
instance, the microscopic embedded pattern, as for example the
one in Figure 5D, can be too detailed without actually adding
any information about the underlying causal structure but, on
the contrary, rendering the reading of its basic structure less
direct.

Here we propose a new algorithm to obtain a representation
of the dependency class when studying dynamic processes. The
new algorithm recasts the basic principles of the IC∗ algorithm
but has the advantage that it avoids the assumptions related to
the projections, and allows to study causal interactions between
the processes at a macroscopic level, without necessarily exam-
ining the lag structure of the causal interactions. With respect
to usual applications of Granger causality, the new algorithm
has the advantage that it explicitly considers the existence of
potential latent processes. It is important to note that the new
algorithm is not supposed to outperform the IC∗ algorithm in
the inference of the causal interactions. They differ only in the
number of conditional independencies that have to be tested,
much lower for the new algorithm since only the macroscopic
causal structure is examined, and in the form of the embed-
ded pattern chosen to represent the dependency equivalent class.
In simpler terms, for dynamic processes, the new algorithm
offers a more appropriate representation of the class of networks
compatible with the estimated conditional independencies. Both
algorithms rely on the same framework to infer causality from

conditional independencies, and theoretically their performance
is only bounded by the existence of observationally equivalent
causal structures. None of the two algorithms addresses the
practical estimation of the conditional independencies, and thus
any evaluation of their practical performance is specific to the
particular choice of how to test conditional independence (see
Supplementary Material for discussion of the implementation).

In comparison to the assumptions related to projections, the
new algorithm assumes that any latent process is such that its
present state depends in a direct causal way on its own past,
that is, that its autocorrelation is not only indirectly produced
by the influence of other processes. In practice, this means that
we are excluding cases like an uncorrelated white noise that is a
common driver of two observable processes. The reason for this
assumption is that, excluding these processes without auto-causal
interactions, we have (Chicharro and Ledberg, 2012b) that there
is a clear difference between the effect of hidden common drivers
and the effect of hidden processes that produce indirect causal
connections (i.e., X→ α→ Y). In particular, if we have a system
composed by two observable processes X and Y such that a hid-
den process α mediates the causal influence from X to Y, we have
that

X→ α→ Y ⇒ TX→Y > 0 ∧ TX·Y = 0, (11)

where ∧ indicates conjunction. Conversely, if the system α is a
common driver we have that

X← α→ Y ⇒ TX→Y > 0 ∧ TX·Y > 0, (12)

We see that common drivers and mediators have a different
effect regarding the induction of instantaneous causality. This
difference generalizes to multivariate systems with any number
of observed or latent processes (see Supplementary Material).
Common drivers are responsible for instantaneous causality. In
fact, if there is no set of observable processes such that when con-
ditioning on it the instantaneous causality is canceled, then some
latent common drivers must exist since per se causality cannot be
instantaneous unless we think about entanglement of quantum
states. Accordingly,

∀S TX·Y |S > 0⇔ common driver latent processes cause

instantaneous causality, (13)

where one or more common driver latent processes may be
involved. Properties in Equations (11–13) are used in the new
algorithm. The input is the joint distribution that includes the
variables corresponding to sampling time i+ 1 and to the past of
the observable processes VO, i.e., p({VOi+1}, {Vi

O}). The output
is a macroscopic graph which reflects all and no more Granger
causality and instantaneous causality relationships than the ones
present in p({VOi+1}, {Vi

O}). The algorithm proceeds as follows:

ICG∗ ALGORITHM (INDUCTIVE CAUSATION WITH LATENT VARIABLES
USING GRANGER CAUSALITY)
(1) For each pair of processes a and b in {VO} search for a set

Sab of processes such that Ta·b|Sab = 0 holds in p({VO}), i.e.,
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there is no instantaneous causality between a and b given
Sab. Construct a macroscopic graph with each process rep-
resented by one node and linking the nodes a and b with a
bidirectional arrow a↔ b if and only if Sab is not found.

(2) For each pair a and b not linked by a bidirectional arrow
search for a set Sab of processes such that Ta→b|Sab = 0 holds
in p({VO}), i.e., there is no Granger causality from a to b given
Sab. Link the nodes a and b with a unidirectional arrow a→ b
if and only if Sab is not found.

(3) For each pair a and b not linked by a bidirectional arrow
search for a set Sab of processes such that Tb→a|Sab = 0 holds
in p({VO}), i.e., there is no Granger causality from b to a given
Sab. Link the nodes a and b with a unidirectional arrow a← b
if and only if Sab is not found.

The zero values of the Granger measures indicate the existence
of some conditional independencies. Step 1 identifies the exis-
tence of latent common drivers whenever Granger instantaneous
causality exists and marks it with a bidirectional arrow. Steps 2
and 3 identify Granger causality in each direction when there is
no Granger instantaneous causality. In fact Granger causality will
also be present for the bidirectionally linked nodes, but there is
no need to check it separately, given Equation (12). Steps 1–3
are analogous to Step 1 of the IC∗ algorithm since conditioning
sets of different size have to be screened, but now the conditional
independencies examined are not between single variables but
between processes and this is why Granger causality measures are
used.

The algorithm differs in two principle ways from how Granger
causality is commonly used. First, Granger causality is not applied
once for each pair of nodes, but one has to search for a context
that allows assessing if a conditional independence exists. This
is different from applying bidirectional Granger causality to all
combinations of nodes, and also from applying to all combina-
tions of nodes conditional Granger causality conditioning on the
whole rest of the system. The reason is that, as discussed in Hsiao
(1982) and Ramb et al. (2013), when latent processes exist, fur-
ther adding new processes to the conditioning can convert a zero
Granger causality into positive.

Second, an explicit consideration of the possible existence of
latent processes is incorporated, to our knowledge for the first
time, when applying Granger causality. A bidirectional arrow
indicates that the dependencies between the processes can only
be explained by latent common drivers. We should note that
this does not discard that in addition to common drivers there
are directed causal links between the processes, in the same way
that unidirectional arrows do not discard that the causal influ-
ence is not direct but through a mediator latent processes. This
is because the output of the algorithm is again a representa-
tion of a class of causal structures and thus these limitations are
common to the IC∗ algorithm which also implicitly allows the
existence of multiple hidden paths between two nodes or of latent
mediators. Of course, when studying brain connectivity it can
be relevant to establish for example if two regions are directly
causally connected, but this cannot be done without recording
from the potential intermediate regions, or using some heuristic
knowledge of the anatomical connectivity.

The output of the ICG∗ algorithm most often is more intu-
itive about the causal influences between the processes than the
embedded pattern resulting from the IC∗ algorithm and does not
need to consider the microscopic structure. For example, while
for the causal structure of Figure 5C we found that the IC∗ algo-
rithm provides as output the embedded pattern of Figure 5D
(which has a lot of edges that are not in the underlying causal
structure so that a direct mapping is not possible), we found that
the ICG∗ algorithm simply provides as output X ↔ Y thereby
revealing synthetically, directly, and correctly the existence of at
least one latent common driver.

However, to be meaningful as a representation of the con-
ditional independencies associated with the Granger causality
relationships, we need to complement the algorithm with a crite-
rion of separation analogous to the one available for the patterns
and embedded patterns obtained from the IC and IC∗ algorithms,
respectively. In particular, d-separation can be again used, now
considering a collider on a path to be any node with two head to
head arrows on the path, where the heads can belong to the two
types of arrows, i.e., unidirectional or bidirectional. Accordingly,
the subsequent sufficient conditions can be applied to read the
Granger causal relations from the graph:

Graphical sufficient condition for Granger non-causality
X is d-separated from Y by S on each path between X and Y with
an arrow pointing to Y ⇒ TX→Y |S = 0.
Graphical sufficient condition for instantaneous
non-causality
X is d-separated from Y by S on each path between X and
Y with an arrow pointing to X and an arrow pointing to
Y ⇒ TX·Y |S = 0.

Proofs for these conditions are provided in the Supplementary
Material. As in general for d-separation, these conditions become
if and only if conditions if further assuming stability. The con-
ditions here introduced for the graphs resulting from the ICG∗
algorithm are very similar to the ones proposed by Eichler (2005)
for mixed graphs. Also for mixed graphs Eichler (2009) proposed
an algorithm of identification of Granger causality relationships.
The critical difference with respect to this previous approach is
that here instantaneous causality is considered explicitly as the
result of existing latent variables, according to Equations (11–13),
while in the mixed graphs there is no explanation of how it arises
from the underlying dynamics.

ANALYSIS OF THE EFFECT OF LATENT VARIABLES
The results above concern the application of general algorithms of
causal inference to dynamic processes, and how these algorithms
are related to the Granger causality analysis. The perspective was
focused on how to learn the properties of an unknown causal
structure from the conditional independencies contained in a
probability distribution obtained from recorded data. In this sec-
tion we address the opposite perspective, i.e., we assume that we
know a causal structure and we focus on examining what we learn
by reading the conditional independencies that are present in any
distribution compatible with the structure. We will see that a sim-
ple analysis applying d-separation can explain in a simple way
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many of the scenarios in which Granger causality analysis can lead
to inconsistent results about the causal connections. We here term
the positive values of Granger causality that do not correspond to
arrows in the causal structure as inconsistent positives. These are to
be distinguished from false positives as commonly understood in
hypothesis testing, since the inconsistent positives do not result
from errors related to estimation, but, as we show below, they
result from the selection of subordinate signals as the ones used
to carry out the causal inference analysis.

The definition of d-separation does not provide a procedure
to check if all paths between the two variables which condi-
tional independence is under consideration have been examined.
However, a procedure based on graphical manipulation exists
that allows checking all the paths simultaneously (Pearl, 1988;
Kramers, 1998). We here illustrate this procedure to see how it
supports the validity of Granger causality for causal inference
when there are no latent processes and then apply it to gain more
intuition about different scenarios in which inconsistent positive
values are obtained. The procedure works as follows: to check if
X is d-separated from Y by a set S, first create a subgraph of the
complete structure including only the nodes and arrows that are
attained moving backward from X, Y or the nodes in S (i.e., only
the ancestors an(X,Y,S) appear in the subgraph); second, delete all
the arrows coming out of the nodes belonging to S; finally, check
if there is still any path connecting X and Y and if such a path does
not exist, X and Y are separated by S.

In Figure 6 we display the modifications of the graph per-
formed to examine the conditional independencies associated
with the criterion of Granger causality. In Figure 6A we show the
mesoscopic graph of a system with unidirectional causal interac-
tions from Y to X. In Figures 6B,C we show the two subsequent
modifications of the graph required to check if TY→X = 0, while
in Figures 6D,E we show the ones required to check if TX→Y = 0.
In Figure 6B the subgraph is selected moving backward from
{Xi+1, Xi, Yi}, the nodes involved in the corresponding criterion
in Equation (5). In Figure 6C the arrow leaving the conditioning
variable Xi is removed. The analogous procedure is followed in
Figures 6D,E. It can be seen that in Figure 6C Yi and Xi+1 are still
linked, indicating that TY→X > 0, while there is no link between
Xi and Yi+1 in Figure 6E, indicating that TX→Y = 0.

Therefore, d-separation allows us to read the Granger causal
relations from the structure of Figure 6A. One may ask why we
should care about d-separation providing us with information
which is already apparent from the original causal structure in
Figure 6A that we assume to know. The answer is that, when
one constructs a causal structure to reproduce the setup in which
the observable data are recorded, the Granger causal relations
between those are generally not so obvious from the causal struc-
ture. To illustrate that, we consider below a quite general case in
which the Granger causality analysis is not applied to the actual
processes between which the causal interactions occur, but to
some time series derived from them. In Figure 7A we display
the same system with a unidirectional causal interaction from Y
to X, but now adding the extra processes X∗ and Y∗, which are
obtained by some processing of X and Y, respectively. If only the
processes X∗ and Y∗ are observable, and the Granger causality
analysis is applied to them, this case comprises scenarios such as

FIGURE 6 | Graphical procedure to apply d-separation to check the

conditional independencies associated with Granger causality. (A)

Causal structure corresponding to a system with unidirectional causal
connections from process Y to X. (B,C) Steps 1 and 2 of modification of the
original graph in order to check if TY→X = 0. (D,E) Analogous to (B,C), but
to check if TX→Y = 0.

FIGURE 7 | Analogous to Figure 6 but for a causal structure in which

the subordinate processes X∗ and Y ∗ are recorded instead of

processes X and Y between which the causal interactions occur. (A)

The original causal structure. (B,C) Steps 1 and 2 of modification in order to
check if TY→X = 0. (D,E) analogous to (B,C), but to check if TX→Y = 0.

the existence of measurement noise, or the case of fMRI in which
the observed BOLD responses only indirectly reflect the hidden
neuronal states (Friston et al., 2003; Seth et al., 2013).

We can see in Figure 7C that TY∗→X∗ > 0, as if the analy-
sis was done on the original underlying processes X and Y, for
which TY→X > 0. However, in the opposite direction we see in
Figure 7E that an inconsistent positive value appears, since also
TX∗→Y∗ > 0, while TX→Y = 0. We can see that this happens
because Yi acts as a common driver of Y∗i+1 and X∗i, through

the paths Yi → Yi+1 → Y∗i+1 and Yi → Xi → X∗i, respectively.
This case, in which the existence of a causal interaction in one
direction leads to an inconsistent positive in the opposite direc-
tion when there is an imperfect observation of the driven system
(here Y), has been recently discussed in Smirnov (2013). Smirnov
(2013) has exemplified that the effect of measurement noise or
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time aggregation—due to low sampling- can be understood in
this way. However, the illustration in Smirnov (2013) is based on
the construction of particular examples and requires complicated
calculations to obtain analytically the Granger causality values.
With our approach, general conclusions are obtained more easily
by applying d-separation to a causal structure that correctly cap-
tures how the data analyzed are obtained. Nonetheless, the use of
graphical criteria and exemplary simulations is complementary,
since one advantage of the examples in Smirnov (2013) is that it is
shown that the non-negative values of the Granger causality mea-
sure in the opposite direction can have a magnitude comparable
or even bigger than those in the correct direction.

In Table 1 we summarize some paradigmatic common scenar-
ios in which a latent process acts as a common driver leading to
inconsistent positives in Granger causality analysis. In all these
cases Granger causality can easily be assessed in a general way
from the corresponding causal structure that includes the latent
process. First, when non-stationarities exist, time can act as a
common driver since the time instant provides information about
the actual common dynamics. This is the case for example of coin-
tegrated processes, for which an adapted formulation of Granger
causality has been proposed (Lütkepohl, 2005). Also event-related
setups may produce a common driver, since the changes in the
ongoing state from trial to trial can simultaneously affect the two
processes (e.g., Wang et al., 2008).

The other cases listed in Table 1 are analogous to the one illus-
trated in Figure 7. Discretizing continuous signals can induce
inconsistent positives (e.g., Kaiser and Schreiber, 2002) and also
measurement noise (e.g., Nalatore et al., 2007). In both cases
Granger causality is calculated from subordinate signals, obtained
after binning or after noise contamination, which constitute a
voluntary or unavoidable processing of the underlying interact-
ing processes. Similarly, the hemodynamic responses h(X) and
h(Y) only provide with a subordinate processed signal from the
neural states (e.g., Roebroeck et al., 2005; Deshpande et al., 2010).

Table 1 | Cases in which a hidden common driver leads to

inconsistent positive Granger causality from the observed process

derived from process X to the observed process derived from process

Y when there are unidirectional causal connections from Y to X (or

processes Yk to Xk ).

Observed variables Common driver

1 Non-stationarity Xi and Yi Time

2 Event-related
setup

Xi and Yi Trial ongoing
state

3 Discretizing Bin(X )i and Bin(Y )i Underlying
process Y

4 Measurement
noise

X *
i = Xi + εx,i and Y *

i = Yi + εy,i Underlying
process Y

5 fMRI analysis h(X )i and h(Y )i Underlying
process Y

6 Time
aggregation

XTi and YTi Unsampled time
instants of Y

7 Spatial
aggregation

X *
i = �k Xk,i and Y *

i = �k Yk,i Underlying
processes Yk

In the case of time aggregation, the variables corresponding to
unsampled time instants are the ones acting as common drivers
(Granger, 1963). The continuous temporal nature of the pro-
cesses has been indicated as a strong reason to advocate for the
use of DCM instead of autoregressive modeling (see Valdes-Sosa
et al., 2011 for discussion). Finally, aggregation also takes place
in the spatial domain. To our knowledge, the consequences of
spatial aggregation for the interpretation of the causal interac-
tions have been studied less extensively so far than those posed
by time aggregation, and thus we focus on spatial aggregation in
the section below.

THE CASE OF SPATIAL AGGREGATION
We next investigate what happens when it is not possible to mea-
sure directly the activity of the neural sources among which the
causal interactions occur because only spatially aggregated sig-
nals that aggregate many different neural sources are recorded.
For example, a single fMRI voxel reflects the activity of thousands
of neurons (Logothetis, 2008), or the local Field Potential ampli-
tude measured at a cortical location captures contributions from
several sources spread over several hundreds of microns (Einevoll
et al., 2013). The effect of spatial aggregation on stimulus coding
and information representations has been studied theoretically
(Scannell and Young, 1999; Nevado et al., 2004), but its effect
on causal measures of the kind considered here still needs to be
understood in detail.

Possible distortions introduced by spatial aggregation depend
on the nature of the processes and the scale at which the analysis is
done. In particular, neuronal causal interactions occur at a much
more detailed scale (e.g., at the level of synapses) than the scale
corresponding to the signals commonly analyzed. It is not clear,
and to our knowledge it has not been addressed, how causal rela-
tions at a detailed scale are preserved or not when zooming out to
a more macroscopic representation of the system. As we will dis-
cuss in more depth in the Discussion, the fact that a macroscopic
model provides a good representation of macroscopic variables
derived from the dynamics does not assure that it also provides a
good understanding of the causal interactions.

In general, the effect of spatial aggregation on causal inference
can be understood examining a causal structure analogous to the
one of Figure 7, but where instead of a single pair of underlying
processes X and Y there are two sets Xk, k = 1, . . . , N, and Yk′ ,
k′ = 1, . . . , N ′ between which the causal interactions occur. The
signals observed are just an average or a sum of the processes,

X∗ =∑N
k= 1 Xk and Y∗ =∑N ′

k= 1 Yk. For example, in the case
of the brain, the processes can correspond to the firing activity of
individual neurons, and the recorded signals to some measure of
the global activity of a region, like the global rates rX and ry. Even
if for each pair Xk, Yk a unidirectional causal connection exists,
the Granger causality between rX and ry will be positive in both
directions, as can be understood from Figure 7.

We will now examine some examples of spatial aggregation.
As we mentioned in the Introduction, here we specifically focus
on causal inference, i.e., determining which causal interactions
exist. We do not address the issue of further quantifying the
magnitude of causal effects, since this is generally more diffi-
cult (Chicharro and Ledberg, 2012b; Chicharro, 2014b) or even
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in some cases not meaningful (Chicharro and Ledberg, 2012a).
In the case of spatial aggregation, the fact that Granger causality
calculated from the recorded signals has always positive values in
both directions is predicted by the graphical analysis based on d-
separation. However, in practice the conditional independencies
have to be tested from data instead of derived using Equation (4).
When tested with Granger causality measures, the magnitude of
the measure is relevant, even if not considered as a quantification
of the strength of the causal effect, because it can determine the
significance of a non-negative value. The relation between mag-
nitude and significance depends on the estimation procedure and
on the particular procedure used to assess the significance lev-
els (e.g., Roebroeck et al., 2005; Besserve et al., 2010). It is not
on the focus of this work to address a specific implementation
of the algorithms of causal inference, which requires specifying
these procedures (see Supplementary Material for discussion).
Nonetheless, we now provide some numerical examples follow-
ing the work of Smirnov (2013) to illustrate the impact of spatial
aggregation on the magnitude of the Granger causality measures
and we show that the inconsistent positives can have comparable
or even higher magnitude than the consistent positives, and thus
are expected to impair the causal inference performance.

In Figure 8A we show the macroscopic graph representing the
spatial aggregation of two processes in two areas, respectively. The
processes are paired, so that a unidirectional interaction from Xk

to Yk exists, but the signals recorded on each area are a weighted
sum of the processes, that is, we have X = mx X1 + (1−mx) X2,
and analogously for Y with my. This setup reproduces some basic
properties of neural recordings, in which different sources con-
tribute with different intensity to the signal recorded in a position.
To be able to calculate analytically the Granger causality measures
we take, as a functional model compatible with the causal struc-
ture that corresponds to Figure 8A, a multivariate linear Gaussian
autoregressive process. Considering the whole dynamic process
W= {X1, X2, Y1, Y2}, the autoregressive process is expressed as

⎛
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⎠ , (14)

where C is the matrix that determines the connectivity. For exam-
ple, the coefficient c12 indicates the coupling from X2 to X1.
Matrix C is compatible with the graph of Figure 8A: we fix
c13 = c14 = c23 = c24 = c32 = c41 = 0 so that inter-areal connec-
tions are unidirectional from Xk to Yk. Furthermore, to reduce
the dimensions of the parameter space to be explored, we also
fix c34 = c43 = 0, so that Y1 and Y2 are not directly connected,
and c31 = c42 = c33 = c44 = 0.8. The autoregressive process is of
order one because the future values at time i+ 1 only depend on
time at i. We assume that there are no latent influences and thus
the different components of the noise term ε are uncorrelated,
i.e., the innovations have a diagonal covariance matrix. We fix the
variance of all innovations to 1. Accordingly, the parameter space
that we explore involves the coefficients c11, c22, c12, and c21. We
exclude those configurations which are non-stationary.

The observed signals are obtained from the dynamics as
a weighted average. The Granger causality measures can then
be calculated analytically from the second order moments (see
Chicharro and Ledberg, 2012b and Smirnov, 2013 for details). In
all cases 20 time lags of the past are used, which is enough for con-
vergence. If the Granger causality measures were calculated for
each pair of underlying processes separately, we would get always
TXk→Yk > 0 and TYk→Xk = 0. However, for the observed signals
X and Y, inconsistent positive are expected. To evaluate the mag-
nitude of these inconsistent positives we calculate their relative
magnitude.

r = TY→X/TX→Y . (15)

In Figure 8B we show the values of r in the space of c12, c21, fix-
ing c11 = 0.8 and c22 = 0.2. Furthermore, we fix mx = 0.3 and
my = 0.7. This means that X2 has a preeminent contribution
to X while Y1 has a preeminent contribution to Y. We indicate
the excluded regions where non-stationary processes are obtained
with r = −0.3. In the rest of the space r is always positive, but can
be low (∼10−5). However, for some regions r is on the order of 1,
and even bigger than 1. In particular, this occurs around c12 = 0,
where TX→Y is small, but also around c21 = 0, where TX→Y is
high. Here we only intend to illustrate that non-negligible high
values of r are often obtained, and we will not discuss in detail
why some particular configurations enhance the magnitude of the
inconsistent positives (a detailed analysis of the dependencies can
be found in Chicharro and Ledberg, 2012b and Smirnov, 2013).
In Figure 8C we show the number of configurations in the com-
plete space of the parameters c11, c22, c12, and c21 in which a given
r-value is obtained. We show the results for four combinations of
weights. We see that the presence of values r > 0.1 is robust in this
space, and thus it is not only for extreme cases that the inconsis-
tent positives would be judged as having a non-negligible relative
magnitude. In particular, for this example, r increases when the
weights at the two areas differ, consistently with the intuition that
the underlying interactions can be characterized worse when pro-
cesses from different pairs are preeminently recorded in each area.
Note that none of the algorithms of causal inference, including in
particular the ICG∗, can avoid obtaining such inconsistent posi-
tives. In fact, for the examples of Figure 8, in which the only two
analyzed signals are those that are spatially aggregated, the ICG∗
algorithm is reduced to the calculation of TX→Y , TY→X , and TX.Y

for these two signals. This illustrates that no algorithm of causal
inference can overcome the limitation of not having access to the
sources between which the causal interactions actually occur.

In the example above we focused on evaluating the rel-
ative magnitude of inconsistent positives of Granger causal-
ity. However, spatial aggregation also affects the magnitude of
Granger causality in the direction in which a true underlying
causal connection exists. We also examine these effects since,
although as we mentioned above it may not be safe to use this
magnitude as a measure of the strength of the causal effect, it has
been widely used with this purpose or more generally as a mea-
sure of directional connectivity (see Bressler and Seth, 2011 for a
review). To appreciate this, we examine a system sketched in the
macroscopic graph of Figure 8D. Here we consider two areas X
and Y each comprising N processes. For simplification, instead of
considering causal connections internal to each area, the degree of
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FIGURE 8 | Effects of spatial aggregation on Granger causality. (A) Causal
graph representing two areas composed each of two processes and from
which signals are recorded as a weighted sum. See the text for details of
how a system compatible with the graph is generated as a multivariate linear
Gaussian autoregressive process. (B) Dependence of the relative magnitude
r of the inconsistent positives of Granger causality (Equation 15) on the space
formed by coupling coefficients between X1 and X2. (C) Number of
configurations with a given value r for all stationary configurations in the
space of the parameters c11, c22, c12, and c21 and for different weights

combinations. (D) Another example of causal graph where spatial
aggregation is present in the recording of the signals from the two areas. The
system is again generated as a multivariate autoregressive process with
identical connections from Z to each Xk , identical from W to each Yk , and
identical from each Xk to each Yk (see the main text for details). (E) The
Granger causality measure T<X>→<Y> as a function of the coefficient cyw

and the number of processes N. (F) The relative changes �T ′ (Equation 16)
of the Granger causality measure as a function of the coefficient cyx and the
number of processes N.

integration within each area is determined by a common driver to
all the processes of one area, Z for Xk and W for Yk. The coupling
between the areas is unidirectional for the pairs Xk → Yk, and
only the average of all the processes is recorded from each area,
<X> and <Y>. We now focus on examining how T<X>→<Y>

depends on the number of processes N. Again, the processes are
generated with a multivariate autoregressive process for which
the entries of the coefficient matrix C are compatible with the
connections of Figure 8D:

⎛
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Furthermore, the innovations covariance matrix is again an iden-
tity matrix. In Figure 8E we fix all the non-zero coefficients to
0.8 except cxz and cyw, which determine the degree of integra-
tion in area X due to the common driver Z, and of area Y due
to common driver W, respectively. We then display T<X>→<Y>

as a function of cyw and N fixing cxz = 0.5, in the middle of
the interval [0, 1] examined for cyw. We see that T<X>→<Y>

either increases or decreases with N depending on which coupling

is stronger, cxz or cyw. This means that, T<X>→<Y>, which is
commonly interpreted as a measure of the strength of the connec-
tivity between the areas, is highly sensitive to properties internal
to each of the region when evaluated at a macroscopic scale
at which spatial aggregation is present. Changes in the level of
intra-areal integration could be interpreted as changes in the
inter-areal interactions, but in fact TXk→Yk is constant for all the
configurations shown in Figure 8E.

In Figure 8F we examine how vary, depending on the num-
ber of processes N, the changes of T<X>→<Y> as a function of
the actual coupling coefficient between the areas at the lower
scale (cyx). We again fix all the non-zero coefficients to 0.8 except
cxz = 1.4, cxx = 0.2, and cyx ∈ [0.1, 1.4]. Since cxz > cyw the
Granger causality increases with N. We examine if this increase is
different depending on cyx. For that purpose, for each value of N
we take as a reference the Granger causality calculated for the low-
est coupling cyx = 0.1. We then calculate T′<X>→<Y>(cyx, N) =
T<X>→<Y>(cyx, N)/T<X>→<Y>(0.1, N), that is, the propor-
tion of the Granger causality for each cyx with respect to the
one for cyx = 0.1. We then consider the relative changes of
T′<X>→<Y>(cyx, N) depending on N:

�T′(cyx, N) = T′<X>→<Y>(cyx, N)− T′<X>→<Y>(cyx, 1)

T′<X>→<Y>(cyx, 1)
(17)

We see in Figure 8F that the changes of Granger causality with
cyx are different for different N. This means that if we want
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to compare different connections with different strength (deter-
mined by cyx), the results will be affected by the degree of spatial
aggregation. However, as illustrated in Figure 8F the influence of
changes in the actual coupling strength cyx is low compared to the
influence of the intra-areal integration, as shown in Figure 8E.
These results were robust for other configurations of the setup
represented in Figure 8D.

Altogether, we have shown that spatial aggregation can pro-
duce inconsistent positives of a high relative magnitude, and
renders the measures of connectivity particularly sensitive to
intra-areal properties, because these properties determine the
resulting signals after spatial aggregation.

DISCUSSION
We started by reviewing previous work about causal inference,
comprising Granger causality (Granger, 1980) and causal mod-
els (Pearl, 2009). In particular, we described how causal models
are associated with graphical causal structures, we indicated that
Dynamic Causal Models (DCM) (Friston et al., 2003) are sub-
sumed in the causal models described by Pearl, and that Pearl’s
approach does not exclude feedback connections because feed-
back interactions can be represented in acyclic graphs once the
temporal dynamics are explicitly considered. Furthermore, we
reviewed the criterion of d-separation to graphically read condi-
tional independencies, and the algorithms proposed by Pearl and
collaborators (Pearl, 2009) for causal inference without (IC algo-
rithm) and with (IC∗ algorithm) the existence of latent variables
being considered. These algorithms have as output a graphical
pattern that represents the class of all observationally equivalent
causal structures compatible with the conditional independencies
present in the data.

We then investigated the application of these algorithms to
infer causal interactions between dynamic processes. We showed
that Granger causality is subsumed by the IC algorithm. From
our analysis it is also clear that other recent proposals to decom-
pose Granger causality in different contributions or to identify
the delay of the interactions (Runge et al., 2012; Wibral et al.,
2013) are also subsumed by the IC algorithm. Moreover, we illus-
trated that the IC∗ algorithm provides an output representation
not suited for the analysis of dynamic processes, since it assumes
the lack of structure of the latent variables. Accordingly, we pro-
posed an alternative new algorithm based on the same principles
of the IC∗ algorithm but specifically designed to study dynamic
processes. We did not conceive the new algorithm intending
to outperform the IC∗ algorithm, whose performance is the-
oretically optimal given the bounds imposed by the existence
of observationally equivalent classes. Rather the new algorithm
intends to provide a more appropriate and concise representation
of the causal structures for dynamic processes. Furthermore, the
algorithm integrates Pearl’s algorithmic approach with the use of
Granger causality. To our knowledge, this new algorithm is the
first to use Granger causality explicitly considering the existence
of latent processes. This improvement can be very helpful to assess
how informative are the observed Granger causality relations to
identify the actual causal structure of the dynamics.

Furthermore, we showed that an adequate graphical model of
the setup in which some data are recorded is enough to predict,

without any numerical calculation, the existent Granger causality
relationships using d-separation. We used this graphical analy-
sis to explain, in a unified way, scenarios in which inconsistent
positives of Granger causality have been reported. These com-
prise non-stationary correlated trends (Lütkepohl, 2005), related
ongoing state variability (Wang et al., 2008), discretization (Kaiser
and Schreiber, 2002), measurement noise (Nalatore et al., 2007),
hemodynamic responses (Deshpande et al., 2010), time aggre-
gation (Granger, 1963; Valdes-Sosa et al., 2011), and spatial
aggregation. Regarding the effect of hemodynamic responses, our
results may seem contradictory to the recent study of Seth et al.
(2013) which shows that Granger causality is invariant when the
hemodynamic response is an invertible filter. We note that the
graphical analysis with d-separation is suited for stochastic vari-
ables, such as the ones in the causal models described in section
“Models of Causality.” The invariance of Granger causality is lost
if noise variability is incorporated to the hemodynamic response.

We specifically focused on the effect of spatial aggregation of
the underlying neural sources between which the causal interac-
tions occur. The effects of spatial aggregation concern virtually all
measures of causation calculated from neuroimaging data, and to
those obtained with intracranial massed signals such as LFP. Yet,
to our knowledge, this problem still remains to be fully under-
stood. We showed that spatial aggregation can induce inconsistent
positive Granger causality values of a magnitude comparable to
the consistent ones. More generally, it renders Granger causality
particularly sensitive to the degree of integration of the processes
spatially aggregated. This means that in the presence of spa-
tial aggregation Granger causality, independently of being used
for causal inference or as a measure of functional connectivity
(Valdes-Sosa et al., 2011; Friston et al., 2013), may reflect more the
intra-areal properties of the system than inter-areal interactions.

In this work we followed the framework of Pearl based on
causal models and associated graphical causal structures, in which
a non-parametric approach to causal inference is proposed that
is based on evaluating conditional independencies. In neuro-
science applications, and in particular in fMRI analysis, there
has been a recent controversy comparing Granger causality and
DCM (Valdes-Sosa et al., 2011; Friston et al., 2013). We pointed
out that both approaches are theoretically subsumed by Pearl’s
framework. In fact, much more relevant than this comparison
is the distinction between non-parametric causal inference and
model-based causal inference. Granger causality can be calculated
in a model-based way, with autoregressive or more refined mod-
els (Lütkepohl, 2005), or it can be estimated in a non-parametric
way using transfer entropy (e.g., Besserve et al., 2010). The moti-
vation of using a generative model of the observed signals from
underlying processes, which is at the core of DCM, is the same
of proposing Kalman filters to improve the estimation of Granger
causality (Winterhalder et al., 2005; Nalatore et al., 2007).

All the considerations regarding the limitations of causal infer-
ence due to observational equivalence and latent variables also
hold for model-based approaches like DCM. In DCM the iden-
tification of the model causal structure is partially done a priori,
by the selection of the priors of the parameters in the model,
and partially carried out together with the parameters estimation.
Therefore, the model selected (and thus the corresponding causal
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structure) is not chosen only based on capturing the conditional
independencies observed in the data, but also on optimizing some
criterion of fitting to the actual data. Given the sophistication
of the procedure of model inference, it is not straightforward
to evaluate how the selected DCM model reflects the observed
conditional independencies (and this may vary across different
types of DCM models). Furthermore, the framework of network
discovery within DCM (Friston et al., 2011) is very powerful eval-
uating the posterior probability—evidence- for different models,
but still does not incorporate an evaluation of the influence of
latent variables, like they do the algorithms of causal inference.

Modeling goes beyond causal inference. A good model gives us
information not only about the causal structure, but also about
the actual mechanisms that generate the dynamics. But a model
can be good in terms of statistical prediction without being an
appropriate causal model. That is, the effect of latent processes
can be captured indirectly so that the parameters reflect not only
the interactions between the observed processes but also the hid-
den ones. Therefore, even if by definition inside-model causality is
well-defined in any DCM model, obtaining a good causal model is
much harder than a good statistical model, and cannot be evalu-
ated without interventions on the system. This means that, in the
same sense that the Granger causality measures are measures of
functional connectivity which, in some cases, can be used to infer
causal relations, DCM models are functional connectivity mod-
els which, to the extent to which they increasingly reproduce the
biophysical mechanisms generating the data, converge to causal
models.

The issue of spatial aggregation we addressed here is particu-
larly relevant for causal models, and not only to infer the causal
structure. This is because it regards the nature of each node in
the graph and requires understanding how causal mechanisms
that certainly operate at a finer scale can be captured and are
meaningful for macroscopic variables. That is, to which degree
can we talk about a causal model between variables representing
the activity of large brain areas? This is a crucial question for the
mechanistical—and not only statistical—interpretation of DCM
models, which, despite their increasing level of biological com-
plexity, necessarily stay at a quite macroscopic level of description.
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Some studies have placed Sample entropy on the same data length constraint of
10m–20m (m: pattern length) as approximate entropy, even though Sample entropy is
largely independent of data length and displays relative consistency over a broader
range of possible parameters (r , tolerance value; m, pattern length; N, data length)
under circumstances where approximate entropy does not. This is particularly erroneous
for some fMRI experiments where the working data length is less than 100 volumes
(when m = 2). We therefore investigated whether Sample entropy is able to effectively
discriminate fMRI data with data length, N less than 10m (where m = 2) and r = 0.30,
from a small group of 10 younger and 10 elderly adults, and the whole cohort of 43
younger and 43 elderly adults, that are significantly (p < 0.001) different in age. Ageing
has been defined as a loss of entropy; where signal complexity decreases with age.
For the small group analysis, the results of the whole brain analyses show that Sample
entropy portrayed a good discriminatory ability for data lengths, 85 ≤ N ≤ 128, with an
accuracy of 85% at N = 85 and 80% at N = 128, at q < 0.05. The regional analyses show
that Sample entropy discriminated more brain regions at N = 128 than N = 85 and some
regions common to both data lengths. As data length, N increased from 85 to 128, the
noise level decreased. This was reflected in the accuracy of the whole brain analyses
and the number of brain regions discriminated in the regional analyses. The whole brain
analyses suggest that Sample entropy is relatively independent of data length, while the
regional analyses show that fMRI data with length of 85 volumes is consistent with our
hypothesis of a loss of entropy with ageing. In the whole cohort analysis, Sample entropy
discriminated regionally between the younger and elderly adults only at N = 128. The
whole cohort analysis at N = 85 was indicative of the ageing process but this indication
was not significant (p > 0.05).

Keywords: ageing, blood oxygen level dependent (BOLD), data length, functional magnetic resonance imaging

(fMRI), noise level, sample entropy

INTRODUCTION
Recently, the application of entropy measures to investigate sig-
nal complexity and irregularity in human data has become quite
popular (Yentes et al., 2013). Entropy values reflect the number of
times the patterns in a signal are repeated and thus measure the
randomness and predictability of stochastic process and in more
general terms, increase with greater randomness (Sokunbi et al.,
2013). The computation of entropy in biological data processing
became a possible solution to the shortcomings posed by some
metrics of nonlinear time series analysis techniques such as corre-
lation dimension (Pritchard et al., 1994) and Lyapunov exponent
(Wolf et al., 1985), which require a large data set (Eckmann
and Ruelle, 1992) and assume that the time series is stationary
(Grassberger and Procaccia, 1983), a feature normally not true
for biological data. Approximate entropy (ApEn) (Pincus, 1991)
and sample entropy (SampEn) (Richman and Moorman, 2000)
are a few of the different types of entropy measures that have

evolved from the concept of entropy. Regularity and complex-
ity statistics such ApEn and SampEn are measures without the
shortcomings that correlation dimension and Lyapunov expo-
nent possess (Richman and Moorman, 2000). ApEn and SampEn
can effectively discriminate both stochastic processes and noisy
deterministic data sets in instances where measures such as spec-
tral and autocorrelation analyses exhibit minimal distinctions
(Pincus, 2001). They are also nearly unaffected by low level noise,
are robust to occasional, very large or small artifacts and give
meaningful information with a reasonable number of data points,
and are finite for both stochastic and deterministic processes
(Zhang and Roy, 2001).

The ApEn algorithm counts each sequence as matching itself
to avoid the occurrence of ln(0) in the calculations, which led to
the discussion of the bias of ApEn (Pincus, 1995). This bias causes
ApEn to be heavily dependent on data length and uniformly lower
than expected for short data lengths. Also, ApEn lacks relative

Frontiers in Neuroinformatics www.frontiersin.org July 2014 | Volume 8 | Article 69 |

NEUROINFORMATICS

165

http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/about
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org/journal/10.3389/fninf.2014.00069/abstract
http://community.frontiersin.org/people/u/128933
mailto:sokunbimo@cardiff.ac.uk
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Sokunbi Short fMRI sample entropy measurements

consistency. To reduce this bias, SampEn was introduced as an
improvement of ApEn where self-matches are excluded, i.e., vec-
tors are not compared to themselves (Richman and Moorman,
2000). SampEn is the negative natural logarithm of the condi-
tional probability that two sequences remain similar at the next
point, where self-matches are not included in calculating the
probability (Richman and Moorman, 2000). Hence, a lower value
of SampEn also indicates more self-similarity in the time series.
The algorithm of SampEn is simpler than the ApEn algorithm,
requiring less time for computation. SampEn is largely inde-
pendent of data length and displays relative consistency over a
broader range of possible parameters (r, tolerance value; m, pat-
tern length; N, data length) under circumstances where ApEn
does not (Richman and Moorman, 2000).

SampEn has been used to characterize human data from a
number of imaging modalities. To mention a few, it has been
used to analyze the electroencephalogram (EEG) background
activity in Alzheimer’s disease patients (Abasolo et al., 2006). It
has further been used to analyse the spontaneous magnetoen-
cephalography (MEG) signals in patients with ADHD (Gomez
et al., 2011) and to probe the complexity of resting state fMRI
activity in adult patients with ADHD (Sokunbi et al., 2013). More
recently, it has been used to examine the whole brain entropy
patterns of a large cohort of normal subjects using fMRI (Wang
et al., 2014). In all three brain imaging modalities, fMRI had the
shortest data length. Since there are no laid down guidelines for
choosing parameters to compute SampEn for all modalities of
biomedical signals, some investigators have made suggestions for
selecting parameters to use. Abasolo et al. (2006) suggested that
to estimate SampEn of EEG accurately, a data length of 10m–20m

is required. Here, they used parameters m = 1, r = 0.25, and
N = 1280 data length. In a recent study, Yentes et al. (2013)
examined the robustness of ApEn and SampEn algorithms by
exploring the effect of changing parameter values on short data
sets using both theoretical and experimental data (musculoskele-
tal data with a data length of 200). In conclusion, they suggested
to use a data length larger than 200, an m of 2, and to examine
several r-values before selecting parameters. However, they also
noted that SampEn was less sensitive to changes in data length and
demonstrated fewer problems with relative consistency. Also, in
another recent study of fMRI multiscale sample entropy analysis,
SampEn was placed at the same data length threshold of 10m–20m

with ApEn (Yang et al., 2013), even though it is largely inde-
pendent of data length and displays relative consistency under
circumstances where ApEn does not (Richman and Moorman,
2000).

The developers of SampEn (Richman and Moorman, 2000)
tested the consistency of SampEn for very short data sets
using theoretical data (independent, identically distributed (i.i.d)
Gaussian numbers) and found that SampEn statistics deviated
from predictions for very short data sets. They calculated the
biased results of SampEn (2, 0.2, N) for the range of 4 ≤ N ≤ 102.
For Gaussian random numbers with m = 2 and r = 0.2, they
found that the deviation was less than 3% for data lengths greater
than 100 points but as high as 35% for data length of 15 points.
They found that the bias of SampEn for very small data sets is
largely due to “non-independence of templates” (Richman and

Moorman, 2000) and that this bias appears to be present only for
very small data lengths. They did not suggest or recommend a
data length constraint for estimating SampEn.

FMRI is a potent research tool and has found more applica-
tions in research than clinical use. In contrast to EEG and MEG,
fMRI possesses poor temporal resolution (in order of seconds)
but excellent spatial specificity. As a result, most fMRI experi-
ments are usually short, in the range of 100–200 data lengths.
Prior data analysis, standard fMRI data processing requires that
the first 3 or 4 volumes (data lengths) of fMRI data are discarded
to enable signal conditioning. For fMRI data acquisitions of 100
data length, this results in a data length of 97 or 96. Our experi-
ence of characterizing fMRI data with SampEn shows that it is
possible to obtain reliable results while using robust and opti-
mal parameters such as m = 2, r = 0.46 (a high r-value) and a
data length less than 100 (97 data points) (Sokunbi et al., 2013).
We further tested the ability of SampEn to effectively discrimi-
nate fMRI data with data length, N less than10m (where m = 2)
using a resting state fMRI data set from a small group of 10
healthy right-handed younger and 10 right-handed elderly adults
that are significantly (p < 0.001) different in age, extracted from
the International Consortium for Brain Mapping (ICBM) rest-
ing state dataset. We also investigated the discriminatory ability
of SampEn on the whole ICBM resting state cohort of 43 younger
and 43 elderly adults that are significantly (p < 0.001) different
in age. We used m = 2 which is superior to m = 1 since it allows
more detailed reconstruction of the joint probabilistic dynamics
of the time series (Pincus and Goldberger, 1994).

With normal ageing, there are declines in mental domains such
as processing speed, reasoning, memory and executive functions,
some of which is underpinned by a decline in a general cognitive
factor (Deary et al., 2009). The bases for this decline are not fully
understood. There has been progress in normal cognitive ageing
from genetics, general health, biological processes, neurobiolog-
ical changes, diet, lifestyle and many other areas of biomedical
and psychosocial sciences. For example, the complexity of longi-
tudinal physiological measurements such as EEG has been shown
to vary with age and disease (Gaal et al., 2010). Complexity can
be described as the difficulties associated with predicting a signal
and this can be estimated by measuring the signal’s entropy (Lu
et al., 2008). Some studies have suggested that the characteriza-
tion and analysis of the brain’s output in terms of its complexity
may reveal a better understanding of an individual’s health and
robustness (Goldberger et al., 2002), adaptive capacity in terms
of brain ageing (Sokunbi et al., 2011) and diseases (Sokunbi
et al., 2013, 2014), and in-vivo effect of drugs (Ferenets et al.,
2007). Healthy systems portray chaotic and complex behaviors
whereas pathological states exhibit predictable behaviors (Pool,
1989). Estimating the complexity of the blood oxygen level depen-
dent (BOLD) fMRI signals can help to probe different aspects of
complex signals brought about by ageing and disease, revealing
subtle patterns which may provide fundamental insights that can
lead to clinical and biomedical applications.

Investigators have argued that the pathway of change in the
behavior and physiology of an organism with age and disease
can either result in a decrease or an increase in the complexity
of the system’s output (Vaillancourt and Newell, 2002; Sokunbi
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et al., 2014). Vaillancourt and Newell (2002) postulate that the
directional change in output complexity of a physiological or
behavioral system with ageing or disease depends on the sys-
tem having an underlying fixed point or an oscillatory attractor
determining output. An attractor is the state to which a system
returns to after perturbation (Vaillancourt and Newell, 2002). In
the fixed-point attractor system, complexity decreases with age
and disease (Sokunbi et al., 2013) while in the oscillatory attrac-
tor system complexity increases with age and disease (Sokunbi
et al., 2014). Ageing has been defined as a loss of entropy
(Lipsitz, 2004) and specific brain regions have been implicated
in the ageing process (Craik and Salthouse, 2000). Also, func-
tional entropy has been shown to increase with age (Yao et al.,
2013). In the present analysis, we expect SampEn to decrease
with age according to Lipsitz’s (2004) entropy definition of age-
ing and Vaillancourt and Newell’s (2002) fixed-point attractor
postulate. Most importantly, we expect SampEn results at N less
than 100 to be indicative of this ageing process since it is largely
independent of data length and displays relative consistency
(Richman and Moorman, 2000).

MATERIALS AND METHODS
SUBJECTS
A small group of 10 healthy right-handed younger adults [5
male, mean age (22.40± 3.44)] and 10 healthy right-handed
elderly adults [5 male, mean age (69.60± 9.25)] with significant
(p < 0.001) age difference were extracted from the ICBM rest-
ing state dataset made publicly available in the 1000 Functional
Connectomes project. The subjects used for the small group anal-
ysis are listed in the supplementary data, Table S1. The whole
ICBM resting state cohort of 43 younger adults [21 male, mean
age (29.05± 8.66)] and 43 elderly adults [20 male, mean age
(59.33± 10.27)] with significant (p < 0.001) age difference was
also investigated. The study was approved by the local research
ethics committee and subjects had no history of neurological
or psychiatric disorders. Written informed consent was obtained
from the subjects. Information regarding this dataset is available
at https://www.nitrc.org/projects/fcon_1000/.

BRAIN IMAGING
Functional MR images were acquired with a T∗2 weighted gradient
echo echo-planar imaging sequence (EPI) using a standard head
coil on a 3T scanner. A total of 23 axial slices were obtained for
each of 133 volumes using a TR of 2 s and matrix 64× 64. A total
of 128 volumes of fMRI data remained after discarding the first
five volumes to allow for signal conditioning. Subjects were asked
to lie in the scanner with their eyes closed.

IMAGE PRE-PROCESSING
FMRI data pre-processing were performed using SPM8 soft-
ware (The Wellcome Department of Imaging Neuroscience, UCL,
London, UK). The images were realigned to correct for head
movement distortion. Temporal high pass filtering was performed
(128 s) to reduce low frequency noise and spatial smoothing was
performed to reduce white noise using the full-width at half max-
imum (FWHM) of the Gaussian smoothing kernel [8 8 8]. Each
voxel time series was standardized to a mean of zero and standard

deviation of unity. This allows a signal value of r (tolerance) to be
used for all voxels independent of amplitude and variance.

COMPUTATION OF SampEn
The SampEn of a time series of length N (x1, x2, ....., xN) can be
computed from the given sets of equations (Sokunbi et al., 2013):

SampEn(m, r, N) = − ln

[
Um+ 1 (r)

Um (r)

]

Um(r) = [N −mτ ]−1
N−mτ∑

i= 1

Cm
i (r) (1)

Where

Cm
i (r) = Bi

N − (m + 1)τ

Bi = number of j where d
∣∣Xi, Xj

∣∣ ≤ r (2)

Xi =
(
xi, xi+ τ , ....., xi+(m− 1)τ

)
(3)

Xj =
(
xj, xj+ τ , ....., xj+(m− 1)τ

)
(4)

1 ≤ j ≤ N −mτ, j �= i

N specifies the data length, m is the pattern length, r is the toler-
ance value, and τ is the time delay as shown in Equation (1). In
Equation (2), the two patterns i and j of m measurements of the
time series are similar if the difference, d

∣∣Xi, Xj

∣∣, between any pair
of corresponding measurements of Xi and Xj is less than, or equal
to, r. In Equations (3 and 4), Xi and Xj are pattern vectors (length
m) whose components are time-delayed versions of the elements
in the original time series with time delay, τ .

We evaluated the ability of SampEn to discriminate the
younger from the elderly adults, using the value of the receiver
operating characteristic (ROC) area (Zweig and Campbell, 1993).
ROC areas are used as a guide to classify the precision of a diag-
nostic test. Areas with values between 0.90 and 1 indicate that the
precision of the diagnostic test is excellent, when the values are
between 0.80 and 0.89, it means the test is good. It is fair if the area
values are between 0.70 and 0.79, poor when the area is between
0.60 and 0.69 and bad for values ranging from 0.50 to 0.59. Using
the small group of 10 younger and 10 elderly adults, we deter-
mined the optimal r-value where this discrimination occurs by
computing the ROC area for a range of r-values. The ROC area
was computed from the mean whole brain SampEn values of each
subject in the small group using a robust value of m = 2 (Pincus
and Goldberger, 1994), data length N = 128 and by varying the
r-value from 0.05 to 0.5 at intervals of 0.05. Figure 1A shows that
this optimal r-value occurred at r = 0.30.

Whole brain SampEn was computed for each subject in the
small group using m = 2, the optimal r-value of 0.30 (Figure 1A),
multiplied by the SD of the fMRI time series, τ = 1 and fMRI data
lengths of 128, 120, 110, 100, 90, 95, and 85. Only data lengths
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FIGURE 1 | Small group analysis. (A) ROC area for determining the
optimal r -value for fMRI data of 128 volumes, for 0.05 ≤ r ≤ 0.5 at
intervals of 0.05. The optimal r -value was obtained at r = 0.30;

(B) ROC area of SampEn (m = 2, r = 0.30, 85 ≤ N ≤ 128) for fMRI
data lengths N. SampEn shows good discriminating ability and
relative consistency for all the data lengths.

where all 20 subjects returned SampEn values were included in
the study. Data lengths less than 85 could not be included in the
study because some of the subjects did not return SampEn val-
ues as a result of a lack of templates to compare. Whole brain
SampEn maps were generated on a voxel by voxel basis using the
same approach as Sokunbi et al. (2011) on a MATLAB and C
platform. A threshold of 0.1 times the maximum signal was used
to exclude voxels being calculated outside the brain. The mean
whole brain SampEn value for each subject was computed. Also,
the ROC area for discriminating between both groups was com-
puted from the mean whole brain SampEn value of each subject
in both groups for all the data lengths. SampEn showed good
discriminating ability for 85 ≤ N ≤ 128 as shown in Figure 1B.

Similarly, whole brain SampEn maps were generated for the
cohort of 43 younger and 43 elderly adults using m = 2, the opti-
mal r-value of 0.30 (Figure 1A), multiplied by the SD of the fMRI
time series, τ = 1 and fMRI data lengths of 128 and 85. The ROC
area for discriminating between the cohort of 43 younger and 43
elderly adults was computed from the mean whole brain SampEn
value of each subject in both groups for data lengths N = 128
and N = 85.

STATISTICAL ANALYSIS
The ROC analyses were performed on the mean whole brain
SampEn values using the International Business Machines
Corporation (IBM) Statistical Package for Social Sciences (SPSS
20.0; New York, USA) software. Independent t-tests for the
different data lengths, N, were performed between the mean
whole brain SampEn values of both groups using SPSS software.
Also, correlations using the Pearson correlation analyses between
the mean whole brain SampEn and age for the whole popu-
lation were performed in SPSS, for the different data lengths,
N. False discovery rate (FDR) for multiple comparisons correc-
tion (q < 0.05) in R-Statistics (http://www.r-project.org/) was
used to correct the p-values of the independent t-tests and p-
values of the Pearson’s correlation analyses. The Pearson’s cor-
relation coefficients (r-values) were interpreted using Dancey
and Reidy’s categorisation (Dancey and Reidy, 2004). Here, r-
value of ±1 is interpreted as a perfect correlation, r-values

between ±0.7 to ±0.9 are interpreted as strong correlations, r-
values in the range ±0.4 to ±0.6 are categorized as moderate
correlations, r-values between ±0.1 to ±0.3 are weak correla-
tions and an r-value of 0 is zero correlation, implying there is no
correlation.

The SampEn map of each subject was normalized to a stan-
dard echo planar imaging (EPI) template, and a regional (spatial)
analysis was performed using the two-sample t-test in SPM8,
comparing the SampEn maps of the younger and elderly adults
at a family-wise error (FWE) corrected cluster level significance
of p < 0.05 and threshold p = 0.005. This was only done for data
lengths N = 85 and N = 128. Correlations between the SampEn
maps and age for the whole population were tested using multiple
regression approach in SPM8.

RESULTS
SMALL GROUP OF 10 YOUNGER AND 10 ELDERLY ADULTS
The subjects’ characteristics and SampEn measures for the
small group of 10 younger and 10 elderly adults are shown in
Table 1. The ROC results of the mean whole brain SampEn for
data lengths 85 ≤ N ≤ 128 were in the range 0.850–0.890. This
implies that the ability of SampEn to effectively discriminate the
younger from the elderly adults across all the data lengths is
good and that this ability is not dependent on data length. The
ROC curves and characteristics for 85 ≤ N ≤ 128 are shown in
Figure 2A. The sensitivity and specificity obtained from the ROC
analysis ranged between 80 and 90% for all the data lengths, while
the accuracy was 85% for all data lengths except for N = 128
where the accuracy dropped to 80% (see Figure 2B and Table 2).
For data lengths 85 ≤ N ≤ 128, the mean whole brain SampEn
values of the younger adults were significantly (p < 0.05) higher
than the mean whole brain SampEn values of the elderly adults.
After corrections for multiple comparisons using the FDR, the
mean whole brain differences for all the data lengths remained
significantly (q < 0.05) higher. The mean whole brain differ-
ences between the younger and elderly adults for all the data
lengths are shown in Figure 3. Moderate negative correlations (r-
values between −0.581 and −0.626) were obtained at p < 0.01
between the mean whole brain SampEn values and the age of the
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Table 1 | Subjects’ characteristics and SampEn measures for the small group of 10 younger and 10 elderly adults.

Younger adults Elderly adults Significance Significance FDR corrected

(p-values) (q-values)

Age (years) 22.40± 3.44 69.60± 9.25 p < 0.001
Sex (M/F) 5/5 5/5
SampEn at N = 85 1.7413± 0.0298 1.6888± 0.0400 p = 0.004 q = 0.007
SampEn at N = 90 1.7354± 0.0280 1.6779± 0.04631 p = 0.003 q = 0.007
SampEn at N = 95 1.7309± 0.0260 1.6729± 0.0472 p = 0.003 q = 0.007
SampEn at N = 100 1.7258± 0.0268 1.6687± 0.0458 p = 0.003 q = 0.007
SampEn at N = 110 1.7164± 0.0278 1.6595± 0.0506 p = 0.006 q = 0.007
SampEn at N = 120 1.7082± 0.0288 1.6489± 0.0529 p = 0.006 q = 0.007
SampEn at N = 128 1.6980± 0.0359 1.6407± 0.0517 p = 0.010 q = 0.010

FIGURE 2 | ROC analyses portraying SampEn discriminatory characteristics for all the data lengths in the small group (A) ROC curves for

85 ≤ N ≤ 128. (B) Plot of Sensitivity, Specificity and Accuracy against N.

Table 2 | ROC characteristics for the small group of 10 younger and 10

elderly adults.

Data Threshold Sensitivity Specificity Accuracy Area under

length, (%) (%) (%) the ROC

N curve

85 1.7332 80 90 85 0.880
90 1.7244 80 90 85 0.880
95 1.7183 80 90 85 0.880
100 1.7026 90 80 85 0.890
110 1.6902 90 80 85 0.880
120 1.6888 80 90 85 0.880
128 1.6710 80 80 80 0.850

population, for all the data lengths (85 ≤ N ≤ 128). Also, after
corrections for multiple comparisons using FDR, the moderate
negative correlations between the mean whole brain SampEn
values and age remained significant (q < 0.05). This implies that
for all the data lengths SampEn decreased with age. Table 3
shows the Pearson’s correlation coefficients, r, the p-values and
the q-values (FDR) for data lengths 85 ≤ N ≤ 128. Figures 4A–G
shows the regression curve estimation between SampEn and age
for the population. A graph was plotted to further investigate how
the Pearson’s correlation coefficients, r (correlation of SampEn

and age) varied with the different data lengths 85 ≤ N ≤ 128.
The graph shown in Figure 5 shows that the Pearson’s correla-
tion coefficients, r remained relatively constant with the different
data lengths. This implies that the correlation between SampEn
and age was relatively consistent with the changes in data length.

To investigate regional differences and similarities in data
lengths, the whole brain SampEn maps for the minimum and
maximum data lengths (85 ≤ N ≤ 128) were tested regionally
with a family-wise error (FWE) corrected cluster level significance
of p < 0.05 using the two-sample t-test in SPM8. The results con-
sistent with that of the mean whole brain analysis show that the
younger adults exhibited significantly (p < 0.05) higher SampEn
values than the elderly adults at a threshold of p = 0.005 with cor-
responding discriminated brain regions. For data length N = 85,
only the frontal lobe of the brain was discriminated while for
N = 128, the frontal lobe and parietal lobe were discriminated.
These discriminated brain regions are listed in Table 4. Figure 6
shows the rendered images of the two-sample t-tests between the
younger and elderly adults, for data lengths, N = 85 and N =
128. Also, correlations between the whole brain SampEn maps
and age, of the whole population, for data lengths, N = 85 and
N = 128 were performed using multiple regression analysis in
SPM8. Again, SampEn portrayed a significant (p < 0.05) nega-
tive correlation with age, for both data lengths as shown by the
rendered images in Figure 7. For N = 85, the frontal, limbic and
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FIGURE 3 | Mean whole brain SampEn (m = 2, r = 0.30, 85 ≤ N ≤ 128)

difference between younger and elderly adults for data length N in the

small group analysis. Here, the mean whole brain SampEn values of the
younger adults were significantly (p < 0.05) higher than the mean whole
brain SampEn values of the elderly adults.

parietal lobes were discriminated while for N = 128 the frontal
lobe, limbic lobe, parietal lobe and sub-lobar brain regions were
discriminated. See Table 5 for a list of the discriminated brain
regions.

COHORT OF 43 YOUNGER AND 43 ELDERLY ADULTS
The subjects’ characteristics and SampEn measures for the whole
ICBM resting state cohort of 43 younger and 43 elderly adults
are shown in Table 6. The ROC results of the mean whole brain
SampEn for data lengths N = 85 and N = 128 were 0.600 and
0.603 respectively. This implies that the ability of SampEn to effec-
tively discriminate the younger from the elderly adults of both
data lengths is poor. For data length N = 85, the sensitivity was
65.10%, the specificity was 53.50% and accuracy was 59.30% at
a threshold of 1.7298. While for data length N = 128, the sensi-
tivity was 58.10%, the specificity was 58.10% and accuracy was
58.10% at a threshold of 1.6986. For both data lengths, the mean
whole brain SampEn values of the younger and elderly adults were
not significantly (p > 0.05) different but the younger adults had
higher mean whole brain SampEn values than the elderly adults.
Weak negative correlations, r-values of −0.078 and −0.099 were
obtained at p > 0.05 between the mean whole brain SampEn val-
ues and the age of the population, for data lengths N = 85 and
N = 128 respectively.

For data length, N = 128, the result of the regional analysis
show that the younger adults exhibited higher SampEn val-
ues than the elderly adults at a threshold of p = 0.005 with a
family-wise error (FWE) corrected cluster level significance of
p < 0.05 at the parietal and frontal lobes. These discriminated
brain regions are listed in Table 7. For data length, N = 85, the
younger adults also exhibited higher SampEn values than the
elderly adults at the left parietal lobe (−24, −48, 54, Sub-Gyral,
White Matter;−22,−52, 44, Precuneus, White Matter;−32,−40,

Table 3 | Correlation of SampEn with age for the small group of 10

younger and 10 elderly adults.

Pearson’s Significance Significance FDR

correlation (p-values) corrected

(r-values) (q-values)

SampEn at N = 85 −0.602 p = 0.005 q = 0.006

SampEn at N = 90 −0.624 p = 0.003 q = 0.006

SampEn at N = 95 −0.626 p = 0.003 q = 0.006

SampEn at N = 100 −0.624 p = 0.003 q = 0.006

SampEn at N = 110 −0.599 p = 0.005 q = 0.006

SampEn at N = 120 −0.608 p = 0.004 q = 0.006

SampEn at N = 128 −0.581 p = 0.007 q = 0.007

52, Postcentral Gyrus, White Matter) with a threshold of p =
0.005 and at an uncorrected p-value of 0.005. When the analysis
at N = 85 was corrected for multiple comparisons, the discrim-
inated brain region was not significant (p > 0.05). There were
no significant (p > 0.05) correlations between the whole brain
SampEn maps and age, of the whole population, for both data
lengths (N = 85 and N = 128).

Figure 8 shows the rendered images of the two-sample t-tests
between the younger and elderly adults, for the small group (10
younger and 10 elderly adults) and the whole cohort (43 younger
and 43 elderly adults) at data length N = 128. The images show
that both analyses had overlapping discriminated brain regions
between the frontal and parietal lobes.

DISCUSSION
The aim of this study was to test the ability of SampEn to effec-
tively discriminate between two different age groups of resting
state fMRI data with data length, N less than 10m (where m = 2).
For the small group analysis, the results of the whole brain anal-
yses shows that the ROC areas for N = 85, 90, and 95 were the
same (0.880), the ROC area for N = 100 was 0.890, the areas for
N = 110 and 120 were 0.880, and for N = 128 was 0.850. The dis-
proportionality of these ROC areas to the respective data lengths
is in line with the notion that SampEn is largely independent of
data length. Furthermore, the same level of accuracy (85%) exhib-
ited by all the data lengths with the exception of N = 128 having
accuracy of 80%, indicates that SampEn displays some relative
consistency. Also, the mean whole brain SampEn of the younger
adults was significantly (p < 0.05) higher than the elderly adults
across data lengths, 85 ≤ N ≤ 128. There were also moderate
negative correlations (r-values between −0.581 and −0.626) (see
Table 3) between the mean whole brain SampEn values and age
for 85 ≤ N ≤ 128 at q < 0.05. Wang et al. (2014) showed that
data length has only a minor effect on SampEn, which ensured
including all the resting state fMRI data at the 1000 Functional
Connectomes project repository, even with different time points
for their brain entropy (BEN) mapping.

In the regional analyses of the small group, the younger adults
exhibited significantly higher SampEn than the elderly adults,
only at the frontal lobe for N = 85, and at the frontal and parietal
lobes for N = 128. For N = 85, there was a significant nega-
tive correlation between SampEn and age at the frontal, limbic
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FIGURE 4 | Regression curve estimation between SampEn (m = 2,

r = 0.30, 85 ≤ N ≤ 128) and age for all the data lengths N in

the small group analysis. SampEn of the population decrease

with an increase in age, for all data lengths. (A) N = 85, (B)

N = 90, (C) N = 95, (D) N = 100, (E) N = 110, (F) N = 120, (G)

N = 128.

FIGURE 5 | Correlation of SampEn (m = 2, r = 0.30, 85 ≤ N ≤ 128) with

age against N in the small group analysis. Here, the Pearson’s
correlation coefficient is relatively constant with changing data length N.

and parietal lobes while for N = 128, this negative correlation
occurred at the frontal lobe, limbic lobe, parietal lobe and sub-
lobar region. These associations indicate that there is reduction
in entropy with increase in age. This reduction in entropy is com-
mon to both analyses (at N = 85 and N = 128), independent
of the different data lengths and overlaps at the frontal, lim-
bic and parietal lobes of the brain. The frontal lobe has been
implicated in age-related processes resulting in a decline in mem-
ory functions (Craik and Salthouse, 2000). In a diffusion tensor
imaging (DTI) study of a healthy population of 25–70 years, the
limbic system which is responsible for emotion processing and

memory function has been shown to undergo degradation with
ageing (Gunbey et al., 2014). The sub-lobar brain region has been
implicated in white matter structures associated with cognitive
ageing (Staff et al., 2006). Also, decreased fractional anisotropy
(FA) measurements in the frontal and parietal lobes has been
associated with poorer cognitive performance in a study inves-
tigating the relationship between FA and selected measures of
cognition across a broad age group (20–73 years of healthy sub-
jects) to explore a possible structural basis for cognitive changes
with age (Grieve et al., 2007). Our findings of decrease in entropy
with age are consistent with Lipsitz’s (2004) entropy definition
of ageing (loss of entropy) and Vaillancourt and Newell’s (2002)
fixed-point attractor postulate where complexity decreases with
age and disease.

Comparing the whole cohort (43 younger and 43 elderly
adults) to the small group (10 younger and 10 elderly adults)
analysis at data lengths N = 85 and 128, the small group anal-
ysis discriminated between the younger and elderly adults, and
showed that the fMRI brain complexity decreases with age at
both data lengths. The whole cohort analysis only discriminated
between the younger and elderly adults at N = 128. The whole
cohort analysis at N = 85 was indicative of the ageing process
but this indication was not significant (p > 0.05). The inability
of SampEn to portray the same discriminatory effect for both the
small group and whole cohort analyses may be due to two factors.
Firstly, it may be due to the variance in the heterogeneous distri-
bution of the subjects’ ages in both datasets. For the small group,
the mean age of the younger and elderly adults is (22.40± 3.44)
and (69.60± 9.25) respectively, while in the whole cohort the
mean age of the younger and elderly adults is (29.05± 8.66)
and (59.33± 10.27) respectively. Clearly, there is disparity in the
mean and SD of the younger and elderly adults between the
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Table 4 | SampEn differences for the small group of 10 younger and 10 elderly adults.

Data Cluster number and Brain region Talairach Brain label Tissue type Cluster Voxel

length, extent coordinate p-value t-value

N (X, Y, Z ) (FWE corrected)

85 Cluster 1
Extent = 2181

Frontal lobe −34, 2, 66 Left middle frontal gyrus Gray matter p < 0.001 5.47

128 Cluster 1
Extent = 889

Frontal lobe −22, −14, 66 Left middle frontal gyrus Gray Matter p = 0.007 4.02

Parietal lobe −28, −44, 56 Left inferior parietal lobule White matter p = 0.007 4.26

Parietal lobe −46, −22, 60 Left post-central gyrus Gray matter p = 0.007 3.90

Location coordinates are those of the peak significance in each region (threshold p = 0.005, FWE corrected cluster p < 0.05).

FIGURE 6 | SampEn (m = 2, r = 0.30, N) differences between younger

and elderly adults for the small group analysis. N = 85 is red and
N = 128 is green. Overlap is yellow. SampEn values of the younger adults
were significantly (p < 0.05) higher than SampEn values of the elderly
adults with the corresponding brain regions as shown.

small group and whole cohort. The second factor may be due
to the limited discriminatory ability of SampEn. This study was
conducted with SampEn on a single scale, a multiscale SampEn
analysis is superior to a single scale analysis and portrays a supe-
rior discriminatory ability (Costa et al., 2002; Yang et al., 2013).
Another approach which may show superior discriminatory abil-
ity to SampEn is single scale Fuzzy approximate entropy (fApEn)
(Xie et al., 2010), which has not been investigated in comparison
to SampEn and in fMRI datasets.

FIGURE 7 | Correlation of SampEn (m = 2, r = 0.30, N) with age for the

small group analysis. N = 85 is red and N = 128 is green. Overlap is
yellow. SampEn for the population decrease as age increase with
corresponding brain regions as depicted.

An increase in functional entropy with age (Yao et al., 2013)
was found in a recent study, where Shannon entropy; a measure
of information, choice and uncertainty (in bits) (Shannon, 1948)
was used as a bivariate measure to characterize the correlation
coefficient (considered as a random variable) of a distinct pair
of brain regions. The resulting entropy measure in bits was called
functional entropy. The functional entropy measured the disper-
sion (or spread) of functional connectivity that exists within the
brain. At the population level, they found that the functional
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Table 5 | SampEn correlation with age for N = 85 and N = 128, for the small group of 10 younger and 10 elderly adults.

Data Cluster number and Brain region Talairach Brain label Tissue type Cluster Voxel

length, extent coordinate p-value t-value

N (X, Y, Z ) (FWE corrected)

85 Cluster 1
Extent = 768

Frontal lobe 36, −22, 48 Right post-central gyrus White matter p = 0.015 6.96

Frontal lobe 30, −22, 38 Right sub-gyral White matter p = 0.015 5.30

Limbic lobe 20, −24, 40 Right cingulate gyrus White matter p = 0.015 5.14

Cluster 2
Extent = 3320

Frontal lobe −34, 2, 66 Left middle frontal gyrus Gray matter p < 0.001 5.69

Parietal lobe −46, −22, 60 Left post-central gyrus Gray matter p < 0.001 5.42

128 Cluster 1
Extent = 1247

Frontal lobe −30, 16, 16 Left sub-gyral White matter p = 0.004 8.40

Limbic lobe 2, 2, −4 Right anterior cingulate Gray matter p = 0.004 5.28

Sub-lobar −6, −2, 4 Left extra-nuclear White matter p = 0.004 5.26

Cluster 2
Extent = 3406

Parietal lobe −26, −42, 56 Left sub-gyral White matter p < 0.001 5.90

Parietal lobe −20, −54, 40 Left pre-cuneus White matter p < 0.001 5.32

Parietal lobe −50, −28, 58 Left post-central gyrus Gray matter p < 0.001 4.85

Cluster 3
Extent = 1246

Parietal lobe 32, −34, 54 Right post-central gyrus Gray matter p = 0.004 5.09

Frontal lobe 20, −18, 64 Right middle frontal gyrus White matter p = 0.004 4.65

Parietal lobe 28, −28, 48 Right sub-gyral White matter p = 0.004 4.48

Location coordinates are those of the peak significance in each region (threshold p = 0.005, FWE corrected cluster p < 0.05).

Table 6 | Subjects’ characteristics and SampEn measures for the

whole ICBM resting state cohort of 43 younger and 43 elderly adults.

Younger Elderly Significance

adults adults (p-values)

Age (years) 29.05± 8.66 59.33± 10.27 p < 0.001

Sex (M/F) 21/22 20/23

SampEn at
N = 85

1.7387± 0.0526 1.7172± 0.0597 p = 0.080

SampEn at
N = 128

1.6979± 0.0545 1.6735± 0.0655 p = 0.065

entropy of the human brain increases with age where a higher
level of randomness reflected the way different brain-regions
functionally interacted with one another. At the regional level,
they found some regions where the functional entropy increases,
decreases and where it remains almost constant. They noted a
decrease in functional entropy with age in the left and right insu-
lars. Furthermore, a computational model based on DTI was
used to investigate the origins of the relationship between func-
tional entropy and age. The model implicated a brain entropy
that decreases when the excitatory connection strength and neu-
ron number in each brain region are simultaneously reduced.
In the present study, our analysis entailed a univariate charac-
terization of a voxel with SampEn. Here, SampEn is used as an
estimate of complexity and returns a dimensionless numerical
value. Our results showed that sample entropy decrease with age.
SampEn and ApEn are not the same as Shannon entropy, they
are used to indicate system complexity because both of them
were defined as approximates to the Kolmogorov complexity
(Wang et al., 2014).

In the small group analysis, the reduction in the accuracy of
SampEn to effectively discriminate the younger from the elderly
adults (in the mean whole brain analyses) from 85% for data
lengths 85 ≤ N ≤ 120 to 80% for data length N = 128 may be
attributed to the “averaging effect” which is basically the simplest
form of a digital filter and is a means of reducing the effect of ran-
dom noise (Smith, 1999). Averaging the BOLD fMRI response
of a voxel over a number of data lengths can help to improve
the BOLD signal to noise ratio. The amount of noise reduction
that this “averaging effect” can produce is equal to the square-
root of the data length in the average (Smith, 1999). For example,
data lengths of N = 85, 90, 95, 100, 110, 120, and 128 of BOLD
fMRI signal would reduce the noise by a factor of 9.22, 9.49,
9.75, 10.00, 10.49, 10.96, and 11.31 respectively. As a result of
this, the level of noise in data length N = 128 is less compared
to data length N = 85 and vice versa. The level of noise in data
length N = 85 is higher than N = 128. Since noise is the signal
with the most complex dynamics and highest measured entropy
(Lu et al., 2008), it is expected that the entropy of the younger
and elderly adults for data length N = 85 would be higher than
the corresponding groups in data length N = 128 and was there-
fore reflected in the measured accuracies. This is evident in the
mean whole brain SampEn measurements for 85 ≤ N ≤ 128 in
Table 1. Here it can be clearly seen that the measured SampEn
values decreases as the data length increases from N = 85 to
N = 128, implying that the level of noise decrease from N = 85
to N = 128. Another obvious evidence suggesting the influence
of noise in the accuracy was demonstrated in the regional analy-
ses where noise played an opposite effect. Here, Sample entropy
discriminated more brain regions at N = 128 than N = 85. The
difference in the discriminated brain regions can be attributed to
the influence of a higher noise level in N = 85 than N = 128.
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Table 7 | SampEn differences for the whole ICBM resting state cohort of 43 younger and 43 elderly adult.

Data Cluster number and Brain region Talairach Brain label Tissue type Cluster Voxel

length, extent coordinate p-value t-value

N (X, Y, Z ) (FWE corrected)

128 Cluster 1
Extent = 2251

Parietal lobe −24, −46, 56 Left sub-gyral Gray matter p < 0.001 4.41

Parietal lobe −24, −56, 52 Left precuneus White matter p < 0.001 3.58

Parietal lobe −46, −22, 60 Left inferior parietal lobule Gray matter p < 0.001 3.11

Frontal lobe −26, −30, 66 Left precentral gyrus Gray matter p < 0.001 3.00

Frontal lobe −28, −24, 46 Left sub-gyral White matter p < 0.001 2.95

Location coordinates of the significant regions (threshold p = 0.005, FWE corrected cluster p < 0.05).

FIGURE 8 | SampEn (m = 2, r = 0.30, 128) differences between

younger and elderly adults for the small group (10 younger and 10

elderly adults) and the whole cohort (43 younger and 43 elderly

adults). Small group is cyan, whole cohort is yellow, and overlap is green.
SampEn values of the younger adults were significantly (p < 0.05) higher
than SampEn values of the elderly adults with the corresponding brain
regions as shown.

Sample entropy (an optimized approximate entropy) is nearly
unaffected by low level noise, is robust to occasional very large
or small artifacts, gives meaningful information with a reason-
able number of data lengths, and is finite for both stochastic and
deterministic processes (Zhang and Roy, 2001).

In the computation of Sample entropy from an fMRI signal,
a high noise level is a potential confounder and may prevent

Sample entropy from discriminating effectively between system
complexities. The noise present in fMRI data consists of system
noise (white noise), arising from both thermal noise and hard-
ware imperfections, and 1/f low-frequency noise, physiological
fluctuations from respiratory and cardiac activities. The noise
level can be reduced as we have done by applying high pass fil-
tering to reduce the low frequency components of the noise and
spatial smoothing to reduce the system noise. With the level of
noise reduced, an optimized and robust computation of Sample
entropy can be implemented with an appropriate tolerance value,
r. To avoid a significant contribution from noise in the calcula-
tion of the entropy, one must choose r larger than most of the
noise (Pincus, 1991). A higher r-value shows better robustness
to reduced noise in distinguishing the nonlinear system dynam-
ics (Xie et al., 2010) of the experimental and control groups.
When a small r-value is used, the algorithm identifies two sec-
tions being compared as dissimilar when the difference may be
brought about by noise. Using a larger r avoids the misclassifi-
cation. Using a large r, however, may result in some signal detail
being lost. The selection of the appropriate r is essentially a com-
promise between these two phenomena: i.e., an r large enough
that allows the Sample entropy algorithm to distinguish the sys-
tem signal from noise, but small enough to allow the algorithm to
assess the detail present in the signal (Chen et al., 2009). We have
used a higher r-value to obtain an optimized and robust compu-
tation of Sample entropy in the presence of minimal noise. The
r-value (r = 0.30) we used showed better robustness to reduced
noise in distinguishing the nonlinear system dynamics of both
younger and elderly adults (Figure 1A).

Some studies have suggested that the bias of SampEn from
short data lengths may be compensated for by using a small
pattern length (m = 1) and a relatively large similarity fac-
tor (tolerance value), r, to accommodate the short and noisy
BOLD data (Yang et al., 2013). The choice of m = 2 is supe-
rior to m = 1 because it allows more detailed reconstruction of
the joint probabilistic dynamics of the time series (Pincus and
Goldberger, 1994). It has also been shown that using m = 2
is more consistent than m = 1 over a wider range of tolerance
values, r (Sokunbi et al., 2013). Using m = 2 implies that the
SampEn of fMRI data with data length less than 100 can be
computed with robust and optimized parameter contrary to the
suggestion of others (Abasolo et al., 2006; Yang et al., 2013),
avoiding erroneous data length constraint. Also, m = 2 has been
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used for data length N = 50 of i.i.d uniform random numbers
(Chen et al., 2009).

Richman and Moorman (2000) concluded that the SampEn
(m, r, N) statistics are not completely unbiased under all con-
ditions. They found that the bias of SampEn was less than
3% for data lengths greater than 100 but as high as 35% for
data length of 15 points and that the bias of SampEn for very
small data sets is largely due to non-independence of templates.
They suggested that one method of removing this bias would
be to partition the time series but noted that this unbiased
approach has the potentially severe limitation of reducing the
number of possible template matches and enlarging the con-
fidence intervals about the SampEn estimate. They also argue
that because this bias appears to be present only for very small
N, the disjoint template approach does not appear necessary in
usual practice. One notable limitation of the present study is
that we would expect the bias of our fMRI SampEn (2, 0.30,
85 ≤ N ≤ 128) analyses to be in the proximity of the bias of
less than 3% for data lengths greater than 100. Another limi-
tation of SampEn is that SampEn values for data lengths less
than 85 could not be obtained because of a lack of templates to
compare.

CONCLUSION
The small group fMRI SampEn analyses provided additional
evidence that it is possible to obtain good discriminating fea-
ture from fMRI data with data lengths less than 100, indicating
that SampEn is largely independent on changes in data length
and displays some relative consistency. While it is better to
acquire data with longer data lengths for best analysis results,
low noise level and minimum bias, it is not always possible to
do this with fMRI data because of the nature of some fMRI
experiments and its temporal limitation. SampEn is a possible
analysis tool amongst time series analysis techniques because it
is less sensitive to changes in data length and relatively consis-
tent. SampEn is well suited for short data sets like fMRI data,
though a compromise has to be made with the increase in
noise level as data length decreases. The heterogeneous distri-
bution of the subjects ages in the whole cohort ages compared
to the small group ages may have limited the single scale dis-
criminatory ability of SampEn in the whole cohort analyses. A
multiscale SampEn analysis may portray a superior discrimi-
natory ability. In the present study, using m = 2 ensures that
SampEn is computed for fMRI data (having data length less
than 100) with robust and optimized parameter thereby avoid-
ing the erroneous data length constraint of 10m–20m. Finally,
before characterizing data sets, especially short data sets with
SampEn, we would recommend using optimal parameters; an m
of 2 or as appropriate and to determine the r-value (by examining
several r-values) where SampEn displays its best discriminating
ability.
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The human brain displays heterogeneous organization in both structure and function.
Here we develop a method to characterize brain regions and networks in terms of
information-theoretic measures. We look at how these measures scale when larger spatial
regions as well as larger connectome sub-networks are considered. This framework is
applied to human brain fMRI recordings of resting-state activity and DSI-inferred structural
connectivity. We find that strong functional coupling across large spatial distances
distinguishes functional hubs from unimodal low-level areas, and that this long-range
functional coupling correlates with structural long-range efficiency on the connectome. We
also find a set of connectome regions that are both internally integrated and coupled to the
rest of the brain, and which resemble previously reported resting-state networks. Finally,
we argue that information-theoretic measures are useful for characterizing the functional
organization of the brain at multiple scales.

Keywords: human connectome, resting-state, integrative regions, information theory, multivariate mutual

information, complexity measures

INTRODUCTION
The human brain is characterized by complex functional and
structural organization at different scales. Both structural and
functional aspects of large-scale brain organization can be stud-
ied using magnetic resonance imaging (MRI) technology. On the
one hand, functional activity can be estimated from the blood-
oxygen-level dependent (BOLD) signal recorded by functional
MRI (fMRI) of gray matter. The pattern of correlations between
the BOLD activities of pairs of regions determines the functional
connectivity. On the other hand, the structural connectivity, or net-
work of anatomical connections between brain regions also called
the human connectome (Sporns et al., 2005; Sporns, 2013), can be
inferred from the orientation of constrained diffusion throughout
the brain as measured by diffusion spectrum imaging (DSI).

Recent research has sought to characterize the different func-
tional and structural properties of different brain regions, both
in “bottom-up” terms, by assigning distinct roles to localized
regions, as well as in “top-down” terms, by decomposing the
entire brain into interpretable networks or subsystems. For exam-
ple, many functional studies have investigated functional hubs, or
regions that maintain strong correlations with many other regions
(Achard et al., 2006; van den Heuvel and Sporns, 2013). Other
studies have decomposed resting-state time series into maximally
independent components, where regions within the same compo-
nents display correlated patterns of activation (Beckmann et al.,
2005; Damoiseaux et al., 2006; Fox and Raichle, 2007; Smith et al.,

2009; Yeo et al., 2011; Moussa et al., 2012). Similarly, structural
studies of the connectome have found differences among regions
in features such as degree, strength, betweenness and k-coreness
(Hagmann et al., 2008; van den Heuvel and Sporns, 2013). They
have also identified important structural subsystems, including
communities (Hagmann et al., 2008; Betzel et al., 2014) and a
densely-interconnected “rich club” backbone that ties together
distant hubs (van den Heuvel et al., 2012). These findings are gen-
erally in accordance with a view of the brain as being organized
along hierarchical lines, with segregated low-level processing of
unimodal information taking place in the primary visual, audi-
tory, sensory and motor cortices, higher-level representation and
association of modal information taking place in the secondary
cortices, and multisensory areas integrating information between
distinct modalities across large-scale networks (Felleman and
Essen, 1991; Yeo et al., 2011).

In this work, we propose a method to characterize the
information-theoretic properties of local brain regions as well as
networks of regions, here referred to as subsystems. Our method
employs functional time series in conjunction with spatial and
structural connectivity data. It uses both structure and function
data in a complementary manner, as opposed to studies that
assess structural or functional domains separately, or that use
one domain to predict the other, such as recent work in predict-
ing functional from structural connectivity (Honey et al., 2010;
Abdelnour et al., 2014; Goñi et al., 2014).
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Specifically, we looked at the amount of functional coupling
that holds between brain regions of interest (ROI), as quantified
by predictability or the number bits of mutual information pro-
vided about the activity of one set of regions given knowledge
of the activity of another set of regions. We also looked at the
amount of integration, or internal functional coupling within sub-
systems as quantified by a multivariate generalization of mutual
information.

In addition, we measured the scaling of predictability and inte-
gration by quantifying the growth of these measures as increas-
ingly large sets of regions are considered, an approach motivated
by previous work on multi-scale integration in complex multi-
variate systems (Grassberger, 1986; Tononi et al., 1994; Bialek
et al., 2001). In this work, subsystems were defined with respect to
the structural and physical organization of the brain. In particu-
lar, three different metrics were used to define subsystems (which
may overlap): Euclidean subsystems are maximally compact in
terms of physical distance; Connectome subsystems are maximally
compact according to shortest path distances on the connectome;
and Randomized subsystems are maximally compact according
to shortest path distances on a randomly rewired version of the
Connectome.

Our methodology combines data from resting-state functional
MRI [fMRI] as well as from structural deterministic fiber trac-
tography based on DSI. We first explored the scaling of measures
of predictability of individual ROIs using subsystems of differ-
ent sizes chosen using Euclidean, Connectome and Randomized
metrics, where larger scales correspond to subsystems containing
more ROIs. Then ROIs were characterized in terms of their func-
tional coupling to the rest of their corresponding hemisphere,
as well as in terms of the Euclidean spatial range at which they
maintained long-distance functional coupling. An analysis of the
correlation between functional coupling and a structural measure
of shortest-path efficiency between ROIs and distant neighbors
was performed across different scales. Finally, we looked at scaling
of multivariate measures of integration within subsystems and of
functional coupling of subsystems with the rest of the hemisphere.
We identified a set of Connectome-based networks whose subsys-
tems showed a combination of high internal integration and high
coupling with the rest of the hemisphere.

The rest of the paper is organized as follows. The MRI data is
described in the section MRI Data and section Distance Metrics
describes the three different structural metrics considered in this
study, corresponding to physical proximity (Euclidean), anatom-
ical connectivity (Connectome), and a randomized control of the
Connectome (Randomized). In section Information-Theoretic
Measures and Efficiency, we describe our information-theoretic
measures of the predictability of ROIs and subsystems at multiple
spatial scales defined by the three metrics. In section Results, we
report average measures of information-theoretic scaling, varia-
tion of these measures across the cortical surface, the relationship
between long-range functional and structural shortest-paths, and
identify Connectome subsystems that are both internally inte-
grated and coupled to the rest of their hemispheres. In section
Discussion, we discuss the use of information theory for study-
ing the functional organization of the brain, interpret our results
in the context of the integrative functions of the cortex, and

overview some methodological considerations. We finish by sug-
gesting possible avenues for future development of our approach.

MATERIALS AND METHODS
MRI DATA
Forty healthy subjects underwent an MRI session on a 3T
Siemens Trio scanner with a 32-channel head-coil. Magnetization
Prepared Rapid Gradient Echo (MPRAGE) sequence was 1 mm
in-plane resolution and 1.2 mm slice thickness, with a FOV
of 256× 240 mm, and included 160 slices. Diffusion Spectrum
Imaging (DSI) sequence included 128 diffusion weighted vol-
umes + 1 reference b0 volume, with maximum b-value b =
8000 s/mm2, 2.2× 2.2× 3.0 mm voxel size, 212× 212 mm FOV,
and 34 slices. Functional MRI Echo Planar (EPI) sequence was
3.3 mm in-plane resolution with 3.3 mm slice thickness and
0.3 mm slice gap, 212× 193 mm FOV, 32 slices, and TR 1920 ms.
DSI, resting-state fMRI and MPRAGE data were processed using
the Connectome Mapping Toolkit (Daducci et al., 2012). All the
processing steps were performed in the individual subject space
with no spatial normalization.

Segmentation of gray and white matter was based on MPRAGE
volumes. The parcellation used for all the analyses in this work
divides the GM cortex into 448 ROIs (Cammoun et al., 2012); one
ROI was eliminated due to signal acquisition errors, resulting in
a final analysis on 447 ROIs (see Figure S1). Subcortical regions
were not considered in this study. For reporting purposes, ROIs
within each hemisphere were grouped into 34 larger, physically-
compact anatomical areas corresponding to a GM anatomical
atlas (Desikan et al., 2006). Figure S2 in the Supplementary
Material shows the assignment of ROIs to anatomical areas.

During the resting-state fMRI acquisition, subjects were lying
in the scanner with eyes open, resting but awake and cogni-
tively alert, for a period of approximately 9 min. Functional data
preprocessing included motion correction, regression of white
matter, cerebrospinal fluid and movement signals, linear detrend-
ing, motion scrubbing and low-pass filtering (Fox et al., 2009;
Power et al., 2012), producing a 280-sample time series for each
ROI of each subject. The first four samples were removed to allow
for signal stabilization, resulting in a final time series length of
276 samples per ROI per subject. Some subjects were found to
have spikes in across-ROI variance of fMRI signal; maximum
across-ROI variance over all time points was computed for all
subjects and three subjects with outlier maximum variance were
removed (outliers chosen according to Tukey’s rule threshold of
upper-quartile + 1.5 × inter-quartile range). This resulted in a
final dataset containing 37 subjects (16 female, 25.3 ± 5.0 years
old). The data used for the findings reported here were not pro-
cessed with global signal regression. However, when global signal
regression was applied, none of the reported results changed
qualitatively (data not shown).

Whole brain streamline tractography was performed on recon-
structed DSI data (Wedeen et al., 2008), resulting in a structural
connectivity matrix where each entry reflects the number of
fibers (Hagmann et al., 2008), denoted by NOF in this paper.
This dataset was also assessed in two other studies (Betzel et al.,
2014; Goñi et al., 2014). In this work, we did not consider inter-
hemispheric connections, which pose difficulties for DWI-based
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deterministic fiber tractography (Gong et al., 2009) and which
may be systematically underrepresented in connectomes con-
structed using such methods.

Finally, subjects’ fMRI time series and DSI connectomes were
combined into a single “pooled” subject. Though no inter-
subject spatial normalization was performed, subject-wise func-
tional time series and structural connectivity can be pooled
together because they were evaluated on the basis of the same
anatomical atlas registered to each individual subject space. The
time series for each ROI of each subject was mean-centered,
rescaled to standard deviation 1, and concatenated across sub-
jects to yield a single time series of 276× 37 = 10,212 sam-
ples. For the structural connectivity matrices, entries in the
pooled matrices were taken to be means of the corresponding

connectivity values across the individual subject connectivity
matrices. Though the data for the pooled subject does not cor-
respond to any real subject, it is more robust and generates
more stable and reliable statistics, important for computing the
kinds of information-theoretic measures considered in this work
(see Section Methodological Considerations). For these reasons,
this kind of subject-pooling is frequently performed in compu-
tational neuroscience (van den Heuvel and Sporns, 2011; Deco
et al., 2013; Haimovici et al., 2013; Betzel et al., 2014; Goñi et al.,
2014).

The processing steps used to create the final dataset of
pooled subject ROI time series, pooled subject ROIs coordinates,
and pooled subject structural connectivity are diagrammed in
Figure 1A.

FIGURE 1 | Data processing pipeline. (A) The steps used to create the final
dataset of pooled subject ROI time series, pooled subject ROIs coordinates,
and pooled connectome [using the number of fibers (NOF) measure].
(B) Euclidean Distance is computed as the physical distance between the
centroids of ROI coordinates. At bottom are shown two example Euclidean
sets of size 20 ROIs centered on two “seed” ROIs: one seed in the
precuneus region (seed in dark red and the rest of the subsystem in light red)
and one seed in the frontal pole region (seed in dark blue and the rest of the
subsystem in light blue). (C) NOF structural connectivity matrix is
transformed into a Connectome Dissimilarity matrix. Shortest paths on the

dissimilarity graph are used to create the Connectome distance metric. Two
examples of Connectome sets of 20 ROIs are shown, centered on the same
two ROIs as in (B). (D) A degree preserving rewiring is used to create a
randomized structural connectivity matrix. This is transformed into a
Randomized dissimilarity matrix. Shortest path distances on the
corresponding dissimilarity graph are used to create the Randomized
distance metric. Two example Randomized sets of 20 ROIs are shown,
centered on the same two ROIs as in (B). (E) The subsystems and time
series are used to calculate a set of information-theoretic measures of
predictability and integration.
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DISTANCE METRICS
As will be described in the next section, we computed measures
of predictability in terms of a given ROI and its nearest neigh-
bor ROIs. Nearest neighbors rankings were defined according
to three different distance metrics: Euclidean, Connectome, and
Randomized.

The Euclidean metric was defined as the Euclidean distance
between the centroid coordinates of pairs of ROIs. The Euclidean
neighbors of a given ROI were thus the most physically proximate
ROIs. This is diagrammed in Figure 1B.

The Connectome metric was defined using anatomical con-
nectivity inferred from DSI data. For the weights of structural
connections linking ROIs, we used the NOF between ROIs as
identified by the tractography algorithm (Hagmann et al., 2008).
Since higher values of this measure indicate greater connectivity,
we computed Connectome dissimilarity between anatomically
connected ROIs as the inverse of the connectivity values between
them (i.e., 1/NOF). Connectome neighbors of a given ROI were
other ROIs most proximate in terms of shortest-path distances on
the Connectome dissimilarity graph. These processing steps are
diagrammed in Figure 1C.

Finally, the Randomized metric was defined by first performing
a degree-preserving rewiring (Maslov and Sneppen, 2002) of the
Connectome graph. This rewiring method creates a randomized
symmetric graph that preserves the density of the network (i.e.,
the number of direct connections), the degree (number of con-
nections per ROI), and the overall distribution of NOF values.
As performed in the Connectome metric, dissimilarity was com-
puted as the inverse of the (rewired) NOF values. Analogously
to the other metrics, Randomized neighbors of a given ROI were
the most proximate ROIs in terms of shortest-path distances on
the Randomized dissimilarity graph. These processing steps are
diagrammed in Figure 1D.

As mentioned in the last section, due to possible confounding
errors in inferring inter-hemispheric structural connectivity, each
hemisphere was analyzed separately and only neighbors from the
same hemisphere were considered for a given ROI.

We illustrate some examples of the subsystems defined accord-
ing to these metrics in the bottom sections of Figures 1B–D. For
each of the three metrics, two sets of 20 ROIs (a seed ROI and its
19 nearest neighbors) centered on two right-hemisphere ROIs are
colored: one in the precuneus region (seed in dark red and rest
of the subsystem in light red) and one in the frontal pole region
(seed in dark blue and the rest of the subsystem in light blue).

As expected, sets of Euclidean neighbors (bottom of
Figure 1B) are physically contiguous and compact. Connectome
neighbors (bottom of Figure 1C) also tend to cluster spatially
but are more distributed, with connections that span large physi-
cal distances present. In addition, according to the Connectome
metric, the precuneus is close to the entire medial portion of
the hemisphere (and far from more lateral regions) while the
frontal pole is closer to superior and medial frontal as well as infe-
rior temporal regions. Finally, the ROIs comprising Randomized
neighbors (bottom of Figure 1D) are scattered throughout the
hemisphere.

The Euclidean distance matrix as well as the Connectome
and Randomized connectivity matrices are shown in Figure S3

in Supplementary Material. That figure also shows the neighbor
ranks of all ROIs for all given seeds. Notably, while distances
between ROIs are symmetric, ranks are not necessarily so (if
one ROI is the kth neighbor of another ROI, the second is not
necessarily the kth neighbor of the first).

INFORMATION-THEORETIC MEASURES AND EFFICIENCY
Our information-theoretic measures of predictability were com-
puted in terms of mutual information (MI) between different sets
of ROIs. Mutual information is defined as

I(X;Y) := H(X)+H(Y)−H(X, Y)

where H(·) stands for the entropy function. In addition, we used
a multivariate generalization of MI known as total correlation (Ay
et al., 2006), defined as the sum of the marginal entropies for a set
of random variables minus their joint entropy:

TC(X1, . . . , Xk) := �1≤i≤kH(Xi)−H(X1, . . . , Xk)

Total correlation, TC(·), quantifies the degree of multivariate cor-
relation present in a subsystem and can be interpreted as the bits
of compression gained by encoding the joint outcome of a set
of random variables as opposed to encoding each variable’s out-
come independently. It is large when individual variables have
high individual variance but are jointly correlated (for example,
if all variables are copies of each other).

In this work, we considered the entropy of fMRI-recorded
BOLD time-series of different brain regions. Because this data
is continuous, we computed our information-theoretic measures
using differential entropy (Cover and Thomas, 2012). For a ran-
dom variable X with probability density function p(x), differential
entropy is defined as:

h(X) = −
∫

p(x) log p(x)dx

To estimate differential entropies, we used a multivariate Gaussian
assumption and employed the uniformly minimum-variance
unbiased estimator of multivariate Gaussian entropy (Ahmed and
Gokhale, 1989). If X is a k-by-n matrix representing n samples
from a k-dimensional multivariate Gaussian (for example, cor-
responding to samples of the activity of a group of k ROIs),
this method estimates the entropy in bits of the underlying
distribution as:

1
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k

2
ln eπ + 1

2
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∣∣XX′
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(
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where ψ is the digamma function. By itself, differential entropy is
not guaranteed to be positive nor invariant to one-to-one coordi-
nate transforms such as rescalings. However, mutual information
and total correlation values computed using differential entropies
are always positive and invariant to coordinate changes (Cover
and Thomas, 2012).

We measured the information shared between sets of ROIs
defined as follows. Any given ROI i can be considered as the target
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of prediction, in which case it’s called the seed. The ROI which is
the kth ranked neighbor of i is indicated by ni(k) (as described in
the previous section, these can be chosen according to one of three
different metrics: physical Euclidean distance, Connectome dis-
tance, or Randomized connectome distance). The seed together
with its k− 1 most proximate neighbor ROIs comprise the sub-
system of size k centered on i, indicated by Si(k). For a given seed,
all of the ROIs in the same hemisphere except those that are in
its subsystem of size k (in other words, those that are further
than its kth neighbor, according to a given metric) belong to the
environment, indicated by Ei(k).

Given these definitions of seed, neighbor, subsystem and
environment, we defined the following five measures of ROI
predictability:

Pairwise MI, I(i;j), is the MI between the activity of any two
individual ROIs i and j. One particular type of Pairwise MI we
consider in detail is the Seed-Neighbor MI, I(i; ni(k)), which is
the MI between the activity of a seed ROI and the seed’s k-ranked
neighbor.

Seed-Subsystem MI, I(i; Si(k)\i), is the MI between the activ-
ity of the seed ROI i and the joint activity of the rest of its size-k
subsystem. This measures how well the ROIs in a seed’s size-k sub-
system collectively predict the seed. This measure is illustrated in
schematic form in Figure 1E.

Total MI, I(i;V\i), where V represents the set of all the ROIs in
the hemisphere, is the total amount of prediction possible about
the seed using all other ROIs in the hemisphere. It is equivalent to
the Seed-Subsystem MI when the subsystem corresponds to the
entire hemisphere.

Seed-Environment MI, I(i;Ei(k)), is the MI between the activ-
ity of the seed and the joint activity of the ROIs in the environ-
ment. This measure quantifies how well ROIs in the environment
predict the activity of the seed ROI. This measure is illustrated in
schematic form in Figure 1E.

Euclidean Coupling Range is the neighbor number at which
Seed-Environment MI drops below a specific threshold. This
quantifies the smallest spatial scale at which a seed becomes
effectively functionally decoupled from the environment.

In addition, we defined two multivariate measures for mea-
suring the integration and predictability of entire subsystems. As
before, we chose k-sized subsystems that are centered on a given
seed ROI, and we again defined the environment as the set of ROIs
in a hemisphere that are not members of a given subsystem. We
considered two multivariate measures:

Subsystem Integration, TC(Si(k)), is the total correlation of
the activity of the set of ROIs in a size-k subsystem centered on
ROI i. This measure is high when ROI activity is individually var-
ied but collectively correlated, and is illustrated in schematic form
in Figure 1E.

Subsystem-Environment MI, I(Si(k);Ei(k)), is the MI between
the joint activity of the set of ROIs in a size-k subsystem
and the joint activity of the set of ROIs in the environment.
This measure is high when there is strong functional cou-
pling between subsystem and environment, and low when there
is high functional segregation between the subsystem and the
environment. This measure is illustrated in schematic form in
Figure 1E.

When reporting these two subsystem predictability measures
for subsystems of different sizes, we normalized them by subsys-
tem size. This resulted in measures of Subsystem Integration per
ROI and Subsystem-Environment per ROI.

Finally, we also computed correlations between ROI pre-
dictability measures and one measure reflecting long-range effi-
ciency. Global efficiency (Latora and Marchiori, 2001) is the
average of the inverse of all shortest-path distances between pairs
of vertices. We define long-range efficiency for an ROI within
a subsystem as the mean inverse shortest-path between the ROI
and its Euclidean environment ROIs (i.e., the ROIs outside of its
Euclidean subsystem). The long-range efficiency between the seed
and the ROIs in the seed’s Euclidean environment was computed
using shortest paths defined by the three aforementioned metrics:
Euclidean, Connectome, and Randomized.

RESULTS
As discussed in previous sections, for each ROI taken as the seed
we obtained a list of neighbor ROIs ranked from most proximate
to most distant according to three distance metrics (Euclidean,
Connectome and Randomized). Figure S3 shows the ranks of
neighbors for each seed and metric that were used to com-
pute scaling properties of the information-theoretic measures.
We looked at predictability of seed activity given the activity of
neighbors, subsystems and environments of different sizes.

We first characterized the distance in physical space between
seeds and neighbors ranked according to different metrics
(Euclidean, Connectome and Randomized). In Figure 2A, the Y-
axis depicts the Euclidean distance (mm) between seed ROIs and
the kth-neighbor (X-axis) chosen according to the three metrics,
averaged across all seed ROIs in both hemispheres (shaded areas
reflect 1st and 3rd quartiles). The physical distance to nearby
Connectome neighbors tends to be small, though highly variable
across seeds and not as small as to Euclidean neighbors, which are
by definition maximally proximate in physical space. Randomized
neighbors display no spatial regularity, with average distance to
neighbor of any rank corresponding to the expected Euclidean
distance separating randomly chosen pairs of ROIs (∼65 mm).

We used Pairwise MI to measure functional connectivity
between pairs of ROIs as a function of their separation accord-
ing to both Euclidean and Connectome distance. Euclidean and
Connectome distances were divided into 50 equal-width bins
and mean Pairwise MI between intra-hemispheric pairs of ROIs
corresponding to each Connectome and Euclidean bin was com-
puted. Figure 2B shows a heat map of mean Pairwise MI values
within each bin (log color scaling used to better highlight dif-
ferences among weakly coupled connections). The bar chart at
the top of the heat map shows mean MI values for pairs of
ROIs separated by different Euclidean distances (irrespective of
Connectome distances), while the bar chart at the right of the
heat map shows mean MI values for pairs of ROIs separated by
different Connectome distances (irrespective of Euclidean dis-
tances). Overall, mean Pairwise MI tends to decrease monotoni-
cally with increasing Euclidean distance as well as with increasing
Connectome distance. Pairs of ROIs that are distant according
to both metrics tend to be weakly coupled (mean MI below
0.01 bits). The most strongly coupled pairs of ROIs (mean MI
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FIGURE 2 | (A) Mean physical distance between seeds and their kth
neighbors, where neighbors are ranked according to three metrics: Euclidean
(red), Connectome (blue), and Randomized (gray) (averaged across all ROIs,
with solid line representing mean physical distance and shaded areas
indicating first and third quartiles). (B) Mean Pairwise MI between pairs of
ROIs separated by different Euclidean (horizontal axis) and Connectome

(vertical axis) distances. Log color scaling used to highlight differences
among weakly coupled connections. Upper bar chart shows mean Pairwise
MI values for pairs of ROIs separated by different Euclidean distances
(irrespective of Connectome distances) while bar chart on right shows mean
Pairwise MI values for pairs of ROIs separated by different Connectome
distances (irrespective of Euclidean distances).

above 0.2 bits) are those separated by small Euclidean distances,
irrespectively of Connectome distance. However, ROIs that are
distant in Euclidean space but proximate on the Connectome also
tend to have higher coupling (mean MI ∼0.03 bits) than those
that are distant in both metrics.

We next report the scaling of ROI-based predictability mea-
sures defined in section Information-Theoretic Measures and
Efficiency, namely Seed-Neighbor MI, Seed-Subsystem MI and
Seed-Environment MI.

Figure 3A shows Seed-Neighbor MI between seeds and their
neighbors chosen according to the three distance metrics, aver-
aged over all ROIs in both hemispheres as seeds. ROIs that are
closer in Euclidean and Connectome space have a higher MI, with
closely ranked Euclidean neighbors (up to neighbor ∼8) show-
ing a higher coupling than Connectome neighbors (this repro-
duces the effect seen in Figure 2B, where proximate Euclidean
and Connectome pairs tend to have higher Pairwise MI). As
expected, Pairwise MI with Randomized neighbors displays no
systematic regularity with neighbor rank. Mean Seed-Neighbor
MI for Euclidean neighbors becomes most similar to the mean
Seed-Neighbor MI for Randomized neighbors at approximately
the 50th neighbor (for Euclidean neighbors, this corresponds
to a distance of approximately 40 mm). This is the Euclidean
scale at which functional correlations between pairs of physically
proximate ROIs decay to baseline levels.

Figure 3B shows the scaling of Seed-Subsystem MI with
increasing subsystems averaged over all ROIs in both hemispheres
as seeds. The illustration in the top left corner shows in schematic
form how this measure is computed (dark brown is the seed,
light brown is subsystem, and green arrow is MI). Seed-Subsystem
MI grows monotonically with increasingly large subsystems as
more subsystem ROIs become available to predict the activity
of the seed. On average, seeds have the strongest coupling to

Euclidean subsystems, closely followed by Connectome subsys-
tems. However, across the full range of subsystem sizes, there is
great overlap in the distribution of Seed-Subsystem MI values
for subsystems defined according to these two metrics. In con-
trast, Randomized subsystems display much less Seed-Subsystem
MI over the entire range of subsystem sizes. The three mea-
sures converge once subsystems begin to overlap and grow toward
including the entire hemisphere.

Figure 3C shows scaling of Seed-Environment MI, the mul-
tivariate coupling between the seed and the environment. The
illustration in the top right corner shows in schematic form how
this measure is computed (dark brown is the seed, light green is
environment, and green arrow is MI). Note that since the envi-
ronment is defined as the set of hemispheric ROIs outside of the
subsystem, environment size decreases with increasing subsys-
tem size. For this reason, Seed-Environment MI always decreases
monotonically with increasing subsystem size, as less and less
environmental ROIs are available for predicting the seed. On aver-
age, Euclidean environments tend to have less predictability about
seeds than Connectome environments, indicating that sets of
ROIs that are distant in space tend to be less functionally coupled
to seeds than sets of ROIs distant on the Connectome. However,
there is again a large overlap between Seed-Environment MI
values over the range of environment sizes. Randomized environ-
ments tend to have the highest values of Seed-Environment MI.
This is due to the fact that Randomized environments include
more spatially- and structurally-proximate ROIs to the seeds
(which tend to be highly functionally coupled; Figure 2A) than
Euclidean and Connectome environments that by definition do
not include ROIs that are, respectively, proximate in space or on
the Connectome.

Next, we looked at how predictability of different ROIs varies
across the cortical surface using two measures defined in section
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Information-Theoretic Measures and Efficiency: Total MI and
Euclidean Coupling Range.

Figure 4A shows Total MI, or total amount of predictability
available about the activity of each ROI given the rest of ROIs
in the hemisphere (note that this measure does not depend on
choice of distance metric). In addition, we show the distribu-
tion of Total MI in different anatomical areas. As described in

section MRI Data, ROIs in each hemisphere are grouped into 34
larger-scale “anatomical areas” that correspond to the FreeSurfer
parcellation (Desikan et al., 2006). The bar chart on the upper
right of the cortical Total MI plot shows the top 8 anatomical
areas arranged according to maximum Total MI of ROIs within
each area (maximum Total MI of ROIs in each area indicated by
light gray bars; the minimum indicated by dark gray bars). The

FIGURE 3 | Scaling of the information-theoretic measures of seed

predictability. Colored lines indicate mean values across all seed ROIs in
both hemispheres, while shaded areas indicate values within 1st and 3rd
quartile. Colors indicate values for neighbors/subsystems/environments
chosen according to Euclidean (red), Connectome (blue), and Randomized
(gray) distance metrics. (A) Average Seed-Neighbor MI between seeds and
their corresponding kth rank neighbors chosen according to the three
distance metrics. (B) Seed-Subsystem MI between seeds and subsystems

built according to the three distance metrics. The illustration in the top left
corner diagrams how this measure is computed for a given seed and
subsystem of size 3. (C) Seed-Environment MI between seeds and
environments built according to the three distance metrics. The illustration in
the top right corner diagrams how this measure is computed for a given seed
and subsystem size 3 (environment size 4). The horizontal dotted line
indicates 0.3 bits of Seed-Environment MI, a threshold used later in our
definition of Euclidean Coupling Range.

FIGURE 4 | (A) Cortical distribution of Total MI, the total amount of
predictability available about each ROI from the ROIs in the rest of the
hemisphere. On the upper right are the top 8 anatomical areas arranged
according to maximum Total MI of ROIs with each area (maximum Total
MI of intra-area ROIs indicated by light gray bars; the minimum indicated
by dark gray bars) while on the lower right are the bottom 8 anatomical
areas arranged according to maximum Total MI of ROIs within each area
(maximum Total MI of intra-area ROIs indicated by light gray bars; the
minimum indicated by dark gray bars). (B) Cortical distribution of
Euclidean Coupling Range, the neighbor number at which Euclidean

Seed-Environment MI drops below a threshold of 0.3 bits (see text for
details). On the upper right are the top 8 anatomical areas arranged
according to maximum Euclidean Coupling Range of ROIs with each area
[light and dark gray bars indicating maximum and minimum values as in
(A)] while on the lower right are the bottom 8 anatomical areas arranged
according to maximum Euclidean Coupling Range of ROIs with each area
[light and dark gray bars indicating maximum and minimum values as in
(A)]. (C) Scatter plot of Total MI vs. Euclidean Coupling Range for left
and right hemisphere ROIs. A few ROIs are labeled with the names of
their corresponding anatomical areas.
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areas with the 8 largest maximum Total MIs are lateral occipital,
lingual, precuneus, pericalcarine, superior parietal, inferior pari-
etal, cuneus, and isthmus cingulate. The bar chart on the lower
right of the cortical Total MI plot shows the lowest 8 anatomical
areas arranged according to maximum Total MI of ROIs within
each area (maximum Total MI of ROIs within each area indicated
by light gray bars; the minimum indicated by dark gray bars).
The areas with the 8 lowest maximum Total MIs are posterior
cingulate, banks of the superior temporal sulcus (bankssts), lat-
eral orbitofrontal, paracentral, temporal pole, entorhinal, frontral
pole, and parahippocampal.

We next investigated how Euclidean Coupling Range is dis-
tributed across the cortical surface, as well as its correlation with
a structural measure.

Figure 4B shows the Euclidean Coupling Range of each ROI
on the cortical surface. Euclidean Coupling Range, defined as
the Euclidean neighbor number at which Seed-Environment
MI drops below a given threshold, quantifies the maximal spa-
tial scale at which a given amount of functional coupling with
the environment is maintained. We used a threshold amount
of 0.3 bits, which is the average Seed-Environment MI when
half-hemisphere-sized subsystems/environments (∼110 ROIs)
are considered (see horizontal dotted line in Figure 3C). On
the upper right are shown the top 8 anatomical areas arranged
according to maximum Euclidean Coupling Range of ROIs within
each area (light and dark gray bars indicating maximum and min-
imum values as in Figure 4A). The areas containing the 8 highest
maximum Euclidean Coupling Range are isthmus cingulate, infe-
rior parietal, precuneus, middle temporal, supramarginal, supe-
rior frontal, caudal middle frontal and medial orbitofrontal. On
the lower right are shown the bottom 8 anatomical areas arranged
according to maximum Euclidean Coupling Range of ROIs within
each area (light and dark gray bars indicating maximum and

minimum values as in Figure 4A). The areas containing the 8
lowest maximum Euclidean Coupling Range are cuneus, postcen-
tral, pericalcarine, frontal pole, parahippocampal, temporal pole,
paracentral and entorhinal.

In Figure 4C, we contrast these two measures using a scatter
plot of Total MI (X-axis) vs. Euclidean Coupling Range (Y-axis)
values for all left- and right-hemisphere ROIs. Several ROIs are
labeled with the names of corresponding anatomical areas in
order to indicate which areas tend to have high and low values
of these two measures.

We then looked at the relationship between Seed-Environment
MI, a measure of functional coupling, and long-range effi-
ciency, a measure of structural connectivity, in order to assess
whether structural features may be driving long-range func-
tional coupling. Long-range efficiency (see Section Information-
Theoretic Measures and Efficiency) is defined as the mean inverse
shortest-path lengths between each seed ROI and the set of
ROIs in its Euclidean environment (that is, its long-Euclidean-
range neighbors). Seed ROIs with greater efficiency values are
more proximate, according to some metric, to their long-range
Euclidean neighbors than those with lower efficiency ones. To
compare the accessibility of long-Euclidean-range neighbors over
Connectome space vs. Euclidean and Randomized space, we com-
puted different efficiency values corresponding to shortest-path
lengths to those neighbors on the three different distance metrics.

Figure 5A shows the Pearson correlation values between the
Seed-Environment MI and the three long-range efficiency mea-
sures as increasingly long Euclidean distances are considered
(with increasing subsystem size on the X-axis, environments
become increasingly small and distant). Correlations are com-
puted separately across all seed ROIs within each hemisphere
and then averaged between hemispheres. Correlations are highest
between Seed-Environment MI and long-range efficiency values

FIGURE 5 | (A) Pearson Correlation coefficient values between
Seed-Environment MIs and the long-range efficiency to environmental ROIs
as increasingly distant Euclidean environments are considered. Efficiency
values are computed using distances defined on the three metrics. The
vertical dotted line indicates subsystem size 124, where the maximal

correlation value of ∼0.47 is observed, between Seed-Environment MI and
Connectome efficiency. (B) Map of the cortical distribution of
Seed-Environment MI for environments of Euclidean subsystems of size 124.
(C) Map of the cortical distribution of Connectome efficiency values between
seeds and environments of Euclidean subsystems of size 124.
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over the Connectome metric. They reach a peak correlation value
of∼0.47 at k = 124 (vertical dotted line), corresponding to envi-
ronments composed of ROIs located further than ∼65 mm from
the seed. Such a strong correlation was not observed for efficiency
values computed using either of the other two metrics at any scale.

In Figure 5B, we plot for different seed ROIs the Seed-
Environment MI of Euclidean environments corresponding to
subsystems of size 124 (when the Connectome structural vs. func-
tional correlation is maximal; vertical dotted line in Figure 5A).
In Figure 5C, we plot the cortical distribution of the correspond-
ing Connectome efficiency values between seed ROIs and the
Euclidean environments. It can be seen that these two mea-
sures display a highly similar spatial distribution, indicating
that at this scale ROIs with the highest functional coupling to
long-Euclidean-range ROIs also tend to be the most efficiently
connected to them over the Connectome.

So far we have looked at the predictability of individual ROIs
considered as seeds. We now look at two (normalized) multi-
variate measures of the predictability of joint activity of entire
subsystems: Subsystem Integration per ROI and Subsystem-
Environment MI per ROI.

Figure 6A shows the Subsystem Integration per ROI, which
quantifies the amount of total correlation of subsystem activ-
ity (divided by subsystem size for normalization purposes). The
diagram in the lower right of the figure shows in schematic
form how this measure is computed (brown is the sub-
system, and the three-pointed green arrow is total correla-
tion). On average, the most integrated subsystems up to size
∼90 ROIs are those defined according to the Euclidean met-
ric (size-90 Euclidean subsystems have a radius of ∼55 mm),
while subsystems defined according to the Connectome are
on average the most integrated for larger subsystem sizes. As
expected, subsystems selected according to the Randomized

FIGURE 6 | Scaling of the subsystem predictability measures. Colored
lines indicate mean values across all subsystems, while shaded areas
indicate values within 1st and 3rd quartile. Red, blue, and gray colors
correspond to subsystems chosen according to Euclidean, Connectome
and Randomized metrics respectively. (A) Subsystem integration per ROI,
showing total correlation in the joint activity of ROIs in subsystems of
different sizes. The illustration in the lower right corner diagrams how this
measure is computed for a given subsystem of size 3. (B)

Subsystem-Environment MI, showing functional coupling between
subsystems and environments for different sizes. The illustration in the top
right corner diagrams how this measure is computed for a given subsystem
of size 3 and its environment.

metric, which are neither spatially co-located nor densely struc-
turally interconnected, display a much lower level of multivariate
integration.

Figure 6B shows Subsystem-Environment MI per ROI, a mea-
sure of the mutual information between subsystems and their
environments (divided by subsystem size for normalization pur-
poses). The diagram in the upper right of the figure shows
in schematic form how this measure is computed (brown is
subsystem, light green is environment, and the green arrow is
MI). On average this measure is lowest for Euclidean subsys-
tems, indicating that these are more functionally segregated from
the rest of the hemisphere than subsystems defined according
to the other metrics. Interestingly, Connectome subsystems are
nearly as segregated as Euclidean ones at small scales (up to
subsystem size ∼10), but at larger scales they are more func-
tionally coupled to the rest of the hemisphere. Randomized
subsystems have the highest Subsystem-Environment MI for all
the scales, since they are composed of groups of ROIs scat-
tered through the brain and their boundaries are spanned
by many pairs of ROIs separated by short Euclidean and
Connectome distances (which tend to have high functional
connectivity).

Overall, Figure 6 shows that Connectome subsystems exhibit
both high Subsystem-Environment MI and high Subsystem
Integration. We explored this finding in more depth in the fol-
lowing figure. First, we selected all Connectome subsystems of
size of 11, corresponding to a volume of approximately 5% of
each hemisphere (as seen in Figure 6A, at this size Connectome
subsystems are on average nearly as integrated as Euclidean sub-
systems but, as Figure 6B shows, contain much information
about their environments). Figure 7A shows the scatter plot of
Subsystem Integration (X-Axis) vs. Subsystem-Environment MI
(Y-Axis) for size-11 subsystems defined according to Euclidean,
Connectome and Randomized metrics. Randomized Subsystems
(gray) tend to cluster in regions of the scatter plot character-
ized by high Subsystem-Environment MI (lack of segregation
from environment) and low Subsystem Integration (lack of inter-
nal integration). Euclidean Subsystems (red) tend to occupy
regions of the scatter plot characterized by low Subsystem-
Environment MI (high segregation from environment) and high
Subsystem Integration (high internal integration). Connectome
Subsystems (blue), however, occupy intermediate regions of
the scatter plot, demonstrating significant amounts of both
Subsystem-Environment MI (thus not being functionally seg-
regated from the rest of the hemisphere) while also having
significant Subsystem Integration (thus also having internal
integration).

We investigated which specific Connectome subsystems max-
imize both Subsystem Integration and Subsystem-Environment
MI. First, Connectome subsystems that were in the upper
50 percentile of both measures in each hemisphere were
selected. Next, because these subsystems overlapped (contained
some of the same ROIs; see Figure S4A), we clustered them
into a smaller number of minimally-overlapping “subsystem
communities.” To do so, for each hemisphere we computed a
subsystem-by-subsystem Overlap Matrix whose entries measured
the proportion of ROIs shared between each pair of subsystems
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FIGURE 7 | (A) Scatter plot of Subsystem Integration vs.
Subsystem-Environment MI for subsystems of size 11, with red, blue and
gray colors correspond to subsystems chosen according to Euclidean,
Connectome and Randomized metrics respectively. Left-hemisphere
subsystems are indicated with left-pointing triangles and
right-hemisphere subsystems are indicated with right-pointing triangles. (B)

Connectome subsystems in the upper 50 percentile of both Subsystem
Integration and Subsystem-Environment MI were chosen and allowed us to

identify four minimally overlapping “subsystem communities” in the left and
right hemispheres. ROIs are colored according to community membership
(color arbitrary); gray ROIs are those that did not belong to any
high-Subsystem-Integration, high-Subsystem-Environment MI subsystem.
(C) The distribution of subsystem communities across anatomical areas. Bar
chart shows the number of ROIs from each community that are contained in
different anatomical areas for the top 9 represented anatomical areas. Bar
chart colors correspond to the colors used on the cortical map.

(see Figure S4B, S4C for the left and right hemisphere Overlap
Matrices). A community-detection algorithm (Blondel et al.,
2008) was run on this matrix to provide a partition of the
subsystems into communities.

The community-detection algorithm identified four commu-
nities in the left hemisphere and another four in the right hemi-
sphere. Figure 7B shows cortical surface of the left and right
hemisphere, with each ROI colored according to its membership
in a subsystem community (colors arbitrary but selected so that
communities that have similar spatial distributions in both hemi-
spheres have the same color). ROIs that belong to more than one
selected subsystem were assigned to their most frequent com-
munity. Gray colored ROIs are those that were not part of any
subsystem that was in the top 50 percentiles according to the two
MI measurements.

Finally, we looked at how the subsystem communities obtained
were distributed across anatomical areas. Anatomical areas were
ranked in terms of their participation in the subsystems maxi-
mizing Subsystem Integration and Subsystem-Environment MI.
Figure 7C lists the top 9 anatomical areas: superior frontal, infe-
rior parietal, superior parietal, lateral occipital, superior tempo-
ral, precuneus, lingual, supramarginal, and insula. The stacked
bar charts indicate, for both hemispheres, the number of ROIs
from each subsystem community that are contained in each
anatomical area, with bar chart colors corresponding to the colors
used on the cortical map. We discuss the distribution of these sub-
system communities across anatomical areas in more detail in the
section Subsystem Predictability and Integration vs. Segregation
Trade-Off.

DISCUSSION
In this work, we characterized brain regions and networks in
terms of their information-theoretic measures by using both
functional and structural information in a complementary man-
ner. The measures presented here quantify the amount of func-
tional coupling between sets of ROIs as well as integration within
sets of ROIs. Sets of ROIs form subsystems which are selected
according to three different possible distance metrics: Euclidean
(reflecting the physical spatial embedding of brain regions),
Connectome (reflecting the anatomical structural connectivity of
the brain), and Randomized (a comparison condition based on
a rewired version of the Connectome graph; see Section Distance
Metrics). We also investigated the scaling of these measures, in the
sense of their growth as larger subsystems are considered.

In section Information-Theoretic Measures for Studying the
Organization of the Brain, we discuss the use of information-
theoretic measures for characterizing the brain and the need
for such measures to account for the brain’s spatial and topo-
logical embedding. In section Scaling of Information-Theoretic
Measures, we discuss the scaling of our measures as brain sub-
systems of different sizes are considered, their distribution across
the cortical surface, and their relation to long-range efficiency. In
section Subsystem Predictability and Integration vs. Segregation
Trade-Off, we discuss the fact that Connectome subsystems tend
to be highly internally integrated while also being coupled to the
rest of the brain, and that the subsystems that optimize this trade-
off cluster into communities that resemble previously identified
resting state networks. In section Methodological Considerations
we discuss some important methodological considerations and
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assumptions involved in this work. In the last section Future
Directions, we suggest some possible directions for further work.

INFORMATION-THEORETIC MEASURES FOR STUDYING THE
ORGANIZATION OF THE BRAIN
As mentioned in the Introduction, much recent research has been
devoted to characterizing the structural and functional roles of
different brain regions and networks. Many of these characteriza-
tions have identified certain regions as structural and functional
hubs, decomposed the brain into weakly-coupled modules and
networks, and investigated the role of large-scale integrative back-
bones.

Information theory provides a natural language for talking
about systemic aspects of the organization of functional brain
activity, including the presence of quasi-independent modular
subsystems and the integrative properties of functional hubs and
networks. Several information-theoretic measures for studying
brain organization have been proposed in the literature. One
measure of particular interest is TSE complexity (Tononi et al.,
1994), which is based on the idea that low-level processing is
performed in localized, segregated brain regions that operate in
parallel and interconnect along hierarchical lines, while high-level
association and integration is performed in large-scale distributed
networks (Felleman and Essen, 1991; Yeo et al., 2011). TSE com-
plexity quantifies this notion by looking at the scaling of total
correlation as increasingly large subsystems are considered. The
degree to which the total correlation of large-scale regions (having
many components) exceeds that of small-scale regions (contain-
ing few components) is a quantitative signature of integration at
large scales.

Importantly, the activity of the brain unfolds across physical
space and structural connectivity networks. For this reason, it
can be expected to qualitatively follow Tobler’s first law of geog-
raphy: “Everything is related to everything else, but near things
are more related than distant things” (Tobler, 1970). In fact, as
previously reported (Salvador et al., 2005; Honey et al., 2009;
Power et al., 2013) and as also shown here, functional interactions
are stronger between spatially proximate regions. TSE complexity,
however, considers integration at a given scale by looking at all
possible subsets of component of a given size. Thus, while it repre-
sents a promising step toward an information-theoretic treatment
of large-scale integration, it disregards spatial and connectiv-
ity information and the fact that the organization of functional
activity is often dominated by physically localized interactions.

In this work, we looked at the scaling of information-theoretic
measures across both physical space and the Connectome, and
compared it to scaling over the Randomized metric (which, like
TSE, disregards actual spatial and topological organization). As
we will discuss, we found that the Randomized metric poorly
represents the functional organization of our brain data, and this
weakness may also be expected of TSE. In fact, underlying spatial
and connectome structure must be taken into account in order
to properly quantify the amount of large-scale integration in
the brain. In addition, our methodology, which captures system-
atic relationships between the size and the strength of functional
constraints in spatially-compact subsystems, allows us to com-
pute localized information-theoretic measures of scaling. This

allows for the characterization of the variation of integration and
predictability across the cortical surface.

SCALING OF INFORMATION-THEORETIC MEASURES
We measured the amount of functional coupling between each
ROI (the “seed”) and the set of most proximate neighbors (the
local “subsystem”) as well as the set of most distant neighbors (the
distant “environment”). We also computed how the strength of
functional coupling scales as increasing numbers of neighbors are
chosen according to one of the three different distance metrics—
Euclidean, Connectome, or Randomized.

As discussed in section Information-Theoretic Measures for
Studying the Organization of the Brain, functional activity orga-
nized according to an underlying metric will display stronger
functional coupling between nearby locations vs. more distant
ones. Thus, information-theoretic measures computed on sets
of ROIs chosen according to a more “representative” space are
expected to give rise to higher values of Seed-Subsystem MI and
Seed-Neighbor MI for close neighbors (i.e., more integration
within local regions) as well as lower values of Seed-Environment
MI (i.e., more segregation between local regions and the rest of
the system).

According to these criteria, both Euclidean and Connectome
metrics better represent the functional organization of rest-
ing state activity than the Randomized metric (Figure 3). On
average, for small scales, the Euclidean metric captures more
strong functional couplings than does the Connectome metric,
as shown by higher values of Seed-Neighbor MI (Figure 3A)
and Seed-Subsystem MI (Figure 3B) measures for Euclidean vs.
Connectome subsystems. Generally, for the range of scales con-
sidered, ROIs chosen according to the Connectome metric display
an amount of functional coupling with neighbors between those
chosen according to the Euclidean metric on one hand and
Randomized on the other. We discuss some possible reasons for
the intermediate role played by Connectome subsystems below.

The strength of functional coupling between seeds and
Euclidean subsystems (Figure 3B), as well as the fact that the
environments chosen in terms of distant Euclidean neighbors dis-
play the least functional coupling (Figure 3C), demonstrates that
resting-state brain data is highly spatial, in that it exhibits strong
correlations over small Euclidean scales (some reasons for this
are discussed below in section Methodological Considerations).
However, while short-Euclidean range interactions are strong, the
brain also integrates information globally and exhibits functional
coupling over large spatial scales. Because Seed-Environment MI
quantifies the functional coupling between seed ROIs and remote
locations, we defined Euclidean Coupling Range as the number
of Euclidean neighbors at which the Seed-Environment MI drops
below a threshold of 0.3 bits, and looked at the distribution of this
measure across the cortical surface (Figure 4).

This measure was found to have a highly heterogeneous dis-
tribution across the brain. Low values of Euclidean Coupling
Range—indicating that only short-scale correlations present—
are found in unimodal sensorimotor cortices, including loca-
tions corresponding to V1, motor areas in the precentral
gyrus, somatosensory areas in postcentral gyrus, paracentral
areas corresponding to the supplementary motor area, and
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superior temporal areas corresponding to auditory cortex. On
the other hand, locations in the brain having high Euclidean
Coupling Range—indicating the presence of long-range func-
tional couplings—include recognized high-level hub areas (van
den Heuvel and Sporns, 2013), such as the precuneus, inferior
parietal, superior frontal gyrus, anterior cingulate, temporopari-
etal junction and ventral frontal cortex. In addition, regions
thought to have functional roles at intermediate levels of the
cortical hierarchy, such as higher-order visual and auditory cor-
tices as well as somatosensory association cortices, tend to display
intermediate values of Euclidean Coupling Range.

Importantly, variation in Euclidean Coupling Range arises due
to variation in the range of spatial coupling of different ROIs and
is not simply due to differences in their inherent level of pre-
dictability. We compared Euclidean Coupling Range with Total
MI, a measure of mutual information between each ROI and the
rest of the ROIs in its hemisphere. Total MI does not rely on
any underlying metric and quantifies the inherent predictability
of different regions. This measure also displayed a heterogeneous
distribution across the brain, indicating that during resting-state
some ROIs are much more predictable than others. Regions with
the highest predictability included large areas of the occipital lobe,
primarily corresponding to the primary and higher-order visual
cortices, as well as some regions of the parietal lobe such as the
inferior parietal lobule. Notably, many regions high in Euclidean
Coupling Range—such as those in the frontal lobe—did not have
exceptionally high Total MI, nor did many regions with high
Total MI—such as visual cortices—have high Euclidean Coupling
Range (Figure 4C). Thus, Euclidean Coupling Range is a continu-
ous measure that separates regions having spatial segregation (low
values) from those having spatial integration (high values) and
identifies functional hubs at multiple scales of the cortical hierar-
chy. Our results are in agreement with previous research showing
a connection between functional hubs and long-spatial-range
functional coupling (Sepulcre et al., 2010).

We also evaluated whether functional coupling between spa-
tially distant regions may be driven by long-rage efficiency. Hence
we correlated Seed-Environment MI and long-range efficiency
(over the three metrics) between ROIs and their Euclidean envi-
ronments for a wide range of scales. For most scales, long-range
efficiency over the Connectome was positively correlated with
the Seed-Environment MI, while correlations were much smaller
with long-range efficiency over Euclidean and Randomized met-
rics. Thus, the presence of Connectome shortest-paths between
the seed and spatially distant ROIs was the best predictors of
strong functional coupling between them, reflecting a possi-
ble fingerprint of structural connections in driving functional
coupling over large spatial scales.

SUBSYSTEM PREDICTABILITY AND INTEGRATION vs. SEGREGATION
TRADE-OFF
Our information-theoretic approach measured not only the pre-
dictability of seed ROIs, but also the multivariate predictabil-
ity of sets of ROIs in subsystems (Figure 6). We investigated
two complementary measures: Subsystem-Environment MI and
Subsystem Integration. On average Connectome subsystems
displayed nearly as much Subsystem Integration as Euclidean

subsystems up to subsystem size 90, and more integration for
larger sizes. Across many scales, Euclidean subsystems located in
the occipital lobe (corresponding to the visual cortices) displayed
the highest amounts of integration (these subsystems, for exam-
ple, are the cluster of points with very high integration shown in
the scatter plot of Figure 7A). On the other hand, in comparison
to Euclidean subsystems, Connectome subsystems had a higher
Subsystem-Environment MI, indicating that they were less func-
tionally segregated from the rest of the hemisphere. Randomized
subsystems were much less internally integrated and much less
segregated from their environments than either Euclidean or
Connectome subsystems.

At first glance, subsystems with high functional integration
are also expected to display high functional segregation. The
fact that Connectome subsystems have relatively high values
of both Subsystem Integration and Subsystem-Environment MI
suggests that they may balance a trade-off between two important
information-processing functions: accessing information from
large areas of the brain and integrating it efficiently across a
network of hub regions (Zamora-López et al., 2010). We investi-
gated this question by looking at particular values of Subsystem
Integration and Subsystem-Environment MI for subsystems of
size of 11 (∼5% of one hemisphere) (Figure 7A). We chose
Connectome subsystems with high values on both Subsystem-
Integration and Subsystem-Environment MI and found that they
are distributed into four minimally-overlapping subsystem com-
munities (Figure 7B). Interestingly, these communities can be
interpreted in terms of neural anatomy as well as in terms of
previous work on functional resting state networks. The yellow
communities in the left and right hemispheres occupy areas corre-
sponding to primary and secondary visual and auditory cortices,
the light blue communities roughly correspond to locations in the
default mode network, while the dark red and blue communities
contain regions reported to be part of the ventral attention, dor-
sal attention, and fronto-parietal control resting state networks
(Yeo et al., 2011). The anatomical regions (Figure 7C) most rep-
resented in the light blue, dark blue and dark red communities
are known to include many functional hub regions, such as supe-
rior frontal gyrus, inferior and superior parietal lobules, supra-
marginal gyrus and insula. Interestingly, in both hemispheres, the
superior frontal gyrus included ROIs corresponding to all three
of these communities, suggesting that it may be a location where
these separate high-level integrative networks intersect.

Overall, this shows that our multivariate information-
theoretic measures provide useful characterization of integration
and coupling in subsystems. Furthermore, we found that they
identify regions that display large values of integration and cou-
pling, some of which are similar to previously reported resting-
state networks.

METHODOLOGICAL CONSIDERATIONS
The Randomized metric was used as a control for comparison and
was not expected to correspond closely to the functional organiza-
tion. On the other hand, the fact that nearby Connectome neigh-
bors exhibited increased functional coupling (Figure 2B) suggests
that connections captured in the DSI data do correspond to
actual anatomical connections that drive neural interactions and
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produce correlations in the multivariate BOLD signal. However,
proximity in physical space, as captured by the Euclidean metric,
corresponded to even higher correlations. The strong correla-
tions between physical neighbors is driven in part by the overlap
between structural and Euclidean neighbors, in that anatomical
connections are enriched in spatially proximate regions (Honey
et al., 2009). However, other causes may also be responsible,
including undetected connections (such as local cortico-cortical
connectivity and subcortical-mediated circuitry) as well as spa-
tial smoothing due to BOLD-signal blurring due to vasculature
effects, head motion artifacts, and MRI preprocessing (Honey
et al., 2009; Power et al., 2012, 2013).

The framework proposed here looks at the scaling of
information-theoretic measures. It is not tied to any particular
way of estimating information-theoretic measures from empir-
ical data and can be applied both to continuous and discrete
data. However, as discussed in section Information-Theoretic
Measures and Efficiency, for practical purposes in this work we
assumed that the activity of ROIs was distributed as a multivari-
ate Gaussian. Due to the Gaussian assumption, the covariance
matrix of each hemisphere’s multivariate fMRI time series served
as a sufficient statistic for all of our measures of predictability and
integration. In addition to the Gaussian assumption, we also com-
bined the time series from all 37 subjects into a single “pooled”
subject possessing ∼10,000 time points (see Section MRI Data).
Because of the subject pooling, enough time points were acquired
to get a reasonable estimate of the entries in this covariance
matrix (defined by nearly ∼20,000 parameters). We thus could
estimate information-theoretic measures for high dimensional
spaces, such as for the entropies of the joint activity of the ∼220
ROIs present in each hemisphere.

Computing predictability using the Gaussian assumption is
equivalent to predicting the activity of seed ROIs and subsys-
tems by linear regression. The drawback of using the covariance
matrix for estimating information-theoretic quantities is that
it disregards non-linear interactions between ROI activities, as
well as interactions of higher-order than pairwise. Though it has
been suggested that bivariate fMRI time series are sufficiently
Gaussian to not warrant the estimation of non-linear effects in
functional connectivity (Hlinka et al., 2011), there are a num-
ber of estimators that could be used that do take into account
such effects, such as for example nearest-neighbor estimators
(Kozachenko and Leonenko, 1987; Singh et al., 2003; Kraskov
et al., 2004; Lizier et al., 2011). However, these estimators require
of a large number of samples for reliable estimates and in our
case gave unstable entropy estimates (data not shown). Overall,
questions about the importance of non-linear and higher-order
interactions in describing the functional organization of the
brain present great interest for future investigation using our
framework.

For similar reasons, it was not feasible to accurately estimate
our multivariate information-theoretic measures using individ-
ual subjects’ time series, which included only 276 samples per
ROI per subject. Our method of subject pooling, which was per-
formed for reasons of statistical estimation, is defensible because
resting state functional activity is known to be fairly similar
across healthy subjects (Damoiseaux et al., 2006). In addition,

structural connectivity is also similar enough across healthy sub-
jects so that connectome pooling can be used to reduce the
effect of DSI-tractography false negatives (i.e., undetected fibers)
(Hagmann et al., 2008; de Reus and van den Heuvel, 2013).
However, this approach prohibits us from investigating questions
of inter-subject variation in information-theoretic measures as
well as their relation to individual-subject structural measures.
Questions of inter-subject variability of information-theoretic
measures also present great interest for future investigation, which
may become feasible given the availability of datasets containing
longer fMRI time series.

FUTURE DIRECTIONS
As mentioned, with longer recordings it may be possible to
investigate the role of non-linear coupling and higher-order inter-
actions in the functional organization of the human brain, as
well as the inter-subject variability of information-theoretic mea-
sures. In addition, it may be possible to apply these measures
in a time-dependent manner in order to look for evidence of
dynamic re-organization of the integrative properties of differ-
ent regions. Another interesting avenue of development would
be to apply our methodology to task-dependent datasets in
order to test differences in information-theoretic measures exhib-
ited under different cognitive loads and tasks. Finally, recent
work on using entropy measures for diagnostic purposes (Mäki-
Marttunen et al., 2013) suggests that the kinds of measures devel-
oped here may hold promise as possible sources of diagnostic
markers.

Generally, the idea of using information-theory to study the
functional organization of the brain draws connections to fields
of statistical learning, coding theory, statistical physics, com-
plex systems and other fields that are playing a central part in
modern computational and systems neuroscience. It may also
be relevant to recent ideas regarding the criticality of brain
functional activity. Criticality is a concept closely tied to long-
range scaling of correlations, and it has been shown in models
that information-theoretic measures of integration (Erb and Ay,
2004; Feldman et al., 2008; DeDeo and Krakauer, 2012) are
maximized at critical parameter values. As we have argued, how-
ever, properly measuring the scaling of integration should take
into account underlying topologies on which system constraints
are organized. This suggests that our approach may be use-
ful for investigating the hypothesis that brain is poised at or
nearby a critical state (Haimovici et al., 2013; Marinazzo et al.,
2013).
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